
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Programming Persistence

Forte™ for Java™ Programming Series

Part No. 816-1411-10
August 2001, Revision A

Please
Recycle

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and without limitation,

these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more

additional patents or pending patent applications in the U.S. and other countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product may be

reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. PointBase software is for internal

development purposes only and can only be commercially deployed under a separate license from PointBase.

Sun, Sun Microsystems, the Sun logo, Forte, Java, JDBC, Jini, Jiro, JSP, Solaris, iPlanet, and NetBeans are trademarks or registered trademarks of

Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient des droits de propriété intellectuelle sur la technologie représentée par ce produit. Ces droits de propriété

intellectuelle peuvent s’appliquer en particulier, sans toutefois s’y limiter, à un ou plusieurs des brevets américains répertoriés à l’adresse

http://www.sun.com/patents et à un ou plusieurs brevets supplémentaires ou brevets en instance aux Etats-Unis et dans d’autres pays.

Ce produit est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution et la décompilation. Aucune partie de ce

produit ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses

concédants, le cas échéant.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractère, est protégé par un copyright et licencié par des

fournisseurs de Sun. Le logiciel PointBase est destiné au développement interne uniquement et ne peut être mis sur le marché que sous une

licence distincte é mise par PointBase.

Sun, Sun Microsystems, le logo Sun, Forte, Java, JDBC, Jini, Jiro, JSP, Solaris, iPlanet et NetBeans sont des marques commerciales ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques commerciales ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

Acquisitions fédérales : logiciels commerciaux. Les utilisateurs du gouvernement sont soumis aux termes et conditions standard.

Contents

Preface 1

1. Overview of Persistence Programming 7

About Persistence 7

Representation of Persistent Data 7

Application Issues 8

Java Database Programming Models 9

Java Database Connectivity (JDBC) 10

Transparent Persistence 12

2. Using Java Data Base Connectivity 15

Programming JDBC 15

General Programming Steps 15

JDBC Reference Materials 16

Using the Database Explorer 17

Using JDBC Components 18

The JDBC Tab 19

Programming With JDBC Components 24
iii

Using the JDBC Form Wizard 28

Establishing a Connection 29

Selecting Columns to Display 33

Selecting a Secondary RowSet 35

Previewing and Generating an Application 36

Running Your JDBC Application 37

3. Transparent Persistence Overview 39

What Is Transparent Persistence? 39

Programming Transparent Persistence 40

Developing Persistence-Capable Classes 41

Developing Persistence-Aware Applications 42

4. Developing Persistence-Capable Classes 43

Mapping Capabilities 43

Mapping Techniques 44

Mapping Relationships 45

Managed Relationships 48

Developing Persistence-Capable Classes 50

Capturing a Schema 50

Creating Persistence-Capable Classes 54

Setting Options and Properties 71

Key Fields and Key Classes 81

Running an Application 83

Creating a JAR File 83

Supported Data Types 85

5. Developing Persistence-Aware Applications 87

Overview 87
iv Programming Persistence • August 2001

Developing Persistence-Aware Classes 88

Persistence-Aware Logic 88

Development Steps 90

Creating a Persistence Manager Factory 92

Connecting to Databases 94

Creating a Persistence Manager 97

Transactions 101

Concurrency Control 105

Accessing the Database 109

Querying the Database 113

Overlapping Primary Key and Foreign Key 126

Fetch Groups 129

Checking Instance Status 130

Transparent Persistence Identity 130

Oid Class 131

Persistent Object Model 133

Architecture 135

Field Types of Persistent-Capable Classes 136

JDO Interfaces 137

JDO Exceptions 139

Debugging Persistence-Aware Applications 140

6. Using Transparent Persistence With Enterprise Java Beans 141

How Transparent Persistence Works in Enterprise Beans 141

Providing for Serialization 143

Transactions With Enterprise Beans 144

Creating an Enterprise Bean That Uses Transparent Persistence 145

Setting the JNDI Lookup 145
Contents v

Setting Resource References 147

Using Bean-Managed Transactions 147

Using Container-Managed Transactions 148

Integrating Transparent Persistence Into the J2EE Reference Implementation 150

Integrating Transparent Persistence With the iPlanet Application Server 152

A. System Requirements 155

B. Transparent Persistence JSP Tags 157

PersistenceManager Tag 157

jdoQuery Tag 158

C. Restrictions and Limitations 161

Unsupported Features 161

Restrictions 162

Application Class Loaders 162

Comparing Collection Relationships 163

User-Defined Clone() Methods 163

User-Defined Constructors 163

Database Limitations and Restrictions 164

PointBase 3.5 Network (Multi-User) Server 164

Oracle 8.1.6 Thin Driver 165

WebLogic JDBC Driver 5.1.0 for Microsoft SQL Server 2000 166

DB2 Universal Database, Version 7.1 167

Microsoft JDBC-ODBC Bridge 168

Concatenation 168

Dates 168

Migrating Files 168

Index 169
vi Programming Persistence • August 2001

Figures

FIGURE 1-1 Basic Persistence Scheme 8

FIGURE 1-2 JDBC Programming Model 11

FIGURE 1-3 Transparent Persistence Programming Model 14

FIGURE 2-1 JDBC Form Wizard, Opening 29

FIGURE 2-2 JDBC Form Wizard, Database Connection 30

FIGURE 2-3 JDBC Form Wizard, Select a Table 32

FIGURE 2-4 JDBC Form Wizard, Select Columns 34

FIGURE 2-5 JDBC Form Wizard, Select Secondary RowSet 36

FIGURE 2-6 JDBC Form Wizard, Finish the Wizard 37

FIGURE 4-1 Mapping a Database to Java Classes 44

FIGURE 4-2 Foreign Keys and One-to-Many Relationships 47

FIGURE 4-3 Foreign Keys and Many-to-Many Relationships 47

FIGURE 4-4 Database Schema Wizard, Target Location 51

FIGURE 4-5 Database Schema Wizard, Database Connection 52

FIGURE 4-6 Database Schema Wizard, Tables and Views 53

FIGURE 4-7 Database Schema in the Explorer window 53

FIGURE 4-8 Java Generation Wizard, Choose Target Location 54

FIGURE 4-9 Java Generation Wizard, Customize Options 55

FIGURE 4-10 Java Generation Wizard, Table Selection 56
vii

FIGURE 4-11 Java Generation Wizard, Generating Java 58

FIGURE 4-12 Persistent Fields 60

FIGURE 4-13 Database Mapping Wizard Overview 61

FIGURE 4-14 Database Mapping Wizard, Select Tables 62

FIGURE 4-15 Select Primary Table Editor 62

FIGURE 4-16 Mapped Secondary Table Setup 63

FIGURE 4-17 Database Mapping Wizard Field Mappings 65

FIGURE 4-18 Map Field to Multiple Columns Dialog Box 66

FIGURE 4-19 Relationship Mapping Editor, Initial Setup 67

FIGURE 4-20 Relationship Mapping Editor, Map to Key 68

FIGURE 4-21 Relationship Mapping Editor, Map to Key: Local to Join 69

FIGURE 4-22 Relationship Mapping Editor, Map to Key: Join to Foreign 70

FIGURE 4-23 Validate Java Changes Property 71

FIGURE 4-24 Java Generation Options 73

FIGURE 4-25 Relationship Naming Policy Editor 74

FIGURE 4-26 Naming Policy Rule Editor 75

FIGURE 4-27 Persistence-Capable Class Properties 77

FIGURE 4-28 Field Mapping Properties 78

FIGURE 4-29 Persistent Field Properties 78

FIGURE 4-30 Class Icons 80

FIGURE 4-31 Field Icons 80

FIGURE 5-1 Moving Persistence-Aware Logic to Its Own Class 89

FIGURE 5-2 Transparent Persistence Application Logic 92

FIGURE 5-3 Instantiated Persistent Objects 134

FIGURE 6-1 Persistent Enterprise Bean 146
viii Programming Persistence • August 2001

Tables

TABLE 2-1 RowSet Properties 21

TABLE 2-2 RowSet Other Properties Tab Properties 21

TABLE 2-3 RowSet Event Tab Properties 22

TABLE 2-4 Code Generation Tab Properties 22

TABLE 2-5 Data Navigator Properties 23

TABLE 2-6 Stored Procedure Properties 24

TABLE 2-7 Transaction Isolation Levels 33

TABLE 4-1 Relationship Class Generation 57

TABLE 4-2 Java Generation Properties 72

TABLE 4-3 Simple Cardinality Naming Policy 74

TABLE 4-4 Complex Cardinality Naming Policy 75

TABLE 4-5 Relationship Naming Tags 76

TABLE 4-6 Properties for Persistence-Capable Classes 76

TABLE 4-7 Properties for Persistent Fields 79

TABLE 4-8 Supported Data Types 85

TABLE 4-9 Data Type Conversions in Mappings 85

TABLE 5-1 PersistenceManagerFactory Methods 93

TABLE 5-2 ConnectionFactory Methods 95

TABLE 5-3 PersistenceManager Methods 98
ix

TABLE 5-4 Transaction Methods 102

TABLE 5-5 Isolation Levels 105

TABLE 5-6 Query Elements 114

TABLE 5-7 newQuery Options 115

TABLE 5-8 Query Interface Methods 116

TABLE 5-9 Query Operators 121

TABLE 5-10 Persistent Field Types 136

TABLE 5-11 JDO User Exceptions 139
x Programming Persistence • August 2001

Preface

Welcome to the Programming Persistence book of the Forte™ for Java™ Programming

Series. This book focuses on programming with persistent data—data stored in a

database or other data store that is external to your applications. The book discusses

the different persistence programming models supported by Forte for Java. It

focuses on the Transparent Persistence technology provided by the Forte for Java

integrated development environment (IDE).

This book is written for programmers who want to learn how to use the persistence

programming models supported by Forte for Java. The book assumes a general

knowledge of Java and database access technology. Before reading it, you should be

familiar with the following subjects:

■ Java programming language

■ Relational database concepts (such as tables and keys)

■ How to use the chosen database

You can create the examples in this book on the following platforms and operating

systems:

■ Solaris™ 8 SPARC™ Platform Edition
■ Microsoft Windows 2000, SP2

■ Microsoft Windows NT 4.0, SP6

■ Red Hat Linux 6.2

All screen shots in this book are from the Windows NT version of the Forte for Java

software. You should have no trouble translating the slight visual differences to

other platforms. Although almost all procedures use the Forte for Java user interface,

occasionally you might be instructed to enter a command at the command line. In

such cases, examples are given with the prompt and syntax for a Microsoft Windows

command window. For example:

c:\> cd MyWorkDir\MyPackage
1

To translate for UNIX® or Linux environments, simply change the prompt and use

forward slashes:

Before You Read This Book

This book is written for programmers who want to learn how to use the persistence

programming models supported by Forte for Java. The book assumes a general

knowledge of Java and database access technology. Before reading it, you should be

familiar with the following subjects:

■ Java programming language

■ Relational database concepts (such as tables and keys)

■ How to use the chosen database

How This Book Is Organized

The following briefly describes the contents of each chapter:

Chapter 1 explains what persistence is and establishes a framework for more

detailed descriptions of Forte for Java persistence support in succeeding chapters. It

also introduces a number of persistence programming models supported by the

Forte for Java IDE.

Chapter 2 describes JDBC™ productivity enhancement tools provided by Forte for

Java. These automate many JDBC programming tasks in building client components

or applications that interact with a database.

Chapter 3 provides a brief overview to the Transparent Persistence programming

model.

Chapter 4 describes the Transparent Persistence mapping tool and how to create a

mapping between a set of Java programming language classes and a relational

database.

Chapter 5 describes the Transparent Persistence runtime environment and illustrates

how to use it to perform persistence operations. It also addresses various

Transparent Persistence programming issues.

% cd MyWorkDir/MyPackage
2 Programming Persistence • August 2001

Chapter 6 describes the process for using persistence-capable classes with Enterprise

Java Beans, the J2EE Reference Implementation, and the iPlanet Application Server.

Appendix A documents the system requirements necessary to use Transparent

Persistence with the Forte for Java IDE.

Appendix B documents two JSP™ tags that perform Transparent Persistence

functions.

Appendix C details unsupported features, areas where specific databases behave

uniquely with Transparent Persistence, and file migration information for

developers who have created classes using previous versions of Transparent

Persistence

Typographic Conventions

Related Documentation

Forte for Java documentation includes books delivered in Acrobat Reader (PDF)

format, online help, Readme files of example applications, and Javadoc™

documentation.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your.login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when contrasted

with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line variable; replace

with a real name or value

To delete a file, type rm filename.
Preface 3

Documentation Available Online

The documents in this section are available from the Forte for Java portal, the

docs.sun.com SM web site, and from Fatbrain.com, an Internet professional

bookstore.

The documentation link of the Forte for Java portal is at

http://www.sun.com/forte/ffj/documentation/index.html. The

docs.sun.com SM web site is at http://docs.sun.com . Fatbrain.com is at

http://www.fatbrain.com/documentation/sun.

■ Release Notes (PDF format)

Available for each Forte for Java edition. Describe last-minute release changes and

technical notes.

■ Getting Started Guide (PDF format)

Available for each Forte for Java edition. Describes how to install Forte for Java on

each supported platform and other pertinent information, including system

requirements, command-line switches for starting the IDE, installed

subdirectories, how to mount a JAR or zip file as a Javadoc filesystem in the IDE,

and how to delete a project from the IDE.

■ The Forte for Java Programming Series (PDF format)

This series provides in-depth information on how to use various Forte for Java

features to develop well-formed J2EE applications.

■ Building Web Components - part no. 816-1410-10

Describes how to build a web application as a J2EE web module using JSP

pages, servlets, tag libraries, and supporting classes and files.

■ Programming Persistence - part no. 816-1411-10

Describes support for different persistence programming models provided by

Forte for Java: JDBC and Transparent Persistence.

■ Building Enterprise JavaBeans Components - part no. 816-1401-10

Describes how to build Enterprise JavaBeans components—session beans and

entity beans with container-managed or bean-managed persistence—using the

Forte for Java EJB Builder wizards and other graphical user interfaces.

■ Building Web Services - part no. 816-1400-10

Describes how to use the tools provided by the Web Services module to build

web services. Web Services are application business services published as

Extensible Markup Language (XML) documents delivered over HTTP

connections.

■ Building JSP Pages That Use XML Data Services - part no. 816-1399-10

Describes how to use the Forte for Java Enterprise Service Presentation Toolkit

to incorporate dynamic XML data in HTML.
4 Programming Persistence • August 2001

http://www.sun.com/forte/ffj/documentation/index.html
http://docs.sun.com
http://www.fatbrain.com/documentation/sun

■ Assembling and Executing J2EE Modules and Applications - part no. 816-1402-10

Describes how to assemble EJB modules and web modules into a J2EE

application, and how to deploy and run a J2EE application.

■ Forte for Java tutorials (PDF format)

You can also find the completed tutorial applications in your user settings

directory, under sampledir/tutorial .

■ Forte for Java, Community Edition Tutorial - part no. 816-1408-10

Provides step-by-step instructions for building a simple J2EE web application

using Forte for Java, Community Edition tools.

■ Forte for Java, Enterprise Edition Tutorial - part no. 816-1409-10

Provides step-by-step instructions for building an application using Enterprise

JavaBeans components, the test application facility, and the Forte for Java Web

Services technology.

Online Help

Online help is available inside the Forte for Java development environment. You can

access it by pressing the help key (Help on Solaris, F1 on Microsoft Windows and

Linux), or by choosing Help > Contents. Either action displays a list of help topics

and a search facility.

Examples

Several examples, with accompanying Readme files, that illustrate a particular Forte

for Java feature are available in the sampledir/examples subdirectory of your

user settings directory. In addition, you can download Enterprise Edition-specific

examples from the Forte for Java portal and unzip them into the examples
directory. Completed tutorial applications—including the applications described in

Forte for Java, Community Edition Tutorial and Forte for Java, Enterprise Edition
Tutorial—are in the sampledir/tutorial directory.

Javadoc Documentation

Javadoc documentation is available within the IDE for many Forte for Java modules.

Refer to the release notes for instructions on installing this documentation. When

you start the IDE, you can access this Javadoc documentation within the Javadoc

pane of the Explorer.
Preface 5

Accessing Sun Documentation Online

A broad selection of Sun system documentation is located at:

http://www.sun.com/products-n-solutions/hardware/docs

A complete set of Solaris documentation and many other titles are located at:

http://docs.sun.com

Ordering Sun Documentation

Fatbrain.com, an Internet professional bookstore, stocks select product

documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center

on Fatbrain.com at:

http://www.fatbrain.com/documentation/sun

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. You can email your comments to Sun at:

docfeedback@sun.com

Please include the part number (816-1411-10) of your document in the subject line of

your email.
6 Programming Persistence • August 2001

http://www.sun.com/products-n-solutions/hardware/docs
http://docs.sun.com
http://www.fatbrain.com/documentation/sun

CHAPTER 1

Overview of Persistence
Programming

This chapter describes persistence and establishes a framework for more detailed

discussions of Forte for Java persistence support in succeeding chapters. It also

introduces a number of persistence programming models supported by Forte for

Java.

About Persistence

A key aspect of most business applications is the programmatic manipulation of

persistent data—long-lived data stored outside of an application. Although persistent

data is read into transient memory for the purpose of using or modifying it, it is

written out to a relational database or flat file system for long-term storage.

Representation of Persistent Data

In object-oriented programming systems, persistent data is represented in memory

as one or more data objects manipulated by application code. In general, the

correspondence between persistent data in a data store and its representation as a

persistent data object in memory is achieved through a number of software layers as

shown in FIGURE 1-1.
7

FIGURE 1-1 Basic Persistence Scheme

Each data store has an interface to the outside world through driver software used to

set up and maintain a connection between the data store and an application. With

this connection established, a query language is used to retrieve information in the

data store and read it into an application, or conversely, to write data from the

application into the data store. Another layer provides a mapping between data

objects in memory and the information in the data store.

Through this general scheme, programmers can represent persistent data as runtime

objects to be used and manipulated by an application. The scheme supports all basic

persistence operations—often abbreviated as CRUD:

■ Creating persistent data (inserting in a data store)

■ Retrieving persistent data (selecting from a data store)

■ Updating persistent data

■ Deleting persistent data.

Application Issues

When programming applications, this relationship between data objects in memory

and information in a data store is complicated by a number of issues. These include

synchronization, concurrency, and connection resources.

■ Synchronization

An application needs to ensure that the two representations of data (in memory

and in the data store) are kept synchronized. Any change to a persistent data

object, for example, should take place only if that change also takes place in the

data store. Since failure might occur in the process of writing to the data store,

these changes need to be part of a single transaction. A transaction is a series of

operations that commits only if all the individual operations are successful. If

failure occurs, all changes need to be rolled back to their original state.

Data
Mapping

Query
Language

Connection
SoftwarePersistent

Data Object

Data Store
8 Programming Persistence • August 2001

■ Concurrency

An application needs to provide for two or more users to have concurrent access

to persistent data, and to ensure that the data not be corrupted. In other words,

changes in the data made by any one user are known by other users in a timely

fashion.

■ Connection resources

As the number of users of an application increases, the resources required to

create and maintain large numbers of connections to a data store can become

prohibitive. It is much more efficient to share or recycle these resources using a

connection management and pooling scheme.

Synchronization, concurrency, and connection resources become increasingly

important as the scale and complexity of an application increases. In an application

in which a small number of clients are accessing a single database on a single

computer, synchronization, concurrency, and connection resource requirements are

easy to fulfill. However, as the number of clients, databases, and transactions grows,

these issues can present a daunting programming challenge.

Java Database Programming Models

In the Java development environment, certain aspects of the interaction between

persistent data objects and data stores have been standardized. Most database

vendors provide drivers that interface with the Java execution environment (the Java

Virtual Machine), and a standardized query language (SQL) that is generally used to

perform persistence (CRUD) operations.

However, within this standardization, a number of models are available to support

the programming of persistence operations, each corresponding to a specific

persistence API. Forte for Java supports the following programming models:

■ Java Database Connectivity (JDBC)

■ Transparent Persistence

These different programming models will be described briefly in the following

sections.
Chapter 1 Overview of Persistence Programming 9

Java Database Connectivity (JDBC)

Java provides a standard persistence programming model, the JDBC API, to

facilitate the coding of persistence operations. The JDBC API is a set of Java

interfaces that you can use to perform basic persistence operations. Forte for Java

provides JDBC tools and programming features based on the JDBC API, described in

Chapter 2.

JDBC Programming Model

The JDBC programming model follows closely the software layers identified in

FIGURE 1-1. You create a class to represent persistent data by writing code that maps

fields of the class to columns and data types of one or more tables in a database

system. You can then create an instance of that class (a persistent data object) and

populate its fields with corresponding values from the database, or create a new

instance, populate its fields, and write the data into the database.

FIGURE 1-2 illustrates the runtime objects involved in JDBC persistence operations.

These objects are instances of classes that implement interfaces in the JDBC API.

These objects are referenced by code in a persistence-aware component, also shown

in FIGURE 1-2, that performs persistence operations.

For example, to read data into a persistent data object:

■ Obtain a Connection to the database from a DriverManager object.

■ Obtain a Statement from the Connection object.

■ Pass to the Statement an SQL string representing a select query.

The Statement is executed across the Connection, returning a ResultSet from the

database.

■ Extract data values from the ResultSet to populate the fields of your persistent

data object.
10 Programming Persistence • August 2001

FIGURE 1-2 JDBC Programming Model

Similarly, you can write values from the persistent data object into the database

using an SQL update statement. When you are finished with a statement or a

connection, you close it using a method provided in the JDBC API.

JDBC compliant drivers are multi threaded; they support multiple concurrent

connections. JDBC connections, in turn, support multiple statements executing

concurrently.

In a simple Java application, each client thread explicitly requests a connection, then

executes statements on this connection. A more sophisticated application might use

connection pooling, where a server component might request a single connection

and use it to execute concurrent statements for multiple client threads. (The server

component might also request a separate connection for each thread, although the

initialization of each of these connections can consume quite a bit of overhead.)

By default, a connection automatically commits changes after executing each

statement. However, you can disable auto-commit for a connection, and explicitly

commit or roll back transactions using commit and rollback methods defined by the

Connection class. All statements on the same connection reside in the same

transaction space; they are all committed or rolled back together. Therefore, if

statements for two logically separate transactions are executing concurrently on the

same connection, the first transaction that commits or rolls back will commit or roll

back all other current transactions.

Persistent
Data Object

ResultSet

Statement

Connection

DriverManager
Application code
calls methods of
DriverManager,
Connection,
Statement, and
ResultSet objects

Data Store

Persistent-Aware
Component
Chapter 1 Overview of Persistence Programming 11

To use multi-threaded database access safely, you must either open and close

connections as they are needed by individual transactions and suffer the resultant

performance degradation, or use a JDBC connection manager interface that manages

a pool of connections for use by multiple transactions.

Transparent Persistence

To resolve some of the portability, synchronization, and concurrency limitations of

the JDBC programming model, Forte for Java provides an alternative programming

model, known as Transparent Persistence. Transparent Persistence, in addition to

resolving JDBC limitations, also automates and manages persistence operations,

making them generally easier to code than by using JDBC.

■ Automation

Transparent Persistence automates the mapping between persistent data objects

and information in a data store, and also automatically generates database query

and update code. The Transparent Persistence tools used for this automation

accommodate a range of data stores, making persistence logic within an

application not only transparent to programmers, but portable across various

database systems.

■ Persistence Management

Transparent Persistence also provides runtime classes for managing persistence

operations. The Transparent Persistence runtime classes not only perform

persistence operations transparently (you do not have to write mapping code or

write database-specific query and update statements), they also provide services

for managing transactions, concurrency, and connection pooling.

The following sections provide a high-level introduction to the Transparent

Persistence programming model. A full description of the Forte for Java Transparent

Persistence features and programming model is provided in Chapters 3, 4, 5, and 6.

Transparent Persistence Programming Model

The Transparent Persistence programming model, unlike JDBC, automates most of

the software layers identified in FIGURE 1-1.

■ You don’t have to explicitly obtain a connection to a data store.

■ You don’t need to write or execute SQL statements.

■ You don’t have to write mapping code.

Instead, the Forte for Java Transparent Persistence feature lets you view and

manipulate persistent data stored in JDBC-compliant databases as Java objects,

without the need to know SQL, the JDBC API, or database programming. You use
12 Programming Persistence • August 2001

Transparent Persistence tools to create persistence-capable classes. These are classes

used to represent persistent data and for which the Transparent Persistence runtime

system can automatically perform and manage persistence operations.

To create persistence-capable classes, you use Forte for Java Transparent Persistence

tools that generate class definitions from database schema or that map existing

classes to database schema. The Transparent Persistence tools also enhance these

classes so that the Transparent Persistence runtime can dynamically generate

statements specific to the data store. These statements are used to perform

persistence operations on the database to which the persistence-capable class was

mapped.

FIGURE 1-3 illustrates the runtime objects involved in Transparent Persistence

persistence operations. These objects are instances of classes that implement

interfaces in the Transparent Persistence API. These objects are referenced by code in

a persistence-aware component, also shown in FIGURE 1-3, that interacts with the

Transparent Persistence runtime to perform persistence operations.

For example, to read data into a persistence-capable class instance, you obtain a

Persistence Manager from a Persistence Manager Factory object, then obtain a Query

from the Persistence Manager, pass it parameters, and execute it. In this case, the

Transparent Persistence runtime system creates a collection of instances of the

persistence-capable class and populates it with the results of the query.

Similarly, you can write values from a new persistence-capable class instance into

the database by calling the makePersistent method of the Persistence Manager.

The required connection, managed by the Connection Factory and the data store,

generates the appropriate data-store-specific statements (based on the persistence-

capable class definition) and sends them to the data store for execution.

You must perform any writing of data to the database in a transactional context. You

do this by obtaining a Transaction object from the Persistence Manager. You use this

object to begin a transaction, then commit or roll back the transaction. Any data

manipulation of persistent instances between begin and commit is part of the same

transaction. The transaction is entirely within your control.

Each Persistence Manager can support only one transaction. Thus, each thread that

will perform a transaction generally obtains its own Persistence Manager. The

Transparent Persistence runtime system, however, supports both concurrency

management and connection pooling, allowing this system to scale appropriately.
Chapter 1 Overview of Persistence Programming 13

FIGURE 1-3 Transparent Persistence Programming Model

In the Transparent Persistence programming model, concurrency and connection

management are performed by the Persistence Manager Factory and corresponding

Connection Factory. You configure the Persistence Manager Factory for a particular

data store and login name, and you can set properties such as the type of

concurrency and connection management to be supported by the Transparent

Persistence runtime system for each Persistence Manager instance.

■ Concurrency

You can choose between data store and optimistic concurrency. Data store

concurrency uses the underlying database locking mechanism (if any) for the

duration of the transaction, while optimistic concurrency allows for database

reads to take place by multiple threads, but checks that no change has taken place

to a database row before writing to it. Optimistic concurrency generally provides

higher performance when multiple users are accessing the same data, and the

duration between reading and updating the data is dependent on user “think

time.”

■ Connection Management

The Persistence Manager Factory can be configured to manage a connection pool,

in which connections are shared and recycled among a number of Persistence

Manager instances, thus optimizing on connection resources. Connection pooling

provides for higher performance when large numbers of threads are accessing the

same databases.

Persistent
Data Object

Query

Tr
an

sa
ct

io
n

Persistence Manager

Connection Factory
Application code
calls methods of
Persistence
Manager,
Transaction, and
Query objects

Data Store

Persistent-Aware
Component

Persistence Manager
Factory

Instance of a
persistence-capable
class
14 Programming Persistence • August 2001

CHAPTER 2

Using Java Data Base Connectivity

Forte for Java provides a JDBC (Java Database Connectivity) module that automates

many programming tasks that you use when building client components or

applications that interact with a database.

The goal of the Forte for Java JDBC module is to increase your productivity when

programming visual forms that contain Swing (Java Foundation Class) components

that use JDBC to retrieve and update database tables. You can use this module to

assist you in generating simple, two-tiered application architectures.

This chapter describes the following JDBC productivity enhancement tools provided

by Forte for Java, and begins with a brief description of the steps you follow in

creating a JDBC application. The tools include:

■ Database Explorer

■ JDBC JavaBeans components

■ JDBC Form Wizard

Programming JDBC

This section provides a brief introduction to JDBC programming tasks,

supplementing information provided in “JDBC Programming Model” on page 10.

General Programming Steps

When you perform JDBC programming, you follow these general programming

steps:

1. Import relevant classes within your code.

2. Load a JDBC driver.
15

3. Establish a connection with a database.

4. Create a Main method.

5. Create try and catch blocks and retrieve exceptions and warnings.

6. Set up and use database tables.

a. Create a table.

b. Create JDBC statements.

c. Execute Statements to perform persistence operations.

i. Enter data into a table.

ii. Obtain data from a table.

iii. Create an updatable result set (RowSet).

iv. Insert and delete rows programmatically.

d. View changes in a ResultSet by managing the Transaction Isolation Level.

Forte for Java simplifies most of these tasks, generating JDBC code either through

your editing of the Forte for Java JDBC JavaBeans component properties or through

your use of the JDBC Form Wizard.

JDBC Reference Materials

While this chapter provides a discussion of JDBC programming in the context of the

Forte for Java IDE, it assumes familiarity with the basics of the JDBC programming

model. For additional information about JDBC, you can review the following

reference materials, grouped by function.

Learning JDBC Programming

The Java Developer Connection provides an excellent tutorial on JDBC:

http://developer.java.sun.com/developer/onlineTraining/new2java/
programming/learn/jdbc.html

In addition, the Java Developer Connection supplies a JDBC Short Course:

http://developer.java.sun.com/developer/onlineTraining/Database/
JDBCShortCourse/index.html
16 Programming Persistence • August 2001

Technical Articles

Sun has produced a document entitled:

“Duke’s Bakery – A JDBC Order Entry Prototype – Part I”:

http://developer.java.sun.com/developer/technicalArticles/
Database/dukesbakery/

Getting Started With JDBC

The following index is a reference when starting to program using JDBC:

http://developer.java.sun.com/developer/technicalArticles/
Interviews/StartJDBC/index.html

Another document is “Of Java, Databases, and Really Cool Dead Guys”:

http://developer.java.sun.com/developer/technicalArticles/
Interviews/Databases/index.html

JDBC Basics

You can find additional information on JDBC within the Sun tutorial:

http://java.sun.com/docs/books/tutorial/index.html

This tutorial also provides some references:

http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html

Using the Database Explorer

Before you begin the process of writing JDBC code, you need to understand the

database that your application will use. To obtain database information, you can use

the Forte for Java Database Explorer.

Using the Forte for Java Database Explorer, you can perform the following tasks:

■ Browse database structures

■ Examine all tables present in the database, including column and index

information

■ Examine SQL views related to the database
Chapter 2 Using Java Data Base Connectivity 17

■ Examine all stored procedures defined in the database

■ View database data

■ Create tables

■ Create views

■ Take “snapshots” of database structures

■ Monitor SQL commands sent to the database

■ Connect to a database

To learn how to perform these tasks, refer to the Database Explorer Help within the

Forte for Java IDE.

Using JDBC Components

Forte for Java provides database connectivity and JDBC code generation tools for

visual forms and components, specifically providing two basic types of components

that you can use with your JDBC application:

■ Visual Components—Swing components let you display tabular database

information. Within Forte for Java, use Swing visual components to create forms

that relay database data to the user; swing components provide the means to let

you manipulate row data and display columns. Forte for Java generates the

appropriate Swing code for you. Another type of visual component is a Data

Navigator–a JDBC component that you add to a form to manipulate the display

of data to the user.

■ Non-visual components—JavaBeans components that do not have visual

representation, but can be used to manipulate data from a database. One type of

non-visual component is a RowSet , which is a type of row group that contains

information from the database. To understand how to use JDBC JavaBean

components, you need to:

■ Understand the JDBC tab

■ Understand how to program applications with JDBC components by:

■ Creating a Visual Form with Forte for Java

■ Using the Forte for Java Component Inspector with JDBC JavaBeans

components
18 Programming Persistence • August 2001

The JDBC Tab

The JDBC tab in the component palette contains icons for a number of JDBC

JavaBeans components that you can use to facilitate the interaction of Java Swing

components with a database. These components have properties that you customize

using the Forte for Java Component Inspector.

The components include:

■ Connection Source
■ Pooled Connection Source
■ NB Cached RowSet
■ NB JDBC RowSet
■ NB Web RowSet
■ Stored Procedure
■ Data Navigator

Connection Source

A Connection source is a non-visual component that provides a connection to a

JDBC compliant database. When you configure the Connection Source , you set:

■ database URL

■ JDBC driver name

■ user name

■ password

Pooled Connection Source

A Pooled Connection Source component is similar to a Connection Source .

However, when you specify the use of a Pooled Connection Source with your

application, database connections that are established during application runtime

are not closed when the application ceases to use the connection.

Instead, Forte for Java retains the connection in a pool for subsequent use within the

runtime application. You can use a Pooled Connection Source when your

application performs frequent open and close requests against a database to which it

is connected.

Understanding RowSets

A RowSet component represents rows fetched from the database. You can use these

components to configure data models for several Swing components.
Chapter 2 Using Java Data Base Connectivity 19

RowSet Background

A RowSet object contains a set of rows from a JDBC result set or another source of

tabular data, such as a file or spreadsheet.

Depending on how you implement them in your code, RowSets can be serializable

or extensible to non-tabular sources of data.

Because a RowSet object follows the JavaBeans model for properties and event

notification, it is a JavaBeans component that can be combined with other

components in an application.

RowSets can be either connected or disconnected, depending on their

implementation. A disconnected RowSet obtains a connection to a data source to fill

itself with data or to propagate changes in data back to the data source, but most of

the time it does not have a connection open.

Even when it is disconnected, a RowSet does not require the use of a JDBC driver or

the full JDBC API, so its size is small. A disconnected RowSet is an ideal format for

sending data over a network to a thin client.

Types of RowSets:

The JDBC Tab makes three different types of row sets available:

■ NB Cached RowSet

The NBCachedRowSet is a disconnected RowSet that caches its data in memory.

This special type of RowSet is suitable for smaller sets of data. You can use it to

create JDBC applications that provide code to operate on thin Java clients, such as

Personal Digital Assistants (or PDAs).

When a RowSet is disconnected from its data source, any updates that

application writes on the RowSet are propagated to the underlying database.

■ NB JDBC RowSet

The NBJDBCRowSetrepresents a JavaBeans™ wrapping of a connected ResultSet

object to be used in models of Swing components. It can be used to read

extremely long tables more efficiently than a cached RowSet, which stores all data

in an internal cache.

■ NB Web RowSet

The NBWebRowSetrepresents a set of fetched rows in a cache to be used in

models of Swing components. It provides all cached RowSet functionality, and

enables the rows to be imported and exported in XML format. The file can then be

sent over the internet using HTTP/XML protocols.
20 Programming Persistence • August 2001

You can customize a JDBC RowSet by setting the following properties under the

properties tab in the Properties Editor:

Other Properties, Event, and Code Generation Tabs for a
RowSet

The Other Properties Tab for a RowSet enables you to inspect and modify additional

properties.

TABLE 2-1 RowSet Properties

Property Definition

Command SQL query to populate this RowSet . The query can be any

syntactically-correct SQL Select Query.

Connection provider The configured connection source; a drop-down list provides

choices.

Read-only If True, this RowSet is read-only. Data from the RowSet cannot

be written out to the database.

Rowcount The number of rows.

Status Status of a read against a RowSet

Transaction isolation determines how the RowSet handles data under transactions.

For detail, see Java documentation for java.sql.Connection .

XML output directory

(WebRowSet only)

Identifies the directory where data from the WebRowSet will be

sent.

XML Output File

(WebRowSet only)

Determines the name of the file that will contain the XML output

from a WebRowSet.

TABLE 2-2 RowSet Other Properties Tab Properties

Property Definition

Database URL The location of the database where records will be updated. In most

cases, it is the same URL as listed in the Database URL property of

Connection Source.

Default Column

Values

The values to be inserted into a new row. You can press Fetch

Columns to retrieve a list of columns in the RowSet.

Execute on load If true , the NB RowSet can be executed on load. You can specify a

parameter with the Execute on Load from a Form Connection, and

you can generate initialization code.
Chapter 2 Using Java Data Base Connectivity 21

The Event Tab for a RowSet enables you to inspect and modify events associated

with RowSets.

The Code Generation Tab enables you to specify pre- and post-processing code

related to a rowset.

Password A password the user must supply to gain access to the table that

contains this NB RowSet.

Table Name The name of a database table where records will be updated.

User Name The name of a user updating records.

TABLE 2-3 RowSet Event Tab Properties

Property Definition

cursorMoved Specifies event handlers for the cursorMoved event. This method is

called when an NBCachedRowSet’s cursor is moved.

rowChanged Specifies event handlers for the rowChanged event. This method is

called when a row in a RowSet is changed.

rowInserted Specifies event handlers for the rowInserted event. This method is

called when a row in a RowSet is inserted.

rowSetChanged Specifies event handlers for the rowSetChanged event. This

method is called when an RowSet is changed.

rowCompleted Specifies event handlers for the rowCompleted event. This method

is called after an inserted row is committed to the database.

TABLE 2-4 Code Generation Tab Properties

Property Definition

Code Generation Choose between generating standard or serialization code for the

component.

Custom Creation

Code

Enter your own creation code for the component, not including the

variable name and equal sign (=). This creation code is called in the

initComponents() method. If this property is left blank, the IDE

generates a default creation code for the component.

Post-Creation Code,

Post-Init Code, Pre-

Creation Code, and

Pre-Init Code

Write custom code that you want the IDE to place before and after a

component’s creation code and before and after its initialization

code. The IDE always places creation code before initialization code

in initComponents() .

TABLE 2-2 RowSet Other Properties Tab Properties (Continued)

Property Definition
22 Programming Persistence • August 2001

Data Navigator

The JDBC module provides a visual component that provides direct navigation of a

RowSet with a pre-built GUI. This component is useful when you need to create

prototypical applications and when you want to create data entry applications.

You can customize a Data Navigator by setting the following properties under the

properties tab in the Properties Editor of a Data Navigator.

Stored Procedures

Stored procedures are a group of SQL statements that form a logical unit and

perform a specific task. Stored procedures encapsulate operations or queries that

execute on a database server. Such procedures, of course, vary in their nature

according to the database management system (DBMS) on whose server they

execute.

Serialize To Set the name of the file for the component to be serialized to, if it is

serialized.

Use Default

Modifiers

Set to True if you want the component’s variable modifiers (public,

private, and so on) to be generated using the default modifiers. The

default modifiers are specified in the Variables Modifier property of

the Form Objects node in the Options window. (Choose Tools >

Options to view the window.) Set to False if you want the Variables

Modifier property to appear on the component’s property sheet,

enabling you to override the default modifiers.

Variable Name Modify the component’s variable name.

TABLE 2-5 Data Navigator Properties

Property Definition

AutoAccept Automatically accept changes in the database. When you specify

this property, changes you make through the Navigator are either

immediately propagated to the database, or added to the RowSet

and propagated to the database when you request it.

Bound RowSet The RowSet to be controlled by the Data Navigator.

Layout of buttons Determines whether buttons are displayed in one or two rows.

Modification buttons Enables or disables the display of buttons for modification.

TABLE 2-4 Code Generation Tab Properties (Continued)

Property Definition
Chapter 2 Using Java Data Base Connectivity 23

Within the Forte for Java IDE, a stored procedure is a non-visual component that

represents a database stored procedure in your JDBC application. You can call a

stored procedure in response to an event initiated by a user within an application

GUI (such as a button click).

The syntax for a stored procedure is different for each database management system

that Forte for Java supports. For example, one database management system might

use begin , end , or additional keywords to indicate the beginning and ending of the

procedure definition, while a second DBMS might use other keywords to indicate

the same parts of the procedure definition.

The JDBC Tutorial provides information on some of the stored procedures you can

create for different databases, in addition to information on calling a stored

procedure from your JDBC application.

You can customize a stored procedure by setting the following properties under the

properties tab in the Properties Editor of a stored procedure. Once you have

specified these properties in the property sheet, you can connect stored procedures

to any user action.

Programming With JDBC Components

Use the visual and non-visual components provided in the JDBC module in

conjunction with Swing components to create forms that you use to retrieve and

manipulate database data.

For example, a number of Swing components (JList , JTable , JComboBox,

JButton , JToggleButton , JRadioButton , and JCheckbox) are associated with

data models for the data they display. Within the IDE, you use Property Editors and

the Component Inspector to customize the data model for these Swing components

TABLE 2-6 Stored Procedure Properties

Property Definition

Arguments Represents database data that you want used by the stored

procedure when called from the application.

Bound RowSet Enables you to select a RowSet from a drop-down list that is

refreshed from the database after the stored procedure is called.

Call format Format in which your stored procedure is called. For example, it

might include Name and Arguments that are substitution codes for

the properties with those names on this property sheet.

Connection provider A configured connection source in whose context the stored

procedure is to be called from the application.

Name The name of your called stored procedure.
24 Programming Persistence • August 2001

by specifying the JDBC components with which they interact to access a database.

After you have completed specifying the JDBC components, Forte for Java generates

the corresponding JDBC code.

Setting Data Models for Components

The following Swing components have associated data models.:

■ JList
■ JTable
■ JComboBox
■ JButton
■ JToggleButton
■ JRadioButton
■ JCheckbox

You can configure these data models to use data from the database.

The most common component to display database tables is JTable . The model can

be configured in the property sheet of each Swing component (under the model

property).

Selecting Database Columns

Components that can display multiple rows, such as JTable or JList , also have

the selectionModel property.

JList and JComboBox also have a special kind of model. This model consists of

using one column from one RowSet to work with another column from another

RowSet to display data, using a SQL join. See below for details.

Text components which have the document property (such as JTextField ,

JTextArea , JPasswordField , JTextPane , and JEditorPane) can set up this

property to use data from the database.

▼ To Configure the Data Model for JTable

1. For the model property in the JTable 's property sheet, open the custom property
editor by clicking on the value of the property and then clicking the ellipsis (…)
button that appears.

2. Choose the TableEditor mode.

3. In the RowSet field, choose the RowSet to be displayed in the table.

4. Use Fetch columns to load column names into the list.
Chapter 2 Using Java Data Base Connectivity 25

5. Use the Add, Remove, Edit, Move Up, and Move Down buttons to set the names
and order of the columns in the table.

6. Click OK to preserve the changes and close the custom property editor.

▼ To Configure the Selection Model for JTable and JList

1. For the selectionModel property in the component's property sheet, open the
custom property editor by clicking on the value of the property and then clicking
the ellipsis button (…) that appears.

2. In the RowSet field, choose the RowSet to be displayed in the table or list.

3. Click OK to preserve the changes and close the custom property editor.

▼ To Configure the Data Model for JList and JComboBox

1. For the model property in the component's property sheet, open the custom
property editor (by clicking on the value of the property and then clicking the
ellipsis button (…) that appears).

2. For the Primary RowSet fields, choose the RowSet for the data model to retrieve
rows from, and then select one column from the Column drop-down list.

3. If you want, in the Secondary RowSet field, choose the RowSet to display data
from (according to a SQL join). Corresponding columns from the primary and
secondary RowSet must have the same data type.

4. If the Join check box is checked, a corresponding component displays the result of
a database join. If it is unchecked, a corresponding component is used as a code
map to set values in the primary rowset.

5. Choose a Data column (join column) and Display column (visible data). Click OK
to preserve the changes and close the custom property editor.

▼ To Configure the Data Model for JCheckbox ,
JRadioButton , and JToggleButton

1. For the model property in the component's property sheet, open the custom
property editor (by clicking on the value of the property and then clicking the
ellipsis (…) button that appears).

2. Choose the RowSet from which the data is to be fetched.

3. Choose a column; data from this column will be used to decide if the component
should be selected.

4. Enter the database value corresponding to a selected component into the Select
field and the value of an unselected component into the Unselect field.
26 Programming Persistence • August 2001

5. Click OK to preserve the changes and close the custom property editor.

▼ To Configure the Document Model for Text Components

1. For the document property in the component's property sheet, open the custom
property editor by clicking on the value of the property and then clicking the
ellipsis button (…) that appears.

2. Choose the RowSet from which the data is to be fetched.

3. Choose a column in which to display the text component.

4. Click OK to preserve the changes and close the custom property editor.

Creating a Visual Form

After you have used the Property Editor to customize Swing components in your

application, Forte for Java enables you to create a visual form associated with the

Swing components that interacts with the database.

▼ To Create a Visual Form With Swing Components That
Interact With a Database

1. Create a Swing component form using a template provided in the Forte for Java
IDE.

2. Add any needed Connection Source (or Pooled Connection Source),
RowSet , or Stored Procedure nonvisual components to your form from the
Component Palettes.

3. Using the corresponding Property Editor, customize these components for the
database entities they represent.

4. Add any visual components you need, including the Data Navigator.

5. Use the corresponding Property Editor to customize the visual components
appropriately, referencing the RowSet components you need.

As you specify the Swing components to use with your JDBC application, Forte for

Java automatically creates the correct Swing classes to use in your application.

6. Use the Properties Editor for the specified form to indicate exceptions that should
be caught during runtime and run the form.
Chapter 2 Using Java Data Base Connectivity 27

Using the Component Inspector With JDBC Components

You can use the Forte for Java Component Inspector to modify properties for

components you use in your JDBC application. The following components can be

found under Non-visual Components in the Component Inspector:

■ NB Cached RowSet
■ NB JDBC RowSet
■ NB Web RowSet
■ Connection Source
■ Pooled Connection Source
■ Stored Procedure

The Data Navigator component and other Swing components are shown

according to their position in the container hierarchy.

Using the JDBC Form Wizard

The JDBC Form Wizard guides you through the creation of a form that can interact

with database tables. It provides a substitute for the explicit editing of properties

that you would otherwise perform if you used the approach outlined in “Using

JDBC Components” on page 18. When you finish running the wizard, you will have

a generated application, a file name for the application, and a package.

The following sections illustrate the JDBC Form Wizard, using the sample PointBase

Server Database that comes included with the Forte for Java IDE.
28 Programming Persistence • August 2001

▼ To Open the JDBC Wizard

● Select Tools > JDBC Form Wizard

FIGURE 2-1 JDBC Form Wizard, Opening

Establishing a Connection

When you use the JDBC Form Wizard or when you use the JDBC tab to create a

JDBC client application, one of the first tasks you must perform is to establish a

connection with the database management system that you want to use.

Typically, the JDBC Form Wizard or Forte for Java connection generates the code

that you can use in your JDBC application when you use the Visual Form Editor or

the JDBC Form Wizard to create a form. The application uses the form to populate

information that it obtains from a database management system.
Chapter 2 Using Java Data Base Connectivity 29

FIGURE 2-2 JDBC Form Wizard, Database Connection

The second panel of the JDBC Form Wizard lets you establish a connection with a

database. You can specify the use of a pooled connection for a DataSource in this

panel.

When you need a new connection, you must supply:

■ The name of your database. For example, PointBase Network Server.

■ The JDBC driver name for the database. For example,

com.pointbase.jdbc.jdbcUniversalDriver .

■ The Database URL where the database is located. For example,

jdbc.pointbase://localhost:9092/sample .

■ User Name

■ Password

■ Select the Use Pooled Connection Source check box to specify an optional pooled

connection.

■ Optionally select the Advanced tab to specify a schema to get tables.

Forte for Java provides these parameters to the JDBC application code that it

generates.
30 Programming Persistence • August 2001

You can select an existing connection by clicking the Use Existing Connection radio

button, and selecting the connection from the drop-down list.

When you select the Next button, Forte for Java calls a method that creates a

database connection based on parameters you enter. You use this connection to the

database in the same way that you use the wizard to write JDBC application code.

Selecting Database Tables or Views

The third panel of the JDBC Form Wizard lets you:

■ Select a table or view in the database to which you are connected.

■ Specify that you want only read access to a specific table for your generated JDBC

application. This means that the application cannot alter data in the database.

■ Add a rowInserted event handler to a table. This event handler handles the

listening for events associated with the application’s insertion of rows into the

tables you select.

■ Set the Transaction Isolation level for a table. See “Transaction Isolation Levels”

on page 32.

■ Provide a SQL command to run against the tables you specify.

The JDBC Form Wizard lets you execute SQL statements against tables you specify

in the Wizard. You use the data from the SQL output to populate visual forms. You

can specify SQL statements which, when applied to a specific form, generate the

appropriate SQL code. In FIGURE 2-3, Forte for Java provides a default SQL command

to use with the table you have selected.
Chapter 2 Using Java Data Base Connectivity 31

FIGURE 2-3 JDBC Form Wizard, Select a Table

Transaction Isolation Levels

To avoid conflicts during a transaction, a database management system uses locks.

Locks are operative until the application commits the transaction or rolls it back

from the database.

Locks are set according to a transaction isolation level. Locks apply to the entire

ResultSet that is returned to the application or committed from the application to

the database.

Each database management system provides its own default transaction isolation

level. Forte for Java lets you choose between the transaction isolation levels within

the second panel of the JDBC Form Wizard.

Note – The driver and the data base management system must support the

transaction isolation level you use.
32 Programming Persistence • August 2001

Selecting Columns to Display

The fourth panel of the JDBC Form Wizard lets you select columns from the

database tables to include in the form that is displayed. In this panel, you can

specify:

■ Columns you want displayed in the application you generate

■ The order of the columns you want displayed

■ Column parameters:

■ Column title

■ Column editability

■ Default column value

■ A Swing component to display the table in the application

In the example provided, JTable (the most common Swing form) is used. The

JTable form displays more than one column of data in the application.

TABLE 2-7 Transaction Isolation Levels

Property Definition

TRANSACTION_READ_COMMITTED Prohibits a transaction from reading a row that has

uncommitted changes in it.

SERIALIZABLE Includes the prohibitions in

TRANSACTION_REPEATABLE_READ.It prohibits the

situation where one transaction reads all rows that

satisfy a WHEREcondition, a second transaction

inserts a row that satisfies that WHEREcondition, and

the first transaction rereads for the same condition,

retrieving the additional “phantom” row in the

second read.

TRANSACTION_NONE Transactions are not supported.

TRANSACTION_REPEATABLE_READ Prohibits a transaction from reading a row with

uncommitted changes in it. It also prohibits the

situation where one transaction reads a row, a

second transaction alters the row, and the first

transaction rereads the row, getting different values

the second time (that is, a non-repeatable read).

TRANSACTION_READ_UNCOMMITTEDA row changed by one transaction can be read by

another transaction before changes in that row are

committed to the database. If changes are

subsequently rolled back, the second transaction

retrieves an invalid row.
Chapter 2 Using Java Data Base Connectivity 33

Other Swing component choices include:

■ Jlist : displays a column in a list

■ JComboBox: displays one column in a combo box

■ JTextField : displays one or more columns in a text field

In FIGURE 2-4, the first Column is selected. It can be removed or moved in position.

FIGURE 2-4 JDBC Form Wizard, Select Columns

If you choose JList or JComboBox, only one column can be displayed, and you can

choose a column to display from the Name property:

1. Select a value in the Name column.

2. Select a column name from the built-in combo box.

▼ To Edit Column Titles

1. Click on the Title field you want to edit. An edit window appears with two tabs.

2. Select the String Value tab to enter the new name as a simple string value.

3. Select Resource Bundle to enter the name using a resource bundle. Enter the name
of the bundle into Bundle Field, and select any related keys from the Keys combo
box.
34 Programming Persistence • August 2001

4. Select OK to close the edit window.

Selecting a Secondary RowSet

This panel displays a list of all available tables according to the database connection

created on the Connection panel and is enabled only if a view supporting two

RowSets (JList of JCheckbox) is selected.

You can use this panel to populate the secondary RowSet of the generated

application.

▼ To Select a Secondary RowSet

1. Check Use Secondary Rowset.

If you check this rowset, the secondary rowset is used in the generated application.

2. Select either the Tables or Views radio button.

3. Select a type of rowset from the RowSet type combo box.

4. Select a table or view from the list.

5. Check Read-only if you want the corresponding rowset to be read-only.

6. Check Add rowInserted event handler to add a rowInserted event handler to the
source code of the generated application.

The handler is called when a new row is inserted and enables the creation of default

column values dynamically.

7. Choose a transaction isolation level for the rowset using one of the values in the
Transaction isolation combo box.

The default transaction level is READ_COMMITTED.

8. Use the SQL_command text field to prepare SQL to populate the rowset.

By default, Forte for Java generates the text select * from table-name .

9. Select a data column to use with a database join.

Selecting this column will display a different field other than the primary column

retrieved; however, it must be of the same data type as the primary column.
Chapter 2 Using Java Data Base Connectivity 35

FIGURE 2-5 JDBC Form Wizard, Select Secondary RowSet

Previewing and Generating an Application

The last panel shows a preview of a generated application. Use this panel to

complete your generated application. In addition, you can select a package and a file

name to create a completed application.

Provide the name of the package under Package and the target file under Target.

You can view the component layout and the layout from the view of the Data

Navigator. What you view depends on the Swing form you have chosen to contain

the data that is manipulated in your application.
36 Programming Persistence • August 2001

FIGURE 2-6 JDBC Form Wizard, Finish the Wizard

Running Your JDBC Application

You can compile, run, and debug JDBC applications as if they were any other form.

If you need special JDBC drivers, ensure they are in Forte for Java’s CLASSPATH, so

they will, by default, be available for external compiling, executing, and debugging

of JDBC-based forms.

You can run your application external to the IDE by adding paths to these packages

into your CLASSPATH:

■ modules/ext/sql.jar
■ modules/ext/rowset.jar
■ lib/ext/jdbc20x.zip
■ A corresponding JDBC driver. JDBC drivers are typically stored in lib/ext.

If a WebRowSet is used in your JDBC application, two more JAR files are required:

■ lib/ext/parser.jar
■ lib/ext/xerces.jar
Chapter 2 Using Java Data Base Connectivity 37

38 Programming Persistence • August 2001

CHAPTER 3

Transparent Persistence Overview

The Forte for Java Transparent Persistence feature lets you view and manipulate

persistent data stored in JDBC-compliant databases as Java objects, without the need

to know SQL, the JDBC API, or database programming. This chapter provides a brief

overview of the Transparent Persistence programming model.

Whenever you see the terms classes, fields, and objects in this manual, they refer to

classes, fields, and objects for the Java platform.

What Is Transparent Persistence?

Transparent Persistence allows you to access information in data stores as Java

objects, allowing for the separation of Java programming from database

programming. This is done through persistence-capable Java classes, which contain

data from a persistent data store, eliminating the need for SQL or coding specific to

a particular data store.

Using Transparent Persistence and its mapping capabilities, you start with a

relational database and map the columns of relational tables to automatically-

generated or pre-existing Java classes. Transparent Persistence generates

relationships between the Java classes that correspond to relationships between

database tables. Tables and columns that are linked in the database by foreign keys

are similarly connected in Java classes using reference or collection relationships.

Applications access the data store through operations on objects using the Java

programming language, without knowing the database schema or using special

database access languages. You can insert business logic into these Java

programming language classes by defining additional methods and extending the

automatically generated methods.
39

Transparent Persistence lets you map Java classes to a database schema

automatically, using either of two methods:

■ Database->Java mapping

This method generates Java classes from a database schema, creating persistence-

capable classes mapped to any or all tables in the schema. This approach is best if

you do not yet have any classes to be mapped.

■ Meet-in-the-middle mapping

This method creates a custom mapping between an existing schema and existing

Java classes. Use this approach if you already have classes that you want to use to

access persistent data. You can also use it to fine-tune classes generated by

Database->Java mapping.

Transparent Persistence also has a set of runtime libraries accessed by the

Transparent Persistence API. This API is a set of Java classes for accessing the

persistent objects from the underlying database, providing the framework for

running the mapped Java classes.

Application developers can work with a set of Java classes that represent the

persistent data their applications need. When an application needs to get data, the

developer calls methods of a Persistence Manager or Query instance, which returns

instances of persistence-capable classes. Another way to obtain data from the

datastore is to navigate reference or collection relationships among persistent

instances. When the application needs to change data it calls methods of the

persistence-capable instances.

The Forte for Java Transparent Persistence module is a preview implementation of

the forthcoming Java Data Objects (JDO) specification. A JDO implementation is a

scalable, portable implementation of the Persistence Manager and other pieces of the

JDO environment defined in the specification. Each JDO implementation enables

persistence-capable classes to interact with some types of database software,

connection managers, and so on.

Programming Transparent Persistence

Transparent Persistence anticipates two different types of developers, one with data

store knowledge and the other with application knowledge, each working on

different tasks:

■ Developing persistence-capable classes

■ Developing persistence-aware applications
40 Programming Persistence • August 2001

Developing Persistence-Capable Classes

As a developer creating persistence-capable classes, you create a set of classes that

model the data in a persistent data store. Chapter 4 describes the wizards you can

use to develop these classes.

▼ To Create Java Packages From a Database

Schema

1. Capture a database schema using the schema capture tool.

This creates a file system representation of the database schema that you can use

without a live connection to the database.

2. Map persistence-capable Java classes to your database schema, using one of the
following methods:

■ Use the Java Generator wizard to generate new Java classes from the captured

database schema tables along with a mapping from the generated classes to the

schema’s tables.

■ Use the Map to Database wizard to make existing Java classes persistence-

capable, and map the database schema to those classes. You can also use this

wizard to customize an existing mapping. For example, you could unmap a field,

map a newly added field, map the class to a table in a different schema, or modify

the mapping after changing and recapturing a schema.

3. Add business logic to generated classes.

Edit the source code for the Java classes that correspond to database data. Typically,

you add your business logic to these classes. You might add code to an existing or

generated method, or you might add additional methods to these classes.

4. Compile the source code files.

After coding is complete, compile the Java class source files using the Forte for Java

IDE. These are the classes representing database tables.

5. Archive or package the persistence-capable and persistence-aware classes.

Package the classes into the .jar file (either for deployment or another

development stage that will not change persistence-capable classes) inside Forte for

Java. Forte for Java will determine whether theses classes are persistence-capable or

persistence-aware classes and enhance them for Transparent Persistence before

adding them to the .jar file. The Enhancer automatically adds all the necessary

support to the byte-code of the class to enable the class to cooperate with the

Transparent Persistence runtime upon accessing persistent fields.
Chapter 3 Transparent Persistence Overview 41

Note – If you choose to run or debug the application inside Forte for Java using the

Persistence Executor or Persistence Debugger, the byte-code enhancement will be

done by a special class loader; in this case, there's no need to package the

persistence-capable or -aware classes in a .jar file.

Developing Persistence-Aware Applications

As a developer creating persistence-aware applications, you need to know which

persistence-capable classes model the application domain data, and the standard

Transparent Persistence API for working with those classes. These standard calls

allow the you to select, update, insert, and delete data from the data store. These

calls are discussed in Chapter 5.

After you have persistence-capable Java classes corresponding to database tables,

you can write applications that use those Java classes. When you use the mapped

classes, all of the necessary JDBC statements are generated for you automatically.

You are responsible for transaction demarcation and specifying queries to find

objects of interest in the database. The query is a Java expression-like boolean filter

that is translated into an SQL select statement. See “Querying the Database” on

page 113 for more information on writing queries.

Mapped Java classes can also be accessed directly in Java Server Pages (JSP™) using

Transparent Persistence tags provided as part of JSP. These tags are discussed in

Appendix B, and in Building Web Components.

Transparent Persistence and Enterprise JavaBeans

Enterprise Java Beans™ (EJB™) is a component architecture for development and

deployment of distributed business applications. Transparent Persistence supports

integration with Enterprise JavaBeans components in the following areas:

■ With Stateful and Stateless session beans as the persistence-aware components

that use persistence-capable classes directly as dependent objects;

■ With Bean-Managed Persistence Entity Beans as persistent components that use

persistence-capable instances as delegate objects to actually implement business

methods by accessing and possibly modifying persistent state.

Container-Managed Persistence Entity Beans are not supported in this release.

The integration with Enterprise JavaBean components is described in more detail in

Chapter 6.
42 Programming Persistence • August 2001

CHAPTER 4

Developing Persistence-Capable
Classes

This chapter describes how to use Transparent Persistence to map between a set of

Java programming language classes and a relational database.

Mapping Capabilities

Mapping refers to the ability to tie an object-oriented model to a relational model of

data—the schema of a relational database. Transparent Persistence provides the

ability to tie a set of interrelated classes containing data and associated behaviors to

the interrelated meta-data of the relational model. You can then use this object

representation of the database to form the basis of a Java application. You can also

customize this mapping to optimize these underlying classes for the particular needs

of an application.

The result is a single data model through which you can access both persistent

database information and regular transient program data. Application developers

need only understand the Java programming language objects; they do not need to

know or understand the underlying database schema.

The mapping changes you make here affect only the Java classes; the database

schema remains as currently defined. The database schema and the Java classes are

separate entities, as FIGURE 4-1 illustrates.
43

FIGURE 4-1 Mapping a Database to Java Classes

You can either generate both the mapping and the class model from the schema, or

map an existing set of classes to an existing schema.

Note – Transparent Persistence maps each class to tables within a single database

schema. All related classes must also map to that schema.

Mapping Techniques

A persistence-capable class should represent a data entity, such as an employee or a

department. To model a specific data entity, you add persistent fields to the class

that correspond to the columns in the data store.

The simplest kind of modeling is to have a persistence-capable class represent a

single table in the data store, with a persistent field for each of the table’s columns.

An Employee class, for example, would have persistent fields for all of the columns

found in the data store’s EMPLOYEEtable, such as lastname , firstname ,

department , and salary .

The class developer can also choose to have only a subset of the data store columns

used as persistent fields.

Database Schema Java Class Mapping
44 Programming Persistence • August 2001

You can use Transparent Persistence to map Java classes to a database schema using

one of two techniques:

■ Database to Java mapping

This technique generates Java classes from a database schema, using the Generate

Java wizard. The wizard creates persistence-capable classes mapped to any or all

tables in the schema. This approach is best if you do not yet have any classes to be

mapped.

In this scenario, you need only to choose which of the tables in the schema will be

mapped. During the modeling process, Transparent Persistence analyzes the

schema, including primary key fields and the foreign keys fields that define

relationships, and creates Java representations of them. The resulting set of objects

reflects the organization of the meta-data in the database. The Java code is

generated automatically.

■ Meet-in-the-middle mapping

This technique creates a custom mapping between an existing schema and

existing Java classes, using the Database Mapping wizard and the Properties

window. You should use this approach if you already have classes that you want

to use to access persistent data. You can also use it to modify classes generated by

the previous method.

Mapping Relationships

A relationship can be one-to-one, one-to-many, or many-to-many, depending on the

number of instances of each class in the relationship. Relationships allow you to

navigate from one object to its related objects. In the database, this might be

represented by foreign key columns and, in the case of many-to-many relationships,

join tables. In the Java code, relationships are represented by object reference—either

collections or persistence-capable type fields, depending on the relationship

cardinality.

When Transparent Persistence generates Java code, a collection field represents the

many side of a one-to-many relationship. Transparent Persistence uses a variable of

the actual persistence-capable class type to represent the single side of a one-to-

many relationship.

For example, suppose you have a department object with a relationship to a

collection of employees. You can navigate the relationship from the department

object to see all the employees associated with that department. Similarly, you can

view an employee and also see the department to which it is connected. Many

employees can exist for a department, but there can be only one department per

employee. The database uses a foreign key to make this connection.
Chapter 4 Developing Persistence-Capable Classes 45

Continuing the example, the Department class could contain an employees field

of the type HashSet . This HashSet field gives the department object the ability to

represent many employees. In addition, the Employee class contains a department
field of the type Department . The Department reference field allows an employee

to have one department.

The Department class would contain the following code:

The Employee class would contain the following code:

Relationship fields appear under the Fields node for their class. The fields have some

extra properties to indicate the related class, upper bound, lower bound, and so on.

For meet-in-the-middle mapping, these properties are not set. You need to set them

in the Properties window. See “Setting Options and Properties” on page 71 for more

information.

You can either create a relationship automatically, through the Java Generation

wizard, or by creating the correct type of field in the Java code.

Note – During Java generation, Transparent Persistence ignores a relationship field

when that field references an unmapped class. In such a case, the Transparent

Persistence module treats the relationship fields as ordinary fields.

The Java Generation wizard uses foreign keys from the database tables to determine

relationships. It interprets a join table as a table with foreign keys that refer to

different tables.

For example, suppose you have a DEPARTMENTtable and an EMPLOYEEtable with a

one-to-many relationship between DEPARTMENTand EMPLOYEE. Both tables have

primary keys. In addition, the EMPLOYEEtable has a separate foreign key column

that contains values corresponding to the DEPARTMENTprimary key, DEPID. From

this schema, Transparent Persistence generates a Department class and an

Employee class. The Department class contains a field that can hold many

employees, while the Employee class contains a field that can reference only one

department. FIGURE 4-2 illustrates this.

private java.util.HashSet employees;

private Department department;
46 Programming Persistence • August 2001

FIGURE 4-2 Foreign Keys and One-to-Many Relationships

The database uses join tables to represent tables in a many-to-many relationship. On

the Java side, the classes at both ends of the relationship use fields that can hold

multiple references to the other objects. FIGURE 4-3 shows how a many-to-many

relationship might look.

FIGURE 4-3 Foreign Keys and Many-to-Many Relationships

Note – Transparent Persistence does not support duplicate entries in join tables. The

many side of the relationship is implemented using HashSet , which does not accept

duplicate objects.

object

DEPARTMENT Table

EMPLOYEE Table

Department

Database Representation

Maps to

ID
primary key

DEPID
foreign key

DEPID
primary key

Java Representation

Collection of
Employees

Reference to
one Department

Employee
objectobjectEmployee

object

Employee
Object

EMPLOYEE Table PROJECT Table
Database Representation

Maps toEMPLOYEE
PROJECT
Join Table

EMPID
primary
key

EMPID
foreign
key

PROJID
foreign
key

PROJID
primary
key

Collection
of Projects

Collection of
Employees

Java Representation

Employee
ObjectEmployee

Object

object
objectobjectProject

object
Chapter 4 Developing Persistence-Capable Classes 47

Managed Relationships

A managed relationship between fields in a pair of classes allows operations on one

side of the relationship to affect the other side.

At runtime, if a field in one instance is modified to refer to another instance, the

referred instance will have its relationship field modified to reflect the change in

relationship.

As described below, Transparent Persistence supports:

■ One-one relationships

■ One-many relationships

■ Many-many relationships

One-One Relationships

With one-one relationships, there is a single-valued field in each class whose type is

the other class. Any change to the field on either side of the relationship is handled

as a relationship change. If the field on this side is changed from a non-null value to

null, then the field on the other side is changed from a non-null value to null. If the

field on this side is changed from null to non-null, then the field on the other side is

changed to refer to this instance. If the field on the other side had been non-null,

then that other relationship is made null before the change is made.

One-Many Relationships

With one-many relationships, there is a single-valued field on the many side and a

multi-valued field (collection) on the one side.

If an instance is added to the collection field, the field on the new instance is

updated to reference the instance containing the collection field. If an instance is

deleted from the collection, the field on the instance will be nullified.

Any change, addition or subtraction of a field on the many side, is handled as a

relationship change. If the field on the many side is changed from null to non-null,

then this instance is added to the collection-valued field on the one side. If the field

on the many side is changed from non-null to null, then this instance is removed

from the collection-valued field on the one side.

Many-Many Relationships

With many-many relationships, there are multi-valued, or collection, fields on both

sides of the relationship. Any change to the contents of the collection on either side

of the relationship is handled as a relationship change. If an instance is added to the
48 Programming Persistence • August 2001

collection on this side, then this instance is added to the collection on the other side.

If an instance is removed from a collection on this side, then this instance is removed

from the collection on the other side.

Note – No warning is given if you delete one object in a managed relationship.

Transparent Persistence automatically nullifies the relationship on the foreign key

side and deletes the object without asking for confirmation.

You can set the Java Generation options of Transparent Persistence so that managed

relationships are generated automatically. You can set these options in the Customize

Options pane of the Java Generation wizard (see “Generating Persistence-Capable

Classes From a Schema” on page 54), or by choosing Tools > Options, then choosing

Java Generation Options under Transparent Persistence (see “Java Generation

Options” on page 72).

The following procedure describes how to create a managed relationship when you

already have two classes and are taking the “meet-in-the-middle” approach.

▼ To Create a Managed Relationship

1. Create one relationship field in each of the two classes.

2. Ensure that the fields are marked as persistent. (See “To Make a Field Persistent”
on page 60.)

3. In the Explorer window, expand one of the classes and select its relationship field.

4. Open the Properties window for the field.

The name of the other class may appear as the value of the Related Class property. If

it does not appear, click the property value and then click the ellipsis button (…) to

choose a related class. If the class is not persistence-capable, you might need to

convert the class (see “Making a Class Persistence-Capable” on page 59).

5. Choose the other class and click OK.

6. Return to the Properties window and click Related Field. Choose the relationship
field from the other class.

If the field you want does not appear in the drop-down menu, check that it is

marked as persistent. If it is already mapped, unmap it using the drop-down menu

for its Mapping property.

7. In the Explorer window, expand the other class and select its relationship field.

8. Open the Properties window for the field.

Note that the Related Class property and the Related Field properties have been set

for you.

Your two relationship fields now represent a managed relationship.
Chapter 4 Developing Persistence-Capable Classes 49

To map your relationship to a database, see “Mapping Relationships” on page 45.

Developing Persistence-Capable Classes

Capturing a Schema

Before mapping any Java classes to a database schema, you need to capture the

schema. Capturing the schema creates a working copy in your file system. This

allows you to do your work without affecting the database itself.

Note – It is best to store the captured schema in a package. If you do not have a

package to contain the schema, create one by right-clicking on the file system and

selecting New Package.

▼ To Capture a Schema

1. You have three ways to display the Database Schema Wizard:

■ Right-click on the filesystem and select New > Databases > Database Schema.

■ Choose New from the File menu and then, in the Template Chooser, double-click

Databases and select Database Schema.

■ Select Capture Database Schema from the Tools menu.

2. In the Target Location pane (shown in FIGURE 4-4), type a filename for the working
copy of your schema, then select a package for the captured schema.
50 Programming Persistence • August 2001

FIGURE 4-4 Database Schema Wizard, Target Location

3. In the Database Connection pane (shown in FIGURE 4-5), if you have a connection
established, you can select it from the Existing Connection menu. Otherwise,
under New Connection, enter the following information:

■ The name of the database you are connecting to. (If your database is not listed in

the drop-down menu, you might need to quit the wizard and install the driver in

the IDE before continuing.)

■ Your system’s JDBC driver.

■ The JDBC URL for the database, including the driver identifier, server, port, and

database name. For example, jdbc:pointbase://localhost:9092/sample .

The format of a JDBC URL varies depending on which kind of database

management system (DBMS) you use—Oracle, Microsoft SQL Server, or

PointBase—and the version of that DBMS. Ask your system administrator for the

correct URL format for your DBMS.

FIGURE 4-5 shows the PointBase Server network driver, a server localhost , and

port 9092 for a database called sample . Your data source might be different.

■ A user name for your database.

■ The password for that user.
Chapter 4 Developing Persistence-Capable Classes 51

FIGURE 4-5 Database Schema Wizard, Database Connection

4. In the Tables and Views pane (shown in FIGURE 4-6), choose the tables and views
you want to capture, then click Finish.

Note – If you choose one table and exclude another that is referenced to the

included table by a foreign key, both tables will be captured even though you

specified only one.
52 Programming Persistence • August 2001

FIGURE 4-6 Database Schema Wizard, Tables and Views

The database and its schema will be represented in the Explorer window, as shown

in FIGURE 4-7

FIGURE 4-7 Database Schema in the Explorer window
Chapter 4 Developing Persistence-Capable Classes 53

Creating Persistence-Capable Classes

Transparent Persistence maps Java classes to tables in a database schema using one

of two methods:

■ Database to Java mapping

To generate Java classes from a database schema, see “Generating Persistence-

Capable Classes From a Schema” on page 54.

■ Meet-in-the-middle mapping

To create a custom mapping between an existing schema and existing Java classes,

see “Mapping Existing Classes to a Schema” on page 59.

Generating Persistence-Capable Classes From a Schema

1. Select a schema node and choose the Generate Java command. This displays the
Generate Java Wizard (see FIGURE 4-10), which allows you to:

■ Choose the target package that will contain your generated Java classes.

■ Customize the options for the classes you are going to generate.

■ Select the database tables for which you will generate corresponding Java classes.

2. In the Choose Target Location pane (shown in FIGURE 4-8), select a package from
the packages listed in the dialog window, or enter a new package name in the
Package field.

FIGURE 4-8 Java Generation Wizard, Choose Target Location
54 Programming Persistence • August 2001

3. In the Customize Options pane (shown in FIGURE 4-9), select the options for the
Java classes you will generate.

You can change them for a single session, or save them as default properties for

future Java generation sessions. TABLE 4-2 describes the options you can set.

Note – You can change these default options at any time in the Java Generation

properties sheet by choosing Tools > Options, then choosing Java Generation

Options under Transparent Persistence. See “Java Generation Options” on page 72.

You can set the rules for how relationship fields are named by clicking the ellipsis

field (…) in Relationship Naming Policy. See “Relationship Naming Policies” on

page 73.

FIGURE 4-9 Java Generation Wizard, Customize Options
Chapter 4 Developing Persistence-Capable Classes 55

4. In the Table Selection pane (shown in FIGURE 4-10), select the tables and views for
which you want to generate corresponding Java classes.

You can select the tables and views individually, or choose all the tables at once by

selecting Add All Tables, or select all views at once by selecting Add All Views.

Each table is listed under Available. You can use the Add button to specify which

tables to map, and edit the class names by clicking on them.

A listing of <join table> in the Java Classes column indicates that there will be a

many-to-many relationship between the two classes connected by the join table, but

no class is created for the join table itself. If the join table has a primary key, you can

create a class for it by clicking on <join table> and selecting the class from the

drop-down menu, or typing in a class name. This will create a one-to-many

relationship between each of the other two classes and the class mapped to the join

table. To map the two tables without a relationship, remove the join table from the list.

Transparent Persistence only generates classes for tables with primary keys. Tables

without primary keys are not displayed under Tables Available. Join tables without

primary keys appear, but can only link two tables with primary keys, and cannot be

used to map classes directly.

If you want to save classes in different locations, generate the classes for one

location, then re-run the wizard, selecting a new location in the Choose Target

Location panel.

Note that you can map multiple classes to the same table or view by running the

wizard more than once and customizing the name, or by saving files to different

locations.

FIGURE 4-10 Java Generation Wizard, Table Selection
56 Programming Persistence • August 2001

Relationship Class Generation

There are many combinations you can choose when selecting tables and views.

TABLE 4-1 illustrates the results of each combination. This list assumes two tables,

“A” and “B,” and a join table “AB.”

TABLE 4-1 Relationship Class Generation

A B AB Results

Added Added Join table Classes A and B are generated, with two collection

relationships, A to B, and B to A.

Added Added Java class name Classes A, B, and AB are generated, with four

relationship fields created (A to AB, AB to A, B to

AB, AB to B).

Added Added Not added A and B are generated, but no relationship fields in

A or B are generated, and the AB table is not used at

runtime.

Added Not

added

Join table You can not complete the wizard unless you add B

or change the name of AB, so you can generate a

class for the join table.

Added Not

added

Java class name Class A is generated with a collection relationship to

AB and a primitive field for B.

Added Not

added

Not added Class A is generated with no relationship to B. No

relationship fields generated.

Not

added

Not

added

Join table The join table AB has an incomplete relationship to

A and B. You can not generate Java classes until you

add both A and B or change the join table name to

make it a class.

Not

added

Not

added

Java class name AB is generated with the foreign keys generated as

persisting fields of the primitive types of their

foreign key columns.
Chapter 4 Developing Persistence-Capable Classes 57

5. Click Generate to create a persistence-capable class for each table you selected
and map all fields and relationships.

If, in the Customize Options pane, you unchecked the Make Generated Classes

Persistence Capable check box, non-persistence-capable Java files are generated

instead.

After you have selected the tables and views in the previous panel, the IDE checks

for incomplete relationships. All classes that are to be generated are listed on the

Summary panel. The panel also displays a list of classes that contain incomplete

relationships.

If you do not map all of the tables in a relationship, the wizard will display

warnings or error messages telling you that the relationship will not be mapped. You

can use the Previous button to go back and modify your mapping, or click Generate

to generate the classes without the relationship.

FIGURE 4-11 Java Generation Wizard, Generating Java

If you want to customize your mapped classes, see “Mapping Persistence-Capable

Classes” on page 61.

Note – If you want to generate two separate classes mapped to the same primary

table, use the Java Generation wizard twice, making sure to rename the generated

class. Each of the differently named classes will be mapped to the same table.
58 Programming Persistence • August 2001

Mapping Existing Classes to a Schema

This section discusses how to use Transparent Persistence to customize mappings or

to create a mapping for an existing object model.

Before you can map a Java class to a database schema, you must make sure that:

■ The database schema is captured and mounted in your Explorer filesystem.

See “Capturing a Schema” on page 50 for instructions on how to do this.

■ Any classes that have relationships to the class you are mapping must be

persistence-capable. (The class itself becomes persistence-capable automatically

when you start the wizard.)

See “Making a Class Persistence-Capable” on page 59 for instructions on how to

do this.

■ All fields that you want to map are marked as persistent.

See “Making a Field Persistent” on page 60 for instructions on how to do this.

You can edit an existing mapping by returning to the Database Mapping command.

The wizard reappears, filled in with all previously set values.

Alternatively, a you can set up or edit a mapping piecemeal by editing the

individual properties in the Properties window. All the mapping and persistence

information can be accessed through the Properties window, but the wizard

provides a way to view and edit groups of classes and fields at one time, providing

a useful overview of your mapping model.

Making a Class Persistence-Capable

A class, and all classes related to it, must be persistence-capable before it can be

mapped to a database table. The Database Mapping wizard automatically converts

your selected class to persistence-capable, but other classes must be converted

directly.

You can convert a set of selected classes at once. You should use this approach when

converting classes that are related to each other. This makes all relationship fields

persistent automatically.

For each class that you want to convert, right-click on the class and select Convert to

Persistence-Capable. To convert a group of classes at once (recommended), multi-

select the classes by holding the Control key down while choosing the classes. Then

right-click and select Convert to Persistence-Capable.
Chapter 4 Developing Persistence-Capable Classes 59

Reverting a Class From Persistence-Capable

Conversely, you can make a persistence-capable class non-persistent by right-

clicking on the class and selecting Revert from Persistence-Capable. This will remove

all schema mappings and persistent properties from the class.

Note that if you then re-convert the class using Convert to Persistence-Capable, the

persistent properties will be restored to their default values, and you will need to

map the class to a database schema, as described in “Meet-in-the-middle mapping”

on page 45.

Making a Field Persistent

When you make a class persistence-capable, every field that can be interpreted as

persistent becomes persistent automatically. If you add any fields, you will need to

make them persistent separately if you want to use them to access persistent data.

▼ To Make a Field Persistent

1. In the Explorer window, expand the class and the Fields node under it and select
the field.

Persistent fields are displayed with a triangle; relationship fields show a triangle and

an arrow; non-persistent fields are displayed with a circle. (See FIGURE 4-12.)

2. In the Properties window, click on the Persistent property to activate the drop-
down menu, then select True.

You can make the field non-persistent again by selecting False in the drop-down

menu.

FIGURE 4-12 Persistent Fields
60 Programming Persistence • August 2001

Mapping Persistence-Capable Classes

▼ To Map Classes to Tables Using the Database Mapping
Wizard

1. Right-click the class and choose the Map to Database command. This displays the
Database Mapping wizard (see FIGURE 4-13).

FIGURE 4-13 Database Mapping Wizard Overview

2. If you have completed the preliminary tasks, click Next to bring up the Select
Tables pane of the wizard (see FIGURE 4-14). Otherwise, click Cancel, complete the
tasks, and restart the wizard.

3. Select a primary table from the Primary Table combo box, or click Browse to open
the Select Primary Table dialog.
Chapter 4 Developing Persistence-Capable Classes 61

FIGURE 4-14 Database Mapping Wizard, Select Tables

4. If you open the Select Primary Table dialog (see FIGURE 4-15), find a schema and
expand it to find its tables. Then select a table and click OK.

The table you select as the primary table should be the one that most closely matches

your class.

The table you choose as the primary table must have a primary key, and should be

the table that most closely matches the class you are mapping.

FIGURE 4-15 Select Primary Table Editor
62 Programming Persistence • August 2001

5. Once the primary table is set up, you can map one or more secondary tables by
clicking Add to open the Secondary Table Settings dialog box (see FIGURE 4-16).

A secondary table enables you to map fields in your persistence-capable class to

columns that are not part of your primary table. For example, you might add a

DEPARTMENT table as a secondary table in order to include a department name in

your Employee class. A secondary table differs from a relationship, in which one

class is related to another by way of a relationship field. In a secondary table

mapping, fields in the same class are mapped to two different tables. A secondary

table enables you to map your field directly to columns that are not part of your

primary table. You can use this pane to select secondary tables, and to show how

they are linked to the primary table.

A secondary table must be related to the primary table by one or more columns

whose associated rows have the same values in both tables. Normally, this is defined

as a foreign key between the tables. When you select a secondary table from the

drop-down menu, the wizard checks for a foreign key between the two tables. If a

foreign key exists, it is displayed as the reference key by default.

FIGURE 4-16 Mapped Secondary Table Setup

a. Select a secondary table from the combo box.

Once you select a secondary table, Transparent Persistence checks to see if there is

a foreign key between the primary and secondary tables. If so, the foreign key is

displayed as the default reference key. If there is no foreign key, the editor

displays “Choose Column,” and you must set up a reference key.
Chapter 4 Developing Persistence-Capable Classes 63

b. To set up a reference key, click <Choose Column> and select a column from the
drop-down menu.

Once you pick a primary column, the choices in the secondary column are limited

to columns of compatible types. If no column is compatible, the field displays

“No Compatible Columns.” If you select a primary column that is incompatible

with your secondary column, the value of the secondary column reverts to

“Choose Column.”

If no pair of columns seems to relate in a logical manner, so there can be no logical

reference key, you may want to reconsider your choice of a secondary table.

You can select the Add Pair key to set up a complex key using more than one pair

of columns.

6. Click OK to save your selections.

7. Click Next in the Database Mapping wizard to bring up the Field Mappings panel
of the wizard (see FIGURE 4-17).

The Field Mappings panel displays all the persistent fields of the class and their

mapping status. You can map a field to a column by selecting the column in the

drop-down menu for that field, or try to map all unmapped fields by selecting

Automap. Automap will make the most logical selections, ignoring any relationship

fields and any fields that have already been mapped. It will not change any existing

mappings.

If a field in the class is not listed, it is probably not persistent. This could be because

it was added after the class was made persistence-capable or because Persistent was

set to False in the Properties window. To make it persistent, click Finish to exit the

wizard, then change the field’s Properties setting to True.

If you want to map a field to a column from another table that is not available, click

Previous to return to the previous wizard page and add a secondary table that

contains the column you want.

Unmap works on whatever field or fields are selected. You can unmap a group of

fields at once by holding down the Shift key or Control key while selecting the fields

you want. If you want to unmap one item, choose <unmapped> in the drop-down

menu for that field.
64 Programming Persistence • August 2001

FIGURE 4-17 Database Mapping Wizard Field Mappings

a. To map a field to multiple columns, click the ellipsis button (…) for the
appropriate field in the Field Mappings pane to display the Map Field to
Multiple Columns dialog box (see FIGURE 4-18).

In this dialog box, you add columns to the list of mapped columns. Columns are

from the tables you have mapped to this class.You can change the order of the

columns by using Move Up/Move Down.

If you do not see the column you want to map, you might need to add a

secondary table to your mapping, or change the primary table you have selected.

If no columns are listed, you have not yet mapped a primary table, or you have

mapped a table that has no columns.

If you map a field to more than one column, all columns will be updated with the

value of the first column listed. Therefore, if the value of one of the columns is

changed outside of a Transparent Persistence application, the value will only be

read if the change was made to that first column. Writing a value to the database

overwrites any conflicting changes made to any other columns.

You must also make sure that if you map more than one field to any of these

columns, the mappings cannot partially overlap.
Chapter 4 Developing Persistence-Capable Classes 65

FIGURE 4-18 Map Field to Multiple Columns Dialog Box

Consider the following three examples:

■ Field A mapped to Columns A and B, Field B mapped to Column B. Since the

mappings only partially overlap, this example will get a validation error at

compilation.

■ Field A mapped to Column A, and Field B mapped to Column B. Since there is

no overlap, this mapping is allowed.

■ Field A mapped to Columns A and B, Field B mapped to Columns A and B.

Since the mappings completely overlap, this mapping is allowed.

b. Click OK to save the mapping.

Mapping Relationship Fields

When you have foreign keys between database tables, you usually want to preserve

those relationships in Java class references. Mapping Relationship Fields lets you

specify the relationships that correspond to the class reference fields.

c. To Map a Relationship Field, click on the ellipsis button (…) in the Field
Mappings panel next to the drop-down menu of a relationship field to bring up
the Relationship Mapping editor (FIGURE 4-19).

To use the Relationship Mapping editor outside of the Database Mapping wizard,

click on the relationship field in the Explorer and edit its Mapping property.
66 Programming Persistence • August 2001

FIGURE 4-19 Relationship Mapping Editor, Initial Setup

■ In this pane, verify that the Related Class is set. If the related class is not set,

then set it. If the class you want to select is not persistence-capable, you might

need to cancel out of the editor, convert the class to persistence-capable, then

return.

■ Verify that the Related Field (if any) is also correct, and that the Primary Table

is set for the related class.

Note – If you have a logical related field, you should choose a Primary Table. That

will create a managed relationship.

■ Select between linking the tables directly, or through a join table.

d. If your relationships are one-to-one or one-to-many, choose to link the tables
directly. Clicking Next opens the Map to Key pane of the Relationship
Mapping editor (see FIGURE 4-20).

This pane shows:

■ An existing mapping if there is one and there were no changes on the initial

setup page.

■ The default mapping if there is no existing mapping or the mapping is no

longer valid.
Chapter 4 Developing Persistence-Capable Classes 67

The editor attempts to determine the most logical key column pairs between

the two related classes, based on existing foreign keys. If there are no foreign

keys, you need to create the key column pairs by selecting local and foreign

columns. The columns in each pair are expected to have the same value.

To create a complex key, use the Add Pair button to add additional Key

Column Pairs.

If the Finish button is disabled, you need to choose a key column pair.

FIGURE 4-20 Relationship Mapping Editor, Map to Key

e. If your relationship is many-to-many, link tables through a join table. Clicking
Next opens the Map to Key: Local to Join pane (see FIGURE 4-21).

This pane shows:

■ The first class and field in the relationship

■ The join table to be used to create the relationship between the fields
68 Programming Persistence • August 2001

FIGURE 4-21 Relationship Mapping Editor, Map to Key: Local to Join

■ Key column pairs between the field join table and the table to which the related

class is mapped

In this pane, you choose a join table, then map the relationship field to a key. This

is only the relationship between the table “This Class” is mapped to and the join

table. If you don't have a join table, go back to the previous panel and select Link

the Mapped Tables Directly.

Choose a join table that sits between the two tables that your classes are mapped

to. The Editor will attempt to determine the most logical key column pairs

between the join table and the table that “This Class” is mapped to.

If the tables have a foreign key between them, the editor will use the foreign key

as the default key column pair. If there is no foreign key, then you must create a

key by choosing a pair of columns that will allow navigation from the join table to

the table to which “This Class” is mapped. The columns in each pair are expected

to have the same value.

To create a compound key, use Add pair to add additional Key Column Pairs.

If the Next button is disabled, you need to pick a join table or make sure that at

least one key column pair exists that has columns on both sides.
Chapter 4 Developing Persistence-Capable Classes 69

f. Click Next to open the Map to Key: Join to Foreign pane.

In this pane, you relate a second table to the join table you chose in the previous

pane.

The editor will attempt to determine the most logical key column pairs between

the join table and the table that the Related Class is mapped to.

If the tables have a foreign key between them, the editor will use the foreign key

as the default key column pair. If there is no foreign key, then you must create a

key by choosing a pair of columns that will allow navigation from the join table to

the table to which the Related Class is mapped. The columns in each pair are

expected to have the same value.

To create a compound key, use Add Pair to add additional key column pairs.

If the Finish button is disabled, you need to choose a valid key column pair.

FIGURE 4-22 Relationship Mapping Editor, Map to Key: Join to Foreign

g. Click Finish to return to the Field Mappings pane of the Database Mapping
wizard.

8. Click Finish to close the Field Mappings pane and map the Java classes to the
database schema.
70 Programming Persistence • August 2001

Setting Options and Properties

Selecting the property sheets of nodes outside the wizards provided by transparent

Persistence lets you affect:

■ Continuos validation of persistence classes

■ Options for Java Generation

■ Policies for naming relationship fields

■ Properties of persistence-capable classes and fields

Continuous Validation of Persistence Classes

You can open this property sheet by selecting Tools > Options and choosing the

Transparent Persistence node.

Setting the Validate Java Changes property to True causes Transparent Persistence to

validate changes made in persistence-capable class source code to ensure that they

do not cause compilation errors. If a class is modified so that it is no longer valid, a

warning dialog appears that gives you three choices:

■ OK. Transparent Persistence keeps the change, and makes other changes to the

file so that it will not cause a compilation error.

■ Undo. Discards the change.

■ Ignore. Does nothing. If you choose Ignore, you might encounter difficulties when

compiling.

Setting the property to False is the equivalent to selecting Ignore.

FIGURE 4-23 Validate Java Changes Property
Chapter 4 Developing Persistence-Capable Classes 71

Java Generation Options

Java Generation Options specify the properties that will be used when Java classes

and mapping information are generated in the Java Generation wizard. You can

override these properties in the second panel of the Java Generation wizard, or by

selecting Tools > Options, then choosing Java Generation Options under Transparent

Persistence. The Java Generation Properties are described in TABLE 4-2. The property

sheet is shown in FIGURE 4-24.

TABLE 4-2 Java Generation Properties

Property Description

Make Persistence-

Capable

Generated Java classes are mapped to a database. If False, you get

plain object wrappers for your tables that don't have Transparent

Persistence functionality.

Implement

Serializable

If True, generated Java classes implement

java.io.Serializable . This makes the class serializable, so it

can be written to a stream between different tiers, such as client and

server.

Java Transient

Modifier

The transient modifier can be added to certain fields if the class

implements java.io.Serializable . This property lets you add

the transient modifier:

• Collection Relationship Fields. Single references will be serialized

together with the owning object.

• All Relationship Fields. No related objects, whether single

references or collections, will be serialized with the owner.

• No Fields. The complete closure of the objects graph will be

serialized.

Primitives for FKs Whether or not to generate primitive or wrapper fields for each

foreign key (FK) column. If you generate relationships as well as

primitives fields, there may be implications at runtime.

Relationship

Naming

The policy to use to create names for relationship fields. Simple

Cardinality provides two rules based on the cardinality of the

relationship field. Complex Cardinality provides five rules based on

the cardinality of the field and which side of the foreign key it

represents. The individual rules are editable. Click on the ellipsis

button (…) to open the Relationship Naming Property editor.

Relationship Type The type of relationship to generate for each foreign key:

• Managed Relationship Fields are navigable and updatable from

either side of the relationship.

• A Single Relationship Field is navigable and updatable only from

the class which corresponds to the table containing the foreign

key.

• If you select None, no relationship fields are generated.
72 Programming Persistence • August 2001

FIGURE 4-24 Java Generation Options

Relationship Naming Policies

When you generate Java classes for tables that have foreign keys, you will create

special relationship fields. Because these fields are mapped to pairs of columns in

the foreign key, the names for the fields are created by combining the names of the

fields. Although it is recommended that you stay with the default settings, you can

customize the policies for naming those fields.

You can use the Relationship Naming editor to edit the individual rules for the

policy.

▼ To Open the Editor

1. Select Tools > Options.

2. Expand the Transparent Persistence node and then select Java Generation Options.

3. Select the editable field for Relationship Naming, and select either Simple
Cardinality or Complex Cardinality from the drop-down menu.

4. Click the ellipsis button (…).

This opens the property editor, as shown in FIGURE 4-25.
Chapter 4 Developing Persistence-Capable Classes 73

Note – You can also open the editor from the second panel of the Java Generation

wizard, by clicking on the Relationship Naming Policy field and click the ellipsis

button (…).

FIGURE 4-25 Relationship Naming Policy Editor

If you select Simple Cardinality, two rules are displayed, as shown in TABLE 4-3.

TABLE 4-3 Simple Cardinality Naming Policy

Rule Description

Many Side This is the default name for a field representing a collection relationship

One Side This is the default name for a field representing a non-collection

relationship.
74 Programming Persistence • August 2001

Selecting Complex Cardinality displays five rules, as shown in TABLE 4-4.

To edit a name, click on the right column and type into the field. To get help with the

editing, select the ellipsis button (…) in the field. That opens the Naming Policy Rule

Editor, shown in FIGURE 4-26.

Your edits are saved when you click OK.

FIGURE 4-26 Naming Policy Rule Editor

To Edit a Naming Policy with the Naming Policy Rule Editor, click in the Rule

textbox, then edit the field by inserting a tag from the Available Tags drop-down

menu and clicking Insert Tag, or by entering in the text manually.

TABLE 4-4 Complex Cardinality Naming Policy

Rule Description

One-Many, FK Side This is the default name for a non-collection field in a 1:n

relationship.

One-Many, Other

Side

This is the default name for a collection field in a 1:n relationship.

One-One, FK Side This is the default name for a field on the foreign key side of a 1:1

relationship.

One-One, Other Side This is the default name for a field on the non-foreign key side of a

1:1 relationship.

Many to Many This is the default name for a field in a n:m relationship.
Chapter 4 Developing Persistence-Capable Classes 75

The tags offered by the drop-down menu are described in TABLE 4-5.

Any text typed outside a set of brackets (<>) is treated as a string.

The Editor validates the string before closing. It will warn you if the string is not

valid.

Persistence-Capable Class Properties

Persistence-capable classes and persistent fields have several unique properties that

can be specified outside of the Database Mapping wizard. TABLE 4-6 describes the

properties unique to persistence-capable classes.

TABLE 4-5 Relationship Naming Tags

Tag Description

<thisClassName> Uses the name of the class to which this field belongs.

<relatedClassName> Uses the name of the “other” class, the class this relationship points

to.

<keyColumnName> Uses the name of the foreign key column or columns.

<thisTableName> Uses the name of the table that this class maps to.

<relatedTableName> Uses the name of the table that the related class is mapped to.

TABLE 4-6 Properties for Persistence-Capable Classes

Property Description

Key Class An associated class that includes a key field that uniquely identifies a

persistence-capable instance. If you use meet-in-the-middle mapping,

you must set the Key Class manually. See “Key Fields and Key

Classes” on page 81 for more information on setting the Key Class.

Mapped Primary

Table

The primary table you select for a persistence-capable class should be

the table in the schema that most closely matches the class. You must

specify a primary table in order to map a persistence-capable class.

See “Mapping Existing Classes to a Schema” on page 59 for

information on how to do this.

Mapped Schema The schema containing the tables to which you are mapping the

persistence-capable class. The primary table and any secondary tables

must be from this schema. This setting cannot be made until you

capture the schema as described in “Capturing a Schema” on page 50.
76 Programming Persistence • August 2001

FIGURE 4-27 shows the properties for a persistence-capable class.

FIGURE 4-27 Persistence-Capable Class Properties

You can unmap a class by choosing <unmapped> from the drop-down menu for the

Mapped Primary Table property. When you unmap a currently mapped class, a

warning appears if there are field mappings or secondary tables. Click OK if you are

sure that you want to unmap the class. Otherwise, click Cancel to cancel the

mapping status change and leave the class mapped.

Click on the Field Mapping tab at the bottom of the Properties window to see the

field mapping properties for a persistence-capable class (FIGURE 4-28).

Mapped Secondary

Table(s)

Secondary tables let you to map columns that are not part of your

primary table to your class fields. For example, you might add a

DEPARTMENTtable as a secondary table in order to include a

department name in your Employee class. You can add multiple

secondary tables, but no secondary table is required. This property is

only enabled when Mapped Primary Table is set. See page 63 for

more information on adding a secondary table.

Persistence-

Capable

Whether the class is persistence-capable or not. This property is only

visible when set to true. To convert a class to persistence-capable, see

“Making a Class Persistence-Capable” on page 59. To revert a class

from perstence-capable, see “Reverting a Class From Persistence-

Capable” on page 60.

TABLE 4-6 Properties for Persistence-Capable Classes (Continued)

Property Description
Chapter 4 Developing Persistence-Capable Classes 77

FIGURE 4-28 Field Mapping Properties

Persistent Field Properties

To view the properties of a field, right-click on a field node. A Persistent Field

property sheet is shown in FIGURE 4-29.

FIGURE 4-29 Persistent Field Properties
78 Programming Persistence • August 2001

You can map a persistent field by choosing a column from the field’s drop-down

menu in the Mapping property. To map additional columns to that field, click the

ellipsis button (…) to display the Map Field to Multiple Columns dialog box. See

FIGURE 4-18 for an explanation of the dialog box.

To map a relationship field, selecting the field and clicking the ellipsis button (…) to

display the Relationship Mapping editor. See “Mapping Relationship Fields” on

page 66 for an explanation of the dialog box.

You can unmap a field by choosing <unmapped> or <unmapped relationship>
from the drop-down menu.

TABLE 4-7 describes the properties unique to persistent fields.

TABLE 4-7 Properties for Persistent Fields

Property Description

Delete Action

(Relationship fields

only)

Set to Cascade or None. Cascade indicates that when this field is

deleted, all related fields are deleted with it. None indicates that

only the object represented by this field is deleted.

Related Class

(Relationship fields

only)

The related class is the class the relationship field points to. For a

collection, the related class identifies the type of objects that make

up its elements. If a field is not a collection, the property will be

disabled.

Related Field

(Relationship fields

only)

The related fieldcan be set to a relationship field in the related class.

Setting this property locks the relationship fields into a managed

relationship.

Fetch Group Specify Level , Independent , Default , or None. There are two

types of fetch groups, hierarchical and independent. A setting of

Default for a field means that field will be fetched along with all

other fields that have a setting of Default . When a field in the

Level 1 group is fetched, all fields in group Level 1 and the Default

group are fetched as well.

Related fields are not allowed to be in any fetch group besides

Default .

Hierarchical groups include the Default and Level settings, and

build on one another (for example, Level 2 includes Level 1 as well).

Independent groups include the Default group and the specified

Independent group only (Independent 2 does not include

Independent 1).

If the Fetch Group property is disabled, the field is not persistent,

not mapped, or is a key field and will always be fetched.

Key Field If True , the field should be mapped to a column in the primary key

of the persistence-capable class’ primary table.
Chapter 4 Developing Persistence-Capable Classes 79

The field icons in the Explorer change to indicate whether a class or field is

persistence-capable. Persistence-capable classes and fields are marked with a

triangle, as shown in FIGURE 4-30 and FIGURE 4-31.

FIGURE 4-30 Class Icons

FIGURE 4-31 Field Icons

Lower Bound

(Relationship fields

only)

The minimum number of objects a relationship field can hold. The

default of 0 means that the field can be null. On the many side of a

relationship, this value can be set to any integer value not greater

than the Upper Bound. On the one side of a relationship, it can be

set to 1 or 0.

Mapping Shows the mapping status for the field.

Persistent If True , this field’s value will be stored in the database.

Read Only If True , this field’s value is not updatable to the database.

Upper Bound

(Relationship fields

only)

The maximum number of objects a relationship field can hold. On

the many side of a relationship, this can be set to any integer value,

with a default of * (java.lang.integer.MAX_VALUE). On the one

side of a relationship, the Upper Bound is 1 and cannot be changed.

TABLE 4-7 Properties for Persistent Fields (Continued)

Property Description

Persistence-Capable

Not Persistence-Capable

Non-persistent
Persistent

Persistent Relationship
80 Programming Persistence • August 2001

Key Fields and Key Classes

A Key Class is a class associated with each persistence-capable class that contains

unique identifier information for each Transparent Persistence instance. The Java

generator creates Key Classes and sets Key Fields automatically. However, if you use

meet-in-the-middle mapping, you must set these properties yourself and write the

key class.

If you generate Key Classes and Key Fields, then change the fields, you might need

to update the oid class. If you create a new class using the Transparent Persistence

template, you get a skeleton oid class that you can update.

A Key Class can be either of the following types:

■ A static inner class named Oid
■ A separate class with suffix Key

In FIGURE 4-27, the Key Class is set to db_emp.OfficeTbl.Oid . This is the Oid class

set by the Java generator automatically.

▼ To Set up a Key Class and Key Fields

1. Set the Key Class property on the class node. Make sure the Key Class name is a
valid class name.

2. Create the Key Class and include all the Key Fields.

Each field in the persistence-capable class marked as a primary key must be declared

in the Key Class. Each field of the Key Class must have the same name and type as

the corresponding field in the persistence-capable class. All fields in the key class

must be declared public. The key class must implement java.io.Serializable ,

and override the equals and hashCode methods.

3. Set the Key Field property of each field in the persistence-capable class to True for
all fields mapped to primary keys. All fields not in the persistence-capable class
should be set to False.

Following is an example of an inner Oid Class defined for the Employee class.

public static class Oid {

public long empid;
public Oid() {
}

Chapter 4 Developing Persistence-Capable Classes 81

This next example is a sample Key class defined for the Employees class.

public boolean equals(java.lang.Object obj) {
if(obj==null ||
!this.getClass().equals(obj.getClass())) return(false);
Oid o=(Oid) obj;
if(this.empid!=o.empid) return(false);
return(true);

}

public int hashCode() {
int hashCode=0;
hashCode += empid;
return(hashCode);

}

public static class EmployeeKey implements java.io.Serializable{

public long empid;
public EmployeeKey() {
}

public boolean equals(java.lang.Object obj) {
if(obj==null ||
!this.getClass().equals(obj.getClass())) return(false);
EmployeeKey = (EmployeeKey) obj;
if(this.empid!=o.empid) return(false);
return(true);

}

public int hashCode() {
int hashCode=0;
hashCode += empid;
return(hashCode);

}
}

82 Programming Persistence • August 2001

Running an Application

After you compile your application in Forte for Java, you can either add your

packages to a .jar file or run the application in Forte for Java.

Creating a JAR File

The IDE's JAR packager enables you to create a single JAR (Java ARchive) file from

a hierarchy of files, which you can then use in an application outside the IDE. For

applications to be able to use Transparent Persistence, both persistence-capable

classes and classes that access persistent fields of persistence-capable classes

(persistence-aware classes) must be archived by the IDE's JAR packaging tools (for

example, JAR, WAR, or EAR packager) to provide the enhancement of the classfiles'

byte-code.

When you create a JAR file for persistent classes, you must also take the following

into consideration:

■ Do not add the Java files to the JAR file, as this can result in unexpected javac

errors in future compilations. This can be achieved by having the jarContent

node’s File Filter property set to all files except *.java and *.jar . Be careful not

to set it to classes only, which would exclude the mapping files (*.mapping),

which are used by the Transparent Persistence runtime to identify persistence-

capable classes.

■ Make sure that your schema file (*.dbschema) is included. If the schema file is in

the specified package, it will be included automatically. Otherwise, you need to

specify the schema files' location in the CLASSPATH.

■ When you are using a persistence-aware application outside of the IDE, make

sure the following JAR files are included in your CLASSPATH:

■ .../modules/ext/persistence-rt.jar
■ .../modules/dbschema.jar
■ .../lib/ext/xerces.jar
■ <package>.jar (JAR file with packaged persistence classes)

■ The JDBCdriver

▼ To Create a JAR File

1. Open a JAR Packager template using the New From Template wizard.

2. Specify the contents of the JAR file.

3. Compile the JAR file.
Chapter 4 Developing Persistence-Capable Classes 83

Note – If you use the JAR Packager to create a .jar file for use outside of Forte for

Java, you can experience compilation problems unless you accept the default filter of

<all files except *.java and *.jar> .

For more complete instructions on creating a JAR file, see the Core IDE help topic,

“Using the JAR Packager.”

Running an Application in Forte for Java

Select the class that contains your application’s main() method and select

Persistence Executor as the value of the Executor property in the Execution tab.

This will invoke the Transparent Persistence enhancer upon class loading, and marks

the generated class as implementing the

com.sun.forte4j.persistence.PersistenceCapable interface. This allows

the persistence-capable classes to interact with the runtime environment.

The com.sun.forte4j.persistence.PersistenceCapable interface declares a

set of methods that allows users of persistence-capable classes (application

developers) to check and reset the status of instances of these classes.

Neither the developer of the classes nor the application developer who uses them

needs to be aware of what is in the generated byte code. The class developer can

concentrate on developing an accurate model of the persistent data.

If you don't intend to use the Persistence Executor, for instance, to execute the

persistence-capable classes outside of the Forte for Java IDE, you have to archive

your persistence-capable and persistence-aware classes using the IDE's jar packager.

This ensures that the enhancement is applied to the classes while they get archived.

This step requires that the Transparent Persistence module is enabled in Forte for

Java.

Note – When using persistence-capable classes within a web module for JSP/Servlet

applications, package the persistence-capable classes as a JAR file and put the JAR

into the web-module's web-inf/lib directory. Do not put the persistence-capable

classes directly into the web module's web-inf/classes directory unless you

intend to create a WAR file to deploy the web application. The Transparent

Persistence classfile enhancement only takes place with the IDE's archiving tools (for

examples, a JAR or WAR packager) or if the Persistence Executor is used.
84 Programming Persistence • August 2001

Supported Data Types

Transparent Persistence supports a set of JDBC 1.0 SQL data types that are used in

mapping Java data fields to SQL types. TABLE 4-8 lists these data types and notes

whether each type is supported.

TABLE 4-9 lists the nullability of supported data types.

TABLE 4-8 Supported Data Types

JDBC SQL Data Type

BIGINT

BIT

CHAR

DATE

DECIMAL

DOUBLE

FLOAT

INTEGER

LONGVARCHAR

NUMERIC

REAL

SMALLINT

TABLE 4-9 Data Type Conversions in Mappings

Java Type JDBC Type Nullability

boolean BIT NON NULL

java.lang.Boolean BIT NULL

byte TINYINT NON NULL

java.lang.Byte TINYINT NULL

double FLOAT NON NULL

java.lang.Double FLOAT NULL

double DOUBLE NON NULL
Chapter 4 Developing Persistence-Capable Classes 85

Note – Transparent Persistence does not support BLOBs as mapped column types.

To fetch or update BLOBs, you need to use separate JDBC transactions.

java.lang.Double DOUBLE NULL

float REAL NON NULL

java.lang.Float REAL NULL

int INTEGER NON NULL

java.lang.Integer INTEGER NULL

long BIGINT NON NULL

java.lang.Long BIGINT NULL

long DECIMAL (scale==0) NON NULL

java.lang.Long DECIMAL (scale==0) NULL

long NUMERIC (scale==0) NON NULL

java.lang.Long NUMERIC (scale==0) NULL

short SMALLINT NON NULL

java.lang.Short SMALLINT NULL

java.math.BigDecimal DECIMAL (scale!=0) NON NULL

java.math.BigDecimal DECIMAL (scale!=0) NULL

java.math.BigDecimal NUMERIC NULL

java.math.BigDecimal NUMERIC NON NULL

java.lang.String CHAR NON NULL

java.lang.String CHAR NULL

java.lang.String VARCHAR NON NULL

TABLE 4-9 Data Type Conversions in Mappings (Continued)

Java Type JDBC Type Nullability
86 Programming Persistence • August 2001

CHAPTER 5

Developing Persistence-Aware
Applications

This chapter describes the Transparent Persistence runtime environment and

illustrates how to use it to perform persistence operations. It also addresses

Transparent Persistence programming issues.

The Transparent Persistence API controls interaction with the database. Applications

use the API to establish a connection to a specific database and create transactions.

Insert and delete must occur within the context of a transaction.

Overview

The Transparent Persistence runtime environment gives Java developers a consistent

interface to persistent data, by translating instances of persistence-capable classes

and methods of the Persistence Manager into instructions for the particular database

that the application is using.

You can view the runtime environment with several Java interfaces. These interfaces

provide a set of persistent data methods that provide the functionality for translating

method calls into instructions to a specific database.

After persistence-capable classes are mapped to a schema, you can access persistent

data by calling methods of the persistence-capable classes and the persistence-aware

runtime support classes. You use Forte for Java’s regular editing, compiling, test run,

and deploying facilities to write code that uses persistence-capable classes.

The Transparent Persistence implementation of the runtime classes is defined by the

com.sun.forte4j.persistence interfaces. Transparent Persistence includes a

file called persistence-rt.jar that has implementations of these interfaces.
87

Transparent Persistence applications perform the standard steps for database

interaction with Java method calls, without using a query language or writing Java

code specific to a given database. The standard steps include: connecting to the

database; starting a transaction; selecting, inserting, updating, or deleting persistent

data; then committing (or rolling back) the transaction.

When an application loads data from the database, it uses instances of the

persistence-capable classes that model the data. If the application changes the value

of a persistent field, the Transparent Persistence runtime environment tracks that

change and saves the new value into the database when the application commits its

transaction. When an application needs to get data, the developer calls methods of a

Persistence Manager (which returns instances of persistence-capable classes). When

it needs to change data, it calls methods of the persistence-capable instances, and so

on.

The sections that follow describe the ways in which applications can create and use

instances of persistence-capable classes.

Developing Persistence-Aware Classes

Write your application in the Java programming language. Use whatever existing

classes you need and create your own Transparent Persistence objects and classes

just as you would use any other Java object or class. The only difference between

these objects and classes is that the persistent Transparent Persistence objects save

their data in the database. Thus, you do not need to know whether data is from the

database, local variables, or other sources.

Persistence-Aware Logic

FIGURE 5-1 shows a typical architecture for using Transparent Persistence in a real-

world application. The application conforms to a standard J2EE architecture and

features a JSP or servlet component that manages some interaction with end users in

remote locations. The JSP or servlet processes end-user input, determines what

action is required, and then calls on a middle-tier service to carry out that action. If

the end user wants to see an employee record, the JSP or servlet should be able to

call on a middle-tier service that will return the employee records, without needing

to know how that record is obtained. In other words, the JSP or servlet should not

contain persistence-aware logic.
88 Programming Persistence • August 2001

FIGURE 5-1 Moving Persistence-Aware Logic to Its Own Class

To achieve this, the persistence-aware logic has been moved to a separate class. The

JSP or servlet can request an employee record by calling a method of the persistence-

aware class using an approach like the following:

The persistent-aware instance can then perform all the operations necessary to

obtain an Employee instance for the employee record that was specified and return

it to the JSP/servlet. The persistent instance remains associated with the Persistence

Manager and its transaction, even after the persistence-aware class has passed it to

the JSP/Servlet. This means that the JSP/servlet can update field values, and the

Persistence Manager will automatically generate a database update operation, and

manage it in accordance with current transaction and concurrency strategy.

If the end user supplies data for a new employee record, the JSP/servlet can create a

new instance and pass it to the persistence-aware class:

Employee requestedEmployee =
PersistentAwareInstance.getEmployeeData("485843");

Employee newEmployee = new Employee(<data>);
PersistentAwareInstance.addEmployeeData(newEmployee);

Instances of Persistence-Capable
Classes

Query

Transaction

Persistence Manager

Data Store

JSP/Servlet
Persistence Manager Factory

Persistence-
Aware Class

This class creates a
Persistence Manager; calls
methods of persistence-
capable classes, Persistence
Manager, Query, and
Transaction objects; returns a
persistent instance to the
application component

Based on method calls, the
Persistence Manager
generates JDBC calls and
datastore-specific query
language.
Chapter 5 Developing Persistence-Aware Applications 89

The persistent-aware class can handle it like this:

In the architecture shown in FIGURE 5-1, a JSP/servlet handles multiple end users

concurrently. It maintains a separate session for each user, and a session may include

a sequence of HTTP requests exchanged between the end user’s web browser and

the JSP/servlet. When the JSP/servlet calls on the persistence-aware instance for

database services, the persistence-aware instance must be able to track which

JSP/servlet sessions initiated the request, and keep all requests from a single session

isolated from those of other sessions.

A Persistence Manager generally manages a set of TP instances created or fetched in

multiple data store operations, so it is capable of managing persistent instances

generated by a conversational session.

Development Steps

An application developer using Transparent Persistence classes uses methods of

Transparent Persistence classes and runtime environment objects to work with data.

This section summarizes the basic sequence of method calls.

1. Create or obtain a Persistence Manager Factory.

The Persistence Manager Factory is a configurable component, with properties

that hold database connection information. You might already have a Persistence

Manager Factory that has been configured in your environment and is accessible

using JNDI lookup. See “Creating a Persistence Manager Factory” on page 92 for

more information.

2. (Optional) Create a Connection Factory.

This is necessary only if you want to implement connection pooling. See “Pooled

Connections” on page 97 for more information on this approach.

3. Create a Persistence Manager.

Each session will generally create its own Persistence Manager. Unless the

application overrides it, the Persistence Manager will use the connection defined

by the properties of the Persistence Manager Factory. See “Creating a Persistence

Manager” on page 97 for more information.

PersistenceManager.makePersistent(newEmployee);
90 Programming Persistence • August 2001

4. Access the transaction from the Persistence Manager by calling

currentTransaction() .

In most cases, the application begins a transaction. The transaction object is

obtained from the Persistence Manager, and applies to instances managed by the

Persistence Manager. See “Transactions” on page 101 for more information.

5. Use the Query interface to access instances of persistence-capable classes from the

database.

Modify the instances by calling their methods. If you want to insert or delete

instances, use the appropriate methods on the PersistenceManager interface.

As the application queries the database, modifies records, and adds new records,

it will create a set of persistent instances that represent the data it needs. The

Persistence Manager manages all the database interactions for this set of

instances. In other words, the set of persistent instances managed by one

Persistence Manager will be the session’s view of the data.

6. Commit or abort the transaction.

Commit the transaction to save your updates to the database; abort (roll back) the

transaction to leave the database as it was before your transaction began.

When the application commits the transaction, Transparent Persistence performs

all database interactions indicated by the current status of each persistent

instance. If there are instances that were made persistent during the transaction,

Transparent Persistence will generate inserts; if there are instances that were

deleted during the transaction, it will generate deletes; if there are instances that

were updated during the transaction, it will generate updates.

7. Perform additional transactions.

You can reuse the same Persistence Manager instance for additional transaction,

or you can use a different Persistence Manager instance.

8. Close the Persistence Manager and exit the application.

FIGURE 5-2 presents these steps in a flowchart.
Chapter 5 Developing Persistence-Aware Applications 91

FIGURE 5-2 Transparent Persistence Application Logic

Creating a Persistence Manager Factory

The basis for a persistence-aware application is the Persistence Manager Factory. The

Persistence Manager Factory is implemented as a class that developers can

instantiate directly. Other objects are obtained by calling the appropriate methods of

the Persistence Manager Factory or the Persistence Manager. In many cases, a

9. Close the Persistence
Manager and exit the
application.

3. Construct a
Persistence Manager.

4. Acquire a Transaction
from the Persistence
Manager.

5. Start the transaction.

6. Perform queries and
execute the application
business logic.

7. Commit or roll back
the transaction.

8. Make
another
transaction?

Database
objects

Updated
database
objects

2. (Optional) Create a
Connection Factory.

1. Construct or obtain
a Persistence Manager
Factory.

Data Store
92 Programming Persistence • August 2001

developer starts with a Persistence Manager Factory that has already been

configured in the environment and can be located through JNDI calls. In that case,

the developer can skip to “Creating a Persistence Manager” on page 97.

The standard way for the application to acquire a connection is through the

Persistence Manager Factory. The Persistence Manager Factory’s configurable

properties include the values used to connect to a database. The application

instantiates and configures the Persistence Manager Factory, then creates a

Persistence Manager that will use the connection information configured into the

Persistence Manager Factory.

Create a persistence-aware class by selecting New > Classes > Class. Give the class a

name and click Finish.

TABLE 5-1 discusses each method in detail.

TABLE 5-1 PersistenceManagerFactory Methods

Method Description

setOptimistic
getOptimistic

The transaction mode that specifies concurrency control. The

default is true.

setRetainValues
getRetainValues

The transaction mode that specifies the treatment of persistent

instances after commit. The default is true.

setIgnoreCache
getIgnoreCache

The query mode that specifies whether cached instances are

considered when evaluating the filter expression. This is always

true. Changing to ’false’ throws

JDOUnsupportedOptionException

setNontransactionalRead
getNontransactionalRead

The Persistence Manager mode that allows nontransactional

instances to read outside of a transaction. The default is true.

setConnectionFactory
getConnectionFactory

The connection factory from which database connections are

obtained.

setConnectionMinPool
getConnectionMinPool

Minimum number of connections in the connection pool

setConnectionMaxPool
getConnectionMaxPool

Maximum number of connections in the connection pool

setConnectionFactoryName
getConnectionFactoryName

The name of the Connection Factory from which database

connections are obtained. This name is looked up with JNDI to

locate the Connection Factory.

setConnectionTransactionIsolation
getConnectionTransactionIsolation

Chooses a nondefault isolation level.

The level argument is any of the

java.sql.Connection.TRANSACTION_* options supported

by the underlying database.
Chapter 5 Developing Persistence-Aware Applications 93

Connecting to Databases

Connections are opened and managed by the Transparent Persistence runtime

environment. The Persistence Manager Factory is a configurable component, and its

configurable properties include the values used to connect to a database. The

resulting Persistence Manager uses the connection information that was configured

getPersistenceManager Returns a Persistence Manager instance with the specified

properties. The default values for option settings are set to the

value specified in the Persistence Manager Factory before

returning the instance.

After the first use of getPersistenceManager, none of the set

methods will succeed.

getProperties Transparent Persistence stores certain nonoperational properties

and make those properties available to the application using a

Properties instance. This method retrieves the Properties

instance. Each key and value is a String. The keys required for

this implementation are:

VendorName: The name of the vendor.

VersionNumber: The version number string.

Any Persistence Manager Factory property settings become the

default settings for Persistence Managers created by the factory

and, after a Persistence Manager is created, the Persistence

Manager Factory can no longer be changed.

QueryTimeout
UpdateTimeout

This method avoids deadlocks in the database by waiting a

specified number of seconds for the completion of the query or

update associated with this instance of the Transaction before

timing out.

The value is stored in seconds; zero means unlimited. It is the

default for all Transactions to the underlining database.

Persistence Manager Factory settings cannot be changed after

creation of the first Persistence Manager. Transaction timeout

can be changed as needed.

PointBase does not currently support

PreparedStatement.setQueryTimeout() . Add

,locks.timeout=value to the URL or pointbase.ini file to

use any other than default value (current default value is set to

60 seconds). However, be aware that locks.timeout=0 sets

the timeout to 0 seconds, rather than the

setQueryTimeout(0) behavior of setting it to unlimited.

Locks.timout is set on the server side, not the client side. This

means the value will hold for all connections.

TABLE 5-1 PersistenceManagerFactory Methods (Continued)

Method Description
94 Programming Persistence • August 2001

into the Persistence Manager Factory, such as the database’s URL and a valid user

name and password for the database. When the application first performs an

operation that requires a connection, such as submitting a query for execution, the

Persistence Manager opens a connection.

There are four connection management scenarios:

■ Simple connection

■ Pooled connections

■ Distributed transactions

■ Managed connections

In a non managed environment (simple and pooled connections), transaction

completion is handled by the Connection that is managed internally by the

Transaction. In the managed environment, transaction completion is handled by the

XAResource associated with the Connection. In both cases, the Persistence Manager

implementation is responsible for setting up the appropriate interface to the

Connection infrastructure.

Connection Factory

For implementations that layer on top of standard Connector implementations, the

configuration typically supports all of the associated Connection Factory properties.

You can configure the Connection Factory directly or through the Persistence

Manager Factory.

TABLE 5-2 discusses each method in detail.

TABLE 5-2 ConnectionFactory Methods

Method Description

URL URL for the data source.

UserName Name of the user establishing the connection.

Password Password for the user.

DriverName Driver name for the connection.

ServerName Name of the server for the data source.

PortNumber Port number for establishing connection to the data source.

MaxPool Maximum number of connections in the connection pool.

MinPool Minimum number of connections in the connection pool.

MsWait Number of milliseconds to wait for an available connection

from the connection pool before throwing an exception.
Chapter 5 Developing Persistence-Aware Applications 95

Simple Connections

In the simplest case, the Persistence Manager directly connects to the database and

manages transactional data. In this case, there is no reason to expose any Connection

properties other than those needed to identify the user and the data source. During

transaction processing, the Connection is used to satisfy data read, write, and

transaction completion requests from the Persistence Manager.

If the application does not require pooled connections, only the following properties

of the PersistenceManagerFactory need to be configured:

■ ConnectionUserName –Name of the user establishing the connection

■ ConnectionPassword –Password for the user

■ ConnectionURL –URL for the data source

■ ConnectionDriverName –Driver name for the connection

These will become the default values for any Persistence Manager instances created

by that Persistence Manager Factory.

For example, the constructor might initialize a Persistence Manager Factory as

follows:

LogWriter PrintWriter to which messages should be sent.

LoginTimeout Number of seconds to wait for a new connection to be

established to the data source.

TransactionIsolation Transaction isolation level for all connections.

public DataSource() {
PersistenceManagerFactory pmf = new
PersistenceManagerFactoryImpl();

pmf.setConnectionUserName("scott");
pmf.setConnectionPassword("tiger");

pmf.setConnectionDriverName("oracle.jdbc.driver.OracleDriver");
pmf.setConnectionURL("jdbc:oracle:thin:@DIESEL:1521:ORCL");
setOptimistic(false); // It is true by default.

}

TABLE 5-2 ConnectionFactory Methods (Continued)

Method Description
96 Programming Persistence • August 2001

Pooled Connections

In a slightly more complex situation, the Persistence Manager Factory creates

multiple Persistence Manager instances that use connection pooling to reduce

resource consumption. The Persistence Managers are used in single database

transactions. In this case, a pooling Connection Factory is a separate component

used by the Persistence Manager instances. The Persistence Manager Factory will

include a reference to the connection pooling component, either as a JNDI name or

as an object reference. The connection pooling component is configured separately,

and the Persistence Manager Factory needs to be configured to use it.

If any other connection properties are required, then you must configure

setConnectionMinPool and setConnectionMaxPool in the Persistence

Manager Factory.

During the execution of a session’s business method, running a long-duration

optimistic transaction, a connection might be required to fetch data from the

database. The Persistence Manager requests a connection from the connection pool

to satisfy the request. Upon completion of the request, the connection is returned to

the pool.

In a database transaction, Transaction keeps the acquired connection for the

duration of the session. After completion of the session (either commit or rollback),

the connection is returned to the pool and reused for a subsequent transaction.

Creating a Persistence Manager

The Persistence Manager is the starting point for the application’s interaction with

the Transparent Persistence runtime environment. It encapsulates information about

a specific database, opens a connection, and manages queries and transactions. A

Persistence Manager Factory must be configured before you can declare a

Persistence Manager.

In a persistence-aware class, declare a Persistence Manager and create a Persistence

Manager instance:

private PersistenceManager pm;
this.pm = pmf.getPersistenceManager();
Chapter 5 Developing Persistence-Aware Applications 97

Each Persistence Manager supports one transaction at a time, and this transaction

applies to all of the transactional instances of persistence-capable classes that it

creates. To work with the transaction, the application obtains a transaction object

from the Persistence Manager:

In most cases, the application will be running local transactions from a single

database. The application starts and completes these transactions by calling

Transaction object methods:

The Persistence Manager normally manages all interactions with the database,

including refreshing cached copies of persistent data, and the application only needs

to identify transaction boundaries.

TABLE 5-3 discusses each method in detail.

Transaction myTx = myPersistenceManager.currentTransaction();

myTx.begin();
myTx.commit(); // or myTx.rollback();

TABLE 5-3 PersistenceManager Methods

Method Description

isClosed Returns false upon construction of the Persistence Manager instance.

Returns true only after the close method completes successfully.

close Verifies that the Transaction is not active. Otherwise, it throws an

exception.

Releases all resources (e.g., Transaction).

After the close method completes, all Persistence Manager methods

except isClosed() throw an exception.

currentTransaction Returns the Transaction instance associated with the Persistence

Manager. If the Transaction instance returned is not active, it cannot

be used for transaction completion, but it can be used to set flags.

newQuery The Persistence Manager instance is a factory for query instances,

and queries are executed in the context of the Persistence Manager

instance. The actual query execution might be performed by the

Persistence Manager or might be delegated by the Persistence

Manager to its database.
98 Programming Persistence • August 2001

getExtent Returns a read-only Collection that contains all of the instances in the

named class, and if the subclasses flag is true, all of the instances of

the named class and its subclasses. The primary use for the collection

returned as a result of this method is as a parameter to a Query

instance. For this usage, the collection typically will not be

instantiated in the JVM except if its elements are iterated. It is

typically only used to identify the prospective database instances.

You cannot call PersistenceManager.getExtent with the

argument subclasses=true . The collection returned by

PersistenceManager.getExtent may only be used within

queries. The method iterator is the only supported method for an

extent collection. Other collection methods—such as size and

add—will throw either an UnsupportedOperationException or a

JDOUnsupportedOptionException .

getObjectById Returns a persistent instance that has the specified object identity in

the cache. If no instance is active in the cache, it creates a hollow

instance, populates its primary key fields with values from the

ObjectId, and returns it.

If the instance does not exist in the database, this method will not

fail. But a subsequent access of the fields of the instance will throw

an exception. Further, if a relationship is established to this instance,

then the transaction in which the association was made will fail.

getObjectId Returns the object identity of the specified instance. The identity is

guaranteed to be unique only in the context of the Persistence

Manager that created the identity, and only for the first two types of

Identity—those that are managed by the application and those that

are managed by the database (not supported for this release).

Within a Persistence Manager instance, the ObjectId returned will be

unique among all Instances associated with the Persistence Manager

regardless of the type of ObjectId.

If the application makes a change to the ObjectId returned by this

method, there is no effect on the instance from which the ObjectId

was obtained. That is, the returned ObjectId is a copy (clone) of local

instance.

getTransactionalInstance Returns a persistent instance valid for this instance of the Persistence

Manager. Use this method when acquiring an instance for a

Persistence Manager when the current instance is associated with a

different Persistence Manager.

aPersistenceManager.getTransactionalInstance(pc) is a

shorthand for

aPersistenceManager.getObjectById(pc.getStateManager
().getPersistenceManager().getObjectId(pc))

TABLE 5-3 PersistenceManager Methods (Continued)

Method Description
Chapter 5 Developing Persistence-Aware Applications 99

makePersistent Inserts a persistent instance into the database. It must be called in the

context of an active transaction. makePersistent will assign an object

identity to the instance and transition it to persistent-new. During

flush (using commit, or a user Query in a pessimistic transaction) of

this instance, any transient instance reachable from this instance

using persistent fields of this instance will behave as if the

makePersistent method were executed on it, as well.

This method throws JDOUserException if another object with the

same ObjectIdentity is already associated with this Persistence

Manager.

This method has no effect on persistent instances managed by this

Persistence Manager. It throws a JDOUserException if the instance is

already managed by a different Persistence Manager.

deletePersistent Deletes a persistent instance(s) from the database. It must be called in

the context of an active transaction. The representation in the

database will be deleted when this instance is flushed to the database

(using commit, or user Query in pessimistic transaction).

Note that this behavior is not exactly the inverse of makePersistent,

due to the transitive nature of makePersistent. The implementation

might delete dependent database objects depending on

implementation-specific policy options (such as cascade delete).

This method throws an exception if the instance is managed by a

different Persistence Manager or if the instance is transient.

This method has no effect on instances already deleted in the

transaction.

getPersistenceManagerFactory Returns the Persistence Manager Factory that created this Persistence

Manager.

setUserObject / getUserObject The application might manage persistent instances by using an

associated object for bookkeeping. These methods let you manage

the associated object. The parameter is not inspected or used in any

way by the implementation.

getProperties Transparent Persistence stores certain nonoperational properties and

make those properties available to the application through a

Properties instance. This method retrieves the Properties instance.

Each key and value is a String. The keys required for this

implementation are:

• VendorName: The name of the vendor.

• VersionNumber: The version number string.

getObjectIdClass For the application to construct instances of the ObjectId class, there

is a method that returns the ObjectId class given the persistence

capable class.

TABLE 5-3 PersistenceManager Methods (Continued)

Method Description
100 Programming Persistence • August 2001

Transactions

Insert and delete operations must occur within the context of a transaction.

Transactions ensure the consistency of database reads and updates. They guard

against system problems, such as disk crashes, that would corrupt the consistency of

the database. Transactions also ensure that separate applications concurrently

accessing and updating the same data within the database do so correctly. When you

operate within the context of a transaction, it ensures that either all or none of your

updates are written to the database.

Each Persistence Manager supports one transaction at a time, and this transaction

applies to all of the transactional instances of persistence capable classes that it

“owns.” To work with the transaction, the application obtains the transaction object

from the Persistence Manager:

In most cases the application will be running local transactions with a single

database. The application starts and completes these transactions by calling

transaction object methods:

newSCOInstance Returns a new Second Class Object instance of the type specified,

with the owner and field name to notify upon changes to the value of

any of its fields. If a collection class is created, then the class does not

restrict the element types, allows nulls to be added as elements, and

has an initial size of zero.

newCollectionInstance Returns a new Collection instance of the type (or interface) specified,

with the owner and field name to notify upon changes to the value of

any of its fields. The collection class restricts the element types

allowed to the elementType or instances assignable to the

elementType, and allows nulls to be added as elements based on the

setting of allowNulls. The Collection has an initial size as specified

by the initialSize parameter.

Transaction myTrans = myPersistenceManager.currentTransaction();

Transaction txn=pm.currentTransaction();

txn.begin();

...operations...

txn.commit();

}

TABLE 5-3 PersistenceManager Methods (Continued)

Method Description
Chapter 5 Developing Persistence-Aware Applications 101

The Persistence Manager manages all interactions with the database, including

refreshing cached copies of persistent data. The application needs only to identify

transaction boundaries.

TABLE 5-4 discusses each method in detail.

catch (Exception e) {

txn.rollback();

}

TABLE 5-4 Transaction Methods

Method Description

begin Start a new Transaction. Throws a JDOUserException if

the transaction is already active.

commit The commit method performs the following operations:

• Transitions a deleted instance to transient.

• If retainValues is false, transitions persistent instances to

the hollow state, clearing all non-primary-key fields.

• If retainValues is true, transitions persistent instances to

the persistent-nontransactional state, keeping all current

field values.

rollback The rollback method performs the following operations:

• Transitions persistent-new instances to transient,

restoring the fields to their pre-persistent values.

• If retainValues is false, transitions persistent instances to

the hollow state, clearing all non-primary-key fields.

• If retainValues is true, transitions persistent instances to

the persistent-nontransactional state, restoring the fields

to their pre-modified values.

getPersistenceManager Returns the Persistence Manager associated with this

Transaction instance.

isActive Tells whether there is an active transaction.

getRetainValues
setRetainValues

If this flag is set to true,

• commit transitions persistent instances to the

persistent-nontransactional state, keeping all current

field values.

• rollback transitions persistent instances to the

persistent-nontransactional state, restoring the fields to

their pre-modified values.

If this flag is set to false,

• commit transitions persistent instances to the hollow

state, clearing all non-primary-key fields.

• rollback transitions persistent instances to the hollow

state, clearing all non-primary-key fields.
102 Programming Persistence • August 2001

getOptimistic
setOptimistic

If this flag is set to true, then optimistic concurrency is

used for managing transactions. The optimistic setting

passed replaces the optimistic setting currently active. If

set to true, then NontransactionalRead is set to true. The

default is true.

getNontransactionalRead
setNontransactionalRead

These methods access the flag that allows nontransactional

instances to be read outside of a transaction. If this flag is

set to true, then queries and navigation are allowed

without an active transaction. If this flag is set to false,

then queries and navigation outside an active transaction

throw an exception. The default is true.

getSynchronization
setSynchronization

Synchronization is supported for both managed and non

managed environments. A Synchronization instance

registered with the Transaction remains registered until

changed explicitly by another setSynchronization.

Only one Synchronization instance can be registered with

the Transaction. If the application requires more than one

instance to receive synchronization callbacks, then the

application instance is responsible for managing them and

forwarding callbacks to them. Any Synchronization

instance already registered will be replaced.

The beforeCompletion method will be called before the

behavior specified for the transaction completion method

commit. The beforeCompletion method will not be

called before rollback. The afterCompletion method

will be called after the transaction completion methods are

finished. The parameter for the afterCompletion (int
status) method will be either

Status.STATUS_COMMITTED or

Status.STATUS_ROLLEDBACK.

TABLE 5-4 Transaction Methods (Continued)

Method Description
Chapter 5 Developing Persistence-Aware Applications 103

Transaction Isolation Levels

The transaction isolation level specifies the degree to which a transaction is separate

from any concurrent transactions. Multiple users accessing the same database need

to set a balance between performance and the degree of certainty in their view of the

data. When accessing a database, certain inconsistencies can occur:

■ Dirty read

A read of uncommitted data. If Transaction A reads data from a database that has

been modified by Transaction B, and the change is rolled back instead of being

committed, Transaction A will have read data that is no longer correct.

■ Nonrepeatable read

Data returned by a query that would be different if the query were repeated

within the same transaction. If one transaction reads a row, then another

transaction updates or deletes the row and commits, the first transaction, on re-

read, gets different data. Nonrepeatable reads can occur when other users are

updating the same data you are reading.

■ Phantom insert

A read by one user that fetches a row that was inserted by another user’s

transaction. For example, one user’s SELECTstatement might select four rows

from a table the first time it is executed and five rows the next item if a second

user has, in the meantime, inserted a row that satisfies the first user’s query.

QueryTimeout
UpdateTimeout

This method avoids deadlocks in the database by waiting

a specified number of seconds before executing the query

or update associated with this instance of the Transaction.

The value is stored in seconds; zero means unlimited. For

example:

tx.setQueryTimeout(6);

tx.setUpdateTimeout(10);

PointBase does not currently support

PreparedStatement.setQueryTimeout() . Add

,locks.timeout=value to the URL or pointbase.ini
file to use any other than default value (current default

value is set to 60 seconds). However, be aware that

locks.timeout=0 sets the timeout to 0 seconds, rather

than the setQueryTimeout(0) behavior of setting it to

unlimited.

Locks.timout is set on the server side, not the client

side. This means the value will hold for all connections.

TABLE 5-4 Transaction Methods (Continued)

Method Description
104 Programming Persistence • August 2001

Specifying a higher isolation level eliminates these inconsistencies, but decreases the

performance of your application due to increased overhead, and leads to decreased

system concurrency.

Transparent Persistence uses the default isolation level for the database

(TRANSACTION_READ_COMMITTEDfor Oracle and MSSQL and

TRANSACTION_SERIALIZABLEfor PointBase).

java.sql.Connection uses the following SQL naming:

TABLE 5-5 shows which access inconsistencies are possible under each of these

settings.

With the TRANSACTION_NONEsetting, transactions are not supported at all.

Note – Oracle does not support TRANSACTION_READ_UNCOMMITTEDor

TRANSACTION_REPEATABLE_READ. Transparent Persistence does not validate any

of the settings you use; unsupported settings will result in constraint violations from

your database.

Concurrency Control

Programming in a database environment is transaction-based. Transactions ensure

that multiple users concurrently accessing the database do so correctly—that is,

transactions ensure the integrity of the database. This means that any insert or delete

operations must be made within the context of a transaction.

int TRANSACTION_NONE = 0;
int TRANSACTION_READ_UNCOMMITTED = 1;
int TRANSACTION_READ_COMMITTED = 2;
int TRANSACTION_REPEATABLE_READ = 4;
int TRANSACTION_SERIALIZABLE = 8;

TABLE 5-5 Isolation Levels

Level Dirty Read Nonrepeatable Read Phantom Insert

TRANSACTION_READ_UNCOMMITTEDPossible Possible Possible

TRANSACTION_READ_COMMITTED Not Possible Possible Possible

TRANSACTION_REPEATABLE_READ Not Possible Not Possible Possible

TRANSACTION_SERIALIZABLE Not Possible Not Possible Not Possible
Chapter 5 Developing Persistence-Aware Applications 105

Transparent Persistence handles concurrent transactions in two ways:

■ Optimistic Transaction Management (default)

With optimistic concurrency control, transactions assume that they will finish

before another transaction changes the same data. The system assumes that the

transaction will commit. However, it rolls back the transaction if it detects a

conflict—that is, if another transaction changes the same data and commits while

the first transaction is still in progress.

When the application starts a transaction, the Persistence Manager records the

beginning state of any database records it is using. Before committing the

transaction, it compares the beginning state of the database records with the

current state, to determine whether some other user has updated the database

while the transaction was in progress.

■ Data Store Transaction Management

With data store transaction management, transactions are handled by the

database and the specified transaction isolation level. See “Transaction Isolation

Levels” on page 104 for more information.

When the application starts a transaction, the Persistence Manager instructs the

database itself to begin a transaction. This means that between the first data

access until the commit, there is an active database transaction.

The Persistence Manager Factory has methods that let you set the default

concurrency management strategy. The Transaction object has methods that let you

set the concurrency management strategy before beginning a transaction.

Optimistic transactions take longer to execute than database transactions. This is

because each optimistic transaction consists of two database transactions: one read

transaction for the query, which is closed at query completion, and a write

transaction for the commit. Additionally, the transaction to commit the updates is

labor-intensive for the database, because it must check for rows that match the

originally selected object. However, optimistic transactions allow for optimal

concurrency, because database records are locked for a minimal amount of time.

If an optimistic transaction fails, you receive an exception with an attached failed

object array.

Recovery of database transactions is handled by the database. For example, the

database may check for deadlocks or timeouts, and then cancel or roll back the

transaction appropriately.

You should use optimistic transactions when you will have transactions that involve

user “think time,” such as within web applications. Use database transactions when

you will have transactions that are executed quickly on a server (for example, in

batch applications or within the method of a stateless session bean or a servlet).
106 Programming Persistence • August 2001

Retain Values

You can set the Persistence Manager to retain values outside of the context of a

transaction. This is most beneficial for optimistic transactions or for selecting data

outside the context of any transactions. This means that data is cached locally, even

outside the context of a transaction. This allows faster access of the data, but you

might risk having stale data in your local cache if the database was updated outside

of the IDE.

If you turn off retainValues , then the fields in the default fetch group are reread

the first time one of them is accessed. Each field not in the default fetch group is read

in once when it is first accessed.

Note – If retainValues() is set to true, the following situations occur:

Coding With Optimistic Concurrency Control

Setting the Optimistic flag to true has the side effect of setting the

NontransactionalRead flag to true as well.

With optimistic concurrency control, the less time your transactions are open, the

more likely they are to commit successfully. The longer a transaction is open, the

greater the risk of another transaction modifying data that is involved in your

transaction. If the system detects that another transaction has modified data that you

are trying to change, it throws a JDODataStoreException during flush or commit,

and you will need to roll back the transaction.

Optimistic transactions are useful when there are long-running transactions that

rarely affect the same instances. In these cases, the database will exhibit better

performance by deferring database exclusion on modified instances until commit.

With optimistic transactions, instances queried or read from the database will not be

transactional unless they are modified, deleted, or marked by the application as

transactional in the transaction.

At commit time, instances that have been made transactional will be verified against

the current contents of the database, to ensure that the state in the database is the

same as the “before image” of the instance in the transaction.

tx.begin();
Object o1 = c.get(i);
c.add(o); // This will cause reload, and will remove all

// existing duplicate elements.
o1 == c.get(i); // This can return true or false depending on the

// contents of the new collection.
Chapter 5 Developing Persistence-Aware Applications 107

If any instance is found to have changed, an exception is thrown that contains the

list of instances that failed the verification. The optimistic transaction stays active,

and you need to roll back the transaction.

In the case of concurrent updates, Transparent Persistence applications running in

optimistic mode throw a JDODataStoreException .

Optimistic transaction management is specified by the Optimistic setting on

Transaction .

At flush or commit, only fields in the same fetch group are checked for concurrent

changes.

When you are ready to actually commit your data modifications to the database, the

system checks if that data has been changed by any other transaction since the time

your transaction first read the data. If the data has not been changed, then your

transaction can complete. If any data has been changed, then you need to roll back

your updates.

Note – When Transparent Persistence rolls back a transaction because of a

concurrency conflict, it is likely that one or more of the original values have been

changed by another transaction.

Coding With Data Store Concurrency Control

The data store concurrency control approach depends on the particular database you

are using, and how you have set the isolation level.

Under the data store approach, after you update an object, you can proceed with

your transaction and be assured of a successful commit, unless a deadlock or error

occurs.

Deadlocks occur in situations where multiple transactions attempt to update the

same sets of records. For example, one transaction locks record A and waits to obtain

a lock on record B. At the same time, another transaction has locked record B and is

waiting to obtain a lock on record A. Neither transaction relinquishes the lock it

already holds, and they both deadlock because they are waiting for locks that they

will never acquire. Different database management systems handle deadlock

situations differently.

For example, in an application using Transparent Persistence, transaction A
successfully updates persistent object O1, and then tries to update persistent object

O2. Concurrently, another transaction, B, successfully updates persistent object O2,

and then tries to update persistent object O1, causing a deadlock in the database. You
108 Programming Persistence • August 2001

might get a deadlock even if one transaction had read O1 and wanted to update O2,

and the other transaction had read O2and wanted to update O1. The outcome of this

deadlock depends on which DBMS you are using.

Microsoft SQL Server does not detect deadlocks. You need to call

setQueryTimeout() and setUpdateTimeout() on the transaction to specify the

amount of time the query should wait before timing out. The default is to wait

forever.

In contrast, Oracle detects deadlocks between concurrent transactions only when one

user commits a conflicting transaction. In such situations, the first committed

transaction succeeds; the other transaction is rolled back.

In general, keep data store concurrency transactions short to avoid locking out other

transactions. Lockouts are less of a problem if you are dealing with applications that

run under exclusive control—that is, applications that gain control over a portion (or

all) of a database and exclude all other applications, such as an accounts payable

check-generating application.

Accessing the Database

This section specifies the life cycle for persistence-capable class instances. The classes

include behavior as specified by the class (bean) developer and additional behavior

as provided by the reference enhancer or Transparent Persistence. The enhancement

of the classes allows application developers to treat Transparent Persistence

instances as if they were normal instances, with automatic fetching of the persistent

state from the database.

A persistence-capable class has persistent fields and relationship fields that model a

class of data in a database. For an application to actually work with specific entities

from the database, it must create and work with instances of the persistence-capable

class that models the data. If, for example, the application is using an Employee
class that models the employee database table, the application needs instances of

that Employee class.

After the application has persistent instances that represent data, the behavior of

each instance is linked to the transactional store with which it is associated.

Transparent Persistence automatically tracks changes made to the values in the

instance, and automatically refreshes values from the database and saves values into

the database as required to preserve the transactional integrity of the data. This

means that application code can operate on the persistent instances as Java instances,

and the Transparent Persistence runtime environment will perform all of the

database interactions indicated by the application’s actions.
Chapter 5 Developing Persistence-Aware Applications 109

During the life of a persistent instance, it transitions among various states until it is

finally garbage collected by the JVM. During its life, the state transitions are

governed by the behaviors executed on it directly as well as behaviors executed on

the Persistence Manager by both the application and by the execution environment.

During the life cycle, instances at times might be inconsistent with the database as of

the beginning of the transaction. If instances are inconsistent, they are called “dirty”.

Instances made newly persistent, deleted, or modified in the transaction are dirty.

At times, Transparent Persistence stores the state of persistent instances in the

database. This process is called “flushing,” and it does not affect the dirty state of the

instances.

This section summarizes the ways in which applications can create and work with

instances of persistence-capable classes. It also introduces some of the terminology

Transparent Persistence uses for instance manipulation and instance status. Instance

status is primarily maintained for the runtime environment, but the application

might occasionally need to check it or reset it.

Overflow Protection

Write protection for the database is handled by the database driver. Transparent

Persistence does not do any separate write validation.

When reading from the database, you will get a JDOUserException if the value

returned from the database is a number less than the MIN_VALUEor greater than the

MAX_VALUEallowed for the field type. For example, you might set the values of

short to be between -32768 and 32768, inclusive:

The overflow validation on read is done for types short , int , long , byte , Short ,

Integer , Long , and Byte .

java.lang.Short:
public static final short MIN_VALUE = -32768;
public static final short MAX_VALUE = 32767;
110 Programming Persistence • August 2001

Inserting Persistent Data

When the client supplies data for a new record, the application handles it by creating

a new persistent instance:

When the transaction is committed, the Transparent Persistence runtime

environment generates an SQL insert operation (or its equivalent) for the data

encapsulated in this instance.

This is a two-step process. When the newEmployee instance is constructed, it is not

associated with the persistence manger and is not automatically saved when the

transaction ends. The makePersistent() call associates the newEmployee
instance with the Persistence Manager, which manages its values for the application.

Updating Persistent Data

When an application needs to change data in a persistent instance it does so by

acting directly on the instance:

When the transaction is committed, the Transparent Persistence runtime

environment generates an SQL update operation (or its equivalent) for the data

encapsulated in this instance. After the transaction commits, the instance’s status

will be reset.

Transparent Persistence does not support updates to SCO Collections that cause the

removal of an element by index, because the underlying collection can be changed

during the update operation by way of a refetch from the database.

Employee newEmployee = new Employee(<data>);

// Instance status is now "transient."

pMgr.makePersistent(newEmployee);

// Instance status is now "persistent-new."

selectedEmployee.setVacationHours(132);

// Instance status is now "dirty."
Chapter 5 Developing Persistence-Aware Applications 111

Deleting Persistent Data

When the application needs to delete data represented by a persistent instance, it

does so by calling a Persistence Manager method:

When the transaction is committed, the Transparent Persistence runtime

environment generates SQL delete operation (or its equivalent) for the data

represented by this instance.

Transparent Persistence supports two types of delete semantics:

■ None (default)

If an object is deleted, related objects in one-way relationships are left untouched.

In a managed relationship, the relationships between the deleted object and

related objects are nullified.

■ Cascade

If an object is deleted, all related objects are deleted at flush or commit.

For example, consider the classes Department and Employee , where

Department has an Employee Collection, and Employee has a reference to a

Department .

If the Employee relationship is marked for cascade delete, deleting a

Department instance will also delete all Employee instances associated with this

Department .

If the Department relationship is marked for cascade delete, deleting an

Employee instance will also delete the Department instance referenced from this

Employee . It will not delete other Employee instances associated with that

Department unless Employee relationships are marked for cascade delete as

well.

You can specify the deletion method in the Delete Action field of the Properties for a

persistence-capable class. See “Setting Options and Properties” on page 71.

Note – Setting cascade delete on the many side of a one-to-many or many-to-many

relationship can result in unwanted deletions. Cascade delete should be set only on

one-to-one relationships or on the one side of a one-to-many relationship.

persistenceManager.deletePersistent(selectedEmployee);

// Instance status is now marked for deletion.
112 Programming Persistence • August 2001

An example of deleting all objects on one side of a many-to-many relationship

would be deleting all projects from a relationship between projects and employees.

The code would be as follows:

Querying the Database

Queries allow you to access persistent data without writing separate SQL

statements. You can run your code on any of a number of different databases, and

you can re-map the persistence-capable classes to a different database, possibly with

a different schema, without changing the code.

When the application needs data from the database, it uses the newQuery() method

to obtain a Query object from the Persistence Manager, uses methods from the Query

interface to define a query, and executes the query. The following example shows

how this is done:

Collection p = e.getProjects();
Object[] a = p.toArray();
p.clear();
pm.deletePersistent(a);

Class empClass = Employee.class;

Collection empExtent = pMgr.getExtent(empClass, false);

String empFilter = "id == 59439";

Query q = pMgr.newQuery(empClass, empExtent, empFilter);

Collection result = (Collection) q.execute();
Chapter 5 Developing Persistence-Aware Applications 113

A query is defined by the elements shown in TABLE 5-6.

TABLE 5-6 Query Elements

Element Requirement Description

Candidate class Required This defines the class of the instances in the candidate

collection that are considered for this query. The class

is used to scope the names in the query filter. The

candidate class of a query must be persistence-

capable. It is defined by a newQuery argument or by

the Query method setClass .

Candidate

collection

Required This is the extent collection (see the

PersistenceManager.getExtent method) of the

candidate class and defines the input collection for the

query. It is defined by a newQuery argument or by

the Query method setCandidates .

Querying memory collections is not supported; the

extent collection is the only valid candidate collection

for a query.

Query filter Required The filter is a String that specifies which objects from

the candidate collection are returned by the query. It is

defined by a newQuery argument or by the Query

method setFilter . The default is “true”, which

means that all instances are returned.

Query parameters Optional A query might have one or more parameters that are

bound to actual values at query execution time. The

definition follows the syntax for formal parameters in

the Java language. It is defined by the Query method

declareParameters .

Query variables Optional The query filter might use unbound variables in order

to navigate a collection relationship. It follows the

syntax for local variables in the Java language. It is

defined by the Query method declareVariables .

Import statements Optional Parameters and variables might come from a class

other than the candidate class, and the names might

need to be declared in an import statement to

eliminate ambiguity. The syntax is the same as in the

Java import statement. It is defined by the Query

method declareImports .

Ordering Optional You can order the result set by a field of the candidate

class. The ordering specification includes the list of

fields with the ascending/descending indicator. It is

defined by the Query method setOrdering .
114 Programming Persistence • August 2001

The Persistence Manager is the factory of Query instances and queries are executed

in the context of a Persistence Manager. Any persistence-capable instances returned

by the query are associated with the Persistence Manager and its transaction. This

Persistence Manager’s automatic update/refresh process will include these

instances. There might be multiple query instances active in the same Persistence

Manager.

Use a newQuery() method in the Persistence Manager for each query you want to

create. The preceding example constructs a query instance with the candidate class,

candidate collection, and filter specified. Other options are shown in TABLE 5-7.

TABLE 5-7 newQuery Options

Method Description

Query newQuery() Construct an empty query instance.

Query newQuery
(Object query)

Construct a query instance from another query. The parameter

might be a serialized/restored Query instance from a different

execution environment, or the parameter might be currently

bound to a Persistence Manager. Any of the elements Class,

Filter, Import declarations, Variable declarations, Parameter

declarations, or Ordering from the parameter Query are copied

to the new Query instance, but a candidate collection element

is discarded.

Query newQuery
(Class cls)

Construct a query instance with the candidate class specified.

Query newQuery
(Class cls,
Collection cln)

Construct a query instance with the candidate class and

candidate collection specified.

Query newQuery
(Class cls, String
filter)

Construct a query instance with the candidate class and filter

specified.

Query newQuery
(Class cls,
Collection cln,
String filter)

Construct a query instance with the candidate class, the

candidate collection, and filter specified.
Chapter 5 Developing Persistence-Aware Applications 115

TABLE 5-8 discusses each method of the Query interface in detail.

The Query interface provides methods that execute the query based on the

parameters given. Query.execute always returns a collection of objects. In the

preceding example, the query selects a single object, but the dynamic type of the

result of q.execute is Collection . This means that you must iterate through the

result collection and Iterator.next returns the Employee .

TABLE 5-8 Query Interface Methods

Method Description

void setClass (Class
resultClass)

Binds the candidate class to the query instance.

void setCandidates
(Collection
candidateCollection)

Binds the candidate collection to the query instance.

void setFilter
(String filter)

Binds the query filter to the query instance.

void
declareParameters
(String parameters)

Binds the parameter declarationsto the query instance. This

method defines the parameter types and names that will be

used by a subsequent execute method.

void
declareVariables
(String variables)

Binds the unbound variable declarations to the query instance.

This method defines the types and names of variables that will

be used in the filter but not provided as values by the execute

method.

void declareImports
(String imports)

Binds the import statements to the query instance.

void setOrdering
(String ordering)

Binds the ordering statements to the query instance.

void setIgnoreCache
(boolean flag);
boolean
getIgnoreCache ()

Allows you to request that queries be optimized to return

approximate results by ignoring changed values in the cache.

This option is only useful for optimistic transactions and

allows the database to return results that do not take modified

cached instances into account. setIgnoreCache (false) is

not supported.

void compile () Requires the Query instance to validate any elements bound to

the query instance and report any inconsistencies by throwing

an exception.
116 Programming Persistence • August 2001

Query Filters

The query filter is a Java Boolean expression that is evaluated for each instance in

the collection. If no filter is specified, the default is true , which filters the input

collection only for class type.

Simple Filter Expressions

The simplest form is a relational expression that compares a candidate class field

with a literal value:

You can also include the Boolean operators &, &&, | , || and ! as well as the

arithmetic operators +, - , * , and / . For example, in the following code, the first line

filters elements with a first name of John and a last name of Jones. The second line

filters elements with a first name of John or a salary greater than 200,000.

Identifiers in the filter expression denote fields of the candidate class, unless the

name is defined as a parameter, variable, or imported as a class name. For example,

firstname , lastname , and salary are fields of the Employee class. As in the Java

language, this is a reserved word referring to the element of the candidate

collection being evaluated.

The following filter expressions are equivalent:

Any assignment, pre- and post-increment, and pre- and post-decrement operators

are not allowed. Therefore, filter expressions do not have a side effect on the objects

to be returned. The supported method calls are Collection.contains ,

Collection.isEmpty, String.startsWith and String.endsWith . In contrast to

the Java language, equality and ordering comparisons between primitives and

instances of wrapper classes are valid, as are equality and ordering comparisons of

Date fields and Date parameters. You can also include other relational operators <,

<=, >, >= and != , and Boolean operators such as & and &&.

q.setFilter("id == 59439");

q.setFilter("firstname == \"John\" & lastname == \"Jones\"");
q.setFilter("firstname == \”John\” | salary > 200000.0");

q.setFilter("firstname == \"John\"");
q.setFilter("this.firstname == \"John\"");
Chapter 5 Developing Persistence-Aware Applications 117

Query Parameters

A query parameter is the only part of a query definition that is not fixed at query

declaration. A parameter’s actual value is passed to the execute method. The

following query returns the employees with a first name specified by the execute
method call:

Here firstname denotes a field in the persistence-capable class Employee , and

name denotes the query parameter name. The actual value of the parameter name is

specified as an argument of execute . The call q.execute("John") returns a

collection of Employee instances with a firstname value of John . You can reuse

the same query instance to return Employee instances with a different name by

calling execute again and passing a different parameter value, as in

q.execute("Sue") .

The declaration of the query parameter defines the name and type of the query

parameter. The actual value passed to execute must be compatible with the

parameter type. A query can define multiple parameters. The parameters passed to

execute associate in order with the parameter declarations.

Each parameter of the execute method is an object that is either the value of the

corresponding parameter or the wrapped value of a primitive parameter.

Note – Any parameters passed to the execute methods are used only for the

current execution, and are not remembered for future execution.

The methods from the query API that define query elements setClass ,

setCandidates , setFilter , declareImports , declareParameters ,

declareVariables , and setOrdering are replacing, not additive. This means if

Class empClass = Employee.class;
String filter = "firstname == name";
Collection empExtent = pMgr.getExtent(empClass, false);
String param = "String name";
Query q = pMgr.newQuery(empClass, empExtent, filter);
q.declareParameters(param);
Collection result = (Collection) q.execute("John");
118 Programming Persistence • August 2001

these methods are called twice before query execution, the second call overwrites the

settings from the first call. In the following sample code, the query is defined taking

a single parameter called lastname :

If you want to create a query taking two parameters, you have to define them in a

single declareParameters call:

Relationship Navigation

The query filter may navigate a relationship the same as in the Java language. The

following query returns Employee instances where the value of the name field in the

associated Department instance is equal to the value passed as a parameter:

Query variables are used to navigate a collection relationship. The filter expression

includes a call of the method Collection.contains to specify the scope of the

variable. The call is followed by a Boolean expression that defines the condition for

the instances in the collection relationship. The following query selects all

Department instances containing at least one Employee instance with a salary

Query query = pm.newQuery(Employee.class);
query.declareParameters("String firstname");
query.declareParameters("String lastname");
...

Query query = pm.newQuery(Employee.class);
query.declareParameters("String firstname, String lastname");

Class empClass = Employee.class;
String filter = "department.name == depName";
Collection empExtent = pm.getExtent (empClass, false);
String param = "String depName";
Query q = pm.newQuery (empClass, empExtent, filter);
q.declareParameters (param);
Collection emps = (Collection) q.execute ("R&D");
Chapter 5 Developing Persistence-Aware Applications 119

greater than the value passed as a parameter. The expression emps.contains
(emp) defines the Employee collection relationship as the scope of the variable emp,

and emp.salary > sal defines the condition for the Employee instances.

Transparent Persistence supports comparing relationships fields with persistent

instances. For example, a filter expression could compare the department field of

Employee with a Department query parameter: "department == dept" .

Note – Transparent Persistence does not support multiple contains clauses for the

same variable. A declared variable must be used in a filter.

Ordering Specification

The following query selects all Employee instances having a salary greater than

30000 , in ascending order of salary:

The parameter passed to setOrdering allows multiple ordering declarations

separated by commas. The result set is ordered using the first ordering expression.

Those entries where the first ordering expression yields the same value are ordered

using the second ordering expression, then the third ordering expression, and so on.

You can specify an ordering expression that includes relationship navigation as well.

Class depClass = Department.class;
Collection deptExtent = pm.getExtent (depClass, false);
String imports = "import mypackage.Employee";
String vars = "Employee emp";
String filter = "emps.contains (emp) & emp.salary > sal";
Query q = pm.newQuery (depClass, deptExtent, filter);
q.declareParameters (param);
q.declareVariables (vars);
Collection deps = (Collection) q.execute (new Float (30000.));

Class empClass = Employee.class;
Collection empExtent = pMgr.getExtent(empClass, false);
String empFilter = "salary > 30000.0";
Query q = pMgr.newQuery(empClass, empExtent, empFilter);
q.setOrdering("salary ascending");
Collection result = (Collection) q.execute();
120 Programming Persistence • August 2001

The following ordering declaration causes the query above to return Employees in

ascending order of the name of the associated department. Employees from the same

department are ordered by salary.

String Operations

String fields and values in filter expression are compared using the == and !=
operators. Transparent Persistence supports wild card queries using the String

methods startsWith and endsWith . The following filter expression selects all

Employee instances having a first name that starts with M:

Queries in Optimistic and Data Store Transactions

A query executed in a data store transaction first flushes changes from the

transaction and then evaluates the query in the data store. This means the query

result reflects any changes made in this transaction prior to query execution. In

optimistic transactions, there is no flushing, so the query result might not reflect

current changes or might include instances that do not satisfy the query result

because of recent changes in the transaction. You can execute a query outside of a

transaction if nontransactional reads are allowed.

Expression Capabilities

Following are the capabilities of the expressions supported by Transparent

Persistence:

■ Operators applied to all types where they are defined in the Java language, as

shown in TABLE 5-9:

q.setOrdering(“department.name ascending, salary ascending”);

String empFilter = "firstname.startsWith("M");

TABLE 5-9 Query Operators

Operator Description

== equal

!= not equal

> greater than
Chapter 5 Developing Persistence-Aware Applications 121

■ Parentheses to explicitly mark operator precedence

■ Cast operator (class)

■ Promotion of numeric operands for comparisons

■ Equality and ordering comparison and arithmetic operations on object-valued

fields of wrapper types (Boolean , Byte , Short , Integer , Long , Float , and

Double) and of BigDecimal and BigInteger

This uses the wrapped values as comparands or operands.

■ Equality comparison of object-valued fields of PersistenceCapable types

This uses the Transparent Persistence Identity comparison of the references. Thus,

two objects will compare equal if they have the same Transparent Persistence

Identity.

■ Equality comparison of object-valued fields of non-PersistenceCapable types

This uses the equals method of the field type.

■ String concatenation

Only concatenation of strings is supported. For example, String + primitive
is not supported.

< less than

>= greater than or equal

<= less than or equal

& Boolean logical AND (not bitwise)

&& conditional AND

| Boolean logical OR (not bitwise)

|| conditional OR

~ Boolean or integer bitwise invert

+ binary or unary addition or String concatenation

- binary subtraction or numeric sign inversion

* times

/ divide by

! logical invert

TABLE 5-9 Query Operators (Continued)

Operator Description
122 Programming Persistence • August 2001

Examples

This section includes several examples of typical queries. Each example is

accompanied by a description and its equivalent ANSI SQL statement.

The examples use the following definitions for persistence-capable classes:

Single-Table Select

This query selects all Employee instances from the extent.

Single-Table Select With Constraint

This query selects all Employee instances that have a field value that passes a

Boolean test; in this case, where the salary is greater than the constant 30000.

package com.xyz.hr;
class Employee {
String name;
Float salary;
Department dept;
Employee boss;
}
package com.xyz.hr;
class Department {
String name;
Collection emps;
}

ANSI SQL equivalent: SELECT * FROM EMPLOYEE

Class empClass = Class.forName("com.xyz.hr.Employee");
Collection clnEmployee = pm.getExtent (empClass, false);
String filter = "true";
Query q = pm.newQuery (empClass, clnEmployee, filter);
Collection emps = (Collection) q.execute ();

ANSI SQL equivalent: SELECT * FROM EMPLOYEE WHERE SALARY > 30000
Chapter 5 Developing Persistence-Aware Applications 123

The Float value for salary is unwrapped for the comparison with the literal

value. If the value for the salary field in the candidate instance is null , it cannot

be unwrapped for the comparison, and the candidate instance is rejected.

Single-Table Select With Parameterized Constraint

This query selects all Employee instances that have a field value that passes a

Boolean test that uses a parameter; in this case, where the salary is greater than the

value passed as a parameter.

The parameter declaration is a String containing one or more parameter type

declarations separated by commas. This follows the Java syntax for method

signatures.

If the value for the salary field in a candidate instance is null , then it cannot be

unwrapped for the comparison, and the candidate instance is rejected.

Class empClass = Class.forName("com.xyz.hr.Employee");
Collection clnEmployee = pm.getExtent (empClass, false);
String filter = "salary > 30000.00";
Query q = pm.newQuery (empClass, clnEmployee, filter);
Collection emps = (Collection) q.execute ();

ANSI SQL equivalent: SELECT * FROM EMPLOYEE WHERE SALARY > ?

Class empClass = Class.forName("com.xyz.hr.Employee");
Collection clnEmployee = pm.getExtent (empClass, false);
String filter = "salary > sal";
String param = "Float sal";
Query q = pm.newQuery (empClass, clnEmployee, filter);
q.declareParameters (param);
Collection emps = (Collection) q.execute (new Float (30000.));
124 Programming Persistence • August 2001

Single-Table Select With Ordering Clause

This query selects a list of objects ordered by the value of one or more of the object’s

fields.

The ordering statement is a String containing one or more ordering declarations

separated by commas. Each ordering declaration is the name of the field in the name

scope of the target class followed by ascending or descending .

Join Across a “to-one” Relationship

This query selects a list of objects that have a referenced object that matches a

Boolean test; in this case, where the value of the name field in the Department

instance associated with the Employee instance is equal to the value passed as a

parameter.

If the value for the dept field in a candidate instance is null , then it cannot be

navigated for the comparison, and the candidate instance is rejected.

ANSI SQL equivalent: SELECT * FROM EMPLOYEE ORDER BY LASTNAME
ASCENDING, FIRSTNAME ASCENDING

Class empClass = Class.forName("com.xyz.hr.Employee");
Collection clnEmployee = pm.getExtent (empClass, false);
String filter = "true";
Query q = pm.newQuery (empClass, clnEmployee, filter);
query.setOrdering("lastname ascending, firstname ascending")
Collection emps = q.execute ();

ANSI SQL equivalent: SELECT EMPLOYEE.* FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.DEPTNAME = ? AND EMPLOYEE.DEPTID =
DEPARTMENT.DEPTID

Class empClass = Class.forName("com.xyz.hr.Employee");
Collection clnEmployee = pm.getExtent (empClass, false);
String filter = "dept.name == name";
String param = "String Engineering";
Query q = pm.newQuery (empClass, clnEmployee, filter);
q.declareParameters (“String name”);
Collection emps = (Collection) q.execute (“Engineering”);
Chapter 5 Developing Persistence-Aware Applications 125

Join Across a “to-many” Relationship

This query selects a list of objects that have one or more objects in a referenced

collection that match a Boolean test; in this case, all Department instances where the

collection of Employee instances contains at least one Employee instance having a

salary greater than the value passed as a parameter.

Overlapping Primary Key and Foreign Key

Transparent Persistence supports overlapping primary and foreign keys, but there

are several issues to be aware of. As an example, consider the following schema:

ANSI SQL equivalent: SELECT DEPARTMENT.* FROM DEPARTMENT, EMPLOYEE
WHERE EMPLOYEE.SALARY > 30000 AND DEPARTMENT.DEPTID =
EMPLOYEE.DEPTID

Class depClass = Class.forName("com.sun.xyz.Department");
Collection clnDepartment = pm.getExtent (depClass, false);
String vars = "Employee emp";
String filter = "emps.contains (emp) & emp.salary > sal";
String param = "float sal";
Query q = pm.newQuery (depClass, clnDepartment, filter);
q.declareParameters (param);
q.declareVariables (vars);
Collection deps = (Collection) q.execute (new Float (30000.));

CREATE TABLE Order
(
 orderNumber INT PRIMARY KEY,
 customerName VARCHAR2(32) NULL,
 requestedDate DATE NULL
)
CREATE TABLE LineItem
(
 lineItemNumber INT NOT NULL,
 orderNumber INT NOT NULL,
 price FLOAT NOT NULL,
 description VARCHAR2(100) NULL,
 PRIMARY KEY (lineItemNumber, orderNumber),
 FOREIGN KEY (orderNumber) REFERENCES Order(orderNumber)
)

126 Programming Persistence • August 2001

The persistence-capable classes would look as follows:

Since Transparent Persistence does not support modifying primary keys, it does not

support modifying the relationship between Order and Lineitem . For example, in

order to add a Lineitem to an Order , you would need to modify the

Lineitem.ordernumber , which is part of the primary key. Similarly, if you try to

remove a Lineitem from an Order , you would need to set the

Lineitem.ordernumber to zero, which could cause a constraint violation in the

database. In both cases, Transparent Persistence would not update the Oids nor

rehash the instances in the cache.

To deal with this situation, use the guidelines in the following sections:

Creating an Order/Lineitem Relationship

For this example, the code below creates an Order/Lineitem relationship:

public class Order
{
 int ordernumber;
 String customername;
 Date requesteddate;
 HashSet lineitems;
}
public class Lineitem
{
 int lineitemnumber;
 int ordernumber;
 float price;
 String description;
 Order order;
}

tx.begin();
Order o = new Order();
o.setOrdernumber(1);
o.setCustomername("peter");
HashSet items = new HashSet();
o.setLineitems(ltems);
Lineitem lt = new Lineitem();
lt.setLineitemnumber(1);
lt.setOrdernumber(1);
Chapter 5 Developing Persistence-Aware Applications 127

You need to explicitly set the ordernumber to the ordernumber of an existing

Order . The Order can either be persistent in the database already or it can be in the

process of being made persistent.

Note – Once the Lineitem.ordernumber is set to 1, it can only be added to Order

1’s lineitems collection.

Deleting Order/Lineitem Relationship

The code example below properly removes an Order/Lineitem relationship.

You can remove a Lineitem from an Order as long as you explicitly delete it within

the same transaction. Note that you can interchange the following two lines

Similarly, you can remove all Lineitems from an Order as long as you explicitly

delete them all within the same transaction.

items.add(lt);

pm.makePersistent(o);
tx.commit();

tx.begin();
Order o = // fetch the Order
Lineitem lt = // get the Lineitem you want to remove

pm.deletePersistent(lt);
o.getLineitems().remove(lt);

pm.deletePersistent(o.getLineitems());
o.getLineitems().clear();

tx.commit();
128 Programming Persistence • August 2001

Restrictions

Following is the list of restrictions:

■ Moving a Lineitem from one Order to another is not supported. You need to

remove or delete it from one Order and create a new one to be added to another

Order .

■ Lineitem.setOrder() is not supported. For example:

This will throw a JDOUnsupportedOptionException .

The following lines of code will cause a JDOUserException at commit time:

Fetch Groups

A fetch group is a group of persistent fields that will be retrieved together. When an

application requests the value of one field in the group, values for all fields in the

group are loaded together. This provides more efficient transfer of values that are

frequently used together, such as the fields that make up an employee address. The

class developer can analyze the fields in the database record and decide whether

adding fetch groups to the class definition will improve performance of the class.

You can specify Level, Independent, Default, or None. There are two types of

settings, hierarchical and independent.

Hierarchical groups include the Default and Level settings, and build on one

another. A setting of Default for a field means that field will be fetched along with

all other fields that have a setting of Default. When a field in the Level 1 group is

fetched, all fields in group Level 1 and the Default group are fetched as well.

By default, Transparent Persistence includes all persistent fields except relationship

fields in the Default fetch group. If the Fetch Group property is disabled, the field is

not persistent, not mapped, or is a key field and will always be fetched. Relationship

fields must have a setting of None.

Lineitem lt = o.getLineitems().get(0);

lt.setOrder(null);

o.getLineitems.add(lt);
lt.setOrder(o);
Chapter 5 Developing Persistence-Aware Applications 129

Checking Instance Status

The preceding discussions of basic operations queries, updates, and so on, have

touched on the status of persistent instances and demonstrated some of the ways in

which the Persistence Manager sets the status of instances it is managing, and then

uses that status to determine which operations are required at transaction

boundaries. If necessary the developer can check and reset the status of instances.

The recommended approach for applications to interrogate the state of the instance

is to use the class JDOHelper . This class provides static methods that delegate to the

instance if it implements PersistenceCapable , and if not, returns the values that

would have been returned by a transient instance.

Methods available include, but are not limited to, the following:

Transparent Persistence Identity

Java defines two concepts for determining whether two instances are the same

instance or whether they represent the same data:

■ Java object identity is entirely managed by the JVM. Instances are identical if and

only if they occupy the same storage location within the JVM.

■ Java object equality is determined by the class. Instances are equal if they

represent the same data, such as the same value for an integer or equivalent bits

in a bit array.

The interaction between Java object identity and equality is important for

Transparent Persistence developers. Java object equality is application-specific, and

Transparent Persistence does not change the application’s implementation of

equality. There is only one instance in each Persistence Manager representing the

persistent state of each corresponding database object. Therefore, Transparent

Persistence defines object identity differently from both the JVM object identity and

the application equality.

Applications should implement equality for persistence-capable classes differently

from the default implementation, which uses the JVM object identity. This is because

the JVM object identity of a persistent instance cannot be guaranteed between

Persistence Managers and across space and time, except in very specific cases.

isDirty()

makeDirty()
130 Programming Persistence • August 2001

If persistent instances are stored in the database and are queried using the == query

operator or are referred by a persistent collection that enforces identity (Set, Map),

then the implementation of equals should exactly match the Transparent Persistence

implementation of equality, using the primary key or Oid as the key. This is not

enforced, but if not correctly implemented, the semantics of collections can differ.

To avoid confusion with Java object identity, this manual refers to the Transparent

Persistence concept as Transparent Persistence identity. Transparent Persistence

identity is used for databases in which the values in the instance determine the

identity of the object in the database. Transparent Persistence identity is managed by

the application and enforced by the database.

The Persistence Manager manages instance identity for the developer, but then when

comparing persistent instances (for example, with the = = operator), it is the

Transparent Persistence Oids that are compared.

Oid Class

The Oid class (Object ID) is specific for each persistence-capable class. It is a

characteristic of the persistence-capable class and must be created at mapping time.

Each Persistence Manager must manage the cache of Transparent Persistence

instances so that only one such instance is associated with each Persistence Manager

that encapsulates a database object.

To accomplish this, each Transparent Persistence class has an associated Oid class

that includes a field or fields whose values uniquely identify a Transparent

Persistence instance. Each instance of a Transparent Persistence class has an

associated instance of the ID class that holds the identifier. This allows the runtime

environment to compare Oids and manage identity and equality of the Transparent

Persistence instances.

With many databases, the identity of an entity is determined by a value found in the

data. This is typical of relational database systems, in which each row or object has a

key value that identifies it. For this kind of database, the Oid class created by the

Java generator is a “primary key class,” with a field that holds the primary key

value.

An Oid class can be either of the following types:

■ Static nested class with the suffix Oid (default)

■ Separate class with suffix Key

Both suffixes are case-insensitive.

As an example, of the name of the persistence-capable class is

mypackage.Employee , valid Oid class names are mypackage.Employee.Oid or

mypackage.EmployeeKey .
Chapter 5 Developing Persistence-Aware Applications 131

Note – For each field of a persistence-capable class, the Properties window has a

Boolean Key Field option. However, the Oid class defines key fields as those fields in

the persistence-capable class that have matching (public) fields in the Oid class of

equal name and type.

To avoid a conflict, you need to ensure that the Key Field settings of your

persistence-capable classes match the structure of your Oid classes:

■ A field in the persistence-capable class marked as a primary key must be declared

in the Oid class

■ A field in the Oid class must be marked as a primary key and be present in the

persistence-capable class

■ A persistence-capable class and an Oid class field of same name must be of

consistent types

Uniquing

Transparent Persistence identity of persistent instances is managed by the

implementation. For a managed Transparent Persistence identity, only one persistent

instance is associated with a specific database object per Persistence Manager

instance, regardless of how the persistent instance is acquired:

■ PersistenceManager.getObjectById(Object oid)

■ Query via a Query instance associated with the Persistence Manager instance

■ Navigation from a persistent instance associated with the Persistence Manager

instance

■ PersistenceManager.makePersistent(Object pc)

■ PersistenceManager.getTransactionalInstance(Object pc)

A primary key identity is associated with a specific set of fields. The fields associated

with the primary key are a property of the persistence-capable class and cannot be

changed after the class is enhanced for use at runtime. When a transient instance is

made persistent, the implementation uses the values of the fields associated with the

primary key to construct the Transparent Persistence identity.

Mapping

For each persistence-capable class, the Java Generator generates a public static

nested class called Oid . You can access this class with <className>.Oid . At the

time of generation, you specify whether a class is persistence-capable. The GUI does

not protect the primary key fields of each persistence-capable class and the fields of
132 Programming Persistence • August 2001

<className>.Oid from changes You must maintain consistency between the

names and types of primary key fields of persistence-capable classes and the names

and types of fields of <className>.Oid .

The following example creates and accesses an Oid class for class Employee :

Persistent Object Model

The Java execution environment supports different kinds of classes that are of

interest to the developer. Typically, application classes are highly interconnected, and

the instances of those classes include the entire contents of the database.

Applications typically deal with a small number of persistent instances at a time.

Transparent Persistence creates the appearance that the application can access the

entire graph of connected instances, while in reality only a small subset of instances

needs to be instantiated in the JVM.

Employee.Oid eieio = new Employee.Oid();
eieio.id = 142857;
Employee emp = (Employee) myPM.getObjectById (eieio);
String name = emp.getName();
Chapter 5 Developing Persistence-Aware Applications 133

FIGURE 5-3 Instantiated Persistent Objects

Within a JVM, there can be multiple independent units of work that must be isolated

from each other. Transparent Persistence permits the instantiation of the same

database object into multiple Java instances. Whenever a reference is followed from

one persistent instance to another, Transparent Persistence instantiates the required

instance into the JVM.

The storage of objects in databases is different from the storage of objects in the JVM.

Transparent Persistence creates a mapping between the Java instances and the

objects in the database, using metadata that is available at runtime.

There is no restriction on types of non persistent fields of persistence-capable classes.

These fields behave exactly as defined by the Java language. Persistent fields of

persistence-capable classes have restrictions in Transparent Persistence, based on the

characteristics of the types of the fields in the class definition.

Persistent objects

JVM

Database virtual objects

Mapping function
Transient objects

Instantiated persistent objects

Data Store
134 Programming Persistence • August 2001

Architecture

In Java, variables (including fields of classes) have types. Types are either primitive

types or reference types. Reference types are either classes or interfaces. Arrays are

treated as classes.

Instances are of a specific class, determined when the instance is constructed.

Instances may be assigned to variables if they are assignment-compatible with the

variable type.

The Transparent Persistence object model distinguishes between two kinds of

classes: those that are persistence-capable and those that are not. User-defined

classes are persistence-capable unless their state depends on the state of inaccessible

or remote objects (for example, if they extend java.net.SocketImpl or

implement their behavior by using native calls).

System-defined classes (those defined in java.lang , java.io , java.net , and so

on) are not persistence-capable, nor are they allowed to be any of the following

persistent field types:

■ All primitive types (boolean, byte, short, int, long, char, float and double)

■ All immutable object class types (Boolean, Character, Integer, Long, Float, Double

and String as Second Class Objects)

■ Mutable object class types from the java.util package (Date, ArrayList, and

Vector) and mutable object class types from the java.sql package as Mutable

Second Class Objects (Date, Time, Timestamp)

Persistent and Transient Objects

Classes associated with a database are designated as persistence-capable classes.

Objects representing these classes can be either persistent objects or transient objects.

Persistent objects are stored in a database. Transient objects exist only for the

duration of the program that instantiates them.

All classes whose instances can be stored in a database must implement the

PersistenceCapable interface. Transparent Persistence automatically adds the

implementation of this interface when it enhances Java classes.
Chapter 5 Developing Persistence-Aware Applications 135

Field Types of Persistent-Capable Classes

In persistence-capable classes, fields can be persistent, transactional non persistent,

or nontransactional non persistent.

Persistent Fields

TABLE 5-10 describes the persistent field types.

TABLE 5-10 Persistent Field Types

Field Type Description

Primitive Transparent Persistence supports fields of any of the

primitive types boolean , byte , short , int , long , char ,

float , and double . Primitive values are stored in the

database associated with their owning First Class Object.

They have no Transparent Persistence Identity.

Immutable Object Class Transparent Persistence supports fields of immutable object

classes and can choose to support them as Second Class

Objects or First Class Objects.

package java.lang: Boolean , Character , Integer ,

Long , Float , Double , and String

Transparent Persistence applications should not depend on

whether these fields are treated as Second Class Objects or

First Class Objects.

Mutable Object Class Transparent Persistence supports fields of mutable object

classes and may choose to support them as Second Class

Objects or First Class Objects.

package java.util: Date and HashSet

package java.sql: Date , Time , and Timestamp .

Because the treatment of these fields might be as Second

Class Objects, the behavior of these mutable object classes

when used in a persistent instance is not identical to their

behavior in a transient instance.

PersistenceCapable Class Transparent Persistence supports fields of

PersistenceCapable class types as First Class Objects.

Collection Interface Transparent Persistence supports fields of interface types.

package java.util: Collection and Set
136 Programming Persistence • August 2001

Persistent and Non-Persistent Fields

A persistence-capable class can have both persistent fields and non-persistent fields.

■ Persistent fields are used to represent persistent data, and the Transparent

Persistence runtime environment manages them for users of the class. This means

that the Transparent Persistence runtime environment will automatically

synchronize a persistent field’s value with the database, flush object values to the

database, and so on, in accordance with current transaction status, and

concurrency management strategy.

■ Non-persistent fields are managed by application logic; they do not participate in

the Transparent Persistence mechanism. The application can use them for values

that are derived from persistent values, values used in a transaction that do not

need to be saved to the database, and so on.

JDO Interfaces

The JDO interfaces, found in a package named com.sun.forte4j.persistence ,

are:

■ PersistenceManagerFactory –Allows users of Transparent Persistence classes

(application developers) to create Persistence Managers.

Developers cannot use Persistence Manager constructors, but use a Persistence

Manager Factory to create a Persistence Manager. The Transparent Persistence

API includes a class that implements this interface. The application instantiates

the Persistence Manager Factory, configures its properties, and then creates a

Persistence Manager. Any Persistence Manager Factory property settings become

default settings for Persistence Managers created by the factory. If you want to

use connection pooling, the Persistence Manager Factory can be used to set these

properties as well.

■ PersistenceManager –Manages and manipulates persistence-capable classes

(which results in database selects, insert, updates, deletes) in transactional mode.

The Persistence Manager normally manages all interactions with the database,

including refreshing cached copies of persistent data. The application needs only

to identify transaction boundaries.

Each Persistence Manager manages a set of persistence-capable class instances

created by the application, or that the Persistence Manager fetches in response to

a query constructed by the application. Each Persistence Manager is capable of

one transaction. In other words, a Persistence Manager generally manages a set of

persistent instances created or fetched by a single client session, and each client

session generally requires its own Persistence Manager. A Persistence Manager

can connect to only one database (it can use multiple tables from that database),

so some client sessions will need to obtain more than one Persistence Manager

from more than one Persistence Manager Factory.
Chapter 5 Developing Persistence-Aware Applications 137

■ Transaction –Allows users of persistence-capable classes to start and commit or

roll back transactions.

Developers obtain an object that implements this interface from the Persistence

Manager. Transaction boundaries apply to persistent instances that are managed

by that Persistence Manager. If the application is performing multiple database

transactions, they must use multiple Persistence Managers.

■ Query –Allows users of persistence-capable classes to construct queries.

Developers obtain an object that implements this interface from the Persistence

Manager, then use Query methods to construct a query in JDO query syntax.

Completed queries can be executed by calling their execute() methods. Results

are returned to the application as a collection of instances of a Transparent

Persistence class.

■ JDO exceptions–The JDO specification defines JDOException and a number of

other exceptions derived from it. These are unchecked runtime exceptions.

Application developers should code to catch those JDO exceptions their

application might throw.

Transparent Persistence includes a .jar file that contains the implementations of

these interfaces. The Persistence Manager Factory is implemented as a class that

developers can instantiate directly; the other objects will be obtained by calling the

appropriate factory methods.

By definition, a persistence-capable class is one that implements the

PersistenceCapable interface. This interface provides a set of methods that allow

users of Transparent Persistence classes (application developers) to check the status

of Transparent Persistence instances.

Transparent Persistence classes must implement this interface, but the class

developer does not write the implementation code. Instead, it is generated by

Transparent Persistence during enhancement. After a class has been enhanced, it is

able to interact with the Transparent Persistence runtime environment. Neither the

developer of persistence-capable classes nor the application developer who uses

them needs to be aware of what is in the generated code that implements the

PersistenceCapable interface.

Transparent Persistence classes can be portable, which means that they can be

moved from one JDO environment to another, be enhanced again in the new

environment, and operate properly.
138 Programming Persistence • August 2001

JDO Exceptions

TABLE 5-11 summarizes the exceptions associated with the rule violations.

TABLE 5-11 JDO User Exceptions

Exception Explanation

JDOException
(“Object is not

PersistenceCapable ”)

You cannot make an object persistent from a class

that does not implement PersistenceCapable .

JDOUserException
(“An instance with the same primary

key already exists in this PM cache”)

You cannot use makePersistent on a different

Java object with the same database identity.

JDOFatalUserException
(“PM is closed”)

You cannot access a closed Persistence Manager.

JDOFatalInternalException There has been an unexpected error at mapping

or runtime.

JDOUnsupportedOptionException You cannot use an unsupported option (for

example, setIgnoreCache(false)).

JDODataStoreException There is a conflict in the database or an integrity

constraint violation.

JDOQueryException
(“Missing candidate class

specification.”)

The candidate class not specified. See the Query

method setClass .

JDOQueryException
(“Missing candidate collection

specification.”)

The candidate collection not specified. See the

Query method setCandidates .

JDOQueryException
(“Candidate collection does not match

candidate class <class>.”)

The candidate collection is not the extent

collection from the candidate class.

JDOQueryException
(“Wrong number of arguments.”)

There are more actual parameters passed to

executes than are defined in

declareParameters .

JDOQueryException
(“Unbound query parameter ’param’.”)

The Query method execute does not get a value

for the Query parameter ’param’.

JDOQueryException
(“Incompatible type of actual parameter.

Cannot convert ’java.lang.String’ to

’long’.”)

The type of the actual parameter is not

compatible with the type in the parameter

declaration.
Chapter 5 Developing Persistence-Aware Applications 139

Debugging Persistence-Aware
Applications

The Persistence Debugger lets you debug persistence-aware applications without the

need to package the persistence-capable classes as a JAR file. Like the Persistence

Executor, the Persistence Debugger uses a special classloader to apply the

enhancement of the classfiles for Transparent Persistence when they are loaded.

▼ To Debug an Application

1. Make sure the JDBC driver is mounted or listed in your CLASSPATH.

2. Open the application within the IDE debugging environment.

3. Select Project > Settings

4. Choose Debugger Types, then choose Persistence Debugger.

5. Use the Persistence debugger as you would any other Forte for Java debugger.

For more information on using the Forte for Java debugging environment, see

“Debugging a Program” in the Core IDE online help.

JDOQueryException
(“<method> column(<nr>): <problem

description>.”)

This form indicates a problem with the Query

definition. <method> is one of the Query

methods (setFilter , declareParameters ,

setOrdering , and so on). <nr> is the column

number of the error. <problem description> is a

description of the error, such as Syntax error or

Invalid arguments(s) for ’<’.

For example, the filter expression

"this.michael == 0 " would result in a

JDOQueryException("setFilter
column(6): Field ’michael’ not
defined for class
’com.xyz.hr.Employee’.") , if the class

Employee does not define a field michael .

TABLE 5-11 JDO User Exceptions (Continued)

Exception Explanation
140 Programming Persistence • August 2001

CHAPTER 6

Using Transparent Persistence With
Enterprise Java Beans

This chapter describes how you can use Transparent Persistence with Enterprise Java

Bean components, and includes sample code for using persistence-capable classes

with J2EE™ Reference Implementation (J2EE RI) and iPlanet™ Application Server

(iAS) applications.

Note – Forte for Java does not provide for deployment of Enterprise JavaBeans that

use Transparent Persistence that were developed outside the Forte for Java IDE.

How Transparent Persistence Works in
Enterprise Beans

Transparent Persistence provides you with an object view of persistent data stored in

relational databases. The persistent instances can be used in the Enterprise Beans

environment as helper objects with session beans or entity beans. You can use

Transparent Persistence to improve performance in an enterprise bean so that it does not

need to access the database as frequently. Instead of coding separate get and set
methods, you can use serialized persistence-capable classes as value objects that

display and update multiple fields.

To use Transparent Persistence in an Enterprise Beans environment, first develop

persistence-capable classes as you would for any persistent application. Once these

classes have been developed, they can be used with Enterprise Beans.
141

When you use persistence-capable classes with Enterprise Beans, the environment is

slightly different compared to use in a two-tier application. These differences have to

do with how the PersistenceManager is obtained and how transactions are managed:

■ While the bean instance is activated, you make a JNDI lookup call to find the

Persistence Manager Factory.

■ The EJB container and Transparent Persistence coordinate transaction

management in a persistence-aware enterprise bean that doesn’t manage its own

transactions.

An enterprise bean is somewhat different, too, when it uses Transparent Persistence.

The main differences are how business methods are implemented, how

synchronization is handled, and how transactions can be managed.

■ Your bean’s business methods are implemented by using a reference to an

instance of a persistence-capable class that accesses and modifies the bean’s state

as required.

■ Transaction synchronization is handled by the Persistence Manager, when the

container makes transaction-completion call-backs at appropriate points in the

bean’s life cycle.

■ Each business method must acquire its own PersistenceManager instance

from the PersistenceManagerFactory . At the end of the business method, the

PersistenceManager instance must be closed. This allows transaction

synchronization between Transparent Persistence runtime and the container.

■ A bean can use container-managed transactions for transaction completion. In

that case, there is no extra code to be added. Or, if the bean manages its own

transactions, it can use either a user transaction (that is, an instance of the

javax.transaction.UserTransaction interface) or a Transparent

Persistence transaction that it acquires from the Persistence Manager.

Session and Entity beans acquire a PersistenceManager, and with it can perform

CRUD (create, read, update, and delete) operations on persistent instances using the

interfaces defined in PersistenceManager, exactly as if the application were running

in a two-tier environment.

To locate persistent instances to use in business methods, call the

getObjectByID(Object oid) method of the

com.sun.forte4j.persistence.PersistenceManager interface, or execute a

query using the com.sun.forte4j.persistence.Query interface. This is no

different from two-tier applications.
142 Programming Persistence • August 2001

A typical sequence for using Transparent Persistence with Enterprise Java Beans is:

■ Develop or map persistence-capable classes within the Transparent Persistence

environment.

■ Use the IDE’s EJB Builder wizard to generate an enterprise bean, with code that

does the following:

■ Generates a dynamic JNDI lookup for PersistenceManagerFactory

■ Acquires PersistenceManager using a getPersistenceManager() call to

the PersistenceManagerFactory

■ Performs desired operations with persistent data

■ Closes PersistenceManager

If you want use connection pooling, you must configure the datasource properties

outside of the Persistence Manager Factory.

Enterprise Java Beans, J2EE RI, and iAS are described in detail in the documentation

included with their respective modules. You can also find White papers with more

examples of how Transparent Persistence is used with Enterprise JavaBeans at the

Forte for Java Portal as they become available.

Providing for Serialization

If you intend to pass a persistence-capable class as a parameter or return type of an

EJB method, you must make the class serializable. When you generate persistence-

capable classes, you have the option of defining them to be serializable (that is,

implementing the java.io.Serializable interface).

When you pass an object outside the virtual machine that hosts its Persistence

Manager, the Persistence Manager can no longer track the object’s state. Therefore, if

you want the enterprise bean’s client to be able to update an object that it has

received from the bean’s remote interface, you must provide a bean method that

accepts the modified object and applies the changes to the persistent instance. Or,

you can have the client decide on the changes to be made and use another bean

method to update the information.

Here’s another case. Within a business method, a persistence-capable instance might

refer to another persistence-capable instance that is part of the transaction but has no

associated enterprise-bean component. If such a reference must be returned to the client,

be sure that the instance’s class is serializable.

For example, your entity bean OrderBean uses the persistence-capable class Order
as a helper instance, and Order uses the persistence-capable class LineItem .To return

an array of persistence-capable LineItem instances, you make the LineItem class

serializable, and you write a remote method on OrderBean with the following signature:

public Collection getLineItems()
Chapter 6 Using Transparent Persistence With Enterprise Java Beans 143

To create a serialized copy of a persistence instance, use the JDOHelper method

createSerializedCopy and call it before the call to close PersistenceManager .

This is illustrated in the following example.

Transactions With Enterprise Beans

Transaction management is the process of telling the container when to begin a

transaction, and when to end it, as well as whether the transaction is to be

committed or rolled back. With enterprise beans, transaction management is handled

in a standard way that varies based on the kind of bean.

When programming Entity Beans and Session Beans with Container Managed

Transaction completion, application components never complete transactions. When

programming Session Beans with Bean Managed Transaction completion, the bean is

responsible for completing transactions.

Regardless of which type of bean you are using, Transparent Persistence will

coordinate with the transaction completion semantics of the container.

The PersistenceManager is a transactional object. That is, it contains information

specific to a particular transaction. The PersistenceManagerFactory manages a pool

of PersistenceManagers, each of which might be associated with a different

transaction. It is important for the bean to get the appropriate PersistenceManager

for the transaction, by getting the PersistenceManager when the thread of execution

is associated with the transaction.

Each business method should get the PersistenceManager from the

PersistenceManagerFactory , and close it at the end of the business method.

For Stateful Session Beans with Bean Managed Transactions, it is a bean decision

when to get the PersistenceManager , because the PersistenceManager might

be managed as a conversational state.

persistenceManager = persistenceManagerFactory.getPersistenceManager();
//perform the query or navigation
//Collection items = ...
Collection result = (Collection)JDOHelper.createSerializedCopy(items);
persistenceManager.close();
return result;
144 Programming Persistence • August 2001

Creating an Enterprise Bean That Uses
Transparent Persistence

The following sections take you through the general process for creating an

enterprise bean that uses persistent-capable classes. The sections assume you have

already created your persistent-capable classes.

Setting the JNDI Lookup

With Enterprise Java Beans (Enterprise JavaBeans), every component that uses

resources needs to identify those resources in the deployment descriptor, and

dynamically obtain them by lookup in JNDI at runtime. JDBC Connections are an

example of resources that are managed by the container and looked up by the bean

components. In Transparent Persistence, the Persistence Manager Factory is a

resource that needs to be configured as the deployment descriptor, and looked up at

runtime.

The recommended approach is to declare the PersistenceManagerFactory
reference in java:comp/env/jdo/ persistencemanagerfactoryname.

When the corresponding name is given to the InitialContext at runtime, the

container finds the appropriate Persistence Manager Factory and returns it to the

bean.

The Persistence Manager Factory is the resource that is shared among many beans,

and is associated with a JDBC DataSource. With enterprise beans, all the beans that

use the same DataSource should share the same PersistenceManagerFactory. This

allows different beans in the same transaction to find the same Persistence Manager.

During bean development, you identify the Persistence Manager Factory to be used

by name. During deployment, the name is associated with a specific

PersistenceManagerFactory . At runtime, the named Persistence Manager

Factory is found by looking up the name with JNDI.

▼ To Perform a JNDI Lookup

In the bean, put the following variables:

String persistenceManagerFactoryResourceName = "java:comp/env/jdo/ pmfname";
PersistenceManagerFactory persistenceManagerFactory;
Chapter 6 Using Transparent Persistence With Enterprise Java Beans 145

In the setSessionContext method, include the following code:

You can use the Session Bean template to create a new session bean with the JNDI

lookup code already added. Then you need only to replace a place holder for the

JNDI name with the actual name and add required references to the bean’s property

sheet.

▼ To Create a Transparent Persistence-Aware Session Bean
Using the IDE

1. Choose File > New > Session Bean.

The EJB Builder wizard appears.

2. Choose the type of bean you want: container-managed transactions (CMT bean) or
bean-managed transactions (BMT bean).

3. Check the Use Transparent Persistence check box, and click Next.

Note – If you are creating a stateful CMT bean, you will have the option to

implement the SessionSynchronization interface. Do not check this option.

The EJB Components pane appears.

4. Continue with the template until you create your bean.

The Bean appears in the explorer window, as shown in FIGURE 6-1.

FIGURE 6-1 Persistent Enterprise Bean

5. Right-click on the bean in the explorer window and choose Properties.

6. Select the J2EE RI tab.

7. Enter a value for the JNDI Name property.

8. Replace the generated JNDI name for the Persistence Manager Factory with the
actual name.

InitialContext initialContext = new InitialContext();
persistenceManagerFactory= (PersistenceManagerFactory)
initialContext.lookup(persistenceManagerFactoryResourceName);
146 Programming Persistence • August 2001

Setting Resource References

When setting up an Enterprise JavaBean with J2EE RI or iAS, you need to identify

the Persistence Manager Factory as a Resource Factory Reference. You can do this

through the Enterprise JavaBean property sheet.

▼ To Set the Persistence Manager Factory as a Resource
Reference

1. Right-click the Enterprise JavaBean node in the Explorer window.

2. Click on the value for Resource Factory References, then click on the ellipsis (...)
button. A property editor opens.

3. Click on the Add button. The Add Resource Reference window opens.

4. Add the name of the Persistence Manager Factory.

5. Select com.sun.forte4j.persistence.PersistenceManagerFactory from the Type drop-
down menu.

6. If you plan to deploy the application into the J2EE RI server, select the J2EE RI tab
and enter the JNDI name exactly as in Step 4.

7. Click OK to finish.

Note – If you are creating an Enterprise JavaBean with iAS, you will also need to

add the reference to the Data Source in the Property sheet, using the same procedure

as listed above.

Using Bean-Managed Transactions

You must decide whether to complete transactions by using the

javax.transaction.UserTransaction supplied by the container, or the

com.sun.forte4j.persistence.Transaction supplied by the

PersistenceManager .

If you want to use the same PersistenceManager for multiple transactions, then you

must complete transactions using

com.sun.forte4j.persistence.Transaction . If you get a Persistence

Manager for each transaction, it is your choice which technique to use.
Chapter 6 Using Transparent Persistence With Enterprise Java Beans 147

To use com.sun.forte4j.persistence.Transaction for transaction

completion, use the following code as an example:

If you use javax.transaction.UserTransaction for transaction completion,

then you must begin the transaction before getting the PersistenceManager from the

PersistenceManagerFactory, and close the PersistenceManager before you commit

the transaction.

To use javax.transaction.UserTransaction for transaction completion, use

the following code as an example:

Using Container-Managed Transactions

When programming Entity Beans and Session Beans with Container Managed

Transaction completion, application components never complete transactions.

Transparent Persistence will coordinate with the transaction completion semantics of

the container.

// business method with multiple transactions with the same PersistenceManager
persistenceManager = persistenceManagerFactory.getPersistenceManager();
persistenceManager.currentTransaction().begin();
// perform persistent operations in the first transaction
persistenceManager.currentTransaction().commit();
PersistenceManager.currentTransaction().begin();
// perform persistent operations in the second transaction
persistenceManager.currentTransaction().commit();
persistenceManager.close();

sessionContext.getUserTransaction().begin();
persistenceManager = persistenceManagerFactory.getPersistenceManager();
// perform persistent operations in the first transaction
persistenceManager.close();
sessionContext.getUserTransaction().commit();
148 Programming Persistence • August 2001

▼ To Use a Container-Managed Transaction

1. In the bean, put the following variable:

2. In each business method, wrap the following code around operations on
persistent instances:

The following is an example of a container-managed transaction:

PersistenceManager persistenceManager;

persistenceManager = persistenceManagerFactory.getPersistenceManager();
// perform persistent operations
persistenceManager.close();

public java.lang.String addEmployee(long empid,
 java.lang.String lastName,

java.lang.String firstName,
double salary) {

 Employee emp = new Employee();
 emp.setEmpid(empid);
 emp.setLastname(lastName);
 emp.setFirstname(firstName);
 emp.setSalary(salary);

 try {
 persistenceManager =

persistenceManagerFactory.getPersistenceManager(dbuser, dbpasswd);
 persistenceManager.makePersistent(emp);
 return "Created Employee: " + emp.getEmpid();
 } catch (Exception e) {

 e.printStackTrace();
 return "Failed Create Employee: " + empid + ": " + e.toString();

 } finally {
 persistenceManager.close();

 }
}

Chapter 6 Using Transparent Persistence With Enterprise Java Beans 149

Integrating Transparent Persistence Into
the J2EE Reference Implementation

You can use Transparent Persistence with the J2EE RI (version 1.2.2 only) as

described previously, with the following added procedures.

1. Copy the JDBC driver and the following three files from the module installation
directory to J2EE_HOME/lib/system :

■ IDE_Install/modules/dbschema.jar
■ IDE_Install/modules/ext/persistence-rt.jar
■ IDE_Install/lib/ext/xerces.jar

Note – IDE_Install will either be the IDE installation directory, or the Forte for Java

(FFJ) user directory if you downloaded the FFJ module from the Update Center.

2. Edit J2EE_HOME/bin/userconfig.sh script to add the JDBC driver and above
three jars to the J2EE_CLASSPATH.

3. Set the JNDI lookup for the Persistence Manager Factory and your datasource.

a. Edit J2EE_HOME/config/default.properties .

■ Add

com.sun.forte4j.persistence.internal.EJB.j2sdkee121Helper to

the list of drivers to be loaded at the server startup time to enable the

integration:

■ Register PersistenceManagerFactory as a data source, replacing

jdo/ empPMF and jdbc/ datasource with your own settings of JNDI names for

the Persistence Manager Factory and DataSource:

jdbc.drivers=...:com.sun.forte4j.persistence.internal.ejb.j2sdkee121Helper

jdbc20.datasources=jdo/empPMF|
xadatasource.0.jndiname=jdo/ empPMF
xadatasource.0.classname =

com.sun.forte4j.persistence.PersistenceManagerFactoryImpl
xadatasource.0.prop.ConnectionFactoryName=jdbc/ datasource
xadatasource.0.prop.Optimistic=false
150 Programming Persistence • August 2001

Note – Make sure there are no trailing spaces or non-displayed characters in the

above lines, because the J2EE server will not recognize them. Also, verify that the

value for transaction.timeout is set to "0".

b. Edit the J2EE RI startup script to add a system property.

By default, Transparent Persistence requires that each persistence-capable class be

loaded by only one class loader. The effect of this standard behavior with J2EE RI

is that persistence-capable classes can only be used with one J2EE application,

and redeployment of the application is not possible. Adding the following system

property to the J2EE RI startup script changes this default behavior.

c. Give the system property one of the following values:

■ ignore : Use only one persistence-capable class definition. This setting is

suitable where the same persistence-capable class is used in multiple

applications and the class definition is identical in each one, or where you are

using the persistence-capable class in only one application, and are modifying

it during the develop/deploy/test cycle.

■ reload : Replace the existing persistence-capable class definition. This setting

is suitable where you are using the persistence-capable class in only one

application, and are modifying it during a develop/deploy/test cycle.

In a Solaris environment, set the PROPS variable in $J2EE_HOME/bin/j2ee to:

In a Windows environment, directly change the %JAVACMD%command in j2ee.bat :

4. Start the J2EE RI server, and create your Enterprise JavaBean as described in the
Enterprise JavaBean and J2EE RI documentation.

You will also need to set the PersistenceManagerFactory as a Resource reference, as

described in “Setting Resource References” on page 147.

-Dcom.sun.forte4j.persistence.model.multipleClassLoaders

PROPS="-Dcom.sun.enterprise.home=$J2EE_HOME -
Djava.security.policy==$J2EE_HOME/lib/security/server.policy
-Dcom.sun.forte4j.persistence.model.multipleClassLoaders=reload"

%JAVACMD% -Djava.security.policy==%J2EE_HOME%\lib\security\
server.policy -Dcom.sun.enterprise.home=%J2EE_HOME% -
Dcom.sun.forte4j.persistence.model.multipleClassLoaders=reload -
classpath "%CPATH%" com.sun.enterprise.server.J2EEServer %1 %2
Chapter 6 Using Transparent Persistence With Enterprise Java Beans 151

Note – If you need to do a rollback in J2EE RI business methods that use container-

managed transactions for transaction demarcation, you must prepare a serialized

copy of a persistence instance before calling ctx.setRollbackOnly() . See

“Providing for Serialization” on page 143.

Integrating Transparent Persistence With
the iPlanet Application Server

The iPlanet Application Server (iAS) 6.0 SP3 plug-in module provides an application

program interface (API) for the iPlanet application and web server plugin modules.

You can use Transparent Persistence with the iAS as described in Using Transparent

Persistence with Enterprise JavaBeans with the following added procedures:

1. Change registry parameters to be able to register and perform a JNDI lookup of
the persistenceManagerFactory resource reference.

a. Run kregedit (located at IAS_Install_dir/ias/bin/kregedit on Solaris
or kregedit.bat on Windows.)

b. Click on SOFTWARE\iPlanet > Application Server 6.0 > jndiConfig.

c. Select Edit >Add Key, then type jdo.

d. Right-click on jdo.

e. Select Edit >Add Value. Add the following:

■ contextClassName
■ com.netscape.server.jdo.PMFContext

f. Select Edit > Add Value again. Add the following:

■ factoryClassName
■ com.netscape.server.jdo.PMFContextFactory

2. Add the necessary JAR files to the CLASSPATH.

a. On Solaris:
152 Programming Persistence • August 2001

■ Insert the following code before the THIRD_PARTY_JDBC_CLASSPATHline in

IAS_Install_dir/ias/env/iasenv.ksh :

■ Add the Transparent Persistence path $TP_PATHin front of the CLASSPATH:

CLASSPATH=$TP_PATH:existing code

b. In a Windows environment, you'll need to edit the Java CLASSPATH:

■ Select SOFTWARE\iPlanet Application Server 6.0 Java CLASSPATH registry

and add the following in front of the path:

3. Restart the iPlanet Application Server.

Follow the steps in the documentation to enable the iPlanet plugin.

4. Add and register PersistenceManagerFactory.

a. Click on JDO(TP) Persistence Manager Factories, choose Add a Persistence
Manager Factory, and fill in values for the properties:

b. Right-click on the created Persistence Manager Factory (empPMF) and choose
Register. Choose your server in the Select Server to Register window. Press the
Register button.

c. Set the PersistenceMangerFactory as a Resource Factory using the Enterprise
JavaBean Property sheet.

This is described in “Setting Resource References” on page 147. You also need to

set DataSource reference for all Enterprise JavaBeans that use

PersistenceManagerFactory .

5. Follow steps in the plug-in documentation to fix resource references for iAS
deployment of your beans.

FFJ_IDE=IDE_Install TP_PATH=$FFJ_IDE/modules/dbschema.jar:
$FFJ_IDE/lib/ext/xerces.jar:$FFJ_IDE/modules/ext/persistence-
rt.jar:$FFJ_IDE/iPlanet/jdoias/iaspmf.jar:$FFJ_IDE/iPlanet/jdoias

IDE_Install/modules/dbschema.jar:IDE_Install/lib/ext/xerces.jar:IDE_Install/mo
dules/ext/persistence-rt.jar:IDE_Install/iPlanet/jdoias/iaspmf.jar:
IDE_Install/iPlanet/jdoias

Connection Factory = jdbc/PointBase
//("jdbc/" + DataSource name)
Persistence Manager Factory Name = empPMF
//(other boolean settings are optional)
Chapter 6 Using Transparent Persistence With Enterprise Java Beans 153

154 Programming Persistence • August 2001

APPENDIX A

System Requirements

Transparent Persistence supports development and use of persistence-capable

classes with the DB2 Universal Database, Oracle 8i, PointBase, and Microsoft SQL

Server.

In addition to the Transparent Persistence module, running in Forte for Java, you

need one of the following supported JDBC drivers installed in the lib/ext
subdirectory of the Forte for Java installation directory:

■ WebLogic for SQL Server 2000 driver

■ PointBase Embedded 3.5 driver with PointBase bundled in IDE

■ ORACLE 8i 8.1.6 Thin

■ DB2 Universal Database, Version 7.1

Note – Transparent Persistence depends on ANTLR 2.7.0 in order to parse query

statements. ANTLR 2.7.0 is included, and works automatically, but will conflict with

other versions of ANTLR you may have in your runtime JVM. Be sure to disable any

other versions of ANTLR before running Transparent Persistence.

Your CLASSPATHvariable needs to include the following software:

■ A supported JDBC driver

■ Transparent Persistence runtime package, persistence-rt.jar

■ dbschema.jar from the modules directory of the Forte for Java installation,

from <FFJ install root>/modules/dbschema.jar

■ An XML SAXParser from <FFJ install root>/lib/ext/xerces.jar

The location of the persistence-rt.jar and dbschema.jar files depend on how you

install the Transparent Persistence and DBSchema modules:

■ If you install the modules at the same time you install the IDE, the files will be

located in <install root>/modules/ext .

■ If you install the modules from the Update Center running in multi-user mode

(the default), they will be in <ffjuser>/modules/ext .
155

■ If you install the modules from the Update Center in single user mode, they will

be in <install root>/modules/ext .

Note – If you are running Transparent Persistence when you modify your

CLASSPATHvariable, you will need to restart Forte for Java for the changes to take

effect.
156 Programming Persistence • August 2001

APPENDIX B

Transparent Persistence JSP Tags

Transparent Persistence supports the JSP tags PersistenceManager and

jdoQuery . For general information on JSP tags, refer to Building Web Components in

the Forte for Java Programming Series.

PersistenceManager Tag

The PersistenceManager tag creates a PersistenceManager that is used by the

jdoQuery tag to retrieve objects through a database.jdbc connection. You can

store the Persistence Manager in any of the four scopes: application, session, request

or page. The default scope is application.

PersistenceManager attributes:

■ id (required)

The ID under which the PersistenceManager information is stored. The JDO

Query tag uses id to retrieve the objects. The attribute can be set statically or

using a JSP expression.

■ scope

The scope where the PersistenceManager is stored. The value needs to be

application, session, request, or page. The attribute can be set statically or using a

JSP expression.

■ connection (required)

The attribute specifies the connection ID, which is used to retrieve the connection

information. The attribute can be set statically or using JSP expression.

■ connectionScope
157

The scope where the connection ID is searched. The value needs to be application,

session, request, or page. If the attribute is not specified, the system searches all the

scopes in the following order: page, request, session, application. The attribute can

be set statically or using JSP expression.

PersistenceManager Tag Example:

jdoQuery Tag

The jdoQuery tag is used to query the database and get the results. These results

then can be passed to iterator tags in order to be displayed.

The jdoQuery tag supports the standard SQL statements Insert, Update, Delete and

Select. Because the SQL statement is specified in the body instead of as an attribute,

JSP scripting can be used to control how query is created.

jdoQuery attributes:

■ ID (required)

The ID under which the query instance is stored. If a queryid instance is present

in the scope specified by queryscope, then the body of the query is not executed.

Note that queryid is different from the ResultsId . ResultsId is the ID under

which the results are stored.

■ className (required)

Fully qualified class name (package.subpackage.ClassName) of the Object

that will be retrieved from the database.

■ filter

The filter (for example, emp.salary < 10000) used to construct query to

retrieve the Objects from the database.

■ imports

The import string that will be used to resolve the class names and variables used

in the constructed query.

<%@taglib uri="/WEB-INF/lib/dbtags.jar" prefix="jdbc" %>
<%@taglib uri="/WEB-INF/lib/tptags.jar" prefix="jdo" %>
<jdbc:connection id="conn"
 driver="weblogic.jdbc.mssqlserver4.Driver"
 url="jdbc:weblogic:mssqlserver4:marina@bete:1433"
 user="mv" password="mv" />
<jdo:persistenceManager id="empPM" connection="conn" />
158 Programming Persistence • August 2001

■ variables

The variables that will be used in constructing the query for retrieving the objects

from database.

■ persistenceManager (required)

The PersistenceManager id used to construct and execute the query.

■ persistenceManagerScope

The scope where the PersistenceManager ID is searched. The value needs to

be one of the following: application, session, request, page. If the value is not set,

the system searches all the scopes in the following order: page, request, session,

application. The attribute can be set statically or using JSP expression.

■ resultsId (required)

The result data from the query is stored under the value specified by this

attribute. The attribute can be set statically or using JSP expression.

■ resultsScope

The scope where the result data is stored. The value specified should be one of the

following: application, session, request, page.

jdoQuery Tag Example:

<%@taglib uri="/WEB-INF/lib/dbtags.jar" prefix="jdbc" %>
<%@taglib uri="/WEB-INF/lib/tptags.jar" prefix="jdo" %>
<jdbc:connection id="conn"
 driver="weblogic.jdbc.mssqlserver4.Driver"
 url="jdbc:weblogic:mssqlserver4:marina@bete:1433"
 user="mv" password="mv" />
<jdo:persistenceManager id="empPM" connection="conn" />
<jdo:jdoQuery id="employeeQuery"
 persistenceManager="empPM"
 className="empdept.post.Employee"
 resultsid="employeeDS" resultsScope="session" />
<% printJDOQueryResults(pageContext,out,"employeeDS"); %>
<jdbc:cleanup scope="session" status="ok" />
Appendix B Transparent Persistence JSP Tags 159

160 Programming Persistence • August 2001

APPENDIX C

Restrictions and Limitations

In this appendix, we discuss unsupported or restricted features, the ways database-

specific behaviors and limitations can affect your use of Transparent Persistence and

the results you might receive, and file migration information for developers who

have created classes using previous versions of Transparent Persistence.

The issues covered in this section are:

■ Unsupported features and restrictions

■ Restrictions and limitations on the use of Transparent Persistence with the

following:

■ PointBase 3.5 Network (Multi-User) Server Product, bundled with the IDE.

■ Oracle 8.1.6 Thin Driver

■ WebLogic JDBC driver 5.1.0 for Microsoft SQL Server 2000

■ DB2 Universal Database, Version 7.1

■ The Microsoft JDBC-ODBC bridge

■ Migrating classes created by earlier versions of Transparent Persistence

Unsupported Features

Transparent Persistence does not currently support the following features:

■ Tables without primary keys

■ The ability to update primary key values

■ Join tables with extra columns

■ User-defined concurrency groups

■ User-defined, large object, and national character set datatypes, such as Blobs,

Clobs, text, nChar, nVarchar, and ntext
161

■ Inheritance: A persistence-capable class cannot extend directly or indirectly from

another class.

■ Relationships between classes across multiple database schemas

■ Inserting and deleting object graphs containing circular dependencies

■ Views that do not include all the primary key columns of the table (simple and

composite primary keys). Transparent Persistence does not support views if they

do not contain all the primary key columns.

■ The runtime behavior of classes mapped to views is subject to the limitations of

the underlying database with regard to updating and deleting views. If the

limitations are violated, then the database will throw an exception. Some of these

limitations include:

■ Views having aggregate functions (for example, SUM, AVG, max, min,
count, and count(*)) in their definitions

■ Views having user-defined functions

■ Views having WITH CHECK OPTIONin their definition

■ Views having the group by clause in their definition

■ Views having the order by clause in their definition

Restrictions

The following features are supported, but restricted in some cases.

Application Class Loaders

Transparent Persistence assumes that two persistent-capable classes that have a

relationship are loaded using the same class loader. Transparent Persistence does not

support the scenario that two classes having the same class name are loaded by

different class loaders. This will result in a JDOFatalUserException , “class

class.Name loaded by multiple class loaders”.

In an application server environment, this restriction can be resolved by using the

com.sun.forte4j.persistence.model.multipleClassLoaders option , as

described in Chapter 6.
162 Programming Persistence • August 2001

Comparing Collection Relationships

You cannot compare a collection relationship with a non-null value. The query will

result in a JDOUnsupportedOptionException .

User-Defined Clone() Methods

Transparent Persistence requires that a newly created clone of a persistence instance

of a persistence-capable class is a transient instance with respect to Transparent

Persistence. For almost all cases, this can be ensured by the Transparent Persistence's

enhancer, which either generates an appropriate clone() methods (if none has been

defined by the user) or adds some code to the byte-code of a user-defined clone()
method.

The created clone is marked to be transient right after a generated or user-defined

clone method has returned from calling the clone method of the superclass

(super.clone()). Therefore, no user-defined clone methods in all superclasses of a

persistence-capable class can directly or indirectly invoke code that accesses any

persistent fields of the newly created clone. Such an invocation would cause an

interaction with the Transparent Persistence runtime before the clone has been

marked as transient in the persistence-capable subclass.

User-Defined Constructors

The Transparent Persistence runtime creates instances of a persistence-capable class

using a special constructor that is added by the enhancer. This constructor does not

call any other, constructors of the persistence-capable class (for example, user-

defined constructors), but instead invokes a no-argument (also called the “default”)

constructor of the superclass of the persistence-capable class. This imposes the

following restrictions upon persistence-capable classes:

■ The superclass must provide a default constructor accessible to the persistence-

capable subclass.

■ For persistence-capable classes, no user-defined constructors or initializations of

non-static instance fields will be executed on instances created by the Transparent

Persistence runtime as result of a query or relationship navigation.
Appendix C Restrictions and Limitations 163

Database Limitations and Restrictions

The following limitations and restrictions apply only to specific databases, as

detailed below.

PointBase 3.5 Network (Multi-User) Server

This section describes how the PointBase Network Server 3.5, bundled with the IDE,

behaves in certain circumstances.

Error Message: “java.net.SocketException: Socket
closed ”

If PersistenceManagerFactory is configured without connection pooling and

there are several instances of the PersistenceManagerFactory created that are

not in use any more, the garbage collection process prints the following message to

the System.out when the connection is closed:

java.net.SocketException: Socket closed

The exception is ignored internally, so there is no affect on runtime.

PointBase Database version 3.4

Transparent Persistence cannot support the PointBase Database version 3.4 because

PointBase Database version 3.4 does not support regular identifiers within quote

marks.

To run your application with this version, you need to override 3.5 settings by

creating a file .tpersistence.properties with the following two lines:

database.pointbase.QUOTE_CHAR_END=
database.pointbase.QUOTE_CHAR_START=

Place this file in the root directory of the application that calls the database.
164 Programming Persistence • August 2001

isEmpty() Method

Using the isEmpty() method in a filter will throw a JDBC SQLException. An example

of such a query is:

query.setFilter(“employees.isEmpty()”);

Location of PointBase Network Server

The Database Schema wizard assumes that the PointBase Network Server is located

in the directory from which you started the database. For example, if you start the

database from the IDE, it will assume the database is located in:

Forte_Home\pointbase\network\databases

Multiple Relationship Fields in a Fetch Group

You cannot put multiple relationship fields in a fetch group if you are using the

PointBase Network Server.

Workaround: For each related field, make sure the Fetch Group property is set to

none .

Oracle 8.1.6 Thin Driver

This section describes how the Oracle 8.1.6 database behavior can affect Transaction

Persistence under certain circumstances.

Concurrent Transactions

Data store transactions with isolation level SERIALIZABLE behave differently in

Oracle than they do with other supported databases. For example, note the

following two transactions:

Transaction 1: Fetch an object into cache, then modify the object fields in the cache.

Transaction 2: Fetch an object with the same primary key values into another cache,

then modify the object fields in the cache.

Most databases would put a read lock on the row and prevent you from committing

transaction 2 before you commit transaction 1. Oracle, however, only blocks a

transaction if another uncommitted transaction modifies the same row. If you try to
Appendix C Restrictions and Limitations 165

commit Transaction 2 before transaction 1, Oracle will commit transaction 2, then

throw an exception, with the message cannot serialize access for this
transaction .

Concurrent Update Operations

If you attempt concurrent update operations in a multi-threaded environment with

Oracle, the process might hang.

Acquiring a Connection

The Oracle Thin Driver requires that a user name and password be specified when

acquiring a connection. It can be specified when initializing a Persistence Manager

Factory in a non-managed environment, or in a managed environment either when

configuring the properties of a data source, or by providing non-null arguments to

the method PersistenceManagerFactory.getPersistenceManager(user,
password) .

WebLogic JDBC Driver 5.1.0 for Microsoft SQL

Server 2000

This section describes how the WebLogic JDBC driver 5.1.0 for Microsoft SQL Server

2000 behavior can affect Transaction Persistence under certain circumstances.

One-to-One Relationships

An exception is thrown when you try to delete an instance that participates in One-

to-one relationships if one of the foreign key columns has a unique constraint on it.

Workaround: Null out the relationships in one transaction and then delete the

instance in a new transaction.

J2EE Reference Implementation Application Server

If you are using the J2EE RI Application Server with the WebLogic driver, and the

driver file is separate from the license file, you must repackage the license file into

the driver file to have the java.security.AllPermission for all components of

this driver.
166 Programming Persistence • August 2001

DB2 Universal Database, Version 7.1

This section describes how the DB2 Universal database behavior can affect

Transaction Persistence under certain circumstances.

One-One Relationships

You can not remove one-one relationships, or set them to “null” because DB2 adds a

unique constraint to the Foreign Key column.

Columns With UNIQUE Constraints

Columns with UNIQUE constraints cannot have multiple null values.

DT_VARCHAR2_2000 Data Types

Transparent Persistence supports the DB2 DT_VARCHAR2_2000 data type, with the

following restrictions:

■ Do not put DT_VARCHAR2_2000 fields in the default fetch group. The query will

fail. To prevent this, explicitly exclude JDBC Type DT_VARCHAR2_2000 fields

from the default fetch group while mapping the table.

■ You can only use DT_VARCHAR2_2000 fields in queries where the value of the

DT_VARCHAR2_2000 field is compared to null. For example,

DT_VARCHAR2_2000Field == null , or DT_VARCHAR2_2000Field != null .

■ You cannot use Update and Delete operations during the commit of optimistic

transactions. Use the Datastore transaction instead.

■ DT_VARCHAR2_2000 fields can only be updated with entries that are less than or

equal to 4000 bytes in size.

Select Statements

DB2 does not support queries that result in SELECT statement with ? <op> ? . This

can happen if you compare literals or query parameters.

Also, if a query attempts to select a record locked for an update, the application will

hang. This can happen in a data store transaction when updated instances are

flushed to the database prior to query execution.
Appendix C Restrictions and Limitations 167

Microsoft JDBC-ODBC Bridge

This section describes behavior of the Microsoft JDBC-ODBC Bridge

(SQLSRV32.DLL) version 2.0001 (03.70.0623) that may affect Transparent Persistence:

Concatenation

Queries that concatenate strings (for example, queries with the filters startsWith ,

endsWith , or uses + (such as "Engi" + "neering")) return 0 rows, but will not

throw any exception.

Dates

Dates 2079-06-07 00:00:00.0 and higher fail for updates with the SQLException:

Datetime field overflow .

Migrating Files

The file format for persistent classes has changed in this version of the Transparent

Persistence module. Old files can be viewed and will run in this version, and can be

used in an application that uses both old and new files. However, files in the new

format will not work with older versions of the Transparent Persistence Module.

If you open and modify a previously created persistent file, Transparent Persistence

will ask you if it can migrate your class to the latest format.

You can choose to:

■ Save Now, which commits the modification and migrates the file immediately.

■ Save Later, which migrates the file the first time the file is saved.

■ Cancel, which cancels any modifications to the file and the file remains in its

original format.
168 Programming Persistence • August 2001

Index
A
Application Class Loaders

Restrictions, 162

Application development, 90

B
boolean, 116

C
Capturing a schema, 50

Cascading delete, 112

Classes

Key, 81, 131

Oid, 81, 131

persistence-capable, 41, 54, 59, 61, 76, 81, 84

CLASSPATH, 37, 83, 155

Collection, 48

Collection fields, 48

com.sun.forte4j.persistence.Transaction, 147

compile, 116

Component Inspector

using, 28

Concurrency, 9, 14

Concurrency control, 106

optimistic, 107

Connecting to databases, 94

Connection Factory, 90

Connection Management, 14

Connection pooling, 97

Connection resources, 9

Connection source, 19, 28

database URL, 19

JDBC driver name, 19

user name, 19

Connections (to databases), multiple

concurrent, 11

Constructors

restrictions, 163

Container Managed Transaction, 148

CRUD, 8

D
Data models, 24

setting for components, 25

Data Navigator, 19, 23, 28

Data store concurrency, 106, 108

Data types

conversions, 85

supported, 85

Database Explorer

using with JDBC, 17

Database mapping

Map to Database command, 61

Database Mapping Wizard

Map classes to table, 61

Database Mapping wizard, 45, 59

Select Tables pane, 61
Index 169

Database Schema wizard, 50

DB2 Universal Database, 161, 167

dbschema.jar, 83

Developing applications, 90

E
Enhancing, 13, 41, 83

Enterprise Beans

providing for serialization, 143

Enterprise beans

transactions, 144

Enterprise Java Bean components, 141

Enterprise JavaBean components, 141

Entity Beans, 144

Establishing a connection, 29

Establishing a new connection

Advanced tab, 30

database name, 30

database URL, 30

driver name, 30

password, 30

Pooled Connection Source, 30

User Name, 30

example applications, location, 5

F
Features

Unsupported, 161

unsupported, 161

Fetch Group, 79

Fetch groups, 129

Fields

Key, 81, 131

persistent, 60, 64, 66, 79, 81

relationship, 66, 79

File migration, 168

G
Generate Java wizard, 45

Generating Java from a schema, 56

getObjectByID(Object oid), 142

I
iAS, 141, 152

Instance status, 130

iPlanet Application Server, 152

Isolation levels, 104

J
J2EE RI, 141, 150

JAR files, 37

JAR packager, 83

Java Data Objects, 40

Java Database Connectivity, 15

Java Generation Properties

Implement Serializable, 72

Java Transient Modifier, 72

Make Persistence-Capable, 72

Primitives Fields for FKs, 72

Relationship Naming, 72

Relationship Type, 72

Java Generation wizard, 46, 54

Customize Options, 55

Table Selection, 56

java.io.Serializable, 72, 143

Javadoc

using in Forte for Java, 5

javax.transaction.UserTransaction, 142, 147

JDBC, 10

JButton, 24

JCheckbox, 24

JComboBox, 24, 34

JList, 24

Jlist, 34

JRadioButton, 24

JTable, 24

JTextField, 34

JToggleButton, 24

programming, 15

programming model, 10

reference materials, 16

Selecting Database Columns, 25

support for multiple concurrent connections, 11

visual and non-visual components, 24

JDBC Form Wizard

previewing and generating an application, 36

selecting database tables, 31
Index 170 Programming Persistence • August 2001

JDBC tab in component palette, 19

JDBC visual form

creating, 27

JDBC-ODBC Bridge, 168

JDBC-ODBC bridge, 161

JDO exceptions, 139

JDO Identity, 130

JDO identity, 132

JDO interfaces, 137

JNDI, 142, 145

Join tables, 45, 56

Join to Foreign pane, 70

K
Key class, 131

Key classes, 81, 131

Key fields, 81, 131

L
Local to Join pane, 68

M
Managed relationship, 48

Many-many relationships, 48

Map Field to Multiple Columns dialog, 65

Map Relationship Field dialog box, 66

Map to Key

Join to Foreign pane, 70

Local to Join pane, 68

Map to Key pane, 67

Mapping

Database ->Java, 54

Database to Java, 40, 45

description, 43

Meet-in-the-middle, 40, 45, 54, 59

relationships, 45

techniques, 44

Methods

Collection.contains, 117

Collection.isEmpty, 117

getObjectByID(Object oid), 142

String.endsWith, 117

String.startsWith, 117

methods

com.sun.forte4j.persistence.Transaction, 147

javax.transaction.UserTransaction, 147

Migrating

classes, 168

files, 168

N
NBCachedRowSet, 19, 28

as a type of RowSet, 20

NBJDBCRowSet, 19, 28

as a type of RowSet, 20

NBWebRowSet, 19, 28

as a type of RowSet, 20

Non-visual components, 18

O
Oid class, 131

Oid classes, 81, 131

One-many relationships, 48

One-one relationships, 48

Optimistic concurrency, 106, 107

Optimistic concurrency control, 107

Oracle8i 8.1.6 Thin, 161, 165

Overflow protection, 110

P
Password, 19

Persistence Manager, 13, 87, 90, 93, 96, 97, 101, 106,

107, 110, 112, 113, 130, 131, 132, 137

Persistence Manager Factory, 13, 90, 92, 96, 100,

106, 137

Persistence-aware logic, 88

Persistence-capable class

reverting from, 60

Persistence-capable classes, 13, 41, 54, 59, 61, 76, 81,

84

migrating files from earlier versions, 168
Index 171

persistence-rt.jar, 83, 87

Persistent data

defined, 7

deleting, 112

inserting, 111

querying, 113

updating, 111

Persistent field properties, 77

Persistent fields, 60, 64, 66, 79, 81, 136

Persistent object model, 133

PointBase Network Server, 161, 164

Pooled Connection Source, 19, 28

Previewing and generating an application, 36

Primary keys, 56

Primary table, 62, 76

Properties

Field properties, 77

Properties Editor, 23

Properties window, 45, 59, 76

Q
Queries, 113

Query, 91

R
Relationship class

generation, 57

Relationship Class Generation, 57

Relationship fields, 66, 79

Relationship Mapping Editor

Map to Key pane, 67

Relationship Mapping editor, 67

Relationship naming

Java Generation wizard, 72

Relationships, 45

managed, 48

many-many, 48

One-many, 48

one-one, 48

Resource Factory Reference, 147

Restrictions

Application Class Loaders, 162

constructors, 163

User-defined clone() methods, 163

User-defined constructors, 163

Restrictions and limitations, 161

Retain values, 107

RowSet

Other Properties and Event tabs, 21

RowSet object, 20

Running an Application, 84

Running Your JDBC Application, 37

S
Schema, 50

Secondary Table Settings dialog, 63

Select Primary Table dialog, 62

Select Tables pane, 61

Selecting a secondary rowset, 35

Selecting columns to display, 33

Selecting database tables, 31

Session Beans, 144

Setting Resource References, 147

Stored Procedure, 19, 28

Stored procedure, 24

Synchronization, 8

System requirements, 155

T
Transaction, 105

Transaction isolation levels, 32, 104

Transactions, 101

Transactions, committing, 11

Transparent Persistence, 12

programming, 40

Transparent Persistence Identity, 130

U
Uniquing, 132

Unsupported Features, 161

Unsupported features, 161
Index 172 Programming Persistence • August 2001

Upgrading, 168

User-defined Clone() Methods

Restrictions, 163

User-defined constructors

restrictions, 163

V
Visual Components, 18

void, 116

W
WebLogic for SQL Server, 161

WebLogic for SQLServer, 166

Wizards

Database Mapping, 45, 59

Database Schema, 50

Generate Java, 45

Java Generation, 46, 54

X
xerces.jar, 83, 155
Index 173

Index 174 Programming Persistence • August 2001

	Programming Persistence
	Contents
	Figures
	Tables
	Preface
	Before You Read This Book
	How This Book Is Organized
	Typographic Conventions
	Related Documentation
	Documentation Available Online
	Online Help
	Examples
	Javadoc Documentation

	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Sun Welcomes Your Comments

	Overview of Persistence Programming
	About Persistence
	Representation of Persistent Data
	Application Issues

	Java Database Programming Models
	Java Database Connectivity (JDBC)
	JDBC Programming Model

	Transparent Persistence
	Transparent Persistence Programming Model

	Using Java Data Base Connectivity
	Programming JDBC
	General Programming Steps
	JDBC Reference Materials
	Learning JDBC Programming
	Technical Articles
	Getting Started With JDBC
	JDBC Basics

	Using the Database Explorer
	Using JDBC Components
	The JDBC Tab
	Connection Source
	Pooled Connection Source
	Understanding RowSets
	Other Properties, Event, and Code Generation Tabs for a RowSet
	Data Navigator
	Stored Procedures

	Programming With JDBC Components
	Setting Data Models for Components
	To Configure the Data Model for JTable
	To Configure the Selection Model for JTable and JList
	To Configure the Data Model for JList and JComboBox
	To Configure the Data Model for JCheckbox, JRadioButton, and JToggleButton
	To Configure the Document Model for Text Components
	Creating a Visual Form
	To Create a Visual Form With Swing Components That Interact With a Database
	Using the Component Inspector With JDBC Components

	Using the JDBC Form Wizard
	To Open the JDBC Wizard
	Establishing a Connection
	Selecting Database Tables or Views

	Selecting Columns to Display
	To Edit Column Titles

	Selecting a Secondary RowSet
	To Select a Secondary RowSet
	Previewing and Generating an Application

	Running Your JDBC Application

	Transparent Persistence Overview
	What Is Transparent Persistence?
	Programming Transparent Persistence
	Developing Persistence-Capable Classes
	To Create Java Packages From a Database Schema
	Developing Persistence-Aware Applications
	Transparent Persistence and Enterprise JavaBeans

	Developing Persistence-Capable Classes
	Mapping Capabilities
	Mapping Techniques
	Mapping Relationships
	Managed Relationships
	One-One Relationships
	One-Many Relationships
	Many-Many Relationships
	To Create a Managed Relationship

	Developing Persistence-Capable Classes
	Capturing a Schema
	To Capture a Schema
	Creating Persistence-Capable Classes
	Generating Persistence-Capable Classes From a Schema
	Mapping Existing Classes to a Schema

	To Make a Field Persistent
	To Map Classes to Tables Using the Database Mapping Wizard

	Setting Options and Properties
	Continuous Validation of Persistence Classes
	Java Generation Options
	Relationship Naming Policies
	To Open the Editor
	Persistence-Capable Class Properties
	Persistent Field Properties

	Key Fields and Key Classes
	To Set up a Key Class and Key Fields

	Running an Application
	Creating a JAR File
	To Create a JAR File
	Running an Application in Forte for Java

	Supported Data Types

	Developing Persistence-Aware Applications
	Overview
	Developing Persistence-Aware Classes
	Persistence-Aware Logic
	Development Steps
	Creating a Persistence Manager Factory
	Connecting to Databases
	Connection Factory
	Simple Connections
	Pooled Connections

	Creating a Persistence Manager
	Transactions
	Transaction Isolation Levels

	Concurrency Control
	Retain Values
	Coding With Optimistic Concurrency Control
	Coding With Data Store Concurrency Control

	Accessing the Database
	Overflow Protection
	Inserting Persistent Data
	Updating Persistent Data
	Deleting Persistent Data

	Querying the Database
	Query Filters
	Expression Capabilities
	Examples

	Overlapping Primary Key and Foreign Key
	Creating an Order/Lineitem Relationship
	Deleting Order/Lineitem Relationship
	Restrictions

	Fetch Groups
	Checking Instance Status
	Transparent Persistence Identity
	Oid Class
	Uniquing
	Mapping

	Persistent Object Model
	Architecture
	Persistent and Transient Objects

	Field Types of Persistent-Capable Classes
	Persistent Fields
	Persistent and Non-Persistent Fields

	JDO Interfaces
	JDO Exceptions

	Debugging Persistence-Aware Applications
	To Debug an Application

	Using Transparent Persistence With Enterprise Java Beans
	How Transparent Persistence Works in Enterprise Beans
	Providing for Serialization
	Transactions With Enterprise Beans

	Creating an Enterprise Bean That Uses Transparent Persistence
	Setting the JNDI Lookup
	To Perform a JNDI Lookup
	To Create a Transparent Persistence-Aware Session Bean Using the IDE

	Setting Resource References
	To Set the Persistence Manager Factory as a Resource Reference

	Using Bean-Managed Transactions
	Using Container-Managed Transactions
	To Use a Container-Managed Transaction

	Integrating Transparent Persistence Into the J2EE Reference Implementation
	Integrating Transparent Persistence With the iPlanet Application Server

	System Requirements
	Transparent Persistence JSP Tags
	PersistenceManager Tag
	jdoQuery Tag

	Restrictions and Limitations
	Unsupported Features
	Restrictions
	Application Class Loaders
	Comparing Collection Relationships
	User-Defined Clone() Methods
	User-Defined Constructors

	Database Limitations and Restrictions
	PointBase 3.5 Network (Multi-User) Server
	Error Message: “java.net.SocketException: Socket closed”
	PointBase Database version 3.4
	isEmpty() Method
	Location of PointBase Network Server
	Multiple Relationship Fields in a Fetch Group

	Oracle 8.1.6 Thin Driver
	Concurrent Transactions
	Concurrent Update Operations
	Acquiring a Connection

	WebLogic JDBC Driver 5.1.0 for Microsoft SQL Server 2000
	One-to-One Relationships
	J2EE Reference Implementation Application Server

	DB2 Universal Database, Version 7.1
	One-One Relationships
	Columns With UNIQUE Constraints
	DT_VARCHAR2_2000 Data Types
	Select Statements

	Microsoft JDBC-ODBC Bridge
	Concatenation
	Dates

	Migrating Files

	Index

