
Sun OpenSSO Enterprise 8.0
Developer's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–3748
January 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

091017@22749

Contents

Preface ...11

1 Using the Authentication Service API and SPI ... 17
Initiating Authentication with the Authentication Service API .. 17
Writing Authentication Modules with the Authentication Service SPI 20

Creating an Authentication Module Callback Requirement File ... 21
Writing a Principal Class for the Authentication Module .. 23
Creating an Authentication Module Service File ... 23
Creating an Authentication Module Localization Properties File ... 25
Extending the AMLoginModule Class ... 26
Adding Authentication Post Processing Features .. 27

Communicating Authentication Data as XML .. 28
XML Messages and remote-auth.dtd .. 28
XML/HTTP(s) Interface for Other Applications ... 30

Customizing Plug-Ins for the Password Reset User Interface .. 31

2 Using the Policy Service API .. 33
About the Policy Service Interfaces ... 33

com.sun.identity.policy ... 34
com.sun.identity.policy.client ... 37
com.sun.identity.policy.interfaces .. 37
com.sun.identity.policy.jaas ... 38

Enabling Authorization Using the Java Authentication and Authorization Service (JAAS) 39
Using the Policy Evaluation API .. 41

▼ To Develop a Custom Policy Plug-In .. 41
Sample Code for Custom Subjects, Conditions, Referrals, and Response Providers 43

3

3 Using the Session Service API .. 67
A Simple Single Sign-On Scenario .. 67
Inside a User Session ... 68

Session Attributes ... 68
Protected Properties .. 69

About the Session Service Interfaces ... 70
SSOTokenManager .. 70
SSOToken ... 72
SSOTokenListener .. 74

4 Running OpenSSO Enterprise in Debugging Mode ... 75
To Run OpenSSO Enterprise in Debugging Mode ... 75
To Merge Debugging Output into One File ... 76

5 Understanding the Federation Options ..77
Understanding Federation ... 77
Understanding Federated Single Sign-on .. 78
Federated Single Sign-on Using OpenSSO Enterprise ... 79
Executing a Multi-Protocol Hub ... 80

6 Implementing the Liberty Alliance Project Identity-Federation Framework 81
Customizing the Federation Graphical User Interface ... 81
Using the Liberty ID-FF Packages ... 83

com.sun.identity.federation.accountmgmt .. 83
com.sun.identity.federation.common .. 83
com.sun.identity.federation.message .. 83
com.sun.identity.federation.message.common ... 84
com.sun.identity.federation.plugins .. 84
com.sun.identity.federation.services .. 84
com.sun.liberty .. 85

Accessing Liberty ID-FF Endpoints .. 85
Executing the Liberty ID-FF Sample ... 86

Contents

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 20094

7 Implementing WS-Federation ...87
Accessing the WS-Federation Java Server Pages .. 87
Using the WS-Federation Packages .. 87

com.sun.identity.wsfederation.plugins .. 88
com.sun.identity.wsfederation.common .. 89

Executing the Multi-Protocol Hub Sample .. 89

8 Constructing SAML Messages ...91
SAML v2 ... 91

Using the SAML v2 SDK ... 91
Service Provider Interfaces ... 93
JavaServer Pages ... 100
SAML v2 Samples .. 109

Using SAML v2 for Virtual Federation Proxy .. 109
How Virtual Federation Proxy Works .. 110
Use Cases ... 113
Securing Virtual Federation Proxy .. 114
Preparing to Use Virtual Federation Proxy .. 115
Configuring for Virtual Federation Proxy .. 117
Using the Secure Attribute Exchange Sample .. 120

SAML v1.x .. 120
com.sun.identity.saml Package ... 121
com.sun.identity.saml.assertion Package .. 121
com.sun.identity.saml.common Package .. 122
com.sun.identity.saml.plugins Package .. 122
com.sun.identity.saml.protocol Package .. 124

9 Implementing Web Services ..127
Developing New Web Services .. 127

▼ To Host a Custom Service ... 128
▼ To Invoke the Custom Service .. 134

Setting Up Liberty ID-WSF 1.1 Profiles .. 136
▼ To Configure OpenSSO Enterprise to Use Liberty ID-WSF 1.1 Profiles 137
▼ To Test the Liberty ID-WSF 1.1 Configuration ... 140

Common Application Programming Interfaces ... 140

Contents

5

Common Interfaces ... 140
Common Security API .. 142

Authentication Web Service .. 143
Authentication Web Service Default Implementation .. 144
Authentication Web Service Packages .. 145
Access the Authentication Web Service .. 145

Data Services .. 146
Liberty Personal Profile Service .. 146
Data Services Template Packages ... 146

Discovery Service ... 148
Generating Security Tokens ... 148
Discovery Service Packages .. 151
Access the Discovery Service .. 155

SOAP Binding Service ... 155
SOAPReceiver Servlet .. 156
SOAP Binding Service Package .. 156

Interaction Service ... 157
Configuring the Interaction Service .. 157
Interaction Service API ... 159

PAOS Binding .. 160
Comparison of PAOS and SOAP ... 160
PAOS Binding API ... 160

10 Using the REST Identity Interfaces ... 163
The REST URL Format ... 163
Authentication ... 164
Token Validation ... 165
Logout ... 165
Authorization ... 166
Logging ... 166
Searching Identity Types .. 167
Display Identity Data .. 168
Display Particular Identity Data .. 169
Creating Identity Types .. 170
Updating Identity Data ... 171

Contents

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 20096

Deleting an Identity Profile .. 171

11 Securing Web Services ..173
About Web Services Security ... 173
About Web Services Security with OpenSSO Enterprise ... 174
The Security Token Service .. 178

Web Container Support .. 178
Security Tokens .. 179
Token Conversion ... 179
Configuring the Security Token Service ... 180

Security Agents .. 180
WSC Security Agents ... 182
WSP Security Agent ... 183

Testing Web Services Security ... 186

12 Creating and Deploying OpenSSO Enterprise WAR Files .. 187
Overview of WAR Files in Java EE Software Development .. 187

Web Components .. 188
How Web Components are Packaged ... 188

Deploying the OpenSSO Enterprise WAR File .. 188
OpenSSO Enterprise Deployment Considerations ... 189

▼ To Deploy the OpenSSO Enterprise Server WAR File: ... 189
Customizing and Redeploying opensso.war ... 191

▼ To Customize and Redeploy opensso.war ... 191
Creating Specialized OpenSSO Enterprise WAR Files ... 191

▼ To Create a Specialized OpenSSO Enterprise WAR File .. 192

13 Customizing the Authentication User Interface .. 195
User Interface Files You Can Modify .. 195

Java Server Page (JSP) Files ... 196
XML Files .. 199
JavaScript Files .. 202
Cascading Style Sheets ... 202
Images .. 203

Contents

7

Localization Files .. 204
Customizing Branding and Functionality .. 205

▼ To Modify Branding and Functionality .. 206
Customizing the Self-Registration Page ... 207

▼ To Modify the Self-Registration Page .. 207
Customizing the Distributed Authentication User Server Interface ... 209

▼ To Customize the Distributed Authentication Server User Interface 210

14 Using the Client SDK ...213
About the Client SDK ... 213

OpenSSO Enterprise Client SDK Requirements .. 214
Using the Client SDK ... 215

Using AMConfig.properties With the Client SDK ... 215
Properties in AMConfig.properties ... 216
Setting Properties in AMConfig.properties .. 226

Installing the Client SDK and Running the Samples ... 227
Installing the Client SDK by Deploying the Sample WAR ... 227
Installing the Client SDK By Compiling the Samples .. 236

Sending Notifications to the Client SDK Cache .. 237
▼ To Enable Client SDK Cache Notifications .. 237

Setting Up a Client SDK Identity ... 238
To Set Username and Password Properties .. 239
To Set an SSO Token Provider ... 239

Using the Virtual Federation Proxy Client Interfaces ... 239

15 Reading and Writing Log Records .. 241
About the Logging Service .. 241
Using the Logging Interfaces ... 242

Implementing Logging with the Logging Service API .. 242
Implementing Remote Logging ... 246

Logging to a Second OpenSSO Enterprise Server Instance .. 246
Logging to OpenSSO Enterprise Server From a Remote Client ... 247

Running the Command-Line Logging Sample (LogSample.java) .. 247
▼ To Run the Command-Line Logging Sample .. 248

Contents

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 20098

A Key Management ...249
Public Key Infrastructure Basics .. 249

Digital Signatures ... 250
Digital Certificates ... 250

keytool Command Line Interface .. 251
Setting Up a Keystore .. 252

▼ To Set Up a Keystore .. 252

Index ... 255

Contents

9

10

Preface

Sun OpenSSO Enterprise 8.0 provides a comprehensive solution for protecting network
resources that integrates authentication and authorization services, policy agents, and identity
federation. This Preface to the OpenSSO Enterprise 8.0 Developer's Guide provides information
about using the OpenSSO Enterprise Java application programming interfaces (API) and
service provider interfaces (SPI).

Note – For information about using the C API see Sun OpenSSO Enterprise 8.0 C API Reference
for Application and Web Policy Agent Developers. Additional information on the Java interfaces
can be found in the Sun OpenSSO Enterprise 8.0 Java API Reference.

■ “Before You Read This Book” on page 11
■ “Related Documentation” on page 12
■ “Searching Sun Product Documentation” on page 13
■ “Typographical Conventions” on page 14

Before You Read This Book
This book is intended for use by IT administrators and software developers who implement a
web access platform using Sun servers and software. Readers of this guide should be familiar
with the following technologies:

■ eXtensible Markup Language (XML)
■ Lightweight Directory Access Protocol (LDAP)
■ JavaTM

■ JavaServer PagesTM (JSP)
■ HyperText Transfer Protocol (HTTP)
■ HyperText Markup Language (HTML)

11

http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3739

Related Documentation
Related documentation is available as follows:
■ “OpenSSO Enterprise 8.0 Core Documentation” on page 12
■ “Related Product Documentation” on page 13

OpenSSO Enterprise 8.0 Core Documentation
The OpenSSO Enterprise 8.0 core documentation set contains the following titles:

■ The Sun OpenSSO Enterprise 8.0 Release Notes will be available online after the product is
released. It gathers an assortment of last-minute information, including a description of
what is new in this current release, known problems and limitations, installation notes, and
how to report issues with the software or the documentation.

■ The Sun OpenSSO Enterprise 8.0 Technical Overview provides high level explanations of
how OpenSSO Enterprise components work together to protect enterprise assets and
web-based applications. It also explains basic concepts and terminology.

■ The Sun OpenSSO Enterprise 8.0 Deployment Planning Guide provides planning and
deployment solutions for OpenSSO Enterprise based on the solution life cycle

■ The Deployment Example: Single Sign-On, Load Balancing and Failover Using Sun OpenSSO
Enterprise 8.0 provides instructions for building an OpenSSO solution incorporating
authentication, authorization and access control. Procedures for load balancing and session
failover are also included.

■ The Deployment Example: SAML v2 Using Sun OpenSSO Enterprise 8.0 provides
instructions for building an OpenSSO solution incorporating SAML v2 federation.
Installation and configuration procedures are included.

■ The Sun OpenSSO Enterprise 8.0 Installation and Configuration Guide provides information
for installing and configuring OpenSSO Enterprise.

■ The Sun OpenSSO Enterprise 8.0 Performance Tuning Guide provides information on how
to tune OpenSSO Enterprise and its related components for optimal performance.

■ The Sun OpenSSO Enterprise 8.0 Administration Guide describes administrative tasks such
as how to create a realm and how to configure a policy. Most of the tasks described can be
performed using the administration console as well as the ssoadm command line utilities.

■ The Sun OpenSSO Enterprise 8.0 Administration Reference is a guide containing
information about the command line interfaces, configuration attributes, internal files, and
error codes. This information is specifically formatted for easy searching.

■ The Sun OpenSSO Enterprise 8.0 Developer’s Guide (this guide) offers information on how to
customize OpenSSO Enterprise and integrate its functionality into an organization’s current
technical infrastructure. It also contains details about the programmatic aspects of the
product and its API.

Preface

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200912

http://docs.sun.com/doc/820-3745
http://docs.sun.com/doc/820-3740
http://docs.sun.com/doc/820-3746
http://docs.sun.com/doc/820-5985
http://docs.sun.com/doc/820-5985
http://docs.sun.com/doc/820-5986
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3747
http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3886
http://docs.sun.com/doc/820-3748

■ The Sun OpenSSO Enterprise 8.0 C API Reference for Application and Web Policy Agent
Developers provides summaries of data types, structures, and functions that make up the
public OpenSSO Enterprise C SDK for application and web agent development.

■ The Sun OpenSSO Enterprise 8.0 Java API Reference provides information about the
implementation of Java packages in OpenSSO Enterprise.

■ The Sun OpenSSO Enterprise Policy Agent 3.0 User’s Guide for Web Agents and Sun OpenSSO
Enterprise Policy Agent 3.0 User’s Guide for J2EE Agents provide an overview of the policy
functionality and policy agents available for OpenSSO Enterprise.

Updates to the Release Notes and links to modifications of the core documentation can be found
on the OpenSSO Enterprise page at docs.sun.com. Updated documents will be marked with a
revision date.

Related Product Documentation
The following table provides links to documentation for related products.

Product Link

Sun Java System Directory Server 6.3 http://docs.sun.com/coll/1224.4

Sun Java System Web Server 7.0 Update 3 http://docs.sun.com/coll/1653.3

Sun Java System Application Server 9.1 http://docs.sun.com/coll/1343.4

Sun Java System Message Queue 4.1 http://docs.sun.com/coll/1307.3

Sun Java System Web Proxy Server 4.0.6 http://docs.sun.com/coll/1311.6

Sun Java System Identity Manager 8.0 http://docs.sun.com/coll/1514.5

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Preface

13

http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-5816
http://docs.sun.com/doc/820-4803
http://docs.sun.com/doc/820-4803
http://docs.sun.com/
http://docs.sun.com/coll/1224.4
http://docs.sun.com/coll/1653.3
http://docs.sun.com/coll/1343.4
http://docs.sun.com/coll/1307.3
http://docs.sun.com/coll/1311.6
http://docs.sun.com/coll/1514.5
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the title of this book is Sun OpenSSO Enterprise 8.0 Technical Overview, and the
part number is 820–3740.

Typographical Conventions
The following table describes the typographic conventions that are used in this deployment
example.

Preface

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200914

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Default Paths and Directory Names
The OpenSSO Enterprise documentation uses the following terms to represent default paths
and directory names:

TABLE P–2 Default Paths and Directory Names

Term Description

zip-root Represents the directory where the opensso.zip file is decompressed.

Preface

15

TABLE P–2 Default Paths and Directory Names (Continued)
Term Description

OpenSSO-Deploy-base Represents the directory where the web container deploys opensso.war. The
location varies depending on the web container used. To determine the value of
OpenSSO-Deploy-base, view the file in the .openssocfg directory (located in the
home directory of the user who deployed opensso.war). For example, consider
this scenario with Application Server 9.1 as the web container:
■ Application Server 9.1 is installed in the default directory:

/opt/SUNWappserver.

■ The opensso.war file is deployed by super user (root) on Application Server
9.1.

The .openssocfg directory is in the root home directory (/), and the file name in
.openssocfg is
AMConfig_opt_SUNWappserver_domains_domain1_applications_j2ee-modules_opensso_.
Thus, the value for OpenSSO-Deploy-base is:

/opt/SUNWappserver/domains/domain1/applications/j2ee-modules/opensso

ConfigurationDirectory Represents the name of the directory specified during the initial configuration of
OpenSSO Enterprise. The default is opensso in the home directory of the user
running the Configurator. Thus, if the Configurator is run by root,
ConfigurationDirectory is /opensso.

Preface

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200916

Using the Authentication Service API and SPI

This chapter provides information on the application programming interface (API) and service
provider interface (SPI) developed for Sun OpenSSO Enterprise Authentication Service. It
contains the following sections:

■ “Initiating Authentication with the Authentication Service API” on page 17
■ “Writing Authentication Modules with the Authentication Service SPI” on page 20
■ “Communicating Authentication Data as XML” on page 28
■ “Customizing Plug-Ins for the Password Reset User Interface” on page 31

For information on Authentication Service C API, see Sun OpenSSO Enterprise 8.0 C API
Reference for Application and Web Policy Agent Developers. For a comprehensive listing of
Authentication Service Java API and SPI, see the Sun OpenSSO Enterprise 8.0 Java API
Reference.

Initiating Authentication with the Authentication Service API
The OpenSSO Enterprise Authentication Service can be accessed by a web browser, an
application using the authentication client API or any client that correctly implements the
Authentication Service messaging interfaces. The com.sun.identity.authentication
package contains the authentication client interfaces and classes with which a custom
application can be enhanced to achieve authenticated access to the OpenSSO Enterprise
Authentication Service. The custom application, running either locally or remotely to OpenSSO
Enterprise, can initiate an authentication process, submit required credentials and retrieve the
single sign-on (SSO) session token for itself or a user. The authentication client API starts the
authentication process, and the Authentication Service responds with a set of requirements
such as user ID and password. The appropriate credentials are returned to the Authentication
Service. This back and forth communication between the custom application (with
implemented API) and the Authentication Service continues until all requirements have been
met and authentication has been determined to be successful or not.

1C H A P T E R 1

17

http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739

The first step in the code sequence for the authentication process is to instantiate the
com.sun.identity.authentication.AuthContext class which will create a new AuthContext

object for each authentication request. Since OpenSSO Enterprise can handle multiple realms,
AuthContext should be initialized, at the least, with the name of the realm to which the
requestor is authenticating. Once an AuthContext object has been created, the login() method
is called indicating to the server what method of authentication is desired. The
getRquirements() method returns an array of Callback objects that correspond to the
credentials the user must pass to the Authentication Service. These objects are requested by the
authentication plug-ins, and are usually displayed to the user as login requirement screens. For
example, if the requested user is authenticating to an organization configured for LDAP
authentication only, the server will respond with the LDAP login requirement screen to supply
a user name and a password. The code must then loop by calling the hasMoreRequirements()
method until the required credentials have been entered. Once entered, the credentials are
submitted back to the server with the submitRequirements() method. The final step is to make
a getStatus() method call to determine if the authentication was successful. If successful, the
caller obtains a session token for the user; if not, a LoginException is thrown.

The following code sample illustrates how to authenticate users with user name and password
credentials and obtain the session token using getSSOToken().

EXAMPLE 1–1 Authentication Code Sample

import com.iplanet.sso.SSOToken;

import com.sun.identity.authentication.AuthContext;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.NameCallback;

import javax.security.auth.callback.PasswordCallback;

import javax.security.auth.callback.UnsupportedCallbackException;

import javax.security.auth.login.LoginException;

public class TokenUtils {

public static SSOToken getSessionToken(String realmName, String userId,

String password) throws Exception {

AuthContext ac = null;

try {

if (realmName == null || realmName.length() == 0) {

realmName = "/";
}

ac = new AuthContext(realmName);

ac.login();

} catch (LoginException le) {

le.printStackTrace();

return null;

}

try {

Initiating Authentication with the Authentication Service API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200918

EXAMPLE 1–1 Authentication Code Sample (Continued)

Callback[] callbacks = null;

// Get the information requested by the plug-ins

if (ac.hasMoreRequirements()) {

callbacks = ac.getRequirements();

if (callbacks != null) {

addLoginCallbackMessage(callbacks, userId, password);

ac.submitRequirements(callbacks);

if (ac.getStatus() == AuthContext.Status.SUCCESS) {

System.out.println("Auth success");
} else if (ac.getStatus() == AuthContext.Status.FAILED) {

System.out.println("Authentication has FAILED");
}

}

}

} catch (Exception e) {

e.printStackTrace();

return null;

}

return ac.getSSOToken();

}

static void addLoginCallbackMessage(Callback[] callbacks, String userId,

String password)

throws UnsupportedCallbackException

{

int i = 0;

try {

for (i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof NameCallback) {

NameCallback nc = (NameCallback) callbacks[i];

nc.setName(userId);

} else if (callbacks[i] instanceof PasswordCallback) {

PasswordCallback pc = (PasswordCallback) callbacks[i];

pc.setPassword(password.toCharArray());

}

}

} catch (Exception e) {

throw new UnsupportedCallbackException(callbacks[i],

"Callback exception: " + e);

}

}

}

Initiating Authentication with the Authentication Service API

Chapter 1 • Using the Authentication Service API and SPI 19

Note – Because the Authentication Service is built using the Java Authentication and
Authorization Service (JAAS) framework, the Authentication Service client API can invoke any
authentication modules written using the JAAS API. JAAS enables services to authenticate and
enforce access controls upon users. It implements a Java version of the standard Pluggable
Authentication Module (PAM) framework. Because of this architecture, any custom JAAS
authentication module (as well as those modules built specifically for OpenSSO Enterprise) will
work with the Authentication Service. For more information on JAAS, see the Java
Authentication And Authorization Service Reference Guide and
http://java.sun.com/products/jaas/.

Writing Authentication Modules with the Authentication
Service SPI

OpenSSO Enterprise provides the com.sun.identity.authentication.spi package to write
Java-based authentication modules and plug them into the Authentication Service framework,
allowing proprietary authentication providers to be managed using the OpenSSO Enterprise
console. The authentication module is created using the abstract
com.sun.identity.authentication.spi.AMLoginModule class which implements the JAAS
LoginModule class.

The com.sun.identity.authentication.spi.AMLoginModule interface provides methods to
access the Authentication Service and the authentication module's callback requirements file.
This class takes advantage of many built-in features of OpenSSO Enterprise and scales well.
Once created, a custom authentication module can be added to the list of authentication
modules displayed by the OpenSSO Enterprise console. Use the following list of procedures as a
checklist to complete the task.

1. Create a callback requirements file for the new authentication module.
See “Creating an Authentication Module Callback Requirement File” on page 21.

2. Implement a Principal class.
See “Writing a Principal Class for the Authentication Module” on page 23.

3. Create a service file for the new authentication module.
See “Creating an Authentication Module Service File” on page 23.

4. (OPTIONAL) Create a localization properties file for the new authentication module.
See “Creating an Authentication Module Localization Properties File” on page 25.

5. Develop the custom authentication module.
See “Extending the AMLoginModule Class” on page 26

6. (OPTIONAL) Add post processing features.
See “Adding Authentication Post Processing Features” on page 27.

Writing Authentication Modules with the Authentication Service SPI

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200920

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

7. Access http://osso-host.osso-domain:osso-port/opensso/ssoadm.jsp from a browser
and choose create-svc to create the service in OpenSSO Enterprise.
You will need to copy the authentication module's service file to the text box. For more
information regarding the ssoadm options, see the Sun OpenSSO Enterprise 8.0
Administration Reference.

8. Choose the register-auth-module option (also on ssoadm.jsp) to register the custom
authentication module with the Core Authentication framework.
Enter the complete module name including the prepended package. For more information
regarding the ssoadm options, see the Sun OpenSSO Enterprise 8.0 Administration Reference.

9. Restart OpenSSO Enterprise.
The custom authentication module is now listed under the Configuration tab as an
Authentication option.

Note – After deploying the opensso.war, you can also point a browser to
http://openSSO-host.openSSO-domain:openSSO-port/opensso/samples/authentication/AuthSampleLoginModule.
for the sample, How to Write Sample Login Module using AMLoginModule SPI (Service Provider
Interface)?.

Creating an Authentication Module Callback
Requirement File
The authentication module's callback requirements file is XML that defines the module's
authentication requirements and login state information. The parameters in this file
automatically and dynamically customize the authentication module's user interface in the
form of login pages, providing the means to initiate, construct and send the credential requests
to the Distributed Authentication User Interface. Auth_Module_Properties.dtd defines the
data structure of the file.

When an authentication process is invoked, the values nested in the Callbacks element of the
module's callback requirements file are used to generate login screens. The module controls the
login process, and determines each concurring screen. LDAP.xml, the callback requirements file
for the LDAP authentication module, illustrates this concept.

EXAMPLE 1–2 LDAP Authentication Module Callback Requirements File

<ModuleProperties moduleName="LDAP" version="1.0" >

<Callbacks length="2" order="1" timeout="120"
header="This server uses LDAP Authentication" >

<NameCallback>

<Prompt> User Name: </Prompt>

Writing Authentication Modules with the Authentication Service SPI

Chapter 1 • Using the Authentication Service API and SPI 21

http://docs.sun.com/doc/820-3886
http://docs.sun.com/doc/820-3886
http://docs.sun.com/doc/820-3886

EXAMPLE 1–2 LDAP Authentication Module Callback Requirements File (Continued)

</NameCallback>

<PasswordCallback echoPassword="false" >

<Prompt> Password: </Prompt>

</PasswordCallback>

</Callbacks>

<Callbacks length="4" order="2" timeout="120"
header="Change Password
</BR>#REPLACE#
</BR>" >

<PasswordCallback echoPassword="false" >

<Prompt>Old Password </Prompt>

</PasswordCallback>

<PasswordCallback echoPassword="false" >

<Prompt> New Password </Prompt>

</PasswordCallback>

<PasswordCallback echoPassword="false" >

<Prompt> Confirm Password </Prompt>

</PasswordCallback>

<ConfirmationCallback>

<OptionValues>

<OptionValue>

<Value> Submit </Value>

</OptionValue>

<OptionValue>

<Value> Cancel </Value>

</OptionValue>

</OptionValues>

</ConfirmationCallback>

</Callbacks>

<Callbacks length="0" order="3" timeout="120"
header=" Your password has expired. Please contact service desk to

reset your password" error="true" />

<Callbacks length="0" order="4" timeout="120" template="user_inactive.jsp"
error="true"/>

</ModuleProperties>

The initial interface has two Callback elements corresponding to requests for the user
identifier and password. When the user enters values, the following events occur:
■ The values are sent to the module.
■ The process() routine validates the values.

If the module writer throws a LoginException, an Authentication Failed page will be sent to
the user. If no exception is thrown, the user is redirected to his or her default page.

Writing Authentication Modules with the Authentication Service SPI

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200922

■ If the user's password is expiring, the module writer sets the next page state to 2.
Page state 2 requires the user to change a password. The process() routine is again called
after the user submits the appropriate values.

Note – Name the authentication module's callback requirements file using the same name as that
of the authentication module's class (no package information) and use the extension .xml.
Create the file and use this naming convention even if no states are required for the module.

The file is located in the appropriate localized directory in the
OpenSSO-Deploy-base/config/auth directory. Use one of the provided files as a template for
creating the file and copy it to the aforementioned directory when finished.

Writing a Principal Class for the Authentication
Module
After creating the authentication module's callback requirements file, write a class which
implements java.security.Principal to represent the entity requesting authentication. For
example, the constructor takes the username as an argument. If authentication is successful, the
module will return this principal to the Authentication Service which populates the login state
and session token with the information representing the user.

Creating an Authentication Module Service File
The authentication module's service file is written in XML and imported to OpenSSO
Enterprise to allow the management of its attributes using the OpenSSO Enterprise console.
The name of the service file follows the format amAuthmodulename.xml (for example,
amAuthSafeWord.xml or amAuthLDAP.xml). The file is located in
OpenSSO-Deploy-base/WEB-INF/classes. The new service file must conform to the sms.dtd.
Use one of the provided authentication module service files as a template. Conversely, you can
use the template provided.

EXAMPLE 1–3 Authentication Module Service File Template

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ServicesConfiguration

PUBLIC "=//iPlanet//Service Management Services (SMS) 1.0 DTD//EN"
"jar://com/sun/identity/sm/sms.dtd">

<ServicesConfiguration>

<Service name="iPlanetAMAuthMYMODULEAuthService" version="1.0">

Writing Authentication Modules with the Authentication Service SPI

Chapter 1 • Using the Authentication Service API and SPI 23

EXAMPLE 1–3 Authentication Module Service File Template (Continued)

<Schema

serviceHierarchy="/DSAMEConfig/authentication/
iPlanetAMAuthMYMODULEAuthService"
i18nFileName="mymoduleauth"
revisionNumber="1"
i18nKey="iplanet-am-auth-mymoduleauth-service-description">
<Organization>

<AttributeSchema name="iplanet-am-auth-mymoduleauth-primary-server"
type="single"
syntax="string"
i18nKey="a102">
<DefaultValues>

<Value>msg1dev.ec-lille.fr:1389</Value>

</DefaultValues>

</AttributeSchema>

<AttributeSchema name="iplanet-am-auth-mymoduleauth-primary-base-dn"
type="single"
syntax="dn"
i18nKey="a103">
<DefaultValues>

<Value>dc=ec-lille,dc=fr</Value>

</DefaultValues>

</AttributeSchema>

<AttributeSchema name="iplanet-am-auth-mymoduleauth-primary-search-base-dn"
type="single"
syntax="dn"
i18nKey="a104">
<DefaultValues>

<Value>ou=people,dc=ec-lille,dc=fr</Value>

</DefaultValues>

</AttributeSchema>

<AttributeSchema name="iplanet-am-auth-mymoduleauth-primary-bind-dn"
type="single"
syntax="dn"
i18nKey="a105">
<DefaultValues>

<Value>cn=Directory Manager</Value>

</DefaultValues>

</AttributeSchema>

<AttributeSchema name="iplanet-am-auth-mymoduleauth-primary-bind-passwd"
type="single"
syntax="password"
i18nKey="a106">

</AttributeSchema>

<AttributeSchema name="iplanet-am-auth-mymoduleauth-auth-level"

Writing Authentication Modules with the Authentication Service SPI

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200924

EXAMPLE 1–3 Authentication Module Service File Template (Continued)

type="single"
syntax="number"
i18nKey="a500">
<DefaultValues>

<Value>0</Value>

</DefaultValues>

</AttributeSchema>

</Organization>

</Schema>

<Configuration>

<OrganizationConfiguration name="/">
<AttributeValuePair>

<Attribute name=

"iplanet-am-auth-mymoduleauth-primary-bind-passwd"/>
<Value>adminadmin</Value>

</AttributeValuePair>

</OrganizationConfiguration>

</Configuration>

</Service>

</ServicesConfiguration>

Creating an Authentication Module Localization
Properties File
A localization properties file specifies the screen text that an administrator will see when
directed to an authentication module's service page in the OpenSSO Enterprise console as well
as messages (error or otherwise) displayed by the module. Following are some concepts behind
the creation of this file.

■ The data following the equal (=) sign in each key/value pair could be translated to a specific
language as necessary.

■ The alphanumeric keys (a1, a2, etc.) map to fields defined by the i18nKey attribute in the
corresponding amAuthmodulename.xml service file.

■ The alphanumeric keys also determine the order in which the fields are displayed in the
OpenSSO Enterprise console. The keys are taken in the order of their ASCII characters (a1 is
followed by a10, followed by a2, followed by b1). For example, if an attribute needs to be
displayed at the top of the service attribute page, the alphanumeric key should have a value
of a1. The second attribute could then have a value of either a10, a2 or b1, and so forth.

The file is located in OpenSSO-Deploy-base/WEB-INF/classes and follows the naming format
amAuthmodulename.properties; for example, amAuthLDAP.properties. Use one of the

Writing Authentication Modules with the Authentication Service SPI

Chapter 1 • Using the Authentication Service API and SPI 25

provided authentication module localization properties files as a template for creating the file
and copy it to the aforementioned directory when finished.

Extending the AMLoginModuleClass
Custom authentication modules extend the
com.sun.identity.authentication.spi.AMLoginModule class and must implement the
init(), process() and getPrincipal() methods. The module should also invoke the
setAuthLevel() method. Other methods that can be implemented include
setLoginFailureURL() and setLoginSuccessURL() which define URLs to which the user is
sent based on a failed or successful authentication, respectively. To make use of the account
locking feature with custom authentication modules, the InvalidPasswordException
exception should be thrown when the password is invalid. These sections contain information
on the three main methods.

■ “Implementing the init() Method” on page 26
■ “Implementing the process() Method” on page 26
■ “Implementing the getPrincipal() Method” on page 27

Implementing the init()Method
init() is an abstract method that initializes the module with relevant information. This
method is called by AMLoginModule prior to any other method calls. The method
implementation should store the provided arguments for future use. It may peruse the
sharedState to determine what information it was provided by other modules, and may also
traverse through the options to determine the configuration parameters that will affect the
module's behavior. The data can be ignored if the module being developed does not understand
it.

Implementing the process()Method
process() is called to perform the actual authentication. For example, it may prompt for a user
name and password, and then attempt to verify the credentials. If your module requires user
interaction (for example, retrieving a user name and password), it should not do so directly.
This method should invoke the handle method of the
javax.security.auth.callback.CallbackHandler interface to retrieve and display the
appropriate callbacks. The AMLoginModule then internally passes the callback values to the
Distributed Authentication User Interface which performs the requested authentication.

Consider the following points while writing the process() method:

■ Perform the authentication and if successful, save the authenticated principal.
■ Return -1 if authentication succeeds.
■ Throw an exception, such as AuthLoginException, if authentication fails or return the

relevant state specified in the module's configuration properties file

Writing Authentication Modules with the Authentication Service SPI

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200926

■ Throw an exception, such as InvalidPasswordException, if using the Login Failure
Lockout feature

■ If multiple states are available to the user, the Callback array from a previous state may be
retrieved by using the getCallback() method. The underlying login module keeps callback
information from previous states until the login process is completed.

■ If a module needs to substitute dynamic text (generate challenges, passwords or user
identifiers) in the next state, use the getCallback() method to retrieve the callback for the
next state, modify the text, and call replaceCallback() to update the array.

■ Each authentication session will create a new instance of your module's Java class. The
reference to the class will be released once the authentication session has either succeeded or
failed.

■ Any static data or reference to any static data in your module must be thread-safe.

Implementing the getPrincipal()Method
getPrincipal() should be called once at the end of a successful authentication session. This
method retrieves the authenticated token string which will refer to the authenticated user in the
OpenSSO Enterprise environment. A login session is deemed successful when all pages in the
module's configuration properties file have been sent and the module has not thrown an
exception.

Adding Authentication Post Processing Features
The com.sun.identity.authentication.spi.AMPostAuthProcessInterface interface can
be implemented for post processing tasks on authentication success, failure and logout using
the methods onLoginSuccess(), onLoginFailure(), and onLogout(), respectively. The
Authentication Post Processing Classes are defined in the Core Authentication Service and
configurable at several levels such as at the realm or role levels. Post processing tasks might
include:

■ Adding attributes to a user’s session token after successful authentication.
■ Sending notification to an administrator after failed authentication.
■ General clean up such as clearing cookies after logout, or logging out of other system

components.

Writing Authentication Modules with the Authentication Service SPI

Chapter 1 • Using the Authentication Service API and SPI 27

Communicating Authentication Data as XML
Communication between applications and the Authentication Service is conducted using XML
messages sent over HTTP(s). The remote-auth.dtd is the template used to format the XML
request messages sent to OpenSSO Enterprise and to parse the XML return messages received
by the external application. The remote-auth.dtd is in the
OpenSSO-Deploy-base/opensso/WEB-INF directory.
■ “XML Messages and remote-auth.dtd” on page 28
■ “XML/HTTP(s) Interface for Other Applications” on page 30

XML Messages and remote-auth.dtd

The following sections contain examples of XML messages based on the remote-auth.dtd.

Note – The client application writes XML messages based on the remote-auth.dtd but, when
the messages are sent, the Authentication API adds additional XML code to them. This
additional XML is not illustrated in the following examples.

■ “Authentication Request Message from Application” on page 28
■ “Response Message from OpenSSO Enterprise with Session Identifier and Callbacks” on

page 28
■ “Response Message from Application with User Credentials” on page 29
■ “Authentication Status Message from OpenSSO Enterprise With Session Token” on page 29

Authentication Request Message from Application
This example illustrates the XML message sent to OpenSSO Enterprise requesting
authentication. It opens a connection and asks for LDAP authentication requirements
regarding the examplerealm realm to which the user will login.

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0">
<Request authIdentifier="0">
<Login realmName="examplerealm">
<IndexTypeNamePair indexType="moduleInstance">
<IndexName>LDAP</IndexName>

</IndexTypeNamePair></Login></Request></AuthContext>

Response Message from OpenSSO Enterprise with Session Identifier
and Callbacks
This example illustrates an affirmative response from OpenSSO Enterprise that contains the
session identifier for the original request (authIdentifier) as well as callback details.

Communicating Authentication Data as XML

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200928

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0">
<Response authIdentifier="AQIC5wM2LY4SfczGP8Kp9
cqcaN1uW+C7CMdeR2afoN1ZxwY=@AAJTSQACMDE=#">
<GetRequirements>

<Callbacks length="3">
<PagePropertiesCallback isErrorState="false">
<ModuleName>LDAP</ModuleName>

<HeaderValue>This server uses LDAP Authentication</HeaderValue>

<ImageName></ImageName>

<PageTimeOutValue>120</PageTimeOutValue>

<TemplateName></TemplateName>

<PageState>1</PageState>

</PagePropertiesCallback>

<NameCallback><Prompt> User Name: </Prompt></NameCallback>

<PasswordCallback echoPassword="false"><Prompt> Password: </Prompt>

</PasswordCallback></Callbacks></GetRequirements></Response></AuthContext>

Response Message from Application with User Credentials
This example illustrates the client's response to OpenSSO Enterprise. It contains the login
credentials entered by the user.

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0">
<Request authIdentifier="AQIC5wM2LY4SfczGP8Kp9cqca
N1uW+C7CMdeR2afoN1ZxwY=@AAJTSQACMDE=#">
<SubmitRequirements>

<Callbacks length="2">
<NameCallback><Prompt>User Name:</Prompt>

<Value>amadmin</Value>

</NameCallback>

<PasswordCallback echoPassword="false"><Prompt>Password:</Prompt>
<Value>admin123</Value>

</PasswordCallback></Callbacks></SubmitRequirements></Request></AuthContext>

Authentication Status Message from OpenSSO Enterprise With Session
Token
This example illustrates the message from OpenSSO Enterprise specifying the user's successful
authentication and the session token (SSOToken).

<?xml version="1.0" encoding="UTF-8"?>
<AuthContext version="1.0"><Response authIdentifier="AQIC5wM2LY4SfczGP8Kp9cqcaN1uW+
C7CMdeR2afoN1ZxwY=@AAJTSQACMDE=#">
<LoginStatus status="success" ssoToken="AQIC5wM2LY4SfczGP8Kp9cqcaN1uW+C7CMdeR2afoN1
ZxwY=@AAJTSQACMDE=#" successURL="http://blitz.red.sun.com/opensso/console">

Communicating Authentication Data as XML

Chapter 1 • Using the Authentication Service API and SPI 29

<Subject>AQICOIy3FdTlJoAiOyyyZRTjOVBVWAb2e5MOAizI7ky3raaKypFE3e+GGZuX6chvLgDO32Zugn

pijo4xW4wUzyh2OAcdO9r9zhMU2Nhm206IuAmz9m18JWaYJpSHLqtBEcf1GbDrm3VAkERzIqsvkLKHmS1qc

yaT3BJ87wH0YQnPDze4/BroBZ8N5G3mPzPz5RbE07/1/w02yH9w0+UUFwwNBLayywGsr3bJ6emSSYqxos1N

1bo98xqL4FKAzItsfUAMd6v0ylWoqkoyoSdKYNHKbqvLDIeAfhqgoldxt64Or6HMXnOxz/jiVauh2mmwBpH

q1H2mOeF3agfUfuzKxBpLfELLwCH6QWcJmOZl0eNCFkGl7VwfnCJpTx1WcUhPSg0xD26D3dCQNruJpHPgzZ

FThe55M2gQ2qX+I1klmvzghSqiYfyoGg2SFeBeHE7iHuujO0e6UZgKDrOQPjU9aDh1GxxnsMQmaNkjuW+up

ghruWBGy+mDWmPQTme2bQWPIjBgB4wTDXTedeDzDBeulhCH4M0Ak9lvS7EIv6kHX5pRph6d0ND4/RVHka3k

WcQ5e0w2HpPjOxzNrWMfyXTkQJwOrA8yh1eBjG04VwiVqDV4wAV5EsIsIt0TrtAW2VZwV/KtLcGmjaKaT0H

dwRy0M4DHEqDbc6jF5ItVo9NneGFXMswPIoLm2nLuMrteAt7AtK7FGuCHlfYLavKoROtjaSuYTJGFwgz8Oi

vZ2r9boVnWVlz7ehwlyHvdfmpSKVl76Y4qEclX25m+lddAZE92RgSIrg97fp9gBOk2gVJWoQORNRDV2siHr

26 RiPLdvW3foG0hZgpLimJuLdByThRd/tdknDCCNRzelv7khr6nLPVPFVBgEJWlHmuffkdz4OsL0omFWpi

Jq05sQCPs/q6rq9ZJ98a8mcFK10BVPQki/1VfkIbKAdO4eswsIMalYkglBqXT4ARVTWRCWRNMCTDlQitF3g

T51AHn1WioFPm+NZ2KagVjQR6JFxHbdW0bKN7cLQViArJJFRtktR1BJh31/K+dAM2P+KbT1Lq13UUvXCynS

QwVbf7HJP5m3XrIQ6PtgZs4TB026H+iKy5T85YNL03j9sNnALiIKJEgvGLg2jxG+SU10xNLz3P3UVqmAnQI

9FIjmCtJcFtlLYR6BbkTvZVKxWz6+SoxNfDeKhIDwxkTNTLOzK491KzU/XAZTKmvdxTgf+WikbriBhFjsJ4

M6Npsq4p9Ksrjun9FVBTE/EUT5X/bY8zXLm0nw5KspQ7XRHPwrppQMVMMekz5qrNtQ9Cw/TeOhm4jvww/Bz

j4rydi7s7D10s2BWMfcuxmwQEipAWNmraKL37wWskrCdAzO2HXH4iJjWimiJ6J</Subject>

</LoginStatus></Response></AuthContext>

XML/HTTP(s) Interface for Other Applications
Applications written in a programming language other than Java or C can also exchange
authentication information with OpenSSO Enterprise using the XML/HTTP(s) interface and the
Authentication Service URL,
http://server_name.domain_name:port/opensso/authservice. An application can open a
connection using the HTTP POST method. In order to access the Authentication Service in this
manner, the client application must contain the following:

■ A means of producing valid XML compliant with the remote-auth.dtd .
■ HTTP 1.1 compliant client implementation to send XML-configured information to

OpenSSO Enterprise.
■ HTTP 1.1 compliant server implementation to receive XML-configured information from

OpenSSO Enterprise.
■ An XML parser to interpret the data received from OpenSSO Enterprise.

Tip – If contacting the Authentication Service directly through its URL, a detailed understanding
of remote-auth.dtd will be needed for generating and interpreting the messages passed
between the client and OpenSSO Enterprise.

Communicating Authentication Data as XML

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200930

Customizing Plug-Ins for the Password Reset User Interface
OpenSSO Enterprise provides plug-ins for the Password Reset service. When a user wants to
reset their password, the following occurs:

1. The Password Reset service prompts the user for a userID and for the answer to an
individualized security question.

2. The Password Reset service calls the NotifyPassword.java plug-in. This plug-in notifies
the administrator that a user password is being reset.

3. The Password Reset service then calls the PasswordGenerator.java plug-in. This plug-in
generates a new user password based on the developer's specification. If no plug-in is
defined, OpenSSO Enterprise generates a random-string password.

You must define the plug-ins using the Password Reset module in the OpenSSO Enterprise
console. The customizable code is available on opensso.dev.java.net. See Chapter 13, “Password
Reset Service,” in Sun OpenSSO Enterprise 8.0 Administration Guide and “Password Reset” in
Sun OpenSSO Enterprise 8.0 Administration Reference.

Customizing Plug-Ins for the Password Reset User Interface

Chapter 1 • Using the Authentication Service API and SPI 31

https://opensso.dev.java.net/source/browse/opensso/products/amserver/source/com/sun/identity/password/plugins/#dirlist
http://docs.sun.com/doc/820-3885/adslb?a=view
http://docs.sun.com/doc/820-3885/adslb?a=view
http://docs.sun.com/doc/820-3886/ghiwi?a=view
http://docs.sun.com/doc/820-3886/ghiwi?a=view

32

Using the Policy Service API

OpenSSO Enterprise enables organizations to control the usage of, and access to, their
resources. This chapter provides information about how the Policy Service allows you to define,
manage, and enforce policies towards that end. It contains the following sections:

■ “About the Policy Service Interfaces” on page 33
■ “Enabling Authorization Using the Java Authentication and Authorization Service (JAAS)”

on page 39
■ “Using the Policy Evaluation API” on page 41

OpenSSO Enterprise also provides C APIs for external applications to connect to the Policy
Service framework. For information on using the C API, see Sun OpenSSO Enterprise 8.0 C API
Reference for Application and Web Policy Agent Developers. For a comprehensive listing of all
Java API and their usage, see the Sun OpenSSO Enterprise 8.0 Java API Reference.

About the Policy Service Interfaces
The Policy Service provides the functionality to control access to web services and applications
by providing authorization decisions based on defined and applicable policies or rules that
define who or what is authorized to access a resource. In a single sign-on (SSO) environment,
the Policy Service acts as authorization authority, providing authorization decisions that are
enforced by a policy agent. The Policy Service acts as a Policy Administration Point (PAP) and a
Policy Decision Point (PDP). As a PAP, it allows privileged users to create, modify, and delete
access control policies. As a PDP, it provides access control decisions (after evaluating
applicable policies) to a Policy Enforcement Point (PEP) which, in a OpenSSO Enterprise
environment, is a policy agent.

2C H A P T E R 2

33

http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3738
http://docs.sun.com/doc/820-3739

Note – For information on how the Policy Service works within a user session, see Chapter 6,
“Models of the User Session and Single Sign-On Processes,” in Sun OpenSSO Enterprise 8.0
Technical Overview. Additional information is in Chapter 8, “Authorization and the Policy
Service,” in Sun OpenSSO Enterprise 8.0 Technical Overview. More information on policy agents
can be found in Sun OpenSSO Enterprise Policy Agent 3.0 User’s Guide for J2EE Agents.

The Policy Service provides an application programming interface (API) to manage policies
and provide authorization decisions. It also provides a service provider interface (SPI) to extend
the Policy Service functionality. These interfaces include the following packages:
■ “com.sun.identity.policy” on page 34
■ “com.sun.identity.policy.client” on page 37
■ “com.sun.identity.policy.interfaces ” on page 37
■ “com.sun.identity.policy.jaas” on page 38

com.sun.identity.policy

The com.sun.identity.policy package contains the following classes for policy management
and policy evaluation:

■ “Policy Management Classes” on page 34
■ “Policy Evaluation Classes” on page 35

Policy Management Classes
Policy management classes are used by privileged system administrators to programmatically
add, look up, modify, replace and delete policies, and update the policy data store, if
appropriate. Attempts by non-privileged users to manage policies will result in an exception
and be logged. A valid session token is required to invoke any method provided by these classes.
The key policy management classes are:

■ “PolicyManager” on page 34
■ “Policy” on page 35

PolicyManager

com.sun.identity.policy.PolicyManager is the top-level administrator class for policy
management in a specific realm. This class provides methods that enable the administrator to
add, look up, modify, replace and delete policies. Only a privileged user with access to the policy
data store and a valid session token can create a PolicyManager object. Some of the more
widely used methods include:

getPolicyNames() Retrieves all named policies created in the realm for which the
PolicyManager object was instantiated. This method can also take a
pattern (filter) as an argument.

About the Policy Service Interfaces

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200934

http://docs.sun.com/doc/820-3740/adrba?a=view
http://docs.sun.com/doc/820-3740/adrba?a=view
http://docs.sun.com/doc/820-3740/adrba?a=view
http://docs.sun.com/doc/820-3740/adrcl?a=view
http://docs.sun.com/doc/820-3740/adrcl?a=view
http://docs.sun.com/doc/820-4803

getPolicy() Retrieves a policy when given the policy name.

addPolicy() Adds a policy to the realm for which the PolicyManager object was
instantiated. If a policy with the same name already exists, it will be
overwritten.

removePolicy() Removes a policy from the realm for which the PolicyManager object
was instantiated.

replacePolicy() Overwrites a policy already defined in the realm for which the
PolicyManager object was instantiated.

Policy

com.sun.identity.policy.Policy represents a policy definition with all its intended parts,
including Rule(s), Subject(s), Condition(s), Referral(s) and Response Provider(s). The Policy
object can be saved in the policy data store if the addPolicy() or replacePolicy() methods
from the PolicyManager class are invoked. This class contains methods for adding, removing,
replacing or retrieving any of the parts of a policy definition.

Policy Evaluation Classes
Policy Decision APIs are used to evaluate policy decision when a principal attempts an action
on a resource. This section covers some key classes that provide Policy Evaluation APIs. Some
classes are also provided to be used only by privileged users to test policy decisions applicable to
other users.

Policy evaluation classes are used to evaluate the applicable policy when a principal attempts an
action on a resource and send a determination on whether the principal will be allowed or
denied access. The key policy evaluation classes are:

■ PolicyEvaluator
■ ProxyPolicyEvaluator
■ PolicyEvent

Caution – Policy evaluation classes from this package require a direct connection to the policy
data store. These classes should be used with caution, and only when classes from
com.sun.identity.policy.client cannot handle your use case. See
“com.sun.identity.policy.client” on page 37.

PolicyEvaluator

com.sun.identity.policy.PolicyEvaluator evaluates policy privileges and provides policy
decisions. It provides methods to evaluate access to one resource or a hierarchy of resources,
and supports both boolean and non-boolean type policies. A valid session token of the principal

About the Policy Service Interfaces

Chapter 2 • Using the Policy Service API 35

attempting access is required to invoke any method of this class. A PolicyEvaluator class is
created by calling the constructor with a service name. Key public methods of this class include:

isAllowed() Evaluates a policy associated with the given resource and returns a
boolean-type value indicating an allow or deny decision.

getPolicyDecision() Evaluates policies and returns a decision as to whether the
associated principal can perform the specified actions on the
specified resource.

getResourceResults() A ResourceResult contains policy decisions regarding a
particular protected resource and its sub resources.
getResourceResults() obtains these policy decisions. Possible
values for the scope of objects retrieved are
ResourceResult.SELF_SCOPE (returns an object that contains the
policy decision for the specified resource only),
ResourceResult.SUBTREE_SCOPE (includes policy decisions for
the specified resource and its sub-resources), and
ResourceResult.STRICT_SUBTREE_SCOPE (returns an object that
contains one policy decision regarding the resourceName only).
For example, the PolicyEvaluator class can be used to display
links for a list of resources to which an authenticated user has
access. The getResourceResults() method can be used to
retrieve a list of resources to which the user has access from a
defined resourceName parameter — a URL in the form
http://host.domain:port. The resources are returned as a
PolicyDecision object based on the user’s policies. If the user is
allowed to access resources on different servers, this method needs
to be called for each server.

Not all resources that have policy decisions are accessible to the user. Access depends on the
ActionDecision() value contained in policy decisions.

ProxyPolicyEvaluator

com.sun.identity.policy.ProxyPolicyEvaluator allows a privileged user (top-level
administrator, organization administrator, policy administrator, or organization policy
administrator) to get policy privileges and evaluate policy decisions for any user in their scope
of administration. com.sun.identity.policy.ProxyPolicyEvaluatorFactory is the
singleton class used to get ProxyPolicyEvaluator instances. This is supported only within the
OpenSSO Enterprise server process.

About the Policy Service Interfaces

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200936

PolicyEvent

com.sun.identity.policy.PolicyEvent represents a policy event that could potentially
change the current access status. A policy event is created and passed to registered policy
listeners whenever there is a change in a policy rule. This class works with the PolicyListener
class in the com.sun.identity.policy.interface package.

com.sun.identity.policy.client

The com.sun.identity.policy.client package contains classes that can be used by remote
Java applications to evaluate policies and communicate with the Policy Service to get policy
decisions. This package does not communicate with the policy data store therefore, use it when,
for example, there is an intervening firewall. The package also maintains a local cache of policy
decisions kept current either by a configurable time to live and/or notifications from the Policy
Service.

com.sun.identity.policy.interfaces

The com.sun.identity.policy.interfaces package contains SPI for writing custom plug-ins
to extend the Policy Service. The classes are used by service developers and policy
administrators who need to provide additional policy features as well as support for legacy
policies.

Condition Provides methods used to constrain a policy to, for example,
time-of-day or IP address. This interface allows the pluggable
implementation of the conditions.

PolicyListener Defines an interface for registering policy events when a policy is
added, removed or changed. PolicyListener is used by the Policy
Service to send notifications and by listeners to review policy change
events.

Referral Provides methods used to delegate the policy definition or evaluation of
a selected resource (and its sub-resources) to another realm or policy
server.

ResourceName Provides methods to determine the hierarchy of the resource names for
a determined service type. For example, these methods can check to see
if two resources names are the same or if one is a sub-resource of the
other.

About the Policy Service Interfaces

Chapter 2 • Using the Policy Service API 37

ResponseProvider Defines an interface to allow pluggable response providers into the
OpenSSO Enterprise framework. Response providers are used to
provide policy response attributes which typically provide attribute
values from the user profile.

Subject Provides methods to determine if an authenticated user is a member of
the given subject.

Policy Service Provider Interfaces and Plug-Ins
OpenSSO Enterprise includes SPIs that work with the Policy Service framework to create and
manage policies. You can develop customized plug-ins for creating custom policy subjects,
referrals, conditions, and response providers. For information on creating custom policy
plug-ins, see “Sample Code for Custom Subjects, Conditions, Referrals, and Response
Providers” on page 43. The following table summarizes the Policy Service SPI, and lists the
specialized Policy Service plug-ins that come bundled with OpenSSO Enterprise.

TABLE 2–1 Policy Service Service Provider Interfaces

Interface Description

Subject Defines a set of authenticated users for whom the policy applies. The
following Subject plug-ins come bundled with OpenSSO Enterprise: Access
Manager Identity Subject, Access Manager Roles, Authenticated Users,
LDAP Groups, LDAP Roles, LDAP Users, Organization Web, and Services
Clients.

Referral Delegates management of policy definitions to another access control
realm.

Condition Specifies applicability of policy based on conditions such as IP address, time
of day, authentication level. The following Condition plug-ins come
bundled with OpenSSO Enterprise: Authentication Level, Authentication
Scheme, IP Address, LE Authentication Level, Session, SessionProperty,
and Time.

Resource Name Allows a pluggable resource.

Response Provider Gets attributes that are sent along with policy decision to the policy agent,
and used by the policy agent to customize the client applications. Custom
implementations of this interface are now supported in OpenSSO
Enterprise.

com.sun.identity.policy.jaas

The com.sun.identity.policy.jaas package provides classes for performing policy
evaluation against OpenSSO Enterprise using the Java Authentication and Authorization
Service (JAAS) framework. JAAS is a set of APIs that enable services to authenticate and enforce

About the Policy Service Interfaces

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200938

access controls upon users. This package provides support for authorization only, making it
possible to use JAAS interfaces to access the Policy Service. It contains the following
implementations of JAAS classes:
■ “ISPermission” on page 39
■ “ISPolicy” on page 39

For more information see “Enabling Authorization Using the Java Authentication and
Authorization Service (JAAS)” on page 39.

ISPermission

com.sun.identity.policy.jaas.ISPermission extends java.security.Permission, an
abstract class for representing access to a resource. It represents the control of a sensitive
operation, such as opening of a socket or accessing a file for a read or write operation. It does not
grant permission for that operation, leaving that responsibility to the JAAS AccessController

class which evaluates OpenSSO Enterprise policy against the Policy Service.

ISPermission covers the case when additional policy services are defined and imported
provided they only have boolean action values as a JAAS permission only has a boolean result.

ISPolicy

com.sun.identity.policy.jaas.ISPolicy is an implementation of the JAAS abstract class
java.security.Policy which represents the system policy for a Java application environment.
It performs policy evaluation against the Policy Service instead of against the default file-based
PolicyFile.

Enabling Authorization Using the Java Authentication and
Authorization Service (JAAS)

The Java Authentication and Authorization Service (JAAS) is a set of API that can determine
the identity of a user or computer attempting to run Java code, and ensure that the entity has the
right to execute the requested functions. After an identity has been determined using
authentication, a Subject object, representing a grouping of information about the entity, is
created. Whenever the Subject attempts a restricted operation or access, the Java runtime uses
the JAAS AccessController class to determine which, if any, Principal (representing one
piece of information established during authentication) would authorize the request. If the
Subject in question contains the appropriate Principal, the request is allowed. If the
appropriate Principal is not present, an exception is thrown.

In OpenSSO Enterprise the custom implementation of the JAAS java.security.Policy,
com.sun.identity.policy.jaas.ISPolicy, relies on the policy framework to provide policy
evaluation for all Policy Service policies. Policy related to resources not under OpenSSO
Enterprise control (for example, system level resources) are evaluated using JAAS.

Enabling Authorization Using the Java Authentication and Authorization Service (JAAS)

Chapter 2 • Using the Policy Service API 39

OpenSSO Enterprise policy does not control access to com.sun.security.auth.PolicyFile,
the default JAAS policy store.

Note – For more information see the JAAS Java API Reference.

To enable authorization using JAAS in OpenSSO Enterprise use the JAAS
java.security.Policy API to reset policy during run time. In the sample code, the client
application resets the policy to communicate with OpenSSO Enterprise using ISPolicy.
OpenSSO Enterprise provides the support needed to define policy through ISPermission.

EXAMPLE 2–1 Sample JAAS Authorization Code

public static void main(String[] args) {

try {

// Create an SSOToken

AuthContext ac = new AuthContext("dc=iplanet,dc=com");
ac.login();

Callback[] callbacks = null;

if (ac.hasMoreRequirements()) {

callbacks = ac.getRequirements();

if (callbacks != null) {

try {

addLoginCallbackMessage(callbacks);

// this method sets appropriate responses

// in the callbacks.

ac.submitRequirements(callbacks);

} catch (Exception e) { }

}

}

if (ac.getStatus() == AuthContext.Status.SUCCESS) {

Subject subject = ac.getSubject();

// get the authenticated subject

Policy.setPolicy(new ISPolicy());

// change the policy to our own Policy

ISPermission perm = new ("iPlanetAMWebAgentService",

"http://www.sun.com:80", "GET");
Subject.doAs(subject, new PrivilegedExceptionAction() {

/* above statement means execute run() method of the

/* Class PrivilegedExceptionAction()

as the specified subject */

public Object run() throws Exception {

Enabling Authorization Using the Java Authentication and Authorization Service (JAAS)

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200940

http://java.sun.com/j2se/1.4.2/docs/api/index.html

EXAMPLE 2–1 Sample JAAS Authorization Code (Continued)

AccessController.checkPermission(perm);

// the above will return quietly if the Permission

// has been granted

// else will throw access denied

// Exception, so if the above highlighed ISPermission

// had not been granted, this return null;

}

});

}

}

Using the Policy Evaluation API
The OpenSSO Enterprise policy framework defines Subject, Condition, Referral and Response
Provider interfaces to enable you to create your own plug- ins to extend the functionality.

▼ To Develop a Custom Policy Plug-In
This information is also included in the OpenSSO Enterprise /samples directory. See the
following file:

http://openSSO-host:3080/opensso/samples/policy/policy-plugins.html

Write Java source files implementing Subject, Condition, Referral or ResponseProvider
interface.
See “Sample Code for Custom Subjects, Conditions, Referrals, and Response Providers” on
page 43.

Compile the source files to create class files.
Include opensso.jar and opesnsso-sharedlib.jar in the classpath at compilation time.

Package the compiled classes into a JAR file.
In this example, the file is named policy-plugins.jar.

Explode the opensso.war file.

Add the policy-plugins.jar file to WEB-INF/libdirectory.
Alternatively, you can copy the custom plug-in classes to the WEB-INF/classes directory. Be
sure to maintain the directory structure corresponding to the Java package of the plug-in
classes.

1

2

3

4

5

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 41

Update WEB-INF/classes/amPolicy.properties.
Add the globalization (L10N) values for the new internationalization (I18N) keys used by
iPlanetAMPolicyService.

Update WEB-INF/classes/amPolicyConfig.properties.
Add L10N values for the new I18N keys used by iPlanetAMPolicyConfigService.

Recreate the WAR file.

Redeploy the WAR file.
Steps 1 through 9 have been already taken care of for the sample plug-ins included in OpenSSO
distribution.

Use the ssoadm command to register the new plug-ins with the iPlanetAMPolicyService.
In the following example, the password.txt file contains the password of amadmin:
ssoadm create-svc -X amPolicy_mod.xml -u amadmin -f password.txt

See the sample amPolicy_mod.xml. The new i18keys are referred in the XML file. Add
Corresponding L10N values in amPolicy.properties.

Register the new plug-ins in one of the following ways:

■ Use the ssoadm command to register the new plug-ins as choice values in the
iPlanetAMPolicyConfigService.
ssoadm set-attr-choicevals -s iPlanetAMPolicyConfigService

-t Organization -a iplanet-am-policy-selected-subjects

-k a160=SampleSubject -u amadmin -f password.txt

ssoadm set-attr-choicevals -s iPlanetAMPolicyConfigService

-t Organization -a iplanet-am-policy-selected-conditions

-k a161=SampleCondition -u amadmin -f password.txt

ssoadm set-attr-choicevals -s iPlanetAMPolicyConfigService

-t Organization -a iplanet-am-policy-selected-referrals

-k a162=SampleReferral -u amadmin -f password.txt

#ssoadm set-attr-choicevals -s iPlanetAMPolicyConfigService

-t Organization -a sun-am-policy-selected-responseproviders

-k a163=SampleResponseProvider -u amadmin -f password.txt

■ Use the ssoadm command to register the new plug-ins as enabled for a selected realm.
ssoadm add-attr-defs -s iPlanetAMPolicyConfigService -t Organization

-a iplanet-am-policy-selected-subjects=SampleSubject -u amadmin -f password.txt

ssoadm add-attr-defs -s iPlanetAMPolicyConfigService -t Organization

-a iplanet-am-policy-selected-conditions=SampleCondition -u amadmin -f password.txt

ssoadm add-attr-defs -s iPlanetAMPolicyConfigService -t Organization

-a iplanet-am-policy-selected-referrals=SampleReferral -u amadmin -f password.txt

ssoadm add-attr-defs -s iPlanetAMPolicyConfigService -t Organization

6

7

8

9

10

11

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200942

-a sun-am-policy-selected-responseproviders=SampleResponseProvider

-u amadmin -f password.txt

■ Use the administration console to register the new plug-ins for existing realms.

a. Log in to the administration console as amadmin or administrator.

b. Navigate to the Realm > Services > Policy Configuration.

c. In the Policy Configuration page, enable or disable the selected plug-in.

Restart the web application or the container.

Use either the administration console or the ssoadm command to add the instances of the new
plug-ins while defining policies.
The new plug-ins are available as choices in appropriate policy management pages of the
administration console.

To disable the custom plug-ins from being added to newly-created policies:

a. In the administration console, navigate to Access Control > Realm > Services | Policy
Configuration.

b. Deselect the appropriate custom plug-ins.

c. Save the Policy Configuration properties page for exisiting realms.

If you navigate to Configuration > Global > Policy Configuration and do this, the custom
plug-ins would be deselected for the realms that would be created subsequently.

Copy your custom plug-in classes to <TOOLS_HOME>/classes.
Be sure to maintain the directory structure corresponding to the Java package of the plug-in
classes. You can copy the classes of bundled, custom sample plug-ins from the exploded
opensso.war directory WEB-INF/classes/com/sun/identity/samples/policy. This is
required if you plan to use ssoadm to export or add policies.

Sample Code for Custom Subjects, Conditions,
Referrals, and Response Providers
OpenSSO Enterprise provides subject, condition, referral, and response provider interfaces that
enable you to develop your own custom subjects, conditions, referrals, and response providers.
The following samples illustrate how to implement these custom objects:
■ “SampleSubject.java” on page 44

12

13

14

15

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 43

■ “SampleCondition.java” on page 49
■ “SampleReferral.java” on page 53
■ “SampleResponseProvider.java” on page 59

SampleSubject.java

Implements the Subject interface. This subject applies to all the authenticated users who have
valid SSOTokens.

EXAMPLE 2–2 SampleSubject.java

package com.sun.identity.samples.policy;

import java.util.*;

//import java.security.Principal;

import com.iplanet.sso.*;

import com.sun.identity.policy.*;

import com.sun.identity.policy.interfaces.Subject;

/**

* The class <code>Subject</code> defines a collection

* of users (or subject) to whom the specified policy is applied.

* A complete implementation of this interface can have complex

* boolean operations to determine if the given user identified

* by the <code>SSOToken</code> belongs to this collection.

* <p>

* The interfaces are seperated into administrative

* interfaces and evaluation interfaces. The administrative interfaces

* will be used by GUI/CLI component to create a <code>Subject</code>

* object and the evaluation interfaces will be used by the policy evaluator.

*

* This sample inplementation defines the collection of all users who have

* been authenticated (a user with a valid SSOToken.).

*/

public class SampleSubject implements Subject {

/**

* Constructor with no parameter

*/

public SampleSubject() {

// do nothing

}

/**

* Initialize (or configure) the <code>Subject</code>

* object. Usually it will be initialized with the environment

* paramaters set by the system administrator via SMS.

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200944

EXAMPLE 2–2 SampleSubject.java (Continued)

* For example in a Role implementation, the configuration

* parameters could specify the directory server name, port, etc.

*

* @param configParams configuration parameters as a map.

* The values in the map is <code>java.util.Set</code>,

* which contains one or more configuration paramaters.

*

* @exception PolicyException if an error occured during

* initialization of <code>Subject</code> instance

*/

public void initialize(Map configParams)

throws PolicyException {

// do nothing

}

/**

* Returns the syntax of the values the

* <code>Subject</code> implementation can have.

* @see com.sun.identity.policy.Syntax

*

* @param token the <code>SSOToken</code> that will be used

* to determine the syntax

*

* @return set of of valid names for the user collection.

*

* @exception SSOException if SSO token is not valid

* @exception PolicyException if unable to get the list of valid

* names.

*

* @return syntax of the values for the <code>Subject</code>

*/

public Syntax getValueSyntax(SSOToken token) {

return (Syntax.CONSTANT);

}

/**

* Returns the syntax of the values the

* <code>Subject</code> implementation can have.

* @see com.sun.identity.policy.Syntax

*

* @param token the <code>SSOToken</code> that will be used

* to determine the syntax

*

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 45

EXAMPLE 2–2 SampleSubject.java (Continued)

* @return set of of valid names for the user collection.

*

* @exception SSOException if SSO token is not valid

* @exception PolicyException if unable to get the list of valid

* names.

*

* @return syntax of the values for the <code>Subject</code>

*/

public ValidValues getValidValues(SSOToken token) {

return (new ValidValues(ValidValues.SUCCESS,

Collections.EMPTY_SET));

}

/**

* Returns a list of possible values for the <code>Subject

* </code>. The implementation must use the <code>SSOToken

* </code> <i>token</i> provided to determine the possible

* values. For example, in a Role implementation

* this method will return all the roles defined

* in the organization.

*

* @param token the <code>SSOToken</code> that will be used

* to determine the possible values

*

* @return <code>ValidValues</code> object

*

* @exception SSOException if SSO token is not valid

* @exception PolicyException if unable to get the list of valid

* names.

*/

public ValidValues getValidValues(SSOToken token, String pattern) {

return (new ValidValues(ValidValues.SUCCESS,

Collections.EMPTY_SET));

}

/**

* Returns the display name for the value for the given locale.

* For all the valid values obtained through the methods

* <code>getValidValues</code> this method must be called

* by GUI and CLI to get the corresponding display name.

* The <code>locale</code> variable could be used by the

* plugin to customize

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200946

EXAMPLE 2–2 SampleSubject.java (Continued)

* the display name for the given locale.

* The <code>locale</code> variable

* could be <code>null</code>, in which case the plugin must

* use the default locale (most probabily en_US).

* This method returns only the display name and should not

* be used for the method <code>setValues</code>.

* Alternatively, if the plugin does not have to localize

* the value, it can just return the <code>value</code> as is.

*

* @param value one of the valid value for the plugin

* @param locale locale for which the display name must be customized

*

* @exception NameNotFoundException if the given <code>value</code>

* is not one of the valid values for the plugin

*/

public String getDisplayNameForValue(String value, Locale locale)

throws NameNotFoundException {

return value;

}

/**

* Returns the values that was set using the

* method <code>setValues</code>.

*

* @return values that have been set for the user collection

*/

public Set getValues() {

return (Collections.EMPTY_SET);

}

/**

* Sets the names for the instance of the <code>Subject</code>

* object. The names are obtained from the policy object,

* usually configured when a policy is created. For example

* in a Role implementation, this would be name of the role.

*

* @param names names selected for the instance of

* the user collection object.

*

* @exception InvalidNameException if the given names are not valid

*/

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 47

EXAMPLE 2–2 SampleSubject.java (Continued)

public void setValues(Set names) throws InvalidNameException {

}

/**

* Determines if the user belongs to this instance

* of the <code>Subject</code> object.

* For example, a Role implemenation

* would return <code>true</code> if the user belongs

* the specified role; <code>false</code> otherwise.

*

* @param token single-sign-on token of the user

*

* @return <code>true</code> if the user is memeber of the

* given subject; <code>false</code> otherwise.

*

* @exception SSOException if SSO token is not valid

* @exception PolicyException if an error occured while

* checking if the user is a member of this subject

*/

public boolean isMember(SSOToken token)

throws SSOException {

return (SSOTokenManager.getInstance().isValidToken(token));

}

/**

* Indicates whether some other object is "equal to" this one.

*

* @param o another object that will be compared with this one

*

* @return <code>true</code> if eqaul; <code>false</code>

* otherwise

*/

public boolean equals(Object o) {

if (o instanceof SampleSubject) {

return (true);

}

return (false);

}

/**

* Creates and returns a copy of this object.

*

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200948

EXAMPLE 2–2 SampleSubject.java (Continued)

* @return a copy of this object

*/

public Object clone() {

return (new SampleSubject());

}

}

SampleCondition.java

Implements the Condition interface. This condition makes the policy applicable to those users
whose user name length is greater than or equal to the length specified in the condition.

EXAMPLE 2–3 SampleCondition.java

package com.sun.identity.samples.policy;

import java.util.*;

import com.sun.identity.policy.interfaces.Condition;

import com.sun.identity.policy.ConditionDecision;

import com.sun.identity.policy.PolicyException;

import com.sun.identity.policy.PolicyManager;

import com.sun.identity.policy.Syntax;

import com.iplanet.sso.SSOException;

import com.iplanet.sso.SSOToken;

import com.iplanet.sso.SSOTokenManager;

/**

* The class <code>SampleCondition</code> is a plugin

* implementation of <code>Condition</code> interface.

* This condition object provides the policy framework with the

* condition decision based on the length of the user’s name.

*/

public class SampleCondition implements Condition {

/** Key that is used to define the minimum of the user name length

* for which the policy would apply. The value should be

* a Set with only one element. The element should be a

* String, parsable as an integer.

*/

public static final String USER_NAME_LENGTH = "userNameLength";

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 49

EXAMPLE 2–3 SampleCondition.java (Continued)

private List propertyNames;

private Map properties;

private int nameLength;

/** No argument constructor

*/

public SampleCondition() {

propertyNames = new ArrayList();

propertyNames.add(USER_NAME_LENGTH);

}

/**

* Returns a set of property names for the condition.

*

* @return set of property names

*/

public List getPropertyNames()

{

return propertyNames;

}

/**

* Returns the syntax for a property name

* @see com.sun.identity.policy.Syntax

*

* @param String property name

*

* @return <code>Syntax<code> for the property name

*/

public Syntax getPropertySyntax(String property)

{

return (Syntax.ANY);

}

/**

* Gets the display name for the property name.

* The <code>locale</code> variable could be used by the

* plugin to customize the display name for the given locale.

* The <code>locale</code> variable could be <code>null</code>, in which

* case the plugin must use the default locale.

*

* @param String property name

* @param Locale locale for which the property name must be customized

* @return display name for the property name

*/

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200950

EXAMPLE 2–3 SampleCondition.java (Continued)

public String getDisplayName(String property, Locale locale)

throws PolicyException

{

return property;

}

/**

* Returns a set of valid values given the property name. This method

* is called if the property Syntax is either the SINGLE_CHOICE or

* MULTIPLE_CHOICE.

*

* @param String property name

* @return Set of valid values for the property.

* @exception PolicyException if unable to get the Syntax.

*/

public Set getValidValues(String property) throws PolicyException

{

return (Collections.EMPTY_SET);

}

/** Sets the properties of the condition.

* Evaluation of ConditionDecision is influenced by these properties.

* @param properties the properties of the condition that governs

* whether a policy applies. The properties should

* define value for the key USER_NAME_LENGTH. The value should

* be a Set with only one element. The element should be

* a String, parsable as an integer. Please note that

* properties is not cloned by the method.

*

* @throws PolicyException if properties is null or does not contain

* value for the key USER_NAME_LENGTH or the value of the key is

* not a Set with one String element that is parsable as

* an integer.

*/

public void setProperties(Map properties) throws PolicyException {

this.properties = (Map)((HashMap) properties);

if ((properties == null) || (properties.keySet() == null)) {

throw new PolicyException("properties can not be null or empty");
}

//Check if the key is valid

Set keySet = properties.keySet();

Iterator keys = keySet.iterator();

String key = (String) keys.next();

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 51

EXAMPLE 2–3 SampleCondition.java (Continued)

if (!USER_NAME_LENGTH.equals(key)) {

throw new PolicyException(

"property " + USER_NAME_LENGTH + " is not defined");
}

// check if the value is valid

Set nameLengthSet = (Set) properties.get(USER_NAME_LENGTH);

if ((nameLengthSet == null) || nameLengthSet.isEmpty()

|| (nameLengthSet.size() > 1)) {

throw new PolicyException(

"property value is not defined or invalid");
}

Iterator nameLengths = nameLengthSet.iterator();

String nameLengthString = null;

nameLengthString = (String) nameLengths.next();

try {

nameLength = Integer.parseInt(nameLengthString);

} catch (Exception e) {

throw new PolicyException("name length value is not an integer");
}

}

/** Get properties of this condition.

*/

public Map getProperties() {

return properties;

}

/**

* Gets the decision computed by this condition object.

*

* @param token single sign on token of the user

*

* @param env request specific environment map of key/value pairs.

* SampleCondition doesn’t use this parameter.

*

* @return the condition decision. The condition decision

* encapsulates whether a policy applies for the request.

*

* Policy framework continues evaluating a policy only if it

* applies to the request as indicated by the CondtionDecision.

* Otherwise, further evaluation of the policy is skipped.

*

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200952

EXAMPLE 2–3 SampleCondition.java (Continued)

* @throws SSOException if the token is invalid

*/

public ConditionDecision getConditionDecision(SSOToken token, Map env)

throws PolicyException, SSOException {

boolean allowed = false;

String userDN = token.getPrincipal().getName();

// user DN is in the format like "uid=username,ou=people,dc=example,dc=com"
int beginIndex = userDN.indexOf("=");
int endIndex = userDN.indexOf(",");
if (beginIndex >= endIndex) {

throw (new PolicyException("invalid user DN"));
}

String userName = userDN.substring(beginIndex+1, endIndex);

if (userName.length() >= nameLength) {

allowed = true;

}

return new ConditionDecision(allowed);

}

public Object clone() {

Object theClone = null;

try {

theClone = super.clone();

} catch (CloneNotSupportedException e) {

throw new InternalError();

}

return theClone;

}

}

SampleReferral.java

Implements the Referral interface. SampleReferral.java gets the referral policy decision
from a text file SampleReferral.properties located in the /samples directory.

EXAMPLE 2–4 SampleReferral.java

package com.sun.identity.samples.policy;

import java.io.*;

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 53

EXAMPLE 2–4 SampleReferral.java (Continued)

import java.util.*;

import com.sun.identity.policy.*;

import com.sun.identity.policy.interfaces.Referral;

import com.iplanet.sso.SSOToken;

import com.iplanet.sso.SSOException;

import com.iplanet.am.util.SystemProperties;

public class SampleReferral implements Referral {

static final String SEPARATOR = ":";
static String PROPERTIES = "samples/policy/SampleReferral.properties";
static String INSTALL_DIR = SystemProperties.get("com.iplanet.am.installdir");
static Properties properties = new Properties();

private String _name;

private Set _values;

/** No argument constructor */

public SampleReferral() {

}

/**Initializes the referral with a map of Configuration parameters

* @param configurationMap a map containing configuration

* information. Each key of the map is a configuration

* parameter. Each value of the key would be a set of values

* for the parameter. The map is cloned and a reference to the

* clone is stored in the referral

*/

public void initialize(Map configurationMap) {

}

/**Sets the name of this referral

* @param name name of this referral

*/

private void setName(String name) {

_name = name;

}

/**Gets the name of this referral

* @return the name of this referral

*/

private String getName() {

return _name;

}

/**Sets the values of this referral.

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200954

EXAMPLE 2–4 SampleReferral.java (Continued)

* @param values a set of values for this referral

* Each element of the set has to be a String

* @throws InvalidNameException if any value passed in the

* values is invalid

*/

public void setValues(Set values) throws InvalidNameException {

_values = values;

}

/**Gets the values of this referral

* @return the values of this referral

* Each element of the set would be a String

*/

public Set getValues() {

return _values;

}

/**

* Returns the display name for the value for the given locale.

* For all the valid values obtained through the methods

* <code>getValidValues</code> this method must be called

* by GUI and CLI to get the corresponding display name.

* The <code>locale</code> variable could be used by the

* plugin to customize

* the display name for the given locale.

* The <code>locale</code> variable

* could be <code>null</code>, in which case the plugin must

* use the default locale (most probabily en_US).

* This method returns only the display name and should not

* be used for the method <code>setValues</code>.

* Alternatively, if the plugin does not have to localize

* the value, it can just return the <code>value</code> as is.

*

* @param value one of the valid value for the plugin

* @param locale locale for which the display name must be customized

*

* @exception NameNotFoundException if the given <code>value</code>

* is not one of the valid values for the plugin

*/

public String getDisplayNameForValue(String value, Locale locale)

throws NameNotFoundException {

return value;

}

/**Gets the valid values for this referral

* @param token SSOToken

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 55

EXAMPLE 2–4 SampleReferral.java (Continued)

* @return <code>ValidValues</code> object

* @throws SSOException, PolicyException

*/

public ValidValues getValidValues(SSOToken token)

throws SSOException, PolicyException {

return getValidValues(token, "*");
}

/**Gets the valid values for this referral

* matching a pattern

* @param token SSOToken

* @param pattern a pattern to match against the value

* @return </code>ValidValues</code> object

* @throws SSOException, PolicyException

*/

public ValidValues getValidValues(SSOToken token, String pattern)

throws SSOException, PolicyException {

Set values = new HashSet();

values.add(PROPERTIES);

return (new ValidValues(ValidValues.SUCCESS,

values));

}

/**Gets the syntax for the value

* @param token SSOToken

* @see com.sun.identity.policy.Syntax

*/

public Syntax getValueSyntax(SSOToken token)

throws SSOException, PolicyException {

return (Syntax.SINGLE_CHOICE);

}

/**Gets the name of the ReferralType

* @return name of the ReferralType representing this referral

*/

public String getReferralTypeName()

{

return "SampleReferral";
}

/**Gets policy results

* @param token SSOToken

* @param resourceType resource type

* @param resourceName name of the resource

* @param actionNames a set of action names

* @param envParameters a map of enivronment parameters.

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200956

EXAMPLE 2–4 SampleReferral.java (Continued)

* Each key is an environment parameter name.

* Each value is a set of values for the parameter.

* @return policy decision

* @throws SSOException

* @throws PolicyException

*/

public PolicyDecision getPolicyDecision(SSOToken token, String resourceType,

String resourceName, Set actionNames, Map envParameters)

throws SSOException, PolicyException {

PolicyDecision pd = new PolicyDecision();

Iterator elements = _values.iterator();

if (!elements.hasNext()) {

return pd;

}

String fileName = (String)elements.next();

fileName = INSTALL_DIR + "/" + fileName;

try {

InputStream is = new FileInputStream(fileName);

if (is == null) {

return pd;

}

properties.load(is);

} catch (Exception e) {

return pd;

}

String serviceName = getProperty("servicename");
if (!serviceName.equals(resourceType)) {

return pd;

}

String resName = getProperty("resourcename");
if (!resName.equals(resourceName)) {

return pd;

}

List actionNameList = getPropertyValues("actionnames");
List actionValueList = getPropertyValues("actionvalues");

int numOfActions = actionNameList.size();

int numOfValues = actionValueList.size();

if ((numOfActions == 0 || (numOfValues == 0)

|| numOfActions != numOfValues)) {

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 57

EXAMPLE 2–4 SampleReferral.java (Continued)

return pd;

}

Iterator namesIter = actionNameList.iterator();

Iterator valuesIter = actionValueList.iterator();

for (int i = 0; i < numOfActions; i++) {

String actionName = (String)namesIter.next();

String actionValue = (String)valuesIter.next();

if (actionNames.contains(actionName)) {

Set values = new HashSet();

values.add(actionValue);

ActionDecision ad = new ActionDecision(

actionName, values, null, Long.MAX_VALUE);

pd.addActionDecision(ad);

}

}

return pd;

}

private String getProperty(String key)

{

return properties.getProperty(key);

}

private List getPropertyValues(String name) {

List values = new ArrayList();

String value = getProperty(name);

if (value != null) {

StringTokenizer st = new StringTokenizer(value, SEPARATOR);

while (st.hasMoreTokens()) {

values.add(st.nextToken());

}

}

return values;

}

/** Gets resource names rooted at the given resource name for the given

* serviceType that could be governed by this referral

* @param token ssoToken sso token

* @param serviceTypeName service type name

* @param rsourceName resource name

* @return names of sub resources for the given resourceName.

* The return value also includes the resourceName.

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200958

EXAMPLE 2–4 SampleReferral.java (Continued)

*

* @throws PolicyException

* @throws SSOException

*/

public Set getResourceNames(SSOToken token, String serviceTypeName,

String resourceName) throws PolicyException, SSOException {

return null;

}

}

SampleResponseProvider.java

Implements the ResponseProvider interface. SampleResponseProvider.java takes as input
the attribute for which values are retrieved from OpenSSO Enterprise and sent back in the
Policy Decision. If the attribute does not exist in the user profile, no value is sent back in the
response. SampleResponseProvider.java relies on the underlying Identity Repository service
to retrieve the attribute values for the Subject(s) defined in the policy.

EXAMPLE 2–5 SampleResponseProvider.java

package com.sun.identity.samples.policy;

import com.sun.identity.policy.PolicyException;

import com.sun.identity.policy.PolicyUtils;

import com.sun.identity.policy.PolicyConfig;

import com.sun.identity.policy.PolicyManager;

import com.sun.identity.policy.interfaces.ResponseProvider;

import com.sun.identity.policy.Syntax;

import com.iplanet.sso.SSOToken;

import com.iplanet.sso.SSOException;

import com.sun.identity.idm.AMIdentity;

import com.sun.identity.idm.IdUtils;

import com.sun.identity.idm.IdRepoException;

import java.util.List;

import java.util.Iterator;

import java.util.ArrayList;

import java.util.Locale;

import java.util.Map;

import java.util.HashSet;

import java.util.HashMap;

import java.util.Set;

import java.util.StringTokenizer;

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 59

EXAMPLE 2–5 SampleResponseProvider.java (Continued)

import java.util.Collections;

/**

* This class is an implementation of <code>ResponseProvider</code> interface.

* It takes as input the attribute for which values are to be fetched from

* the access manager and sent back in the Policy Decision.

* if the attribute does not exist in the use profile no value is sent

* back in the response.

* It relies on underlying Identity repository service to

* fetch the attribute values for the Subject(s) defined in the policy.

* It computes a <code>Map</code> of response attributes

* based on the <code>SSOToken</code>, resource name and env map passed

* in the method call <code>getResponseDecision()</code>.

*

* Policy framework would make a call to the ResponseProvider in a

* policy only if the policy is applicable to a request as determined by

* <code>SSOToken</code>, resource name, <code>Subjects</code> and <code>Conditions

* </code>.

*

*/

public class SampleResponseProvider implements ResponseProvider {

public static final String ATTRIBUTE_NAME = "AttributeName";

private Map properties;

private static List propertyNames = new ArrayList(1);

private boolean initialized=false;

private String orgName = null;

static {

propertyNames.add(ATTRIBUTE_NAME);

}

/**

* No argument constructor.

*/

public SampleResponseProvider () {

}

/**

* Initialize the SampleResponseProvider object by using the configuration

* information passed by the Policy Framework.

* @param configParams the configuration information

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200960

EXAMPLE 2–5 SampleResponseProvider.java (Continued)

* @exception PolicyException if an error occured during

* initialization of the instance

*/

public void initialize(Map configParams) throws PolicyException {

// get the organization name

Set orgNameSet = (Set) configParams.get(

PolicyManager.ORGANIZATION_NAME);

if ((orgNameSet != null) && (orgNameSet.size() != 0)) {

Iterator items = orgNameSet.iterator();

orgName = (String) items.next();

}

/**

* Organization name is not used in this sample, but this is code

* to illustrate how any other custom response provider can get data

* out from the policy configuration service and use it in

* getResponseDecision() as necessary.

*/

initialized = true;

}

/**

* Returns a list of property names for the responseprovider.

*

* @return <code>List</code> of property names

*/

public List getPropertyNames() {

return propertyNames;

}

/**

* Returns the syntax for a property name

* @see com.sun.identity.policy.Syntax

*

* @param property property name

*

* @return <code>Syntax<code> for the property name

*/

public Syntax getPropertySyntax(String property) {

return (Syntax.LIST);

}

/**

* Gets the display name for the property name.

* The <code>locale</code> variable could be used by the plugin to

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 61

EXAMPLE 2–5 SampleResponseProvider.java (Continued)

* customize the display name for the given locale.

* The <code>locale</code> variable could be <code>null</code>, in which

* case the plugin must use the default locale.

*

* @param property property name

* @param locale locale for which the property name must be customized

* @return display name for the property name.

* @throws PolicyException

*/

public String getDisplayName(String property, Locale locale)

throws PolicyException {

return property;

}

/**

* Returns a set of valid values given the property name.

*

* @param property property name

* from the PolicyConfig Service configured for the specified realm.

* @return Set of valid values for the property.

* @exception PolicyException if unable to get the Syntax.

*/

public Set getValidValues(String property) throws PolicyException {

if (!initialized) {

throw (new PolicyException("idrepo response provider not yet "
+"initialized"));

}

return Collections.EMPTY_SET;

}

/** Sets the properties of the responseProvider plugin.

* This influences the response attribute-value Map that would be

* computed by a call to method <code>getResponseDecision(Map)</code>

* These attribute-value pairs are encapsulated in

* <code>ResponseAttribute</code> element tag which is a child of the

* <code>PolicyDecision</code> element in the PolicyResponse xml

* if the policy is applicable to the user for the resource, subject and

* conditions defined.

* @param properties the properties of the responseProvider

* Keys of the properties have to be String.

* Value corresponding to each key have to be a Set of String

* elements. Each implementation of ResponseProvider could add

* further restrictions on the keys and values of this map.

* @throws PolicyException for any abnormal condition

*/

public void setProperties(Map properties) throws PolicyException {

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200962

EXAMPLE 2–5 SampleResponseProvider.java (Continued)

if ((properties == null) || (properties.isEmpty())) {

throw new PolicyException("Properties cannot be null or empty");
}

this.properties = properties;

//Check if the keys needed for this provider are present namely

// ATTRIBUTE_NAME

if (!properties.containsKey(ATTRIBUTE_NAME)) {

throw new PolicyException("Missing required property");
}

/**

* Addtional validation on property name and values can be done

* as per the individual use case

*/

}

/** Gets the properties of the responseprovider

* @return properties of the responseprovider

* @see #setProperties

*/

public Map getProperties() {

return (properties == null)

? null : Collections.unmodifiableMap(properties);

}

/**

* Gets the response attributes computed by this ResponseProvider object,

* based on the sso token and map of environment parameters

*

* @param token single-sign-on token of the user

*

* @param env specific environment map of key/value pairs

* @return a Map of response attributes.

* Keys of the Map are attribute names ATTRIBUTE_NAME or

* Value is a Set of Strings representing response attribute

* values.

*

* @throws PolicyException if the decision could not be computed

* @throws SSOException if SSO token is not valid

*

*/

public Map getResponseDecision(SSOToken token,

Map env) throws PolicyException, SSOException {

Map respMap = new HashMap();

Set attrs = (Set)properties.get(ATTRIBUTE_NAME);

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 63

EXAMPLE 2–5 SampleResponseProvider.java (Continued)

Set values = null;

if ((attrs != null) && !(attrs.isEmpty())) {

try {

if (token.getPrincipal() != null) {

AMIdentity id = IdUtils.getIdentity(token);

Map idRepoMap = id.getAttributes(attrs);

if (idRepoMap != null) {

for (Iterator iter = attrs.iterator(); iter.hasNext();)

{

String attrName = (String)iter.next();

values = new HashSet();

Set subValues = (Set)idRepoMap.get(attrName);

if (subValues != null) {

values.addAll(subValues);

}

respMap.put(attrName, values);

}

}

} else {

throw (new PolicyException("SSOToken principal is null"));
}

} catch (IdRepoException ide) {

throw new PolicyException(ide);

}

}

return respMap;

}

/**

* Returns a copy of this object.

*

* @return a copy of this object

*/

public Object clone() {

SampleResponseProvider theClone = null;

try {

theClone = (SampleResponseProvider)super.clone();

} catch (CloneNotSupportedException e) {

// this should never happen

throw new InternalError();

}

if (properties != null) {

theClone.properties = new HashMap();

Iterator iter = properties.keySet().iterator();

Using the Policy Evaluation API

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200964

EXAMPLE 2–5 SampleResponseProvider.java (Continued)

while (iter.hasNext()) {

Object obj = iter.next();

Set values = new HashSet();

values.addAll((Set) properties.get(obj));

theClone.properties.put(obj, values);

}

}

return theClone;

}

}

Using the Policy Evaluation API

Chapter 2 • Using the Policy Service API 65

66

Using the Session Service API

The OpenSSO Enterprise Session Service maintains information about an authenticated user's
session across all web applications in a single sign-on environment. This chapter describes the
interfaces used to track session data for purposes of single sign-on and related sample code. It
includes the following sections:

■ “A Simple Single Sign-On Scenario” on page 67
■ “Inside a User Session” on page 68
■ “About the Session Service Interfaces” on page 70

For a comprehensive listing of all Java interfaces and their usage, see the Sun OpenSSO
Enterprise 8.0 Java API Reference.

OpenSSO Enterprise also includes an API for session management in C applications. For
information see Chapter 4, “Single Sign-On Data Types and Functions,” in Sun OpenSSO
Enterprise 8.0 C API Reference for Application and Web Policy Agent Developers.

A Simple Single Sign-On Scenario
In a single sign-on scenario, a user logs in to access a protected resource. Once the user has
successfully authenticated to OpenSSO Enterprise, a user session is created and stored in
OpenSSO Enterprise memory. The user uses browser cookies or URL query parameters to carry
a session identifier. Each time the user requests access to another protected resource, the new
application must verify the user's identity. It does not ask the user to present credentials.
Instead, the application uses the session identifier and the Session Service interfaces to retrieve
the user's session information from OpenSSO Enterprise. If it is determined from the session
information that the user has already been authenticated and the session is still valid, the new
application allows the user access to its data and operations. If the user is not authenticated, or if
the session is no longer valid, the requested application prompts the user to present credentials
a second time. Until logging out, this scenario is played out every time the user accesses a
protected resource in the single sign-on environment. For more detailed information about

3C H A P T E R 3

67

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3738/adoeu?a=view
http://docs.sun.com/doc/820-3738/adoeu?a=view

user sessions and single sign-on, see Chapter 6, “Models of the User Session and Single Sign-On
Processes,” in Sun OpenSSO Enterprise 8.0 Technical Overview.

Inside a User Session
A user session is, more specifically, a data structure created by the Session Service to store
information about a user session. Cookies are used to store a token that uniquely identifies the
session data structure. A session data structure contains attributes and properties that define the
user's identity and time-dependent behaviors. One example is the maximum time before the
session expires.

The values of most of these attributes and properties are set by services other than the Session
Service (primarily, the Authentication Service). The Session Service only provides storage for
session information and enforces some of the time-dependent behavior. An example of such
enforcement is invalidating and destroying sessions which exceed their maximum idle time or
maximum session time.

A session data structure may contain the following:

■ “Session Attributes” on page 68
■ “Protected Properties” on page 69

Session Attributes
The session data structure contains the following fixed attributes:

sun.am.universalIdentifier This universal, unique session identifier is an opaque,
global string that programmatically identifies a specific
session data structure. With this identifier, a resource is
able to retrieve session information.

Type This is specifies the type of client: USER or
APPLICATION.

State This is the state of the session: VALID, INVALID,
DESTROYED or INACTIVE.

maxIdleTime This is the maximum time in minutes without activity
before the session will expire and the user must
reauthenticate.

maxSessionTime This is the maximum time in minutes before the session
expires and the user must reauthenticate.

maxCachingTime. This is the maximum time in minutes before the client
contacts Identity Server to refresh cached session
information

Inside a User Session

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200968

http://docs.sun.com/doc/820-3740/adrba?a=view
http://docs.sun.com/doc/820-3740/adrba?a=view

latestAccessTime This refers to the last time the user accessed the resource.

creationTime This is the time at which the session token was set to a valid
state.

Protected Properties
The session data structure also contains an extensible set of protected (or core) properties. The
following protected properties are set by OpenSSO Enterprise and can only be modified by
OpenSSO Enterprise (primarily the Authentication Service).

Organization This is the DN of the organization to which the user belongs.

Principal This is the DN of the user.

Principals This is a list of names to which the user has authenticated. (This property
may have more then one value defined as a pipe separated list.)

UserId This is the user's DN as returned by the module, or in the case of modules
other than LDAP or Membership, the user name. (All Principals must
map to the same user. The UserId is the user DN to which they map.)

UserToken This is a user name. (All Principals must map to the same user. The
UserToken is the user name to which they map.)

Host This is the host name or IP address for the client.

authLevel This is the highest level to which the user has authenticated.

AuthType This is a pipe separated list of authentication modules to which the user
has authenticated (for example, module1|module2|module3).

Service Applicable for service-based authentication only, this is the service to
which the user belongs.

loginURL This is the client's login URL.

Hostname This is the host name of the client.

cookieSupport This attribute contains a value of true if the client browser supports
cookies.

authInstant This is a string that specifies the time at which the authentication took
place.

SessionTimedOut This attribute contains a value of true if the session has timed out.

Inside a User Session

Chapter 3 • Using the Session Service API 69

About the Session Service Interfaces
All OpenSSO Enterprise services (except for the Authentication Service) require a valid session
identifier (programmatically referred to as SSOToken) to process an HTTP request. External
applications developed using the Session Service interfaces and protected by a policy agent also
require an SSOToken to determine access privileges. The SSOToken is an encrypted, unique
string that identifies a specific session data structure stored by OpenSSO Enterprise. If the
SSOToken is known to a OpenSSO Enterprise service or an external protected resource such as
an application, the service or application can access all user information and session data stored
in the session data structure it identifies. After successful authentication, the SSOToken is
transported using cookies or URL parameters, allowing participation in single sign-on.

The Session Service provides Java interfaces to allow OpenSSO Enterprise services and external
applications to participate in the single sign-on functionality. The com.iplanet.sso package
contains the tools for creating, destroying, retrieving, validating and managing session data
structures. All external applications designed to participate in the single sign-on solution must
be developed using this API. In the case of a remote application, the invocation is forwarded to
OpenSSO Enterprise by the client libraries using XML messages over HTTP(S).

The com.iplanet.sso package includes the following:

■ “SSOTokenManager” on page 70
■ “SSOToken” on page 72
■ “SSOTokenListener” on page 74

SSOTokenManager

The SSOTokenManager class contains the methods needed to get, validate, destroy and refresh
the session identifiers that are programmatically referred to as the SSOToken. To obtain an
instance of SSOTokenManager, call the getInstance() method. The SSOTokenManager instance
can be used to create an SSOToken object using one of the forms of the createSSOToken()
method. The destroyToken() method is called to invalidate and delete a token to end the
session. Either the isValidToken() and validateToken() methods can be called to verify
whether a token is valid (asserting successful authentication). isValidToken() returns true or
false depending on whether the token is valid or invalid, respectively. validateToken() throws
an exception only when the token is invalid; nothing happens if the token is valid. The
refreshSession() method resets the idle time of the session. The following code sample
illustrates how to use SSOTokenManager to validate a user session.

EXAMPLE 3–1 Code Sample for Validating a User Session

try {

/* get an instance of the SSOTokenManager */

About the Session Service Interfaces

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200970

EXAMPLE 3–1 Code Sample for Validating a User Session (Continued)

SSOTokenManager ssoManager = SSOTokenManager.getInstance();

/* The request here is the HttpServletRequest. Get

/* SSOToken for session associated with this request.

/* If the request doe not have a valid session cookie,

/* a Session Exception would be thrown.*/

SSOToken ssoToken = ssoManager.createSSOToken(request);

/* use isValid method to check if token is valid or not.

/* This method returns true for valid token, false otherwise. */

if (ssoManager.isValidToken(ssoToken)) {

/* If token is valid, this information may be enough for

/* some applications to grant access to the requested

/* resource. A valid user represents a user who is

/* already authenticated. An application can further

/* utilize user identity information to apply

/* personalization logic .*/

} else {

/* Token is not valid, redirect the user login page. */

}

/* Alternative: use of validateToken method to check

/* if token is valid */

try {

ssoManager.validateToken(ssoToken);

/* handle token is valid */

} catch (SSOException e) {

/* handle token is invalid */

}

/*refresh session. idle time should be 0 after refresh. */

ssoManager.refreshSession(ssoToken);

About the Session Service Interfaces

Chapter 3 • Using the Session Service API 71

EXAMPLE 3–1 Code Sample for Validating a User Session (Continued)

} catch (SSOException e) {

/* An error has occurred. Do error handling here. */

}

SSOToken

The SSOToken interface represents the session identifier returned from the createSSOToken()
method, and is used to retrieve session data such as the authenticated principal name,
authentication method, and other session information (for example, session idle time and
maximum session time). The SSOToken interface has methods to get predefined session
information such as:

■ getProperty() is used to get any information about the session, predefined or otherwise
(for example, information set by the application).

■ setProperty() can be used by the application to set application-specific information in the
session.

■ addSSOTokenListener() can be used to set a listener to be invoked when the session state
has become invalid.

Caution – The methods getTimeLeft() and getIdleTime() return values in seconds while the
methods getMaxSessionTime() and getMaxIdleTime() return values in minutes.

The following code sample illustrates how to use SSOToken to print session properties.

EXAMPLE 3–2 Using SSOToken to Print Session Properties

/* get http request output stream for output */

PrintWriter out = response.getWriter();

/* get the sso token from http request */

SSOTokenManager ssoManager = SSOTokenManager.getInstance();

SSOToken ssoToken = ssoManager.createSSOToken(request);

/* get the sso token ID from the sso token */

SSOTokenID ssoTokenID = ssoToken.getTokenID();

About the Session Service Interfaces

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200972

EXAMPLE 3–2 Using SSOToken to Print Session Properties (Continued)

out.println("The SSO Token ID is "+ssoTokenID.toString());

/* use validate method to check if the token is valid */

try {

ssoManager.validateToken(ssoToken);

out.println("The SSO Token validated.");

} catch (SSOException e) {

out.println("The SSO Token failed to validate.");
}

/* use isValid method to check if the token is valid */

if (!ssoManager.isValidToken(token)) {

out.println("The SSO Token is not valid.");
} else {

/* get some values from the SSO Token */

java.security.Principal principal = ssoToken.getPrincipal();

out.println("Principal name is "+principal.getName());

String authType = ssoToken.getAuthType();

out.println("Authentication type is "+authType);

int authLevel = ssoToken.getAuthLevel();

out.println("Authentication level is "+authLevel);

long idleTime = ssoToken.getIdleTime();

out.println("Idle time is "+idleTime);

long maxIdleTime = ssoToken.getMaxIdleTime();

out.println("Max idle time is "+maxIdleTime);

long maxTime = token.getMaxSessionTime();

out.println("Max session time is "+maxTime);

String host = ssoToken.getHostName();

out.println("Host name is "+host);

/* host name is a predefined information of the session,

/* and can also be obtained the following way */

String hostProperty = ssoToken.getProperty("HOST");

About the Session Service Interfaces

Chapter 3 • Using the Session Service API 73

EXAMPLE 3–2 Using SSOToken to Print Session Properties (Continued)

out.println("Host property is "+hostProperty);

/* set application specific information in session */

String appPropertyName = "app1propA";
String appPropertyValue = "appValue";
ssoToken.setProperty(appPropertyName, appPropertyValue);

/* now get the app specific information back */

String appValue = ssoToken.getProperty(appPropertyName);

if (appValue.equals(appPropertyValue)) {

out.println("Property "+appPropertyName+",
value "+appPropertyValue+" verified to be set.");
} else {

out.println("ALERT: Setting property "+appPropertyName+" failed!");

}

}

SSOTokenListener

The SSOTokenListener class allows the application to be notified when a SSOToken has become
invalid — for example, when a session has timed out.

About the Session Service Interfaces

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200974

Running OpenSSO Enterprise in Debugging
Mode

When you run OpenSSO Enterprise in Debugging Mode, debugging information is written to
files in the ConfigurationDirectory/uri/debug directory. You can view the debugging files to
help you determine where errors or other process problems occur. This chapter contains the
following sections.

■ “To Run OpenSSO Enterprise in Debugging Mode” on page 75
■ “To Merge Debugging Output into One File” on page 76

To Run OpenSSO Enterprise in Debugging Mode
1. Open the OpenSSO Enterprise Console.
2. Click the Configuration tab.
3. Go to Sites and Servers > serverName > General, where serverName is the name of the

OpenSSO Enterprise server instance you want to debug.
4. Edit the Debug Directory attribute.
5. Specify one of the following debug levels:

Off: No debugging information is written to the debug files.

Error: Use this level in production environments. During production, there should
be no errors in the debug files.

Warning: Allows Error and Warning debug messages to be written.

Do not use the Warning level in a production environment. This setting can
cause severe performance degradation due to excessive debug messages.

Message: Allows detailed code tracing.

Do not use the Message level in a production environment. This level can
cause severe performance degradation due to excessive debug messages.

4C H A P T E R 4

75

Debugging information is written to files in the ConfigurationDirectory/uri/debug
directory. By default, debugging information for an OpenSSO enterprise service or major
component is written into a file named for the service or component:

■ Authentication
■ CoreSystem
■ amAuthContextLocal
■ WebServices
■ IDRepo
■ Policy
■ Configuration
■ Session

To Merge Debugging Output into One File
1. In the OpenSSO Enterprise administration console, go to Configuration > Sites and Servers

> serverName > General.
In this example, serverName is the name of the OpenSSO Enterprise server instance you are
debugging.

2. Set the Merge Debug files attribute to ON.

To Merge Debugging Output into One File

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200976

Understanding the Federation Options

Sun OpenSSO Enterprise has a robust framework for implementing a federated identity
infrastructure. A federated identity infrastructure allows single sign-on that crosses internet
domain boundaries. This chapter contains the following sections.

■ “Understanding Federation” on page 77
■ “Understanding Federated Single Sign-on” on page 78
■ “Federated Single Sign-on Using OpenSSO Enterprise” on page 79
■ “Executing a Multi-Protocol Hub” on page 80

Understanding Federation
The umbrella term federation encompasses both identity federation and provider federation.
The concept of identity federation begins with the notion of a virtual identity. On the internet,
one person might have a multitude of accounts set up for access to various business, community
and personal service providers. In creating these accounts, the person might have used different
names, user identifiers, passwords or preferences to customize, for example, a news portal, a
bank, a retailer, and an email provider. A local identity refers to the set of attributes that an
individual might have with each of these service providers. These attributes uniquely identify
the individual for that particular provider and can include a name, phone number, passwords,
social security number, address, credit records, bank balances or bill payment information.
After implementing a federated identity infrastructure, a user can associate, connect or bind the
local identities they have configured with multiple service providers into a federated identity.
With a federated identity the user can then login at one service provider's site and move to an
affiliated (trusted) service provider site without having to reauthenticate or re-establish their
identity.

The concept of provider federation as defined in a federation-based environment begins with
the notion of a security domain (referred to as a circle of trust in OpenSSO Enterprise). A circle
of trust is a group of service providers (with at least one identity provider) that agree to join
together to exchange user authentication information using open standards and technologies.

5C H A P T E R 5

77

Once a group of providers has been federated within a circle of trust, authentication
accomplished by the identity provider in that circle is honored by all affiliated service providers.
Thus, federated single sign-on can be enabled amongst all membered providers as well as
identity federation among users. For more information on the federation process in OpenSSO
Enterprise, see the Sun OpenSSO Enterprise 8.0 Technical Overview.

Understanding Federated Single Sign-on
Federated single sign-on allows authentication among multiple internet domains using
multiple authentication authorities — with one authority asserting the identity of the user to the
other. OpenSSO Enterprise supports the following federation specifications:

■ Liberty Alliance Project Identity Federation Framework (Liberty ID-FF) 1.2 Specifications
■ WS-Federation 1.1 Metadata
■ Security Assertion Markup Language (SAML)

Here are some general rules to follow when deciding which federation option will work best in
your environment.

■ Use SAML v2 whenever possible as it supersedes both the Liberty ID-FF and SAML v1.x
specifications.

■ The Liberty ID-FF and SAML v1.x should only be used when integrating with a partner that
is not able to use SAML v2.

■ SAML v1.x should suffice for single sign-on basics.
■ The Liberty ID-FF can be used for more sophisticated functions and capabilities, such as

global sign-out, attribute sharing, web services.
■ When deploying OpenSSO Enterprise with Microsoft Active Directory with Federation

Services, you must use WS-Federation.

For more information, see Chapter 11, “Choosing a Federation Option,” in Sun OpenSSO
Enterprise 8.0 Technical Overview.

Understanding Federated Single Sign-on

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200978

http://docs.sun.com/doc/820-3740
http://docs.sun.com/doc/820-3740/adrcy?a=view
http://docs.sun.com/doc/820-3740/adrcy?a=view

Note – The proprietary OpenSSO Enterprise single sign-on mechanism, due to its dependency
on browser cookies, is limited to single sign-on within a single internet domain only. The
proprietary OpenSSO Enterprise cross domain single sign-on (CDSSO) mechanism uses a
single authentication authority which means only one user identity can exist in the entire
system. If the situation fits, CDSSO may be a solution worthy of further evaluation.

1. Only Sun products (OpenSSO Enterprise and agents) are involved.
2. All policy agents are configured to use the same OpenSSO Enterprise instance where

multiple instances are available.
3. Multiple instances of OpenSSO Enterprise, configured for high-availability, must all reside

in a single DNS domain.

Only policy agents can reside in different DNS domains. For more information on these
proprietary features, see Part II, “Access Control Using OpenSSO Enterprise,” in Sun OpenSSO
Enterprise 8.0 Technical Overview.

Federated Single Sign-on Using OpenSSO Enterprise
In order to communicate identity attributes for the purpose of federated single sign-on, you
need, at the least, two instances of OpenSSO Enterprise configured in one circle of trust. Circles
of trust configured for real time interactions must have, at the least, one instance of OpenSSO
Enterprise acting as the circle's identity provider and one instance of OpenSSO Enterprise
acting as a service provider. To prepare your instances of OpenSSO Enterprise, you need to
exchange and import the metadata for all participating identity and service providers, and
assemble the providers into a circle of trust. The following steps are an overview of the process.

1. Decide whether the instance of OpenSSO Enterprise you are configuring will act as either an
identity provider, a service provider, or both.

2. Create standard and extended metadata configuration files containing the appropriate
metadata for your organization. See Chapter 1, ?ssoadm Command Line Interface
Reference,? in Sun OpenSSO Enterprise 8.0 Administration Reference.

3. Create a circle of trust.
4. Import your organization's provider metadata into the circle of trust.
5. Determine which organizations will be added to the circle of trust as identity providers and

service providers and import a standard and an extended metadata configuration file for
each.

Note – The values in these files will come from the providers themselves.

6. Import the provider metadata into the circle of trust

Federated Single Sign-on Using OpenSSO Enterprise

Chapter 5 • Understanding the Federation Options 79

http://docs.sun.com/doc/820-3740/ggqxm?a=view
http://docs.sun.com/doc/820-3740/ggqxm?a=view

See Chapter 7, “Configuring and Managing Federation,” in Sun OpenSSO Enterprise 8.0
Administration Guide for more information.

Executing a Multi-Protocol Hub
Because of the federation options available, OpenSSO Enterprise has implemented a new
feature: the multi-protocol hub. The multi-protocol hub is an identity provider that supports all
federation protocols implemented in OpenSSO Enterprise. It enables seamless single sign-on
and single logout with service providers that communicate using the different federation
protocols. OpenSSO Enterprise ships with a multi-protocol hub sample that demonstrates
single sign-on and single logout within one hub that includes one Liberty ID-FF service
provider, one SAML v2 service provider and one WS-Federation service provider. The sample
is located in /path-to-context-root/opensso/samples/multiprotocol. Open index.html for
more information.

Executing a Multi-Protocol Hub

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200980

http://docs.sun.com/doc/820-3885/gglzm?a=view
http://docs.sun.com/doc/820-3885/gglzm?a=view

Implementing the Liberty Alliance Project
Identity-Federation Framework

Sun OpenSSO Enterprise has a robust framework for implementing federated single sign-on
infrastructures based on the Liberty Alliance Project Identity-Federation Framework (Liberty
ID-FF). It provides interfaces for creating, modifying, and deleting circles of trust, service
providers, and identity providers as well as samples to get you started. This chapter covers the
following topics:

■ “Customizing the Federation Graphical User Interface” on page 81
■ “Using the Liberty ID-FF Packages” on page 83
■ “Accessing Liberty ID-FF Endpoints” on page 85
■ “Executing the Liberty ID-FF Sample” on page 86

Customizing the Federation Graphical User Interface
The Federation Service uses JavaServer PagesTM (JSPTM) to define its look and feel. JSP are HTML
files that contain additional code to generate dynamic content. More specifically, a JavaServer
page contains HTML code to display static text and graphics, as well as application code to
generate information. When the page is displayed in a web browser, it contains both the static
HTML content and, in the case of the Federation component, dynamic content retrieved
through calls to the Federation API. An administrator can customize the look and feel of the
interface by changing the HTML tags in the JSP but the invoked APIs must not be changed.

After a default installation, the JSP are located in
/path-to-context-root/opensso/config/federation/default. The files in this directory
provide the default content to the Liberty ID-FF Federation capability. To customize the pages
for a specific organization, this default directory can be copied and renamed to reflect the name
of the organization (or any value). This directory would then be placed at the same level as the
default directory, and the files within this directory would be modified as needed. The following
table lists the JSP including details on what each page is used for and the invoked API that
cannot be modified.

6C H A P T E R 6

81

TABLE 6–1 Federation JSP and Invoked Interfaces

JSP Name Description

CommonLogin.jsp Displays a link to the local login page as well as links to the login pages of
the trusted identity providers. This page is displayed when a user is not
logged in locally or with an identity provider.
com.sun.liberty.LibertyManager is the invoked interface. The list of
identity providers is obtained by using the
getIDPList(hostedProviderID) method.

Error.jsp Displays an error page when an error has occurred.
com.sun.liberty.LibertyManager is the invoked interface.

Federate.jsp When a user clicks a federate link on a provider page, this page displays a
drop-down list of all providers with which the user is not yet federated.
com.sun.liberty.LibertyManager is the invoked interface. The list is
constructed with the
getProvidersToFederate(realm,providerID,providerRole,userName)

method.

FederationDone.jsp Displays the status of a federation (success or cancelled).
com.sun.liberty.LibertyManager is the invoked interface. It checks the
status with the isFederationCancelled(request) method.

Footer.jsp Displays a branded footer that is included on all the pages. No APIs are
invoked.

Header.jsp Displays a branded header that is included on all the pages. No APIs are
invoked.

ListOfCOTs.jsp Displays a list of circles of trust. When a user is authenticated by an
identity provider and the service provider belongs to more than one circle
of trust, this page displays and the user is prompted to select a circle of trust
as their preferred domain. In the case that the provider belongs to only one
domain, this page will not be displayed.
com.sun.liberty.LibertyManager is the invoked interface. The list is
obtained with the getListOfCOTs(providerID) method.

LogoutDone.jsp Displays the status of the local logout operation.
com.sun.liberty.LibertyManager is the invoked interface.

NameRegistration.jsp When a federated user clicks a Name Registration link on a provider page
to register a new Name Identifier from one provider to another, this JSP is
displayed. com.sun.liberty.LibertyManager is the invoked interface.

NameRegistrationDone.jsp Displays the status of NameRegistration.jsp. When finished, this page is
displayed. com.sun.liberty.LibertyManager is the invoked interface.

Customizing the Federation Graphical User Interface

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200982

TABLE 6–1 Federation JSP and Invoked Interfaces (Continued)
JSP Name Description

Termination.jsp When a user clicks a defederate link on a provider page, this page displays a
drop-down list of all providers with which the user has federated and from
which the user can choose to defederate.
com.sun.liberty.LibertyManager is the invoked interface. The list is
constructed with the getFederatedProviders(userName) method which
returns all active providers to which the user is already federated.

TerminationDone.jsp Displays the status of federation termination (success or cancelled).
com.sun.liberty.LibertyManager is the invoked interface. Status is
checked using the isTerminationCancelled(request) method.

Using the Liberty ID-FF Packages
The following packages form the Federation API. For more detailed information, see the Sun
OpenSSO Enterprise 8.0 Java API Reference.

■ “com.sun.identity.federation.accountmgmt” on page 83
■ “com.sun.identity.federation.common” on page 83
■ “com.sun.identity.federation.message” on page 83
■ “com.sun.identity.federation.message.common” on page 84
■ “com.sun.identity.federation.plugins” on page 84
■ “com.sun.identity.federation.services” on page 84
■ “com.sun.liberty” on page 85

com.sun.identity.federation.accountmgmt

The com.sun.identity.federation.accountmgmt package contains the FSAccountFedInfo
class which retrieves the information from the federated user account. After Liberty ID-FF
federation is successfully completed, two attributes are set. The FSAccountFedInfo class
contains the value of one of them: the iplanet-am-user-federation-info attribute.

com.sun.identity.federation.common

The com.sun.identity.federation.common package contains the IFSConstants interface
which represents common constants used by the federation API.

com.sun.identity.federation.message

The com.sun.identity.federation.message package contains classes which define the
federation protocol messages.

Using the Liberty ID-FF Packages

Chapter 6 • Implementing the Liberty Alliance Project Identity-Federation Framework 83

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739

com.sun.identity.federation.message.common

The com.sun.identity.federation.message.common package contains classes which can be
used by federation protocol messages.

com.sun.identity.federation.plugins

The com.sun.identity.federation.plugins package contains the FederationSPAdapter
interface which can be implemented to allow applications to customize user specific processing
before and after invoking the federation protocols. For example, a service provider may want to
choose to redirect to a specific location after successful single sign-on. A singleton instance of
this FederationSPAdapter is used during runtime so make sure the implementation of the
methods (except initialize()) are thread safe.

com.sun.identity.federation.services

The com.sun.identity.federation.services package provides interfaces for writing custom
plug-ins that can be used during the federation or single sign-on process. The interfaces are
described in the following table.

TABLE 6–2 com.sun.identity.federation.services Interfaces

Interface Description

FSRealmAttributeMapper Plug-in for mapping the attributes passed from the
identity provider to local attributes on the service
provider side during the single sign-on.
com.sun.identity.federation.services.FSDefaultRealmAttributeMapper

is the default implementation.

FSRealmAttributePlugin Plug-in for an identity provider to add
AttributeStatements into a SAML assertion during
the single sign-on process.
com.sun.identity.federation.services.FSDefaultRealmAttributePlugin

is the default implementation.

FSRealmIDPProxy Interface used to find a preferred identity provider to
which an authentication request can be proxied.
com.sun.identity.federation.services.FSRealmIDPProxyImpl

is the default implementation.

Using the Liberty ID-FF Packages

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200984

com.sun.liberty

The com.sun.liberty package contains the LibertyManager class which must be instantiated
by web applications that want to access the Federation framework. It also contains the methods
needed for account federation, session termination, log in, log out and other actions. Some of
these methods are described in the following table.

TABLE 6–3 com.sun.libertyMethods

Method Description

getFederatedProviders() Returns a specific user's federated providers.

getIDPFederationStatus() Retrieves a user's federation status with a specified
identity provider. This method assumes that the user
is already federated with the provider.

getIDPList() Returns a list of all trusted identity providers.

getIDPList() Returns a list of all trusted identity providers for the
specified hosted provider.

getProvidersToFederate() Returns a list of all trusted identity providers to which
the specified user is not already federated.

getSPList() Returns a list of all trusted service providers.

getSPList() Returns a list of all trusted service providers for the
specified hosted provider.

getSPFederationStatus() Retrieves a user's federation status with a specified
service provider. This method assumes that the user is
already federated with the provider.

Accessing Liberty ID-FF Endpoints
For each Liberty ID-FF feature, there are endpoints listening for requests or generating
responses. The endpoint URLs are provided in the metadata that is exchanged with other
partners in the circle of trust. Following is a list of the Liberty ID-FF endpoints:

■ SOAPReceiver is a servlet that listens for SOAP-communicated requests. For example,
single logout or requests for artifacts.

■ ProcessLogout is a servlet that accepts HTTP-based single logout requests.
■ ProcessTermination is a servlet that accepts HTTP-based federation termination requests.
■ ProcessRegistration is a servlet that accepts Name Identifier registration requests.
■ SingleSignOnService is a servlet on the identity provider side that accepts single sign-on

requests.

Accessing Liberty ID-FF Endpoints

Chapter 6 • Implementing the Liberty Alliance Project Identity-Federation Framework 85

■ ReturnLogout is a servlet that accepts single logout return requests.
■ AssertionConsumerService is a servlet on the service provider side that accepts single

sign-on responses.

Executing the Liberty ID-FF Sample
OpenSSO Enterprise includes sample code and files that can be used to demonstrate the
different Liberty ID-FF protocols such as Account Federation, Single Sign On, Single Logout
and Federation Termination. The sample is located in
/path-to-context-root/opensso/samples/idff. Open index.html for more information.

Executing the Liberty ID-FF Sample

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200986

Implementing WS-Federation

At one time, federation was implemented using the Liberty Alliance Project Identity Federation
Framework (Liberty ID-FF). But federation standards now include SAML v1.x and SAML v2 as
well as WS-Federation. Although the protocol are interoperable using OpenSSO Enterprise,
they are not related. This chapter contains the following sections on WS-Federation.

■ “Accessing the WS-Federation Java Server Pages” on page 87
■ “Using the WS-Federation Packages” on page 87
■ “Executing the Multi-Protocol Hub Sample” on page 89

Accessing the WS-Federation Java Server Pages
The WS-Federation Service uses JavaServer PagesTM (JSPTM) to complete its functionality. After a
default installation, the JSP are located in /path-to-context-root/opensso/wsfederation/jsp.
They include:

logout.jsp Page is displayed after a successful logout.

post.jsp The HTML form used to send the WS-Federation single sign-on
responses from the identity provider to the service provider.

realmSelection.jsp Page is displayed if no realm is defined.

Using the WS-Federation Packages
The following packages relate to the WS-Federation functionality in OpenSSO Enterprise. For
more detailed information, see the Sun OpenSSO Enterprise 8.0 Java API Reference.

■ “com.sun.identity.wsfederation.plugins” on page 88
■ “com.sun.identity.wsfederation.common” on page 89

7C H A P T E R 7

87

http://docs.sun.com/doc/820-3739

com.sun.identity.wsfederation.plugins

This package defines the WS-Federation service provider interfaces (SPI).
DefaultIDPAccountMapper.java is an implementation of this SPI.

TABLE 7–1 com.sun.identity.wsfederation.plugins Interfaces

Interface Description

IDPAccountMapper IDPAccountMapper is used on the identity provider (SAML v2 provider)
side to map the local identities to the SAML v2 protocol objects. It
accomplishes the reverse for some of the protocols (for example,
ManageNameIDRequest). The default implementation,
com.sun.identity.wsfederation.plugins.DefaultIDPAccountMapper,
is used by the SAML v2 framework to retrieve the user's account federation
information to construct the SAML protocol objects (for example, an
Assertion) and to find out the corresponding user account for the given
SAML v2 requests.

IDPAttributeMapper IDPAttributeMapper is used to map an authenticated user's attributes to
SAML v2 attributes. The SAML v2 framework may then insert the attribute
information as an AttributeStatement in a SAML v2 assertion. The
default implementation,
com.sun.identity.wsfederation.plugins.DefaultIDPAttributeMapper,
reads the configured attributes or attributes that are available through the
SSOToken and returns the SAML v2 attributes.

IDPAuthenticationMethodMapperIDPAuthenticationMethodMapper creates an
IDPAuthenticationTypeInfo element based on the RequestAuthnContext
information from the AuthnRequest sent by a service provider and the
AuthnContext configuration om the identity provider side. The default
implementation,
com.sun.identity.wsfederation.plugins.DefaultIDPAuthenticationMethodMapper,
will be used by the identity provider to find out the authentication
mechanism and set the AuthnContext in the assertion.

SPAccountMapper com.sun.identity.saml.plugins.PartnerAccountMapper is an interface
that is implemented to map a partner account to a user account in OpenSSO
Enterprise. Different partners would need to have different
implementations of the interface. The mappings between the partner source
ID and the implementation class are configured in the Partner URLs field of
the SAML service.
com.sun.identity.wsfederation.plugins.DefaultADFSPartnerAccountMapper

is the default implementation.

Using the WS-Federation Packages

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200988

https://opensso.dev.java.net/

TABLE 7–1 com.sun.identity.wsfederation.plugins Interfaces (Continued)
Interface Description

SPAttributeMapper SPAttributeMapper maps SAML v2 attributes to local user attributes. This
mapper will be used by the service provider to read the configured map for
the corresponding SAML v2 attributes and supply them to the SAML
framework. The locally mapped attributes returned by the implementation
of this interface will be inserted into the SSOToken by the SAML v2
framework.
com.sun.identity.wsfederation.plugins.DefaultSPAttributeMapper

is the default implementation.

com.sun.identity.wsfederation.common

This package contains utility methods and constants for WS-Federation implementations.

Executing the Multi-Protocol Hub Sample
OpenSSO Enterprise includes WS-Federation functionality in the multi-protocol hub sample.
The sample is located in /path-to-context-root/opensso/samples/multiprotocol. Open
index.html for more information.

Executing the Multi-Protocol Hub Sample

Chapter 7 • Implementing WS-Federation 89

90

Constructing SAML Messages

Sun OpenSSO Enterprise has implemented two versions of the Security Assertion Markup
Language (SAML) in OpenSSO Enterprise. This chapter contains information on these
implementations.

■ “SAML v2” on page 91
■ “Using SAML v2 for Virtual Federation Proxy” on page 109
■ “SAML v1.x” on page 120

SAML v2
The following sections include information on the implementation of SAML v2 in OpenSSO
Enterprise.

■ “Using the SAML v2 SDK” on page 91
■ “Service Provider Interfaces” on page 93
■ “JavaServer Pages” on page 100
■ “SAML v2 Samples” on page 109

Using the SAML v2 SDK
The SAML v2 framework provides interfaces that can be used to construct and process
assertions, requests, and responses. The SDK is designed to be pluggable although it can also be
run as a standalone application (outside of an instance of OpenSSO Enterprise).

■ For information on the packages in the SDK, see “Exploring the SAML v2 Packages” on
page 92.

■ For ways to set a customized implementation, see “Setting a Customized Class” on page 92.

8C H A P T E R 8

91

Exploring the SAML v2 Packages
The SAML v2 SDK includes the following packages:

■ “com.sun.identity.saml2.assertion Package” on page 92
■ “com.sun.identity.saml2.common Package” on page 92
■ “com.sun.identity.saml2.plugins Package” on page 92
■ “com.sun.identity.saml2.protocol Package” on page 92

For more detailed information, see the Sun OpenSSO Enterprise 8.0 Java API Reference.

com.sun.identity.saml2.assertion Package
This package provides interfaces to construct and process SAML v2 assertions. It also contains
the AssertionFactory, a factory class used to obtain instances of the objects defined in the
assertion schema.

com.sun.identity.saml2.common Package
This package provides interfaces and classes used to define common SAML v2 utilities and
constants.

com.sun.identity.saml2.plugins Package
This package provides service provider interfaces to implement for plug-ins.

com.sun.identity.saml2.protocol Package
This package provides interfaces used to construct and process the SAML v2 request/response
protocol. It also contains the ProtocolFactory, a factory class used to obtain object instances
for concrete elements in the protocol schema.

Setting a Customized Class
There are two ways you can set a customized implementation class:

1. Add a customized mapper as a value for the Advanced Properties of the appropriate server
using the OpenSSO Enterprise console.
a. Login to the OpenSSO Enterprise console as the administrator.
b. Click the Configuration tab.
c. Click Servers & Sites and select the server.
d. Click the Advanced tab.
e. Click Add and enter the full interface name as the Property Name and the implemented

class name as the Property Value.
For example, com.sun.identity.saml2.sdk.mapping.Assertion and
com.ourcompany.saml2.AssertionImpl, respectively.

SAML v2

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200992

http://docs.sun.com/doc/820-3739

2. Set an environment variable for the Virtual Machine for the JavaTM platform (JVMTM). For
example, you can add the following environment variable when starting the application:

-Dcom.sun.identity.saml2.sdk.mapping.Assertion=com.ourcompany.saml2.AssertionImpl

Service Provider Interfaces
The com.sun.identity.saml2.plugins package provides pluggable interfaces to extend
SAML v2 functionality into your remote application. The classes can be configured per
provider entity. Default implementations are provided, but a customized implementation can
be plugged in by modifying the corresponding attribute in the provider's extended metadata
configuration file. The mappers include:

■ “Account Mappers” on page 93
■ “Attribute Mappers” on page 94
■ “Authentication Context Mappers” on page 95
■ “Assertion Query/Request Mappers” on page 98
■ “Attribute Authority Mappers” on page 99

For more information, see the Sun OpenSSO Enterprise 8.0 Java API Reference.

Account Mappers
An account mapper is used to associate a local user account with a remote user account based
on the Name ID (or another specific attribute value) in the Assertion. A default account mapper
has been developed for both sides of the SAML v2 interaction, service providers and identity
providers.

■ “IDPAccountMapper” on page 93
■ “SPAccountMapper” on page 94

If implementing a custom account mapper, change the value of the provider's Account Mapper
property using the OpenSSO Enterprise console.

IDPAccountMapper

The IDPAccountMapper interface is used on the identity provider side to map user accounts in
cases of single sign-on and federation termination. The default implementation is provided in
by com.sun.identity.saml2.plugins.DefaultIDPAccountMapper. During single sign-on,
the DefaultIDPAccountMapper returns the Name Identifier to be set in an Assertion based on
the entity provider's configuration; for example, the user's profile attributes can be set as the
value of the Name ID using the NameID Value Map field in the console.

SAML v2

Chapter 8 • Constructing SAML Messages 93

http://docs.sun.com/doc/820-3739

SPAccountMapper

The SPAccountMapper interface is used on the service provider side to map user accounts in
cases of single sign-on and federation termination. The default implementation,
com.sun.identity.saml2.plugins.DefaultSPAccountMapper, supports mapping based on
the transient and persistent NameID attributes, and attribute federation based on properties
defined in the extended metadata configuration file. The user mapping is based on information
passed from the identity provider in an <AttributeStatment>.

Attribute Mappers
An attribute mapper is used to associate attribute names passed in the <AttributeStatement>
of an assertion. A default attribute mapper has been developed for both participants in the
SAML v2 interaction, service providers and identity providers. They are defined in the extended
metadata configuration files and explained in the following sections:

■ “IDPAttributeMapper” on page 94
■ “SPAttributeMapper” on page 95

If implementing a custom attribute mapper, change the value of the provider's Attribute
Mapper property using the OpenSSO Enterprise console.

IDPAttributeMapper

The IDPAttributeMapper interface is used by the identity provider to specify which user
attributes will be included in an assertion. The default implementation,
com.sun.identity.saml2.plugins.DefaultIDPAttributeMapper, retrieves attribute
mappings (SAML v2-attribute=user-attribute) defined in the attributeMap property in the
identity provider's extended metadata configuration file. It reads the value of the user attribute
from the identity provider's data store, and sets this value as the <AttributeValue> of the
specified SAML v2 attribute. The SAML v2 attributes and values are then included in the
<AttributeStatement> of the assertion and sent to the service provider. The value of
attributeMap can be changed to modify the mapper's behavior without programming. The
default mapper itself can be modified to attach any identity provider user attribute with
additional programming.

The identity provider can also send different AttributeStatement elements for different
service providers. To support this, define an attribute mapping in the remote service provider's
metadata hosted on the identity provider side. This configuration will override the attribute
mapping defined on the hosted identity provider itself. (The hosted identity provider
configuration serves as the default if no attribute mapping is defined in the service provider
metadata.

SAML v2

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200994

SPAttributeMapper

The SPAttributeMapper interface is used by the service provider to map attributes received in
an assertion to its local attributes. The default implementation,
com.sun.identity.saml2.plugins.DefaultSPAttributeMapper, retrieves the attribute
mappings defined in the attributeMap property in the service provider's extended metadata
configuration file. It extracts the value of the SAML v2 attribute from the assertion and returns a
key/value mapping which will be set in the user's single sign-on token. The mapper can also be
customized to choose user attributes from the local service provider datastore.

Note – *=* is a special attribute mapping which can be defined for a service provider hosted on
an instance of OpenSSO Enterprise only. (It is not valid for a remote service provider
configured on the identity provider side.) It will map all the attribute names as presented in the
Assertion. (It will keep the same name as in the AttributeStatement element. Enter this as a
value of the Attribute Map property under the service provider configuration Assertion
Processing tab.

Authentication Context Mappers
Authentication context refers to information added to an assertion regarding details of the
technology used for the actual authentication action. For example, a service provider can
request that an identity provider comply with a specific authentication method by identifying
that method in an authentication request. The authentication context mapper pairs a standard
SAML v2 authentication context class reference (PasswordProtectedTransport, for example)
to a OpenSSO Enterprise authentication scheme (module=LDAP, for example) on the identity
provider side and sets the appropriate authentication level in the user's SSO token on the service
provider side. The identity provider would then deliver (with the assertion) the authentication
context information in the form of an authentication context declaration added to the assertion.
The process for this is described below.

1. A user accesses spSSOInit.jsp using the AuthnContextClassRef query parameter.

For example,
http://SP_host:SP_port/uri/spSSOInit.jsp?metaAlias=SP_MetaAlias&idpEntityID=IDP_EntityID&AuthnContex

2. The SPAuthnContextMapper is invoked to map the value of the query parameter to a
<RequestedAuthnContext> and an authentication level.

3. The service provider sends the <AuthRequest> with the <RequestedAuthnContext> to the
identity provider.

4. The identity provider processes the <AuthRequest> by invoking the
IDPAuthnContextMapper to map the incoming information to a defined authentication
scheme.

SAML v2

Chapter 8 • Constructing SAML Messages 95

Note – If there is no matching authentication scheme, an authentication error page is
displayed.

5. The identity provider then redirects the user (including information regarding the
authentication scheme) to the Authentication Service for authentication.
For example, http://osso_host:osso_port/uri/UI/Login?module=LDAP redirects to the
LDAP authentication module.

6. After successful authentication, the user is redirected back to the identity provider for
construction of a response based on the mapped authentication class reference.

7. The identity provider then returns the user to the assertion consumer on the service
provider side.

8. After validating the response, the service provider creates a single sign-on token carrying the
authentication level defined in the previous step.

A default authentication context mapper has been developed for both sides of the SAML v2
interaction. Details about the mappers are in the following sections:

■ “IDPAuthnContextMapper” on page 96
■ “SPAuthnContextMapper” on page 97

If implementing a custom authentication context mapper, change the value of the provider's
Authentication Context Mapper property using the OpenSSO Enterprise console.

IDPAuthnContextMapper

The IDPAuthnContextMapper is configured for the identity provider and maps incoming
authentication requests from the service provider to a OpenSSO Enterprise authentication
scheme (user, role, module, level or service-based authentication), returning a response
containing the authentication status to the service provider. The following attributes in the
identity provider extended metadata are used by the IDPAuthnContextMapper:

■ The idpAuthncontextMapper property specifies the mapper implementation.
■ The idpAuthncontextClassrefMapping property specifies the mapping between a

standard SAMLv2 authentication context class reference and an OpenSSO Enterprise
authentication scheme. It takes a value in the following format:

authnContextClassRef | authlevel | authnType=authnValue | authnType=authnValue | ... [|default]

For example,
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport|3|module=LDAP|default

maps the SAMLv2 PasswordProtectedTransport class reference to the OpenSSO
Enterprise LDAP authentication module.

SAML v2

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200996

SPAuthnContextMapper

The SPAuthnContextMapper is configured for the service provider and maps the parameters in
incoming HTTP requests to an authentication context. It creates a <RequestedAuthnContext>
element based on the query parameters and attributes configured in the extended metadata of
the service provider. The <RequestedAuthnContext> element is then included in the
<AuthnRequest> element sent from the service provider to the identity provider for
authentication. The SPAuthnContextMapper also maps the authentication context on the
identity provider side to the authentication level set as a property of the user's single sign-on
token. The following query parameters can be set in the URL when accessing spSSOInit.jsp:

■ AuthnContextClassRef or AuthnContextDeclRef: These properties specify one or more
URI references identifying the provider's supported authentication context classes. If a value
is not specified, the default is
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport.

■ AuthLevel: This parameter specifies the authentication level of the authentication context
being used for authentication.

■ AuthComparison: This parameter specifies the method of comparison used to evaluate the
requested context classes or statements. Accepted values include:
■ exact where the authentication context statement in the assertion must be the exact

match of, at least, one of the authentication contexts specified.
■ minimum where the authentication context statement in the assertion must be, at least,

as strong (as deemed by the identity provider) one of the authentication contexts
specified.

■ maximum where the authentication context statement in the assertion must be no
stronger than any of the authentication contexts specified.

■ better where the authentication context statement in the assertion must be stronger than
any of the authentication contexts specified.

If the element is not specified, the default value is exact.

An example URL might be
http://SP_host:SP_port/uri/spSSOInit.jsp?metaAlias=SP_MetaAlias&idpEntityID=IDP_EntityID&AuthnContextCl

The following attributes in the service provider extended metadata are used by the
SPAuthnContextMapper:

■ The spAuthncontextMapper property specifies the name of the service provider mapper
implementation.

■ The spAuthncontextClassrefMapping property specifies the map of authentication
context class reference and authentication level in the following format:
authnContextClassRef | authlevel [| default]

SAML v2

Chapter 8 • Constructing SAML Messages 97

■ The spAuthncontextComparisonType property is optional and specifies the method of
comparison used to evaluate the requested context classes or statements. Accepted values
include:
■ exact where the authentication context statement in the assertion must be the exact

match of, at least, one of the authentication contexts specified.
■ minimum where the authentication context statement in the assertion must be, at least,

as strong (as deemed by the identity provider) one of the authentication contexts
specified.

■ maximum where the authentication context statement in the assertion must be no
stronger than any of the authentication contexts specified.

■ better where the authentication context statement in the assertion must be stronger than
any of the authentication contexts specified.

If the element is not specified, the default value is exact.

Assertion Query/Request Mappers
The Assertion Query/Request profile specifies a means for requesting existing assertions using a
unique identifier. The requester initiates the profile by sending an assertion request, referenced
by an identifier, to a SAML v2 authority. The SAML v2 authority processes the request, checks
the assertion cache for the identifier, and issues a response to the requester. An assertion
mapper is used by he SAML v2 authority to process assertion ID requests. The
com.sun.identity.saml2.plugins.AssertionIDRequestMapper class is the default
implementation for the com.sun.identity.saml2.plugins.AssertionIDRequestMapper SPI.
The SPI is used to validate the assertion request on the server side. The Assertion will be
returned to the client only after the validation passed.

To define a customized mapper, change the value of the assertionIDRequestMapper property
in the extended metadata of the provider acting as SAML v2 attribute authority or
authentication authority. To send a request for an assertion from a provider, use either of the
methods of com.sun.identity.saml2.profile.AssertionIDRequestUtil as below.

public static Response sendAssertionIDRequest(

AssertionIDRequest assertionIDRequest,

String samlAuthorityEntityID,

String role,

String realm,

String binding)

throws SAML2Exception;

public static Assertion sendAssertionIDRequestURI(

String assertionID,

String samlAuthorityEntityID,

String role,

SAML v2

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 200998

String realm)

throws SAML2Exception;

To construct an assertion request object, use com.sun.identity.saml2.assertion.* and
com.sun.identity.saml2.protocol.*.

Attribute Authority Mappers
The Assertion Query/Request profile specifies a means for requesting attributes (and the
corresponding values) from a specific identity profile. A successful response is the return of an
assertion containing the requested information. The identity provider acting as the attribute
authority uses the com.sun.identity.saml2.plugins.AttributeAuthorityMapper to
process queries. This default implementation uses the attribute map table configured in the
identity provider's extended metadata; this table maps the requested SAML v2 attributes to the
user profile attributes in the identity data store. (If an attribute map is not configured, no
attributes will be returned.)

To set OpenSSO Enterprise to use a customized attribute mapper implementation, modify the
values of the default_attributeAuthorityMapper and the
x509Subject_attributeAuthorityMapper properties in the extended metadata of the
provider defined as the attribute authority. The default_attributeAuthorityMapper value is
used for a standard attribute queries and the x509Subject_attributeAuthorityMapper value
is used for attribute queries with an X509 subject, mapping the X509 subject to a user by
searching the identity data store for a specified attribute. (The specified attribute is defined as
the value of the x509SubjectDataStoreAttrName property in the identity provider extended
metadata of the attribute authority.) If the user has the specified attribute and the attribute's
value is the same as that of the X509 subject in the attribute query, the user will be used.

Only SOAP binding is supported and signing is required so make sure the Signing Certificate
Alias attribute of the providers acting as the attribute requester and the attribute authority is
configured. To send an attribute query from the requester use the method of
com.sun.identity.saml2.profile.AttributeQueryUtil as follows.

public static Response sendAttributeQuery(

AttributeQuery attrQuery,

String attrAuthorityEntityID,

String realm,

String attrQueryProfile,

String attrProfile,

String binding)

throws SAML2Exception;

To construct an attribute query object, use com.sun.identity.saml2.assertion.* and
com.sun.identity.saml2.protocol.*.

SAML v2

Chapter 8 • Constructing SAML Messages 99

Service Provider Adapter
A service provider adapter allows the developer to plug-in application specific logic before
and/or after single sign-on, single logout, termination and new name identifier process. The
SAML2ServiceProviderAdapter abstract class provides methods that could be extended to
perform user specific logics during SAML v2 protocol processing on the Service Provider side.
The implementation class could be configured on a per service provider basis in the extended
metadata configuration.

Note – A singleton instance of this SAML2ServiceProviderAdapter class will be used per service
provider during runtime, so make sure implementation of the methods are thread safe.

JavaServer Pages
JavaServer Pages (JSP) are HTML files that contain additional code to generate dynamic
content. More specifically, they contain HTML code to display static text and graphics, as well
as application code to generate information. When the page is displayed in a web browser, it
will contain both the static HTML content and dynamic content retrieved via the application
code. The SAML v2 framework contains JSP that can initiate SAML v2 interactions. After
installation, these pages can be accessed using the following URL format:

http(s)://host:port/uri/saml2/jsp/jsp-page-name?metaAlias=xxx&...

The JSP are collected in the /path-to-context-root/uri/saml2/jsp directory. The following
sections contain descriptions of, and uses for, the different JSP.
■ “Default Display Page” on page 100
■ “Export Metadata Page” on page 101
■ “Fedlet Pages” on page 101
■ “Assertion Consumer Page” on page 101
■ “Single Sign-on Pages” on page 102
■ “Name Identifier Pages” on page 104
■ “Single Logout Pages” on page 106

Caution – The following JSP used for the Virtual Federation Proxy cannot be modified:
■ SA_IDP.jsp

■ SA_SP.jsp

■ saeerror.jsp

Default Display Page
default.jsp is the default display page for the SAML v2 framework. After a successful SAML
v2 operation (single sign-on, single logout, or federation termination), a page is displayed. This
page, generally the originally requested resource, is specified in the initiating request using the

SAML v2

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009100

<RelayState> element. If a <RelayState> element is not specified, the value of the
<defaultRelayState> property in the extended metadata configuration is displayed. If a
<defaultRelayState> is not specified, this default.jsp is used. default.jsp can take in a
message to display, for example, upon a successful authentication. The page can also be
modified to add additional functionality.

Caution – When the value of <RelayState> or <defaultRelayState> contains special
characters (such as &), it must be URL-encoded.

Export Metadata Page
This page is used to export standard entity metadata. The supported query parameters are:
■ The role of the entity defined as sp, idp or any.
■ The realm to which the entity belongs.
■ The identifier of the entity to be exported.

If no query parameter is specified, the page will attempt to export metadata in the following
order:

1. The first hosted service provider under the root realm.
2. The first hosted identity provider under root realm.
3. If there is none of the above, an error message will be displayed.

Fedlet Pages
fedletSSOInit.jsp initiates single sign-on at the Fedlet side. (It is not designed to be used by a
full service provider.) A list of query parameters for use with this page are defined in the page
itself. fedletSampleApp.jsp is the sample page and should not be modified.

fedletSSOInit.jsp initiates single sign-on at the Fedlet side (note:).

Assertion Consumer Page
The spAssertionConsumer.jsp processes the responses that a service provider receives from
an identity provider. When a service provider wants to authenticate a user, it sends an
authentication request to an identity provider. The AuthnRequest asks that the identity
provider return a Response containing one or more assertions. The spAssertionConsumer.jsp
receives and parses the Response (or an artifact representing it). The endpoint for this JSP is
protocol://host:port/service-deploy-uri/Consumer. Some ways in which the
spAssertionConsumer.jsp can be customized include:

■ The localLoginUrl parameter in the spAssertionConsumer.jsp retrieves the value of the
localAuthUrl property in the service provider's extended metadata configuration. The
value of localAuthUrl points to the local login page on the service provider side. If
localAuthUrl is not defined, the login URL is calculated using the Assertion Consumer

SAML v2

Chapter 8 • Constructing SAML Messages 101

Service URL defined in the service provider's standard metadata configuration. Changing
the localLoginUrl parameter value in spAssertionConsumer.jsp is another way to define
the service provider's local login URL.

■ After a successful single sign-on and before the final protected resource (defined in the
<RelayState> element) is accessed, the user may be directed to an intermediate URL, if one
is configured as the value of the intermediateUrl property in the service provider's
extended metadata configuration file. For example, this intermediate URL might be a
successful account creation page after the auto-creation of a user account. The redirectUrl
in spAssertionConsumer.jsp can be modified to override the intermediateUrl value.

Single Sign-on Pages
The single sign-on JSP are used to initiate single sign-on and, parse authentication requests, and
generate responses. These include:

■ “idpSSOFederate.jsp” on page 102
■ “idpSSOInit.jsp” on page 102
■ “spSSOInit.jsp” on page 103

idpSSOFederate.jsp

idpSSOFederate.jsp works on the identity provider side to receive and parse authentication
requests from the service provider and generate a Response containing an assertion. The
endpoint for this JSP is protocol://host:port/service-deploy-uri/idpSSOFederate.
idpSSOFederate.jsp takes the following parameters:

■ SAMLRequest: This required parameter takes as a value the XML blob that contains the
AuthnRequest.

■ metaAlias: This optional parameter takes as a value the metaAlias set in the identity
provider's extended metadata configuration file.

■ RelayState: This optional parameter takes as a value the target URL of the request.

idpSSOInit.jsp

idpSSOInit.jsp initiates single sign-on from the identity provider side (also referred to as
unsolicited response). For example, a user requests access to a resource. On receiving this
request for access, idpSSOInit.jsp looks for a cached assertion which, if present, is sent to the
service provider in an unsolicited <Response>. If no assertion is found, idpSSOInit.jsp verifies
that the following required parameters are defined:

■ metaAlias: This parameter takes as a value the metaAlias set in the identity provider's
extended metadata configuration file. If the metaAlias attribute is not present, an error is
returned.

■ spEntityID: The entity identifier of the service provider to which the response is sent.

SAML v2

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009102

If defined, the unsolicited Response is created and sent to the service provider. If not, an error is
returned. The endpoint for this JSP is protocol://host:port/service-deploy-uri/idpssoinit.
The following optional parameters can also be passed to idpSSOInit.jsp:
■ RelayState: The target URL of the request.
■ NameIDFormat: The currently supported name identifier formats: persistent or transient.
■ binding: A URI suffix identifying the protocol binding to use when sending the Response.

The supported values are:
■ HTTP-Artifact

■ HTTP-POST

spSSOInit.jsp

spSSOInit.jsp is used to initiate single sign-on from the service provider side. On receiving a
request for access, spSSOInit.jsp verifies that the following required parameters are defined:
■ metaAlias: This parameter takes as a value the metaAlias set in the identity provider's

extended metadata configuration file. If the metaAlias attribute is not present, an error is
returned.

■ idpEntityID: The entity identifier of the identity provider to which the request is sent. If
idpEntityID is not provided, the request is redirected to the SAML v2 IDP Discovery
Service to get the user's preferred identity provider. In the event that more then one identity
provider is returned, the last one in the list is chosen. If idpEntityID cannot be retrieved
using either of these methods, an error is returned.

If defined, the Request is created and sent to the identity provider. If not, an error is returned.
The endpoint for this JSP is protocol://host:port/service-deploy-uri/spssoinit. The following
optional parameters can also be passed to spSSOInit.jsp:
■ RelayState: The target URL of the request.
■ NameIDFormat: The currently supported name identifier formats: persistent or transient.
■ binding: A URI suffix identifying the protocol binding to use when sending the Response.

The supported values are:
■ HTTP-Artifact

■ HTTP-POST

■ AssertionConsumerServiceIndex: An integer identifying the location to which the
Response message should be returned to the requester. requester. It applies to profiles in
which the requester is different from the presenter, such as the Web Browser SSO profile.

■ AttributeConsumingServiceIndex: An integer indirectly specifying information
(associated with the requester) describing the SAML attributes the requester desires or
requires to be supplied.

■ isPassive: Takes a value of true or false with true indicating the identity provider should
authenticate passively.

SAML v2

Chapter 8 • Constructing SAML Messages 103

■ ForceAuthN: Takes a value of true indicating that the identity provider must force
authentication or false indicating that the identity provider can reuse existing security
contexts.

■ AllowCreate: Takes a value of true indicating that the identity provider is allowed to
created a new identifier for the principal if it does not exist or false.

■ Destination: A URI indicating the address to which the request has been sent.
■ AuthnContextClassRef: Specifies a URI reference identifying an authentication context

class that describes the declaration that follows. Multiple references can be pipe-separated.
■ AuthnContextDeclRef: Specifies a URI reference to an authentication context declaration.

Multiple references can be pipe-separated.
■ AuthComparison: The comparison method used to evaluate the requested context classes or

statements. Accepted values include: minimum, maximum or better.
■ Consent: Indicates whether or not (and under what conditions) consent has been obtained

from a principal in the sending of this request.

Note – Consent is not supported in this release.

To pass parameters to specify RequestedAuthnContext use:

1. AuthLevel

2. AuthnContextClassRef

3. sunamcompositeadvice

Name Identifier Pages
The various ManageNameID (MNI) JSP provide a way to change account identifiers or
terminate mappings between identity provider accounts and service provider accounts. For
example, after establishing a name identifier for use when referring to a principal, the identity
provider may want to change its value and/or format. Additionally, an identity provider might
want to indicate that a name identifier will no longer be used to refer to the principal. The
identity provider will notify service providers of the change by sending them a
ManageNameIDRequest. A service provider also uses this message type to register or change the
SPProvidedID value (included when the underlying name identifier is used to communicate
with it) or to terminate the use of a name identifier between itself and the identity provider.

■ “idpMNIPOST.jsp” on page 105
■ “idpMNIRequestInit.jsp” on page 105
■ “idpMNIRedirect.jsp” on page 105
■ “spMNIPOST.jsp” on page 105
■ “spMNIRequestInit.jsp” on page 106
■ “spMNIRedirect.jsp” on page 106

SAML v2

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009104

idpMNIPOST.jsp

idpMNIPOST.jsp processes the ManageNameIDRequest from an identity provider using HTTP
Redirect binding. There are no required parameters.

idpMNIRequestInit.jsp

idpMNIRequestInit.jsp initiates the ManageNameIDRequest at the identity provider by user
request. The endpoint for this JSP is protocol://host:port/service-deploy-uri/IDPMniInit. It
takes the following required parameters:

■ metaAlias: The value of the metaAlias property set in the identity provider's extended
metadata configuration file. If the metaAlias attribute is not present, an error is returned.

■ spEntityID: The entity identifier of the service provider to which the response is sent.
■ requestType: The type of ManageNameIDRequest. Accepted values include Terminate and

NewID.

Some of the other optional parameters are :

■ binding: A URI specifying the protocol binding to use for the <Request>. The supported
values are:
■ urn:oasis:names:tc:SAML:2.0:bindings:SOAP

■ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

■ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

■ RelayState: The target URL of the request

idpMNIRedirect.jsp

idpMNIRedirect.jsp processes the ManageNameIDRequest and the ManageNameIDResponse
received from the service provider using HTTP-Redirect. The endpoint for this JSP is
protocol://host:port/service-deploy-uri/IDPMniRedirect. It takes the following required
parameters:

■ SAMLRequest: The ManageNameIDRequest from the service provider.
■ SAMLResponse: The ManageNameIDResponse from the service provider.

Optionally, it can also take the RelayState parameter which specifies the target URL of the
request.

spMNIPOST.jsp

spMNIPOST.jsp processes the ManageNameIDRequest from a service provider using HTTP
Redirect binding. There are no required parameters.

SAML v2

Chapter 8 • Constructing SAML Messages 105

spMNIRequestInit.jsp

spMNIRequestInit.jsp initiates the ManageNameIDRequest at the service provider by user
request. The endpoint for this JSP is protocol://host:port/service-deploy-uri/SPMniInit. It
takes the following required parameters:
■ metaAlias: This parameter takes as a value the metaAlias set in the identity provider's

extended metadata configuration file. If the metaAlias attribute is not present, an error is
returned.

■ idpEntityID: The entity identifier of the identity provider to which the request is sent.
■ requestType: The type of ManageNameIDRequest. Accepted values include Terminate and

NewID.

Some of the other optional parameters are :
■ binding: A URI specifying the protocol binding to use for the Request. The supported

values are:
■ urn:oasis:names:tc:SAML:2.0:bindings:SOAP

■ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

■ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

■ RelayState: The target URL of the request.

spMNIRedirect.jsp

spMNIRedirect.jsp processes the ManageNameIDRequest and the <ManageNameIDResponse>
received from the identity provider using HTTP-Redirect. The endpoint for this JSP is
protocol://host:port/service-deploy-uri/SPMniRedirect. It takes the following required
parameters:
■ SAMLRequest: The ManageNameIDRequest from the identity provider.
■ SAMLResponse: The ManageNameIDResponse from the identity provider.

Optionally, it can also take the RelayState parameter which specifies the target URL of the
request.

Single Logout Pages
The single logout JSP provides the means by which all sessions authenticated by a particular
identity provider are near-simultaneously terminated. The single logout protocol is used either
when a user logs out from a participant service provider or when the principal logs out directly
from the identity provider.

■ “idpSingleLogoutPOST.jsp” on page 107
■ “idpSingleLogoutInit.jsp” on page 107
■ “idpSingleLogoutRedirect.jsp” on page 108
■ “spSingleLogoutPOST.jsp” on page 108

SAML v2

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009106

■ “spSingleLogoutInit.jsp” on page 108
■ “spSingleLogoutRedirect.jsp” on page 109

idpSingleLogoutPOST.jsp

idpSingleLogoutPOST.jsp can do either of the following:

■ Receives a Logout Request from an identity provider and sends a Logout Response to a
service provider.

■ Receives a Logout Response from the service provider.

There are no required parameters.

idpSingleLogoutInit.jsp

idpSingleLogoutInit.jsp initiates a LogoutRequest at the identity provider by user request.
The endpoint for this JSP is protocol://host:port/service-deploy-uri/IDPSloInit. There are no
required parameters. Optional parameters include:

■ RelayState: The target URL after single logout.
■ binding: A URI specifying the protocol binding to use for the <Request>. The supported

values are:
■ urn:oasis:names:tc:SAML:2.0:bindings:SOAP

■ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

■ Destination: A URI indicating the address to which the request has been sent.
■ Consent: Indicates whether or not (and under what conditions) consent has been obtained

from a principal in the sending of this request.

Note – Consent is not supported in this release.

■ Extension: Specifies permitted extensions as a list of string objects.

Note – Extension is not supported in this release.

■ logoutAll: Specifies that the identity provider send log out requests to all service providers
without a session index. It will logout all sessions belonging to the user.

SAML v2

Chapter 8 • Constructing SAML Messages 107

idpSingleLogoutRedirect.jsp

idpSingleLogoutRedirect.jsp processes the LogoutRequest and the LogoutResponse
received from the service provider using HTTP-Redirect. The endpoint for this JSP is
protocol://host:port/service-deploy-uri/IDPSloRedirect. It takes the following required
parameters:

■ SAMLRequest: The LogoutRequest from the service provider.
■ SAMLResponse: The LogoutResponse from the service provider.

Optionally, it can also take the RelayState parameter which specifies the target URL of the
request.

spSingleLogoutPOST.jsp

spSingleLogoutPOST.jsp can do either of the following:

■ Receives a Logout Request from a service provider and sends a Logout Response to an
identity provider.

■ Receives a Logout Response from the identity provider.

Required parameters for the first option are RelayState (the target URL for a successful single
logout) and SAMLRequest (the Logout Request). For the second option it is SAMLResponse (the
Logout Response).

spSingleLogoutInit.jsp

spSingleLogoutInit.jsp initiates a LogoutRequest at the identity provider by user request.
The endpoint for this JSP is protocol://host:port/service-deploy-uri/SPSloInit. There are no
required parameters. Optional parameters include:

■ RelayState: The target URL after single logout.
■ binding: A URI specifying the protocol binding to use for the <Request>. The supported

values are:
■ urn:oasis:names:tc:SAML:2.0:bindings:SOAP

■ urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect

■ Destination: A URI indicating the address to which the request has been sent.
■ Consent: Indicates whether or not (and under what conditions) consent has been obtained

from a principal in the sending of this request.

Note – Consent is not supported in this release.

■ Extension: Specifies permitted extensions as a list of string objects.

SAML v2

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009108

Note – Extension is not supported in this release.

spSingleLogoutRedirect.jsp

spSingleLogoutRedirect.jsp processes the LogoutRequest and the LogoutResponse
received from the identity provider using HTTP-Redirect. The endpoint for this JSP is
protocol://host:port/service-deploy-uri/SPSloRedirect. It takes the following required
parameters:

■ SAMLRequest: The LogoutRequest from the identity provider.
■ SAMLResponse: The LogoutResponse from the identity provider.

Optionally, it can also take the RelayState parameter which specifies the target URL of the
request.

SAML v2 Samples
The following SAML v2 samples can be used for testing purposes.

■ useCasedemo is a sample that illustrates the following SAML v2 use cases.
■ IDP initiated Single Sign On
■ SP initiated Single Sign On
■ IDP initiated Single Log out
■ SP initiated Single Log out
■ IDP initiated Federation
■ SP initiated Federation
■ IDP initiated Federation Termination
■ SP initiated Federation Termination

■ sae is a sample that illustrates the general use cases of the Virtual Federation Proxy (also
referred to as Secure Attribute Exchange). See “Using SAML v2 for Virtual Federation
Proxy” on page 109 for more information.

Using SAML v2 for Virtual Federation Proxy
Secure Attribute Exchange (also referred to as Virtual Federation Proxy) provides a mechanism
for one application to communicate identity information to a second application in a different
domain. In essence, Virtual Federation Proxy (VFP) provides a secure gateway that enables
legacy applications to communicate user attributes used for authentication without having to
deal specifically with federation protocols and processing. A VFP interaction allows:

Using SAML v2 for Virtual Federation Proxy

Chapter 8 • Constructing SAML Messages 109

■ Identity provider applications to push user authentication, profile and transaction
information to a local instance of OpenSSO Enterprise. OpenSSO Enterprise then passes the
data to a remote instance of OpenSSO Enterprise at the service provider using federation
protocols.

■ Service provider applications to consume the received information.

Note – The scope of the implementation of VFP is currently limited to SAML v2 based single
sign-on. It uses the SAMLv2-based protocols (based on the HTTP GET and POST methods as
well as URL redirects) to transfer identity data between the communicating entities. The client
API (which includes Java and .NET interfaces) run independently of OpenSSO Enterprise and
are used to enable existing applications, allowing them to handle SAML v2 interactions.

VFP functionality can be found in three places:

■ deployable-war/opensso.war on the OpenSSO Enterprise side.
■ libraries/dll/openssosae.dll for client applications using the OpenSSO Enterprise

NET API.
■ libraries/jars/openssoclientsdk.jar for client applications using the OpenSSO

Enterprise Java API.

The following sections contain more information on Virtual Federation Proxy.

■ “How Virtual Federation Proxy Works” on page 110
■ “Use Cases” on page 113
■ “Securing Virtual Federation Proxy” on page 114
■ “Preparing to Use Virtual Federation Proxy” on page 115
■ “Configuring for Virtual Federation Proxy” on page 117
■ “Using the Secure Attribute Exchange Sample” on page 120

How Virtual Federation Proxy Works
The components of a secure attribute exchange are listed and illustrated below.

■ Legacy identity provider application (blue IDP)
■ Service provider application (blue SP)
■ Independent instances of OpenSSO on both the identity provider and the service provider

sides (green)
■ A user agent

Using SAML v2 for Virtual Federation Proxy

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009110

The following graphic illustrates the process behind a secure attribute exchange interaction.
Details are below the illustration.

FIGURE 8–1 A Secure Attribute Exchange Using SAML v2

Using SAML v2 for Virtual Federation Proxy

Chapter 8 • Constructing SAML Messages 111

1. A user authenticates.

This may be done by the identity provider application or it may be delegated to an
authentication authority.

2. The authenticated user uses the identity provider application and, at some point,
accesses a link representing a service provided by an application in a different domain.

3. The identity provider application assembles the appropriate user attributes
(authentication and user profile data), encodes and signs it using the API, and posts the
secure data to the local instance of OpenSSO Enterprise.

The com.sun.identity.sae.api.SecureAttrs class is provided by OpenSSO Enterprise
and carries the user identifier and the service provider destination.

Using SAML v2 for Virtual Federation Proxy

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009112

4. The SAE authentication module on the instance of OpenSSO Enterprise local to the
identity provider verifies the authenticity of the attributes also using the SAE API, and
initiates the appropriate SAML v2 single sign-on protocol to send the attributes to the
instance of OpenSSO Enterprise local to the service provider being accessed.

5. The instance of OpenSSO Enterprise local to the service provider secures the user
attributes, and sends them to the service provider application.
The service provider application uses interfaces supplied by OpenSSO Enterprise to verify
the authenticity of the attributes.

6. The service provider application provides or denies the service to the user based on the
attributes received.

Note – It is not mandatory for the service provider end of the process to implement VFP. Since
the attributes are carried in a SAML v2 assertion, the service provider could choose another way
to invoke the requested application. For example, the service provider can use standard SAML
v2 protocols to invoke a SAML v2-compliant service provider that does not implement SAE.
The RelayState element as defined in the SAML v2 specification can be used to redirect to the
local service provider application.

Use Cases
The following sections contain information on applicable use cases for SAE.

■ “Authentication at Identity Provider” on page 113
■ “Secure Attribute Exchange at Identity Provider” on page 113
■ “Secure Attribute Exchange at Service Provider” on page 114
■ “Global Single Logout” on page 114

Authentication at Identity Provider
When a user is already authenticated in an enterprise, the legacy identity provider application
sends a secure HTTP GET/POST message to OpenSSO Enterprise asserting the identity of the
user. OpenSSO Enterprise verifies the authenticity of the message and establishes a session for
the authenticated user. You can use VFP to transfer the user's authentication information to the
local instance of OpenSSO Enterprise in order to create a session.

Secure Attribute Exchange at Identity Provider
When a user is already authenticated by, and attempts access to, a legacy identity provider
application, the legacy application sends a secure HTTP POST message to the local instance of
OpenSSO Enterprise asserting the user's identity, and containing a set of attribute/value pairs
related to the user (for example, data from the persistent store representing certain

Using SAML v2 for Virtual Federation Proxy

Chapter 8 • Constructing SAML Messages 113

transactional states in the application). OpenSSO Enterprise verifies the authenticity of the
message, establishes a session for the authenticated user, and populates the session with the user
attributes.

Secure Attribute Exchange at Service Provider
When a user is already authenticated by the instance of OpenSSO Enterprise at the identity
provider and invokes an identity provider application that calls for redirection to a service
provider, the identity provider invokes one of the previous use cases and encodes a SAML v2
single sign-on URL as a part of the request. The identity provider instance of OpenSSO
Enterprise then initiates SAML v2 single sign-on with the instance of OpenSSO Enterprise at
the service provider. The service provider's instance of OpenSSO Enterprise then verifies the
SAML v2 assertion and included attributes, and redirects to the service provider application,
securely transferring the user attributes via a secure HTTP POST message. The service provider
application consumes the attributes, establishes a session, and offers the service to the user.

Global Single Logout
When a user is already authenticated and has established, for example, single sign-on with the
instance of OpenSSO Enterprise at the service provider, the user might click on a Global Logout
link. The identity provider will then invalidate its local session (if created) and executes SAML
v2 single log out by invoking a provided OpenSSO Enterprise URL. The identity provider
terminates the session on both provider instances of OpenSSO Enterprise.

Note – An identity provider side application can initiate single logout by sending
sun.cmd=logout attributes via an SAE interaction to a local instance of OpenSSO Enterprise
acting as the identity provider. In turn, this instance will execute SAML v2 single logout based
on the current session.

Securing Virtual Federation Proxy
VFP provides two ways to secure identity attributes between an instance of OpenSSO
Enterprise and an application:
■ Symmetric involves the use of a shared secret key known only to the participants in the

communication. The key is agreed upon beforehand and will be used to encrypt and decrypt
the message.

■ Asymmetric uses two separate keys for encryption and the corresponding decryption - one
public and one private. The information is encrypted with a public key known to all and
decrypted, by the recipient only, using a private key to which no one else has access. This
process is known as a public key infrastructure. On the identity provider side, the public key
must be added to the OpenSSO Enterprise keystore. The private key must be stored in a
protected keystore (such as a Hardware Security Module) for access by the identity provider

Using SAML v2 for Virtual Federation Proxy

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009114

application. On the service provider side, the private key must be added to the OpenSSO
Enterprise keystore, and the public key stored in a keystore, local to the service provider
application.

Both mechanisms result in an encrypted string (referred to as a cryptostring) generated for the
asserted attributes. The symmetric cryptostring is a SHA-1 hash of the attributes. The
asymmetric cryptostring is a digital signature of the attributes.

Note – As each pairing of application to OpenSSO Enterprise instance is independent, different
applications involved can use different security methods.

Preparing to Use Virtual Federation Proxy
Before configuring and using the VFP, you will need to make some decisions regarding security,
applicable keys, and applications. This section lists what you will need to do before configuring
for VFP.

Note – Because OpenSSO Enterprise currently uses SAML v2 for its implementation of SAE, you
should familiarize yourself with SAML v2 concepts by running the useCaseDemo SAML v2
sample included with OpenSSO Enterprise.

1. Establish trust between the application(s) and the instance of OpenSSO Enterprise on the
identity provider side.
Decide the application(s) on the identity provider side that will use SAE to push identity
attributes to the local instance of OpenSSO Enterprise. You will need values for the
following:

Application Name This is used for easy identification and can be
any string. Use of the application's URL is
recommended.

CryptoType Can be Symmetric or Asymmetric.

Shared Secret or Private and Public Keys You need the shared secret if using Symmetric,
and the private and public keys if using
Asymmetric.

Tip – Multiple applications can share the same application name only if they also share the
same shared secret or key.

2. Establish trust between the application(s) and the instance of OpenSSO Enterprise on the
service provider side.

Using SAML v2 for Virtual Federation Proxy

Chapter 8 • Constructing SAML Messages 115

Decide the applications on the service provider side that will receive the identity attributes
from the local instance of OpenSSO Enterprise using SAE. You will need the following:

Application Name This is used for easy identification and can be
any string. Use of the application's URL is
recommended because the default
implementation of the SAE on the service
provider side uses a prefix string match from
the requested application URL to determine
the parameters used to secure the
communication.

CryptoType Can be Symmetric or Asymmetric.

Shared Secret or Private and Public Keys You need the shared secret if using Symmetric,
and the private and public keys if using
Asymmetric. If Asymmetric is chosen, use the
same keys defined when the SAML v2 service
provider was configured as an OpenSSO
Enterprise service provider. You can find these
keys in the service provider's metadata.

Tip – Multiple applications can share the same application name only if they also share the
same shared secret or key.

3. OPTIONAL: The following steps are specific to using SAML v2 and auto-federation.
a. Decide which identity attributes you want transferred as part of the SAML v2 single

sign-on interaction.
We choose the branch and mail attributes.

Caution – If any attribute needs to be supplied from a local user data store, you must first
populate the data store.

b. Decide which attribute will be used to identify the user on the service provider side.
In this instance, we choose the branch attribute for user identification.

Note – The attribute may be one transferred in the SAML v2 assertion or it can be
configured statically at the service provider.

Using SAML v2 for Virtual Federation Proxy

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009116

4. Decide which URL on the service provider side will be responsible for handling logout
requests from the identity provider.
The URL will be responsible for terminating the local session state. Only one is allowed per
logical service provider configured on the service provider side.

Configuring for Virtual Federation Proxy
Configuring for VFP communication involves modifications on two different installations of
OpenSSO Enterprise: one that is local to the identity provider and one that is local to the service
provider. The following sections assume that you have downloaded the OpenSSO Enterprise
bits and deployed the application to a supported web container. You should also be ready to
configure a SAML v2 provider by executing the included SAML v2 sample, by running one of
the Common Tasks using the Administration Console, or by importing provider metadata
using the Administration Console or ssoadm command line interface. The following
procedures contain more information.

■ “Configure the Instance of OpenSSO Enterprise Local to the Identity Provider” on page 117
■ “Configure the Instance of OpenSSO Enterprise Local to the Service Provider” on page 118
■ “Configure the Instance of OpenSSO Enterprise Local to the Identity Provider for the

Remote Service Provider” on page 119
■ “Configure the Instance of OpenSSO Enterprise Local to the Service Provider for the Remote

Identity Provider” on page 119

Configure the Instance of OpenSSO Enterprise Local to the Identity
Provider
The following procedure illustrates how to configure the instance of OpenSSO Enterprise local
to the identity provider.

1. Update the identity provider standard metadata.
■ If you have existing identity provider standard metadata, export it using ssoadm and

make your modifications. After updating, delete the original file and reload the modified
metadata using ssoadm.

■ If you have not yet configured identity provider standard metadata, use ssoadm to
generate an identity provider metadata template. After updating the template, import
the modified metadata also using ssoadm.

2. Set up the keystore.
If using the asymmetric cryptotype, add the public and private keys to the application's
keystore. Additionally, populate the identity provider's keystore with the application's
public key.

3. Update the identity provider configuration.

Using SAML v2 for Virtual Federation Proxy

Chapter 8 • Constructing SAML Messages 117

a. Setup the application's security configuration as symmetric or asymmetric by defining
the Per Application Security Configuration attribute under the Advanced tab of the
identity provider configuration.

Note – Use ampassword to encrypt the shared secret used for a symmetric configuration.

b. OPTIONAL: Modify the IDP URL attribute (if you want to use an alternative or custom
SAE landing URL) under the local identity provider's Advanced tab with a value specific
to your identity provider instance of OpenSSO Enterprise.

Configure the Instance of OpenSSO Enterprise Local to the Service
Provider
The following procedure shows how to configure the instance of OpenSSO Enterprise local to
the service provider.

1. Update the service provider standard metadata.
■ If you have existing service provider standard metadata, export it using ssoadm and

make your modifications. After updating, delete the original file and reload the modified
metadata also using ssoadm.

■ If you have not yet configured service provider standard metadata, use ssoadm to
generate a service provider metadata template. After updating the template, import the
modified metadata also using ssoadm.

2. Set up the keystore.
If using the asymmetric cryptotype, add the public and private keys to the application's
keystore. Additionally, populate the identity provider's keystore with the application's
public key.

3. Update the service provider extended metadata.
a. Enable auto-federation and specify the attribute that will identify the user's identity

under the Assertion Processing tab of the service provider configuration.
b. Specify attributes from the incoming SAML v2 assertion to be used to populate the local

OpenSSO Enterprise session under the Assertion Processing tab of the service provider
configuration.

c. Setup the application's security configuration as symmetric or asymmetric by defining
the Per Application Security Configuration attribute under the Advanced tab of the
service provider configuration.

Note – Use ampassword to encrypt the shared secret used for a symmetric configuration.

Using SAML v2 for Virtual Federation Proxy

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009118

d. OPTIONAL: Modify the SP URL attribute (if you want to use an alternative or custom
SAE landing URL) under the local service provider's Advanced tab with a value specific
to your identity provider instance of OpenSSO Enterprise.

e. Configure the value of the SP Logout URL attribute. The value of this attribute is the
URL that will receive global logout requests

Note – The configured URL must have a defined symmetric or asymmetric CryptoType
with corresponding shared secret and certificates established.

Configure the Instance of OpenSSO Enterprise Local to the Identity
Provider for the Remote Service Provider
Both the standard and extended metadata retrieved from the remote service provider will be
imported to the instance of OpenSSO Enterprise local to the identity provider.

1. Get both the remote service provider standard metadata and the remote service provider
extended metadata used in Configure the Instance of OpenSSO Local to the Service
Provider.

2. Modify the remote service provider extended metadata as follows:
■ Remove all shared secrets defined in the actual provider metadata file.
■ Set the hosted attribute to 0 (false) as in <EntityConfig .. hosted="0">. This

defines the entity as remote and can only be done using the actual provider metadata file.
■ Remove the value for the SP Logout URL attribute under the Advanced tab of the service

provider configuration.
■ Add the following attribute and values to the Attribute Map attribute under the

Assertion Processing tab.

mail=mail

branch=branch

3. Import both metadata files to the instance of OpenSSO Enterprise local to the identity
provider.
Use ssoadm the command line interface.

Configure the Instance of OpenSSO Enterprise Local to the Service
Provider for the Remote Identity Provider
If the SAMLv2 sample has been executed on the instance of OpenSSO Enterprise local to the
service provider, nothing else needs to be done. If metadata has been manually configured on
the instance of OpenSSO Enterprise local to the service provider, do the following procedure.

Using SAML v2 for Virtual Federation Proxy

Chapter 8 • Constructing SAML Messages 119

1. Get the remote identity provider metadata for import to the instance of OpenSSO
Enterprise local to the service provider.
The standard metadata is the same as the one used in Configure the Instance of OpenSSO
Enterprise Local to the Identity Provider.

2. Import the standard metadata to the instance of OpenSSO Enterprise local to the service
provider using ssoadm.

3. Add the identity provider to the service provider's configured circle of trust.

Note – If using a flat file for a datastore, both the instance of OpenSSO Enterprise at the
service provider and the instance at the identity provider must be restarted.

Using the Secure Attribute Exchange Sample
OpenSSO Enterprise includes a sample that can be run for testing your configurations. It is
located in container_context_root/opensso/samples/saml2/sae. In the sample,
auto-federation and transient name identifier, two features of SAML v2, are used. If there are no
actual users on either the identity provider side or the service provider side, you need to use the
following procedure to change the authentication framework to ignore user profiles for these
two features to work correctly.

1. Login to OpenSSO Enterprise administration console as administrator.
By default, this is amadmin.

2. Click the name of the realm you are modifying.
3. Click the Authentication tab.
4. Click Advanced Properties.
5. Select the Ignore Profile radio button under User Profile.
6. Click Save.
7. Log out of the console.

SAML v1.x
OpenSSO Enterprise contains SAML v1.x API collected in several Java packages.
Administrators can use these packages to integrate the SAML v1.x functionality using XML
messages into their applications and services. The API support all types of assertions and
operate with OpenSSO Enterprise authorities to process external SAML v1.x requests and
generate SAML v1.x responses. The packages include the following:

■ “com.sun.identity.saml Package” on page 121

SAML v1.x

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009120

■ “com.sun.identity.saml.assertion Package” on page 121
■ “com.sun.identity.saml.common Package” on page 122
■ “com.sun.identity.saml.plugins Package” on page 122
■ “com.sun.identity.saml.protocol Package” on page 124

For more detailed information, including methods and their syntax and parameters, see the Sun
OpenSSO Enterprise 8.0 Java API Reference.

com.sun.identity.samlPackage
This package contains the following classes.

■ “AssertionManager Class” on page 121
■ “SAMLClient Class” on page 121

AssertionManagerClass
The AssertionManager class provides interfaces and methods to create and get assertions,
authentication assertions, and assertion artifacts. This class is the connection between the
SAML specification and OpenSSO Enterprise. Some of the methods include the following:

■ createAssertion creates an assertion with an authentication statement based on an
OpenSSO Enterprise SSO Token ID.

■ createAssertionArtifact creates an artifact that references an assertion based on an
OpenSSO Enterprise SSO Token ID.

■ getAssertion returns an assertion based on the given parameter (given artifact, assertion
ID, or query).

SAMLClientClass
The SAMLClient class provides methods to execute either the Web Browser Artifact Profile or
the Web Browser POST Profile from within an application as opposed to a web browser. Its
methods include the following:

■ getAssertionByArtifact returns an assertion for a corresponding artifact.
■ doWebPOST executes the Web Browser POST Profile.
■ doWebArtifact executes the Web Browser Artifact Profile.

com.sun.identity.saml.assertion Package
This package contains the classes needed to create, manage, and integrate an XML assertion
into an application. The following code example illustrates how to use the Attribute class and
getAttributeValue method to retrieve the value of an attribute. From an assertion, call the

SAML v1.x

Chapter 8 • Constructing SAML Messages 121

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739

getStatement() method to retrieve a set of statements. If a statement is an attribute statement,
call the getAttribute() method to get a list of attributes. From there, call
getAttributeValue() to retrieve the attribute value.

EXAMPLE 8–1 Sample Code to Obtain an Attribute Value

// get statement in the assertion

Set set = assertion.getStatement();

//assume there is one AttributeStatement

//should check null& instanceof

AttributeStatement statement = (AttributeStatement) set.iterator().next();

List attributes = statement.getAttribute();

// assume there is at least one Attribute

Attribute attribute = (Attribute) attributes.get(0);

List values = attribute.getAttributeValue();

com.sun.identity.saml.common Package
This package defines classes common to all SAML elements, including site ID, issuer name, and
server host. The package also contains all SAML-related exceptions.

com.sun.identity.saml.plugins Package
The SAML v1.x framework provides service provider interfaces (SPIs), three of which have
default implementations. The default implementations of these SPIs can be altered, or brand
new ones written, based on the specifications of a particular customized service. The
implementations are then used to integrate SAML into the custom service. Currently, the
package includes the following.

■ “ActionMapper Interface” on page 122
■ “AttributeMapper Interface” on page 123
■ “NameIdentifierMapper Interface” on page 123
■ “PartnerAccountMapper Interface” on page 123
■ “PartnerSiteAttributeMapper Interface” on page 123

ActionMapper Interface
ActionMapper is an interface used to obtain single sign-on information and to map partner
actions to OpenSSO Enterprise authorization decisions. A default action mapper is provided if
no other implementation is defined.

SAML v1.x

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009122

AttributeMapper Interface
AttributeMapper is an interface used in conjunction with an AttributeQuery class. When a
site receives an attribute query, this mapper obtains the SSOToken or an assertion (containing an
authentication statement) from the query. The retrieved information is used to convert the
attributes in the query to the corresponding OpenSSO Enterprise attributes. A default attribute
mapper is provided if no other implementation is defined.

NameIdentifierMapper Interface
NameIdentifierMapper is an interface that can be implemented by a site to map a user account
to a name identifier in the subject of a SAML assertion. The implementation class is specified
when configuring the site's Trusted Partners.

PartnerAccountMapper Interface

Caution – The AccountMapper interface has been deprecated. Use the PartnerAccountMapper
interface.

The PartnerAccountMapper interface needs to be implemented by each partner site. The
implemented class maps the partner site's user accounts to user accounts configured in
OpenSSO Enterprise for purposes of single sign-on. For example, if single sign-on is configured
from site A to site B, a site-specific account mapper can be developed and defined in the Trusted
Partners sub-attribute of site B's Trusted Partners profile. When site B processes the assertion
received, it locates the corresponding account mapper by retrieving the source ID of the
originating site. The PartnerAccountMapper takes the whole assertion as a parameter, enabling
the partner to define user account mapping based on attributes inside the assertion. The default
implementation is com.sun.identity.saml.plugin.DefaultAccountMapper. If a site-specific
account mapper is not configured, this default mapper is used.

Note – Turning on the Debug Service in the OpenSSO Enterprise configuration data store logs
additional information about the account mapper, for example, the user name and organization
to which the mapper has been mapped.

PartnerSiteAttributeMapper Interface

Caution – The SiteAttributeMapper interface has been deprecated. Use the
PartnerSiteAttributeMapper interface.

SAML v1.x

Chapter 8 • Constructing SAML Messages 123

The PartnerSiteAttributeMapper interface needs to be implemented by each partner site.
The implemented class defines a list of attributes to be returned as elements of the
AttributeStatements in an authentication assertion. By default, when OpenSSO Enterprise
creates an assertion and no mapper is specified, the authentication assertion only contains
authentication statements. If a partner site wants to include attribute statements, it needs to
implement this mapper which would be used to obtain attributes, create the attribute statement,
and insert the statement inside the assertion. To set up a PartnerSiteAttributeMapper do the
following:

1. Implement a customized class based on the PartnerSiteAttributeMapper interface.
This class will include user attributes in the SAML authentication assertion.

2. Log in to the OpenSSO Enterprise console to configure the class in the Site Attribute Mapper
attribute of the Trusted Partner configuration.

com.sun.identity.saml.protocol Package
This package contains classes that parse the request and response XML messages used to
exchange assertions and their authentication, attribute, or authorization information.

■ “AuthenticationQuery Class” on page 124
■ “AttributeQuery Class” on page 124
■ “AuthorizationDecisionQuery Class” on page 125

AuthenticationQueryClass
The AuthenticationQuery class represents a query for an authentication assertion. When an
identity attempts to access a trusted partner web site, a SAML 1.x request with an
AuthenticationQuery inside is directed to the authority site.

The Subject of the AuthenticationQuery must contain a SubjectConfirmation element. In
this element, ConfirmationMethod needs to be set to urn:com:sun:identity, and
SubjectConfirmationData needs to be set to the SSOToken ID of the Subject. If the Subject
contains a NameIdentifier, the value of the NameIdentifier should be the same as the one in
the SSOToken.

AttributeQueryClass
The AttributeQuery class represents a query for an identity’s attributes. When an identity
attempts to access a trusted partner web site, a SAML 1.x request with an AttributeQuery is
directed to the authority site.

You can develop an attribute mapper to obtain an SSOToken, or an assertion that contains an
AuthenticationStatement from the query. If no attribute mapper for the querying site is
defined, the DefaultAttributeMapper will be used. To use the DefaultAttributeMapper, the

SAML v1.x

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009124

query should have either the SSOToken or an assertion that contains an
AuthenticationStatement in the SubjectConfirmationData element. If an SSOToken is used,
the ConfirmationMethod must be set to urn:com:sun:identity:. If an assertion is used, the
assertion should be issued by the OpenSSO Enterprise instance processing the query or a server
that is trusted by the OpenSSO Enterprise instance processing the query.

Note – In the DefaultAttributeMapper, a subject’s attributes can be queried using another
subject’s SSOToken if the SSOToken has the privilege to retrieve the attributes.

For a query using the DefaultAttributeMapper, any matching attributes found will be
returned. If no AttributeDesignator is specified in the AttributeQuery, all attributes from
the services defined under the userServiceNameList in amSAML.properties will be returned.
The value of the userServiceNameList property is user service names separated by a comma.

AuthorizationDecisionQuery Class
The AuthorizationDecisionQuery class represents a query about a principal’s authority to
access protected resources. When an identity attempts to access a trusted partner web site, a
SAML request with an AuthorizationDecisionQuery is directed to the authority site.

You can develop an ActionMapper to obtain the SSOToken ID and retrieve the authentication
decisions for the actions defined in the query. If no ActionMapper for the querying site is
defined, the DefaultActionMapper will be used. To use the DefaultActionMapper, the query
should have the SSOToken ID in the SubjectConfirmationData element of the Subject. If the
SSOToken ID is used, the ConfirmationMethod must be set to urn:com:sun:identity:. If a
NameIdentifier is present, the information in the SSOToken must be the same as the
information in the NameIdentifier.

Note – When using web agents, the DefaultActionMapper handles actions in the namespace
urn:oasis:names:tc:SAML:1.0:ghpp only. Web agents serve the policy decisions for this
action namespace.

The authentication information can also be passed through the Evidence element in the query.
Evidence can contain an AssertionIDReference, an assertion containing an
AuthenticationStatement issued by the OpenSSO Enterprise instance processing the query,
or an assertion issued by a server that is trusted by the OpenSSO Enterprise instance processing
the query. The Subject in the AuthenticationStatement of the Evidence element should be
the same as the one in the query.

SAML v1.x

Chapter 8 • Constructing SAML Messages 125

Note – Policy conditions can be passed through AttributeStatements of assertion(s) inside the
Evidence of a query. If the value of an attribute contains a TEXT node only, the condition is set
as attributeName=attributeValueString. Otherwise, the condition is set as
attributename=attributeValueElement.

The following example illustrates one of many ways to form an authorization decision query
that will return a decision.

EXAMPLE 8–2 AuthorizationDecisionQueryCode Sample

// testing getAssertion(authZQuery): no SC, with ni, with

// evidence(AssertionIDRef, authN, for this ni):

String nameQualifier = "dc=iplanet,dc=com";
String pName = "uid=amadmin,ou=people,dc=iplanet,dc=com";
NameIdentifier ni = new NameIdentifier(pName, nameQualifier);

Subject subject = new Subject(ni);

String actionNamespace = "urn:test";
// policy should be added to this resource with these

// actions for the subject

Action action1 = new Action(actionNamespace, "GET");
Action action2 = new Action(actionNamespace, "POST");
List actions = new ArrayList();

actions.add(action1);

actions.add(action2);

String resource = "http://www.sun.com:80";
eviSet = new HashSet();

// this assertion should contain authentication assertion for

// this subject and should be created by a trusted server

eviSet.add(eviAssertionIDRef3);

evidence = new Evidence(eviSet);

authzQuery = new AuthorizationDecisionQuery(eviSubject1, actions,

evidence, resource);

try {

assertion = am.getAssertion(authzQuery, destID);

} catch (SAMLException e) {

out.println("--failed. Exception:" + e);

}

SAML v1.x

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009126

Implementing Web Services

OpenSSO Enterprise contains web services that can be used to extend the functionality of your
federated environment. Additionally, new web services can be developed. This chapter covers
the following topics:
■ “Developing New Web Services” on page 127
■ “Setting Up Liberty ID-WSF 1.1 Profiles” on page 136
■ “Common Application Programming Interfaces” on page 140
■ “Authentication Web Service” on page 143
■ “Data Services” on page 146
■ “Discovery Service” on page 148
■ “SOAP Binding Service” on page 155
■ “Interaction Service” on page 157
■ “PAOS Binding” on page 160

Developing New Web Services
Any web service that is plugged into the OpenSSO Enterprise Liberty ID-WSF framework must
register a key and an implementation of the
com.sun.identity.liberty.ws.soapbinding.RequestHandler interface with the SOAP
Binding Service. (For example, the Liberty Personal Profile Service is registered with the key
idpp and the class com.sun.identity.liberty.ws.idpp.PPRequestHandler.) The Key value
becomes part of the URL for the web service's endpoint (as in
protocol://host:port/deploymenturi/Liberty/key). The implemented class allows the web
service to retrieve the request (containing the authenticated principal and the authenticated
security mechanism along with the entire SOAP message) from the client. The web service
processes the request and generates a response. This section contains the process you would use
to add a new Liberty ID-WSF web service to the OpenSSO Enterprise framework. Instructions
for some of these steps are beyond the scope of this guide. The process has been divided into
two tasks:
■ “To Host a Custom Service” on page 128

9C H A P T E R 9

127

■ “To Invoke the Custom Service” on page 134

▼ To Host a Custom Service
The XML Schema Definition (XSD) file written to define the new service is the starting point for
developing the service's server-side code.

Write an XML service schema for the new web service and Java classes to parse and process the
XML messages.
The following sample schema defines a stock quote web service. The QuoteRequest and
QuoteResponse elements define the parameters for the request and response that are inserted in
the SOAP Body of the request and response, respectively. You will need to have
QuoteRequest.java and QuoteResponse.java to parse and process the XML messages.
<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="urn:com:sun:liberty:sample:stockticker"
targetNamespace="urn:com:sun:liberty:sample:stockticker">
<xs:annotation>

<xs:documentation>

This is a sample stock ticker web service protocol

</xs:documentation>

</xs:annotation>

<xs:element name="QuoteRequest" type="QuoteRequestType"/>
<xs:complexType name="QuoteRequestType">
<xs:sequence>

<xs:element name = "ResourceID" type="xs:string" minOccurs="0"/>
<xs:element name = "Symbol" type="xs:string" minOccours="1"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PriceType">
<xs:sequence>

<xs:element name="Last" type="xs:integer"/>
<xs:element name="Open" type="xs:integer"/>
<xs:element name="DayRange" type="xs:string"/>
<xs:element name="Change" type="xs:string"/>
<xs:element name="PrevClose" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

<xs:element name="QuoteResponse" type="QuoteResponseType"/>
<xs:complexType name="QuoteResponseType">
<xs:sequence>

<xs:element name="Symbol" type="xs:string"/>

Before You Begin

1

Developing New Web Services

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009128

<xs:element name="Time" type="xs:dateTime"/>
<xs:element name="Delay" type="xs:dateTime" minOccurs="0"/>
<xs:element name="Price" type="PriceType"/>
<xs:element name="Volume" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Provide an implementation for one of the following interfaces based on the type of web service
being developed.

■ com.sun.identity.liberty.ws.soapbinding.RequestHandler for developing and
deploying a general web service.

■ com.sun.identity.liberty.ws.dst.service.DSTRequestHandler for developing and
deploying an identity data service type web service based on the Liberty Alliance Project
Identity Service Interface Specifications (Liberty ID-SIS).

In OpenSSO Enterprise, each web service must implement one of these interfaces to accept
incoming message requests and return outgoing message responses. The following sample
implements the com.sun.identity.liberty.ws.soapbinding.RequestHandler interface for
the stock quote web service. com.sun.identity.liberty.ws.soapbinding.Message is the API
used to construct requests and responses.

public class StockTickerService implements RequestHandler {

:

//implement business logic

public Message processRequest(Message msg) throws

SOAPFaultException, Exception {

:

SSOToken token = (SSOToken)msg.getToken();

List responseBody = processSOAPBody(msg.getBodies());

:

Message response = new Message();

response.setBodies(responseBody);

return response;

}

:

//more business logic

}

Compile the Java source code.
Be sure to include openfedlib.jar in your classpath.

2

3

Developing New Web Services

Chapter 9 • Implementing Web Services 129

Add the previously created classes to the web container classpath and restart the web container
on which OpenSSO Enterprise is deployed.

Login to the OpenSSO Enterprise console as the top level administrator.

By default, amadmin.

Click the Web Services tab.

Under Web Services, click the SOAP Binding Service tab to register the new implementation
with the SOAP Binding Service.

4

5

6

7

Developing New Web Services

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009130

Click New under the Request Handler List global attribute.

Enter a name for the implementation in the Key field.

This value will be used as part of the service endpoint URL for the web service. For example, if
the value is stock, the endpoint URL to access the stock quote web service will be:
http://host:port/deploy_uri/Liberty/stock

Enter the name of the implementation class previously created in the Class field.

8

9

10

Developing New Web Services

Chapter 9 • Implementing Web Services 131

(Optional) Enter a SOAP Action in the SOAP Action field.

Click Save to save the configuration.

The request handler will be displayed under the Request Handler List.

Click on the Access Control tab to begin the process of publishing the web service to the
Discovery Service.

The Discovery Service is a registry of web services. It matches the properties in a request with
the properties in its registry and returns the appropriate service location. See “Discovery
Service” on page 148 for more information.

Click the name of the realm to which you want to add the web service.

Click the Services tab to access the realm's services.

Click Discovery Service to create a new resource offering.

If the Discovery Service has not yet been added:

a. Click Add.

A list of available services is displayed.

b. Select Discovery Service and click Next to add the service.

The list of added services is displayed including the link to the Discovery Service.

Click Add on the Discovery Resource Offering screen.

(Optional) Enter a description of the resource offering in the Description field on the New
Resource Offering page.

Type a URI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespace URI defined in the abstract WSDL description for the service. An example of
a valid URI is urn:com:sun:liberty:sample:stockticker.

Type a URI for the value of the Provider ID attribute.

The value of this attribute contains the URI of the provider of the service instance. This
information is useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs.

11

12

13

14

15

16

17

18

19

20

Developing New Web Services

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009132

Note – The provider represented by the URI in the Provider ID attribute must also have an entry
in the ResourceIDMapper attribute. For more information, see “Classes For ResourceIDMapper
Plug-in” in Sun OpenSSO Enterprise 8.0 Administration Guide.

Click New Description to define the Service Description.

For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a web service client
can authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms that you want to add and click Add. To prioritize the list, select the mechanism
and click Move Up or Move Down.

b. Type a value for the End Point URL.

This value is the URL to access the new web service. For this example, it might be:
http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/stock

c. (Optional) Type a value for the SOAP Action.

This value is the equivalent of the wsdlsoap:soapAction attribute of the
wsdlsoap:operation element in the service's concrete WSDL-based description.

d. Click OK to complete the configuration.

Check the Options box if there are no options or add a URI to the Options List to specify options
for the resource offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering.
The set of possible URIs are defined by the service type, not the Discovery Service. If no option
is specified, the service instance does not display any available options. For a standard set of
options, see the Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

■ GenerateBearerToken specifies that a bearer token be generated.
■ AuthenticateRequester must be used with any service description that use SAML for

message authentication.
■ EncryptResourceID specifies that the Discovery Service encrypt the resource ID.

21

22

23

Developing New Web Services

Chapter 9 • Implementing Web Services 133

http://docs.sun.com/doc/820-3885/ggmcq?a=view
http://docs.sun.com/doc/820-3885/ggmcq?a=view
http://www.projectliberty.org/liberty/specifications__1

■ AuthenticateSessionContext is specified when a Discovery Service provider includes a
SAML assertion containing a SessionContextStatement in any future QueryResponse
messages.

■ AuthorizeRequester is specified when a Discovery Service provider wants to include a
SAML assertion containing a ResourceAccessStatement in any future QueryResponse
messages.

If you want to associate a directive with one or more service descriptions, select the check box
for that Description ID. If no service descriptions are selected, the directive is applied to all
description elements in the resource offering.

Click OK.

Logout from the console.

▼ To Invoke the Custom Service
Web service clients can access the custom web service by discovering the web service's end
point and using the required credentials. This information is stored by the OpenSSO Enterprise
Discovery Service. There are two ways in which a client can authenticate to OpenSSO
Enterprise in order to access the Discovery Service:

■ The Liberty ID-FF is generally used if it's a browser-based application and the web service
client is a federation enabled service provider.

■ The OpenSSO Enterprise Authentication Service (based on the Liberty ID-WSF) is used for
remote web services clients with pure SOAP-based authentication capabilities.

In the following procedure, we use the Liberty ID-WSF client API to invoke the web service.

Note – The code in this procedure is used to demonstrate the usage of the Liberty ID-WSF client
API. More information can be found in the Sun OpenSSO Enterprise 8.0 Java API Reference.

Write code to authenticate the WSC to the Liberty ID-WSF Authentication Service of OpenSSO
Enterprise.
The sample code below will allow access to the Discovery Service. It is a client-side program to
be run inside the WSC application.
public class StockClient {

:

public SASLResponse authenticate(

String userName,

String password,

String authurl) throws Exception {

24

25

1

Developing New Web Services

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009134

http://docs.sun.com/doc/820-3739

SASLRequest saslReq =

new SASLRequest(AuthnSvcConstants.MECHANISM_PLAIN);

saslReq.setAuthzID(userName);

SASLResponse saslResp = AuthnSvcClient.sendRequest(saslReq, authurl);

String statusCode = saslResp.getStatusCode();

if (!statusCode.equals(SASLResponse.CONTINUE)) {

return null;

}

String serverMechanism = saslResp.getServerMechanism();

saslReq = new SASLRequest(serverMechanism);

String dataStr = userName + "\0" + userName + "\0" + password;

saslReq.setData(dataStr.getBytes("UTF-8"));
saslReq.setRefToMessageID(saslResp.getMessageID());

saslResp = AuthnSvcClient.sendRequest(saslReq, authurl);

statusCode = saslResp.getStatusCode();

if (!statusCode.equals(SASLResponse.OK)) {

return null;

}

return saslResp;

}

:

}

Add code that will extract the Discovery Service information from the Authentication Response.
The following additional code would be added to what was developed in the previous step.
ResourceOffering discoro = saslResp.getResourceOffering();

List credentials = authnResponse.getCredentials();

Add code to query the Discovery Service for the web service's resource offering by using the
Discovery Service resource offering and the credentials that are required to access it.
The following additional code would be added to what was previously developed.
RequestedService rs = new RequestedService(null,

"urn:com:sun:liberty:sample:stockticker");
List rss = new ArrayList();

rss.add(rs);

Query discoQuery = new Query(discoro.getResourceID(), rss);

DiscoveryClient discoClient = null;

discoClient = new DiscoveryClient(secAssertion, serviceURL, null);

QueryResponse queryResponse = discoClient.getResourceOffering(discoQuery);

2

3

Developing New Web Services

Chapter 9 • Implementing Web Services 135

The discovery response contains the service's resource offering and the credentials required to
access the service.
quotes contains the response body (the stock quote). You would use the OpenSSO Enterprise
SOAP API to get the body elements.
List offerings = discoResponse.getResourceOffering();

ResourceOffering stockro = (ResourceOffering)offerings.get(0);

List credentials = discoResponse.getCredentials();

SecurityAssertion secAssertion = null;

if(credentials != null && !credentials.isEmpty()) {

secAssertion = (SecurityAssertion)credentials.get(0);

}

String serviceURL = ((Description)stockro.getServiceInstance().

getDescription().get(0)).getEndpoint();

QuoteRequest req = new QuoteRequest(symbol,

stockro.getResourceID().getResourceID());

Element elem = XMLUtils.toDOMDocument(

req.toString(), debug).getDocumentElement();

List list = new ArrayList();

list.add(elem);

Message msg = new Message(null, secAssertion);

msg.setSOAPBodies(list);

Message response = Client.sendRequest(msg, serviceURL, null, null);

List quotes = response.getBodies();

Setting Up Liberty ID-WSF 1.1 Profiles
OpenSSO Enterprise automatically detects which version of the Liberty ID-WSF profiles is
being used. If OpenSSO Enterprise is the web services provider (WSP), it detects the version
from the incoming SOAP message. If OpenSSO Enterprise is the WSC, it uses the version the
WSP has registered with the Discovery Service. If the WSP can not detect the version from the
incoming SOAP message or the WSC can not communicate with the Discovery Service, the
version defined in the com.sun.identity.liberty.wsf.version property in the OpenSSO
Enterprise configuration data store will be used. Following are the steps to configure OpenSSO
Enterprise to use Liberty ID-WSF 1.1 profiles.

■ “To Configure OpenSSO Enterprise to Use Liberty ID-WSF 1.1 Profiles” on page 137
■ “To Test the Liberty ID-WSF 1.1 Configuration” on page 140

4

Setting Up Liberty ID-WSF 1.1 Profiles

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009136

▼ To Configure OpenSSO Enterprise to Use Liberty
ID-WSF 1.1 Profiles
■ Don't use the Liberty ID-FF sample as it does not configure a signing key.
■ If both machines are in the same domain, change the cookie name on one of them to avoid

cookie conflict.

Install OpenSSO Enterprise on two different machines.

Test the installations by logging in to the console at http://server:port/opensso/UI/Login.

Configure one instance of OpenSSO Enterprise as a Liberty ID-FF identity provider.

a. Login to the OpenSSO Enterprise console.

b. Click the Federation tab.

c. Click New under Entity Providers.

The Create IDFF Entity Provider page is displayed.

d. Enter a value for the Entity Identifier attribute on the Create IDFF Entity Provider page.

e. Under Identity Provider, enter values for Meta Alias, Signing Certificate Alias, and Encryption
Certificate Alias and click Create to create the identity provider metadata.

f. Using ssoadm.jsp, export the identity provider metadata.

Configure the second instance of OpenSSO Enterprise as a Liberty ID-FF service provider.

a. Login to the OpenSSO Enterprise console.

b. Click the Federation tab.

c. Click New under Entity Providers.

The Create IDFF Entity Provider page is displayed.

d. Enter a value for the Entity Identifier attribute on the Create IDFF Entity Provider page.

e. Under Service Provider, enter values for Meta Alias, Signing Certificate Alias, and Encryption
Certificate Alias and click Create to create the service provider metadata.

f. Using ssoadm.jsp, export the service provider metadata.

1

2

3

Setting Up Liberty ID-WSF 1.1 Profiles

Chapter 9 • Implementing Web Services 137

Exchange the standard metadata files and import the identity provider metadata onto the
service provider machine and the service provider metadata onto the identity provider
machine.

Create a circle of trust that includes the Entity Identifier for both providers on each machine.

Login to the instance of OpenSSO Enterprise acting as the identity provider.

a. Click the Web Services tab.

b. Click the Discovery Service tab.

c. Scroll down to Resource Offerings for Bootstrapping.

d. Click urn:liberty:disco:2003-08.

The Edit Resource Offerings page is displayed.

e. Remove the default value of Service Type.

f. Add urn:liberty:security:2005-02:null:X509.

g. Change the value of the Provider ID attribute to the entity identifier of the identity provider.

h. Click Save.

The Discovery Service page is displayed.

i. Scroll down to the Classes for ResourceID Mapper Plug-in attribute.

j. Click the link that is the value of the Provider ID.

The Edit Resource ID Mapping page is displayed.

k. Change the value of the Provider ID attribute to the entity identifier of the identity provider.

l. Click Save.

The Discovery Service page is displayed.

m. Click the Configuration tab.

n. Click the Global tab.

o. Click the Liberty ID-WSF Security Service link.

The Liberty ID-WSF Security Service page is displayed.

4

5

6

Setting Up Liberty ID-WSF 1.1 Profiles

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009138

p. Enter test as the value for the following attributes and click Save.

■ Default WSC Certificate alias
■ Trusted Authority signing certificate alias
■ Trusted CA signing certificate aliases

Note – test is the default self-signed certificate shipped with OpenSSO Enterprise. Use your
own key and CA name for your customized deployment.

q. Log out of the console and restart the identity provider instance to allow the changes to take
effect.

Login to the instance of OpenSSO Enterprise acting as the service provider.

a. Click the Web Services tab.

b. Under the Personal Profile tab, change the value of the Provider ID attribute to the entity
identifier of the service provider and click Save.

c. Click the SOAP Binding Service tab.

d. Scroll down, enable 1.1 as the value of the Liberty Identity Web Services Version attribute
and click Save.

e. Click the Configuration tab.

f. Click the Global tab.

g. Click the Liberty ID-WSF Security Service link.

The Liberty ID-WSF Security Service page is displayed.

h. Enter test as the value for the following attributes and click Save.

■ Default WSC Certificate alias
■ Trusted Authority signing certificate alias
■ Trusted CA signing certificate aliases

Note – test is the default self-signed certificate shipped with OpenSSO Enterprise. Use your
own key and CA name for your customized deployment.

i. Log out of the console and restart the service provider instance to allow the changes to take
effect.

7

Setting Up Liberty ID-WSF 1.1 Profiles

Chapter 9 • Implementing Web Services 139

▼ To Test the Liberty ID-WSF 1.1 Configuration
Deploy the OpenSSO Enterprise client WAR on a third web container.

■ Use opensso-client-jdk15.war for web containers running the Java Development Kit
(JDK) 1.5 and above.

■ Use opensso-client-jdk14.war for web containers running JDK 1.4.

Configure the client sample and then configure the WSC sample.

Find AMConfig.properties for the Client SDK under the user_home/OpenSSOClientdirectory.
For example, path_to_client_sample_deployment_AMConfig.properties

Edit the following properties in AMConfig.properties.

■ com.sun.identity.liberty.ws.wsc.certalias=test

■ com.sun.identity.liberty.ws.ta.certalias=test

■ com.sun.identity.liberty.ws.trustedca.certalias=test

Note – test is the default self-signed certificate shipped with OpenSSO Enterprise. Use your
own key and CA name for your customized deployment.

Restart the Client SDK web container and follow the client SDK sample README to run the
sample.
All Liberty ID-WSF traffic is using version 1.1 now. You can validate this by looking at the XML
message; the name space for the SOAP binding should be urn:liberty:sb:2004-04 as
opposed to urn:liberty:sb: 2003-08 for version 1.0.

Common Application Programming Interfaces
The following list describes the API common to all Liberty-based OpenSSO Enterprise service
components and services.

■ “Common Interfaces” on page 140
■ “Common Security API” on page 142

Common Interfaces
This section summarizes classes that can be used by all Liberty-based OpenSSO Enterprise web
service components, as well as interfaces common to all Liberty-based OpenSSO Enterprise
web services. The packages that contain the classes and interfaces are:

1

2

3

4

5

Common Application Programming Interfaces

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009140

■ “com.sun.identity.liberty.ws.common Package” on page 141
■ “com.sun.identity.liberty.ws.interfaces Package” on page 141

com.sun.identity.liberty.ws.common Package
This package includes the Status class common to all Liberty-based OpenSSO Enterprise web
service components. It represents a common status object. For more information, including
methods and their syntax and parameters, see the Sun OpenSSO Enterprise 8.0 Java API
Reference.

com.sun.identity.liberty.ws.interfaces Package
This package includes interfaces that can be implemented to add their corresponding
functionality to each Liberty-based OpenSSO Enterprise web service.

TABLE 9–1 com.sun.identity.liberty.ws.interfaces Interfaces

Interface Description

Authorizer This interface, once implemented, can be used by each Liberty-based
web service component for access control.

Note – The
com.sun.identity.liberty.ws.disco.plugins.DefaultDiscoAuthorizer

class is the implementation of this interface for the Discovery Service.
The com.sun.identity.liberty.ws.idpp.plugin.IDPPAuthorizer
class is the implementation for the Liberty Personal Profile Service.

The Authorizer interface enables a web service to check whether a web
service consumer (WSC) is allowed to access the requested resource.
When a WSC contacts a web service provider (WSP), the WSC conveys a
sender identity and an invocation identity. Note that the invocation
identity is always the subject of the SAML assertion. These conveyances
enable the WSP to make an authorization decision based on one or both
identities. The OpenSSO Enterprise Policy Service performs the
authorization based on defined policies.

Common Application Programming Interfaces

Chapter 9 • Implementing Web Services 141

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739

TABLE 9–1 com.sun.identity.liberty.ws.interfaces Interfaces (Continued)
Interface Description

ResourceIDMapper This interface is used to map a user DN to the resource identifier
associated with it. OpenSSO Enterprise provides implementations of
this interface.
■ com.sun.identity.liberty.ws.disco.plugins.

Default64ResourceIDMapper assumes the Resource ID format to
be: providerID + "/" + the Base64 encoded userIDs.

■ com.sun.identity.liberty.ws.disco.plugins.

DefaultHexResourceIDMapper assumes the Resource ID format to
be: providerID + "/" + the hex string of userID.

■ com.sun.identity.liberty.ws.idpp.plugin.

IDPPResourceIDMapper assumes the Resource ID format to be:
providerID + "/" + the Base64 encoded userIDs.

A different implementation of the interface may be developed. The
implementation class should be given to the provider that hosts the
Discovery Service. The mapping between the providerID and the
implementation class can be configured through the Classes For
ResourceIDMapper Plugin attribute.

ServiceInstanceUpdate Interface used to include a SOAP header
(ServiceInstanceUpdateHeader) when sending a SOAP response.

For more information, including methods and their syntax and parameters, see the Sun
OpenSSO Enterprise 8.0 Java API Reference.

Common Security API
The Liberty-based security APIs are included in the com.sun.identity.liberty.ws.security
package and the com.sun.identity.liberty.ws.common.wsse package.

com.sun.identity.liberty.ws.security Package
The com.sun.identity.liberty.ws.security package includes the SecurityTokenProvider
interface for managing Web Service Security (WSS) type tokens and the
SecurityAttributePlugin interface for inserting security attributes (using an
AttributeStatement) into the assertion during the Discovery Service token generation. The
following table describes the classes used to manage Liberty-based security mechanisms.

Common Application Programming Interfaces

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009142

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739

TABLE 9–2 com.sun.identity.liberty.ws.securityClasses

Class Description

ProxySubject Represents the identity of a proxy, the confirmation key, and
confirmation obligation the proxy must possess and
demonstrate for authentication purposes.

ResourceAccessStatement Conveys information regarding the accessing entities and
the resource for which access is being attempted.

SecurityAssertion Provides an extension to the Assertion class to support
ID-WSF ResourceAccessStatement and
SessionContextStatement.

SecurityTokenManager An entry class for the security package
com.sun.identity.liberty.ws.security. You can call its
methods to generate X.509 and SAML tokens for message
authentication or authorization. It is designed as a provider
model, so different implementations can be plugged in if the
default implementation does not meet your requirements.

SessionContext Represents the session status of an entity to another system
entity.

SessionContextStatement Conveys the session status of an entity to another system
entity within the body of an <saml:assertion> element.

SessionSubject Represents a Liberty subject with its associated session
status.

For more information, including methods and their syntax and parameters, see the Sun
OpenSSO Enterprise 8.0 Java API Reference.

com.sun.identity.liberty.ws.common.wsse Package
This package includes BinarySecurityToken which provides an interface to parse and create
the X.509 Security Token in accordance with the Liberty ID-WSF Security Mechanisms. Both
WSS X.509 and SAML tokens are supported. For more information, including methods and
their syntax and parameters, see the Sun OpenSSO Enterprise 8.0 Java API Reference.

Authentication Web Service
The SOAP specifications define an XML-based messaging paradigm, but do not specify any
particular security mechanisms. Particularly, they do not describe user authentication using
SOAP messages. To rectify this, the Liberty-based Authentication Web Service was
implemented based on the Liberty ID-WSF Authentication Service and Single Sign-On Service
Specification. The specification defines a protocol that adds the Simple Authentication and

Authentication Web Service

Chapter 9 • Implementing Web Services 143

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739
http://www.projectliberty.org/liberty/specifications__1
http://docs.sun.com/doc/820-3739
http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1

Security Layer (SASL) authentication functionality to the SOAP binding described in the
Liberty ID-WSF SOAP Binding Specification and “SOAP Binding Service” on page 155. The
Liberty-based Authentication Web Service is for provider-to-provider authentication.

Note – The specification also contains an XML schema that defines the authentication protocol.
More information can be found in Schema Files and Service Definition Documents.

■ “Authentication Web Service Default Implementation” on page 144
■ “Authentication Web Service Packages” on page 145
■ “Access the Authentication Web Service” on page 145

Authentication Web Service Default Implementation
The Authentication Web Service attributes are global; the value of this attribute is carried across
the OpenSSO Enterprise configuration and inherited by every realm. The attributes for the
Authentication Web Service are defined in the amAuthnSvc.xml service file. The Mechanism
Handlers List attribute stores information about the SASL mechanisms that are supported by
the Authentication Web Service and contains two parameters.

■ “key Parameter” on page 144
■ “class Parameter” on page 144

keyParameter
The required key defines the SASL mechanism supported by the Authentication Web Service.

classParameter
The required class specifies the name of the implemented class for the SASL mechanism. Two
authentication mechanisms are supported by the following default implementations:

TABLE 9–3 Default Implementations for Authentication Mechanism

Class Description

com.sun.identity.liberty.ws.

authnsvc.mechanism.PlainMechanismHandler

This class is the default implementation for the PLAIN
authentication mechanism. It maps user identifiers
and passwords in the PLAIN mechanism to the user
identifiers and passwords in the LDAP authentication
module under the root organization.

com.sun.identity.liberty.ws.

authnsvc.mechanism.CramMD5MechanismHandler

This class is the default implementation for the
CRAM-MD5 authentication mechanism.

The Authentication Web Service layer provides an interface that must be implemented for each
SASL mechanism to process the requested message and return a response.

Authentication Web Service

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009144

http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/resource_center/specifications

Authentication Web Service Packages
The Authentication Web Service provides programmatic interfaces to allow clients to interact
with it. The following sections provide short descriptions of these packages. For more detailed
information, see the Sun OpenSSO Enterprise 8.0 Java API Reference. The
authentication-related packages include:

■ “com.sun.identity.liberty.ws.authnsvc Package” on page 145
■ “com.sun.identity.liberty.ws.authnsvc.mechanism Package” on page 145
■ “com.sun.identity.liberty.ws.authnsvc.protocol Package” on page 145

com.sun.identity.liberty.ws.authnsvc Package
This package provides web service clients with a method to request authentication credentials
from the Authentication Web Service and receive responses back from it using the Simple
Authentication and Security Layer (SASL).

com.sun.identity.liberty.ws.authnsvc.mechanism Package
This package provides an interface that must be implemented for each different SASL
mechanism to enable authentication using them. Each SASL mechanism will correspond to one
implementation that will process incoming SASL requests and generate outgoing SASL
responses.

com.sun.identity.liberty.ws.authnsvc.protocol Package
This package provides classes that correspond to the request and response elements defined in
the Liberty XSD schema that accompanies the Liberty ID-WSF Authentication Service
Specification.

Access the Authentication Web Service
The URL to gain access to the Authentication Web Service is:

http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/authnsvc

This URL is normally used by the OpenSSO Enterprise client API to access the service. For
example, the OpenSSO Enterprise public client,
com.sun.identity.liberty.ws.authnsvc.AuthnSvcClient uses this URL to authenticate
principals with OpenSSO Enterprise.

Authentication Web Service

Chapter 9 • Implementing Web Services 145

http://docs.sun.com/doc/820-3739

Data Services
A data service is a web service that supports the query and modification of data regarding a
principal. An example of a data service is a web service that hosts and exposes a principal's
profile information, such as name, address and phone number. A query is when a web service
consumer (WSC) requests and receives the data (in XML format). A modify is when a WSC
sends new information to update the data. The Liberty Alliance Project has defined the Liberty
ID-WSF Data Services Template Specification (Liberty ID-WSF-DST) as the standard protocol
for the query and modification of data profiles exposed by a data service. Using this
specification, the Liberty Alliance Project has developed additional specifications for other
types of data services: personal profile service, geolocation service, contact service, and calendar
service). Of these data services, OpenSSO Enterprise has implemented the Liberty Personal
Profile Service.
■ “Liberty Personal Profile Service” on page 146
■ “Data Services Template Packages” on page 146

Liberty Personal Profile Service
The Liberty Personal Profile Service is a default OpenSSO Enterprise identity service. It can be
queried for identity data and its attributes can be updated.

For access to occur, the hosting provider of the Liberty Personal Profile Service needs to be
registered with the Discovery Service on behalf of each identity principal. To register a service
with the Discovery Service, update a resource offering for that service. For more information,
see “Discovery Service” on page 148.

The URL to gain access to the Liberty Personal Profile Service is:

http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/idpp

This URL is normally used by the OpenSSO Enterprise client API to access the service. For
example, the OpenSSO Enterprise public Data Service Template client,
com.sun.identity.liberty.ws.dst.DSTClient uses this URL to query and modify an
identity's personal profile attributes stored in OpenSSO Enterprise.

Data Services Template Packages
OpenSSO Enterprise contains two packages based on the Liberty ID-WSF-DST. They are:
■ “com.sun.identity.liberty.ws.dst Package” on page 147
■ “com.sun.identity.liberty.ws.dst.service Package” on page 147

For more detailed API documentation, including methods and their syntax and parameters, see
the Sun OpenSSO Enterprise 8.0 Java API Reference.

Data Services

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009146

http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1
http://docs.sun.com/doc/820-3739

com.sun.identity.liberty.ws.dst Package
The following table summarizes the classes in the Data Services Template client API that are
included in the com.sun.identity.liberty.ws.dst package.

TABLE 9–4 Data Service Client APIs

Class Description

DSTClient Provides common functions for the Data Services
Templates query and modify options.

DSTData Provides a wrapper for any data entry.

DSTModification Represents a Data Services Template modification
operation.

DSTModify Represents a Data Services Template modify request.

DSTModifyResponse Represents a Data Services Template response to a
DST modify request.

DSTQuery Represents a Data Services Template query request.

DSTQueryItem Wrapper for one query item.

DSTQueryResponse Represents a Data Services Template query response.

DSTUtils Provides utility methods used by the DST layer.

com.sun.identity.liberty.ws.dst.service Package
This package provides a handler class that can be used by any generic identity data service that
is built using the Liberty Alliance ID-SIS Specifications.

Note – The Liberty Personal Profile Service is built using the Liberty ID-SIS Personal Profile
Service Specification, based on the Liberty Alliance ID-SIS Specifications.

The DSTRequestHandler class is used to process query or modify requests sent to an identity
data service. It is an implementation of the interface
com.sun.identity.liberty.ws.soapbinding.RequestHandler. For more detailed API
documentation, see the Sun OpenSSO Enterprise 8.0 Java API Reference.

Data Services

Chapter 9 • Implementing Web Services 147

http://docs.sun.com/doc/820-3739

Discovery Service
OpenSSO Enterprise contains a Discovery Service defined by the Liberty Alliance Project
specifications. The Discovery Service allows a requesting entity to dynamically determine a
principal’s registered identity service. It might also function as a security token service, issuing
security tokens to the requester that can then be used in the request to the discovered identity
service. The following sections contain more information.

■ “Generating Security Tokens” on page 148
■ “Discovery Service Packages” on page 151
■ “Access the Discovery Service” on page 155

Generating Security Tokens
In general, a discovery service and an identity provider are hosted on the same machine.
Because the identity provider hosting the Discovery Service might be fulfilling other roles for an
identity (such as a Policy Decision Point or an Authentication Authority), it can be configured
to provide the requesting entity with security tokens. The Discovery Service can include a
security token (inserted into a SOAP message header) in a DiscoveryLookup response. The
token can then be used as a credential to invoke the service returned with it.

Note – For information regarding the deployment of the Client SDK, see Chapter 14, “Using the
Client SDK.”

▼ To Configure the Discovery Service to Generate Security Tokens

Generate the keystore and certificate aliases for the machines that are hosting the Discovery
Service, the WSP and the WSC.
OpenSSO Enterprise uses a Java keystore for storing the public and private keys so, if this is a
new deployment, you might need to generate one using keytool, the key and certificate
management utility supplied with the Java Platform, Standard Edition. In short, keytool
generates key pairs as separate key entries (one for a public key and the other for its associated
private key). It wraps the public key into an X.509 self-signed certificate (one for which the
issuer/signer is the same as the subject), and stores it as a single-element certificate chain.
Additionally, the private key is stored separately, protected by a password, and associated with
the certificate chain for the corresponding public key. All public and private keystore entries are
accessed via unique aliases.

Update the values of the key-related properties for the appropriate deployed instances of
OpenSSO Enterprise.

1

2

Discovery Service

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009148

Note – The same property might have already been edited depending on the deployment
scenario.

a. For the web services provider and web services client deployed on OpenSSO Enterprise:

i. Login to the OpenSSO Enterprise console.

ii. Click the Configuration tab.

iii. Click the Global tab.

iv. Click the Liberty ID-WSF Security Service link.

The Liberty ID-WSF Security Service page is displayed.

v. Enter test as the value for the following attributes and click Save.

■ Default WSC Certificate alias
■ Trusted Authority signing certificate alias
■ Trusted CA signing certificate aliases

Note – test is the default self-signed certificate shipped with OpenSSO Enterprise. Use
your own key and CA name for your customized deployment. If you want to use a
different keystore location, under the Configuration tab click Servers and Sites. Click the
link of the appropriate server instance. Under the Security tab click Inheritance Settings
and do the following:

■ Uncheck the Keystore File box.
■ Optionally, uncheck the Private Key Password File box and the Keystore Password

File box.

Click Save and Back to Server Profile. Click the Keystore link and enter the location of
the Keystore File. (If you change the password for the Private Key or Keystore, you need
to encode the new password using the ampassword command or encode.jsp before
putting it into the corresponding password file.)

vi. Log out of the console and restart the instance to allow the changes to take effect.

b. For the web services provider and web services client deployed on the same machine as the
OpenSSO Enterprise Client SDK update the values of the following key-related properties in
the AMConfig.properties:

■ com.sun.identity.saml.xmlsig.keystore defines the location of the keystore file.

Discovery Service

Chapter 9 • Implementing Web Services 149

■ com.sun.identity.saml.xmlsig.storepass defines the location of the file that
contains the password used to access the keystore file.

■ com.sun.identity.saml.xmlsig.keypass defines the location of the file that contains
the password used to protect the private key of a generated key pair.

■ com.sun.identity.liberty.ws.wsc.certalias defines the certificate alias used for
signing the WSP protocol responses.

■ com.sun.identity.liberty.ws.trustedca.certaliases defines the certificate alias
and the Provider ID list on which the WSP is trusting.

Configure each identity provider and service provider as an entity using the Federation module.
This entails configuring each provider as an entity in a circle of trust.

Establish provider trust between the entities by creating an authentication domain using the
Federation module.
See Part II, “Federation, Web Services, and SAML Administration,” in Sun OpenSSO
Enterprise 8.0 Administration Guide.

Change the default value of the Provider ID for the Discovery Service on the machine where the
Discovery Service is hosted to the value that reflects the previously loaded metadata.

a. Click the Web Services tab from the OpenSSO Enterprise Console.

b. Click the Discovery Service tab under Web Services.

c. Change the default value of the Provider ID from
protocol://host:port/deployuri/Liberty/disco to the Entity ID of the identity provider.

Change the default value of the Provider ID for the Liberty Personal Profile Service on the
machine where the Liberty Personal Profile Service is hosted to the value that reflects the
previously loaded metadata.

a. Click the Web Services tab from the OpenSSO Enterprise Console.

b. Click the Liberty Personal Profile Service tab under Web Services.

c. Change the default value of the Provider ID from
protocol://host:port/deployuri/Liberty/idpp to the Entity ID of the identity provider.

Register a resource offering for the WSP using either of the following methods.
Make sure that the appropriate directives are chosen.

■ For SAML Bearer token use GenerateBearerToken or AuthenticateRequester.
■ For SAML Token (Holder of key) use AuthenticateRequester or AuthorizeRequester.

3

4

5

6

7

Discovery Service

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009150

http://docs.sun.com/doc/820-3885/gglxk?a=view
http://docs.sun.com/doc/820-3885/gglxk?a=view

Discovery Service Packages
OpenSSO Enterprise contains several Java packages that are used by the Discovery Service.
They include:

■ com.sun.identity.liberty.ws.disco includes a client API that provides interfaces to
communicate with the Discovery Service. See “Client APIs in
com.sun.identity.liberty.ws.disco” on page 151.

■ com.sun.identity.liberty.ws.disco.plugins includes an interface that can be used to
develop plug-ins. The package also contains some default plug-ins. See
“com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface” on
page 152.

■ com.sun.identity.liberty.ws.interfaces includes interfaces that can be used to
implement functionality common to all Liberty-enabled identity services. Several
implementations of these interfaces have been developed for the Discovery Service. See
“com.sun.identity.liberty.ws.interfaces.Authorizer Interface” on page 153 and
“com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface” on page 155.

Note – Additional information is in the Sun OpenSSO Enterprise 8.0 Java API Reference.

Client APIs in com.sun.identity.liberty.ws.disco

The following table summarizes the client APIs in the package
com.sun.identity.liberty.ws.disco. For more information, including methods and their
syntax and parameters, see the Sun OpenSSO Enterprise 8.0 Java API Reference.

TABLE 9–5 Discovery Service Client APIs

Class Description

Description Represents a DescriptionType element of a service instance.

Directive Represents a discovery service DirectiveType element.

DiscoveryClient Provides methods to send Discovery Service queries and
modifications.

EncryptedResourceID Represents an EncryptionResourceID element for the Discovery
Service.

InsertEntry Represents an Insert Entry for Discovery Modify request.

Modify Represents a discovery modify request.

ModifyResponse Represents a discovery response to a modify request.

Query Represents a discovery Query object.

Discovery Service

Chapter 9 • Implementing Web Services 151

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739

TABLE 9–5 Discovery Service Client APIs (Continued)
Class Description

QueryResponse Represents a response to a discovery query request.

RemoveEntry Represents a remove entry element for the discovery modify
request.

RequestedService Enables the requester to specify that all the resource offerings
returned must be offered through a service instance that complies
with one of the specified service types.

ResourceID Represents a Discovery Service Resource ID.

ResourceOffering Associates a resource with a service instance that provides access
to that resource.

ServiceInstance Describes a web service at a distinct protocol endpoint.

com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler

Interface
This interface is used to get and set discovery entries for a user. A number of default
implementations are provided, but if you want to handle this function differently, implement
this interface and set the implementing class as the value of the Entry Handler Plugin Class
attribute as discussed in “Entry Handler Plug-in Class” in Sun OpenSSO Enterprise 8.0
Administration Guide. The default implementations of this interface are described in the
following table.

TABLE 9–6 Implementations of com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler

Class Description

UserDiscoEntryHandler Gets or modifies discovery entries stored in the user’s
entry as a value of the
sunIdentityServerDiscoEntries attribute. The
UserDiscoEntryHandler implementation is used in
business-to-consumer scenarios such as the Liberty
Personal Profile Service.

DynamicDiscoEntryHandler Gets discovery entries stored as a value of the
sunIdentityServerDynamicDiscoEntries dynamic
attribute in the Discovery Service. Modification of
these entries is not supported and always returns
false. The resource offering is saved in an
organization or a role. The
DynamicDiscoEntryHandler implementation is used
in business-to-business scenarios such as the Liberty
Employee Profile service.

Discovery Service

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009152

http://docs.sun.com/doc/820-3885/ggmcn?a=view
http://docs.sun.com/doc/820-3885/ggmcn?a=view

TABLE 9–6 Implementations of
com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler (Continued)

Class Description

UserDynamicDiscoEntryHandler Gets a union of the discovery entries stored in the user
entry sunIdentityServerDiscoEntries attribute
and discovery entries stored in the Discovery Service
sunIdentityServerDynamicDiscoEntries attribute.
It modifies only discovery entries stored in the user
entry. The UserDynamicDiscoEntryHandler
implementation can be used in both
business-to-consumer and business-to-business
scenarios.

com.sun.identity.liberty.ws.interfaces.Authorizer Interface
This interface is used to enable an identity service to check the authorization of a WSC. The
DefaultDiscoAuthorizer class is the default implementation of this interface. The class uses
the OpenSSO Enterprise Policy Service for creating and applying policy definitions. Policy
definitions for the Discovery Service are configured using the OpenSSO Enterprise Console.

Note – The Policy Service looks for an SSOToken defined for Authenticated Users or Web Service
Clients. For more information on this and the Policy Service in general, see the Sun OpenSSO
Enterprise 8.0 Administration Guide.

▼ To Configure Discovery Service Policy Definitions

In the OpenSSO Enterprise Console, click the Access Control tab.

Select the name of the realm in which the policy definitions will be configured.

Select Policies to access policy configurations.

Click New Policy to add a new policy definition.

Type a name for the policy.

(Optional) Enter a description for the policy.

(Optional) Select the check box next to Active.

Click New to add rules to the policy definition.

Select Discovery Service for the rule type and click Next.

1

2

3

4

5

6

7

8

9

Discovery Service

Chapter 9 • Implementing Web Services 153

http://docs.sun.com/doc/820-3885
http://docs.sun.com/doc/820-3885

Type a name for the rule.

Type a resource on which the rule acts.
The Resource Name field uses the form ServiceType + RESOURCE_SEPARATOR +

ProviderID. For example, urn:liberty:id-sis-pp:2003-08;http://example.com.

Select an action and appropriate value for the rule.
Discovery Service policies can only look up or update data.

Click Finish to configure the rule.
The com.sun.identity.liberty.ws.interfaces.Authorizer interface can be implemented
by any web service in OpenSSO Enterprise. For more information, see XXXXXCommon
Service Interfaces and the Java API Reference in //OpenSSO-base/SUNWam/docs or on
docs.sun.com.

Click New to add subjects to the policy definition.

Select the subject type and click Next.

Type a name for the group of subjects.

(Optional) Click the check box if this is an exclusive group.

Select the users and click to add them to the group.

Click Finish to return to the policy definition screen.

Click New to add conditions to the policy definition.

Select the condition type and click Next.

Type values for the displayed attributes.
For more information, see the Sun OpenSSO Enterprise 8.0 Administration Guide.

Click Finish to return to the policy definition screen.

Click New to add response providers to the policy definition.

Type a name for the response provider.

(Optional) Add values for the StaticAttribute.

(Optional) Add values for the DynamicAttribute.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Discovery Service

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009154

http://docs.sun.com/doc/819-4682
http://docs.sun.com/doc/820-3885

Click Finish to return to the policy definition screen.

Click Create to finish the policy configuration.

com.sun.identity.liberty.ws.interfaces.ResourceIDMapper

Interface
This interface is used to map a user ID to the resource identifier associated with it. OpenSSO
Enterprise provides two implementations of this interface.

■ com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes
the format to be providerID + "/" + the Base64 encoded userIDs

■ com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes
the format to be providerID + "/" + the hex string of userIDs

A different implementation of the interface may be developed. The implementation class
should be given to the provider that hosts the Discovery Service. The mapping between the
providerID and the implementation class can be configured through the XXXXXClasses For
ResourceIDMapper Plug-in attribute.

Note – The com.sun.identity.liberty.ws.interfaces.ResourceIDMapper interface is
common to all identity services in OpenSSO Enterprise not only the Discovery Service. For
more information, see the Sun OpenSSO Enterprise 8.0 Java API Reference.

Access the Discovery Service
The URL to gain access to the Discovery Service is:

http://SERVER_HOST:SERVER_PORT/SERVER_DEPLOY_URI/Liberty/disco

This URL is normally used by the OpenSSO Enterprise client API to access the service. For
example, the public Discovery Service client,
com.sun.identity.liberty.ws.disco.DiscoveryClient uses this URL to query and modify
the resource offerings of an identity.

SOAP Binding Service
OpenSSO Enterprise contains an implementation of the Liberty ID-WSF SOAP Binding
Specification from the Liberty Alliance Project. The specification defines a transport layer for
sending and receiving SOAP messages.

■ “SOAPReceiver Servlet” on page 156

28

29

SOAP Binding Service

Chapter 9 • Implementing Web Services 155

http://docs.sun.com/doc/820-3739

■ “SOAP Binding Service Package” on page 156

SOAPReceiver Servlet
The SOAPReceiver servlet receives a Message object from a web service client (WSC), verifies
the signature, and constructs its own Message object for processing by OpenSSO Enterprise.
The SOAPReceiver then invokes the correct request handler class to pass this second Message

object on to the appropriate OpenSSO Enterprise service for a response. When the response is
generated, the SOAPReceiver returns this Message object back to the WSC. More information
can be found in the “SOAP Binding Service” in Sun OpenSSO Enterprise 8.0 Technical Overview.

SOAP Binding Service Package
The SOAP Binding Service includes a Java package named
com.sun.identity.liberty.ws.soapbinding. This package provides classes to construct
SOAP requests and responses and to change the contact point for the SOAP binding. The
following table describes some of the available classes. For more detailed information, see the
Sun OpenSSO Enterprise 8.0 Java API Reference.

TABLE 9–7 SOAP Binding Service API

Class Description

Client Provides a method with which a WSC can send a request to a
WSP using a SOAP connection. It also returns the response.

ConsentHeader Represents the SOAP element named Consent.

CorrelationHeader Represents the SOAP element named Correlation. By
default, CorrelationHeader will always be signed.

ProcessingContextHeader Represents the SOAP element named ProcessingContext.

ProviderHeader Represents the SOAP element named Provider.

RequestHandler Defines an interface that needs to be implemented on the
server side by each web service in order to receive a request
from a WSC and generate a response. After implementing
the class, it must be registered in the SOAP Binding Service
so the SOAP framework knows where to forward incoming
requests.

SOAP Binding Service

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009156

http://docs.sun.com/doc/820-3740/ghchm?a=view
http://docs.sun.com/doc/820-3739

TABLE 9–7 SOAP Binding Service API (Continued)
Class Description

Message Represents a SOAP message and is used by both the web
service client and server to construct SOAP requests and
responses. Each SOAP message has multiple headers and
bodies. It may contain a certificate for client authentication,
the IP address of a remote endpoint, and a SAML assertion
used for signing.

ServiceInstanceUpdateHeader Allows a service to change the endpoint on which requesters
will contact it.

ServiceInstanceUpdateHeader.Credential Allows a service to use a different security mechanism and
credentials to access the requested resource.

SOAPFault Represents the SOAP element named SOAP Fault.

SOAPFaultDetail Represents the SOAP element named Detail, a child
element of SOAP Fault.

UsageDirectiveHeader Defines the SOAP element named UsageDirective.

See “PAOS Binding” on page 160 for information on this reverse HTTP binding for SOAP.

Interaction Service
Providers of identity services often need to interact with the owner of a resource to get
additional information, or to get their consent to expose data. The Liberty Alliance Project has
defined the Liberty ID-WSF Interaction Service Specification to specify how these interactions
can be carried out. Of the options defined in the specification, OpenSSO Enterprise has
implemented the Interaction RequestRedirect Profile. In this profile, the WSP requests the
connecting WSC to redirect the user agent (principal) to an interaction resource (URL) at the
WSP. When the user agent sends an HTTP request to get the URL, the WSP has the opportunity
to present one or more pages to the principal with questions for other information. After the
WSP obtains the information it needs to serve the WSC, it redirects the user agent back to the
WSC, which can now reissue its original request to the WSP.

■ “Configuring the Interaction Service” on page 157
■ “Interaction Service API” on page 159

Configuring the Interaction Service
While there is no XML service file for the Interaction Service, this service does have properties.
The properties are configured upon installation in the configuration data store and are
described in the following table.

Interaction Service

Chapter 9 • Implementing Web Services 157

http://www.projectliberty.org/liberty/specifications__1

TABLE 9–8 Interaction Service Properties

Property Description

com.sun.identity.liberty.interaction.

wspRedirectHandler

Points to the URL where the WSPRedirectHandler
servlet is deployed. The servlet handles the service
provider side of interactions for user redirects.

com.sun.identity.liberty.interaction.

wscSpecifiedInteractionChoice

Indicates the level of interaction in which the WSC
will participate if the WSC participates in user
redirects. Possible values include interactIfNeeded,
doNotInteract, and doNotInteractForData. The
affirmative interactIfNeeded is the default.

com.sun.identity.liberty.interaction.

wscWillIncludeUserInteractionHeader

Indicates whether the WSC will include a SOAP
header to indicate certain preferences for interaction
based on the Liberty specifications. The default value
is yes.

com.sun.identity.liberty.

interaction.wscWillRedirect

Indicates whether the WSC will participate in user
redirections. The default value is yes.

com.sun.identity.liberty.interaction.

wscSpecifiedMaxInteractionTime

Indicates the maximum length of time (in seconds)
the WSC is willing to wait for the WSP to complete its
portion of the interaction. The WSP will not initiate
an interaction if the interaction is likely to take more
time than . For example, the WSP receives a request
where this property is set to a maximum 30 seconds. If
the WSP property com.sun.identity.liberty.
interaction.wspRedirectTime is set to 40 seconds,
the WSP returns a SOAP fault (timeNotSufficient),
indicating that the time is insufficient for interaction.

com.sun.identity.liberty.interaction.

wscWillEnforceHttpsCheck

Indicates whether the WSC will enforce HTTPS in
redirected URLs. The Liberty Alliance Project
specifications state that, the value of this property is
always yes, which indicates that the WSP will not
redirect the user when the value of redirectURL
(specified by the WSP) is not an HTTPS URL. The
false value is primarily meant for ease of deployment
in a phased manner.

com.sun.identity.liberty.

interaction.wspWillRedirect

Initiates an interaction to get user consent for
something or to collect additional data. This property
indicates whether the WSP will redirect the user for
consent. The default value is yes.

com.sun.identity.liberty.

interaction.wspWillRedirectForData

Initiates an interaction to get user consent for
something or to collect additional data. This property
indicates whether the WSP will redirect the user to
collect additional data. The default value is yes.

Interaction Service

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009158

TABLE 9–8 Interaction Service Properties (Continued)
Property Description

com.sun.identity.liberty.

interaction.wspRedirectTime

Indicates the length of time (in seconds) that the WSP
expects to take to complete an interaction and return
control back to the WSC. For example, the WSP
receives a request indicating that the WSC will wait a
maximum 30 seconds (set in
com.sun.identity.liberty.

interaction.wscSpecifiedMaxInteractionTime)
for interaction. If the wspRedirectTime is set to 40
seconds, the WSP returns a SOAP fault
(timeNotSufficient), indicating that the time is
insufficient for interaction.

com.sun.identity.liberty.interaction.

wspWillEnforceHttpsCheck

Indicates whether the WSP will enforce a HTTPS
returnToURL specified by the WSC. The Liberty
Alliance Project specifications state that the value of
this property is always yes. The false value is
primarily meant for ease of deployment in a phased
manner.

com.sun.identity.liberty.

interaction.

wspWillEnforceReturnToHost

EqualsRequestHost

Indicates whether the WSP would enforce the address
values of returnToHost and requestHost if they are
the same. The Liberty Alliance Project specifications
state that the value of this property is always yes. The
false value is primarily meant for ease of deployment
in a phased manner.

com.sun.identity.liberty.

interaction.htmlStyleSheetLocation

Points to the location of the style sheet that is used to
render the interaction page in HTML.

com.sun.identity.liberty.

interaction.wmlStyleSheetLocation

Points to the location of the style sheet that is used to
render the interaction page in WML.

Interaction Service API
The OpenSSO Enterprise Interaction Service includes a Java package named
com.sun.identity.liberty.ws.interaction. WSCs and WSPs use the classes in this package
to interact with a resource owner. The following table describes the classes.

TABLE 9–9 Interaction Service Classes

Class Description

InteractionManager Provides the interface and implementation for
resource owner interaction.

Interaction Service

Chapter 9 • Implementing Web Services 159

TABLE 9–9 Interaction Service Classes (Continued)
Class Description

InteractionUtils Provides some utility methods related to resource
owner interaction.

For more information, including methods and their syntax and parameters, see the Sun
OpenSSO Enterprise 8.0 Java API Reference.

PAOS Binding
OpenSSO Enterprise has implemented the optional Liberty Reverse HTTP Binding for SOAP
Specification. This specification defines a message exchange protocol that permits an HTTP
client to be a SOAP responder. HTTP clients are no longer necessarily equipped with HTTP
servers. For example, mobile terminals and personal computers contain web browsers yet they
do not operate HTTP servers. These clients, though, can use their browsers to interact with an
identity service, possibly a personal profile service or a calendar service. These identity services
could also be beneficial when the client devices interact with an HTTP server. The use of PAOS
makes it possible to exchange information between user agent-hosted services and remote
servers. This is why the reverse HTTP for SOAP binding is also known as PAOS; the spelling of
SOAP is reversed.

■ “Comparison of PAOS and SOAP” on page 160
■ “PAOS Binding API” on page 160

Comparison of PAOS and SOAP
In a typical SOAP binding, an HTTP client interacts with an identity service through a client
request and a server response. For example, a cell phone user (client) can contact the phone
service provider (service) to retrieve stock quotes and weather information. The service verifies
the user’s identity and responds with the requested information.

In a reverse HTTP for SOAP binding, the phone service provider plays the client role, and the
cell phone client plays the server role. The initial SOAP request from the server is actually
bound to an HTTP response. The subsequent response from the client is bound to a request.

PAOS Binding API
The OpenSSO Enterprise implementation of PAOS binding includes a Java package named
com.sun.identity.liberty.ws.paos. This package provides classes to parse a PAOS header,
make a PAOS request, and receive a PAOS response.

PAOS Binding

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009160

http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739
http://www.projectliberty.org/liberty/specifications__1
http://www.projectliberty.org/liberty/specifications__1

Note – This API is used by PAOS clients on the HTTP server side. An API for PAOS servers on
the HTTP client side would be developed by the manufacturers of the HTTP client side
products, for example, cell phone manufacturers.

The following table describes the available classes in com.sun.identity.liberty.ws.paos.
For more detailed API documentation, see the Sun OpenSSO Enterprise 8.0 Java API Reference.

TABLE 9–10 PAOS Binding Classes

Class Description

PAOSHeader Used by a web application on the HTTP server side to parse a
PAOS header in an HTTP request from the user agent side.

PAOSRequest Used by a web application on the HTTP server side to construct
a PAOS request message and send it via an HTTP response to the
user agent side.

Note – PAOSRequest is made available in PAOSResponse to
provide correlation, if needed, by API users.

PAOSResponse Used by a web application on the HTTP server side to receive
and parse a PAOS response using an HTTP request from the user
agent side.

PAOSException Represents an error occurring while processing a SOAP request
and response.

PAOS Binding

Chapter 9 • Implementing Web Services 161

http://docs.sun.com/doc/820-3739

162

Using the REST Identity Interfaces

OpenSSO Enterprise exposes a number of identity interfaces that support the Representational
State Transfer (REST) architectural style. A RESTful web service assumes all components are
exposed using the same, uniform application interface. From this high-level, we can use HTTP
as a protocol that accomplishes this uniformity with its methods such as GET and POST. Thus
calling the OpenSSO Enterprise RESTful interfaces requires the simple construction of a URL.
The following sections contain information on invoking the available OpenSSO Enterprise
REST interfaces.

■ “The REST URL Format” on page 163
■ “Authentication” on page 164
■ “Token Validation” on page 165
■ “Logout” on page 165
■ “Authorization” on page 166
■ “Logging” on page 166
■ “Searching Identity Types” on page 167
■ “Display Identity Data” on page 168
■ “Display Particular Identity Data” on page 169
■ “Creating Identity Types” on page 170
■ “Updating Identity Data” on page 171
■ “Deleting an Identity Profile” on page 171

The REST URL Format
The OpenSSO Enterprise REST operations are supported out of the box so no special
configurations are required. The format of the URL is:

http://OpenSSO-host:OpenSSO-port/opensso/identity/OpenSSO-REST-interface?
parameter1=value1¶meter2=value2¶meterN=valueN

10C H A P T E R 1 0

163

Caution – If the value of the parameters (value1, value2, ..., valueN) contains unsafe characters,
they need to be URL encoded when forming the REST URL. For example, an equal sign (=)
needs to be replaced with %3D or an ampersand (&) needs to be replaced with %26. Refer to RFC
1738 for more information on unsafe characters and URL encoding. Some of the following
sections contain examples of URL encoding.

Authentication
The authenticate REST interface opens an HTTP connection to authenticate a user with a
POST operation. (Currently, the REST authenticate interface works with simple user name and
password only.) The URL needs to be populated with the following information.
■ username defines the user to be authenticated. The value is the Universal ID in the user's

OpenSSO profile.
■ password defines the password of the user to be authenticated.
■ uri is optional and defines one or more URL parameters as documented in Accessing the

OpenSSO Enterprise Authentication Service User Interface with a Login URL. See the
sample URLs below.

The following URL defines a username and password that will be authenticated at the OpenSSO
root realm - by default, / (Top Level Realm).

http://OpenSSO-host:OpenSSO-port/opensso/identity/authenticate?username=jning&password=pwjning

You can also add the optional uri parameter to the URL. For example, the following URL will
authenticate the user to a specific sub realm.

http://OpenSSO-host:OpenSSO-port/opensso/identity/authenticate?username=jning&password=pwjning
&uri=realm=sub-realm-name

Tip – In this URL, realm=sub-realm-name would need to be encoded in order for it to be treated
as part of the value of uri as in:

http://OpenSSO-host:OpenSSO-port/opensso/identity/authenticate?username=jning&password=pwjning
&uri=realm%3Dsub-realm-name

You can define additional URL parameters. For example, the following URL will authenticate
the user to a specific sub realm using the specified authentication chain (ldapService, for
example).

http://OpenSSO-host:OpenSSO-port/opensso/identity/authenticate?username=jning&password=pwjning
&uri=realm=sub-realm-name&service=ldapService

Authentication

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009164

http://www.rfc-editor.org/rfc/rfc1738.txt
http://www.rfc-editor.org/rfc/rfc1738.txt
http://wikis.sun.com/x/WQQCBg
http://wikis.sun.com/x/WQQCBg

Tip – In this URL, realm=sub-realm-name&service=ldapService would need to be encoded for
both parameters to be treated as part of the value of uri as in:

http://OpenSSO-host:OpenSSO-port/opensso/identity/authenticate?username=jning&password=pwjning
&uri=realm%3Dsub-realm-name%26service%3DldapService

After successful authentication, a token string (tokenid) is returned to represent the
authenticated user for other REST operations. Various exceptions might also be thrown such as
UserNotFound and InvalidPassword. A generic exception is provided if unable to reach
OpenSSO Enterprise or for other fatal errors.

Note – The tokenid returned is also applied as the value of the subjectid in some OpenSSO
REST operations like logout and authorize. See the appropriate section in this chapter for
more details.

Token Validation
The isTokenValid REST interface validates the token using the POST operation. The following
URL defines a tokenid that represents the user to be validated by OpenSSO Enterprise.

http://OpenSSO-host:OpenSSO-port/opensso/identity/isTokenValid?tokenid=
AQIC5wM2LY4SfczeSHZ5cHJMmQYU3f5imB2fBBTpkCXADS0=-AT-AAJTSQACMDE=#

The operation returns a value of true or false.

Logout
The logout REST interface validates the token using the POST operation. The following URL
defines a subjectid (tokenid) that represents the user to be logged out of OpenSSO Enterprise.

http://OpenSSO-host:OpenSSO-port/opensso/identity/logout?subjectid=
AQIC5wM2LY4SfczeSHZ5cHJMmQYU3f5imB2fBBTpkCXADS0=-AT-AAJTSQACMDE=#

The operation closes the session identified by the tokenid and logs the user out.

Logout

Chapter 10 • Using the REST Identity Interfaces 165

Authorization
The authorize REST interface will verify user authorization against created policies. Currently,
the interface can check whether the user is authorized to perform a particular operation (GET
or POST) on a particular HTTP resource. The URL needs to be populated with the following
information.

■ uri defines the resource for which authorization is being requested.
■ action defines the operation for which authorization is being requested.
■ subjectid defines the tokenid of the user for which authorization is being requested.

The following URL defines a user that wants to POST to http://www.sun.com:90.

http://OpenSSO-host:OpenSSO-port/opensso/identity/authorize?uri=
http://www.sun.com:90&action=POST&subjectid=AQIC5wM2LY4SfczeSHZ5cHJMmQYU3f5imB2fBBTpkCXADS0=@AAJTSQACMDE=#

The operation returns a value of true or false. If the user is not authorized, an exception is
thrown. Assuming a policy has been created to allow authenticated users to POST to the defined
resource, the above URL would return true.

Logging
The log REST interface will log to the OpenSSO Enterprise Logging Service. The URL needs to
be populated with the following information.

■ appid defines the tokenid of the user with the necessary permissions to write to the log; for
example, amadmin. This is the value of the LOGGEDBY field in the log entry.

■ subjectid defines the tokenid of the user about whom the log record is being written.
■ logname is the module name of the OpenSSO Enterprise component invoking the Logging

Service; for example, amAuthentication.
■ message is the data being logged.

The following URL uses sample values to define these parameters.

http://OpenSSO-host:OpenSSO-port/opensso/identity/log?
appid=

AQIC5wM2LY4Sfcz24GvZCdv6ie9dTJBa3Co7Rn2QUjKCDuM=@AAJTSQACMDE=#

&subjectid==AQIC5wM2LY4SfcwTCcRKSDXEsiJXt71PDAUmN1bm/draPZI=@AAJTSQACMDE=#&logname=amAuthentication&message=test

Authorization

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009166

Searching Identity Types
The search REST interface will search the configured database for a list of identities that match
the input criteria. The URL needs to be populated with the following information.

■ filter defines a set of criteria that controls what is returned by the operation. This is an
optional parameter.

■ attributes_names defines one or more LDAP attributes for which to search. This is an
optional parameter.

■ attribute_values_value-of-attributes_names defines the value of the attribute (as defined
by attributes_names) that is being searched. This is an optional parameter.

■ admin defines the tokenid of the user with the necessary permissions to search; for example
amadmin.

The following URL would return the available agent types.

http://OpenSSO-host:OpenSSO-port/opensso/identity/search?filter=*
&attributes_names=objecttype&attributes_values_objecttype=agent

&admin=AQIC5wM2LY4SfcxCWBCNON1gTsaMaHISbYmTyYosv8pCPVw=@AAJTSQACMDE=#

By default:

string=wsc

string=wsp

string=SecurityTokenService

This example would return all user entries.

http://OpenSSO-host:OpenSSO-port/opensso/identity/search?filter=*
&attributes_names=objectclass&attributes_values_objectclass=person

&admin=AQIC5wM2LY4SfcxCWBCNON1gTsaMaHISbYmTyYosv8pCPVw=@AAJTSQACMDE=#

By default:

string=amAdmin

string=amldapuser

string=dsameuser

string=anonymous

string=amService-URLAccessAgent

string=demo

The operation might also return TokenExpired, NeedMoreCredentials, or GeneralFailure on
other errors.

Searching Identity Types

Chapter 10 • Using the REST Identity Interfaces 167

Display Identity Data
The attributes REST interface will search the configured database for identity information
about the defined user. It retrieves roles and common attributes (including first name and last
name) and is used by applications to obtain a user's profile for application-controlled
authorization. (It is assumed the user defined by subjectid has the appropriate permissions to
display their own identity information.) The URL needs to be populated with the following
information.
■ subjectid defines the tokenid of the user whose identity information is being returned.
■ attributes_names defines one or more LDAP attributes for which values will be returned.

If not defined the URL would return all attributes in the profile.

This is an example URL that would return the specified attribute values from the user's LDAP
profile.

http://OpenSSO-host:OpenSSO-port/opensso/identity/attributes?attributes_names=uid
&subjectid=AQIC5wM2LY4Sfcz6eH4abOQ0el7pnDqmOn6nnn1nrcuE8/w=@AAJTSQACMDE=#

The URL might return something like this:

userdetails.token.id=AQIC5wM2LY4Sfcz6eH4abOQ0el7pnDqmOn6nnn1nrcuE8/w=@AAJTSQACMDE=#

userdetails.attribute.name=sn

userdetails.attribute.value=jning

userdetails.attribute.name=cn

userdetails.attribute.value=jning

userdetails.attribute.name=objectclass

userdetails.attribute.value=sunFederationManagerDataStore

userdetails.attribute.value=top

userdetails.attribute.value=iplanet-am-managed-person

userdetails.attribute.value=iplanet-am-user-service

userdetails.attribute.value=organizationalperson

userdetails.attribute.value=inetadmin

userdetails.attribute.value=iPlanetPreferences

userdetails.attribute.value=person

userdetails.attribute.value=inetuser

userdetails.attribute.value=sunAMAuthAccountLockout

userdetails.attribute.value=sunIdentityServerLibertyPPService

userdetails.attribute.value=inetorgperson

userdetails.attribute.value=sunFMSAML2NameIdentifier

userdetails.attribute.name=userpassword

userdetails.attribute.value={SSHA}XhiE0RMwO/D7SSQ5fYLrTlFjmbHmYbQkIU43FA==

userdetails.attribute.name=uid

userdetails.attribute.value=jning

userdetails.attribute.name=givenname

userdetails.attribute.value=jning

userdetails.attribute.name=inetuserstatus

userdetails.attribute.value=Active

Display Identity Data

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009168

The operation might also return TokenExpired when the token has expired or GeneralFailure
on other errors.

Display Particular Identity Data
The read REST interface will search the configured database for particular identity information
about the user defined by name. The user defined by the admin attribute must have the
permission to read the identity information. The URL needs to be populated with the following
information.

■ name defines the name of the identity whose profile will be read. The value is the Universal
ID in the user's OpenSSO profile.

■ attributes_names defines one or more LDAP attributes for which to search.
■ identity_realm defines the realm in which the identity is configured. This is an optional

parameter.
■ admin defines the tokenid of the user with the necessary permissions to search; for example

amadmin.

This is an example URL that would return the specified attribute values from the user's LDAP
profile.

http://OpenSSO-host:OpenSSO-port/opensso/identity/read?name=jning
&attributes_names=uid

&admin=AQIC5wM2LY4SfcxCWBCNON1gTsaMaHISbYmTyYosv8pCPVw=@AAJTSQACMDE=#

The URL might return something like this:

identitydetails.name=jning

identitydetails.type=user

identitydetails.realm=dc=opensso,dc=java,dc=net

identitydetails.attribute=

identitydetails.attribute.name=uid

identitydetails.attribute.value=jning

The operation might also return PermissionDenied if the user defined by admin does not have
the appropriate permissions, TokenExpired when the token has expired or GeneralFailure on
other errors.

Display Particular Identity Data

Chapter 10 • Using the REST Identity Interfaces 169

Creating Identity Types
The create REST interface will create the defined identity type in the configured data store. The
URL needs to be populated with the following information.
■ identity_name defines the value of the Universal ID attribute in the user's OpenSSO profile.
■ identity_attribute_names defines one or more LDAP attributes to be created for the

identity.
■ identity_attribute_values_value-of-identity_attribute_names defines the value of the

attribute (defined by identity_attribute_name) being created.
■ identity_realm defines the realm in which the identity is to be created. This is an optional

parameter.
■ identity_type defines the type of identity being created.
■ admin defines the tokenid of the user with the necessary permissions to search; for example

amadmin.

This URL would create a user type.

http://OpenSSO-host:OpenSSO-port/opensso/identity/create?identity_name=rest_user
&identity_attribute_names=userpassword&identity_attribute_values_userpassword=secret123

&identity_attribute_names=sn&identity_attribute_values_sn=sn_of_rest_user
&identity_attribute_names=cn&identity_attribute_values_cn=cn_of_rest_user
&identity_realm=/&identity_type=user

&admin=AQIC5wM2LY4Sfcwbg2YdVMaYsfEqdxHDMUc47WSLBNTOlrk=@AAJTSQACMDE=#

The following URL would create a web agent profile for Policy Agent 3.0 types.

http://OpenSSO-host:OpenSSO-port/opensso/identity/create?identity_name=webagent
&identity_realm=/&identity_type=AgentOnly

&identity_attribute_names=userpassword&identity_attribute_values_userpassword=secret123

&identity_attribute_names=AgentType&identity_attribute_values_AgentType=WebAgent

&identity_attribute_names=SERVERURL&identity_attribute_values_SERVERURL=

http://web-agent-host:web-agent-port/opensso

The following URL would create a J2EE agent profile for Policy Agent 3.0 types.

http://OpenSSO-host:OpenSSO-port/opensso/identity/create?identity_name=j2eeagent
&identity_realm=/&identity_type=AgentOnly

&identity_attribute_names=userpassword&identity_attribute_values_userpassword=secret123

&identity_attribute_names=AgentType&identity_attribute_values_AgentType=J2EEAgent

&identity_attribute_names=SERVERURL

&identity_attribute_values_SERVERURL=http://J2EE-agent-host:J2EE-agent-port/opensso
&identity_attribute_names=AGENTURL&identity_attribute_values_AGENTURL=

http://OpenSSO-host:OpenSSO-port/opensso

The following URL would create a 2.2 agent profile.

Creating Identity Types

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009170

http://OpenSSO-host:OpenSSO-port/opensso/identity/create?identity_name=webagent70
&identity_attribute_names=userpassword&identity_attribute_values_userpassword=secret123

&identity_realm=/&identity_type=Agent

&admin=AQIC5wM2LY4SfcxCWBCNON1gTsaMaHISbYmTyYosv8pCPVw=@AAJTSQACMDE=#

Tip – Use the search REST interface to verify that the identity type has been created.

Updating Identity Data
The update REST interface will update an identity with the information defined in the URL.
The URL needs to be populated with the following information.

■ name defines the identity profile which is being updated. The value is the Universal ID in the
user's OpenSSO profile.

■ identity_attribute_names defines one or more LDAP attributes to be updated.
■ identity_attribute_values_value-of-identity_attribute_names defines the value of the

attribute (defined by identity_attribute_names) being updated.
■ identity_realm defines the realm in which the identity is configured.
■ admin defines the tokenid of the user with the necessary permissions to search; for example

amadmin.

The following URL would update the user profile with an email address.

http://OpenSSO-host:OpenSSO-port/opensso/identity/update?identity_name=rest_user
&identity_attribute_names=mail&identity_attribute_values_mail=restUser@rest-DOT-org

&admin=AQIC5wM2LY4SfcxCWBCNON1gTsaMaHISbYmTyYosv8pCPVw=@AAJTSQACMDE=#

Use the read REST interface to verify the update.

Deleting an Identity Profile
The delete REST interface will remove the identity profile (defined as the value of the
identity_name parameter) from the user data store. The URL needs to be populated with the
following information.

■ identity_name defines the profile being deleted. The value is the Universal ID in the user's
OpenSSO profile.

■ identity_type defines the type of identity being deleted.
■ identity_realm defines the realm in which the identity is configured.
■ admin defines the tokenid of the user with the necessary permissions to delete a user profile;

for example amadmin.

Deleting an Identity Profile

Chapter 10 • Using the REST Identity Interfaces 171

The following URL would delete the rest_user profile previously created.

http://OpenSSO-host:OpenSSO-port/opensso/identity/delete?identity_name=rest_user
&identity_type=user

&admin=AQIC5wM2LY4SfcxCWBCNON1gTsaMaHISbYmTyYosv8pCPVw=@AAJTSQACMDE=#

Use the search REST interface to verify the deletion.

Deleting an Identity Profile

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009172

Securing Web Services

Web services are developed using open standards such as XML, SOAP, WSDL and HTTPS. Sun
JavaTM System OpenSSO Enterprise provides the functionality to secure web services
communications using authentication agents and the Security Token Service. This chapter
contains the following sections:

■ “About Web Services Security” on page 173
■ “About Web Services Security with OpenSSO Enterprise” on page 174
■ “The Security Token Service” on page 178
■ “Security Agents” on page 180
■ “Testing Web Services Security” on page 186

About Web Services Security
A web service is an application whose functionality and interfaces are exposed through open
technology standards including the eXtensible Markup Language (XML), SOAP, the Web
Service Description Language (WSDL) and HTTP(S). A web service client (WSC) sends a
SOAP message to the endpoint (identified by a URI) of a web service provider (WSP); after
receiving the request, the WSP responds appropriately with a SOAP response. The built-in
openness of these technologies though creates security risks. Initially, securing these web
services communications was addressed using transport level security in which the complete
message was encrypted and transmitted using Secure Sockets Layer (SSL) with mutual
authentication. But with current enterprise topologies (including proxies, load balancers, data
centers, and the like) security must now be addressed when intermediaries are involved. Web
services must be prepared to:

■ Pass fine-grained security data (for example, identity attributes for authorization).
■ Enable one or more trusted authorities to broker trust between communicating entities.
■ Maintain security on a per message basis.
■ Maintain transport layer independence.

11C H A P T E R 1 1

173

These requirements call for message level security (also referred to as application level security
and end-to-end security) in which only the content of the message is encrypted. Message level
security embeds all required security information in a message's SOAP header. Additionally,
encryption and digital signatures can be applied to the data itself. The advantages of message
level security are that:

■ Security stays with the message through all intermediaries, across domain boundaries, and
after the message arrives at its destination.

■ Security can be selectively applied to different portions of the message.
■ Security is independent of the application environment and transport protocol.

To address message level security in web services communications, organizations such as the
Organization for Advancement of Structured Information Standards (OASIS), the Liberty
Alliance Project and the Java Community Process (JCP) have proposed specifications based on
open standards and from them OpenSSO Enterprise has implemented “The Security Token
Service” on page 178 using the WS-Trust specification and “Security Agents” on page 180.

About Web Services Security with OpenSSO Enterprise
Web services are accessed by sending SOAP messages to service endpoints identified by URIs,
and receiving SOAP message responses. Towards this end, OpenSSO Enterprise has
implemented a Security Token Service and agents to enforce security. This architecture is
illustrated below.

About Web Services Security with OpenSSO Enterprise

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009174

http://www.oasis-open.org/home/index.php
http://www.projectliberty.org/
http://www.projectliberty.org/
http://www.jcp.org/
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf

The top half of the diagram illustrates a typical web services communication with the addition
of agents (WS-Security Provider Plug-in) to enforce message level security and a security token

FIGURE 11–1 Web Services Security Architecture in OpenSSO Enterprise

About Web Services Security with OpenSSO Enterprise

Chapter 11 • Securing Web Services 175

service to issue security tokens. The bottom half represents OpenSSO Enterprise and the
interfaces that are called by the WSC and WSP to accomplish web services security. The agents
provide access to OpenSSO Enterprise (using the Client SDK) to secure and validate the SOAP
requests and responses.

When using web services security, the outgoing web service messages and the incoming web
service calls must be authenticated and authorized. Towards this end, the messages must be
modified to add headers containing credentials for those purposes. Additional identity
attributes (for example, the roles and memberships) can also be added and used by the web
service provider's agent and/or by the web service's business logic to provide appropriate
service. The authentication and authorization by the agent at the web service provider would
leverage the OpenSSO Enterprise Authentication Service and Policy Service. For
authentication, it extracts the authentication credentials from the web service request and calls
the appropriate authentication module for validation. For authorization, the web service's
endpoint port and the operation being performed is the resource for the defined policy.

Security agents are deployed on both the WSC side and the WSP side of the communication.
OpenSSO Enterprise contains interfaces with which the agents (deployed remotely to the
server) can communicate. The WSC which makes the web service call provides support for
securing outgoing communications and validating incoming responses from the WSP. There
are two kinds of interfaces used by the WSC, one for administration and another used at run
time for securing and validating requests and responses. The WSP which provides service based
on calls from the WSC provides support for validating incoming requests and secure outgoing
responses. Similar to the WSC, the WSP has an administration interface and an interface used
at run time for securing and validating requests and responses. There are also administrative
interfaces to configure (local to OpenSSO Enterprise) the Security Token Service and the
respective security mechanisms supported by the WSC and WSP. These configurations are
stored in the OpenSSO Enterprise configuration data store.

The following diagram illustrates support for web services security in OpenSSO Enterprise. The
Security Token Service is supported with any party that understands the WS-Trust specification
on which it is based. On the WSC side, an agent developed using the JSR-196 specification is
supported on Glassfish (Sun Application Server). (Currently there are no other WSC supported
agents although custom handlers and filters can be developed.) On the WSP, the same JSR-196
agent is supported on the Glassfish (Sun Application Server) while Sun policy agents 3.0 are
supported on WebLogic, WebSphere and Tomcat.

About Web Services Security with OpenSSO Enterprise

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009176

See “The Security Token Service” on page 178 and “Security Agents” on page 180 for more
information.

FIGURE 11–2 Web Services Security Support in OpenSSO Enterprise

About Web Services Security with OpenSSO Enterprise

Chapter 11 • Securing Web Services 177

The Security Token Service
When a WSC communicates with a WSP it must first connect with a trusted authority to
determine the security mechanism and, optionally, obtain the security token expected by the
WSP. This information is registered with the trusted authority by the WSP. The Security Token
Service is a trusted authority that provides issuance and management of security tokens; that is,
it makes security statements or claims often, although not required to be, in cryptographically
protected sets. The OpenSSO Enterprise trust brokering process is as follows.

1. An authenticated WSC requests a token to access a particular WSP.
2. The Security Token Service verifies the credentials presented by the WSC.
3. In response to an affirmative verification, the Security Token Service issues a security token

that provides proof that the client has been authenticated.
4. The WSC presents the security token to the WSP.
5. The WSP verifies that the token was issued by a trusted Security Token Service, affirming

authentication and authorizing access.

The Security Token Service communicates using the WS-Trust protocol and serves WS-I BSP
security tokens. (Any WSC or WSP can communicate remotely with OpenSSO Enterprise
Security Token Service using the WS-Trust protocol.) The Security Token Service also serves as
a Discovery Service, able to communicate using the Liberty ID-WSF protocol and serve Liberty
Alliance Project security tokens.
■ “Web Container Support” on page 178
■ “Security Tokens” on page 179
■ “Token Conversion” on page 179
■ “Configuring the Security Token Service” on page 180

Web Container Support
OpenSSO Enterprise as a Security Token Service is supported on different web containers
including:
■ Glassfish (Sun Application Server 9.x)
■ Sun Web Server 7.x
■ WebLogic
■ Websphere
■ Tomcat
■ Oracle Application Server
■ JBoss
■ Geronimo

With this support, any WSC or WSP can communicate remotely with OpenSSO Enterprise
Security Token Service using the WS-Trust protocol.

The Security Token Service

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009178

Security Tokens
The Security Token Service issues, renews, cancels, and validates security tokens that can
contain an identifier for either the WSC or the actual end user. It also allows you to write a
proprietary token providers using the included service provider interfaces (SPI). Finally, it
provides application programming interfaces (API), based on the WS-Trust protocol, that
allow applications to access the service. By default, the Security Token Service serves tokens
based on the Liberty Alliance Project and WS-Trust specifications. The WS-I BSP specifications
and the Liberty Alliance Project developed security profiles for web services security. These
security mechanism are implemented for web services security using the provider interfaces.
The following list contains the supported mechanisms.

Anonymous Carries no security information.

User Name Token Carries basic information (username and, optionally, a password or shared secret) for purposes of
authenticating the user identity to the WSP. Communication is done in plain text so SSL over HTTPS
transport must be used to protect the credentials.

User Name
Token-Plain

Carries basic information (username and a clear text password or shared secret) for purposes of
authenticating the user identity to the WSP. Communication is done in plain text so SSL over HTTPS
transport must be used to protect the credentials.

Kerberos Token Carries basic information (username and, optionally, a password or shared secret), in a Kerberos token,
for purposes of authenticating the user identity to the WSP.

X.509 Token Contains an X.509 formatted certificate for authentication using credentials created with a public key
infrastructure (PKI). In this case, the WSC and WSP must trust each other's public keys or share a
common, trusted certificate authority.

SAML-Holder-Of-Key
Token

Uses the SAML holder-of-key confirmation method whereby the WSC supplies a SAML assertion with
public key information as the means for authenticating the requester to the web service provider. A second
signature binds the assertion to the SOAP payload. Can use either SAML v1.x or SAML v2.

SAML-SenderVouches
Token

Uses the SAML sender-vouches confirmation method whereby the WSC adds a SAML assertion and a
digital signature to a SOAP header. A sender certificate or public key is also provided with the signature.
Can use either SAML v1.x or SAML v2.

Token Conversion
The Security Token Service is able to convert from one token format to another. For example,
an OpenSSO Enterprise SSOToken can be converted to a SAML v2 token or a SAML v1.x token
to a SAML v2 token. Token conversion plug-ins can be developed using the token conversion
interface in the com.sun.identity.wss.sts package.

SAML-SenderVouches Token

Chapter 11 • Securing Web Services 179

Configuring the Security Token Service
To configure a WSC to communicate with the Security Token Service end point (by default,
http://server:port/opensso/sts), download and deploy the Client SDK WAR and see the
README and samples. To protect the Security Token Service, login to the console and click the
Configuration tab. Following, click the Global tab and the Security Token Service link for
security configurations. The Security Token Service WSDL is fam.sts.

Security Agents
There are two kinds of security agents developed for web services security. One protects the
WSC and the other protects the WSP. The WSC which makes the web service call provides
support for securing the outgoing communications and validating the incoming responses
from a WSP. The WSP which provides a service from a WSC call provides support for validating
the incoming request and securing the outgoing responses. These agents may establish the
authenticated identities used by the containers allowing:

■ A server side agent to verify security tokens or signatures on incoming requests and extract
principal data or assertions before adding them to the client security context.

■ A client side agent to add security tokens to outgoing requests, sign messages, and interact
with the trusted authority to locate targeted web service providers.

A typical interaction between a WSC and a WSP begins with a request from the WSC. The
container on which the WSP is deployed receives the request and dispatches it to perform the
requested operation. When the web service completes the operation, it creates a response that is
returned back to the client. The following illustration and procedure illustrates a scenario when
both client and service web containers employ the Java Authentication SPI.

Security Agents

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009180

1. The client browser's attempt to invoke a web service is intercepted by the client's web
container.

2. The deployed security agent on the client's web container is invoked to secure the request
(based on the security policy of the web service being invoked).

3. The client's web container sends the secured request message to the web service.
4. The web service's web container receives the secured request message and it's deployed

security agent is invoked to validate the request and obtain the identity of the caller.
5. Assuming successful authentication, the web service's web container invokes the requested

web service.
6. This action (the invocation of the web service) is returned to the web service's web container

as a response.
7. The deployed security agent on the web service's web container is invoked to secure the

response message.
8. The web service's web container sends the secured response message to the client.
9. The deployed security agent on the client's web container is invoked to validate the secured

response message.
10. The invocation of the web service is returned to the client browser.

Security processes can be delegated to a security agent at any of the following interaction points.
■ Securing a request on the client side
■ Validating a request on the provider side
■ Securing a response on the provider side
■ Validating a response on the client side

Authentication
Agent

Authentication
Agent

Client
Container

Service
Container

Client Service

Security Agents

Chapter 11 • Securing Web Services 181

This security agent uses an instance of OpenSSO Enterprise for all authentication decisions.
Web services requests and responses are passed to the authentication modules using standard
Java representations based on the transmission protocol. Currently, the following security
agents are provided.

■ “WSC Security Agents” on page 182
■ “WSP Security Agent” on page 183

WSC Security Agents
The WSC security agent protects the endpoints of a web service that uses HTTP for
communication. After the WSC security agent is deployed in a web container on the WSP side,
all HTTP requests for access to the web services protected by the agent are redirected to the
login and authentication URLs defined in the OpenSSO Enterprise configuration data store on
the WSC side.

Note – The available WSC security agent was developed using the Java Specification Request
(JSR) 196. JSR 196 is the Java Authentication Service Provider Interface for Containers. It defines
a standard service provider interface (SPI) with which a security agent can be developed to
police Java EE containers on either the client side or the server side. These agents establish the
authenticated identities used by the containers. The JSR 196 specifications are available at
http://www.jcp.org/en/jsr/detail?id=196.

When the WSC makes a request to access a web application (1 in the illustration below), the
agent intercepts the request and redirects it (via the browser) to OpenSSO Enterprise for
authentication (2). Upon successful authentication, a response is returned to the application,
carrying a token as part of the Java EE Subject (3). This token is used to bootstrap the
appropriate Liberty ID-WSF security profile. If the response is successfully authenticated, the
request is granted (3).

Security Agents

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009182

http://www.jcp.org/en/jsr/detail?id=196

Note – The functionality of the HTTP security agent is similar in to that of the Java EE policy
agents when used in SSO ONLY mode. This is a non restrictive mode that uses only the
OpenSSO Enterprise Authentication Service to authenticate users attempting access. For more
information on Java EE policy agents, see the Sun Java System Access Manager Policy Agent 2.2
User’s Guide.

Note – Application Server 9 has the ability to configure only one HTTP agent per instance.
Therefore, all authentication requests for all web applications hosted in the container will be
forwarded to the one configured agent.

WSP Security Agent
The WSP which provides a service based on calls from a WSC provides support for validating
incoming requests and securing outgoing responses. This agent encapsulates the Web
Services-Interoperability Basic Security Profile (WS-I BSP) tokens as well as the Liberty Identity
Web Services Framework (Liberty ID-WSF) SOAP Binding Specification tokens:

■ “Supported Web Services-Interoperability Basic Security Profile Security Tokens” on
page 184

■ “Supported Liberty Alliance Project Security Tokens” on page 185

HTTP Client
(Browser)

HTTP Provider
Agent

Sun Java System
Application Server

PE 9.0

Sun Java System
Access Manager

7.1

Security Agents

Chapter 11 • Securing Web Services 183

http://docs.sun.com/doc/819-2143
http://docs.sun.com/doc/819-2143
http://www.projectliberty.org/liberty/content/download/1299/8262/file/liberty-idwsf-soap-binding-v1.2.pdf
http://www.projectliberty.org/liberty/content/download/1299/8262/file/liberty-idwsf-soap-binding-v1.2.pdf

Supported Web Services-Interoperability Basic Security Profile
Security Tokens
In a scenario where security is enabled using Web Services-Interoperability Basic Security
Profile (WS-I BSP) tokens, the client requests access to a service. The configured security agent
reads the configuration from the OpenSSO Enterprise configuration data store and redirects the
request to the OpenSSO Enterprise Authentication Service for authentication and to determine
the security mechanism registered by the WSP and obtain the expected security tokens. After a
successful authentication, the WSC provides a SOAP body while the SOAP security agent on
the WSC side inserts the security header and a token. The message is then signed before the
request is sent to the WSP.

When received by the security agent on the WSP side, the signature and security token in the
SOAP request are verified before forwarding the request on to the WSP itself. The WSP then
processes it and returns a response, signed by the security agent on the WSP side, back to the
WSC. The SOAP security agent on the WSC side then verifies the signature before forwarding
the response on to the WSC. The following diagram illustrates the interactions as described.

The following WS-I BSP security tokens are supported in this release.

User Name A secure web service requires a user name, password and, optionally, a signed the request. The web service
consumer supplies a username token as the means for identifying the requester and a password, shared
secret, or password equivalent to authenticate the identity to the web service provider.

X.509 A secure web service uses a PKI (public key infrastructure) in which the web service consumer supplies a
public key as the means for identifying the requester and accomplishing authentication with to the web
service provider.

SAML-Holder-Of-KeyA secure web service uses the SAML holder-of-key confirmation method. The web service consumer
supplies a SAML assertion with public key information as the means for authenticating the requester to
the web service provider. A second signature binds the assertion to the SOAP payload.

SAML-SenderVouchesA secure web service uses the SAML sender-vouches confirmation method. The web service consumer
adds a SAML assertion and a digital signature to a SOAP header. A sender certificate or public key is also
provided with the signature.

HTTP Client
(Browser)

Web
Service
Provider
(WSP)

SOAP
Provider
Agent

Web
Service
Client
(WSC)

SOAP
Provider
Agent

User Name

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009184

Supported Liberty Alliance Project Security Tokens
In a scenario where security is enabled using Liberty Alliance Project tokens, the client requests
(via the WSC) access to a service. The security agent redirects the request to the OpenSSO
Enterprise Authentication Service for authentication and to determine the security mechanism
registered by the WSP and obtain the security tokens expected. After a successful
authentication, the WSC provides a SOAP body while the SOAP security agent on the WSC side
inserts the security header and a token. The message is then signed before the request is sent to
the WSP.

When received by the SOAP security agent on the WSP side, the signature and security token in
the SOAP request are verified before forwarding the request on to the WSP itself. The WSP then
processes it and returns a response, signed by the SOAP security agent on the WSP side, back to
the WSC. The SOAP security agent on the WSC side then verifies the signature before
forwarding the response on to the WSC. The following diagram illustrates the interactions as
described.

The following Liberty Alliance Project security tokens are supported in this release:

X.509 A secure web service uses a PKI (public key infrastructure) in which the web service consumer supplies a
public key as the means for identifying the requester and accomplishing authentication with the web
service provider. Authentication with the web service provider using processing rules defined by the
Liberty Alliance Project.

HTTP Client
(Browser)

Web
Service
Provider

SOAP
Provider
Agent

Web
Service
Client

HTTP
Provider
Agent

SOAP
Provider
Agent

Authentication
Service

Trusted
Authority

(Discovery
Service)

Sun Java System
Access Manager 7.1

X.509

Chapter 11 • Securing Web Services 185

BearerToken A secure web service uses the Security Assertion Markup Language (SAML) SAML Bearer token
confirmation method. The web service consumer supplies a SAML assertion with public key information
as the means for authenticating the requester to the web service provider. A second signature binds the
assertion to the SOAP message This is accomplished using processing rules defined by the Liberty Alliance
Project

SAMLToken A secure web service uses the SAML holder-of-key confirmation method. The web service consumer adds a
SAML assertion and a digital signature to a SOAP header. A sender certificate or public key is also
provided with the signature. This is accomplished using processing rules defined by the Liberty Alliance
Project.

Testing Web Services Security
OpenSSO Enterprise provides two samples that can be used to test web services security. The
Stock Quote Sample and the Loan Service Sample are available in the WSS Agent download
available on OpenSSO Downloads. The Stock Quote Sample is for simple web services security.
It focuses on building a WSP and a WSC, authenticating the WSC before access to the service is
given, and guaranteeing the integrity of the authentication data. The Loan Service Sample is an
advanced test case where Security Token Service brokerage is demonstrated.

BearerToken

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009186

https://opensso.dev.java.net/public/use/index.html

Creating and Deploying OpenSSO Enterprise
WAR Files

SunTM OpenSSO Enterprise is distributed as a web archive (WAR) file named opensso.war. In
addition to deploying OpenSSO Enterprise server, you can also use opensso.war to create a
customized server WAR file and specialized WAR files for an OpenSSO Enterprise Distributed
Authentication UI server, the IDP Discovery Service, OpenSSO Enterprise Administration
Console only, and OpenSSO Enterprise server without the Administration Console. This
chapter describes these sections:

■ “Overview of WAR Files in Java EE Software Development” on page 187
■ “Deploying the OpenSSO Enterprise WAR File” on page 188
■ “Customizing and Redeploying opensso.war” on page 191
■ “Creating Specialized OpenSSO Enterprise WAR Files” on page 191

Overview of WAR Files in Java EE Software Development
OpenSSO Enterprise is built on the Java EE platform, which uses a component model to create
full-scale applications. A component is self-contained functional software code assembled with
other components into a Java EE application. The Java EE application components can be
deployed separately on different servers. Java EE application components include the following:

■ Client components such as including dynamic web pages, applets, and a Web browser that
run on the client machine.

■ Web components such as servlets and Java Server Pages (JSPs) that run within a web
container.

■ Business components that meets the needs of a particular enterprise domain such as
banking, retail, or finance. Such business components also run within a web container.

■ Enterprise infrastructure software that runs on legacy machines.

12C H A P T E R 1 2

187

Web Components
When a web browser executes a Java EE application, it deploys server-side objects known as
web components. JSP and corresponding servlets are two such web components.

Servlets Small Java programs that dynamically process requests and
construct responses from a web browser. Servlets run within web
containers.

Java Server Pages (JSPs) Text-based documents that contain static template data such as
HTML, Scalable Vector Graphics (SVG), Wireless Markup
Language (WML), or eXtensible Markup Language (XML). JSPs
also contain elements such as servlets that construct dynamic
content.

How Web Components are Packaged
Java EE components are usually packaged separately, and then bundled together into an
Enterprise Archive (EAR) file for application deployment. Web components are packaged in
WAR files. Each WAR file contains servlets, JSPs, a deployment descriptor, and related resource
files.

Static HTML files and JSP are stored at the top level of the WAR directory. The top-level
directory contains the WEB-INF subdirectory which contains tag library descriptor files in
addition to the following:

Server-side classes Servlets, JavaBean components and related Java class files. These must be
stored in the WEB-INF/classes directory.

Auxiliary JARs Tag libraries and any utility libraries called by server-side classes. These
must be stored in the WEB-INF/lib directory.

web.xml The web component deployment descriptor is stored in the WEB-INF
directory

Deploying the OpenSSO Enterprise WAR File
■ “OpenSSO Enterprise Deployment Considerations” on page 189
■ “To Deploy the OpenSSO Enterprise Server WAR File:” on page 189

Deploying the OpenSSO Enterprise WAR File

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009188

OpenSSO Enterprise Deployment Considerations
Before you deploy the OpenSSO Enterprise WAR file, here are a few changes to consider from
previous releases of Access Manager and Federation Manager:

■ You deploy OpenSSO Enterprise from the opensso.war file, using the web container
administration console or deployment command. You no longer run the Java Enterprise
System installer.

■ You initially configure OpenSSO Enterprise using either the GUI or command-line
Configurator. Then, to perform additional configuration, you use either the Administration
Console or the new ssoadm command-line utility. You no longer run the amconfig script
using variables in the the amsamplesilent file as input.

■ Configuration data, including policy agent configuration data, is stored in a centralized
repository. This repository can be either Sun Java System Directory Server or the OpenSSO
data store (which is usually transparent to the user). OpenSSO Enterprise server does not
use the AMConfig.properties or serverconfig.xml files, except for co-existence with
previous versions of Access Manager.

▼ To Deploy the OpenSSO Enterprise Server WAR File:
The following procedure summarizes the OpensSSO Enterprise WAR file deployment. Links
are provided to the detailed steps in the Sun OpenSSO Enterprise 8.0 Installation and
Configuration Guide.

If necessary, install, configure, and start one of the supported web containers listed in Chapter
2,“Deploying the OpenSSO Enterprise Web Container,” in Sun OpenSSO Enterprise 8.0
Installation and Configuration Guide.

Download and unzip the opensso_enterprise_80.zip file from one of the following sites:

■ Sun: http://www.sun.com/software/products/opensso_enterprise
or

■ OpenSSO site: http://opensso.dev.java.net/public/use/index.html

Be sure to check the Sun OpenSSO Enterprise 8.0 Release Notesfor any current issues.

Deploy the opensso.war file to the web container, using the web container administration
console or deployment command.
Detailed steps are in Chapter 3, “Installing OpenSSO Enterprise,” in Sun OpenSSO
Enterprise 8.0 Installation and Configuration Guide.

1

2

3

Deploying the OpenSSO Enterprise WAR File

Chapter 12 • Creating and Deploying OpenSSO Enterprise WAR Files 189

http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320/ghnnu?a=view
http://docs.sun.com/doc/820-3320/ghnnu?a=view
http://docs.sun.com/doc/820-3320/ghnnu?a=view
http://www.sun.com/software/products/opensso_enterprise
http://opensso.dev.java.net/public/use/index.html
http://docs.sun.com/doc/820-3745
http://docs.sun.com/doc/820-3320/gfsgx?a=view
http://docs.sun.com/doc/820-3320/gfsgx?a=view

Run either the GUI or command-line Configurator.
To run the GUI Configurator, enter the following URL in your browser:
protocol://host.domain:port/deploy-uri

For example: https://opensso.example.com:58080/opensso

If you are running the GUI Configurator, enter values in the Configurator fields or accept the
default value for some fields. The GUI Configurator has two configuration options:

■ The Default Configuration option requires you to enter only the OpenSSO Enterprise
administrator (amAdmin) and default policy agent (UrlAccessAgent) passwords. The
Configurator then uses default values for the other configuration options.
Use the Default Configuration for development environments or simple demonstration
purposes when you just want to evaluate OpenSSO Enterprise features.

■ The Custom Configuration option allows you to enter specific configuration values for
your deployment (or accept the default values).
Use the Custom Configuration for production and more complex environments. For
example, a multi-server installation with several OpenSSO Enterprise instances behind a
load balancer.

Detailed steps for configuring OpenSSO Enterprise are in:

■ Chapter 4, “Configuring OpenSSO Enterprise Using the GUI Configurator,” in Sun
OpenSSO Enterprise 8.0 Installation and Configuration Guide
or

■ Chapter 5, “Configuring OpenSSO Enterprise Using the Command-Line Configurator,” in
Sun OpenSSO Enterprise 8.0 Installation and Configuration Guide

Launch OpenSSO Enterprise using the specific web container console or deployment command,
or by specifying the URL from Step 4 in your browser.

Login to the Console as the OpenSSO Enterprise administrator (amadmin) using the password
you specified when you ran the Configurator.

To make additional configuration changes to your deployment, use the OpenSSO
Administration Console or the ssoadm command-line utility.
For information, refer to the OpenSSO Administration Console Online Help or the Sun
OpenSSO Enterprise 8.0 Administration Reference.

4

5

6

7

Deploying the OpenSSO Enterprise WAR File

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009190

http://docs.sun.com/doc/820-3320/gfsgz?a=view
http://docs.sun.com/doc/820-3320/gfsgz?a=view
http://docs.sun.com/doc/820-3320/ghhqv?a=view
http://docs.sun.com/doc/820-3320/ghhqv?a=view
http://docs.sun.com/doc/820-3886
http://docs.sun.com/doc/820-3886

Customizing and Redeploying opensso.war

The opensso.war file contains all OpenSSO Enterprise components. To customize OpenSSO
Enterprise, you must update and redeploy this file.

If you have not already done so, download and unzip the opensso_enterprise_80.zip file.
The opensso.war file is then in the zip-root/deployable-war directory, where zip-root is where
you unzipped the file.

▼ To Customize and Redeploy opensso.war
Make sure that your JAVA_HOME environment variable points to a JDK of version 1.5 or later.

Create a staging directory for your customized WAR file. For example:
mkdir customized-opensso

In the staging directory, extract the files from opensso.war:
cd customized-opensso

jar xvf zip-root/opensso/deployable-war/opensso.war

Customize the files required for your deployment.

Create the new customized WAR file:
cd customized-opensso

jar cvf zip-root/opensso/deployable-war/customized-opensso.war

In this example. customized-opensso.war is the name of the new customized OpenSSO
Enterprise WAR file.

Deploy and configure the new customized OpenSSO WAR file in your specific web container, as
described in the Sun OpenSSO Enterprise 8.0 Installation and Configuration Guide.

Creating Specialized OpenSSO Enterprise WAR Files
You can use the opensso.war file to create these specialized WAR files:

■ Distributed Authentication UI server
■ OpenSSO Administration Console only
■ OpenSSO Enterprise server without the Administration Console
■ IDP Discovery Service

1

2

3

4

5

6

Creating Specialized OpenSSO Enterprise WAR Files

Chapter 12 • Creating and Deploying OpenSSO Enterprise WAR Files 191

http://docs.sun.com/doc/820-3320

If you have not already done so, download and unzip the opensso_enterprise_80.zip file.
You will then need the following files in the zip-root/deployable-war directory to create a
specialized WAR file, where zip-root is where you unzipped the opensso_enterprise_80.zip
file:

■ opensso.war contains all OpenSSO Enterprise components.
■ fam-distauth.list, fam-console.list, fam-noconsole.list, or

fam-idpdiscovery.list contain a list of files required to create a specialized WAR file.
■ distauth, console, noconsole, and idpdiscovery directories contains the additional files

you will need to create, deploy, and configure a specialized WAR file.

▼ To Create a Specialized OpenSSO Enterprise WAR File
Make sure that your JAVA_HOME environment variable points to a JDK of version 1.5 or later.

Create a staging directory and extract the files from opensso.war in this staging directory. For
example:
mkdir opensso-staging

cd opensso-staging

jar xvf zip-root/opensso/deployable-war/opensso.war

Create the new specialized WAR file, as follows:
cd opensso-staging

jar cvf zip-root/opensso/deployable-war/new-war-filename.war \

@zip-root/opensso/deployable-war/war-file.list

■ new-war-filename is the name of the new WAR file. For example: opensso-distauth.war,
opensso-idpdiscovery.war, opensso-consoleonly.war, or opensso-noconsole.war.
Note: Some web containers require the Distributed Authentication UI server WAR file
name to use the same name as the deployment URI. Check with your web container
documentation for more information.

■ war-file.list specifies the list of files required for the new WAR file, as follows:
fam-distauth.list, fam-console.list, or fam-noconsole.list, or
fam-idpdiscovery.list.

Update the WAR file created in previous step with the additional files required for new
specialized WAR file. For example:
cd zip-root/opensso/deployable-war/specialized-files-directory
jar uvf zip-root/opensso/deployable-war/new-war-filename.war *

■ specialized-files-directory specifies the directory where the additional files reside:
■ distauth

1

2

3

4

Creating Specialized OpenSSO Enterprise WAR Files

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009192

■ console

■ noconsole

■ idpdiscovery

■ new-war-filename is the name of the new specialized WAR file.

You are now ready to deploy and configure the new specialized WAR file. For the detailed steps,
see the following chapters:
■ Chapter 8, “Deploying a Distributed Authentication UI Server,” in Sun OpenSSO

Enterprise 8.0 Installation and Configuration Guide
■ Chapter 9, “Deploying the Identity Provider (IDP) Discovery Service,” in Sun OpenSSO

Enterprise 8.0 Installation and Configuration Guide
■ Chapter 10, “Installing the OpenSSO Enterprise Console Only,” in Sun OpenSSO

Enterprise 8.0 Installation and Configuration Guide
■ Chapter 11, “Installing OpenSSO Enterprise Server Only,” in Sun OpenSSO Enterprise 8.0

Installation and Configuration Guide

Next Steps

Creating Specialized OpenSSO Enterprise WAR Files

Chapter 12 • Creating and Deploying OpenSSO Enterprise WAR Files 193

http://docs.sun.com/doc/820-3320/gcdsz?a=view
http://docs.sun.com/doc/820-3320/gcdsz?a=view
http://docs.sun.com/doc/820-3320/ghgqq?a=view
http://docs.sun.com/doc/820-3320/ghgqq?a=view
http://docs.sun.com/doc/820-3320/ggelz?a=view
http://docs.sun.com/doc/820-3320/ggelz?a=view
http://docs.sun.com/doc/820-3320/ggekl?a=view
http://docs.sun.com/doc/820-3320/ggekl?a=view

194

Customizing the Authentication User Interface

The SunTM OpenSSO Enterprise Authentication Service provides a web-based graphical user
interface (GUI) for all default and custom authentication modules installed in a deployment.
This interface provides a dynamic and customizable means for gathering authentication
credentials by presenting the web-based login pages to a user requesting access.

The Authentication Service GUI is built on top of JATO (J2EE Assisted Take-Off), a Java
Enterprise Edition (Jave EE) presentation application framework. This framework is used to
help developers build complete functional Web applications. You can customize this user
interface per client type, realm, locale, or service.

This chapter includes the following sections:

■ “User Interface Files You Can Modify” on page 195
■ “Customizing Branding and Functionality” on page 205
■ “Customizing the Self-Registration Page” on page 207
■ “Customizing the Distributed Authentication User Server Interface” on page 209

For more information about the Authentication Service, see Part II, “Access Control Using
OpenSSO Enterprise,” in Sun OpenSSO Enterprise 8.0 Technical Overview.

User Interface Files You Can Modify
The authentication GUI dynamically displays the required credentials information depending
upon the authentication module invoked at run time. The following table lists the types of files
you can modify to customize the login pages, logout pages, and error messages. Detailed
information is provided in subsequent sections.

13C H A P T E R 1 3

195

http://docs.sun.com/doc/820-3740/ggqxm?a=view
http://docs.sun.com/doc/820-3740/ggqxm?a=view

TABLE 13–1 Authentication User Interface Files and Their Locations at Installation

File Type Default Location

“Java Server Page (JSP) Files” on page 196 See OpenSSO-Deploy-base/config/auth/default

“XML Files” on page 199 See OpenSSO-Deploy-base/config/auth/default

“JavaScript Files” on page 202 See OpenSSO-Deploy-base/js

“Cascading Style Sheets” on page 202 See OpenSSO-Deploy-base/css

“Images” on page 203 See OpenSSO-Deploy-base/login_images

“Localization Files” on page 204 See OpenSSO-Deploy-base/WEB-INF/classes

OpenSSO-Deploy-base represents the deployment directory where the web container deploys the opensso.war
file

Java Server Page (JSP) Files
The authentication GUI pages are .jsp files with embedded JATO tags. You do not need to
understand JATO to customize the GUI pages. Java server pages handle both the UI elements
and the disciplines displayed through peer ViewBeans.

By default, JSP pages are installed and looked up in the following directory:

OpenSSO-Deploy-base/config/auth/default

Customizing the Login Page
The login page is a common page used by most authentication modules except for the
Membership module. For all other modules, at run time the login page dynamically displays all
necessary GUI elements for the user to enter the required credentials. For example, the LDAP
authentication module login page dynamically displays the LDAP module header, LDAP user
name, and password fields.

To access the default login page, use the following URL:

server-protocol://server-host.server-domain:server-port/service-deploy-uri/UI/Login

To access the default logout page, use the following URL:

server-protocol://server-host.server-domain:server-port/service-deploy-uri/UI/Logout

You can customize the following login page UI elements:
■ Module Header text
■ User Name label and field

User Interface Files You Can Modify

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009196

■ Password label and field
■ Choice value label and field.

The field is a radio button by default, but can be change to a check box.
■ Image (at the module level)
■ Login button

Customizing JSP Templates
Use the JSP templates to customize the look and feel presented in the graphical user interface
(GUI). “Customizing JSP Templates” on page 197 provides descriptions of templates you can
customize. The templates are located in the following directory:

OpenSSO-Deploy-base/config/auth/default

TABLE 13–2 Customizable JSP Templates

File Name Purpose

account_expired.jsp Informs the user that their account has expired and should contact the
system administrator.

auth_error_template.jsp Informs the user when an internal authentication error has occurred. This
JSP usually indicates an authentication service configuration issue.

authException.jsp Informs the user that an error has occurred during authentication.

configuration.jsp Configuration error page that displays during the Self-Registration process.

disclaimer.jsp Customizable disclaimer page used in the self-registration authentication
module.

Exception.jsp Informs the user that an error has occurred.

invalidAuthlevel.jsp Informs the user that the authentication level invoked was invalid.

invalid_domain.jsp Informs the user that no such domain exists.

invalidPassword.jsp Informs the user that the password entered does not contain enough
characters.

invalidPCookieUserid.jsp Informs the user that a persistent cookie user name does not exist in the
persistent cookie domain.

Login.jsp This is a login and password template.

login_denied.jsp Informs the user that no profile has been found in this domain.

login_failed_template.jsp Informs the user that authentication has failed.

Logout.jsp Informs the user that they have logged out.

User Interface Files You Can Modify

Chapter 13 • Customizing the Authentication User Interface 197

TABLE 13–2 Customizable JSP Templates (Continued)
File Name Purpose

maxSessions.jsp Informs the user that the maximum sessions have been reached.

membership.jsp A login page for the self-registration module.

Message.jsp A generic message template for a general error not defined in one of the
other error message pages.

missingReqField.jsp Informs the user that a required field has not been completed.

module_denied.jsp Informs the user that the user does not have access to the module.

module_template.jsp Customizable module page.

new_org.jsp Displayed when a user with a valid session in one organization wants to
login to another organization.

noConfig.jsp Informs the user that no module configuration has been defined.

noConfirmation.jsp Informs the user that the password confirmation field has not been entered.

noPassword.jsp Informs the user that no password has been entered.

noUserName.jsp Informs the user that no user name has been entered. It links back to the
login page.

noUserProfile.jsp Informs the user that no profile has been found. It gives them the option to
try again or select New User and links back to the login page.

org_inactive.jsp Informs the user that the organization they are attempting to authenticate to
is no longer active.

passwordMismatch.jsp Called when the password and confirming password do not match.

profileException.jsp Informs the user that an error has occurred while storing the user profile.

Redirect.jsp Includes a link to a page that has been moved.

register.jsp User self-registration page.

session_timeout.jsp Informs the user that their current login session has timed out.

userDenied.jsp Informs the user that they do not possess the necessary role (for role-based
authentication.)

userExists.jsp Called if a new user is registering with a user name that already exists.

user_inactive.jsp Informs the user that they are not active.

userPasswordSame.jsp Called if a new user is registering with a user name field and password field
have the same value.

wrongPassword.jsp Informs the user that the password entered is invalid.

User Interface Files You Can Modify

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009198

XML Files
XML files describe the authentication module-specific properties based on the Authentication
Module properties DTD file:

OpenSSO-Deploy-base/WEB-INF/Auth_Module_Properties.dtd

OpenSSO Enterprise defines required credentials and callback information for each of the
default authentication modules. By default, authentication XML files are installed in the
following directory:

OpenSSO-Deploy-base/config/auth/default

The following table provides descriptions of the authentication module configuration files.

TABLE 13–3 Authentication Module Configuration XML Files

File Name Description

AD.xml Defines a Login screen for use with Active Directory authentication.

amAuthUnix.xml Defines a Login screen for use with Unix authentication

Anonymous.xml For anonymous authentication, although there are no specific credentials
required to authenticate.

Application.xml Needed for application authentication.

Cert.xml For certificate-based authentication although there are no specific
credentials required to authenticate.

HTTPBasic.xml Defines one screen with a header only as credentials are requested via the
user’s web browser.

JDBC.xml Defines a Login screen for use with Java Database Connectivity (JDBC)
authentication.

LDAP.xml Defines a Login screen, a Change Password screen and two error message
screens (Reset Password and User Inactive).

Membership.xml Default data interface which can be used to customize for any domain.

MSISDN.xml Defines a Login screen for use with Mobile Subscriber ISDN (MSISDN).

NT.xml Defines a Login screen.

RADIUS.xml Defines a Login screen and a RADIUS Password Challenge screen.

SafeWord.xml Defines two Login screens: one for User Name and the next for Password.

SAE.xml Defines a Login screen for Virtual Federation Proxy (Secure Attributes
Exchange)

User Interface Files You Can Modify

Chapter 13 • Customizing the Authentication User Interface 199

TABLE 13–3 Authentication Module Configuration XML Files (Continued)
File Name Description

SAML.xml Defines a Login screen for SAML authentication.

SecurID.xml Defines five Login screens including UserID and Passcode, PIN mode, and
Token Passcode.

Unix.xml Defines a Login screen and an Expired Password screen.

WindowsDesktopSSO.xml Defines a Login screen for Windows Desktop SSO Authentication

Callbacks Elements

Nested Elements

The following table describes nested elements for the Callbacks element.

The Callbacks element is used to define the information a module needs to gather from the
client requesting authentication. Each Callbacks element signifies a separate screen that can be
called during the authentication process.

TABLE 13–4 Nested Elements

Element Required Description

NameCallback * Requests data from the user; for example, a user
identification.

PasswordCallback * Requests password data to be entered by the user.

ChoiceCallback * Used when the application user must choose from
multiple values.

ConfirmationCallback * Sends button information such as text which needs to
be rendered on the module’s screen to the
authentication interface.

HttpCallback * Used by the authentication module with
HTTP-based handshaking negotiation.

SAMLCallback Used for passing either Web artifact or SAML POST
response from SAML service to the SAML
authentication module when this module requests
for the respective credentials. This authentication
module behaves as SAML recipient for both (Web
artifact or SAML POST response) and retrieves and
validates SAML assertions.

User Interface Files You Can Modify

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009200

Attributes

The following table describes attributes for the Callbacks element.

length Number or length of callbacks.

order Sequence of the group of callbacks.

timeout Number of seconds the user has to enter credentials before the page times out.
Default is 60.

template Defines the UI .jsp template name to be displayed.

image Defines the UI or page-level image attributes for the UI customization

header Text header information to be displayed on the UI. Default is Authentication.

error Indicates whether authentication framework/module needs to terminate the
authentication process. If yes, then the value is true. Default is false .

ConfirmationCallback Element
The ConfirmtationCallback element is used by the authentication module to send button
information for multiple buttons. An example is the button text that must be rendered on the
UI page. The ConfirmationCallback element also receives the selected button information
from the UI.

Nested Element

ConfirmationCallback has one nested element named OptionValues. The OptionValues
element provides a list or an array of button text information to be rendered on the UI
page.OptionValues takes no attributes.

If there is only one button on the UI page, then the module is not required to send this callback.
If ConfirmationCallback is not provided through the Authentication Module properties XML
file, then anAuthUI.properties will be used to pick and display the button text or label for the
Login button. anAuthUI.properties is the global UI properties file for all modules.

Callbacks length value should be adjusted accordingly after addition of the new callback.

Example:

<ConfirmationCallback>

<OptionValues>

<OptionValue>

<Value> <required button text> </Value>

</OptionValue>

</OptionValues>

</ConfirmationCallback>

User Interface Files You Can Modify

Chapter 13 • Customizing the Authentication User Interface 201

JavaScript Files
JavaScript files are parsed within the Login.jsp file. You can add custom functions to the
JavaScript files in the following directory:

OpenSSO-Deploy-base/js

The Authentication Service uses the following JavaScript files:

TABLE 13–5 JavaScript Files Used by the Authentication Service

File Description

auth.js Used by Login.jsp for parsing all module files to display login
requirement screens.

browserVersion.js Used by Login.jsp to detect the client type.

admincli.js Used by the admin CLI.

opensso.js Used to get the context path.

Cascading Style Sheets
To define the look and feel of the UI, modify the cascading style sheets (CSS) files.
Characteristics such as fonts and font weights, background colors, and link colors are specified
in the CSS files. You must choose the appropriate .css file for your browser in order to
customize the look and feel on the user interface.

In the appropriate .css file, change the background-color attribute. For example:

.button-content-enabled { background-color:red; }

button-link:link, a.button-link:visited { color: #000;

background-color: red;

text-decoration: none; }

Browser-specific CSS files are installed with OpenSSO Enterprise in the following directory:

OpenSSO-Deploy-base/css

The following table describes each CSS file.

User Interface Files You Can Modify

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009202

TABLE 13–6 OpenSSO Enterprise Cascading Style Sheet (CSS) Files

File Name Purpose

css_ie6win.css Configured specifically for Microsoft Internet Explorer 6 for
Windows.

css_ie5win.css Configured specifically for Microsoft Internet Explorer 5 for
Windows.

css_ns6up.css Configured specifically for Netscape Communicator 6.

css_ns4sol.css Configured specifically for Netscape Communicator 4 for Solaris
systems.

css_ns4win.css Configured specifically for Netscape Communicator 4 for
Windows.

styles.css Used in JSP pages as a default style sheet.

Images
The default authentication GUI is branded with Sun Microsystems, Inc. logos and images. By
default, the GIF files are installed in the following directory:

OpenSSO-Deploy-base/login_images

These images can be replaced with images relevant to your company or organization. The
following table describes each GIF image used for the default GUI.

TABLE 13–7 Sun Microsystems Branded GIF Images

File Name Purpose

adminstyle.css, master-style.css, and
CCCSS_Default.css

Style sheets

Identity_LogIn.gif Sun Java System Access Manager banner

error_32_sunplex.gif Error indicator

info_32_sunplex.gif Information indicator

spacer.gif Spacer graphic

logo_sun.gif Sun Microsystems logo graphic

Java.gif Java graphic

spacer.gif A one pixel clear image used for layout purposes

User Interface Files You Can Modify

Chapter 13 • Customizing the Authentication User Interface 203

Localization Files
After you deploy the opensso.war file the localized files are located in the following directory:

OpenSSO-Deploy-base/WEB-INF/classes

OpenSSO-Deploy-base represents the deployment directory where the web container deployed
the opensso.war file.

In addition to US English (en_US), OpenSSO Enterprise includes localized properties files for
these languages:

■ German (de)
■ Spanish (es)
■ French (fr)
■ Japanese (ja)
■ Korean (ko)
■ Simplified Chinese (zh)
■ Traditional Chinese (zh_TW)

A localization properties file, sometimes also referred to as an i18n (internationalization)
properties file, specifies the screen text and error messages that an administrator or user sees
when directed to the attribute configuration page for an authentication module. The properties
files are global to the OpenSSO Enterprise instance.

Each authentication module has its own properties file that follows the naming following
format:

amAuthmodulename.properties

For example, amAuthLDAP.properties is for the default language (US English, ISO-8859-1),
amAuthLDAP_ja.properties is for Japanese, and so on.

You can adapt Java applications to these various languages without code changes by translating
the values in these respective localization properties file.

The following table summarizes the localization properties files for each authentication
module.

TABLE 13–8 Localization Properties Files for Authentication Modules

File Name Description

amAuth.properties Core Authentication Service

amAuthAD.properties Microsoft Active Directory Authentication Module

amAuthAnonymous.properties Anonymous Authentication Module

User Interface Files You Can Modify

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009204

TABLE 13–8 Localization Properties Files for Authentication Modules (Continued)
File Name Description

amAuthApplication.properties For OpenSSO Enterprise internal use only. Do not remove or
modify this file.

amAuthCert.properties Certificate Authentication Module

amAuthConfig.properties Authentication Configuration Module

amAuthContext.properties Localized error messages for the AuthContext Java class

amAuthContextLocal.properties For OpenSSO Enterprise internal use only. Do not remove or
modify this file.

amDataStore.properties Data Store Authentication Module

amAuthHTTPBasic.properties HTTP Basic Authentication Module

amAuthJDBC.properties Java Database Connectivity (JDBC) Authentication Module

amAuthLDAP.properties LDAP Authentication Module

amAuthMembership.properties Membership Authentication Module

amAuthMSISDN.properties Mobile Subscriber ISDN Authentication Module

amAuthNT.properties Windows NT Authentication Module

amAuthRadius.properties RADIUS Authentication Module

amAuthSafeWord.properties Safeword Authentication Module

amAuthSAML.properties SAML Authentication Module

amAuthSecurID.properties SecurID Authentication Module

amAuthUI.properties Labels used in the authentication user interface

amAuthUnix.properties UNIX Authentication Module

amAuthWindowsDesktopSSO.properties Windows Desktop SSO Authentication Module

Customizing Branding and Functionality
You can modify JSP templates and module configuration properties files to reflect branding or
functionality specified for any of the following:

■ Organization of the request
■ SubOrganization of the request.
■ Locale of the request
■ Client Path
■ Client Type information of the request
■ Service Name (serviceName)

Customizing Branding and Functionality

Chapter 13 • Customizing the Authentication User Interface 205

▼ To Modify Branding and Functionality
Go to the directory where default JSP templates are stored.

cd OpenSSO-Deploy-base/config/auth

Create a new directory.

Use the appropriate customized directory path based on the level of customization. Use the
following forms:
org_locale/orgPath/filePath

org/orgPath/filePath

default_locale/orgPath/filePath

default/orgPath/filePath

In these examples,

orgPath represents subOrg1/subOrg2

filePath represents clientPath + serviceName

clientPath represents clientType/sub-clientType

In these paths, SubOrg, Locale, Client Path, Service Name (which represents orgPath and
filePath) are optional. The organization name you specify may match the organization
attribute set in the Directory Server. For example, if the organization attribute value is
SunMicrosystems, then the organization customized directory should also be
SunMicrosystems. If no organization attribute exists, then use the lowercase value of the
organization name (sunmicrosystems).

For example, for the following attributes:

org = SunMicrosystems

locale = en

subOrg = solaris

clientPath = html/ customerName/

serviceName = paycheck

The customized directory paths would then be:

SunMicrosystems_en/solaris/html/ customerName /paycheck

SunMicrosystems/solaris/html/ customerName /paycheck

default_en/solaris/html/ customerName/paycheck

default/solaris/html/ customerName /paycheck

1

2

Customizing Branding and Functionality

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009206

Copy the default templates.
Copy all the JSP templates (*.jsp) and authentication module configuration properties XML
files (*.xml) from the default directory:

OpenSSO-Deploy-base/config/auth/default

to the new directory:

OpenSSO-Deploy-base/config/auth/CustomizedDirectoryPath

Customize the files in the new directory.
The files in the new directory can be customized if necessary, but not this is not required. See
“Customizing the Login Page” on page 196 and “Customizing JSP Templates” on page 197 for
information on what you can modify.

Update and redeploy the opensso.war file.
After you have modified the authentication GUI files, in order to see the changes in the actual
GUI, you must update and then redeploy the opensso.war file. For more information, see
Chapter 12, “Creating and Deploying OpenSSO Enterprise WAR Files.”

Restart the OpenSSO Enterprise server web container.

Customizing the Self-Registration Page
You can customize the Self-registration page which is part of Membership authentication
module. The default data and interface provided with the Membership authentication module
is generic and can work with any domain. You can configure it to reflect custom data and
information. You can add custom user profile data or fields to register or to create a new user.

▼ To Modify the Self-Registration Page
Customize the Membership.xml file.
By default, the first three data fields are required in the default Membership Module
configuration:
■ User name
■ User Password
■ Confirm User Password

You can specify which data is requested, which is required, and which is optional. The
sample below illustrates how to add a telephone number as requested data.
You can specify or add data which should be requested from a user as part of the User
Profile. By default you can specify or add any attributes from the following objectClasses:

3

4

5

6

1

Customizing the Self-Registration Page

Chapter 13 • Customizing the Authentication User Interface 207

■ top

■ person

■ organizationalPerson

■ inetOrgPerson

■ iplanet-am-user-service

■ inetuser

Administrators can add their own user attributes to the User Profile.

Update and redeploy the opensso.war file.
After you have modified the authentication GUI files, in order to see the changes in the actual
GUI, you must update and then redeploy the opensso.war file. For more information, see
Chapter 12, “Creating and Deploying OpenSSO Enterprise WAR Files.”

Restart the OpenSSO Enterprise server web container.
<Callbacks length="9" order="16" timeout="300"
header="Self Registration" template="register.jsp" >

<NameCallback isRequired="true" attribute="uid" >

<Prompt> User Name: </Prompt>

</NameCallback>

<PasswordCallback echoPassword="false" isRequired="true"
attribute="userPassword" >

<Prompt> Password: </Prompt>

</PasswordCallback>

<PasswordCallback echoPassword="false" isRequired="true" >

<Prompt> Confirm Password: </Prompt>

</PasswordCallback>

<NameCallback isRequired="true" attribute="givenname" >

<Prompt> First Name: </Prompt>

</NameCallback>

<NameCallback isRequired="true" attribute="sn" >

<Prompt> Last Name: </Prompt>

</NameCallback>

<NameCallback isRequired="true" attribute="cn" >

<Prompt> Full Name: </Prompt>

</NameCallback>

<NameCallback attribute="mail" >

<Prompt> Email Address: </Prompt>

2

3

Customizing the Self-Registration Page

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009208

</NameCallback>

<NameCallback isRequired="true"attribute="telphonenumber">

<Prompt> Tel:</Prompt>

</NameCallback>

<ConfirmationCallback>

<OptionValues>

<OptionValue>

<Value> Register </Value>

</OptionValue>

<OptionValue>

<Value> Cancel </Value>

</OptionValue>

</OptionValues>

</ConfirmationCallback>

</Callbacks>

Customizing the Distributed Authentication User Server
Interface

A Sun OpenSSO Enterprise Distributed Authentication UI server provides for secure,
distributed authentication across two firewalls in an OpenSSO Enterprise deployment. You
install the Distributed Authentication UI server subcomponent on a web container on one or
more servers within the DMZ layer of the OpenSSO Enterprise deployment. This
subcomponent acts as an authentication interface between end users and the OpenSSO
Enterprise instances behind the second firewall, thus eliminating the exposure of the OpenSSO
Enterprise service URLs to the end users.

The remote Distributed Authentication UI server subcomponent uses authentication client
APIs and utility classes to authenticate users. The subcomponent uses a customizable JATO
presentation framework.

You can modify the JSP templates and module configuration properties files to reflect branding
and specific functionality for the following:

Organization/SubOrganization Organization or sub-organization of the request.

Locale Locale of the request.

Client Path Client type information of the request.

Service Name (serviceName) Service name for service-based authentication.

Customizing the Distributed Authentication User Server Interface

Chapter 13 • Customizing the Authentication User Interface 209

For background information about a Distributed Authentication UI server, see the Sun
OpenSSO Enterprise 8.0 Installation and Configuration Guide.

▼ To Customize the Distributed Authentication Server
User Interface
In this procedure, you will create a Distributed Authentication Server UI WAR file from
opensso.war and then customize the new WAR file.

Make sure that your JAVA_HOME environment variable points to a JDK of version 1.5 or later.

If necessary, download and unzip the opensso_enterprise_80.zip file.
The opensso.war file is then in the zip-root/opensso/deployable-war directory, where
zip-root is where you unzipped the opensso_enterprise_80.zip file.

Create a new staging directory to extract the files from opensso.war. For example:
mkdir opensso-staging

In the staging directory, extract the files from opensso.war. For example:
cd opensso-staging

jar xvf zip-root/opensso/deployable-war/opensso.war

Create the Distributed Authentication UI server WAR using the files in fam-distauth.list:
cd opensso-staging

jar cvf zip-root/opensso/deployable-war/distauth.war \

@zip-root/opensso/deployable-war/fam-distauth.list

where distauth.war is the name of the new Distributed Authentication UI server WAR file.

Note: Some web containers require the Distributed Authentication WAR file name to use the
same name as the deployment URI.

Update the WAR file created in previous step with the additional files required for the
Distributed Authentication UI server. For example:
cd zip-root/opensso/deployable-war/distauth
jar uvf zip-root/opensso/deployable-war/distauth.war *

You are now ready to customize the new distauth.war.

Create a new directory to explode your new distauth.war. For example:
mkdir distauth-staging

1

2

3

4

5

6

7

Customizing the Distributed Authentication User Server Interface

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009210

http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320

Explode the new Distributed Authentication User Interface WAR in the staging directory you
created in the previous step. For example:
cd distauth-staging

jar xvf zip-root/opensso/deployable-war/distauth.war

Create a new directory for your customized files. For example:
cd distauth-staging/config/auth

mkdir custdaui

Use the following form:

org_locale/orgPath/filePath

org/orgPath/filePath

default_locale/orgPath/filePath

default/orgPath/filePath

where:

orgPath = subOrg1/subOrg2

filePath = clientPath + serviceName

clientPath = clientType/sub-clientType

The following items are optional: Sub-org, Locale , Client Path , and Service Name . In the
following example, orgPath and filePath are optional.

For example, given the following:

org = iplanet

locale = en

subOrg = solaris

clientPath = html/company/

serviceName = paycheck

The appropriate directory paths for the above are:

iplanet_en/solaris/html/company/paycheck

iplanet/solaris/html/company/paycheck

default_en/solaris/html/company/paycheck

default/solaris/html/company/paycheck

Change to the directory where the JSP and XML files are stored, and copy the JSP and
authentication module configuration (XML) files from the default directory to the new
directory.
#cd distauth-staging/config/auth/default

cp *.jsp distauth-staging/config/auth/custdaui

cp *.xml distauth-staging/config/auth/custdaui

8

9

10

Customizing the Distributed Authentication User Server Interface

Chapter 13 • Customizing the Authentication User Interface 211

Customize the following files in the custdauidirectory, as required for your deployment:

■ JSP files: “Java Server Page (JSP) Files” on page 196
■ XML configuration files: “XML Files” on page 199

Update the WAR file with the customized files:
cd distauth-staging/config/auth/custdaui

jar uvf zip-root/opensso/deployable-war/distauth.war *

You are now ready to deploy the customized distauth.war file.

To deploy and configure the customized Distributed Authentication User Interface server
WAR file, see Chapter 8, “Deploying a Distributed Authentication UI Server,” in Sun OpenSSO
Enterprise 8.0 Installation and Configuration Guide.

11

12

Next Steps

Customizing the Distributed Authentication User Server Interface

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009212

http://docs.sun.com/doc/820-3320/gcdsz?a=view
http://docs.sun.com/doc/820-3320/gcdsz?a=view

Using the Client SDK

The SunTM OpenSSO Enterprise Client Software Development Kit (Client SDK) provides the
Java libraries for integrating OpenSSO Enterprise functionality in remote standalone or web
applications. This chapter contains the following sections:

■ “About the Client SDK” on page 213
■ “Using AMConfig.properties With the Client SDK” on page 215
■ “Installing the Client SDK and Running the Samples” on page 227
■ “Sending Notifications to the Client SDK Cache” on page 237
■ “Setting Up a Client SDK Identity” on page 238
■ “Using the Virtual Federation Proxy Client Interfaces” on page 239

About the Client SDK
The Client SDK includes the Java packages, classes, and configuration properties that you can
use to enhance remote, standalone or web applications with the ability to access OpenSSO
Enterprise. The Client SDK allows an application to use services such as authentication, SSO,
authorization, auditing, logging, and the Security Assertion Markup Language (SAML). It also
includes samples that you can run to help understand and develop code.

Caution – The Client SDK is not for use by applications that perform policy management or
identity management (which includes the creation and deletion of entries).

From a deployment point of view, the Client SDK offers the following:

■ The Client SDK communicates directly with OpenSSO Enterprise server using XML
(SOAP) over HTTP or HTTPS. In turn, OpenSSO Enterprise server communicates directly
with the data stores.

■ The Client SDK does not require administrator credentials.

14C H A P T E R 1 4

213

■ An application using the Client SDK can be deployed in a demilitarized zone (DMZ), with a
firewall between the application and OpenSSO Enterprise server.

■ The Client SDK includes samples to show how it can be used.
■ The Client SDK includes these packages:

■ com.iplanet.am.sdk

■ com.iplanet.am.util

■ com.iplanet.sso

■ com.sun.identity.authentication

■ com.sun.identity.federation

■ com.sun.identity.idm

■ com.sun.identity.liberty.ws

■ com.sun.identity.log

■ com.sun.identity.policy

■ com.sun.identity.policy.client

■ com.sun.identity.saml

■ com.sun.identity.saml2

■ com.sun.identity.smt

■ com.sun.identity.xacml

■ com.sun.identity.wss

For a description of these packages, see the Sun OpenSSO Enterprise 8.0 Java API Reference. A
complete listing of the classes that comprise the Client SDK can be found in the
ClientSDKClasses file available on the OpenSSO web site. Samples and source code are also
included to help developers understand how the Client SDK can best be implemented.

Caution – It is recommended that you do not use the com.iplanet.am.sdk,
com.iplanet.am.util, com.sun.identity.policy, and com.sun.identity.sm packages
directly.

OpenSSO Enterprise Client SDK Requirements
The requirements to use the Client SDK include:
■ Access to OpenSSO Enterprise running on a remote server. You will need the following

information about this remote installation:
■ Protocol (http or https) used by web container instance on which the OpenSSO

Enterprise server is deployed.
■ Fully qualified domain name (FQDN) of the host where the OpenSSO Enterprise server

is deployed.
■ Port on which the OpenSSO Enterprise server is running.
■ Deployment URI for the OpenSSO Enterprise server (default is opensso)

About the Client SDK

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009214

http://docs.sun.com/doc/820-3739
https://opensso.dev.java.net/source/browse/opensso/products/amserver/clientsdk/#dirlist

■ Default Agent user (UrlAccessAgent) password that you entered when you ran the
OpenSSO Enterprise Configurator.

■ If you are writing a web application, you will need a web container supported by OpenSSO
Enterprise. For the list of supported web containers, see the Chapter 2, “Deploying the
OpenSSO Enterprise Web Container,” in Sun OpenSSO Enterprise 8.0 Installation and
Configuration Guide.

Using the Client SDK
You can use the Client SDK to:

■ Build a proprietary application framework in which the Client SDK is a part. The Client
SDK features can allow independence from policy agents.

■ Access profile data, for purposes of authentication and authorization, beyond the default
OpenSSO Enterprise capability.

■ Allow authenticated and non-authenticated users access to a login process with a
registration option that, if accepted, would create a user account.

Using AMConfig.propertiesWith the Client SDK
Although AMConfig.properties has been deprecated as the configuration data store for
OpenSSO Enterprise, this file is still used to store configuration data for the Client SDK. An
AMConfig.properties file with the information needed to point the Client SDK to the remote
OpenSSO Enterprise server must be accessible from the machine on which it is hosted. The
location of AMConfig.properties depends on how you initially installed the Client SDK.

If the Client SDK was installed by deploying the samples:
user.home/OpenSSO-Deploy-base-client-jdk15_AMConfig.properties

where user.home (JDK system property) is the home directory of the user running the web
container, and OpenSSO-Deploy-base is determined by the web container. For example, if
you deployed opensso-client-jdk15.war on Sun Java System Application Server 9.1 while
running as super user (root), the AMConfig.properties file is:

OpenSSOClient/_opt_SUNWappserver_domains_domain1_applications_j2ee-modules_opensso-client-jdk15_AM

See “Installing the Client SDK by Deploying the Sample WAR” on page 227.

If the Client SDK was installed by compiling the samples:
opensso-client-zip-root/sdk/resources

See “Installing the Client SDK By Compiling the Samples” on page 236.

The properties in AMConfig.properties can be modified. Information on the properties in the
file and how to modify them is in the following sections.

Using AMConfig.propertiesWith the Client SDK

Chapter 14 • Using the Client SDK 215

http://docs.sun.com/doc/820-3320/ghnnu?a=view
http://docs.sun.com/doc/820-3320/ghnnu?a=view
http://docs.sun.com/doc/820-3320/ghnnu?a=view

■ “Properties in AMConfig.properties” on page 216
■ “Setting Properties in AMConfig.properties” on page 226

Properties in AMConfig.properties

The Client SDK uses the following properties in AMConfig.properties. You can add additional
properties as required by a client application; for example, an application can register for the
notification of changes to session attributes, user attributes, and policy decisions. The following
sections contain information on the properties.

■ “Debug Properties” on page 216
■ “Client SDK Related Properties” on page 217
■ “Logging Property” on page 217
■ “Java™ Platform, Enterprise Edition (Java EE) Agent Property” on page 217
■ “OpenSSO Enterprise Configuration Data User Credential Properties” on page 217
■ “Cache Enable Properties” on page 218
■ “Cache Update Properties” on page 218
■ “Naming Property” on page 220
■ “Encryption Properties” on page 220
■ “OpenSSO Enterprise Server and Console Location Properties” on page 221
■ “Cookie Property” on page 221
■ “Client Side Session Polling Properties” on page 221
■ “JSS Certificate Database Properties” on page 221
■ “Policy Logging and Caching Properties” on page 222
■ “Federation Properties” on page 223

Note – With the addition of new features, properties often change or might be added. For the
most current properties, see AMClient.properties on the OpenSSO web site.

Debug Properties
■ com.iplanet.services.debug.level specifies the debug level as one of the following:

■ off specifies that no debug information is recorded.
■ error specifies that only debug messages posted as errors should be written to the debug

files. This level is recommended for production environments.
■ warning is not a recommended value at this time.
■ message alerts to possible issues using code tracing. Most OpenSSO Enterprise modules

use this level to send debug messages.

Using AMConfig.propertiesWith the Client SDK

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009216

https://opensso.dev.java.net/source/browse/opensso/products/amserver/clientsdk/resources/

Caution – Using warning or message in production environments is not recommended
because they can cause severe performance degradation from excessive of debug
messages.

■ com.iplanet.services.debug.directory is the output directory for the debug
information. The directory should be writable by the server process. For example:
com.iplanet.services.debug.directory=/opensso/debug

Client SDK Related Properties
■ com.iplanet.am.sdk.package is the name of the Client SDK package; by default,

com.iplanet.am.sdk.remote.
■ com.iplanet.am.serverMode defines whether the configured WAR to which the property

applies is running as an OpenSSO Enterprise server or a client to OpenSSO Enterprise. If
opensso.war is deployed and configured, the value of this property (in the embedded data
store) is set to true as OpenSSO Enterprise is the server. When the clientsdk.war or
distauth.war is deployed and configured, the value of this property is set to false as they
are clients to OpenSSO Enterprise. In the Client SDK AMConfig.properties the value of
this property will always be false.

Logging Property
The value of com.iplanet.am.logstatus should be ACTIVE. INACTIVE disables logging.

Additional log properties are in “Policy Logging and Caching Properties” on page 222.

JavaTM Platform, Enterprise Edition (Java EE) Agent Property
The value of com.iplanet.am.client.appssotoken.refreshtime is the amount of time (in
minutes) that the appSSOToken will be refreshed. It defaults to 3.

Note – A J2EE policy agent authenticates itself to OpenSSO Enterprise as an application using a
special user. The OpenSSO sends back an appSSOToken after a successful authentication.

OpenSSO Enterprise Configuration Data User Credential Properties
■ com.sun.identity.agents.app.username defines a user with permission to read the

OpenSSO Enterprise configuration data; by default, UrlAccessAgent.
■ com.iplanet.am.service.password specifies the password of the user with permission to

read OpenSSO Enterprise configuration data.

Using AMConfig.propertiesWith the Client SDK

Chapter 14 • Using the Client SDK 217

■ com.iplanet.am.service.secret specifies the encrypted password for the user defined in
the com.sun.identity.agents.app.username property; for example,
AQIC24u86rq9RRZGr/HN25OcIuO6w+ne+0lG.

See “Setting Up a Client SDK Identity” on page 238 for additional information.

Cache Enable Properties
Two main components that rely heavily on caching for performance and improved user
experience are the Service Management and Identity Repository classes. A combination of true
and false values defined for the following three properties will enable and disable the
respective cache.

■ com.iplanet.am.sdk.caching.enabled enables both caches when set to true (default). A
value of false disables both caches.

■ com.sun.identity.idm.cache.enabled controls the Identity Repository cache. When
com.iplanet.am.sdk.caching.enabled is set to false, enable this cache (separately from
the Service Management cache) with a value of true. A value of false keeps it disabled.

■ com.sun.identity.sm.cache.enabled controls the Service Management cache. When
com.iplanet.am.sdk.caching.enabled is set to false, enable this cache (separately from
the Identity Repository cache) with a value of true. A value of false keeps it disabled.

Additional cache configuration properties include:

■ com.iplanet.am.sdk.cache.maxSize limits the size of the Identity Repository cache to, by
default, 10000 entries. There is no corresponding entry to limit the cache size for the Service
Management cache.

■ com.sun.identity.sm.cacheTime is the update time (in minutes) for the Service
Management cache when polling is enabled.

■ com.iplanet.am.sdk.remote.pollingTime is the update time (in minutes) for Identity
Repository cache when polling is enabled.

Additional cache properties are in “Policy Logging and Caching Properties” on page 222.

Cache Update Properties
When caching is enabled, OpenSSO Enterprise has three options that can be used to invalidate
dirty cache entries. The first is to set up a URL with which the OpenSSO Enterprise server can
send session change notifications to clients on remote web containers. This works for web and
standalone applications that can listen for HTTP(s) traffic. The second method (which works
ONLY if notification is disabled) is polling. In this case, the client periodically checks the
OpenSSO Enterprise server for session changes. The third method is referred to as
Time-to-Live (TTL) and enforces a limit on the period of time dirty data remains in the cache
before it is discarded. See the following sections for more information.

■ “Notification Properties” on page 219

Using AMConfig.propertiesWith the Client SDK

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009218

■ “Polling Properties” on page 219
■ “TTL Properties” on page 219

Caution – The notification method could cause a constant flood of notification changes that
might overwhelm the client so be sure to choose the optimal method for your deployment.

Additional cache properties are in “Policy Logging and Caching Properties” on page 222.

Notification Properties
■ com.sun.identity.client.notification.url defines the URI of the Notification Service

running on the host machine on which the Client SDK is installed; by default,
http://SDK-host.domain:port
/opensso/notificationservice. This value is used for both the Service Management and
Identity Repository caches. If no URL is specified, notification is disabled.

■ com.sun.identity.idm.remote.notification.enabled is used to enable or disable the
notifications for the Identity Repository cache. If set to true notifications are enabled; false
disabled.

■ com.sun.identity.sm.notification.enabled is used to enable or disable the
notifications for the Service Management cache. If set to true notifications are enabled;
false disabled.

See “Sending Notifications to the Client SDK Cache” on page 237 for more information on the
Notification Service.

Polling Properties

Notification must be disabled.

■ com.iplanet.am.sdk.remote.pollingTime defines the amount of time (in minutes)
between each poll (check) by the client for Identity Repository data changes. This property
also controls the polling time for the com.iplanet.am.sdk for backwards compatibility.

■ com.sun.identity.sm.cacheTime defines the amount of time (in minutes) between each
poll (check) by the client for Service Management data changes.

TTL Properties

The following properties relate to the cache Time To Live (TTL). TTL is a limit on the period of
time before data in the cache should be discarded. These TTL properties are not included in
AMConfig.properties by default but can be added as needed. These are the Service
Management TTL properties.

■ com.sun.identity.sm.cache.ttl.enable enables the TTL function for the Service
Management cache with a default value of true.

Using AMConfig.propertiesWith the Client SDK

Chapter 14 • Using the Client SDK 219

■ com.sun.identity.sm.cache.ttl limits the time (in minutes) to the defined value; by
default, 30.

These are the Identity Repository TTL properties.
■ com.sun.identity.idm.cache.entry.expire.enabled takes a value of true or false

which enables or disables, respectively, the Identity Repository TTL feature.
■ com.sun.identity.idm.cache.entry.user.expire.time specifies the time (in minutes)

that user Identity Repository cache entries remain valid after their last modification. In
other words, after the specified time has elapsed (following a modification or directory
read), the data for the cached entry will expire and new requests for this data must be read
from the directory. The default value is one minute.

■ com.sun.identity.idm.cache.entry.default.expire.time specifies the time (in
minutes) that non-user Identity Repository cache entries remain valid after their last
modification. In other words, after the specified time has elapsed (following a modification
or directory read), the data for the cached entry will expire and new requests for this data
must be read from the directory. The default value is one minute.

For backwards compatibility, these are the properties to configure the TTL feature for the
com.iplanet.am.sdk classes.
■ com.iplanet.am.sdk.cache.entry.expire.enabled takes a value of true or false which

enables or disables, respectively, the TTL feature for the com.iplanet.am.sdk classes.
■ com.iplanet.am.sdk.cache.entry.user.expire.time specifies the time (in minutes)

that user cache entries remain valid after their last modification. The default value is one
minute.

■ com.iplanet.am.sdk.cache.entry.default.expire.time specifies the time (in minutes)
that non-user cache entries remain valid after their last modification. The default value is
one minute.

Naming Property
com.iplanet.am.naming.url is a required property. The value of this property is the URI of
the Naming Service from which the Client SDK would retrieve the URLs of OpenSSO
Enterprise internal services; by default,
http://opensso-host.domain_name:port/opensso/namingservice

Encryption Properties
■ am.encryption.pwd contains an encryption key used to decrypt passwords stored with the

Service Management data.
■ com.sun.identity.client.encryptionKey contains an encryption key used to encrypt

and decrypt data used locally within the client application.
■ The value of com.iplanet.security.encryptor is either of the following encrypting class

implementations:

Using AMConfig.propertiesWith the Client SDK

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009220

■ com.iplanet.services.util.JCEEncryption (default)
■ com.iplanet.services.util.JSSEncryption

OpenSSO Enterprise Server and Console Location Properties
These properties point to the OpenSSO Enterprise server and console. They are set during
Client SDK configuration.

■ com.iplanet.am.server.protocol defines the protocol of the machine on which
OpenSSO Enterprise is deployed; for example, http.

■ com.iplanet.am.server.host defines the name and domain of machine on which
OpenSSO Enterprise is deployed; for example, OSSO_Host_Machine.domain_name.

■ com.iplanet.am.server.port defines the port of the machine on which OpenSSO
Enterprise is deployed; for example, 8080.

■ com.iplanet.am.services.deploymentDescriptor defines the URI of the deployed
instance of OpenSSO Enterprise; for example, opensso.

■ com.iplanet.am.console.protocol defines the protocol of the machine on which the
OpenSSO Enterprise console is deployed; for example, http.

■ com.iplanet.am.console.host defines the name and domain of machine on which the
OpenSSO Enterprise console is deployed; for example,
OSSO_Host_Machine.domain_name.

■ com.iplanet.am.console.port defines the port of the machine on which the OpenSSO
Enterprise console is deployed; for example, 8080.

■ com.iplanet.am.console.deploymentDescriptor defines the URI of the deployed
OpenSSO Enterprise console; for example, opensso.

Cookie Property
com.iplanet.am.cookie.name contains the name of the OpenSSO Enterprise cookie; by
default, iPlanetDirectoryPro.

Client Side Session Polling Properties
■ com.iplanet.am.session.client.polling.enable is used to enable (If set to true) or

disable (if set to false) client-side session polling.
■ com.iplanet.am.session.client.polling.period specifies the number of seconds in the

polling period; by default, 180.

JSS Certificate Database Properties
Network Security Services for Java (JSS) is a Java interface to Network Security Services (NSS), a
set of libraries designed to support cross-platform development of security-enabled client and

Using AMConfig.propertiesWith the Client SDK

Chapter 14 • Using the Client SDK 221

server applications. The following properties are used to initialize the JSS SocketFactory when
the web container in which the Client SDK is deployed is configured for SSL.

■ com.iplanet.am.admin.cli.certdb.dir identifies the directory path to the certificate
database.

■ com.iplanet.am.admin.cli.certdb.passfile identifies the directory path to the
password file for the certificate database.

■ com.iplanet.am.admin.cli.certdb.prefix identifies the prefix for the certificate
database.

These properties identify the value for SSL ApprovalCallback. If the checkSubjectAltName or
resolveIPAddress feature is enabled, you must create cert7.db and key3.db with a prefix
equal to the value defined in com.iplanet.am.admin.cli.certdb.prefix and located in the
directory defined in com.iplanet.am.admin.cli.certdb.dir.

■ com.iplanet.am.jssproxy.trustAllServerCerts, when enabled, allows OpenSSO
Enterprise to ignore all certificate-related issues such as a name conflict and continue the
SSL handshaking. The default value is false; to enable, true.

Caution – To prevent a possible security risk, enable this property only for testing purposes,
or when the enterprise network is tightly controlled. Avoid enabling this property if a
security risk might occur (for example, if a server connects to a server in a different
network).

■ com.iplanet.am.jssproxy.checkSubjectAltName, when enabled, includes the Subject
Alternative Name (SubjectAltName) extension with a certificate, and OpenSSO Enterprise
checks all name entries in the extension. If one of the names included in the SubjectAltName
extension is the same as the server FQDN, OpenSSO Enterprise continues the SSL
handshaking. The default value is false. To enable this property, set a comma separated list
of trusted FQDNs; for example,
com.iplanet.am.jssproxy.checkSubjectAltName=amserv1.example.com,amserv2.example.com.

■ com.iplanet.am.jssproxy.resolveIPAddress takes a value of false (by default) or true.
■ com.iplanet.am.jssproxy.SSLTrustHostList tells OpenSSO Enterprise to check the

Platform Server list against the server host that is being accessed. If the server FQDNs of the
servers in the Platform Server list match, OpenSSO Enterprise continues the SSL
handshaking. Use the following syntax to set the property:
com.iplanet.am.jssproxy.SSLTrustHostList=fqdn_osso_server1,fqdn_osso_server2,fqdn_osso_server3

Policy Logging and Caching Properties
■ com.sun.identity.agents.server.log.file.name specifies the name of the Client SDK

policy log file; by default, amRemotePolicyLog.

Using AMConfig.propertiesWith the Client SDK

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009222

■ com.sun.identity.agents.logging.level specifies the granularity of the information
logged to the Client SDK policy log file. Values can be:
■ NONE is the default value. Nothing is logged.
■ ALLOW logs allowed access decisions.
■ DENY logs denied access decisions.
■ BOTH logs allowed and denied access decisions.
■ DECISION

■ com.sun.identity.agents.notification.enabled enables or disables notifications
from OpenSSO Enterprise to update the Client SDK cache. Takes a value of true or
false respectively.

■ com.sun.identity.agents.server.log.file.name specifies the URL to which policy,
session, and agent notifications from OpenSSO Enterprise are sent.

■ com.sun.identity.agents.polling.interval specifies the number of minutes after
which an entry is dropped from the Client SDK cache.

■ com.sun.identity.policy.client.cacheMode specifies the cache mode for the client
policy evaluator. Values are:
■ subtree specifies that the policy evaluator obtains policy decisions from the server

for all the resources from the root of resource actually requested.
■ self specifies that the policy evaluator obtains policy decisions from the server only

for the resource actually requested.
■ com.sun.identity.policy.client.usePre22BooleanValues specifies whether to use

boolean values; by default, true.

Federation Properties
These federation properties are not included in AMConfig.properties by default but can be
added as needed.

com.sun.identity.wss.provider.plugins.AgentProvider

com.sun.identity.liberty.ws.soap.supportedActor

Defines the SOAP supported actors. Each actor must be separated by a pipe (|).

Note – A SOAP message can travel from a sender to a receiver by passing different endpoints
along the way but not all parts of the SOAP message may be intended for the destination;
some may be intended for one or more endpoints along the message path. The SOAP actor

attribute is used to address the Header element to a specific endpoint URL.

Using AMConfig.propertiesWith the Client SDK

Chapter 14 • Using the Client SDK 223

com.sun.identity.liberty.interaction.wspRedirectHandler

Defines the URL for WSPRedirectHandlerServlet to handle Liberty the WSF web service
provider-resource owner. Interactions are based on user agent redirects. The servlet should
be running in the same JVM where the Liberty service provider is running.

com.sun.identity.liberty.interaction.wscSpecifiedInteractionChoice

Indicates whether the web service client should participate in an interaction. Valid values are
interactIfNeeded, doNotInteract, and doNotInteractForData. Default value is
interactIfNeeded which is used if an invalid value is specified.

com.sun.identity.liberty.interaction.wscWillInlcudeUserInteractionHeader

Indicates whether the web service client should include userInteractionHeader. Valid
values are yes and no (case ignored). Default value is yes. Default value is used if no value is
specified.

com.sun.identity.liberty.interaction.wscWillRedirect

Indicates whether the web service client will redirect user for an interaction. Valid values are
yes and no. Default value is yes. Default value is used if no value is specified.

com.sun.identity.liberty.interaction.wscSpecifiedMaxInteractionTime

Indicates the web service client preference for acceptable duration (in seconds) for an
interaction. If the value is not specified or if a non-integer value is specified, the default value
is 60.

com.sun.identity.liberty.interaction.wscWillEnforceHttpsCheck

Indicates whether the web service client enforces that redirected to URL is HTTPS. Valid
values are yes and no (case ignored). The Liberty specification requires the value to be yes.
Default value is yes. Default value is used if no value is specified.

com.sun.identity.liberty.interaction.wspWillRedirect

Indicates whether the web service provider redirects the user for an interaction. Valid values
are yes and no (case ignored). Default value is yes. Default value is if no value is specified.

com.sun.identity.liberty.interaction.wspWillRedirectForData

Indicates whether the web service provider redirects the user for an interaction for data.
Valid values are yes and no. Default value is yes. If no value is specified, the value is yes.

com.sun.identity.liberty.interaction.wspRedirectTime

Web service provider expected duration (in seconds) for an interaction. Default value if the
value is not specified or is a non-integer value is 30.

com.sun.identity.liberty.interaction.wspWillEnforceHttpsCheck

Indicates whether the web service client enforces that returnToURL is HTTP. Valid values are
yes and no (case ignored). Liberty specification requires the value to be yes. Default value is
yes. If no value is specified, then the value used is yes.

com.sun.identity.liberty.interaction.wspWillEnforceReturnToHostEqualsRequestHost

Indicates whether the web services client enforces that returnToHost and requestHost are
the same. Valid values are yes and no. Liberty specification requires the value to be yes.

Using AMConfig.propertiesWith the Client SDK

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009224

com.sun.identity.liberty.interaction.htmlStyleSheetLocation

Indicates the path to the style sheet used to render the interaction page in HTML.

com.sun.identity.liberty.interaction.wmlStyleSheetLocation

Indicates the path to the style sheet used to render the interaction page in WML.

com.sun.identity.liberty.ws.interaction.enable

Default value is false.

com.sun.identity.wss.provider.config.plugin=

com.sun.identity.wss.provider.plugins.AgentProvider

Used by the web services provider to determine the plug-in that will be used to store the
configuration.

For example: com.sun.identity.wss.provider.config.plugin=
com.sun.identity.wss.provider.plugins.AgentProvider

com.sun.identity.loginurl

Used by the web services clients in Client SDK mode. For example:

com.sun.identity.loginurl=https://host:port/opensso-uri/UI/Login

com.sun.identity.liberty.authnsvc.url

Indicates the Liberty authentication service URL.

com.sun.identity.liberty.wsf.version

Used to determine which version of the Liberty identity web services framework is to be used
when the framework can not determine from the inbound message or from the resource
offering. This property is used when OpenSSO Enterprise is acting as the web service client.
The default version is 1.1. The possible values are 1.0 or 1.1.

com.sun.identity.liberty.ws.soap.certalias

Value is set during installation. Client certificate alias that will be used in SSL connection for
Liberty SOAP Binding.

com.sun.identity.liberty.ws.soap.messageIDCacheCleanupInterval

Default value is 60000. Specifies the number of milliseconds to elapse before cache cleanup
events begin. Each message is stored in a cache with its ownmessageID to avoid duplicate
messages. When a message's current time less the received time exceeds thestaleTimeLimit
value, the message is removed from the cache.

com.sun.identity.liberty.ws.soap.staleTimeLimit

Default value is 300000. Determines if a message is stale and thus no longer trustworthy. If
the message timestamp is earlier than the current timestamp by the specified number of
milliseconds, the message the considered to be stale.

com.sun.identity.liberty.ws.wsc.certalias

Value is set during installation. Specifies default certificate alias for issuing web service
security token for this web service client.

Using AMConfig.propertiesWith the Client SDK

Chapter 14 • Using the Client SDK 225

com.sun.identity.liberty.ws.trustedca.certaliases

Value is set during installation. Specifies certificate aliases for trusted CA. SAML or SAML
BEARER token of incoming request. Message must be signed by a trusted CA in this list. The
syntax is:

cert alias 1[:issuer 1]|cert alias 2[:issuer 2]|.....

For example: myalias1:myissuer1|myalias2|myalias3:myissuer3. The value issuer is
used when the token doesn't have a KeyInfo inside the signature. The issuer of the token
must be in this list, and the corresponding certificate alias will be used to verify the signature.
If KeyInfo exists, the keystore must contain a certificate alias that matches the KeyInfo and
the certificate alias must be in this list.

Setting Properties in AMConfig.properties

There are three ways to set properties in AMConfig.properties. The following sections contain
more information.

■ “Setting Properties Using a Text Editor” on page 226
■ “Setting Properties Using the Java API” on page 226
■ “Setting Properties at Run Time” on page 227

Setting Properties Using a Text Editor
You can set properties in AMConfig.properties by editing the file with a text editor. Each
property is defined as:

property-name=property-value

Setting Properties Using the Java API
You can set properties programmatically using the com.iplanet.am.util.SystemProperties
class. For example:

EXAMPLE 14–1 Setting Client SDK Properties Programmatically

import com.iplanet.am.util.SystemProperties;

import java.util.Properties;

public static void main(String[] args) {

// To initialize a set of properties

Properties props = new Properties();

props.setProperty(”com.iplanet.am.naming.url’,
”http://sample.com/opensso/namingservice’);
props.setProperty(”com.sun.identity.agents.app.username’, ”URLAccessAgent’);
props.setProperty(”com.iplanet.am.service.password’, ”11111111’);
SystemProperties.initializeProperties(props) ;

Using AMConfig.propertiesWith the Client SDK

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009226

EXAMPLE 14–1 Setting Client SDK Properties Programmatically (Continued)

// To initialize a single property

SystemProperties.initializeProperties(“com.iplanet.am.naming.url’,
”http://sample.com/opensso/namingservice’);

// Application specific code ...

}

Setting Properties at Run Time
To set a value to a particular property at run time, declare the JVM option using the following
format:

-Dproperty-name=property-value

Installing the Client SDK and Running the Samples
There are two ways to install the Client SDK. These options are documented in the following
sections:

■ “Installing the Client SDK by Deploying the Sample WAR” on page 227
■ “Installing the Client SDK By Compiling the Samples” on page 236

Installing the Client SDK by Deploying the Sample
WAR
opensso-client.zip is in the samples directory of the downloaded and inflated opensso.zip.
Unzipping opensso-client.zip reveals the war and sdk directories. The war directory
contains two versions of the Client SDK WAR depending on the version of Java installed on
your machine.

■ opensso-client-jdk15.war is for web containers running JDK 1.5 or later.
■ opensso-client-jdk14.war is for web containers running JDK 1.4.2 or later.

The following sections contain the procedures for deploying the Client SDK WAR and running
the web-based and command line samples.

■ “To Install the Client SDK by Deploying the Sample WAR” on page 228
■ “To Run the Client SDK Web-based Samples” on page 230
■ “To Run the Client SDK Command Line Samples” on page 234

Installing the Client SDK and Running the Samples

Chapter 14 • Using the Client SDK 227

▼ To Install the Client SDK by Deploying the Sample WAR
■ Download and unzip opensso_enterprise_80.zip as described in the Sun OpenSSO

Enterprise 8.0 Installation and Configuration Guide. The compressed Client SDK ZIP is in
the zip-root/opensso/samples/ directory where zip-root is the directory in which you
unzipped the OpenSSO Enterprise download.

■ Deploy opensso.war as described in the Sun OpenSSO Enterprise 8.0 Installation and
Configuration Guide.

■ Install a web container on the host machine on which the Client SDK will be deployed.
■ AMConfig.properties, openssoclientsdk.jar and servlet.jar are required in the

CLASSPATH of the host machine on which the Client SDK is installed.

Copy the compressed opensso-client.zip to a staging directory on the host machine where
you plan to deploy the Client SDK.

Unzip opensso-client.zip.

Set the JAVA_HOME environment variable to JDK 1.5 or 1.4, depending on the version of Java
installed on your machine.

Deploy the appropriate Client SDK WAR (opensso-client-jdk14.war or
opensso-client-jdk15.war) depending on the version of Java installed on your machine.

After successful deployment, launch the Client SDK configuration screen.

Before You Begin

1

2

3

4

5

Installing the Client SDK and Running the Samples

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009228

http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320

Provide the appropriate values pertaining to the instance of OpenSSO Enterprise with which the
Client SDK will be communicating.

6

Installing the Client SDK and Running the Samples

Chapter 14 • Using the Client SDK 229

■ Server Protocol Protocol (http or https) used by the web container on which OpenSSO
Enterprise is deployed.

■ Server Host Fully qualified domain name (FQDN) of the host machine on which OpenSSO
Enterprise is deployed.

■ Server Port Port used by OpenSSO Enterprise server.
■ Server Deployment URI URI defined during OpenSSO Enterprise deployment. The default

is /opensso. Be sure to include the leading slash (/).
■ Debug directory: Location of the debug directory; for example, /opensso/debug
■ Application user name:: The policy agent user that communicates with OpenSSO

Enterprise; by default, agentAuth.
■ Application user password: Password of the policy agent user that communicates with

OpenSSO Enterprise.

Click Configure.

A message signifying successful configuration is displayed.

AMConfig.properties for the Client SDK is also created. AMConfig.properties has been
deprecated for OpenSSO Enterprise. The server configuration data is now stored in an
embedded data store. The Client SDK, however, still uses AMConfig.properties to store its
configuration data as it is remote to the installed OpenSSO Enterprise server. For information
about the location of the AMConfig.properties file and setting properties in the file, see “Using
AMConfig.properties With the Client SDK” on page 215.

▼ To Run the Client SDK Web-based Samples
This procedure assumes you have completed “To Install the Client SDK by Deploying the
Sample WAR” on page 228 and the successful configuration screen is still displayed.

7

Before You Begin

Installing the Client SDK and Running the Samples

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009230

Click the word hereon the successful configuration screen displayed at the end of “To Install the
Client SDK by Deploying the Sample WAR”on page 228.

The web-based samples introduction page is displayed.

Click Access Management Samples.

The Client SDK - Samples page is displayed.

1

2

Installing the Client SDK and Running the Samples

Chapter 14 • Using the Client SDK 231

Click Service Configuration Sample Servlet.

The Service Configuration Sample page is displayed.
3

Installing the Client SDK and Running the Samples

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009232

Enter the password for the amadminuser.

Choose either Schema or Config from the drop-down list.
Schema refers to the data structure of the service. Default values may be defined dependent of
the service. Config is the actual data. The output is defined as key/value pairs.

Click Submit.
ServiceConfigServlet.java retrieves the attributes of the Authentication Service (or other
input service) and the SSOToken of the questioning user.

Tip – If an error message is displayed, confirm that the
com.sun.identity.agents.app.username has a value of agentAuth and
com.iplanet.am.service.password has a value of changeit in the Client SDK
AMConfig.properties. If you need to modify this file, restart the underlying web container.

Click Back to Access Management Samples.

Click User Profile (Attributes) Sample Servlet.
The User Profile Sample page is displayed.

Enter the password for the default amadmin or another defined user name and password and
click Submit.
The UserProfileServlet.java retrieves and displays the profile that corresponds to the user
ID entered in the Username text box.

Click Back to Access Management Samples.

4

5

6

7

8

9

10

Installing the Client SDK and Running the Samples

Chapter 14 • Using the Client SDK 233

Click Policy Evaluator Client Sample Servlet.
The Policy Evaluator Client Sample page is displayed.

Open a new browser window, login to OpenSSO Enterprise, and using the console, create a
policy for the resource http://www.sun.com:80with a GET allow and POST deny rule for all
authenticated users on Fridays.

Back on the Policy Evaluator Client Sample page, enter the amadminpassword and the resource
http://www.sun.com:80.

Click Submit.
PolicyClientServlet.java is the call on the client side that initiates the retrieval of a policy
decision (from the Policy Service) that would be passed to a web agent for enforcement.

Click Back to Access Management Samples.

Log in to the OpenSSO Enterprise as amadmin if not already.
You must be logged in and have an SSOToken for the Single Sign On Token Verification Servlet.

Back on the Access Management Samples page, click Single Sign On Token Verification Servlet.
The user profile associated with the SSOToken received after successful authentication is
displayed. The code included with this sample is SSOTokenSampleServlet.java and
SampleTokenListener.java. These files serve as a basis for using the SSO API, demonstrating
how you can create an SSOToken, call various methods from the token, set up an event listener
and get notified on event changes.

Two other samples using the Client SDK are included on the web-based samples introduction
page: the Liberty ID-WSF 1.x Web Service Consumer Sample and the Security Token Service
(WS-Trust) Client Sample. See the instructions for these samples when you click the sample
name.

▼ To Run the Client SDK Command Line Samples
This procedure documents compiling the command line samples as well as running them. It
uses the scripts for the Solaris and Linux operating systems. opensso-client-zip-root refers to the
directory in which you decompressed the appropriate Client SDK WAR.

Caution – Be sure to run all the scripts discussed one level up from the directory in which they are
found.

This procedure assumes you have completed “To Install the Client SDK by Deploying the
Sample WAR” on page 228 and the successful configuration screen is still displayed.

11

12

13

14

15

16

17

Next Steps

Before You Begin

Installing the Client SDK and Running the Samples

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009234

On the command line of the machine on which the Client SDK is installed, change to
opensso-client-zip-root/sdk/scripts and run chmod to make the scripts executable.
cd opensso-client-zip-root/sdk/scripts
chmod 755 *.sh

Execute compile-samples.sh to compile the scripts.
cd ../

scripts/compile-samples.sh

Run the setup script to initialize the command line samples.
cd ../

scripts/setup.sh

Note – Use setup.bat on Windows systems.

The script uses Main.java and creates AMConfig.properties with a pointer to the
opensso-client-zip-root/sdk/resources directory.

Run the individual Client SDK samples by executing the rest of the scripts in the /scripts
directory.

Login.sh/Login.bat
Uses Login.java to log in and log out a user.

CommandLineSSO.sh/CommandLineSSO.bat
Uses CommandLineSSO.java to retrieve a user profile.

CommandLineIdrepo.sh/CommandLineIdrepo.bat
Uses its myriad source files to perform operations on the identity data store. For example,
create an identity, delete an identity, and search or select an identity.

CommandLineLogging.sh/CommandLineLogging.bat
Uses its myriad source files (including LogSample.java) to demonstrate the login process
and write a log record of a successful authentication. You will need to authenticate two
identities: the subject of the LogRecord and the logger (amadmin).

SSOTokenSample.sh/SSOTokenSample.bat
to verify an SSOToken. Uses SSOTokenSample.java to demonstrate this and other functions
of the session API.

Note – Before running this sample, you will need an SSO Token ID. You can get this by
running the Service Configuration Sample in “To Run the Client SDK Web-based Samples”
on page 230 and copying the ID that is displayed.

1

2

3

4

Installing the Client SDK and Running the Samples

Chapter 14 • Using the Client SDK 235

https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/setup/
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/authentication/
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/sso/
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/clientsdk/idrepo/
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/clientsdk/logging/
https://opensso.dev.java.net/source/browse/opensso/products/amserver/samples/source/com/sun/identity/samples/sso/

run-policy-evaluation-sample.sh/run-policy-evaluation-sample.bat
Returns a policy decision based on console created user and configured policy. Uses the code
sourced in the policy directory on opensso.dev.jave.net.

run-xacml-client-sample.sh/run-xacml-client-sample.bat
Uses XACMLClientSample.java to construct a XACML request, to make an authorization
query, receive the decision, and print out the response.

Note – At run time, a sample might require additional property files to be setup in the
/resources directory. Check the comments included in each individual script for more
information.

Installing the Client SDK By Compiling the Samples
You can also install the Client SDK by compiling the samples yourself. The procedure is
documented in opensso-client.zip.

opensso-client.zip is in the samples directory of the downloaded and inflated opensso.zip.
Unzipping opensso-client.zip reveals the war and sdk directories. The sdk directory
contains source code that needs to be compiled before use and includes the following sub
directories:

■ /classes contains the compiled classes from the source files.
■ /lib contains the JAR files required by the Client SDK.
■ /resources contains the various properties files required to run the samples, including the

AMConfig.properties.template file.
■ /scripts contains the scripts to compile and run the samples.
■ /source contains the source files that require compilation.

Note – These samples can be run in a standalone JVM outside of a web container.

▼ To Install the Client SDK by Compiling the Samples
■ Download and unzip opensso_enterprise_80.zip as described in the Sun OpenSSO

Enterprise 8.0 Installation and Configuration Guide. The compressed Client SDK ZIP is in
the zip-root/opensso/samples/ directory where zip-root is the directory in which you
unzipped the OpenSSO Enterprise download.

■ Deploy opensso.war as described in the Sun OpenSSO Enterprise 8.0 Installation and
Configuration Guide.

■ Install a web container on the host machine on which the Client SDK will be deployed.

Before You Begin

Installing the Client SDK and Running the Samples

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009236

https://opensso.dev.java.net/source/browse/opensso/products/federation/openfm/clientsamples/sdk/source/samples/policy/
https://opensso.dev.java.net/source/browse/opensso/products/federation/openfm/clientsamples/sdk/source/samples/xacml/
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320
http://docs.sun.com/doc/820-3320

Copy the compressed opensso-client.zip to a staging directory on the host machine where
you plan to deploy the Client SDK.

Unzip opensso-client.zip.

Change to the sdkdirectory.

Follow the README to configure the Client SDK and, compile and run the samples.

Sending Notifications to the Client SDK Cache
Notifications enable the synchronization of the Client SDK cache and the OpenSSO Enterprise
server. You can use the Notification Service to send session notifications to web containers that
are running the OpenSSO Enterprise Client SDK, enabling real-time updates on the client side.
No client application changes are required to support session notifications. The notifications
can be received only if the Client SDK is installed on a web container. See “Properties in
AMConfig.properties” on page 216 for information on the notification properties.

▼ To Enable Client SDK Cache Notifications
Copy the encryption value of am.encryption.pwd from the OpenSSO Enterprise server to the
remote Client SDK. The value of am.encryption.pwd is used for encrypting and decrypting
passwords.

To access the am.encryption.pwd, in OpenSSO Enterprise administration console, click
Configuration > Servers and Sites > serverName > Security.

Install OpenSSO Enterprise on Host 1.

Install Sun Java System Web Server on Host 2.

Install the ClientSDK on the same machine as the Web Server.

Log in to OpenSSO Enterprise as amadmin.
http://OpenSSO-HostName:8080/opensso

Execute the servlet by entering http://

ClientSDK_host:8080/servlet/SSOTokenSampleServlet into the browser location field and
validating the SSOToken.
SSOTokenSampleServlet is used for validating a session token and adding a listener. Executing
the servlet will print out the following message:

1

2

3

4

Before You Begin

1

2

3

4

5

Sending Notifications to the Client SDK Cache

Chapter 14 • Using the Client SDK 237

SSOToken host name: 192.18.149.33 SSOToken Principal name:

uid=amAdmin,ou=People,dc=red,dc=iplanet,dc=com Authentication type used: LDAP

IPAddress of the host: 192.18.149.33 The token id is

AQIC5wM2LY4SfcyURnObg7vEgdkb+32T43+RZN30Req/BGE= Property: Company is - Sun

Microsystems Property: Country is - USA SSO Token Validation test Succeeded

Set the property com.iplanet.am.notification.url= in the machine where the Client SDK is
installed:
com.iplanet.am.notification.url=http://clientSDK_host.domain:port
/servlet

com.iplanet.services.comm.client.PLLNotificationServlet

The notification URL is where the OpenSSO server can send change notifications to the clients.
This works for web application and standalone applications that can listen on port for HTTP(s)
traffic.

Restart the Web Server.

Login into OpenSSO Enterprise as amadmin.

http://OpenSSO-HostName:8080/opensso

Execute the servlet by entering http://

ClientSDK_host:8080/servlet/SSOTokenSampleServlet into the browser location field and
validating the SSOToken again.

When the machine on which the Client SDK is running receives the notification, it will call the
respective listener when the session state is changed. The notifications can be received only if
the Client SDK is installed on a web container.

Setting Up a Client SDK Identity
Some OpenSSO Enterprise components (such as SAML, user management, and policy) require
an identity to be authenticated before the client application can read configuration data. The
client can provide either a username and password that can be authenticated, or an
implementation of the com.sun.identity.security.AppSSOTokenProvider interface. Either
option will return a session token which the client can then use to access OpenSSO Enterprise
configuration data.

■ “To Set Username and Password Properties” on page 239
■ “To Set an SSO Token Provider” on page 239

6

7

8

9

Setting Up a Client SDK Identity

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009238

To Set Username and Password Properties
The following properties in AMConfig.properties can be used to set the username and
password. The authenticated username should have permission to read the OpenSSO
Enterprise configuration data.

■ The property to provide the user name is com.sun.identity.agents.app.username.
■ The property to provide the plain text password is com.iplanet.am.service.password.

Note – If a plain text password is a security concern, an encrypted password can be provided
as the value of com.iplanet.am.service.secret. If an encrypted password is provided, the
encryption key must also be provided as the value of am.encryption.pwd.

To Set an SSO Token Provider
Add the com.sun.identity.security.AdminToken property to AMConfig.properties with a
value equal to the name of the implementation of the
com.sun.identity.security.AppSSOTokenProvider interface.

Using the Virtual Federation Proxy Client Interfaces
OpenSSO Enterprise contains both Java and .Net interfaces to enable applications using Virtual
Federation Proxy (also referred to as Secure Attribute Exchange). They are provided as follows:

■ The Java API is provided in fmsae.jar.
■ The .Net API is provided in fmsae.dll.

For more information, see the README in zip-root/opensso/libraries/native/dll and “Using
SAML v2 for Virtual Federation Proxy” on page 109.

Using the Virtual Federation Proxy Client Interfaces

Chapter 14 • Using the Client SDK 239

240

Reading and Writing Log Records

SunTM OpenSSO Enterprise provides the Logging Service to record information such as user
activity, traffic patterns, and authorization violations. This chapter describes how to implement
and customize the logging functionality, including:

■ “About the Logging Service” on page 241
■ “Using the Logging Interfaces” on page 242
■ “Implementing Remote Logging” on page 246
■ “Running the Command-Line Logging Sample (LogSample.java)” on page 247

About the Logging Service
When processing a logging request, the Logging Service extracts information from a user's
session data structure and writes it to the configured log format, which can be either a flat file or
a relational database. For example, this information can include access denials and approvals,
authentication events, and authorization violations.

Administrators can then use the logs to track user actions, analyze traffic patterns, audit system
usage, review authorization violations, and troubleshoot. Logged information is recorded in a
centralized directory; which by default, is:

ConfigurationDirectory/depoly-uri/log

■ ConfigurationDirectory is the name of the directory specified during the initial
configuration of OpenSSO Enterprise server instance using the Configurator. This directory
is created in the home directory of the user who ran the Configurator.

■ deply-uri is the OpenSSO Enterprise deployment descriptor.

For example: /opensso/opensso/log

For more information about user sessions and the session data structure, see Chapter 6,
“Models of the User Session and Single Sign-On Processes,” in Sun OpenSSO Enterprise 8.0
Technical Overview.

15C H A P T E R 1 5

241

http://docs.sun.com/doc/820-3740/adrba?a=view
http://docs.sun.com/doc/820-3740/adrba?a=view
http://docs.sun.com/doc/820-3740/adrba?a=view

For information about how the Logging Service works, see Chapter 15, “Recording Events with
the Logging Service,” in Sun OpenSSO Enterprise 8.0 Technical Overview.

Using the Logging Interfaces
The Logging Service contains both an application programming interface (API) and service
provider interface (SPI). You can use the logging APIs to add logging functionality to a client
application and the SPIs to develop custom plug-ins to add functionality to the Logging Service.

Implementing Logging with the Logging Service API
The Logging Service API provides the interfaces for the OpenSSO Enterprise internal services
and remote applications running the Client SDK to create and submit log records. Retrieving
log records cannot be done using the client SDK. The logging API is in the
com.sun.identity.log package, which is documented in the Sun OpenSSO Enterprise 8.0 Java
API Reference.

The Logging Service API extends the core logging APIs in the Java SE. For more information
about the Java SE APIs, see http://java.sun.com/javase/reference/index.jsp.

The following sections have more information.

■ “Writing Log Records” on page 242
■ “Reading Log Records” on page 244

For more information see the Sun OpenSSO Enterprise 8.0 Java API Reference.

Writing Log Records
When writing log records, the Logging Service verifies that the logging requester has the proper
authority to log and then writes the information to the configured location, formatting and
completing the columns in the log records.

An application makes logging calls using the getLogger() method, which returns a Logger
object. Each Logger keeps track of a log level and discards log requests that are below this level.
(There is one Logger object per log file.) The applications allocates a LogRecord, which is
written to the log file using the log() method. An SSOToken, representing the user's session
data, is passed to the LogRecord constructor and used to populate the appropriate fields to be
logged.

OpenSSO Enterprise contains plug-ins to write log records to:

■ The host's flat file system
■ The host's flat file system with added signing of the LogRecord and periodic verification

Using the Logging Interfaces

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009242

http://docs.sun.com/doc/820-3740/adrdl?a=view
http://docs.sun.com/doc/820-3740/adrdl?a=view
http://docs.sun.com/doc/820-3739
http://docs.sun.com/doc/820-3739
http://java.sun.com/javase/reference/index.jsp
http://docs.sun.com/doc/820-3739

■ A relational database
■ A remote instance of OpenSSO Enterprise

The Logging Service requires two session tokens:

■ Creating the LogRecord requires an SSOToken for the subject about whom the LogRecord is
being written.

■ Writing the LogRecord requires an SSOToken for the entity requesting the logging of the
record.

Note – If your application also invokes utilities that log without using the OpenSSO Logging
Service API, then you might also need to include the following:

import com.sun.identity.log.Logger;

Logger.token.set(ssoToken);

where ssoToken is the SSOToken of the entity requesting the logging. Also, once done, the
following statement should be executed:

Logger.token.set(null); to clear the entity's SSOToken from the Logging Service.

The following parameters can have values logged when the addLogInfo() method is invoked.
All columns except for time, Data, and NameID can be selected for exclusion from the record
written to the log file.

time The date and time is retrieved from OpenSSO Enterprise and added by the
Logging Service.

Data The event being logged as defined in the message string specified in the
LogRecord() constructor call.

ModuleName The value specified for the LogConstants.MODULE_NAME property in the
addLogInfo() call. For example, the RADIUS module might be specified in
an authentication attempt.

Note – If no value is specified, this field will be logged as Not Available.

MessageID The value specified for the LogConstants.MESSAGE_ID property in an
addLogInfo() call.

Note – If no value is specified, this field will be logged as Not Available.

Using the Logging Interfaces

Chapter 15 • Reading and Writing Log Records 243

Domain The value for this field is extracted from the SSOToken and corresponds to
either the subject userID's domain, or organization.

ContextID The value for this field is extracted from the SSOToken and corresponds to the
subject userID's session context.

LogLevel The logging level, passed to the LogRecord() constructor, at which this
record is being logged.

LoginID The value for this field is extracted from the SSOToken and corresponds to the
subject userID's Principal name.

NameID The value specified for the LogConstants.NAME_ID property in an
addLogInfo() call. It is an alias that maps to the actual userID.

Note – If no value is specified, this field will be logged as Not Available.

IPAddr The value for this field is extracted from the SSOToken and corresponds to the
originating point of the action being logged.

LoggedBy The identifier in this field is extracted from the logging requestor's SSOToken
specified in the Logger.log() call.

HostName The host name corresponding to the originating point of the action being
logged is derived from the IPAddr in the user's SSOToken, if it can be resolved.

Note – Resolving host names is disabled by default; enable this feature by
toggling the Log Record Resolve Host Name system configuration attribute
under Logging Service. If disabled, the HostName value is taken from the
user's SSOToken and the IPAddr value is logged as Not Available.

Reading Log Records
When handling log reading requests, a valid SSOToken must be provided. The Logging Service
verifies that the requester has the proper authority, and then it retrieves the requested records
from the configured log location. The LogReader class provides the mechanism to read a log file
and return the appropriate data to the caller. It provides the authorization check, reads the data,
applies the query (if any), and returns the result as a string. The LogQuery is constructed using
the getLogQuery() method.

Note – Reading log records from a remote client program using the client SDK is not supported.

Using the Logging Interfaces

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009244

Unless all records from a log file are to be retrieved, at least one LogQuery must be constructed.
The LogQuery objects qualify the search criteria.

A LogQuery can specify a list of QueryElements, each containing a value for a field (column)
and a relationship. The QueryElement supports the following relationships:

QueryElement.GT Greater than

QueryElement.LT Less than

QueryElement.EQ Equal to

QueryElement.NE Not equal to

QueryElement.GE Greater than or equal to

QueryElement.LE Less than or equal to

QueryElement.CN Contains

QueryElement.SW Starts with

QueryElement.EW Ends with

Caution – Log files and tables in particular can become very large. If you specify multiple logs in a
single query, create queries that are very specific or limited in the number of records to return
(or both specific and limited). If a large number of records are returned, the OpenSSO
Enterprise resource limits (including those of the host system) can be exceeded.

The following sample code queries for all successful authentications in realm
dc=example,dc=com, and returns the time, Data, MessageID, ContextID, LoginID, and Domain

fields, sorted on the LoginID field:

ArrayList al = new ArrayList();

al.add (LogConstants.TIME);

al.add (LogConstants.Data);

al.add (LogConstants.MESSAGE_ID);

al.add (LogConstants.CONTEXT_ID);

al.add (LogConstants.LOGIN_ID);

al.add (LogConstants.DOMAIN);

LogQuery lq = new LogQuery(LogQuery.ALL_RECORDS,

LogQuery.MATCH_ALL_CONDITIONS,

LogConstants.LOGIN_ID);

QueryElement qe1 = new QueryElement(LogConstants.MESSAGE_ID,

"AUTHENTICATION-105",
QueryElement.EQ);

lq.addQuery(qe1);

Using the Logging Interfaces

Chapter 15 • Reading and Writing Log Records 245

QueryElement qe2 = new QueryElement(LogConstants.DOMAIN,

"dc=example,dc=com",
QueryElement.EQ);

lq.addQuery(qe2);

In this code, assuming that dc=example,dc=com is the root realm, changing the qe2 relationship
field to QueryElement.EW or QueryElement.CN changes the query to include all successful
authentications in all realms. To read the example query from the amAuthentication.access
log, assuming presence of an SSOToken, add the following:

String[][] result = new String[1][1];

result = read("amAuthentication.access", lq, ssoToken);

The first record in a log (row 0) contains the field and column names.

Implementing Remote Logging
■ “Logging to a Second OpenSSO Enterprise Server Instance” on page 246
■ “Logging to OpenSSO Enterprise Server From a Remote Client” on page 247

Logging to a Second OpenSSO Enterprise Server
Instance
An OpenSSO Enterprise server instance can use the Logging Service of another OpenSSO
Enterprise server instance, if both instances are configured as part of the same site. The remote
OpenSSO Enterprise server sets its Logging Service URL in the Administration Console
(Configuration > System > Naming) to the target OpenSSO Enterprise server instances's
Logging Service, by changing the attribute's protocol, host, port, and uri values, accordingly.
For example:

https://ssohost2.example.com:58080/opensso/loggingservice

Note – Reading log records remotely from another server or from a client program using the
client SDK is not supported.

Implementing Remote Logging

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009246

Logging to OpenSSO Enterprise Server From a Remote
Client
A remote client can use the OpenSSO Enterprise client SDK to log to an OpenSSO Enterprise
server. In order for the remote client to log to the target OpenSSO Enterprise server, the entity
making the logging request must have Log Writing permission on the target OpenSSO
Enterprise server. For information, see “Running the Command-Line Logging Sample
(LogSample.java)” on page 247.

Running the Command-Line Logging Sample
(LogSample.java)

OpenSSO Enterprise provides a command-line logging sample to show log writing from a
client using the OpenSSO client SDK. This sample (and other samples) are in the
opensso-client.zip file, which is part of the opensso_enterprise_80.zip file.

After you unzip opensso-client.zip, the command-line logging sample is:

■ Solaris and Linux systems: opensso-client-zip-root/sdk/scripts/CommandLineLogging.sh
■ Windows systems: opensso-client-zip-root\sdk\scripts\CommandLineLogging.bat

opensso-client-zip-root is where you unzipped the opensso-client.zip file.

The command-line logging sample runs in a stand alone JVM and does not require a web
container.

To run the command-line logging sample, OpenSSO Enterprise server must be running and
accessible from the client server. You will also need to know this information:

■ Protocol (http or https) used by the OpenSSO Enterprise server web container instance.
■ Fully qualified domain name (FQDN) of the OpenSSO Enterprise server host.
■ Port for the OpenSSO Enterprise server.
■ Deployment URI for the OpenSSO Enterprise server (default is opensso).
■ Default agent user (UrlAccessAgent) password that you entered when you ran the

OpenSSO Enterprise Configurator.
■ OpenSSO Enterprise server amadminpassword, if amadmin is the logging requestor in the

sample.

Running the Command-Line Logging Sample (LogSample.java)

Chapter 15 • Reading and Writing Log Records 247

▼ To Run the Command-Line Logging Sample
If necessary, unzip opensso_enterprise_80.zip and then unzip
zip-root/opensso/samples/opensso-client.zip.

Make sure that your JAVA_HOME environment variable points to a JDK 1.5 or 1.4 installation.

Change to the opensso-client-zip-root/sdkdirectory.
Note: You can invoke the sample scripts only from the /sdk parent directory and not directly
from the /scripts directory.

Follow the instructions in the README file to configure the AMConfig.properties file and to
setup and compile the sample applications.
Note: You need to setup and compile the sample command-line applications only once. If the
sample applications are already compiled, continue with the next step.

Run the sample command-line logging sample script from the /sdkdirectory. For example:

■ Solaris and Linux systems: scripts/CommandLineLogging.sh
■ Windows: scripts\CommandLineLogging.bat

The logging sample program prompts you for the subject user's identifier and password, log file
to use, message to log, logging user's identifier and password, and the realm (both users must
be in the same realm).
Either accept the default values for the prompts or specify your preferred values. For example:
Subject Userid [user1]: accepted default
Subject Userid user1 password [user1password]: user1-password
Log file [TestLog]: accepted default
Log message [Test Log Record]: accepted default
LoggedBy Userid [amadmin]: accepted default
LoggedBy Userid’s password [amadminpswd]: amadmin-password
Realm [/]: accepted default
==>Authentication SUCCESSFUL for user user1

==>Authentication SUCCESSFUL for user amadmin

LogSample: Logging Successful !!!

Check the TestLog created in the OpenSSO Enterprise server log directory.
The default log directory is ConfigurationDirectory/depoly-uri/log.

For example: /opensso/opensso/log

1

2

3

4

5

6

7

Running the Command-Line Logging Sample (LogSample.java)

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009248

Key Management

A public key infrastructure enables users on a public network to securely and privately
exchange data through the use of a public and a private key pair that is shared using a trusted
authority. For example, the PKI allows the data from a client, such as a web browser, to be
encrypted prior to transmission. The private key is used to decrypt text that has been encrypted
with the public key. The public key is made publicly available (as part of a digital certificate) in a
directory which all parties can access. This appendix contains information on how to create a
keystore and generate public and private keys. It includes the following sections:

■ “Public Key Infrastructure Basics” on page 249
■ “keytool Command Line Interface” on page 251
■ “Setting Up a Keystore” on page 252

Public Key Infrastructure Basics
Web containers support the use of keystores to manage keys and certificates. The keystore file is
a database that contains both public and private keys. Public and private keys are created
simultaneously using the same algorithm (for example, RSA). A public key is used for
encrypting or decrypting information. This key is made known to the world with no
restrictions, but it cannot be used to decrypt information that the same key has encrypted. A
private key is never revealed to anyone except it's owner and does not need to be communicated
to third parties. The private key might never leave the machine or hardware token that
originally generated it. The private key can encrypt information that can later be decrypted by
using the public key. Also the private key can be used to decrypt information that was
previously encrypted using the public key.

A public key infrastructure (PKI) is a framework for creating a secure method of exchanging
information on an unsecure network. This ensures that the information being sent is not open
to eavesdropping, tampering, or impersonation. It supports the distribution, management,
expiration, rollover, backup, and revoking of the public and private keys used for public key
cryptography. Public key cryptography is the most common method for encrypting and

AA P P E N D I X A

249

decrypting a message. It secures the data involved in the communications by using a private key
and its public counterpart. Each entity protects its own private key while disseminating its
public key for all to use. Public and private keys operate inversely; an operation performed by
one key can be reversed, or checked, only by its partner key.

Note – The Internet X.509 Public Key Infrastructure Certificate and CRL Profile is a PKI.

Digital Signatures
So, a private key and a public key can be used for simple message encryption and decryption.
This ensures that the message can not be read (as in eavesdropping) but, it does not ensure that
the message has not been tampered with. For this, a one-way hash (a number of fixed length that
is unique for the data to be hashed) is used to generate a digital signature. A digital signature is
basically data that has been encrypted using a one-way hash and the signer's private key. To
validate the integrity of the data, the server receiving the communication uses the signer's
public key to decrypt the hash. It then uses the same hashing algorithm that generated the
original hash (sent with the digital signature) to generate a new one-way hash of the same data.
Finally, the new hash and the received hash are compared. If the two hashes match, the data has
not changed since it was signed and the recipient can be certain that the public key used to
decrypt the digital signature corresponds to the private key used to create the digital signature.
If they don't match, the data may have been tampered with since it was signed, or the signature
may have been created with a private key that doesn't correspond to the public key presented by
the signer. This interaction ensures that any change in the data, even deleting or altering a single
character, results in a different value.

Digital Certificates
A digital certificate is an electronic document used to identify an individual, a server, a
company, or other entity and to bind that entity to a public key by providing information
regarding the entity, the validity of the certificate, and applications and services that can use the
certificate. The process of signing the certificate involves tying the private key to the data being
signed using a mathematical formula. The widely disseminated public counterpart can then be
used to verify that the data is associated with the sender of the data. Digital certificates are issued
by a certificate authority (CA) to authenticate the identity of the certificate-holder both before
the certificate is issued and when the certificate is used. The CA can be either independent third
parties or certificate-issuing server software specific to an enterprise. (Both types issue, verify,
revoke and distribute digital certificates.) The methods used to authenticate an identity are
dependant on the policies of the specific CA. In general, before issuing a certificate, the CA must
use its published verification procedures for that type of certificate to ensure that an entity
requesting a certificate is in fact who it claims to be.

Public Key Infrastructure Basics

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009250

http://www.ietf.org/rfc/rfc2459.txt

Certificates help prevent the use of fake public keys for impersonation. Only the public key
certified by the certificate will work with the corresponding private key possessed by the entity
identified by the certificate. Digital certificates automate the process of distributing public keys
and exchanging secure information. When one is installed on your machine, the public key is
freely available. When another computer wants to exchange information with your computer, it
accesses your digital certificate, which contains your public key, and uses it to validate your
identity and to encrypt the information it wants to share with you. Only your private key can
decrypt this information, so it remains secure from interception or tampering while traveling
across the Internet.

Note – You can get a digital certificate by sending a request for one to a CA. Certificate requests
are generated by the certificate management tool used. In this case, we are using the keytool
command line interface. When keytool generates a certificate request, it also generates a
private key.

keytoolCommand Line Interface
keytool is a key and certificate management utility used to create the keys. It also manages a
.keystore file containing private keys and the associated X.509 certificate chains
authenticating the corresponding public keys, issues certificate requests (which you send to the
appropriate CA), imports certificate replies (obtained from the contacted CA), designates
public keys belonging to other parties as trusted, and generates a unique key alias for each
keystore entry. There are two types of entries in a keystore:

■ A keystore entry holds sensitive cryptographic key information, stored in a protected format
to prevent unauthorized access. Typically, a key stored in this type of entry is a secret or
private key accompanied by a certificate chain for the corresponding public key.

■ A trusted certificate entry contains a single public key certificate belonging to another party.
It is called a trusted certificate because the keystore owner trusts that the public key in the
certificate indeed belongs to the identity identified by the subject of the certificate. The issuer
of the certificate vouches for this, by signing the certificate.

To create a keystore and default key entry in .keystore, you must use keytool, available from
the Java Development Kit (JDK), version 1.3.1 and above. For more details, see keytool — Key
and Certificate Management Tool.

keytool Command Line Interface

Appendix A • Key Management 251

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

Setting Up a Keystore
The following procedure illustrates how to create a keystore file and default key entry using
keytool.

▼ To Set Up a Keystore
Be sure to use the keytool provided with the JDK bundled with OpenSSO Enterprise. It is
located in JAVA_HOME/bin/keytool. When installed using the Java Enterprise System
installer, JAVA_HOME is /OpenSSO-baseSUNWam/java.

Note – The italicized option values in the commands used in this procedure may be changed to
reflect your deployment.

Generate a certificate using one of the following procedures.

■ Generate a keystore with a public and private key pair and a self-signed certificate for your
server using the following command.
keytool -genkey -keyalg rsa -alias test
-dname "cn=sun-unix,ou=SUN Java System Access Manager,o=Sun,c=US"
-keypass 11111111 -keystore .mykeystore
-storepass 11111111 -validity 180

This command will generate a keystore called .mykeystore in the directory from which it is
run. A private key entry with the alias test is created and stored in .mykeystore. If you do
not specify a path to the keystore, a file named .keystore will be generated in your home
directory. If you do not specify an alias for the default key entry, mykey is created as the
default alias. To generate a DSA key, change the value of -keyalg to dsa. This step generates
a self-signed certificate.

■ Create a request and import a signed certificate from a CA (to authenticate your public key)
using the following procedure.

a. Create a request to retrieve a signed certificate from a CA (to authenticate your public
key) using the following command:

keytool -certreq -alias test -file request.csr -keypass 11111111 -keystore .mykeystore -storepass 11111111 -storetype JKS

.mykeystore must also contain a self-signed certificate authenticating the server's
generated public key. This step will generate the certificate request file, request.csr,
under the directory from which the command is run. By submitting request.csr to a
CA, the requestor will be authenticated and a signed certificate authenticating the public
key will be returned. Save this root certificate to a file named myroot.cer and save the
server certificate generated in the previous step to a file named mycert.cer.

1

Setting Up a Keystore

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009252

b. Import the certificate returned from the CA using the following command:
keytool -import -alias test -trustcacerts -file mycert.cer -keypass 11111111 -keystore .mykeystore -storepass 11111111

c. Import the certificates of any trusted sites (from which you will receive assertions,
requests and responses) into your keystore using the following command:

keytool -import -file myroot.cer -keypass 11111111 -keystore .mykeystore -storepass 11111111

The data to be imported must be provided either in binary encoding format, or in
printable encoding format (also known as Base64) as defined by the Internet RFC 1421
standard. In the latter case, the encoding must be bounded at the beginning by a string
that starts with -----BEGIN and bounded at the end by a string that starts with -----END.

Change to the /OpenSSO-base/SUNWam/bindirectory and run the following command:
ampassword -e original password

This encrypts the password. The command will return something like
AQICKuNVNc9WXxiUyd8j9o/BR22szk8u69ME.

Create a new file named .storepass and put the encrypted password in it.

Create a new file named .keypass and put the encrypted password in it.

Copy .mykeystore to the location specified in AMConfig.properties.

For example, if
com.sun.identity.saml.xmlsig.keystore=/etc/opt/SUNWam/lib/keystore.jks, copy
.mykeystore to /etc/opt/SUNWam/lib/ and rename the file to keystore.jks.

Copy .storepass and .keypass to the location specified in AMConfig.properties.

For example, if
com.sun.identity.saml.xmlsig.storepass=/etc/opt/SUNWam/config/.storepass and
com.sun.identity.saml.xmlsig.keypass=/etc/opt/SUNWam/config/.keypass, copy both
files to /etc/opt/SUNWam/config/.

Define a value for the com.sun.identity.saml.xmlsig.certalias property in
AMConfig.properties.

For this example, the value would be test.

(Optional) If the private key was encrypted using the DSA algorithm, change
xmlsigalgorithm=http://www.w3.org/2000/09/xmldsig#rsa-sha1 in
/OpenSSO-base/locale/amSAML.properties to
xmlsigalgorithm=http://www.w3.org/2000/09/xmldsig#dsa-sha1.

2

3

4

5

6

7

8

Setting Up a Keystore

Appendix A • Key Management 253

(Optional) Change the canonicalization method for signing or the transform algorithm for
signing by modifying amSAML.properties, located in /OpenSSO-base/locale/.

a. Change canonicalizationMethod=http://www.w3.org/2001/10/xml-exc-c14n# to any
valid canonicalization method specified in Apache XML security package Version 1.0.5.

Note – If this entry is deleted or left empty, we will use
SAMLConstants.ALGO_ID_C14N_OMIT_COMMENTS (required by the XML Signature
specification) will be used.

b. Change transformAlgorithm=http://www.w3.org/2001/10/xml-exc-c14n# to any valid
transform algorithm specified in Apache XML security package Version 1.0.5.

Note – If this entry is deleted or left empty, the operation will not be performed.

Restart OpenSSO Enterprise.

9

10

Setting Up a Keystore

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009254

Index

A
access

Authentication Web Service, 145
Discovery Service, 155

account mappers, 93-94
AMConfig.properties

Client SDK, 215-227, 226-227, 238-239
API

Authentication Service, 17-20
Authentication Web Service, 143-145
client for Discovery Service, 151-152
common security, 142-143
common service, 140-142
Data Services Template, 146-147
Discovery Service, 151-155
Interaction Service, 157-160
PAOS binding, 160-161
Policy Service, 33-39
SAML v1.x, 120-126
SOAP Binding Service, 156-157

assertion query/request mappers, 98-99
attribute mappers, 94-95
attributes, Authentication Web Service, 144
authentication context mappers, 95-98
Authentication Service

cascading style sheets, 202-203
client API, 17-20
customizing branding and functionality, 205-207
customizing the user interface, 195-212
distributed authentication user interface, 209-212
files you can modify, 195-205
image files, 203-204

Authentication Service (Continued)
Java Server Pages, 196-199
JavaScript files, 202
JSP templates, 197-199
localization files, 204-205
login page, customizing, 196-197
self-registration page, customizing, 207-209
SPI, 20-27
XML files, 199-201

Authentication Web Service
accessing, 145
API, 143-145
attribute, 144
XML service file, 144

Authorizer interface, 141
Authorizer interface, 153-155

C
client API

Data Services Template, 147
Discovery Service, 151-152

client identity, Client SDK, 238-239
Client SDK, 213-239

about, 213-215
AMConfig.properties, 215-227, 226-227, 238-239
client identity, 238-239
initialize, 226-227
OpenSSO Enterprise properties, 216-226
packages, 213-215

client software development kit, See Client SDK

255

com.sun.identity.liberty.wsf.version, 136-140
com.sun.identity.policy, 34-37

Policy, 35
PolicyEvaluator, 35-36
PolicyEvent, 37
PolicyManager, 34-35
ProxyPolicyEvaluator, 36

com.sun.identity.policy.client, 37
com.sun.identity.policy.interfaces, 37-38
com.sun.identity.policy.jaas, 38-39

ISPermission, 39
ISPolicy, 39

com.sun.identity.saml2.assertion, 92
com.sun.identity.saml2.common, 92
com.sun.identity.saml2.plugins, 92
com.sun.identity.saml2.protocol, 92
common interfaces, 140-143
common security API, 142-143

D
data services

API, 146-147
Liberty Personal Profile Service, 146

Data Services Template
API, 146-147
client API, 147

default.jsp, 100-101
Default64ResourceIDMapper, 155
DefaultDiscoAuthorizer class, 153-155
DefaultHexResourceIDMapper, 155
develop web services, invoke, 134-136
digital certificates, 250-251
digital signatures, 250
DiscoEntryHandler interface, 152-153
Discovery Service

accessing, 155
and policy creation, 153-155
and security tokens, 148-150
client API, 151-152
packages, 151-155

distributed authentication user interface, See
Authentication Service

documentation, 12-13

documentation (Continued)
OpenSSO Enterprise, 12-13
related products, 13

F
federation, common interfaces, 140-143

I
idpMNIPOST.jsp, 105
idpMNIRedirectInit.jsp, 105
idpMNIRequestInit.jsp, 105
idpSingleLogoutInit.jsp, 107
idpSingleLogoutPOST.jsp, 107
idpSingleLogoutRedirect.jsp, 108
idpSSOFederate.jsp, 102
idpSSOInit.jsp, 102-103
Interaction Service, 157-160
interfaces

Authentication Web Service, 143-145
Authorizer, 153-155
DiscoEntryHandler, 152-153
Discovery Service, 151-155
request handler, 156-157
ResourceIDMapper, 155
session, 70-74

ISPolicy, 39

J
JAAS, and Policy Service, 39-41
Java Authentication and Authorization Service, See

JAAS
Java Authentication Service Provider Interface for

Containers
See also JSR-196

JSP, SAML v2, 100-109
JSR-196, 180-186

Index

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009256

K
key management

keystore entry, 251
overview, 249-251
setting up keystore, 252-254
trusted certificate entry, 251

keystore, setting up, 252-254
keystore entry, 251
keytool, 251

L
Liberty ID-WSF 1.1 profiles, 136-140
Liberty Personal Profile Service, 146
logging

reading records, 244-246
remote logging, 246-247
remote OpenSSO Enterprise, 246-247
writing records, 242-244

O
overview

Liberty Personal Profile Service, 146
Policy Service, 33-39
WSC security agent, 182-183
WSP security agent, 183-186

P
PAOS binding, 160-161

PAOS or SOAP, 160
PKI, 249-251

digital certificates, 250-251
digital signatures, 250

Policy, 35
policy creation, and Discovery Service, 153-155
Policy Service

and JAAS, 39-41
API, 33-39
com.sun.identity.policy, 34-37

Policy, 35

Policy Service, com.sun.identity.policy (Continued)
PolicyEvaluator, 35-36
PolicyEvent, 37
PolicyManager, 34-35
ProxyPolicyEvaluator, 36

com.sun.identity.policy.client, 37
com.sun.identity.policy.interfaces, 37-38
com.sun.identity.policy.jaas, 38-39

ISPermission, 39
ISPolicy, 39

conditions, customizing, 43-65
overview, 33-39
referrals, customizing, 43-65
SPI, 33-39
subjects, customizing, 43-65

PolicyEvaluator, 35-36
PolicyEvent, 37
PolicyManager, 34-35
procedures, create policy for

DefaultDiscoAuthorizer, 153-155
profiles, set up Liberty ID-WSF, 136-140
properties, Client SDK, 216-226
ProxyPolicyEvaluator, 36
public key infrastructure, See PKI

R
RelayState, 100-101
remote logging, 246-247
RequestHandler interface, 147
ResourceIDMapper interface, 155
ResourceIDMapper interface, 142
response provider, 43-65

S
SAML v1.x, API, 120-126
SAML v2

adding implementation class, 91-93
com.sun.identity.saml2.assertion, 92
com.sun.identity.saml2.common, 92
com.sun.identity.saml2.plugins, 92
com.sun.identity.saml2.protocol, 92

Index

257

SAML v2 (Continued)
default.jsp, 100-101
idpMNIPOST.jsp, 105
idpMNIRedirectInit.jsp, 105
idpMNIRequestInit.jsp, 105
idpSingleLogoutInit.jsp, 107
idpSingleLogoutPOST.jsp, 107
idpSingleLogoutRedirect.jsp, 108
idpSSOFederate.jsp, 102
idpSSOInit.jsp, 102-103
JavaServer Pages, 100-109
samples, 109
SDK, 91-93
spAssertionConsumer.jsp, 101-102
SPI, 93-100
spMNIPOST.jsp, 105
spMNIRedirect.jsp, 106
spMNIRequestInit.jsp, 106
spSingleLogoutInit.jsp, 108-109
spSingleLogoutPOST.jsp, 108
spSingleLogoutRedirect.jsp, 109
spSSOInit.jsp, 103-104

samples
SAML v2, 109
security tokens, 148-150

SDK, SAML v2, 91-93
secure attribute exchange, 109-120
security agent

WSC, 182-183
WSP, 183-186

security agents, 180-186
security tokens

and Discovery Service, 148-150
generating, 148-150

self-registration page, customizing, 207-209
services.war, updating and redeploying, 191
Session Service, See sessions
sessions

data, 67-74
interfaces, 70-74
scenario, 67-68

single sign-on, 67-74
scenario, 67-68

SOAP Binding Service
API, 156-157
PAOS or SOAP, 160
SOAPReceiver, 156

SOAPReceiver, 156
spAssertionConsumer.jsp, 101-102
SPI

account mappers, 93-94
assertion query/request mappers, 98-99
attribute mappers, 94-95
authentication context mappers, 95-98
Authentication Service, 20-27
Policy Service, 33-39
SAML v2, 93-100

spMNIPOST.jsp, 105
spMNIRedirect.jsp, 106
spMNIRequestInit.jsp, 106
spSingleLogoutInit.jsp, 108-109
spSingleLogoutPOST.jsp, 108
spSingleLogoutRedirect.jsp, 109
spSSOInit.jsp, 103-104
SSO, See single sign-on

T
trusted certificate entry, 251

V
virtual federation proxy, See secure attribute exchange

W
web services

develop, 127-136
hosting, 128-134
invoking, 134-136

web services security, 180-186
samples, 186

WSC security agent, 182-183
WSP security agent, 183-186

Index

Sun OpenSSO Enterprise 8.0 Developer's Guide • January 2009258

X
XML service files, Authentication Web Service, 144

Index

259

260

	Sun OpenSSO Enterprise 8.0 Developer's Guide
	Preface
	Before You Read This Book
	Related Documentation
	OpenSSO Enterprise 8.0 Core Documentation
	Related Product Documentation

	Searching Sun Product Documentation
	Documentation, Support, and Training
	Third-Party Web Site References
	Sun Welcomes Your Comments
	Typographical Conventions
	Default Paths and Directory Names

	Using the Authentication Service API and SPI
	Initiating Authentication with the Authentication Service API
	Writing Authentication Modules with the Authentication Service SPI
	Creating an Authentication Module Callback Requirement File
	Writing a Principal Class for the Authentication Module
	Creating an Authentication Module Service File
	Creating an Authentication Module Localization Properties File
	Extending the AMLoginModule Class
	Implementing the init() Method
	Implementing the process() Method
	Implementing the getPrincipal() Method

	Adding Authentication Post Processing Features

	Communicating Authentication Data as XML
	XML Messages and remote-auth.dtd
	Authentication Request Message from Application
	Response Message from OpenSSO Enterprise with Session Identifier and Callbacks
	Response Message from Application with User Credentials
	Authentication Status Message from OpenSSO Enterprise With Session Token

	XML/HTTP(s) Interface for Other Applications

	Customizing Plug-Ins for the Password Reset User Interface

	Using the Policy Service API
	About the Policy Service Interfaces
	com.sun.identity.policy
	Policy Management Classes
	PolicyManager
	Policy

	Policy Evaluation Classes
	PolicyEvaluator
	ProxyPolicyEvaluator
	PolicyEvent

	com.sun.identity.policy.client
	com.sun.identity.policy.interfaces
	Policy Service Provider Interfaces and Plug-Ins

	com.sun.identity.policy.jaas
	ISPermission
	ISPolicy

	Enabling Authorization Using the Java Authentication and Authorization Service (JAAS)
	Using the Policy Evaluation API
	To Develop a Custom Policy Plug-In
	Sample Code for Custom Subjects, Conditions, Referrals, and Response Providers
	SampleSubject.java
	SampleCondition.java
	SampleReferral.java
	SampleResponseProvider.java

	Using the Session Service API
	A Simple Single Sign-On Scenario
	Inside a User Session
	Session Attributes
	Protected Properties

	About the Session Service Interfaces
	SSOTokenManager
	SSOToken
	SSOTokenListener

	Running OpenSSO Enterprise in Debugging Mode
	To Run OpenSSO Enterprise in Debugging Mode
	To Merge Debugging Output into One File

	Understanding the Federation Options
	Understanding Federation
	Understanding Federated Single Sign-on
	Federated Single Sign-on Using OpenSSO Enterprise
	Executing a Multi-Protocol Hub

	Implementing the Liberty Alliance Project Identity-Federation Framework
	Customizing the Federation Graphical User Interface
	Using the Liberty ID-FF Packages
	com.sun.identity.federation.accountmgmt
	com.sun.identity.federation.common
	com.sun.identity.federation.message
	com.sun.identity.federation.message.common
	com.sun.identity.federation.plugins
	com.sun.identity.federation.services
	com.sun.liberty

	Accessing Liberty ID-FF Endpoints
	Executing the Liberty ID-FF Sample

	Implementing WS-Federation
	Accessing the WS-Federation Java Server Pages
	Using the WS-Federation Packages
	com.sun.identity.wsfederation.plugins
	com.sun.identity.wsfederation.common

	Executing the Multi-Protocol Hub Sample

	Constructing SAML Messages
	SAML v2
	Using the SAML v2 SDK
	Exploring the SAML v2 Packages
	com.sun.identity.saml2.assertion Package
	com.sun.identity.saml2.common Package
	com.sun.identity.saml2.plugins Package
	com.sun.identity.saml2.protocol Package

	Setting a Customized Class

	Service Provider Interfaces
	Account Mappers
	IDPAccountMapper
	SPAccountMapper

	Attribute Mappers
	IDPAttributeMapper
	SPAttributeMapper

	Authentication Context Mappers
	IDPAuthnContextMapper
	SPAuthnContextMapper

	Assertion Query/Request Mappers
	Attribute Authority Mappers
	Service Provider Adapter

	JavaServer Pages
	Default Display Page
	Export Metadata Page
	Fedlet Pages
	Assertion Consumer Page
	Single Sign-on Pages
	idpSSOFederate.jsp
	idpSSOInit.jsp
	spSSOInit.jsp

	Name Identifier Pages
	idpMNIPOST.jsp
	idpMNIRequestInit.jsp
	idpMNIRedirect.jsp
	spMNIPOST.jsp
	spMNIRequestInit.jsp
	spMNIRedirect.jsp

	Single Logout Pages
	idpSingleLogoutPOST.jsp
	idpSingleLogoutInit.jsp
	idpSingleLogoutRedirect.jsp
	spSingleLogoutPOST.jsp
	spSingleLogoutInit.jsp
	spSingleLogoutRedirect.jsp

	SAML v2 Samples

	Using SAML v2 for Virtual Federation Proxy
	How Virtual Federation Proxy Works
	Use Cases
	Authentication at Identity Provider
	Secure Attribute Exchange at Identity Provider
	Secure Attribute Exchange at Service Provider
	Global Single Logout

	Securing Virtual Federation Proxy
	Preparing to Use Virtual Federation Proxy
	Configuring for Virtual Federation Proxy
	Configure the Instance of OpenSSO Enterprise Local to the Identity Provider
	Configure the Instance of OpenSSO Enterprise Local to the Service Provider
	Configure the Instance of OpenSSO Enterprise Local to the Identity Provider for the Remote Service Provider
	Configure the Instance of OpenSSO Enterprise Local to the Service Provider for the Remote Identity Provider

	Using the Secure Attribute Exchange Sample

	SAML v1.x
	com.sun.identity.saml Package
	AssertionManager Class
	SAMLClient Class

	com.sun.identity.saml.assertion Package
	com.sun.identity.saml.common Package
	com.sun.identity.saml.plugins Package
	ActionMapper Interface
	AttributeMapper Interface
	NameIdentifierMapper Interface
	PartnerAccountMapper Interface
	PartnerSiteAttributeMapper Interface

	com.sun.identity.saml.protocol Package
	AuthenticationQuery Class
	AttributeQuery Class
	AuthorizationDecisionQuery Class

	Implementing Web Services
	Developing New Web Services
	To Host a Custom Service
	To Invoke the Custom Service

	Setting Up Liberty ID-WSF 1.1 Profiles
	To Configure OpenSSO Enterprise to Use Liberty ID-WSF 1.1 Profiles
	To Test the Liberty ID-WSF 1.1 Configuration

	Common Application Programming Interfaces
	Common Interfaces
	com.sun.identity.liberty.ws.common Package
	com.sun.identity.liberty.ws.interfaces Package

	Common Security API
	com.sun.identity.liberty.ws.security Package
	com.sun.identity.liberty.ws.common.wsse Package

	Authentication Web Service
	Authentication Web Service Default Implementation
	key Parameter
	class Parameter

	Authentication Web Service Packages
	com.sun.identity.liberty.ws.authnsvc Package
	com.sun.identity.liberty.ws.authnsvc.mechanism Package
	com.sun.identity.liberty.ws.authnsvc.protocol Package

	Access the Authentication Web Service

	Data Services
	Liberty Personal Profile Service
	Data Services Template Packages
	com.sun.identity.liberty.ws.dst Package
	com.sun.identity.liberty.ws.dst.service Package

	Discovery Service
	Generating Security Tokens
	To Configure the Discovery Service to Generate Security Tokens

	Discovery Service Packages
	Client APIs in com.sun.identity.liberty.ws.disco
	com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface
	com.sun.identity.liberty.ws.interfaces.Authorizer Interface
	To Configure Discovery Service Policy Definitions

	com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface

	Access the Discovery Service

	SOAP Binding Service
	SOAPReceiver Servlet
	SOAP Binding Service Package

	Interaction Service
	Configuring the Interaction Service
	Interaction Service API

	PAOS Binding
	Comparison of PAOS and SOAP
	PAOS Binding API

	Using the REST Identity Interfaces
	The REST URL Format
	Authentication
	Token Validation
	Logout
	Authorization
	Logging
	Searching Identity Types
	Display Identity Data
	Display Particular Identity Data
	Creating Identity Types
	Updating Identity Data
	Deleting an Identity Profile

	Securing Web Services
	About Web Services Security
	About Web Services Security with OpenSSO Enterprise
	The Security Token Service
	Web Container Support
	Security Tokens
	Token Conversion
	Configuring the Security Token Service

	Security Agents
	WSC Security Agents
	WSP Security Agent
	Supported Web Services-Interoperability Basic Security Profile Security Tokens
	Supported Liberty Alliance Project Security Tokens

	Testing Web Services Security

	Creating and Deploying OpenSSO Enterprise WAR Files
	Overview of WAR Files in Java EE Software Development
	Web Components
	How Web Components are Packaged

	Deploying the OpenSSO Enterprise WAR File
	OpenSSO Enterprise Deployment Considerations
	To Deploy the OpenSSO Enterprise Server WAR File:

	Customizing and Redeploying opensso.war
	To Customize and Redeploy opensso.war

	Creating Specialized OpenSSO Enterprise WAR Files
	To Create a Specialized OpenSSO Enterprise WAR File

	Customizing the Authentication User Interface
	User Interface Files You Can Modify
	Java Server Page (JSP) Files
	Customizing the Login Page
	Customizing JSP Templates

	XML Files
	Callbacks Elements
	Nested Elements
	Attributes

	ConfirmationCallback Element
	Nested Element

	JavaScript Files
	Cascading Style Sheets
	Images
	Localization Files

	Customizing Branding and Functionality
	To Modify Branding and Functionality

	Customizing the Self-Registration Page
	To Modify the Self-Registration Page

	Customizing the Distributed Authentication User Server Interface
	To Customize the Distributed Authentication Server User Interface

	Using the Client SDK
	About the Client SDK
	OpenSSO Enterprise Client SDK Requirements
	Using the Client SDK

	Using AMConfig.properties With the Client SDK
	Properties in AMConfig.properties
	Debug Properties
	Client SDK Related Properties
	Logging Property
	JavaTM Platform, Enterprise Edition (Java EE) Agent Property
	OpenSSO Enterprise Configuration Data User Credential Properties
	Cache Enable Properties
	Cache Update Properties
	Notification Properties
	Polling Properties
	TTL Properties

	Naming Property
	Encryption Properties
	OpenSSO Enterprise Server and Console Location Properties
	Cookie Property
	Client Side Session Polling Properties
	JSS Certificate Database Properties
	Policy Logging and Caching Properties
	Federation Properties

	Setting Properties in AMConfig.properties
	Setting Properties Using a Text Editor
	Setting Properties Using the Java API
	Setting Properties at Run Time

	Installing the Client SDK and Running the Samples
	Installing the Client SDK by Deploying the Sample WAR
	To Install the Client SDK by Deploying the Sample WAR
	To Run the Client SDK Web-based Samples
	To Run the Client SDK Command Line Samples

	Installing the Client SDK By Compiling the Samples
	To Install the Client SDK by Compiling the Samples

	Sending Notifications to the Client SDK Cache
	To Enable Client SDK Cache Notifications

	Setting Up a Client SDK Identity
	To Set Username and Password Properties
	To Set an SSO Token Provider

	Using the Virtual Federation Proxy Client Interfaces

	Reading and Writing Log Records
	About the Logging Service
	Using the Logging Interfaces
	Implementing Logging with the Logging Service API
	Writing Log Records
	Reading Log Records

	Implementing Remote Logging
	Logging to a Second OpenSSO Enterprise Server Instance
	Logging to OpenSSO Enterprise Server From a Remote Client

	Running the Command-Line Logging Sample (LogSample.java)
	To Run the Command-Line Logging Sample

	Key Management
	Public Key Infrastructure Basics
	Digital Signatures
	Digital Certificates

	keytool Command Line Interface
	Setting Up a Keystore
	To Set Up a Keystore

	Index

