
Sun Java System Web Server 7.0
Update 6 Administrator's
Configuration File Reference

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–7986
July 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, JavaServer Pages, JDK, Java Naming and Directory Interface, JDBC,
Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc. Netscape is a trademark or registered trademark of Netscape Communications Corporation in the
United States and other countries.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, JavaServer Pages, JDK, Java Naming and Directory Interface, JDBC, Java et
Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques
SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Netscape est une marque de Netscape Communications
Corporation aux Etats-Unis et dans d'autres pays.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090828@22749

Contents

Preface ...17

1 Overview of Configuration Files and Directories ... 25
Configuration Files .. 25

The server.xml File ... 26
The magnus.conf File .. 26
The obj.conf File ... 26
The mime.types File ... 26
ACL Files ... 26
Other Configuration Files ... 26

Directory Structure ... 27
admin-server .. 27
bin .. 28
https-server_id ... 28
include ... 29
jdk .. 29
lib ... 29
plugins ... 29
samples .. 29
setup ... 29

Dynamic Reconfiguration .. 30

2 Syntax and Use of server.xml .. 33
Overview of server.xml ... 33

sun-web-server_7_0.xsd ... 33
Editing server.xml .. 33

Understanding server.xml .. 35

3

Access Control .. 35
Clustering .. 35
HTTP Protocol ... 36
Java ... 36
Logging and Monitoring ... 37
Performance Tuning .. 37
Search .. 37
SSL, TLS, and PKCS #11 .. 37
Variables ... 38
Virtual Servers .. 38
WebDAV ... 38

Sample server.xml File .. 38

3 Elements in server.xml ...41
List of Elements .. 41

access-log .. 43
access-log-buffer .. 43
acl-cache .. 44
acl-db ... 45
acl-file .. 46
audit-accesses ... 46
auth .. 47
auth-db .. 47
auth-realm .. 48
cgi ... 49
cluster .. 50
connection-creation-property ... 50
connection-lease-property ... 51
convert ... 52
custom-resource .. 52
dav .. 53
dav-collection ... 54
default-auth-db-name ... 55
default-auth-realm-name ... 56
default-soap-auth-provider-name ... 56

Contents

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 20094

display-name .. 56
dns .. 56
dns-cache .. 57
env-variable .. 58
event ... 58
external-jndi-resource ... 59
file-cache ... 60
http ... 61
http-listener .. 63
include ... 64
index .. 65
instance ... 65
jdbc-resource .. 66
jvm ... 67
keep-alive .. 69
lifecycle-module ... 70
localization .. 70
lock-db ... 71
log ... 71
mail-resource .. 73
mime-file ... 74
pkcs11 .. 74
pkcs11 bypass ... 75
profiler ... 75
property ... 76
property-db ... 77
qos .. 77
qos-limits .. 78
request-policy ... 79
response-policy .. 79
search-app ... 80
search-collection .. 80
server ... 81
servlet-container .. 84
session-replication ... 86
single-sign-on ... 87

Contents

5

snmp .. 87
soap-auth-provider .. 88
ssl .. 89
ssl2-ciphers ... 90
ssl3-tls-ciphers .. 91
ssl-session-cache .. 94
stats .. 95
thread-pool ... 95
time .. 96
token .. 97
variable .. 97
virtual-server .. 98
web-app ... 99

4 Syntax and Use of magnus.conf .. 101
Editing magnus.conf ... 101

Parameters .. 102
Case Sensitivity ... 102
Separators ... 102
Quotation Marks .. 102
Spaces .. 102
Line Continuation ... 102
Path Names ... 102
Comments .. 103

ChildRestartCallback .. 103
Syntax .. 103

Init Directives ... 103
Syntax .. 103

KernelThreads ... 104
Syntax .. 104
Default ... 104

NativePoolMaxThreads .. 104
Default ... 104

NativePoolMinThreads .. 104
Default ... 104

Contents

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 20096

NativePoolQueueSize ... 105
Default ... 105

NativePoolStackSize .. 105
Default ... 105

TerminateTimeout .. 105
Syntax .. 105
Default ... 105

Umask ... 106
Syntax .. 106
Default ... 106

5 Predefined SAFs in magnus.conf ..107
Init SAFs ... 107

cindex-init ... 108
define-perf-bucket ... 109
init-dav .. 110
init-filter-order ... 110
init-request-limits .. 112
init-uhome .. 112
load-modules .. 113
pool-init .. 114
register-http-method ... 114
thread-pool-init ... 115

Common SAFs ... 116
Deprecated Init SAFs .. 117

6 Syntax and Use of obj.conf ... 119
Request-Handling Process Overview .. 120

Stages in the Request-Handling Process ... 120
Directives in obj.conf .. 121
Objects in obj.conf ... 122

Objects That Use the name Attribute .. 123
Objects That Use the ppath Attribute .. 123
Using the Client, If, ElseIf, and Else Tags .. 124

Flow of Control in obj.conf .. 127

Contents

7

AuthTrans ... 127
NameTrans ... 127
PathCheck ... 129
ObjectType ... 129
Input .. 131
Output ... 131
Route .. 132
Service .. 132
AddLog .. 134
Error .. 134

Changes in Function Flow .. 134
Restarted Requests ... 134
Internal Requests .. 135
URI Translation ... 135

Editing obj.conf ... 135
Order of Directives .. 135
Parameters .. 135
Case Sensitivity ... 136
Separators ... 136
Quotation Marks .. 136
Spaces .. 136
Line Continuation ... 136
Path Names ... 136
Comments .. 136

7 Predefined SAFs and Filters in obj.conf ... 137
The bucket Parameter ... 138
AuthTrans .. 138

basic-auth .. 138
basic-ncsa .. 140
get-sslid ... 141
qos-handler ... 141

NameTrans ... 142
assign-name .. 143
document-root ... 144

Contents

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 20098

home-page .. 145
map .. 146
ntrans-dav ... 147
ntrans-j2ee .. 148
pfx2dir ... 148
reverse-map .. 150
rewrite .. 151
strip-params ... 152
unix-home .. 152

PathCheck .. 153
check-acl ... 154
check-request-limits .. 155
deny-existence .. 157
find-compressed .. 158
find-index .. 159
find-index-j2ee ... 160
find-links ... 161
find-pathinfo .. 162
get-client-cert ... 163
nt-uri-clean ... 164
ntcgicheck ... 165
pcheck-dav .. 166
require-auth .. 166
set-virtual-index ... 167
ssl-check .. 168
ssl-logout ... 169
unix-uri-clean ... 169

ObjectType ... 170
block-auth-cert ... 171
block-cache-info .. 172
block-cipher .. 172
block-ip ... 173
block-issuer-dn .. 173
block-jroute .. 174
block-keysize .. 174
block-proxy-agent ... 175

Contents

9

block-proxy-auth ... 176
block-secret-keysize ... 176
block-ssl-id ... 177
block-user-dn ... 177
block-via .. 178
force-type .. 178
forward-auth-cert .. 179
forward-cache-info .. 180
forward-cipher ... 180
forward-ip ... 181
forward-issuer-dn .. 181
forward-jroute .. 182
forward-keysize .. 183
forward-proxy-agent ... 183
forward-proxy-auth ... 184
forward-secret-keysize .. 184
forward-ssl-id ... 185
forward-user-dn ... 185
forward-via ... 186
http-client-config ... 186
set-basic-auth ... 187
set-cache-control ... 188
set-cookie .. 189
set-default-type .. 190
shtml-hacktype ... 190
ssl-client-config .. 191
type-by-exp ... 192
type-by-extension .. 193
type-j2ee .. 194

Input .. 194
sed-request .. 195

Output ... 196
compress-file .. 196
http-compression ... 198
sed-response ... 200

Route ... 200

Contents

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200910

set-origin-server ... 201
set-proxy-server ... 202

Service ... 203
add-footer ... 205
add-header .. 206
append-trailer ... 208
delete-file ... 209
imagemap .. 210
index-common ... 211
index-simple ... 214
key-toosmall ... 215
list-dir .. 216
make-dir .. 218
proxy-retrieve ... 219
remove-dir .. 220
rename-file .. 221
send-cgi ... 222
send-file ... 225
send-range .. 226
send-shellcgi ... 227
send-wincgi ... 228
service-dav .. 229
service-dump .. 231
service-j2ee ... 232
service-trace .. 234
shtml-send .. 235
stats-xml .. 236
upload-file ... 238

AddLog ... 239
flex-log ... 239

Error .. 240
error-j2ee .. 240
qos-error ... 241

Common SAFs ... 242
insert-filter .. 243
match-browser ... 244

Contents

11

query-handler ... 245
redirect .. 246
remove-filter ... 248
restart ... 249
send-error ... 250
set-variable .. 252

FastCGI Plug-in SAFs ... 256

8 MIME Types ...257
Determining the MIME Type .. 257
Referencing MIME Types Files in server.xml .. 258
Generating the Server Response Using the MIME Type .. 258
Processing the Response in the Client Using the MIME Type ... 259
MIME Types Syntax .. 259
Sample MIME Types File ... 259

9 ACL Files ..265
Referencing ACL Files in server.xml and obj.conf .. 265
ACL File Syntax ... 266

General Syntax ... 267
Authentication Methods ... 267
Authorization Statements ... 268
Hierarchy of Authorization Statements .. 269

Sample ACL File .. 271

10 Other Server Configuration Files ..273
certmap.conf .. 273

Location .. 274
Syntax .. 274
See Also ... 275

sun-web.xml ... 275
Location .. 275

login.conf .. 275
Location .. 275

Contents

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200912

server.policy ... 275
Location .. 276
Syntax .. 276
See Also ... 276

default-web.xml ... 276
Location .. 276
See Also ... 276

A Using Variables, Expressions, and String Interpolation ... 277
Variables ... 277

Predefined Variables .. 277
Custom Variables ... 280
Resolving Variables ... 280

Expressions .. 281
Expression Syntax .. 281
Expression Results as Booleans .. 282
Expression Literals ... 282
Expression Variables ... 283
Expression Operators .. 284
Expression Functions .. 286
Regular Expressions ... 295

String Interpolation ... 296
Using Variables in Interpolated Strings .. 297
Using Expressions in Interpolated Strings .. 297

B Using Wildcard Patterns ...299
Wildcard Patterns .. 299
Wildcard Examples ... 300

C Using the Custom Log File Format .. 301
Custom Log File Format ... 301

D Using Time Formats ...305
Format Strings ... 305

Contents

13

E Configuration Changes Between Sun ONE Web Server 6.1 and Sun Java System Web Server
7.0 .. 307
Element Changes in server.xml ... 307
Directive and Init Function Changes in magnus.conf .. 309

Directive Changes .. 309
Init Function Changes ... 313

Other Configuration File Changes .. 314

F Web Server Interfaces ...315

G Alphabetical List of Server Configuration Elements and Predefined SAFs321

Index ... 329

Contents

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200914

Examples

EXAMPLE 2–1 server.xmlFile ... 38

15

16

Preface

The Sun Java System Web Server Administrator's Configuration File Reference discusses the
purpose and use of the configuration files for Sun Java System Web Server (Web Server),
including server.xml, magnus.conf, obj.conf, and mime.types. This document provides a
comprehensive list of the elements and directives in these configuration files.

Who Should Use This Book
The intended audience for this document is the person who administers and maintains Web
Server.

■ Java Platform, Enterprise Edition (Java EE)
■ HTTP
■ HTML
■ XML
■ Relational database concepts

Sun Java System Web Server Documentation Set
The Sun Java System Web Server documentation set describes how to install and administer the
Web Server. The URL for Sun Java System Web Server 7.0 Update 6 documentation is
http://docs.sun.com/coll/1653.6 .

The Sun Java System Web Server documents are now in wiki format at http://
wikis.sun.com/display/WebServerdocs/Home. This wiki is intended to promote
collaboration and contribution on documentation content for Web Server. You are welcome to
contribute, by posting your comments or by directly editing the wiki page, as long as the
content is relevant to an appropriate standard.

For an introduction to Sun Java System Web Server, refer to the books in the order in which
they are listed in the following table.

17

http://docs.sun.com/coll/1653.6
http://wikis.sun.com/display/WebServerdocs/Home
http://wikis.sun.com/display/WebServerdocs/Home

TABLE P–1 Books in the Sun Java System Web Server Documentation Set

Documentation Title Contents

Sun Java System Web Server Documentation Wiki This wiki is intended to promote collaboration and contribution on
documentation content for Web Server

Sun Java System Web Server 7.0 Update 6 Documentation
Center

Web Server documentation topics organized by tasks and subject

Sun Java System Web Server 7.0 Update 6 Release Notes ■ Late-breaking information about the software and documentation
■ Supported platforms and patch requirements for installing Web

Server

Sun Java System Web Server 7.0 Update 6 Installation and
Migration Guide

Performing installation and migration tasks:
■ Installing Web Server and its various components

■ Migrating data from Sun ONE Web Server 6.0 or 6.1 to Sun Java
System Web Server 7.0

Sun Java System Web Server 7.0 Update 6 Administrator’s
Guide

Performing the following administration tasks:
■ Using the Administration and command-line interfaces

■ Configuring server preferences

■ Using server instances

■ Monitoring and logging server activity

■ Using certificates and public key cryptography to secure the server

■ Configuring access control to secure the server

■ Using JavaTM Platform Enterprise Edition (Java EE) security features

■ Deploying applications

■ Managing virtual servers

■ Defining server workload and sizing the system to meet performance
needs

■ Searching the contents and attributes of server documents, and
creating a text search interface

■ Configuring the server for content compression

■ Configuring the server for web publishing and content authoring
using WebDAV

Sun Java System Web Server 7.0 Update 6 Developer’s
Guide

Using programming technologies and APIs to do the following:
■ Extend and modify Sun Java System Web Server

■ Dynamically generate content in response to client requests and
modify the content of the server

Preface

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200918

http://wikis.sun.com/display/WebServerdocs/Home
http://docs.sun.com/doc/820-7982
http://docs.sun.com/doc/820-7982
http://docs.sun.com/doc/820-7978
http://docs.sun.com/doc/820-7981
http://docs.sun.com/doc/820-7981
http://docs.sun.com/doc/820-7985
http://docs.sun.com/doc/820-7985
http://docs.sun.com/doc/821-0038
http://docs.sun.com/doc/821-0038

TABLE P–1 Books in the Sun Java System Web Server Documentation Set (Continued)
Documentation Title Contents

Sun Java System Web Server 7.0 Update 6 NSAPI
Developer’s Guide

Creating custom Netscape Server Application Programmer’s Interface
(NSAPI) plug-ins

Sun Java System Web Server 7.0 Update 6 Developer’s
Guide to Java Web Applications

Implementing Java Servlets and JavaServer PagesTM (JSPTM) technology in
Sun Java System Web Server

Sun Java System Web Server 7.0 Update 6 Administrator’s
Configuration File Reference

Editing configuration files

Sun Java System Web Server 7.0 Update 6 Performance
Tuning, Sizing, and Scaling Guide

Tuning Sun Java System Web Server to optimize performance

Sun Java System Web Server 7.0 Update 6 Troubleshooting
Guide

Troubleshooting Web Server

Sun Java System Web Server 7.0 Update 6 CLI Reference
Manual

Administration commands that allow you to administer the Web Server
through the CLI

Related Books
The URL for all documentation about Sun Java Enterprise System (Java ES) and its components
is http://docs.sun.com/coll/1286.3.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

Preface

19

http://docs.sun.com/doc/820-7980
http://docs.sun.com/doc/820-7980
http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7986
http://docs.sun.com/doc/820-7986
http://docs.sun.com/doc/820-7979
http://docs.sun.com/doc/820-7979
http://docs.sun.com/doc/820-7977
http://docs.sun.com/doc/820-7977
http://docs.sun.com/doc/820-7984
http://docs.sun.com/doc/820-7984
http://docs.sun.com/coll/1286.3

TABLE P–2 Default Paths and File Names

Placeholder Description Default Value

install_dir Represents the base installation directory for Sun
Java System Web Server.

Sun Java Enterprise System (Java ES) installations on the
SolarisTM platform:

/opt/SUNWwbsvr7

Java ES installations on the Linux and HP-UX platform:

/opt/sun/webserver/

Java ES installations on the Windows platform:

System Drive:\Program Files\Sun\JavaES5\WebServer7

Other Solaris, Linux, and HP-UX installations, non-root
user:

user's home directory/sun/webserver7

Other Solaris, Linux, and HP-UX installations, root user:

/sun/webserver7

Windows, all installations:

System Drive:\Program Files\Sun\WebServer7

instance_dir Directory that contains the instance-specific
subdirectories.

For Java ES installations, the default location for instances
on Solaris:

/var/opt/SUNWwbsvr7

For Java ES installations, the default location for instances
on Linux and HP-UX:

/var/opt/sun/webserver7

For Java ES installations, the default location for instance
on Windows:

System Drive:\Program Files\Sun\JavaES5\WebServer7

For stand-alone installations, the default location for
instance on Solaris, Linux, and HP-UX:

install_dir

For stand-alone installations, the default location for
instance on Windows:

System Drive:\Program Files\sun\WebServer7

Preface

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200920

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories, and
onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen computer output machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be emphasized (note
that some emphasized items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use either the y
argument or the n argument.

${ } Indicates a variable reference. ${com.sun.javaRoot} References the value of the com.sun.javaRoot
variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press the A
key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and then press
the subsequent keys.

Preface

21

TABLE P–4 Symbol Conventions (Continued)
Symbol Description Example Meaning

→ Indicates menu item selection in a
graphical user interface.

File → New → Templates From the File menu, choose New. From the
New submenu, choose Templates.

Accessing Sun Resources Online
The http://docs.sun.com (docs.sun.comSM) web site enables you to access Sun technical
documentation online. You can browse the docs.sun.com archive or search for a specific book
title or subject. Books are available as online files in PDF and HTML formats. Both formats are
readable by assistive technologies for users with disabilities.

To access the following Sun resources, go to http://www.sun.com:

■ Downloads of Sun products
■ Services and solutions
■ Support (including patches and updates)
■ Training
■ Research
■ Communities (for example, Sun Developer Network)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.com web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “Web Server,” type the following:

Web Server site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use “sun.com” in place of “docs.sun.com” in the search field.

Preface

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200922

http://docs.sun.com
http://www.sun.com
http://docs.sun.com
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments:

■ Go to http://docs.sun.com and click Feedback.
■ Go to http://wikis.sun.com/display/WebServerdocs/Home and post your comments or

directly edit the wiki page.

Preface

23

http://docs.sun.com
http://wikis.sun.com/display/WebServerdocs/Home

24

Overview of Configuration Files and Directories

The configuration and behavior of Sun Java System Web Server 7.0 (Web Server) is determined
by a set of configuration files. You can use the Admin Console and the command-line interface
(CLI) to change the configuration file settings. You can also manually edit these files.

This chapter has the following sections:

■ “Configuration Files” on page 25
■ “Directory Structure” on page 27
■ “Dynamic Reconfiguration” on page 30

Configuration Files
Each server instance has its own directory, called instance_dir in this document. The
instance_dir/config directory contains configuration files for the Web Server components.
The exact number and names of the configuration files depend on the components that have
been enabled or loaded into the server. For the default location of the instance_dir, see “Default
Paths and File Names” on page 19.

These files, as well as some other configuration files not included in the config directory, are
described in the following sections:

■ “The server.xml File” on page 26
■ “The magnus.conf File” on page 26
■ “The obj.conf File” on page 26
■ “The mime.types File” on page 26
■ “ACL Files” on page 26
■ “Other Configuration Files” on page 26

1C H A P T E R 1

25

The server.xml File
The server.xml file contains most of the server configuration. A schema file,
sun-web-server_7_0.xsd, validates its format and content. For more information about
sun-web-server_7_0.xsd and the various elements of server.xml, see Chapter 2, “Syntax and
Use of server.xml,” and Chapter 3, “Elements in server.xml.”

The magnus.conf File
The magnus.conf file contains the NSAPI plug-in initialization directives and settings that
control the way NSAPI plug-ins are run. For more information about magnus.conf, see
Chapter 4, “Syntax and Use of magnus.conf,” and Chapter 5, “Predefined SAFs in magnus.conf.”

The obj.conf File
The obj.conf file contains directives for HTTP request processing. For more information
about obj.conf, see Chapter 6, “Syntax and Use of obj.conf,” and Chapter 7, “Predefined SAFs
and Filters in obj.conf.”

The mime.types File
The mime.types file maps file extensions to MIME types to enable the server to determine the
content type of a requested resource. For example, requests for resources with .html extensions
indicate that the client is requesting an HTML file, while requests for resources with .gif

extensions indicate that the client is requesting an image file in GIF format. For more
information about mime.types, see Chapter 8, “MIME Types.”

ACL Files
The Access Control List (ACL) files contain lists that define who can access resources stored on
your Web Server. By default, Web Server uses one ACL file. You can create multiple ACL files
and reference them in the obj.conf and server.xml files. For more information about ACL
files, see Chapter 9, “ACL Files.”

Other Configuration Files
Other configuration files for administration and for applications include the certmap.conf,
sun-web.xml, login.conf, server.policy, and default-web.xml. For more information on
these files, see Chapter 10, “Other Server Configuration Files.”

Configuration Files

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200926

Directory Structure
This section describes the directory structure that is created when you first install Sun Java
System Web Server. In a stand-alone Web Server installation, all these directories are in the
install_dir by default. In Web Servers installed as part of Java Enterprise System, the instance
directories (which in this case includes both admin-sever and https-sever_id) are in a different
location. For more information on the default locations for these directories on different
platforms, see the information on instance_dir in “Default Paths and File Names” on page 19.

■ “admin-server” on page 27
■ “bin” on page 28
■ “https-server_id” on page 28
■ “include” on page 29
■ “jdk” on page 29
■ “lib” on page 29
■ “plugins” on page 29
■ “samples” on page 29
■ “setup” on page 29

admin-server
The admin-server directory has the following subdirectories:

■ bin – Contains the binary files that are required to start, stop, and restart Web Server. On
UNIX systems, this directory also contains the file required for rotating logs.

■ config – Contains the private configuration files for the Administration Server. These files
are for internal use.

■ config-store – Contains files used by the Administration Server to track server
configuration information.

Note – The files in this directory are created by Web Server for internal use. Do not edit, run
scripts on, or otherwise access any files in the config-store directory.

■ generated – Contains files generated by the instance, such as Java class files corresponding
to JavaServer PagesTM (JSPTM).

■ logs – Contains any error or access log files that are generated by a server instance.
■ sessions – Contains session data files.

Directory Structure

Chapter 1 • Overview of Configuration Files and Directories 27

bin
The bin directory contains the binary files for administering Web Server. These files include
wadm, the administration command-line interface (CLI).

https-server_id
An https-server_id directory is created for every instance you create. This directory has the
following subdirectories and files:

■ bin – Contains the binary files for starting, stopping, restarting, and reconfiguring the
server. On UNIX, it also contains the binary file for rotating the log files.

■ collections – Contains the search collection data.
■ config – Contains the following instance-specific configuration files:

■ cert8.db – NSS certificate database
■ certmap.conf – Certificate to LDAP DN mapping configuration
■ default.acl – Default ACL file for the server instance named server_id
■ default-web.xml – Default values for all web applications
■ key3.db – NSS private key database
■ keyfile – The usernames and hashed passwords for flat file authentication
■ login.conf – Information for file authentication used by the Java Authentication and

Authorization Service (JAAS)
■ magnus.conf – Information for NSAPI plug-in initialization and operation
■ mime.types – Map of file extensions to MIME types that enables the server to determine

the content type of a requested resource
■ obj.conf – Instructions for Web Server for handling HTTP requests from clients
■ secmod.db – NSS PKCS #11 module database
■ server.policy – Policy controlling the access that applications have to resources
■ server.xml – Most of the server configuration settings

■ docs – Contains the files in the default document root for an instance.
■ generated – Contains files generated by the instance.
■ lock-db – The default directory for WebDAV lock database files.
■ logs – Contains log files generated by a server instance.
■ sessions – Contains session data files.
■ web-app – The default directory for deployed web applications.

Directory Structure

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200928

include
The include directory contains the various include files, for example, NSAPI and SHTML
include files.

jdk
The jdk directory contains the bundled Java development kit (JDKTM). For stand-alone
installations only.

lib
The lib directory contains internal binaries, scripts, libraries, and bundled plug-ins. These files
are private files, for internal use only.

plugins
The plugins directory contains the plug-in subdirectories. .

■ digest contains the digest authentication plug-in for Sun Java Directory Server, as well as
information about the plug-in.

■ fastcgi contains the files for the FastCGI plug-in.
■ htaccess contains server plug-in for .htaccess access control and htconvert, which is an

.nsconfig to .htaccess converter.
■ loadbal contains the required files for the third–party load-balancer integration plug-in.

For more information on these plug-ins, see Sun Java System Web Server 7.0 Update 6
Administrator’s Guide.

samples
The samples directory contains samples and example components, plug-ins, and technologies
supported by the Sun Java System Web Server Servlet engine. This includes binaries, all code,
and a build environment.

setup
The setup directory contains the various Web Server setup files, including the installation logs.

Directory Structure

Chapter 1 • Overview of Configuration Files and Directories 29

http://docs.sun.com/doc/820-7985
http://docs.sun.com/doc/820-7985

Dynamic Reconfiguration
Dynamic reconfiguration allows you to make configuration changes to a runtime Web Server.
You do not have to stop or restart the Web Server for the changes to take effect.

Dynamic configuration happens in one of the following ways:

■ When you deploy a configuration through the Admin Console or CLI
■ When you run the reconfig script in the server instance's bin directory

You can dynamically change the configuration settings in the obj.conf, mime.types, and ACL
files without restarting the server. In addition, most settings in the server.xml file can be
changed without restarting the server. If a server restart is required, a warning message appears
in the server log when you deploy the configuration or run the reconfig command.

You cannot dynamically reconfigure the following server.xml configuration parameters:

■ user

■ temp-path

■ log (with the exception of log-level)
■ thread-pool

■ pkcs11

■ stats

■ cgi

■ dns

■ dns-cache

■ file-cache

■ acl-cache

■ ssl-session-cache

■ access-log-buffer

■ jvm (with exception of log-level)

When you run the reconfig command, a new configuration object is created and allnew
incoming requests are processed based on this new configuration object. The current
configuration object gets removed when no HTTP requests are using the object. For example, if
you are using Web Server with reverse proxy in the front-end can dynamically add a new
back-end server and apply the reconfiguration by using the reconfig command.

The following additional configuration changes within server.xml are supported by the
reconfig command:

■ Add a new HTTP listener
■ Add a new Java web application

Dynamic Reconfiguration

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200930

Note – If the web application requires changes to the JVM or require a new JDBC resource,
then you must restart the server instead of using the reconfig command.

Note – Some configuration changes cannot be instantly propogated to the running server. For
example, adding a JVM property of a resource.

If a misconfiguration occurs during dynamic reconfiguration, the server displays an error
message. The server logs the error message to a log file specified by the previous known good
configuration.

Certain misconfigurations result in warning messages but do not cause the server to reject the
configuration. Other misconfigurations result in error messages and cause the server to reject
the configuration. If the server rejects a configuration during startup, the server does not start. If
the server rejects a configuration during dynamic reconfiguration, the server reverts to the
previous known good configuration.

Dynamic Reconfiguration

Chapter 1 • Overview of Configuration Files and Directories 31

32

Syntax and Use of server.xml

The server.xml file contains most of the server configuration. This chapter describes the basic
syntax of server.xml and gives a high-level view of the elements that configure server features.
It contains the following sections:

■ “Overview of server.xml” on page 33
■ “Understanding server.xml” on page 35
■ “Sample server.xml File” on page 38

Overview of server.xml
The server.xml file contains most of the configuration information needed to run the server.
The server.xml file is located in the instance_dir/config directory. The encoding is UTF-8 to
maintain compatibility with regular UNIX text editors.

sun-web-server_7_0.xsd
The sun-web-server_7_0.xsd schema validates the format and content of the server.xml file.
The schema enforces type checks. For example, it ensures that the ip element specifies a valid IP
address. The sun-web-server_7_0.xsd file is located in the install_dir/lib/dtds directory.

Editing server.xml
The structure of server.xml is a hierarchy, with server as the topmost element. The server
element has many subelements, many of which have subelements of their own.

In general, you do not need to edit server.xml directly. Instead, use the Admin Console and
the wadm command-line interface to change values in server.xml. Using wadm when creating
scripts to change server.xml assures you of forward compatibility. If you do edit server.xml
directly, exercise caution to make sure that the resulting server.xml file is valid.

2C H A P T E R 2

33

Editing Element Values
To change the values in server.xml, change the value between the tags associated with the
element you are editing. For example, to change the log level from info to fine, find the log
child element of the server element. In this example, you see the following lines:

<log>

<log-file>../logs/errors</log-file>

<log-level>info</log-level>

</log>

To change the log level from info to fine, change the line:

<log-level>info</log-level>

to:

<log-level>fine</log-level>

After you make changes to the server.xml file, you must deploy your configuration for most
changes to take effect. Use the command-line interface command wadm pull-config to pull the
modified server.xml file, then use the Admin Console or the wadm deploy-config command
to deploy your changes. For some changes, you must restart the server before they take effect.
For information on which changes require a restart and which do not, see “Dynamic
Reconfiguration” on page 30.

Adding Elements
To add a new element to sever.xml, add the element and any required subelements. Elements
begin with a tag, for example <virtual-server>, and end with the closing tag, for example
</virtual-server>. The tags are case-sensitive.

Validating server.xml
After editing server.xml, Web Server automatically validates the XML when you start or
dynamically reconfigure a the server.

You can also use the –cofigtest option of the startserv script to validate your configuration.
From the instance's bin directory, run:

startserv –configtest

Overview of server.xml

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200934

Understanding server.xml
To edit server.xml for your environment, you must know which elements contain the relevant
settings. The following sections contain brief descriptions of the elements that configure the
functional areas:

■ “Access Control” on page 35
■ “Clustering” on page 35
■ “HTTP Protocol” on page 36
■ “Java” on page 36
■ “Logging and Monitoring” on page 37
■ “Performance Tuning” on page 37
■ “Search” on page 37
■ “SSL, TLS, and PKCS #11” on page 37
■ “Variables” on page 38
■ “Virtual Servers” on page 38
■ “WebDAV” on page 38

In addition, Chapter 3, “Elements in server.xml,” contains an alphabetical list of all the
server.xml elements and their subelements.

Access Control
The acl-file element references an ACL file. ACL files define the authorization rules. The
auth-realm and default-auth-realm-name elements configure authentication realms for Java
Servlet container authentication. For more information, see “acl-file” on page 46, “auth-realm”
on page 48, and “default-auth-realm-name” on page 56.

The auth-db and default-auth-db-name elements configure the authentication databases for
server authentication. Authentication databases are used with ACL files. For more information,
see “auth-db” on page 47, and “default-auth-db-name” on page 55.

For more information on ACL files, see Chapter 9, “ACL Files.”

Clustering
The cluster element defines a cluster of servers to which an individual server instance belongs.
The instance element defines an individual member of a cluster. The session-replication
element configures how Java Servlet sessions are shared between instances in a cluster. For more
information, see “cluster” on page 50, “instance” on page 65, and “session-replication” on
page 86.

Understanding server.xml

Chapter 2 • Syntax and Use of server.xml 35

HTTP Protocol
The http element configures the general HTTP protocol options. The keep-alive element
configures HTTP keep-alive connection management. The http–listener element configures
the ports and IP addresses on which the server listens for new HTTP connections. The
virtual-server element configures how the server processes the HTTP requests. For more
information, see “http” on page 61, “keep-alive” on page 69, “http-listener” on page 63, and
“virtual-server” on page 98.

Java
The following elements configure the Java Servlet container:

■ The servlet-container element configures miscellaneous Servlet container options. For
more information, see “servlet-container” on page 84.

■ The auth-realm element defines an authentication realm for Java Servlet container
authentication. For more information, see “auth-realm” on page 48.

■ The default-auth-realm-name element specifies the default authentication realm for Java
Servlet container authentication. For more information, see “default-auth-realm-name” on
page 56.

■ The single-sign-on element determines how the authentication information is shared
across multiple Java web applications. For more information, see “single-sign-on” on
page 87.

■ The web-app element defines the location of a Java web application. For more information,
see “web-app” on page 99.

The following elements configure the Java Naming and Directory InterfaceTM (JNDI) resources:

■ The custom-resource element defines a resource implemented by a custom Java class. For
more information, see “custom-resource” on page 52.

■ The external-jndi-resource element identifies the resource provided by an external
JNDI repository. For more information, see “external-jndi-resource” on page 59.

■ The jdbc-resource element configures a Java Database Connectivity (JDBCTM) data source.
For more information, see “jdbc-resource” on page 66.

■ The mail-resource element configures a mail store resource. For more information, see
“mail-resource” on page 73.

The lifecycle-module element loads the custom Java plug-ins that are triggered by one or
more events in the server's lifecycle. For more information “lifecycle-module” on page 70.

The soap-auth-provider element configures message-level authentication for Java web
services. For more information, see “soap-auth-provider” on page 88.

Understanding server.xml

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200936

The jvm element configures the Java Virtual Machine (JVM). For more information, see “jvm”
on page 67.

Logging and Monitoring
The access-log element configures the file name and formats of access logs. The
access-log-buffer element configures the frequency of access log updates and ordering of the
access log entries. For more information, see “access-log” on page 43 and “access-log-buffer”
on page 43.

The log element configures the file name and contents of the server log. The event element
configures the access log and server log rotation. For more information, see “log” on page 71
and “event” on page 58.

The snmp element configures SNMP, and the stats element configures statistics collection. For
more information, see “snmp” on page 87 and “stats” on page 95.

Performance Tuning
The thread-pool element configures the number of threads used to process requests and the
maximum number of HTTP connections that the server queues. For more information, see
“thread-pool” on page 95.

The keep-alive element configures the HTTP keep-alive connection management. For more
information, see “keep-alive” on page 69.

WebDAV ACL, lock, and property caching are controlled by the acl-db, lock-db, and
property-db elements, respectively. For more information, see “acl-db” on page 45, “lock-db”
on page 71, and “property-db” on page 77.

The file-cache element configures file caching. The dns-cache element configures the DNS
caching. The acl-cache element configures the authentication credential caching. For more
information, see “file-cache” on page 60, “dns-cache” on page 57, and “acl-cache” on page 44.

Search
The search-collection element defines the set of documents that the server should index. The
search-app element configures the server's built-in search web application. For more
information, see “search-collection” on page 80 and “search-app” on page 80.

SSL, TLS, and PKCS #11
The ssl element configures SSL and TLS. SSL and TLS can be configured separately for each
HTTP listener. For more information, see “ssl” on page 89 and “http-listener” on page 63.

Understanding server.xml

Chapter 2 • Syntax and Use of server.xml 37

The pkcs11 element configures the PKCS #11 subsystem, including Certificate Revocation Lists
(CRLs) and third-party cryptographic modules. For more information, see “pkcs11” on
page 74.

Variables
The variable element defines a variable for use in expressions, log formats, and obj.conf

parameters. For more information on the variable element, see “variable” on page 97. For
more information on variable and expression use, see Appendix A, “Using Variables,
Expressions, and String Interpolation.” For more information on the log file format, see
Appendix C, “Using the Custom Log File Format.”

Virtual Servers
The virtual-server element configures the virtual servers. Each virtual server accepts HTTP
connections from one or more HTTP listeners. The http-listener element configures the
HTTP listeners. For more information, see “virtual-server” on page 98, and “http-listener” on
page 63.

You can define variables within a virtual server using the variable element, as described in the
previous section, “Variables” on page 38.

WebDAV
The dav element configures WebDAV. The dav-collection element defines the set of files that
are accessible through WebDAV. For more information, see “dav” on page 53 and
“dav-collection” on page 54.

Sample server.xml File
The following example shows a server.xml file.

EXAMPLE 2–1 server.xmlFile

?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

-->

Sample server.xml File

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200938

EXAMPLE 2–1 server.xmlFile (Continued)

<server>

<cluster>

<local-host>sun1</local-host>

<instance>

<host>sun1</host>

</instance>

</cluster>

<log>

<log-file>../logs/errors</log-file>

<log-level>info</log-level>

</log>

<temp-path>/tmp/https-sun1-5351d5c9-2</temp-path>

<user>myuser/user>

<jvm>

<java-home>/opt/webserver7/jdk</java-home>

<server-class-path>/opt/webserver7/lib/webserv-rt.jar:/opt/webserver7/lib/pw

c.jar:/opt/webserver7/lib/ant.jar:${java.home}/lib/tools.jar:/opt/webserver7/lib

/ktsearch.jar:/opt/webserver7/lib/webserv-jstl.jar:/opt/webserver7/lib/jsf-impl.

jar:/opt/webserver7/lib/jsf-api.jar:/opt/webserver7/lib/webserv-jwsdp.jar:/opt/w

ebserver7/lib/container-auth.jar:/opt/webserver7/lib/mail.jar:/opt/webserver7/li

b/activation.jar</server-class-path>

<debug>false</debug>

<debug-jvm-options>-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,

address=7896</debug-jvm-options>

<jvm-options>-Djava.security.auth.login.config=login.conf</jvm-options>

<jvm-options>-Djava.util.logging.manager=com.sun.webserver.logging.ServerLog

Manager</jvm-options>

<jvm-options>-Xms128m -Xmx256m</jvm-options>

</jvm>

<thread-pool>

<max-threads>128</max-threads>

<stack-size>131072</stack-size>

</thread-pool>

<default-auth-db-name>keyfile</default-auth-db-name>

<auth-db>

<name>keyfile</name>

<url>file</url>

<property>

<name>syntax</name>

Sample server.xml File

Chapter 2 • Syntax and Use of server.xml 39

EXAMPLE 2–1 server.xmlFile (Continued)

<value>keyfile</value>

</property>

<property>

<name>keyfile</name>

<value>keyfile</value>

</property>

</auth-db>

<acl-file>default.acl</acl-file>

<mime-file>mime.types</mime-file>

<access-log>

<file>../logs/access</file>

</access-log>

<http-listener>

<name>http-listener-1</name>

<port>8082</port>

<server-name>sun1</server-name>

<default-virtual-server-name>sun1</default-virtual-server-name>

</http-listener>

<virtual-server>

<name>sun1</name>

<host>sun1</host>

<http-listener-name>http-listener-1</http-listener-name>

</virtual-server>

</server>

Sample server.xml File

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200940

Elements in server.xml

This chapter describes the elements in the server.xml file.

List of Elements
This section describes the elements in the server.xml file in alphabetical order.

■ “access-log” on page 43
■ “access-log-buffer” on page 43
■ “acl-cache” on page 44
■ “acl-db” on page 45
■ “acl-file” on page 46
■ “audit-accesses” on page 46
■ “auth” on page 47
■ “auth-db” on page 47
■ “auth-realm” on page 48
■ “cgi” on page 49
■ “cluster” on page 50
■ “connection-creation-property” on page 50
■ “connection-lease-property” on page 51
■ “convert” on page 52
■ “custom-resource” on page 52
■ “dav” on page 53
■ “dav-collection” on page 54
■ “default-auth-db-name” on page 55
■ “default-auth-realm-name” on page 56
■ “default-soap-auth-provider-name” on page 56
■ “display-name” on page 56
■ “dns” on page 56
■ “dns-cache” on page 57
■ “env-variable” on page 58

3C H A P T E R 3

41

■ “event” on page 58
■ “external-jndi-resource” on page 59
■ “file-cache” on page 60
■ “http” on page 61
■ “http-listener” on page 63
■ “include” on page 64
■ “index” on page 65
■ “instance” on page 65
■ “jdbc-resource” on page 66
■ “jvm” on page 67
■ “keep-alive” on page 69
■ “lifecycle-module” on page 70
■ “localization” on page 70
■ “lock-db” on page 71
■ “log” on page 71
■ “mail-resource” on page 73
■ “mime-file” on page 74
■ “pkcs11” on page 74
■ “pkcs11 bypass” on page 75
■ “profiler” on page 75
■ “property” on page 76
■ “property-db” on page 77
■ “qos” on page 77
■ “qos-limits” on page 78
■ “request-policy” on page 79
■ “response-policy” on page 79
■ “search-app” on page 80
■ “search-collection” on page 80
■ “server” on page 81
■ “servlet-container” on page 84
■ “session-replication” on page 86
■ “single-sign-on” on page 87
■ “snmp” on page 87
■ “soap-auth-provider” on page 88
■ “ssl” on page 89
■ “ssl-session-cache” on page 94
■ “stats” on page 95
■ “thread-pool” on page 95
■ “time” on page 96
■ “token” on page 97
■ “variable” on page 97
■ “virtual-server” on page 98
■ “web-app” on page 99

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200942

access-log
The access-log element configures an HTTP access log. This element may appear zero or
more times within the server element and zero or more times within the virtual-server
element. For more information, see “server” on page 81, and “virtual-server” on page 98.

Subelements
The access-log element can contain the following subelements:

TABLE 3–1 List of access-log Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the server writes to this access log. The
default value is true.

name 0 or 1 The name that uniquely identifies the access log. If you specify a
name, the server will not automatically log to this access log.
Instead, you should explicitly configure this access log in an
obj.conf AddLog directive.

file 1 The file name of the access log. If a relative path is used, it is
relative to the server's config directory. For example,
../logs/access.

format 0 or 1 The format of the access log entries. The default format is the
CLF (common log file) format. For more information on the
access log format, see Appendix C, “Using the Custom Log File
Format.”

See Also
■ “access-log-buffer” on page 43
■ “audit-accesses” on page 46
■ “event” on page 58
■ “log” on page 71

access-log-buffer
The access-log-buffer element configures the access log buffering subsystem. This element
may appear zero or one time within the server element. For more information, see “server” on
page 81.

Subelements
The access-log-buffer element can contain the following subelements:

List of Elements

Chapter 3 • Elements in server.xml 43

TABLE 3–2 List of access-log-buffer Subelements

Element Occurrences Description

direct-io 0 or 1 Indicates whether the file system should cache access log writes.
The default value, false, indicates that the file system should
cache access log writes. Setting the value to true indicates that the
file system should not cache access log writes. The setting is
purely advisory; either the server or the operating system may
choose to ignore it.

enabled 0 or 1 Determines whether the server buffers the access log entries. The
default value is true.

buffer-size 0 or 1 The size (in bytes) of individual access log buffers. The value can
be from 4096 to 1048576.

max-buffers 1 The maximum number of access log buffers per server. The value
can be from 1 to 65536.

max-buffers-per-file 0 or 1 The maximum number of access log buffers per access log file.
The value can be from 1 to 128.

max-age 0 or 1 The maximum time (in seconds) to buffer a given access log
entry. The value can be from 0.001 to 3600.

See Also
■ “access-log” on page 43
■ “event” on page 58
■ “log” on page 71

acl-cache
The acl-cache element configures the Access Control List (ACL) cache. This element may
appear zero or one time within the server element. For more information, see “server” on
page 81.

Subelements
The acl-cache element can contain the following subelements:

TABLE 3–3 List of acl-cache Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the server caches ACLs and information
about authenticated users. The default value is true.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200944

TABLE 3–3 List of acl-cache Subelements (Continued)
Element Occurrences Description

max-users 0 or 1 The maximum number of users for which the server will cache
the authentication information. The value can be from 1 to
1048576.

max-groups-per-user 0 or 1 The maximum number of groups per user for which the server
will cache the membership information. The value can be from 1
to 1024.

max-age 0 or 1 The maximum time (in seconds) required to cache the
authentication information. The value can be from 0.001 to
3600.

See Also
■ “acl-file” on page 46
■ “auth-db” on page 47
■ “dns-cache” on page 57
■ “file-cache” on page 60

acl-db
The acl-db element configures the WebDAV Access Control Protocol ACL database. This
element may appear zero or one time within the dav element and zero or one time within the
dav-collection element. For more information, see “dav” on page 53 and “dav-collection” on
page 54.

Subelements
The acl-db element can contain the following subelements:

TABLE 3–4 List of acl-db Subelements

Element Occurrences Description

max-entries 0 or 1 The maximum number of Access Control Entries (ACE) that can
be allowed on a single resource. The value can be from 0 to
2147483647, or -1 for no limit.

max-size 0 or 1 The maximum size (in bytes) of memory representation of the
WebDAV ACL database for a collection. If the memory limit
specified using this subelement is exceeded, the server will not
cache the WebDAV ACLs. The value can be from 0 to
2147483647, or -1 for no limit.

List of Elements

Chapter 3 • Elements in server.xml 45

TABLE 3–4 List of acl-db Subelements (Continued)
Element Occurrences Description

update-interval 0 or 1 The interval (in seconds) at which the WebDAV ACL databases
are synchronized to the disk. The value can be from 0.001 to
3600, or 0 to disable caching of WebDAV ACLs.

See Also
■ “acl-file” on page 46
■ “auth” on page 47
■ “auth-db” on page 47
■ Chapter 9, “ACL Files”

acl-file
The acl–file element defines a file that controls access to the server. This element may appear
zero or more times within the server element and zero or more times within the
virtual-server element. For more information, see “server” on page 81, and “virtual-server”
on page 98.

The value of this element is the file name of the ACL file. If a relative path is used, it is relative to
the server's config directory. This element does not contain any subelements.

See Also
■ “acl-db” on page 45
■ “auth” on page 47
■ “auth-db” on page 47
■ Chapter 9, “ACL Files”

audit-accesses
The audit-accesses element determines whether authentication and authorization events are
logged. This element may appear zero or one time within the server element. For more
information, see “server” on page 81. The default value is false. This element does not contain
any subelements.

See Also
■ “access-log” on page 43
■ “event” on page 58
■ “log” on page 71

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200946

auth
The auth element configures WebDAV Access Control Protocol authentication. This element
may appear zero or one time within the dav element and zero or one time within the
dav-collection element. For more information, see “dav” on page 53 and “dav-collection” on
page 54.

Subelements
The auth element can contain the following subelements:

TABLE 3–5 List of auth Subelements

Element Occurrences Description

auth-db-name 0 or 1 The ACL authentication database to use. The value is the name
from an auth-db element. The default value is the value of the
default-auth-db-name element. For more information, see
“auth-db” on page 47.

method 0 or 1 The authentication method to use. The value can be basic,
digest, or ssl. The default value is basic.

prompt 0 or 1 The prompt that is displayed to clients when they request
authentication. The default prompt is Sun Java System Web

Server WebDAV.

See Also
■ “acl-file” on page 46
■ “acl-db” on page 45
■ “auth-db” on page 47
■ “default-auth-db-name” on page 55
■ Chapter 9, “ACL Files”

auth-db
The auth-db element configures an ACL authentication database. This element may appear
zero or more times within the server element and zero or more times within the
virtual-server element. For more information, see “server” on page 81, and “virtual-server”
on page 98.

Subelements
The auth-db element can contain the following subelements:

List of Elements

Chapter 3 • Elements in server.xml 47

TABLE 3–6 List of auth-db Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the ACL authentication database is enabled
at runtime. The default value is true.

name 1 The name that uniquely identifies the ACL authentication
database for use in ACL files.

url 1 The URL of the ACL authentication database. The type of ACL
authentication database is specified in the URL scheme. For
example, ldap://ds.example.com/dc=example,dc=com
configures a LDAP directory server as an ACL authentication
database.

auth-expiring-url 0 or 1 The URL to which the server redirects the client if the supplied
password is about to expire.

property 0 or more Configures the ACL authentication database properties. For
more details, see “property” on page 76.

description 0 or 1 The description of the ACL authentication database. The value is
in text format.

See Also
■ “acl-file” on page 46
■ “acl-db” on page 45
■ “auth” on page 47
■ “default-auth-db-name” on page 55
■ Chapter 9, “ACL Files”

auth-realm
The auth-realm element configures a Servlet container authentication realm, which is used to
authenticate access to web applications. This element may appear zero or more times within the
server element. For more information, see “server” on page 81.

Subelements
The auth-realm element can contain the following subelements:

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200948

TABLE 3–7 List of auth-realm Subelements

Element Occurrences Description

name 1 The name that uniquely identifies the Servlet container
authentication realm.

type 0 or 1 The type of a built-in authentication realm. Only applicable
when class is omitted. The value can be file, ldap, pam,
certificate, or native.

class 0 or 1 The class that implements a Servlet container authentication
realm. Only applicable when type is omitted. The value is a class
name.

property 0 or more The Servlet container authentication realm properties. For more
details, see “property” on page 76.

See Also
■ “default-auth-realm-name” on page 56
■ “servlet-container” on page 84

cgi
The cgi element configures the CGI execution subsystem. This element may appear zero or one
time within the server element. For more information, see “server” on page 81.

Subelements
The cgi element can contain the following subelements:

TABLE 3–8 List of cgi Subelements

Element Occurrences Description

timeout 0 or 1 The timeout (in seconds) after which the server will terminate a
CGI program. The value can be from 0.001 to 3600, or -1 for no
timeout.

idle-timeout 0 or 1 The timeout (in seconds) after which the server will terminate a
nonresponsive CGI program. The value can be from 0.001 to
3600.

cgistub-path 0 or 1 The path to the Cgistub binary. If a relative path is used, it is
relative to the server's config directory.

List of Elements

Chapter 3 • Elements in server.xml 49

TABLE 3–8 List of cgi Subelements (Continued)
Element Occurrences Description

cgistub-idle-timeout 0 or 1 The timeout (in seconds) after which an unused Cgistub process
will be terminated. The value can be from 0.001 to 3600.

min-cgistubs 0 or 1 The minimum number of Cgistub processes the server keeps on
hand, waiting to run the CGI programs. The value can be from 0
to 4096.

max-cgistubs 0 or 1 The maximum number of Cgistub processes the server keeps on
hand, waiting to run the CGI programs. The value can be from 1
to 4096.

env-variable 0 or more Configures the CGI program environment variables. For more
details, see “env-variable” on page 58.

cluster
The cluster element defines the cluster to which the server belongs. This element may appear
zero or one time within the server element. For more information, see “server” on page 81.

Subelements
The cluster element can contain the following subelements:

TABLE 3–9 List of cluster Subelements

Element Occurrences Description

local-host 1 Defines the network address of an instance. The value is the host
value from an instance element. For more details, see “instance”
on page 65.

instance 1 or more Defines a member of the server cluster. For more details, see
“instance” on page 65.

session-replication 0 or 1 Configures the Servlet session replication for the server cluster.
For more details, see “session-replication” on page 86.

connection-creation-property
The connection-creation-property element configures the properties that are set when a
JDBC connection (java.sql.Connection) is created. This element may appear zero or more
times within the jdbc-resource element. For more information, see “jdbc-resource” on
page 66.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200950

Subelements
The connection-creation-property element can contain the following subelements:

TABLE 3–10 List of connection-creation-property Subelements

Element Occurrences Description

name 1 The name of the property

value 1 The value of the property

description 0 or 1 The description of the property

See Also
■ “connection-lease-property” on page 51
■ “jdbc-resource” on page 66
■ “property” on page 76

connection-lease-property
The connection-lease-property element configures the properties that are set each time a
JDBC connection (java.sql.Connection) is leased to an application. This element may appear
zero or more times within the jdbc-resource element. For more information, see
“jdbc-resource” on page 66.

Subelements
The connection-lease-property element can contain the following subelements:

TABLE 3–11 List of connection-lease-property Subelements

Element Occurrences Description

name 1 The name of the property

value 1 The value of the property

description 0 or 1 The description of the property

See Also
■ “connection-creation-property” on page 50
■ “jdbc-resource” on page 66
■ “property” on page 76

List of Elements

Chapter 3 • Elements in server.xml 51

convert
The convert element determines the type of documents that are converted prior to indexing.
This element may appear zero or one time within the search-collection element. Documents
with the pdf file extension are always converted to HTML prior to indexing. For more
information, see “search-collection” on page 80.

Subelements
The convert element can contain the following subelements:

TABLE 3–12 List of convert Subelements

Element Occurrences Description

extension 0 or more The file extension of a document type that should be converted to
HTML.

See Also
■ “include” on page 64
■ “index” on page 65
■ “search-app” on page 80
■ “search-collection” on page 80

custom-resource
The custom-resource element configures a resource implemented by a custom Java class. This
element may appear zero or more times within the server element. For more information, see
“server” on page 81.

Subelements
The custom-resource element can contain the following subelements:

TABLE 3–13 List of custom-resource Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the custom resource is enabled at runtime.
The default value is true.

jndi-name 1 The JNDI name of the custom resource.

res-type 1 The type of custom resource. The value is a class name.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200952

TABLE 3–13 List of custom-resource Subelements (Continued)
Element Occurrences Description

factory-class 1 The class that instantiates a naming context which is used to look
up the external resource. The value is a name of a class that
implements javax.naming.spi.ObjectFactory.

property 0 or more Configures the optional resource-specific properties. For more
details, see “property” on page 76.

description 0 or 1 The description of the custom resource. The value of this
element is in text format.

dav
The dav element configures WebDAV. This element may appear zero or one time within the
server element. For more information, see “server” on page 81.

Subelements
The dav element can contain the following subelements:

TABLE 3–14 List of dav Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether WebDAV is enabled at runtime. The
default value is true.

default-owner 0 or 1 Defines the name of the default owner of the resource.

min-lock-timeout 0 or 1 The minimum expiration time (in seconds) for WebDAV
locks. The value can be from 0.001 to 3600, or 0 for no limit.

max-xml-request-body-size 0 or 1 The maximum size (in bytes) allowed for WebDAV XML
request bodies. The value can be from 0 to 2147483647, or
-1 for no limit.

max-propfind-depth 0 or 1 The maximum depth of PROPFIND requests sent to
collections. The value can be 0, 1, or infinity.

max-expand-property-depth 0 or 1 The maximum depth allowed for WebDAV
expand-property REPORT responses. The value can be from 0
to 100.

max-report-response-elements 0 or 1 The maximum number of response elements a REPORT
response body can have. The value can be from 0 to
2147483647. The default value is 1000.

List of Elements

Chapter 3 • Elements in server.xml 53

TABLE 3–14 List of dav Subelements (Continued)
Element Occurrences Description

auth 0 or 1 Configures the WebDAV Access Control Protocol
authentication. For more details, see “auth” on page 47.

acl-db 0 or 1 Configures the WebDAV Access Control Protocol ACL
database. For more details, see “acl-db” on page 45.

lock-db 0 or 1 Configures the WebDAV lock database. For more details,
see “lock-db” on page 71.

property-db 0 or 1 Configures the WebDAV property database. For more
details, see “property-db” on page 77.

See Also
■ “dav-collection” on page 54
■ “lock-db” on page 71
■ “property-db” on page 77

dav-collection
The dav-collection element configures a WebDAV collection. This element may appear zero
or more times within the virtual-server element. For more information, see “virtual-server”
on page 98.

Subelements
The dav-collection element can contain the following subelements:

TABLE 3–15 List of dav–collection Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether WebDAV is enabled at runtime. The
default value is true.

default-owner 0 or 1 The name of the default owner of the resource.

uri 1 The existing root URI on which the WebDAV should be
enabled.

source-uri 0 or 1 The URI which the WebDAV clients can use to access the
source code of content.

min-lock-timeout 0 or 1 The minimum expiration time (in seconds) for WebDAV locks.
The value can be from 0.001 to 3600, or –1 for no limit.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200954

TABLE 3–15 List of dav–collection Subelements (Continued)
Element Occurrences Description

max-xml-request-body-size 0 or 1 The maximum size (in bytes) allowed for WebDAV XML
request bodies. The value can be from 0 to 2147483647, or -1 for
no limit.

max-propfind-depth 0 or 1 The maximum depth of PROPFIND requests sent to collections.
The value can be 0, 1, or infinity.

max-expand-property-depth 0 or 1 The maximum depth allowed for WebDAV expand-property
REPORT responses. The value can be from 0 to 100.

max-report-response-elements 0 or 1 The maximum number of response elements a REPORT response
body can have. The value can be from 0 to 2147483647. The
default value is 1000.

auth 0 or 1 Configures the WebDAV Access Control Protocol
authentication. For more details, see “auth” on page 47.

acl-db 0 or 1 Configures the WebDAV Access Control Protocol ACL
database. For more details, see “acl-db” on page 45.

lock-db 0 or 1 Configures the WebDAV lock database. For more details, see
“lock-db” on page 71.

property-db 0 or 1 Configures the WebDAV property database. For more details,
see “property-db” on page 77.

description 0 or 1 The description of the WebDAV collection.

See Also
■ “dav” on page 53
■ “lock-db” on page 71
■ “property-db” on page 77

default-auth-db-name
The default-auth-db-name element specifies the name of the default ACL authentication
database. This element may appear zero or one time within the server element. For more
information, see “server” on page 81. This element does not contain any subelements.

See Also
“auth-db” on page 47

List of Elements

Chapter 3 • Elements in server.xml 55

default-auth-realm-name
The default-auth-realm-name element specifies the name of the default Servlet container
authentication realm. This element may appear zero or one time within the server element.
For more information, see “server” on page 81. This element does not contain any
subelements.

See Also
“auth-realm” on page 48

default-soap-auth-provider-name
The default-soap-auth-provider-name element specifies the name of the default Simple
Object Access Protocol (SOAP) message-level authentication provider. This element may
appear zero or one time within the server element. For more information, see “server” on
page 81. This element does not contain any subelements.

See Also
“soap-auth-provider” on page 88

display-name
The display-name element specifies a human-readable name for the collection to be used while
displaying the collection to the end user. This element does not contain any subelements.

See Also
“search-collection” on page 80

dns
The dns element configures how the server uses the domain name system (DNS). This element
may appear zero or one time within the server element. For more information, see “server” on
page 81.

Subelements
The dns element can contain the following subelements:

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200956

TABLE 3–16 List of dns Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the server does DNS lookups. The default
value is false.

async 0 or 1 Determines whether the server uses its own asynchronous DNS
resolver instead of the operating system's synchronous resolver.
The default value is true.

timeout 0 or 1 The timeout (in seconds) for asynchronous DNS lookups. The
value can be from 0.001 to 3600.

See Also
“dns-cache” on page 57

dns-cache
The dns-cache element configures the DNS cache. This element may appear zero or one time
within the server element. For more information, see “server” on page 81.

Subelements
The dns-cache element can contain the following subelements:

TABLE 3–17 List of dns-cache Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the server caches DNS lookup results. The
default value is true.

max-age 0 or 1 The maximum amount of time (in seconds) to cache a DNS
lookup result. The value can be from 1 to 31536000.

max-entries 0 or 1 The maximum number of DNS lookup results to cache. The
value can be from 32 to 32768.

See Also
■ “acl-cache” on page 44
■ “dns” on page 56
■ “file-cache” on page 60

List of Elements

Chapter 3 • Elements in server.xml 57

env-variable
The env-variable element defines an environment variable. This element may appear zero or
one time within the cgi element. For more information, see “cgi” on page 49.

Subelements
The env-variable element can contain the following subelements:

TABLE 3–18 List of env-variable Subelements

Element Occurrences Description

name 1 The name of the environment variable

value 1 The value of the environment variable

description 0 or 1 The description of the environment variable

See Also
“variable” on page 97

event
The event element configures a recurring event. This element may appear zero or more times
within the server element. For more information, see “server” on page 81.

Subelements
The event element can contain the following subelements:

TABLE 3–19 List of event Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the event is enabled at runtime. The default
value is true.

time 0 or more Configures a specific time when the event occurs. For more
details, see “time” on page 96.

interval 0 or 1 The interval (in seconds) at which the event occurs. The value
can be from 60 to 86400.

rotate-log 0 or 1 Rotates the log files. The default value is false.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200958

TABLE 3–19 List of event Subelements (Continued)
Element Occurrences Description

rotate-access-log 0 or 1 Rotates the access log files. The default value is false.

command 0 or more The command to execute when the event runs.

reconfig 0 or 1 Dynamically reconfigures the server. The default value is false.

restart 0 or 1 Restarts the server. The default value is false.

description 0 or 1 The description of the event. The value of this element is in text
format.

See Also
■ “access-log” on page 43
■ “log” on page 71

external-jndi-resource
The external-jndi-resource element configures a resource provided by an external JNDI
repository. This element may appear zero or more times within the server element. For more
information, see “server” on page 81.

Subelements
The external-jndi-resource element can contain the following subelements:

TABLE 3–20 List of external-jndi-resource Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the event is enabled at runtime. The default
value is true.

jndi-name 1 The JNDI name of the resource.

jndi-lookup-name 1 The JNDI lookup name of the resource.

res-type 1 The type of the external JNDI resource. The default value is a
class name.

factory-class 1 The class that instantiates resources of this type. The default
value is a class name that implements
javax.naming.spi.InitialContextFactory.

property 0 or more Configures the optional resource-specific properties. For more
details, see “property” on page 76.

List of Elements

Chapter 3 • Elements in server.xml 59

TABLE 3–20 List of external-jndi-resource Subelements (Continued)
Element Occurrences Description

description 0 or 1 The description of the resource. The value of this element should
be in text format.

file-cache
The file-cache element configures the file cache. This element may appear zero or one time
within the server element. For more information, see “server” on page 81.

Subelements
The file-cache element can contain the following subelements:

TABLE 3–21 List of file-cache Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the server cache is enabled. The default
value is true. Whether file content is cached in addition to meta
information is controlled by the cache-content subelement.

max-age 0 or 1 The maximum amount of time (in seconds) to cache file content
and meta information. The value can be from –1 to 3600. The
value -1 indicates that the file cache entries do not expire.

max-entries 0 or 1 The maximum number of paths to cache content and/or meta
information. The value can be from 1 to 1048576.

max-open-files 0 or 1 The maximum number of file descriptors the file cache will keep
open. The value can be from 1 to 1048576.

sendfile 0 or 1 Determines whether the server will attempt to use the operating
system's sendfile, sendfilev, send_file, or TransmitFile
system call. The default value is true on Windows and false on
other platforms.

copy-files 0 or 1 Determines whether the server copies cached files to a temporary
directory. The default value is true on Windows and false on
other platforms.

copy-path 0 or 1 The temporary directory that is used when copy-files is true.
If a relative path is used, it is relative to the server's config
directory.

replacement 0 or 1 The cache entry replacement algorithm. The value can be false,
lru, or lfu.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200960

TABLE 3–21 List of file-cache Subelements (Continued)
Element Occurrences Description

cache-content 0 or 1 Determines whether the server caches file content in addition to
the meta information. The default value is true.

max-heap-file-size 0 or 1 The maximum size (in bytes) of files to cache on the heap. The
value can be from 0 to 2147483647.

max-heap-space 0 or 1 The maximum amount (in bytes) of heap to use for caching files.
The value can be from 0 to 1099511627776 .

max-mmap-file-size 0 or 1 The maximum size (in bytes) of files to mmap. The value can be
from 0 to 2147483647.

max-mmap-space 0 or 1 The maximum amount (in bytes) of mmap address space to use
for caching files. The value can be from 0 to 1099511627776 .

sendfile-size 0 Web Server uses sendfile-size only when the file size is greater
than max-heap-file-size. When sendfile-size is set to
non-zero value and file-cache and sendfile are enabled, it
hints the file-cache subsystem to send the file in chunks. The
chunk size can be at the most the size of sendfile-size. When
sendfile-size is set to default value, that is, zero and sendfile

is enabled, the entire file is attempted to be sent out. In either
case, the left over file is sent in subsequent transfers.

See Also
■ “acl-cache” on page 44
■ “dns-cache” on page 57

http
The http element configures miscellaneous HTTP protocol options. This element may appear
zero or one time within the server element. For more information, see “server” on page 81.

Subelements
The http element can contain the following subelements:

TABLE 3–22 List of http Subelements

Element Occurrences Description

version 0 or 1 The highest HTTP protocol version the server supports. The
default HTTP version string is HTTP/1.1.

List of Elements

Chapter 3 • Elements in server.xml 61

TABLE 3–22 List of http Subelements (Continued)
Element Occurrences Description

server-header 0 or 1 The server header information, such as the name of the server
software and version. The default server header is
Sun-Java-System-Web-Server/7.0.

request-header-buffer-size 0 or 1 The size (in bytes) of the buffer used to read HTTP request
headers. The value can be from 0 to 2147483647.

strict-request-headers 0 or 1 Determines whether the server rejects certain malformed
HTTP request headers. The default value is false.

max-request-headers 0 or 1 The maximum number of header fields to allow in an HTTP
request header. The value can be from 1 to 512.

output-buffer-size 0 or 1 The size (in bytes) of buffer used to buffer HTTP responses.
The value can be from 0 to 2147483647.

max-unchunk-size 0 or 1 The maximum size (in bytes) of a chunked HTTP request body
that the server will unchunk. The value can be from 0 to
2147483647.

unchunk-timeout 0 or 1 The maximum time (in seconds) that the server waits for a
chunked HTTP request body to arrive. The value can be from 0
to 3600, or -1 for no timeout.

io-timeout 0 or 1 The maximum time (in seconds) that the server waits for an
individual packet. The value can be from 0 to 3600, or -1 for no
timeout.

request-header-timeout 0 or 1 The maximum time (in seconds) that the server waits for a
complete HTTP request header. The value can be from 0 to
604800, or -1 for no timeout.

request-body-timeout 0 or 1 The maximum time (in seconds) that the server waits for a
complete HTTP request body. The value can be from 0 to
604800, or -1 for no timeout.

favicon 0 or 1 Determines whether the server replies to requests for
favicon.ico with its own built-in icon file. The default value is
true.

etag 0 or 1 Controls whether the server includes an Etag header field in its
responses. The default value is true.

See Also
■ “http-listener” on page 63
■ “keep-alive” on page 69
■ “thread-pool” on page 95
■ “virtual-server” on page 98

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200962

http-listener
The http-listener element configures an HTTP listener. This element may appear zero or
more times within the server element. For more information, see “server” on page 81.

Subelements
The http-listener element can contain the following subelements:

TABLE 3–23 List of http-listener Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the HTTP listener is enabled at runtime.
The default value is true.

name 1 The name that uniquely identifies the HTTP listener.

ip 0 or 1 The IP address on which to listen. The value of this element is a
specific IP address, or * to listen on all IP addresses.

port 1 The port on which to listen. The value of this element is the
port number.

acceptor-threads 0 or 1 The number of threads dedicated to accept connections
received by this listener. The value can be from 1 to 128.

server-name 1 The default server name. The value can include a scheme prefix
(for example, http://) and port suffix (for example, :80).

blocking-io 0 or 1 Determines whether the server uses blocking IO. The default
value is false.

family 0 or 1 The name of the protocol family.

handle-protocol-mismatch 0 or 1 Controls the server's response to SSL or non-SSL protocol
mismatches in client requests. A mismatch occurs when a
client uses SSL to send a request to a non-SSL listener, or when
a client sends a request to an SSL listener without using SSL.
The default is true, which means that the server attempts to
detect SSL or non-SSL protocol mismatches and sends an
HTTP redirect or SSL alert when a mismatch is detected.

listen-queue-size 0 or 1 The maximum size (in bytes) of the operating system listen
queue backlog. The value of this element can be from 1 to
1048576.

receive-buffer-size 0 or 1 The size (in bytes) of the operating system socket receive buffer.
The value of this element can be from 1 to 1048576.

send-buffer-size 0 or 1 The size (in bytes) of the operating system socket send buffer.
The value of this element can be from 1 to 1048576.

List of Elements

Chapter 3 • Elements in server.xml 63

TABLE 3–23 List of http-listener Subelements (Continued)
Element Occurrences Description

default-virtual-server-name 1 The name of the virtual server that processes requests that do
not match a host. The value of this element is the name value
from a virtual-server element. For more details, see
“virtual-server” on page 98.

ssl 0 or 1 Configures SSL/TLS. For more details, see “ssl” on page 89.

description 0 or 1 The description of the HTTP listener. The value of this element
should be in a text format.

See Also
■ “http” on page 61
■ “keep-alive” on page 69
■ “virtual-server” on page 98

include
The include element configures the document types that should be indexed. This element may
appear zero or one time within the search-collection element. For more information, see
“search-collection” on page 80.

If the include element is not present, only documents matching the *.html, *.htm, *.txt,
*.pdf, patterns are indexed. Documents with the jar, sxc, sxg, sxi, sxm, sxw, war, and zip file
extensions are never indexed.

Subelements
The include element can contain the following subelement:

TABLE 3–24 List of include Subelements

Element Occurrences Description

pattern 0 or more Specifies the wildcard pattern of files to be indexed

See Also
■ “convert” on page 52
■ “index” on page 65
■ “search-app” on page 80
■ “search-collection” on page 80

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200964

index
The index element configures the document fields that are indexed for searching. This element
may appear zero or one time within the search-collection element. For more information,
see “search-collection” on page 80.

Subelements
The index element can contain the following subelement:

TABLE 3–25 List of index subelement

Element Occurrences Description

meta-tag 0 or more The name of the HTML meta tag that should be indexed

See Also
■ “convert” on page 52
■ “include” on page 64
■ “search-app” on page 80
■ “search-collection” on page 80

instance
The instance element defines a member of a server cluster. This element may appear one or
more times within the cluster element. For more information, see “cluster” on page 50.

Subelements
The instance element can contain the following subelements:

TABLE 3–26 List of instance Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the instance is enabled at runtime. The
default value is true.

host 1 The network address of the instance. The value is the host name
or the IP address.

session-replication 0 or 1 Configures the Servlet session replication for the instance. For
more details, see “session-replication” on page 86.

List of Elements

Chapter 3 • Elements in server.xml 65

See Also
■ “cluster” on page 50
■ “session-replication” on page 86

jdbc-resource
The jdbc-resource element configures a Java Database Connectivity (JDBC) resource. This
element may appear zero or more times within the server element. For more information, see
“server” on page 81.

Subelements
The jdbc-resource element can contain the following subelements:

TABLE 3–27 List of jdbc-resource Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the resource is enabled at runtime.
The default value is true.

jndi-name 1 The JNDI name of the resource.

datasource-class 1 The JDBC driver class. The value is a name of the class
that implements java.sql.DataSource and
java.sql.XADataSource.

min-connections 1 The minimum number of concurrent connections to
maintain to the database server. The value can be from 1
to 4096.

max-connections 1 The maximum number of concurrent connections to
maintain to the database server. The value can be from 1
to 4096.

idle-timeout 1 The timeout (in seconds) after which an idle connection
to the database server will be closed. The value can be
from 0 to 3600, or -1 for no timeout.

wait-timeout 1 The timeout (in seconds) after which a caller waiting for
an available connection to the database server will receive
an error. The value can be from 0.001 to 3600, or -1 for no
timeout.

isolation-level 0 or 1 Specifies the transaction isolation level. The value can be
read-uncommitted, read-committed, repeatable-read,
or serializable.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200966

TABLE 3–27 List of jdbc-resource Subelements (Continued)
Element Occurrences Description

isolation-level-guaranteed 0 or 1 Determines whether the server sets the isolation level
each time a connection is leased to an application. The
default value is false.

connection-validation 0 or 1 Specifies how the server validates a connection before
leasing it to an application. The value can be false,
auto-commit, meta-data, or table.

connection-validation-table-name 0 or 1 The name of the table used when
connection-validation is table. The value is the
database table name.

fail-all-connections 0 or 1 Determines whether all connections are immediately
closed and reestablished when there is an error validating
an individual connection. The default value is false.

property 0 or more Configures the JDBC driver (java.sql.DataSource and
java.sql.XADataSource) properties. For more details,
see “property” on page 76.

connection-creation-property 0 or more Configures the JDBC connection
(java.sql.Connection) properties, when a new
connection is created. For more details, see
“connection-creation-property” on page 50.

connection-lease-property 0 or more Configures the JDBC connection
(java.sql.Connection) properties each time a
connection is leased to an application. For more details,
see “connection-lease-property” on page 51.

description 0 or 1 The description of the resource.

See Also
■ “connection-creation-property” on page 50
■ “connection-lease-property” on page 51
■ “property” on page 76

jvm
The jvm element configures the Java Virtual Machine (JVM). This element may appear zero or
one time within the server element. For more information, see “server” on page 81.

Subelements
The jvm element can contain the following subelements:

List of Elements

Chapter 3 • Elements in server.xml 67

TABLE 3–28 List of jvm Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the server creates a JVM. The default
value is true.

java-home 1 The location of the JDK. If relative path is used, it is relative to
the server's config directory.

class-path-prefix 0 or 1 The prefix for the system classpath. Because this classpath
takes precedence over the server classpath, changing it can
prevent the server from working properly. To add classes to
the system classpath, use the class-path-suffix element
instead.

server-class-path 0 or 1 The classpath containing server classes. Changing this
classpath can prevent the server from working properly. To
add classes to the system class path, use the
class-path-suffix element instead.

class-path-suffix 0 or 1 The suffix for the system classpath.

env-class-path-ignored 0 or 1 Determines whether the server ignores the CLASSPATH
environment variable. The default value is true.

native-library-path-prefix 0 or 1 The prefix for the operating system native library path.

sticky-attach 0 or 1 Determines whether the server attaches each HTTP request
processing thread to the JVM only once or attaches and
detaches on each request. The default value is true.

debug 0 or 1 Determines whether JVM is started in debug mode, ready for
attachment with a Java Platform Debugger Architecture
(JPDA) debugger. The default value is false.

debug-jvm-options 0 or more Defines the JPDA options. For more details, see
http://java.sun.com/

products/jpda/doc/conninv.html#Invocation

jvm-options 0 or more Defines the server-wide JVM options. For more details, see
http://java.sun.com/docs/hotspot/VMOptions.html

bytecode-preprocessor-class 0 or more The name of the bytecode preprocessor class. The value is a
name of a class that implements
com.sun.appserv.BytecodePreprocessor.

profiler 0 or 1 Configures a Java profiler. For more details, see “profiler” on
page 75.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200968

http://java.sun.com/products/jpda/doc/conninv.html#Invocation
http://java.sun.com/products/jpda/doc/conninv.html#Invocation
http://java.sun.com/docs/hotspot/VMOptions.html

Note – (On Windows only). Logging out of the machine where the web server is installed might
abort the web server process. To avoid this problem, perform these steps:

1. Add the following line to the server.xml file of the web server instance.
<jvm-options>-Xrs</jvm-options>

2. Restart the instance.

See Also
“servlet-container” on page 84

keep-alive
The keep-alive element configures the HTTP keep-alive subsystem. This element may appear
zero or one time within the server element. For more information, see “server” on page 81.

Subelements
The keep-alive element can contain the following subelements:

TABLE 3–29 List of keep-alive Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the keep-alive subsystem is enabled at
runtime. The default value is true.

threads 0 or 1 The number of keep-alive subsystem threads. The value can be
from 1 to 128. The default value is 1.

max-connections 0 or 1 The maximum number of concurrent keep-alive connections
that the server supports. The value can be from 1 to 1048576. The
default value is 200.

timeout 0 or 1 The timeout (in seconds) after which an inactive keep-alive
connection can be closed. The value can be from 0.001 to 3600.
The default value is 30 seconds.

poll-interval 0 or 1 The interval (in seconds) between polls. The value can be from
0.001 to 1. The default value is .001.

See Also
■ “http” on page 61
■ “http-listener” on page 63
■ “virtual-server” on page 98

List of Elements

Chapter 3 • Elements in server.xml 69

■ “thread-pool” on page 95

lifecycle-module
The lifecycle-module element configures a Java server lifecycle module, a user-defined class
that implements com.sun.appserv.server.LifecycleListener. This element may appear
zero or more times within the server element. For more information, see “server” on page 81.

Subelements
The lifecycle-module element can contain the following subelements:

TABLE 3–30 List of lifecycle-modules Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the lifecycle module is enabled at runtime.
The default value is true.

name 1 The name that uniquely identifies the lifecycle module.

class 1 The class that implements the lifecycle module. The value is the
name of a class that implements
com.sun.appserv.server.LifecycleListener.

load-order 0 or 1 The order in which the lifecycle module is loaded. It is
recommended that you choose a load-order value that is greater
than or equal to 100 to avoid conflicts with internal lifecycle
modules. The value can be from 0 to 2147483647. Values from 0
to 99 are reserved for internal use.

is-failure-fatal 0 or 1 Determines whether the server should treat exceptions thrown
during lifecycle module initialization as fatal. The default value is
true.

class-path 0 or 1 The classpath for the lifecycle module.

property 0 or more Configures optional lifecycle-module-specific properties. For
more details, see “property” on page 76.

description 0 or 1 The description of the resource.

localization
The localization element configures how the server chooses the language in which it presents
information to the client. This element may appear zero or one time within the server element,
and zero or one time within the virtual-server element. For more information, see “server”
on page 81, and “virtual-server” on page 98.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200970

Subelements
The localization element can contain the following subelements:

TABLE 3–31 List of localization Subelements

Element Occurrences Description

default-language 0 or 1 The default language in which the messages and content are
displayed. The value is a language tag.

negotiate-client-language 0 or 1 Determines whether the server attempts to use the
Accept-language HTTP header to negotiate the content
language with clients. The default value is false.

lock-db
The lock-db element configures the WebDAV lock database. This element may appear zero or
one time within the dav element, and zero or one time within the dav-collection element. For
more information, see “dav” on page 53 and “dav-collection” on page 54.

Subelements
The lock-db element can contain the following subelements:

TABLE 3–32 List of lock-db Subelements

Element Occurrences Description

path 0 or 1 The path of the WebDAV lock database. If a relative path is used,
it is relative to the server's config directory.

update-interval 0 or 1 The interval (in seconds) at which WebDAV lock databases are
synchronized to disk. The value can be from 0.001 to 3600, or 0
to disable caching of WebDAV lock information.

See Also
■ “dav” on page 53
■ “dav-collection” on page 54
■ “property-db” on page 77

log
The log element configures the logging subsystem. This element may appear zero or one time
within the server element. For more information, see “server” on page 81.

List of Elements

Chapter 3 • Elements in server.xml 71

Subelements
The log element can contain the following subelements:

TABLE 3–33 List of log Subelements

Element Occurrences Description

log-stdout 0 or 1 Determines whether the server logs data that applications write
to stdout. The default value is true.

log-stderr 0 or 1 Determines whether the server logs data that applications write
to stderr. The default value is true.

log-virtual-server-name 0 or 1 Determines whether the server includes the virtual server name
in log messages. The default value is false.

create-console 0 or 1 Determines whether the server creates a console window
(Windows only). The default value is false.

log-to-console 0 or 1 Determines whether the server writes log messages to the
console. The default value is true.

log-to-syslog 0 or 1 Determines whether the server writes log messages to syslog

(UNIX only) or Event Viewer (Windows only). The default
value is false.

date-format 0 or 1 The date format for log message timestamps. The default value is
%d/%b/%Y:%H:%M:%S. For more information, see Appendix D,
“Using Time Formats.”

archive-suffix 0 or 1 The suffix appended to rotated log file names. The default value
is %Y%m%d%H%M.

archive-command 0 or 1 The command executed after the server rotates a log file. The
program is passed the post-rotation file name of the log file as an
argument. The value is a program command line. For example,

<archive-command>gzip</archive-command>

or

<archive-command>"c:\Program Files\Perl\perl.exe"
archive.pl</archive-command>

log-level 0 or 1 The log verbosity for the server. The value can be finest (most
verbose), finer, fine, info, warning, failure, config,
security, or catastrophe (least verbose).

log-file 0 or 1 Defines the log file for the server. The value is the file name of the
log file, for example, ../logs/errors. If a relative path is used, it
is relative to the server's config directory.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200972

See Also
■ “access-log” on page 43
■ “access-log-buffer” on page 43
■ “audit-accesses” on page 46
■ “event” on page 58

mail-resource
The mail-resource element configures a mail store resource. This element may appear zero or
more times within the server element. For more information, see “server” on page 81.

Subelements
The mail-resource element can contain the following subelements:

TABLE 3–34 List of mail-resource Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the mail resource is enabled at runtime. The
default value is true.

jndi-name 1 The JNDI name of the resource.

description 0 or 1 The description of the resource

property 0 or more Configures optional mail-resource-specific properties. The
properties are the standard JavaMailTM properties For more
details, see the JavaMail API Specification at
http://java.sun.com/

products/javamail/JavaMail-1.2.pdf, and “property” on
page 76.

store-protocol 0 or 1 The protocol used to retrieve messages.

store-protocol-class 0 or 1 The storage service provider implementation for store-protocol.
The value is a name of a class that implements store-protocol.
The default value is com.sun.mail.imap.IMAPStore.

transport-protocol 0 or 1 The protocol used to send messages.

transport-protocol-class 0 or 1 The transport service provider implementation for
transport-protocol. The value is a name of a class that
implements transport-protocol. The default value is
com.sun.mail.smtp.SMTPTransport.

host 1 The mail server host name.

List of Elements

Chapter 3 • Elements in server.xml 73

http://java.sun.com/products/javamail/JavaMail-1.2.pdf
http://java.sun.com/products/javamail/JavaMail-1.2.pdf

TABLE 3–34 List of mail-resource Subelements (Continued)
Element Occurrences Description

user 1 The mail server username.

from 1 The email address from which the server sends email.

description 0 or 1 The description of the mail resource.

mime-file
The mime-file element defines a file that configures the MIME type mappings for the server.
This element may appear zero or more times within the server element and zero or more times
within the virtual-server element. For more information, see “server” on page 81, and
“virtual-server” on page 98.

The value of this element is the file name of a MIME types file. If a relative path is used, it is
relative to the server's config directory. This element does not contain any subelements.

For more information, see Chapter 8, “MIME Types.”

pkcs11
The pkcs11 element configures the PKCS #11 subsystem. This element may appear zero or one
time within the server element. For more information, see “server” on page 81.

Subelements
The pkcs11 element can contain the following subelements:

TABLE 3–35 List of pkcs11 Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the server initializes PKCS #11 tokens,
prompting for Personal Identification Numbers (PINs) as
necessary. The default value is true if SSL is enabled and false if
SSL is not enabled.

crl-path 0 or 1 The directory that contains dynamically updated CRL files. The
value is the name of the directory. If a relative path is used, it is
relative to the server's config directory.

token 0 or more Configures a PKCS #11 token. For more details, see “token” on
page 97.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200974

See Also
■ “ssl” on page 89
■ “http-listener” on page 63

pkcs11 bypass
The pkcs11 bypass element instructs the NSS to bypass the PKCS#11 layer during SSL/TLS
processing, thereby improving performance.

During startup, the server automatically verifies each token, holding a server key, to assess if
they support PKCS#11 bypass. If the tokens support bypass in the current configuration the
PKCS#11 layer will be bypassed, else the bypass will be disabled. Thus, the server automatically
takes advantage of the performance benefits of pkcs11 bypass whenever possible.

In certain unique circumstances, you can disable PKCS#11 bypass manually by using the
server.xml element <allow-bypass>.

<pkcs11>

<enabled>1</enabled>

<allow-bypass>0</allow-bypass>

</pkcs11>

See Also
■ “pkcs11” on page 74

profiler
The profiler element configures a JVM profiler. This element may appear zero or one time
within the jvm element. For more information, see “jvm” on page 67.

Subelements
The profiler element can contain the following subelements:

TABLE 3–36 List of profiler Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the profiler is enabled at runtime. The default
value is true.

List of Elements

Chapter 3 • Elements in server.xml 75

TABLE 3–36 List of profiler Subelements (Continued)
Element Occurrences Description

class-path 0 or 1 The classpath for the profiler.

native-library-path 0 or 1 The native library path for the profiler. The value is the operating
system library path.

jvm-options 0 or more The JVM options for the profiler. For more details, see
(http://java.sun.com/docs/hotspot/VMOptions.html).

property
The property element defines a name-value pair. The effect of defining a property name-value
pair depends on the context in which the property element appears as described below:

■ Properties defined at the auth-db level configure ACL authentication databases. For more
information, see “auth-db” on page 47.

■ Properties defined at the soap-auth-provider level configure SOAP message-level
authentication providers. For more information, see “soap-auth-provider” on page 88.

■ Properties defined at the auth-realm level configure Servlet container authentication
realms. For more information, see “auth-realm” on page 48.

■ Properties defined at the jdbc-resource level configure JDBC drivers. For more
information, see “jdbc-resource” on page 66.

■ Properties defined at the custom-resource and external-jndi-resource levels configure
JNDI resources. For more information, see “custom-resource” on page 52 and
“external-jndi-resource” on page 59.

■ Properties defined at the mail-resource level configure standard Java mail properties. For
more information, see “mail-resource” on page 73.

Subelements
The property element can contain the following subelements:

TABLE 3–37 List of property Subelements

Element Occurrences Description

name 1 The name of the property.

value 1 The value of the property.

encoded 0 or 1 Determines whether the property value has been encoded using
the uunencode algorithm. The default value is false.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200976

http://java.sun.com/docs/hotspot/VMOptions.html

TABLE 3–37 List of property Subelements (Continued)
Element Occurrences Description

description 0 or 1 The description of the property.

See Also
■ “connection-creation-property” on page 50
■ “connection-lease-property” on page 51
■ “env-variable” on page 58
■ “variable” on page 97

property-db
The property-db element configures the WebDAV property database. This element may
appear zero or one time within the dav element and zero or one time within the
dav-collection element. For more information, see “dav” on page 53, and “dav-collection” on
page 54.

Subelements
The property-db element can contain the following subelements:

TABLE 3–38 List of property-db Subelements

Element Occurrences Description

max-size 0 or 1 The maximum size (in bytes) of WebDAV property database files.
The value can be from 0 to 2147483647, or -1 for no limit.

update-interval 0 or 1 The interval (in seconds) at which the WebDAV property
databases are synchronized to disk. The value can be from 0.001 to
3600, or 0 to disable caching of WebDAV properties.

See Also
■ “dav” on page 53
■ “dav-collection” on page 54
■ “lock-db” on page 71

qos
The qos element configures the Quality of Service (QoS) statistics collection subsystem. This
element may appear zero or one time within the server element. For more information, see
“server” on page 81.

List of Elements

Chapter 3 • Elements in server.xml 77

Subelements
The qos element can contain the following subelements:

TABLE 3–39 List of qos Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the system tracks the QOS information. The
default value is true if qos-limits are enabled, and false if
qos-limits are not enabled. For details, see “qos-limits” on
page 78.

interval 0 or 1 The interval (in seconds) over which the QOS information is
averaged. The value can be from 0.001 to 3600.

See Also
“qos-limits” on page 78

qos-limits
The qos-limits element configures QOS (Quality of Service) limits. This element may appear
zero or one time within the server element, and zero or one time within the virtual-server
element. For more information, see “server” on page 81, and “virtual-server” on page 98.

Subelements
The qos-limits element can contain the following subelements:

TABLE 3–40 List of qos-limits Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the QOS limits are enforced at runtime. The
default value is true.

max-bps 0 or 1 The maximum transfer rate (bytes per second). The value can be
from 1 to 2147483647.

max-connections 0 or 1 The maximum number of concurrent connections. The value can
be from 1 to 1048576.

See Also
“qos” on page 77

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200978

request-policy
The request-policy element configures the authentication policy requirements for web
services requests. This element may appear zero or one time within the soap-auth-provider
element. For more information, see “soap-auth-provider” on page 88.

Subelements
The request-policy element can contain the following subelements:

TABLE 3–41 List of request-policy Subelements

Element Occurrences Description

auth-source 0 or 1 Specifies a requirement for message layer sender authentication.
For example, username and password, or content authentication
such as a digital signature.

auth-recipient 0 or 1 Specifies a requirement for message layer authentication of the
receiver of a message to its sender, for example, by XML
encryption. The value can be before-content or after-content.

response-policy
The response-policy element configures the authentication policy requirements for web
services responses. This element may appear zero or one time within the soap-auth-provider
element. For more information, see “soap-auth-provider” on page 88.

Subelements
The response-policy element can contain the following subelements:

TABLE 3–42 List of response-policy Subelements

Element Occurrences Description

auth-source 0 or 1 Defines a requirement for message layer sender authentication. For
example, username and password, or content authentication such
as a digital signature.

auth-recipient 0 or 1 Defines a requirement for message layer authentication of the
receiver of a message to its sender, for example, by XML
encryption. The value can be before-content or after-content.

List of Elements

Chapter 3 • Elements in server.xml 79

search-app
The search-app element configures the built-in search web application. This element may
appear zero or one time within the virtual-server element. For more information, see
“virtual-server” on page 98.

Subelements
The search-app element can contain the following subelements:

TABLE 3–43 List of search-app Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the search application is enabled at runtime.
The default value is true.

max-hits 0 or 1 The maximum number of search results to return in response to a
single search query. The value can be from 0 to 10000.

uri 1 The root URI for the search web application.

See Also
■ “convert” on page 52
■ “include” on page 64
■ “index” on page 65
■ “search-collection” on page 80

search-collection
The search-collection element configures a collection of searchable documents. This
element may appear zero or more times within the virtual-server element. For more
information, see “virtual-server” on page 98.

Subelements
The search-collection element can contain the following subelements:

TABLE 3–44 List of search-collection Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the collection can be searched. The default
value is true.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200980

TABLE 3–44 List of search-collection Subelements (Continued)
Element Occurrences Description

name 1 The name that uniquely identifies the search collection.

display-name 0 or 1 The description of the search collection displayed to end users.

uri 1 The root URI for the searchable documents.

document-root 1 The file system root for the searchable documents. If a relative path
is used, it is relative to the server's config directory.

path 1 The file system path where search collection meta data is stored. If
a relative path is used, it is relative to the server's config directory.

index 0 or 1 Configures the document fields to be indexed. For more details, see
“index” on page 65.

convert 0 or 1 Configures the document type to be converted. For more details,
see “convert” on page 52.

include 0 or 1 Configures document types that should be included. For more
details, see “include” on page 64.

description 0 or 1 The description of the search collection.

See Also
■ “convert” on page 52
■ “include” on page 64
■ “index” on page 65
■ “search-app” on page 80

server
The server element defines a server. This is the root element, and there can be only one server
element in the server.xml file.

Subelements
The server element has the following subelements:

TABLE 3–45 List of server Subelements

Element Occurrences Description

cluster 0 or 1 The server cluster to which the server belongs. For more
details, see “cluster” on page 50.

List of Elements

Chapter 3 • Elements in server.xml 81

TABLE 3–45 List of server Subelements (Continued)
Element Occurrences Description

log 0 or 1 Configures the logging subsystem. For more details, see
“log” on page 71.

user 0 or 1 The account the server runs as (UNIX only). The value is
the user account. If the server is started as root, any UNIX
account can be specified. If the server is started by a
non-root account, only that non-root account should be
specified.

platform 0 or 1 Determines whether the server runs as a 32-bit or 64-bit
process. The value can be 32 or 64.

temp-path 0 or 1 The directory where the server stores its temporary files. If
a relative path is used, it is relative to the server's config
directory. The directory must be owned by the account that
the server runs as.

variable 0 or more Defines a variable for use in expressions, log formats, and
obj.conf parameters. For more details, see “variable” on
page 97.

localization 0 or 1 Configures localization. For more details, see “localization”
on page 70.

http 0 or 1 Configures the HTTP protocol options. For more details,
see “http” on page 61.

keep-alive 0 or 1 Configures the HTTP keep-alive subsystem. For more
details, see “keep-alive” on page 69.

thread-pool 0 or 1 Configures the HTTP request processing threads. For more
details, see “thread-pool” on page 95.

pkcs11 0 or 1 Configures the PKCS #11 subsystem. For more details, see
“pkcs11” on page 74.

stats 0 or 1 Configures the statistics collection subsystem. For more
details, see “stats” on page 95.

cgi 0 or 1 Configures the CGI subsystem. For more details, see “cgi”
on page 49.

qos 0 or 1 Configures the QOS subsystem. For more details, see “qos”
on page 77.

dns 0 or 1 Configures the server's use of DNS. For more details, see
“dns” on page 56.

dns-cache 0 or 1 Configures the DNS cache. For more details, see
“dns-cache” on page 57.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200982

TABLE 3–45 List of server Subelements (Continued)
Element Occurrences Description

file-cache 0 or 1 Configures the file cache. For more details, see “file-cache”
on page 60.

acl-cache 0 or 1 Configures the ACL cache. For more details, see
“acl-cache” on page 44.

ssl-session-cache 0 or 1 Configures the SSL/TLS session cache. For more details, see
“ssl-session-cache” on page 94.

access-log-buffer 0 or 1 Configures the access log buffering subsystem. For more
details, see “access-log-buffer” on page 43.

dav 0 or 1 Configures WebDAV. For more details, see “dav” on
page 53.

snmp 0 or 1 Configures SNMP. For more details, see “snmp” on page 87.

qos-limits 0 or 1 Configures the QOS limits for the server. For more details,
see “qos-limits” on page 78.

audit-accesses 0 or 1 Specifies whether authentication and authorization events
are logged. The default value is false.

jvm 0 or 1 Configures JVM. For more details, see “jvm” on page 67.

servlet-container 0 or 1 Configures the Servlet container. For more details, see
“servlet-container” on page 84.

lifecycle-module 0 or more Configures a Java server lifecycle module. For more details,
see “lifecycle-module” on page 70.

custom-resource 0 or more Configures a resource implemented by a custom class. For
more details, see “custom-resource” on page 52.

external-jndi-resource 0 or more Configures a resource provided by an external JNDI
repository. For more details, see “external-jndi-resource”
on page 59.

jdbc-resource 0 or more Configures a JDBC resource. For more details, see
“jdbc-resource” on page 66.

mail-resource 0 or more Configures a mail store. For more details, see
“mail-resource” on page 73.

default-soap-auth-provider-name 0 or 1 The name of the default SOAP message-level
authentication provider. The value is the name value from a
soap-auth-provider element. For more details, see
“default-soap-auth-provider-name” on page 56

List of Elements

Chapter 3 • Elements in server.xml 83

TABLE 3–45 List of server Subelements (Continued)
Element Occurrences Description

soap-auth-provider 0 or more Configures a SOAP message-level authentication provider.
For more details, see “soap-auth-provider” on page 88.

default-auth-realm-name 0 or 1 The name of the default Servlet container authentication
realm. The value is the name value from an auth-realm

element. For more details, see “auth-realm” on page 48.

auth-realm 0 or more Configures a Servlet container authentication realm. For
more details, see “auth-realm” on page 48.

default-auth-db-name 0 or 1 The name of the default ACL authentication database. The
value is the name value from an auth-db element, and the
default value is default. For more details, see “auth-db” on
page 47.

auth-db 0 or more Configures an ACL authentication database for the server.
For more details, see “auth-db” on page 47.

acl-file 0 or more The ACL file that controls access to the server. The value is
the name of an ACL file. For more details, see “acl-file” on
page 46.

mime-file 0 or more The mime.types file that configures MIME mappings for
the server as a whole. The value is the name of a
mime.types file. For more details, see“mime-file” on
page 74.

access-log 0 or more Configures an HTTP access log for the server. For more
details, see “access-log” on page 43.

http-listener 0 or more Configures an HTTP listener. For more details, see
“http-listener” on page 63.

virtual-server 0 or more Configures a virtual server. For more details, see
“virtual-server” on page 98.

event 0 or more Configures a recurring event. For more details, see “event”
on page 58.

servlet-container
The servlet-container element configures the Servlet container. This element may appear
zero or one time within the server element. For more information, see “server” on page 81.

Subelements
The servlet-container element can contain the following subelements:

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200984

TABLE 3–46 List of servlet-container Subelements

Element Occurrences Description

dynamic-reload-interval 0 or 1 Specifies how often the server checks the deployed web
applications for modifications. The value can be from 1
to 60, or 0 to disable dynamic reloading.

log-level 0 or 1 The log verbosity for the Servlet container. The value
can be finest (most verbose), finer, fine, info,
warning, failure, config, security, or catastrophe
(least verbose).

anonymous-role 0 or 1 The name of the default, or anonymous role assigned to
all principals. The default role is ANYONE.

single-threaded-servlet-pool-size 0 or 1 The number of Servlet instances to instantiate per
SingleThreadedServlet. The value can be from 1 to
4096. The default value is 5.

cross-context-allowed 0 or 1 Determines whether request dispatchers are allowed to
dispatch to another context. The default is true.

reuse-session-id 0 or 1 Determines whether any existing session ID number is
reused when creating a new session for that client. The
default value is false.

encode-cookies 0 or 1 Determines whether the Servlet container encodes
cookie values. The default value is true.

dispatcher-max-depth 0 or 1 The maximum depth for the Servlet container allowing
nested request dispatches. The value can be from 0 to
2147483647. The default value is 20.

secure-session-cookie 0 or 1 Controls the conditions under which the JSESSIONID
cookie is marked secure. The value can be as follows:
■ dynamic – Marks the cookie secure only when the

request is received on a secure connection

■ true - Always marks the cookie secure

■ false – Never marks the cookie secure

The default value is dynamic.

See Also
■ “auth-realm” on page 48
■ “default-auth-realm-name” on page 56
■ “jvm” on page 67
■ “single-sign-on” on page 87
■ “web-app” on page 99

List of Elements

Chapter 3 • Elements in server.xml 85

session-replication
The session-replication element configures Servlet session replication within a server
cluster. This element may appear zero or one time within the cluster element, and zero or one
time within the instance element. For more information, see “cluster” on page 50, and
“instance” on page 65.

Subelements
The session-replication element can contain the following subelements:

TABLE 3–47 List of session-replication Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the session replication is enabled at
runtime. The default value is true.

port 0 or 1 Specifies the port on which the server will listen. The
default port number is 1099.

instance-id 0 or 1 (Only applicable at the instance level.) The value that
uniquely identifies the instance for use in cookies.

key 0 or 1 (Only applicable at the cluster level.) The shared secret
which members of the cluster use to authenticate to each
other. The value of this subelement should be in text
format.

encrypted 0 or 1 (Only applicable at the cluster level.) Determines
whether the session data is encrypted prior to replication.
The default value is false.

protocol 0 or 1 (Only applicable at the cluster level.) The protocol used
for session replication. The value can be http or jrmp.

getAttribute-triggers-replication 0 or 1 (Only applicable at the cluster level.) Determines
whether a call to the HttpSession.getAttribute
method should cause a session to be backed up. The
default value is true.

replica-discovery-max-hops 0 or 1 (Only applicable at the cluster level.) The maximum
number of instances that should be contacted while
attempting to find the backup of a session. The value can
be from 1 to 2147483647, or -1 for no limit.

startup-discovery-timeout 0 or 1 (Only applicable at the cluster level.) The maximum time
(in seconds) that an instance spends trying to contact its
designated backup instance. The value can be from 0.001
to 3600.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200986

TABLE 3–47 List of session-replication Subelements (Continued)
Element Occurrences Description

cookie-name 0 or 1 (Only applicable at the cluster level.) The name of the
cookie that tracks which instance owns a session.

cipher 0 or 1 (Only applicable at the cluster level.) The value of a JCE
cipher. JCE ciphers are specified using the form
algorithm/mode/padding. The value should be in text
format. The default value is AES/CBC/PKCS5Padding.

single-sign-on
The single-sign-on element configures a single authentication mapping across multiple Java
web applications sharing the same realm. This element may appear zero or one time within the
virtual-server element. For more information, see “virtual-server” on page 98.

Subelements
The single-sign-on element can contain the following subelements:

TABLE 3–48 List of single-sign-on Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the single-sign-on feature is enabled at
runtime. The default value is false.

idle-timeout 0 or 1 The timeout (in seconds) after which a user's single sign-on
records becomes eligible for purging if no activity is seen. The
value can be from 0.001 to 3600, or -1 for no timeout. The default
value is 300 seconds.

See Also
■ “servlet-container” on page 84
■ “web-app” on page 99

snmp
The snmp element configures the server's SNMP subagent. This element may appear zero or
more times within the server element. For more information, see “server” on page 81.

Subelements
The snmp element can contain the following subelements:

List of Elements

Chapter 3 • Elements in server.xml 87

TABLE 3–49 List of snmp Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether SNMP is enabled at runtime. The default
value is true.

master-host 0 or 1 The network address of the SNMP master agent. The value is a host
name or IP address.

description 1 The description of the server. The value should be in text format.

organization 1 The name of the organization responsible for the server. The value
should be in text format.

location 1 The location of the server. The value should be in text format.

contact 1 The contact information of the person responsible for the server.
The value should be in text format.

See Also
“stats” on page 95

soap-auth-provider
The soap-auth-provider element configures a SOAP message-level authentication provider
for web services. This element may appear zero or more times within the server element. For
more information, see “server” on page 81.

Subelements
The soap-auth-provider element can contain the following subelements:

TABLE 3–50 List of soap-auth-provider Subelements

Element Occurrences Description

name 1 The name that uniquely identifies the SOAP message-level
authentication provider for use in
default-soap-auth-provider-name and sun-web.xml.

class 1 The class that implements the provider realm. The value is a name
of a class that implements javax.security.auth.XXX.

request-policy 0 or 1 Configures the authentication policy requirements for requests.
For more details, see “request-policy” on page 79.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200988

TABLE 3–50 List of soap-auth-provider Subelements (Continued)
Element Occurrences Description

response-policy 0 or 1 Configures the authentication policy requirements for responses.
For more details, see “response-policy” on page 79.

property 0 or more Configures the optional provider-specific properties. For more
details, see “property” on page 76.

ssl
The ssl element configures the SSL/TLS settings. This element may appear zero or one time
within the http-listener element. For more information, see “http-listener” on page 63.

Subelements
The ssl element can contain the following subelements:

TABLE 3–51 List of ssl Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether SSL/TLS is enabled at runtime. The default
value is true.

server-cert-nickname 0 or more The nickname of the certificate that server presents to the clients.
You can specify zero or one RSA certificates, plus zero or one ECC
certificates.

ssl2 0 or 1 Determines whether SSL2 connections are accepted. The default
value is false.

ssl3 0 or 1 Determines whether SSL3 connections are accepted. The default
value is true.

tls 0 or 1 Determines whether TLS connections are accepted. The default
value is true.

tls-rollback-detection 0 or 1 Determines whether the server detects and blocks TLS version
rollback attacks. The default value is true.

ssl2-ciphers 0 or 1 Configures the SSL2 cipher suites. For more details, see
“ssl2-ciphers” on page 90.

ssl3-tls-ciphers 0 or 1 Configures the SSL3 and TLS cipher suites. For more details, see
“ssl3-tls-ciphers” on page 91.

client-auth 0 or 1 The method of client certificate authentication. The value can be
required, optional, or false.

List of Elements

Chapter 3 • Elements in server.xml 89

TABLE 3–51 List of ssl Subelements (Continued)
Element Occurrences Description

client-auth-timeout 0 or 1 The timeout (in seconds) after which client authentication
handshake fails. The value can be from 0.001 to 3600.

max-client-auth-data 0 or 1 The maximum amount of application-level data to buffer during a
client authentication handshake. The value can be from 0 to
2147483647.

See Also
■ “http-listener” on page 63
■ “pkcs11” on page 74
■ “ssl2-ciphers” on page 90
■ “ssl3-tls-ciphers” on page 91
■ “ssl-session-cache” on page 94

ssl2-ciphers
The ssl2-ciphers element configures SSL2 cipher suites. This element may appear zero or one
time within the ssl element. For more information, see “ssl” on page 89.

Subelements
The ssl2-ciphers element can contain the following subelements:

TABLE 3–52 List of ssl2-ciphers Subelements

Element Occurrences Description

SSL_RC4_128_WITH_MD5 0 or 1 Determines whether the SSL_RC4_128_WITH_MD5 cipher
suite is enabled at runtime. The default value is true.

SSL_RC4_128_EXPORT40_WITH_MD5 0 or 1 Determines whether the
SSL_RC4_128_EXPORT40_WITH_MD5 cipher suite is enabled
at runtime. The default value is true.

SSL_RC2_128_CBC_WITH_MD5 0 to 1 Determines whether the SSL_RC2_128_CBC_WITH_MD5
cipher suite is enabled at runtime. The default value is
true.

SSL_RC2_128_CBC_EXPORT40_WITH_MD5 0 or 1 Determines whether the
SSL_RC2_128_CBC_EXPORT40_WITH_MD5 cipher suite is
enabled at runtime. The default value is true.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200990

TABLE 3–52 List of ssl2-ciphers Subelements (Continued)
Element Occurrences Description

SSL_DES_64_CBC_WITH_MD5 0 to 1 Determines whether the SSL_DES_64_CBC_WITH_MD5
cipher suite is enabled at runtime. The default value is
true.

SSL_DES_192_EDE3_CBC_WITH_MD5 0 to 1 Determines whether the
SSL_DES_192_EDE3_CBC_WITH_MD5 cipher suite is enabled
at runtime. The default value is true.

See Also
■ “http-listener” on page 63
■ “pkcs11” on page 74
■ “ssl” on page 89
■ “ssl3-tls-ciphers” on page 91
■ “ssl-session-cache” on page 94

ssl3-tls-ciphers
The ssl3-tls-ciphers element configures SSL3 and TLS cipher suites. This element may
appear zero or one time within the ssl element. For more information, see “ssl” on page 89.

Subelements
The ssl3-tls-ciphers element can contain the following subelements:

TABLE 3–53 List of ssl3-tls-ciphers Subelements

Element Occurrences Description

SSL_RSA_WITH_RC4_128_MD5 0 or 1 Determines whether the
SSL_RSA_WITH_RC4_128_MD5 cipher suite is enabled
at runtime. The default value is true.

SSL_RSA_WITH_RC4_128_SHA 0 or 1 Determines whether the
SSL_RSA_WITH_RC4_128_SHA cipher suite is enabled
at runtime. The default value is true.

SSL_RSA_WITH_3DES_EDE_CBC_SHA 0 or 1 Determines whether the
SSL_RSA_WITH_3DES_EDE_CBC_SHA cipher suite is
enabled at runtime. The default value is true.

SSL_RSA_WITH_DES_CBC_SHA 0 or 1 Determines whether the
SSL_RSA_WITH_DES_CBC_SHA cipher suite is enabled
at runtime. The default value is true.

List of Elements

Chapter 3 • Elements in server.xml 91

TABLE 3–53 List of ssl3-tls-ciphers Subelements (Continued)
Element Occurrences Description

SSL_RSA_EXPORT_WITH_RC4_40_MD5 0 or 1 Determines whether the
SSL_RSA_EXPORT_WITH_RC4_40_MD5 cipher suite is
enabled at runtime. The default value is true.

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 0 or 1 Determines whether the
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 cipher
suite is enabled at runtime. The default value is
true.

SSL_RSA_WITH_NULL_MD5 0 or 1 Determines whether the SSL_RSA_WITH_NULL_MD5
cipher suite is enabled at runtime. The default value
is false.

SSL_RSA_WITH_NULL_SHA 0 or 1 Determines whether the SSL_RSA_WITH_NULL_SHA
cipher suite is enabled at runtime. The default value
is false.

SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA 0 or 1 Determines whether the
SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA cipher
suite is enabled at runtime. The default value is
true.

SSL_RSA_FIPS_WITH_DES_CBC_SHA 0 or 1 Determines whether the
SSL_RSA_FIPS_WITH_DES_CBC_SHA cipher suite is
enabled at runtime. The default value is true.

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0 or 1 Determines whether the
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA cipher
suite is enabled at runtime. The default value is
true.

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 0 or 1 Determines whether the
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA cipher suite
is enabled at runtime. The default value is false.

TLS_ECDH_RSA_WITH_RC4_128_SHA 0 or 1 Determines whether the
TLS_ECDH_RSA_WITH_RC4_128_SHA cipher suite is
enabled at runtime. The default value is false.

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA 0 or 1 Determines whether the
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA cipher
suite is enabled at runtime. The default value is
false.

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 0 or 1 Determines whether the
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA cipher
suite is enabled at runtime. The default value is
false.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200992

TABLE 3–53 List of ssl3-tls-ciphers Subelements (Continued)
Element Occurrences Description

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0 or 1 Determines whether the
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA cipher
suite is enabled at runtime. The default value is
false.

TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA 0 or 1 Determines whether the
TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA cipher
suite is enabled at runtime. The default value is
true.

TLS_RSA_EXPORT1024_WITH_RC4_56_SHA 0 or 1 Determines whether the
TLS_RSA_EXPORT1024_WITH_RC4_56_SHA cipher
suite is enabled at runtime. The default value is
true.

TLS_RSA_WITH_AES_128_CBC_SHA 0 or 1 Determines whether the
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite is
enabled at runtime. The default value is true.

TLS_RSA_WITH_AES_256_CBC_SHA 0 or 1 Determines whether the
TLS_RSA_WITH_AES_256_CBC_SHA cipher suite is
enabled at runtime. The default value is true.

TLS_ECDHE_ECDSA_WITH_NULL_SHA 0 or 1 Determines whether the
TLS_ECDHE_ECDSA_WITH_NULL_SHA cipher suite is
enabled at runtime. The default value is false.

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA 0 or 1 Determines whether the
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA cipher
suite is enabled at runtime. The default value is
false.

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA 0 or 1 Determines whether the
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA cipher suite
is enabled at runtime. The default value is false.

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0 or 1 Determines whether the
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA cipher
suite is enabled at runtime. The default value is
false.

TLS_ECDHE_RSA_WITH_NULL_SHA 0 or 1 Determines whether the
TLS_ECDHE_RSA_WITH_NULL_SHA cipher suite is
enabled at runtime. The default value is false.

TLS_ECDHE_RSA_WITH_RC4_128_SHA 0 or 1 Determines whether the
TLS_ECDHE_RSA_WITH_RC4_128_SHA cipher suite is
enabled at runtime. The default value is false.

List of Elements

Chapter 3 • Elements in server.xml 93

TABLE 3–53 List of ssl3-tls-ciphers Subelements (Continued)
Element Occurrences Description

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0 or 1 Determines whether the
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA cipher
suite is enabled at runtime. The default value is
false.

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0 or 1 Determines whether the
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA cipher
suite is enabled at runtime. The default value is
false.

See Also
■ “http-listener” on page 63
■ “pkcs11” on page 74
■ “ssl” on page 89
■ “ssl3-tls-ciphers” on page 91
■ “ssl-session-cache” on page 94

ssl-session-cache
The ssl-session-cache element configures the SSL/TLS session cache. This element may
appear zero or one time within the server element. For more information, see “server” on
page 81.

Subelements
The ssl-session-cache element can contain the following subelements:

TABLE 3–54 List of ssl-session-cache Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the server caches SSL/TLS sessions. The
default value is true.

max-entries 0 or 1 The maximum number of SSL/TLS sessions the server will cache.
The value can be from 1 to 524288.

max-ssl2-session-age 0 or 1 The maximum amount of time to cache an SSL2 session. The value
can be from 5 to 100.

max-ssl3-tls-session-age 0 or 1 The maximum amount of time to cache an SSL3/TLS session. The
value can be from 5 to 86400.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200994

See Also
■ “http-listener” on page 63
■ “pkcs11” on page 74
■ “ssl” on page 89
■ “ssl2-ciphers” on page 90
■ “ssl3-tls-ciphers” on page 91

stats
The stats element configures the statistics collection subsystem. This element may appear zero
or one time within the server element. For more information, see “server” on page 81.

Subelements
The stats element can contain the following subelements:

TABLE 3–55 List of stats Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the server collects statistics. The default value
is true.

interval 0 or 1 Interval (in seconds) at which statistics are updated. The value can
be from 0.001 to 3600.

profiling 0 or 1 Determines whether the performance buckets, used to track
NSAPI function execution time, are enabled at runtime. The
default value is true.

See Also
“snmp” on page 87

thread-pool
The thread-pool element configures the threads used to process HTTP requests. This element
may appear zero or one time within the server element. For more information, see “server” on
page 81.

Subelements
The thread-pool element can contain the following subelements:

List of Elements

Chapter 3 • Elements in server.xml 95

TABLE 3–56 List of thread-pool Subelements

Element Occurrences Description

min-threads 0 or 1 The minimum number of HTTP request processing threads. The
value can be from 1 to 4096.

max-threads 0 or 1 The maximum number of HTTP request processing threads. The
value can be from 1 to 4096.

stack-size 0 or 1 The stack size (in bytes) for HTTP request processing threads. The
value can be from 8192 to 67108864.

queue-size 0 or 1 The maximum number of concurrent HTTP connections that can
be queued waiting for processing. The value can be from 1 to
1048576.

See Also
■ “http” on page 61
■ “keep-alive” on page 69

time
The time element configures the time when an event will occur. This element may appear zero
or more times within the event element. For more information, see “event” on page 58.

Subelements
The time element can contain the following subelements:

TABLE 3–57 List of time Subelements

Element Occurrences Description

time-of-day 1 The time when the event will occur. The value should be in the
hh:mm format.

day-of-week 0 or 1 The day of the week. The value can be Sun, Mon, Tue, Wed, Thu, Fri,
or Sat.

day-of-month 0 or 1 The day of month. The value can be from 1 to 31.

month 0 or 1 The name of the month. The value can be Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200996

token
The token element configures a PKCS #11 token. This element may appear zero or more times
within the pks11 element. For more information, see “pkcs11” on page 74.

Subelements
The token element can contain the following subelements:

TABLE 3–58 List of token Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the server initializes this PKCS #11 token,
prompting for a PIN if necessary. The default value is true.

name 1 The name of the token. The server's built-in token is named
internal.

pin 0 or 1 The PIN required to initialize the token.

variable
The variable element defines a variable for use in expressions, log formats, and obj.conf

parameters. This element may appear zero or more times within the server element, and zero
or more times within the virtual-server element. For more information, see “server” on
page 81, and “virtual-server” on page 98.

Subelements
The variable element can contain the following subelements:

TABLE 3–59 List of variable Subelements

Element Occurrences Description

name 1 The name of the variable. The value should be in text format.

value 1 The value of the variable. The value should be in text format.

description 0 or 1 The description of the variable. The value should be in text format.

See Also
■ “env-variable” on page 58
■ “property” on page 76
■ Appendix A, “Using Variables, Expressions, and String Interpolation”

List of Elements

Chapter 3 • Elements in server.xml 97

virtual-server
The virtual-server element configures an HTTP virtual server. Each server would typically
have at least one virtual server. This element may appear zero or more times within the server
element. For more information, see “server” on page 81.

Subelements
The virtual-server element can contain the following subelements:

TABLE 3–60 List of virtual-server Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the virtual server is enabled at runtime. The
default value is true.

name 1 A name that uniquely identifies the virtual server.

http-listener-name 0 or more The name of an HTTP listener associated with one or more of the
virtual server's host names. The value is the name from an
http-listener element. For more details, see “http-listener” on
page 63.

host 0 or more The host name that the virtual server services. Host comparisons
are not case sensitive. The value can be a host name or a wildcard
pattern. For more information on wildcards, see Appendix B,
“Using Wildcard Patterns”

canonical-server-name 0 or 1 The canonical name of the virtual server. Requests using a different
name will be redirected to the canonical name. The value is a host
name or URL prefix.

acl-file 0 or more The name of the ACL file that controls access to the virtual server.

mime-file 0 or more The mime.types file that configures MIME mappings for the
virtual server.

object-file 1 The obj.conf file that controls request processing for the virtual
server.

default-object-name 0 or 1 The name of the root obj.conf object. The default value is
default.

document-root 1 The document root for the virtual server.

localization 0 or 1 Configures localization. For more details, see “localization” on
page 70.

qos-limits 0 or 1 Configures QOS limits for the virtual server. For more details, see
“qos-limits” on page 78.

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 200998

TABLE 3–60 List of virtual-server Subelements (Continued)
Element Occurrences Description

search-app 0 or 1 Configures the built-in search web application for the virtual
server. For more details, see “search-app” on page 80.

access-log 0 or more Configures an HTTP access log for the virtual server. For more
details, see “access-log” on page 43.

auth-db 0 or more Configures an ACL authentication database for the virtual server.
For more details, see “auth-db” on page 47.

search-collection 0 or more Configures a collection of searchable documents for the virtual
server. For more details, see “search-collection” on page 80.

dav-collection 0 or more Configures a WebDAV collection for the virtual server. For more
details, see “dav-collection” on page 54.

web-app 0 or more Configures the Java web application mappings for the virtual
server. For more details, see “web-app” on page 99.

log-file 0 or 1 The log file for the virtual server. The value is the log file name, for
example, ../logs/errors.

variable 0 or more Defines an obj.conf variable for the virtual server. For more
details, see “variable” on page 97.

description 0 or 1 The description of the virtual server.

single-sign-on 0 or 1 Configures single sign-on for Java web applications within the
virtual server. For more details, see “single-sign-on” on page 87.

See Also
■ “http” on page 61
■ “http-listener” on page 63
■ “keep-alive” on page 69
■ Chapter 6, “Syntax and Use of obj.conf”

web-app
The web-app element configures a Java web application mapping. This element may appear
zero or more times within the virtual-server element. For more information, see
“virtual-server” on page 98.

Subelements
The web-app element can contain the following subelements:

List of Elements

Chapter 3 • Elements in server.xml 99

TABLE 3–61 List of web-app Subelements

Element Occurrences Description

enabled 0 or 1 Determines whether the web application is enabled at runtime.
The default value is true.

uri 1 The root URI for the web application.

path 1 The path where the web application is stored. If a relative path is
used, it is relative to the server's config directory.

description 0 or 1 The description of the web application.

See Also
■ “servlet-container” on page 84
■ “single-sign-on” on page 87

List of Elements

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009100

Syntax and Use of magnus.conf

The magnus.conf file contains NSAPI plug-in initialization directives and settings that control
the way NSAPI plug-ins are run. The magnus.conf file is located in the instance_dir/config
directory.

Note – When you edit the magnus.conf file, you must restart the server for the changes to take
effect.

This chapter lists the settings that can be specified in magnus.conf.

■ “ChildRestartCallback” on page 103
■ “Init Directives” on page 103
■ “KernelThreads” on page 104
■ “NativePoolMaxThreads” on page 104
■ “NativePoolMinThreads” on page 104
■ “NativePoolQueueSize” on page 105
■ “NativePoolStackSize” on page 105
■ “TerminateTimeout” on page 105
■ “Umask” on page 106

Editing magnus.conf
You can add directives or edit existing directives in magnus.conf. Be very careful when editing
this file. Simple mistakes can make the server fail to operate correctly. When editing
magnus.conf, use the wadm command get-config-file to pull a copy of the file, edit the file
locally, then use set-config-file to put the edited file back. You must restart the server after
editing magnus.conf.

Directives in magnus.conf either set a value or invoke a Server Application Function (SAF).

4C H A P T E R 4

101

Parameters
For pre-defined SAFs, the number and names of parameters depend on the function. The order
of parameters on the line is not important.

Case Sensitivity
Items in the magnus.conf file are case-sensitive including function names, parameter names,
parameter values, and path names.

Separators
The C language allows function names to be composed only of letters, digits, and underscores.
You may use the hyphen (-) character in the configuration file in place of underscore (_) for
your C code function names. This is only true for function names.

Quotation Marks
Quotation marks (") are only required around the value strings when there is a space in the
string. Otherwise, they are optional. Each open quotation mark must be matched by a closed
quotation mark.

Spaces
■ Spaces are not allowed at the beginning of a line except when continuing the previous line.
■ Spaces are not allowed before or after the equal (=) sign that separates the name and value.
■ Spaces are not allowed at the end of a line or on a blank line.

Line Continuation
A long line may be continued on the next line by beginning the next line with a space or tab.

Path Names
Always use forward slashes (/) rather than backslashes (\) in path names on the Windows
platform. A backslash escapes the next character.

Editing magnus.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009102

Comments
Comments begin with a pound (#) sign. If you manually add comments to obj.conf, then use
the Admin Console or CLI to make changes to your server, your comments are overwritten
when obj.conf is updated.

ChildRestartCallback
The ChildRestartCallback directive determines whether the Web Server calls the NSAPI
functions that were registered using the daemon_atrestart function.

If you set ChildRestartCallback to on, the server calls the registered NSAPI functions when it
shuts down or restarts. If you set ChildRestartCallback to off, the server never calls the
registered NSAPI functions. If you do not explicitly set a value for ChildRestartCallback, the
server calls the registered NSAPI functions when it shuts down or restarts only if all NSAPI
Server Application Functions (SAFs) complete request processing before the
TerminateTimeout timeout elapses.

Syntax
ChildRestartCallback value

where value is on or off.

Init Directives
The Init directives load and initialize server modules and NSAPI plug-ins.

Syntax
Init fn="function" param1="value1" ...paramN="valueN"

In this syntax:

■ function is the name of a predefined Init SAF or the name of an Init SAF implemented by a
NSAPI plug-in. For a list of predefined Init SAFs, see Chapter 5, “Predefined SAFs in
magnus.conf.”

■ param1="value1" ...paramN="valueN" name-value pairs define SAF-specific
configuration parameters.

Init Directives

Chapter 4 • Syntax and Use of magnus.conf 103

KernelThreads
(Windows only) On Windows, the Web Server supports both kernel-level and user-level
threads. User threads are scheduled by Netscape Portable Runtime (NSPR) within the process,
whereas kernel threads are scheduled by the host's operating system. Usually, the standard
debugger and compiler are intended for use with kernel-level threads.

If you set KernelThreads to 1 (on), the server uses the kernel-level threads. If you set
KernelThreads to 0 (off), the server uses the user-level threads, which might improve
performance.

Syntax
KernelThreads value

where value is 0 or 1.

Default
0 (off)

NativePoolMaxThreads
(Windows only) The NativePoolMaxThreads directive determines the maximum number of
threads in the native (kernel) thread pool.

Default
0

NativePoolMinThreads
(Windows only) The NativePoolMinThreads directive determines the minimum number of
threads in the native (kernel) thread pool.

Default
1

KernelThreads

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009104

NativePoolQueueSize
(Windows only) The NativePoolQueueSize directive determines the number of threads that
can wait in a queue for the thread pool. If all threads in the pool are busy, the next
request-handling thread that needs to use a thread in the native pool must wait in a queue.

If a queue is full, the next request-handling thread that tries to get in the queue is rejected and
the server returns a busy response to the client. The server is then free to handle another
incoming request.

Default
0

NativePoolStackSize
(Windows only) The NativePoolStackSize directive determines the stack size of each thread
in the native (kernel) thread pool.

Default
0

TerminateTimeout
The TerminateTimeout directive specifies the time (in seconds) that the server waits for NSAPI
SAFs to complete the processing of any active requests before it shuts down. Increase the
TerminateTimeout value to allow in-progress HTTP transactions to complete gracefully, or
shorten the value to allow the server to shut down more quickly.

Syntax
TerminateTimeout value

where value is an interval in seconds.

Default
30

TerminateTimeout

Chapter 4 • Syntax and Use of magnus.conf 105

Umask
(UNIX only) The Umask directive specifies the maximum file permissions granted by NSAPI
functions that create files and directories.

Syntax
Umask permissions

where permissions is a UNIX file permissions value in octal notation.

Default
0777

Umask

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009106

Predefined SAFs in magnus.conf

This chapter lists the Init Server Application Functions (SAF) that you can specify in
magnus.conf. Init SAFs load and initialize server modules and NSAPI plug-ins.

Note – When you edit the magnus.conf file, you must restart the server for the changes to take
effect.

The following topics are described in detail in this chapter:

■ “Init SAFs” on page 107
■ “Common SAFs” on page 116
■ “Deprecated Init SAFs” on page 117

Init SAFs
The Init directives are executed only once at server startup. Each Init directive has an fn

parameter that specifies which Init SAF to invoke.

Each Init directive has an optional LateInit parameter. For the UNIX platform, if LateInit is
set to Yes, the function is executed by the child process after it is forked from the parent. If
LateInit is set to No or is not provided, the function is executed by the parent process before
the fork. For the Windows platform, LateInit functions are executed later than functions that
do not have the LateInit parameter.

When the server is started by a root user but runs as another user, perform all activities that
must be performed as the user root (such as writing to a root-owned file) before the fork.
Functions that create threads, with the exception of thread-pool-init, should be executed
after the fork, that is, the relevant Init directive should have LateInit=yes set.

5C H A P T E R 5

107

This section describes the following SAFs:

■ “cindex-init” on page 108
■ “define-perf-bucket” on page 109
■ “init-dav” on page 110
■ “init-filter-order” on page 110
■ “init-request-limits” on page 112
■ “init-uhome” on page 112
■ “load-modules” on page 113
■ “pool-init” on page 114
■ “register-http-method” on page 114
■ “thread-pool-init” on page 115

cindex-init
The cindex-init function sets the default settings for common indexing. Common indexing
(also known as fancy indexing) is performed by the Service function index-common. Indexing
occurs:

■ When the requested URL translates to a directory that does not contain an index file or
home page.

■ If no index file or home page has been specified.

This function is applicable in Init-class directives. In common (fancy) indexing, the directory
list shows the name, last modified date, size, and description of each indexed file or directory.

Parameters
The following table describes the cindex-init parameters.

TABLE 5–1 cindex-initParameters

Parameter Description

opts (Optional) String of letters specifying the options to activate. Currently
there is only one possible option:

s instructs the server to scan each HTML file in the directory that is being
indexed for the contents of the HTML TITLE tag. The TITLE tag must be
within the first 255 characters of the file. This option is off by default.

The search for TITLE is not case-sensitive.

Init SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009108

TABLE 5–1 cindex-initParameters (Continued)
Parameter Description

widths (Optional) Specifies the width of each column in the indexing display. The
string is a comma-separated list of numbers that specify the column widths
in characters for name, last-modified date, size, and description
respectively.

The default value for the widths parameter is 22, 18, 8, and 33.

The final three values (corresponding to last-modified date, size, and
description) can each be set to 0 to turn off the display for that column. The
name column cannot be turned off.

The minimum size of a column (if the value is non-zero) is specified by the
length of its title. For example, the minimum size of the date column is 5
(the length of the date plus one space). If you set a non-zero value for a
column that is less than the length of its title, the width defaults to the
minimum required to display the title.

timezone (Optional) Determines whether the last-modified time is shown in local
time or in Greenwich Mean Time. The values are GMT or local. The default
is local.

format (Optional) Determines the format of the last modified date. It uses the
format specification for the UNIX function strftime().

The default is %d-%b-%Y %H:%M.

ignore (Optional) Specifies a wildcard pattern for file names that the server should
ignore while indexing. By default, file names starting with a period (.) are
always ignored. For more information, see Appendix B, “Using Wildcard
Patterns.”

icon-uri (Optional) Specifies the URI prefix the index-common function uses when
generating URLs for file icons (.gif files). By default, it is /mc-icons/.

If icon-uri is different from the default, the pfx2dir function in the
NameTrans directive must be changed so that the server can find these icons.

Example
Init fn="cindex-init" widths="50,1,1,0"
Init fn="cindex-init" ignore="*private*"
Init fn="cindex-init" widths="22,0,0,50"

define-perf-bucket
The define-perf-bucket function creates a performance bucket, which you can use to
measure the performance of SAFs in obj.conf.

Init SAFs

Chapter 5 • Predefined SAFs in magnus.conf 109

This function is applicable in Init-class directives. For more information about performance
buckets, see Sun Java System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling
Guide.

Parameters
The following table describes the define-perf-bucket parameters.

TABLE 5–2 define-perf-bucketParameters

Parameter Description

name The name of the bucket, for example, cgi-bucket

description The description of what the bucket measures, for example, CGI Stats

Example
Init fn="define-perf-bucket" name="cgi-bucket" description="CGI Stats"

init-dav
The init-dav function performs initialization tasks to load the WebDAV plug-in. This
function is applicable in Init-class directives.

Example
Init fn="load-modules"

shlib="libdavplugin.so"
funcs="init-dav,ntrans-dav,service-dav"

Init fn="init-dav"

init-filter-order
The init-filter-order function controls the position of specific filters within the filter stacks.
For example, you can use init-filter-order to ensure that a filter that converts outgoing
XML to XHTML is inserted above a filter that converts outgoing XHTML to HTML.

This function is applicable in Init-class directives.

Filters that appear higher in the filter stack are given the first opportunity to process outgoing
data, and filters that appear lower in the filter stack are given the first opportunity to process
incoming data.

Init SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009110

http://docs.sun.com/doc/820-7979
http://docs.sun.com/doc/820-7979

The appropriate position of a specific filter within the filter stack is defined by the filter
developer. For example, filters that translate content from XML to HTML are placed higher in
the filter stack than filters that compress data for transmission. Filter developers use the
filter-create function to define the filter's position in the filter stack. You can use
init-filter-order to override the position defined by the filter developer.

When two or more filters are defined to occupy the same position in the filter stack, filters that
were inserted later will appear higher than filters that were inserted earlier. That is, the order of
Input fn="insert-filter" and Output fn="insert-filter" directives in obj.conf becomes
important.

For example, consider two filters, xhtml-to-html and xml-to-xhtml, which convert XHTML
to HTML and XML to XHTML, respectively. As both these filters transform data from one
format to another, they may be defined to occupy the same position in the filter stack. To
transform XML documents to XHTML and then to HTML before sending the data to the client,
Output fn="insert-filter" directives in obj.conf should appear in the following order:

Output fn="insert-filter" filter="xhtml-to-html"
Output fn="insert-filter" filter="xml-to-xhtml"

In general, you should use the order of Input fn="insert-filter" and Output

fn="insert-filter" directives in obj.conf to control the position of filters in the filter stack.
init-filter-order should only be used to address specific filter interoperability problems.

Note – The load-module function that creates the filters should be called before
init-filter-order attempts to order them.

Parameters
The following table describes the init-filter-order parameter.

TABLE 5–3 init-filter-orderParameter

Parameter Description

filters A comma-separated list of filters in the order they should appear within a
filter stack, listed from highest to lowest

Example
Init fn="init-filter-order" filters="xml-to-xhtml,xhtml-to-html,http-compression"

Init SAFs

Chapter 5 • Predefined SAFs in magnus.conf 111

init-request-limits
The init-request-limits function works with the obj.conf function
check-request-limits to monitor incoming requests with a given attribute.
check-request-limits maintains a table of monitored values. intit-request-limits purges
existing entries in that table according to the timeout. This function is not required unless you
want to override the default value for the purge timeout in check-request-limits. For more
information, see “check-request-limits” on page 155. The default is 300 seconds (five minutes).
This function is applicable in Init-class directives.

Parameters
The following table describes the init-request-limits parameter.

TABLE 5–4 init-request-limitsParameter

Parameter Description

timeout (Optional) Sets the time in seconds after which to purge entries tracked by
check-request-limits. The default is 300 seconds (five minutes).

An optimal value for timeout depends not only on your performance and
memory requirements but also on the check-request-limits rules you are
using. When using rules containing, for example, monitor="$ip" on a busy
public web site, new buckets are created and kept for every client IP
accessing the server. Because this setting potentially creates a very large
number of buckets, the expiration should be short enough that unused
entries are purged in a reasonable time.

However, to avoid removing and re-creating buckets for the same client, do
not set a timeout that is shorter than the typical or expected client session.

If you do not use any dynamic bucket names (that is, if all monitored values
and bucket are fixed strings instead of variables, or you never specify
monitor or bucket parameters at all) there are only a fixed number of
buckets. In that case, you can disable expiration entirely by setting the
timeout to zero.

Example
Init fn="init-request-limits" timeout="120"

init-uhome
(UNIX only) The init-uhome function loads information about the system’s user home
directories into internal hash tables. This function slightly increases memory usage, but
improves performance for servers that have a lot of traffic to home directories.

This function is applicable in Init-class directives.

Init SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009112

Parameters
The following table describes the init-uhome parameter.

TABLE 5–5 init-uhomeParameter

Parameter Description

pwfile (Optional) Specifies the full file system path to a file other than
/etc/passwd. If you do not specify this parameter, the default UNIX path
(/etc/passwd) is used.

Example
Init fn="init-uhome"
Init fn="init-uhome" pwfile="/etc/passwd-http"

load-modules
The load-modules function loads a shared library or dynamic-link library (DLL) into the
server. Specified functions from the library can then be executed from any subsequent
directives. Use this function to load new plug-ins or SAFs.

This function is applicable in Init-class directives.

If you define your own SAFs, load them by using the load-modules function and specify the
shared library or DLL to load.

Parameters
The following table describes the load-modules parameters.

TABLE 5–6 load-modulesParameters

Parameter Description

shlib Specifies either the full path to the shared library or DLL, the name of a file
that can be found in the operating system's library path, the name of a file
that can be found in the server's plugins directory, or a file name relative to
the server's config directory.

funcs A comma-separated list of the names of the functions in the shared library
or DLL to be made available for use by other Init directives or by Service
directives in obj.conf. The list should not contain any spaces. The dash (-)
character may be used in place of the underscore (_) character in function
names.

Init SAFs

Chapter 5 • Predefined SAFs in magnus.conf 113

TABLE 5–6 load-modulesParameters (Continued)
Parameter Description

NativeThread (Optional) Specifies the threading model to use:
■ no causes the routines in the library to use user-level threading.
■ yes enables kernel-level threading.

The default is yes.

pool The name of a custom thread pool as specified in thread-pool-init. For
more information, see “thread-pool-init” on page 115.

Examples
Init fn="load-modules" shlib="C:/mysrvfns/corpfns.dll" funcs="moveit"
Init fn="load-modules" shlib="/mysrvfns/corpfns.so" funcs="myinit,myservice"
Init fn="myinit"

pool-init
The pool-init function changes the default values of pooled memory settings. You can change
the size of the free block list, or disable pooled memory entirely.

This function is applicable in Init-class directives.

Parameters
The following table describes the pool-init function parameters.

TABLE 5–7 pool-initParameters

Parameter Description

disable (Optional) The flag to disable the internal pooled memory allocator.
Disabling the internal pooled memory allocator is useful when debugging
plug-ins. The default value is false.

block-size (Optional) The size (in bytes) of the memory blocks allocated by the
internal pooled memory allocator. The default value is 32768.

Example
Init fn="pool-init" disable="true"

register-http-method
The register-http-method function enables you to extend the HTTP protocol by registering
new HTTP methods. This function is applicable in Init-class directives.

Init SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009114

While accepting a connection, the server checks if the method it received is known to it. If the
server does not recognize the method, it returns a 501 Method Not Implemented error
message.

Parameters
The following table describes the register-http-method parameters.

TABLE 5–8 register-http-methodParameters

Parameter Description

methods A comma-separated list of the methods you are registering

Example
The following example shows the use of register-http-method:

Init fn="register-http-method" methods="MY_METHOD1,MY_METHOD2"

The methods can be called from a Service function in obj.conf, for example:

Service fn="MyHandler" method="MY_METHOD1"

thread-pool-init
The thread-pool-init function creates a new pool of user threads. A pool must be declared
before it is used. For a plug-in to use the new pool, specify the pool parameter when loading the
plug-in with the Init-class function load-modules. For more information, see “load-modules”
on page 113.

This function is applicable in Init-class directives.

One reason to create a custom thread pool would be if a plug-in is not thread-aware, in which
case you can set the maximum number of threads in the pool to 1. The older parameter
NativeThread=yes always engages one default native pool, called NativePool.

The native pool on UNIX is normally not engaged, as all threads are kernel-level threads. In
addition, native thread pool parameters can be added to the magnus.conf file for convenience.
For more information, see Chapter 4, “Syntax and Use of magnus.conf.”

Parameters
The following table describes the thread-pool-init parameters.

Init SAFs

Chapter 5 • Predefined SAFs in magnus.conf 115

TABLE 5–9 thread-pool-initParameters

Parameter Description

name The name of the thread pool.

maxthreads The maximum number of threads in the pool.

minthreads The minimum number of threads in the pool.

queueSize The size of the pool queue. If all threads in the pool are busy, further
request-handling threads that need to get a thread from the pool wait in the
pool queue.

The number of request-handling threads that can wait in the queue is
limited by the queue size. If the queue is full, the next request-handling
thread that comes to the queue is turned away, with the result that the
request is turned down. But the request-handling thread remains free to
handle another request instead of becoming locked up in the queue.

stackSize Stack size of each thread in the native (kernel) thread pool.

Example
Init fn="thread-pool-init" name="my-custom-pool"

minthreads="1" maxthreads="5" queuesize="200"
Init fn="load-modules" shlib="myplugin.dll" funcs="tracker"

pool="my-custom-pool"

Common SAFs
You can call some SAFs from Init in magnus.conf as well as from ObjectType directives in
obj.conf. These SAFs are documented in Chapter 7, “Predefined SAFs and Filters in obj.conf,”
as referenced below:

■ “block-auth-cert” on page 171
■ “block-cache-info” on page 172
■ “block-cipher” on page 172
■ “block-ip” on page 173
■ “block-issuer-dn” on page 173
■ “block-jroute” on page 174
■ “block-keysize” on page 174
■ “block-proxy-agent” on page 175
■ “block-proxy-auth” on page 176
■ “block-secret-keysize” on page 176
■ “block-ssl-id” on page 177
■ “block-user-dn” on page 177
■ “block-via” on page 178

Common SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009116

■ “forward-auth-cert” on page 179
■ “forward-cache-info” on page 180
■ “forward-cipher” on page 180
■ “forward-ip” on page 181
■ “forward-issuer-dn” on page 181
■ “forward-jroute” on page 182
■ “forward-keysize” on page 183
■ “forward-proxy-agent” on page 183
■ “forward-proxy-auth” on page 184
■ “forward-secret-keysize” on page 184
■ “forward-ssl-id” on page 185
■ “forward-user-dn” on page 185
■ “forward-via” on page 186
■ “http-client-config” on page 186
■ “ssl-client-config” on page 191

Deprecated Init SAFs
The following magnus.conf Init SAFs are deprecated for Sun Java System Web Server 7.0.

TABLE 5–10 List of Deprecated Init SAFs

Directive Description

dns-cache-init Superseded by the server.xml dns-cache element. For more
information, see “dns-cache” on page 57.

flex-init Superseded by the server.xml access-log element. For more
information, see “access-log” on page 43.

flex-rotate-init Superseded by the server.xml event and log elements. For
more information, see “event” on page 58 and “log” on page 71.

init-cgi Superseded by the server.xml cgi element. For more
information, see “cgi” on page 49.

init-clf Superseded by the server.xml access-log element. For more
information, see “access-log” on page 43.

nt-console-init Superseded by the server.xml log element. For more
information, see “log” on page 71.

perf-init Superseded by the server.xml stats element. For more
information, see “stats” on page 95.

stats-init Superseded by the server.xml stats element. For more
information, see “stats” on page 95.

Deprecated Init SAFs

Chapter 5 • Predefined SAFs in magnus.conf 117

118

Syntax and Use of obj.conf

The obj.conf file contains directives for HTTP request processing. The obj.conf file is located
in the instance_dir/config directory.

During Web Server installation an obj.conf file is created. If you configure multiple virtual
servers using the Admin Console or CLI, separate obj.conf files may be created for each virtual
server. These files are named virtual-server-name-obj.conf, where virtual-server-name
is the name of the virtual server. The newly created virtual-server-name-obj.conf becomes
functional. This can be verified from the server.xml, where the name of the functional
obj.conf is updated.

When changes made through Admin Console or CLI does not impact the obj.conf, for
example changing log-level, no new virtual server specific obj.conf files are created and the
default obj.conf will be used for all the virtual servers of the configuration.

However, when changes made through Admin interface impacts the obj.conf, for example
Java disabling, a new obj.conf file is created for each virtual server. The server.xml file is
immediately updated to reflect the appropriate obj.conf file used for each virtual server.
During Java disabling if there are two virtual servers, vs1 and vs2, two new virtual server
specific obj.conf files are created, vs1-obj.conf and vs2-obj.conf. These new files are
updated in the server.xml with the exact object-file used by these two virtual servers.

<object-file>vs1-obj.conf</object-file>

<object-file>vs2-obj.conf</object-file>

From this point onwards, the obj.conf file is neither updated, used, nor deleted. However, if
the user wants to modify the obj.conf file for either of the two virtual servers, they should edit
the respective file only and not the original obj.conf file.

6C H A P T E R 6

119

Note – When another new virtual server vs3 is added, a new vs3-obj.conf should be created,
updated in the server.xml and become functional. However, this fails to happen and the
existing obj.conf is shared by the vs3. This behavior is a known issue and is recorded as a bug
CR 6754145.

When this document refers to obj.conf, it refers either to all obj.conf files or to the obj.conf
file for the virtual server being discussed.

This chapter discusses the obj.conf directives; the use of Object, Client, If, ElseIf, and Else

tags; the flow of control in obj.conf; and the syntax rules for editing obj.conf.

This chapter has the following sections:
■ “Request-Handling Process Overview” on page 120
■ “Directives in obj.conf” on page 121
■ “Objects in obj.conf” on page 122
■ “Flow of Control in obj.conf” on page 127
■ “Changes in Function Flow” on page 134
■ “Editing obj.conf” on page 135

Request-Handling Process Overview
When Web Server first starts up, it performs some initialization tasks and then waits for an
HTTP request from a client (such as a browser). When the server receives a request, it first
selects a virtual server. The obj.conf file of the selected virtual server determines how the
server handles a request.

The obj.conf file contains a series of instructions known as directives that tell the server what
to do at each stage in the request-handling process. These directives are grouped inside Object
tags. Each directive invokes a function with one or more arguments.

Each directive applies to a specific stage in the request-handling process. For example, a
directive that applies during the authorization stage in the request-handling process is an
AuthTrans directive.

Stages in the Request-Handling Process
1. AuthTrans (authorization translation)

Verify the authorization information (such as name and password) sent in the request.
2. NameTrans (name translation)

Translate the logical URI into a local file system path.

Request-Handling Process Overview

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009120

3. PathCheck (path checking)
Check the local file system path for validity and check if the requestor has access privileges to
the requested resource on the file system.

4. ObjectType (object typing)
Determine the Multipurpose Internet Mail Encoding (MIME) type of the requested
resource (for example, text/html, image/gif, and so on), and establish other
resource-specific settings.

5. Input (prepare to read input)
Select filters that will process incoming request data read by the Service step.

6. Output (prepare to send output)
Select filters that will process outgoing response data generated by the Service step.

7. Route (request routing)
Select the server to service the request.

8. Service (generate the response)
Generate and return the response to the client.

9. AddLog (adding log entries)
Add entries to log files.

10. Error (error handling)
Send an error message to the client and exit processing. This step is executed only if an error
occurs in the previous steps.

Directives in obj.conf
The directives in obj.conf invoke functions known as Server Application Functions (SAFs).
Each directive calls a function, indicating when to call it and specifying parameters for it.

The syntax of each directive is:

Directive fn="function" name1="value1"...nameN="valueN"

The value of the function (fn) parameter is the name of the SAF to execute. All directives must
supply a value for the fn parameter; if there is no function, the instruction will do nothing. The
remaining parameters are the arguments needed by the function, and they vary from function
to function.

For example:

NameTrans fn="document-root" root="D:/Sun/webserver7/https-server/docs"

Directives in obj.conf

Chapter 6 • Syntax and Use of obj.conf 121

In this example, the directive is executed during the NameTrans stage of request processing, and
invokes the document-root SAF to specify the document root directory for the server. The
document-root SAF parameter root specifies the path to the document root directory.

Parameters can contain references to variables and expressions. The variables can be predefined
variables, variables defined at request time using the set-variable SAF, or variables defined in
server.xml. For more information on the set-variable SAF, see “set-variable” on page 252.
For more information on defining variables in server.xml, see “variable” on page 97. For more
information on expressions and variables, see Appendix A, “Using Variables, Expressions, and
String Interpolation.”

The server is shipped with a set of built-in SAFs that you can use to create and modify directives
in obj.conf. Chapter 7, “Predefined SAFs and Filters in obj.conf,” discusses these SAFs in
detail. You can also define new SAFs, as discussed in Chapter 2, “Creating Custom Server
Application Functions,” in Sun Java System Web Server 7.0 Update 6 NSAPI Developer’s Guide.

The magnus.conf file contains Init directive SAFs that initialize NASPI plug-ins. For more
information, see Chapter 5, “Predefined SAFs in magnus.conf.”

Objects in obj.conf
Directives in the obj.conf file are grouped into Object tags. The default object contains
instructions to the server on how to process requests by default. Each new object modifies the
default object’s behavior.

An Object tag may contain a name or ppath attribute. Either parameter can be a wildcard
pattern. For example:

<Object name="cgi">

<Object ppath="/usr/sun/webserver7/https-server/docs/private/*">

The server always starts handling a request by processing the directives in the default object.
However, the server switches to processing directives in another object after the NameTrans
stage of the default object if either of the following conditions is true:

■ The successful NameTrans directive specifies a name argument.
■ The physical path name that results from the NameTrans stage matches the ppath attribute

of another object.

When the server is alerted to use an object other than the default object, it processes the
directives in the other object before processing the directives in the default object. For some
steps in the process, the server stops processing directives in that particular stage (such as the
Service stage) as soon as one is successfully executed, whereas for other stages the server
processes all directives in that stage, including the ones in the default object as well as those in
the additional object. For more details, see “Flow of Control in obj.conf” on page 127.

Objects in obj.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009122

http://docs.sun.com/doc/820-7980/abvcu?a=view
http://docs.sun.com/doc/820-7980/abvcu?a=view

Objects That Use the name Attribute
If a NameTrans directive in the default object specifies a name argument, the server switches to
processing the directives in the object of that name before processing the remaining directives
in the default object.

For example, the following NameTrans directive in the default object assigns the name cgi to
any request whose URL starts with http://server_name/cgi:

<Object name="default">
NameTrans fn="pfx2dir"

from="/cgi"
dir="D:/sun/webserver7/https-server/docs/mycgi"
name="cgi"

...

</Object>

When the NameTrans directive is executed, the server starts processing directives in the object
named cgi:

<Object name="cgi">
...

</Object>

Objects That Use the ppath Attribute
When the server completes processing the NameTrans directives in the default object, the
logical URL of the request has been converted to a physical path name. If this physical path
name matches the ppath attribute of another object in obj.conf, the server switches to
processing the directives in that object before processing the remaining ones in the default
object.

For example, the following NameTrans directive translates the http://server_name/ part of the
requested URL to D:/sun/webserver7/https-server/docs/, the document root directory:

<Object name="default">
NameTrans fn="document-root"

root="D:/sun/webserver7/https-server/docs"
...

</Object>

In this example, the URL http://server_name/internalplan1.html is translated to
D:/sun/webserver7/https-server/docs/internalplan1.html.

However, if obj.conf contains the following additional object:

Objects in obj.conf

Chapter 6 • Syntax and Use of obj.conf 123

<Object ppath="*internal*">

</Object>

In this example, the partial path *internal* matches the path
D:/sun/webserver7/https-server/docs/internalplan1.html. The server starts processing
the directives in this object before processing the remaining directives in the default object.

Using the Client, If, ElseIf, and Else Tags
Additional tags are available to use within the Object tag. These tags give you greater flexibility
when invoking directives within an object. This section contains the following sections:

■ “Client” on page 124
■ “If, ElseIf, and Else” on page 126

Client
The Client tag enables you to limit the execution of a set of directives to requests received from
specific clients. Directives listed within the Client tag are executed only when information in
the client request matches the parameter values specified.

Client Tag Parameters

The following table lists the Client tag parameters.

TABLE 6–1 Client Tag Parameters

Parameter Description

browser The User-Agent string sent by a browser to the Web Server.

chunked A Boolean value set by a client requesting chunked encoding.

code The HTTP response code.

dns The DNS name of the client.

internal The Boolean value indicating internally generated request.

ip The IP address of the client.

keep-alive The Boolean value indicating whether the client has requested a keep-alive
connection.

keysize The key size used in an SSL transaction.

match The match mode for the Client tag. The valid values are all, any, and none.

Objects in obj.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009124

TABLE 6–1 Client Tag Parameters (Continued)
Parameter Description

method The HTTP method used by the browser.

name The name of an object as specified in a previous NameTrans statement.

odds A random value for evaluating the enclosed directive. The value can be a
percentage or a ratio (for example, 20% or 1/5).

path The physical path to the requested resource.

ppath The physical path of the requested resource.

query The query string sent in the request.

reason The text version of the HTTP response code.

restarted A Boolean value indicating that a request has been restarted.

secret-keysize The secret key size used in an SSL transaction.

security Indicates an encrypted request.

type The type of document requested (such as text/html or image/gif).

uri The URI section of the request from the browser.

urlhost The DNS name of the virtual server requested by the client (the value is
provided in the Host header of the client request).

variable-headers Prevents access to a specific site, based on the request by the client. For
example,

Client variable-headers="Weferer:SKVFVWRKJVZCMHVIBGDA
Service type="image/*" fn="deny-existence"
</Client>

The Client tag parameter provides greater control when the If directive is executed. In the
following example, use of the odds parameter gives the request a 25% chance of being
redirected:

<Client odds="25%">
NameTrans fn="redirect"

from="/Pogues"
url-prefix="http://pogues.example.com"

</Client>

One or more wildcard patterns can be used to specify the Client tag parameter values.
Wildcards can also be used to exclude clients that match the parameter value specified in the

Objects in obj.conf

Chapter 6 • Syntax and Use of obj.conf 125

Client tag. In the following example, the Client tag and the AddLog directive are combined to
direct the Web Server to log access requests from all clients except those from the specified
subnet:

<Client ip="*~192.85.250.*">
AddLog fn="flex-log" name="access"
</Client>

You can also create a negative match by setting the match parameter of the Client tag to none.
In the following example, access requests from the specified subnet are excluded as are all
requests to the virtual server sun.com:

<Client match="none" ip="192.85.250.*" urlhost="www.sun.com">
AddLog fn="flex-log" name="access"
</Client>

For more information about wildcard patterns, see Appendix B, “Using Wildcard Patterns.”

If, ElseIf, and Else
The If, ElseIf, and Else tags enable you to define the conditions under which to execute a set
of directives. Like the Client tag, these tags can only appear inside an Object tag. In addition,
these tags can evaluate an expression, then conditionally execute one or more contained
directives. However, there are some key differences between the these tags and the Client tag,
as summarized below:
■ If and ElseIf tags offer a richer expression syntax, including support for regular

expressions. This expression syntax is different from the Client syntax. For more
information on the If and ElseIf expression syntax, see “Expressions” on page 281.

■ If, ElseIf, and Else tags can contain other tags.
■ If and ElseIf expressions are evaluated once per request, not once per contained directive.
■ If, ElseIf, and Else tags cannot contain multiple types of directives.
■ Directives within the If and ElseIf tags can contain regular expression backreferences.

When used, an ElseIf or Else tag must immediately follow an If or ElseIf tag. ElseIf and
Else tags are skipped if the preceding If or ElseIf expression evaluates to logical true.

The following example shows If, ElseIf, and Else tag syntax:

<If $path eq "/">
<If $browser =~ "MSIE">
NameTrans fn="rewrite" path="/msie.html"
</If>

<ElseIf $browser =~ "Mozilla">
NameTrans fn="rewrite" path="/mozilla.html"
</ElseIf>

Objects in obj.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009126

<Else>

NameTrans fn="rewrite" path="/unknown.html"
</Else>

</If>

This example presents a different page based on whether the browser is Microsoft Internet
Explorer, Mozilla, or another browser.

Flow of Control in obj.conf
Before the server can process a request, it must direct the request to the correct virtual server.
After the virtual server is determined, the server executes the obj.conf file of the specified
virtual server. This section discusses how the server decides which directives to execute in
obj.conf.

AuthTrans
When the server receives a request, it executes the AuthTrans directives in the default object to
check if the client is authorized to access the server. If there is more than one AuthTrans
directive, the server executes them in sequence until one succeeds in authorizing the user,
unless one of them results in an error. If an error occurs, the server skips all other directives
except for the Error directive.

AuthTrans directives work in conjunction with the PathCheck directives. The AuthTrans
directive checks if the user name and password associated with the request are acceptable, but it
does not allow or deny access to the request; that is done by the PathCheck directive.

The authorization process is split into two steps to incorporate multiple authorization schemes
easily and provide the flexibility to have resources that record authorization information.

When a client initially makes a request, the user name and password are unknown. The
AuthTrans directive gets the user name and password from the headers associated with the
request. The AuthTrans and PathCheck directives work together to reject the request if they
cannot validate the user name and password. When a request is rejected, the server displays a
dialog box. The client includes the user name and password in the headers and resubmits the
request.

NameTrans
The server executes a NameTrans directive in the default object to map the logical URL of the
requested resource to a physical path name on the server’s file system. For example, the URL
http://www.test.com/some/file.html could be translated to the full file system path:

Flow of Control in obj.conf

Chapter 6 • Syntax and Use of obj.conf 127

/usr/sun/webserver7/https-server/docs/some/file.html

The server looks at each NameTrans directive in the default object in turn, until it finds one that
can be applied.

Because the server might not execute all NameTrans directives, the order in which the directives
appear is important. For example:

NameTrans fn="document-root"
root="D:/sun/webserver7/https-server/docs"

NameTrans fn="pfx2dir"
from="/cgi"
dir="D:/sun/webserver7/https-server/docs/mycgi"
name="cgi"

In this example, the directive that calls pfx2dir will never be executed because the previous
directive always establishes the physical path name for the resource. For the /cgi prefix to work,
the directive that calls pfx2dir must be moved before the directive that calls document-root.

If no directive sets the physical path name, the server translates the logical URL to a file system
path relative to the document root. The document root is specified by the document-root
element in server.xml. For more information on the document-root element, see
“virtual-server” on page 98.

How and When the Server Processes Other Objects
As a result of executing a NameTrans directive, the server might start processing directives in
another object. This happens if the NameTrans directive that was successfully executed specifies
a name or generates a partial path that matches the name or ppath attribute of another object.

If the successful NameTrans directive assigns a name by specifying a name argument, the server
starts processing directives in the named object (defined with the object tag) before processing
directives in the default object for the rest of the request-handling process.

For example, the following NameTrans directive in the default object assigns the name cgi to
any request whose URL starts with http://server_name/cgi/.

<Object name="default">
...

NameTrans fn="pfx2dir"
from="/cgi"
dir="D:/sun/webserver7/https-server/docs/mycgi" name="cgi"

...

</Object>

When the NameTrans directive is executed, the server starts processing directives in the object
named cgi:

Flow of Control in obj.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009128

<Object name="cgi">

</Object>

When a NameTrans directive is successfully executed, there is a physical path name associated
with the requested resource. If the resultant path name matches the ppath (partial path)
attribute of another object, the server starts processing directives in the other object before
processing directives in the default object for the rest of the request-handling process.

For example, assume obj.conf contains an object as follows:

<Object ppath ="*internal*">

</Object>

Consider that a successful NameTrans directive translates the requested URL to the path name
D:/sun/webserver7/https-server/docs/internalplan1.html. In this case, the partial path
internal matches the path
D:/sun/webserver7/https-server/docs/internalplan1.html. Hence, the server will
process the directives in this object before processing the remaining directives in the default
object.

PathCheck
After converting the logical URL of the requested resource to a physical path name in the
NameTrans step, the server executes PathCheck directives to verify that the client is allowed to
access the requested resource.

If there is more than one PathCheck directive, the server executes all directives in the order in
which they appear, unless one of the directives denies access. If access is denied, the server
switches to executing directives in the Error section.

If the NameTrans directive assigned a name or generated a physical path name that matches the
name or ppath attribute of another object, the server first applies the PathCheck directives in the
matching object before applying the directives in the default object.

ObjectType
Assuming that the PathCheck directives approve access, the server next executes the
ObjectType directives to determine the MIME type of the request. The MIME type has three
attributes: type, encoding, and language. When the server sends the response to the client, the
type, language, and encoding values are transmitted in the headers of the response. The type
also frequently helps the server to determine which Service directive to execute to generate the
response to the client.

Flow of Control in obj.conf

Chapter 6 • Syntax and Use of obj.conf 129

If there is more than one ObjectType directive, the server applies all directives in the order in
which they appear. However, once a directive sets an attribute of the MIME type, further
attempts to set the same attribute are ignored. The reason why all ObjectType directives are
applied is that one directive may set one attribute, for example type, while another directive sets
a different attribute, such as language.

As with the PathCheck directives, if another object has been matched to the request as a result of
the NameTrans step, the server executes the ObjectType directives in the matching object before
executing the ObjectType directives in the default object.

Setting the Type by File Extension
By default, the server determines the MIME type by calling the type-by-extension function.
This function instructs the server to look up the MIME type according to the requested
resource’s file extension in the MIME types table. This table is created during virtual server
initialization by the MIME types file (which is usually called mime.types). For more
information, see Chapter 8, “MIME Types.”

For example, the entry in the MIME types table for the extensions .html and .htm is usually:

type=text/html exts=htm,html

which indicates that all files with the extension .htm or .html are text files formatted as HTML,
and the type is text/html.

Note – If you make changes to the MIME types file, you must reconfigure the server for the
changes to take effect.

Forcing the Type
If no ObjectType directive has set the type and the server does not find a matching file extension
in the MIME types table, the type still has no value even after type-by-expression has been
executed. Usually if the server does not recognize the file extension, it is a good idea to force the
type to be text/plain, so that the content of the resource is treated as plain text. There are also
other situations where you might want to set the type regardless of the file extension, such as
forcing all resources in the designated CGI directory to have the MIME type
magnus-internal/cgi.

The function that forces the type is force-type.

For example, the following directives first instruct the server to look in the MIME types table for
the MIME type, then if the type attribute has not been set (that is, the file extension was not
found in the MIME types table), set the type attribute to text/plain.

ObjectType fn="type-by-extension"
ObjectType fn="force-type" type="text/plain"

Flow of Control in obj.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009130

If the server receives a request for a file abc.date, it looks in the MIME types table, does not find
a mapping for the extension .date, and consequently does not set the type attribute. As the
type attribute has not already been set, the second directive is successful in forcing the type
attribute to text/plain.

The following example illustrates another use of force-type. In this example, the type is forced
to magnus-internal/cgi before the server gets a chance to look in the MIME types table. In this
case, all requests for resources in http://server_name/cgi/ are translated into requests for
resources in the directory D:/sun/webServer7/https-server/docs/mycgi/. As a name is
assigned to the request, the server processes the ObjectType directives in the object named cgi

before processing the ones in the default object. This object has one ObjectType directive,
which forces the type to be magnus-internal/cgi.

NameTrans fn="pfx2dir"
from="/cgi"
dir="D:/sun/webserver7/https-server/docs/mycgi" name="cgi"

<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi"
</Object>

The server continues processing all ObjectType directives including those in the default
object, but as the type attribute has already been set, no other directive can set it to another
value.

Input
The Input directive selects filters that will process incoming request data read by the Service
step. Input directives are invoked when the server or plug-in first attempts to read entity body
data from the client. You can add the NSAPI filters that process incoming data by invoking the
insert-filter SAF in the Input stage of the request-handling process. NSAPI filters enable a
function to intercept and potentially modify the content presented to or generated by another
function. The Input directives are executed once per request.

The order of Input fn="insert-filter" and Output fn="insert-filter" directives in
obj.conf is important if two or more filters are defined to occupy the same location in the filter
stack. Filters that were inserted later will appear higher than filters that were inserted earlier.

Output
The Output directive selects filters that will process outgoing response data generated by the
Service step. The Output directive allows you to invoke the insert-filter SAF to install
NSAPI filters that process outgoing data. NSAPI filters enable a function to intercept and
potentially modify the content presented to or generated by another function. Output directives

Flow of Control in obj.conf

Chapter 6 • Syntax and Use of obj.conf 131

are executed when the server or a plug-in first attempts to write entity body data from the client.
The Output directives are executed once per request.

The order of Input fn="insert-filter" and Output fn="insert-filter" directives in
obj.conf is important if two or more filters are defined to occupy the same location in the filter
stack. Filters that were inserted later will appear higher than filters that were inserted earlier.

Route
If a Service directive requires that the HTTP request be sent to another server, the server
executes Route directives to determine how the request should be routed. Routing a request can
involve selecting the server that will ultimately service the request and selecting a proxy through
which the request is sent.

Service
The server executes a Service directive to generate the response to send to the client. The server
looks at each Service directive to find the first one that matches the type, method, and query
string. If a Service directive does not specify type, method, or query string, then the unspecified
attribute matches anything.

If there is more than one Service directive, the server applies the first one that matches the
conditions of the request and ignores all remaining Service directives.

For the PathCheck and ObjectType directives, if another object has been matched to the request
as a result of the NameTrans step, the server considers the Service directives in the matching
object before considering the ones in the default object. If the server successfully executes a
Service directive in the matching object, it will not execute the Service directives in the
default object, because it only executes one Service directive.

Service Examples
Consider an example where the server receives a request for the URL
D:/server_name/jos.html. In this case, all directives executed by the server are in the default
object.

1. The following NameTrans directive translates the requested URL to
D:/sun/webserver7/https-server/docs/jos.html:

NameTrans fn="document-root"
root="D:/sun/webserver7/https-server/docs"

2. Assume that the PathCheck directives succeed.
3. The following ObjectType directive tells the server to look up the resource’s MIME type in

the MIME types table:

Flow of Control in obj.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009132

ObjectType fn="type-by-extension"

4. The server finds the following entry in the MIME types table, which sets the type attribute
to text/html:

type=text/html exts=htm,html

5. The server invokes the following Service directive. The value of the type parameter
matches anything that does not begin with magnus-internal/.

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file""

For a list of all wildcard patterns, see Appendix B, “Using Wildcard Patterns.”

Here is an example that involves using another object:

1. The following NameTrans directive assigns the name personnel to the request.

NameTrans fn=assign-name name=personnel from=/personnel

2. As a result of the name assignment, the server switches to processing the directives in the
object named personnel. This object is defined as:

<Object name="personnel">
Service fn="index-simple"
</Object>

3. The personnel object has no PathCheck or ObjectType directives, so the server processes
the PathCheck and ObjectType directives in the default object. Assume that all PathCheck
and ObjectType directives succeed.

4. When processing Service directives, the server starts by considering the Service directive
in the personnel object, which is:

Service fn="index-simple"

5. The server executes this Service directive, which calls the index-simple function.
As a Service directive has now been executed, the server does not process any other
Service directives. However, if the matching object did not have a Service directive that
was executed, the server would continue looking at Service directives in the default object.

Default Service Directive
There is usually a Service directive that does the default task (sends a file) if no other Service
directive matches a request sent by a browser. This default directive should come last in the list
of Service directives in the default object to ensure that it only gets called if no other Service
directives have succeeded. The default Service directive is usually:

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*" fn="send-file"

Flow of Control in obj.conf

Chapter 6 • Syntax and Use of obj.conf 133

This directive matches requests whose method is GET, HEAD, or POST, which covers nearly all
requests sent by browsers. The value of the type argument uses special pattern-matching
characters.

The characters *~ mean anything that does not match the following characters, so the
expression *~magnus-internal/ means anything that does not match magnus-internal/. An
asterisk by itself matches anything, so the whole expression *~magnus-internal/* matches
anything that does not begin with magnus-internal/.

So if the server has not already executed a Service directive when it reaches this directive, it
executes the directive as long as the request method is GET, HEAD, or POST, and the value of the
type attribute does not begin with magnus-internal/. The invoked function is send-file,
which simply sends the contents of the requested file to the client.

AddLog
After the server generates the response and sends it to the client, it executes AddLog directives to
add entries to the log files. All AddLog directives are executed. The server can add entries to
multiple log files.

Error
If an error occurs during the request-handling process, for example, if a PathCheck or
AuthTrans directive denies access to the requested resource or the requested resource does not
exist, the SAF sets the HTTP response status code and returns the value REQ_ABORTED. When
this happens, the server stops processing the request. Instead, it searches for an Error directive
matching the HTTP response status code or its associated reason phrase and executes the
directive’s function. If the server does not find a matching Error directive, it returns the
response status code to the client.

Changes in Function Flow
There are times when the function flow changes from the normal request-handling process.
This happens during internal redirects, restarts, and URI translation functions.

Restarted Requests
Requests may be restarted. For example, a PathCheck directive might restart a request for
http://server_name/ as a request for http://server_name/index.html.

Changes in Function Flow

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009134

Internal Requests
The server can generate internal requests. For example, an SHTML file or Servlet might include
a file. While processing the original request, the server makes an internal request to retrieve this
file.

URI Translation
The server can execute AuthTrans and NameTrans directives to translate a URI to a physical
path name without starting a new request. For example, the server might execute AuthTrans
and NameTrans directives in order to set the PATH_INFO_TRANSLATED CGI environment
variable.

Editing obj.conf
Be very careful when editing this file. Simple mistakes can make the server fail to start or operate
correctly.

Order of Directives
The order of directives is important, because the server executes them in the order in which
they appear in obj.conf. The outcome of some directives affects the execution of other
directives.

For PathCheck directives, the order within the PathCheck section is not so important because
the server executes all PathCheck directives. However, the order within the ObjectType section
is very important, because if an ObjectType directive sets an attribute value, no other
ObjectType directive can change that value. For example, if the default ObjectType directives
are listed in the following order (which is the incorrect way), every request will have its type
value set to text/plain, and the server will not have a chance to set the type according to the
extension of the requested resource.

ObjectType fn="force-type" type="text/plain"
ObjectType fn="type-by-extension"

Similarly, the order of directives in the Service section is very important. The server executes
the first Service directive that matches the current request and does not execute the others.

Parameters
The number and names of parameters depend on the function. The order of parameters on the
line is not important.

Editing obj.conf

Chapter 6 • Syntax and Use of obj.conf 135

Case Sensitivity
Items in the obj.conf file are case-sensitive including function names, parameter names,
parameter values, and path names.

Separators
The C language allows function names to be composed only of letters, digits, and underscores.
You may use the hyphen (-) character in the configuration file in place of underscore (_) for
your C code function names. This is only true for function names.

Quotation Marks
Quotation marks (“) are only required around the value strings when there is a space in the
string. Otherwise, they are optional. Each open quotation mark must be matched by a closed
quotation mark.

Spaces
■ Spaces are not allowed at the beginning of a line except when continuing the previous line.
■ Spaces are not allowed before or after the equal (=) sign that separates the name and value.
■ Spaces are not allowed at the end of a line or on a blank line.

Line Continuation
A long line may be continued on the next line by beginning the next line with a space or tab.

Path Names
Always use forward slashes (/) rather than backslashes (\) in path names on the Windows
platform. A backslash escapes the next character.

Comments
Comments begin with a pound (#) sign. If you manually add comments to obj.conf, then use
the Admin Console or CLI to make changes to your server, your comments are overwritten
when obj.conf is updated.

Editing obj.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009136

Predefined SAFs and Filters in obj.conf

This chapter describes the predefined Server Application Functions (SAFs) and filters that are
used in the obj.conf file. For details about the syntax and use of the obj.conf file, see
Chapter 6, “Syntax and Use of obj.conf.”

Each SAF has its own parameters which are passed to it by an obj.conf directive. SAFs may
examine, modify, or create server variables. Each SAF returns a result code that indicates
whether it succeeded, did nothing, or failed.

The SAFs in this chapter are grouped by the type of directive that calls them. For an alphabetical
list of predefined SAFs and server configuration elements, see Appendix G, “Alphabetical List of
Server Configuration Elements and Predefined SAFs.”

This chapter contains the following sections:

■ “The bucket Parameter” on page 138
■ “AuthTrans” on page 138
■ “NameTrans” on page 142
■ “PathCheck” on page 153
■ “ObjectType” on page 170
■ “Input” on page 194
■ “Output” on page 196
■ “Route” on page 200
■ “Service” on page 203
■ “AddLog” on page 239
■ “Error” on page 240
■ “Common SAFs” on page 242

7C H A P T E R 7

137

The bucket Parameter
The bucket parameter is common to all SAFs. You can measure the performance of any SAF in
obj.conf by adding a bucket=bucket-name parameter to the function, for example,
bucket="cache-bucket". The bucket statistics are displayed by the perfdump utility, which can
be set up through the Admin Console, CLI, or through the service-dump SAF. For more
information, see “service-dump” on page 231.

The following performance buckets are predefined:

■ The default-bucket records statistics for the functions not associated with any
user-defined or built-in bucket.

■ The all-requests bucket records perfdump statistics for all NSAPI SAFs, including those
in the default-bucket.

For more information on performance buckets, see “Using Performance Buckets” in Sun Java
System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide.

AuthTrans
The Authtrans directive instructs the server to check for authorization before allowing a client
to access resources. For more information, see “AuthTrans” on page 127.

The following AuthTrans-class functions are described in detail in this section:

■ “basic-auth” on page 138
■ “basic-ncsa” on page 140
■ “get-sslid” on page 141
■ “qos-handler” on page 141

In addition, the following common SAFs are valid for the AuthTrans directive:

■ “match-browser” on page 244
■ “set-variable” on page 252

basic-auth
The basic-auth function verifies the authorization information sent by the client. The
Authorization header is sent as part of the basic server authorization scheme. This function is
usually used with the PathCheck-class function require-auth.

Parameters
The following table describes parameters for the basic-auth function.

The bucket Parameter

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009138

http://docs.sun.com/doc/820-7979/abyat?a=view
http://docs.sun.com/doc/820-7979/abyat?a=view

TABLE 7–1 basic-authParameters

Parameter Description

auth-type Specifies the type of authorization to be used. The values can be basic,
digest, or ssl. The default value is basic.

userdb (Optional) Specifies the full path and file name of the database to be used for
user verification. This parameter will be passed to the user function.

userfn Name of the user custom function to verify authorization. This function
must have been previously loaded with load-modules. It has the same
interface as all of the SAFs, but it is called with the user name (user),
password (pw), user database (userdb), and group database (groupdb), if
supplied, in the pb parameter.

This function checks the name and password using the database and returns
REQ_NOACTION if they are not valid. It returns REQ_PROCEED if the name and
password are valid. The basic-auth function will then add auth-type,
auth-user (user), auth-db (userdb), and auth-password (pw, Windows
only) to the rq->vars pblock. For more information on custom functions,
see Chapter 2, “Creating Custom Server Application Functions,” in Sun Java
System Web Server 7.0 Update 6 NSAPI Developer’s Guide.

groupdb (Optional) Specifies the full path and file name of the user database. This
parameter will be passed to the group function.

groupfn (Optional) Name of the group custom function that must have been
previously loaded with load-modules. It has the same interface as all of the
SAFs, but it is called with the user name (user), password (pw), user
database (userdb), and group database (groupdb) in the pb parameter.

This parameter also has access to the auth-type, auth-user (user),
auth-db (userdb), and auth-password (pw, Windows only) parameters in
the rq->vars pblock. The group function determines the group to which
the user belongs using the group database, add it to rq->vars as
auth-group, and return REQ_PROCEED if found. It returns REQ_NOACTION if
the user’s group is not found.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
In magnus.conf:

Init fn="load-modules" shlib="/path/to/mycustomauth.so" funcs="hardcoded_auth"

In obj.conf:

AuthTrans

Chapter 7 • Predefined SAFs and Filters in obj.conf 139

http://docs.sun.com/doc/820-7980/abvcu?a=view
http://docs.sun.com/doc/820-7980/abvcu?a=view

AuthTrans fn="basic-auth" auth-type="basic" userfn="hardcoded_auth"
PathCheck fn="require-auth" auth-type="basic" realm="Marketing Plans"

See Also
“require-auth” on page 166

basic-ncsa
The basic-ncsa function verifies authorization information sent by the client against a
database. The Authorization header is sent as part of the basic server authorization scheme.
This function is usually used with the PathCheck-class function require-auth.

Parameters
The following table describes parameters for the basic-ncsa function.

TABLE 7–2 basic-ncsaParameters

Parameter Description

auth-type Specifies the type of authorization to be used. The values can be basic,
digest, or ssl. The default value is basic.

dbm (Optional) Specifies the full path and base file name of the user database in
the native format of the server. The native format is a system DBM file,
which is a hashed file format allowing instantaneous access to billions of
users. If you use this parameter, do not use the userfile parameter.

userfile (Optional) Specifies the full path name of the user database in the
NCSA-style HTTPD user file format. This format consists of lines using the
format name:password, where password is encrypted. If you use this
parameter, do not use dbm.

grpfile (Optional) Specifies the NCSA-style HTTPD group file to be used. Each line
of a group file consists of group:user1 user2 ... userN where each user name
is separated by spaces.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
AuthTrans fn="basic-ncsa" auth-type="basic" dbm="/sun/server7/userdb/rs"
PathCheck fn="require-auth" auth-type="basic" realm="Marketing Plans"
AuthTrans fn="basic-ncsa" auth-type="basic" userfile="/sun/server7/.htpasswd"

grpfile="/sun/server7/.grpfile"
PathCheck fn="require-auth" auth-type="basic" realm="Marketing Plans"

AuthTrans

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009140

See Also
“require-auth” on page 166

get-sslid
The get-sslid function retrieves a string that is unique to the current SSL session and stores it
as the ssl-id variable in the Session->client parameter block.

Note – This function is provided for backward compatibility. The functionality of get-sslid has
been incorporated into the standard processing of an SSL connection.

If the variable ssl-id is present when a CGI is invoked, it is passed to the CGI as the
HTTPS_SESSIONID environment variable. The get-sslid function has no parameters and
always returns REQ_NOACTION. It has no effect if SSL is not enabled.

Parameters
The following table describes parameter for the get-sslid function.

TABLE 7–3 get-sslidParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

qos-handler
The qos-handler function examines the current quality of service (QOS) statistics for a virtual
server, logs the statistics, and enforces the QOS parameters by returning an error. This function
must be the first AuthTrans function configured in the default object.

Parameters
The following table describes parameter for the qos-handler function.

AuthTrans

Chapter 7 • Predefined SAFs and Filters in obj.conf 141

TABLE 7–4 qos-handlerParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
AuthTrans fn="qos-handler"

See Also
“qos-error” on page 241

NameTrans
The NameTrans directive translates virtual URLs to physical directories on your server. The
NameTrans directive must appear in the default object. For more information, see
“NameTrans” on page 127.

The following NameTrans-class functions are described in detail in this section:

■ “assign-name” on page 143
■ “document-root” on page 144
■ “home-page” on page 145
■ “map” on page 146
■ “ntrans-dav” on page 147
■ “ntrans-j2ee” on page 148
■ “pfx2dir” on page 148
■ “reverse-map” on page 150
■ “rewrite” on page 151
■ “strip-params” on page 152
■ “unix-home” on page 152

In addition, the following common SAFs are also valid for the NameTrans directive:

■ “match-browser” on page 244
■ “redirect” on page 246
■ “restart” on page 249
■ “set-variable” on page 252

NameTrans

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009142

assign-name
The assign-name function specifies the name of an object in obj.conf that matches the current
request. The server then processes the directives in the named object in preference to the ones
in the default object.

For example, if you have the following directive in the default object:

NameTrans fn="assign-name" name="personnel" from="/personnel"

Assume that the server receives a request for http://server-name/personnel. After processing
this NameTrans directive, the server looks for an object named personnel in obj.conf and
continues by processing the directives in the personnel object.

The assign-name function always returns REQ_NOACTION.

Parameters
The following table describes parameters for the assign-name function.

TABLE 7–5 assign-nameParameters

Parameter Description

from (Optional) Wildcard pattern that specifies the path to be affected. If you do
not specify the from parameter, all paths are affected.

name Specifies an additional named object in obj.conf whose directives will be
applied to this request.

find-pathinfo-forward (Optional) Instructs the server to look for the PATHINFO forward in the path
right after the ntrans-base, instead of backward from the end of path as
the server function assign-name does by default.

The find-pathinfo-forward parameter is ignored if the ntrans-base
parameter is not set in rq->vars. By default, ntrans-base is set.

This feature can improve performance for certain URLs by reducing the
number of statistics performed.

NameTrans

Chapter 7 • Predefined SAFs and Filters in obj.conf 143

TABLE 7–5 assign-nameParameters (Continued)
Parameter Description

nostat (Optional) Prevents the server from performing a stat on a specified URL.

The effect of nostat="virtual-path" in the NameTrans function assign-name

is that the server assumes that a stat on the specified virtual-path will fail.
Therefore, use nostat only when the path of the virtual-path does not exist
on the system. For example, use nostat for NSAPI plug-in URLs to
improve performance by avoiding unnecessary stats on those URLs.

When the default PathCheck server functions are used, the server does not
stat for the paths /ntrans-base/virtual-path and /ntrans-base/virtual-path/*
if ntrans-base is set (the default condition). It does not stat for the URLs
/virtual-path and /virtual-path/* if ntrans-base is not set.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
This NameTrans directive is in the default object.

NameTrans fn="assign-name" name="personnel" from="/a/b/c/pers"
...

<Object name=personnel>

...additional directives..

</Object>

NameTrans fn="assign-name" from="/perf" find-pathinfo-forward="" name="perf"

NameTrans fn="assign-name" from="/nsfc" nostat="/nsfc" name="nsfc"

document-root
The document-root function specifies the root document directory for the server. If the
physical path is not set by a previous NameTrans function, the http://server-name/ part of the
path is replaced by the physical path name for the document root.

When the server receives a request for http://server-name/somepath/somefile, the
document-root function replaces http://server-name/ with the value of its root parameter.
For example, if the document root directory is /usr/sun/webserver7/https-server/docs,
when the server receives a request for http://server-name/a/b/file.html, the
document-root function translates the path name for the requested resource to
/usr/sun/webserver7/https-server/docs/a/b/file.html.

You can also specify a document root in the virtual-server element of server.xml. For more
information, see “virtual-server” on page 98.

NameTrans

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009144

This function always returns REQ_PROCEED.

NameTrans directives listed after this directive will never be called. Ensure that the directive that
invokes document-root is the last NameTrans directive.

There can be only one root document directory. To specify additional document directories,
use the pfx2dir function.

Parameters
The following table describes parameters for the document-root function.

TABLE 7–6 document-rootParameters

Parameter Description

root File system path to the server’s root document directory.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
NameTrans fn="document-root" root="/usr/sun/webserver7/https-server/docs"

NameTrans fn="document-root" root="$docroot"

See Also
“pfx2dir” on page 148

home-page
The home-page function specifies the home page for your server.

Parameters
The following table describes parameters for the home-page function.

NameTrans

Chapter 7 • Predefined SAFs and Filters in obj.conf 145

TABLE 7–7 home-pageParameters

Parameter Description

path Path and name of the home page file. If path starts with a slash (/), it is
assumed to be the full path to a file.

If path is a relative path, this function sets the server’s path variable and
returns REQ_PROCEED.

If path is a relative path, it is appended to the URI, and the function returns
REQ_NOACTION. It then continues on to the other NameTrans directives.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
NameTrans fn="home-page" path="/path/to/file.html"

NameTrans fn="home-page" path="/path/to/$id/file.html"

map
The map function maps a request URI to a URL on another server, allowing you to specify that a
request should be serviced by another server. To load balance a given URI across multiple
servers, use the map function in conjunction with the set-origin-server function. The map
function looks for a certain prefix in the URI that the client is requesting. If map finds the prefix,
it replaces the prefix with the mirror site prefix.

Parameters
The following table describes parameters for the map function.

TABLE 7–8 mapParameters

Parameter Description

from The URI prefix to map. The prefix should not contain trailing slashes.

to The URL prefix to which the request should be mapped. The prefix
should not contain trailing slashes.

name (Optional) Specifies an additional named object in obj.conf. The
directives of the named object will be applied to this request.

NameTrans

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009146

TABLE 7–8 mapParameters (Continued)
Parameter Description

rewrite-host (Optional) Indicates whether the Host HTTP request header is rewritten
to match the host specified by the to parameter. In a reverse proxy
configuration where the proxy server and origin server service the same
set of virtual servers, you can specify rewrite-host="false". The default
is true, indicating that the Host HTTP request header is rewritten.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Map everything under /docs to http://docs.sun.com/app/docs

NameTrans fn="map" from="/docs" to="http://docs.sun.com/app/docs"

See Also
“set-origin-server” on page 201

ntrans-dav
The ntrans-dav function determines whether a request should be handled by the WebDAV
subsystem. If the request should be handled by the WebDAV subsystem, the function adds a dav
object to the pipeline.

Parameters
The following table describes parameters for the ntrans-dav function.

TABLE 7–9 ntrans-davParameters

Parameter Description

name Specifies an additional named object in obj.conf whose directives will be
applied to this request.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
NameTrans fn="ntrans-dav" name="dav"

NameTrans

Chapter 7 • Predefined SAFs and Filters in obj.conf 147

See Also
■ “pcheck-dav” on page 166
■ “service-dav” on page 229

ntrans-j2ee
The ntrans-j2ee function determines whether a request maps to a Java web application
context.

Parameters
The following table describes parameters for the ntrans-j2ee function.

TABLE 7–10 ntrans-j2eeParameters

Parameter Description

name Named object in obj.conf whose directives are applied to requests made to
Java web applications.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
NameTrans fn="ntrans-j2ee" name="j2ee"

See Also
■ “error-j2ee” on page 240
■ “find-index-j2ee” on page 160
■ “service-j2ee” on page 232
■ “type-j2ee” on page 194

pfx2dir
The pfx2dir function replaces a directory prefix in the requested URL with a real directory
name. It also optionally allows you to specify the name of an object that matches the current
request. See “assign-name” on page 143 for details on using named objects.

Parameters
The following table describes parameters for the pfx2dir function.

NameTrans

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009148

TABLE 7–11 pfx2dirParameters

Parameter Description

from URI prefix to convert. It should not have a trailing slash (/).

dir Local file system directory path to which the prefix is converted. It should
not have a trailing slash (/).

name (Optional) Specifies an additional named object in obj.conf whose
directives will be applied to this request.

find-pathinfo-forward (Optional) Instructs the to server look for the PATHINFO forward in the path
after ntrans-base, instead of backward from the end of path as the server
function find-pathinfo does by default.

The find-pathinfo-forward parameter is ignored if the ntrans-base
parameter is not set in rq->vars when the server function find-pathinfo

is called. By default, ntrans-base is set.

This feature can improve performance for certain URLs by reducing the
number of stats performed in the server function find-pathinfo.

On Windows, you can use this feature to exclude the PATHINFO from the
server URL normalization process (by changing ‘\' to ‘/') when the
PathCheck server function find-pathinfo is used. Some double-byte
characters have hexadecimal values that might be parsed as URL separator
characters such as ‘\' or ~. Using the find-pathinfo-forward parameter
can sometimes prevent incorrect parsing of URLs containing double-byte
characters.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
In the first example, the URL http://server-name/cgi-bin/resource (such as
http://x.y.z/cgi-bin/test.cgi) is translated to the physical path name
/httpd/cgi-local/resource (such as /httpd/cgi-local/test.cgi), and the server also starts
processing the directives in the object named cgi.

NameTrans fn="pfx2dir" from="/cgi-bin" dir="/httpd/cgi-local" name="cgi"

In the second example, the URL http://server-name/icons/resource (such as
http://x.y.z/icons/happy/smiley.gif) is translated to the physical path name
/users/nikki/images/resource (such as /users/nikki/images/smiley.gif).

NameTrans fn="pfx2dir" from="/icons/happy" dir="/users/nikki/images"

NameTrans

Chapter 7 • Predefined SAFs and Filters in obj.conf 149

The third example shows the use of the find-pathinfo-forward parameter. The URL
http://server-name/cgi-bin/resource is translated to the physical path name
/export/home/cgi-bin/resource.

NameTrans fn="pfx2dir" find-pathinfo-forward="" from="/cgi-bin"
dir="/export/home/cgi-bin" name="cgi"

See Also
■ “assign-name” on page 143
■ “rewrite” on page 151

reverse-map
The reverse-map function rewrites the HTTP response headers when the server is functioning
as a reverse proxy. reverse-map looks for the URL prefix specified by the from parameter in
certain response headers. If the from prefix matches the beginning of the response header value,
reverse-map replaces the matching portion with the to prefix.

Parameters
The following table describes parameters for the reverse-map function.

TABLE 7–12 reverse-mapParameters

Parameter Description

from URL prefix to be rewritten.

to URL prefix that will be substituted in place of the from prefix.

rewrite-location (Optional) Indicates whether the location HTTP response header should
be rewritten. The default is true, indicating that the location header is
rewritten.

rewrite-content-location (Optional) Indicates whether the Content-Location HTTP response
header should be rewritten. The default is true, indicating that the
Content-Location header is rewritten.

rewrite-headername (Optional) Indicates whether the headername HTTP response header
should be rewritten, where headername is a user-defined header name.
With the exception of the Location and Content-Location headers, the
default is false, indicating that the headername header is not rewritten.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

NameTrans

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009150

Example
NameTrans fn="reverse-map" from="http://docs.sun.com/app/docs" to="/docs"

See Also
“map” on page 146

rewrite
The rewrite function allows flexible mappings between URIs and file system paths.

Parameters
The following table describes parameters for the rewrite function.

TABLE 7–13 rewriteParameters

Parameter Description

from (Optional) Wildcard pattern that specifies the path of requests that should
be rewritten. The default is to match all paths.

root (Optional) File system path to the effective root document directory.

name (Optional) Name of an object in obj.conf whose directives will be applied
to this request.

path (Optional) Rewritten partial path. If non-empty, the path must begin with a
slash (/).

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
The following obj.conf code maps requests for the URI /~user/index.html to the file system
path /home/user/public_html/index.html:

<If $path =~ "^/~([^/]+)(|/.*)$">
NameTrans fn="rewrite"

root="/home/$1/public_html"
path="$2"

</If>

See Also
“restart” on page 249

NameTrans

Chapter 7 • Predefined SAFs and Filters in obj.conf 151

strip-params
The strip-params function removes the embedded semicolon-delimited parameters from the
path. For example, a URI of /dir1;param1/dir2 would become a path of /dir1/dir2. When
used, the strip-params function should be the first NameTrans directive listed.

Parameters
The following table describes parameters for the strip-params function.

TABLE 7–14 strip-paramsParameters

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
NameTrans fn="strip-params"

unix-home
(UNIX only) The unix-home function translates user names (typically of the form ~username)
into the user’s home directory on the server’s UNIX machine. You specify a URL prefix that
signals user directories. Any request that begins with the prefix is translated to the user’s home
directory.

You specify the list of users with either the /etc/passwd file or a file with a similar structure.
Each line in the file should have this structure (elements in the passwd file that are not required
are indicated with *):

username:*:*:groupid:*:homedir:*

If you want the server to scan the password file only once at startup, use the Init-class function
init-uhome in magnus.conf.

Parameters
The following table describes parameters for the unix-home function.

NameTrans

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009152

TABLE 7–15 unix-homeParameters

Parameter Description

subdir Subdirectory within the user’s home directory that contains the web
documents of users.

pwfile (Optional) Full path and file name of the password file if it is different from
/etc/passwd.

name (Optional) Specifies an additional named object whose directives will be
applied to this request.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
NameTrans fn="unix-home" from="/~" subdir="public_html"

NameTrans fn="unix-home" from "/~" pwfile="/mydir/passwd" subdir="public_html"

See Also
“find-links” on page 161

PathCheck
The PathCheck directive checks the local file system path that is returned after the NameTrans
step to verify that the client is allowed to access the specified resource. For more information,
see “PathCheck” on page 129.

The following PathCheck-class functions are described in detail in this section:

■ “check-acl” on page 154
■ “deny-existence” on page 157
■ “find-compressed” on page 158
■ “find-index” on page 159
■ “find-index-j2ee” on page 160
■ “find-links” on page 161
■ “find-pathinfo” on page 162
■ “get-client-cert” on page 163
■ “nt-uri-clean” on page 164
■ “ntcgicheck” on page 165
■ “pcheck-dav” on page 166
■ “require-auth” on page 166

PathCheck

Chapter 7 • Predefined SAFs and Filters in obj.conf 153

■ “set-virtual-index” on page 167
■ “ssl-check” on page 168
■ “ssl-logout” on page 169
■ “unix-uri-clean” on page 169

In addition, the following common SAFs are valid for the PathCheck directive:

■ “match-browser” on page 244
■ “restart” on page 249
■ “set-variable” on page 252

check-acl
The check-acl function specifies an access control list (ACL) to use to check whether the client
is allowed to access the requested resource. An ACL contains information about who is or is not
allowed to access a resource, and under what conditions access is allowed.

Regardless of the order of PathCheck directives in the object, check-acl functions are executed
first. They perform user authentication if required by the specified ACL, and also update the
access control state. Because the server caches the ACLs returned by the check-acl function, do
not use check-acl inside a Client, If, ElseIf, or Else container.

Parameters
The following table describes parameters for the check-acl function.

TABLE 7–16 check-aclParameters

Parameter Description

acl Name of an access control list.

path (Optional) Wildcard pattern that specifies the path for which the ACL
should be applied.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
PathCheck fn="check-acl" acl="*HRonly*"

PathCheck

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009154

check-request-limits
The check-request-limits function monitors incoming requests matching a given attribute
(for example, client IP address) and computes an average requests per second on a configurable
time interval. When requests that match the monitored attribute exceed a threshold that you
configure, subsequent matching requests are not serviced until the request rate drops. Use this
function to detect possible denial-of-service attacks.

You must specify either max-rps or max-connections, otherwise check-request-limits does
nothing. If you do not enter an attribute or attributes to monitor, the function monitors all
requests.

By default, the function keeps entries on requests for 300 seconds (five minutes) before purging
them. To adjust this time, use the init-request-limits SAF in magnus.conf. For more
information, see “init-request-limits” on page 112.

Parameters
The following table describes parameters for the check-request-limits function.

TABLE 7–17 check-request-limitsParameters

Parameter Description

max-rps (Optional) Threshold for matching requests per second. If this threshold is
exceeded subsequent connections matching the criteria are not serviced.
Because an acceptable threshold value can vary widely between sites, there
is no default value for this parameter.

max-connections (Optional) Maximum number of concurrent matching connections. If the
server receives a request that matches the criteria while the number of
matching requests currently being processed meets or exceeds this number,
the request is denied.

Note that this number is the current requests at any time, and is
independent of the interval. parameter. As soon as the number of
concurrent requests falls below this limit, new matching requests are
processed.

Because an acceptable value can vary widely between sites, there is no
default value for this parameter.

interval (Optional) In seconds, the time interval during which average requests per
second is computed. The max-rps limit is not applied until the next request
rate computation. Because potential attackers can have unlimited requests
serviced during this interval, balance the length of this interval against the
performance cost of recomputing the maximum requests per second. The
default is 30 seconds.

PathCheck

Chapter 7 • Predefined SAFs and Filters in obj.conf 155

TABLE 7–17 check-request-limitsParameters (Continued)
Parameter Description

continue (Optional) Determines what condition must be met in order for a blocked
request type to become available again for servicing.
Valid values are:
■ silence – Refused requests must fall to zero in a subsequent interval

for service to resume.

■ threshold – Refused requests must fall below the max-rps value for
service to resume.

The default value is threshold.

error (Optional) The HTTP status code to use for blocked requests. The default
value is 503 (the Service Unavailable error).

monitor (Optional) A request attribute to monitor. Request rates are tracked in a
bucket named by the value of this parameter. If the monitor parameter is
not specified, the matching requests are tracked in an unnamed
(anonymous) bucket. Note that these buckets are different from the buckets
you specify with the standard obj.conf bucket parameter.

Although the value of the monitor parameter can be a fixed string, it is most
useful when you use predefined variables, for example, monitor="$ip". You
can also specify multiple variables, separated by a colon. For example,
monitor="$ip:$uri". For a list of predefined variables, see “Predefined
Variables” on page 277.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
The following example limits a client IP to a maximum request rate of 10 requests per second in
the default interval of 30 seconds:

PathCheck fn="check-request-limit" monitor="$ip" max-rps="10"

The following example limits a client IP to a maximum request rate of 10 requests per second
when accessing any Perl CGIs. Other types of requests are unlimited:

<If path = "*.pl">
PathCheck fn="check-request-limits" monitor="$ip" max-rps="10"
</If>

For more information on using the If tag, see “If, ElseIf, and Else” on page 126.

PathCheck

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009156

The following example limits requests globally for Perl CGIs to 10 requests per second. No
specific monitor parameter is specified:

<If path = "*.pl">
PathCheck fn="check-request-limits" max-rps="10"
</If>

The following example limits a client IP from generating more than 10 Perl CGI requests per
second, or 5 JSP requests per second. To track the Perl and JSP totals separately, the specified
monitor parameters contain both a fixed string identifier and the client IP variable:

<If path = "*.pl">
PathCheck fn="check-request-limits" max-rps="10" monitor="perl:$ip"
</If>

<If path = "*.jsp">
PathCheck fn="check-request-limits" max-rps="5" monitor="jsp:$ip"
</If>

The following example limits any one client IP to no more than 5 connections at a given time:

PathCheck fn="check-request-limits" max-connections="2" monitor="$ip"

deny-existence
The deny-existence function sends a 404 Not Found message when a client tries to access a
specified path.

Parameters
The following table describes parameters for the deny-existence function.

TABLE 7–18 deny-existenceParameters

Parameter Description

path (Optional) Wildcard pattern of the file system path to hide. If the path does
not match, the function does nothing and returns REQ_NOACTION. If the path
is not provided, it is assumed to match.

bong-file (Optional) Specifies a file to send rather than responding with the 404 Not
Found message. The value is a full file system path.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

PathCheck

Chapter 7 • Predefined SAFs and Filters in obj.conf 157

Example
PathCheck fn="deny-existence" path="/usr/sun/server7/docs/private"

PathCheck fn="deny-existence" bong-file="/svr/msg/go-away.html"

find-compressed
The find-compressed function checks if a compressed version of the requested file is available.

If the following conditions are met, find-compressed changes the path to point to the
compressed file:

■ A compressed version is available.
■ The compressed version is as recent as the non-compressed version.
■ The client supports compression.

Not all clients support compression. The find-compressed function allows you to use a
single URL for both the compressed and non-compressed versions of a file. The version of
the file that is selected is based on the individual client's capabilities.

A compressed version of a file must have the same file name as the non-compressed version
but with a .gz suffix. For example, the compressed version of a file named
/httpd/docs/index.html would be named /httpd/docs/index.html.gz. To compress
files, you can use the freely available gzip program.

Because compressed files are sent as is to the client, you should not compress files such as
SHTML pages, CGI programs, or pages created with JavaServer PagesTM (JSPTM) technology
that need to be interpreted by the server. To compress the dynamic content generated by
these types of files, use the http-compression filter.

The find-compressed function does nothing if the HTTP method is not GET or HEAD.

Parameters
The following table describes parameters for the find-compressed function.

PathCheck

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009158

TABLE 7–19 find-compressedParameters

Parameter Description

check-age (Optional) Specifies whether to check if the compressed version is older
than the non-compressed version. The values can be yes or no.
■ If set to yes, the compressed version will not be selected if it is older

than the non-compressed version.

■ If set to no, the compressed version is always selected, even if it is older
than the non-compressed version.

By default, the value is set to yes.

vary (Optional) Specifies whether to insert a Vary: Accept-Encoding header.
The values can be yes or no.
■ If set to yes, a Vary: Accept-Encoding header is always inserted when

a compressed version of a file is selected.

■ If set to no, a Vary: Accept-Encoding header is never inserted.

By default, the value is set to yes.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
<Object name="default">
NameTrans fn="assign-name" from="*.html" name="find-compressed"
...

</Object>

<Object name="find-compressed">
PathCheck fn="find-compressed"
</Object>

See Also
“http-compression” on page 198

find-index
The find-index function investigates whether the requested path is a directory. If yes, the
function searches for an index file in the directory, and then changes the path to point to the
index file. If an index file is not found, the server generates a directory listing. If the obj.conf
file has a NameTrans directive that calls home-page and the requested directory is the root
directory, the server returns the home page to the client instead of the index page.

PathCheck

Chapter 7 • Predefined SAFs and Filters in obj.conf 159

The find-index function does nothing if there is a query string, if the HTTP method is not GET,
or if the path is that of a valid file.

Parameters
The following table describes parameters for the find-index function.

TABLE 7–20 find-indexParameters

Parameter Description

index-names Comma-separated list of index file names to look for. Use spaces only if they
are part of a file name. Do not include spaces before or after the commas.
This list is case-sensitive if the file system is case-sensitive.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
PathCheck fn="find-index" index-names="index.html,home.html"

See Also
■ “find-index-j2ee” on page 160
■ “home-page” on page 145
■ “index-common” on page 211
■ “index-simple” on page 214

find-index-j2ee
The find-index-j2ee function implements welcome-file-list processing for requests that
map to directories in a Java web application. When configuring the server to host Servlet or
JSP-technology-based web applications, position the find-index-j2ee SAF above the
find-index SAF in obj.conf. This position ensures that web.xml welcome-file-list ordering
takes precedence over the default index file order configured for the find-index SAF.

Parameters
The following table describes parameter for the find-index-j2ee function.

PathCheck

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009160

TABLE 7–21 find-index-j2eeParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
PathCheck fn="find-index-j2ee"

See Also
■ “find-index” on page 159
■ “ntrans-j2ee” on page 148
■ “service-j2ee” on page 232
■ “error-j2ee” on page 240
■ “type-j2ee” on page 194

find-links
(UNIX only) The find-links function searches the current path for symbolic or hard links to
other directories or file systems. If any are found, an error is returned. This function is normally
used for directories that are not trusted (such as user home directories). It prevents someone
from pointing to information that should not be made public.

Parameters
The following table describes parameters for the find-links function.

TABLE 7–22 find-linksParameters

Parameter Description

disable Character string of links to disable:
■ h indicates hard link

■ s indicates soft link

■ o allows symbolic links only if the target of the link is owned by the user
that the server runs as

PathCheck

Chapter 7 • Predefined SAFs and Filters in obj.conf 161

TABLE 7–22 find-linksParameters (Continued)
Parameter Description

dir (Optional) Directory to begin checking. If you specify an absolute path, any
request to that path and its subdirectories is checked for symbolic links. If
you specify a partial path, any request containing that partial path is
checked for symbolic links. For example, if you use /user/ and a request
comes in for some/user/directory, then that directory is checked for
symbolic links. If you do not specify a dir, all directories are checked.

checkFileExistence (Optional) Checks linked file for existence and aborts the request with the
403 Forbidden error if the check fails. Controls whether the server checks if
the target of the link exists. If set to Y, the server aborts the request with a
403 Forbidden error if the target of a link does not exist. The default is N,
meaning the server does not check whether the target exists.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
PathCheck fn="find-links" disable="sh" dir="/foreign-dir"

PathCheck fn="find-links" disable="so" dir="public_html"

See Also
“unix-home” on page 152

find-pathinfo
The find-pathinfo function finds any extra path information after the file name in the URL
and stores it for use in the CGI environment variable PATH_INFO.

Parameters
The following table describes parameters for the find-pathinfo function.

TABLE 7–23 find-pathinfoParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

PathCheck

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009162

Example
PathCheck fn="find-pathinfo"

PathCheck fn="find-pathinfo" find-pathinfo-forward=""

get-client-cert
The get-client-cert function gets the authenticated client certificate from the SSL3 session. It
can apply to all HTTP methods, or only to those that match a specified pattern. It only works
when SSL is enabled on the server.

If the certificate is present or obtained from the SSL3 session, the function returns
REQ_NOACTION and allows the request to proceed. Otherwise, it returns REQ_ABORTED and sets
the protocol status to 403 forbidden, causing the request to fail.

Parameters
The following table describes parameters for the get-client-cert function.

TABLE 7–24 get-client-certParameters

Parameter Description

dorequest (Optional) Controls whether to actually get the certificate, or just test for its
presence.
■ 1 tells the function to redo the SSL3 handshake to get a client certificate,

if the server does not already have the client certificate. This typically
causes the client to present a dialog box to the user to select a client
certificate. The server might already have the client certificate if it was
requested on the initial handshake, or if a cached SSL session has been
resumed.

■ 0 tells the function not to redo the SSL3 handshake if the server does not
already have the client certificate.
If a certificate is obtained from the client and verified successfully by the
server, the ASCII base 64 encoding of the DER-encoded X.509
certificate is placed in the parameter auth-cert in the Request->vars
pblock, and the function returns REQ_PROCEED, allowing the request to
proceed.

The default value is 0.

PathCheck

Chapter 7 • Predefined SAFs and Filters in obj.conf 163

TABLE 7–24 get-client-certParameters (Continued)
Parameter Description

require (Optional) Controls whether failure to get a client certificate will abort the
HTTP request.
■ 1 tells the function to abort the HTTP request if the client certificate is

not present after dorequest is handled. In this case, the HTTP status is
set to PROTOCOL_FORBIDDEN, and the function returns REQ_ABORTED.

■ 0 tells the function to return REQ_NOACTION if the client certificate is not
present after dorequest is handled.

The default value is 1.

method (Optional) Specifies a wildcard pattern for the HTTP methods for which the
function will be applied. If method is absent, the function is applied to all
requests.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Get the client certificate from the session.

If a certificate is not already associated with the session, request one.

The request fails if the client does not present a

#valid certificate.

PathCheck fn="get-client-cert" dorequest="1"

nt-uri-clean
(Windows only) The nt-uri-clean function denies access to any resource whose physical path
contains \.\, \..\ or \\ (these are potential security problems).

Parameters
The following table describes parameters for the nt-uri-clean function.

TABLE 7–25 nt-uri-cleanParameters

Parameter Description

tildeok (Optional) If present, allows tilde (~) characters in URIs. This is a potential
security risk on the Windows platform, where longfi~1.htm might
reference longfilename.htm but does not go through the proper ACL
checking. If present, “//” sequences are allowed.

PathCheck

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009164

TABLE 7–25 nt-uri-cleanParameters (Continued)
Parameter Description

dotdirok (Optional) If present, /./ sequences are allowed.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
PathCheck fn="nt-uri-clean"

See Also
“unix-uri-clean” on page 169

ntcgicheck
(Windows only) The ntcgicheck function specifies the file name extension to be added to any
file name that does not have an extension, or to be substituted for any file name that has the
extension .cgi.

Parameters
The following table describes parameters for the ntcgicheck function.

TABLE 7–26 ntcgicheckParameters

Parameter Description

extension The replacement file extension.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
PathCheck fn="ntcgicheck" extension="pl"

See Also
■ “send-cgi” on page 222
■ “send-wincgi” on page 228
■ “send-shellcgi” on page 227

PathCheck

Chapter 7 • Predefined SAFs and Filters in obj.conf 165

pcheck-dav
The pcheck-dav function inserts a DAV-specific service function as the first service function, if
the following are true:

■ The Translate:f header is present
■ DAV is enabled for the request URI
■ A corresponding source URI for the request URI exists

During the Service stage, this inserted service function restarts the request if necessary;
otherwise, REQ_NOACTION is returned.

Parameters
The following table describes parameters for the pcheck-dav function.

TABLE 7–27 pcheck-davParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
■ “ntrans-dav” on page 147
■ “service-dav” on page 229

require-auth
The require-auth function allows access to resources only if the user or group is authorized.
Before this function is called, an authorization function (such as basic-auth) must be called in
the AuthTrans directive.

If a user is authorized in the AuthTrans directive and the auth-user parameter is provided, the
name of the user must match with the auth-user wildcard value. Also, if the auth-group
parameter is provided, the authorized user must belong to an authorized group, which must
match the auth-user wildcard value.

Parameters
The following table describes parameters for the require-auth function.

PathCheck

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009166

TABLE 7–28 require-authParameters

Parameter Description

path (Optional) Wildcard local file system path on which this function should
operate. If no path is provided, the function applies to all paths.

auth-type Type of HTTP authorization used. Currently, basic is the only
authorization type defined.

realm String sent to the browser indicating the secure area (or realm) for which
user name and password are requested.

auth-user (Optional) Specifies a wildcard list of users who are allowed access. If this
parameter is not provided, any user authorized by the authorization
function is given access.

auth-group (Optional) Specifies a wildcard list of groups that are allowed access.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
PathCheck fn="require-auth" auth-type="basic" realm="Marketing Plans"

auth-group="mktg" auth-user="(jdoe|johnd|janed)"

See Also
■ “basic-auth” on page 138
■ “basic-ncsa” on page 140

set-virtual-index
The set-virtual-index function specifies a virtual index for a directory, which determines the
URL forwarding. The index can refer to a LiveWire application, a Servlet in its own namespace,
a Sun Java System Application Server, and so on.

REQ_NOACTION is returned if none of the URIs listed in the from parameter match the current
URI. REQ_ABORTED is returned if the file specified by the virtual-index parameter is missing,
or if the current URI is not found. REQ_RESTART is returned if the current URI matches any one
of the URIs mentioned in the from parameter, or if the from parameter is not specified.

Parameters
The following table describes parameters for the set-virtual-index function.

PathCheck

Chapter 7 • Predefined SAFs and Filters in obj.conf 167

TABLE 7–29 set-virtual-indexParameters

Parameter Description

virtual-index URI of the content generator that acts as an index for the URI that the user
enters.

from (Optional) Comma-separated list of URIs for which this virtual-index is
applicable. If from is not specified, the virtual-index always applies.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
MyLWApp is a LiveWire application

PathCheck fn="set-virtual-index" virtual-index="MyLWApp"

ssl-check
The ssl-check function is used along with a Client tag to limit access of certain directories to
non-exportable browsers. If a restriction is selected that is not consistent with the current cipher
settings, this function displays a warning that ciphers with larger secret keysizes must be
enabled.

The function returns REQ_NOACTION if SSL is not enabled, or if the secret-keysize parameter
is not specified. If the secret keysize for the current session is less than the specified
secret-keysize and the bong-file parameter is not specified, the function returns
REQ_ABORTED with a status of PROTOCOL_FORBIDDEN. If the bong-file is specified, the function
returns REQ_PROCEED, and the path variable is set to the bong-file name. Also, when a keysize
restriction is not met, the SSL session cache entry for the current session is invalidated so that a
full SSL handshake will occur the next time the same client connects to the server.

Requests that use ssl-check are not cacheable in the accelerator file cache if ssl-check returns
something other than REQ_NOACTION.

Parameters
The following table describes parameters for the ssl-check function.

TABLE 7–30 ssl-checkParameters

Parameter Description

secret-keysize (Optional) Minimum number of bits required in the secret key.

PathCheck

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009168

TABLE 7–30 ssl-checkParameters (Continued)
Parameter Description

bong-file (Optional) Name of a file (not a URI) to be served if the restriction is not
met.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

ssl-logout
The ssl-logout function invalidates the current SSL session in the server's SSL session cache.
This does not affect the current request, but the next time that the client connects, a new SSL
session is created. If SSL is enabled, this function returns REQ_PROCEED after invalidating the
session cache entry. If SSL is not enabled, it returns REQ_NOACTION.

Parameters
The following table describes parameters for the ssl-logout function.

TABLE 7–31 ssl-logoutParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

unix-uri-clean
(UNIX only) The unix-uri-clean function denies access to any resource whose physical path
contains /./ or /../ or // (these are potential security problems).

Parameters
The following table describes parameters for the unix-uri-clean function.

TABLE 7–32 unix-uri-cleanParameters

Parameter Description

dotdirok If present, /./ sequences are allowed.

PathCheck

Chapter 7 • Predefined SAFs and Filters in obj.conf 169

TABLE 7–32 unix-uri-cleanParameters (Continued)
Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
PathCheck fn="unix-uri-clean"

See Also
“nt-uri-clean” on page 164

ObjectType
The ObjectType directives determine the MIME type of the file that has to be sent to the client
in response to a request. For more information, see “ObjectType” on page 129.

The following ObjectType-class functions are described in detail in this section:

■ “block-auth-cert” on page 171
■ “block-cache-info” on page 172
■ “block-cipher” on page 172
■ “block-ip” on page 173
■ “block-issuer-dn” on page 173
■ “block-jroute” on page 174
■ “block-keysize” on page 174
■ “block-proxy-agent” on page 175
■ “block-proxy-auth” on page 176
■ “block-secret-keysize” on page 176
■ “block-ssl-id” on page 177
■ “block-user-dn” on page 177
■ “block-via” on page 178
■ “force-type” on page 178
■ “forward-auth-cert” on page 179
■ “forward-cache-info” on page 180
■ “forward-cipher” on page 180
■ “forward-ip” on page 181
■ “forward-issuer-dn” on page 181
■ “forward-jroute” on page 182
■ “forward-keysize” on page 183
■ “forward-proxy-agent” on page 183
■ “forward-proxy-auth” on page 184

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009170

■ “forward-secret-keysize” on page 184
■ “forward-ssl-id” on page 185
■ “forward-user-dn” on page 185
■ “forward-via” on page 186
■ “http-client-config” on page 186
■ “set-basic-auth” on page 187
■ “set-cache-control” on page 188
■ “set-cookie” on page 189
■ “set-default-type” on page 190
■ “shtml-hacktype” on page 190
■ “ssl-client-config” on page 191
■ “type-by-exp” on page 192
■ “type-by-extension” on page 193
■ “type-j2ee” on page 194

In addition, the following common SAFs are valid for the ObjectType directive:

■ “match-browser” on page 244
■ “set-variable” on page 252

block-auth-cert
The block-auth-cert function instructs the server not to forward the client’s SSL/TLS
certificate to remote servers.

Parameters
The following table describes parameter for the block-auth-cert function.

TABLE 7–33 block-auth-certParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-auth-cert"

See Also
“forward-auth-cert” on page 179

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 171

block-cache-info
The block-cache-info function instructs the server not to forward information about local
cache hits to remote servers.

Parameters
The following table describes parameter for the block-cache-info function.

TABLE 7–34 block-cache-infoParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-cache-info"

See Also
“forward-cache-info” on page 180

block-cipher
The block-cipher function instructs the server to forward the name of the client’s SSL/TLS
cipher suite to remote servers.

Parameters
The following table describes parameter for the block-cipher function.

TABLE 7–35 block-cipherParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-cipher"

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009172

See Also
“forward-cipher” on page 180

block-ip
The block-ip function instructs the server not to forward the client’s IP address to remote
servers.

Parameters
The following table describes parameter for the block-ip function.

TABLE 7–36 block-ipParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-ip"

See Also
“forward-ip” on page 181

block-issuer-dn
The block-issuer-dn function instructs the server not to forward the distinguished name of
the issuer of the client’s SSL/TLS certificate to remote servers.

Parameters
The following table describes parameter for the block-issuer-dn function.

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 173

TABLE 7–37 block-issuer-dnParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-auth-cert"

See Also
“forward-issuer-dn” on page 181

block-jroute
The block-jroute function instructs the server not to forward information about request
routing to remote servers using the proprietary Proxy-jroute format.

Parameters
The following table describes parameter for the block-jroute function.

TABLE 7–38 block-jrouteParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-jroute"

See Also
“forward-jroute” on page 182

block-keysize
The block-keysize function instructs the server not to forward the size of the client’s SSL/TLS
key to remote servers.

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009174

Parameters
The following table describes parameter for the block-keysize function.

TABLE 7–39 block-keysizeParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-keysize"

See Also
“forward-keysize” on page 183

block-proxy-agent
The block-proxy-agent function instructs the server not to forward its version information to
remote servers.

Parameters
The following table describes parameter for the block-proxy-agent function.

TABLE 7–40 block-proxy-agentParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-proxy-agent"

See Also
“forward-proxy-agent” on page 183

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 175

block-proxy-auth
The block-proxy-auth function instructs the server not to forward the client’s proxy
authentication credentials, that is, the client’s Proxy-authorization HTTP request header, to
remote servers.

Parameter
The following table describes parameter for the block-proxy-auth function.

TABLE 7–41 block-proxy-authParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-proxy-auth"

See Also
“forward-proxy-auth” on page 184

block-secret-keysize
The block-secret-keysize function instructs the server not to forward the size of the client’s
SSL/TLS secret key to remote servers.

Parameters
The following table describes parameter for the block-secret-keysize function.

TABLE 7–42 block-secret-keysizeParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-secret-keysize"

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009176

See Also
“forward-secret-keysize” on page 184

block-ssl-id
The block-ssl-id function instructs the server not to forward the client’s SSL/TLS session ID
to remote servers.

Parameters
The following table describes parameter for the block-ssl-id function.

TABLE 7–43 block-ssl-idParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-ssl-id"

See Also
“forward-ssl-id” on page 185

block-user-dn
The block-user-dn function instructs the server not to forward the distinguished name of the
subject of the client’s SSL/TLS certificate to remote servers.

Parameters
The following table describes parameter for the block-user-dn function.

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 177

TABLE 7–44 block-user-dnParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-user-dn"

See Also
“forward-user-dn” on page 185

block-via
The block-via function instructs the server not to forward information about request routing
to remote servers using the HTTP/1.1 Via format.

Parameters
The following table describes parameter for the block-via function.

TABLE 7–45 block-viaParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="block-via"

See Also
“forward-via” on page 186

force-type
The force-type function assigns a type to requests that do not already have a MIME type. This
function is used to specify a default object type.

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009178

Ensure that the directive that calls this function comes last in the list of ObjectType directives,
so that all other ObjectType directives have a chance to set the MIME type. If a directive sets an
attribute and later directives try to set that attribute to something else, the first setting is used
and the subsequent settings are ignored.

Parameters
The following table describes parameters for the force-type function.

TABLE 7–46 force-typeParameters

Parameter Description

type (Optional) Type assigned to a matching request (the Content-Type
header).

enc (Optional) Encoding assigned to a matching request (the
Content-Encoding header).

lang (Optional) Language assigned to a matching request (the
Content-Language header).

charset (Optional) Character set for the magnus-charset parameter in
rq->srvhdrs. If a browser sends the Accept-Charset header or its
User-Agent is Mozilla/1.1 or newer, then append “; charset=charset” to
Content-Type, where charset is the value of the magnus-charset parameter
in rq->srvhdrs.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="force-type" type="text/plain"

ObjectType fn="force-type" lang="en_US"

See Also
■ “type-by-exp” on page 192
■ “type-by-extension” on page 193

forward-auth-cert
The forward-auth-cert function instructs the server to forward the client’s SSL/TLS certificate
to remote servers.

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 179

Parameters
The following table describes parameters for the forward-auth-cert function.

TABLE 7–47 forward-auth-certParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the
client’s DER-encoded SSL/TLS certificate in Base 64 encoding. The default
value is Proxy-auth-cert.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
“block-auth-cert” on page 171

forward-cache-info
The forward-cache-info function instructs the server to forward information about local
cache hits to remote servers.

Parameter
The following table describes parameters for the forward-cache-info function.

TABLE 7–48 forward-cache-infoParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate
information about local cache hits. The default value is Cache-info.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
“block-cache-info” on page 172

forward-cipher
The forward-cipher function instructs the server to forward the name of the client’s SSL/TLS
cipher suite to remote servers.

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009180

Parameters
The following table describes parameters for the forward-cipher function.

TABLE 7–49 forward-cipherParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the
name of the client’s SSL/TLS cipher suite. The default value is
Proxy-cipher.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
“block-cipher” on page 172

forward-ip
The forward-ip function instructs the server to forward the client’s IP address to remote
servers.

Parameters
The following table describes parameters for the forward-ip function.

TABLE 7–50 forward-ipParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the
client’s IP address. The default value is Client-ip.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
“block-ip” on page 173

forward-issuer-dn
The forward-issuer-dn function instructs the server to forward the distinguished name of the
issuer of the client’s SSL/TLS certificate to remote servers.

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 181

Parameters
The following table describes parameters for the forward-issuer-dn function.

TABLE 7–51 forward-issuer-dnParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the
distinguished name of the issuer of the client’s SSL/TLS certificate. The
default value is Proxy-issuer-dn.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
“block-issuer-dn” on page 173

forward-jroute
The forward-jroute function instructs the server to forward information about request
routing using the proprietary Proxy-jroute format. The Proxy-jroute header field is used by
the set-origin-server function and some Servlet containers to implement session
stickiness.

Parameters
The following table describes parameters for the forward-jroute function.

TABLE 7–52 forward-jrouteParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the
request routing information. The default value is Proxy-jrout.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
■ “block-jroute” on page 174
■ “set-origin-server” on page 201

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009182

forward-keysize
The forward-keysize function instructs the server to forward the size of the client’s SSL/TLS
key to remote servers.

Parameters
The following table describes parameters for the forward-keysize function.

TABLE 7–53 forward-keysizeParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the size
of the client’s SSL/TLS key. The default value is Proxy-keysize.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
“block-keysize” on page 174

forward-proxy-agent
The forward-proxy-agent function instructs the server to forward its version information to
remote servers.

Parameters
The following table describes parameters for the forward-proxy-agent function.

TABLE 7–54 forward-proxy-agentParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate server
version. The default value is Proxy-agent.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
■ “block-proxy-agent” on page 175
■ “http-client-config” on page 186

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 183

forward-proxy-auth
The forward-proxy-auth instructs the server to forward the client’s proxy authentication
credentials, that is, the client’s Proxy-authorization HTTP request header to remote servers.

Parameters
The following table describes parameter for the forward-proxy-auth function.

TABLE 7–55 forward-proxy-authParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="forward-proxy-auth"

See Also
“block-proxy-auth” on page 176

forward-secret-keysize
The forward-secret-keysize function instructs the server to forward the size of the client’s
SSL/TLS secret key to remote servers.

Parameters
The following table describes parameters for the forward-secret-keysize function.

TABLE 7–56 forward-secret-keysizeParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the size
of the client’s SSL/TLS secret key. The default value is
Proxy-secret-keysize.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
“block-secret-keysize” on page 176

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009184

forward-ssl-id
The forward-ssl-id function instructs the server to forward the client’s SSL/TLS session ID to
remote servers.

Parameter
The following table describes parameters for the forward-ssl-id function.

TABLE 7–57 forward-ssl-idParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the
client’s SSL/TLS session ID. The default value is Proxy-ssl-id.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
“block-ssl-id” on page 177

forward-user-dn
The forward-user-dn function instructs the server to forward the distinguished name of the
subject of the client’s SSL/TLS certificate to remote servers.

Parameters
The following table describes parameters for the forward-user-dn function.

TABLE 7–58 forward-user-dnParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the
distinguished name of the subject of the client’s SSL/TLS certificate. The
default value is Proxy-user-dn.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
“block-user-dn” on page 177

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 185

forward-via
The forward-via function instructs the server to forward information about request routing to
remote servers using the HTTP/1.1 Via format. The HTTP/1.1 Via header field records the
proxy servers and protocol versions that were involved in routing a request.

Parameters
The following table describes parameters for the forward-via function.

TABLE 7–59 forward-viaParameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate routing
information. The default value is Via.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
“block-via” on page 178

http-client-config
The http-client-config function configures the server’s HTTP client.

Parameters
The following table describes parameters for the http-client-config function.

TABLE 7–60 http-client-configParameters

Parameter Description

keep-alive (Optional) Indicates whether the HTTP client should attempt to use
persistent connections. The default value is true.

keep-alive-timeout (Optional) The maximum number of seconds to keep a persistent
connection open. The default value is 29.

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009186

TABLE 7–60 http-client-configParameters (Continued)
Parameter Description

always-use-keep-alive (Optional) Indicates whether the HTTP client can reuse existing persistent
connections for all types of requests. The default value is false indicating
that persistent connections will not be reused for non-GET requests or for
requests with a body.

protocol (Optional) HTTP protocol version string. By default, the HTTP client uses
either HTTP/1.0 or HTTP/1.1 based on the contents of the HTTP request. In
general, you should not use the protocol parameter unless you encounter
specific protocol interoperability problems.

proxy-agent (Optional) Value of the proxy-agent HTTP request header. The default is a
string that contains the web server product name and version.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="http-client-config" keep-alive="false"

set-basic-auth
The set-basic-auth function sets the HTTP basic authentication credentials used by the
server when it sends an HTTP request. Use set-basic-auth to authenticate to a remote origin
server or proxy server.

Parameters
The following table describes parameters for the set-basic-auth function.

TABLE 7–61 set-basic-authParameters

Parameter Description

user Name of the user to authenticate.

password Password of the user to authenticate.

hdr (Optional) Name of the HTTP request header used to communicate the
credentials.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 187

Example
ObjectType fn="set-basic-auth"

user="admin"
password="secret"
hdr="proxy-authorization"

See Also
■ “ssl-client-config” on page 191
■ “block-auth-cert” on page 171
■ “forward-auth-cert” on page 179
■ “block-proxy-auth” on page 176
■ “forward-proxy-auth” on page 184

set-cache-control
The set-cache-control function allows you to specify the HTTP caching policy for the
response being sent back to the client.

Parameters
The following table describes parameters for the set-cache-control function.

TABLE 7–62 set-cache-controlParameters

Parameter Description

control HTTP cache control directives. Separate multiple directives by commas.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

The following table describes some of the useful cache control directives defined by the
HTTP/1.1 protocol.

TABLE 7–63 Cache Control Directives

Directive Description

public The response may be cached by any cache.

private The response must not be cached by a shared cache (for example, a proxy
server).

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009188

TABLE 7–63 Cache Control Directives (Continued)
Directive Description

no-cache Clients must ask the server for updated content on each access.

max-age=n The response should not be cached for more than n seconds.

Example
ObjectType fn="set-cache-control" control="private,max-age=60"

set-cookie
The set-cookie function allows you to set a cookie in the response being sent back to the client.

Parameters
The following table describes parameters for the set-cookie function.

TABLE 7–64 set-cookieParameters

Parameter Description

name Name of the cookie.

value (Optional) Value of the cookie. The default value is null.

path (Optional) Base URI to which the cookie applies. The default value is /
(slash).

domain (Optional) The domain name of servers to which the cookie must be sent. If
no domain is specified, web browsers send the cookie only to the server that
sets the cookie.

max-age (Optional) Maximum time (in seconds) after which the cookie expires. If
max-age is not specified, web browsers delete the cookie when the user
closes the web browser.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
<If not defined $cookie{’FIRSTVISITTIME’}>

ObjectType fn="set-cookie"
name="FIRSTVISITTIME"
value="$time"
max-age="31536000"

</If>

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 189

set-default-type
The set-default-type function allows you to define a default charset, content-encoding,
and content-language for the response being sent back to the client.

If the charset, content-encoding, and content-language are not set for a response, then just
before the headers are sent the defaults defined by set-default-type are used. By placing this
function in different objects in obj.conf, you can define different defaults for different parts of
the document tree.

Parameters
The following table describes parameters for the set-default-type function.

TABLE 7–65 set-default-typeParameters

Parameter Description

enc (Optional) Encoding assigned to a matching request (the
Content-Encoding header).

lang (Optional) Language assigned to a matching request (the
Content-Language header).

charset (Optional) Character set for the magnus-charset parameter in
rq->srvhdrs. If a browser sends the Accept-Charset header or its
User-Agent is Mozilla/1.1 or newer, then append “; charset=charset” to
Content-Type, where charset is the value of the magnus-charset parameter
in rq->srvhdrs.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="set-default-type" charset="iso_8859-1"

shtml-hacktype
The shtml-hacktype function changes the Content-Type of any .htm or .html file to
magnus-internal/parsed-html and returns REQ_PROCEED. This provides backward
compatibility with server-side includes for files with .htm or .html extensions. The function
may also check the execute bit for the file on UNIX systems. The use of this function is not
recommended.

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009190

Parameters
The following table describes parameters for the shtml-hacktype function.

TABLE 7–66 shtml-hacktypeParameters

Parameter Description

exec-hack (Optional, UNIX only) Instructs the function to change the Content-Type
only if the execute bit is enabled. The value of the parameter is not
important, but the parameter should be provided. The value can be true.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="shtml-hacktyp"e exec-hack="true"

ssl-client-config
The ssl-client-config function configures options used when the server connects to a
remote server using SSL/TLS.

Parameter
The following table describes parameters for the ssl-client-config function.

TABLE 7–67 ssl-client-configParameters

Parameter Description

client-cert-nickname (Optional) Nickname of the client certificate to present to the remote server.
The default is not to present a client certificate.

validate-server-cert (Optional) Boolean that indicates whether the server validates the certificate
presented by the remote server. The default value is true, indicating that
remote servers must present valid certificates that were issued by a trusted
certificate authority.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="ssl-client-config" validate-server-cert="false"

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 191

See Also
■ “set-basic-auth” on page 187
■ “block-auth-cert” on page 171
■ “forward-auth-cert” on page 179
■ “block-proxy-auth” on page 176
■ “forward-proxy-auth” on page 184

type-by-exp
The type-by-exp function matches the current path with a wildcard expression. If they match,
the type parameter information is applied to the file. This is the same as type-by-extension,
except that you use wildcard patterns for the files or directories specified in the URLs.

Parameters
The following table describes parameters for the type-by-exp function.

TABLE 7–68 type-by-expParameters

Parameter Description

exp Wildcard pattern of paths for which this function is applied.

type (Optional) Type assigned to a matching request (the Content-Type
header).

enc (Optional) Encoding assigned to a matching request (the
Content-Encoding header).

lang (Optional) Language assigned to a matching request (the
Content-Language header).

charset (Optional) The character set for the magnus-charset parameter in
rq->srvhdrs. If a browser sends the Accept-Charset header or its
User-Agent is Mozilla/1.1 or newer, then append “; charset=charset” to
Content-Type, where charset is the value of the magnus-charset parameter
in rq->srvhdrs.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="type-by-exp" exp="*.test" type="application/html"

ObjectType

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009192

See Also
■ “type-by-extension” on page 193
■ “force-type” on page 178

type-by-extension
The type-by-extension function instructs the server to look in a table of MIME type
mappings to find the MIME type of the requested resource. The MIME type is added to the
Content-Type header that is sent back to the client.

The table of MIME type mappings is created by a mime-file element in the server.xml file,
which loads a MIME types file or list and creates the mappings.

For example, the following two lines are part of a MIME types file:

type=text/html exts=htm,html

type=text/plain exts=txt

If the extension of the requested resource is htm or html, the type-by-extension file sets the
type to text/html. If the extension is .txt, the function sets the type to text/plain.

Parameters
The following table describes parameters for the type-by-extension function.

TABLE 7–69 type-by-extensionParameters

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="type-by-extension"

See Also
■ “type-by-exp” on page 192
■ “mime-file” on page 74
■ “force-type” on page 178

ObjectType

Chapter 7 • Predefined SAFs and Filters in obj.conf 193

type-j2ee
The type-j2ee function sets the Content-Type for requests that map to resources in a Java web
application. When configuring the server to host Servlet or JSP-based web applications,
type-j2ee must be the first ObjectType SAF in obj.conf. This is to ensure that web.xml MIME
type mappings take precedence over the default MIME type mappings.

Parameters
The following table describes parameter for the type-j2ee function.

TABLE 7–70 type-j2eeParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
ObjectType fn="type-j2ee"

See Also
■ “ntrans-j2ee” on page 148
■ “service-j2ee” on page 232
■ “error-j2ee” on page 240
■ “find-index-j2ee” on page 160

Input
The Input directives allow you to select filters that will process incoming request data read by
the Service stage. For more information, see “Input” on page 131.

The following Input-class filter is described in detail in this section:

■ “sed-request” on page 195

In addition, the following common SAFs are valid for the Input directive:

■ “insert-filter” on page 243
■ “match-browser” on page 244
■ “remove-filter” on page 248
■ “set-variable” on page 252

Every Input directive has the following optional parameters.

Input

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009194

TABLE 7–71 Input Directive's Optional Parameters

Optional Parameters Description

type (Optional) Specifies a wildcard pattern of MIME types for which this
function will be executed.

method (Optional) Specifies a wildcard pattern of HTTP methods for which this
function will be executed. Common HTTP methods are GET, HEAD, and POST.

query (Optional) Specifies a wildcard pattern of query strings for which this
function will be executed.

sed-request
The sed-request filter applies the sed edit commands to an incoming request entity body, for
example, an uploaded file or submitted form.

Parameters
The following table shows the sed-request parameters:

TABLE 7–72 sed-requestParameters

Parameter Description

sed Specifies a sed command script. When multiple sed parameters are
provided, the sed edit commands are evaluated in the order they appear.

Example
The following obj.conf code instructs sed-request to encode any (<) and (>) characters
posted in an HTML form:

Input fn="insert-filter"
method="POST"
filter="sed-request"
sed="s/</\\</g"
sed="s/%3c/\\</g"
sed="s/%3C/\\</g"
sed="s/>/\\>/g"
sed="s/%3e/\\>/g"
sed="s/%3E/\\>/g"

Because POST bodies are usually URL-encoded, it is important to check for URL-encoded forms
when editing POST bodies. %3C is the URL-encoded form of (<) and %3E is the URI-encoded
form of (>).

Input

Chapter 7 • Predefined SAFs and Filters in obj.conf 195

See Also
■ “insert-filter” on page 243
■ “sed-response” on page 200

Output
The Output stage allows you to select filters that will process outgoing data. For more
information, see “Output” on page 131.

Every Output directive has the following optional parameters:

TABLE 7–73 Output Directive's Optional Parameters

Optional Parameters Description

type (Optional) Specifies a wildcard pattern of MIME types for which this
function will be executed.

method (Optional) Specifies a wildcard pattern of HTTP methods for which this
function will be executed. Common HTTP methods are GET, HEAD, and POST.

query (Optional) Specifies a wildcard pattern of query strings for which this
function will be executed.

The following Output-class filters are described in detail in this section:

■ “compress-file” on page 196
■ “http-compression” on page 198
■ “sed-response” on page 200

In addition, the following common SAFs are valid for the Output directive:

■ “insert-filter” on page 243
■ “match-browser” on page 244
■ “redirect” on page 246
■ “remove-filter” on page 248
■ “set-variable” on page 252

compress-file
For dynamic compression of static files, compress-file SAF along with find-compressed SAF
is used in Web Server 7.0 Update 6.

When a request is sent to the URI for the first time, the compress-file function creates a
compressed file in the specified subdirectory, provided the file size is between min-size and
max-size.

Output

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009196

If check-age parameter is set to true, the compress-file function checks if the available
compressed file version is as recent as the non-compressed file version. If not, it recreates a
compressed file.

The find-compressed function checks if the compressed version of the requested file is
available. It changes the path and directs to the compressed file under the following conditions:

■ A compressed version is available.
■ The compressed file version is as recent as the non-compressed version.
■ The client supports compression.
■ The HTTP method is GET or HEAD.

The following table describes parameter for the compress-file filter.

TABLE 7–74 compress-fileParameter

Parameter Description

subdir (Optional) A directory name, relative to the directory
in which the original non-compressed file is located.
To overwrite a pre-compressed, compressed file lying
in docroot, set the subdir to period (.). The default
value is period (.), that is, current directory.

check-age (Optional) Specifies whether to check if the
compressed version is older than the non-compressed
version. The values can be true or false. The default
value is true.

vary (Optional) The values can be true or false. The default
value is true.

compression-level (Optional) Controls the compression level used by the
compression library. The values are from 1 to 9. A
value of 1 results in the best speed. A value of 9 results
in the best compression. The default value is 6.

min-size (Optional) The values are from 0 to INT_MAX. The
default value is 256.

max-size Optional) The values are from min-size to INT_MAX.
The default value is 1048576

Example
<Objectname="default">
NameTrans fn="assign-name" from="*.html" name="find-compressed"
...

Service method=(GET|HEAD|POST) type=*~magnus-internal/* fn=compress-file

subdir=".compressed-files"
Service method=(GET|HEAD|POST) type=*~magnus-internal/* fn=send-file

Output

Chapter 7 • Predefined SAFs and Filters in obj.conf 197

...

</Object>

<Objectname="find-compressed">
PathCheck fn="find-compressed"
</Object>

See Also
■ “find-compressed” on page 158
■ “http-compression” on page 198

http-compression
The http-compression filter compresses outgoing content. If the client does not support
compression, or the outgoing content is already compressed, http-compression performs no
action.

Unlike the find-compressed SAF, the http-compression filter can compress dynamic content
such as the output from SHTML pages, CGI programs, or JSPs. However, for reasons of
efficiency, the find-compressed SAF is better for static content such as non-parsed HTML files.
For more information, see “find-compressed” on page 158.

Parameters
The following table describes parameter for the http-compression filter.

TABLE 7–75 http-compressionParameter

Parameter Description

vary Controls whether the filter inserts a Vary:
Accept-encoding header. If vary is absent, the default
value is yes. yes tells the filter to insert a Vary:
Accept-encoding header when it compresses content.
no tells the filter to never insert a Vary:
Accept-encoding header.

fragment-size Size in bytes of the memory fragment used by the
compression library to control how much to compress
at a time. The default value is 8096.

compression-level Controls the compression level used by the
compression library. Valid values are from 1 to 9. A
value of 1 results in the best speed. A value of 9 results
in the best compression. The default value is 6.

Output

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009198

TABLE 7–75 http-compressionParameter (Continued)
Parameter Description

window-size Controls an internal parameter of the compression
library. Valid values are from 9 to 15. Higher values
result in better compression at the expense of memory
usage. The default value is 15.

memory-level Controls how much memory is used by the
compression library. Valid values are from 1 to 9. A
value of 1 uses the minimum amount of memory but
is slow. A value of 9 uses the maximum amount of
memory for optimal speed. The default value is 8.

Example
Output fn="insert-filter"

type="text/*"
filter="http-compression"
vary="on"
compression-level="9"

In this example, type="text/*" restricts compression to documents that have a MIME type of
text/* (for example, text/ascii, text/css, text/html, and so on).

Alternatively, you can specifically exclude browsers that do handle compressed content well by
using the Client tag as follows:

<Client match="none"\
browser="*MSIE [1-3]*"\
browser="*MSIE [1-5]*Mac*"\
browser="Mozilla/[1-4]*Nav*">
Output fn="insert-filter" filter="http-compression" type="text/*"
</Client>

This example restricts compression to browsers that are not any of the following:

■ Internet Explorer for Windows earlier than version 4
■ Internet Explorer for Macintosh earlier than version 6
■ Netscape Navigator/Communicator earlier than version 6

Internet Explorer on Windows earlier than version 4 may request compressed data at times, but
does not correctly support it. Internet Explorer on Macintosh earlier than version 6 does the
same. Netscape Communicator version 4.x requests compression, but only correctly handles
compressed HTML. It does not correctly handle linked CSS or JavaScriptTM from the
compressed HTML, so administrators often simply prevent their servers from sending any
compressed content to that browser (or earlier).

For more information about the Client tag, see “Client” on page 124.

Output

Chapter 7 • Predefined SAFs and Filters in obj.conf 199

sed-response
The sed-response filter applies sed edit commands to an outgoing response entity body, for
example, an HTML file or output from a Servlet.

Parameter
The following table describes parameter for the sed-response filter

TABLE 7–76 sed-responseParameter

Parameter Description

sed Specifies a sed command script. When multiple sed
parameters are provided, the sed edit commands are
evaluated in the order they appear.

Example
The following obj.conf code instructs sed-response to rewrite any occurrence of
http://127.0.0.1/ in an HTML response to http://server.example.com/:

Output fn="insert-filter"
type="text/html"
filter="sed-response"
sed="s|http://127.0.0.1/|http://server.example.com/|g"

See Also
■ “insert-filter” on page 243
■ “sed-request” on page 195

Route
The Route directive specifies information as to where the Web Server should route requests. For
more information, see “Route” on page 132.

The following Route-class functions are described in detail in this section:

■ “set-origin-server” on page 201
■ “set-proxy-server” on page 202

In addition, the following common SAFs are valid for the Route directive:

■ “match-browser” on page 244
■ “set-variable” on page 252

Route

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009200

set-origin-server
The set-origin-server function distributes the load across a set of homogeneous HTTP
origin servers.

Parameters
The following table describes parameters for the set-origin-server function.

TABLE 7–77 set-origin-serverParameters

Parameter Description

server URL of the origin server. If multiple server parameters are given, the server
distributes the load among the specified origin servers.

sticky-cookie (Optional) Name of a cookie that, when present in a response, will cause
subsequent requests to stick to that origin server. The default value is
JSESSIONID.

sticky-param (Optional) Name of a URI parameter to inspect for route information.
When the URI parameter is present in a request URI and its value contains a
colon (:) followed by a route ID, the request will stick to the origin server
identified by that route ID. The default value is jsessionid.

route-hdr (Optional) Name of the HTTP request header used to communicate route
IDs to origin servers. set-origin-server associates each origin server
named by a server parameter with a unique route ID. Origin servers may
encode this route ID in the URI parameter named by the sticky-param
parameter to cause subsequent requests to stick to them. The default value is
Proxy-jroute.

route-cookie (Optional) Name of the cookie generated by the server when it encounters a
sticky-cookie in a response. The route-cookie parameter stores a route
ID that enables the server to direct subsequent requests back to the same
origin server. The default value is JROUTE.

rewrite-host (Optional) Indicates whether the host HTTP request header is rewritten to
match the host specified by the server parameter. The default value is
false indicating that the host header is not rewritten.

rewrite-location (Optional) Indicates whether the Location HTTP response header that
matches the server parameter should be rewritten. The default value is
true, indicating that the matching Location headers are rewritten.

rewrite-content-location (Optional) Indicates whether the Content-Location HTTP response
header that matches the server parameter should be rewritten. The default
value is true, indicating that the matching Content-Location headers are
rewritten.

Route

Chapter 7 • Predefined SAFs and Filters in obj.conf 201

TABLE 7–77 set-origin-serverParameters (Continued)
Parameter Description

rewrite-headername (Optional) Indicates whether the headername HTTP response headers that
match the server parameter should be rewritten, where headername is a
user-defined header name. headername is in lowercase. With the exception
of the Location and Content-Location headers, the default value is false,
indicating that the headername header is not rewritten.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Route fn="set-origin-server"

server="http://appserver1:8000"
server="http://appserver2:8000"

See Also
■ “map” on page 146
■ “set-proxy-server” on page 202

set-proxy-server
The set-proxy-server function directs the server to retrieve the current resource from a
particular proxy server.

Parameters
The following table describes parameters for the set-proxy-server function.

TABLE 7–78 set-proxy-serverParameters

Parameter Description

server URL of the remote proxy server. If multiple server parameters are given, the
server distributes load among the specified remote servers.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Route fn="set-proxy-server"

server="http://webcache1.eng.sun.com:8080"
server="http://webcache2.eng.sun.com:8080"

Route

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009202

See Also
“set-origin-server” on page 201

Service
The Service directives send the response data to the client. For more information, see “Service”
on page 132.

Every Service directive has the following optional parameters to determine whether the
function is executed. All optional parameters must match the current request for the function to
be executed.

TABLE 7–79 Service Directive's Optional Parameters

Optional Parameters Description

type Specifies a wildcard pattern of MIME types for which this function will be
executed. The magnus-internal/* MIME types are used only to select a
Service function to execute.

method Specifies a wildcard pattern of HTTP methods for which this function will be
executed. Common HTTP methods are GET, HEAD, and POST.

query Specifies a wildcard pattern of query strings for which this function will be
executed.

UseOutputStreamSize Determines the default output stream buffer size (in bytes), for data sent to
the client. If this parameter is not specified, the default is 8192 bytes.

Note – Set this parameter to zero (0) to disable output stream buffering.

flushTimer Determines the maximum number of milliseconds between write operations
in which buffering is enabled. If the interval between subsequent write
operations is greater than the flushTimer value for an application, further
buffering is disabled. This is necessary for monitoring the status of CGI
applications that run continuously and generate periodic status update
reports. If this parameter is not specified, the default is 3000 milliseconds.

ChunkedRequestBufferSize Determines the default buffer size, in bytes, for un-chunking request data. If
this parameter is not specified, the default is 8192 bytes.

ChunkedRequestTimeout Determines the default timeout, in seconds, for un-chunking request data. If
this parameter is not specified, the default is 60 seconds.

If there is more than one Service-class function, the first one matching the optional wildcard
parameters (type, method, and query) are executed.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 203

The UseOutputStreamSize, ChunkedRequestBufferSize, and ChunkedRequestTimeout

parameters also have equivalent magnus.conf directives. The obj.conf parameters override the
magnus.conf directives.

By default, the server sends the requested file to the client by calling the send-file function.
The directive that sets the default is:

Service method="(GET|HEAD)" type="*~magnus-internal/*" fn="send-file"

This directive usually comes last in the set of Service-class directives to give all other Service
directives a chance to be invoked. This directive is invoked if the method of the request is GET,
HEAD, or POST, and the type does not start with magnus-internal/. Note here that the pattern *~

means “does not match.” For a list of characters that can be used in patterns, see Appendix B,
“Using Wildcard Patterns.”

The following Service-class functions are described in detail in this section:

■ “add-footer” on page 205
■ “add-header” on page 206
■ “append-trailer” on page 208
■ “delete-file” on page 209
■ “imagemap” on page 210
■ “index-simple” on page 214
■ “key-toosmall” on page 215
■ “list-dir” on page 216
■ “make-dir” on page 218
■ “proxy-retrieve” on page 219
■ “remove-dir” on page 220
■ “rename-file” on page 221
■ “send-cgi” on page 222
■ “send-file” on page 225
■ “send-range” on page 226
■ “send-shellcgi” on page 227
■ “send-wincgi” on page 228
■ “service-dav” on page 229
■ “service-dump” on page 231
■ “service-j2ee” on page 232
■ “service-trace” on page 234
■ “shtml-send” on page 235
■ “stats-xml” on page 236
■ “upload-file” on page 238

In addition, the following common SAFs are valid for the Service directive:

■ “match-browser” on page 244
■ “remove-filter” on page 248
■ “send-error” on page 250

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009204

■ “set-variable” on page 252

add-footer
The add-footer function appends a footer to an HTML file that is sent to the client. The footer
is specified either as a file name or a URI, thus the footer can be dynamically generated. To
specify static text as a footer, use the append-trailer function.

Parameters
The following table describes parameters for the add-footer function.

TABLE 7–80 add-footerParameters

Parameter Description

file (Optional) Path name to the file containing the footer. Specify either file
or uri.

By default, the path name is relative. If the path name is absolute, set the
NSIntAbsFilePath parameter to yes.

uri (Optional) URI pointing to the resource containing the footer. The value
can be file or uri.

NSIntAbsFilePath (Optional) If the file parameter is specified, the NSIntAbsFilePath
parameter determines whether the file name is absolute or relative. The
default is relative. Set the value to yes to indicate an absolute file path.

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 205

TABLE 7–80 add-footerParameters (Continued)
Parameter Description

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service type="text/html" method="GET" fn="add-footer" file="footers/footer1.html"

Service type="text/html" method="GET" fn="add-footer"
file="D:/sun/webserver7/https-server/footers/footer1.html"
NSIntAbsFilePath="yes"

See Also
■ “append-trailer” on page 208
■ “add-header” on page 206

add-header
The add-header function prepends a header to an HTML file that is sent to the client. The
header is specified either as a file name or a URI and hence the header can be dynamically
generated.

Parameters
The following table describes parameters for the add-header function.

TABLE 7–81 add-headerParameters

Parameter Description

file (Optional) Path name to the file containing the header. The value can be
file or uri.

By default, the path name is relative. If the path name is absolute, set the
NSIntAbsFilePath parameter as yes.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009206

TABLE 7–81 add-headerParameters (Continued)
Parameter Description

uri (Optional) URI pointing to the resource containing the header. The value
can be file or uri.

NSIntAbsFilePath (Optional) If the file parameter is specified, the NSIntAbsFilePath
parameter determines whether the file name is absolute or relative. The
default is relative. Set the value to yes to indicate an absolute file path.

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service type="text/html" method="GET" fn="add-header" file="headers/header1.html"

Service type="text/html" method="GET" fn="add-footer"
file="D:/sun/webserver7/https-server/headers/header1.html"
NSIntAbsFilePath="yes"

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 207

See Also
■ “add-footer” on page 205
■ “append-trailer” on page 208

append-trailer
The append-trailer function sends an HTML file and appends text to it. This is typically used
for author information and copyright text. The date when the file was last modified can be
inserted.

Returns
Returns REQ_ABORTED if a required parameter is missing, if there is extra path information after
the file name in the URL, or if the file cannot be opened for read-only access.

Parameters
The following table describes parameters for the append-trailer function.

TABLE 7–82 append-trailerParameters

Parameter Description

trailer Text to append to HTML documents. The string is unescaped with
util_uri_unescape before being sent. The text can contain HTML tags,
and can be up to 512 characters long after unescaping and inserting the
date.

If you use the string :LASTMOD: which is replaced by the date the file was last
modified, you must also specify a time format with timefmt.

timefmt (Optional) Time format string for :LASTMOD:. If timefmt is not provided,
:LASTMOD: will not be replaced with the time.

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009208

TABLE 7–82 append-trailerParameters (Continued)
Parameter Description

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service type="text/html" method="GET" fn="append-trailer"

trailer="<hr> Copyright 1999"

Add a trailer with the date in the format: MM/DD/YY

Service type="text/html" method="GET" fn="append-trailer"
timefmt="%D" trailer="<HR>File last updated on: :LASTMOD:"

See Also
■ “add-footer” on page 205
■ “add-header” on page 206

delete-file
The delete-file function deletes a file when the client sends a request whose method is
DELETE. It deletes the file indicated by the URL if the user is authorized and the server has the
needed file system privileges.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that invokes delete-file when the request method is DELETE.

Parameters
The following table describes parameters for the delete-file function.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 209

TABLE 7–83 delete-fileParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service method="DELETE" fn="delete-file"

imagemap
The imagemap function responds to requests for imagemaps. Imagemaps are images that are
divided into multiple areas and each have an associated URL. The information about which
URL is associated with which area is stored in a mapping file.

Parameters
The following table describes parameters for the imagemap function.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009210

TABLE 7–84 imagemapParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service type="magnus-internal/imagemap" method="(GET|HEAD)" fn="imagemap"

index-common
The index-common function generates a fancy (or common) list of files in the requested
directory. The list is sorted alphabetically. Files beginning with a period (.) are not displayed.
Each item appears as an HTML link. This function displays more information than
index-simple, including the size, last modified date, and an icon for each file. It may also
include a header and readme file in the listing.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 211

The Init-class function cindex-init in magnus.conf specifies the format for the index list,
including where to look for the images. If obj.conf contains a call to index-common in the
Service stage, magnus.conf must initialize fancy (or common) indexing by invoking
cindex-init during the Init stage.

Indexing occurs when the requested resource is a directory that does not contain an index file or
a home page, or no index file or home page has been specified by the functions find-index or
home-page.

The icons displayed are .gif files dependent on the Content-Type of the file, as listed in the
following table:

TABLE 7–85 Content-Type Icons

Content-Type Icon

"text/*" text.gif

"image/*" image.gif

"audio/*" sound.gif

"video/*" movie.gif

"application/octet-stream" binary.gif

Directory menu.gif

All others unknown.gif

Parameters
The following table describes parameters for the index-common function.

TABLE 7–86 index-commonParameters

Parameter Description

header (Optional) Path (relative to the directory being indexed) and name of a file
(HTML or plain text) that is included at the beginning of the directory
listing to introduce the contents of the directory. The file is first tried with
.html added to the end. If found, it is incorporated near the top of the
directory list as HTML. If the file is not found, it is tried without the .html
and incorporated as pre-formatted plain text (bracketed by <PRE> and
</PRE>).

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009212

TABLE 7–86 index-commonParameters (Continued)
Parameter Description

readme (Optional) Path (relative to the directory being indexed) and name of a file
(HTML or plain text) to append to the directory listing. This file might give
more information about the contents of the directory, indicate copyrights,
authors, or other information. The file is first tried with .html added to the
end. If found, it is incorporated at the bottom of the directory list as HTML.
If the file is not found, it is tried without the .html and incorporated as
pre-formatted plain text (enclosed within the PRE tag).

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service type="magnus-internal/directory" method="(GET|HEAD)"
fn="index-common" header="hdr" readme="rdme.txt"

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 213

See Also
■ “index-simple” on page 214
■ “find-index” on page 159
■ “home-page” on page 145

index-simple
The index-simple function generates a simple index of the files in the requested directory. It
scans a directory and returns an HTML page to the browser displaying a list of the files and
directories in the directory. The list is sorted alphabetically. Files beginning with a period (.) are
not displayed. Each item appears as an HTML link.

Indexing occurs when the requested resource is a directory that does not contain either an index
file or a home page, or no index file or home page has been specified by the functions
find-index or home-page.

Parameters
The following table describes parameters for the index-simple function.

TABLE 7–87 index-simpleParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009214

TABLE 7–87 index-simpleParameters (Continued)
Parameter Description

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service type="magnus-internal/directory" fn="index-simple"

See Also
■ “find-index” on page 159
■ “home-page” on page 145

key-toosmall
The key-toosmall function returns a message to the client specifying that the secret key size for
SSL communications is too small. This function is designed to be used together with a Client
tag to limit access of certain directories to non-exportable browsers.

Note – This function is provided for backward compatibility only and was deprecated in
iPlanetTM Web Server 4.x. It is replaced by the PathCheck-class SAF ssl-check.

Parameters
The following table describes parameters for the key-toosmall function.

TABLE 7–88 key-toosmallParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 215

TABLE 7–88 key-toosmallParameters (Continued)
Parameter Description

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
<Object ppath=/mydocs/secret/*>

Service fn="key-toosmall"
</Object>

See Also
“ssl-check” on page 168

list-dir
The list-dir function returns a sequence of text lines to the client in response to a request
whose method is INDEX. The format of the returned lines is:

name type size mimetype

where:

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009216

■ name is the name of the file or directory. It is relative to the directory being indexed. It is
URL-encoded, that is, any character might be represented by %xx, where xx is the
hexadecimal representation ASCII number of the character.

■ type is a MIME type such as text/html. Directories will be of type directory. A file for
which the server does not have a type will be of type unknown.

■ size is the size of the file, in bytes.
■ mimetype is the numerical representation of the date of last modification of the file.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that calls list-dir for requests whose method is INDEX.

Parameters
The following table describes parameters for the list-dir function.

TABLE 7–89 list-dirParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 217

TABLE 7–89 list-dirParameters (Continued)
Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service method="INDEX" fn="list-dir"

make-dir
The make-dir function creates a directory when the client sends a request whose method is
MKDIR. The function fails if the server can not write to that directory.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that invokes make-dir when the request method is MKDIR.

Parameters
The following table describes parameters for the make-dir function.

TABLE 7–90 make-dirParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009218

TABLE 7–90 make-dirParameters (Continued)
Parameter Description

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service method="MKDIR" fn="make-dir"

proxy-retrieve
The proxy-retrieve function retrieves a document from a remote server and returns it to the
client. This function also enables you to configure the server to allow or block arbitrary
methods. This function only works on the HTTP protocol.

Parameters
The following table describes parameters for the proxy-retrieve function.

TABLE 7–91 proxy-retrieveParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 219

TABLE 7–91 proxy-retrieveParameters (Continued)
Parameter Description

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Normal proxy retrieve

Service fn="proxy-retrieve"
Proxy retrieve with POST method disabled

Service fn="proxy-retrieve"
method="(POST)"

See Also
■ “set-origin-server” on page 201
■ “set-proxy-server” on page 202

remove-dir
The remove-dir function removes a directory when the client sends a request whose method is
RMDIR. The directory must be empty (have no files in it). The function will fail if the directory is
not empty or if the server does not have the privileges to remove the directory.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that invokes remove-dir when the request method is RMDIR.

Parameters
The following table describes parameters for the remove-dir function.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009220

TABLE 7–92 remove-dirParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of MIME types for which this function will be
executed. For more information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of HTTP methods for which this function will be
executed. For more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of query strings for which this function will be
executed. For more information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the
default output stream buffer size (in bytes), for data sent to the
client. For more information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in
which buffering is enabled. For more information, see “Service” on
page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the
default buffer size, in bytes, for un-chunking request data. For more
information, see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the
default timeout, in seconds, for un-chunking request data. For more
information, see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to
monitor performance. For more information, see “The bucket
Parameter” on page 138.

Example
Service fn="remove-dir" method="RMDIR"

rename-file
The rename-file function renames a file when the client sends a request with a New-URL header
whose method is MOVE. It renames the file indicated by the URL to New-URL within the same
directory if the user is authorized and the server has the required file system privileges.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that invokes rename-file when the request method is MOVE.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 221

Parameters
The following table describes parameters for the rename-file function.

TABLE 7–93 rename-fileParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service fn="rename-file" method="MOVE"

send-cgi
The send-cgi function sets up the CGI environment variables, runs a file as a CGI program in a
new process, and sends the results to the client.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009222

There are three ways to change the timing used to flush the CGI buffer:

■ Adjust the interval between flushes using the FlushTimer parameter. For more information,
see “Service” on page 203.

■ Adjust the buffer size using the UseOutputStreamSize parameter. For more information,
see “Service” on page 203.

■ Force the Web Server to flush its buffer by forcing spaces into the buffer in the CGI script.

Parameters
The following table describes parameters for the send-cgi function.

TABLE 7–94 send-cgiParameters

Parameter Description

user (UNIX only) Specifies the name of the user to execute CGI programs.

group (UNIX only) Specifies the name of the group to execute CGI programs.

chroot (UNIX only) Specifies the directory to chroot to before execution begins.

dir (UNIX only) Specifies the directory to chdir to after chroot, but before
execution begins.

rlimit_as (UNIX only) Specifies the maximum CGI program address space (in bytes).
You can supply both current (soft) and maximum (hard) limits, separated
by a comma. The soft limit must be listed first. If only one limit is specified,
both the limits are set to this value.

rlimit_core (UNIX only) Specifies the maximum CGI program core file size. A value of
0 disables writing cores. You can supply both current (soft) and maximum
(hard) limits, separated by a comma. The soft limit must be listed first. If
only one limit is specified, both the limits are set to this value.

rlimit_nofile (UNIX only) Specifies the maximum number of file descriptors for the CGI
program. You can supply both current (soft) and maximum (hard) limits,
separated by a comma. The soft limit must be listed first. If only one limit is
specified, both the limits are set to this value.

nice (UNIX only) Accepts an increment that determines the CGI program's
priority relative to the server. Typically, the server is run with a nice value
of 0 and the nice increment would be from 0 (the CGI program runs at
same priority as server) to 19 (the CGI program runs at much lower priority
than server). Do not increase the priority of the CGI program above that of
the server by specifying a nice increment of -1.

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 223

TABLE 7–94 send-cgiParameters (Continued)
Parameter Description

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
The following example uses variables defined in the server.xml file for the send-cgi
parameters. For more information about defining variables, see “Variables” on page 38.

<Object name="default">
...

NameTrans fn="pfx2dir" from="/cgi-bin" dir="/home/foo.com/public_html/cgi-bin" name="cgi"
...

</Object>

<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi" user="$user" group="$group" dir="$dir" chroot="$chroot" nice="$nice"
</Object>

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009224

send-file
The send-file function sends the contents of the requested file to the client. It provides the
Content-Type, Content-Length, and Last-Modified headers.

Most requests are handled by this function using the following directive (which usually comes
last in the list of Service-class directives in the default object, so that it acts as a default):

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file"

This directive is invoked if the method of the request is GET, HEAD, or POST, and the type does not
start with magnus-internal/. Note that the pattern *~ means “does not match”.

Parameters
The following table describes parameters for the send-file function.

TABLE 7–95 send-fileParameters

Parameter Description

nocache (Optional) Prevents the server from caching responses to static file requests.
For example, you can specify that files in a particular directory are not to be
cached, which is useful for directories where the files change frequently.

The value you assign to this parameter is ignored.

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 225

TABLE 7–95 send-fileParameters (Continued)
Parameter Description

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service type="*~magnus-internal/*" method="(GET|HEAD)" fn="send-file"

In the following example, the server does not cache static files from /export/somedir/ when
requested by the URL prefix /myurl.

<Object name=default>

...

NameTrans fn="pfx2dir" from="/myurl" dir="/export/mydir", name="myname"
...

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*" fn="send-file"
...

</Object>

<Object name="myname">
Service method="(GET|HEAD") type="*~magnus-internal/*" fn="send-file" nocache=""
</Object>

send-range
When the client requests a portion of a document by specifying HTTP byte ranges, the
send-range function returns that portion.

Parameters
The following table describes parameters for the send-range function.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009226

TABLE 7–96 send-rangeParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service fn="send-range"

send-shellcgi
(Windows only) The send-shellcgi function runs a file as a shell CGI program and sends the
results to the client. Shell CGI is a server configuration that lets you run CGI applications using
the file associations set in Windows.

Parameters
The following table describes parameters for the send-shellcgi function.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 227

TABLE 7–97 send-shellcgiParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service fn="send-shellcgi"

Service type="magnus-internal/cgi" fn="send-shellcgi"

send-wincgi
(Windows only) The send-wincgi function runs a file as a Windows CGI program and sends
the results to the client.

Parameters
The following table describes parameters for the send-wincgi function.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009228

TABLE 7–98 send-wincgiParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service fn="send-wincgi"

Service type="magnus-internal/cgi" fn="send-wincgi"

service-dav
The service-dav function services a request to a WebDAV-enabled URI. In response to a
request for a WebDAV resource, the service-dav function services the static content and
restarts the request with the sourceuri for dynamic content. The sourceuri is identified by the
magnus-internal setting. If no sourceuri is defined for dynamic content, an HTTP error
message is returned.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 229

Requests to WebDAV resources are authenticated and authorized by the AuthTrans and
PathCheck NSAPI stages, respectively. By default, all access to sourceuri is restricted by the
PathCheck entry in the dav object.

OPTIONS on a WebDAV-enabled URI are always handled by the service-dav directive of the
default object. Therefore, the OPTIONS method is not included in the service-dav directive of
the dav object.

In response to an OPTIONS request to a WebDAV-enabled URI (or sourceuri), the
service-dav function in the default object adds the necessary DAV headers and returns
control to the core server, which then services the request.

For more information on access control for WebDAV resources, see Chapter 10, “Web
Publishing With WebDAV,” in Sun Java System Web Server 7.0 Update 6 Administrator’s Guide.

Parameters
The following table describes parameters for the service-dav function.

TABLE 7–99 service-davParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009230

http://docs.sun.com/doc/820-7985/gczyh?a=view
http://docs.sun.com/doc/820-7985/gczyh?a=view

TABLE 7–99 service-davParameters (Continued)
Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
<Object name="default">
....

Service method="(OPTIONS|PUT|DELETE|COPY|MOVE|PROPFIND|PROPPATCH|LOCK|UNLOCK|MKCOL)"
fn="service-dav"

</Object>

See Also
■ “ntrans-dav” on page 147
■ “pcheck-dav” on page 166

service-dump
The service-dump function creates a performance report based on collected performance
bucket data. To read the report, point the browser to:

http://server_id:portURI

For example:

http://sun.com:80/.perf

Parameters
The following table describes parameters for the service-dump function.

TABLE 7–100 service-dumpParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 231

TABLE 7–100 service-dumpParameters (Continued)
Parameter Description

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
<Object name="default">
<If uri = "/.perf">
Service fn="service-dump"
</If>

...

</Object>

See Also
“stats-xml” on page 236

service-j2ee
The service-j2ee function services requests made to Java web applications.

Parameters
The following table describes parameters for the service-j2ee function.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009232

TABLE 7–101 service-j2eeParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
<Object name="default">
NameTrans fn="ntrans-j2ee" name="j2ee"
...

</Object>

<Object name="j2ee">
Service fn="service-j2ee"
</Object>

See Also
■ “ntrans-j2ee” on page 148
■ “error-j2ee” on page 240

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 233

■ “find-index-j2ee” on page 160
■ “type-j2ee” on page 194

service-trace
The service-trace function services TRACE requests. TRACE requests are used to diagnose
problems with web proxy servers located between a web client and web server.

Parameters
The following table describes parameters for the service-trace function.

TABLE 7–102 service-traceParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009234

Example
<Object name="default">
...

Service method="TRACE" fn="service-trace"
...

</Object>

shtml-send
The shtml-send function parses an HTML document, scanning for embedded commands.
These commands may provide information from the server, include the contents of other files,
or execute a CGI program.

See Chapter 2, “Server-Parsed HTML Tags,” in Sun Java System Web Server 7.0 Update 6
Developer’s Guide for server-parsed HTML commands.

Parameters
The following table describes parameters for the shtml-send function.

TABLE 7–103 shtml-sendParameters

Parameter Description

ShtmlMaxDepth Maximum depth of include nesting allowed. The default value is 10.

addCgiInitVars (UNIX only) If present and set to yes, adds the environment variables
defined in the init-cgi SAF to the environment of any command executed
through the SHTML exec tag. The default is no.

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 235

http://docs.sun.com/doc/821-0038/abwbc?a=view
http://docs.sun.com/doc/821-0038/abwbc?a=view

TABLE 7–103 shtml-sendParameters (Continued)
Parameter Description

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service type="magnus-internal/shtml-send" method="(GET|HEAD)" fn="shtml-send"

stats-xml
The stats-xml function creates a performance report in XML format. If performance buckets
are defined, this performance report includes them.

The report is generated at:

http://server_id:portURI

For example:

http://sun.com:80/stats-xml

For more information about tuning the server using the stats-xml information, see Sun Java
System Web Server 7.0 Update 6 Performance Tuning, Sizing, and Scaling Guide.

Parameters
The following table describes parameters for the stats-xml function.

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009236

http://docs.sun.com/doc/820-7979
http://docs.sun.com/doc/820-7979

TABLE 7–104 stats-xmlParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
<Object name="default">
<If uri = "/stats-xml/*">
Service fn="stats-xml"
</If>

...

</Object>

See Also
“service-dump” on page 231

Service

Chapter 7 • Predefined SAFs and Filters in obj.conf 237

upload-file
The upload-file function uploads and saves a new file when the client sends a request whose
method is PUT, if the user is authorized, and the server has the needed file system privileges.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that invokes upload-file when the request method is PUT.

Parameters
The following table describes parameters for the upload-file function.

TABLE 7–105 upload-fileParameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service fn="upload-file"

Service

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009238

AddLog
The AddLog directives are executed to record information about the transaction. For more
information, see “AddLog” on page 134.

The following AddLog-class function is described in detail in this section:

■ “flex-log” on page 239

In addition, the following common SAFs are valid for the AddLog directive:

■ “match-browser” on page 244
■ “set-variable” on page 252

flex-log
The flex-log function records request-specific data in a flexible log format. It can also record
requests in the common log format. There is a log analyzer, flexanlg, in the /bin directory for
Web Server. There are also a number of free statistics generators for the common log format.

Specify the log format using the format subelement of the access-log element in server.xml.
For more information, see “access-log” on page 43. For more information on the log format, see
Appendix C, “Using the Custom Log File Format.”

Parameters
The following table describes parameters for the flex-log function.

TABLE 7–106 flex-logParameters

Parameter Description

name (Optional) Specifies the name of a log file. The name must previously been
defined by an access-log element in server.xml. If no name is given, the
entry is recorded in the default log file.

iponly (Optional) Instructs the server to log the IP address of the remote client
rather than looking up and logging the DNS name. This improves
performance if DNS is turned off. The value of iponly has no significance,
as long as it exists; you may use iponly=1.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

AddLog

Chapter 7 • Predefined SAFs and Filters in obj.conf 239

Example
Log all accesses to the default log file

AddLog fn="flex-log"
Log accesses from outside our subnet (198.93.5.*) to

nonlocallog

<Client ip="*~198.93.5.*">
AddLog fn="flex-log" name="nonlocallog"
</Client>

Error
If a SAF results in an error, the server stops executing all other directives and immediately starts
executing the Error directives. For more information, see “Error” on page 134.

The following Error-class functions are described in detail in this section:

■ “error-j2ee” on page 240
■ “qos-error” on page 241

In addition, the following common SAFs are valid for the Error directive:

■ “match-browser” on page 244
■ “query-handler” on page 245
■ “redirect” on page 246
■ “remove-filter” on page 248
■ “restart” on page 249
■ “send-error” on page 250
■ “set-variable” on page 252

error-j2ee
The error-j2ee function handles errors that occur during execution of web applications
deployed to the Web Server individually or as part of full Java EE applications.

Parameters
The following table describes the parameter for the error-j2ee function.

Error

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009240

TABLE 7–107 error-j2eeParameter

Parameter Description

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

See Also
■ “find-index-j2ee” on page 160
■ “ntrans-j2ee” on page 148
■ “service-j2ee” on page 232
■ “type-j2ee” on page 194

qos-error
The qos-error function returns an error page stating the quality of service that caused the
error, and the value of the QOS statistic.

Parameters
The following table describes parameters for the qos-error function.

TABLE 7–108 qos-errorParameters

Parameter Description

code (Optional) Three-digit number representing the HTTP response status
code, such as 401 or 407. The recommended value is 503.

This can be any HTTP response status code or reason phrase according to
the HTTP specification.

A list of common HTTP response status codes and reason strings is as
follows:
■ 401 Unauthorized

■ 403 Forbidden

■ 404 Not Found

■ 500 Server Error

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Error fn="qos-error" code="503"

Error

Chapter 7 • Predefined SAFs and Filters in obj.conf 241

See Also
“qos-handler” on page 141

Common SAFs
This section lists SAFs that are common to multiple directives.

TABLE 7–109 Common SAFs

Server Application Functions Directives

“insert-filter” on page 243 ■ “Input” on page 194
■ “Output” on page 196

“match-browser” on page 244 ■ “AuthTrans” on page 138
■ “NameTrans” on page 142
■ “PathCheck” on page 153
■ “ObjectType” on page 170
■ “Input” on page 194
■ “Output” on page 196
■ “Route” on page 200
■ “Service” on page 203
■ “AddLog” on page 239
■ “Error” on page 240

“query-handler” on page 245 ■ “Service” on page 203
■ “Error” on page 240

“redirect” on page 246 ■ “NameTrans” on page 142
■ “Output” on page 196
■ “Error” on page 240

“remove-filter” on page 248 ■ “Input” on page 194
■ “Output” on page 196
■ “Service” on page 203
■ “Error” on page 240

“restart” on page 249 ■ “NameTrans” on page 142

“send-error” on page 250 ■ “Service” on page 203
■ “Error” on page 240

Common SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009242

TABLE 7–109 Common SAFs (Continued)
Server Application Functions Directives

“set-variable” on page 252 ■ “AuthTrans” on page 138
■ “NameTrans” on page 142
■ “PathCheck” on page 153
■ “ObjectType” on page 170
■ “Input” on page 194
■ “Output” on page 196
■ “Route” on page 200
■ “Service” on page 203
■ “AddLog” on page 239
■ “Error” on page 240

insert-filter
The insert-filter SAF is used to add a filter to the filter stack to process incoming (client to
server) data. The order of Input fn="insert-filter" and Output fn="insert-filter"
directives is important.

Returns
Returns REQ_PROCEED if the specified filter was inserted successfully or REQ_NOACTION if the
specified filter was not inserted because it was not required. Any other return value indicates an
error.

Parameters
The following table describes parameters for the insert-filter function.

TABLE 7–110 insert-filterParameters

Parameter Description

filter Specifies the name of the filter to insert. For more information about
predefined filters, see “Input” on page 194 and “Output” on page 196.

type (Optional) Common to all Input-class and Output-class functions.
Specifies a wildcard pattern of MIME types for which this function will be
executed.

method (Optional) Common to all Input-class and Output-class functions.
Specifies a wildcard pattern of HTTP methods for which this function will
be executed. Common HTTP methods are GET, HEAD, and POST.

Common SAFs

Chapter 7 • Predefined SAFs and Filters in obj.conf 243

TABLE 7–110 insert-filterParameters (Continued)
Parameter Description

query (Optional) Common to all Input-class and Output-class functions.
Specifies a wildcard pattern of query strings for which this function will be
executed.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Input fn="insert-filter" filter="http-decompression"

The above directive instructs the insert-filter function to add a custom filter, that is,
http-decompression to the filter stack. The http-decompression filter will decompress the
incoming HTTP request data, before it goes to the service stage. For more information about
predefined filters, see “Input” on page 194 and “Output” on page 196. For more information,
Chapter 3, “Creating Custom Filters,” in Sun Java System Web Server 7.0 Update 6 NSAPI
Developer’s Guide

See Also
■ “sed-request” on page 195
■ “sed-response” on page 200

match-browser
The match-browser function matches specific strings in the User-Agent string supplied by the
browser. It then modifies the behavior of Sun Java System Web Server based on the results by
setting values for specified variables. This function is applicable in all directives.

Syntax
stage fn="match-browser" browser="string" name="value" [name="value" ...]

Parameters
The following table describes parameter values for the match-browser function.

Common SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009244

http://docs.sun.com/doc/820-7980/abvek?a=view
http://docs.sun.com/doc/820-7980/abvek?a=view

TABLE 7–111 match-browserParameters

Value Description

stage Stage directive used in obj.conf processing. The match-browser function
is applicable in all stage directives.

string Wildcard pattern to compare with the User-Agent header (for example,
"*Mozilla*").

name Variable to be changed. The match-browser function indirectly invokes the
set-variable function.

value New value for the specified variable.

Example
AuthTrans fn="match-browser"

browser="*[Bb]roken*"
ssl-unclean-shutdown="true"
keep-alive="disabled"
http-downgrade="1.0"

If a browser's User-Agent header contains the string Broken or broken, the above AuthTrans
directive instructs the server to do the following:
■ Not send the SSL3 and TLS close_notify packet
■ Not honor requests for HTTP Keep-Alive
■ Use the HTTP/1.0 protocol rather than HTTP/1.1

For more information on the variables used in this example, such as ssl-unclean-shutdown,
see “set-variable” on page 252.

See Also
“set-variable” on page 252

query-handler
The query-handler function runs a CGI program instead of referencing the path requested.

Note – This function is provided for backward compatibility only and is used mainly to support
the obsolete ISINDEX tag. Use an HTML form instead.

Parameters
The following table describes parameters for the query-handler function.

Common SAFs

Chapter 7 • Predefined SAFs and Filters in obj.conf 245

TABLE 7–112 query-handlerParameters

Parameter Description

path Full path and file name of the CGI program to run.

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Service query="*" fn="query-handler" path="/http/cgi/do-grep"

Service query="*" fn="query-handler" path="/http/cgi/proc-info"

redirect
The redirect function lets you change URLs and send the updated URL to the client. When a
client accesses your server with an old path, the server treats the request as a request for the new
URL.

Common SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009246

The redirect function inspects the URL to which the client will be redirected. If the URL
matches the URL the client has requested (same scheme, hostname, port, and path), this
function does not perform the redirect and instead returns REQ_NOACTION.

Parameters
The following table describes parameters for the redirect function.

TABLE 7–113 redirectParameters

Parameter Description

from (Optional) Specifies the prefix of the requested URI to match. If from is not
specified, it defaults to "".

url (Optional) Specifies a complete URL to return to the client. If you use this
parameter, do not use url-prefix.

url-prefix (Optional) The new URL prefix to return to the client. The from prefix is
replaced by this URL prefix. If you use this parameter, do not use url.

escape (Optional) Indicates whether the value of the url or url-prefix parameter
needs to be escaped. The default is yes, indicating that the server will escape
the value. The value no indicates that the URL or URL prefix value has
already been escaped. An example of an escaped value is one where any %
characters have been replaced with %25 and any spaces have been replaced
with %20.

For more information about escaping URIs, see the description of
util_uri_escape, in the Sun Java System Web Server 7.0 Update 6 NSAPI
Developer’s Guide.

status (Optional) Customizes the HTTP status code. If status is not specified, it
defaults to 302.

type (Optional) Common to all Output-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed.

method (Optional) Common to all Output-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed.
Common HTTP methods are GET, HEAD, and POST.

query (Optional) Common to all Output-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Common SAFs

Chapter 7 • Predefined SAFs and Filters in obj.conf 247

http://docs.sun.com/doc/820-7980
http://docs.sun.com/doc/820-7980

Example
In the first example, any request for http://server-name/whatever is translated to a request for
http://tmpserver/whatever.

NameTrans fn="redirect" from="/" url-prefix="http://tmpserver/"

In the second example, any request for http://server-name/toopopular/whatever is
translated to a request for http://bigger/better/stronger/morepopular/.

NameTrans fn="redirect" from="/toopopular"
url="http://bigger/better/stronger/morepopular"

See Also
“restart” on page 249

remove-filter
The remove-filter SAF is used to remove a filter from the filter stack. If the filter is inserted
multiple times, only the topmost instance is removed. In general, it is not necessary to remove
filters with remove-filter, as they are removed automatically at the end of a request.

Returns
Returns REQ_PROCEED if the specified filter was removed successfully, or REQ_NOACTION if the
specified filter was not part of the filter stack. Any other return value indicates an error.

Parameters
The following table describes parameters for the remove-filter function.

TABLE 7–114 remove-filterParameters

Parameter Description

filter Specifies the name of the filter to remove.

type (Optional) Common to all Input-class, Output-class, and Service-class
functions. Specifies a wildcard pattern of MIME types for which this
function will be executed. The magnus-internal/* MIME types are used
only to select a Service function to execute.

Common SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009248

TABLE 7–114 remove-filterParameters (Continued)
Parameter Description

method (Optional) Common to all Input-class, Output-class, and Service-class
functions. Specifies a wildcard pattern of HTTP methods for which this
function will be executed. Common HTTP methods are GET, HEAD, and
POST.

query (Optional) Common to all Input-class, Output-class, and Service-class
functions. Specifies a wildcard pattern of query strings for which this
function will be executed.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
Input fn="remove-filter" filter="http-compression"

restart
The restart function allows URL rewriting within the server without sending an HTTP
redirect to the client. The restart function replaces the uri and query values in rq->reqpb

with the URI and query string specified by the uri parameter and restarts the request by
returning REQ_RESTART.

If the uri parameter contains a ? character, the value following ? is used as the query string.
Otherwise, the restarted request will not have a query string. Because the new request URI will
be passed through the AuthTrans and NameTrans stages again, avoid creating infinite loops.

Parameters
The following table describes parameters for the restart function.

Common SAFs

Chapter 7 • Predefined SAFs and Filters in obj.conf 249

TABLE 7–115 restartParameters

Parameter Description

from (Optional) Wildcard pattern that specifies the path of requests that should
be restarted. The default is to match all paths.

uri URI and query string to use for the restarted request.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Example
The following obj.conf code causes the server to service requests for /index.html as though
they were requests for /index.jsp:

NameTrans fn="restart" from="/index.html" uri="/index.jsp"

send-error
The send-error function sends an HTML file to the client in place of a specific HTTP response
status. This allows the server to present a message describing the problem. The HTML page may
contain images and links to the server's home page or other pages.

Parameters
The following table describes parameters for the send-error function.

TABLE 7–116 send-errorParameters

Parameter Description

path Specifies the absolute path of an HTML file to send to the client. If the file
does not exist or is not accessible, the server returns a 404 or 403 error page.
The file is sent as text/html regardless of its name or actual type.

reason (Optional) Text of one of the reason strings (such as “Unauthorized” or
“Forbidden”). The string is not case-sensitive.

Common SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009250

TABLE 7–116 send-errorParameters (Continued)
Parameter Description

code (Optional) Three-digit number representing the HTTP response status
code, such as 401 or 407.

This can be any HTTP response status code or reason phrase according to
the HTTP specification.

The following is a list of common HTTP response status codes and reason
strings:
■ 401 Unauthorized
■ 403 Forbidden
■ 404 Not Found
■ 500 Server Error

uri (Optional) URI of the resource to send to the client. The URI can specify
any resource on the server, including HTML files, SHTML pages, CGI
programs, JSPs, and Servlets. If the specified resource does not exist, the
HTML file specified by the path parameter is sent instead.

type (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of MIME types for which this function will be executed. For more
information, see “Service” on page 203.

method (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of HTTP methods for which this function will be executed. For
more information, see “Service” on page 203.

query (Optional) Common to all Service-class functions. Specifies a wildcard
pattern of query strings for which this function will be executed. For more
information, see “Service” on page 203.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines the default
output stream buffer size (in bytes), for data sent to the client. For more
information, see “Service” on page 203.

flushTimer (Optional) Common to all Service-class functions. Determines the
maximum number of milliseconds between write operations in which
buffering is enabled. For more information, see “Service” on page 203.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines the default
buffer size, in bytes, for un-chunking request data. For more information,
see “Service” on page 203.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines the default
timeout, in seconds, for un-chunking request data. For more information,
see “Service” on page 203.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. For more information, see “The bucket Parameter” on
page 138.

Common SAFs

Chapter 7 • Predefined SAFs and Filters in obj.conf 251

Example
Error fn="send-error" code="401" path="/sun/server7/docs/errors/401.html"

set-variable
The set-variable function enables you to change server settings based upon conditional
information in a request. This function is applicable in all directives.

It can also be used to manipulate variables in parameter blocks with the following commands:

■ insert-pblock="name=value"

Adds a new value to the specified pblock.
■ set-pblock="name=value"

Sets a new value in the specified pblock, replacing any existing values with the same name.
■ remove-pblock="name"

Removes all values with the given name from the specified pblock.

The set-variable function recognizes many predefined variables as parameters. Additionally,
when a set-variable parameter name begins with $ but is not the name of a predefined
variable, the parameter and its value are stored in the rq->vars pblock. This functionality
allows you to define or override the $variable values at the request time.

set-variable accepts both the $variable and ${variable} forms, but the name of the
parameter stored in the rq->vars pblock is always in the $variable form.

Syntax
stage fn="set-variable" [{insert|set|remove}-pblock="name=value"
...][name="value" ...]

Parameters
The following table describes parameter values for the set-variable function.

Common SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009252

TABLE 7–117 set-variableParameters

Value Description

pblock Specifies one of the following session or request parameter block names:
■ client: Contains the IP address of the client machine and the DNS

name of the remote machine.

■ vars: Contains the server's working variables, which includes anything
not specifically found in the reqpb, headers, or srvhdrs pblocks. The
contents of this pblock differ, depending on the specific request and the
type of SAF.

■ reqpb: Contains elements of the HTTP request, which includes the
HTTP method such as GET or POST, the URI, the protocol (generally
HTTP/1.0), and the query string. This pblock does not change during
the request-response process.

■ headers: Contains all the request headers (such as User-Agent,
If-Modified-Since, and so on) received from the client in the HTTP
request. This pblock does not change during the request-response
process.

■ srvhdrs: Contains the response headers (such as Server, Date,
Content-Type, Content-length, and so on) that are to be sent to the
client in the HTTP response.

name The variable to set.

value The string assigned to the variable specified by name.

Variables
The following tables lists variables supported by the set-variable SAF.

TABLE 7–118 Supported Variables

Variable Description

abort A value of true indicates that the result code should be set to REQ_ABORTED.
Setting the result code to REQ_ABORTED will abort the current request and
send an error to the browser. For information about result codes, see
Chapter 2, “Creating Custom Server Application Functions,” in Sun Java
System Web Server 7.0 Update 6 NSAPI Developer’s Guide.

Common SAFs

Chapter 7 • Predefined SAFs and Filters in obj.conf 253

http://docs.sun.com/doc/820-7980/abvcu?a=view
http://docs.sun.com/doc/820-7980/abvcu?a=view

TABLE 7–118 Supported Variables (Continued)
Variable Description

error Sets the HTTP status code and exits the request by returning REQ_ABORTED.
To set the HTTP status code without exiting the request, use the set-variable
error parameter along with the noaction parameter. To rewrite an HTTP
status code, use a Client tag to match the original status code and an
Output directive to set the new status code.

For example, the following code will rewrite all 302 Moved Temporarily
responses to 301 Moved Permanently responses:

<Client code="302">
Output fn="set-variable" error="301 Moved Permanently"

noaction="true"
</Client>

Sets the error code to be returned in the event of an aborted browser
request.

escape A Boolean value signifying whether a URL should be escaped using
util_uri_escape. For information about util_uri_escape, see Sun Java
System Web Server 7.0 Update 6 NSAPI Developer’s Guide.

find-pathinfo-forward Path information after the file name in a URI. See “find-pathinfo” on
page 162.

http-downgrade HTTP version number (for example, 1.0).

http-upgrade HTTP version number (for example, 1.0).

keep-alive A Boolean value that establishes whether a keep-alive request from a
browser will be honored.

name Specifies an additional named object in the obj.conf file whose directives
will be applied to this request. See also “assign-name” on page 143.

noaction A value of true indicates the result code should be set to REQ_NOACTION. For
AuthTrans, NameTrans, Service, and Error stage SAFs, setting the result
code to REQ_NOACTION indicates that subsequent SAFs in that stage should
be allowed to execute. For information about result codes, see Chapter 2,
“Creating Custom Server Application Functions,” in Sun Java System Web
Server 7.0 Update 6 NSAPI Developer’s Guide.

nostat Causes the server not to perform the stat() function for a URL when
possible. See also “assign-name” on page 143.

senthdrs A Boolean value that indicates whether HTTP response headers have been
sent to the client.

Common SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009254

http://docs.sun.com/doc/820-7980
http://docs.sun.com/doc/820-7980
http://docs.sun.com/doc/820-7980/abvcu?a=view
http://docs.sun.com/doc/820-7980/abvcu?a=view
http://docs.sun.com/doc/820-7980/abvcu?a=view

TABLE 7–118 Supported Variables (Continued)
Variable Description

ssl-unclean-shutdown A Boolean value that can be used to alter the way SSL3 connections are
closed.

Caution – As this violates the SSL3 RFCs, you should only use this with great
caution if you know that you are experiencing problems with SSL3
shutdowns.

stop A value of true indicates the result code should be set to REQ_PROCEED. For
AuthTrans, NameTrans, Service, and Error stage SAFs, setting the result
code to REQ_PROCEED indicates that no further SAFs in that stage should be
allowed to execute. For information about result codes, Chapter 2,
“Creating Custom Server Application Functions,” in Sun Java System Web
Server 7.0 Update 6 NSAPI Developer’s Guide.

url Redirect requests to a specified URL.

Examples
■ To deny HTTP keep-alive requests for a specific server class (while still honoring keep-alive

requests for the other classes), add this AuthTrans directive to the obj.conf for the server
class, and set the variable keep-alive to disabled:

AuthTrans fn="set-variable" keep-alive="disabled"

■ To set the same server class to use HTTP/1.0 while the rest of the server classes use
HTTP/1.1, the AuthTrans directive is:

AuthTrans fn="set-variable" keep-alive="disabled" http-downgrade="true"

■ To insert an HTTP header into each response, add a NameTrans directive to obj.conf using
the insert-pblock command and specify srvhdrs as your Session or Request parameter
block.
For example, to insert the HTTP header P3P, add the following line to each request:

NameTrans fn="set-variable" insert-srvhdrs="P3P"

■ To terminate processing a request based on certain URIs, use a Client tag to specify the
URIs and an AuthTrans directive that sets the variable abort to true when there is a match.
Your Client tag would be as follows:

<Client uri="*(system32|root.exe)*">
AuthTrans fn="set-variable" abort="true"
</Client>

■ To use predefined variables so that the server rewrites redirects to host badname as redirects
to host goodname:

Common SAFs

Chapter 7 • Predefined SAFs and Filters in obj.conf 255

http://docs.sun.com/doc/820-7980/abvcu?a=view
http://docs.sun.com/doc/820-7980/abvcu?a=view
http://docs.sun.com/doc/820-7980/abvcu?a=view

<If $srvhdrs{’location’} =~ "^(http|https)://badname/(.*)$"
Output fn="set-variable" $srvhdrs{’location’}="$1://goodname/$2"
</If>

■ To set a $variable value at request time:

<If "$time_hour:$time_min" < "8:30" || "$time_hour:$time_min" > "17:00">
AuthTrans fn="set-variable" $docroot="/var/www/docs/closed"
</If>

...

NameTrans fn="document-root" root="$docroot"

Regardless of whether the $docroot variable has been defined in server.xml, its value is set
to /var/www/docs/closed when the server is accessed after 5:00 p.m. and before 8:00 a.m.
local time.

See Also
“match-browser” on page 244

FastCGI Plug-in SAFs
FastCGI plug-in provides the following Server Application Functions (SAFs):

■ auth-fastcgi
■ responder-fastcgi
■ filter-fastcgi
■ error-fastcgi

The various parameters and "error-reason" strings for the FastCGI SAFs are described in the
Sun Java System Administrator's Guide.

FastCGI Plug-in SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009256

MIME Types

The MIME types file in the config directory contains mappings between the Multipurpose
Internet Mail Extensions (MIME) types and file extensions. For example, the MIME types file
maps the extensions .html and .htm to the type text/html:

type=text/html exts=htm,html

When the Web Server receives a request from a client, it uses the MIME type mappings to
determine the kind of resource that is requested.

MIME types are defined by three attributes: language (lang), encoding (enc), and content type
(type). At least one of these attributes must be present for each type. The most commonly used
attribute is type. The server frequently considers the type when deciding how to generate the
response to the client. The enc and lang attributes are rarely used. The default MIME types file
is mime.types.

This chapter discusses the following sections:
■ “Determining the MIME Type” on page 257
■ “Referencing MIME Types Files in server.xml” on page 258
■ “Generating the Server Response Using the MIME Type” on page 258
■ “Processing the Response in the Client Using the MIME Type” on page 259
■ “MIME Types Syntax” on page 259
■ “Sample MIME Types File” on page 259

Determining the MIME Type
During the ObjectType stage in the request handling process, the server determines the MIME
type attributes of the resource requested by the client. You can use different SAFs to determine
the MIME type. The most commonly used SAF is type-by-extension, which tells the server to
look up the MIME type according to the requested resource’s file extension in the MIME types
table. The MIME types table is stored in a MIME type file. For more information on the format
of this file, see “MIME Types Syntax” on page 259.

8C H A P T E R 8

257

The directive in obj.conf that tells the server to look up the MIME type according to the
extension is:

ObjectType fn=type-by-extension

If the server uses a different SAF, such as force-type to determine the type, the MIME types
table is not used for that particular request.

For more details, see “ObjectType” on page 170.

Referencing MIME Types Files in server.xml
If you create MIME type files, you must reference them in server.xml using the mime-file
element. Because the mime-file element can appear as a child element of both the server and
virtual-server elements, you can create MIME types files that apply to the entire server or
only to specific virtual servers. For more information, see “mime-file” on page 74.

Generating the Server Response Using the MIME Type
The server considers the value of the type attribute when deciding which Service directive in
obj.conf to use to generate the response to the client.

By default, if the type does not start with magnus-internal/, the server sends the requested file
to the client. The directive in obj.conf that contains this instruction is:

Service method=(GET|HEAD|POST) type=*~magnus-internal/* fn=send-file

By convention, all values of type that require the server to do something other than just send
the requested resource to the client start with magnus-internal/.

For example, if the requested resource’s file extension is .map, the type is mapped to
magnus-internal/imagemap. If the extension is .cgi, .exe, or .bat, the type is set to
magnus-internal/cgi:

type=magnus-internal/imagemap exts=map

type=magnus-internal/cgi exts=cgi,exe,bat

If the type starts with magnus-internal/, the server executes whichever Service directive in
obj.conf matches the specified type. For example, if the type is magnus-internal/imagemap,
the server uses the imagemap function to generate the response to the client, as indicated by the
following directive:

Service method=(GET|HEAD) type=magnus-internal/imagemap fn=imagemap

Referencing MIME Types Files in server.xml

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009258

Processing the Response in the Client Using the MIME Type
The Service function generates the data and sends it to the client that made the request. When
the server sends the data to the client, it also sends headers. These headers include whichever
MIME type attributes are known (which is usually type).

When the client receives the data, it uses the MIME type to decide what to do with the data. For
browser clients, the browser usually displays the data in the browser window.

If the requested resource cannot be displayed in a browser but needs to be handled by another
application, its type starts with application/, for example application/octet-stream (for
.bin file extensions) or application/x-maker (for .fm file extensions). The client has its own
set of user-editable mappings that tells it which application to use to handle which types of data.

For example, if the type is application/x-maker, the client usually handles it by opening
Adobe® FrameMaker® to display the file.

MIME Types Syntax
The first line in the MIME types file identifies the file format:

#--Sun Microsystems MIME Information

Other uncommented lines have the following format:

type=type/subtype exts=[file extensions]

■ type/subtype is the type and subtype
■ exts are the file extensions associated with this type

Sample MIME Types File
A sample of the MIME types file is as follows:

#--Sun Microsystems Inc. MIME Information

Do not delete the above line. It is used to identify the file type.

#

Copyright (c) 2006 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

#

type=application/octet-stream exts=bin

type=application/astound exts=asd,asn

type=application/fastman exts=lcc

Sample MIME Types File

Chapter 8 • MIME Types 259

type=application/java-archive exts=jar

type=application/java-serialized-object exts=ser

type=application/java-vm exts=class

type=application/mac-binhex40 exts=hqx

type=application/x-stuffit exts=sit

type=application/mbedlet exts=mbd

type=application/msword exts=doc,dot,wiz,rtf

type=application/oda exts=oda

type=application/pdf exts=pdf

type=application/postscript exts=ai,eps,ps

type=application/studiom exts=smp

type=application/timbuktu exts=tbt

type=application/vnd.ms-excel exts=xls,xlw,xla,xlc,xlm,xlt

type=application/vnd.ms-powerpoint exts=ppt,pps,pot

type=application/vnd.ms-project exts=mpp

type=application/winhlp exts=hlp

type=application/x-javascript exts=js

type=application/x-javascript;charset=UTF-8 exts=jsu

type=application/x-java-jnlp-file exts=jnlp

type=application/x-aim exts=aim

type=application/x-asap exts=asp

type=application/x-csh exts=csh

type=application/x-dvi exts=dvi

type=application/x-earthtime exts=etc

type=application/x-envoy exts=evy

type=application/x-gtar exts=gtar

type=application/x-cpio exts=cpio

type=application/x-hdf exts=hdf

type=application/x-latex exts=latex

type=application/x-javascript-config exts=jsc

type=application/x-maker exts=fm

type=application/x-mif exts=mif,mi

type=application/x-mocha exts=mocha,moc

type=application/x-msaccess exts=mdb

type=application/x-mscardfile exts=crd

type=application/x-msclip exts=clp

type=application/x-msmediaview exts=m13,m14

type=application/x-msmetafile exts=wmf

type=application/x-msmoney exts=mny

type=application/x-mspublisher exts=pub

type=application/x-msschedule exts=scd

type=application/x-msterminal exts=trm

type=application/x-mswrite exts=wri

type=application/x-NET-Install exts=ins

type=application/x-netcdf exts=nc,cdf

type=application/x-ns-proxy-autoconfig exts=proxy

type=application/x-salsa exts=slc

type=application/x-sh exts=sh

Sample MIME Types File

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009260

type=application/x-shar exts=shar

type=application/x-sprite exts=spr,sprite

type=application/x-tar exts=tar

type=application/x-tcl exts=tcl

type=application/x-perl exts=pl

type=application/x-tex exts=tex

type=application/x-texinfo exts=texinfo,texi

type=application/x-timbuktu exts=tbp

type=application/x-tkined exts=tki,tkined

type=application/x-troff-man exts=man

type=application/x-troff-me exts=me

type=application/x-troff-ms exts=ms

type=application/x-troff exts=t,tr,roff

type=application/x-wais-source exts=src

type=application/zip exts=zip

type=application/pre-encrypted exts=enc

type=application/x-pkcs7-crl exts=crl

type=application/x-fortezza-ckl exts=ckl

type=application/xml-dtd exts=dtd

type=audio/basic exts=au,snd

type=audio/echospeech exts=es,esl

type=audio/midi exts=midi,mid

type=audio/x-aiff exts=aif,aiff,aifc

type=audio/x-wav exts=wav

type=audio/x-pn-realaudio exts=ra,ram

type=audio/x-pac exts=pac

type=audio/x-epac exts=pae

type=audio/x-liveaudio exts=lam

type=drawing/x-dwf exts=dwf

type=image/fif exts=fif

type=image/x-icon exts=ico

type=image/gif exts=gif

type=image/ief exts=ief

type=image/ifs exts=ifs

type=image/jpeg exts=jpeg,jpg,jpe,jfif,pjpeg,pjp

type=image/png exts=png

type=image/tiff exts=tiff,tif

type=image/vnd exts=dwg,svf

type=image/wavelet exts=wi

type=image/bmp exts=bmp

type=image/x-photo-cd exts=pcd

type=image/x-cmu-raster exts=ras

type=image/x-portable-anymap exts=pnm

type=image/x-portable-bitmap exts=pbm

type=image/x-portable-graymap exts=pgm

Sample MIME Types File

Chapter 8 • MIME Types 261

type=image/x-portable-pixmap exts=ppm

type=image/x-rgb exts=rgb

type=image/x-xbitmap exts=xbm

type=image/x-xpixmap exts=xpm

type=image/x-xwindowdump exts=xwd

type=text/css exts=css

type=text/html exts=htm,html

type=text/plain exts=txt

type=text/richtext exts=rtx

type=text/tab-separated-values exts=tsv

type=text/x-setext exts=etx

type=text/x-speech exts=talk

type=text/xml exts=xml

type=text/xul exts=xul

type=video/isivideo exts=fvi

type=video/mpeg exts=mpeg,mpg,mpe,mpv,vbs,mpegv

type=video/x-mpeg2 exts=mpv2,mp2v

type=video/msvideo exts=avi

type=video/quicktime exts=qt,mov,moov

type=video/vivo exts=viv,vivo

type=video/wavelet exts=wv

type=video/x-sgi-movie exts=movie

type=x-world/x-svr exts=svr

type=x-world/x-vrml exts=wrl

type=x-world/x-vrt exts=vrt

type=x-conference/x-cooltalk exts=ice

enc=x-gzip exts=gz

enc=x-compress exts=z

enc=x-uuencode exts=uu,uue

type=magnus-internal/imagemap exts=map

type=magnus-internal/parsed-html exts=shtml

type=magnus-internal/cgi exts=cgi,exe,bat

type=application/x-x509-ca-cert exts=cacert

type=application/x-x509-server-cert exts=scert

type=application/x-x509-user-cert exts=ucert

type=application/x-x509-email-cert exts=ecert

type=application/vnd.sun.xml.writer exts=sxw

type=application/vnd.sun.xml.writer.template exts=stw

Sample MIME Types File

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009262

type=application/vnd.sun.xml.calc exts=sxc

type=application/vnd.sun.xml.calc.template exts=stc

type=application/vnd.sun.xml.draw exts=sxd

type=application/vnd.sun.xml.draw.template exts=std

type=application/vnd.sun.xml.impress exts=sxi

type=application/vnd.sun.xml.impress.template exts=sti

type=application/vnd.sun.xml.writer.global exts=sxg

type=application/vnd.sun.xml.math exts=sxm

type=application/vnd.stardivision.writer exts=sdw

type=application/vnd.stardivision.writer-global exts=sgl

type=application/vnd.stardivision.calc exts=sdc

type=application/vnd.stardivision.draw exts=sda

type=application/vnd.stardivision.impress exts=sdd

type=application/vnd.stardivision.impress-packed exts=sdp

type=application/vnd.stardivision.math exts=smf,sdf

type=application/vnd.stardivision.chart exts=sds

type=application/vnd.stardivision.mail exts=sdm

Sample MIME Types File

Chapter 8 • MIME Types 263

264

ACL Files

This chapter describes the access control list (ACL) files and their syntax. ACL files are text files
containing lists that define who can access resources stored on Web Server. By default, Web
Server uses one ACL file that contains the access list. You can, however, create multiple ACL
files and reference them in the obj.conf file.

After installation, a default access control list is written to the default.acl file in the
instance_dir/config directory. You can change access control rules by editing this file or by
creating additional ACL files.

When you make changes to ACL files, you must restart or reconfigure the server for the changes
to take effect. For information on reconfiguring the server without restarting, see “Dynamic
Reconfiguration” on page 30.

This chapter contains the following sections:

■ “Referencing ACL Files in server.xml and obj.conf” on page 265
■ “ACL File Syntax” on page 266
■ “Sample ACL File” on page 271

Referencing ACL Files in server.xml and obj.conf
If you create ACL files, you must reference them in server.xml using the acl-file element.
Because the acl-file element can appear as a child element of both server and
virtual-server elements, you can create ACL files that apply to the entire server or only to
specific virtual servers. For more information, see “acl-file” on page 46.

If you have named ACLs, you can reference them in the obj.conf file. You can do this in the
PathCheck directive using the check-acl function. The line has the following syntax:

PathCheck fn="check-acl" acl="aclname"

where aclname is a unique name of the ACL as it appears in an ACL file.

9C H A P T E R 9

265

For example, you can add the following lines to your obj.conf file if you want to restrict access
to a directory using the ACL named testacl:

<Object ppath="/var/htdocs/test/*">
PathCheck fn="check-acl" acl="testacl"
</Object>

In the above example, the first line is the object that states which server resource to restrict
access to. The second line is the PathCheck directive that uses the check-acl function to bind
the named ACL testacl to the object in which the directive appears. For more information, see
“check-acl” on page 154.

The testacl ACL can be defined in any ACL file referenced in server.xml.

ACL File Syntax
All ACL files must follow a specific format and syntax. The ACL file is a text file containing one
or more ACLs. All ACL files must begin with the version number they use. There can be only
one version line and it can appear after any comment line. Web Server uses version 3.0. For
example:

version 3.0;

You can include comments in the file by beginning the comment line with the # sign.

Each ACL in the file begins with a statement that defines its type. ACLs can follow one of the
three types:

■ Path ACLs specify an absolute path to the resource they affect.
■ URI ACLs specify a directory or file relative to the server’s document root.
■ Named ACLs specify a name that is referenced in the obj.conf file. Web Server comes with

a default named resource that allows read access to all users and write access to users in the
LDAP directory. Even though you can create a named ACL from the Web Server user
interface, you must manually reference the named ACLs with resources in the obj.conf file.

Path and URI ACLs can include a wildcard at the end of the entry, for example: /a/b/*.
Wildcards placed anywhere except at the end of the entry will not work.

The type line begins with the letters acl and includes the type information in double-quotation
marks followed by a semicolon. Each type information for all ACLs must be a unique name
even among different ACL files. The following lines are examples of several different types of
ACLs:

acl "default";
...

ACL File Syntax

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009266

acl "path=C:/docs/mydocs/";
...

acl "uri=/mydocs/";
...

After you define the type of ACL, you can have one or more statements that define the method
used with the ACL (authentication statements) and the users and computers who are allowed or
denied access (authorization statements). The following sections describe the syntax for these
statements.

This section includes the following topics:

■ “General Syntax” on page 267
■ “Authentication Methods” on page 267
■ “Authorization Statements” on page 268
■ “Hierarchy of Authorization Statements” on page 269

General Syntax
Input strings can contain the following characters:

■ letters a through z

■ numbers 0 through 9

■ period (.) and underscore (_)

If you use any other characters, add double-quotation marks around the characters. A single
statement can be placed on its own line, and terminated with a semicolon. Multiple statements
are placed within braces. A list of items must be separated by commas and enclosed in
double-quotation marks.

Authentication Methods
ACLs can optionally specify the authentication method that the server must use when
processing the ACL. There are three methods:

■ basic

■ digest

■ ssl

The basic and digest methods require users to enter a user name and password before
accessing a resource. The ssl method requires the user to have a client certificate. The Web
Server must have the encryption turned on, and the user’s certificate issuer must be in the list of
trusted certificate authorities (CAs) to be authenticated.

ACL File Syntax

Chapter 9 • ACL Files 267

By default, the server uses the basic method for any ACL that does not specify a method. If you
use the digest method, the server’s authentication database must be able to handle digest
authentication. Authentication databases are configured in server.xml with the auth-db
element. For more information, see “auth-db” on page 47.

Each authenticate line must specify the attribute (users, groups, or both users and groups) that
the server authenticates. The following authentication statement, which appears after the ACL
type line, specifies basic authentication with users matched to individual users in the database
or directory:

authenticate (user) { method = “basic”; };

The following example uses ssl as the authentication method for users and groups:

authenticate (user, group) { method = “ssl”; };

The following example allows any user whose user name begins with sales:

authenticate (user)

allow (all)

user = sales*

If the last line is changed to group = sales, then the ACL will fail because the group attribute is
not authenticated.

Authorization Statements
Each ACL entry can include one or more authorization statements. Authorization statements
specify who is allowed or denied access to a server resource. Use the following syntax to write
authorization statements:

allow|deny [absolute] (right[,right...]) attribute expression;

Start each line with either allow or deny. Because of the hierarchy rules, it is usually a good
practice to deny access to everyone in the first rule and then specifically allow access for users,
groups, or computers in subsequent rules. That is, if you allow anyone access to a directory
called /my_stuff, and you have a subdirectory /my_stuff/personal that allows access to a few
users, the access control on the subdirectory will not work because anyone allowed access to the
/my_stuff directory will also be allowed access to the /my_stuff/personal directory. To
prevent this, create a rule for the subdirectory that first denies access to anyone and then allows
it for the few users who need access.

In some cases, if you set the default ACL to deny access to everyone, your other ACL rules do
not need a deny all rule.

ACL File Syntax

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009268

The following line denies access to everyone:

deny (all) user = "anyone";

Hierarchy of Authorization Statements
ACLs have a hierarchy that depends on the resource. For example, if the server receives a
request for the document (URI) /my_stuff/web/presentation.html, the server builds a list of
ACLs that apply for this URI. The server first adds ACLs listed in check-acl statement of its
obj.conf file. Then the server appends matching URI and PATH ACLs.

The server processes this list in the same order. Unless absolute ACL statements are present, all
statements are evaluated in order. If an absolute allow or absolute deny statement evaluates
to true, the server stops processing and accepts this result.

If there is more than one ACL that matches, the server uses the last statement that matches.
However, if you use an absolute statement, the server stops looking for other matches and uses
the ACL containing the absolute statement. If you have two absolute statements for the same
resource, the server uses the first one in the file and stops looking for other resources that
match.

version 3.0;

acl "default";
authenticate (user, group) {

prompt = "Sun Java System Web Server";
};

allow (read, execute, info) user = "anyone";
allow (list, write, delete) user = "all";

acl "uri=/my_stuff/web/presentation.html";
deny (all) user = "anyone";
allow (all) user = "user1";

Expression Attribute
Attribute expressions define who is allowed or denied access based on their user name, group
name, host name, or IP address. The following are examples of allowing access to different users
or computers:

■ user = “anyone”

■ user = “smith*”

■ group = “sales”

■ dns = “*.sun.com”

■ dns = “*.sun.com,*.mozilla.com”

■ ip = “198.*”

■ ciphers = “rc4”

ACL File Syntax

Chapter 9 • ACL Files 269

■ ssl = “on”

You can also restrict access to your server by time of day (based on the local time on the server)
by using the timeofday attribute. For example, you can use the timeofday attribute to restrict
access to certain users during specific hours.

Note – Use 24-hour time to specify times. For example, use 0400 to specify 4:00 a.m. or 2230 for
10:30 p.m.

The following example restricts access to a group of users called guests between 8:00 a.m. and
4:59 p.m.:

allow (read)

(group="guests") and (timeofday<0800 or timeofday=1700);

You can also restrict access by day of the week. Use the following three-letter abbreviations to
specify days: Sun, Mon, Tue, Wed, Thu, Fri, and Sat.

The following statement allows access for users in the premium group any day and any time.
Users in the discount group get access all day on weekends and on weekdays, any time except 8
a.m. to 4:59 p.m.

allow (read) (group="discount" and dayofweek="Sat,Sun") or (group="discount" and

(dayofweek="mon,tue,wed,thu,fri" and(timeofday<0800 or timeofday=1700)))or

(group="premium");

Expression Operators
You can use various operators in an expression. Parentheses delineate the operator order of
precedence. With user, group, dns, and ip, you can use the following operators:

■ and

■ or

■ not

■ = (equals)
■ != (not equal to)

With timeofday and dayofweek, you can use:

■ > (greater than)
■ < (less than)
■ >= (greater than or equal to)
■ <= (less than or equal to)

ACL File Syntax

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009270

Sample ACL File
After installation, the instance_dirconfig/default.acl file provides default settings for the
server. When editing an ACL file, you can make changes in the default file, then deploy the
changes. You can also create additional ACL files.

A sample default.acl file is as follows:

version 3.0;

acl "default";
authenticate (user, group) {

prompt = "Sun Java System Web Server";
};

allow (read, execute, info) user = "anyone";
allow (list, write, delete) user = "all";

acl "es-internal";
allow (read, execute, info) user = "anyone";
deny (list, write, delete) user = "anyone";

Note – The above access control rules allow anyone to read resources on the server but restrict
listing, writing, and deleting resources to authenticated users.

Sample ACL File

Chapter 9 • ACL Files 271

272

Other Server Configuration Files

This chapter summarizes the configuration files that are not discussed in other chapters.
Configuration files that should never be modified are not listed in this chapter. The following
configuration files are described in detail:

■ “certmap.conf” on page 273
■ “sun-web.xml” on page 275
■ “login.conf” on page 275
■ “server.policy” on page 275
■ “default-web.xml” on page 276

certmap.conf
The certmap.conf file configures how a certificate is mapped to an LDAP entry designated by
issuerDN.

The following table describes the certmap.conf file properties.

10C H A P T E R 1 0

273

TABLE 10–1 certmap.confProperties

Attribute Allowed Values Default Value Description

DNComps See
description

Commented out Used to form the base DN for
performing an LDAP search while
mapping the certificate to a user entry.
Values are as follows:
■ Commented out – Takes the user's

DN from the certificate as is
■ Empty – Searches the entire LDAP

tree (DN == suffix)
■ Comma-separated attributes –

Forms the DN

FilterComps See
description

Commented out Used to form the filter for performing
an LDAP search while mapping the
certificate to a user entry. Values are as
follows:
■ Commented out or empty – Sets

the filter to "objectclass=*"
■ Comma-separated attributes –

Forms the filter

verifycert on or off off (commented out) Specifies whether certificates are
verified.

CmapLdapAttr Name of the
LDAP
attribute

certSubjectDN

(commented out)
Specifies the name of the attribute in
the LDAP database that contains the
DN of the certificate.

library Path to
shared lib or
dll

None Specifies the library path for custom
certificate mapping code.

InitFn Name of
initialization
function

None Specifies the initialization function in
the certificate mapping code
referenced by library.

Location
instance_dir/config

Syntax
certmap name issuerDNname:property1 [value1]
name:property2 [value2]
...

certmap.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009274

The default certificate is named default, and the default issuerDN is also named default.
Therefore, the first certmap.conf defined in the file must be as follows:

certmap default default

Use # at the beginning of a line to indicate a comment.

See Also
Sun Java System Web Server 7.0 Update 6 Administrator’s Guide

sun-web.xml
The sun-web.xml file configures the features specific to the Web Server for deployed web
applications. For more information about sun-web.xml, see Sun Java System Web Server 7.0
Update 6 Developer’s Guide to Java Web Applications.

Location
The META-INF or WEB-INF directory of a module or application

login.conf
The login.conf file is the login module definition configuration used by the Java
Authentication and Authorization Service (JAAS) for client authentication.

Location
instance_dir/config

server.policy
The server.policy file controls the access that applications have to the resources. This file is
the standard Java SE policy file. In Web Server, the Java SE SecurityManager (the Java
component that enforces the policy) is not active by default. The policies granted in this policy
file do not have any effect unless the SecurityManager is turned on in server.xml.

To use the Java SE SecurityManager, turn it on by adding the following JVM options to
server.xml, using the jvm-options subelement of the jvm element:

server.policy

Chapter 10 • Other Server Configuration Files 275

http://docs.sun.com/doc/820-7985
http://docs.sun.com/doc/820-7983
http://docs.sun.com/doc/820-7983

<jvm-options>-Djava.security.manager</jvm-options>

<jvm-options>-Djava.security.policy=instance_dir/config/server.policy</jvm-options>

You can also add JVM options using the Admin Console or the wadm set-jvm-props
command.

Location
instance_dir/config

Syntax
grant [codeBase "path"] {

permission permission_class "package", "permission_type";
...

};

See Also
Sun Java System Web Server 7.0 Update 6 Developer’s Guide to Java Web Applications

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html

default-web.xml
The default-web.xml is a global web deployment descriptor file that is shared by deployed web
applications. There is one default-web.xml per server instance that is shared by all web
applications deployed on the server instance.

Location
instance_dir/config

See Also
Sun Java System Web Server 7.0 Update 6 Developer’s Guide to Java Web Applications

default-web.xml

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009276

http://docs.sun.com/doc/820-7983
http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://docs.sun.com/doc/820-7983

Using Variables, Expressions, and String
Interpolation

This appendix describes variables, expressions, and string interpolation, and has the following
sections:

■ “Variables” on page 277
■ “Expressions” on page 281
■ “String Interpolation” on page 296

Variables
The Web Server includes a set of variables predefined by the server, as well as the capability for
you to define custom variables. This section includes the following sections:

■ “Predefined Variables” on page 277
■ “Custom Variables” on page 280
■ “Resolving Variables” on page 280

Predefined Variables
Predefined variables are implicitly defined by the server. The following table lists the predefined
variables and their descriptions:

AA P P E N D I X A

277

TABLE A–1 Predefined Variables

Variable Description

$n Regular expression backreference (value of the nth capturing
subpattern, n = 1...9), for example, $1.

Regular expression backreferences are only available within the body
of If and ElseIf containers, and only if the container expressions
includes one or more regular expressions. For more information on If

and ElseIf, see “If, ElseIf, and Else” on page 126.

$& Value that matched a regular expression.

Regular expression backreferences are only available within the body
of If and ElseIf containers, and only if the container expressions
includes one or more regular expressions. For more information on If

and ElseIf, see “If, ElseIf, and Else” on page 126.

$auth_group Authenticated user's group (alias for $vars{’auth-group’}).

$auth_type Authentication method (alias for $vars{’auth-type’}).

$auth_user Authenticated user name (alias for $vars{’auth-user’}).

$browser Web browser version (alias for $headers{’user-agent’} if the client
sent a User-Agent header or an empty string).

$chunked Boolean variable that indicates whether request body was sent using
chunked encoding.

$code Response status code.

$cookie{’name’} Value of the cookie name from request.

$dns Alias for $client{’dns’}.

$env{’name’} Value of the environment variable name (includes CGI/SHTML
environment variables).

$headers{’name’} Value of name from rq->headers, that is, value of the request header
name where name is a lowercase string.

$id Virtual server ID as specified by the name subelement of the
virtual-server element in server.xml. For more information, see
“virtual-server” on page 98.

$internal Boolean that indicates whether request was internally generated.

$ip Alias for $client{’ip’}.

$keep_alive Boolean that indicates whether the connection will be kept open.

$keysize Alias for $client{’keysize’}.

$method Request method (alias for $reqpb{’method’}).

Variables

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009278

TABLE A–1 Predefined Variables (Continued)
Variable Description

$path Requested path (either URI, partial path, or file system path
depending on stage).

The predefined variable path is the value of path from rq->vars. If
path isn't set in rq->vars (for example, if NameTrans hasn't
completed), path gets the value of ppath from rq->vars.

$path_info Alias for $vars{’path-info’}.

$ppath Alias for $vars{’ppath’}.

$protocol Request protocol (alias for $reqpb{’protocol’}).

$query Request query string (alias for $reqpb{’query’}).

$reason Response reason phrase.

$referer Alias for $headers{’referer’}.

$reqpb{’name’} Value of name from rq->reqpb.

$restarted Boolean that indicates whether request has been restarted.

$secret_keysize Alias for $client{’secret-keysize’}.

$server_url Prefix for self-referencing URLs.

$time Time the request was received as the number of seconds since 00:00:00
UTC, January 1, 2006.

$time_day Day of the month when the request was received. Value can be from
01 to 31.

$time_hour Hours since midnight when the request was received. Value can be
from 00 to 23.

$time_min Minutes after the hour when the request was received. Value can be
from 00 to 59.

$time_mon Month of the year when the request was received. Value can be from
01 to 12.

$time_sec Seconds after the minute when the request was received. Value can be
from 00 to 61.

$time_wday Day of the week when the request was received. Value can be from 0 to
6, where 0 corresponds to Sunday.

$time_year Four-digit year when the request was received.

$type Alias for $srvhdrs{’content-type’}.

$uri URI of the requested resource (alias for $reqpb{’uri’}).

Variables

Appendix A • Using Variables, Expressions, and String Interpolation 279

TABLE A–1 Predefined Variables (Continued)
Variable Description

$url URL of the requested resource.

$urlhost Host name to which the client connected.

$vars{’$headers{’name’} Value of name from rq->vars.

$security Boolean that indicates whether a secure transport was used.

$senthdrs Boolean that indicates whether response headers have been sent.

$srvhdrs{’$headers{’name’} Value of name from rq->srvhdrs, that is, value of response header
name where name is a lowercase string.

Custom Variables
You can define custom variables in the server.xml file using the variables element. These
variables can then be used in function parameters in obj.conf functions. You can also define
variables at request time using the set-variables function in obj.conf.

For more information, see “variable” on page 97 and “set-variable” on page 252.

Note – Because predefined variables take precedence over custom variables, it is a best practice to
use uppercase names for custom variables. Using uppercase avoids conflicts with the lowercase
predefined variables, should the list of predefined variables be extended in the future.

Resolving Variables
The server uses the following order when attempting to resolve a $variable:

1. Predefined variables
2. Variables defined at request time using set-variable in obj.conf

3. Variables defined by the virtual-server element's variable subelement in server.xml

4. Variables defined by the server element's variable subelement in server.xml

When you define a $variable at request time, it is stored as a name-value pair in the rq->vars
pblock. These variables are given a higher precedence than server.xml variables so that
server.xml variables can be overridden at request time.

Variables

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009280

Expressions
Expressions allow you to dynamically construct SAF parameters and to select which SAFs to
execute on a request-by-request basis. Expressions are constructed from literals, variables,
functions, and operators. Use expressions in If and ElseIf tags (see “If, ElseIf, and Else” on
page 126), in log format strings (see Appendix C, “Using the Custom Log File Format”), and
SAF parameters (see “String Interpolation” on page 296).

This section contains the following sections:

■ “Expression Syntax” on page 281
■ “Expression Results as Booleans” on page 282
■ “Expression Literals” on page 282
■ “Expression Variables” on page 283
■ “Expression Operators” on page 284
■ “Expression Functions” on page 286
■ “Regular Expressions” on page 295

Expression Syntax
The expression syntax is similar to the syntax used in Perl. Expressions are constructed from
literals, variables, functions, and operators.

The following example shows an expression used in an If tag:

<If not $internal

and $uri =~ "^/private/(.*)$"
and $referer !~ "^https?://example.com/">

NameTrans fn="redirect"
url="http://example.com/denied.jsp?file=$1"

</If>

This example expression checks to see if a request meets certain criteria, for example if it is an
internal request. If it does not meet the criteria, the server redirects the request to a request
denied URL.

The expression contains the following components:

■ Literals – "^/private/(.*)$" and "^https?://example.com/"
■ Variables – $internal, $uri, and $referer

■ Operators – not, and, =~, and !~

Expressions

Appendix A • Using Variables, Expressions, and String Interpolation 281

Expression Results as Booleans
In some circumstances, for example, after evaluating an If or ElseIf expression, the server
must treat the result of an expression as a Boolean. The server uses the following rules when
converting a numeric value to a Boolean:
■ Numeric 0 (zero) evaluates to false
■ All other numeric values evaluate to true

The server uses the following rules when converting a string to a Boolean:
■ Zero-length strings evaluate to false
■ The string 0 (zero) evaluates to false
■ All other strings evaluate to true

Expression Literals
Expression literals are divided into string and numeric literals.

String Literals
A string literal is bracketed by either single quotes (’) or double quotes ("). When single quotes
bracket a string literal, the value of the literal is the value within the quotes. When double quotes
are used, any references to variables or expressions within the quotes are interpolated. For more
information, see “String Interpolation” on page 296.

The following expression examples show the use of single and double quotes.

This expression evaluates to true

(’foo’ eq "foo")

This expression evaluates to false

(’foo’ eq "bar")

This expression evaluates to true

(’foo’ eq "f$(lc(’O’))o")

This expression may evaluate to true or false,

depending on the value of the variable $foo

(’$foo’ eq "$foo")

To include an uninterpolated $ character in a double quote string, use the $$ or \$ escape
sequences.

When a double quote character appears within a literal bracketed by double quotes, it must be
prefixed with a backslash. When a single backslash (\) character appears within a literal
bracketed by double quotes, it must be prefixed with a backslash. When a single quote character
appears within a literal bracketed by single quotes, it must be prefixed with a backslash.

Expressions

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009282

The following examples show valid and invalid literals:

The following are examples of valid literals

’this string literal is bracketed by single quotes’

"this string literal is bracketed by double quotes"
"the backslash, \\, escapes characters in double quote string literals"
’it\’s easy to use strings literals’

The following are examples of invalid literals

’it’s important to escape quote characters’

"any \ characters in double quote string literals must be escaped"

Numeric Literals
A numeric literal can consist of decimal digits and an optional decimal point, a leading zero
followed by octal digits, or a leading 0x prefix followed by hexadecimal digits. Hexadecimal and
octal numbers are automatically converted to decimal form.

The following examples show expressions that use numeric literals:

The following expressions evaluate to true

(1 < 2)

(0x10 == "16")
(1 == 1.00)

The following expressions evaluate to false

(1 > 2)

("0x10" == 16)

(1 != 1.00)

Expression Variables
Any $variable can be used as a variable in an expression. To mirror the Client tag syntax, the
$ prefix is optional for predefined variable names in expressions. For example, the following
three portions of obj.conf are all semantically equivalent:

<If $uri = "*.html">
...

</If>

<If uri = "*.html">
...

</If>

<Client uri = "*.html">
...

</Client>

Expressions

Appendix A • Using Variables, Expressions, and String Interpolation 283

Any variable names you define must use the $ prefix. For example, the following expression is
invalid even if somecustomvariable is defined in a server.xml variable element:

<If somecustomvariable = "foo">
...

</If>

To make this expression valid, add the dollar sign prefix:

<If $somecustomvariable = "foo">
...

</If>

Expression Operators
The following table lists the operators that are used in expressions.

TABLE A–2 List of Expression Operators

Operator Symbol Operator Name

! C-style logical not

= Wildcard pattern match

=~ Regular expression match

!~ Regular expression mismatch

+ Addition or unary plus

- Subtraction or unary minus

. String concatenation

defined Value is defined

-d Directory exists

-e File or directory exists

-f File exists

-l Symbolic link exists

-r File is readable

-s File size

-U URI maps to accessible file or directory

Expressions

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009284

TABLE A–2 List of Expression Operators (Continued)
Operator Symbol Operator Name

< Numeric less than

<= Numeric less than or equal to

> Numeric greater than

>= Numeric greater than or equal to

lt String less than

le String less than or equal to

gt String greater than

ge String greater than or equal to

== Numeric equal

!= Numeric not equal

eq String equal

ne String not equal

^ C-style exclusive or

&& C-style logical and

|| C-style logical or

not Logical not

and Logical and

or Logical or

xor Logical exclusive or

The following table lists the precedence of operators within expressions from highest to lowest
precedence.

TABLE A–3 Operator Precedence

Symbol Operands Associativity Description

(), [] 0 Left to right Parentheses

!, unary +, unary - 1 Right to left Sign operators

=, =~, !~ 2 Non-associative Pattern matching operators

+, -, . 2 Non-associative Additive operators

Expressions

Appendix A • Using Variables, Expressions, and String Interpolation 285

TABLE A–3 Operator Precedence (Continued)
Symbol Operands Associativity Description

defined, -d, -f, -l, -r, -s, -U 1 Right to left Named operators

<, lt, <=, le, >, gt, >=, ge 2 Non-associative Relational operators

==, eq, !=, ne 2 Non-associative Equality operators

^ 2 Left to right C-style exclusive or operator

&& 2 Left to right C-style logical and operator

|| 2 Left to right C-style logical or operator

not 1 Right to left Logical not operator

and 2 Left to right Logical and operator

or, xor 2 Left to right Logical or operators

The numeric operators (<, <=, >, >=, ==, and !=) are intended to operate on numbers and not
strings. To facilitate comparing numbers, dates, and timestamps, the numeric operators ignore
any white space, colons, slashes, and commas in their arguments. Dashes after the first digit are
also ignored.

Note – It is generally incorrect to use the numeric operators on non-numeric values.

For example, the following expression evaluates to true:

The following expression evaluates to true because both

"foo" and "bar" are numerically equivalent to 0

("foo" == "bar")

Expression Functions
Expression functions manipulate data for use in expressions. Expression functions are different
from SAFs. While SAFs perform the actual work associated with an HTTP request, expression
functions are used to select which SAFs run and what parameters to pass to the SAFs.

Some expression functions require one or more arguments. An expression function's argument
list is bracketed by parentheses (()) and the individual arguments are separated by commas (,).

The individual expression functions are listed in the following sections:

■ “atime” on page 287
■ “choose” on page 287

Expressions

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009286

■ “ctime” on page 288
■ “escape” on page 288
■ “external” on page 289
■ “httpdate” on page 290
■ “lc” on page 291
■ “length” on page 291
■ “lookup” on page 292
■ “mtime” on page 293
■ “owner” on page 293
■ “uc” on page 294
■ “unescape” on page 294
■ “uuid” on page 295

atime
The atime function returns the time of the last access for the specified file or directory.

Syntax
atime(path)

Arguments
The following table describes the argument for the expression function.

TABLE A–4 atimeArgument

Argument Description

path The absolute path to the directory or file name for which you are requesting
the last access

See Also
■ “ctime” on page 288
■ “mtime” on page 293

choose
The choose function parses pipe-separated values from values and returns one at random.

Syntax
choose(values)

Arguments
The following table describes the argument for the expression function.

Expressions

Appendix A • Using Variables, Expressions, and String Interpolation 287

TABLE A–5 chooseArgument

Argument Description

values The list of values to choose from, separated by the pipe character (|)

Example

The following obj.conf code demonstrates the use of choose to randomly select one of three
images:

NameTrans fn="rewrite"
from="/images/random"
path="/images/$(choose(’iwsvi.jpg|0061.jpg|webservervii.jpg’))"

ctime
The ctime function returns the time of the last status change for the specified file or directory.

Syntax

ctime(path)

Arguments

The following table describes the argument for the expression function.

TABLE A–6 ctimeArgument

Argument Description

path The absolute path to the directory or file name for which you are requesting
the last status change

See Also
■ “atime” on page 287
■ “mtime” on page 293

escape
The escape function encodes the URI using util_uri_escape, converting special octets to
their %-encoded equivalents, and returns the result.

Syntax

escape(uri)

Expressions

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009288

Arguments

The following table describes the argument for the expression function.

TABLE A–7 escapeArgument

Argument Description

uri The URI that the expression function converts

See Also

“unescape” on page 294

external
The external function passes a value to an external rewriting program and returns the result.

Each invocation of external results in a single newline-terminated line being written to the
external rewriting program's stdin. For each line of input, the program must produce a single
line of output. When developing an external rewriting program, it is important to avoid
buffering stdout. In Perl, for example, $| = 1; should be used to disable buffering. Because the
server expects the external rewriting program to produce one line of output for each line of
input, the server can hang if the external rewriting program buffers its output.

Syntax

external(program, value)

Arguments

The expression function has the following arguments.

TABLE A–8 externalArguments

Argument Description

program The program argument is the file name of an external rewriting program.
Because program is executed using the operating system's default shell
(/bin/sh on Unix/Linux) or the command interpreter (CMD.EXE on
Windows), program should be an absolute path or the name of a program in
the operating system's PATH. The server starts the external rewriting
program on demand. A given server process never executes more than one
instance of the program at a time.

Note – The server may start multiple instances of a given external rewriting
program when the server is running in multiprocess mode.

Expressions

Appendix A • Using Variables, Expressions, and String Interpolation 289

TABLE A–8 externalArguments (Continued)
Argument Description

value The value passed to the rewrite program.

Example

The following is an example of an external rewriting program rewrite.pl, used to change the
prefix /home/ to /u/:

#!/usr/bin/perl

$| = 1;

while (<STDIN>) {

s|^/home/|/u/|;

print $_;

}

In this example, the external expression function used to invoke rewrite.pl is as follows:

NameTrans fn="rewrite" path="$(external(’rewrite.pl’, $path))"

httpdate
The httpdate function returns an RFC 1123 date/time stamp for use in HTTP header fields
such as Expires.

Syntax

httpdate(time)

Arguments

The following table describes the argument for the expression function.

TABLE A–9 httpdateArgument

Argument Description

time The time value

Example

The following obj.conf code could be used to set an Expires header that indicates a response is
not cached for more than one day:

ObjectType fn="set-variable"
insert-srvhdrs="$(httpdate($time + 86400))"

Expressions

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009290

lc
The lc function converts all the US ASCII characters in the string to lowercase and returns the
result.

syntax

lc(string)

Arguments

The following table describes the argument for the expression function.

TABLE A–10 lcArgument

Argument Description

string The string the expression function converts to lowercase

Example

The following obj.conf code can be used to redirect clients who erroneously used uppercase
characters in the request URI to the equivalent lowercase URI:

<If code == 404 and not -e path and -e lc(path)>

Error fn="redirect" uri="$(lc($uri))"
</If>

See Also

“uc” on page 294

length
The length function returns the length of its argument, that is, a number representing the
length of the string.

Syntax

length(string)

Arguments

The following table describes the argument for the expression function.

Expressions

Appendix A • Using Variables, Expressions, and String Interpolation 291

TABLE A–11 lengthArgument

Argument Description

string The string for which the expression function computes the length.

Example

The following obj.conf code can be used to send a 404 Not found error to clients that request
URIs longer than 255 bytes:

<If length($uri) > 255)>

PathCheck fn="deny-existence"
</If>

lookup
The lookup function inspects a text file for a name-value pair with name name and returns the
corresponding value. The name-value pairs in the file are separated by white space.

If the file does not contain a name-value pair with the specified name, this function returns the
value of defaultvalue, if specified, or returns an empty string.

Syntax

lookup(filename, name, defaultvalue)

Arguments

The expression function has the following arguments:

TABLE A–12 lookupArguments

Argument Description

filename filename is the name of a text file that contains one name-value pair per line.
filename can be an absolute path or a path relative to the server's config
directory. Names and values are separated by white space. Lines beginning
with # are ignored.

name The name of the name-value pair for which the function looks in the text
file.

defaultvalue The value returned by the function if filename exists but does not contain a
name-value pair with a name matching the value of name. If defaultvalue is
not specified, it defaults to an empty string.

Expressions

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009292

Example

The following example shows a text file called urimap.conf that could be used with the lookup
function to map shortcut URIs to URIs:

This file contains URI mappings for Web Server.

Lines beginning with # are treated as comments.

All other lines consist of a shortcut URI, whitespace, and canonical URI.

/webserver /software/products/web_srvr/home_web_srvr.html

/solaris /software/solaris/

/java /software/java/

Using the sample text file above, you could use the following lookup expression to implement
shortcut URIs for commonly accessed resources:

<If lookup(’urimap.conf’, uri)>

NameTrans fn="redirect" url="$(lookup(’urimap.conf’, uri))"
</If>

mtime
The mtime function returns the time of the last data modification for the specified file or
directory.

Syntax

mtime(path)

Arguments

The following table describes the argument for the expression function.

TABLE A–13 mtimeArgument

Argument Description

path The absolute path to the directory or file name for which you are requesting
the last data modification

See Also
■ “atime” on page 287
■ “ctime” on page 288

owner
The owner function returns the owner of a file.

Expressions

Appendix A • Using Variables, Expressions, and String Interpolation 293

Syntax

owner(path)

Arguments

The following table describes the argument for the expression function.

TABLE A–14 ownerArgument

Argument Description

path The absolute path to the directory or file name for which you are requesting
the last data modification

uc
The uc function converts all the US ASCII characters in string to uppercase and returns the
result.

Syntax

uc(string)

Arguments

The following table describes the argument for the expression function.

TABLE A–15 ucArgument

Argument Description

string The string that the expression function converts to uppercase

See Also

“lc” on page 291

unescape
The unescape function decodes the URI using util_uri_unescape, converting %-encoded
octets to their unencoded form, and returns the result.

Syntax

unescape(uri)

Expressions

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009294

Arguments

The following table describes the argument for the expression function.

TABLE A–16 unescapeArgument

Argument Description

uri The URI that the function converts

See Also

“escape” on page 288

uuid
The uuid function returns a UUID as a string. No two calls to uuid return the same UUID.
Because they are guaranteed to be unique, UUIDs are useful for constructing client-specific
cookie values.

Syntax

uuid()

Regular Expressions
The If and ElseIf expressions may evaluate regular expressions using the =~ and !~ regular
expression matching operators. These regular expressions use the Perl-compatible syntax
implemented by Perl-compatible Regular Expressions (PCRE).

By default, regular expressions are case sensitive. The (?i) option flag can be added to the
beginning of a regular expression to request case insensitivity. For example:

$uri =~ ’^/[Ff][Ii][Ll][Ee][Nn][Aa][Mm][Ee]$’

$uri =~ ’(?i)^/filename$’

When an If or ElseIf expression contains a regular expression, regular expression
backreferences can appear within arguments in the container body. Regular expression
backreferences are of the form $n where n is an integer between 1 and 9 corresponding to the
capturing subpattern of the regular expression.

For example:

<If $path =~ ’^(.*)(\.html|\.htm)$’>

NameTrans fn="rewrite" path="$1.shtml"
</If>

Expressions

Appendix A • Using Variables, Expressions, and String Interpolation 295

In the above example, two subpatterns are used in the If expression, so $1 and $2 can be used as
backreferences. In the example, the value of the first capturing subpattern is used within a
NameTrans fn="rewrite" parameter. The value of the second capturing subpattern is ignored.

An If or ElseIf expression can contain backreferences to earlier regular expressions in that
same If or ElseIf expression.

For example:

<If "foo" =~ "(.*)" and $1 eq "foo">
Any contained directives will be executed

since $1 will evaluate to "foo"
...

</If>

The contents of the above If expression are executed, because the given If expression always
evaluates to true.

However, If and Elseif expressions, and contained directives, can't contain backreferences to
regular expressions in parent containers. For example, the following obj.conf entry is invalid:

<If $path =~ ’(.*)\.css’>

<If $browser = "*MSIE*">
This example is invalid as $1 is not defined

AuthTrans fn="rewrite" path="$1-msie.css"
</If>

</If>

You can use $& to obtain the value that last successfully matched a regular expression. Use the
following obj.conf entry to redirect requests for HTML files to another server:

<If $path =~ ’\.html$’ or $path =~ ’\.htm$’ >

NameTrans fn="redirect" url="http://docs.example.com$&"
</If>

String Interpolation
Strings that contain references to variables or expressions are called interpolated strings. When
you use interpolated strings, the embedded expressions and variables are evaluated and the
result is inserted into the string. The act of inserting data into a string is called string
interpolation.

Use interpolated strings in expressions, log formats, and obj.conf parameters. In expressions,
only string literals bracketed by double quotes are interpolated. For more information, see
“Expression Literals” on page 282.

String Interpolation

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009296

Using Variables in Interpolated Strings
To include the value of a variable in a string, prefix the name of the variable with the dollar-sign
($). For example, the following format element in server.xml logs the client IP address,
requested URI, and corresponding file system path for each HTTP request:

<access-log>

<file>access</file>

<format>$ip "$uri" $path</format>

</access-log>

In this example, $ip, $uri, and $path are predefined variables. For more information, see
“Variables” on page 277.

For more information on access logs and log format, see Appendix C, “Using the Custom Log
File Format.” For more information on the access-log element in server.xml, see “access-log”
on page 43.

If the name of the variable is ambiguous, add curly braces, {}, to the name. For example, the
following string contains a reference to the predefined $path variable:

"${path}html"

Without the curly braces, the string instead contains a reference to a hypothetical variable
named pathhtml.

Using Expressions in Interpolated Strings
To include the result of an expression in a string, prefix the expression with $(and follow it with
). For example, the following two strings are identical after interpolation:

"$(2 + 2)"

"4"

When an interpolated string is used as an obj.conf parameter, the string is interpolated each
time the corresponding instruction is executed. For example, the following lines could be used
in obj.conf to redirect clients based on the requested URI and the contents of the file
redirect.conf:

<Object ppath="/redirect/*">
NameTrans fn="redirect" url="$(lookup(’redirect.conf’, $uri, ’/’))"
</Object>

In this example, the expression lookup(’redirect.conf’, $uri, ’/’) is evaluated each time
the NameTrans directive is invoked, and the result is passed to the redirect SAF in its url

String Interpolation

Appendix A • Using Variables, Expressions, and String Interpolation 297

parameter. For more information on the redirect SAF, see “redirect” on page 246. For more
information on the lookup expression function, see “lookup” on page 292.

String Interpolation

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009298

Using Wildcard Patterns

This appendix describes the wildcard patterns used by the Sun Java System Web Server.
Wildcards use special characters and are applicable in the obj.conf file, built-in SAFs, and
NSAPI functions. To use a wildcard character without any special meaning, precede it with a
backslash (\) character.

This appendix has the following sections

■ “Wildcard Patterns” on page 299
■ “Wildcard Examples” on page 300

Wildcard Patterns
The following table describes wildcard patterns, listing the patterns and their uses.

TABLE B–1 Wildcard Patterns

Pattern Use

* Match zero or more characters.

? Match exactly one occurrence of any character.

| An or expression. The substrings used with this operator can
contain other special characters such as * or $. The substrings must
be enclosed in parentheses, for example, (a|b|c), but the
parentheses cannot be nested.

$ Match the end of the string. This is useful in or expressions.

[abc] Match one occurrence of the characters a, b, or c. Within these
expressions, the only character that needs to be treated as a special
character is]; all others are not special.

BA P P E N D I X B

299

TABLE B–1 Wildcard Patterns (Continued)
Pattern Use

[a-z] Match one occurrence of a character between a and z.

[^az] Match any character except a or z.

*~ This expression, followed by another expression, removes any
pattern matching the second expression.

Wildcard Examples
The following table provides wildcard examples, listing the pattern and the result.

TABLE B–2 Wildcard Examples

Pattern Result

*.sun.com Matches any string ending with the characters .sun.com.

(quark|energy).sun.com Matches either quark.sun.com or energy.sun.com.

198.93.9[23].??? Matches a numeric string starting with either 198.93.92 or
198.93.93 and ending with any 3 characters.

. Matches any string with a period in it.

~sun- Matches any string except those starting with sun-.

*.sun.com~quark.sun.com Matches any host from domain sun.com except for a single host
quark.sun.com.

*.sun.com~(quark|energy|

neutrino).sun.com

Matches any host from domain .sun.com except for hosts
quark.sun.com, energy.sun.com, and neutrino.sun.com.

.com~.sun.com Matches any host from domain .com except for hosts from
sub-domain sun.com.

type=*~magnus-internal/* Matches any type that does not start with magnus-internal/.

This wildcard pattern is used in the file obj.conf in the catch-all
Service directive.

~.gif* Matches any string except those including gif.

Wildcard Examples

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009300

Using the Custom Log File Format

This chapter contains information about the log format used by Web Server. Use these format
options to customize the format of your log files. You can enter them through the Admin
Console, or edit the format subelement of the access-log element in server.xml. For more
information, see “access-log” on page 43.

You can use variables and expressions in log formats with the syntax $variable and
$(expression). For more information, see “Variables” on page 277, and “Expressions” on
page 281.

Custom Log File Format
When creating a custom log format, anything contained between percent signs (%) is
recognized as the name portion of a name-value pair stored in a parameter block in the server.
Any additional text is treated as literal text, so you can add to the line to make it more readable.
The one exception to the percent sign rule is the %SYSDATE% component, which delivers the
current system date. %SYSDATE% is formatted using the time format %d/%b/%Y:%H:%M:%S plus
the offset from GMT.

If no format parameter is specified for a log file, the common log format is used:

"%Ses->client.ip% - %Req->vars.auth-user% [%SYSDATE%]

\"%Req->reqpb.clf-request%\" %Req->srvhdrs.clf-status%

%Req->srvhdrs.content-length%"

Typical components of log file format are listed in the following table. Because certain
components could resolve to values that contain spaces, they are enclosed in escaped quotes
(\").

CA P P E N D I X C

301

TABLE C–1 Typical Components of Custom Log Formatting

Option Component

Client host name (unless iponly is specified in
flex-log or DNS name is not available) or IP address

%Ses->client.ip%

Client DNS name %Ses->client.dns%

System date %SYSDATE%

Full HTTP request line \"%Req->reqpb.clf-request%\"

Status %Req->srvhdrs.clf-status%

Response content length %Req->srvhdrs.content-length%

Response content type %Req->srvhdrs.content-type%

Referer header \"%Req->headers.referer%\"

User-Agent header \"%Req->headers.user-agent%\"

HTTP method %Req->reqpb.method%

HTTP URI %Req->reqpb.uri%

HTTP query string %Req->reqpb.query%

HTTP protocol version %Req->reqpb.protocol%

Accept header %Req->headers.accept%

Date header %Req->headers.date%

If-Modified-Since header %Req->headers.if-modified-since%

Authorization header %Req->headers.authorization%

Any header value %Req->headers.headername%

Name of authorized user %Req->vars.auth-user%

Value of a cookie %Req->headers.cookie.name%

Value of any variable in Req->vars %Req->vars.varname%

Virtual server ID %vsid%

Duration %duration%

Records the time in microseconds the server spent
handling the request. Statistics must be enabled before
%duration% can be used.

Custom Log File Format

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009302

TABLE C–1 Typical Components of Custom Log Formatting (Continued)
Option Component

System time %Time

System time in seconds since 00:00:00 UTC, January 1,
1970.

Relative time %RELATIVETIME%

System time in seconds since logging started.

Method number %Req->method_num%

A number representing the HTTP method as used in
NSAPI.

HTTP Protocol Version %Req->protv_num%

A number representing the HTTP protocol version as
used in NSAPI.

HTTP request line %Req->reqpb.clf-request.method%

The method from the HTTP request line.

HTTP URI %Req->reqpb.clf-request.uri%

The URI from the HTTP request line.

URI Path %Req->reqpb.clf-request.uri.abs_path%

The absolute path component of the URI

URI Query %Req->reqpb.clf-request.uri.query%

The query component of the URI.

user_dn %Ses->client.user_dn%

The SSL client certificate authentication for web
security.

HTTP Protocol %Req->reqpb.clf-request.protocol%

The protocol from the HTTP request line.

Protocol Name %Req->reqpb.clf-request.protocol.name%

The name of the protocol.

Protocol Version %Req->reqpb.clf-request.protocol.version%

The version of the protocol.

Additional log file parameters that can be configured are listed in the following table.

Custom Log File Format

Appendix C • Using the Custom Log File Format 303

TABLE C–2 Additional Components of Custom Log Formatting

Option Component

Cipher name %Ses->client.cipher%

Size in bits of cipher key %Ses->client.keysize%

Size in bits of private key %Ses->client.secret-keysize%

DN for certificate issuer %Ses->client.issuer_dn%

DN for certificate user %Ses->client.user_dn%

SSL session identifier %Ses->client.ssl-id%

Custom Log File Format

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009304

Using Time Formats

This appendix describes the format strings used for dates and times in the server log. These
formats are used by the NSAPI function util_strftime, by some built-in SAFs such as
append-trailer, and by server-parsed HTML (parse-html). For more information about
server-parsed HTML, see Sun Java System Web Server 7.0 Update 6 NSAPI Developer’s Guide.

The formats are similar to those used by the strftime C library routine, but not identical. For
more information on the NSAPI function, util_strftime, see “util_strftime Function” in Sun
Java System Web Server 7.0 Update 6 NSAPI Developer’s Guide.

Format Strings
The following table describes the format strings for dates and times.

TABLE D–1 Format Strings for Date and Time

Attribute Allowed Values

%a Abbreviated day of the week (3 chars)

%d Day of month as decimal number (01-31)

%S Second as decimal number (00-59)

%M Minute as decimal number (00-59)

%H Hour in 24-hour format (00-23)

%Y Year with century, as decimal number, up to 2099

%b Abbreviated month name (3 chars)

%h Abbreviated month name (3 chars)

DA P P E N D I X D

305

http://docs.sun.com/doc/820-7980
http://docs.sun.com/doc/820-7980/abvlw?a=view
http://docs.sun.com/doc/820-7980/abvlw?a=view

TABLE D–1 Format Strings for Date and Time (Continued)
Attribute Allowed Values

%T Time in "HH:MM:SS" format

%X Time in "HH:MM:SS" format

%A Day of the week, full name

%B Month, full name

%C "%a %b %e %H:%M:%S %Y"

%c Date and time in "%m/%d/%y %H:%M:%S" format

%D Date in "%m/%d/%y" format

%e Day of month as decimal number (1-31) without leading zeros

%I Hour in 12-hour format (01-12)

%j Day of year as decimal number (001-366)

%k Hour in 24-hour format (0-23) without leading zeros

%l Hour in 12-hour format (1-12) without leading zeros

%m Month as decimal number (01-12)

%n Line feed

%p a.m./p.m. indicator for 12-hour clock

%R Time in "%H:%M" format

%r Time in "%I:%M:%S %p" format

%t Tab

%U Week of year as decimal number, with Sunday as first day of week (00-51)

%w Weekday as decimal number (0-6; Sunday is 0)

%W Week of year as decimal number, with Monday as first day of week (00-51)

%x Date in "%m/%d/%y" format

%y Year without century, as decimal number (00-99)

%% Percent sign

Format Strings

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009306

Configuration Changes Between Sun ONE Web
Server 6.1 and Sun Java System Web Server 7.0

This appendix summarizes the major configuration file changes between the 6.1 and the 7.0
version of Sun Java System Web Server.

■ “Element Changes in server.xml” on page 307
■ “Directive and Init Function Changes in magnus.conf” on page 309
■ “Other Configuration File Changes” on page 314

Element Changes in server.xml
This section summarizes the changes in server.xml.

TABLE E–1 server.xmlChanges

Web Server 6.1 Web Server 7.0 Description

SERVER Replaced Replaced by server and qos. For more information, see
“server” on page 81 and “qos” on page 77.

LS Replaced Replaced by http-listener. For more information, see
“http-listener” on page 63.

SSLPARAMS Replaced Replaced by ssl. For more information, see “ssl” on
page 89.

MIME Replaced Replaced by mime-file. For more information,
see“mime-file” on page 74.

ACLFILE Replaced Replaced by acl-file. For more information, see
“acl-file” on page 46.

VSCLASS Replaced Replaced by localization and object-file. For more
information, see “localization” on page 70 and
object-file.

EA P P E N D I X E

307

TABLE E–1 server.xmlChanges (Continued)
Web Server 6.1 Web Server 7.0 Description

VS Replaced Replaced by virtual-server. The virtual-server
element includes subelements such as host,
http-listener-name, acl-file, mime-file,
object-file, default-object-name, and log-file.
For more information on virutal-server and its
subelements, see “virtual-server” on page 98.

QOSPARAMS Replaced Replaced by qos-limits. For more information, see
“qos-limits” on page 78.

USERDB Replaced Replaced by auth-db. For more information, see
“auth-db” on page 47.

DAV Replaced Replaced by dav. For more information, see “dav” on
page 53.

DAVCOLLECTION Replaced Replaced by dav-collection. For more information,
see “dav-collection” on page 54.

SEARCH Replaced Replaced by search-app. For more information, see
“search-app” on page 80.

SEARCHCOLLECTION Replaced Replaced by search-collection. For more
information, see “search-collection” on page 80.

WEBAPP Replaced Replaced by web-app. For more information, see
“web-app” on page 99.

JAVA Replaced Replaced by jvm and servlet-container. For more
information, see “jvm” on page 67 and
“servlet-container” on page 84.

JVMOPTIONS Replaced Replaced by jvm-options. For more information, see
“jvm” on page 67.

PROFILER Replaced Replaced by profiler. For more information, see
“profiler” on page 75.

SECURITY Replaced Replaced by security.

AUTHREALM Replaced Replaced by auth-realm. For more information, see
“auth-realm” on page 48.

RESOURCES Replaced Replaced by resources.

CUSTOMRESOURCE Replaced Replaced by custom-resource. For more information,
see “custom-resource” on page 52.

Element Changes in server.xml

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009308

TABLE E–1 server.xmlChanges (Continued)
Web Server 6.1 Web Server 7.0 Description

EXTERNALJNDIRESOURCE Replaced Replaced by external-jndi-resource. For more
information, see “external-jndi-resource” on page 59.

JDBCRESOURCE Replaced Replaced by jdbc-resource. For more information, see
“jdbc-resource” on page 66.

JDBCCONNECTIONPOOL Replaced Replaced by jdbc-resource. For more information, see
“jdbc-resource” on page 66.

MAILRESOURCE Replaced Replaced by mail-resource. For more information, see
“mail-resource” on page 73.

LOG Replaced Replaced by log. For more information, see “log” on
page 71.

DESCRIPTION Replaced Replaced by description.

DISPLAYNAME Replaced Replaced by display-name. For more information, see
“display-name” on page 56.

VARS Replaced Replaced by variable. For more information, see
“variable” on page 97.

PROPERTY Replaced Replaced by variable and property. For more
information, see “variable” on page 97 and “property”
on page 76.

Directive and Init Function Changes in magnus.conf
This section summarizes the changes in magnus.conf.

■ “Directive Changes” on page 309
■ “Init Function Changes” on page 313

Directive Changes
The following table summarizes the changes made to magnus.conf directives.

Directive and Init Function Changes in magnus.conf

Appendix E • Configuration Changes Between Sun ONE Web Server 6.1 and Sun Java System Web Server 7.0 309

TABLE E–2 Directive Changes in magnus.conf

Web Server 6.1 Web Server 7.0 Description

MaxProcs Deprecated for
Java
technology-enabled
servers

Configures multiprocess mode. Multiprocess mode is
deprecated for Java technology-enabled servers.

PidLog Removed The pid file is now named pid and stored in the server's
temporary directory.

TempDir Replaced Replaced by the server.xml temp-path element.

TempDirSecurity Removed

DNS Subsumed Subsumed by the server.xml dns element. For more
information, see “dns” on page 56.

AsyncDNS Subsumed Subsumed by the server.xml dns element. For more
information, see “dns” on page 56.

HTTPVersion Subsumed Subsumed by the server.xml dns element. For more
information, see “dns” on page 56.

ServerString Subsumed Subsumed by the server.xml http element. For more
information, see “http” on page 61.

AcceptTimeout Subsumed Subsumed by the server.xml http element. For more
information, see “http” on page 61.

Favicon Subsumed Subsumed by the server.xml http element. For more
information, see “http” on page 61.

HeaderBufferSize Subsumed Subsumed by the server.xml http element. For more
information, see “http” on page 61.

MaxRqHeaders Subsumed Subsumed by the server.xml http element. For more
information, see “http” on page 61.

StrictHttpHeaders Subsumed Subsumed by the server.xml http element. For more
information, see “http” on page 61.

UseOutputStreamSize Subsumed Subsumed by the server.xml http element. For more
information, see “http” on page 61.

ChunkedRequestBufferSize Subsumed Subsumed by the server.xml http element. For more
information, see “http” on page 61.

ChunkedRequestTimeout Subsumed Subsumed by the server.xml http element. For more
information, see “http” on page 61.

ConnQueueSize Subsumed Subsumed by the server.xml thread-pool element.
For more information, see “thread-pool” on page 95.

Directive and Init Function Changes in magnus.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009310

TABLE E–2 Directive Changes in magnus.conf (Continued)
Web Server 6.1 Web Server 7.0 Description

RqThrottle Subsumed Subsumed by the server.xml thread-pool element.
For more information, see “thread-pool” on page 95.

RqThrottleMin Subsumed Subsumed by the server.xml thread-pool element.
For more information, see “thread-pool” on page 95.

StackSize Subsumed Subsumed by the server.xml thread-pool element.
For more information, see “thread-pool” on page 95.

KeepAliveQueryMeanTime Subsumed Subsumed by the server.xml keep-alive element. For
more information, see “keep-alive” on page 69.

KeepAliveQueryMaxSleepTime Removed Keep-alive connection management changes render this
directive obsolete.

KeepAliveTimeout Subsumed Subsumed by the server.xml keep-alive element. For
more information, see “keep-alive” on page 69.

MaxKeepAliveConnections Subsumed Subsumed by the server.xml keep-alive element. For
more information, see “keep-alive” on page 69.

KeepAliveThreads Subsumed Subsumed by the server.xml keep-alive element. For
more information, see “keep-alive” on page 69.

Security Subsumed Subsumed by the server.xml pkcs11 element. For
more information, see “pkcs11” on page 74.

SSLClientAuthDataLimit Subsumed Subsumed by the server.xml ssl element. For more
information, see “ssl” on page 89.

SSLClientAuthTimeout Subsumed Subsumed by the server.xml ssl element. For more
information, see “ssl” on page 89.

SSLCacheEntries Subsumed Subsumed by the server.xml ssl-session-cache
element. For more information, see “ssl-session-cache”
on page 94.

SSLSessionTimeout Subsumed Subsumed by the server.xml ssl-session-cache
element. For more information, see “ssl-session-cache”
on page 94.

SSL3SessionTimeout Subsumed Subsumed by the server.xml ssl-session-cache
element. For more information, see “ssl-session-cache”
on page 94.

ACLCacheLifetime Subsumed Subsumed by the server.xml acl-cache element. For
more information, see “acl-cache” on page 44.

ACLUserCacheSize Subsumed Subsumed by the server.xml acl-cache element. For
more information, see “acl-cache” on page 44.

Directive and Init Function Changes in magnus.conf

Appendix E • Configuration Changes Between Sun ONE Web Server 6.1 and Sun Java System Web Server 7.0 311

TABLE E–2 Directive Changes in magnus.conf (Continued)
Web Server 6.1 Web Server 7.0 Description

ACLGroupCacheSize Subsumed Subsumed by the server.xml acl-cache element. For
more information, see “acl-cache” on page 44.

CGIExpirationTimeout Subsumed Subsumed by the server.xml cgi element. For more
information, see “cgi” on page 49.

CGIStubIdleTimeout Subsumed Subsumed by the server.xml cgi element. For more
information, see “cgi” on page 49.

MinCGIStubs Subsumed Subsumed by the server.xml cgi element. For more
information, see “cgi” on page 49.

MaxCGIStubs Subsumed Subsumed by the server.xml cgi element. For more
information, see “cgi” on page 49.

WinCGITimeout Subsumed Subsumed by the server.xml cgi element. For more
information, see “cgi” on page 49.

CGIWaitPid Removed Controlled whether the CGI subsystem uses wait or
waitpid to reap child processes. The CGI subsystem
will now always use waitpid.

ErrorLogDateFormat Subsumed Subsumed by the server.xml log element. For more
information, see “log” on page 71.

ListenQ Subsumed Subsumed by the server.xml http-listener element.
For more information, see “http-listener” on page 63.

RcvBufSize Subsumed Subsumed by the server.xml http-listener element.
For more information, see “http-listener” on page 63.

SndBufSize Subsumed Subsumed by the server.xml http-listener element.
For more information, see “http-listener” on page 63.

LogFlushInterval Subsumed Subsumed by the server.xml access-log-buffer
element. For more information, see “access-log-buffer”
on page 43.

DefaultLanguage Subsumed Subsumed by the server.xml localization element.
For more information, see “localization” on page 70.

ExtraPath Removed Server startup/configuration changes render this
directive obsolete.

PostThreadsEarly Removed Thread management changes render this directive
obsolete.

ThreadIncrement Removed Thread management changes render this directive
obsolete.

Directive and Init Function Changes in magnus.conf

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009312

TABLE E–2 Directive Changes in magnus.conf (Continued)
Web Server 6.1 Web Server 7.0 Description

UseNativePoll Removed Native poll implementation versus NSPR
implementation will always be used.

AdminLanguage Removed AdminLanguage was deprecated in a previous release.

ClientLanguage Removed ClientLanguage was deprecated in a previous release.

NetsiteRoot Removed NetsiteRoot was deprecated in a previous release.

ServerID Removed ServerID was deprecated in a previous release.

ServerName Removed ServerName was deprecated in a previous release.

ServerRoot Removed ServerRoot was deprecated in a previous release.

Init Function Changes
The following table summarizes the changes made to magnus.conf Init functions.

TABLE E–3 Init function changes in magnus.conf

Web Server 6.1 Web Server 7.0 Description

dns-cache-init Deprecated Superseded by the server.xml dns-cache element. For
more information, see “dns-cache” on page 57.

flex-init Deprecated Superseded by the server.xml access-log element.
For more information, see “access-log” on page 43.

perf-init Deprecated Superseded by the server.xml stats element. For
more information, see “stats” on page 95.

stats-init Deprecated Superseded by the server.xml stats element. For
more information, see “stats” on page 95.

init-cgi Deprecated Superseded by the server.xml cgi element. For more
information, see “cgi” on page 49.

init-clf Deprecated Superseded by the server.xml access-log element.
For more information, see “access-log” on page 43.

nt-console-init Deprecated Superseded by the server.xml log element. For more
information, see “log” on page 71.

flex-rotate-init Deprecated Superseded by the server.xml event and log elements.
For more information, see “event” on page 58 and “log”
on page 71.

Directive and Init Function Changes in magnus.conf

Appendix E • Configuration Changes Between Sun ONE Web Server 6.1 and Sun Java System Web Server 7.0 313

Other Configuration File Changes
This section lists additional configuration file changes in Sun Java System Web Server 7.0.

The following files have been removed and are no longer applicable:

■ dbswitch.conf - This file configured authentication databases. The functionality of this file
is subsumed by the server.xml auth-db element. For more information, see “auth-db” on
page 47.

■ nsfc.conf - This optional file configured the Netscape file cache. The functionality of this
file is subsumed by the server.xml file-cache element. For more information, see
“file-cache” on page 60.

■ password.conf - This optional file containing one or more PKCS #11 PINs allowed
unattended restarts of an SSL-enabled server. The functionality of this file is subsumed by
the server.xml pkcs11 element. For more information, see “pkcs11” on page 74.

■ *.clfilter - The magnus.conf.clfilter, obj.conf.clfilter, and
server.xml.clfilter files defined the program used to filter node-specific information
from configuration files when propagating configuration changes across a cluster. This
filtering is now performed automatically by the Administration Server.

The location of the following files has changed:

■ certmap.conf - This file has been moved from the install_dir/userdb directory to the
instance_dir/config directory.

■ https-server_id-hostname-cert8.db - This file has been moved from the
install_dir/alias directory to the instance_dir/config directory and is renamed cert8.db.

■ https-server_id-hostname-key3.db - This file has been moved from the
install_dir/alias directory to the instance_dir/config directory and is renamed key3.db.

■ secmod.db - This file has been moved from the install_dir/alias directory to the
instance_dir/config directory.

■ generated.https-server_id.acl - This file has been moved from the install_dir/httpacl
directory to the instance_dir/config directory and is renamed default.acl.

Other Configuration File Changes

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009314

Web Server Interfaces

This appendix describes the interfaces in Web Server and their stability level. Sun products
classify public interfaces according to their expected stability level so that you can make
informed decisions when creating dependencies on these interfaces. For example, you can
confidently create programmatic dependencies (for example, shell scripts) which rely on stable
interfaces, knowing these will not change often (if ever).

Note that the word interface is used in a very broad sense. Any implementation detail on which
your code might rely on can be an interface. This includes APIs but also includes aspects such as
CLI option names, file system paths, file names and so forth.

In the following table, the stability levels have the following definitions:

■ Standard – Interfaces defined by a standard, for example Java Servlet API (JSR 154).
Changes track the standard specification and are as stable as the referenced standard.

■ Stable – Incompatibilities are exceptional. Incompatible changes can only occur in the next
major release and with prior warning. While possible, incompatible changes to stable
interfaces are not expected.

■ Evolving – Incompatibilities are rare. Incompatible change can only occur in the next minor
release and with prior warning.

■ Unstable – Experimental or transitional: incompatibilities are common. While future
release of the Web Server might attempt to provide either stability or a migration path for
unstable interfaces, incompatible changes are possible at any time. If at all possible, avoid
creating programmatic dependencies on unstable interfaces or your code might break in a
future release. If you need to create programmatic dependencies on unstable interfaces,
structure your code in a way which makes it easy to adapt to future changes.

■ Obsolete – Obsolete interfaces continue to be supported but might be removed in some (not
yet determined) future release. Do not create any new dependencies on obsolete interfaces.
If you have existing dependencies on obsolete interfaces, remove those dependencies as
soon as possible.

FA P P E N D I X F

315

■ Private – Private interfaces cannot be relied on for any use. Private interfaces might change
incompatibly (or disappear entirely) without prior notice at any time. Sun cannot provide
any support or assurance of any use of private interfaces.

Note – Private interfaces are for the most part not listed in this appendix, because all
interfaces not documented in the product documentation are by default private. However,
some visible but private interfaces are explicitly documented as private in this appendix to
highlight the fact that these interfaces cannot be used.

TABLE F–1 Interfaces

Interface Name Stability Level Comments

server.xml Unstable Avoid creating scripts which read
or write to server.xml directly.
Instead, use the wadm CLI to reliably
modify server.xml.

magnus.conf Evolving Where possible, use the wadm CLI
to reliably modify configuration
files.

default.acl Evolving Where possible, use the wadm CLI
to reliably modify configuration
files.

certmap.conf Evolving Where possible, use the wadm CLI
to reliably modify configuration
files.

obj.conf Evolving Where possible, use the wadm CLI
to reliably modify configuration
files.

mime.types Evolving Where possible, use the wadm CLI
to reliably modify configuration
files.

server.policy Evolving Where possible, use the wadm CLI
to reliably modify configuration
files.

login.conf Evolving Where possible, use the wadm CLI
to reliably modify configuration
files.

Any configuration files not specifically listed
above

Private Naming and contents of any other
configuration files are not intended
for user manipulation.

Web Server Interfaces

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009316

TABLE F–1 Interfaces (Continued)
Interface Name Stability Level Comments

$PKGROOT/bin/ Stable The location of supported public
binaries.

$PKGROOT/include/ Stable The location of public include files
for developers.

$PKGROOT/plugins/ Stable The location of documented
plug-ins.

$PKGROOT/samples/ Unstable Samples are a form of
documentation. They are provided
for reference, but might change
from release to release. Do not
build hard dependencies on
samples.

$PKGROOT/lib/ Private No external use supported.

instance_dir/bin/* Stable The location of supported, public,
instance-specific binaries:
startserv, stopserv, rotate,
restart, and reconfig.

instance_dir//logs/access Location: stable

Content: stable

The access log file can be parsed by
scripts.

instance_dir//logs/errors Location: stable

Content: not an
Interface

The content of the log, for example,
the wording of messages, is not an
interface suitable for programmatic
access and might change from
patch to patch. It is intended for
visual parsing by human readers
only.

Installer CLI and options Evolving

Uninstall CLI and options Evolving

Silent installer statefile variables Evolving

Installer graphical user interface (GUI) Unstable GUI screen layouts are generally
unstable.

Installer exit values Evolving

Configurator/unconfigurator back-end CLIs Private No external use supported.

Configurator back-end properties Private No external use supported.

Jacl Private No external use supported.

Web Server Interfaces

Appendix F • Web Server Interfaces 317

TABLE F–1 Interfaces (Continued)
Interface Name Stability Level Comments

JLine Private No external use supported.

PCRE Private No external use supported.

Xalan C++ Private No external use supported.

Xerces C++ Private No external use supported.

schema2beans Private No external use supported.

Admin Console Unstable GUI screen layouts are generally
unstable.

wadm CLI and command-line arguments Evolving Where possible, use the wadm CLI
to reliably modify configuration
files.

wadm CLI error codes Evolving Where possible, use the wadm CLI
to reliably modify configuration
files.

wadm password file format Evolving Where possible, use the wadm CLI
to reliably modify configuration
files.

wadm output (stdout and stderr) Not an interface Output generated by the CLI only
provides messages for a human
reader. It is not intended for
programmatic parsing or scripting.

.wadmrc file Evolving Optional Jacl file residing in the
user's home directory or loaded up
by --rcfile. It serves as a startup
file.

wdeploy CLI Obsolete Previously obsoleted, still retained.
Replaced by wadm. Will be removed
in a future release.

SNMP MIB Evolving

JES-MF MBeans Private No external use supported.

com.sun.appserv.server.Lifecycle APIs Evolving API details in lifecycle spec.

JSR 88 implementation Evolving

SUNWwbsvr7 (Solaris)
sun-webserver-7.0.0-1.i386.rpm (Linux
rpm)

Stable Main Web Server 7.0 package. The
name will change in the next major
release.

Web Server Interfaces

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009318

TABLE F–1 Interfaces (Continued)
Interface Name Stability Level Comments

SUNWwbsvr7-dev (Solaris)
sun-webserver-dev-7.0.0-1.i386.rpm

(Linux rpm)

Stable Package that contains additional
files for developer support (for
example, header files). The name
will change in the next major
release.

SUNWwbsvr7-cli (Solaris)
sun-webserver-cli-7.0.0-1.i386.rpm

(Linux rpm)

Stable The CLI package. The CLI can be
installed separately on other hosts.
The name will change in the next
major release.

N1 plugin-descriptor.xml Private No external use supported.

N1 pluginUI.xml Private No external use supported.

TCP port 8989 Stable Default administration HTTP SSL
port. IANA registration completed.

TCP port 8800 Stable Default administration HTTP
non-SSL port. IANA registration
completed.

WebDAV Standard RFC 2518, RFC 3744.

JSTL 1.1 Standard

MaxProcs mode Obsolete MaxProcs mode is obsolete but still
supported. It might be removed in
a future release.

Web Server Interfaces

Appendix F • Web Server Interfaces 319

320

Alphabetical List of Server Configuration
Elements and Predefined SAFs

This appendix provides an alphabetical list of server configuration elements, including
server.xml elements, and predefined SAFs in magnus.conf and obj.conf files.

A
“access-log” on page 43

“access-log-buffer” on page 43

“acl-cache” on page 44

“acl-file” on page 46

“acl-db” on page 45

“add-footer” on page 205

“add-header” on page 206

“append-trailer” on page 208

“assign-name” on page 143

“audit-accesses” on page 46

“auth” on page 47

“auth-db” on page 47

“auth-realm” on page 48

B
“basic-auth” on page 138

“basic-ncsa” on page 140

“block-auth-cert” on page 171

GA P P E N D I X G

321

“block-cache-info” on page 172

“block-cipher” on page 172

“block-ip” on page 173

“block-issuer-dn” on page 173

“block-jroute” on page 174

“block-keysize” on page 174

“block-proxy-agent” on page 175

“block-proxy-auth” on page 176

“block-secret-keysize” on page 176

“block-ssl-id” on page 177

“block-user-dn” on page 177

“block-via” on page 178

C
“cgi” on page 49

“check-acl” on page 154

“check-request-limits” on page 155

“cindex-init” on page 108

“cluster” on page 50

“compress-file” on page 196

“connection-creation-property” on page 50

“connection-lease-property” on page 51

“convert” on page 52

“custom-resource” on page 52

D
“dav” on page 53

“dav-collection” on page 54

“default-auth-db-name” on page 55

Alphabetical List of Server Configuration Elements and Predefined SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009322

“default-auth-realm-name” on page 56

“default-soap-auth-provider-name” on page 56

“define-perf-bucket” on page 109

“delete-file” on page 209

“deny-existence” on page 157

“display-name” on page 56

“dns” on page 56

“dns-cache” on page 57

“document-root” on page 144

E
“env-variable” on page 58

“error-j2ee” on page 240

“event” on page 58

“external-jndi-resource” on page 59

F
“file-cache” on page 60

“find-compressed” on page 158

“find-index” on page 159

“find-index-j2ee” on page 160

“find-links” on page 161

“find-pathinfo” on page 162

“flex-log” on page 239

“force-type” on page 178

“forward-auth-cert” on page 179

“forward-cache-info” on page 180

“forward-cipher” on page 180

“forward-ip” on page 181

Alphabetical List of Server Configuration Elements and Predefined SAFs

Appendix G • Alphabetical List of Server Configuration Elements and Predefined SAFs 323

“forward-issuer-dn” on page 181

“forward-jroute” on page 182

“forward-keysize” on page 183

“forward-proxy-agent” on page 183

“forward-proxy-auth” on page 184

“forward-secret-keysize” on page 184

“forward-ssl-id” on page 185

“forward-user-dn” on page 185

“forward-via” on page 186

G
“get-client-cert” on page 163

“get-sslid” on page 141

H
“http” on page 61

“http-client-config” on page 186

“http-listener” on page 63

“home-page” on page 145

I
“imagemap” on page 210

“index” on page 65

“index-common” on page 211

“index-simple” on page 214

“init-dav” on page 110

“init-filter-order” on page 110

“init-request-limits” on page 112

“init-uhome” on page 112

“insert-filter” on page 243

“instance” on page 65

Alphabetical List of Server Configuration Elements and Predefined SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009324

J
“jdbc-resource” on page 66

“jvm” on page 67

K
“keep-alive” on page 69

“key-toosmall” on page 215

L
“lifecycle-module” on page 70

“list-dir” on page 216

“load-modules” on page 113

“localization” on page 70

“lock-db” on page 71

“log” on page 71

M
“make-dir” on page 218

“mail-resource” on page 73

“map” on page 146

“match-browser” on page 244

“mime-file” on page 74

N
“ntcgicheck” on page 165

“ntrans-dav” on page 147

“ntrans-j2ee” on page 148

“nt-uri-clean” on page 164

P
“pcheck-dav” on page 166

“pfx2dir” on page 148

“pkcs11” on page 74

“pkcs11 bypass” on page 75

Alphabetical List of Server Configuration Elements and Predefined SAFs

Appendix G • Alphabetical List of Server Configuration Elements and Predefined SAFs 325

“pool-init” on page 114

“profiler” on page 75

“property” on page 76

“property-db” on page 77

“proxy-retrieve” on page 219

Q
“qos” on page 77

“qos-error” on page 241

“qos-handler” on page 141

“qos-limits” on page 78

“query-handler” on page 245

R
“redirect” on page 246

“register-http-method” on page 114

“remove-dir” on page 220

“remove-filter” on page 248

“rename-file” on page 221

“request-policy” on page 79

“require-auth” on page 166

“response-policy” on page 79

“restart” on page 249

“reverse-map” on page 150

“rewrite” on page 151

S
“search-app” on page 80

“search-collection” on page 80

“sed-request” on page 195

“sed-response” on page 200

Alphabetical List of Server Configuration Elements and Predefined SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009326

“send-cgi” on page 222

“send-error” on page 250

“send-file” on page 225

“send-range” on page 226

“send-shellcgi” on page 227

“send-wincgi” on page 228

“server” on page 81

“service-dav” on page 229

“service-dump” on page 231

“service-j2ee” on page 232

“service-trace” on page 234

“servlet-container” on page 84

“session-replication” on page 86

“set-basic-auth” on page 187

“set-cache-control” on page 188

“set-cookie” on page 189

“set-default-type” on page 190

“set-origin-server” on page 201

“set-proxy-server” on page 202

“set-variable” on page 252

“set-virtual-index” on page 167

“shtml-hacktype” on page 190

“shtml-send” on page 235

“single-sign-on” on page 87

“snmp” on page 87

“soap-auth-provider” on page 88

Alphabetical List of Server Configuration Elements and Predefined SAFs

Appendix G • Alphabetical List of Server Configuration Elements and Predefined SAFs 327

“ssl” on page 89

“ssl-check” on page 168

“ssl-client-config” on page 191

“ssl-logout” on page 169

“ssl-session-cache” on page 94

“stats” on page 95

“stats-xml” on page 236

“strip-params” on page 152

T
“thread-pool” on page 95

“thread-pool-init” on page 115

“time” on page 96

“token” on page 97

“type-by-exp” on page 192

“type-by-extension” on page 193

“type-j2ee” on page 194

U
“unix-home” on page 152

“unix-uri-clean” on page 169

“upload-file” on page 238

V
“variable” on page 97

“virtual-server” on page 98

W
“web-app” on page 99

Alphabetical List of Server Configuration Elements and Predefined SAFs

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009328

Index

Numbers and Symbols
!= (not equal to), ACL expression operator, 270
= (equals), ACL expression operator, 270
= greater than or equal to, ACL expression

operator, 270

A
access-log-buffer element, 43
access-log element, 43
ACL

attribute expressions, 269-270
authentication statements, 267-268
authorization statements, 268-269
default file, 271
default file location, 314
file syntax, 266-270
in server.xml and obj.conf, 265-266

acl-cache element, 44
acl-db element, 45
acl-file element, 46
acl parameter, 154
add-footer function, 205-206
add-header function, 206-208
addCgiInitVars parameter, 235
AddLog, 121

flow of control, 134
function descriptions, 239-240

admin-server directory, 27
all-requests bucket, 138
always-use-keep-alive parameter, 187

and, ACL expression operator, 270
append-trailer function, 208-209
assign-name function, 143-144
atime function, 287
attribute expressions, ACL, attribute, 269-270
attribute expressions, ACL, operators, 270
audit-accesses element, 46
auth-db element, 47
auth element, 47
auth-group parameter, 167
auth-realm element, 48
auth-type parameter, 139, 140, 167
auth-user parameter, 167
authentication statements, ACL syntax, 267-268
authorization statements, ACL, 268-269
AuthTrans, 120

flow of control, 127
function descriptions, 138-142

B
backreferences, 295
basic-auth function, 138-140
Basic authentication method, 267
basic-ncsa function, 140-141
bin directory, 28
block-auth-cert function, 171
block-cache-info function, 172
block-cipher function, 172-173
block-ip function, 173
block-issuer-dn function, 173-174

329

block-jroute function, 174
block-keysize function, 174-175
block-proxy-agent function, 175
block-proxy-auth function, 176
block-secret-keysize function, 176-177
block-size parameter, 114
block-ssl-id function, 177
block-user-dn function, 177-178
block-via function, 178
bong-file parameter, 157, 169
boolean, expression results, 282
bucket, 109-110

all request, 138
default, 138

bucket parameter, 138
built-in SAFs in obj.conf, 137-256

C
cache

ACL, 44
DNS, 57
enabling memory allocation pool, 114
file, 60

cache control directives, 188
case sensitivity in magnus.conf, 102
case sensitivity in obj.conf, 136
cert8.db file location, 314
certmap.conf, 273-275
certmap.conf file location, 314
cgi element, 49
charset parameter, 179, 190, 192
check-acl function, 154
check-age parameter, 159
check-request-limits function, 155-157
checkFileExistence parameter, 162
ChildRestartCallback, 103
choose function, 287-288
chroot parameter, 223
ChunkedRequestBufferSize parameter, 203
ChunkedRequestTimeout parameter, 203
cindex-init function, 108-109
clfilter, 314
client-cert-nickname parameter, 191

Client tag, 124-126
cluster element, 50
CmapLdapAttr property, 274
code parameter, 241
comments

in magnus.conf, 103
in obj.conf, 136

compression-level parameter, 198
config directory, 28
connection-creation-property element, 50
connection-lease-property element, 51
content-type icons, 212
control parameter, 188
convert element, 52
core SAFs in obj.conf, 137-256
ctime function, 288
custom log file format, 301-304
custom log file format components, 302
custom-resource element, 52
custom variables, 280

D
dav-collection element, 54
dav element, 53
day of month, 305
dayofweek, ACL expression operator, 270
dbm parameter, 140
dbswitch.conf, 314
deafault-auth-db-name element, 55
default-auth-realm-name element, 56
default-bucket, 138
default object, 122-127
default-soap-auth-provider-name element, 56
default-web.xml, 276
define-perf-bucket function, 109-110
delete-file function, 209-210
deny-existence function, 157-158
deprecated SAFs, 117
description parameter, 110
Digest authentication method, 267
digest directory, 29
dir parameter, 149, 162, 223
directive changes in magnus.conf, 309-313

Index

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009330

directives
magnus.conf, 103
obj.conf, 137-256
order of in obj.conf, 135
syntax in obj.conf, 121

directory structure, 27
disable parameter, 114, 161
display-name element, 56
DNComps property, 274
dns-cache element, 57
dns-cache-init function (deprecated), 117
dns element, 56
document-root function, 144-145
domain parameter, 189
dorequest parameter, 163
dotdirok parameter, 165, 169
dynamic link library, loading, 113-114
dynamic reconfiguration, 30-31

E
element changes in server.xml, 307-309
elements in the server.xml file, 41-100
Else tag, 126-127
ElseIf tag, 126-127

with regular expressions, 295
enc parameter, 179, 190, 192, 257
env-variable element, 58
Error directive, 121

flow of control, 134
function descriptions, 240-242

error-j2ee function, 240-241
error parameter, 156
errors, sending customized messages, 241
escape function, 288-289
escape parameter, 247
event element, 58
evolving interfaces, 315
examples, wildcard patterns, 300
exec-hack parameter, 191
exp parameter, 192
expressions, 281-296

ACL, 269-270
functions, 286-295

expressions (Continued)
in interpolated strings, 297-298
literals, 282-283
operators, 284-286
regular, 295-296
results as Booleans, 282
syntax, 281
variables, 283-284

extension parameter, 165
external function, 289-290
external-jndi-resource element, 59

F
fancy indexing, 108-109
fastcgi safs, 256
fastcig directory, 29
file-cache element, 60
file name extensions

MIME types, 257
object type, 130

file parameter, 205, 206
files, mapping types of, 257
filter parameter, 243, 248
FilterComps property, 274
filters, ordering, 110-111
filters parameter, 111
find-compressed function, 158-159
find-index function, 159-160
find-index-j2ee function, 160-161
find-links function, 161-162
find-pathinfo-forward parameter, 143, 149
find-pathinfo function, 162-163
flex-init function (deprecated), 117
flex-log function, 239-240
flex-rotate-init function (deprecated), 117
flow of control in obj.conf, 127-134
FlushTimer parameter, 203
fn parameter, in directives in obj.conf, 121
force-type function, 130, 178-179
forcing object type, 130-131
format parameter, 109
forward-auth-cert function, 179-180
forward-cache-info function, 180

Index

331

forward-cipher function, 180-181
forward-ip function, 181
forward-issue-dn function, 181-182
forward-jroute function, 182
forward-keysize function, 183
forward-proxy-agent function, 183
forward-proxy-auth function, 184
forward-secret-keysize function, 184
forward slashes, 102, 136
forward-ssl-id function, 185
forward-user-dn function, 185
forward-via function, 186
fragment-size parameter, 198
from parameter, 143, 149, 151, 168, 247, 250
funcs parameter, 113
functions

common, 242-256
expression, 286-295

G
get-client-cert function, 163-164
get-sslid function, 141
greater than, ACL expression operator, 270
group parameter, 223
groupdb parameter, 139
groupfn parameter, 139
grpfile parameter, 140

H
header parameter, 212
hierarchy, ACL authorization statements, 269-270
home-page function, 145-146
htaccess directory, 29
HTTP, registering methods, 114-115
http-client-config function, 186-187
http-compression filter, 158, 198-199
http element, 61
http-listener element, 63
httpdate function, 290

I
icon-uri parameter, 109
If tag, 126-127

with regular expressions, 295
ignore parameter, 109
imagemap function, 210-211
include directory, 29
include element, 64
index-common function, 211-214
index element, 65
index-names parameter, 160
index-simple function, 214-215
indexing, fancy, 108-109
Init, function descriptions, 103
init-cgi function (deprecated), 117
init-clf function (deprecated), 117
init-dav function, 110
init-filiter-order function, 110-111
Init function changes, 313-314
Init SAFs in magnus.conf, 107
init-uhome function, 112-113
InitFn property, 274
initializing, the WebDAV subsystem, 110
Input, 121

flow of control, 131
function descriptions, 194-196
optional parameters, 194

insert-filter function, 243-244
with Input directive, 131
with Output directive, 131

instance directory, 28
instance element, 65
interfaces

evolving, 315
obsolete, 315
private, 316
stable, 315
standard, 315
unstable, 315

internal requests, 135
interpolated strings, 296-298
interval parameter, 155
iponly parameter, 239

Index

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009332

J
Java SE SecurityManager, 275
jdbc-resource element, 66
jdk directory, 29
jvm element, 67
JVM profiler, 75

K
keep-alive element, 69
keep-alive parameter, 186
keep-alive-timeout parameter, 186
KernelThreads, 104
key-toosmall function, 215-216
key3.db file location, 314

L
lang parameter, 179, 190, 192, 257
LateInit parameter, 107
lc function, 291
length function, 291-292
lib directory, 29
library property, 274
lifecycle-module element, 70
line continuation

in magnus.conf, 102
in obj.conf, 136

links, finding hard links, 161-162
list-dir function, 216-218
literals

expression, 282-283
numeric, 283
string, 282-283

load-modules function, 113-114
loadbal directory, 29
localization element, 70
lock-db element, 71
log analyzer, 239
log element, 71
log file, analyzer for, 239
log file format, 301-304
login.conf, 275

lookup function, 292-293

M
magnus.conf

case sensitivity, 102
comments, 103
common SAFs, 116-117
deprecated SAFs, 117
directive changes, 309-313
forward slashes, 102
Init function changes, 313-314
line continuation, 102
miscellaneous directives, 103
parameters for directives, 102
path names, 102
quotation marks, 102
SAFs in, 107-117
separators, 102
spaces, 102

mail-resource element, 73
make-dir function, 218-219
map function, 146-147
match-browser function, 244-245
matching, special characters, 299-300
max-age parameter, 189
max-connections parameter, 155
max–rps parameter, 155
maxthreads parameter, 116
memory allocation, pool-init function, 114
memory-level parameter, 199
method parameter, 164, 195, 196, 203
methods parameter, 115
mime-file element, 74
MIME types, 257

determining, 257-258
file syntax, 259
generating server response, 258
processing response in the client, 259
sample file, 259-263
type-by-extension, 257-258

mime.types file, 257
sample of, 259-263

minthreads parameter, 116

Index

333

monitor parameter, 156
month name, 305
mtime function, 293

N
name attribute

in obj.conf objects, 122
in objects, 123

name parameter, 110, 116, 143, 149, 153, 239
NameTrans, 120

flow of control, 127-129
function descriptions, 142-153

native thread pools, defining in obj.conf, 115-116
NativePoolMaxThreads, 104
NativePoolMinThreads, 104
NativePoolQueueSize, 105
NativePoolStackSize, 105
NativeThread parameter, 114, 115
nice parameter, 223
nocache parameter, 225
nondefault objects, processing, 128-129
nostat parameter, 144
not, ACL expression operator, 270
nsfc.conf, 314
NSIntAbsFilePath parameter, 205, 207
nt-console-init function (deprecated), 117
nt-uri-clean function, 164-165
ntcgicheck function, 165
ntrans-base, 143, 144, 149
ntrans-j2ee function, 148
ntras-dav function, 147-148
numeric literals, 283

O
obj.conf, 266

case sensitivity, 136
Client tag, 124-126
comments, 136
directive syntax, 121
directives, 121-122, 137-256
Else tag, 126-127

obj.conf (Continued)
ElseIf tag, 126-127
flow of control, 127-134
function flow changes, 134-135
If tag, 126-127
Object tag, 122-127
order of directives, 135
overview, 119-136
parameters for directives, 135
processing other objects, 128-129
syntax rules, 135-136

Object tag, 122-127
name attribute, 122
ppath attribute, 122

objects, processing nondefault objects, 128-129
ObjectType, 121

flow of control, 129-131
forcing, 130-131
function descriptions, 170-194
setting by file extension, 130

obsolete interfaces, 315
operators

ACL expressions, 270
expression, 284-286
precedence, 285-286

opts parameter, 108
or, ACL expression operator, 270
order, of directives in obj.conf, 135
Output, 121

flow of control, 131-132
function descriptions, 196-200
optional parameters, 196

owner function, 293-294

P
parameters

for magnus.conf directives, 102
for obj.conf directives, 135

password.conf, 314
path names

in magnus.conf, 102
in obj.conf, 136

path parameter, 146, 154, 156, 157, 167, 246, 250

Index

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009334

PathCheck, 121
flow of control, 129
function descriptions, 153-170

pcheck-dav function, 166
perf-init function (deprecated), 117
performance bucket, 138
pfx2dir function, 128, 148-150
pkcs11 element, 74
plugins directory, 29
pool-init function, 114
pool parameter, 114
ppath attribute

in obj.conf objects, 122
in objects, 123-124

predefined SAFs in obj.conf, 137-256
predefined variables, 277-280
private interfaces, 316
processing nondefault objects, 128-129
profiler element, 75
property-db element, 77
property element, 76
protocol parameter, 187
proxy-agent parameter, 187
proxy-retrieve function, 219-220
pwfile parameter, 113, 153

Q
qos element, 77
qos-error function, 241-242
qos-handler function, 141-142
qos-limits element, 78
quality of service, See qos
query-handler function, 245-246
query parameter, 195, 196, 203
queueSize parameter, 116
quotes

in magnus.conf, 102
in obj.conf, 136

R
readme parameter, 213

realm parameter, 167
reconfig, 30
redirect function, 246-248
register-http-method function, 114-115
regular expressions, 295-296
remove-dir function, 220-221
remove-filter function, 248-249
rename-file function, 221-222
request-handling process, 120

flow of control, 127-134
request-policy element, 79
requests

internal, 135
restarted, 134

require-auth function, 166-167
require parameter, 164
response-policy element, 79
restart function, 249-250
restarted requests, 134
reverse-map function, 150-151
rewrite-content-location parameter, 150, 201
rewrite function, 151
rewrite-headername parameter, 150, 202
rewrite-host parameter, 147, 201
rewrite-location parameter, 150, 201
rlimit_as parameter, 223
rlimit_core parameter, 223
rlimit_nofile parameter, 223
root element, 81
root parameter, 145
Route, 121

flow of control, 132
function descriptions, 200-203

route-cookie parameter, 201
route-hdr parameter, 201
rules, for editing obj.conf, 135-136

S
SAFs

deprecated, 117
in magnus.conf, 107-117
Init, 103
predefined in obj.conf, 137-256

Index

335

samples directory, 29
search-app element, 80
search-collection element, 80
secmod.db file location, 314
secret-keysize parameter, 168
sed parameter, 195, 200
sed-request filter, 195-196
sed-response filter, 200
send-cgi function, 222-224
send-error function, 250-252
send-file function, 225-226
send-range function, 226-227
send-shellcgi function, 227-228
send-wincgi function, 228-229
separators

in magnus.conf, 102
in obj.conf, 136

server
flow of control, 127-134
instructions in obj.conf, 121-122
processing nondefault objects, 128-129

server element, 81
server instance directory, 28
server parameter, 201
server.policy, 275-276
server.xml, 33

editing, 33
element changes, 307-309
elements, 41
overview, 33
sample, 38
schema, 33
validating, 34
variables defined in, 224

Service, 121
default directive, 133-134
examples, 132-133
flow of control, 132-134
function descriptions, 203-238
optional parameters, 203

service-dav function, 229-231
service-dump function, 231-232
service-j2ee function, 232-234
service-trace function, 234-235

servlet-container element, 84
session-replication element, 86
set-basic-auth function, 187-188
set-cache-control function, 188-189
set-cookie function, 189
set-default-type function, 190
set-origin-server function, 201-202
set-proxy-server function, 202-203
set-variable function, 252-256
set-virtual-index function, 167-168
setup directory, 29
shared library, loading, 113-114
shlib parameter, 113
shtml-hacktype function, 190-191
shtml_send function, 235-236
ShtmlMaxDepth parameter, 235
single-sign-on element, 87
snmp element, 87
soap-auth-provider element, 88
spaces

in magnus.conf, 102
in obj.conf, 136

SSL authentication method, 267
ssl-check function, 168-169
ssl-client-config function, 191-192
ssl element, 89
ssl-logout function, 169
ssl-session-cache element, 94
ssl2–ciphers element, 90
ssl3–tls-ciphers element, 91
stable interfaces, 315
stackSize parameter, 116
standard interfaces, 315
stats element, 95
stats-init function (deprecated), 117
stats-xml function, 236-237
sticky-cookie parameter, 201
sticky-param parameter, 201
string interpolation, 296-298
string literals, 282-283
strip-params function, 152
subdir parameter, 153
sun-web.xml, 275

Index

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009336

syntax
ACL files, 266-270
directives in obj.conf, 121
expressions, 281
for editing obj.conf, 135-136
mime.types file, 259

T
tags

Client, 124-126
Else, 126-127
ElseIf, 126-127
If, 126-127
Object, 122-127

TerminateTimeout, 105
thread-pool element, 95
thread-pool-init function, 115-116
thread pools, defining in obj.conf, 115-116
tildeok parameter, 164
time element, 96
time format strings, 305-306
timefmt parameter, 208
timeofday, ACL expression operator, 270
timeout parameter, 112
timezones parameter, 109
token element, 97
trailer parameter, 208
type-by-exp function, 192-193
type-by-extension function, 193, 258
type-j2ee function, 194
type parameter, 179, 192, 195, 196, 203, 257

U
uc function, 294
Umask, 106
unescape function, 294-295
unix-home function, 152-153
unix-uri-clean function, 169-170
unstable interfaces, 315
upload-file function, 238
uri parameter, 205, 207, 250, 251

URI translation, 135
URL, mapping to other servers, 148-150
url parameter, 247
url-prefix parameter, 247
UseOutputStreamSize parameter, 203
user parameter, 223
userdb parameter, 139
userfile parameter, 140
userfn parameter, 139
util_strftime, 305
uuid function, 295

V
validate-server-cert parameter, 191
variable element, 97
variables, 277-280

custom, 280
expression, 283-284
in interpolated strings, 297
predefined, 277-280
resolving, 280
supported by set-variable, 253

vary parameter, 159, 198
verifycert property, 274
virtual-index parameter, 168
virtual-server element, 98

W
web-app element, 99
Web Server interfaces, 315
WebDAV, 53

ACL database, 45
authentication, 47
collection, 54
initializing, 110
lock database, 71
property-db, 77

weekday, 305
widths parameter, 109
wildcards

examples, 300

Index

337

wildcards (Continued)
patterns, 299-300

window-size parameter, 199

Index

Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference • July 2009338

	Sun Java System Web Server 7.0 Update 6 Administrator's Configuration File Reference
	Preface
	Who Should Use This Book
	Sun Java System Web Server Documentation Set
	Related Books
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Accessing Sun Resources Online
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Overview of Configuration Files and Directories
	Configuration Files
	The server.xml File
	The magnus.conf File
	The obj.conf File
	The mime.types File
	ACL Files
	Other Configuration Files

	Directory Structure
	admin-server
	bin
	https-server_id
	include
	jdk
	lib
	plugins
	samples
	setup

	Dynamic Reconfiguration

	Syntax and Use of server.xml
	Overview of server.xml
	sun-web-server_7_0.xsd
	Editing server.xml
	Editing Element Values
	Adding Elements
	Validating server.xml

	Understanding server.xml
	Access Control
	Clustering
	HTTP Protocol
	Java
	Logging and Monitoring
	Performance Tuning
	Search
	SSL, TLS, and PKCS #11
	Variables
	Virtual Servers
	WebDAV

	Sample server.xml File

	Elements in server.xml
	List of Elements
	access-log
	Subelements
	See Also

	access-log-buffer
	Subelements
	See Also

	acl-cache
	Subelements
	See Also

	acl-db
	Subelements
	See Also

	acl-file
	See Also

	audit-accesses
	See Also

	auth
	Subelements
	See Also

	auth-db
	Subelements
	See Also

	auth-realm
	Subelements
	See Also

	cgi
	Subelements

	cluster
	Subelements

	connection-creation-property
	Subelements
	See Also

	connection-lease-property
	Subelements
	See Also

	convert
	Subelements
	See Also

	custom-resource
	Subelements

	dav
	Subelements
	See Also

	dav-collection
	Subelements
	See Also

	default-auth-db-name
	See Also

	default-auth-realm-name
	See Also

	default-soap-auth-provider-name
	See Also

	display-name
	See Also

	dns
	Subelements
	See Also

	dns-cache
	Subelements
	See Also

	env-variable
	Subelements
	See Also

	event
	Subelements
	See Also

	external-jndi-resource
	Subelements

	file-cache
	Subelements
	See Also

	http
	Subelements
	See Also

	http-listener
	Subelements
	See Also

	include
	Subelements
	See Also

	index
	Subelements
	See Also

	instance
	Subelements
	See Also

	jdbc-resource
	Subelements
	See Also

	jvm
	Subelements
	See Also

	keep-alive
	Subelements
	See Also

	lifecycle-module
	Subelements

	localization
	Subelements

	lock-db
	Subelements
	See Also

	log
	Subelements
	See Also

	mail-resource
	Subelements

	mime-file
	pkcs11
	Subelements
	See Also

	pkcs11 bypass
	See Also

	profiler
	Subelements

	property
	Subelements
	See Also

	property-db
	Subelements
	See Also

	qos
	Subelements
	See Also

	qos-limits
	Subelements
	See Also

	request-policy
	Subelements

	response-policy
	Subelements

	search-app
	Subelements
	See Also

	search-collection
	Subelements
	See Also

	server
	Subelements

	servlet-container
	Subelements
	See Also

	session-replication
	Subelements

	single-sign-on
	Subelements
	See Also

	snmp
	Subelements
	See Also

	soap-auth-provider
	Subelements

	ssl
	Subelements
	See Also

	ssl2-ciphers
	Subelements
	See Also

	ssl3-tls-ciphers
	Subelements
	See Also

	ssl-session-cache
	Subelements
	See Also

	stats
	Subelements
	See Also

	thread-pool
	Subelements
	See Also

	time
	Subelements

	token
	Subelements

	variable
	Subelements
	See Also

	virtual-server
	Subelements
	See Also

	web-app
	Subelements
	See Also

	Syntax and Use of magnus.conf
	Editing magnus.conf
	Parameters
	Case Sensitivity
	Separators
	Quotation Marks
	Spaces
	Line Continuation
	Path Names
	Comments

	ChildRestartCallback
	Syntax

	Init Directives
	Syntax

	KernelThreads
	Syntax
	Default

	NativePoolMaxThreads
	Default

	NativePoolMinThreads
	Default

	NativePoolQueueSize
	Default

	NativePoolStackSize
	Default

	TerminateTimeout
	Syntax
	Default

	Umask
	Syntax
	Default

	Predefined SAFs in magnus.conf
	Init SAFs
	cindex-init
	Parameters
	Example

	define-perf-bucket
	Parameters
	Example

	init-dav
	Example

	init-filter-order
	Parameters
	Example

	init-request-limits
	Parameters
	Example

	init-uhome
	Parameters
	Example

	load-modules
	Parameters
	Examples

	pool-init
	Parameters
	Example

	register-http-method
	Parameters
	Example

	thread-pool-init
	Parameters
	Example

	Common SAFs
	Deprecated Init SAFs

	Syntax and Use of obj.conf
	Request-Handling Process Overview
	Stages in the Request-Handling Process

	Directives in obj.conf
	Objects in obj.conf
	Objects That Use the name Attribute
	Objects That Use the ppath Attribute
	Using the Client, If, ElseIf, and Else Tags
	Client
	Client Tag Parameters

	If, ElseIf, and Else

	Flow of Control in obj.conf
	AuthTrans
	NameTrans
	How and When the Server Processes Other Objects

	PathCheck
	ObjectType
	Setting the Type by File Extension
	Forcing the Type

	Input
	Output
	Route
	Service
	Service Examples
	Default Service Directive

	AddLog
	Error

	Changes in Function Flow
	Restarted Requests
	Internal Requests
	URI Translation

	Editing obj.conf
	Order of Directives
	Parameters
	Case Sensitivity
	Separators
	Quotation Marks
	Spaces
	Line Continuation
	Path Names
	Comments

	Predefined SAFs and Filters in obj.conf
	The bucket Parameter
	AuthTrans
	basic-auth
	Parameters
	Example
	See Also

	basic-ncsa
	Parameters
	Example
	See Also

	get-sslid
	Parameters

	qos-handler
	Parameters
	Example
	See Also

	NameTrans
	assign-name
	Parameters
	Example

	document-root
	Parameters
	Example
	See Also

	home-page
	Parameters
	Example

	map
	Parameters
	Example
	See Also

	ntrans-dav
	Parameters
	Example
	See Also

	ntrans-j2ee
	Parameters
	Example
	See Also

	pfx2dir
	Parameters
	Example
	See Also

	reverse-map
	Parameters
	Example
	See Also

	rewrite
	Parameters
	Example
	See Also

	strip-params
	Parameters
	Example

	unix-home
	Parameters
	Example
	See Also

	PathCheck
	check-acl
	Parameters
	Example

	check-request-limits
	Parameters
	Example

	deny-existence
	Parameters
	Example

	find-compressed
	Parameters
	Example
	See Also

	find-index
	Parameters
	Example
	See Also

	find-index-j2ee
	Parameters
	Example
	See Also

	find-links
	Parameters
	Example
	See Also

	find-pathinfo
	Parameters
	Example

	get-client-cert
	Parameters
	Example

	nt-uri-clean
	Parameters
	Example
	See Also

	ntcgicheck
	Parameters
	Example
	See Also

	pcheck-dav
	Parameters
	See Also

	require-auth
	Parameters
	Example
	See Also

	set-virtual-index
	Parameters
	Example

	ssl-check
	Parameters

	ssl-logout
	Parameters

	unix-uri-clean
	Parameters
	Example
	See Also

	ObjectType
	block-auth-cert
	Parameters
	Example
	See Also

	block-cache-info
	Parameters
	Example
	See Also

	block-cipher
	Parameters
	Example
	See Also

	block-ip
	Parameters
	Example
	See Also

	block-issuer-dn
	Parameters
	Example
	See Also

	block-jroute
	Parameters
	Example
	See Also

	block-keysize
	Parameters
	Example
	See Also

	block-proxy-agent
	Parameters
	Example
	See Also

	block-proxy-auth
	Parameter
	Example
	See Also

	block-secret-keysize
	Parameters
	Example
	See Also

	block-ssl-id
	Parameters
	Example
	See Also

	block-user-dn
	Parameters
	Example
	See Also

	block-via
	Parameters
	Example
	See Also

	force-type
	Parameters
	Example
	See Also

	forward-auth-cert
	Parameters
	See Also

	forward-cache-info
	Parameter
	See Also

	forward-cipher
	Parameters
	See Also

	forward-ip
	Parameters
	See Also

	forward-issuer-dn
	Parameters
	See Also

	forward-jroute
	Parameters
	See Also

	forward-keysize
	Parameters
	See Also

	forward-proxy-agent
	Parameters
	See Also

	forward-proxy-auth
	Parameters
	Example
	See Also

	forward-secret-keysize
	Parameters
	See Also

	forward-ssl-id
	Parameter
	See Also

	forward-user-dn
	Parameters
	See Also

	forward-via
	Parameters
	See Also

	http-client-config
	Parameters
	Example

	set-basic-auth
	Parameters
	Example
	See Also

	set-cache-control
	Parameters
	Example

	set-cookie
	Parameters
	Example

	set-default-type
	Parameters
	Example

	shtml-hacktype
	Parameters
	Example

	ssl-client-config
	Parameter
	Example
	See Also

	type-by-exp
	Parameters
	Example
	See Also

	type-by-extension
	Parameters
	Example
	See Also

	type-j2ee
	Parameters
	Example
	See Also

	Input
	sed-request
	Parameters
	Example
	See Also

	Output
	compress-file
	Example
	See Also

	http-compression
	Parameters
	Example

	sed-response
	Parameter
	Example
	See Also

	Route
	set-origin-server
	Parameters
	Example
	See Also

	set-proxy-server
	Parameters
	Example
	See Also

	Service
	add-footer
	Parameters
	Example
	See Also

	add-header
	Parameters
	Example
	See Also

	append-trailer
	Returns
	Parameters
	Example
	See Also

	delete-file
	Parameters
	Example

	imagemap
	Parameters
	Example

	index-common
	Parameters
	Example
	See Also

	index-simple
	Parameters
	Example
	See Also

	key-toosmall
	Parameters
	Example
	See Also

	list-dir
	Parameters
	Example

	make-dir
	Parameters
	Example

	proxy-retrieve
	Parameters
	Example
	See Also

	remove-dir
	Parameters
	Example

	rename-file
	Parameters
	Example

	send-cgi
	Parameters
	Example

	send-file
	Parameters
	Example

	send-range
	Parameters
	Example

	send-shellcgi
	Parameters
	Example

	send-wincgi
	Parameters
	Example

	service-dav
	Parameters
	Example
	See Also

	service-dump
	Parameters
	Example
	See Also

	service-j2ee
	Parameters
	Example
	See Also

	service-trace
	Parameters
	Example

	shtml-send
	Parameters
	Example

	stats-xml
	Parameters
	Example
	See Also

	upload-file
	Parameters
	Example

	AddLog
	flex-log
	Parameters
	Example

	Error
	error-j2ee
	Parameters
	See Also

	qos-error
	Parameters
	Example
	See Also

	Common SAFs
	insert-filter
	Returns
	Parameters
	Example
	See Also

	match-browser
	Syntax
	Parameters
	Example
	See Also

	query-handler
	Parameters
	Example

	redirect
	Parameters
	Example
	See Also

	remove-filter
	Returns
	Parameters
	Example

	restart
	Parameters
	Example

	send-error
	Parameters
	Example

	set-variable
	Syntax
	Parameters
	Variables
	Examples
	See Also

	FastCGI Plug-in SAFs

	MIME Types
	Determining the MIME Type
	Referencing MIME Types Files in server.xml
	Generating the Server Response Using the MIME Type
	Processing the Response in the Client Using the MIME Type
	MIME Types Syntax
	Sample MIME Types File

	ACL Files
	Referencing ACL Files in server.xml and obj.conf
	ACL File Syntax
	General Syntax
	Authentication Methods
	Authorization Statements
	Hierarchy of Authorization Statements
	Expression Attribute
	Expression Operators

	Sample ACL File

	Other Server Configuration Files
	certmap.conf
	Location
	Syntax
	See Also

	sun-web.xml
	Location

	login.conf
	Location

	server.policy
	Location
	Syntax
	See Also

	default-web.xml
	Location
	See Also

	Using Variables, Expressions, and String Interpolation
	Variables
	Predefined Variables
	Custom Variables
	Resolving Variables

	Expressions
	Expression Syntax
	Expression Results as Booleans
	Expression Literals
	String Literals
	Numeric Literals

	Expression Variables
	Expression Operators
	Expression Functions
	atime
	Syntax
	Arguments
	See Also

	choose
	Syntax
	Arguments
	Example

	ctime
	Syntax
	Arguments
	See Also

	escape
	Syntax
	Arguments
	See Also

	external
	Syntax
	Arguments
	Example

	httpdate
	Syntax
	Arguments
	Example

	lc
	syntax
	Arguments
	Example
	See Also

	length
	Syntax
	Arguments
	Example

	lookup
	Syntax
	Arguments
	Example

	mtime
	Syntax
	Arguments
	See Also

	owner
	Syntax
	Arguments

	uc
	Syntax
	Arguments
	See Also

	unescape
	Syntax
	Arguments
	See Also

	uuid
	Syntax

	Regular Expressions

	String Interpolation
	Using Variables in Interpolated Strings
	Using Expressions in Interpolated Strings

	Using Wildcard Patterns
	Wildcard Patterns
	Wildcard Examples

	Using the Custom Log File Format
	Custom Log File Format

	Using Time Formats
	Format Strings

	Configuration Changes Between Sun ONE Web Server 6.1 and Sun Java System Web Server 7.0
	Element Changes in server.xml
	Directive and Init Function Changes in magnus.conf
	Directive Changes
	Init Function Changes

	Other Configuration File Changes

	Web Server Interfaces
	Alphabetical List of Server Configuration Elements and Predefined SAFs
	Index

