
Sun GlassFish Message Queue
4.4 Developer's Guide for Java
Clients

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0029–11
December, 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

091217@23031

Contents

Preface ...7

1 Overview ...17
Setting Up Your Environment ... 17
Starting and Testing a Message Broker ... 19

▼ To Start a Broker .. 19
▼ To Test a Broker ... 20

Developing a Client Application ... 21
▼ To Produce Messages .. 21
▼ To Consume Messages .. 23

Compiling and Running a Client Application ... 26
▼ To Compile and Run the HelloWorldMessage Application .. 29

Deploying a Client Application ... 30
Example Application Code .. 31

2 Using the Java API ...33
Messaging Domains .. 33
Working With Connections .. 34

Obtaining a Connection Factory .. 35
Using Connections .. 39
Creating Secure Connctions (SSL) .. 42

Working With Destinations .. 43
Looking Up a Destination With JNDI ... 43
Instantiating a Destination ... 45
Temporary Destinations ... 46

Working With Sessions .. 47
Acknowledgment Modes .. 48

3

Transacted Sessions ... 50
Working With Messages .. 51

Message Structure .. 51
Composing Messages .. 56
Sending Messages ... 62
Receiving Messages .. 64
Processing Messages .. 71

3 Message Queue Clients: Design and Features .. 79
Client Design Considerations .. 79

Developing Portable Clients ... 80
Choosing Messaging Domains ... 80
Connections and Sessions ... 81
Producers and Consumers .. 82
Balancing Reliability and Performance ... 84

Managing Client Threads ... 84
JMS Threading Restrictions .. 85
Thread Allocation for Connections ... 85

Managing Memory and Resources .. 86
Managing Memory .. 86
Managing Message Size ... 86
Managing the Dead Message Queue .. 88
Managing Physical Destination Limits ... 92

Programming Issues for Message Consumers ... 92
Using the Client Runtime Ping Feature .. 92
Preventing Message Loss for Synchronous Consumers .. 93
Synchronous Consumption in Distributed Applications ... 93

Factors Affecting Performance .. 94
Delivery Mode (Persistent/Nonpersistent) ... 95
Use of Transactions ... 95
Acknowledgment Mode .. 95
Durable vs. Nondurable Subscriptions ... 96
Use of Selectors (Message Filtering) .. 97

Connection Event Notification .. 98
Connection Events ... 98

Contents

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 20094

Creating an Event Listener .. 99
Event Listener Examples ... 100

Client Connection Failover (Auto-Reconnect) ... 100
Enabling Auto-Reconnect ... 101
Auto-Reconnect Behaviors ... 104
Auto-Reconnect Limitations .. 105
Handling Exceptions When Failover Occurs ... 106

Custom Client Acknowledgment .. 135
Using Client Acknowledge Mode .. 135
Using No Acknowledge Mode .. 137

Schema Validation of XML Payload Messages .. 138
Communicating with C Clients ... 139
Client Runtime Logging ... 139

Logging Name Spaces, Levels, and Activities ... 140
Using the JRE Logging Configuration File .. 142
Using a Logging Configuration File for a Specific Application .. 143
Setting the Logging Configuration Programmatically .. 143

4 Using the Metrics Monitoring API ... 145
Monitoring Overview ... 146

Administrative Tasks ... 147
Implementation Summary ... 147

Creating a Metrics-Monitoring Client .. 148
▼ To Monitor Broker Metrics ... 148

Format of Metrics Messages ... 149
Broker Metrics .. 149

Metrics Monitoring Client Code Examples ... 153
A Broker Metrics Example .. 153

5 Working with SOAP Messages ...161
What is SOAP? ... 161

SOAP with Attachments API for Java .. 162
The SOAP Message .. 164
SOAP Packaging Models ... 165

SOAP Messaging in JAVA .. 167

Contents

5

The SOAP Message Object .. 168
Destination, Message Factory, and Connection Objects .. 173

SOAP Messaging Models and Examples ... 175
SOAP Messaging Programming Models ... 175
Working with Attachments .. 176
Exception and Fault Handling .. 177
Writing a SOAP Client .. 177
Writing a SOAP Service .. 179

Integrating SOAP and Message Queue ... 185
Example 1: Deferring SOAP Processing .. 186
Example 2: Publishing SOAP Messages .. 189
Code Samples ... 190

6 Embedding a Message Queue Broker in a Java Client ...197
Creating, Initializing and Starting an Embedded Broker ... 197

Creating a Broker Event Listener ... 198
Arguments to Specify When Initializing an Embedded Broker ... 199

Creating a Direct Connection to an Embedded Broker .. 200
Creating a TCP Connection to an Embedded Broker ... 200
Stopping and Shutting Down an Embedded Broker ... 200
Embedded Broker Example ... 200

A Warning Messages and Client Error Codes .. 203
Warning Messages and Error Codes ... 204

Index ... 217

Contents

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 20096

Preface

This book provides information about concepts and procedures for developing JavaTM

messaging applications (Java clients) that work with Sun GlassFish Message Queue.

This preface consists of the following sections:

■ “Who Should Use This Book” on page 7
■ “Before You Read This Book” on page 8
■ “How This Book Is Organized” on page 8
■ “Documentation Conventions” on page 8
■ “Related Documentation” on page 11
■ “Third-Party Web Site References” on page 14
■ “Searching Sun Product Documentation” on page 15
■ “Documentation, Support, and Training” on page 15
■ “Sun Welcomes Your Comments” on page 15

Who Should Use This Book
This guide is meant principally for developers of Java applications that use Sun GlassFish
Message Queue.

These applications use the Java Message Service (JMS) Application Programming Interface
(API), and possibly the SOAP with Attachments API for Java (SAAJ), to create, send, receive,
and read messages. As such, these applications are JMS clients and/or SOAP client applications,
respectively. The JMS and SAAJ specifications are open standards.

This book assumes that you are familiar with the JMS APIs and with JMS programming
guidelines. Its purpose is to help you optimize your JMS client applications by making best use
of the features and flexibility of a Message Queue messaging system.

This book assumes no familiarity, however, with SAAJ. This material is described in Chapter 5,
“Working with SOAP Messages,” and assumes only basic knowledge of XML.

7

Before You Read This Book
You must read the Sun GlassFish Message Queue 4.4 Technical Overview to become familiar
with the Message Queue implementation of the Java Message Specification, with the
components of the Message Queue service, and with the basic process of developing, deploying,
and administering a Message Queue application.

How This Book Is Organized
This guide is designed to be read from beginning to end. The following table briefly describes
the contents of each chapter.

TABLE P–1 Book Contents

Chapter Description

Chapter 1, “Overview” A high-level overview of the Message Queue Java interface. It includes a
tutorial that acquaints you with the Message Queue development
environment using a simple example JMS client application.

Chapter 2, “Using the Java API” Explains how to use the Message Queue Java API in your client application.

Chapter 3, “Message Queue
Clients: Design and Features”

Describes architectural and configuration issues that depend upon Message
Queue’s implementation of the Java Message Specification.

Chapter 4, “Using the Metrics
Monitoring API”

Describes message-based monitoring, a customized solution to metrics
gathering that allows metrics data to be accessed programmatically and then
to be processed in whatever way suits the consuming client.

Chapter 5, “Working with
SOAP Messages”

Explains how you send and receive SOAP messages with and without
Message Queue support.

Appendix A, “Warning
Messages and Client Error
Codes”

Provides reference information for warning messages and error codes
returned by the Message Queue client runtime when it raises a JMS
exception.

Documentation Conventions
This section describes the following conventions used in Message Queue documentation:

■ “Typographic Conventions” on page 9
■ “Symbol Conventions” on page 9
■ “Shell Prompt Conventions” on page 10
■ “Directory Variable Conventions” on page 10

Preface

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 20098

http://docs.sun.com/doc/821-0028

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Note: Some emphasized items appear bold
online.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

Preface

9

TABLE P–3 Symbol Conventions (Continued)
Symbol Description Example Meaning

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Shell Prompt Conventions
The following table shows the conventions used in Message Queue documentation for the
default UNIX® system prompt and superuser prompt for the C shell, Bourne shell, Korn shell,
and for the Windows operating system.

TABLE P–4 Shell Prompt Conventions

Shell Prompt

C shell on UNIX, Linux, or AIX machine-name%

C shell superuser on UNIX, Linux, or AIX machine-name#

Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Directory Variable Conventions
Message Queue documentation makes use of three directory variables; two of which represent
environment variables needed by Message Queue. (How you set the environment variables
varies from platform to platform.)

The following table describes the directory variables that might be found in this book and how
they are used. When installed from the IPS (pkg(5)) image distribution, Message Queue is
installed in a directory referred to as mqInstallHome, and some of the directory variables in
Table P–5 reference this mqInstallHome directory.

Note – In this book, directory variables are shown without platform-specific environment
variable notation or syntax (such as $IMQ_HOME on UNIX). Non-platform-specific path names
use UNIX directory separator (/) notation.

Preface

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200910

TABLE P–5 Directory Variable Conventions

Variable Description

IMQ_HOME Message Queue home directory, if any:
■ For installations from the IPS image distribution on any platform, IMQ_HOME denotes the

directory mqInstallHome/mq, where mqInstallHome is specified when you install
Message Queue.

■ For installations from Solaris SVR4 packages, IMQ_HOME is unused.

■ For installations from Linux RPM packages, IMQ_HOME is unused.

IMQ_VARHOME Directory in which Message Queue temporary or dynamically created configuration and
data files are stored; IMQ_VARHOME can be explicitly set as an environment variable to point to
any directory or will default as described below:
■ For installations from the IPS image distribution on any platform, IMQ_VARHOME defaults

to mqInstallHome/var/mq.

■ For installations from Solaris SVR4 packages, IMQ_VARHOME defaults to /var/imq.

■ For installations from Linux RPM packages, IMQ_VARHOME defaults to /var/opt/sun/mq.

IMQ_JAVAHOME An environment variable that points to the location of the Java runtime environment (JRE)
required by Message Queue executable files:
■ On Solaris, Linux and Windows, Message Queue looks for the latest JDK, but you can

optionally set the value of IMQ_JAVAHOME to wherever the preferred JRE resides.

■ On AIX, IMQ_JAVAHOME is set to point to an existing Java runtime when you perform
Message Queue installation.

Related Documentation
The information resources listed in this section provide further information about Message
Queue in addition to that contained in this manual. The section covers the following resources:

■ “Message Queue Documentation Set” on page 11
■ “Java Message Service (JMS) Specification” on page 12
■ “JavaDoc” on page 12
■ “Example Client Applications” on page 13
■ “Online Help” on page 14

Message Queue Documentation Set
The documents that comprise the Message Queue documentation set are listed in the following
table in the order in which you might normally use them. These documents are available
through the Sun documentation Web site at

http://www.sun.com/documentation/

Preface

11

http://www.sun.com/documentation/

Click “Software,” followed by “Application & Integration Services,” and then “Message Queue.”

For a content reference to topics with the Message Queue documentation set, see the Message
Queue Documentation Center at the above location.

TABLE P–6 Message Queue Documentation Set

Document Audience Description

Sun GlassFish Message Queue 4.4
Technical Overview

Developers and
administrators

Describes Message Queue concepts, features,
and components.

Sun GlassFish Message Queue 4.4
Release Notes

Developers and
administrators

Includes descriptions of new features,
limitations, and known bugs, as well as
technical notes.

Sun GlassFish Message Queue 4.4
Administration Guide

Administrators, also
recommended for
developers

Provides background and information needed
to perform administration tasks using Message
Queue administration tools.

Sun GlassFish Message Queue 4.4
Developer’s Guide for Java Clients

Developers Provides a quick-start tutorial and
programming information for developers of
Java client programs using the Message Queue
implementation of the JMS or SOAP/JAXM
APIs.

Sun GlassFish Message Queue 4.4
Developer’s Guide for C Clients

Developers Provides programming and reference
documentation for developers of C client
programs using the Message Queue C
implementation of the JMS API (C-API).

Sun GlassFish Message Queue 4.4
Developer’s Guide for JMX Clients

Administrators Provides programming and reference
documentation for developers of JMX client
programs using the Message Queue JMX API.

Java Message Service (JMS) Specification
The Message Queue message service conforms to the Java Message Service (JMS) application
programming interface, described in the Java Message Service Specification. This document can
be found at the URL

http://java.sun.com/products/jms/docs.html

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is included in your Message
Queue installation at the locations shown in Table P–7, depending on your installation method.
This documentation can be viewed in any HTML browser. It includes standard JMS API
documentation as well as Message Queue–specific APIs.

Preface

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200912

http://docs.sun.com/doc/821-0028
http://docs.sun.com/doc/821-0028
http://docs.sun.com/doc/821-0025
http://docs.sun.com/doc/821-0025
http://docs.sun.com/doc/821-0027
http://docs.sun.com/doc/821-0027
http://docs.sun.com/doc/821-0029
http://docs.sun.com/doc/821-0029
http://docs.sun.com/doc/821-0030
http://docs.sun.com/doc/821-0030
http://docs.sun.com/doc/821-0031
http://docs.sun.com/doc/821-0031
http://java.sun.com/products/jms/docs.html

TABLE P–7 JavaDoc Locations

Installation Method Location

IPS image IMQ_HOME/javadoc/index.html
1

Solaris SVR4 packages /usr/share/javadoc/imq/index.html

Linux RPM packages /opt/sun/mq/javadoc/index.html

1
IMQ_HOME is the Message Queue home directory.

Example Client Applications
Message Queue provides a number of example client applications to assist developers.

Example Java Client Applications
Example Java client applications are located in the following directories, depending on
installation method. See the README files located in these directories and their subdirectories for
descriptive information about the example applications.

Installation Method Location

IPS image IMQ_HOME/examples
1

Solaris SVR4 packages /usr/demo/imq

Linux RPM packages /opt/sun/mq/examples

1
IMQ_HOME is the Message Queue home directory.

Example C Client Programs
Example C client applications are located in the following directories, depending on installation
method. See the README files located in these directories and their subdirectories for descriptive
information about the example applications.

Installation Method Location

IPS image IMQ_HOME/examples/C
1

Solaris SVR4 packages /opt/SUNWimq/demo/C

Linux RPM packages /opt/sun/mq/examples/C

1
IMQ_HOME is the Message Queue home directory.

Preface

13

Example JMX Client Programs
Example Java Management Extensions (JMX) client applications are located in the following
directories, depending on installation method. See the README files located in these directories
and their subdirectories for descriptive information about the example applications.

Installation Method Location

IPS image IMQ_HOME/examples/jmx
1

Solaris SVR4 packages /opt/SUNWimq/demo/imq/jmx

Linux RPM packages /opt/sun/mq/examples/jmx

1
IMQ_HOME is the Message Queue home directory.

Online Help
Online help is available for the Message Queue command line utilities; for details, see Chapter
16, “Command Line Reference,” in Sun GlassFish Message Queue 4.4 Administration Guide for
details. The Message Queue graphical user interface (GUI) administration tool, the
Administration Console, also includes a context-sensitive help facility; see the section
“Administration Console Online Help” in Chapter 2, “Quick-Start Tutorial,” in Sun GlassFish
Message Queue 4.4 Administration Guide.

Third-Party Web Site References
Where relevant, this manual refers to third-party URLs that provide additional, related
information.

Note – Sun is not responsible for the availability of third-party Web sites mentioned in this
manual. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials available on or through such sites or resources. Sun will not be
responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by or
in connection with the use of or reliance on any such content, goods, or services available on or
through such sites or resources.

Preface

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200914

http://docs.sun.com/doc/821-0027/aeonc?a=view
http://docs.sun.com/doc/821-0027/aeonc?a=view
http://docs.sun.com/doc/821-0027/aeoay?a=view
http://docs.sun.com/doc/821-0027/aeoay?a=view

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.com web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use “sun.com” in place of “docs.sun.com” in the search field.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Feedback.

Preface

15

http://docs.sun.com
http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

16

Overview

This chapter provides an overall introduction to Sun GlassFish Message Queue and a
quick-start tutorial. It describes the procedures needed to create, compile, and run a simple
example application. Before reading this chapter, you should be familiar with the concepts
presented in the Sun GlassFish Message Queue 4.4 Technical Overview

The chapter covers the following topics:

■ “Setting Up Your Environment” on page 17
■ “Starting and Testing a Message Broker” on page 19
■ “Developing a Client Application” on page 21
■ “Compiling and Running a Client Application” on page 26
■ “Deploying a Client Application” on page 30
■ “Example Application Code” on page 31

The minimum Java Development Kit (JDK) level required to compile and run Message Queue
clients is 1.2. For the purpose of this tutorial it is sufficient to run the Message Queue message
broker in a default configuration. For instructions on configuring a message broker, see
Chapter 4, “Configuring a Broker,” in Sun GlassFish Message Queue 4.4 Administration Guide

Setting Up Your Environment
The Message Queue files that need to be used in conjunction with Message Queue Java clients
can be found in the lib directory in the installed location for Message Queue on your platform.
Message Queue Java clients need to be able to use several .jar files found in the lib directory
when these clients are compiled and run.

You need to set the CLASSPATH environment variable when compiling and running a JMS client.
(The IMQ_HOME variable, where used, refers to the directory where Message Queue is installed on
Windows platforms and on some Sun GlassFish Application Server platforms.)

The value of CLASSPATH depends on the following factors:

1C H A P T E R 1

17

http://docs.sun.com/doc/821-0028
http://docs.sun.com/doc/821-0027/aeocl?a=view

■ The platform on which you compile or run
■ The JDK version you are using
■ Whether you are compiling or running a JMS application
■ Whether your application uses the Simple Object Access Protocol (SOAP)
■ Whether your application uses the SOAP/JMS transformer utilities

The directories where .jar files are stored depends on the installation method, as shown in the
following table.

TABLE 1–1 .jarFile Locations

Installation Method Directory

IPS image IMQ_HOME/lib/

SolarisTM SVR4 packages /usr/share/lib/

Linux RPM packages /opt/sun/mq/share/lib/

The table below lists the .jar files you need to compile and run different kinds of code.

TABLE 1–2 .jar Files Needed in CLASSPATH

Type of Code To Compile To Run Remarks

JMS client jms.jar

imq.jar

jndi.jar

jms.jar

imq.jar

jndi.jar

Directory containing
compiled Java
application or ’.’

See discussion of JNDI .jar files,
following this table.

SOAP Client saaj-api.jar

activation.jar

saaj-api.jar

Directory containing
compiled Java
application or ’.’

See Chapter 5, “Working with SOAP
Messages”

SOAP Servlet jaxm-api.jar

saaj-api.jar

activation.jar

Sun Java System Application Server
already includes these .jar files for
SOAP servlet support.

Code using
SOAP/JMS
transformer utilities

imqxm.jar

.jar files for JMS and
SOAP clients

imqxm.jar Also add the appropriate .jar files
listed in this table for the kind of code
you are writing.

Setting Up Your Environment

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200918

A client application must be able to access the file jndi.jar even if the application does not use
the Java Naming and Directory Interface (JNDI) directly to look up Message Queue
administered objects. This is because JNDI is referenced by the Destination and
ConnectionFactory classes.

JNDI .jar files are bundled with JDK 1.4. Thus, if you are using this JDK, you do not have to
add jndi.jar to your CLASSPATH setting. However, if you are using an earlier version of the
JDK, you must include jndi.jar in your CLASSPATH.

If you are using JNDI to look up Message Queue administered objects, you must also include
the following files in your CLASSPATH setting:

■ If you are using the file-system service provider for JNDI (with any JDK version), you must
include the file fscontext.jar.

■ If you are using the Lightweight Directory Access Protocol (LDAP) context
■ with JDK 1.2 or 1.3, include the files ldabbp.jar, and fscontext.jar.ldap.jar,
■ with JDK 1.4, all files are already bundled with this JDK.

Starting and Testing a Message Broker
This tutorial assumes that you do not have a Message Queue message broker currently running.
(If you run the broker as a UNIX startup process or Windows service, then it is already running
and you can skip to “Developing a Client Application” on page 21.)

▼ To Start a Broker
In a terminal window, change to the directory containing Message Queue executables (see the
table below).

Installation Method Location

IPS Image IMQ_HOME/bin

Solaris SVR4 packages /usr/bin

Linux RPM packages /opt/sun/mq/bin

Run the broker startup command (imqbrokerd) as follows:
imqbrokerd -tty

The -tty option causes all logged messages to be displayed to the terminal console (in addition
to the log file). The broker will start and display a few messages before displaying the message

imqbroker@host:7676 ready

1

2

Starting and Testing a Message Broker

Chapter 1 • Overview 19

The broker is now ready and available for clients to use.

▼ To Test a Broker
One simple way to check the broker startup is by using the Message Queue command utility
(imqcmd) to display information about the broker:

In a separate terminal window, change to the directory containing Message Queue executables
(see the table shown at the beginning of the section “To Start a Broker”on page 19).

Run imqcmdwith the following arguments:
imqcmd query bkr -u admin

Supply the default password of admin when prompted to do so. The output displayed should be
similar to that shown in the next example.

Output From Testing a Broker
% imqcmd query bkr -u admin

Querying the broker specified by:

Host Primary Port

localhost 7676

Version 3.6

Instance Name imqbroker

Primary Port 7676

Current Number of Messages in System 0

Current Total Message Bytes in System 0

Max Number of Messages in System unlimited (-1)

Max Total Message Bytes in System unlimited (-1)

Max Message Size 70m

Auto Create Queues true

Auto Create Topics true

Auto Created Queue Max Number of Active Consumers 1

Auto Created Queue Max Number of Backup Consumers 0

Cluster Broker List (active)

Cluster Broker List (configured)

1

2

Example 1–1

Starting and Testing a Message Broker

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200920

Cluster Master Broker

Cluster URL

Log Level INFO

Log Rollover Interval (seconds) 604800

Log Rollover Size (bytes) unlimited (-1)

Successfully queried the broker.

Current Number of Messages in System 0

Developing a Client Application
This section introduces the general procedures for interacting with the Message Queue API to
produce and consume messages. The basic steps shown here are elaborated in greater detail in
Chapter 2, “Using the Java API,” The procedures for producing and consuming messages have a
number of steps in common, which need not be duplicated if the same client is performing both
functions.

▼ To Produce Messages
Get a connection factory.
A Message Queue ConnectionFactory object encapsulates all of the needed configuration
properties for creating connections to the Message Queue message service. You can obtain such
an object either by direct instantiation.
ConnectionFactory myFctry = new com.sun.messaging.ConnectionFactory();

or by looking up a predefined connection factory using the Java Naming and Directory
Interface (JNDI). In the latter case, all of the connection factory’s properties will have been
preconfigured to the appropriate values by your Message Queue administrator. If you
instantiate the factory object yourself, you may need to configure some of its properties
explicitly: for instance,

myFctry.setProperty(ConnectionConfiguration.imqAddressList,

"localhost:7676, broker2:5000, broker3:9999");
myFctry.setProperty(ConnectionConfiguration.imqReconnectEnabled, "true");

See “Obtaining a Connection Factory” on page 35 for further discussion.

Create a connection.
A Connection object is an active connection to the Message Queue message service, created by
the connection factory you obtained in “Developing a Client Application” on page 21:
Connection myConnection = myFactory.createConnection();

1

2

Developing a Client Application

Chapter 1 • Overview 21

See “Using Connections” on page 39 for further discussion.

Create a session for communicating with the message service.

A Session object represents a single-threaded context for producing and consuming messages.
Every session exists within the context of a particular connection and is created by that
connection’s createSession method:
Session mySession = myConnection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

The first (boolean) argument specifies whether the session is transacted. The second argument
is the acknowledgment mode, such as AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, or
DUPS_OK_ACKNOWLEDGE; these are defined as static constants in the JMS Session interface. See
“Acknowledgment Modes” on page 48 and “Transacted Sessions” on page 50 for further
discussion.

Get a destination to which to send messages.

A Destination object encapsulates provider-specific naming syntax and behavior for a
message destination, which may be either aqueue or a point-to-point publish/subscribe topic
(see “Messaging Domains” on page 33). You can obtain such an object by direct instantiation
Destination myDest = new com.sun.messaging.Queue("myDest");

or by looking up a predefined destination using the JNDI API. See “Working With
Destinations” on page 43 for further discussion.

Create a message producer for sending messages to this destination.

A MessageProducer object is created by a session and associated with a particular destination:
MessageProducer myProducer = mySession.createProducer(myDest);

See “Sending Messages” on page 62 for further discussion.

Create a message.

A Session object provides methods for creating each of the six types of message defined by
JMS: text, object, stream, map, bytes, and null messages. For instance, you can create a text
message with the statement
TextMessage outMsg = mySession.createTextMessage();

See “Composing Messages” on page 56 for further discussion.

Set the message’s content and properties.

Each type of message has its own methods for specifying the contents of the message body. For
instance, you can set the content of a text message with the statement
outMsg.setText("Hello, World!");

3

4

5

6

7

Developing a Client Application

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200922

You can also use the property mechanism to define custom message properties of your own: for
instance,

outMsg.setStringProperty("MagicWord", "Shazam");

See “Working With Messages” on page 51 for further discussion.

Send the message.
The message producer’s send method sends a message to the destination with which the
producer is associated:
myProducer.send(outMsg);

See “Sending Messages” on page 62 for further discussion.

Close the session.
When there are no more messages to send, you should close the session
mySession.close();

allowing Message Queue to free any resources it may have associated with the session. See
“Working With Sessions” on page 47 for further discussion.

Close the connection.
When all sessions associated with a connection have been closed, you should close the
connection by calling its close method:
myConnection.close();

See “Using Connections” on page 39 for further discussion.

▼ To Consume Messages
Get a connection factory.
A Message Queue ConnectionFactory object encapsulates all of the needed configuration
properties for creating connections to the Message Queue message service. You can obtain such
an object either by direct instantiation
ConnectionFactory myFctry = new com.sun.messaging.ConnectionFactory();

or by looking up a predefined connection factory using the Java Naming and Directory
Interface (JNDI). In the latter case, all of the connection factory’s properties will have been
preconfigured to the appropriate values by your Message Queue administrator. If you
instantiate the factory object yourself, you may need to configure some of its properties
explicitly: for instance,

myFctry.setProperty(ConnectionConfiguration.imqAddressList,

"localhost:7676, broker2:5000, broker3:9999");

8

9

10

1

Developing a Client Application

Chapter 1 • Overview 23

myFctry.setProperty(ConnectionConfiguration.imqReconnectEnabled,"true");

See “Obtaining a Connection Factory” on page 35 for further discussion.

Create a connection.
A Connection object is an active connection to the Message Queue message service, created by
the connection factory you obtained in “Developing a Client Application” on page 21:
Connection myConnection = myFactory.createConnection();

See “Using Connections” on page 39 for further discussion.

Create a session for communicating with the message service.
A Session object represents a single-threaded context for producing and consuming messages.
Every session exists within the context of a particular connection and is created by that
connection’s createSession method:
Session mySession = myConnection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

The first (boolean) argument specifies whether the session is transacted. The second argument
is the acknowledgment mode, such as AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, or
DUPS_OK_ACKNOWLEDGE; these are defined as static constants in the JMS Session interface. See
“Acknowledgment Modes” on page 48 and “Transacted Sessions” on page 50 for further
discussion.

Get a destination from which to receive messages.
A Destination object encapsulates provider-specific naming syntax and behavior for a
message destination, which may be either a point-to-point queue or a publish/subscribe topic
(see “Messaging Domains” on page 33). You can obtain such an object by direct instantiation
Destination myDest = new com.sun.messaging.Queue("myDest");

or by looking up a predefined destination using the JNDI API. See “Working With
Destinations” on page 43 for further discussion.

Create a message consumer for receiving messages from this destination.
A MessageConsumer object is created by a session and associated with a particular destination:
MessageConsumer myConsumer = mySession.createConsumer(myDest);

See “Receiving Messages” on page 64 for further discussion.

Start the connection.
In order for a connection’s message consumers to begin receiving messages, you must start the
connection by calling its start method:
myConnection.start();

See “Using Connections” on page 39 for further discussion.

2

3

4

5

6

Developing a Client Application

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200924

Receive a message.
The message consumer’s receive method requests a message from the destination with which
the consumer is associated:
Message inMsg = myConsumer.receive();

This method is used for synchronous consumption of messages. You can also configure a
message consumer to consume messages asynchronously, by creating a message listener and
associating it with the consumer. See “Receiving Messages” on page 64 for further discussion.

Retrieve the message’s content and properties.
Each type of message has its own methods for extracting the contents of the message body. For
instance, you can retrieve the content of a text message with the statements
TextMessage txtMsg = (TextMessage) inMsg;

String msgText = txtMsg.getText();

In addition, you may need to retrieve some of the message’s header fields: for instance,

msgPriority = inMsg.getJMSPriority();

You can also use message methods to retrieve custom message properties of your own: for
instance,

magicWord = inMsg.getStringProperty("MagicWord");

See “Processing Messages” on page 71 for further discussion.

Close the session.
When there are no more messages to consume, you should close the session
mySession.close();

allowing Message Queue to free any resources it may have associated with the session. See
“Working With Sessions” on page 47 for further discussion.

Close the connection.
When all sessions associated with a connection have been closed, you should close the
connection by calling its close method:
myConnection.close();

See “Using Connections” on page 39 for further discussion.

7

8

9

10

Developing a Client Application

Chapter 1 • Overview 25

Compiling and Running a Client Application
This section leads you through the steps needed to compile and run a simple example client
application, HelloWorldMessage, that sends a message to a destination and then retrieves the
same message from the destination. The code shown in Example 1–2 is adapted and simplified
from an example program provided with the Message Queue installation: error checking and
status reporting have been removed for the sake of conceptual clarity. You can find the
complete original program in the helloworld directory in the following locations.
■ Solaris: /usr/demo/imq/
■ Linux: opt/sun/mq/examples
■ Windows: IMQ_HOME/demo

EXAMPLE 1–2 Simple Message Queue Client Application

// Import the JMS and JNDI API classes

import javax.jms.*;

import javax.naming.*;

import java.util.Hashtable;

public class HelloWorldMessage

{

/**

* Main method

*

* Parameter args not used

*

*/

public static void main (String[] args)

{

try

{

// Get a connection factory.

//

// Create the environment for constructing the initial JNDI

// naming context.

Hashtable env = new Hashtable();

// Store the environment attributes that tell JNDI which

// initial context

// factory to use and where to find the provider.

// (On Unix, use provider URL "file:///imq_admin_objects"

Compiling and Running a Client Application

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200926

EXAMPLE 1–2 Simple Message Queue Client Application (Continued)

// instead of"file:///C:/imq_admin_objects".)

env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL,"file:///C:/imq_admin_objects");

// Create the initial context.

Context ctx = new InitialContext(env);

// Look up connection factory object in the JNDI object store.

String CF_LOOKUP_NAME = "MyConnectionFactory";
ConnectionFactory myFactory =

(ConnectionFactory) ctx.lookup(CF_LOOKUP_NAME);

// Create a connection.

Connection myConnection = myFactory.createConnection();

// Create a session.

Session mySession = myConnection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

// Look up the destination object in the JNDI object store.

String DEST_LOOKUP_NAME = "MyDest";
Destination myDest = (Destination) ctx.lookup

(DEST_LOOKUP_NAME);

// Create a message producer.

MessageProducer myProducer = mySession.createProducer(myDest);

// Create a message consumer.

MessageConsumer myConsumer = mySession.createConsumer(myDest);

Compiling and Running a Client Application

Chapter 1 • Overview 27

EXAMPLE 1–2 Simple Message Queue Client Application (Continued)

// Create a message.

TextMessage outMsg = mySession.createTextMessage

("Hello, World!");

// Send the message to the destination.

System.out.println("Sending message: " + outMsg.getText());

myProducer.send(outMsg);

// Start the connection.

myConnection.start();

// Receive a message from the destination.

Message inMsg = myConsumer.receive();

// Retrieve the contents of the message.

if (inMsg instanceof TextMessage)

{ TextMessage txtMsg = (TextMessage) inMsg;

System.out.println("Received message: " +

txtMsg.getText());

}

// Close the session and the connection.

mySession.close();

myConnection.close();

}

catch (Exception jmse)

{ System.out.println("Exception occurred: " + jmse.toString());

jmse.printStackTrace();

}

}

Compiling and Running a Client Application

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200928

EXAMPLE 1–2 Simple Message Queue Client Application (Continued)

}

To compile and run Java clients in a Message Queue environment, it is recommended that you
use the Java 2 SDK, Standard Edition, version 1.4 or later. You can download the recommended
SDK from the following location:

http://java.sun.com/j2se/1.5

Be sure to set your CLASSPATH environment variable correctly, as described in “Setting Up Your
Environment” on page 17, before attempting to compile or run a client application.

Note – If you are using JDK 1.5, you will get compiler errors if you use the unqualified JMS Queue
class along with the following import statement.

import java.util.*

This is because the packagesjava.util and javax.jms both contain a class named Queue. To
avoid the compilation errors, you must eliminate the ambiguity by either fully qualifying
references to the JMS Queue class as javax.jms.Queue or correcting your import statements to
refer to specific individual java.util classes.

The following steps for compiling and running the HelloWorldMessage application are
furnished strictly as an example. The program is shipped precompiled; you do not actually need
to compile it yourself (unless, of course, you modify its source code).

▼ To Compile and Run the HelloWorldMessage
Application
Make the directory containing the application your current directory.
The Message Queue example applications directory on Solaris is not writable by users, so copy
the HelloWorldMessage application to a writable directory and make that directory your
current directory.

Compile the HelloWorldMessage application:
javac HelloWorldMessage.java

This creates the file HelloWorldMessage.class in your current directory.

1

2

Compiling and Running a Client Application

Chapter 1 • Overview 29

http://java.sun.com/j2se/1.5

Run the HelloWorldMessage application:
java HelloWorldMessage

The program should display the following output:

Sending Message: Hello, World!

Received Message: Hello, World!

Deploying a Client Application
When you are ready to deploy your client application, you should make sure your Message
Queue administrator knows your application’s needs. The checklist shown below summarizes
the information required; consult with your administrator for specific details. In some cases, it
may be useful to provide a range of values rather than a specific value. See Chapter 11,
“Managing Administered Objects,” in Sun GlassFish Message Queue 4.4 Administration Guide
for details on configuration and on attribute names and default values for administered objects.

■ Administered Objects
■ Connection Factories

■ Type
■ JNDI lookup name
■ Other attributes

■ Destinations
■ Type (queue or topic)
■ JNDI lookup name
■ Physical destination name

■ Physical Destinations
■ Type
■ Name
■ Attributes
■ Maximum number of messages expected
■ Maximum size of messages expected
■ Maximum message bytes expected

■ Broker or Broker Cluster
■ Name
■ Port
■ Properties

■ Dead Message Queue
■ Place dead messages on dead message queue?
■ Log placement of messages on dead message queue?
■ Discard body of messages placed on the dead message queue?

3

Deploying a Client Application

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200930

http://docs.sun.com/doc/821-0027/aeogu?a=view
http://docs.sun.com/doc/821-0027/aeogu?a=view

Example Application Code
The Message Queue installation includes example programs illustrating both JMS and JAXM
messaging (see Chapter 5, “Working with SOAP Messages”). They are located in the following
directories:

■ Installation from IPS image: IMQ_HOME/examples
■ Installation from Solaris SVR4 packages: /usr/demo/imq
■ Installation from Linux RPM packages: /opt/sun/mq/examples

Each directory (except the JMS directory) contains a README file describing the source files
included in that directory. The table below lists the directories of interest to Message Queue Java
clients.

TABLE 1–3 Example Programs

Directory Contents

helloworld Sample programs showing how to create and deploy a JMS client in
Message Queue, including the steps required to create administered objects
and to look up such objects with JNDI from within client code

jms Sample programs demonstrating the use of the JMS API with Message
Queue

jaxm Sample programs demonstrating the use of SOAP messages in conjunction
with JMS in Message Queue

applications Four subdirectories containing source code for the following:
■ A GUI application using the JMS API to implement a simple chat

application

■ A GUI application using the Message Queue JMS monitoring API to
obtain a list of queues from a Message Queue broker and browse their
contents with a JMS queue browser

■ The Message Queue Ping demo program

■ The Message Queue Applet demo program

monitoring Sample programs demonstrating the use of the JMS API to monitor a
message broker

jdbc Examples for plugging in a PointBase and an Oracle database

imqobjmgr Examples of imqobjmgr command files

Example Application Code

Chapter 1 • Overview 31

32

Using the Java API

This chapter describes how to use the classes and methods of the Message Queue Java
application programming interface (API) to accomplish specific tasks, and provides brief code
samples to illustrate some of these tasks. (For clarity, the code samples shown in the chapter
omit an exception check.) The topics covered include the following:

■ “Messaging Domains” on page 33
■ “Working With Connections” on page 34
■ “Working With Destinations” on page 43
■ “Working With Sessions” on page 47
■ “Working With Messages” on page 51

This chapter does not provide exhaustive information about each class and method. For
detailed reference information, see the JavaDoc documentation for each individual class. For
information on the practical design of Message Queue Java programs, see Chapter 3, “Message
Queue Clients: Design and Features”

Messaging Domains
The Java Message Service (JMS) specification, which Message Queue implements, supports two
commonly used models of interaction between message clients and message brokers,
sometimes known as messaging domains:

■ In the point-to-point (or PTP) messaging model, each message is delivered from a message
producer to a single message consumer. The producer delivers the message to a queue, from
which it is later delivered to one of the consumers registered for the queue. Any number of
producers and consumers can interact with the same queue, but each message is guaranteed
to be delivered to (and be successfully consumed by) exactly one consumer and no more. If
no consumers are registered for a queue, it holds the messages it receives and eventually
delivers them when a consumer registers.

2C H A P T E R 2

33

■ In the publish/subscribe (or pub/sub) model, a single message can be delivered from a
producer to any number of consumers. The producer publishes the message to a topic, from
which it is then delivered to all active consumers that have subscribed to the topic. Any
number of producers can publish messages to a given topic, and each message can be
delivered to any number of subscribed consumers. The model also supports the notion of
durable subscriptions, in which a consumer registered with a topic need not be active at the
time a message is published; when the consumer subsequently becomes active, it will receive
the message. If no active consumers are registered for a topic, the topic does not hold the
messages it receives unless it has inactive consumers with durable subscriptions.

JMS applications are free to use either of these messaging models, or even to mix them both
within the same application. Historically, the JMS API provided a separate set of
domain-specific object classes for each model. While these domain-specific interfaces continue
to be supported for legacy purposes, client programmers are now encouraged to use the newer
unified domain interface, which supports both models indiscriminately. For this reason, the
discussions and code examples in this manual focus exclusively on the unified interfaces
wherever possible. Table 2–1 shows the API classes for all three domains.

TABLE 2–1 Interface Classes for Messaging Domains

Unified Domain Point-to-Point Domain Publish/Subscribe Domain

Destination Queue Topic

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

Working With Connections
All messaging occurs within the context of a connection. Connections are created using a
connection factory encapsulating all of the needed configuration properties for connecting to a
particular JMS provider. A connection’s configuration properties are completely determined by
the connection factory, and cannot be changed once the connection has been created. Thus the
only way to control the properties of a connection is by setting those of the connection factory
you use to create it.

Working With Connections

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200934

Obtaining a Connection Factory
Typically, a connection factory is created for you by a Message Queue administrator and
preconfigured, using the administration tools described in the Chapter 1, “Administrative
Tasks and Tools,” in Sun GlassFish Message Queue 4.4 Administration Guidewith whatever
property settings are appropriate for connecting to particular JMS provider. The factory is then
placed in a publicly available administered object store, where you can access it by name using
the Java Naming and Directory Interface (JNDI) API. This arrangement has several benefits:

■ It allows the administrator to control the properties of client connections to the provider,
ensuring that they are properly configured.

■ It enables the administrator to tune performance and improve throughput by adjusting
configuration settings even after an application has been deployed.

■ By relying on the predefined connection factory to handle the configuration details, it helps
keep client code provider-independent and thus more easily portable from one JMS
provider to another.

Sometimes, however, it may be more convenient to dispense with JNDI lookup and simply
create your own connection factory by direct instantiation. Although hard-coding
configuration values for a particular JMS provider directly into your application code sacrifices
flexibility and provider-independence, this approach might make sense in some circumstances:
for example, in the early stages of application development and debugging, or in applications
where reconfigurability and portability to other providers are not important concerns.

The following sections describe these two approaches to obtaining a connection factory: by
JNDI lookup or direct instantiation.

Looking Up a Connection Factory With JNDI
Example 2–1 shows how to look up a connection factory object in the JNDI object store. The
code example is explained in the procedure that follows.

Note – If a Message Queue client is a J2EE component, JNDI resources are provided by the J2EE
container. In such cases, JNDI lookup code may differ from that shown here; see your J2EE
provider documentation for details.

EXAMPLE 2–1 Looking Up a Connection Factory

// Create the environment for constructing the initial JNDI

// naming context.

Hashtable env = new Hashtable();

Working With Connections

Chapter 2 • Using the Java API 35

http://docs.sun.com/doc/821-0027/aeoap?a=view
http://docs.sun.com/doc/821-0027/aeoap?a=view

EXAMPLE 2–1 Looking Up a Connection Factory (Continued)

// Store the environment attributes that tell JNDI which initial context

// factory to use and where to find the provider.//

env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:///C:/imq_admin_objects");

// Create the initial context.

Context ctx = new InitialContext(env);

// Look up the connection factory object in the JNDI object store.

String CF_LOOKUP_NAME = "MyConnectionFactory";
ConnectionFactory myFactory = (ConnectionFactory) ctx.lookup

(CF_LOOKUP_NAME);

▼ To Look Up a Connection Factory With JNDI

Create the environment for constructing the initial JNDI naming context.
How you create the initial context depends on whether you are using a file-system object store
or a Lightweight Directory Access Protocol (LDAP) server for your Message Queue
administered objects. The code shown here assumes a file-system store; for information about
the corresponding LDAP object store attributes, see “Using an LDAP User Repository” in Sun
GlassFish Message Queue 4.4 Administration Guide

The constructor for the initial context accepts an environment parameter, a hash table whose
entries specify the attributes for creating the context:
Hashtable env = new Hashtable();

You can also set an environment by specifying system properties on the command line, rather
than programmatically. For instructions, see the README file in the JMS example applications
directory.

Store the environment attributes that tell JNDI which initial context factory to use and where to
find the JMS provider.
The names of these attributes are defined as static constants in class Context:
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:///C:/imq_admin_objects");

1

2

Working With Connections

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200936

http://docs.sun.com/doc/821-0027/aeofr?a=view
http://docs.sun.com/doc/821-0027/aeofr?a=view

Note – The directory represented by C:/imq_admin_objects must already exist; if necessary, you
must create the directory before referencing it in your code.

Create the initial context.
Context ctx = new InitialContext(env);

If you use system properties to set the environment, omit the environment parameter when
creating the context:

Context ctx = new InitialContext();

Look up the connection factory object in the administered object store and typecast it to the
appropriate class:
String CF_LOOKUP_NAME = "MyConnectionFactory";
ConnectionFactory

myFactory = (ConnectionFactory) ctx.lookup(CF_LOOKUP_NAME);

The lookup name you use, CF_LOOKUP_NAME, must match the name used when the object was
stored.

You can now proceed to use the connection factory to create connections to the message
broker, as described under “Using Connections” on page 39.

Overriding Configuration Settings
It is recommended that you use a connection factory just as you receive it from a JNDI lookup,
with the property settings originally configured by your Message Queue administrator.
However, there may be times when you need to override the preconfigured properties with
different values of your own. You can do this from within your application code by calling the
connection factory’s setProperty method. This method (inherited from the superclass
AdministeredObject) takes two string arguments giving the name and value of the property to
be set. The property names for the first argument are defined as static constants in the Message
Queue class ConnectionConfiguration: for instance, the statement

myFactory.setProperty(ConnectionConfiguration.imqDefaultPassword,

"mellon");

sets the default password for establishing broker connections. See “Connection Factory
Attributes” in Sun GlassFish Message Queue 4.4 Administration Guidefor complete information
on the available connection factory configuration attributes.

It is also possible to override connection factory properties from the command line, by using the
-D option to set their values when starting your client application. For example, the command
line

java -DimqDefaultPassword=mellon MyMQClient

3

4

Working With Connections

Chapter 2 • Using the Java API 37

http://docs.sun.com/doc/821-0027/aeogz?a=view
http://docs.sun.com/doc/821-0027/aeogz?a=view

starts an application named MyMQClient with the same default password as in the preceding
example. Setting a property value this way overrides any other value specified for it, whether
preconfigured in the JNDI object store or set programmatically with the setProperty method.

Note – A Message Queue administrator can prevent a connection factory’s properties from being
overridden by specifying that the object be read-only when placing it in the object store. The
properties of such a factory cannot be changed in any way, whether with the -D option from the
command line or using the setProperty method from within your client application’s code.
Any attempt to override the factory’s property values will simply be ignored.

Instantiating a Connection Factory
Example 2–2 shows how to create a connection factory object by direct instantiation and
configure its properties.

EXAMPLE 2–2 Instantiating a Connection Factory

// Instantiate the connection factory object.

com.sun.messaging.ConnectionFactory

myFactory = new com.sun.messaging.ConnectionFactory();

// Set the connection factory’s configuration properties.

myFactory.setProperty(ConnectionConfiguration.imqAddressList,

"localhost:7676,broker2:5000,broker3:9999");

The following procedure explains each program satement in the previous code sample.

▼ To Instantiate and Configure a Connection Factory

Instantiate the connection factory object.

The name ConnectionFactory is defined both as a JMS interface (in package javax.jms) and as
a Message Queue class (in com.sun.messaging) that implements that interface. Since only a
class can be instantiated, you must use the constructor defined in com.sun.messaging to create
your connection factory object. Note, however, that you cannot import the name from both

1

Working With Connections

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200938

packages without causing a compilation error. Hence, if you have imported the entire package
javax.jms.*, you must qualify the constructor with the full package name when instantiating
the object:
com.sun.messaging.ConnectionFactory

myFactory = new com.sun.messaging.ConnectionFactory();

Notice that the type declaration for the variable myFactory, to which the instantiated
connection factory is assigned, is also qualified with the full package name. This is because the
setProperty method, used in “Instantiating a Connection Factory” on page 38, belongs to the
ConnectionFactory class defined in the package com.sun.messaging, rather than to the
ConnectionFactory interface defined in javax.jms . Thus in order for the compiler to
recognize this method, myFactory must be typed explicitly as
com.sun.messaging.ConnectionFactory rather than simply ConnectionFactory (which
would resolve to javax.jms.ConnectionFactory after importing javax.jms.*).

Set the connection factory’s configuration properties.
The most important configuration property is imqAddressList, which specifies the host names
and port numbers of the message brokers to which the factory creates connections. By default,
the factory returned by the ConnectionFactory constructor in “Instantiating a Connection
Factory” on page 38 is configured to create connections to a broker on host localhost at port
number 7676. If necessary, you can use the setProperty method, described in the preceding
section, to change that setting:
myFactory.setProperty(ConnectionConfiguration.imqAddressList,

"localhost:7676,broker2:5000,broker3:9999");

Of course, you can also set any other configuration properties your application may require. See
“Connection Factory Attributes” in Sun GlassFish Message Queue 4.4 Administration Guide for
a list of the available connection factory attributes.

You can now proceed to use the connection factory to create connections to the message
service, as described in the next section.

Using Connections
Once you have obtained a connection factory, you can use it to create a connection to the
message service. The factory’s createConnection method takes a user name and password as
arguments:

Connection

myConnection = myFactory.createConnection("mithrandir", "mellon");

Before granting the connection, Message Queue authenticates the user name and password by
looking them up in its user repository. As a convenience for developers who do not wish to go to
the trouble of populating a user repository during application development and testing, there is
also a parameterless form of the createConnection method:

2

Working With Connections

Chapter 2 • Using the Java API 39

http://docs.sun.com/doc/821-0027/aeogz?a=view

Connection myConnection = myFactory.createConnection();

This creates a connection configured for the default user identity, with both user name and
password set to guest.

This unified-domain createConnection method is part of the generic JMS
ConnectionFactory interface, defined in package javax.jms; the Message Queue version in
com.sun.messaging adds corresponding methods createQueueConnection and
createTopicConnection for use specifically with the point-to-point and publish/subscribe
domains.

The following table shows the methods defined in the Connection interface.

TABLE 2–2 Connection Methods

Name Description

createSession Create session

setClientID Set client identifier

getClientID Get client identifier

setEeventListener Set event listener for connection events

setExceptionListener Set exception listener

getExceptionListener Get exception listener

getMetaData Get metadata for connection

createConnectionConsumer Create connection consumer

createDurableConnectionConsumer Create durable connection consumer

start Start incoming message delivery

stop Stop incoming message delivery

close Close connection

The main purpose of a connection is to create sessions for exchanging messages with the
message service:

myConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);

The first argument to createSession is a boolean indicating whether the session is transacted;
the second specifies its acknowledgment mode. Possible values for this second argument are
AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, and DUPS_OK_ACKNOWLEDGE, all defined as static
constants in the standard JMS Session interface, javax.jms.Session ; the extended Message

Working With Connections

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200940

Queue version of the interface, com.sun.messaging.jms.Session , adds another such
constant, NO_ACKNOWLEDGE. See “Acknowledgment Modes” on page 48 and “Transacted
Sessions” on page 50 for further discussion.

If your client application will be using the publish/subscribe domain to create durable topic
subscriptions, it must have a client identifier to identify itself to the message service. In general,
the most convenient arrangement is to configure the client runtime to provide a unique client
identifier automatically for each client. However, the Connection interface also provides a
method, setClientID, for setting a client identifier explicitly, and a corresponding
getClientID method for retrieving its value. See “Assigning Client Identifiers” on page 82 and
“Client Identifier” in Sun GlassFish Message Queue 4.4 Administration Guide for more
information.

You should also use the setExceptionListener method to register an exception listener for the
connection. This is an object implementing the JMS ExceptionListener interface, which
consists of the single method onException:

void onException (JMSException exception)

In the event of a problem with the connection, the message broker will call this method, passing
an exception object identifying the nature of the problem.

A connection’s getMetaData method returns a ConnectionMetaData object, which in turn
provides methods for obtaining various items of information about the connection, such as its
JMS version and the name and version of the JMS provider.

The createConnectionConsumer and createDurableConnectionConsumer methods (as well
as the session methods setMessageListener and getMessageListener, listed in Table 2–3) are
used for concurrent message consumption; see the Java Message Service Specification for more
information.

In order to receive incoming messages, you must 7start the connection by calling its start
method:

myConnection.start();

It is important not to do this until after you have created any message consumers you will be
using to receive messages on the connection. Starting the connection before creating the
consumers risks missing some incoming messages before the consumers are ready to receive
them. It is not necessary to start the connection in order to send outgoing messages.

If for any reason you need to suspend the flow of incoming messages, you can do so by calling
the connection’s stop method:

myConnection.stop();

To resume delivery of incoming messages, call the start method again.

Working With Connections

Chapter 2 • Using the Java API 41

http://docs.sun.com/doc/821-0027/aeohg?a=view

Finally, when you are through with a connection, you should close it to release any resources
associated with it:

myConnection.close();

This automatically closes all sessions, message producers, and message consumers associated
with the connection and deletes any temporary destinations. All pending message receives are
terminated and any transactions in progress are rolled back. Closing a connection does not
force an acknowledgment of client-acknowledged sessions.

Creating Secure Connctions (SSL)
A connection service that is based on the Transport Layer Security (TLS/SSL) standard is used
to authenticate and encrypt messages sent between the client and the broker. This section
describes what the client needs to do to use TLS/SSL connections. A user can also establish a
secure connection by way of an HTTPS tunnel servlet. For information on setting up secure
connections over HTTP, see Appendix C, “HTTP/HTTPS Support,” in Sun GlassFish Message
Queue 4.4 Administration Guide.

Some of the work needed to set up a TLS/SSL connection is done by an administrator. This
section summarizes these steps. For complete information about the administrative work
required, please see “Message Encryption” in Sun GlassFish Message Queue 4.4 Administration
Guide.

To set up a secure connection service, you must do the following.

1. Generate a self-signed or signed certificate for the broker (administrator).
2. Enable the ssljms connection service in the broker (administrator).
3. Start the broker (administrator).
4. Configure and run the client as explained below.

To configure a client to use a TLS/SSL connection you must do the following.

1. If your client is not using J2SDK 1.4 (which has JSSE and JNDI support built in), make sure
the client has the following files in its class path: jsse.jar, jnet.jar, jcert, jar,
jndi.jar.

2. Make sure the client has the following Message Queue files in its class path: imq.jar,
jms.jar.

3. If the client is not willing to trust the broker's self-signed certificate, set the
imqSSLIsHostTrusted attribute to false for the connection factory from which you get the
TLS/SSL connection.

4. Connect to the broker's ssljms service. There are two ways to do this. The first is to specify
the service name ssljms in the address for the broker when you provide a value for the
imqAddressList attribute of the connection factory from which you obtain the connection.

Working With Connections

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200942

http://docs.sun.com/doc/821-0027/aeopb?a=view
http://docs.sun.com/doc/821-0027/aeopb?a=view
http://docs.sun.com/doc/821-0027/aeogb?a=view
http://docs.sun.com/doc/821-0027/aeogb?a=view

When you run the client, it will be connected to the broker by a TLS/SSLconnection. The
second is to specify the following directive when you run the command that starts the client.

java -DimqConnectionType=TLS clientAppName

Working With Destinations
All Message Queue messages travel from a message producer to a message consumer by way of
a destination on a message broker. Message delivery is thus a two-stage process: the message is
first delivered from the producer to the destination and later from the destination to the
consumer. Physical destinations on the broker are created administratively by a Message Queue
administrator, using the administration tools described in “Configuring and Managing Physical
Destinations” in Sun GlassFish Message Queue 4.4 Administration Guide. The broker provides
routing and delivery services for messages sent to such a destination.

As described earlier under “Messaging Domains” on page 33, Message Queue supports two
types of destination, depending on the messaging domain being used:

■ Queues (point-to-point domain)
■ Topics (publish/subscribe domain)

These two types of destination are represented by the Message Queue classes Queue and Topic,
respectively. These, in turn, are both subclasses of the generic class Destination, part of the
unified messaging domain that subsumes both the point-to-point and publish-subscribe
domains. A client program that uses the Destination superclass can thus handle both queue
and topic destinations indiscriminately.

Looking Up a Destination With JNDI
Because JMS providers differ in their destination addressing conventions, Message Queue does
not define a standard address syntax for obtaining access to a destination. Rather, the
destination is typically placed in a publicly available administered object store by a Message
Queue administrator and accessed by the client using a JNDI lookup in a manner similar to that
described earlier for connection factories (see “Looking Up a Connection Factory With JNDI”
on page 35).

Example 2–3 shows how to look up a destination object in the JNDI object store.

Note – If a Message Queue client is a J2EE component, JNDI resources are provided by the J2EE
container. In such cases, JNDI lookup code may differ from that shown here; see your J2EE
provider documentation for details.

Working With Destinations

Chapter 2 • Using the Java API 43

http://docs.sun.com/doc/821-0027/gheav?a=view
http://docs.sun.com/doc/821-0027/gheav?a=view

EXAMPLE 2–3 Looking Up a Destination

// Create the environment for constructing the initial JNDI naming context.

Hashtable env = new Hashtable();

// Store the environment attributes that tell JNDI which initial

// context factory to use and where to find the provider.

env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:///C:/imq_admin_objects");

// Create the initial context.

Context ctx = new InitialContext(env);

// Look up the destination object in the JNDI object store.

String DEST_LOOKUP_NAME = "MyDest";
Destination MyDest = (Destination) ctx.lookup(DEST_LOOKUP_NAME);

The following section explains the program statements in Example 2–3.

▼ To Look Up a Destination With JNDI

Create the environment for constructing the initial JNDI naming context.
How you create the initial context depends on whether you are using a file-system object store
or a Lightweight Directory Access Protocol (LDAP) server for your Message Queue
administered objects. The code shown here assumes a file-system store; for information about
the corresponding LDAP object store attributes, see “LDAP Server Object Stores” in Sun
GlassFish Message Queue 4.4 Administration Guide.

The constructor for the initial context accepts an environment parameter, a hash table whose
entries specify the attributes for creating the context:
Hashtable env = new Hashtable();

You can also set an environment by specifying system properties on the command line, rather
than programmatically. For instructions, see the README file in the JMS example applications
directory.

1

Working With Destinations

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200944

http://docs.sun.com/doc/821-0027/aeogw?a=view
http://docs.sun.com/doc/821-0027/aeogw?a=view

Store the environment attributes that tell JNDI which initial context factory to use and where to
find the JMS provider.
The names of these attributes are defined as static constants in class Context:
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:///C:/imq_admin_objects");

Note – The directory represented by C:/imq_admin_objects must already exist; if necessary, you
must create the directory before referencing it in your code.

Create the initial context.
Context ctx = new InitialContext(env);

If you use system properties to set the environment, omit the environment parameter when
creating the context:

Context ctx = new InitialContext();

Look up the destination object in the administered object store and typecast it to the
appropriate class:
String DEST_LOOKUP_NAME = "MyDest";
Destination MyDest = (Destination) ctx.lookup(DEST_LOOKUP_NAME);

The lookup name you use, DEST_LOOKUP_NAME, must match the name used when the object was
stored. Note that the actual destination object returned from the object store will always be
either a (point-to-point) queue or a (publish/subscribe) topic, but that either can be assigned to
a variable of the generic unified-domain class Destination.

Note – For topic destinations, a symbolic lookup name that includes wildcard characters can be
used as the lookup string. See “Supported Topic Destination Names” in Sun GlassFish Message
Queue 4.4 Administration Guide.

You can now proceed to send and receive messages using the destination, as described under
“Sending Messages” on page 62 and “Receiving Messages” on page 64.

Instantiating a Destination
As with connection factories, you may sometimes find it more convenient to dispense with
JNDI lookup and simply create your own queue or topic destination objects by direct
instantiation. Although a variable of type Destination can accept objects of either class, you
cannot directly instantiate a Destination object; the object must always belong to one of the
specific classes Queue or Topic. The constructors for both of these classes accept a string
argument specifying the name of the physical destination to which the object corresponds:

2

3

4

Working With Destinations

Chapter 2 • Using the Java API 45

http://docs.sun.com/doc/821-0027/ghcda?a=view
http://docs.sun.com/doc/821-0027/ghcda?a=view

Destination myDest = new com.sun.messaging.Queue("myDest");

Note, however, that this only creates a Java object representing the destination; it does not
actually create a physical destination on the message broker. The physical destination itself
must still be created by a Message Queue administrator, with the same name you pass to the
constructor when instantiating the object.

Note – Destination names beginning with the letters mq are reserved and should not be used by
client programs.

Also, for topic destinations, a symbolic lookup name that includes wildcard characters can be
used as the lookup string. See “Supported Topic Destination Names” in Sun GlassFish Message
Queue 4.4 Administration Guide.

Unlike connection factories, destinations have a much more limited set of configuration
properties. In fact, only two such properties are defined in the Message Queue class
DestinationConfiguration: the name of the physical destination itself
(imqDestinationName) and an optional descriptive string (imqDestinationDescription).
Since the latter property is rarely used and the physical destination name can be supplied
directly as an argument to the Queue or Topic constructor as shown above, there normally is no
need (as there often is with a connection factory) to specify additional properties with the
object’s setProperty method. Hence the variable to which you assign the destination object
(myDest in the example above) need not be typed with the Message Queue class
com.sun.messaging.Destination; the standard JMS interface javax.jms.Destination
(which the Message Queue class implements) is sufficient. If you have imported the full JMS
package javax.jms.*, you can simply declare the variable with the unqualified name
Destination, as above, rather than with something like

com.sun.messaging.Destination

myDest = new com.sun.messaging.Queue("myDest");

as shown earlier for connection factories.

Temporary Destinations
A temporary destination is one that exists only for the duration of the connection that created it.
You may sometimes find it convenient to create such a destination to use, for example, as a
reply destination for messages you send. Temporary destinations are created with the session
method createTemporaryQueue or createTemporaryTopic (see “Working With Sessions” on
page 47 below): for example,

TemporaryQueue tempQueue = mySession.createTemporaryQueue();

Working With Destinations

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200946

http://docs.sun.com/doc/821-0027/ghcda?a=view
http://docs.sun.com/doc/821-0027/ghcda?a=view

Although the temporary destination is created by a particular session, its scope is actually the
entire connection to which that session belongs. Any of the connection’s sessions (not just the
one that created the temporary destination) can create a message consumer for the destination
and receive messages from it. The temporary destination is automatically deleted when its
connection is closed, or you can delete it explicitly by calling its delete method:

tempQueue.delete();

Working With Sessions
A session is a single-threaded context for producing and consuming messages. You can create
multiple message producers and consumers for a single session, but you are restricted to using
them serially, in a single logical thread of control.

Table 2–3 shows the methods defined in the Session interface; they are discussed in the
relevant sections below.

TABLE 2–3 Session Methods

Name Description

createProducer Create message producer

createConsumer Create message consumer

createDurableSubscriber Create durable subscriber for topic

unsubscribe Delete durable subscription to topic

createMessage Create null message

createTextMessage Create text message

createStreamMessage Create stream message

createMapMessage Create map message

createObjectMessage Create object message

createBytesMessage Create bytes message

createQueue Create queue destination

createTopic Create topic destination

createTemporaryQueue Create temporary queue

createTemporaryTopic Create temporary topic

createBrowser Create message browser

Working With Sessions

Chapter 2 • Using the Java API 47

TABLE 2–3 Session Methods (Continued)
Name Description

setMessageListener Set distinguished message listener

getMessageListener Get distinguished message listener

getAcknowledgeMode Get session’s acknowledgment mode

getTransacted Is session transacted?

commit Commit transaction

rollback Roll back transaction

recover Recover unacknowledged messages

close Close session

Every session exists within the context of a particular connection. The number of sessions you
can create for a single connection is limited only by system resources. As described earlier (see
“Using Connections” on page 39), you use the connection’s createSession method to create a
session:

Session

mySession = myConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);

The first (boolean) argument specifies whether the session is transacted; see “Transacted
Sessions” on page 50 for further discussion. The second argument is an integer constant
representing the session’s acknowledgment mode, as described in the next section.

Acknowledgment Modes
A session’s acknowledgment mode determines the way your application handles the exchange of
acknowledgment information when receiving messages from a broker. The JMS specification
defines three possible acknowledgment modes:

■ In auto-acknowledge mode, the Message Queue client runtime immediately sends a client
acknowledgment for each message it delivers to the message consumer; it then blocks
waiting for a return broker acknowledgment confirming that the broker has received the
client acknowledgment. This acknowledgment “handshake” between client and broker is
handled automatically by the client runtime, with no need for explicit action on your part.

■ In client-acknowledge mode, your client application must explicitly acknowledge the receipt
of all messages. This allows you to defer acknowledgment until after you have finished
processing the message, ensuring that the broker will not delete it from persistent storage
before processing is complete. You can either acknowledge each message individually or
batch multiple messages and acknowledge them all at once; the client acknowledgment you

Working With Sessions

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200948

send to the broker applies to all messages received since the previous acknowledgment. In
either case, as in auto-acknowledge mode, the session thread blocks after sending the client
acknowledgment, waiting for a broker acknowledgment in return to confirm that your
client acknowledgment has been received.

■ In dups-OK-acknowledge mode, the session automatically sends a client acknowledgment
each time it has received a fixed number of messages, or when a fixed time interval has
elapsed since the last acknowledgment was sent. (This fixed batch size and timeout interval
are currently 10 messages and 7 seconds, respectively, and are not configurable by the
client.) Unlike the first two modes described above, the broker does not acknowledge receipt
of the client acknowledgment, and the session thread does not block awaiting such return
acknowledgment from the broker. This means that you have no way to confirm that your
acknowledgment has been received; if it is lost in transmission, the broker may redeliver the
same message more than once. However, because client acknowledgments are batched and
the session thread does not block, applications that can tolerate multiple delivery of the
same message can achieve higher throughput in this mode than in auto-acknowledge or
client-acknowledge mode.
Message Queue extends the JMS specification by adding a fourth acknowledgment mode:

■ In no-acknowledge mode, your client application does not acknowledge receipt of messages,
nor does the broker expect any such acknowledgment. There is thus no guarantee
whatsoever that any message sent by the broker has been successfully received. This mode
sacrifices all reliability for the sake of maximum throughput of message traffic.

The standard JMS Session interface, defined in package javax.jms, defines static constants for
the first three acknowledgment modes (AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, and
DUPS_OK_ACKNOWLEDGE), to be used as arguments to the connection’s createSession method.
The constant representing the fourth mode (NO_ACKNOWLEDGE) is defined in the extended
Message Queue version of the interface, in package com.sun.messaging.jms. The session
method getAcknowledgeMode returns one of these constants:

int ackMode = mySession.getAcknowledgeMode();

switch (ackMode)

{

case Session.AUTO_ACKNOWLEDGE:

/* Code here to handle auto-acknowledge mode */

break;

case Session.CLIENT_ACKNOWLEDGE:

/* Code here to handle client-acknowledge mode */

break;

case Session.DUPS_OK_ACKNOWLEDGE:

/* Code here to handle dups-OK-acknowledge mode */

break;

case com.sun.messaging.jms.Session.NO_ACKNOWLEDGE:

/* Code here to handle no-acknowledge mode */

break;

}

Working With Sessions

Chapter 2 • Using the Java API 49

Note – All of the acknowledgment modes discussed above apply to message consumption. For
message production, the broker’s acknowledgment behavior depends on the message’s delivery
mode (persistent or nonpersistent; see “Message Header” on page 52). The broker
acknowledges the receipt of persistent messages, but not of nonpersistent ones; this behavior is
not configurable by the client.

In a transacted session (see next section), the acknowledgment mode is ignored and all
acknowledgment processing is handled for you automatically by the Message Queue client
runtime. In this case, the getAcknowledgeMode method returns the special constant
Session.SESSION_TRANSACTED.

Transacted Sessions
Transactions allow you to group together an entire series of incoming and outgoing messages
and treat them as an atomic unit. The message broker tracks the state of the transaction’s
individual messages, but does not complete their delivery until you commit the transaction. In
the event of failure, you can roll back the transaction, canceling all of its messages and restarting
the entire series from the beginning.

Transactions always take place within the context of a single session. To use them, you must
create a transacted session by passing true as the first argument to a connection’s
createSession method:

Session

mySession = myConnection.createSession(true, Session.SESSION_TRANSACTED);

The session’s getTransacted method tests whether it is a transacted session:

if (mySession.getTransacted())

{ /* Code here to handle transacted session */

}

else

{ /* Code here to handle non-transacted session */

}

A transacted session always has exactly one open transaction, encompassing all messages sent
or received since the session was created or the previous transaction was completed.
Committing or rolling back a transaction ends that transaction and automatically begins
another.

Working With Sessions

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200950

Note – Because the scope of a transaction is limited to a single session, it is not possible to
combine the production and consumption of a message into a single end-to-end transaction.
That is, the delivery of a message from a message producer to a destination on the broker
cannot be placed in the same transaction with its subsequent delivery from the destination to a
consumer.

When all messages in a transaction have been successfully delivered, you call the session’s
commit method to commit the transaction:

mySession.commit();

All of the session’s incoming messages are acknowledged and all of its outgoing messages are
sent. The transaction is then considered complete and a new one is started.

When a send or receive operation fails, an exception is thrown. While it is possible to handle the
exception by simply ignoring it or by retrying the operation, it is recommended that you roll
back the transaction, using the session’s rollback method:

mySession.rollback();

All of the session’s incoming messages are recovered and redelivered, and its outgoing messages
are destroyed and must be re-sent.

Working With Messages
This section describes how to use the Message Queue Java API to compose, send, receive, and
process messages.

Message Structure
A message consists of the following parts:

■ A header containing identifying and routing information
■ Optional properties that can be used to convey additional identifying information beyond

that contained in the header
■ A body containing the actual content of the message

The following sections discuss each of these in greater detail.

Working With Messages

Chapter 2 • Using the Java API 51

Message Header
Every message must have a header containing identifying and routing information. The header
consists of a set of standard fields, which are defined in the Java Message Service Specification
and summarized in Table 2–4. Some of these are set automatically by Message Queue in the
course of producing and delivering a message, some depend on settings specified when a
message producer sends a message, and others are set by the client on a message-by-message
basis.

TABLE 2–4 Message Header Fields

Name Description

JMSMessageID Message identifier

JMSDestination Destination to which message is sent

JMSReplyTo Destination to which to reply

JMSCorrelationID Link to related message

JMSDeliveryMode Delivery mode (persistent or nonpersistent)

JMSPriority Priority level

JMSTimestamp Time of transmission

JMSExpiration Expiration time

JMSType Message type

JMSRedelivered Has message been delivered before?

The JMS Message interface defines methods for setting the value of each header field: for
instance,

outMsg.setJMSReplyTo(replyDest);

Table 2–5 lists all of the available header specification methods.

TABLE 2–5 Message Header Specification Methods

Name Description

setJMSMessageID Set message identifier

setJMSDestination Set destination

setJMSReplyTo Set reply destination

setJMSCorrelationID Set correlation identifier from string

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200952

TABLE 2–5 Message Header Specification Methods (Continued)
Name Description

setJMSCorrelationIDAsBytes Set correlation identifier from byte array

setJMSDeliveryMode Set delivery mode

setJMSPriority Set priority level

setJMSTimestamp Set time stamp

setJMSExpiration Set expiration time

setJMSType Set message type

setJMSRedelivered Set redelivered flag

The message identifier (JMSMessageID) is a string value uniquely identifying the message,
assigned and set by the message broker when the message is sent. Because generating an
identifier for each message adds to both the size of the message and the overhead involved in
sending it, and because some client applications may not use them, the JMS interface provides a
way to suppress the generation of message identifiers, using the message producer method
setDisableMessageID (see “Sending Messages” on page 62).

The JMSDestination header field holds a Destination object representing the destination to
which the message is directed, set by the message broker when the message is sent. There is also
a JMSReplyTo field that you can set to specify a destination to which reply messages should be
directed. Clients sending such a reply message can set its JMSCorrelationID header field to
refer to the message to which they are replying. Typically this field is set to the message
identifier string of the message being replied to, but client applications are free to substitute
their own correlation conventions instead, using either the setJMSCorrelationID method (if
the field value is a string) or the more general setJMSCorrelationIDAsBytes (if it is not).

The delivery mode (JMSDeliveryMode) specifies whether the message broker should log the
message to stable storage. There are two possible values, PERSISTENT and NON_PERSISTENT,
both defined as static constants of the JMS interface DeliveryMode: for example,

outMsg.setJMSDeliveryMode(DeliveryMode.NON_PERSISTENT);

The default delivery mode is PERSISTENT, represented by the static constant
Message.DEFAULT_DELIVERY_MODE.

The choice of delivery mode represents a tradeoff between performance and reliability:

■ In persistent mode, the broker logs the message to stable storage, ensuring that it will not be
lost in transit in the event of transmission failure; the message is guaranteed to be delivered
exactly once.

Working With Messages

Chapter 2 • Using the Java API 53

■ In nonpersistent mode, the message is not logged to stable storage; it will be delivered at most
once, but may be lost in case of failure and not delivered at all. This mode does, however,
improve performance by reducing the broker’s message-handling overhead. It may thus be
appropriate for applications in which performance is at a premium and reliability is not.

The message’s priority level (JMSPriority) is expressed as an integer from 0 (lowest) to 9

(highest). Priorities from 0 to 4 are considered gradations of normal priority, those from 5 to 9

of expedited priority. The default priority level is 4, represented by the static constant
Message.DEFAULT_PRIORITY.

The Message Queue client runtime sets the JMSTimestamp header field to the time it delivers the
message to the broker, expressed as a long integer in standard Java format (milliseconds since
midnight, January 1, 1970 UTC). The message’s lifetime, specified when the message is sent, is
added to this value and the result is stored in the JMSExpiration header field. (The default
lifetime value of 0, represented by the static constant Message.DEFAULT_TIME_TO_LIVE, denotes
an unlimited lifetime. In this case, the expiration time is also set to 0 to indicate that the message
never expires.) As with the message identifier, client applications that do not use a message’s
time stamp can improve performance by suppressing its generation with the message producer
method setDisableMessageTimestamp (see “Sending Messages” on page 62).

The header field JMSType can contain an optional message type identifier string supplied by the
client when the message is sent. This field is intended for use with other JMS providers; Message
Queue clients can simply ignore it.

When a message already delivered must be delivered again because of a failure, the broker
indicates this by setting the JMSRedelivered flag in the message header to true. This can
happen, for instance, when a session is recovered or a transaction is rolled back. The receiving
client can check this flag to avoid duplicate processing of the same message (such as when the
message has already been successfully received but the client’s acknowledgment was missed by
the broker).

See the Java Message Service Specification for a more detailed discussion of all message header
fields.

Message Properties
A message property consists of a name string and an associated value, which must be either a
string or one of the standard Java primitive data types (int, byte, short, long, float, double,
or boolean). The Message interface provides methods for setting properties of each type (see
Table 2–6). There is also a setObjectProperty method that accepts a primitive value in
objectified form, as a Java object of class Integer, Byte, Short, Long, Float , Double, Boolean,
or String . The clearProperties method deletes all properties associated with a message; the
message header and body are not affected.

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200954

TABLE 2–6 Message Property Specification Methods

Name Description

setIntProperty Set integer property

setByteProperty Set byte property

setShortProperty Set short integer property

setLongProperty Set long integer property

setFloatProperty Set floating-point property

setDoubleProperty Set double-precision property

setBooleanProperty Set boolean property

setStringProperty Set string property

setObjectProperty Set property from object

clearProperties Clear properties

The JMS specification defines certain standard properties, listed in Table 2–7 . By convention,
the names of all such standard properties begin with the letters JMSX; names of this form are
reserved and must not be used by a client application for its own custom message properties.
Similarly, property names beginning with JMS_SUN are reserved for provider-specific properties
defined by Message Queue itself; these are discussed in Chapter 3, “Message Queue Clients:
Design and Features”

TABLE 2–7 Standard JMS Message Properties

Name Description

JMSXUserID Identity of user sending message

JMSXAppID Identity of application sending message

JMSXDeliveryCount Number of delivery attempts

JMSXGroupID Identity of message group to which this message belongs

JMSXGroupSeq Sequence number within message group

JMSXProducerTXID Identifier of transaction within which message was produced

JMSXConsumerTXID Identifier of transaction within which message was consumed

JMSXRcvTimestamp Time message delivered to consumer

JMSXState Message state (waiting, ready, expired, or retained)

Working With Messages

Chapter 2 • Using the Java API 55

Message Body
The actual content of a message is contained in the message body. JMS defines six classes (or
types) of message, each with a different body format:

■ A text message (interface TextMessage) contains a Java string.
■ A stream message (interface StreamMessage) contains a stream of Java primitive values,

written and read sequentially.
■ A map message (interface MapMessage) contains a set of name-value pairs, where each name

is a string and each value is a Java primitive value. The order of the entries is undefined; they
can be accessed randomly by name or enumerated sequentially.

■ An object message (interface ObjectMessage) contains a serialized Java object (which may in
turn be a collection of other objects).

■ A bytes message (interface BytesMessage) contains a stream of uninterpreted bytes.
■ A null message (interface Message) consists of a header and properties only, with no message

body.

Each of these is a subinterface of the generic Message interface, extended with additional
methods specific to the particular message type.

Composing Messages
The JMS Session interface provides methods for creating each type of message, as shown in
Table 2–8. For instance, you can create a text message with a statement such as

TextMessage outMsg = mySession.createTextMessage();

In general, these methods create a message with an empty body; the interfaces for specific
message types then provide additional methods for filling the body with content, as described in
the sections that follow.

TABLE 2–8 Session Methods for Message Creation

Name Description

createMessage Create null message

createTextMessage Create text message

createStreamMessage Create stream message

createMapMessage Create map message

createObjectMessage Create object message

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200956

TABLE 2–8 Session Methods for Message Creation (Continued)
Name Description

createBytesMessage Create bytes message

Note – Some of the message-creation methods have an overloaded form that allows you to
initialize the message body directly at creation: for example,

TextMessage

outMsg = mySession.createTextMessage("Hello, World!");

These exceptions are pointed out in the relevant sections below.

Once a message has been delivered to a message consumer, its body is considered read-only;
any attempt by the consumer to modify the message body will cause an exception
(MessageNotWriteableException) to be thrown. The consumer can, however, empty the
message body and place it in a writeable state by calling the message method clearBody:

outMsg.clearBody();

This places the message in the same state as if it had been newly created, ready to fill its body
with new content.

Composing Text Messages
You create a text message with the session method createTextMessage. You can either
initialize the message body directly at creation time

TextMessage outMsg = mySession.createTextMessage("Hello, World!");

or simply create an empty message and then use its setText method (see Table 2–9) to set its
content:

TextMessage outMsg = mySession.createTextMessage();

outMsg.setText("Hello, World!");

TABLE 2–9 Text Message Composition Method

Name Description

setText Set content string

Working With Messages

Chapter 2 • Using the Java API 57

Composing Stream Messages
The session method createStreamMessage returns a new, empty stream message. You can then
use the methods shown in Table 2–10 to write primitive data values into the message body,
similarly to writing to a data stream: for example,

StreamMessage outMsg = mySession.createStreamMessage();

outMsg.writeString("The Meaning of Life");
outMsg.writeInt(42);

TABLE 2–10 Stream Message Composition Methods

Name Description

writeInt Write integer to message stream

writeByte Write byte value to message stream

writeBytes Write byte array to message stream

writeShort Write short integer to message stream

writeLong Write long integer to message stream

writeFloat Write floating-point value to message stream

writeDouble Write double-precision value to message stream

writeBoolean Write boolean value to message stream

writeChar Write character to message stream

writeString Write string to message stream

writeObject Write value of object to message stream

reset Reset message stream

As a convenience for handling values whose types are not known until execution time, the
writeObject method accepts a string or an objectified primitive value of class Integer, Byte,
Short, Long, Float, Double , Boolean, or Character and writes the corresponding string or
primitive value to the message stream: for example, the statements

Integer meaningOfLife = new Integer(42);

outMsg.writeObject(meaningOfLife);

are equivalent to

outMsg.writeInt(42);

This method will throw an exception (MessageFormatException) if the argument given to it is
not of class String or one of the objectified primitive classes.

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200958

Once you’ve written the entire message contents to the stream, the reset method

outMsg.reset();

puts the message body in read-only mode and repositions the stream to the beginning, ready to
read (see “Processing Messages” on page 71). When the message is in this state, any attempt to
write to the message stream will throw the exception MessageNotWriteableException. A call
to the clearBody method (inherited from the superinterface Message) deletes the entire
message body and makes it writeable again.

Composing Map Messages
Table 2–11 shows the methods available in the MapMessage interface for adding content to the
body of a map message. Each of these methods takes two arguments, a name string and a
primitive or string value of the appropriate type, and adds the corresponding name-value pair
to the message body: for example,

StreamMessage outMsg = mySession.createMapMessage();

outMsg.setInt("The Meaning of Life", 42);

TABLE 2–11 Map Message Composition Methods

Name Description

setInt Store integer in message map by name

setByte Store byte value in message map by name

setBytes Store byte array in message map by name

setShort Store short integer in message map by name

setLong Store long integer in message map by name

setFloat Store floating-point value in message map by name

setDouble Store double-precision value in message map by name

setBoolean Store boolean value in message map by name

setChar Store character in message map by name

setString Store string in message map by name

setObject Store object in message map by name

Like stream messages, map messages provide a convenience method (setObject) for dealing
with values whose type is determined dynamically at execution time: for example, the
statements

Working With Messages

Chapter 2 • Using the Java API 59

Integer meaningOfLife = new Integer(42);

outMsg.setObject("The Meaning of Life", meaningOfLife);

are equivalent to

outMsg.setInt("The Meaning of Life", 42);

The object supplied must be either a string object (class String) or an objectified primitive
value of class Integer, Byte , Short, Long, Float, Double, Boolean, or Character; otherwise an
exception (MessageFormatException) will be thrown.

Composing Object Messages
The ObjectMessage interface provides just one method, setObject (Table 2–12), for setting
the body of an object message:

ObjectMessage outMsg = mySession.createObjectMessage();

outMsg.setObject(bodyObject);

The argument to this method can be any serializable object (that is, an instance of any class that
implements the standard Java interface Serializable). If the object is not serializable, the
exception MessageFormatException will be thrown.

TABLE 2–12 Object Message Composition Method

Name Description

setObject Serialize object to message body

As an alternative, you can initialize the message body directly when you create the message, by
passing an object to the session method createObjectMessage:

ObjectMessage outMsg = mySession.createObjectMessage(bodyObject);

Again, an exception will be thrown if the object is not serializable.

Composing Bytes Messages
The body of a bytes message simply consists of a stream of uninterpreted bytes; its
interpretation is entirely a matter of agreement between sender and receiver. This type of
message is intended primarily for encoding message formats required by other existing message
systems; Message Queue clients should generally use one of the other, more specific message
types instead.

Composing a bytes message is similar to composing a stream message (see “Composing Stream
Messages” on page 58). You create the message with the session method createBytesMessage,
then use the methods shown in Table 2–13 to encode primitive values into the message’s byte
stream: for example,

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200960

BytesMessage outMsg = mySession.createBytesMessage();

outMsg.writeUTF("The Meaning of Life");
outMsg.writeInt(42);

TABLE 2–13 Bytes Message Composition Methods

Name Description

writeInt Write integer to message stream

writeByte Write byte value to message stream

writeBytes Write byte array to message stream

writeShort Write short integer to message stream

writeLong Write long integer to message stream

writeFloat Write floating-point value to message stream

writeDouble Write double-precision value to message stream

writeBoolean Write boolean value to message stream

writeChar Write character to message stream

writeUTF Write UTF-8 string to message stream

writeObject Write value of object to message stream

reset Reset message stream

As with stream and map messages, you can use the generic object-based method writeObject

to handle values whose type is unknown at compilation time: for example, the statements

Integer meaningOfLife = new Integer(42);

outMsg.writeObject(meaningOfLife);

are equivalent to

outMsg.writeInt(42);

The message’s reset method

outMsg.reset();

puts the message body in read-only mode and repositions the byte stream to the beginning,
ready to read (see “Processing Messages” on page 71). Attempting to write further content to a
message in this state will cause an exception (MessageNotWriteableException). The inherited
Message method clearBody can be used to delete the entire message body and make it writeable
again.

Working With Messages

Chapter 2 • Using the Java API 61

Sending Messages
In order to send messages to a message broker, you must create a message producer using the
session method createProducer:

MessageProducer myProducer = mySession.createProducer(myDest);

The scope of the message producer is limited to the session that created it and the connection to
which that session belongs. Table 2–14 shows the methods defined in the MessageProducer
interface.

TABLE 2–14 Message Producer Methods

Name Description

getDestination Get default destination

setDeliveryMode Set default delivery mode

getDeliveryMode Get default delivery mode

setPriority Set default priority level

getPriority Get default priority level

setTimeToLive Set default message lifetime

getTimeToLive Get default message lifetime

setDisableMessageID Set message identifier disable flag

getDisableMessageID Get message identifier disable flag

setDisableMessageTimestamp Set time stamp disable flag

getDisableMessageTimestamp Get time stamp disable flag

send Send message

close Close message producer

The createProducer method takes a destination as an argument, which may be either a
(point-to-point) queue or a (publish/subscribe) topic. The producer will then send all of its
messages to the specified destination. If the destination is a queue, the producer is called a
sender for that queue; if it is a topic, the producer is a publisher to that topic. The message
producer’s getDestination method returns this destination.

You also have the option of leaving the destination unspecified when you create a producer

MessageProducer myProducer = mySession.createProducer(null);

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200962

in which case you must specify an explicit destination for each message. This option is typically
used for producers that must send messages to a variety of destinations, such as those
designated in the JMSReplyTo header fields of incoming messages (see “Message Header” on
page 52).

Note – The generic MessageProducer interface also has specialized subinterfaces, QueueSender
and TopicPublisher, for sending messages specifically to a point-to-point queue or a
publish/subscribe topic. These types of producer are created by the createSender and
createPublisher methods of the specialized session subinterfaces QueueSession and
TopicSession, respectively. However, it is generally more convenient (and recommended) to
use the generic form of message producer described here, which can handle both types of
destination indiscriminately.

A producer has a default delivery mode (persistent or nonpersistent), priority level, and
message lifetime, which it will apply to all messages it sends unless explicitly overridden for an
individual message. You can set these properties with the message producer methods
setDeliveryMode, setPriority, and setTimeToLive, and retrieve them with
getDeliveryMode, getPriority, and getTimeToLive. If you don’t set them explicitly, they
default to persistent delivery, priority level 4, and a lifetime value of 0, denoting an unlimited
message lifetime.

The heart of the message producer interface is the send method, which is available in a variety
of overloaded forms. The simplest of these just takes a message as its only argument:

myProducer.send(outMsg);

This sends the specified message to the producer’s default destination, using the producer’s
default delivery mode, priority, and message lifetime. Alternatively, you can explicitly specify
the destination

myProducer.send(myDest, outMsg);

or the delivery mode, priority, and lifetime in milliseconds

myProducer.send(outMsg, DeliveryMode.NON_PERSISTENT, 9, 1000);

or all of these at once:

myProducer.send(myDest, outMsg, DeliveryMode.NON_PERSISTENT, 9, 1000);

Recall that if you did not specify a destination when creating the message producer, you must
provide an explicit destination for each message you send.

As discussed earlier under “Message Header” on page 52, client applications that have no need
for the message identifier and time stamp fields in the message header can gain some
performance improvement by suppressing the generation of these fields, using the message

Working With Messages

Chapter 2 • Using the Java API 63

producer’s setDisableMessageID and setdisableMessageTimestamp methods. Note that a
true value for either of these flags disables the generation of the corresponding header field,
while a false value enables it. Both flags are set to false by default, meaning that the broker
will generate the values of these header fields unless explicitly instructed otherwise.

When you are finished using a message producer, you should call its close method

myProducer.close();

allowing the broker and client runtime to release any resources they may have allocated on the
producer’s behalf.

Receiving Messages
Messages are received by a message consumer, within the context of a connection and a session.
Once you have created a consumer, you can use it to receive messages in either of two ways:

■ In synchronous message consumption, you explicitly request the delivery of messages when
you are ready to receive them.

■ In asynchronous message consumption, you register a message listener for the consumer.
The Message Queue client runtime then calls the listener whenever it has a message to
deliver.

These two forms of message consumption are described in the sections “Receiving Messages
Synchronously” on page 67 and “Receiving Messages Asynchronously” on page 68.

Creating Message Consumers
The session method createConsumer creates a generic consumer that can be used to receive
messages from either a (point-to-point) queue or a (publish/subscribe) topic:

MessageConsumer myConsumer = mySession.createConsumer(myDest);

If the destination is a queue, the consumer is called a receiver for that queue; if it is a topic, the
consumer is a subscriber to that topic.

Note – The generic MessageConsumer interface also has specialized subinterfaces,
QueueReceiver and TopicSubscriber, for receiving messages specifically from a
point-to-point queue or a publish/subscribe topic. These types of consumer are created by the
createReceiver and createSubscriber methods of the specialized session subinterfaces
QueueSession and TopicSession, respectively. However, it is generally more convenient (and
recommended) to use the generic form of message consumer described here, which can handle
both types of destination indiscriminately.

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200964

A subscriber created for a topic destination with the createConsumer method is always
nondurable, meaning that it will receive only messages that are sent (published)to the topic
while the subscriber is active. If you want the broker to retain messages published to a topic
while no subscriber is active and deliver them when one becomes active again, you must instead
create a durable subscriber, as described in “Durable Subscribers” on page 66.

Table 2–15 shows the methods defined in the MessageConsumer interface, which are discussed
in detail in the relevant sections below.

TABLE 2–15 Message Consumer Methods

Name Description

getMessageSelector Get message selector

receive Receive message synchronously

receiveNoWait Receive message synchronously without blocking

setMessageListener Set message listener for asynchronous reception

getMessageListener Get message listener for asynchronous reception

close Close message consumer

Message Selectors

If appropriate, you can restrict the messages a consumer will receive from its destination by
supplying a message selector as an argument when you create the consumer:

String mySelector = "/* Text of selector here */";
MessageConsumer myConsumer = mySession.createConsumer(myDest, mySelector);

The selector is a string whose syntax is based on a subset of the SQL92 conditional expression
syntax, which allows you to filter the messages you receive based on the values of their
properties (see “Message Properties” on page 54). See the Java Message Service Specification for a
complete description of this syntax. The message consumer’s getMessageSelector method
returns the consumer’s selector string (or null if no selector was specified when the consumer
was created):

String mySelector = myConsumer.getMessageSelector();

Working With Messages

Chapter 2 • Using the Java API 65

Note – Messages whose properties do not satisfy the consumer’s selector will be retained
undelivered by the destination until they are retrieved by another message consumer. The use
of message selectors can thus cause messages to be delivered out of sequence from the order in
which they were originally produced. Only a message consumer without a selector is
guaranteed to receive messages in their original order.

In some cases, the same connection may both publish and subscribe to the same topic
destination. The createConsumer method accepts an optional boolean argument that
suppresses the delivery of messages published by the consumer’s own connection:

String mySelector = "/* Text of selector here */";
MessageConsumer

myConsumer = mySession.createConsumer(myDest, mySelector, true);

The resulting consumer will receive only messages published by a different connection.

Durable Subscribers

To receive messages delivered to a publish/subscribe topic while no message consumer is active,
you must ask the message broker to create a durable subscriber for that topic. All sessions that
create such subscribers for a given topic must have the same client identifier (see “Using
Connections” on page 39). When you create a durable subscriber, you supply a subscriber
name that must be unique for that client identifier:

MessageConsumer

myConsumer = mySession.createDurableSubscriber(myDest, "mySub");

(The object returned by the createDurableSubscriber method is actually typed as
TopicSubscriber, but since that is a subinterface of MessageConsumer, you can safely assign it
to a MessageConsumer variable. Note, however, that the destination myDest must be a
publish/subscribe topic and not a point-to-point queue.)

You can think of a durable subscriber as a “virtual message consumer” for the specified topic,
identified by the unique combination of a client identifier and subscriber name. When a
message arrives for the topic and no message consumer is currently active for it, the message
will be retained for later delivery. Whenever you create a consumer with the given client
identifier and subscriber name, it will be considered to represent this same durable subscriber
and will receive all of the accumulated messages that have arrived for the topic in the
subscriber’s absence. Each message is retained until it is delivered to (and acknowledged by)
such a consumer or until it expires.

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200966

Note – Only one session at a time can have an active consumer for a given durable subscription.
If another such consumer already exists, the createDurableSubscriber method will throw an
exception.

Like the createConsumer method described in the preceding section (which creates nondurable
subscribers), createDurableSubscriber can accept an optional message selector string and a
boolean argument telling whether to suppress the delivery of messages published by the
subscriber’s own connection:

String mySelector = "/* Text of selector here */";
MessageConsumer myConsumer

= mySession.createDurableSubscriber(myDest, "mySub",
mySelector, true);

You can change the terms of a durable subscription by creating a new subscriber with the same
client identifier and subscription name but with a different topic, selector, or both. The effect is
as if the old subscription were destroyed and a new one created with the same name. When you
no longer need a durable subscription, you can destroy it with the session method unsubscribe:

mySession.unsubscribe("mySub");

Receiving Messages Synchronously
Once you have created a message consumer for a session, using either the createConsumer
orcreateDurableSubscriber method, you must start the session’s connection to begin the flow
of incoming messages:

myConnection.start();

(Note that it is not necessary to start a connection in order to produce messages, only to
consume them.) You can then use the consumer’s receive method to receive messages
synchronously from the message broker:

Message inMsg = myConsumer.receive();

This returns the next available message for this consumer. If no message is immediately
available, the receive method blocks until one arrives. You can also provide a timeout interval
in milliseconds:

Message inMsg = myConsumer.receive(1000);

In this case, if no message arrives before the specified timeout interval (1 second in the example)
expires, the method will return with a null result. An alternative method, receiveNoWait,
returns a null result immediately if no message is currently available:

Working With Messages

Chapter 2 • Using the Java API 67

Message inMsg = myConsumer.receiveNoWait();

Receiving Messages Asynchronously
If you want your message consumer to receive incoming messages asynchronously, you must
create a message listener to process the messages. This is a Java object that implements the JMS
MessageListener interface. The procedure is as follows:

▼ To Set Up a Message Queue Java Client to Receive Messages
Asynchronously

Define a message listener class implementing the MessageListener interface.
The interface consists of the single method onMessage, which accepts a message as a parameter
and processes it in whatever way is appropriate for your application:
public class MyMessageListener implements MessageListener

{

public void onMessage (Message inMsg)

{

/* Code here to process message */

}

}

Create a message consumer.
You can use either the createConsumer or createDurableSubscriber method of the session in
which the consumer will operate: for instance,
MessageConsumer myConsumer = mySession.createConsumer(myDest);

Create an instance of your message listener class.
MyMessageListener myListener = new MyMessageListener();

Associate the message listener with your message consumer.
The message consumer method setMessageListener accepts a message listener object and
associates it with the given consumer:
myConsumer.setMessageListener(myListener);

Start the connection to which this consumer’s session belongs.
The connection’s start method begins the flow of messages from the message broker to your
message consumer:
myConnection.start();

Once the connection is started, the Message Queue client runtime will call your message
listener’s onMessage method each time it has a message to deliver to this consumer.

1

2

3

4

5

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200968

To ensure that no messages are lost before your consumer is ready to receive them, it is
important not to start the connection until after you have created the message listener and
associated it with the consumer. If the connection is already started, you should stop it before
creating an asynchronous consumer, then start it again when the consumer is ready to begin
processing.

Setting a consumer’s message listener to null removes any message listener previously
associated with it:

myConsumer.setMessageListener(null);

The consumer’s getMessageListener method returns its current message listener (or null if
there is none):

MyMessageListener myListener = myConsumer.getMessageListener();

Acknowledging Messages
If you have specified client-acknowledge as your session’s acknowledgment mode (see
“Acknowledgment Modes” on page 48), it is your client application’s responsibility to explicitly
acknowledge each message it receives. If you have received the message synchronously, using a
message consumer’s receive (or receiveNoWait) method, you should process the message first
and then acknowledge it; if you have received it asynchronously, your message listener’s
onMessage method should acknowledge the message after processing it. This ensures that the
message broker will not delete the message from persistent storage until processing is complete.

Note – In a transacted session (see “Transacted Sessions” on page 50), there is no need to
acknowledge a message explicitly: the session’s acknowledgment mode is ignored and all
acknowledgment processing is handled for you automatically by the Message Queue client
runtime. In this case, the session’s getAcknowledgeMode method will return the special constant
Session.SESSION_TRANSACTED.

Table 2–16 shows the methods available for acknowledging a message. The most general is
acknowledge, defined in the standard JMS interface javax.jms.Message:

inMsg.acknowledge();

This acknowledges all unacknowledged messages consumed by the session up to the time of
call. You can use this method to acknowledge each message individually as you receive it, or you
can group several messages together and acknowledge them all at once by calling acknowledge
on the last one in the group.

Working With Messages

Chapter 2 • Using the Java API 69

TABLE 2–16 Message Acknowledgment Methods

Function Description

acknowledge Acknowledge all unacknowledged messages for session

acknowledgeThisMessage Acknowledge this message only

acknowledgeUpThroughThisMessage Acknowledge all unacknowledged messages through this
one

The Message Queue version of the Message interface, defined in the package
com.sun.messaging.jms, adds two more methods that provide more flexible control over
which messages you acknowledge. The acknowledgeThisMessage method just acknowledges
the single message for which it is called, rather than all messages consumed by the session;
acknowledgeUpThroughThisMessage acknowledges the message for which it is called and all
previous messages; messages received after that message remain unacknowledged.

Browsing Messages
If the destination from which you are consuming messages is a point-to-point queue, you can
use a queue browser to examine the messages in the queue without consuming them. The
session method createBrowser creates a browser for a specified queue:

QueueBrowser myBrowser = mySession.createBrowser(myDest);

The method will throw an exception (InvalidDestinationException) if you try to pass it a
topic destination instead of a queue. You can also supply a selector string as an optional second
argument:

String mySelector = "/* Text of selector here */";
QueueBrowser myBrowser = mySession.createBrowser(myDest, mySelector);

Table 2–17 shows the methods defined in the QueueBrowser interface. The getQueue and
getMessageSelector methods return the browser’s queue and selector string, respectively.

TABLE 2–17 Queue Browser Methods

Name Description

getQueue Get queue from which this browser reads

getMessageSelector Get message selector

getEnumeration Get enumeration of all messages in the queue

close Close browser

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200970

The most important queue browser method is getEnumeration, which returns a Java
enumeration object that you can use to iterate through the messages in the queue, as shown in
Example 2–4.

EXAMPLE 2–4 Browsing a Queue

Enumeration queueMessages = myBrowser.getEnumeration();

Message eachMessage;

while (queueMessages.hasMoreElements())

{ eachMessage = queueMessages.nextElement();

/* Do something with the message */

}

The browser’s close method closes it when you’re through with it:

myBrowser.close();

Closing a Consumer
As a matter of good programming practice, you should close a message consumer when you
have no further need for it. Closing a session or connection automatically closes all consumers
associated with it; to close a consumer without closing the session or connection to which it
belongs, you can use its close method:

myConsumer.close();

For a consumer that is a nondurable topic subscriber, this terminates the flow of messages to the
consumer. However, if the consumer is a queue receiver or a durable topic subscriber, messages
will continue to be accumulated for the destination and will be delivered the next time a
consumer for that destination becomes active. To terminate a durable subscription
permanently, call its session’s unsubscribe method with the subscriber name as an argument:

mySession.unsubscribe("mySub");

Processing Messages
Processing a message after you have received it may entail examining its header fields,
properties, and body. The following sections describe how this is done.

Retrieving Message Header Fields
The standard JMS message header fields are described in Table 2–4. Table 2–18 shows the
methods provided by the JMS Message interface for retrieving the values of these fields: for
instance, you can obtain a message’s reply destination with the statement

Working With Messages

Chapter 2 • Using the Java API 71

Destination replyDest = inMsg.getJMSReplyTo();

TABLE 2–18 Message Header Retrieval Methods

Name Description

getJMSMessageID Get message identifier

getJMSDestination Get destination

getJMSReplyTo Get reply destination

getJMSCorrelationID Get correlation identifier as string

getJMSCorrelationIDAsBytes Get correlation identifier as byte array

getJMSDeliveryMode Get delivery mode

getJMSPriority Get priority level

getJMSTimestamp Get time stamp

getJMSExpiration Get expiration time

getJMSType Get message type

getJMSRedelivered Get redelivered flag

Retrieving Message Properties
Table 2–19 lists the methods defined in the JMS Message interface for retrieving the values of a
message’s properties (see “Message Properties” on page 54). There is a retrieval method for each
of the possible primitive types that a property value can assume: for instance, you can obtain a
message’s time stamp with the statement

long timeStamp = inMsg.getLongProperty("JMSXRcvTimestamp");

TABLE 2–19 Message Property Retrieval Methods

Name Description

getIntProperty Get integer property

getByteProperty Get byte property

getShortProperty Get short integer property

getLongProperty Get long integer property

getFloatProperty Get floating-point property

getDoubleProperty Get double-precision property

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200972

TABLE 2–19 Message Property Retrieval Methods (Continued)
Name Description

getBooleanProperty Get boolean property

getStringProperty Get string property

getObjectProperty Get property as object

getPropertyNames Get property names

propertyExists Does property exist?

There is also a generic getObjectProperty method that returns a property value in objectified
form, as a Java object of class Integer, Byte, Short, Long, Float , Double, Boolean, or String .
For example, another way to obtain a message’s time stamp, equivalent to that shown above,
would be

Long timeStampObject = (Long)inMsg.getObjectProperty("JMSXRcvTimestamp");
long timeStamp = timeStampObject.longValue();

If the message has no property with the requested name, getObjectProperty will return null;
the message method propertyExists tests whether this is the case.

The getPropertyNames method returns a Java enumeration object for iterating through all of
the property names associated with a given message; you can then use the retrieval methods
shown in the table to retrieve each of the properties by name, as shown in Example 2–5.

EXAMPLE 2–5 Enumerating Message Properties

Enumeration propNames = inMsg.getPropertyNames();

String eachName;

Object eachValue;

while (propNames.hasMoreElements())

{ eachName = propNames.nextElement();

eachValue = inMsg.getObjectProperty(eachName);

/* Do something with the value */

}

Processing the Message Body
The methods for retrieving the contents of a message’s body essentially parallel those for
composing the body, as described earlier under “Composing Messages” on page 56. The
following sections describe these methods for each of the possible message types (text, stream,
map, object, and bytes).

Working With Messages

Chapter 2 • Using the Java API 73

Processing Text Messages
The text message method getText (Table 2–20) retrieves the contents of a text message’s body
in the form of a string:

String textBody = inMsg.getText();

TABLE 2–20 Text Message Access Method

Name Description

getText Get content string

Processing Stream Messages
Reading the contents of a stream message is similar to reading from a data stream, using the
access methods shown in Table 2–21: for example, the statement

int intVal = inMsg.readInt();

retrieves an integer value from the message stream.

TABLE 2–21 Stream Message Access Methods

Name Description

readInt Read integer from message stream

readByte Read byte value from message stream

readBytes Read byte array from message stream

readShort Read short integer from message stream

readLong Read long integer from message stream

readFloat Read floating-point value from message stream

readDouble Read double-precision value from message stream

readBoolean Read boolean value from message stream

readChar Read character from message stream

readString Read string from message stream

readObject Read value from message stream as object

The readObject method returns the next value from the message stream in objectified form, as
a Java object of the class corresponding to the value’s primitive data type: for instance, if the
value is of type int, readObject returns an object of class Integer. The following statements
are equivalent to the one shown above:

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200974

Integer intObject = (Integer) inMsg.readObject();

int intVal = intObject.intValue();

Processing Map Messages

The MapMessage interface provides the methods shown in Table 2–22 for reading the body of a
map message. Each access method takes a name string as an argument and returns the value to
which that name is mapped: for instance, under the example shown in “Composing Map
Messages” on page 59, the statement

int meaningOfLife = inMsg.getInt("The Meaning of Life");

would set the variable meaningOfLife to the value 42.

TABLE 2–22 Map Message Access Methods

Name Description

getInt Get integer from message map by name

getByte Get byte value from message map by name

getBytes Get byte array from message map by name

getShort Get short integer from message map by name

getLong Get long integer from message map by name

getFloat Get floating-point value from message map by name

getDouble Get double-precision value from message map by name

getBoolean Get boolean value from message map by name

getChar Get character from message map by name

getString Get string from message map by name

getObject Get object from message map by name

itemExists Does map contain an item with specified name?

getMapNames Get enumeration of all names in map

Like stream messages, map messages provide an access method, getObject, that returns a value
from the map in objectified form, as a Java object of the class corresponding to the value’s
primitive data type: for instance, if the value is of type int, getObject returns an object of class
Integer. The following statements are equivalent to the one shown above:

Integer meaningObject = (Integer) inMsg.getObject("The Meaning of Life");
int meaningOfLife = meaningObject.intValue();

Working With Messages

Chapter 2 • Using the Java API 75

The itemExists method returns a boolean value indicating whether the message map contains
an association for a given name string:

if (inMsg.itemExists("The Meaning of Life"))

{ /* Life is meaningful */

}

else

{ /* Life is meaningless */

}

The getMapNames method returns a Java enumeration object for iterating through all of the
names defined in the map; you can then use getObject to retrieve the corresponding values, as
shown in Example 2–6.

EXAMPLE 2–6 Enumerating Map Message Values

Enumeration mapNames = inMsg.getMapNames();

String eachName;

Object eachValue;

while (mapNames.hasMoreElements())

{ eachName = mapNames.nextElement();

eachValue = inMsg.getObject(eachName);

/* Do something with the value */

}

Processing Object Messages

The ObjectMessage interface provides just one method, getObject (Table 2–23), for retrieving
the serialized object that is the body of an object message:

Object messageBody = inMsg.getObject();

You can then typecast the result to a more specific class and process it in whatever way is
appropriate.

TABLE 2–23 Object Message Access Method

Name Description

getObject Get serialized object from message body

Processing Bytes Messages

The body of a bytes message simply consists of a stream of uninterpreted bytes; its
interpretation is entirely a matter of agreement between sender and receiver. This type of

Working With Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200976

message is intended primarily for decoding message formats used by other existing message
systems; Message Queue clients should generally use one of the other, more specific message
types instead.

Reading the body of a bytes message is similar to reading a stream message (see “Processing
Stream Messages” on page 74): you use the methods shown in Table 2–24 to decode primitive
values from the message’s byte stream. For example, the statement

int intVal = inMsg.readInt();

retrieves an integer value from the byte stream. The getBodyLength method returns the length
of the entire message body in bytes:

int bodyLength = inMsg.getBodyLength();

TABLE 2–24 Bytes Message Access Methods

Name Description

getBodyLength Get length of message body in bytes

readInt Read integer from message stream

readByte Read signed byte value from message stream

readUnsignedByte Read unsigned byte value from message stream

readBytes Read byte array from message stream

readShort Read signed short integer from message stream

readUnsignedShort Read unsigned short integer from message stream

readLong Read long integer from message stream

readFloat Read floating-point value from message stream

readDouble Read double-precision value from message stream

readBoolean Read boolean value from message stream

readChar Read character from message stream

readUTF Read UTF-8 string from message stream

Working With Messages

Chapter 2 • Using the Java API 77

78

Message Queue Clients: Design and Features

This chapter addresses architectural and configuration issues that depend upon Message
Queue’s implementation of the Java Message Specification. It covers the following topics:

■ “Client Design Considerations” on page 79
■ “Managing Client Threads” on page 84
■ “Managing Memory and Resources” on page 86
■ “Programming Issues for Message Consumers” on page 92
■ “Factors Affecting Performance” on page 94
■ “Connection Event Notification” on page 98
■ “Client Connection Failover (Auto-Reconnect)” on page 100
■ “Custom Client Acknowledgment” on page 135
■ “Communicating with C Clients” on page 139
■ “Client Runtime Logging” on page 139

Client Design Considerations
The choices you make in designing a JMS client affect portability, allocating work between
connections and sessions, reliability and performance, resource use, and ease of administration.
This section discusses basic issues that you need to address in client design. It covers the
following topics:

■ “Developing Portable Clients” on page 80
■ “Choosing Messaging Domains” on page 80
■ “Connections and Sessions” on page 81
■ “Producers and Consumers” on page 82
■ “Balancing Reliability and Performance” on page 84

3C H A P T E R 3

79

Developing Portable Clients
The Java Messaging Specification was developed to abstract access to message-oriented
middleware systems (MOMs). A client that writes JMS code should be portable to any provider
that implements this specification. If code portability is important to you, be sure that you do
the following in developing clients:
■ Make sure your code does not depend on extensions or features that are specific to Message

Queue.
■ Look up, using JNDI, (rather than instantiate) administered objects for connection factories

and destinations.
Administered objects encapsulate provider-specific implementation and configuration
information. Besides allowing for portability, administered objects also make it much easier
to share connection factories between applications and to tune a JMS application for
performance and resource use. So, even if portability is not important to you, you might still
want to leave the work of creating and configuring these objects to an administrator. For
more information, see “Looking Up a Connection Factory With JNDI” on page 35 and
“Looking Up a Destination With JNDI” on page 43.

Choosing Messaging Domains
As described in “Messaging Domains” in Sun GlassFish Message Queue 4.4 Technical Overview,
JMS supports two distinct message delivery models: point-to-point and publish/subscribe.
These two message delivery models can be handled using different API objects—with slightly
different semantics—representing different programming domains, as shown in Table 3–1, or
they can be handled by base (unified domain) types.

TABLE 3–1 JMS Programming Objects

Unified Domain Point-to-Point Domain Publish/Subscribe Domain

Destination (Queue or Topic) Queue Topic

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

Using the point-to-point or publish/subscribe domains offers the advantage of a clean API that
prevents certain types of programming errors; for example, creating a durable subscriber for a
queue destination. However, the non-unified domains have the disadvantage that you cannot

Client Design Considerations

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200980

http://docs.sun.com/doc/821-0028/aerbi?a=view

combine point-to-point and publish/subscribe operations in the same transaction or in the
same session. If you need to do that, you should choose the unified domain API.

The JMS 1.1 specification continues to support the separate JMS 1.02 programming domains.
(The example applications included with the Message Queue product as well as the code
examples provided in this book all use the separate JMS 1.02 programming domains.) You can
choose the API that best suits your needs. The only exception are those developers needing to
write clients for the Sun GlassFish Application Server 7 environment, as explained in the
following note.

Note – Developers of applications that run in the Sun GlassFish Application Server 7
environment are limited to using the JMS 1.0.2 API. This is because Sun GlassFish Application
Server 7 complies with the J2EE 1.3 specification, which supports only JMS 1.0.2. Any JMS
messaging performed in servlets and EJBs—including message-driven beans must be based on
the domain-specific JMS APIs and cannot use the JMS 1.1 unified domain APIs. Developers of
J2EE applications that will run in J2EE 1.4-compliant servers can, however, use the simpler JMS
1.1 APIs.

Connections and Sessions
A connection is a relatively heavy-weight object because of the authentication and
communication setup that must be done when a connection is created. For this reason, it’s a
good idea to use as few connections as possible. The real allocation of work occurs in sessions,
which are light-weight, single-threaded contexts for producing and consuming messages.
When you are thinking about structuring your client, it is best to think of the work that is done
at the session level.

A session
■ Is a factory for its message producers and consumers
■ Supplies provider-optimized message factories
■ Supports a single series of transactions that combine work spanning its producers and

consumers into atomic units
■ Defines a serial order for the messages it consumes and the messages it produces
■ Retains messages until they have been acknowledged
■ Serializes execution of message listeners registered with its message consumers

The requirement that sessions be operated on by a single thread at a time places some
restrictions on the combination of producers and consumers that can use the same session. In
particular, if a session has an asynchronous consumer, it may not have any other synchronous
consumers. For a discussion of the connection and session’s use of threads, see “Managing
Client Threads” on page 84. With the exception of these restrictions, let the needs of your
application determine the number of sessions, producers, and consumers.

Client Design Considerations

Chapter 3 • Message Queue Clients: Design and Features 81

Producers and Consumers
Aside from the reliability your client requires, the design decisions that relate to producers and
consumers include the following:

■ Do you want to use a point-to-point or a publish/subscribe domain?
There are some interesting permutations here. There are times when you would want to use
publish/subscribe even when you have only one subscriber. On the other hand,
performance considerations might make the point-to-point model more efficient than the
publish/subscribe model, when the work of sorting messages between subscribers is too
costly. Sometimes You cannot make these decisions cannot in the abstract, but must actually
develop and test different prototypes.

■ Are you using an asynchronous message consumer that does not receive messages often or a
producer that is seldom used?
Let the administrator know how to set the ping interval, so that your client gets an exception
if the connection should fail. For more information see “Using the Client Runtime Ping
Feature” on page 92.

■ Are you using a synchronous consumer in a distributed application?
You might need to allow a small time interval between connecting and calling the
receiveNoWait() method in order not to miss a pending message. For more information,
see “Synchronous Consumption in Distributed Applications” on page 93.

■ Do you need message compression?
Benefits vary with the size and format of messages, the number of consumers, network
bandwidth, and CPU performance; and benefits are not guaranteed. For a more detailed
discussion, see “Message Compression” on page 87.

Assigning Client Identifiers
A connection can have a client identifier. This identifier is used to associate a JMS client’s
connection to a message service, with state information maintained by the message service for
that client. The JMS provider must ensure that a client identifier is unique, and applies to only
one connection at a time. Currently, client identifiers are used to maintain state for durable
subscribers. In defining a client identifier, you can use a special variable substitution syntax that
allows multiple connections to be created from a single ConnectionFactory object using
different user name parameters to generate unique client identifiers. These connections can be
used by multiple durable subscribers without naming conflicts or lack of security.

Message Queue allows client identifiers to be set in one of two ways:

■ Programmatically: You use the setClientID method of the Connection object. If you use
this method, you must set the client id before you use the connection. Once the connection
is used, the client identifier cannot be set or reset.

Client Design Considerations

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200982

■ Administratively: The administrator specifies the client ID when creating the connection
factory administrative object. See “Client Identifier” in Sun GlassFish Message Queue 4.4
Administration Guide.

Message Order and Priority
In general, all messages sent to a destination by a single session are guaranteed to be delivered to
a consumer in the order they were sent. However, if they are assigned different priorities, a
messaging system will attempt to deliver higher priority messages first.

Beyond this, the ordering of messages consumed by a client can have only a rough relationship
to the order in which they were produced. This is because the delivery of messages to a number
of destinations and the delivery from those destinations can depend on a number of issues that
affect timing, such as the order in which the messages are sent, the sessions from which they are
sent, whether the messages are persistent, the lifetime of the messages, the priority of the
messages, the message delivery policy of queue destinations (see Chapter 18, “Physical
Destination Property Reference,” in Sun GlassFish Message Queue 4.4 Administration Guide),
and message service availability.

Using Selectors Efficiently
The use of selectors can have a significant impact on the performance of your application. It’s
difficult to put an exact cost on the expense of using selectors since it varies with the complexity
of the selector expression, but the more you can do to eliminate or simplify selectors the better.

One way to eliminate (or simplify) selectors is to use multiple destinations to sort messages.
This has the additional benefit of spreading the message load over more than one producer,
which can improve the scalability of your application. For those cases when it is not possible to
do that, here are some techniques that you can use to improve the performance of your
application when using selectors:

■ Have consumers share selectors. As of version 3.5 of Message Queue, message consumers
with identical selectors “share” that selector in imqbrokerd which can significantly improve
performance. So if there is a way to structure your application to have some selector sharing,
consider doing so.

■ Use IN instead of multiple string comparisons. For example, the following expression:

color IN (’red’, ’green’, ’white’)

is much more efficient than this expression

color = ’red’ OR color = ’green’ OR color = ’white’

especially if the above expression usually evaluates to false.
■ Use BETWEEN instead of multiple integer comparisons. For example:

size BETWEEN 6 AND 10

Client Design Considerations

Chapter 3 • Message Queue Clients: Design and Features 83

http://docs.sun.com/doc/821-0027/aeohg?a=view
http://docs.sun.com/doc/821-0027/aeohg?a=view
http://docs.sun.com/doc/821-0027/aeooc?a=view
http://docs.sun.com/doc/821-0027/aeooc?a=view

is generally more efficient than

size >= 6 AND size <= 10

especially if the above expression usually evaluates to true.
■ Order the selector expression so that Message Queue can determine its evaluation as soon as

possible. (Evaluation proceeds from left to right.) This can easily double or triple
performance when using selectors, depending on the complexity of the expression.
■ If you have two expressions joined by an OR, put the expression that is most likely to

evaluate to TRUE first.
■ If you have two expressions joined by an AND, put the expression that is most likely to

evaluate to FALSE first.

For example, if size is usually greater than 6, but color is rarely red you’d want the order of
an OR expression to be:

size > 6 OR color = ’red’

If you are using AND:

color = ’red’ AND size > 6

Balancing Reliability and Performance
Reliable messaging is implemented in a variety of ways: through the use of persistent messages,
acknowledgments or transactions, durable subscriptions, and connection failover.

In general, the more reliable the delivery of messages, the more overhead and bandwidth are
required to achieve it. The trade-off between reliability and performance is a significant design
consideration. You can maximize performance and throughput by choosing to produce and
consume nonpersistent messages. On the other hand, you can maximize reliability by
producing and consuming persistent messages in a transaction using a transacted session. For a
detailed discussion of design options and their impact on performance, see “Factors Affecting
Performance” on page 94.

Managing Client Threads
Using client threads effectively requires that you balance performance, throughput, and
resource needs. To do this, you need to understand JMS restrictions on thread usage, what
threads Message Queue allocates for itself, and the architecture of your applications. This
section addresses these issues and offers some guidelines for managing client threads.

Managing Client Threads

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200984

JMS Threading Restrictions
The Java Messaging Specification mandates that a session not be operated on by more than one
thread at a time. This leads to the following restrictions:
■ A session may not have an asynchronous consumer and a synchronous consumer.
■ A session that has an asynchronous consumer can only produce messages from within the

onMessage() method (the message listener). The only call that you can make outside the
message listener is to close the session.

■ A session may include any number of synchronous consumers, any number of producers,
and any combination of the two. That is, the single-thread requirement cannot be violated
by these combinations. However, performance may suffer.

The system does not enforce the requirement that a session be single threaded. If your client
application violates this requirement, you will get a JMSIllegalState exception or unexpected
results.

Thread Allocation for Connections
When the Message Queue client runtime creates a connection, it creates two threads: one for
consuming messages from the socket, and one to manage the flow of messages for the
connection. In addition, the client runtime creates a thread for each client session. Thus, at a
minimum, for a connection using one session, three threads are created. For a connection using
three sessions, five threads are created, and so on.

Managing threads in a JMS application often involves trade-offs between performance and
throughput. Weigh the following considerations when dealing with threading issues.
■ When you create several asynchronous message consumers in the same session, messages

are delivered serially by the session thread to these consumers. Sharing a session among
several message consumers might starve some consumers of messages while inundating
other consumers. If the message rate across these consumers is high enough to cause an
imbalance, you might want to separate the consumers into different sessions. To determine
whether message flow is unbalanced, you can monitor destinations to see the rate of
messages coming in. See Chapter 4, “Using the Metrics Monitoring API.”

■ You can reduce the number of threads allocated to the client application by using fewer
connections and fewer sessions. However, doing this might slow your application’s
throughput.

■ You might be able to use certain JVM runtime options to improve thread memory usage
and performance. For example, if you are running on the Solaris platform, you may be able
to run with the same number (or more) threads by using the following vm options with the
client: Refer to the JDK documentation for details.
■ Use the Xss128K option to decrease the memory size of the heap.

Managing Client Threads

Chapter 3 • Message Queue Clients: Design and Features 85

■ Use the xconcurrentIO option to improve thread performance in the 1. 3 VM.

Managing Memory and Resources
This section describes memory and performance issues that you can manage by increasing JVM
heap space and by managing the size of your messages. It covers the following topics:

■ “Managing Memory” on page 86
■ “Managing Message Size” on page 86
■ “Managing the Dead Message Queue” on page 88
■ “Managing Physical Destination Limits” on page 92

You can also improve performance by having the administrator set connection factory
attributes to meter the message flow over the client-broker connection and to limit the message
flow for a consumer. For a detailed explanation, please see “Reliability And Flow Control” in
Sun GlassFish Message Queue 4.4 Administration Guide.

Managing Memory
A client application running in a JVM needs enough memory to accommodate messages that
flow in from the network as well as messages the client creates. If your client gets
OutOfMemoryError errors, chances are that not enough memory was provided to handle the
size or the number of messages being consumed or produced.

Your client might need more than the default JVM heap space. On most systems, the default is
64 MB but you will need to check the default values for your system.

Consider the following guidelines:

■ Evaluate the normal and peak system memory footprints when sizing heap space.
■ You can start by doubling the heap size using a command like the following:

java -Xmx128m MyClass

■ The best size for the heap space depends on both the operating system and the JDK release.
Check the JDK documentation for restrictions.

■ The size of the VM’s memory allocation pool must be less than or equal to the amount of
virtual memory that is available on the system.

Managing Message Size
In general, for better manageability, you can break large messages into smaller parts, and use
sequencing to ensure that the partial messages sent are concatenated properly. You can also use

Managing Memory and Resources

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200986

http://docs.sun.com/doc/821-0027/aeohh?a=view
http://docs.sun.com/doc/821-0027/aeohh?a=view

a Message Queue JMS feature to compress the body of a message. This section describes the
programming interface that allows you to compress messages and to compare the size of
compressed and uncompressed messages.

Message compression and decompression is handled entirely by the client runtime, without
involving the broker. Therefore, applications can use this feature with a pervious version of the
broker, but they must use version 3.6 or later of the Message Queue client runtime library.

Message Compression
You can use the Message.setBooleanProperty() method to specify that the body of a message
be compressed. If the JMS_SUN_COMPRESS property is set to true, the client runtime, will
compress the body of the message being sent. This happens after the producer’s send method is
called and before the send method returns to the caller. The compressed message is
automatically decompressed by the client runtime before the message is delivered to the
message consumer.

For example, the following call specifies that a message be compressed:

MyMessage.setBooleanProperty(“JMS_SUN_COMPRESS”,true);

Compression only affects the message body; the message header and properties are not
compressed.

Two read-only JMS message properties are set by the client runtime after a message is sent.

Applications can test the properties (JMS_SUN_UNCOMPRESSED_SIZE and
JMS_SUN_COMPRESSED_SIZE) after a send returns to determine whether compression is
advantageous. That is, applications wanting to use this feature, do not have to explicitly receive
a compressed and uncompressed version of the message to determine whether compression is
desired.

If the consumer of a compressed message wants to resend the message in an uncompressed
form, it should call the Message.clearProperties() to clear the JMS_SUN_COMPRESS property.
Otherwise, the message will be compressed before it is sent to its next destination.

Advantages and Limitations of Compression
Although message compression has been added to improve performance, such benefit is not
guaranteed. Benefits vary with the size and format of messages, the number of consumers,
network bandwidth, and CPU performance. For example, the cost of compression and
decompression might be higher than the time saved in sending and receiving a compressed
message. This is especially true when sending small messages in a high-speed network. On the
other hand, applications that publish large messages to many consumers or who publish in a
slow network environment, might improve system performance by compressing messages.

Managing Memory and Resources

Chapter 3 • Message Queue Clients: Design and Features 87

Depending on the message body type, compression may also provide minimal or no benefit. An
application client can use the JMS_SUN_UNCOMPRESSED_SIZE and JMS_SUN_COMPRESSED_SIZE

properties to determine the benefit of compression for different message types.

Message consumers deployed with client runtime libraries that precede version 3.6 cannot
handle compressed messages. Clients wishing to send compressed messages must make sure
that consumers are compatible. C clients cannot currently consume compressed messages.

Compression Examples
Example 3–1 shows how you set and send a compressed message:

EXAMPLE 3–1 Sending a Compressed Message

//topicSession and myTopic are assumed to have been created

topicPublisher publisher = topicSession.createPublisher(myTopic);

BytesMessage bytesMessage=topicSession.createBytesMessage();

//byteArray is assumed to have been created

bytesMessage.writeBytes(byteArray);

//instruct the client runtime to compress this message

bytesMessage.setBooleanProperty("JMS_SUN_COMPRESS", true);

//publish message to the myTopic destination

publisher.publish(bytesMessage);

Example 3–2 shows how you examine compressed and uncompressed message body size. The
bytesMessage was created as in Example 3–1:

EXAMPLE 3–2 Comparing Compressed and Uncompressed Message Size

//get uncompressed body size

int uncompressed=bytesMessage.getIntProperty(“JMS_SUN_UNCOMPRESSED_SIZE”);

//get compressed body size

int compressed=bytesMessage.getIntProperty(“JMS_SUN_COMPRESSED_SIZE”);

Managing the Dead Message Queue
When a message is deemed undeliverable, it is automatically placed on a special queue called
the dead message queue. A message placed on this queue retains all of its original headers
(including its original destination) and information is added to the message’s properties to
explain why it became a dead message. An administrator or a developer can access this queue,
remove a message, and determine why it was placed on the queue.

Managing Memory and Resources

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200988

■ For an introduction to dead messages and the dead message queue, see “Using the Dead
Message Queue” in Sun GlassFish Message Queue 4.4 Administration Guide

■ For a description of the destination properties and of the broker properties that control the
system’s use of the dead message queue, see Chapter 18, “Physical Destination Property
Reference,” in Sun GlassFish Message Queue 4.4 Administration Guide

This section describes the message properties that you can set or examine programmatically to
determine the following:

■ Whether a dead message can be sent to the dead message queue.
■ Whether the broker should log information when a message is destroyed or moved to the

dead message queue.
■ Whether the body of the message should also be stored when the message is placed on the

dead message queue.
■ Why the message was placed on the dead message queue and any ancillary information.

Message Queue 3.6 clients can set properties related to the dead message queue on messages
and send those messages to clients compiled against earlier versions. However clients receiving
such messages cannot examine these properties without recompiling against 3.6 libraries.

The dead message queue is automatically created by the broker and called mq.sys.dmq. You
can use the message monitoring API, described in Chapter 4, “Using the Metrics Monitoring
API,” to determine whether that queue is growing, to examine messages on that queue, and so
on.

You can set the properties described in Table 3–2 for any message to control how the broker
should handle that message if it deems it to be undeliverable. Note that these message properties
are needed only to override destination, or broker-based behavior.

TABLE 3–2 Message Properties Relating to Dead Message Queue

Property Description

JMS_SUN_PRESERVE_UNDELIVERED A boolean whose value determines what the broker
should do with the message if it is dead.

The default value of unset, specifies that the message
should be handled as specified by the useDMQ property
of the destination to which the message was sent.

A value of true overrides the setting of the useDMQ
property and sends the dead message to the dead
message queue.

A value of false overrides the setting of the useDMQ
property and prevents the dead message from being
placed in the dead message queue.

Managing Memory and Resources

Chapter 3 • Message Queue Clients: Design and Features 89

http://docs.sun.com/doc/821-0027/aeoez?a=view
http://docs.sun.com/doc/821-0027/aeoez?a=view
http://docs.sun.com/doc/821-0027/aeooc?a=view
http://docs.sun.com/doc/821-0027/aeooc?a=view

TABLE 3–2 Message Properties Relating to Dead Message Queue (Continued)
Property Description

JMS_SUN_LOG_DEAD_MESSAGES A boolean value that determines how activity relating
to dead messages should be logged.

The default value of unset, will behave as specified by
the broker configuration property
imq.destination.logDeadMsgs.

A value of true overrides the setting of the
imq.destination.logDeadMsgs broker property and
specifies that the broker should log the action of
removing a message or moving it to the dead message
queue.

A value of false overrides the setting of the
imq.destination.logDeadMsgs broker property and
specifies that the broker should not log these actions.

JMS_SUN_TRUNCATE_MSG_BODY A boolean value that specifies whether the body of a
dead message is truncated.

The default value of unset, will behave as specified by
the broker property
imq.destination.DMQ.truncateBody.

A value of true overrides the setting of the
imq.destination.DMQ.truncateBody property and
specifies that the body of the message should be
discarded when the message is placed in the dead
message queue.

A value of false overrides the setting of the
imq.destination.DMQ.truncateBody property and
specifies that the body of the message should be stored
along with the message header and properties when
the message is placed in the dead message queue.

The properties described in Table 3–3 are set by the broker for a message placed in the dead
message queue. You can examine the properties for the message to retrieve information about
why the message was placed on the queue and to gather other information about the message
and about the context within which this action was taken.

Managing Memory and Resources

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200990

TABLE 3–3 Dead Message Properties

Property Description

JMSXDeliveryCount An Integer that pecifies the most number of times
the message was delivered to a given consumer. This
value is set only for ERROR or UNDELIVERABLE
messages.

JMS_SUN_DMQ_UNDELIVERED_TIMESTAMP A Long that pecifies the time (in milliseconds) when
the message was placed on the dead message queue.

JMS_SUN_DMQ_UNDELIVERED_REASON A string that specifies one of the following values to
indicate the reason why the message was placed on
the dead message queue:

OLDEST

LOW_PRIORITY

EXPIRED

UNDELIVERABLE

ERROR

If the message was marked dead for multiple
reasons, for example it was undeliverable and
expired, only one reason will be specified by this
property.

The ERROR reason indicates that an internal error
made it impossible to process the message. This is an
extremely unusual condition, and the sender should
just resend the message.

JMS_SUN_DMQ_PRODUCING_BROKER A String used for message traffic in broker clusters:
it specifies the broker name and port number of the
broker that produced the message. A null value
indicates the local broker.

JMS_SUN_DMQ_DEAD_BROKER A String used for message traffic in broker clusters:
it specifies the broker name and port number of the
broker that placed the message on the dead message
queue. A null value indicates the local broker.

JMS_SUN_DMQ_UNDELIVERED_EXCEPTION A String that specifies the name of the exception (if
the message was dead because of an exception) on
either the client or the broker.

JMS_SUN_DMQ_UNDELIVERED_COMMENT A String used to provide an optional comment
when the message is marked dead.

Managing Memory and Resources

Chapter 3 • Message Queue Clients: Design and Features 91

TABLE 3–3 Dead Message Properties (Continued)
Property Description

JMS_SUN_DMQ_BODY_TRUNCATED A Boolean: a value of true indicates that the
message body was not stored. A value of false
indicates that the message body was stored.

Managing Physical Destination Limits
When creating a topic or queue destination, the administrator can specify how the broker
should behave when certain memory limits are reached. Specifically, when the number of
messages reaching a physical destination exceeds the number specified with the maxNumMsgs
property or when the total amount of memory allowed for messages exceeds the number
specified with the maxTotalMsgBytes property, the broker takes one of the following actions,
depending on the setting of the limitBehavior property:
■ Slows message producers (FLOW_CONTROL)
■ Throws out the oldest message in memory (REMOVE_OLDEST)
■ Throws out the lowest priority message in memory (REMOVE_LOW_PRIORITY)
■ Rejects the newest messages (REJECT_NEWEST)

If the default value REJECT_NEWEST is specified for the limitBehavior property, the broker
throws out the newest messages received when memory limits are exceeded. If the message
discarded is a persistent message, the producing client gets an exception which should be
handled by resending the message later.

If any of the other values is selected for the limitBehavior property or if the message is not
persistent, the application client is not notified if a message is discarded. Application clients
should let the administrator know how they prefer this property to be set for best performance
and reliability.

Programming Issues for Message Consumers
This section describes two problems that consumers might need to manage: the undetected loss
of a connection, or the loss of a message for distributed synchronous consumers.

Using the Client Runtime Ping Feature
Message Queue defines a connection factory attribute for a ping interval. This attribute specifies
the interval at which the client runtime should check the client’s connection to the broker. The
ping feature is especially useful to Message Queue clients that exclusively receive messages and
might therefore not be aware that the absence of messages is due to a connection failure. This
feature could also be useful to producers who don’t send messages frequently and who would
want notification that a connection they’re planning to use is not available.

Programming Issues for Message Consumers

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200992

The connection factory attribute used to specify this interval is called imqPingInterval. Its
default value is 30 seconds. A value of -1 or 0, specifies that the client runtime should not check
the client connection.

Developers should set (or have the administrator set) ping intervals that are slightly more
frequent than they need to send or receive messages, to allow time to recover the connection in
case the ping discovers a connection failure. Note also that the ping may not occur at the exact
time specified by the value you supply for interval; the underlying operating system’s use of i/o
buffers may affect the amount of time needed to detect a connection failure and trigger an
exception.

A failed ping operation results in a JMSException on the subsequent method call that uses the
connection. If an exception listener is registered on the connection, it will be called when a ping
operation fails.

Preventing Message Loss for Synchronous Consumers
It is always possible that a message can be lost for synchronous consumers in a session using
AUTO_ACKNOWLEDGE mode if the provider fails. To prevent this possibility, you should either use
a transacted session or a session in CLIENT_ACKNOWLEDGE mode.

Synchronous Consumption in Distributed
Applications
Because distributed applications involve greater processing time, such an application might not
behave as expected if it were run locally. For example, calling the receiveNoWait method for a
synchronous consumer might return null even when there is a message available to be
retrieved.

If a client connects to the broker and immediately calls the receiveNoWait method, it is
possible that the message queued for the consuming client is in the process of being transmitted
from the broker to the client. The client runtime has no knowledge of what is on the broker, so
when it sees that there is no message available on the client’s internal queue, it returns with a
null, indicating no message.

You can avoid this problem by having your client do either of the following:

■ Use one of the synchronous receive methods that specifies a timeout interval.
■ Use a queue browser to check the queue before calling the receiveNoWait method.

Programming Issues for Message Consumers

Chapter 3 • Message Queue Clients: Design and Features 93

Factors Affecting Performance
Application design decisions can have a significant effect on overall messaging performance.
The most important factors affecting performance are those that impact the reliability of
message delivery; among these are the following:

■ “Delivery Mode (Persistent/Nonpersistent)” on page 95
■ “Use of Transactions” on page 95
■ “Acknowledgment Mode” on page 95
■ “Durable vs. Nondurable Subscriptions” on page 96

Other application design factors impacting performance include the following:

■ “Use of Selectors (Message Filtering)” on page 97
■ “Message Size” on page 97
■ “Message Body Type” on page 98

The sections that follow describe the impact of each of these factors on messaging performance.
As a general rule, there is a trade-off between performance and reliability: factors that increase
reliability tend to decrease performance.

Table 3–4 shows how application design factors affect messaging performance. The table shows
two scenarios—a high-reliability, low-performance scenario and a high-performance,
low-reliability scenario—and the choice of application design factors that characterizes each.
Between these extremes, there are many choices and trade-offs that affect both reliability and
performance.

TABLE 3–4 Comparison of High Reliability and High Performance Scenarios

Application DesignFactor High Reliability, Low Performance High Performance, Low Reliability

Delivery mode Persistent messages Nonpersistent messages

Use of transactions Transacted sessions No transactions

Acknowledgment mode AUTO_ACKNOWLEDGE

CLIENT_ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

NO_ACKNOWLEDGE

Durable/nondurable subscriptions Durable subscriptions Nondurable subscriptions

Use of selectors Message filtering No message filtering

Message size Small messages Large messages

Message body type Complex body types Simple body types

Factors Affecting Performance

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200994

Delivery Mode (Persistent/Nonpersistent)
Persistent messages guarantee message delivery in case of broker failure. The broker stores
these message in a persistent store until all intended consumers acknowledge that they have
consumed the message.

Broker processing of persistent messages is slower than for nonpersistent messages for the
following reasons:

■ A broker must reliably store a persistent message so that it will not be lost should the broker
fail.

■ The broker must confirm receipt of each persistent message it receives. Delivery to the
broker is guaranteed once the method producing the message returns without an exception.

■ Depending on the client acknowledgment mode, the broker might need to confirm a
consuming client’s acknowledgment of a persistent message.

For both queues and topics with durable subscribers, performance was approximately 40%
faster for non-persistent messages. We obtained these results using 10K-size messages and
AUTO_ACKNOWLEDGE mode.

Use of Transactions
A transaction guarantees that all messages produced in a transacted session and all messages
consumed in a transacted session will be either processed or not processed (rolled back) as a
unit. Message Queue supports both local and distributed transactions.

A message produced or acknowledged in a transacted session is slower than in a non-transacted
session for the following reasons:

■ Additional information must be stored with each produced message.
■ In some situations, messages in a transaction are stored when normally they would not be.

For example, a persistent message delivered to a topic destination with no subscriptions
would normally be deleted, however, at the time the transaction is begun, information about
subscriptions is not available.

■ Information on the consumption and acknowledgment of messages within a transaction
must be stored and processed when the transaction is committed.

Acknowledgment Mode
Other than using transactions, you can ensure reliable delivery by having the client
acknowledge receiving a message. If a session is closed without the client acknowledging the
message or if the message broker fails before the acknowledgment is processed, the broker
redelivers that message, setting a JMSRedelivered flag.

Factors Affecting Performance

Chapter 3 • Message Queue Clients: Design and Features 95

For a non-transacted session, the client can choose one of three acknowledgment modes, each
of which has its own performance characteristics:

■ AUTO_ACKNOWLEDGE. The system automatically acknowledges a message once the consumer
has processed it. This mode guarantees at most one redelivered message after a provider
failure.

■ CLIENT_ACKNOWLEDGE. The application controls the point at which messages are
acknowledged. All messages processed in that session since the previous acknowledgment
are acknowledged. If the broker fails while processing a set of acknowledgments, one or
more messages in that group might be redelivered.

(Using CLIENT_ACKNOWLEDGE mode is similar to using transactions, except there is no
guarantee that all acknowledgments will be processed together if a provider fails during
processing.)

■ DUPS_OK_ACKNOWLEDGE. This mode instructs the system to acknowledge messages in a lazy
manner. Multiple messages can be redelivered after a provider failure.

■ NO_ACKNOWLEDGE In this mode, the broker considers a message acknowledged as soon as it
has been written to the client. The broker does not wait for an acknowledgment from the
receiving client. This mode is best used by typic subscribers who are not worried about
reliability.

Performance is impacted by acknowledgment mode for the following reasons:

■ Extra control messages between broker and client are required in AUTO_ACKNOWLEDGE and
CLIENT_ACKNOWLEDGE modes. The additional control messages add processing overhead and
can interfere with JMS payload messages, causing processing delays.

■ In AUTO_ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes, the client must wait until the
broker confirms that it has processed the client’s acknowledgment before the client can
consume more messages. (This broker confirmation guarantees that the broker will not
inadvertently redeliver these messages.)

■ The Message Queue persistent store must be updated with the acknowledgment
information for all persistent messages received by consumers, thereby decreasing
performance.

Durable vs. Nondurable Subscriptions
Subscribers to a topic destination have either durable and nondurable subscriptions. Durable
subscriptions provide increased reliability at the cost of slower throughput for the following
reasons:

■ The Message Queue message broker must persistently store the list of messages assigned to
each durable subscription so that should the broker fail, the list is available after recovery.

Factors Affecting Performance

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200996

■ Persistent messages for durable subscriptions are stored persistently, so that should a broker
fail, the messages can still be delivered after recovery, when the corresponding consumer
becomes active. By contrast, persistent messages for nondurable subscriptions are not
stored persistently (should a broker fail, the corresponding consumer connection is lost and
the message would never be delivered).

We compared performance for durable and non-durable subscribers in two cases: persistent
and nonpersistent 10k-sized messages. Both cases use AUTO_ACKNOWLEDGE acknowledgment
mode. We found a performance impact only in the case of persistent messages, which slowed
messages conveyed to durable subscribers by about 30%.

Use of Selectors (Message Filtering)
Application developers can have the messaging provider sort messages according to criteria
specified in the message selector associated with a consumer and deliver to that consumer only
those messages whose property value matches the message selector. For example, if an
application creates a subscriber to the topic WidgetOrders and specifies the expression
NumberOfOrders >1000 for the message selector, messages with a NumberOfOrders property
value of 1001 or more are delivered to that subscriber.

Creating consumers with selectors lowers performance (as compared to using multiple
destinations) because additional processing is required to handle each message. When a
selector is used, it must be parsed so that it can be matched against future messages.
Additionally, the message properties of each message must be retrieved and compared against
the selector as each message is routed. However, using selectors provides more flexibility in a
messaging application and may lower resource requirements at the expense of speed.

Message Size
Message size affects performance because more data must be passed from producing client to
broker and from broker to consuming client, and because for persistent messages a larger
message must be stored.

However, by batching smaller messages into a single message, the routing and processing of
individual messages can be minimized, providing an overall performance gain. In this case,
information about the state of individual messages is lost.

In our tests, which compared throughput in kilobytes per second for 1K, 10K, and 100K-sized
messages to a queue destination using AUTO_ACKNOWLEDGE mode, we found that non-persistent
messaging was about 50% faster for 1K messages, about 20% faster for 10K messages, and about
5% faster for 100K messages. The size of the message affected performance significantly for both
persistent and non-persistent messages. 100k messages are about 10 times faster than 10K, and
10K messages are about 5 times faster than 1K.

Factors Affecting Performance

Chapter 3 • Message Queue Clients: Design and Features 97

Message Body Type
JMS supports five message body types, shown below roughly in the order of complexity:
■ Bytes: Contains a set of bytes in a format determined by the application
■ Text: Is a simple java.lang.String
■ Stream: Contains a stream of Java primitive values
■ Map: Contains a set of name-and-value pairs
■ Object: Contains a Java serialized object

While, in general, the message type is dictated by the needs of an application, the more
complicated types (map and object) carry a performance cost — the expense of serializing and
deserializing the data. The performance cost depends on how simple or how complicated the
data is.

Connection Event Notification
Connection event notifications allow a Message Queue client to listen for closure and
reconnection events and to take appropriate action based on the notification type and the
connection state. For example, when a failover occurs and the client is reconnected to another
broker, an application might want to clean up its transaction state and proceed with a new
transaction.

If the Message Queue provider detects a serious problem with a connection, it calls the
connection object's registered exception listener. It does this by calling the listener's
onException method, and passing it a JMSException argument describing the problem. In the
same way, the Message Queue provider offers an event notification API that allows the client
runtime to inform the application about connection state changes. The notification API is
defined by the following elements:
■ The com.sun.messaging.jms.notification package, which defines the event listener and

the notification event objects .
■ The com.sun.messaging.jms.Connection interface, which defines extensions to the

javax.jms.Connection interface.

The following sections describe the events that can trigger notification and explain how you can
create an event listener.

Connection Events
The following table lists and describes the events that can be returned by the event listener.

Note that the JMS exception listener is not called when a connection event occurs. The
exception listener is only called if the client runtime has exhausted its reconnection attempts.
The client runtime always calls the event listener before the exception listener.

Connection Event Notification

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 200998

TABLE 3–5 Notification Events

Event Type Meaning

ConnectionClosingEvent The Message Queue client runtime generates this
event when it receives a notification from the broker
that a connection is about to be closed due to a
shutdown requested by the administrator.

ConnectionClosedEvent The Message Queue client runtime generates this
event when a connection is closed due to a broker
error or when it is closed due to a shutdown or restart
requested by the administrator.

When an event listener receives a
ConnectionClosedEvent, the application can use the
getEventCode() method of the received event to get
an event code that specifies the cause for closure.

ConnectionReconnectedEvent The Message Queue client runtime has reconnected to
a broker. This could be the same broker to which the
client was previously connected or a different broker.

An application can use the getBrokerAddress
method of the received event to get the address of the
broker to which it has been reconnected.

ConnectionReconnectFailedEvent The Message Queue client runtime has failed to
reconnect to a broker. Each time a reconnect attempt
fails, the runtime generates a new event and delivers it
to the event listener.

The JMS exception listener is not called when a
connection event occurs. It is only called if the client
runtime has exhausted its reconnection attempts. The
client runtime always calls the event listener before the
exception listener.

Creating an Event Listener
The following code example illustrates how you set a connection event listener. Whenever a
connection event occurs, the event listener's onEvent method will be invoked by the client
runtime.

//create an MQ connection factory.

com.sun.messaging.ConnectionFactory factory =

new com.sun.messaging.ConnectionFactory();

//create an MQ connection.

Connection Event Notification

Chapter 3 • Message Queue Clients: Design and Features 99

com.sun.messaging.jms.Connection connection =

(com.sun.messaging.jms.Connection)factory.createConnection();

//construct an MQ event listener. The listener implements

//com.sun.messaging.jms.notification.EventListener interface.

com.sun.messaging.jms.notification.EventListener eListener =

new ApplicationEventListener();

//set event listener to the MQ connection.

connection.setEventListener (eListener);

Event Listener Examples
In this example, an application chooses to have its event listener log the connection event to the
application's logging system.

public class ApplicationEventListener implements

com.sun.messaging.jms.notification.EventListener {

public void onEvent (com.sun.messaging.jms.notification.Event connEvent) {

log (connEvent);

}

private void log (com.sun.messaging.jms.notification.Event connEvent) {

String eventCode = connEvent.getEventCode();

String eventMessage = connEvent.getEventMessage();

//write event information to the output stream.

}

}

Client Connection Failover (Auto-Reconnect)
Message Queue supports client connection failover. A failed connection can be automatically
restored not only to the original broker, but to a different broker in a broker cluster. There are
circumstances under which the client-side state cannot be restored on any broker during an
automatic reconnection attempt; for example, when the client uses transacted sessions or
temporary destinations. At such times the connection exception handler is called and the
application code has to catch the exception and restore state.

This section explains how automatic reconnection is enabled, how the broker behaves during a
reconnect, how automatic reconnection impacts producers and consumers, and how producers

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009100

and consumers should handle exceptions that result from connection failover. For additional
information about this feature, please see “Connection Handling” in Sun GlassFish Message
Queue 4.4 Administration Guide.

Message Queue also provides a notification API that allows the client application to listen for
closure and reconnection events and to respond to such events based on the notification type
and the connection state. These notifications may be valuable in preparing the client for an
impending event or for gathering diagnostic data. For more information, see “Connection
Event Notification” on page 98.

Starting with version 4.1 of Message Queue, you can cluster brokers in either a conventional
cluster or a high-availability cluster. The clustering model used may affect your client design.
This section notes such design differences

Enabling Auto-Reconnect
If you are using conventional clusters, you enable automatic reconnection by setting the
connection factory imqReconnectEnabled attribute to true. If you are using a high availability
cluster, the imqReconnectEnabled attribute is ignored; the client runtime will automatically
reconnect to a backup broker if the connection is lost and not regained after no more than
imqReconnectAttempts attempts. This applies to all deployment configurations: whether
Message Queue is used stand alone or whether the connection is created through a resource
adapter.

No matter which type of cluster you are using, you must also configure the connection factory
administered object to specify the following information.
■ A list of message-service addresses (using the imqAddressList attribute). Independently

of the clustering model used, the client runtime uses this address list when it establishes the
initial connection.
When you connect to a conventional cluster, the client runtime also uses the address list
when it tries to reestablish a connection to the message service: it attempts to connect to the
brokers in the list until it finds (or fails to find) an available broker. If you specify only a
single broker instance on the imqAddressList attribute, the configuration won’t support
recovery from hardware failure.
When you specify more than one broker, you can decide whether to use parallel brokers or a
broker cluster. In a parallel configuration, there is no communication between brokers,
while in a broker cluster, the brokers interact to distribute message delivery loads. (Refer to
“Cluster Message Delivery” in Sun GlassFish Message Queue 4.4 Technical Overview for
more information on broker clusters.)
■ To enable parallel-broker reconnection, set theimqAddressListBehavior attribute to

PRIORITY . Typically, you would specify no more than a pair of brokers for this type of
reconnection. This way, the messages are published to one broker, and all clients fail
over together from the first broker to the second.

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 101

http://docs.sun.com/doc/821-0027/aeoha?a=view
http://docs.sun.com/doc/821-0027/aeoha?a=view
http://docs.sun.com/doc/821-0028/ggssc?a=view

■ To enable clustered-broker reconnection, set the imqAddressListBehavior attribute to
RANDOM. This way, the client runtime randomizes connection attempts across the list, and
client connections are distributed evenly across the broker cluster.
Each broker in a cluster uses its own separate persistent store (which means that
undelivered persistent messages are unavailable until a failed broker is back online). If
one broker crashes, its client connections are reestablished on other brokers.
If you use the high availability clustering model, the address list is dynamically updated
to include the brokers that are connected to the highly available database serving the
cluster. In this case, the client runtime and the brokers use an internal protocol to
determine which broker takes over the persistent data of the failed broker. Therefore the
imqAddressListBehavior property does not apply to this model.

■ The number of iterations to be made over the list of brokers (using the
imqAddressListIterations attribute) when attempting to create a connection or to
reconnect.
For high-availability clusters, the broker will attempt to reconnect forever (no matter what
value you specify for this attribute). If the client does not want this behavior, it must
explicitly close the connection.

■ The number of attempts to reconnect to a broker if the first connection fails (using the
imqReconnectAttempts attribute).

■ The interval, in milliseconds, between reconnect attempts, using the
imqReconnectInterval attribute. This attribute applies to both clustering models.

Single-Broker Auto-Reconnect
Configure your connection-factory object as follows:

EXAMPLE 3–3 Example of Command to Configure a Single Broker

imqobjmgr add -t cf -l "cn=myConnectionFactory" \

-o "imqAddressList=mq://jpgserv/jms" \

-o "imqReconnect=true" \

-o "imqReconnectAttempts=10"
-j "java.naming.factory.initial =

com.sun.jndi.fscontext.RefFSContextFactory

-j "java.naming.provider.url= file:///home/foo/imq_admin_objects"

This command creates a connection-factory object with a single address in the broker address
list. If connection fails, the client runtime will try to reconnect with the broker 10 times. If an
attempt to reconnect fails, the client runtime will sleep for three seconds (the default value for
the imqReconnectInterval attribute) before trying again. After 10 unsuccessful attempts, the
application will receive a JMSException .

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009102

You can ensure that the broker starts automatically at system start-up time. See “Starting
Brokers Automatically” in Sun GlassFish Message Queue 4.4 Administration Guide for
information on how to configure automatic broker start-up. For example, on the Solaris
platform, you can use /etc/rc.d scripts.

Parallel Broker Auto-Reconnect
Configure your connection-factory objects as follows:

EXAMPLE 3–4 Example of Command to Configure Parallel Brokers

imqobjmgr add -t cf -l "cn=myCF" \

-o "imqAddressList=myhost1, mqtcp://myhost2:12345/jms" \

-o "imqReconnect=true" \

-o "imqReconnectRetries=5"
-j "java.naming.factory.initial =

com.sun.jndi.fscontext.RefFSContextFactory

-j "java.naming.provider.url= file:///home/foo/imq_admin_objects"

This command creates a connection factory object with two addresses in the broker list. The
first address describes a broker instance running on the host myhost1 with a standard port
number (7676). The second address describes a jms connection service running at a statically
configured port number (12345).

Clustered-Broker Auto-Reconnect
Configure your connection-factory objects as follows:

EXAMPLE 3–5 Example of Command to Configure a Broker Cluster

imqobjmgr add -t cf -l "cn=myConnectionFactory" \

-o "imqAddressList=mq://myhost1/ssljms, \

mq://myhost2/ssljms, \

mq://myhost3/ssljms, \

mq://myhost4/ssljms” \

-o "imqReconnect=true" \

-o "imqReconnectRetries=5" \

-o "imqAddressListBehavior=RANDOM"
-j "java.naming.factory.initial =

com.sun.jndi.fscontext.RefFSContextFactory

-j "java.naming.provider.url= file:///home/foo/imq_admin_objects"

This command creates a connection factory object with four addresses in the imqAddressList.
All the addresses point to jms services running on SSL transport on different hosts. Since the
imqAddressListBehavior attribute is set to RANDOM, the client connections that are established
using this connection factory object will be distributed randomly among the four brokers in the

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 103

http://docs.sun.com/doc/821-0027/aeoca?a=view
http://docs.sun.com/doc/821-0027/aeoca?a=view

address list. If you are using a high availability cluster, the RANDOM attribute is ignored during a
failover reconnect after losing an existing connection to a broker.

For a conventional cluster, you must configure one of the brokers in the cluster as the master
broker.In the connection-factory address list, you can also specify a subset of all the brokers in
the cluster.

Auto-Reconnect Behaviors
A broker treats an automatic reconnection as it would a new connection. When the original
connection is lost, all resources associated with that connection are released. For example, in a
broker cluster, as soon as one broker fails, the other brokers assume that the client connections
associated with the failed broker are gone. After auto-reconnect takes place, the client
connections are recreated from scratch.

Sometimes the client-side state cannot be fully restored by auto-reconnect. Perhaps a resource
that the client needs cannot be recreated. In this case, the client runtime calls the client’s
connection exception handler and the client must take appropriate action to restore state. For
additional information, see “Handling Exceptions When Failover Occurs” on page 106.

If the client is automatically-reconnected to a different broker instance, effects vary depending
on the clustering model used.

■ In a conventional cluster, persistent messages produced but not yet consumed may only be
delivered to the consumer after the original broker recovers. Other state information held
by the failed or disconnected broker can be lost. The messages held by the original broker,
once it is restored, might be delivered out of order.

■ In a high availability cluster, messages produced but not yet consumed continue to be
delivered to the consumer without the original broker needing to recover.

A transacted session is the most reliable method of ensuring that a message isn’t lost if you are
careful in coding the transaction. If auto-reconnect happens in the middle of a transaction, any
attempt to produce or consume messages will cause the client runtime to throw a
JMSException. In this case, applications must call Session.rollback() to roll back the
transaction.

The Message Queue client runtime may throw a TransactionRolledBackException when
Session.commit() is called during or after a failover occurs. In this case, the transaction is
rolled back and a new transaction is automatically started. Applications are not required to call
Session.rollback() to rollback the transaction after receiving a
TransactionRolledBackException.

The Message Queue client runtime may throw a JMSException when Session.commit() is
called during or after a failover occurs. In this case, the transaction state is unknown (may or
may not be committed). Applications should call Session.rollback() to roll back the
uncommitted transaction.

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009104

If you are using a high availability cluster, the only time your transaction might wind up in an
unknown state is if it is not possible to reconnect to any brokers in the cluster. This should
happen rarely if ever. For additional information, see “Handling Exceptions When Failover
Occurs” on page 106.

Automatic reconnection affects producers and consumers differently:

■ During reconnection, producers cannot send messages. The production of messages (or any
operation that involves communication with the message broker) is blocked until the
connection is reestablished.

■ For consumers, automatic reconnection is supported for all client acknowledgment modes.
After a connection is reestablished, the broker will redeliver all unacknowledged messages it
had previously delivered, marking them with a Redeliver flag. The client can examine this
flag to determine whether any message has already been consumed (but not yet
acknowledged). In the case of nondurable subscribers, some messages might be lost because
the broker does not hold their messages once their connections have been closed. Any
messages produced for nondurable subscribers while the connection is down cannot be
delivered when the connections is reestablished. For additional information, see “Handling
Exceptions When Failover Occurs” on page 106.

Auto-Reconnect Limitations
Notice the following points when using the auto-reconnect feature:

■ Messages might be redelivered to a consumer after auto-reconnect takes place. In
auto-acknowledge mode, you will get no more than one redelivered message. In other
session types, all unacknowledged persistent messages are redelivered.

■ While the client runtime is trying to reconnect, any messages sent by the broker to
nondurable topic consumers are lost.

■ Any messages that are in queue destinations and that are unacknowledged when a
connection fails are redelivered after auto-reconnect. However, in the case of queues
delivering to multiple consumers, these messages cannot be guaranteed to be redelivered to
the original consumers. That is, as soon as a connection fails, an unacknowledged queue
message might be rerouted to other connected consumers.

■ In the case of a conventional broker cluster, the failure of the master broker prevents the
following operations from succeeding on any other broker in the cluster:
■ Creating or destroying a new durable subscription.
■ Creating or destroying a new physical destination using the imqcmd create dst

command.
■ Starting a new broker process. (However, the brokers that are already running continue

to function normally even if the master broker goes down.)

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 105

You can configure the master broker to restart automatically using Message Queue
broker support for rc scripts or the Windows service manager.

■ Auto-reconnect doesn’t work if the client uses a ConnectionConsumer to consume
messages. In that case, the client runtime throws an exception.

Handling Exceptions When Failover Occurs
Several kinds of exceptions can occur as a result of the client being reconnected after a failover.
How the client application should handle these exceptions depends on whether a session is
transacted, on the kind of exception thrown, and on the client's role--as producer or consumer.
The following sections discuss the implications of these factors.

Independently of how the exception is raised, the client application must never call
System.exit()to exit the application because this would prevent the Message Queue client
runtime from reconnecting to an alternate or restarted broker.

When a failover occurs, exception messages may be shown on the application's console and
recorded in the broker's log. These messages are for information only. They may be useful in
troubleshooting, but minimizing or eliminating the impact of a failover is best handled
preemptively by the application client in the ways described in the following sections.

Note – Message Queue provides a notification API that allows the client application to listen for
closure and reconnection events and to respond to such events based on the notification type
and the connection state. These notifications may be valuable in preparing the client for an
impending event or for gathering diagnostic data. For more information, see “Connection
Event Notification” on page 98

Handling Exceptions in a Transacted Session
A transacted session might fail to commit and (throw an exception) either because a failover
occurs while statements within the transaction are being executed or because the failover occurs
during the call to Session.commit(). In the first case, the failover is said to occur during an
open transaction; in the second case, the failover occurs during the commit itself.

In the case of a failover during an open transaction, when the client application calls
Session.commit(), the client runtime will throw a TransactionRolledBackException and
roll back the transaction causing the following to happen.
■ Messages that have been produced (but not committed) in the transacted session are

discarded and not delivered to the consumer.
■ All messages that have been consumed (but not committed) in the transacted session are

redelivered to the consumer with the Redeliver flag set.
■ A new transaction is automatically started.

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009106

If the client application itself had called Session.rollback after a failover (before the
Session.commit is executed) the same things would happen as if the application had received a
TransactionRollbackException. After receiving a TransactionRollbackException or
calling Session.rollback(), the client application must retry the failed transaction. That is, it
must re-send and re-consume the messages that were involved in the failed-over transaction.

In the second case, when the failover occurs during a call to Session.commit, there may be
three outcomes:

■ The transaction is committed successfully and the call to Session.commit does not return
an exception. In this case, the application client does not have to do anything.

■ The runtime throws a TransactionRolledbackException and does not commit the
transaction. The transaction is automatically rolled back by the Message Queue runtime. In
this case, the client application must retry the transaction as described for the case in which
an open transaction is failed-over.

■ A JMXException is thrown. This signals the fact that the transaction state is unknown: It
might have either succeeded or failed. A client application should handle this case by
assuming failure, pausing for three seconds, calling Session.rollback, and then retrying
the operations. However, since the commit might have succeeded, when retrying the
transacted operations, a producer should set application-specific properties on the messages
it re-sends to signal that these might be duplicate messages. Likewise, consumers that retry
receive operations should not assume that a message that is redelivered is necessarily a
duplicate. In other words, to ensure once and only once delivery, both producers and
consumers need to do a little extra work to handle this edge case. The code samples
presented next illustrate good coding practices for handling this situation.
If you are using a high availability cluster, the only time this condition might arise is when
the client is unable to connect to any backup broker. This should be extremely rare.

The next two examples illustrate how stand-alone Message Queue producers and consumers
should handle transactions during a failover. To run the sample programs, do the following:

1. Start two high availability brokers. The brokers can be on the same machine or on different
machines, but they must be in the same cluster.

2. Start the example programs. For example:

java —DimqAddressList="localhost:777"
test.jmsclient.ha.FailoverQSender

java —DimqAddressList="localhost:777"
test.jmsclient.ha.FailoverQReceiver

It does not matter in what order you start the programs. The only property that you must
specify is imqAddressList. The client application will be automatically failed over to a
backup broker if the connection to its home broker fails. (The imqReconnectEnabled and
imqAddressListIterations properties are ignored for a high availability cluster.)

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 107

3. Kill the broker to which the producing or consuming application is connected. The clients
will reconnect, validate, and continue the failed transaction. A message produced or
consumed in a transaction is either committed or rolled back after a successful failover.

4. You can restart the dead broker and retry the failover operation by killing the new home
broker.

Transacted Session: Failover Producer Example

The following code sample shows the work that a producer in a transacted session needs to do
to recover state after a failover. Note how the application tests both for rollback exceptions and
for JMS exceptions. Note also the use of a counter to allow the producer and consumer to verify
message order and delivery.

/*

* @(#)FailoverQSender.java 1.2 07/04/20

*

* Copyright 2000 Sun Microsystems, Inc. All Rights Reserved

* SUN PROPRIETARY/CONFIDENTIAL

* Use is subject to license terms.

*

*/

package test.jmsclient.ha;

import java.util.Date;

import javax.jms.*;

import com.sun.messaging.jms.Connection;

import com.sun.messaging.jms.notification.*;

/**

*

* This sample program uses a transacted session to send messages.

* It is designed to run with test.jmsclient.ha.FailoverQReceiver

* @version 1.0

*/

public class FailoverQSender

implements ExceptionListener, EventListener, Runnable {

//constant - commit property name

public static final String COMMIT_PROPERTY_NAME = "COMMIT_PROPERTY";
//constant - message counter

public static final String MESSAGE_COUNTER = "counter";
//constant - destination name

public static final String TEST_DEST_NAME = "FailoverTestDest001";
//queue connection

QueueConnection conn = null;

//session

QueueSession session = null;

//queue sender

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009108

QueueSender sender = null;

//queue destination

Queue queue = null;

//commmitted counter.

private int commitCounter = 0;

//current message counter

private int currentCounter = 0;

//set to true if the application is connected to the broker.

private boolean isConnected = false;

/**

* Default constructor - do nothing.

* Properties are passed in from init() method.

*/

public FailoverQSender() {

//set up JMS environment

setup();

}

/**

* Connection Exception listener.

*/

public void onException (JMSException e) {

//The run() method will exit.

this.isConnected = false;

log ("Exception listener is called.

Connection is closed by MQ client runtime.");

log (e);

}

/**

* this method is called when a MQ connection event occurred.

*/

public void onEvent (Event connectionEvent) {

log(connectionEvent);

}

/**

* Rollback the application data.

*

*/

private void rollBackApplication() {

this.currentCounter = this.commitCounter;

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 109

log ("Application rolled back., current (commit) counter: "
+ currentCounter);

}

/**

* Roll back the current jms session.

*/

private void rollBackJMS() {

try {

log("Rolling back JMS, commit counter: " + commitCounter);

session.rollback();

} catch (JMSException jmse) {

log("Rollback failed");
log(jmse);

//application may decide to log and continue sending messages

// without closing the application.

close();

}

}

/**

* rollback application data and jms session.

*

*/

private void rollBackAll() {

//rollback jms

rollBackJMS();

//rollback app data

rollBackApplication();

}

/**

* close JMS connection and stop the application

*

*/

private void close() {

try {

if (conn != null) {

//close the connection

conn.close();

}

} catch (Exception e) {

//log exception

log (e);

} finally {

//set flag to true. application thread will exit

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009110

isConnected = false;

}

}

/**

* Send messages in a loop until the connection is closed.

* Session is committed for each message sent.

*/

public void run () {

//start producing messages

while (isConnected) {

try {

//reset message counter if it reaches max int value

checkMessageCounter();

//create a message

Message m = session.createMessage();

//get the current message counter value

int messageCounter = this.getMessageCounter();

//set message counter to message property

m.setIntProperty(MESSAGE_COUNTER, messageCounter);

//set commit property

m.setBooleanProperty(COMMIT_PROPERTY_NAME, true);

//send the message

sender.send(m);

log("Sending message: " + messageCounter +

", current connected broker: " +

this.getCurrentConnectedBrokerAddress());

//commit the message

this.commit();

// pause 3 seconds

sleep(3000);

} catch (TransactionRolledBackException trbe) {

//rollback app data

rollBackApplication();

} catch (JMSException jmse) {

if (isConnected == true) {

//rollback app data and JMS session

rollBackAll();

}

}

}

}

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 111

/**

* Reset all counters if integer max value is reached.

*/

private void checkMessageCounter() {

if (currentCounter == Integer.MAX_VALUE) {

currentCounter = 0;

commitCounter = 0;

}

}

/**

* Set up testing parameters - connection, destination, etc

*/

protected void setup() {

try {

//get connection factory

com.sun.messaging.QueueConnectionFactory factory =

new com.sun.messaging.QueueConnectionFactory();

//create a queue connection

conn = factory.createQueueConnection();

//set exception listener

conn.setExceptionListener(this);

//set event listener

((com.sun.messaging.jms.Connection) conn).setEventListener(this);

//get destination name

String destName = TEST_DEST_NAME;

//create a transacted session

session = conn.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);

//get destination

queue = session.createQueue(destName);

//create queue sender

sender = session.createSender(queue);

//set isConnected flag to true.

this.isConnected = true;

} catch (JMSException jmse) {

this.isConnected = false;

}

}

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009112

/**

* get the next message counter.

*/

private synchronized int getMessageCounter () {

return ++ currentCounter;

}

/**

* commit the current transaction/session.

*/

private void commit() throws JMSException {

session.commit();

this.commitCounter = currentCounter;

log ("Transaction committed, commit counter: " +commitCounter);

}

/**

* Get the current connencted broker address.

*/

private String getCurrentConnectedBrokerAddress() {

return ((com.sun.messaging.jms.Connection)conn).getBrokerAddress();

}

/**

* log a string message.

* @param msg

*/

private synchronized void log (String msg) {

System.out.println(new Date() + ": " + msg);

}

/**

* Log an exception received.

*/

private synchronized void log (Exception e) {

System.out.println(new Date() + ": Exception:");
e.printStackTrace();

}

/**

* Log the specified MQ event.

*/

private synchronized void log (Event event) {

try {

System.out.println(new Date() + ": Received MQ event notification.");
System.out.println("*** Event code: " + event.getEventCode());

System.out.println("*** Event message: " + event.getEventMessage());

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 113

} catch (Exception e) {

e.printStackTrace();

}

}

/**

* pause the specified milli seconds.

*/

private void sleep (long millis) {

try {

Thread.sleep(millis);

} catch (java.lang.InterruptedException inte) {

log (inte);

}

}

/**

* The main program.

*/

public static void main (String args[]) {

FailoverQSender fp = new FailoverQSender();

fp.run();

}

}

Transacted Session: Failover Consumer Example

The following code sample shows the work that a consumer in a transacted session needs to do
in order to recover state after a failover. Note how the application tests both for rollback
exceptions and JMS exceptions. Note also the use of a counter to allow the producer and
consumer to verify message order and delivery.

/*

* @(#)FailoverQReceiver.java 1.4 07/04/20

*

* Copyright 2000 Sun Microsystems, Inc. All Rights Reserved

* SUN PROPRIETARY/CONFIDENTIAL

* Use is subject to license terms.

*/

package test.jmsclient.ha;

import java.util.Date;

import java.util.Vector;

import javax.jms.*;

import com.sun.messaging.jms.notification.*;

/**

* This sample program uses a transacted session to receive messages.

* It is designed to run with test.jmsclient.ha.FailoverQSender.

*

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009114

* @version 1.0

*/

public class FailoverQReceiver

implements ExceptionListener, EventListener, Runnable {

//queue connection

private QueueConnection conn = null;

//queue session

private QueueSession session = null;

//qreceiver

private QueueReceiver qreceiver = null;

//queue destination

private Queue queue = null;

//commmitted counter.

private int commitCounter = 0;

//flag to indicate if the connection is connected to the broker.

private boolean isConnected = false;

//flag to indicate if current connection is to HA broker cluster.

private boolean isHAConnection = false;

//application data holder.

private Vector data = new Vector();

/**

* Default constructor - JMS setup.

*/

public FailoverQReceiver() {

//set up JMS environment

setup();

}

/**

* Connection Exception listener.

*/

public void onException (JMSException e) {

//The run() method will exit.

this.isConnected = false;

log ("Exception listener is called. Connection is closed

by MQ client runtime.");

log (e);

}

/**

* log the connection event.

*/

public void onEvent (Event connectionEvent) {

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 115

log (connectionEvent);

}

/**

* Roll back application data.

*/

private void rollBackApplication() {

//reset application data

this.reset();

log ("Rolled back application data, current commit counter:

" + commitCounter);

}

/**

* Clear the application data for the current un-committed transaction.

*/

private void reset() {

data.clear();

}

/**

* Roll back JMS transaction and application.

*/

private void rollBackAll() {

try {

//rollback JMS

rollBackJMS();

//rollback application data

rollBackApplication();

} catch (Exception e) {

log ("rollback failed. closing JMS connection ...");

//application may decide NOT to close connection if rollback failed.

close();

}

}

/**

* Roll back jms session.

*/

private void rollBackJMS() throws JMSException {

session.rollback();

log("JMS session rolled back, commit counter:

" + commitCounter);

}

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009116

/**

* Close JMS connection and exit the application.

*/

private void close() {

try {

if (conn != null) {

conn.close();

}

} catch (Exception e) {

log (e);

} finally {

isConnected = false;

}

}

/**

* Receive, validate, and commit messages.

*/

public void run () {

//produce messages

while (isConnected) {

try {

//receive message

Message m = qreceiver.receive();

//process message -- add message to the data holder

processMessage(m);

//check if the commit flag is set in the message property

if (shouldCommit(m)) {

//commit the transaction

commit(m);

}

} catch (TransactionRolledBackException trbe) {

log ("transaction rolled back by MQ ...");
//rollback application data

rollBackApplication();

} catch (JMSException jmse) {

//The exception can happen when receiving messages

//and the connected broker is killed.

if (isConnected == true) {

//rollback MQ and application data

rollBackAll();

}

} catch (Exception e) {

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 117

log (e);

//application may decide NOT to close the connection

//when an unexpected Exception occurred.

close();

}

}

}

/**

* Set up testing parameters - connection, destination, etc

*/

protected void setup() {

try {

//get connection factory

com.sun.messaging.QueueConnectionFactory factory =

new com.sun.messaging.QueueConnectionFactory();

//create jms connection

conn = factory.createQueueConnection();

//set exception listener

conn.setExceptionListener(this);

//set event listener

((com.sun.messaging.jms.Connection) conn).setEventListener(this);

//test if this is a HA connection

isHAConnection = ((com.sun.messaging.jms.Connection)

conn).isConnectedToHABroker();

log ("Is connected to HA broker cluster: " + isHAConnection);

//get destination name

String destName = FailoverQSender.TEST_DEST_NAME;

//create a transacted session

session = conn.createQueueSession(true, -1);

//get destination

queue = session.createQueue(destName);

//create queue receiver

qreceiver = session.createReceiver(queue);

//set isConnected flag to true

isConnected = true;

//start the JMS connection

conn.start();

log("Ready to receive on destination: " + destName);

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009118

} catch (JMSException jmse) {

isConnected = false;

log (jmse);

close();

}

}

/**

* Check if we should commit the transaction.

*/

private synchronized boolean shouldCommit(Message m) {

boolean flag = false;

try {

//get the commit flag set by the FailoverQSender

flag = m.getBooleanProperty(FailoverQSender.COMMIT_PROPERTY_NAME);

if (flag) {

//check if message property contains expected message counter

validate (m);

}

} catch (JMSException jmse) {

log (jmse);

}

return flag;

}

/**

* A very simple validation only. More logic may be added to validate

* message ordering and message content.

* @param m Message The last message received for the current transaction.

*/

private void validate (Message m) {

try {

//get message counter property

int counter = m.getIntProperty(FailoverQSender.MESSAGE_COUNTER);

//The counter is set sequentially and must be received in right order.

//Each message is committed after validated.

if (counter != (commitCounter + 1)) {

this.printData();

throw new RuntimeException("validation failed.");
}

log ("messages validated. ready to commit ...");

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 119

} catch (JMSException jmse) {

log (jmse);

printData();

throw new RuntimeException("Exception occurred during validation:

" + jmse);

}

}

/**

* Get the message counter and put it in the data holder.

* @param m the current message received

*/

private synchronized void processMessage(Message m) throws JMSException {

// get message counter. this value is set by the FailoverQSender.

int ct = m.getIntProperty(FailoverQSender.MESSAGE_COUNTER);

// log the message

log("received message: " + ct

+", current connected broker:

" + this.getCurrentConnectedBrokerAddress());

// saved the data in data holder.

data.addElement(new Integer(ct));

}

/**

* commit the current transaction.

* @param m the last received message to be committed.

* @throws JMSException if commit failed.

*/

private void commit(Message m) throws JMSException {

//commit the transaction

session.commit();

//get the current message counter

int counter = m.getIntProperty(FailoverQSender.MESSAGE_COUNTER);

//set the commit counter

commitCounter = counter;

//clear app data

this.reset();

log ("Messages committed, commitCounter: " + commitCounter);

}

/**

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009120

* log exception.

*/

private synchronized void log (Exception e) {

System.out.println(new Date() + ": Exception Stack Trace: ");
e.printStackTrace();

}

/**

* log connection event.

*/

private synchronized void log (Event event) {

try {

System.out.println(new Date()

+ ": Received MQ event notification.");
System.out.println("*** Event Code: " + event.getEventCode());

System.out.println("*** Event message: " + event.getEventMessage());

} catch (Exception e) {

e.printStackTrace();

}

}

/**

* Log the specified message.

*/

private void log (String msg) {

System.out.println(new Date() + ": " + msg);

}

/**

* print values stored in the data holder.

*

*/

private void printData() {

for (int i=0; i< data.size(); i++) {

log (" *** data index " + i + " = " + data.elementAt(i));

}

}

private String getCurrentConnectedBrokerAddress() {

return ((com.sun.messaging.jms.Connection)conn).getBrokerAddress();

}

/**

* The main method. This starts the failover queue receiver.

*/

public static void main (String args[]) {

FailoverQReceiver fqr = new FailoverQReceiver();

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 121

fqr.run();

}

}

Handling Exceptions in a Non-Transacted Session
If a connection is failed-over for a producer in a non-transacted session, a client application
may receive a JMSException. The application thread that receives the exception should pause
for a few seconds and then resend the messages. The client application may want to set a flag on
the resent messages to indicate that they could be duplicates.

If a connection is failed over for a message consumer, the consequences vary with the sessions
acknowledge mode:

■ In client-acknowledge mode, calling Message.acknowledge or MessageConsumer.receive
during a failover will raise a JMSException. The consumer should call Session.recover to
recover or re-deliver the unacknowledged messages and then call Message.acknowledge or
MessageConsumer.receive.

■ In auto-acknowledge mode, after getting a JMSException, the synchronous consumer
should pause a few seconds and then call MessageConsumer.receive to continue receiving
messages. Any message that failed to be acknowledged (due to the failover) will be
redelivered with the redelivered flags set to true.

■ In dups-OK-acknowledge mode, the synchronous consumer should pause a few seconds
after getting an exception and then call MessageConsumer.receive to continue receiving
messages. In this case, it's possible that messages delivered and acknowledged (before the
failover) could be redelivered.

Failover Producer Example

The following code sample illustrates good coding practices for handling exceptions during a
failover. It is designed to send non-transacted, persistent messages forever and to handle
JMSExceptions when a failover occurs. The program is able to handle either a true or false
setting for the imqReconnectEnabled property. To run the program enter one of the following
commands.

java dura.example.FailoverProducer

java -DimqReconnectEnabled=true dura.example.FailoverProducer

/*

* @(#)FailoverProducer.java 1.1 06/06/09

* Copyright 2006 Sun Microsystems, Inc. All Rights Reserved

* SUN PROPRIETARY/CONFIDENTIAL

* Use is subject to license terms. */

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009122

package dura.example;

import javax.jms.*;

import com.sun.messaging.ConnectionConfiguration;

import java.util.*;

public class FailoverProducer implements ExceptionListener {

//connection factory

private com.sun.messaging.TopicConnectionFactory factory;

//connection

private TopicConnection pconn = null;

//session

private TopicSession psession = null;

//publisher

private TopicPublisher publisher = null;

//topic

private Topic topic = null;

//This flag indicates whether this test client is closed.

private boolean isClosed = false;

//auto reconnection flag

private boolean autoReconnect = false;

//destination name for this example.

private static final String DURA_TEST_TOPIC = "DuraTestTopic";
//the message counter property name

public static final String MESSAGE_COUNTER = "MESSAGE_COUNTER";
//the message in-doubt-bit property name

public static final String MESSAGE_IN_DOUBT = "MESSAGE_IN_DOUBT";

/**

* Constructor. Get imqReconnectEnabled property value from

* System property.

*/

public FailoverProducer () {

try {

autoReconnect =

Boolean.getBoolean(ConnectionConfiguration.imqReconnectEnabled);

} catch (Exception e) {

this.printException(e);

}

}

/**

* Connection is broken if this handler is called.

* If autoReconnect flag is true, this is called only

* if no more retries from MQ.

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 123

*/

public void onException (JMSException jmse) {

this.printException (jmse);

}

/**

* create MQ connection factory.

* @throws JMSException

*/

private void initFactory() throws JMSException {

//get connection factory

factory = new com.sun.messaging.TopicConnectionFactory();

}

/**

* JMS setup. Create a Connection,Session, and Producer.

*

* If any of the JMS object creation fails (due to system failure),

* it retries until it succeeds.

*

*/

private void initProducer() {

boolean isConnected = false;

while (isClosed == false && isConnected == false) {

try {

println("producer client creating connection ...");

//create connection

pconn = factory.createTopicConnection();

//set connection exception listener

pconn.setExceptionListener(this);

//create topic session

psession = pconn.createTopicSession(false,

Session.CLIENT_ACKNOWLEDGE);

//get destination

topic = psession.createTopic(DURA_TEST_TOPIC);

//publisher

publisher = psession.createPublisher(topic);

//set flag to true

isConnected = true;

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009124

println("producer ready.");
}

catch (Exception e) {

println("*** connect failed ... sleep for 5 secs.");

try {

//close resources.

if (pconn != null) {

pconn.close();

}

//pause 5 secs.

Thread.sleep(5000);

} catch (Exception e1) {

;

}

}

}

}

/**

* Start test. This sends JMS messages in a loop (forever).

*/

public void run () {

try {

//create MQ connection factory.

initFactory();

//create JMS connection,session, and producer

initProducer();

//send messages forever.

sendMessages();

} catch (Exception e) {

this.printException(e);

}

}

/**

* Send persistent messages to a topic forever. This shows how

* to handle failover for a message producer.

*/

private void sendMessages() {

//this is set to true if send failed.

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 125

boolean messageInDoubt = false;

//message to be sent

TextMessage m = null;

//msg counter

long msgcount = 0;

while (isClosed == false) {

try {

/**

* create a text message

*/

m = psession.createTextMessage();

/**

* the MESSAGE_IN_DOUBT bit is set to true if

* you get an exception for the last message.

*/

if (messageInDoubt == true) {

m.setBooleanProperty (MESSAGE_IN_DOUBT, true);

messageInDoubt = false;

println("MESSAGE_IN_DOUBT bit is set to true

for msg: " + msgcount);

} else {

m.setBooleanProperty (MESSAGE_IN_DOUBT, false);

}

//set message counter

m.setLongProperty(MESSAGE_COUNTER, msgcount);

//set message body

m.setText("msg: " + msgcount);

//send the msg

publisher.send(m, DeliveryMode.PERSISTENT, 4, 0);

println("sent msg: " + msgcount);

/**

* reset counetr if reached max long value.

*/

if (msgcount == Long.MAX_VALUE) {

msgcount = 0;

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009126

println ("Reset message counter to 0.");
}

//increase counter

msgcount ++;

Thread.sleep(1000);

} catch (Exception e) {

if (isClosed == false) {

//set in doubt bit to true.

messageInDoubt = true;

this.printException(e);

//init producer only if auto reconnect is false.

if (autoReconnect == false) {

this.initProducer();

}

}

}

}

}

/**

* Close this example program.

*/

public synchronized void close() {

try {

isClosed = true;

pconn.close();

notifyAll();

} catch (Exception e) {

this.printException(e);

}

}

/**

* print the specified exception.

* @param e the exception to be printed.

*/

private void printException (Exception e) {

System.out.println(new Date().toString());

e.printStackTrace();

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 127

}

/**

* print the specified message.

* @param msg the message to be printed.

*/

private void println (String msg) {

System.out.println(new Date() + ": " + msg);

}

/**

* Main program to start this example.

*/

public static void main (String args[]) {

FailoverProducer fp = new FailoverProducer();

fp.run();

}

}

Failover Consumer Example

The following code sample, FailoverConsumer, illustrates good coding practices for handling
exceptions during a failover. The transacted session is able to receive messages forever. The
program sets the auto reconnect property to true, requiring the Message Queue runtime to
automatically perform a reconnect when the connected broker fails or is killed. It is designed to
work with the dura.example.FailoverProducer, shown in the previous section.

To run this program enter the following command.

java dura.example.FailoverConsumer

/*

* @(#)FailoverConsumer.java 1.1 06/06/09

* Copyright 2006 Sun Microsystems, Inc. All Rights Reserved

* SUN PROPRIETARY/CONFIDENTIAL

* Use is subject to license terms.

*

*/

package dura.example;

import java.util.Date;

import javax.jms.Destination;

import javax.jms.ExceptionListener;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.Connection;

import javax.jms.MessageConsumer;

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009128

import javax.jms.Session;

import javax.jms.Topic;

import javax.jms.TransactionRolledBackException;

import com.sun.messaging.ConnectionConfiguration;

public class FailoverConsumer implements ExceptionListener, Runnable {

//JMS connection

private Connection conn = null;

//JMS session

private Session session = null;

//JMS Message consumer

private MessageConsumer messageConsumer = null;

//JMS destination.

private Destination destination = null;

//flag indicates whether this program should continue running.

private boolean isConnected = false;

//destination name.

private static final String DURA_TEST_TOPIC = "DuraTestTopic";
//the commit counter, for information only.

private long commitCounter = 0;

/**

* message counter property set by the producer.

*/

public static final String MESSAGE_COUNTER = "MESSAGE_COUNTER";

/**

* Message in doubt bit set by the producer

*/

public static final String MESSAGE_IN_DOUBT = "MESSAGE_IN_DOUBT";

/**

* receive time out

*/

public static final long RECEIVE_TIMEOUT = 0;

/**

* Default constructor -

* Set up JMS Environment.

*/

public FailoverConsumer() {

setup();

}

/* Connection Exception listener. This is called when connection

* breaks and no reconnect attempts are performed by MQ client runtime.

*/

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 129

public void onException (JMSException e) {

print ("Reconnect failed. Shutting down the connection ...");

/**

* Set this flag to false so that the run() method will exit.

*/

this.isConnected = false;

e.printStackTrace();

}

/**

* Best effort to roll back a jms session. When a broker crashes, an

* open-transaction should be rolled back. But the re-started broker

* may not have the uncommitted tranaction information due to system

* failure. In a situation like this, an application can just quit

* calling rollback after retrying a few times The uncommitted

* transaction (resources) will eventually be removed by the broker.

*/

private void rollBackJMS() {

//rollback fail count

int failCount = 0;

boolean keepTrying = true;

while (keepTrying) {

try {

print ("<<< rolling back JMS, consumer commit counter:

" + this.commitCounter);

session.rollback();

print("<<< JMS rolled back, consumer commit counter:

" + this.commitCounter);

keepTrying = false;

} catch (JMSException jmse) {

failCount ++;

jmse.printStackTrace();

sleep (3000); //3 secs

if (failCount == 1) {

print ("<<< rollback failed : total count" + failCount);

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009130

keepTrying = false;

}

}

}

}

/**

* Close the JMS connection and exit the program.

*

*/

private void close() {

try {

if (conn != null) {

conn.close();

}

} catch (Exception e) {

e.printStackTrace();

} finally {

this.isConnected = false;

}

}

/*Receive messages in a loop until closed.*/

public void run () {

while (isConnected) {

try {

/*receive message with specified timeout.*/

Message m = messageConsumer.receive(RECEIVE_TIMEOUT);

/* process the message. */

processMessage(m);

/* commit JMS transaction. */

this.commit();

/*increase the commit counter.*/

this.commitCounter ++;

} catch (TransactionRolledBackException trbe) {

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 131

/**

* the transaction is rolled back

* a new transaction is automatically started.

*/

trbe.printStackTrace();

} catch (JMSException jmse) {

/* The transaction is in unknown state.

* We need to roll back the transaction.*/

jmse.printStackTrace();

/* roll back if not closed.

*/

if (this.isConnected == true) {

this.rollBackJMS();

}

} catch (Exception e) {

e.printStackTrace();

/* Exit if this is an unexpected Exception.

*/

this.close();

} finally {

;//do nothing

}

}

print(" <<< consumer exit ...");
}

/*Set up connection, destination, etc*/

/

protected void setup() {

try {

//create connection factory

com.sun.messaging.ConnectionFactory factory =

new com.sun.messaging.ConnectionFactory();

//set auto reconnect to true.

factory.setProperty(ConnectionConfiguration.imqReconnectEnabled, "true");
//A value of -1 will retry forever if connection is broken.

factory.setProperty(ConnectionConfiguration.imqReconnectAttempts, "-1");

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009132

//retry interval - every 10 seconds

factory.setProperty(ConnectionConfiguration.imqReconnectInterval, "10000");
//create connection

conn = factory.createConnection();

//set client ID

conn.setClientID(DURA_TEST_TOPIC);

//set exception listener

conn.setExceptionListener(this);

//create a transacted session

session = conn.createSession(true, -1);

//get destination

destination = session.createTopic(DURA_TEST_TOPIC);

//message consumer

messageConsumer = session.createDurableSubscriber((Topic)destination,

DURA_TEST_TOPIC);

//set flag to true

this.isConnected = true;

//we are ready, start the connection

conn.start();

print("<<< Ready to receive on destination: " + DURA_TEST_TOPIC);

} catch (JMSException jmse) {

this.isConnected = false;

jmse.printStackTrace();

this.close();

}

}

/**

* Process the received message message.

* This prints received message counter.

* @param m the message to be processed.

*/

private synchronized void processMessage(Message m) {

try {

//in this example, we do not expect a timeout, etc.

if (m == null) {

throw new RuntimeException ("<<< Received null message.

Maybe reached max time out. ");
}

Client Connection Failover (Auto-Reconnect)

Chapter 3 • Message Queue Clients: Design and Features 133

//get message counter property

long msgCtr = m.getLongProperty (MESSAGE_COUNTER);

//get message in-doubt bit

boolean indoubt = m.getBooleanProperty(MESSAGE_IN_DOUBT);

if (indoubt) {

print("<<< received message: " + msgCtr + ", indoubt bit is true");
} else {

print("<<< received message: " + msgCtr);

}

} catch (JMSException jmse) {

jmse.printStackTrace();

}

}

/**

* Commit a JMS transaction.

* @throws JMSException

*/

private void commit() throws JMSException {

session.commit();

}

/**

* Sleep for the specified time.

* @param millis sleep time in milli-seconds.

*/

private void sleep (long millis) {

try {

Thread.sleep(millis);

} catch (java.lang.InterruptedException inte) {

print (inte);

}

}

/**

* Print the specified message.

* @param msg the message to be printed.

*/

private static void print (String msg) {

System.out.println(new Date() + ": " + msg);

}

/**

* Print Exception stack trace.

* @param e the exception to be printed.

Client Connection Failover (Auto-Reconnect)

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009134

*/

private static void print (Exception e) {

System.out.print(e.getMessage());

e.printStackTrace();

}

/**

* Start this example program.

*/

public static void main (String args[]) {

FailoverConsumer fc = new FailoverConsumer();

fc.run();

}

}

Custom Client Acknowledgment
Message Queue supports the standard JMS acknowledgment modes (auto-acknowledge,
client-acknowledge, and dups-OK-acknowledge). When you create a session for a consumer,
you can specify one of these modes. Your choice will affect whether acknowledgment is done
explicitly (by the client application) or implicitly (by the session) and will also affect
performance and reliability. This section describes additional options you can use to customize
acknowledgment behavior:
■ You can customize the JMS client-acknowledge mode to acknowledge one message at a

time.
■ If performance is key and reliability is not a concern, you can use the proprietary

no-acknowledge mode to have the broker consider a message acknowledged as soon as it
has been sent to the consuming client.

The following sections explain how you program these options.

Using Client Acknowledge Mode
For more flexibility, Message Queue lets you customize the JMS client-acknowledge mode. In
client-acknowledge mode, the client explicitly acknowledges message consumption by
invoking the acknowledge() method of a message object. The standard behavior of this method
is to cause the session to acknowledge all messages that have been consumed by any consumer
in the session since the last time the method was invoked. (That is, the session acknowledges the
current message and all previously unacknowledged messages, regardless of who consumed
them.)

In addition to the standard behavior specified by JMS, Message Queue lets you use
client-acknowledge mode to acknowledge one message at a time.

Custom Client Acknowledgment

Chapter 3 • Message Queue Clients: Design and Features 135

Observe the following rules when implementing custom client acknowledgment:

■ To acknowledge an individual message, call the acknowledgeThisMessage() method. To
acknowledge all messages consumed so far, call the acknowledgeUpThroughThisMessage()
method. Both are shown in the following code example.

public interface com.sun.messaging.jms.Message {

void acknowledgeThisMessage() throws JMSException;

void acknowledgeUpThroughThisMessage() throws JMSException;

}

■ When you compile the resulting code, include both imq.jar and jms.jar in the class path.
■ Don’t call acknowledge(), acknowledgeThisMessage() , or

acknowledgeUpThroughThisMessage() in any session except one that uses
client-acknowledge mode. Otherwise, the method call is ignored.

■ Don’t use custom acknowledgment in transacted sessions. A transacted session defines a
specific way to have messages acknowledged.

If a broker fails, any message that was not acknowledged successfully (that is, any message
whose acknowledgment ended in a JMSException) is held by the broker for delivery to
subsequent clients.

Example 3–6 demonstrates both types of custom client acknowledgment.

EXAMPLE 3–6 Example of Custom Client Acknowledgment Code

...

import javax.jms.*;

...[Look up a connection factory and create a connection.]

Session session = connection.createSession(false,

Session.CLIENT_ACKNOWLEDGE);

...[Create a consumer and receive messages.]

Message message1 = consumer.receive();

Message message2 = consumer.receive();

Message message3 = consumer.receive();

...[Process messages.]

...[Acknowledge one individual message.

Notice that the following acknowledges only message 2.]

((com.sun.messaging.jms.Message)message2).acknowledgeThisMessage();

...[Continue. Receive and process more messages.]

Custom Client Acknowledgment

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009136

EXAMPLE 3–6 Example of Custom Client Acknowledgment Code (Continued)

Message message4 = consumer.receive();

Message message5 = consumer.receive();

Message message6 = consumer.receive();

...[Acknowledge all messages up through message 4. Notice that this

acknowledges messages 1, 3, and 4, because message 2 was acknowledged

earlier.]

((com.sun.messaging.jms.Message)message4).acknowledgeUpThroughThisMessage();

...[Continue. Finally, acknowledge all messages consumed in the session.

Notice that this acknowledges all remaining consumed messages, that is,

messages 5 and 6, because this is the standard behavior of the JMS API.]

message5.acknowledge();

Using No Acknowledge Mode
No-acknowledge mode is a nonstandard extension to the JMS API. Normally, the broker waits
for a client acknowledgment before considering that a message has been acknowledged and
discarding it. That acknowledgment must be made programmatically if the client has specified
client-acknowledge mode or it can be made automatically, by the session, if the client has
specified auto-acknowledge or dups-OK-acknowledge. If a consuming client specifies
no-acknowledge mode, the broker discards the message as soon as it has sent it to the
consuming client. This feature is intended for use by nondurable subscribers consuming
nonpersistent messages, but it can be used by any consumer.

Using this feature improves performance by reducing protocol traffic and broker work involved
in acknowledging a message. This feature can also improve performance for brokers dealing
with misbehaving clients who do not acknowledge messages and therefore tie down broker
memory resources unnecessarily. Using this mode has no effect on producers.

You use this feature by specifying NO_ACKNOWLEDGE for the acknowledgeMode parameter to the
createSession, createQueueSession, or createTopicSession method. No-acknowledge
mode must be used only with the connection methods defined in the com.sun.messaging.jms
package. Note however that the connection itself must be created using the javax.jms package.

The following are sample variable declarations for connection, queueConnection and
topicConnection:

javax.jms.connection Connection;

javax.jms.queueConnection queueConnection

javax.jms.topicConnection topicConnection

The following are sample statements to create different kinds of no-acknowledge sessions:

Custom Client Acknowledgment

Chapter 3 • Message Queue Clients: Design and Features 137

//to create a no ack session

Session noAckSession =

((com.sun.messaging.jms.Connection)connection)

.createSession(com.sun.messaging.jms.Session.NO_ACKNOWLEDGE);

// to create a no ack topic session

TopicSession noAckTopicSession =

((com.sun.messaging.jms.TopicConnection) topicConnection)

.createTopicSession(com.sun.messaging.jms.Session.NO_ACKNOWLEDGE);

//to create a no ack queue session

QueueSession noAckQueueSession =

((com.sun.messaging.jms.QueueConnection) queueConnection)

.createQueueSession(com.sun.messaging.jms.Session.NO_ACKNOWLEDGE);

Specifying no-acknowledge mode for a session results in the following behavior:

■ The client runtime will throw a JMSException if Session.recover() is called.
■ The client runtime will ignore a call to the Message.acknowledge() method from a

consumer.
■ Messages can be lost. As opposed to dups-OK-acknowledge, which can result in duplicate

messages being sent, no-acknowledge mode bypasses checks and balances built into the
system and may result in message loss.

Schema Validation of XML Payload Messages
This Message Queue feature enables validation of the content of a text (not object) XML
message against an XML schema at the point the message is sent to the broker.

When XML validation is enabled, the Message Queue client runtime will attempt to validate an
XML message against specified XSDs before sending the message to the broker. The location of
the XML schema (XSD) is specified as a property of a Message Queue destination. If the
specified schema cannot be located or the message cannot be validated, the message is not sent,
and an exception is thrown.

If no XSD location is specified, the DTD declaration within the XML document is used to
perform DTD validation. (XSD validation, which includes data type and value range validation,
is more rigorous than DTD validation.)

Client applications using this feature should upgrade Java SE version to JRE 1.5 or above.

XML schema validation is enabled using the following physical destination properties:
validateXMLSchemaEnabled, XMLSchemaURIList, and reloadXMLSchemaOnFailure. These
properties are described in Chapter 18, “Physical Destination Property Reference,” in Sun
GlassFish Message Queue 4.4 Administration Guide. The property values can be set at

Schema Validation of XML Payload Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009138

http://docs.sun.com/doc/821-0027/aeooc?a=view
http://docs.sun.com/doc/821-0027/aeooc?a=view

destination creation or update time by using the imqcmd create dst or imqcmd update dst
command, respectively. The XML validation properties should be set when a destination is
inactive: that is, when it has no consumers and producers, and when there are no messages in
the destination.

If any of the XML validation properties are set while a destination is active (for example, if a
producer is connected to the destination), the change will not take effect until the producer
reconnects to the broker. Similarly, if an XSD is changed, as a result of changing application
requirements, all client applications producing XML messages based on the changed XSD must
reconnect to the broker.

If the reloadXMLSchemaOnFailure property is set to true and XML validation fails, then the
Message Queue client runtime will attempt to reload the XSD before attempting again to
validate a message. The client runtime will throw an exception if the validation fails using the
reloaded XSD.

Communicating with C Clients
Message Queue supports C clients as message producers and consumers.

A Java client consuming messages sent by a C client faces only one restriction: a C client cannot
be part of a distributed transaction, and therefore a Java client receiving a message from a C
client cannot participate in a distributed transaction either.

A Java client producing messages for a consuming C client must be aware of the following
differences in the Java and C interfaces because these differences will affect the C client’s ability
to consume messages: C clients

■ Can only consume messages of type text and bytes

■ Cannot consume messages whose body has been compressed
■ Cannot participate in distributed transactions
■ Cannot receive SOAP messages

Client Runtime Logging
This section describes Message Queue 4.0 support for client runtime logging of connection and
session-related events.

JDK 1.4 (and above) includes the java.util.logging library. This library implements a
standard logger interface that can be used for application-specific logging.

The Message Queue client runtime uses the Java Logging API to implement its logging
functions. You can use all the J2SE 1.4 logging facilities to configure logging activities. For
example, an application can use the following Java logging facilities to configure how the
Message Queue client runtime outputs its logging information:

Client Runtime Logging

Chapter 3 • Message Queue Clients: Design and Features 139

■ Logging Handlers
■ Logging Filters
■ Logging Formatters
■ Logging Level

For more information about the Java Logging API, please see the Java Logging Overview at
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

Logging Name Spaces, Levels, and Activities
The Message Queue provider defines a set of logging name spaces associated with logging levels
and logging activities that allow Message Queue clients to log connection and session events
when a logging configuration is appropriately set.

The root logging name space for the Message Queue client runtime is defined as javax.jms. All
loggers in the Message Queue client runtime use this name as the parent name space.

The logging levels used for the Message Queue client runtime are the same as those defined in
the java.util.logging.Level class. This class defines seven standard log levels and two
additional settings that you can use to turn logging on and off.

OFF Turns off logging.

SEVERE Highest priority, highest value. Application-defined.

WARNING Application-defined.

INFO Application-defined.

CONFIG Application-defined

FINE Application-defined.

FINER Application-defined.

FINEST Lowest priority, lowest value. Application-defined.

ALL Enables logging of all messages.

In general, exceptions and errors that occur in the Message Queue client runtime are logged by
the logger with the javax.jms name space.

■ Exceptions thrown from the JVM and caught by the client runtime, such as IOException,
are logged by the logger with the logging name space javax.jms at level WARNING.

■ JMS exceptions thrown from the client runtime, such as IllegalStateException, are
logged by the logger with the logging name space javax.jms at level FINER.

■ Errors thrown from the JVM and caught by the client runtime, such as OutOfMemoryError,
are logged by the logger with the logging name space javax.jms at level SEVERE.

Client Runtime Logging

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009140

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

The following tables list the events that can be logged and the log level that must be set to log
events for JMS connections and for sessions.

The following table describes log levels and events for connections.

TABLE 3–6 Log Levels and Events for javax.jms.connection Name Space

Log Level Events

FINE Connection created

FINE Connection started

FINE Connection closed

FINE Connection broken

FINE Connection reconnected

FINER Miscellaneous connection activities such as setClientID

FINEST Messages, acknowledgments, Message Queue action and control messages
(like committing a transaction)

For sessions, the following information is recorded in the log record.

■ Each log record for a message delivered to a consumer includes ConnectionID, SessionID,
and ConsumerID.

■ Each log record for a message sent by a producer includes ConnectionID, SessionID,
ProducerID, and destination name.

The table below describes log levels and events for sessions.

TABLE 3–7 Log Levels and Events for javax.jms.sessionName Space

Log Level Event

FINE Session created

FINE Session closed

FINE Producer created

FINE Consumer created

FINE Destination created

FINER Miscellaneous session activities such as committing a session.

FINEST Messages produced and consumed. (Message properties and bodies are not
logged in the log records.)

Client Runtime Logging

Chapter 3 • Message Queue Clients: Design and Features 141

By default, the output log level is inherited from the JRE in which the application is running.
Check the JRE_DIRECTORY/lib/logging.properties file to determine what that level is.

You can configure logging programmatically or by using configuration files, and you can
control the scope within which logging takes place. The following sections describe these
possibilities.

Using the JRE Logging Configuration File
The following example shows how you set logging name spaces and levels in the
JRE_DIRECTORY/lib/logging.properties file, which is used to set the log level for the Java
runtime environment. All applications using this JRE will have the same logging configuration.
The sample configuration below sets the logging level to INFO for the javax.jms.connection
name space and specifies that output be written to java.util.logging.ConsoleHandler.

#logging.properties file.

"handlers" specifies a comma separated list of log Handler

classes. These handlers will be installed during VM startup.

Note that these classes must be on the system classpath.

By default we only configure a ConsoleHandler, which will only

show messages at the INFO and above levels.

handlers= java.util.logging.ConsoleHandler

Default global logging level.

This specifies which kinds of events are logged across

all loggers. For any given facility this global level

can be overriden by a facility-specific level.

Note that the ConsoleHandler also has a separate level

setting to limit messages printed to the console.

.level= INFO

Limit the messages that are printed on the console to INFO and above.

java.util.logging.ConsoleHandler.level = INFO

java.util.logging.ConsoleHandler.formatter =

java.util.logging.SimpleFormatter

The logger with javax.jms.connection name space will write

Level.INFO messages to its output handler(s). In this configuration

the ouput handler is set to java.util.logging.ConsoleHandler.

javax.jms.connection.level = INFO

Client Runtime Logging

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009142

Using a Logging Configuration File for a Specific
Application
You can also define a logging configuration file from the java command line that you use to run
an application. The application will use the configuration defined in the specified logging file. In
the following example, configFile uses the same format as defined in the
JRE_DIRECTORY/lib/logging.properties file.

java -Djava.util.logging.config.file=configFile MQApplication

Setting the Logging Configuration Programmatically
The following code uses the java.util.logging API to log connection events by changing the
javax.jms.connection name space log level to FINE. You can include such code in your
application to set logging configuration programmatically.

import java.util.logging.*;

//construct a file handler and output to the mq.log file

//in the system’s temp directory.

Handler fh = new FileHandler("%t/mq.log");
fh.setLevel (Level.FINE);

//Get Logger for "javax.jms.connection" domain.

Logger logger = Logger.getLogger("javax.jms.connection");
logger.addHandler (fh);

//javax.jms.connection logger would log activities

//with level FINE and above.

logger.setLevel (Level.FINE);

Client Runtime Logging

Chapter 3 • Message Queue Clients: Design and Features 143

144

Using the Metrics Monitoring API

Message Queue provides several ways of obtaining metrics data as a means of monitoring and
tuning performance. One of these methods, message-based monitoring, allows metrics data to
be accessed programmatically and then to be processed in whatever way suits the consuming
client. Using this method, a client subscribes to one or more metrics destinations and then
consumes and processes messages produced by the broker to those destinations. Message-based
monitoring is the most customized solution to metrics gathering, but it does require the effort
of writing a consuming client that retrieves and processes metrics messages.

The methods for obtaining metrics data are described in Chapter 13, “Monitoring Broker
Operations,” in Sun GlassFish Message Queue 4.4 Administration Guide, which also discusses
the relative merits of each method and the set of data that is captured by each. Before you decide
to used message-based monitoring, you should consult this guide to make sure that you will be
able to obtain the information you need using this method.

Message-based monitoring is enabled by the combined efforts of administrators and
programmers. The administrator is responsible for configuring the broker so that it produces
the messages of interest at a specified interval and that it persists these messages for a set time.
The programmer is responsible for selecting the data to be produced and for creating the client
that will consume and process the data.

This chapter focuses on the work the programmer must do to implement a message-based
monitoring client. It includes the following sections:

■ “Monitoring Overview” on page 146
■ “Creating a Metrics-Monitoring Client” on page 148
■ “Format of Metrics Messages” on page 149
■ “Metrics Monitoring Client Code Examples” on page 153

4C H A P T E R 4

145

http://docs.sun.com/doc/821-0027/aeoik?a=view
http://docs.sun.com/doc/821-0027/aeoik?a=view

Monitoring Overview
Message Queue includes an internal client that is enabled by default to produce different types
of metrics messages. Production is actually enabled when a client subscribes to a topic
destination whose name matches one of the metrics message types. For example, if a client
subscribes to the topic mq.metrics.jvm, the client receives information about JMV memory
usage.

The metrics topic destinations (metric message types) are described in Table 4–1.

TABLE 4–1 Metrics Topic Destinations

Topic Destination Name Type of Metrics Messages

mq.metrics.broker Broker metrics: information on connections, message flow,
and volume of messages in the broker.

mq.metrics.jvm Java Virtual Machine metrics: information on memory
usage in the JVM.

mq.metrics.destination_list A list of all destinations on the broker, and their types.

mq.metrics.destination.queue.dn Destination metrics for a queue of the specified name.
Metrics data includes number of consumers, message flow
or volume, disk usage, and more. Specify the destination
name for the dn variable.

mq.metrics.destination.topic.dn Destination metrics for a topic of the specified name.
Metrics data includes number of consumers, message flow
or volume, disk usage, and more. Specify the destination
name for the dn variable.

A metrics message that is produced to one of the destinations listed in Table 4–1 is a normal
JMS message; its header and body are defined to hold the following information:

■ The message header has several properties, one that specifies the metrics message type, one
that records the time the message was produced (timestamp), and a collection of properties
identifying the broker that sent the metric message (broker host, port, and address/URL).

■ The message body contains name-value pairs that vary with the message type.

The section “Format of Metrics Messages” on page 149 provides complete information about
the types of metrics messages and their content (name-value pairs).

To receive metrics messages, the consuming client must be subscribed to the destination of
interest. Otherwise, consuming a metrics message is exactly the same as consuming any JMS
message. The message can be consumed synchronously or asynchronously, and then processed
as needed by the client.

Monitoring Overview

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009146

Message-based monitoring is concerned solely with obtaining metrics information. It does not
include methods that you can call to work with physical destinations, configure or update the
broker, or shutdown and restart the broker.

Administrative Tasks
By default the Message Queue metrics-message producing client is enabled to produce
nonpersistent messages every sixty seconds. The messages are allowed to remain in their
respective destinations for 5 minutes before being automatically deleted. To persist metrics
messages, to change the interval at which they are produced, or to change their time-to-live
interval, the administrator must set the following properties in the config.properties file:
imq.metrics.topic.persist , imq.metrics.topic.interval, and
imq.metrics.topic.timetolive .

In addition, the administrator might want to set access controls on the metrics destinations.
This restricts access to sensitive metrics data and helps limit the impact of metrics subscriptions
on overall performance. For more information about administrative tasks in enabling
message-based monitoring and access control, see “Using the Message-Based Monitoring API ”
in Sun GlassFish Message Queue 4.4 Administration Guide.

Implementation Summary
The following task list summarizes the steps required to implement message based monitoring:

▼ To Implement Message-Based Monitoring

The developer designs and writes a client that subscribes to one or more metrics destinations.

The administrator sets those metrics-related broker properties whose default values are not
satisfactory.

(Optional) The administrator sets entries in the access.control.properties file to restrict
access to metrics information.

The developer or the administrator starts the metrics monitoring client.

When consumers subscribe to a metrics topic, the topic’s physical destination is automatically
created. After the metrics topic has been created, the broker’s metrics message producer begins
to send metrics messages to the appropriate destination.

1

2

3

4

Monitoring Overview

Chapter 4 • Using the Metrics Monitoring API 147

http://docs.sun.com/doc/821-0027/aeojc?a=view
http://docs.sun.com/doc/821-0027/aeojc?a=view

Creating a Metrics-Monitoring Client
You create a metrics monitoring client in the same way that you would write any JMS client,
except that the client must subscribe to one or more special metrics message topic and must be
ready to receive and process messages of a specific type and format.

No hierarchical naming scheme is implied in the metrics-message names. You can’t use a
wildcard character (*) to identify multiple destination names.

A client that monitors broker metrics must perform the following basic tasks:

▼ To Monitor Broker Metrics
Create a TopicConnectionFactory object.

Create a TopicConnection to the Message Queue service.

Create a TopicSession.

Create a metrics Topicdestination object.

Create a TopicSubscriber.

Register as an asynchronous listener to the topic, or invoke the synchronous receive()method
to wait for incoming metrics messages.

Process metrics messages that are received.
In general, you would use JNDI lookups of administered objects to make your client code
provider-independent. However, the metrics-message production is specific to Message Queue,
there is no compelling reason to use JNDI lookups. You can simply instantiate these
administered objects directly in your client code. This is especially true for a metrics destination
for which an administrator would not normally create an administered object.

Notice that the code examples in this chapter instantiate all the relevant administered objects
directly.

You can use the following code to extract the type (String) or timestamp (long) properties in
the message header from the message:
MapMessage mapMsg;

/*

* mapMsg is the metrics message received

*/

String type = mapMsg.getStringProperty("type");
long timestamp = mapMsg.getLongProperty("timestamp");

1

2

3

4

5

6

7

Creating a Metrics-Monitoring Client

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009148

You use the appropriate get method in the class javax.jms.MapMessage to extract the
name-value pairs. The get method you use depends on the value type. Three examples follow:

long value1 = mapMsg.getLong("numMsgsIn");
long value2 = mapMsg.getLong("numMsgsOut");
int value3 = mapMsg.getInt("diskUtilizationRatio");

Format of Metrics Messages
In order to consume and process a metrics messages, you must know its type and format. This
section describes the general format of metrics messages and provides detailed information on
the format of each type of metrics message.

Metrics messages are of type MapMessage. (A type of message whose body contains a set of
name-value pairs. The order of entries is not defined.)

■ The message header has properties that are useful to applications. The type property
identifies the type of metric message (and therefore its contents). It is useful if the same
subscriber processes more than one type of metrics message for example, messages from the
topics mq.metrics.broker and mq.metrics.jvm. The timestamp property indicates when
the metric sample was taken and is useful for calculating rates or drawing graphs. The
brokerHost, brokerPort, and brokerAddress properties identify the broker that sent the
metric message and are useful when a single application needs to process metric messages
from different brokers.

■ The body of the message contains name-value pairs, and the data values depend on the type
of metrics message. The following subsections describe the format of each metrics message
type.

Note that the names of name-value pairs (used in code to extract data) are case-sensitive and
must be coded exactly as shown. For example, NumMsgsOut is incorrect; numMsgsOut is correct.

Broker Metrics
The messages you receive when you subscribe to the topic mq.metrics.broker have the type
property set to mq.metrics.broker in the message header and have the data listed in Table 4–2
in the message body.

TABLE 4–2 Data in the Body of a Broker Metrics Message

Metric Name Value Type Description

numConnections long Current number of connections to the broker

Format of Metrics Messages

Chapter 4 • Using the Metrics Monitoring API 149

TABLE 4–2 Data in the Body of a Broker Metrics Message (Continued)
Metric Name Value Type Description

numMsgsIn long Number of JMS messages that have flowed into the broker
since it was last started

numMsgsOut long Number of JMS messages that have flowed out of the broker
since it was last started

numMsgs long Current number of JMS messages stored in broker memory
and persistent store

msgBytesIn long Number of JMS message bytes that have flowed into the broker
since it was last started

msgBytesOut long Number of JMS message bytes that have flowed out of the
broker since it was last started

totalMsgBytes long Current number of JMS message bytes stored in broker
memory and persistent store

numPktsIn long Number of packets that have flowed into the broker since it was
last started; this includes both JMS messages and control
messages

numPktsOut long Number of packets that have flowed out of the broker since it
was last started; this includes both JMS messages and control
messages

pktBytesIn long Number of packet bytes that have flowed into the broker since
it was last started; this includes both JMS messages and control
messages

pktBytesOut long Number of packet bytes that have flowed out of the broker
since it was last started; this includes both JMS messages and
control messages

numDestinations long Current number of destinations in the broker

JVM Metrics
The messages you receive when you subscribe to the topic mq.metrics.jvm have the type
property set to mq.metrics.jvm in the message header and have the data listed in Table 4–3 in
the message body.

TABLE 4–3 Data in the Body of a JVM Metrics Message

Metric Name Value Type Description

freeMemory long Amount of free memory available for use in the JVM heap

maxMemory long Maximum size to which the JVM heap can grow

Format of Metrics Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009150

TABLE 4–3 Data in the Body of a JVM Metrics Message (Continued)
Metric Name Value Type Description

totalMemory long Total memory in the JVM heap

Destination-List Metrics
The messages you receive when you subscribe to a topic named
mq.metrics.destination_list have the type property set to mq.metrics.destination_list

in the message header.

The message body contains a list of map names. Each destination on the broker is specified by a
unique map name (a name-value pair) in the message body. The type of the name-value pair is
hashtable.

The name (in the name-value pair) depends on whether the destination is a queue or a topic,
and is constructed as follows:

■ mq.metrics.destination.queue.monitored_destination_name
■ mq.metrics.destination.topic.monitored_destination_name

The value (in the name-value pair) is an object of type java.util.Hashtable . This hashtable
contains the key-value pairs described in Table 4–4.

TABLE 4–4 Value of a Name-Value Pair

Key (String) Value Type Value or Description

name String Destination name

type String Destination type (queue or topic)

isTemporary Boolean Is destination temporary?

Notice that the destination name and type could be extracted directly from the metrics topic
destination name, but the hashtable includes it for your convenience.

By enumerating through the map names and extracting the hashtable described in Table 4–4,
you can form a complete list of destination names and some of their characteristics.

The destination list does not include the following kinds of destinations:

■ Destinations that are used by Message Queue administration tools
■ Destinations that the Message Queue broker creates for internal use

Destination Metrics
The messages you receive when you subscribe to the topic
mq.metrics.destination.queue.monitored_destination_name have the type property
mq.metrics.destination.queue.monitored_destination_name set in the message header. The

Format of Metrics Messages

Chapter 4 • Using the Metrics Monitoring API 151

messages you receive when you subscribe to the topic
mq.metrics.destination.topic.monitored_destination_name have the type property
mq.metrics.destination.topic. monitored_destination_name set in the message header.
Either of these messages has the data listed in Table 4–5 in the message body.

TABLE 4–5 Data in the Body of a Destination Metrics Message

Metric Name Value Type Description

numActiveConsumers long Current number of active consumers

avgNumActiveConsumers long Average number of active consumers since the broker was last
started

peakNumActiveConsumers long Peak number of active consumers since the broker was last
started

numBackupConsumers long Current number of backup consumers (applies only to
queues)

avgNumBackupConsumers long Average number of backup consumers since the broker was
last started (applies only to queues)

peakNumBackupConsumers long Peak number of backup consumers since the broker was last
started (applies only to queues)

numMsgsIn long Number of JMS messages that have flowed into this
destination since the broker was last started

numMsgsOut long Number of JMS messages that have flowed out of this
destination since the broker was last started

numMsgs long Number of JMS messages currently stored in destination
memory and persistent store

avgNumMsgs long Average number of JMS messages stored in destination
memory and persistent store since the broker was last started

peakNumMsgs long Peak number of JMS messages stored in destination memory
and persistent store since the broker was last started

msgBytesIn long Number of JMS message bytes that have flowed into this
destination since the broker was last started

msgBytesOut long Number of JMS message bytes that have flowed out of this
destination since the broker was last started

totalMsgBytes long Current number of JMS message bytes stored in destination
memory and persistent store

avgTotalMsgBytes long Average number of JMS message bytes stored in destination
memory and persistent store since the broker was last started

Format of Metrics Messages

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009152

TABLE 4–5 Data in the Body of a Destination Metrics Message (Continued)
Metric Name Value Type Description

peakTotalMsgBytes long Peak number of JMS message bytes stored in destination
memory and persistent store since the broker was last started

peakMsgBytes long Peak number of JMS message bytes in a single message since
the broker was last started

diskReserved long Disk space (in bytes) used by all message records (active and
free) in the destination file-based store

diskUsed long Disk space (in bytes) used by active message records in
destination file-based store

diskUtilizationRatio int Quotient of used disk space over reserved disk space. The
higher the ratio, the more the disk space is being used to hold
active messages

Metrics Monitoring Client Code Examples
Several complete monitoring example applications (including source code and full
documentation) are provided when you install Message Queue. You’ll find the examples in your
IMQ home directory under /demo/monitoring. Before you can run these clients, you must set
up your environment (for example, the CLASSPATH environment variable). For details, see
“Setting Up Your Environment” on page 17.

Next are brief descriptions of three examples—Broker Metrics, Destination List Metrics, and
Destination Metrics—with annotated code examples from each.

These examples use the utility classes MetricsPrinter and MultiColumnPrinter to print
formatted and aligned columns of text output. However, rather than explaining how those
utility classes are used, the following code examples focus on how to subscribe to the metrics
topic and how to extract information from the metrics messages received.

Notice that in the source files, the code for subscribing to metrics topics and processing
messages is actually spread across various methods. However, for the sake of clarity, the
examples are shown here as though they were contiguous blocks of code.

A Broker Metrics Example
The source file for this code example is BrokerMetrics.java. This metrics monitoring client
subscribes to the topic mq.metrics.broker and prints broker-related metrics to the standard
output.

Example 4–1 shows how to subscribe to mq.metrics.broker.

Metrics Monitoring Client Code Examples

Chapter 4 • Using the Metrics Monitoring API 153

EXAMPLE 4–1 Example of Subscribing to a Broker Metrics Topic

com.sun.messaging.TopicConnectionFactory metricConnectionFactory;

TopicConnection metricConnection;

TopicSession metricSession;

TopicSubscriber metricSubscriber;

Topic metricTopic;

metricConnectionFactory = new com.sun.messaging.TopicConnectionFactory();

metricConnection = metricConnectionFactory.createTopicConnection();

metricConnection.start();

metricSession = metricConnection.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

metricTopic = metricSession.createTopic("mq.metrics.broker");

metricSubscriber = metricSession.createSubscriber(metricTopic);

metricSubscriber.setMessageListener(this);

The incoming message is processed in the onMessage() and doTotals() methods, as shown in
Example 4–2.

EXAMPLE 4–2 Example of Processing a Broker Metrics Message

public void onMessage(Message m) {

try {

MapMessage mapMsg = (MapMessage)m;

String type = mapMsg.getStringProperty("type");

if (type.equals("mq.metrics.broker")) {

if (showTotals) {

doTotals(mapMsg);

...

}

}

private void doTotals(MapMessage mapMsg) {

try {

String oneRow[] = new String[8];

int i = 0;

/*

* Extract broker metrics

*/

Metrics Monitoring Client Code Examples

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009154

EXAMPLE 4–2 Example of Processing a Broker Metrics Message (Continued)

oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsOut"));
oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesOut"));
oneRow[i++] = Long.toString(mapMsg.getLong("numPktsIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("numPktsOut"));
oneRow[i++] = Long.toString(mapMsg.getLong("pktBytesIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("pktBytesOut"));
...

} catch (Exception e) {

System.err.println("onMessage: Exception caught: " + e);

}

}

Notice how the metrics type is extracted, using the getStringProperty() method, and is
checked. If you use the onMessage() method to process metrics messages of different types, you
can use the type property to distinguish between different incoming metrics messages.

Also notice how various pieces of information on the broker are extracted, using the getLong()
method of mapMsg.

Run this example monitoring client with the following command:

java BrokerMetrics

The output looks like the following:

--

Msgs Msg Bytes Pkts Pkt Bytes

In Out In Out In Out In Out

--

0 0 0 0 6 5 888 802

0 1 0 633 7 8 1004 1669

A Destination List Metrics Example
The source file for this code example is DestListMetrics.java. This client application
monitors the list of destinations on a broker by subscribing to the topic
mq.metrics.destination_list. The messages that arrive contain information describing the
destinations that currently exist on the broker, such as destination name, destination type, and
whether the destination is temporary.

Example 4–3 shows how to subscribe to mq.metrics.destination_list.

Metrics Monitoring Client Code Examples

Chapter 4 • Using the Metrics Monitoring API 155

EXAMPLE 4–3 Example of Subscribing to the Destination List Metrics Topic

com.sun.messaging.TopicConnectionFactory metricConnectionFactory;

TopicConnection metricConnection;

TopicSession metricSession;

TopicSubscriber metricSubscriber;

Topic metricTopic;

String metricTopicName = null;

metricConnectionFactory = new com.sun.messaging.TopicConnectionFactory();

metricConnection = metricConnectionFactory.createTopicConnection();

metricConnection.start();

metricSession = metricConnection.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

metricTopicName = "mq.metrics.destination_list";
metricTopic = metricSession.createTopic(metricTopicName);

metricSubscriber = metricSession.createSubscriber(metricTopic);

metricSubscriber.setMessageListener(this);

The incoming message is processed in the onMessage() method, as shown in Example 4–4:

EXAMPLE 4–4 Example of Processing a Destination List Metrics Message

public void onMessage(Message m) {

try{

MapMessage mapMsg = (MapMessage)m;

String type = mapMsg.getStringProperty("type");

if (type.equals(metricTopicName)) {

String oneRow[] = new String[3];

/*

* Extract metrics

*/

for (Enumeration e = mapMsg.getMapNames();

e.hasMoreElements();) {

String metricDestName = (String)e.nextElement();

Hashtable destValues =

(Hashtable)mapMsg.getObject(metricDestName);

int i = 0;

oneRow[i++] = (destValues.get("name")).toString();
oneRow[i++] = (destValues.get("type")).toString();

Metrics Monitoring Client Code Examples

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009156

EXAMPLE 4–4 Example of Processing a Destination List Metrics Message (Continued)

oneRow[i++] = (destValues.get("isTemporary")).toString();

mp.add(oneRow);

}

mp.print();

System.out.println("");

mp.clear();

} else {

System.err.println("Msg received:

not destination list metric type");
}

} catch (Exception e) {

System.err.println("onMessage: Exception caught: " + e);

}

}

Notice how the metrics type is extracted and checked, and how the list of destinations is
extracted. By iterating through the map names in mapMsg and extracting the corresponding
value (a hashtable), you can construct a list of all the destinations and their related information.

As discussed in “Format of Metrics Messages” on page 149, these map names are metrics topic
names having one of two forms:

mq.metrics.destination.queue.monitored_destination_name

mq.metrics.destination.topic.monitored_destination_name

(The map names can also be used to monitor a destination, but that is not done in this particular
example.)

Notice that from each extracted hashtable, the information on each destination is extracted
using the keys name, type, and isTemporary. The extraction code from the previous code
example is reiterated here for your convenience.

EXAMPLE 4–5 Example of Extracting Destination Information From a Hash Table

String metricDestName = (String)e.nextElement();

Hashtable destValues = (Hashtable)mapMsg.getObject(metricDestName);

int i = 0;

oneRow[i++] = (destValues.get("name")).toString();
oneRow[i++] = (destValues.get("type")).toString();
oneRow[i++] = (destValues.get("isTemporary")).toString();

Metrics Monitoring Client Code Examples

Chapter 4 • Using the Metrics Monitoring API 157

EXAMPLE 4–5 Example of Extracting Destination Information From a Hash Table (Continued)

Run this example monitoring client with the following command:

java DestListMetrics

The output looks like the following:

Destination Name Type IsTemporary

SimpleQueue queue false

fooQueue queue false

topic1 topic false

A Destination Metrics Example
The source file for this code example is DestMetrics.java. This client application monitors a
specific destination on a broker. It accepts the destination type and name as parameters, and it
constructs a metrics topic name of the form
mq.metrics.destination.queue.monitored_destination_name or
mq.metrics.destination.topic.monitored_destination_name .

Example 4–6 shows how to subscribe to the metrics topic for monitoring a specified
destination.

EXAMPLE 4–6 Example of Subscribing to a Destination Metrics Topic

com.sun.messaging.TopicConnectionFactory metricConnectionFactory;

TopicConnection metricConnection;

TopicSession metricSession;

TopicSubscriber metricSubscriber;

Topic metricTopic;

String metricTopicName = null;

String destName = null,

destType = null;

for (int i = 0; i < args.length; ++i) {

...

} else if (args[i].equals("-n")) {

destName = args[i+1];

} else if (args[i].equals("-t")) {

destType = args[i+1];

}

Metrics Monitoring Client Code Examples

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009158

EXAMPLE 4–6 Example of Subscribing to a Destination Metrics Topic (Continued)

}

metricConnectionFactory = new com.sun.messaging.TopicConnectionFactory();

metricConnection = metricConnectionFactory.createTopicConnection();

metricConnection.start();

metricSession = metricConnection.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

if (destType.equals("q")) {

metricTopicName = "mq.metrics.destination.queue." + destName;

} else {

metricTopicName = "mq.metrics.destination.topic." + destName;

}

metricTopic = metricSession.createTopic(metricTopicName);

metricSubscriber = metricSession.createSubscriber(metricTopic);

metricSubscriber.setMessageListener(this);

The incoming message is processed in the onMessage() method, as shown in Example 4–7:

EXAMPLE 4–7 Example of Processing a Destination Metrics Message

public void onMessage(Message m) {

try {

MapMessage mapMsg = (MapMessage)m;

String type = mapMsg.getStringProperty("type");

if (type.equals(metricTopicName)) {

String oneRow[] = new String[11];

int i = 0;

/*

* Extract destination metrics

*/

oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsOut"));
oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesOut"));

oneRow[i++] = Long.toString(mapMsg.getLong("numMsgs"));
oneRow[i++] = Long.toString(mapMsg.getLong("peakNumMsgs"));
oneRow[i++] = Long.toString(mapMsg.getLong("avgNumMsgs"));

Metrics Monitoring Client Code Examples

Chapter 4 • Using the Metrics Monitoring API 159

EXAMPLE 4–7 Example of Processing a Destination Metrics Message (Continued)

oneRow[i++] = Long.toString(mapMsg.getLong("totalMsgBytes")/1024);
oneRow[i++] = Long.toString

(mapMsg.getLong("peakTotalMsgBytes")/1024);
oneRow[i++] = Long.toString

(mapMsg.getLong("avgTotalMsgBytes")/1024);

oneRow[i++] = Long.toString(mapMsg.getLong("peakMsgBytes")/1024);

mp.add(oneRow);

...

}

} catch (Exception e) {

System.err.println("onMessage: Exception caught: " + e);

}

}

Notice how the metrics type is extracted, using the getStringProperty() method as in the
previous examples, and is checked. Also notice how various destination data are extracted,
using the getLong() method of mapMsg.

You can run this example monitoring client with one of the following commands:

java DestMetrics -t t -n topic_name
java DestMetrics -t q -n queue_name

Using a queue named SimpleQueue as an example, the command would be:

java DestMetrics -t q -n SimpleQueue

The output looks like the following:

--

Msgs Msg Bytes Msg Count Tot Msg Bytes(k) Largest Msg

In Out In Out Curr Peak Avg Curr Peak Avg (k)

--

500 0 318000 0 500 500 250 310 310 155 0

Metrics Monitoring Client Code Examples

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009160

Working with SOAP Messages

SOAP is a protocol that allows for the exchange of data whose structure is defined by an XML
scheme. Using Message Queue, you can send JMS messages that contain a SOAP payload. This
allows you to transport SOAP messages reliably and to publish SOAP messages to JMS
subscribers. This chapter covers the following topics:

■ “What is SOAP?” on page 161
■ “SOAP Messaging in JAVA” on page 167
■ “SOAP Messaging Models and Examples” on page 175
■ “Integrating SOAP and Message Queue” on page 185

If you are familiar with the SOAP specification, you can skip the introductory section and start
by reading “SOAP Messaging in JAVA” on page 167.

What is SOAP?
SOAP, the Simple Object Access Protocol, is a protocol that allows the exchange of structured
data between peers in a decentralized, distributed environment. The structure of the data being
exchanged is specified by an XML scheme.

The fact that SOAP messages are encoded in XML makes SOAP messages portable, because
XML is a portable, system-independent way of representing data. By representing data using
XML, you can access data from legacy systems as well as share your data with other enterprises.
The data integration offered by XML also makes this technology a natural for Web-based
computing such as Web services. Firewalls can recognize SOAP packets based on their content
type (text/xml-SOAP) and can filter messages based on information exposed in the SOAP
message header.

The SOAP specification describes a set of conventions for exchanging XML messages. As such,
it forms a natural foundation for Web services that also need to exchange information encoded
in XML. Although any two partners could define their own protocol for carrying on this
exchange, having a standard such as SOAP allows developers to build the generic pieces that

5C H A P T E R 5

161

support this exchange. These pieces might be software that adds functionality to the basic SOAP
exchange, or might be tools that administer SOAP messaging, or might even comprise parts of
an operating system that supports SOAP processing. Once this support is put in place, other
developers can focus on creating the Web services themselves.

The SOAP protocol is fully described at http://www.w3.org/TR/SOAP. This section restricts
itself to discussing the reasons why you would use SOAP and to describing basic concepts that
will make it easier to work with SOAP messages.

SOAP with Attachments API for Java
The Soap with Attachments API for Java (SAAJ) is a JAVA-based API that enforces compliance
to the SOAP standard. When you use this API to assemble and disassemble SOAP messages, it
ensures the construction of syntactically correct SOAP messages. SAAJ also makes it possible to
automate message processing when several applications need to handle different parts of a
message before forwarding it to the next recipient.

Figure 5–1 shows the layers that can come into play in the implementation of SOAP messaging.
This chapter focuses on the SOAP and language implementation layers.

The sections that follow describe each layer shown in the preceding figure in greater detail. The
rest of this chapter focuses on the SOAP and language implementation layers.

The Transport Layer
Underlying any messaging system is the transport or wire protocol that governs the
serialization of the message as it is sent across a wire and the interpretation of the message bits
when it gets to the other side. Although SOAP messages can be sent using any number of
protocols, the SOAP specification defines only the binding with HTTP. SOAP uses the HTTP

Wire Transport Protocol

SOAP with Attachments Encoding

Language Implementation

Profile
(Messaging and Delivery Semantics)

FIGURE 5–1 SOAP Messaging Layers

What is SOAP?

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009162

request/response message model. It provides SOAP request parameters in an HTTP request and
SOAP response parameters in an HTTP response. The HTTP binding has the advantage of
allowing SOAP messages to go through firewalls.

The SOAP Layer
Above the transport layer is the SOAP layer. This layer, which is defined in the SOAP
Specification, specifies the XML scheme used to identify the message parts: envelope, header,
body, and attachments. All SOAP message parts and contents, except for the attachments, are
written in XML. The following sample SOAP message shows how XML tags are used to define a
SOAP message:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The wire transport and SOAP layers are actually sufficient to do SOAP messaging. You could
create an XML document that defines the message you want to send, and you could write HTTP
commands to send the message from one side and to receive it on the other. In this case, the
client is limited to sending synchronous messages to a specified URL. Unfortunately, the scope
and reliability of this kind of messaging is severely restricted. To overcome these limitations, the
provider and profile layers are added to SOAP messaging.

The Language Implementation Layer
A language implementation allows you to create XML messages that conform to SOAP, using
API calls. For example, the SAAJ implementation of SOAP, allows a Java client to construct a
SOAP message and all its parts as Java objects. The client would also use SAAJ to create a
connection and use it to send the message. Likewise, a Web service written in Java could use the
same implementation (SAAJ), or any other language implementation, to receive the message, to
disassemble it, and to acknowledge its receipt.

The Profiles Layer
In addition to a language implementation, a SOAP implementation can offer services that relate
to message delivery. These could include reliability, persistence, security, and administrative

What is SOAP?

Chapter 5 • Working with SOAP Messages 163

control, and are typically delivered by a SOAP messaging provider. These services will be
provided for SOAP messaging by Message Queue in future releases.

Interoperability
Because SOAP providers must all construct and deconstruct messages as defined by the SOAP
specification, clients and services using SOAP are interoperable. That is, as shown in Figure 5–2,
the client and the service doing SOAP messaging do not need to be written in the same language
nor do they need to use the same SOAP provider. It is only the packaging of the message that
must be standard.

In order for a SAAJ client or service to interoperate with a service or client using a different
implementation, the parties must agree on two things:

■ They must use the same transport bindings--that is, the same wire protocol.
■ They must use the same profile in constructing the SOAP message being sent.

The SOAP Message
Having surveyed the SOAP messaging layers, let’s examine the SOAP message itself. Although
the work of rendering a SOAP message in XML is taken care of by the SAAJ implementation,
you must still understand its structure in order to make the SAAJ calls in the right order.

SOAP
Messaging

Client

SOAP Service

SOAP
Implementation

HTTP
HTTP

SOAP
Msg

SAAJ

SOAP
Implementation

FIGURE 5–2 SOAP Interoperability

What is SOAP?

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009164

A SOAP message is an XML document that consists of a SOAP envelope, an optional SOAP
header, and a SOAP body. The SOAP message header contains information that allows the
message to be routed through one or more intermediate nodes before it reaches its final
destination.

■ The envelope is the root element of the XML document representing the message. It defines
the framework for how the message should be handled and by whom. Once it encounters
the Envelope element, the SOAP processor knows that the XML is a SOAP message and can
then look for the individual parts of the message.

■ The header is a generic mechanism for adding features to a SOAP message. It can contain
any number of child elements that define extensions to the base protocol. For example,
header child elements might define authentication information, transaction information,
locale information, and so on. The actors, the software that handle the message may,
without prior agreement, use this mechanism to define who should deal with a feature and
whether the feature is mandatory or optional.

■ The body is a container for mandatory information intended for the ultimate recipient of the
message.

A SOAP message may also contain an attachment, which does not have to be in XML. For more
information, see “SOAP Packaging Models” on page 165 next.

A SOAP message is constructed like a nested matrioshka doll. When you use SAAJ to assemble
or disassemble a message, you need to make the API calls in the appropriate order to get to the
message part that interests you. For example, in order to add content to the message, you need
to get to the body part of the message. To do this you need to work through the nested layers:
SOAP part, SOAP envelope, SOAP body, until you get to the SOAP body element that you will
use to specify your data. For more information, see “The SOAP Message Object” on page 168.

SOAP Packaging Models
The SOAP specification describes two models of SOAP messages: one that is encoded entirely in
XML and one that allows the sender to add an attachment containing non-XML data. You
should look over the following two figures and note the parts of the SOAP message for each
model. When you use SAAJ to define SOAP messages and their parts, it will be helpful for you
to be familiar with this information.

Figure 5–3 shows the SOAP model without attachments. This package includes a SOAP
envelope, a header, and a body. The header is optional.

What is SOAP?

Chapter 5 • Working with SOAP Messages 165

When you construct a SOAP message using SAAJ, you do not have to specify which model
you’re following. If you add an attachment, a message like that shown in Figure 5–4 is
constructed; if you don’t, a message like that shown in Figure 5–3 is constructed.

Figure 5–3 shows a SOAP Message with attachments. The attachment part can contain any kind
of content: image files, plain text, and so on. The sender of a message can choose whether to
create a SOAP message with attachments. The message receiver can also choose whether to
consume an attachment.

A message that contains one or more attachments is enclosed in a MIME envelope that contains
all the parts of the message. In SAAJ, the MIME envelope is automatically produced whenever
the client creates an attachment part. If you add an attachment to a message, you are responsible
for specifying (in the MIME header) the type of data in the attachment.

Communication Protocol Envelope HTTP, SMTP, ...

MIME Envelope

SOAP 1.1
Message Package

Envelope

Header

Body

FIGURE 5–3 SOAP Message Without Attachments

What is SOAP?

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009166

SOAP Messaging in JAVA
The SOAP specification does not provide a programming model or even an API for the
construction of SOAP messages; it simply defines the XML schema to be used in packaging a
SOAP message.

SAAJ is an application programming interface that can be implemented to support a
programming model for SOAP messaging and to furnish Java objects that application or tool
writers can use to construct, send, receive, and examine SOAP messages. SAAJ defines two
packages:

■ javax.xml.soap: you use the objects in this package to define the parts of a SOAP message
and to assemble and disassemble SOAP messages. You can also use this package to send a
SOAP message without the support of a provider.

■ javax.xml.messaging: you use the objects in this package to send a SOAP message using a
provider and to receive SOAP messages.

Note – Beginning with SAAJ 1.3, you must put the file mail.jar explicitly in CLASSPATH.

This chapter focuses on the javax.xml.soap package and how you use the objects and methods
it defines

Communication Protocol Envelope

MIME Envelope

SOAP Part

Envelope

Header

Attachment Part

SOAP Attachment
(XML or non-XML)

Body

HTTP, SMTP, ...

FIGURE 5–4 SOAP Message with Attachments

SOAP Messaging in JAVA

Chapter 5 • Working with SOAP Messages 167

■ to assemble and disassemble SOAP messages
■ to send and receive these messages

It also explains how you can use the JMS API and Message Queue to send and receive JMS
messages that carry SOAP message payloads.

The SOAP Message Object
A SOAP Message Object is a tree of objects as shown in Figure 5–5. The classes or interfaces
from which these objects are derived are all defined in the javax.xml.soap package.

SOAP Message

SOAP
Part

SOAP
Envelope

Attachment
Part

MIME
Headers

MIME
Header

SOAP
Fault

Detail

Attachment

Detail
Entry

SOAP
Header

SOAP
Body

SOAP
Header

Element

SOAP Body
Element

FIGURE 5–5 SOAP Message Object

SOAP Messaging in JAVA

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009168

As shown in the figure, the SOAPMessage object is a collection of objects divided in two parts: a
SOAP part and an attachment part. The main thing to remember is that the attachment part can
contain non-xml data.

The SOAP part of the message contains an envelope that contains a body (which can contain
data or fault information) and an optional header. When you use SAAJ to create a SOAP
message, the SOAP part, envelope, and body are created for you: you need only create the body
elements. To do that you need to get to the parent of the body element, the SOAP body.

In order to reach any object in the SOAPMessage tree, you must traverse the tree starting from
the root, as shown in the following lines of code. For example, assuming the SOAPMessage is
MyMsg, here are the calls you would have to make in order to get the SOAP body:

SOAPPart MyPart = MyMsg.getSOAPPart();

SOAPEnvelope MyEnv = MyPart.getEnvelope();

SOAPBody MyBody = envelope.getBody();

At this point, you can create a name for a body element (as described in “Namespaces” on
page 171) and add the body element to the SOAPMessage.

For example, the following code line creates a name (a representation of an XML tag) for a body
element:

Name bodyName = envelope.createName("Temperature");

The next code line adds the body element to the body:

SOAPBodyElement myTemp = MyBody.addBodyElement(bodyName);

Finally, this code line defines some data for the body element bodyName :

myTemp.addTextNode("98.6");

Inherited Methods
The elements of a SOAP message form a tree. Each node in that tree implements the Node
interface and, starting at the envelope level, each node implements the SOAPElement interface as
well. The resulting shared methods are described in Table 5–1.

TABLE 5–1 Inherited Methods

Inherited From Method Name Purpose

SOAPElemen addAttribute(Name, String) Add an attribute with the specified Name object and
string value

SOAP Messaging in JAVA

Chapter 5 • Working with SOAP Messages 169

TABLE 5–1 Inherited Methods (Continued)
Inherited From Method Name Purpose

addChildElement(Name)

addChildElement(String, String)

addChildElement

(String, String, String)

Create a new SOAPElement object, initialized with
the given Name object, and add the new element

(Use the Envelope.createName method to create a
Name object)

addNameSpaceDeclaration

(String, String)

Add a namespace declaration with the specified
prefix and URI

addTextnode(String) Create a new Text object initialized with the given
String and add it to this SOAPElement object

getAllAttributes() Return an iterator over all the attribute names in
this object

getAttributeValue(Name) Return the value of the specified attribute

getChildElements() Return an iterator over all the immediate content
of this element

getChildElements(Name) Return an iterator over all the child elements with
the specified name

getElementName() Return the name of this object

getEncodingStyle() Return the encoding style for this object

getNameSpacePrefixes() Return an iterator of namespace prefixes

getNamespaceURI(String) Return the URI of the namespace with the given
prefix

removeAttribute(Name) Remove the specified attribute

removeNamespaceDeclaration

(String)

Remove the namespace declaration that
corresponds to the specified prefix

setEncodingStyle(String) Set the encoding style for this object to that
specified by String

Node detachNode() Remove this Node object from the tree

getParentElement() Return the parent element of this Node object

getValue Return the value of the immediate child of this
Node object if a child exists and its value is text

recycleNode() Notify the implementation that his Node object is
no longer being used and is free for reuse

SOAP Messaging in JAVA

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009170

TABLE 5–1 Inherited Methods (Continued)
Inherited From Method Name Purpose

setParentElement(SOAPElement) Set the parent of this object to that specified by the
SOAPElement parameter

Namespaces
An XML namespace is a means of qualifying element and attribute names to disambiguate them
from other names in the same document. This section provides a brief description of XML
namespaces and how they are used in SOAP. For complete information, see
http://www.w3.org/TR/REC-xml-names/

An explicit XML namespace declaration takes the following form:

<prefix:myElement
xmlns:prefix ="URI">

The declaration defines prefix as an alias for the specified URI. In the element myElement, you
can use prefix with any element or attribute to specify that the element or attribute name
belongs to the namespace specified by the URI.

The following is an example of a namespace declaration:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

This declaration defines SOAP_ENV as an alias for the namespace:

http://schemas.xmlsoap.org/soap/envelope/

After defining the alias, you can use it as a prefix to any attribute or element in the Envelope
element. In Example 5–1, the elements <Envelope> and <Body> and the attribute
encodingStyle all belong to the SOAP namespace specified by the
http://schemas.sxmlsoap.org/soap/envelope/URI .

EXAMPLE 5–1 Explicit Namespace Declarations

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>

<HeaderA

xmlns="HeaderURI"
SOAP-ENV:mustUnderstand="0">

The text of the header
</HeaderA>

SOAP Messaging in JAVA

Chapter 5 • Working with SOAP Messages 171

http://www.w3.org/TR/REC-xml-names/

EXAMPLE 5–1 Explicit Namespace Declarations (Continued)

</SOAP-ENV:Header>

<SOAP-ENV:Body>

.

.

.

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note that the URI that defines the namespace does not have to point to an actual location; its
purpose is to disambiguate attribute and element names.

Pre-defined SOAP Namespaces

SOAP defines two namespaces:
■ The SOAP envelope, the root element of a SOAP message, has the following namespace

identifier:

"http://schemas.xmlsoap.org/soap/envelope"

■ The SOAP serialization, the URI defining SOAP’s serialization rules, has the following
namespace identifier:

"http://schemas.xmlsoap.org/soap/encoding"

When you use SAAJ to construct or consume messages, you are responsible for setting or
processing namespaces correctly and for discarding messages that have incorrect namespaces.

Using Namespaces when Creating a SOAP Name

When you create the body elements or header elements of a SOAP message, you must use the
Name object to specify a well-formed name for the element. You obtain a Name object by calling
the method SOAPEnvelope.createName.

When you call this method, you can pass a local name as a parameter or you can specify a local
name, prefix, and URI. For example, the following line of code defines a name object bodyName.

Name bodyName = MyEnvelope.createName("TradePrice",
"GetLTP","http://foo.eztrade.com");

This would be equivalent to the namespace declaration:

<GetLTP:TradePrice xmlns:GetLTP= "http://foo.eztrade.com">

The following code shows how you create a name and associate it with a SOAPBody element.
Note the use and placement of the createName method.

SOAP Messaging in JAVA

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009172

SoapBody body = envelope.getBody();//get body from envelope

Name bodyName = envelope.createName("TradePrice", "GetLTP",
"http://foo.eztrade.com");

SOAPBodyElement gltp = body.addBodyElement(bodyName);

Parsing Name Objects

For any given Name object, you can use the following Name methods to parse the name:

■ getQualifiedName returns "prefix:LocalName ", for the given name, this would be
GetLTP:TradePrice.

■ getURI would return "http://foo.eztrade.com" .
■ getLocalName would return "TradePrice ".
■ getPrefix would return "GetLTP".

Destination, Message Factory, and Connection
Objects
SOAP messaging occurs when a SOAP message, produced by a message factory , is sent to an
endpoint by way of a connection .

If you are working without a provider, you must do the following:

■ Create a SOAPConnectionFactory object.
■ Create a SOAPConnection object.
■ Create an Endpoint object that represents the message’s destination.
■ Create a MessageFactory object and use it to create a message.
■ Populate the message.
■ Send the message.

If you are working with a provider, you must do the following:

■ Create a ProviderConnectionFactory object.
■ Get a ProviderConnection object from the provider connection factory.
■ Get a MessageFactory object from the provider connection and use it to create a message.
■ Populate the message.
■ Send the message.

The following three sections describe endpoint, message factory, and connection objects in
greater detail.

SOAP Messaging in JAVA

Chapter 5 • Working with SOAP Messages 173

Endpoint
An endpoint identifies the final destination of a message. An endpoint is defined either by the
Endpoint class (if you use a provider) or by the URLEndpoint class (if you don’t use a provider).)

Constructing an Endpoint

You can initialize an endpoint by calling its constructor. The following code uses a constructor
to create a URLEndpoint.

myEndpoint = new URLEndpoint("http://somehost/myServlet");

Using the Endpoint to Address a Message

To address a message to an endpoint, specify the endpoint as a parameter to the
SOAPConnection.call method, which you use to send a SOAP message.

Message Factory
You use a Message Factory to create a SOAP message.

To instantiate a message factory directly, use a statement like the following:

MessageFactory mf = MessageFactory.newInstance();

Connection
To send a SOAP message using SAAJ, you must obtain a SOAPConnection . You can also
transport a SOAP message using Message Queue; for more information, see “Integrating SOAP
and Message Queue” on page 185.

SOAP Connection
A SOAPConnection allows you to send messages directly to a remote party. You can obtain a
SOAPConnection object simply by calling the static method
SOAPConnectionFactory.newInstance(). Neither reliability nor security are guaranteed over
this type of connection.

SOAP Messaging in JAVA

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009174

SOAP Messaging Models and Examples
This section explains how you use SAAJ to send and receive a SOAP message. It is also possible
to construct a SOAP message using SAAJ and to send it as the payload of a JMS message. For
information, see “Integrating SOAP and Message Queue” on page 185.

SOAP Messaging Programming Models
This section provides a brief summary of the programming models used in SOAP messaging
using SAAJ.

A SOAP message is sent to an endpoint by way of a point-to-point connection (implemented by
the SOAPConnection class).

You use point-to-point connections to establish a request-reply messaging model. The
request-reply model is illustrated in Figure 5–6.

Using this model, the client does the following:
■ Creates an endpoint that specifies the URL that will be passed to the SOAPConnection.call

method that sends the message.
See “Endpoint” on page 174 for a discussion of the different ways of creating an endpoint.

■ Creates a SOAPConnection factory and obtains a SOAP connection.
■ Creates a message factory and uses it to create a SOAP message.
■ Creates a name for the content of the message and adds the content to the message.
■ Uses the SOAPConnection.call method to send the message.

It is assumed that the client will ignore the SOAPMessage object returned by the call method
because the only reason this object is returned is to unblock the client.

SOAP
Endpoint

SOAP
Message

Sender
Blocks

Sender

Sender Call
Returns

Receive
and

Process
Message

FIGURE 5–6 Request-Reply Messaging

SOAP Messaging Models and Examples

Chapter 5 • Working with SOAP Messages 175

The SOAP service listening for a request-reply message uses a ReqRespListener object to
receive messages.

For a detailed example of a client that does point-to-point messaging, see “Writing a SOAP
Client” on page 177.

Working with Attachments
If a message contains any data that is not XML, you must add it to the message as an
attachment. A message can have any number of attachment parts. Each attachment part can
contain anything from plain text to image files.

To create an attachment, you must create a URL object that specifies the location of the file that
you want to attach to the SOAP message. You must also create a data handler that will be used to
interpret the data in the attachment. Finally, you need to add the attachment to the SOAP
message.

To create and add an attachment part to the message, you need to use the JavaBeans Activation
Framework (JAF) API. This API allows you to determine the type of an arbitrary piece of data,
encapsulate access to it, discover the operations available on it, and activate a bean that can
perform these operations. You must include the activation.jar library in your application
code in order to work with the JavaBeans Activation Framework.

▼ To Create and Add an Attachment

Create a URL object and initialize it to contain the location of the file that you want to attach to
the SOAP message.
URL url = new URL("http://wombats.com/img.jpg");

Create a data handler and initialize it with a default handler, passing the URL as the location of
the data source for the handler.
DataHandler dh = new DataHandler(url);

Create an attachment part that is initialized with the data handler containing the URL for the
image.
AttachmentPart ap1 = message.createAttachmentPart(dh);

Add the attachment part to the SOAP message.
myMessage.addAttachmentPart(ap1);

After creating the attachment and adding it to the message, you can send the message in the
usual way.

1

2

3

4

SOAP Messaging Models and Examples

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009176

If you are using JMS to send the message, you can use the SOAPMessageIntoJMSMessage
conversion utility to convert a SOAP message that has an attachment into a JMS message that
you can send to a JMS queue or topic using Message Queue.

Exception and Fault Handling
A SOAP application can use two error reporting mechanisms: SOAP exceptions and SOAP
faults:

■ Use a SOAP exception to handle errors that occur on the client side during the generation of
the SOAP request or the unmarshalling of the response.

■ Use a SOAP fault to handle errors that occur on the server side when unmarshalling the
request, processing the message, or marshalling the response. In response to such an error,
server-side code should create a SOAP message that contains a fault element, rather than a
body element, and then it should send that SOAP message back to the originator of the
message. If the message receiver is not the ultimate destination for the message, it should
identify itself as the soapactor so that the message sender knows where the error occurred.
For additional information, see “Handling SOAP Faults” on page 182.

Writing a SOAP Client
The following steps show the calls you have to make to write a SOAP client for point-to-point
messaging.

▼ To Write a SOAP Client for Point-to-Point Messaging

Get an instance of a SOAPConnectionFactory:
SOAPConnectionFactory myFct = SOAPConnectionFactory.newInstance();

Get a SOAP connection from the SOAPConnectionFactory object:
SOAPConnection myCon = myFct.createConnection();

The myCon object that is returned will be used to send the message.

Get a MessageFactory object to create a message:
MessageFactory myMsgFct = MessageFactory.newInstance();

Use the message factory to create a message:
SOAPMessage message = myMsgFct.createMessage();

The message that is created has all the parts that are shown in Figure 5–7.

1

2

3

4

SOAP Messaging Models and Examples

Chapter 5 • Working with SOAP Messages 177

At this point, the message has no content. To add content to the message, you need to create a
SOAP body element, define a name and content for it, and then add it to the SOAP body.

Remember that to access any part of the message, you need to traverse the tree, calling a get
method on the parent element to obtain the child. For example, to reach the SOAP body, you
start by getting the SOAP part and SOAP envelope:

SOAPPart mySPart = message.getSOAPPart();

SOAPEnvelope myEnvp = mySPart.getEnvelope();

Now, you can get the body element from the myEnvp object:
SOAPBody body = myEnvp.getBody();

The children that you will add to the body element define the content of the message. (You can
add content to the SOAP header in the same way.)

When you add an element to a SOAP body (or header), you must first create a name for it by
calling the envelope.createNamemethod. This method returns a Nameobject, which you must
then pass as a parameter to the method that creates the body element (or the header element).
Name bodyName = envelope.createName("GetLastTradePrice", "m",

"http://eztrade.com")
SOAPBodyElement gltp = body.addBodyElement(bodyName);

SOAP Message

SOAP Part

SOAP Header SOAP Body

SOAP Envelope

FIGURE 5–7 SOAP Message Parts

5

6

SOAP Messaging Models and Examples

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009178

Now create another body element to add to the gltp element:
Name myContent = envelope.createName("symbol");
SOAPElement mySymbol = gltp.addChildElement(myContent);

And now you can define data for the body element mySymbol:
mySymbol.addTextNode("SUNW");

The resulting SOAP message object is equivalent to this XML scheme:

<SOAP-ENV: Envelope

xmlns:SOAPENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="http://eztrade.com">
<symbol>SUNW</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV: Envelope>

Every time you send a message or write to it, the message is automatically saved. However if you
change a message you have received or one that you have already sent, this would be the point
when you would need to update the message by saving all your changes. For example:
message.saveChanges();

Before you send the message, you must create a URLEndpoint object with the URL of the
endpoint to which the message is to be sent. (If you use a profile that adds addressing
information to the message header, you do not need to do this.)
URLEndpoint endPt = new URLEndpoint("http://eztrade.com//quotes");

Now, you can send the message:
SOAPMessage reply = myCon.call(message, endPt);

The reply message (reply) is received on the same connection.

Finally, you need to close the SOAPConnection object when it is no longer needed:
myCon.close();

Writing a SOAP Service
A SOAP service represents the final recipient of a SOAP message and should currently be
implemented as a servlet. You can write your own servlet or you can extend the JAXMServlet
class, which is furnished in the soap.messaging package for your convenience. This section
describes the task of writing a SOAP service based on the JAXMServlet class.

Your servlet must implement either the ReqRespListener or OneWayListener interfaces. The
difference between these two is that ReqRespListener requires that you return a reply.

7

8

9

10

11

12

SOAP Messaging Models and Examples

Chapter 5 • Working with SOAP Messages 179

Using either of these interfaces, you must implement a method called onMessage(SOAPMsg).
JAXMServlet will call onMessage after receiving a message using the HTTP POST method, which
saves you the work of implementing your own doPost() method to convert the incoming
message into a SOAP message.

Example 5–2 shows the basic structure of a SOAP service that uses the JAXMServlet utility class.

EXAMPLE 5–2 Skeleton Message Consumer

public class MyServlet extends JAXMServlet implements

ReqRespListener

{

public SOAPMessage onMessage(SOAP Message msg)

{ //Process message here

}

}

Example 5–3 shows a simple ping message service:

EXAMPLE 5–3 A Simple Ping Message Service

public class SOAPEchoServlet extends JAXMServlet

implements ReqRespListener{

public SOAPMessage onMessage(SOAPMessage mySoapMessage) {

return mySoapMessage

}

}

Table 5–2 describes the methods that the JAXM servlet uses. If you were to write your own
servlet, you would need to provide methods that performed similar work. In extending
JAXMServlet , you may need to override the Init method and the SetMessageFactory method;
you must implement the onMessage method.

TABLE 5–2 JAXMServletMethods

Method Description

void init (ServletConfig) Passes the ServletConfig object to its parent’s constructor and creates a
default messageFactory object.

If you want incoming messages to be constructed according to a certain
profile, you must call the SetMessageFactory method and specify the
profile it should use in constructing SOAP messages.

SOAP Messaging Models and Examples

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009180

TABLE 5–2 JAXMServletMethods (Continued)
Method Description

void doPost (HTTPRequest,

HTTPResponse

Gets the body of the HTTP request and creates a SOAP message
according to the default or specified MessageFactory profile.

Calls the onMessage() method of an appropriate listener, passing the
SOAP message as a parameter.

It is recommended that you do not override this method.

void setMessageFactory

(MessageFactory)

Sets the MessageFactory object. This is the object used to create the
SOAP message that is passed to the onMessage method.

MimeHeaders getHeaders

(HTTPRequest)

Returns a MimeHeaders object that contains the headers in the given
HTTPRequest object.

void putHeaders (mimeHeaders,

HTTPresponse)

Sets the given HTTPResponse object with the headers in the given
MimeHeaders object.

onMessage

(SOAPMesssage)

User-defined method that is called by the servlet when the SOAP
message is received. Normally this method needs to disassemble the
SOAP message passed to it and to send a reply back to the client (if the
servlet implements the ReqRespListener interface.)

Disassembling Messages
The onMessage method needs to disassemble the SOAP message that is passed to it by the
servlet and process its contents in an appropriate manner. If there are problems in the
processing of the message, the service needs to create a SOAP fault object and send it back to the
client as described in “Handling SOAP Faults” on page 182.

Processing the SOAP message may involve working with the headers as well as locating the
body elements and dealing with their contents. The following code sample shows how you
might disassemble a SOAP message in the body of your onMessage method. Basically, you need
to use a Document Object Model (DOM) API to parse through the SOAP message.

See http://xml.coverpages.org/dom.html for more information about the DOM API.

EXAMPLE 5–4 Processing a SOAP Message

{http://xml.coverpages.org/dom.html

SOAPEnvelope env = reply.getSOAPPart().getEnvelope();

SOAPBody sb = env.getBody();

// create Name object for XElement that we are searching for

Name ElName = env.createName("XElement");

//Get child elements with the name XElement

Iterator it = sb.getChildElements(ElName);

//Get the first matched child element.

SOAP Messaging Models and Examples

Chapter 5 • Working with SOAP Messages 181

http://xml.coverpages.org/dom.html

EXAMPLE 5–4 Processing a SOAP Message (Continued)

//We know there is only one.

SOAPBodyElement sbe = (SOAPBodyElement) it.next();

//Get the value for XElement

MyValue = sbe.getValue();

}

Handling Attachments
A SOAP message may have attachments. For sample code that shows you how to create and add
an attachment, see “Code Samples” on page 190. For sample code that shows you how to receive
and process an attachment, see “Code Samples” on page 190.

In handling attachments, you will need to use the Java Activation Framework API. See
http://java.sun.com/products/javabeans/glasgow/jaf.html for more information.

Replying to Messages
In replying to messages, you are simply taking on the client role, now from the server side.

Handling SOAP Faults
Server-side code must use a SOAP fault object to handle errors that occur on the server side
when unmarshalling the request, processing the message, or marshalling the response. The
SOAPFault interface extends the SOAPBodyElement interface.

SOAP messages have a specific element and format for error reporting on the server side: a
SOAP message body can include a SOAP fault element to report errors that happen during the
processing of a request. Created on the server side and sent from the server back to the client,
the SOAP message containing the SOAPFault object reports any unexpected behavior to the
originator of the message.

Within a SOAP message object, the SOAP fault object is a child of the SOAP body, as shown in
the figure below. Detail and detail entry objects are only needed if one needs to report that the
body of the received message was malformed or contained inappropriate data. In such a case,
the detail entry object is used to describe the malformed data.

SOAP Messaging Models and Examples

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009182

The SOAP Fault element defines the following four sub-elements:

■ faultcode

A code (qualified name) that identifies the error. The code is intended for use by software to
provide an algorithmic mechanism for identifying the fault. Predefined fault codes are listed
in Table 5–3. This element is required.

■ faultstring

A string that describes the fault identified by the fault code. This element is intended to
provide an explanation of the error that is understandable to a human. This element is
required.

SOAP Message

SOAP Part

SOAP Envelope

SOAP Body

SOAP Fault

Detail

Detail Entry

FIGURE 5–8 SOAP Fault Element

SOAP Messaging Models and Examples

Chapter 5 • Working with SOAP Messages 183

■ faultactor

A URI specifying the source of the fault: the actor that caused the fault along the message
path. This element is not required if the message is sent to its final destination without going
through any intermediaries. If a fault occurs at an intermediary, then that fault must include
a faultactor element.

■ detail

This element carries specific information related to the Body element. It must be present if
the contents of the Body element could not be successfully processed. Thus, if this element is
missing, the client should infer that the body element was processed. While this element is
not required for any error except a malformed payload, you can use it in other cases to
supply additional information to the client.

Predefined Fault Codes
The SOAP specification lists four predefined faultcode values. The namespace identifier for
these is http://schemas.xmlsoap.org/soap/envelope/.

TABLE 5–3 SOAP Faultcode Values

Faultcode Name Meaning

VersionMismatch The processing party found an invalid namespace for the SOAP envelope
element; that is, the namespace of the SOAP envelope element was not
http://schemas.xmlsoap.org/soap/envelope/ .

MustUnderstand An immediate child element of the SOAP Header element was either not
understood or not appropriately processed by the recipient. This element’s
mustUnderstand attribute was set to 1 (true).

Client The message was incorrectly formed or did not contain the appropriate
information. For example, the message did not have the proper
authentication or payment information. The client should interpret this
code to mean that the message must be changed before it is sent again.

If this is the code returned, the SOAPFault object should probably include a
detailEntry object that provides additional information about the
malformed message.

Server The message could not be processed for reasons that are not connected with
its content. For example, one of the message handlers could not
communicate with another message handler that was upstream and did not
respond. Or, the database that the server needed to access is down. The
client should interpret this error to mean that the transmission could
succeed at a later point in time.

These standard fault codes represent classes of faults. You can extend these by appending a
period to the code and adding an additional name. For example, you could define a
Server.OutOfMemory code, a Server.Down code, and so forth.

SOAP Messaging Models and Examples

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009184

Defining a SOAP Fault
Using SAAJ you can specify the value for faultcode, faultstring, and faultactor using
methods of the SOAPFault object. The following code creates a SOAP fault object and sets the
faultcode, faultstring, and faultactor attributes:

SOAPFault fault;

reply = factory.createMessage();

envp = reply.getSOAPPart().getEnvelope(true);

someBody = envp.getBody();

fault = someBody.addFault():

fault.setFaultCode("Server");
fault.setFaultString("Some Server Error");
fault.setFaultActor(http://xxx.me.com/list/endpoint.esp/)

reply.saveChanges();

The server can return this object in its reply to an incoming SOAP message in case of a server
error.

The next code sample shows how to define a detail and detail entry object. Note that you must
create a name for the detail entry object.

SOAPFault fault = someBody.addFault();

fault.setFaultCode("Server");
fault.setFaultActor("http://foo.com/uri");
fault.setFaultString ("Unkown error");
Detail myDetail = fault.addDetail();

detail.addDetailEntry(envelope.createName("125detail", "m",
"Someuri")).addTextNode("the message cannot contain

the string //");
reply.saveChanges();

Integrating SOAP and Message Queue
This section explains how you can send, receive, and process a JMS message that contains a
SOAP payload.

Message Queue provides a utility to help you send and receive SOAP messages using the JMS
API. With the support it provides, you can convert a SOAP message into a JMS message and
take advantage of the reliable messaging service offered by Message Queue. You can then
convert the message back into a SOAP message on the receiving side and use SAAJ to process it.

To send, receive, and process a JMS message that contains a SOAP payload, you must do the
following:
■ Import the library com.sun.messaging.xml.MessageTransformer . This is the utility

whose methods you will use to convert SOAP messages to JMS messages and vice versa.

Integrating SOAP and Message Queue

Chapter 5 • Working with SOAP Messages 185

■ Before you transport a SOAP message, you must call the
MessageTransformer.SOAPMessageIntoJMSMessage method. This method transforms the
SOAP message into a JMS message. You then send the resulting JMS message as you would a
normal JMS message. For programming simplicity, it would be best to select a destination
that is dedicated to receiving SOAP messages. That is, you should create a particular queue
or topic as a destination for your SOAP message and then send only SOAP messages to this
destination.

Message myMsg= MessageTransformer.SOAPMessageIntoJMSMessage

(SOAPMessage, Session);

The Session argument specifies the session to be used in producing the Message.
■ On the receiving side, you get the JMS message containing the SOAP payload as you would a

normal JMS message. You then call the
MessageTransformer.SOAPMessageFromJMSMessage utility to extract the SOAP message,
and then use SAAJ to disassemble the SOAP message and do any further processing. For
example, to obtain the SOAPMessage make a call like the following:

SOAPMessage myMsg= MessageTransformer.SOAPMessageFromJMSMessage

(Message, MessageFactory);

The MessageFactory argument specifies a message factory that the utility should use to
construct the SOAPMessage from the given JMS Message.

The following sections offer several use cases and code examples to illustrate this process.

Example 1: Deferring SOAP Processing
In the first example, illustrated in Figure 5–9, an incoming SOAP message is received by a
servlet. After receiving the SOAP message, the servlet MyServlet uses the MessageTransformer
utility to transform the message into a JMS message, and (reliably) forwards it to an application
that receives it, turns it back into a SOAP message, and processes the contents of the SOAP
message.

For information on how the servlet receives the SOAP message, see “Writing a SOAP Service”
on page 179.

Integrating SOAP and Message Queue

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009186

▼ To Transform the SOAP Message into a JMS Message and Send the JMS
Message

Instantiate a ConnectionFactory object and set its attribute values, for example:
QueueConnectionFactory myQConnFact =

new com.sun.messaging.QueueConnectionFactory();

Use the ConnectionFactory object to create a Connection object.
QueueConnection myQConn =

myQConnFact.createQueueConnection();

Use the Connection object to create a Session object.
QueueSession myQSess = myQConn.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);

Instantiate a Message Queue Destination administered object corresponding to a physical
destination in the Message Queue message service. In this example, the administered object is
mySOAPQueue and the physical destination to which it refers is myPSOAPQ.
Queue mySOAPQueue = new com.sun.messaging.Queue("myPSOAPQ");

Use the MessageTransformer utility, as shown, to transform the SOAP message into a JMS
message. For example, given a SOAP message named MySOAPMsg,
Message MyJMS = MessageTransformer.SOAPMessageIntoJMSMessage

(MySOAPMsg, MyQSess);

MyServlet

MyListener

Message
Queue
Broker

SOAPMsg

JMSMsg JMSMsg

SOAPMessageIntoJMSMessage
(mySOAP, mySession)

SOAPMessageFromJMSMessage
(myJMS, myFactory)

//process SOAP message here

FIGURE 5–9 Deferring SOAP Processing

1

2

3

4

5

Integrating SOAP and Message Queue

Chapter 5 • Working with SOAP Messages 187

Create a QueueSendermessage producer.

This message producer, associated with mySOAPQueue, is used to send messages to the queue
destination named myPSOAPQ.
QueueSender myQueueSender = myQSess.createSender(mySOAPQueue);

Send a message to the queue.
myQueueSender.send(myJMS);

▼ To Receive the JMS Message, Transform it into a SOAP Message, and
Process It

Instantiate a ConnectionFactory object and set its attribute values.
QueueConnectioFactory myQConnFact = new

com.sun.messaging.QueueConnectionFactory();

Use the ConnectionFactory object to create a Connection object.
QueueConnection myQConn = myQConnFact.createQueueConnection();

Use the Connection object to create one or more Session objects.
QueueSession myRQSess = myQConn.createQueueSession(false,

session.AUTO_ACKNOWLEDGE);

Instantiate a Destination object and set its name attribute.
Queue myRQueue = new com.sun.messaging.Queue("mySOAPQ");

Use a Session object and a Destination object to create any needed MessageConsumer

objects.
QueueReceiver myQueueReceiver =

myRQSess.createReceiver(myRQueue);

If needed, instantiate a MessageListener object and register it with a MessageConsumer object.

Start the QueueConnection you created in “Example 1: Deferring SOAP Processing”on page 186.
Messages for consumption by a client can only be delivered over a connection that has been
started.
myQConn.start();

Receive a message from the queue.

The code below is an example of a synchronous consumption of messages:
Message myJMS = myQueueReceiver.receive();

6

7

1

2

3

4

5

6

7

8

Integrating SOAP and Message Queue

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009188

Use the Message Transformer to convert the JMS message back to a SOAP message.
SOAPMessage MySoap =

MessageTransformer.SOAPMessageFromJMSMessage

(myJMS, MyMsgFactory);

If you specify null for the MessageFactory argument, the default Message Factory is used to
construct the SOAP Message.

Disassemble the SOAP message in preparation for further processing. See “The SOAP Message
Object”on page 168 for information.

Example 2: Publishing SOAP Messages
In the next example, illustrated in Figure 5–10, an incoming SOAP message is received by a
servlet. The servlet packages the SOAP message as a JMS message and (reliably) forwards it to a
topic. Each application that subscribes to this topic, receives the JMS message, turns it back into
a SOAP message, and processes its contents.

9

10

Integrating SOAP and Message Queue

Chapter 5 • Working with SOAP Messages 189

The code that accomplishes this is exactly the same as in the previous example, except that
instead of sending the JMS message to a queue, you send it to a topic. For an example of
publishing a SOAP message using Message Queue, see Example 5–5.

Code Samples
This section includes and describes two code samples: one that sends a JMS message with a
SOAP payload, and another that receives the JMS/SOAP message and processes the SOAP
message.

Example 5–5 illustrates the use of the JMS API, the SAAJ API, and the JAF API to send a SOAP
message with attachments as the payload to a JMS message. The code shown for the
SendSOAPMessageWithJMS includes the following methods:

■ A constructor that calls the init method to initialize all the JMS objects required to publish
a message

MyServlet

MyListener3MyListener2MyListener1

Message
Queue
Broker

SOAPMsg

JMSMsg

JMSMsg

SOAPMessageIntoJMSMessage
(mySOAP, mySession)

SOAPMessageFromJMSMessage
(myJMS, myFactory)

//process SOAP message here

SOAPMessageFromJMSMessage
(myJMS, myFactory)

//process SOAP message here

SOAPMessageFromJMSMessage
(myJMS, myFactory)

//process SOAP message here

FIGURE 5–10 Publishing a SOAP Message

Integrating SOAP and Message Queue

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009190

■ A send method that creates the SOAP message and an attachment, converts the SOAP
message into a JMS message, and publishes the JMS message

■ A close method that closes the connection
■ A main method that calls the send and close methods

EXAMPLE 5–5 Sending a JMS Message with a SOAP Payload

//Libraries needed to build SOAP message

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.SOAPPart;

import javax.xml.soap.SOAPEnvelope;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPElement;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.AttachmentPart;

import javax.xml.soap.Name

//Libraries needed to work with attachments (Java Activation Framework API)

import java.net.URL;

import javax.activation.DataHandler;

//Libraries needed to convert the SOAP message to a JMS message and to send it

import com.sun.messaging.xml.MessageTransformer;

import com.sun.messaging.BasicConnectionFactory;

//Libraries needed to set up a JMS connection and to send a message

import javax.jms.TopicConnectionFactory;

import javax.jms.TopicConnection;

import javax.jms.JMSException;

import javax.jms.Session;

import javax.jms.Message;

import javax.jms.TopicSession;

import javax.jms.Topic;

import javax.jms.TopicPublisher;

//Define class that sends JMS message with SOAP payload

public class SendSOAPMessageWithJMS{

TopicConnectionFactory tcf = null;

TopicConnection tc = null;

TopicSession session = null;

Topic topic = null;

TopicPublisher publisher = null;

//default constructor method

public SendSOAPMessageWithJMS(String topicName){

init(topicName);

Integrating SOAP and Message Queue

Chapter 5 • Working with SOAP Messages 191

EXAMPLE 5–5 Sending a JMS Message with a SOAP Payload (Continued)

}

//Method to nitialize JMS Connection, Session, Topic, and Publisher

public void init(String topicName) {

try {

tcf = new com.sun.messaging.TopicConnectionFactory();

tc = tcf.createTopicConnection();

session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

topic = session.createTopic(topicName);

publisher = session.createPublisher(topic);

}

//Method to create and send the SOAP/JMS message

public void send() throws Exception{

MessageFactory mf = MessageFactory.newInstance(); //create default factory

SOAPMessage soapMessage=mfcreateMessage(); //create SOAP message object

SOAPPart soapPart = soapMessage.getSOAPPart();//start to drill down to body

SOAPEnvelope soapEnvelope = soapPart.getEnvelope(); //first the envelope

SOAPBody soapBody = soapEnvelope.getBody();

Name myName = soapEnvelope.createName("HelloWorld", "hw",
http://www.sun.com/imq’);

//name for body element

SOAPElement element = soapBody.addChildElement(myName); //add body element

element.addTextNode("Welcome to SUnOne Web Services."); //add text value

//Create an attachment with the Java Framework Activation API

URL url = new URL("http://java.sun.com/webservices/");
DataHandler dh = new DataHnadler (url);

AttachmentPart ap = soapMessage.createAttachmentPart(dh);

//Set content type and ID

ap.setContentType("text/html");
ap.setContentID(’cid-001");

//Add attachment to the SOAP message

soapMessage.addAttachmentPart(ap);

soapMessage.saveChanges();

//Convert SOAP to JMS message.

Message m = MessageTransformer.SOAPMessageIntoJMSMessage

(soapMessage,session);

//Publish JMS message

publisher.publish(m);

//Close JMS connection

Integrating SOAP and Message Queue

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009192

EXAMPLE 5–5 Sending a JMS Message with a SOAP Payload (Continued)

public void close() throws JMSException {

tc.close();

}

//Main program to send SOAP message with JMS

public static void main (String[] args) {

try {

String topicName = System.getProperty("TopicName");
if(topicName == null) {

topicName = "test";
}

SendSOAPMEssageWithJMS ssm = new SendSOAPMEssageWithJMS(topicName);

ssm.send();

ssm.close();

}

catch (Exception e) {

e.printStackTrace();

}

}

}

Example 5–6 illustrates the use of the JMS API, SAAJ, and the DOM API to receive a SOAP
message with attachments as the payload to a JMS message. The code shown for the
ReceiveSOAPMessageWithJMS includes the following methods:

■ A constructor that calls the init method to initialize all the JMS objects needed to receive a
message.

■ An onMessage method that delivers the message and which is called by the listener. The
onMessage method also calls the message transformer utility to convert the JMS message
into a SOAP message and then uses SAAJ to process the SOAP body and uses SAAJ and the
DOM API to process the message attachments.

■ A main method that initializes the ReceiveSOAPMessageWithJMS class.

EXAMPLE 5–6 Receiving a JMS Message with a SOAP Payload

//Libraries that support SOAP processing

import javax.xml.soap.MessageFactory;

import javax.xml.soap.SOAPMessage;

import javax.xml.soap.AttachmentPart

//Library containing the JMS to SOAP transformer

import com.sun.messaging.xml.MessageTransformer;

Integrating SOAP and Message Queue

Chapter 5 • Working with SOAP Messages 193

EXAMPLE 5–6 Receiving a JMS Message with a SOAP Payload (Continued)

//Libraries for JMS messaging support

import com.sun.messaging.TopicConnectionFactory

//Interfaces for JMS messaging

import javax.jms.MessageListener;

import javax.jms.TopicConnection;

import javax.jms.TopicSession;

import javax.jms.Message;

import javax.jms.Session;

import javax.jms.Topic;

import javax.jms.JMSException;

import javax.jms.TopicSubscriber

//Library to support parsing attachment part (from DOM API)

import java.util.iterator;

public class ReceiveSOAPMessageWithJMS implements MessageListener{

TopicConnectionFactory tcf = null;

TopicConnection tc = null;

TopicSession session = null;

Topic topic = null;

TopicSubscriber subscriber = null;

MessageFactory messageFactory = null;

//Default constructor

public ReceiveSOAPMessageWithJMS(String topicName) {

init(topicName);

}

//Set up JMS connection and related objects

public void init(String topicName){

try {

//Construct default SOAP message factory

messageFactory = MessageFactory.newInstance();

//JMS set up

tcf = new. com.sun.messaging.TopicConnectionFactory();

tc = tcf.createTopicConnection();

session = tc.createTopicSesstion(false, Session.AUTO_ACKNOWLEDGE);

topic = session.createTopic(topicName);

subscriber = session.createSubscriber(topic);

subscriber.setMessageListener(this);

tc.start();

System.out.println("ready to receive SOAP m essages...");
}catch (Exception jmse){

jmse.printStackTrace();

Integrating SOAP and Message Queue

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009194

EXAMPLE 5–6 Receiving a JMS Message with a SOAP Payload (Continued)

}

}

//JMS messages are delivered to the onMessage method

public void onMessage(Message message){

try {

//Convert JMS to SOAP message

SOAPMessage soapMessage = MessageTransformer.SOAPMessageFromJMSMessage

(message, messageFactory);

//Print attchment counts

System.out.println("message received! Attachment counts:

" + soapMessage.countAttachments());

//Get attachment parts of the SOAP message

Iterator iterator = soapMessage.getAttachments();

while (iterator.hasNext()) {

//Get next attachment

AttachmentPart ap = (AttachmentPart) iterator.next();

//Get content type

String contentType = ap.getContentType();

System.out.println("content type: " + conent TYpe);

//Get content id

String contentID = ap.getContentID();

System.out.println("content Id:" + contentId);

//Check to see if this is text

if(contentType.indexOf"text")>=0 {

//Get and print string content if it is a text attachment

String content = (String) ap.getContent();

System.outprintln("*** attachment content: " + content);

}

}

}catch (Exception e) {

e.printStackTrace();

}

}

//Main method to start sample receiver

public static void main (String[] args){

try {

String topicName = System.getProperty("TopicName");
if(topicName == null) {

Integrating SOAP and Message Queue

Chapter 5 • Working with SOAP Messages 195

EXAMPLE 5–6 Receiving a JMS Message with a SOAP Payload (Continued)

topicName = "test";
}

ReceiveSOAPMessageWithJMS rsm = new ReceiveSOAPMessageWithJMS(topicName);

}catch (Exception e) {

e.printStackTrace();

}

}

}

Integrating SOAP and Message Queue

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009196

Embedding a Message Queue Broker in a Java
Client

Message Queue supports running a broker from within a Java client. Such a broker, called an
embedded broker, runs in the same JVM as the Java client that creates and starts it.

Beyond operating like a normal standalone broker, an embedded broker offers the application
in which it is embedded access to a special kind of connection called a direct mode connection.
Direct mode connections are used just like ordinary connections, but they are much higher
performing because they use in-memory transport instead of TCP. To specify a direct mode
connection, the client specifies mq://localhost/direct as the broker address in the
connection factory from which it subsequently creates the connection.

The following sections provide more information about creating and managing embedded
brokers:

■ “Creating, Initializing and Starting an Embedded Broker” on page 197
■ “Creating a Direct Connection to an Embedded Broker” on page 200
■ “Creating a TCP Connection to an Embedded Broker” on page 200
■ “Stopping and Shutting Down an Embedded Broker” on page 200
■ “Embedded Broker Example” on page 200

Creating, Initializing and Starting an Embedded Broker
To create, initialize, and start an embedded broker, you:

1. Create a broker instance in the client runtime.
2. Create a broker event listener.
3. Define properties to use when initializing the broker instance.
4. Initialize the broker instance.
5. Start the broker instance.

The following listing shows an example of creating, initializing, and starting an Embedded
Broker. In this example, args represents the string of arguments to pass as properties when

6C H A P T E R 6

197

initializing the broker instance, and EmbeddedBrokerEventListener is an existing class that
implements the BrokerEventListener interface.

import com.sun.messaging.jmq.jmsclient.runtime.BrokerInstance;

import com.sun.messaging.jmq.jmsclient.runtime.ClientRuntime;

import com.sun.messaging.jmq.jmsservice.BrokerEvent;

import com.sun.messaging.jmq.jmsservice.BrokerEventListener;

// Obtain the ClientRuntime singleton object

ClientRuntime clientRuntime = ClientRuntime.getRuntime();

// Create a broker instance

BrokerInstance brokerInstance = clientRuntime.createBrokerInstance();

// Create a broker event listener

BrokerEventListener listener = new EmbeddedBrokerEventListener();

// Convert the broker arguments into Properties. Note that parseArgs is

// a utility method that does not change the broker instance.

Properties props = brokerInstance.parseArgs(args);

// Initialize the broker instance using the specified properties and

// broker event listener

brokerInstance.init(props, listener);

// now start the embedded broker

brokerInstance.start();

Creating a Broker Event Listener
When initializing an embedded broker, you must provide a broker event listener. This listener
is an instance of a class that implements the BrokerEventListener interface. This interface
specifies two methods:

■ public void brokerEvent(BrokerEvent brokerEvent), which is called when the broker
starts and stops. This method is not required to perform any specific actions, so you can
implement an empty method.

■ public boolean exitRequested(BrokerEvent event, Throwable thr), which is called
when a fatal error has been encountered and the broker is seeking permission to terminate.
This method should return true. If it returns false, the broker will not shut down, but it
may then cease to respond correctly.

The following listing shows an example class that implements the BrokerEventListener
interface.

Creating, Initializing and Starting an Embedded Broker

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009198

class EmbeddedBrokerEventListener implements BrokerEventListener {

public void brokerEvent(BrokerEvent brokerEvent) {

System.out.println ("Received broker event:"+brokerEvent);
}

public boolean exitRequested(BrokerEvent event, Throwable thr) {

System.out.println ("Broker is requesting a shutdown because of:"+event+" with "+thr);
// return true to allow the broker to shutdown

return true;

}

}

Arguments to Specify When Initializing an Embedded
Broker
When initializing an embedded broker, you can provide a list of arguments as properties.

Because a Java client runtime (not the imqbrokerd utility) is initializing the broker, you should
specify these arguments:

-imqhome path The home directory of the Message Queue installation (see Table P–5)

-libhome path The directory in which Message Queue libraries are stored. This location
depends on the distribution from which Message Queue was installed:
■ From an IPS image: IMQ_HOME/lib
■ From Solaris SVR4 packages: /usr/share/lib/imq
■ From Linux RPMs: /opt/sun/mq/share/lib

-varhome path The directory in which Message Queue temporary or dynamically created
configuration and data files are stored installation (see Table P–5)

You can also specify imqbrokerd options as arguments. Two useful options to specify as
arguments are:

-name instanceName The instance name of the broker.

-port portNumber The port number for the broker's Port Mapper. This is port number on
which the broker listens for client connections.

Creating, Initializing and Starting an Embedded Broker

Chapter 6 • Embedding a Message Queue Broker in a Java Client 199

Creating a Direct Connection to an Embedded Broker
Once an embedded broker has been started, you can create direct connections to it from the
client in which it is embedded. To do so, you create a connection as you would with an ordinary
broker, but you specify mq://localhost/direct as broker address in the connection factory.
For example:

com.sun.messaging.ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();

cf.setProperty(ConnectionConfiguration.imqAddressList, "mq://localhost/direct");

Connection connection = cf.createConnection();

Creating a TCP Connection to an Embedded Broker
Once an embedded broker has been started, clients other than the one in which it is embedded
can connect to it as though it were an ordinary standalone broker. For example:

com.sun.messaging.ConnectionFactory cf = new com.sun.messaging.ConnectionFactory();

cf.setProperty(ConnectionConfiguration.imqAddressList, "mq://myhost.example.com:7676");

Connection connection = cf.createConnection();

Stopping and Shutting Down an Embedded Broker
To stop and shut down an embedded broker, use the stop() and shutdown() methods of the
broker instance. For example:

// Stop the embedded broker

brokerInstance.stop();

// Shut down the embedded broker

brokerInstance.shutdown();

Embedded Broker Example
The following listing demonstrates how to:
■ Create, initialize and start an embedded broker
■ Create a direct connection
■ Send and receive messages across a direct connection
■ Stop and shut down an embedded broker
■ Create a broker event listener

package test.direct;

import java.util.Properties;

Creating a Direct Connection to an Embedded Broker

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009200

import javax.jms.Connection;

import javax.jms.Message;

import javax.jms.MessageConsumer;

import javax.jms.MessageProducer;

import javax.jms.Queue;

import javax.jms.Session;

import javax.jms.TextMessage;

import com.sun.messaging.ConnectionConfiguration;

import com.sun.messaging.jmq.jmsclient.runtime.BrokerInstance;

import com.sun.messaging.jmq.jmsclient.runtime.ClientRuntime;

import com.sun.messaging.jmq.jmsservice.BrokerEvent;

import com.sun.messaging.jmq.jmsservice.BrokerEventListener;

public class EmbeddedBrokerExample {

public void run(String[] args) throws Exception{

// obtain the ClientRuntime singleton object

ClientRuntime clientRuntime = ClientRuntime.getRuntime();

// create the embedded broker instance

BrokerInstance brokerInstance = clientRuntime.createBrokerInstance();

// convert the specified broker arguments into Properties

// this is a utility function: it doesn’t change the broker

Properties props = brokerInstance.parseArgs(args);

// initialise the broker instance

// using the specified properties

// and a BrokerEventListener

BrokerEventListener listener = new ExampleBrokerEventListener();

brokerInstance.init(props, listener);

// now start the embedded broker

brokerInstance.start();

System.out.println ("Embedded broker started");

// now create a direct connection to the embedded broker

// this is identical to a normal TCP connection except that a special URL is used

com.sun.messaging.ConnectionFactory qcf = new com.sun.messaging.ConnectionFactory();

qcf.setProperty(ConnectionConfiguration.imqAddressList, "mq://localhost/direct");

Connection connection = qcf.createConnection();

System.out.println ("Created direct connection to embedded broker");

Embedded Broker Example

Chapter 6 • Embedding a Message Queue Broker in a Java Client 201

// now create a session and a producer and consumer in the normal way

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Queue queue = session.createQueue("exampleQueue");
MessageConsumer consumer = session.createConsumer(queue);

MessageProducer producer = session.createProducer(queue);

// send a message to the queue in the normal way

TextMessage textMessage = session.createTextMessage("This is a message");
producer.send(textMessage);

// receive a message from the queue in the normal way

connection.start();

Message receivedMessage = consumer.receive(1000);

System.out.println ("Received message "+((TextMessage)receivedMessage).getText());

// close the client connection

connection.close();

// stop the embedded broker

brokerInstance.stop();

// shutdown the embedded broker

brokerInstance.shutdown();

}

public static void main(String[] args) throws Exception {

EmbeddedBrokerExample ebe = new EmbeddedBrokerExample();

ebe.run(args);

}

class ExampleBrokerEventListener implements BrokerEventListener {

public void brokerEvent(BrokerEvent brokerEvent) {

System.out.println ("Received broker event:"+brokerEvent);
}

public boolean exitRequested(BrokerEvent event, Throwable thr) {

System.out.println ("Broker is requesting a shutdown because of:"+event+" with "+thr);

// return true to allow the broker to shutdown

return true;

}

}

}

Embedded Broker Example

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009202

Warning Messages and Client Error Codes

This appendix provides reference information for warning messages and for error codes
returned by the Message Queue client runtime when it raises a JMS exception.

■ A warning message is a message output when the Message Queue Java client runtime
experiences a problem that should not occur under normal operating conditions. The
message is displayed where the application displays its output. Usually, this is the window
from which the application is started. Table A–1 lists Message Queue warning messages.

In general, a warning message does not cause message loss or affect reliability. issues. But
when warning messages appear constantly on the application’s console, the user should
contact Message Queue technical support to diagnose the cause of the warning messages.

■ Error codes and messages are returned by the client runtime when it raises an exception. You
can obtain the error code and its corresponding message using the
JMSException.getErrorCode() method and the JMSException.getMessage() method.
Table A–2 lists Message Queue error codes.

Note that warning messages and error codes are not defined in the JMS specification, but are
specific to each JMS provider. Applications that rely on these error codes in their programming
logic are not portable across JMS providers.

AA P P E N D I X A

203

Warning Messages and Error Codes
TABLE A–1 Message Queue Warning Message Codes

Code Message and Description

W2000 Message Warning: Received unknown packet: mq-packet-dump.

Cause The Message Queue client runtime received an unrecognized
Message Queue packet, where mq-packet-dump is replaced with the specific
Message Queue packet dump that caused this warning message.

The Message Queue broker may not be fully compatible with the client
runtime version.

W2001 Message Warning: pkt not processed, no message
consumer:mq-packet-dump.

Cause The Message Queue client runtime received an unexpected Message
Queue acknowledge message. The variable mq-packet-dump is replaced
with the specific Message Queue packet dump that caused this warning
message.

W2003 Message Warning: Broker not responding X for Y seconds. Still trying....

Cause The Message Queue client runtime has not received a response from
the broker for more than 2 minutes (default). In the actual message, the X
variable is replaced with the Message Queue packet type that the client
runtime is waiting for, and the Y variable is replaced with the number of
seconds that the client runtime has been waiting for the packet.

Table A–2 lists the error codes in numerical order. For each code listed, it supplies the error
message and a probable cause.

Each error message returned has the following format:

[Code]: “Message -cause Root-cause-exception-message

.”

Message text provided for -cause is only appended to the message if there is an exception
linked to the JMS exception. For example, a JMS exception with error code C4003 returns the
following error message:

[C4003]: Error occurred on connection creation [localhost:7676]

- cause: java.net.ConnectException: Connection refused: connect

Warning Messages and Error Codes

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009204

TABLE A–2 Message Queue Client Error Codes

Code Message and Description

C4000 Message Packet acknowledge failed.

Cause The client runtime was not able to receive or process the expected
acknowledgment sent from the broker.

C4001 Message Write packet failed.

Cause The client runtime was not able to send information to the broker. This might be
caused by an underlying network I/O failure or by the JMS connection being closed.

C4002 Message Read packet failed.

Cause The client runtime was not able to process inbound message properly. This
might be caused by an underlying network I/O failure.

C4003 Message Error occurred on connection creation [host, port].

Cause The client runtime was not able to establish a connection to the broker with the
specified host name and port number.

C4004 Message An error occurred on connection close.

Cause The client runtime encountered one or more errors when closing the connection
to the broker.

C4005 Message Get properties from packet failed.

Cause The client runtime was not able to retrieve a property object from the Message
Queue packet.

C4006 Message Set properties to packet failed.

Cause The client runtime was not able to set a property object in the Message Queue
packet.

C4007 Message Durable subscription {0} in use.

{0} is replaced with the subscribed destination name.

Cause The client runtime was not able to unsubscribe the durable subscriber because it
is currently in use by another consumer.

C4008 Message Message in read-only mode.

Cause An attempt was made to write to a JMS Message that is in read-only mode.

C4009 Message Message in write-only mode.

Cause An attempt was made to read a JMS Message that is in write-only mode.

C4010 Message Read message failed.

Cause The client runtime was not able to read the stream of bytes from a BytesMessage
type message.

Warning Messages and Error Codes

Appendix A • Warning Messages and Client Error Codes 205

TABLE A–2 Message Queue Client Error Codes (Continued)
Code Message and Description

C4011 Message Write message failed.

Cause The client runtime was not able to write the stream of bytes to a BytesMessage
type message.

C4012 Message message failed.

Cause The client runtime encountered an error when processing the reset() method
for a BytesMessage or StreamMessage type message.

C4013 Message Unexpected end of stream when reading message.

Cause The client runtime reached end-of-stream when processing the readXXX()
method for a BytesMessage or StreamMessage type message.

C4014 Message Serialize message failed.

Cause The client runtime encountered an error when processing the serialization of an
object, such as ObjectMessage.setObject(java.io.Serializable object).

C4015 Message Deserialize message failed.

Cause The client runtime encountered an error when processing the deserialization of
an object, for example, when processing the method ObjectMessage.getObject().

C4016 Message Error occurred during message acknowledgment.

Cause The client runtime encountered an error during the process of message
acknowledgment in a session.

C4017 Message Invalid message format.

Cause The client runtime encountered an error when processing a JMS Message; for
example, during data type conversion.

C4018 Message Error occurred on request message redeliver.

Cause The client runtime encountered an error when processing recover() or
rollback() for the JMS session.

C4019 Message Destination not found: {0}.

{0} is replaced with the destination name specified in the API parameter.

Cause The client runtime was unable to process the API request due to an invalid
destination specified in the API, for example, the call MessageProducer.send (null,
message) raises JMSException with this error code and message.

Warning Messages and Error Codes

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009206

TABLE A–2 Message Queue Client Error Codes (Continued)
Code Message and Description

C4020 Message Temporary destination belongs to a closed connection or another connection -
{0}.

{0} is replaced with the temporary destination name specified in the API parameter.

Cause An attempt was made to use a temporary destination that is not valid for the
message producer.

C4021 Message Consumer not found.

Cause The Message Queue session could not find the message consumer for a message
sent from the broker. The message consumer may have been closed by the application
or by the client runtime before the message for the consumer was processed.

C4022 Message Selector invalid: {0}.

{0} is replaced with the selector string specified in the API parameter.

Cause The client runtime was unable to process the JMS API call because the specified
selector is invalid.

C4023 Message Client unacknowledged messages over system defined limit.

Cause The client runtime raises a JMSException with this error code and message if
unacknowledged messages exceed the system defined limit in a CLIENT_ACKNOWLEDGE
session.

C4024 Message The session is not transacted.

Cause An attempt was made to use a transacted session API in a non-transacted session.
For example, calling the methods commit() or rollback in a AUTO_ACKNOWLEDGE
session.

C4025 Message Cannot call this method from a transacted session.

Cause An attempt was made to call the Session.recover() method from a transacted
session.

C4026 Message Client non-committed messages over system defined limit.

Cause The client runtime raises a JMSException with this error code and message if non
committed messages exceed the system-defined limit in a transacted session.

C4027 Message Invalid transaction ID: {0}.

{0} is replaced with the internal transaction ID.

Cause An attempt was made to commit or rollback a transacted session with a
transaction ID that is no longer valid.

Warning Messages and Error Codes

Appendix A • Warning Messages and Client Error Codes 207

TABLE A–2 Message Queue Client Error Codes (Continued)
Code Message and Description

C4028 Message Transaction ID {0} in use.

{0} is replaced with the internal transaction ID.

Cause The internal transaction ID is already in use by the system. An application should
not receive a JMSException with this error code under normal operations.

C4029 Message Invalid session for ServerSession.

Cause An attempt was made to use an invalid JMS session for the ServerSession
object, for example, no message listener was set for the session.

C4030 Message Illegal maxMessages value for ServerSession: {0}.

{0} was replaced with maxMessages value used by the application.

Cause The configured maxMessages value for ServerSession is less than 0.

C4031 Message MessageConsumer and ServerSession session conflict.

Cause An attempt was made to create a message consumer for a session already used by
a ServerSession object.

C4032 Message Can not use receive() when message listener was set.

Cause An attempt was made to do a synchronous receive with an asynchronous
message consumer.

C4033 Message Authentication type does not match: {0} and {1}.

{0} is replaced with the authentication type used by the client runtime. {1} is replaced with
the authentication type requested by the broker.

Cause The authentication type requested by the broker does not match the
authentication type in use by the client runtime.

C4034 Message Illegal authentication state.

Cause The authentication handshake failed between the client runtime and the broker.

C4035 Message Received AUTHENTICATE_REQUEST status code FORBIDDEN.

Cause The client runtime authentication to the broker failed.

C4036 Message A broker error occurred.

Cause A generic error code indicating that the client’s requested operation to the broker
failed.

C4037 Message Broker unavailable or broker timeout.

Cause The client runtime was unable to establish a connection to the broker.

Warning Messages and Error Codes

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009208

TABLE A–2 Message Queue Client Error Codes (Continued)
Code Message and Description

C4038 Message [4038] - cause: {0}

{0} is replaced with a root cause exception message.

Cause The client runtime caught an exception thrown from the JVM. The client
runtime throws JMSException with the “root cause exception” set as the linked
exception.

C4039 Message Cannot delete destination.

Cause The client runtime was unable to delete the specified temporary destination. See
TemporaryTopic.delete() and TemporaryQueue.delete() API Javadoc for
constraints on deleting a temporary destination.

C4040 Message Invalid ObjectProperty type.

Cause An attempt was made to set a non-primitive Java object as a JMS message
property. Please see Message.setObjectProperty() API Javadoc for valid object
property types.

C4041 Message Reserved word used as property name - {0}.

{0} is replaced with the property name.

Cause An attempt was made to use a reserved word, defined in the JMS Message API
Javadoc, as the message property name, for example, NULL, TRUE, FALSE.

C4042 Message Illegal first character of property name - {0}

{0} is replaced with the illegal character.

Cause An attempt was made to use a property name with an illegal first character. See
JMS Message API Javadoc for valid property names.

C4043 Message Illegal character used in property name - {0}

{0} is replaced with the illegal character used.

Cause An attempt was made to use a property name containing an illegal character. See
JMS Message API Javadoc for valid property names.

C4044 Message Browser timeout.

Cause The queue browser was unable to return the next available message to the
application within the system’s predefined timeout period.

C4045 Message No more elements.

Cause In QueueBrowser, the enumeration object has reached the end of element but
nextElement() is called by the application.

Warning Messages and Error Codes

Appendix A • Warning Messages and Client Error Codes 209

TABLE A–2 Message Queue Client Error Codes (Continued)
Code Message and Description

C4046 Message Browser closed.

Cause An attempt was made to use QueueBrowser methods on a closed QueueBrowser

object.

C4047 Message Operation interrupted.

Cause ServerSession was interrupted. The client runtime throws RuntimeException
with the above exception message when it is interrupted in the ServerSession.

C4048 Message ServerSession is in progress.

Cause Multiple threads attempted to operate on a server session concurrently.

C4049 Message Can not call Connection.close(), stop(), etc from message listener.

Cause An attempt was made to call Connection.close(), ...stop(), etc from a
message listener.

C4050 Message Invalid destination name - {0} .

{0} is replaced with the invalid destination name used

Cause An attempt was made to use an invalid destination name, for example, NULL.

C4051 Message Invalid delivery parameter. {0} : {1}

{0} is replaced with delivery parameter name, such as “DeliveryMode”.{1} is replaced with
delivery parameter value used by the application.

Cause An attempt was made to use invalid JMS delivery parameters in the API, for
example, values other than DeliveryMode.NON_PERSISTENT or
DeliveryMode.PERSISTENT were used to specify the delivery mode.

C4052 Message Client ID is already in use - {0}

{0} is replaced with the client ID that is already in use.

Cause An attempt was made to set a client ID to a value that is already in use by the
system.

C4053 Message Invalid client ID - {0}

{0} is replaced with the client ID used by the application.

Cause An attempt was made to use an invalid client ID, for example, null or empty
client ID.

C4054 Message Can not set client ID, invalid state.

Cause An attempt was made to set a connection’s client ID at the wrong time or when it
has been administratively configured.

Warning Messages and Error Codes

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009210

TABLE A–2 Message Queue Client Error Codes (Continued)
Code Message and Description

C4055 Message Resource in conflict. Concurrent operations on a session.

Cause An attempt was made to concurrently operate on a session with multiple threads.

C4056 Message Received goodbye message from broker.

Cause A Message Queue client received a GOOD_BYE message from broker.

C4057 Message No username or password.

Cause An attempt was made to use a null object as a user name or password for
authentication.

C4058 Message Cannot acknowledge message for closed consumer.

Cause An attempt was made to acknowledge message(s) for a closed consumer.

C4059 Message Cannot perform operation, session is closed.

Cause An attempt was made to call a method on a closed session.

C4060 Message Login failed: {0}

{0} message is replaced with user name.

Cause Login with the specified user name failed.

C4061 Message Connection recovery failed, cannot recover connection.

Cause The client runtime was unable to recover the connection due to internal error.

C4062 Message Cannot perform operation, connection is closed.

Cause An attempt was made to call a method on a closed connection.

C4063 Message Cannot perform operation, consumer is closed.

Cause An attempt was made to call a method on a closed message consumer.

C4064 Message Cannot perform operation, producer is closed.

Cause An attempt was made to call a method on a closed message producer.

C4065 Message Incompatible broker version encountered. Client version {0}.Broker version
{1}

{0} is replaced with client version number. {1} is replaced with broker version number.

Cause An attempt was made to connect to a broker that is not compatible with the client
version.

Warning Messages and Error Codes

Appendix A • Warning Messages and Client Error Codes 211

TABLE A–2 Message Queue Client Error Codes (Continued)
Code Message and Description

C4066 Message Invalid or empty Durable Subscription Name was used: {0}

{0} is replaced with the durable subscription name used by the application.

Cause An attempt was made to use a null or empty string to specify the name of a
durable subscription.

C4067 Message Invalid session acknowledgment mode: {0}

{0} is replaced with the acknowledge mode used by the application.

Cause An attempt was made to use a non-transacted session mode that is not defined in
the JMS Session API.

C4068 Message Invalid Destination Classname: {0}.

{0} is replaced with the name of the class name.

Cause An attempt was made to create a message producer or message consumer with an
invalid destination class type. The valid class type must be either Queue or Topic.

C4069 Message Cannot commit or rollback on an XASession.

Cause The application tried to make a session.commit() or a session.rollback()
call in an application server component whose transactions are being managed by the
Transaction Manager using the XAResource. These calls are not allowed in this context.

C4070 Message Error when converting foreign message.

Cause The client runtime encountered an error when processing a non-Message Queue
JMS message.

C4071 Message Invalid method in this domain: {0}

{0} is replaced with the method name used.

Cause An attempt was made to use a method that does not belong to the current
messaging domain. For example calling TopicSession.createQueue() will raise a
JMSException with this error code and message.

C4072 Message Illegal property name - "" or null.

Cause An attempt was made to use a null or empty string to specify a property name.

C4073 Message A JMS destination limit was reached. Too many Subscribers/Receivers for {0} :
{1}

{0} is replaced with “Queue” or “Topic” {1} is replaced with the destination name.

Cause The client runtime was unable to create a message consumer for the specified
domain and destination due to a broker resource constraint.

Warning Messages and Error Codes

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009212

TABLE A–2 Message Queue Client Error Codes (Continued)
Code Message and Description

C4074 Message Transaction rolled back due to provider connection failover.

Cause An attempt was made to call Session.commit() after connection failover
occurred. The transaction is rolled back automatically.

C4075 Message Cannot acknowledge messages due to provider connection failover.
Subsequent acknowledge calls will also fail until the application calls
session.recover().

Cause As stated in the message.

C4076 Message Client does not have permission to create producer on destination: {0} {0} is
replaced with the destination name that caused the exception.

Cause The application client does not have permission to create a message producer
with the specified destination.

C4077 Message Client is not authorized to create destination : {0}

{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to create the specified
destination.

C4078 Message Client is unauthorized to send to destination: {0}

{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to produce messages to the
specified destination.

C4079 Message Client does not have permission to register a consumer on the destination: {0}

{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to create a message consumer
with the specified destination name.

C4080 Message Client does not have permission to delete consumer: {0}

{0} is replaced with the consumer ID for the consumer to be deleted.

Cause The application does not have permission to remove the specified consumer
from the broker.

C4081 Message Client does not have permission to unsubscribe: {0}

{0} was replaced with the name of the subscriber to unsubscribe.

Cause The client application does not have permission to unsubscribe the specified
durable subscriber.

Warning Messages and Error Codes

Appendix A • Warning Messages and Client Error Codes 213

TABLE A–2 Message Queue Client Error Codes (Continued)
Code Message and Description

C4082 Message Client is not authorized to access destination: {0}

{0} is replaced with the destination name that caused the exception.

Cause The application client is not authorized to access the specified destination.

C4083 Message Client does not have permission to browse destination: {0}

{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to browse the specified
destination.

C4084 Message User authentication failed: {0}

{0} is replaced with the user name.

Cause User authentication failed.

C4085 Message Delete consumer failed. Consumer was not found: {0}

{0} is replaced with name of the consumer that could not be found.

Cause The attempt to close a message consumer failed because the broker was unable to
find the specified consumer.

C4086 Message Unsubscribe failed. Subscriber was not found: {0}

{0} is replaced with name of the durable subscriber.

Cause An attempt was made to unsubscribe a durable subscriber with a name that does
not exist in the system.

C4087 Message Set Client ID operation failed. Invalid Client ID: {0}

{0} is replaced with the ClientID that caused the exception.

Cause Client is unable to set Client ID on the broker and receives a BAD_REQUEST status
from broker.

C4088 Message A JMS destination limit was reached. Too many producers for {0} : {1}

{0} is replaced with Queue or Topic {1} is replaced with the destination name for which the
limit was reached.

Cause The client runtime was not able to create a message producer for the specified
domain and destination due to limited broker resources.

C4089 Message Caught JVM Error: {0}

{0} is replaced with root cause error message.

Cause The client runtime caught an error thrown from the JVM; for example,
OutOfMemory error.

Warning Messages and Error Codes

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009214

TABLE A–2 Message Queue Client Error Codes (Continued)
Code Message and Description

C4090 Message Invalid port number. Broker is not available or may be paused:{0}

{0} is replaced with “[host, port]” information.

Cause The client runtime received an invalid port number (0) from the broker. Broker
service for the request was not available or was paused.

C4091 Message Cannot call Session.recover() from a NO_ACKNOWLEDGE session.

Cause The application attempts to call Session.recover() from a NO_ACKNOWLEDGE
session.

C4092 Message Broker does not support Session.NO_ACKNOWLEDGE mode, broker version: {0}

{0} is replaced with the version number of the broker to which the Message Queue
application is connected.

Cause The application attempts to create a NO_ACKNOWLEDGE session to a broker with
version # less than 3.6.

C4093 Message Received wrong packet type. Expected: {0}, but received: {1}

{0} is replaced with the packet type that the Message Queue client runtime expected to
receive from the broker. {1} is replaced with the packet type that the Message Queue client
runtime actually received from the broker.

Cause The Message Queue client runtime received an unexpected Message Queue
packet from broker.

C4094 Message The destination this message was sent to could not be found: {0}

{0} is replaced with the destination name that caused the exception.

Cause: A destination to which a message was sent could not be found.

C4095 Message: Message exceeds the single message size limit for the broker or destination: {0}

{0} is replaced with the destination name that caused the exception.

Cause: A message exceeds the single message size limit for the broker or destination.

C4096 Message: Destination is full and is rejecting new messages: {0}

{0} is replaced with the destination name that caused the exception.

Cause: A destination is full and is rejecting new messages.

Warning Messages and Error Codes

Appendix A • Warning Messages and Client Error Codes 215

216

Index

A
acknowledge method (Message), 69, 70
acknowledgeThisMessage method (Message), 70
acknowledgeUpThroughThisMessage method (Message

), 70
acknowledging messages, 69, 135
acknowledgment modes, 22, 24, 40

auto-acknowledge, 48, 105, 135
client-acknowledge, 48, 69, 135
defined, 48
dups-OK-acknowledge, 49, 135
no-acknowledge, 49, 135, 137

activation.jar file, 18
administered object store, 35
administered objects

setProperty method, 37, 39, 46
setProperty method, 21, 24

AdministeredObject object, 37
AdministeredObject object

setProperty method, 21, 24
AdministeredObject object

setProperty method, 37, 39, 46
asynchronous message consumption, 25, 68

defined, 64
authentication, user, 39
AUTO_ACKNOWLEDGE constant (Session), 40, 49
auto-acknowledge mode, 105, 135

defined, 48
auto-reconnect

behavior, 104, 106
configurable attributes, 102
limitations, 105

B
broker, metrics for, 149
broker acknowledgments, defined, 48
broker clusters, 30, 101, 103

See also high availability clusters
browsing messages, 70
bytes messages

composing, 60
defined, 56
getBodyLength method, 77
processing, 76
readBoolean method, 77
readByte method, 77
readBytes method, 77
readChar method, 77
readDouble method, 77
readFloat method, 77
readInt method, 77
readLong method, 77
readShort method, 77
readUnsignedByte method, 77
readUnsignedShort method, 77
readUTF method, 77
reset method, 61
writeBoolean method, 61
writeByte method, 61
writeBytes method, 61
writeChar method, 61
writeDouble method, 61
writeFloat method, 61
writeInt method, 61
writeLong method, 61

217

bytes messages (Continued)
writeObject method, 61
writeShort method, 61
writeUTF method, 61

BytesMessage object, 56
access methods, 77
composition methods, 60
getBodyLength method, 77
readBoolean method, 77
readByte method, 77
readBytes method, 77
readChar method, 77
readDouble method, 77
readFloat method, 77
readInt method, 77
readLong method, 77
readShort method, 77
readUnsignedByte method, 77
readUnsignedShort method, 77
readUTF method, 77
reset method, 61
writeBoolean method, 61
writeByte method, 61
writeBytes method, 61
writeChar method, 61
writeDouble method, 61
writeFloat method, 61
writeInt method, 61
writeLong method, 61
writeObject method, 61
writeShort method, 61
writeUTF method, 61

C
C clients, communicating with, 139
CLASSPATH environment variable, 17, 19, 29
clearBody method (Message), 57, 59, 61
CLIENT_ACKNOWLEDGE constant (Session), 40, 49
client-acknowledge mode, 69, 135

defined, 48
client acknowledgments, defined, 48
client applications

avoiding deadlock, 85

client applications (Continued)
compiling, 26
deploying, 30
developing, 21-25
performance, factors impacting, 94
portability of, 79
provider independence, 80
running, 26

client identifier, 66, 82
setting, 41

client runtime logging, 139
client threads

managing use of, 85
performance, 85

close method (Connection), 42
close method (Connection), 23, 25, 40
close method (MessageConsumer), 65, 71
close method (MessageProducer), 62, 64
close method (QueueBrowser), 70, 71
close method (Session), 23, 25
close method (Session), 48
clustered broker configuration, 30, 101, 103
com.sun.messaging.jms package, 49, 70
com.sun.messaging package, 38, 40
command line, -D option, 37
commit method (Session), 48, 51
committing transactions, 51

defined, 50
configuration properties

connection factory, overriding, 37, 39
imqAddressList, 101, 102
imqAddressListBehavior, 101, 102, 104
imqAddressListIterations, 102
imqDefaultPassword, 37
imqDestinationDescription, 46
imqDestinationName, 46
imqPingInterval, 93
imqReconnectAttempts, 102
imqReconnectEnabled, 101
imqReconnectInterval, 102

connection events, 98
connection factories

createConnection method, 21, 24
createConnection method, 39

Index

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009218

connection factories (Continued)
createQueueConnection method, 40
createTopicConnection method, 40
defined, 34
imqAddressList configuration property, 39
instantiating, 21, 23, 38
JNDI lookup, 21, 23, 35
overriding configuration properties, 37, 39
read-only, 38

Connection object, 21, 24, 34
Connection object

close method, 42
Connection object

close method, 23, 25, 40
createConnectionConsumer method, 40, 41
createDurableConnectionConsumer method, 40,

41
Connection object

createSession method, 40
Connection object

createSession method, 22, 24, 40, 48, 49, 50
getClientID method, 40, 41
getExceptionListener method, 40
getMetaData method, 40, 41
methods, 40
setClientID method, 40, 41
setEventListener method, 40
setExceptionListener method, 40, 41

Connection object
start method, 67

Connection object
start method, 24, 40, 41, 68
stop method, 40, 41

ConnectionClosedEvent, 99
ConnectionClosingEvent, 99
ConnectionConfiguration object, 37
ConnectionFactory object, 19, 21, 23, 34, 38, 40
ConnectionFactory object

createConnection method, 21, 24
ConnectionFactory object

createConnection method, 39
createQueueConnection method, 40
createTopicConnection method, 40

ConnectionMetaData object, 41

ConnectionReconnectedEvent, 99
ConnectionReconnectFailedEvent, 99
connections

authentication, 39
client identifier, 41, 66
close method, 42
close method, 23, 25, 40
closing, 23, 25, 42
createConnectionConsumer method, 40, 41
createDurableConnectionConsumer method, 40,

41
createSession method, 40
createSession method, 22, 24, 40, 48, 49, 50
creating, 21, 24, 39
default user identity, 40
defined, 34
event notifications, 98
exception listener, 41
getClientID method, 40, 41
getExceptionListener method, 40
getMetaData method, 40, 41
password, 39
reconnecting, 101
secure, 42
setClientID method, 40, 41
setEventListener method, 40
setExceptionListener method, 40, 41
setting default password, 37
start method, 24, 40, 41, 68
start method, 67
starting, 24, 41, 67
stop method, 40, 41
thread use by, 85

constants
AUTO_ACKNOWLEDGE (Session), 40, 49
CLIENT_ACKNOWLEDGE (Session), 40, 49
DEFAULT_DELIVERY_MODE (Message), 53
DEFAULT_PRIORITY (Message), 54
DEFAULT_TIME_TO_LIVE (Message), 54
DUPS_OK_ACKNOWLEDGE (Session), 40, 49
NO_ACKNOWLEDGE (Session), 41, 49
NON_PERSISTENT (DeliveryMode), 53
PERSISTENT (DeliveryMode), 53
SESSION_TRANSACTED (Session), 50, 69

Index

219

correlation identifier, defined, 53
createBrowser method (Session), 47, 70
createBytesMessage method (Session), 47, 57
createBytesMessage method (Session), 60
createConnection method (ConnectionFactory), 21,

24
createConnection method (ConnectionFactory), 39
createConnectionConsumer method

(Connection), 40
createConnectionConsumer method (Connection

), 41
createConsumer method (Session), 24
createConsumer method (Session), 47, 64, 65, 66, 67,

68
createDurableConnectionConsumer method

(Connection), 40, 41
createDurableSubscriber method (Session), 47, 66,

67, 68
createMapMessage method (Session), 47, 56
createMessage method (Session), 47, 56
createObjectMessage method (Session), 47, 56, 60
createProducer method (Session), 22
createProducer method (Session), 47, 62
createPublisher method (TopicSession), 63, 64
createQueue method (Session), 47
createQueueConnection method (ConnectionFactory

), 40
createReceiver method (QueueSession), 64
createSender method (QueueSession), 63
createSession method (Connection), 40
createSession method (Connection), 22, 24, 40, 48,

49, 50
createStreamMessage method (Session), 47, 56, 58
createTemporaryQueue method (Session), 46, 47
createTemporaryTopic method (Session), 46, 47
createTextMessage method (Session), 22
createTextMessage method (Session), 47, 56, 57
createTopic method (Session), 47
createTopicConnection method (ConnectionFactory

), 40

D
-D command-line option, 37

dead message queue, 88
DEFAULT_DELIVERY_MODE constant (Message), 53
DEFAULT_PRIORITY constant (Message), 54
DEFAULT_TIME_TO_LIVE constant (Message), 54
default user identity, 40
delete method (TemporaryQueue,

TemporaryTopic), 47
delivery modes, 50, 95

default, message producer, 63
defined, 53
nonpersistent, 54
persistent, 53
setting, 63

DeliveryMode object, 53
NON_PERSISTENT constant, 53
PERSISTENT constant, 53

deploying client applications, 30
destination metrics, 151
Destination object, 19, 22, 24, 34, 43, 53
DestinationConfiguration object, 46
destinations

default, message producer, 62, 63
defined, 43
instantiating, 22, 24, 45
JNDI lookup, 22, 24, 43
message, setting, 63
queue, 22, 24, 33, 43, 62, 63, 64, 70
temporary, 46
topic, 22, 24, 34, 43, 62, 63, 64, 66

directory variables, IMQ_HOME, 17
distributed applications and synchronous

consumers, 93
DUPS_OK_ACKNOWLEDGE constant (Session), 40, 49
dups-OK-acknowledge mode, 135

defined, 49
durable subscribers, 65

client identifier, 66
closing, 71
defined, 66
subscriber name, 66

durable subscriptions, 41
defined, 33
performance impact of, 96-97

Index

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009220

E
event listener, 98, 99
event notification API, 98
example programs, 31

HelloWorldMessage, 26
exception listeners, 41

onException method, 41
ExceptionListener object, 41

onException method, 41
exceptions

InvalidDestinationException, 70
MessageFormatException, 58, 60
MessageNotWriteableException, 57, 59, 61

expiration time (message), 54

F
file-system object store, 36, 44
FLOW_CONTROL property, 92
fscontext.jar file, 19

G
getAcknowledgeMode method (Session), 48, 49, 50, 69
getBodyLength method (BytesMessage), 77
getBoolean method (MapMessage), 75
getBooleanProperty method (Message), 73
getByte method (MapMessage), 75
getByteProperty method (Message), 72
getBytes method (MapMessage), 75
getChar method (MapMessage), 75
getClientID method (Connection), 40, 41
getDeliveryMode method (MessageProducer), 62, 63
getDestination method (MessageProducer), 62
getDisableMessageID method

(MessageProducer), 62
getDisableMessageTimestamp method

(MessageProducer), 62
getDouble method (MapMessage), 75
getDoubleProperty method (Message), 72
getEnumeration method (QueueBrowser), 70, 71
getExceptionListener method (Connection), 40
getFloat method (MapMessage), 75

getFloatProperty method (Message), 72
getInt method (MapMessage), 75
getIntProperty method (Message), 72
getJMSCorrelationID method (Message), 72
getJMSCorrelationIDAsBytes method (Message), 72
getJMSDeliveryMode method (Message), 72
getJMSDestination method (Message), 72
getJMSExpiration method (Message), 72
getJMSMessageID method (Message), 72
getJMSPriority method (Message), 25
getJMSPriority method (Message), 72
getJMSRedelivered method (Message), 72
getJMSReplyTo method (Message), 72
getJMSTimestamp method (Message), 72
getJMSType method (Message), 72
getLong method (MapMessage), 75
getLongProperty method (Message), 72
getMapNames method (MapMessage), 75
getMapNames method (MapMessage), 76
getMessageListener method (MessageConsumer), 65,

69
getMessageListener method (Session), 41, 48
getMessageSelector method (MessageConsumer), 65
getMessageSelector method (QueueBrowser), 70
getMetaData method (Connection), 40, 41
getObject method (MapMessage), 75, 76
getObject method (ObjectMessage), 76
getObjectProperty method (Message), 73
getPriority method (MessageProducer), 62, 63
getPropertyNames method (Message), 73
getQueue method (QueueBrowser), 70
getShort method (MapMessage), 75
getShortProperty method (Message), 72
getString method (MapMessage), 75
getStringProperty method (Message), 25
getStringProperty method (Message), 73
getText method (TextMessage), 25
getText method (TextMessage), 74
getTimeToLive method (MessageProducer), 62, 63
getTransacted method (Session), 48, 50

H
hash table for destination-list metrics, 157

Index

221

heap space, JVM, 86
HelloWorldMessage example program, 26
high availability clusters

address list, effect on, 102
effect on design, 101, 104
reconnection attempts, 102
reconnection behavior, 104

I
IMQ_HOME directory variable, 17
imq.jar file, 18
imqAddressList configuration property, 39, 101, 102
imqAddressListBehavior configuration

property, 101, 102, 104
imqAddressListIterations configuration

property, 102
imqbrokerd command, 19
imqcmd command, 20
imqDefaultPassword configuration property, 37
imqDestinationDescription configuration

property, 46
imqDestinationName configuration property, 46
imqPingInterval configuration property, 93
imqReconnectAttempts configuration property, 102
imqReconnectEnabled configuration property, 101
imqReconnectInterval configuration property, 102
imqxm.jar file, 18
InvalidDestinationException exception, 70
itemExists method (MapMessage), 75, 76

J
JAF, See JavaBeans Activation Framework
.jar files, 17

activation.jar, 18
for JMS and SOAP clients, 18
fscontext.jar, 19
imq.jar, 18
imqxm.jar, 18
jaxm-api.jar, 18
jms.jar, 18
jndi.jar, 18, 19

.jar files (Continued)
ldabbp.jar, 19
ldap.jar, 19
locations, 18
needed in CLASSPATH, 18-19
saaj-api.jar, 18

Java Development Kit (JDK), 17, 18, 19
Java Message Service Specification, 7, 33, 41, 52, 54, 65
Java Naming and Directory Interface (JNDI), 35

environment parameter, 36, 44
initial context, 37, 45
initial context factory, 36, 45
.jar file needed for, 19
obtaining connection factories with, 21, 23, 35
obtaining destinations with, 22, 24, 43

java.util.logging library, 139
java.util package, 29
Java Virtual Machine

heap space, 86
metrics for, 150

JavaBeans Activation Framework (JAF), 176
javax.jms package, 29, 38, 40, 46, 49
javax.xml.messaging package, 167
javax.xml.soap package, 167
jaxm-api.jar file, 18
JAXMServlet object, 179
JDK

See Java Development Kit
jms.jar file, 18
JMS_SUN_COMPRESS property, 87
JMS_SUN_COMPRESSED_SIZE property, 87
JMS_SUN_DMQ_BODY_TRUNCATED property, 92
JMS_SUN_DMQ_DEAD_BROKER property, 91
JMS_SUN_DMQ_PRODUCING_BROKER property, 91
JMS_SUN_DMQ_UNDELIVERED_COMMENTS property, 91
JMS_SUN_DMQ_UNDELIVERED_EXCEPTION property, 91
JMS_SUN_DMQ_UNDELIVERED_REASON property, 91
JMS_SUN_DMQ_UNDELIVERED_TIMESTAMP property, 91
JMS_SUN_LOG_DEAD_MESSAGES property, 90
JMS_SUN_PRESERVE_UNDELIVERED property, 89
JMS_SUN_TRUNCATE_MSG_BODY property, 90
JMS_SUN_UNCOMPRESSED_SIZE property, 87
JMSCorrelationID message header field, 52, 53
JMSDeliveryMode message header field, 52, 53

Index

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009222

JMSDestination message header field, 52, 53
JMSExpiration message header field, 52, 54
JMSMessageID message header field, 52, 53
JMSPriority message header field, 52, 54
JMSRedelivered message header field, 52, 54
JMSReplyTo message header field, 52, 53, 63
JMSTimestamp message header field, 52, 54
JMSType message header field, 52, 54
JMSXAppID message property, 55
JMSXConsumerTXID message property, 55
JMSXDeliveryCount message property, 55
JMSXDeliveryCount property, 91
JMSXGroupID message property, 55
JMSXGroupSeq message property, 55
JMSXProducerTXID message property, 55
JMSXRcvTimestamp message property, 55
JMSXState message property, 55
JMSXUserID message property, 55
JNDI, See Java Naming and Directory Interface
jndi.jar file, 18, 19
JRE_DIRECTORY/lib/logging.properties file, 142
JVM, See Java Virtual Machine

L
ldabbp.jar file, 19
LDAP, See Lightweight Directory Access Protocol
ldap.jar file, 19
lib directory, 17
lifetime (message), 54

default, message producer, 63
setting, 63

Lightweight Directory Access Protocol (LDAP)
.jar files needed for, 19
object store, 36, 44

logging
client runtime, for, 139
configuration file, 143
events, 141
JRE_DIRECTORY/lib/logging.properties file, 142
levels, 140
name space for Message Queue, 140

M
map messages

composing, 59
defined, 56
getBoolean method, 75
getByte method, 75
getBytes method, 75
getChar method, 75
getDouble method, 75
getFloat method, 75
getInt method, 75
getLong method, 75
getMapNames method, 75, 76
getObject method, 75, 76
getShort method, 75
getString method, 75
itemExists method, 75, 76
processing, 75
setBoolean method, 59
setByte method, 59
setBytes method, 59
setChar method, 59
setDouble method, 59
setFloat method, 59
setInt method, 59
setLong method, 59
setObject method, 59
setShort method, 59
setString method, 59

MapMessage object, 56
access methods, 75
composition methods, 59
getBoolean method, 75
getByte method, 75
getBytes method, 75
getChar method, 75
getDouble method, 75
getFloat method, 75
getInt method, 75
getLong method, 75
getMapNames method, 75, 76
getObject method, 75, 76
getShort method, 75
getString method, 75

Index

223

MapMessage object (Continued)
itemExists method, 75, 76
setBoolean method, 59
setByte method, 59
setBytes method, 59
setChar method, 59
setDouble method, 59
setFloat method, 59
setInt method, 59
setLong method, 59
setObject method, 59
setShort method, 59
setString method, 59

master broker, 104
memory management, 86
message-based monitoring, 145
message body

defined, 56
processing, 73

message brokers
starting, 19-20
testing, 20-21

message consumers
close method, 65, 71
closing, 71
creating, 24, 64
dedicated, 92
defined, 64
getMessageListener method, 65, 69
getMessageSelector method, 65
message loss, correcting, 93
pinging, 92
receive method, 25, 65, 67, 69
receiveNoWait method, 65, 67, 69
setMessageListener method, 65, 68
synchronous, 93

message delivery models, 80
message header

defined, 52
JMSCorrelationID field, 52, 53
JMSDeliveryMode field, 52, 53
JMSDestination field, 52, 53
JMSExpiration field, 52, 54
JMSMessageID field, 52, 53

message header (Continued)
JMSPriority field, 52, 54
JMSRedelivered field, 52, 54
JMSReplyTo field, 52, 53, 63
JMSTimestamp field, 52, 54
JMSType field, 52, 54
retrieving fields, 71

message identifier
defined, 53
suppressing, 63

message listeners, 25, 64
creating, 68
onMessage method, 68, 69

Message object, 56
acknowledge method, 69, 70
acknowledgeThisMessage method, 70
acknowledgeUpThroughThisMessage method, 70
acknowledgment methods, 69
clearBody method, 57, 59, 61
clearProperties method, 54, 55
DEFAULT_DELIVERY_MODE constant, 53
DEFAULT_PRIORITY constant, 54
DEFAULT_TIME_TO_LIVE constant, 54
getBooleanProperty method, 73
getByteProperty method, 72
getDoubleProperty method, 72
getFloatProperty method, 72
getIntProperty method, 72
getJMSCorrelationID method, 72
getJMSCorrelationIDAsBytes method, 72
getJMSDeliveryMode method, 72
getJMSDestination method, 72
getJMSExpiration method, 72
getJMSMessageID method, 72
getJMSPriority method, 72

Message object
getJMSPriority method, 25

Message object
getJMSRedelivered method, 72
getJMSReplyTo method, 72
getJMSTimestamp method, 72
getJMSType method, 72
getLongProperty method, 72
getObjectProperty method, 73

Index

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009224

Message object (Continued)
getPropertyNames method, 73
getShortProperty method, 72
getStringProperty method, 73

Message object
getStringProperty method, 25

Message object
header retrieval methods, 71
header specification methods, 52
property retrieval methods, 72
property specification methods, 54
propertyExists method, 73
setBooleanProperty method, 55
setByteProperty method, 55
setDoubleProperty method, 55
setFloatProperty method, 55
setIntProperty method, 55
setJMSCorrelationID method, 52, 53
setJMSCorrelationIDAsBytes method, 53
setJMSDeliveryMode method, 53
setJMSDestination method, 52
setJMSExpiration method, 53
setJMSMessageID method, 52
setJMSPriority method, 53
setJMSRedelivered method, 53
setJMSReplyTo method, 52
setJMSTimestamp method, 53
setJMSType method, 53
setLongProperty method, 55
setObjectProperty method, 54, 55
setShortProperty method, 55
setStringProperty method, 55

Message object
setStringProperty method, 23

message producers
close method, 62, 64
creating, 22, 62
default delivery mode, 63
default destination, 62, 63
default message lifetime, 63
default message priority, 63
defined, 62
getDeliveryMode method, 62, 63
getDestination method, 62

message producers (Continued)
getDisableMessageID method, 62
getDisableMessageTimestamp method, 62
getPriority method, 62, 63
getTimeToLive method, 62, 63
send method, 23, 62, 63
setDeliveryMode method, 62, 63
setDisableMessageID method, 53, 62, 64
setDisableMessageTimestamp method, 54, 62, 64
setPriority method, 62, 63
setTimeToLive method, 62, 63

message properties
defined, 54
filtering on, 65
retrieving, 72

message selectors
browsing with, 70
defined, 65
efficient use of, 83
performance impact, 97-98

message type identifier, defined, 54
message types, defined, 56
MessageConsumer object, 24, 34, 64, 66

close method, 65, 71
getMessageListener method, 65, 69
getMessageSelector method, 65
methods, 65
receive method, 25, 65, 67, 69
receiveNoWait method, 65, 67, 69
setMessageListener method, 65, 68

MessageFactory objectd, 181
MessageFormatException exception, 58, 60
MessageListener object, 68

onMessage method, 68, 69
MessageNotWriteableException exception, 57, 59, 61
MessageProducer object, 22, 34, 63

close method, 62, 64
getDeliveryMode method, 62, 63
getDestination method, 62
getDisableMessageID method, 62
getDisableMessageTimestamp method, 62
getPriority method, 62, 63
getTimeToLive method, 62, 63
methods, 62

Index

225

MessageProducer object (Continued)
send method, 23, 62, 63
setDeliveryMode method, 62, 63
setDisableMessageID method, 53, 62, 64
setDisableMessageTimestamp method, 54, 62, 64
setPriority method, 62, 63
setTimeToLive method, 62, 63

messages
acknowledge method, 69, 70
acknowledgeThisMessage method, 70
acknowledgeUpThroughThisMessage method, 70
acknowledging, 69, 135
body, 56, 73
body type and performance, 98
browsing, 70
bytes messages, 56, 60, 76
clearBody method, 57, 59, 61
clearProperties method, 54, 55
composing, 56
compression, 82, 87
correlation identifier, 53
creating, 22, 56
delivery mode, 63
delivery models, 80
destination, 63
encrypting, 42
expiration time, 54
filtering, 65
getBooleanProperty method, 73
getByteProperty method, 72
getDoubleProperty method, 72
getFloatProperty method, 72
getIntProperty method, 72
getJMSCorrelationID method, 72
getJMSCorrelationIDAsBytes method, 72
getJMSDeliveryMode method, 72
getJMSDestination method, 72
getJMSExpiration method, 72
getJMSMessageID method, 72
getJMSPriority method, 25
getJMSPriority method, 72
getJMSRedelivered method, 72
getJMSReplyTo method, 72
getJMSTimestamp method, 72

messages (Continued)
getJMSType method, 72
getLongProperty method, 72
getObjectProperty method, 73
getPropertyNames method, 73
getShortProperty method, 72
getStringProperty method, 25
getStringProperty method, 73
header, 52, 71
JMSXAppID property, 55
JMSXConsumerTXID property, 55
JMSXDeliveryCount property, 55
JMSXGroupID property, 55
JMSXGroupSeq property, 55
JMSXProducerTXID property, 55
JMSXRcvTimestamp property, 55
JMSXState property, 55
JMSXUserID property, 55
lifetime, 54, 63
map messages, 56, 59, 75
message identifier, 53, 63
message type identifier, 54
message types, 56
null messages, 56
object messages, 56, 60, 76
ordering of, 83
prioritizing, 83
priority, 54, 63
processing, 71
properties, 54, 72
propertyExists method, 73
receiving, 25, 64
redelivered flag, 54
retrieving content, 25
retrieving header fields, 25
retrieving properties, 25
sending, 23, 62
sequencing, 86
setBooleanProperty method, 55
setByteProperty method, 55
setDoubleProperty method, 55
setFloatProperty method, 55
setIntProperty method, 55
setJMSCorrelationID method, 52, 53

Index

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009226

messages (Continued)
setJMSCorrelationIDAsBytes method, 53
setJMSDeliveryMode method, 53
setJMSDestination method, 52
setJMSExpiration method, 53
setJMSMessageID method, 52
setJMSPriority method, 53
setJMSRedelivered method, 53
setJMSReplyTo method, 52
setJMSTimestamp method, 53
setJMSType method, 53
setLongProperty method, 55
setObjectProperty method, 54, 55
setShortProperty method, 55
setStringProperty method, 55
setStringProperty method, 23
setting content, 22
setting properties, 23
size, and performance, 97
size of, 86, 87
SOAP payloads, with, 185
standard properties, 55
stream messages, 56, 58, 74
structure, 51
text messages, 56, 57, 74
time stamp, 54, 63

messaging domains, 33, 80-81
point-to-point (PTP), 22, 24, 33, 40
publish/subscribe (pub/sub), 22, 24, 34, 40, 41
unified, 34, 40, 43

methods
acknowledge (Message), 69, 70
acknowledgeThisMessage (Message), 70
acknowledgeUpThroughThisMessage (Message), 70
clearBody (Message), 57, 59, 61
close (Connection), 42
close (Connection), 23, 25, 40
close (MessageConsumer), 65, 71
close (MessageProducer), 62, 64
close (QueueBrowser), 70, 71
close (Session), 23, 25
close (Session), 48
commit (Session), 48, 51
createBrowser (Session), 47, 70

methods (Continued)
createBytesMessage (Session), 47, 57, 60
createConnection (ConnectionFactory), 21, 24
createConnection (ConnectionFactory), 39
createConnectionConsumer (Connection), 40, 41
createConsumer (Session), 24
createConsumer (Session), 47, 64, 65, 66, 67, 68
createDurableConnectionConsumer (Connection

), 40, 41
createDurableSubscriber (Session), 47, 66, 67,

68
createMapMessage (Session), 47, 56
createMessage (Session), 47, 56
createObjectMessage (Session), 47, 56, 60
createProducer (Session), 22
createProducer (Session), 47, 62
createPublisher (TopicSession), 63, 64
createQueue (Session), 47
createQueueConnection (ConnectionFactory), 40
createReceiver (QueueSession), 64
createSender (QueueSession), 63
createSession (Connection), 40
createSession (Connection), 22, 24, 40, 48, 49, 50
createStreamMessage (Session), 47, 56, 58
createTemporaryQueue (Session), 46, 47
createTemporaryTopic (Session), 46, 47
createTextMessage (Session), 22
createTextMessage (Session), 47, 56, 57
createTopic (Session), 47
createTopicConnection (ConnectionFactory), 40
delete (TemporaryQueue, TemporaryTopic), 47
getAcknowledgeMode (Session), 48, 49, 50, 69
getBodyLength (BytesMessage), 77
getBoolean (MapMessage), 75
getBooleanProperty (Message), 73
getByte (MapMessage), 75
getByteProperty (Message), 72
getBytes (MapMessage), 75
getChar (MapMessage), 75
getClientID (Connection), 40, 41
getDeliveryMode (MessageProducer), 62, 63
getDestination (MessageProducer), 62
getDisableMessageID (MessageProducer), 62

Index

227

methods (Continued)
getDisableMessageTimestamp (MessageProducer

), 62
getDouble (MapMessage), 75
getDoubleProperty (Message), 72
getEnumeration (QueueBrowser), 70, 71
getExceptionListener (Connection), 40
getFloat (MapMessage), 75
getFloatProperty (Message), 72
getInt (MapMessage), 75
getIntProperty (Message), 72
getJMSCorrelationID (Message), 72
getJMSCorrelationIDAsBytes (Message), 72
getJMSDeliveryMode (Message), 72
getJMSDestination (Message), 72
getJMSExpiration (Message), 72
getJMSMessageID (Message), 72
getJMSPriority (Message), 25
getJMSPriority (Message), 72
getJMSRedelivered (Message), 72
getJMSReplyTo (Message), 72
getJMSTimestamp (Message), 72
getJMSType (Message), 72
getLong (MapMessage), 75
getLongProperty (Message), 72
getMapNames (MapMessage), 75, 76
getMessageListener (MessageConsumer), 65, 69
getMessageListener (Session), 41, 48
getMessageSelector (MessageConsumer), 65
getMessageSelector (QueueBrowser), 70
getMetaData (Connection), 40, 41
getObject (MapMessage), 75, 76
getObject (ObjectMessage), 76
getObjectProperty (Message), 73
getPriority (MessageProducer), 62, 63
getPropertyNames (Message), 73
getQueue (QueueBrowser), 70
getShort (MapMessage), 75
getShortProperty (Message), 72
getString (MapMessage), 75
getStringProperty (Message), 25
getStringProperty (Message), 73
getText (TextMessage), 25
getText (TextMessage), 74

methods (Continued)
getTimeToLive (MessageProducer), 62, 63
getTransacted (Session), 48, 50
itemExists (MapMessage), 75, 76
onException (ExceptionListener), 41
onMessage (MessageListener), 68, 69, 181
propertyExists (Message), 73
Queue constructor, 45, 46
readBoolean (BytesMessage), 77
readBoolean (StreamMessage), 74
readByte (BytesMessage), 77
readByte (StreamMessage), 74
readBytes (BytesMessage), 77
readBytes (StreamMessage), 74
readChar (BytesMessage), 77
readChar (StreamMessage), 74
readDouble (BytesMessage), 77
readDouble (StreamMessage), 74
readFloat (BytesMessage), 77
readFloat (StreamMessage), 74
readInt (BytesMessage), 77
readInt (StreamMessage), 74
readLong (BytesMessage), 77
readLong (StreamMessage), 74
readObject (StreamMessage), 74
readShort (BytesMessage), 77
readShort (StreamMessage), 74
readString (StreamMessage), 74
readUnsignedByte (BytesMessage), 77
readUnsignedShort (BytesMessage), 77
readUTF (BytesMessage), 77
receive (MessageConsumer), 25, 65, 67, 69
receiveNoWait (MessageConsumer), 65, 67, 69
recover (Session), 48
reset (BytesMessage), 61
reset (StreamMessage), 58, 59
rollback (Session), 48, 51
send (MessageProducer), 23, 62, 63
setBoolean (MapMessage), 59
setBooleanProperty (Message), 55, 87
setByte (MapMessage), 59
setByteProperty (Message), 55
setBytes (MapMessage), 59
setChar (MapMessage), 59

Index

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009228

methods (Continued)
setClientID (Connection), 40, 41
setDeliveryMode (MessageProducer), 62, 63
setDisableMessageID (MessageProducer), 53, 62,

64
setDisableMessageTimestamp (MessageProducer

), 54, 62, 64
setDoubleProperty (Message), 55
setEventListener (Connection), 40
setExceptionListener (Connection), 40, 41
setFloat (MapMessage), 59
setFloatProperty (Message), 55
setInt (MapMessage), 59
setIntProperty (Message), 55
setJMSCorrelationID (Message), 52, 53
setJMSCorrelationIDAsBytes (Message), 53
setJMSDeliveryMode (Message), 53
setJMSDestination (Message), 52
setJMSExpiration (Message), 53
setJMSMessageID (Message), 52, 54, 55
setJMSPriority (Message), 53
setJMSRedelivered (Message), 53
setJMSReplyTo (Message), 52
setJMSTimestamp (Message), 53
setJMSType (Message), 53
setLong (MapMessage), 59
setLongProperty (Message), 55
setMessageListener (MessageConsumer), 65, 68
setMessageListener (Session), 41, 48
setObject (MapMessage), 59
setObject (ObjectMessage), 60
setObjectProperty (Message), 54, 55
setPriority (MessageProducer), 62, 63
setProperty (AdministeredObject), 37, 39, 46
setProperty (AdministeredObject), 21, 24
setShort (MapMessage), 59
setShortProperty (Message), 55
setString (MapMessage), 59
setStringProperty (Message), 55
setStringProperty (Message), 23
setText (TextMessage), 57
setText (TextMessage), 23
setTimeToLive (MessageProducer), 62, 63
start (Connection), 24, 40, 41, 68

methods (Continued)
start (Connection), 67
stop (Connection), 40, 41
Topic constructor, 45, 46
unsubscribe (Session), 47, 67, 71
writeBoolean (BytesMessage), 61
writeBoolean (StreamMessage), 58
writeByte (BytesMessage), 61
writeByte (StreamMessage), 58
writeBytes (BytesMessage), 61
writeBytes (StreamMessage), 58
writeChar (BytesMessage), 61
writeChar (StreamMessage), 58
writeDouble (BytesMessage), 61
writeDouble (StreamMessage), 58
writeFloat (BytesMessage), 61
writeFloat (StreamMessage), 58
writeInt (BytesMessage), 61
writeInt (MapMessage), 59
writeInt (StreamMessage), 58
writeLong (BytesMessage), 61
writeLong (StreamMessage), 58
writeObject (BytesMessage), 61
writeObject (StreamMessage), 58
writeShort (BytesMessage), 61
writeShort (StreamMessage), 58
writeString (StreamMessage), 58
writeUTF (BytesMessage), 61

metrics-based monitoring
administration of, 147
creating client for, 148
examples of, 153
implementation of, 147
introduced, 145

metrics messages
format of, 146, 149
properties of, 149
type, 146

MimeHeaders object, 181
mq.metrics.broker topic, 146
mq.metrics.destination_list topic, 146
mq.metrics.destination.queue.dn topic, 146
mq.metrics.destination.topic.dn topic, 146
mq.metrics.jvm topic, 146

Index

229

mq.sys.dmq queue, 89

N
namespaces (SOAP), 171
NO_ACKNOWLEDGE constant (Session), 41, 49
no-acknowledge mode, 135, 137

defined, 49
NON_PERSISTENT constant (DeliveryMode), 53
nondurable subscribers, 65

closing, 71
nonpersistent delivery mode, defined, 54
null messages, defined, 56

O
object messages

composing, 60
defined, 56
getObject method, 76
processing, 76
setObject method, 60

object stores
file-system, 36, 44
LDAP, 36, 44

ObjectMessage object, 56
access method, 76
composition method, 60
getObject method, 76
setObject method, 60

objects
AdministeredObject, 37
BytesMessage, 56, 60, 77
Connection, 21, 24, 34, 40
ConnectionConfiguration, 37
ConnectionFactory, 19, 21, 23, 34, 38, 40
ConnectionMetaData, 41
DeliveryMode, 53
Destination, 19, 22, 24, 34, 43, 53
DestinationConfiguration, 46
ExceptionListener, 41
MapMessage, 56, 59, 75
Message, 52, 54, 56, 69, 71, 72

objects (Continued)
MessageConsumer, 24, 34, 64, 65, 66
MessageFactory, 181
MessageListener, 68
MessageProducer, 22, 34, 62, 63
MimeHeaders, 181
ObjectMessage, 56, 60, 76
Queue, 29, 34, 43
QueueBrowser, 70
QueueConnection, 34
QueueConnectionFactory, 34
QueueReceiver, 34, 64
QueueSender, 34, 63
QueueSession, 34, 63, 64
ReqRespListener, 176
ServletConfig, 180
Session, 22, 24, 34, 47, 56
StreamMessage, 56, 58, 74
TextMessage, 56, 74
Topic, 34, 43
TopicConnection, 34
TopicConnectionFactory, 34
TopicPublisher, 34, 63
TopicSession, 34, 63, 64
TopicSubscriber, 34, 64, 66
URLEndpoint, 179

onException method (ExceptionListener), 41
onMessage method (MessageListener), 68, 69, 181
OutOfMemoryError error, 86

P
packages

com.sun.messaging, 38, 40
com.sun.messaging.jms, 49, 70
java.util, 29
javax.jms, 29, 38, 40, 46, 49
javax.xml.messaging, 167
javax.xml.soap, 167

passwords
connection, authentication, 39
connection, setting, 37

performance, factors impacting
acknowledgment mode, 96

Index

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009230

performance, factors impacting (Continued)
delivery mode, 95
durable subscriptions, 96-97
message body type, 98
message selectors, 97-98
message size, 97
transactions, 95

performance and reliability, 94
PERSISTENT constant (DeliveryMode), 53
persistent delivery mode, defined, 53
physical destination properties, 92
ping interval, 92
point-to-point (PTP) messaging domain, 22, 24, 40

defined, 33
priority (message)

default, message producer, 63
defined, 54
setting, 63

processing messages, 71
propertyExists method (Message), 73
provider independence, 80
PTP, See point-to-point messaging domain
pub/sub, See publish/subscribe messaging domain
publish/subscribe (pub/sub) messaging domain, 22,

24, 40, 41
defined, 34

Q
queue browsers, 70

close method, 70, 71
getMessageSelector method, 70
getQueue method, 70

queue destinations, 22, 24, 43, 62, 63, 64
browsing, 70
defined, 33

Queue object, 29, 34, 43
constructor method, 45, 46

queue receivers
closing, 71
defined, 64

queue senders, defined, 62
queue sessions

createReceiver method, 64

queue sessions (Continued)
createSender method, 63

QueueBrowser object
close method, 70, 71
getMessageSelector method, 70
getQueue method, 70
methods, 70

QueueConnection object, 34
QueueConnectionFactory object, 34
QueueReceiver object, 34, 64
QueueSender object, 34, 63
QueueSession object, 34, 63, 64

createReceiver method, 64
createSender method, 63

R
readBoolean method (BytesMessage), 77
readBoolean method (StreamMessage), 74
readByte method (BytesMessage), 77
readByte method (StreamMessage), 74
readBytes method (BytesMessage), 77
readBytes method (StreamMessage), 74
readChar method (BytesMessage), 77
readChar method (StreamMessage), 74
readDouble method (BytesMessage), 77
readDouble method (StreamMessage), 74
readFloat method (BytesMessage), 77
readFloat method (StreamMessage), 74
readInt method (BytesMessage), 77
readInt method (StreamMessage), 74
readLong method (BytesMessage), 77
readLong method (StreamMessage), 74
readObject method (StreamMessage), 74
readShort method (BytesMessage), 77
readShort method (StreamMessage), 74
readString method (StreamMessage), 74
readUnsignedByte method (BytesMessage), 77
readUnsignedShort method (BytesMessage), 77
readUTF method (BytesMessage), 77
receive method (MessageConsumer), 25, 65, 67, 69
receiveNoWait method (MessageConsumer), 65, 67, 69
receiving messages, 25, 64

asynchronously, 68

Index

231

receiving messages (Continued)
synchronously, 67

recover method (Session), 48
redelivered flag (message), defined, 54
REJECT_NEWEST property, 92
reliability and performance, 94
REMOVE_LOW_PRIORITY property, 92
REMOVE_OLDEST property, 92
ReqRespListener object, 176
reset method (BytesMessage), 61
reset method (StreamMessage), 58, 59
rollback method (Session), 48, 51
rolling back transactions, 51

defined, 50

S
SAAJ, See SOAP with Attachments API for Java
saaj-api.jar file, 18
secure connections, 42
selectors, message

browsing with, 70
defined, 65
efficient use of, 83
performance impact, 97-98

send method (MessageProducer), 23, 62, 63
sending messages, 23, 62
sequencing partial messages, 86
ServletConfig object, 180
Session object, 22, 24, 34

AUTO_ACKNOWLEDGE constant, 40, 49
CLIENT_ACKNOWLEDGE constant, 40, 49
close method, 48

Session object
close method, 23, 25

Session object
commit method, 48, 51
createBrowser method, 47, 70
createBytesMessage method, 47, 57, 60
createConsumer method, 47, 64, 65, 66, 67, 68

Session object
createConsumer method, 24

Session object
createDurableSubscriber method, 47, 66, 67, 68

Session object (Continued)
createMapMessage method, 47, 56
createMessage method, 47, 56
createObjectMessage method, 47, 56, 60
createProducer method, 47, 62

Session object
createProducer method, 22

Session object
createQueue method, 47
createStreamMessage method, 47, 56, 58
createTemporaryQueue method, 46, 47
createTemporaryTopic method, 46, 47
createTextMessage method, 47, 56, 57

Session object
createTextMessage method, 22

Session object
createTopic method, 47
DUPS_OK_ACKNOWLEDGE constant, 40, 49
getAcknowledgeMode method, 48, 49, 50, 69
getMessageListener method, 41, 48
getTransacted method, 48, 50
message creation methods, 56
methods, 47
NO_ACKNOWLEDGE constant, 41, 49
recover method, 48
rollback method, 48, 51
SESSION_TRANSACTED constant, 50, 69
setMessageListener method, 41, 48
unsubscribe method, 47, 67, 71

SESSION_TRANSACTED constant (Session), 50, 69
sessions

AUTO_ACKNOWLEDGE constant, 40, 49
CLIENT_ACKNOWLEDGE constant, 40, 49
close method, 23, 25
close method, 48
closing, 23, 25
commit method, 48, 51
createBrowser method, 47, 70
createBytesMessage method, 47, 57, 60
createConsumer method, 24
createConsumer method, 47, 64, 65, 66, 67, 68
createDurableSubscriber method, 47, 66, 67, 68
createMapMessage method, 47, 56
createMessage method, 47, 56

Index

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009232

sessions (Continued)
createObjectMessage method, 47, 56, 60
createProducer method, 22
createProducer method, 47, 62
createQueue method, 47
createStreamMessage method, 47, 56, 58
createTemporaryQueue method, 46, 47
createTemporaryTopic method, 46, 47
createTextMessage method, 22
createTextMessage method, 47, 56, 57
createTopic method, 47
creating, 22, 24, 40, 48
defined, 47
DUPS_OK_ACKNOWLEDGE constant, 40, 49
getAcknowledgeMode method, 48, 49, 50, 69
getMessageListener method, 41, 48
getTransacted method, 48, 50
NO_ACKNOWLEDGE constant, 41, 49
recover method, 48
rollback method, 48, 51
SESSION_TRANSACTED constant, 50, 69
setMessageListener method, 41, 48
threading restrictions in, 85
transacted, 22, 24, 50, 69
unsubscribe method, 47, 67, 71
work done by, 81

setBoolean method (MapMessage), 59
setBooleanProperty method (Message), 55, 87
setByte method (MapMessage), 59
setByteProperty method (Message), 55
setBytes method (MapMessage), 59
setChar method (MapMessage), 59
setClientID method (Connection), 40, 41
setDeliveryMode method (MessageProducer), 62, 63
setDisableMessageID method

(MessageProducer), 53, 62, 64
setDisableMessageTimestamp method

(MessageProducer), 54, 62, 64
setDoubleProperty method (Message), 55
setEventListener method (Connection), 40
setExceptionListener method (Connection), 40, 41
setFloat method (MapMessage), 59
setFloatProperty method (Message), 55
setInt method (MapMessage), 59

setIntProperty method (Message), 55
setJMSCorrelationID method (Message), 52, 53
setJMSCorrelationIDAsBytes method (Message), 53
setJMSDeliveryMode method (Message), 53
setJMSDestination method (Message), 52
setJMSExpiration method (Message), 53
setJMSMessageID method (Message), 52, 54, 55
setJMSPriority method (Message), 53
setJMSRedelivered method (Message), 53
setJMSReplyTo method (Message), 52
setJMSTimestamp method (Message), 53
setJMSType method (Message), 53
setLong method (MapMessage), 59
setLongProperty method (Message), 55
setMessageListener method (MessageConsumer), 65,

68
setMessageListener method (Session), 41, 48
setObject method (MapMessage), 59
setObject method (ObjectMessage), 60
setObjectProperty method (Message), 54, 55
setPriority method (MessageProducer), 62, 63
setProperty method (AdministeredObject), 37, 39,

46
setProperty method (AdministeredObject), 21, 24
setShort method (MapMessage), 59
setShortProperty method (Message), 55
setString method (MapMessage), 59
setStringProperty method (Message), 55
setStringProperty method (Message), 23
setText method (TextMessage), 57
setText method (TextMessage), 23
setTimeToLive method (MessageProducer), 62, 63
Simple Object Access Protocol (SOAP)

client code, 177
connections, 174
defined, 161
endpoints, 174
exception handling, 177
fault codes, 183
fault handling, 177, 182
layers, 162
message factories, 174
namespaces, 171
point-to-point connections, 175

Index

233

Simple Object Access Protocol (SOAP) (Continued)
programming models, 175
service code, 179
SOAPMessageFromJMSMessage method, 186
SOAPMessageIntoJMSMessage utility, 186

SOAP, See Simple Object Access Protocol, 161
SOAP messages

disassembling, 181
envelope, 165
header, 165
MIME envelope for, 166
models of, 165
Name object, 173
payload to JMS message, as, 185
SOAPMessage object, 168
structure of, 165

SOAP with Attachments API for Java (SAAJ)
about, 167
client code, 177
exception handling, 177
fault handling, 177, 182
javax.xml.messaging package, 167
javax.xml.soap package, 167
programming model, 162, 167, 175
service code, 179

SOAP with Attachments API for Java (SAAJ)
Specification, 7

SQL92, 65
SSL service, 42
standard message properties, 55

JMSXAppID, 55
JMSXConsumerTXID, 55
JMSXDeliveryCount, 55
JMSXGroupID, 55
JMSXGroupSeq, 55
JMSXProducerTXID, 55
JMSXRcvTimestamp, 55
JMSXState, 55
JMSXUserID, 55

start method (Connection), 24, 40, 41, 68
start method (Connection), 67
starting

connections, 24, 41, 67
message brokers, 19-20

stop method (Connection), 40, 41
stream messages

composing, 58
defined, 56
processing, 74
readBoolean method, 74
readByte method, 74
readBytes method, 74
readChar method, 74
readDouble method, 74
readFloat method, 74
readInt method, 74
readLong method, 74
readObject method, 74
readShort method, 74
readString method, 74
reset method, 58, 59
writeBoolean method, 58
writeByte method, 58
writeBytes method, 58
writeChar method, 58
writeDouble method, 58
writeFloat method, 58
writeInt method, 58
writeLong method, 58
writeObject method, 58
writeShort method, 58
writeString method, 58

StreamMessage object, 56
access methods, 74
composition methods, 58
readBoolean method, 74
readByte method, 74
readBytes method, 74
readChar method, 74
readDouble method, 74
readFloat method, 74
readInt method, 74
readLong method, 74
readObject method, 74
readShort method, 74
readString method, 74
reset method, 58, 59
writeBoolean method, 58

Index

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009234

StreamMessage object (Continued)
writeByte method, 58
writeBytes method, 58
writeChar method, 58
writeDouble method, 58
writeFloat method, 58
writeInt method, 58
writeLong method, 58
writeObject method, 58
writeShort method, 58
writeString method, 58

subscriber name, 66
synchronous message consumption, 67

defined, 64

T
temporary destinations, defined, 46
TemporaryQueue object, delete method, 47
TemporaryTopic object, delete method, 47
testing message brokers, 20-21
text messages

composing, 57
defined, 56
getText method, 25
getText method, 74
processing, 74
setText method, 57
setText method, 23

TextMessage object, 56
access method, 74
getText method, 74

TextMessage object
getText method, 25

TextMessage object
setText method, 57

TextMessage object
setText method, 23

threads, See client threads
time stamp (message)

defined, 54
suppressing, 63

time-to-live, See lifetime (message)
topic destinations, 22, 24, 43, 62, 63, 64

topic destinations (Continued)
defined, 34
durable subscribers, 66

Topic object, 34, 43
constructor method, 45, 46

topic publishers, defined, 62
topic sessions

createPublisher method, 63
createSubscriber method, 64

topic subscribers
defined, 64
durable, 65, 66, 71
nondurable, 65, 71

TopicConnection object, 34
TopicConnectionFactory object, 34
TopicPublisher object, 34, 63
TopicSession object, 34, 63, 64

createPublisher method, 63
createSubscriber method, 64

TopicSubscriber object, 34, 64, 66
transacted sessions, 22, 24, 50

and acknowledgment, 69
defined, 50

transactions
and custom client acknowledgment, 136
committing, 50, 51
defined, 50
performance impact of, 95
rolling back, 50, 51

U
unified messaging domain, 40, 43

defined, 34
unsubscribe method (Session), 47, 67, 71
URLEndpoint object, 179
user authentication, 39

W
warning messages, 203
Web services, 161
writeBoolean method (BytesMessage), 61

Index

235

writeBoolean method (StreamMessage), 58
writeByte method (BytesMessage), 61
writeByte method (StreamMessage), 58
writeBytes method (BytesMessage), 61
writeBytes method (StreamMessage), 58
writeChar method (BytesMessage), 61
writeChar method (StreamMessage), 58
writeDouble method (BytesMessage), 61
writeDouble method (StreamMessage), 58
writeFloat method (BytesMessage), 61
writeFloat method (StreamMessage), 58
writeInt method (BytesMessage), 61
writeInt method (MapMessage), 59
writeInt method (StreamMessage), 58
writeLong method (BytesMessage), 61
writeLong method (StreamMessage), 58
writeObject method (BytesMessage), 61
writeObject method (StreamMessage), 58
writeShort method (BytesMessage), 61
writeShort method (StreamMessage), 58
writeString method (StreamMessage), 58
writeUTF method (BytesMessage), 61

X
XML schema validation, 138
XSD, See XML schema validation

Index

Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients • December, 2009236

	Sun GlassFish Message Queue 4.4 Developer's Guide for Java Clients
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Documentation Conventions
	Typographic Conventions
	Symbol Conventions
	Shell Prompt Conventions
	Directory Variable Conventions

	Related Documentation
	Message Queue Documentation Set
	Java Message Service (JMS) Specification
	JavaDoc
	Example Client Applications
	Example Java Client Applications
	Example C Client Programs
	Example JMX Client Programs

	Online Help

	Third-Party Web Site References
	Searching Sun Product Documentation
	Documentation, Support, and Training
	Sun Welcomes Your Comments

	Overview
	Setting Up Your Environment
	Starting and Testing a Message Broker
	To Start a Broker
	To Test a Broker

	Developing a Client Application
	To Produce Messages
	To Consume Messages

	Compiling and Running a Client Application
	To Compile and Run the HelloWorldMessage Application

	Deploying a Client Application
	Example Application Code

	Using the Java API
	Messaging Domains
	Working With Connections
	Obtaining a Connection Factory
	Looking Up a Connection Factory With JNDI
	To Look Up a Connection Factory With JNDI

	Overriding Configuration Settings
	Instantiating a Connection Factory
	To Instantiate and Configure a Connection Factory

	Using Connections
	Creating Secure Connctions (SSL)

	Working With Destinations
	Looking Up a Destination With JNDI
	To Look Up a Destination With JNDI

	Instantiating a Destination
	Temporary Destinations

	Working With Sessions
	Acknowledgment Modes
	Transacted Sessions

	Working With Messages
	Message Structure
	Message Header
	Message Properties
	Message Body

	Composing Messages
	Composing Text Messages
	Composing Stream Messages
	Composing Map Messages
	Composing Object Messages
	Composing Bytes Messages

	Sending Messages
	Receiving Messages
	Creating Message Consumers
	Message Selectors
	Durable Subscribers

	Receiving Messages Synchronously
	Receiving Messages Asynchronously
	To Set Up a Message Queue Java Client to Receive Messages Asynchronously

	Acknowledging Messages
	Browsing Messages
	Closing a Consumer

	Processing Messages
	Retrieving Message Header Fields
	Retrieving Message Properties
	Processing the Message Body
	Processing Text Messages
	Processing Stream Messages
	Processing Map Messages
	Processing Object Messages
	Processing Bytes Messages

	Message Queue Clients: Design and Features
	Client Design Considerations
	Developing Portable Clients
	Choosing Messaging Domains
	Connections and Sessions
	Producers and Consumers
	Assigning Client Identifiers
	Message Order and Priority
	Using Selectors Efficiently

	Balancing Reliability and Performance

	Managing Client Threads
	JMS Threading Restrictions
	Thread Allocation for Connections

	Managing Memory and Resources
	Managing Memory
	Managing Message Size
	Message Compression
	Advantages and Limitations of Compression
	Compression Examples

	Managing the Dead Message Queue
	Managing Physical Destination Limits

	Programming Issues for Message Consumers
	Using the Client Runtime Ping Feature
	Preventing Message Loss for Synchronous Consumers
	Synchronous Consumption in Distributed Applications

	Factors Affecting Performance
	Delivery Mode (Persistent/Nonpersistent)
	Use of Transactions
	Acknowledgment Mode
	Durable vs. Nondurable Subscriptions
	Use of Selectors (Message Filtering)
	Message Size
	Message Body Type

	Connection Event Notification
	Connection Events
	Creating an Event Listener
	Event Listener Examples

	Client Connection Failover (Auto-Reconnect)
	Enabling Auto-Reconnect
	Single-Broker Auto-Reconnect
	Parallel Broker Auto-Reconnect
	Clustered-Broker Auto-Reconnect

	Auto-Reconnect Behaviors
	Auto-Reconnect Limitations
	Handling Exceptions When Failover Occurs
	Handling Exceptions in a Transacted Session
	Transacted Session: Failover Producer Example
	Transacted Session: Failover Consumer Example

	Handling Exceptions in a Non-Transacted Session
	Failover Producer Example
	Failover Consumer Example

	Custom Client Acknowledgment
	Using Client Acknowledge Mode
	Using No Acknowledge Mode

	Schema Validation of XML Payload Messages
	Communicating with C Clients
	Client Runtime Logging
	Logging Name Spaces, Levels, and Activities
	Using the JRE Logging Configuration File
	Using a Logging Configuration File for a Specific Application
	Setting the Logging Configuration Programmatically

	Using the Metrics Monitoring API
	Monitoring Overview
	Administrative Tasks
	Implementation Summary
	To Implement Message-Based Monitoring

	Creating a Metrics-Monitoring Client
	To Monitor Broker Metrics

	Format of Metrics Messages
	Broker Metrics
	JVM Metrics
	Destination-List Metrics
	Destination Metrics

	Metrics Monitoring Client Code Examples
	A Broker Metrics Example
	A Destination List Metrics Example
	A Destination Metrics Example

	Working with SOAP Messages
	What is SOAP?
	SOAP with Attachments API for Java
	The Transport Layer
	The SOAP Layer
	The Language Implementation Layer
	The Profiles Layer
	Interoperability

	The SOAP Message
	SOAP Packaging Models

	SOAP Messaging in JAVA
	The SOAP Message Object
	Inherited Methods
	Namespaces
	Pre-defined SOAP Namespaces
	Using Namespaces when Creating a SOAP Name
	Parsing Name Objects

	Destination, Message Factory, and Connection Objects
	Endpoint
	Constructing an Endpoint
	Using the Endpoint to Address a Message

	Message Factory
	Connection
	SOAP Connection

	SOAP Messaging Models and Examples
	SOAP Messaging Programming Models
	Working with Attachments
	To Create and Add an Attachment

	Exception and Fault Handling
	Writing a SOAP Client
	To Write a SOAP Client for Point-to-Point Messaging

	Writing a SOAP Service
	Disassembling Messages
	Handling Attachments
	Replying to Messages
	Handling SOAP Faults
	Predefined Fault Codes
	Defining a SOAP Fault

	Integrating SOAP and Message Queue
	Example 1: Deferring SOAP Processing
	To Transform the SOAP Message into a JMS Message and Send the JMS Message
	To Receive the JMS Message, Transform it into a SOAP Message, and Process It

	Example 2: Publishing SOAP Messages
	Code Samples

	Embedding a Message Queue Broker in a Java Client
	Creating, Initializing and Starting an Embedded Broker
	Creating a Broker Event Listener
	Arguments to Specify When Initializing an Embedded Broker

	Creating a Direct Connection to an Embedded Broker
	Creating a TCP Connection to an Embedded Broker
	Stopping and Shutting Down an Embedded Broker
	Embedded Broker Example

	Warning Messages and Client Error Codes
	Warning Messages and Error Codes

	Index

