DSun

microsystems

Programming Persistence

Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94303-4900 U.S.A.
650-960-1300

Part No. 816-1411-10
August 2001, Revision A

Send comments about this document to: docfeedback@sun.com

Forte~ for Java~ Programming Series

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and without limitation,
these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more
additional patents or pending patent applications in the U.S. and other countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. PointBase software is for internal
development purposes only and can only be commercially deployed under a separate license from PointBase.

Sun, Sun Microsystems, the Sun logo, Forte, Java, JDBC, Jini, Jiro, JSP, Solaris, iPlanet, and NetBeans are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient des droits de propriété intellectuelle sur la technologie représentée par ce produit. Ces droits de propriété
intellectuelle peuvent s’appliquer en particulier, sans toutefois s’y limiter, a un ou plusieurs des brevets américains répertoriés a ’adresse
http://www.sun.com/patents etaun ou plusieurs brevets supplémentaires ou brevets en instance aux Etats-Unis et dans d’autres pays.

Ce produit est distribué avec des licences qui en restreignent 1'utilisation, la copie, la distribution et la décompilation. Aucune partie de ce
produit ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses
concédants, le cas échéant.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractere, est protégé par un copyright et licencié par des
fournisseurs de Sun. Le logiciel PointBase est destiné au développement interne uniquement et ne peut étre mis sur le marché que sous une
licence distincte é mise par PointBase.

Sun, Sun Microsystems, le logo Sun, Forte, Java, JDBC, Jini, Jiro, JSP, Solaris, iPlanet et NetBeans sont des marques commerciales ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques commerciales ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

Acquisitions fédérales : logiciels commerciaux. Les utilisateurs du gouvernement sont soumis aux termes et conditions standard.

D w 9}

Adobe PostScript

Contents

Preface 1

Overview of Persistence Programming 7

About Persistence 7
Representation of Persistent Data 7
Application Issues 8

Java Database Programming Models 9
Java Database Connectivity (JDBC) 10

Transparent Persistence 12

Using Java Data Base Connectivity 15
Programming JDBC 15
General Programming Steps 15
JDBC Reference Materials 16
Using the Database Explorer 17
Using JDBC Components 18
The JDBC Tab 19

Programming With JDBC Components 24

Using the JDBC Form Wizard 28
Establishing a Connection 29
Selecting Columns to Display 33
Selecting a Secondary RowSet 35
Previewing and Generating an Application 36

Running Your JDBC Application 37

3. Transparent Persistence Overview 39
What Is Transparent Persistence? 39
Programming Transparent Persistence 40
Developing Persistence-Capable Classes 41

Developing Persistence-Aware Applications 42

4. Developing Persistence-Capable Classes 43
Mapping Capabilities 43
Mapping Techniques 44
Mapping Relationships 45
Managed Relationships 48
Developing Persistence-Capable Classes 50
Capturing a Schema 50
Creating Persistence-Capable Classes 54
Setting Options and Properties 71
Key Fields and Key Classes 81
Running an Application 83
Creating a JARFile 83

Supported Data Types 85

5. Developing Persistence-Aware Applications 87

Overview 87

iv. Programming Persistence ¢ August 2001

Developing Persistence-Aware Classes 88
Persistence-Aware Logic 88
Development Steps 90
Creating a Persistence Manager Factory 92
Connecting to Databases 94
Creating a Persistence Manager 97
Transactions 101
Concurrency Control 105
Accessing the Database 109
Querying the Database 113
Overlapping Primary Key and Foreign Key 126
Fetch Groups 129
Checking Instance Status 130
Transparent Persistence Identity 130
Oid Class 131
Persistent Object Model 133
Architecture 135
Field Types of Persistent-Capable Classes 136
JDO Interfaces 137
JDO Exceptions 139

Debugging Persistence-Aware Applications 140

Using Transparent Persistence With Enterprise Java Beans 141
How Transparent Persistence Works in Enterprise Beans 141
Providing for Serialization 143
Transactions With Enterprise Beans 144
Creating an Enterprise Bean That Uses Transparent Persistence 145

Setting the JNDI Lookup 145

Contents

Setting Resource References 147
Using Bean-Managed Transactions 147
Using Container-Managed Transactions 148
Integrating Transparent Persistence Into the J2EE Reference Implementation 150

Integrating Transparent Persistence With the iPlanet Application Server 152
A. System Requirements 155

B. Transparent Persistence JSP Tags 157
PersistenceManager Tag 157

jdoQuery Tag 158

C. Restrictions and Limitations 161

Unsupported Features 161

Restrictions 162
Application Class Loaders 162
Comparing Collection Relationships 163
User-Defined Clone() Methods 163
User-Defined Constructors 163

Database Limitations and Restrictions 164
PointBase 3.5 Network (Multi-User) Server 164
Oracle 8.1.6 Thin Driver 165
WebLogic JDBC Driver 5.1.0 for Microsoft SQL Server 2000 166
DB2 Universal Database, Version 7.1 167

Microsoft JDBC-ODBC Bridge 168
Concatenation 168
Dates 168

Migrating Files 168

Index 169

vi Programming Persistence * August 2001

Figures

FIGURE 1-1

FIGURE 1-2

FIGURE 1-3

FIGURE 2-1

FIGURE 2-2

FIGURE 2-3

FIGURE 2-4

FIGURE 2-5

FIGURE 2-6

FIGURE 4-1

FIGURE 4-2

FIGURE 4-3

FIGURE 4-4

FIGURE 4-5

FIGURE 4-6

FIGURE 4-7

FIGURE 4-8

FIGURE 4-9

FIGURE 4-10

Basic Persistence Scheme 8

JDBC Programming Model 11

Transparent Persistence Programming Model 14
JDBC Form Wizard, Opening 29

JDBC Form Wizard, Database Connection 30

JDBC Form Wizard, Select a Table 32

JDBC Form Wizard, Select Columns 34

JDBC Form Wizard, Select Secondary RowSet 36
JDBC Form Wizard, Finish the Wizard 37

Mapping a Database to Java Classes 44

Foreign Keys and One-to-Many Relationships 47
Foreign Keys and Many-to-Many Relationships 47
Database Schema Wizard, Target Location 51
Database Schema Wizard, Database Connection 52
Database Schema Wizard, Tables and Views 53
Database Schema in the Explorer window 53

Java Generation Wizard, Choose Target Location 54
Java Generation Wizard, Customize Options 55

Java Generation Wizard, Table Selection 56

vii

FIGURE 4-11 Java Generation Wizard, Generating Java 58

FIGURE 4-12 Persistent Fields 60

FIGURE 4-13 Database Mapping Wizard Overview 61

FIGURE 4-14 Database Mapping Wizard, Select Tables 62

FIGURE 4-15 Select Primary Table Editor 62

FIGURE 4-16 Mapped Secondary Table Setup 63

FIGURE 4-17 Database Mapping Wizard Field Mappings 65

FIGURE 4-18 Map Field to Multiple Columns Dialog Box 66

FIGURE 4-19 Relationship Mapping Editor, Initial Setup 67

FIGURE 4-20 Relationship Mapping Editor, Map to Key 68

FIGURE 4-21 Relationship Mapping Editor, Map to Key: Local to Join 69
FIGURE 4-22 Relationship Mapping Editor, Map to Key: Join to Foreign 70
FIGURE 4-23 Validate Java Changes Property 71

FIGURE 4-24 Java Generation Options 73

FIGURE 4-25 Relationship Naming Policy Editor 74

FIGURE 4-26 Naming Policy Rule Editor 75

FIGURE 4-27 Persistence-Capable Class Properties 77

FIGURE 4-28 Field Mapping Properties 78

FIGURE 4-29 Persistent Field Properties 78

FIGURE 4-30 Class Icons 80

FIGURE 4-31 Field Icons 80

FIGURE5-1 Moving Persistence-Aware Logic to Its Own Class 89
FIGURE5-2 Transparent Persistence Application Logic 92
FIGURE5-3 Instantiated Persistent Objects 134

FIGURE 6-1 Persistent Enterprise Bean 146

vii Programming Persistence ¢ August 2001

Tables

TABLE 2-1

TABLE 2-2

TABLE 2-3

TABLE 2-4

TABLE 2-5

TABLE 2-6

TABLE 2-7

TABLE 4-1

TABLE 4-2

TABLE 4-3

TABLE 4-4

TABLE 4-5

TABLE 4-6

TABLE 4-7

TABLE 4-8

TABLE 4-9

TABLE 5-1

TABLE 5-2

TABLE 5-3

RowSet Properties 21

RowSet Other Properties Tab Properties 21

RowSet Event Tab Properties 22

Code Generation Tab Properties 22

Data Navigator Properties 23

Stored Procedure Properties 24

Transaction Isolation Levels 33

Relationship Class Generation 57

Java Generation Properties 72

Simple Cardinality Naming Policy 74

Complex Cardinality Naming Policy 75

Relationship Naming Tags 76

Properties for Persistence-Capable Classes 76

Properties for Persistent Fields 79

Supported Data Types

85

Data Type Conversions in Mappings 85

PersistenceManagerFactory Methods 93

ConnectionFactory

PersistenceManager

Methods 95

Methods 98

X

TABLE 5-4

TABLE 5-5

TABLE 5-6

TABLE 5-7

TABLE 5-8

TABLE 5-9

TABLE 5-10

TABLE 5-11

Transaction Methods 102
Isolation Levels 105

Query Elements 114
newQuery Options 115
Query Interface Methods 116
Query Operators 121
Persistent Field Types 136

JDO User Exceptions 139

Programming Persistence * August 2001

Preface

Welcome to the Programming Persistence book of the Forte™ for Java™ Programming
Series. This book focuses on programming with persistent data—data stored in a
database or other data store that is external to your applications. The book discusses
the different persistence programming models supported by Forte for Java. It
focuses on the Transparent Persistence technology provided by the Forte for Java
integrated development environment (IDE).

This book is written for programmers who want to learn how to use the persistence
programming models supported by Forte for Java. The book assumes a general
knowledge of Java and database access technology. Before reading it, you should be
familiar with the following subjects:

= Java programming language

= Relational database concepts (such as tables and keys)

= How to use the chosen database

You can create the examples in this book on the following platforms and operating
systems:

= Solaris™ 8 SPARC™ Platform Edition
= Microsoft Windows 2000, SP2

» Microsoft Windows NT 4.0, SP6

» Red Hat Linux 6.2

All screen shots in this book are from the Windows NT version of the Forte for Java
software. You should have no trouble translating the slight visual differences to
other platforms. Although almost all procedures use the Forte for Java user interface,
occasionally you might be instructed to enter a command at the command line. In
such cases, examples are given with the prompt and syntax for a Microsoft Windows
command window. For example:

c:\> cd MyWorkDir\MyPackage

To translate for UNIX® or Linux environments, simply change the prompt and use
forward slashes:

% cd MyWorkDir/MyPackage

Before You Read This Book

This book is written for programmers who want to learn how to use the persistence
programming models supported by Forte for Java. The book assumes a general
knowledge of Java and database access technology. Before reading it, you should be
familiar with the following subjects:

= Java programming language

= Relational database concepts (such as tables and keys)

= How to use the chosen database

How This Book Is Organized

The following briefly describes the contents of each chapter:

Chapter 1 explains what persistence is and establishes a framework for more
detailed descriptions of Forte for Java persistence support in succeeding chapters. It
also introduces a number of persistence programming models supported by the
Forte for Java IDE.

Chapter 2 describes JDBC™ productivity enhancement tools provided by Forte for
Java. These automate many JDBC programming tasks in building client components
or applications that interact with a database.

Chapter 3 provides a brief overview to the Transparent Persistence programming
model.

Chapter 4 describes the Transparent Persistence mapping tool and how to create a
mapping between a set of Java programming language classes and a relational
database.

Chapter 5 describes the Transparent Persistence runtime environment and illustrates
how to use it to perform persistence operations. It also addresses various
Transparent Persistence programming issues.

2 Programming Persistence ¢ August 2001

Chapter 6 describes the process for using persistence-capable classes with Enterprise
Java Beans, the J2EE Reference Implementation, and the iPlanet Application Server.

Appendix A documents the system requirements necessary to use Transparent
Persistence with the Forte for Java IDE.

™

Appendix B documents two JSP
functions.

tags that perform Transparent Persistence

Appendix C details unsupported features, areas where specific databases behave
uniquely with Transparent Persistence, and file migration information for
developers who have created classes using previous versions of Transparent
Persistence

Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files, Edit your.login file.
and directories; on-screen Use Is-a to list all files.
computer output % You have mail .

AaBbCc123 What you type, when contrasted % su

with on-screen computer output Password:
AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.
words to be emphasized These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line variable; replace To delete a file, type rm filename.
with a real name or value

Related Documentation

Forte for Java documentation includes books delivered in Acrobat Reader (PDF)
format, online help, Readme files of example applications, and Javadoc™
documentation.

Preface

Documentation Available Online

The documents in this section are available from the Forte for Java portal, the
docs.sun.com M web site, and from Fatbrain.com, an Internet professional
bookstore.

The documentation link of the Forte for Java portal is at
http://www.sun.com/forte/ffj/documentation/index.html. The
docs.sun.com SM web site is at http://docs.sun.com . Fatbrain.com is at
http://www.fatbrain.com/documentation/sun.

= Release Notes (PDF format)

Available for each Forte for Java edition. Describe last-minute release changes and
technical notes.

= Getting Started Guide (PDF format)

Available for each Forte for Java edition. Describes how to install Forte for Java on
each supported platform and other pertinent information, including system
requirements, command-line switches for starting the IDE, installed
subdirectories, how to mount a JAR or zip file as a Javadoc filesystem in the IDE,
and how to delete a project from the IDE.

= The Forte for Java Programming Series (PDF format)

This series provides in-depth information on how to use various Forte for Java
features to develop well-formed J2EE applications.

= Building Web Components - part no. 816-1410-10

Describes how to build a web application as a J2EE web module using JSP
pages, servlets, tag libraries, and supporting classes and files.

» Programming Persistence - part no. 816-1411-10

Describes support for different persistence programming models provided by
Forte for Java: JDBC and Transparent Persistence.

« Building Enterprise JavaBeans Components - part no. 816-1401-10

Describes how to build Enterprise JavaBeans components—session beans and
entity beans with container-managed or bean-managed persistence—using the
Forte for Java EJB Builder wizards and other graphical user interfaces.

= Building Web Services - part no. 816-1400-10

Describes how to use the tools provided by the Web Services module to build
web services. Web Services are application business services published as
Extensible Markup Language (XML) documents delivered over HTTP
connections.

= Building JSP Pages That Use XML Data Services - part no. 816-1399-10

Describes how to use the Forte for Java Enterprise Service Presentation Toolkit
to incorporate dynamic XML data in HTML.

4 Programming Persistence ¢ August 2001

http://www.sun.com/forte/ffj/documentation/index.html
http://docs.sun.com
http://www.fatbrain.com/documentation/sun

« Assembling and Executing [2EE Modules and Applications - part no. 816-1402-10

Describes how to assemble EJB modules and web modules into a J2EE
application, and how to deploy and run a J2EE application.

= Forte for Java tutorials (PDF format)

You can also find the completed tutorial applications in your user settings
directory, under sampledir/tutorial

« Forte for Java, Community Edition Tutorial - part no. 816-1408-10

Provides step-by-step instructions for building a simple J2EE web application
using Forte for Java, Community Edition tools.

« Forte for Java, Enterprise Edition Tutorial - part no. 816-1409-10

Provides step-by-step instructions for building an application using Enterprise
JavaBeans components, the test application facility, and the Forte for Java Web
Services technology.

Online Help

Online help is available inside the Forte for Java development environment. You can
access it by pressing the help key (Help on Solaris, F1 on Microsoft Windows and
Linux), or by choosing Help > Contents. Either action displays a list of help topics
and a search facility.

Examples

Several examples, with accompanying Readmefiles, that illustrate a particular Forte
for Java feature are available in the sampledir/examples subdirectory of your
user settings directory. In addition, you can download Enterprise Edition-specific
examples from the Forte for Java portal and unzip them into the examples
directory. Completed tutorial applications—including the applications described in
Forte for Java, Community Edition Tutorial and Forte for Java, Enterprise Edition
Tutorial—are in the sampledir/tutorial directory.

Javadoc Documentation

Javadoc documentation is available within the IDE for many Forte for Java modules.
Refer to the release notes for instructions on installing this documentation. When
you start the IDE, you can access this Javadoc documentation within the Javadoc
pane of the Explorer.

Preface 5

Accessing Sun Documentation Online

A broad selection of Sun system documentation is located at:
http://www.sun.com/products-n-solutions/hardware/docs
A complete set of Solaris documentation and many other titles are located at:

http://docs.sun.com

Ordering Sun Documentation

Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at:

http://www.fatbrain.com/documentation/sun

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can email your comments to Sun at:

docfeedback@sun.com

Please include the part number (816-1411-10) of your document in the subject line of
your email.

6 Programming Persistence * August 2001

http://www.sun.com/products-n-solutions/hardware/docs
http://docs.sun.com
http://www.fatbrain.com/documentation/sun

CHAPTER 1

Overview of Persistence
Programming

This chapter describes persistence and establishes a framework for more detailed
discussions of Forte for Java persistence support in succeeding chapters. It also
introduces a number of persistence programming models supported by Forte for
Java.

About Persistence

A key aspect of most business applications is the programmatic manipulation of
persistent data—long-lived data stored outside of an application. Although persistent
data is read into transient memory for the purpose of using or modifying it, it is
written out to a relational database or flat file system for long-term storage.

Representation of Persistent Data

In object-oriented programming systems, persistent data is represented in memory
as one or more data objects manipulated by application code. In general, the
correspondence between persistent data in a data store and its representation as a
persistent data object in memory is achieved through a number of software layers as
shown in FIGURE 1-1.

8

Persistent Mapping Language | |Software
Data Object

Data Store

Data Query Connection

FIGURE 1-1 Basic Persistence Scheme

Each data store has an interface to the outside world through driver software used to
set up and maintain a connection between the data store and an application. With
this connection established, a query language is used to retrieve information in the
data store and read it into an application, or conversely, to write data from the
application into the data store. Another layer provides a mapping between data
objects in memory and the information in the data store.

Through this general scheme, programmers can represent persistent data as runtime
objects to be used and manipulated by an application. The scheme supports all basic
persistence operations—often abbreviated as CRUD:

» Creating persistent data (inserting in a data store)

= Retrieving persistent data (selecting from a data store)
= Updating persistent data

= Deleting persistent data.

Application Issues

When programming applications, this relationship between data objects in memory
and information in a data store is complicated by a number of issues. These include
synchronization, concurrency, and connection resources.

= Synchronization

An application needs to ensure that the two representations of data (in memory
and in the data store) are kept synchronized. Any change to a persistent data
object, for example, should take place only if that change also takes place in the
data store. Since failure might occur in the process of writing to the data store,
these changes need to be part of a single transaction. A transaction is a series of
operations that commits only if all the individual operations are successful. If
failure occurs, all changes need to be rolled back to their original state.

Programming Persistence * August 2001

= Concurrency

An application needs to provide for two or more users to have concurrent access
to persistent data, and to ensure that the data not be corrupted. In other words,
changes in the data made by any one user are known by other users in a timely
fashion.

» Connection resources

As the number of users of an application increases, the resources required to
create and maintain large numbers of connections to a data store can become
prohibitive. It is much more efficient to share or recycle these resources using a
connection management and pooling scheme.

Synchronization, concurrency, and connection resources become increasingly
important as the scale and complexity of an application increases. In an application
in which a small number of clients are accessing a single database on a single
computer, synchronization, concurrency, and connection resource requirements are
easy to fulfill. However, as the number of clients, databases, and transactions grows,
these issues can present a daunting programming challenge.

Java Database Programming Models

In the Java development environment, certain aspects of the interaction between
persistent data objects and data stores have been standardized. Most database
vendors provide drivers that interface with the Java execution environment (the Java
Virtual Machine), and a standardized query language (SQL) that is generally used to
perform persistence (CRUD) operations.

However, within this standardization, a number of models are available to support
the programming of persistence operations, each corresponding to a specific
persistence API. Forte for Java supports the following programming models:

= Java Database Connectivity (JDBC)
= Transparent Persistence

These different programming models will be described briefly in the following
sections.

Chapter 1 Overview of Persistence Programming 9

10

Java Database Connectivity (JDBC)

Java provides a standard persistence programming model, the JDBC AP]I, to
facilitate the coding of persistence operations. The JDBC APl is a set of Java
interfaces that you can use to perform basic persistence operations. Forte for Java
provides JDBC tools and programming features based on the JDBC API, described in
Chapter 2.

JDBC Programming Model

The JDBC programming model follows closely the software layers identified in
FIGURE 1-1. You create a class to represent persistent data by writing code that maps
fields of the class to columns and data types of one or more tables in a database
system. You can then create an instance of that class (a persistent data object) and
populate its fields with corresponding values from the database, or create a new
instance, populate its fields, and write the data into the database.

FIGURE 1-2 illustrates the runtime objects involved in JDBC persistence operations.
These objects are instances of classes that implement interfaces in the JDBC APIL
These objects are referenced by code in a persistence-aware component, also shown
in FIGURE 1-2, that performs persistence operations.

For example, to read data into a persistent data object:

» Obtain a Connection to the database from a DriverManager object.

= Obtain a Statement from the Connection object.

= Pass to the Statement an SQL string representing a select query.

The Statement is executed across the Connection, returning a ResultSet from the
database.

= Extract data values from the ResultSet to populate the fields of your persistent
data object.

Programming Persistence ¢ August 2001

Application code DriverManager

calls methods of
DriverManager,
Connection,
Statement, and
ResultSet objects

Connection

Statement

Persistent-Aware
Component

)

ResultSet

o

Data Store

Persistent
Data Object

FIGURE 1-2 JDBC Programming Model

Similarly, you can write values from the persistent data object into the database
using an SQL update statement. When you are finished with a statement or a
connection, you close it using a method provided in the JDBC APIL

JDBC compliant drivers are multi threaded; they support multiple concurrent
connections. JDBC connections, in turn, support multiple statements executing
concurrently.

In a simple Java application, each client thread explicitly requests a connection, then
executes statements on this connection. A more sophisticated application might use
connection pooling, where a server component might request a single connection
and use it to execute concurrent statements for multiple client threads. (The server
component might also request a separate connection for each thread, although the
initialization of each of these connections can consume quite a bit of overhead.)

By default, a connection automatically commits changes after executing each
statement. However, you can disable auto-commit for a connection, and explicitly
commit or roll back transactions using commit and rollback methods defined by the
Connection class. All statements on the same connection reside in the same
transaction space; they are all committed or rolled back together. Therefore, if
statements for two logically separate transactions are executing concurrently on the
same connection, the first transaction that commits or rolls back will commit or roll
back all other current transactions.

Chapter 1 Overview of Persistence Programming 11

12

To use multi-threaded database access safely, you must either open and close
connections as they are needed by individual transactions and suffer the resultant
performance degradation, or use a JDBC connection manager interface that manages
a pool of connections for use by multiple transactions.

Transparent Persistence

To resolve some of the portability, synchronization, and concurrency limitations of
the JDBC programming model, Forte for Java provides an alternative programming
model, known as Transparent Persistence. Transparent Persistence, in addition to
resolving JDBC limitations, also automates and manages persistence operations,
making them generally easier to code than by using JDBC.

= Automation

Transparent Persistence automates the mapping between persistent data objects
and information in a data store, and also automatically generates database query
and update code. The Transparent Persistence tools used for this automation
accommodate a range of data stores, making persistence logic within an
application not only transparent to programmers, but portable across various
database systems.

= Persistence Management

Transparent Persistence also provides runtime classes for managing persistence
operations. The Transparent Persistence runtime classes not only perform
persistence operations transparently (you do not have to write mapping code or
write database-specific query and update statements), they also provide services
for managing transactions, concurrency, and connection pooling.

The following sections provide a high-level introduction to the Transparent
Persistence programming model. A full description of the Forte for Java Transparent
Persistence features and programming model is provided in Chapters 3, 4, 5, and 6.

Transparent Persistence Programming Model

The Transparent Persistence programming model, unlike JDBC, automates most of
the software layers identified in FIGURE 1-1.

= You don’t have to explicitly obtain a connection to a data store.
= You don’t need to write or execute SQL statements.
= You don’t have to write mapping code.

Instead, the Forte for Java Transparent Persistence feature lets you view and
manipulate persistent data stored in JDBC-compliant databases as Java objects,
without the need to know SQL, the JDBC API, or database programming. You use

Programming Persistence ¢ August 2001

Transparent Persistence tools to create persistence-capable classes. These are classes
used to represent persistent data and for which the Transparent Persistence runtime
system can automatically perform and manage persistence operations.

To create persistence-capable classes, you use Forte for Java Transparent Persistence
tools that generate class definitions from database schema or that map existing
classes to database schema. The Transparent Persistence tools also enhance these
classes so that the Transparent Persistence runtime can dynamically generate
statements specific to the data store. These statements are used to perform
persistence operations on the database to which the persistence-capable class was
mapped.

FIGURE 1-3 illustrates the runtime objects involved in Transparent Persistence
persistence operations. These objects are instances of classes that implement
interfaces in the Transparent Persistence API. These objects are referenced by code in
a persistence-aware component, also shown in FIGURE 1-3, that interacts with the
Transparent Persistence runtime to perform persistence operations.

For example, to read data into a persistence-capable class instance, you obtain a
Persistence Manager from a Persistence Manager Factory object, then obtain a Query
from the Persistence Manager, pass it parameters, and execute it. In this case, the
Transparent Persistence runtime system creates a collection of instances of the
persistence-capable class and populates it with the results of the query.

Similarly, you can write values from a new persistence-capable class instance into
the database by calling the makePersistent ~ method of the Persistence Manager.
The required connection, managed by the Connection Factory and the data store,

generates the appropriate data-store-specific statements (based on the persistence-
capable class definition) and sends them to the data store for execution.

You must perform any writing of data to the database in a transactional context. You
do this by obtaining a Transaction object from the Persistence Manager. You use this
object to begin a transaction, then commit or roll back the transaction. Any data
manipulation of persistent instances between begin and commit is part of the same
transaction. The transaction is entirely within your control.

Each Persistence Manager can support only one transaction. Thus, each thread that
will perform a transaction generally obtains its own Persistence Manager. The
Transparent Persistence runtime system, however, supports both concurrency
management and connection pooling, allowing this system to scale appropriately.

Chapter 1 Overview of Persistence Programming 13

14

Persistence Manager
Factory

Application code
calls methods of
Persistence
Manager,
Transaction, and
Query objects

\

ersistent-Aware
Component

class Data Store

Instance of a -
persistence-capable <

Persistent
Data Object

FIGURE 1-3 Transparent Persistence Programming Model

In the Transparent Persistence programming model, concurrency and connection
management are performed by the Persistence Manager Factory and corresponding
Connection Factory. You configure the Persistence Manager Factory for a particular
data store and login name, and you can set properties such as the type of
concurrency and connection management to be supported by the Transparent
Persistence runtime system for each Persistence Manager instance.

= Concurrency

You can choose between data store and optimistic concurrency. Data store
concurrency uses the underlying database locking mechanism (if any) for the
duration of the transaction, while optimistic concurrency allows for database
reads to take place by multiple threads, but checks that no change has taken place
to a database row before writing to it. Optimistic concurrency generally provides
higher performance when multiple users are accessing the same data, and the
duration between reading and updating the data is dependent on user “think
time.”

= Connection Management

The Persistence Manager Factory can be configured to manage a connection pool,
in which connections are shared and recycled among a number of Persistence
Manager instances, thus optimizing on connection resources. Connection pooling
provides for higher performance when large numbers of threads are accessing the
same databases.

Programming Persistence ¢ August 2001

CHAPTER 2

Using Java Data Base Connectivity

Forte for Java provides a JDBC (Java Database Connectivity) module that automates
many programming tasks that you use when building client components or
applications that interact with a database.

The goal of the Forte for Java JDBC module is to increase your productivity when
programming visual forms that contain Swing (Java Foundation Class) components
that use JDBC to retrieve and update database tables. You can use this module to
assist you in generating simple, two-tiered application architectures.

This chapter describes the following JDBC productivity enhancement tools provided
by Forte for Java, and begins with a brief description of the steps you follow in
creating a JDBC application. The tools include:

= Database Explorer
= JDBC JavaBeans components
= JDBC Form Wizard

Programming JDBC

This section provides a brief introduction to JDBC programming tasks,
supplementing information provided in “JDBC Programming Model” on page 10.

General Programming Steps

When you perform JDBC programming, you follow these general programming
steps:

1. Import relevant classes within your code.

2. Load a JDBC driver.

15

16

3. Establish a connection with a database.
4. Create a Main method.
5. Create try and catch blocks and retrieve exceptions and warnings.
6. Set up and use database tables.
a. Create a table.
b. Create JDBC statements.
c. Execute Statements to perform persistence operations.
i. Enter data into a table.
ii. Obtain data from a table.
iii. Create an updatable result set (RowSet).
iv. Insert and delete rows programmatically.
d. View changes in a ResultSet by managing the Transaction Isolation Level.

Forte for Java simplifies most of these tasks, generating JDBC code either through
your editing of the Forte for Java JDBC JavaBeans component properties or through
your use of the JDBC Form Wizard.

JDBC Reference Materials

While this chapter provides a discussion of JDBC programming in the context of the
Forte for Java IDE, it assumes familiarity with the basics of the JDBC programming
model. For additional information about JDBC, you can review the following
reference materials, grouped by function.

Learning JDBC Programming
The Java Developer Connection provides an excellent tutorial on JDBC:

http://developer.java.sun.com/developer/onlineTraining/new2java/
programming/learn/jdbc.html

In addition, the Java Developer Connection supplies a JDBC Short Course:

http://developer.java.sun.com/developer/onlineTraining/Database/
JDBCShortCourse/index.html

Programming Persistence ¢ August 2001

Technical Articles
Sun has produced a document entitled:
“Duke’s Bakery — A JDBC Order Entry Prototype — Part I":

http://developer.java.sun.com/developer/technicalArticles/
Database/dukesbakery/

Getting Started With JDBC

The following index is a reference when starting to program using JDBC:

http://developer.java.sun.com/developer/technicalArticles/
Interviews/StartJDBC/index.html

Another document is “Of Java, Databases, and Really Cool Dead Guys”:

http://developer.java.sun.com/developer/technicalArticles/
Interviews/Databases/index.html

JDBC Basics

You can find additional information on JDBC within the Sun tutorial:
http://java.sun.com/docs/books/tutorial/index.html
This tutorial also provides some references:

http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html

Using the Database Explorer

Before you begin the process of writing JDBC code, you need to understand the
database that your application will use. To obtain database information, you can use
the Forte for Java Database Explorer.

Using the Forte for Java Database Explorer, you can perform the following tasks:

= Browse database structures

= Examine all tables present in the database, including column and index
information

» Examine SQL views related to the database

Chapter 2 Using Java Data Base Connectivity 17

Examine all stored procedures defined in the database
View database data

Create tables

Create views

Take “snapshots” of database structures

Monitor SQL commands sent to the database

Connect to a database

To learn how to perform these tasks, refer to the Database Explorer Help within the
Forte for Java IDE.

18

Using JDBC Components

Forte for Java provides database connectivity and JDBC code generation tools for
visual forms and components, specifically providing two basic types of components
that you can use with your JDBC application:

Visual Components—Swing components let you display tabular database
information. Within Forte for Java, use Swing visual components to create forms
that relay database data to the user; swing components provide the means to let
you manipulate row data and display columns. Forte for Java generates the
appropriate Swing code for you. Another type of visual component is a Data
Navigator-a JDBC component that you add to a form to manipulate the display
of data to the user.

Non-visual components—JavaBeans components that do not have visual
representation, but can be used to manipulate data from a database. One type of
non-visual component is a RowSet, which is a type of row group that contains
information from the database. To understand how to use JDBC JavaBean
components, you need to:

Understand the JDBC tab
Understand how to program applications with JDBC components by:
= Creating a Visual Form with Forte for Java

= Using the Forte for Java Component Inspector with JDBC JavaBeans
components

Programming Persistence ¢ August 2001

The JDBC Tab

The JDBC tab in the component palette contains icons for a number of JDBC
JavaBeans components that you can use to facilitate the interaction of Java Swing
components with a database. These components have properties that you customize
using the Forte for Java Component Inspector.

The components include:

= Connection Source

= Pooled Connection Source
= NB Cached RowSet

= NB JDBC RowSet

= NB Web RowSet

» Stored Procedure

= Data Navigator

Connection Source

A Connection source is a non-visual component that provides a connection to a
JDBC compliant database. When you configure the Connection Source , you set:

= database URL

= JDBC driver name
= user name

= password

Pooled Connection Source

A Pooled Connection Source component is similar to a Connection Source
However, when you specify the use of a Pooled Connection Source with your
application, database connections that are established during application runtime
are not closed when the application ceases to use the connection.

Instead, Forte for Java retains the connection in a pool for subsequent use within the
runtime application. You can use a Pooled Connection Source when your
application performs frequent open and close requests against a database to which it
is connected.

Understanding RowSets

A RowSet component represents rows fetched from the database. You can use these
components to configure data models for several Swing components.

Chapter 2 Using Java Data Base Connectivity 19

20

RowSet Background

A RowSet object contains a set of rows from a JDBC result set or another source of
tabular data, such as a file or spreadsheet.

Depending on how you implement them in your code, RowSets can be serializable
or extensible to non-tabular sources of data.

Because a RowSet object follows the JavaBeans model for properties and event
notification, it is a JavaBeans component that can be combined with other
components in an application.

RowSets can be either connected or disconnected, depending on their
implementation. A disconnected RowSet obtains a connection to a data source to fill
itself with data or to propagate changes in data back to the data source, but most of
the time it does not have a connection open.

Even when it is disconnected, a RowSet does not require the use of a JDBC driver or
the full JDBC API], so its size is small. A disconnected RowSet is an ideal format for
sending data over a network to a thin client.

Types of RowSets:

The JDBC Tab makes three different types of row sets available:
= NB Cached RowSet

The NBCachedRowSet is a disconnected RowSet that caches its data in memory.
This special type of RowSet is suitable for smaller sets of data. You can use it to
create JDBC applications that provide code to operate on thin Java clients, such as
Personal Digital Assistants (or PDAs).

When a RowSet is disconnected from its data source, any updates that
application writes on the RowSet are propagated to the underlying database.

= NB JDBC RowSet

The NBJDBCRowSetrepresents a JavaBeans™ wrapping of a connected ResultSet
object to be used in models of Swing components. It can be used to read
extremely long tables more efficiently than a cached RowSet, which stores all data
in an internal cache.

= NB Web RowSet

The NBWebRowSetrepresents a set of fetched rows in a cache to be used in
models of Swing components. It provides all cached RowSet functionality, and
enables the rows to be imported and exported in XML format. The file can then be
sent over the internet using HTTP/XML protocols.

Programming Persistence ¢ August 2001

You can customize a JDBC RowSet by setting the following properties under the
properties tab in the Properties Editor:

TABLE2-1 RowSet Properties

Property

Definition

Command

Connection provider

Read-only

Rowcount
Status

Transaction isolation

XML output directory
(WebRowSet only)

XML Output File
(WebRowSetonly)

SQL query to populate this RowSet. The query can be any
syntactically-correct SQL Select Query.

The configured connection source; a drop-down list provides
choices.

If True, this RowSet is read-only. Data from the RowSet cannot
be written out to the database.

The number of rows.
Status of a read against a RowSet

determines how the RowSet handles data under transactions.
For detail, see Java documentation for java.sgl.Connection

Identifies the directory where data from the WebRowSetwill be
sent.

Determines the name of the file that will contain the XML output
from a WebRowSet

Other Properties, Event, and Code Generation Tabs for a

RowSet

The Other Properties Tab for a RowSet enables you to inspect and modify additional

properties.

TABLE 2.2 RowSet Other Properties Tab Properties

Property

Definition

Database URL

Default Column
Values

Execute on load

The location of the database where records will be updated. In most
cases, it is the same URL as listed in the Database URL property of
Connection Source.

The values to be inserted into a new row. You can press Fetch
Columns to retrieve a list of columns in the RowSet.

If true , the NB RowSet can be executed on load. You can specify a
parameter with the Execute on Load from a Form Connection, and
you can generate initialization code.

Chapter 2 Using Java Data Base Connectivity

22

TABLE 2.2 RowSet Other Properties Tab Properties (Continued)

Property Definition

Password A password the user must supply to gain access to the table that
contains this NB RowSet

Table Name The name of a database table where records will be updated.

User Name The name of a user updating records.

The Event Tab for a RowSet enables you to inspect and modify events associated
with RowSets.

TABLE 2-3 RowSet Event Tab Properties

Property Definition

cursorMoved Specifies event handlers for the cursorMoved event. This method is
called when an NBCachedRowSet’s cursor is moved.

rowChanged Specifies event handlers for the rowChanged event. This method is
called when a row in a RowSet is changed.

rowlnserted Specifies event handlers for the rowinserted event. This method is
called when a row in a RowSet is inserted.

rowSetChanged Specifies event handlers for the rowSetChanged event. This
method is called when an RowSet is changed.

rowCompleted Specifies event handlers for the rowCompleted event. This method
is called after an inserted row is committed to the database.

The Code Generation Tab enables you to specify pre- and post-processing code
related to a rowset.

TABLE 2-4 Code Generation Tab Properties

Property Definition

Code Generation Choose between generating standard or serialization code for the
component.

Custom Creation Enter your own creation code for the component, not including the

Code variable name and equal sign (=). This creation code is called in the

initComponents() method. If this property is left blank, the IDE
generates a default creation code for the component.

Post-Creation Code, Write custom code that you want the IDE to place before and after a

Post-Init Code, Pre- component’s creation code and before and after its initialization
Creation Code, and code. The IDE always places creation code before initialization code
Pre-Init Code in initComponents()

Programming Persistence ¢ August 2001

TABLE 2-4 Code Generation Tab Properties (Continued)

Property Definition

Serialize To Set the name of the file for the component to be serialized to, if it is
serialized.

Use Default Set to True if you want the component’s variable modifiers (public,

Modifiers private, and so on) to be generated using the default modifiers. The

default modifiers are specified in the Variables Modifier property of
the Form Objects node in the Options window. (Choose Tools >
Options to view the window.) Set to False if you want the Variables
Modifier property to appear on the component’s property sheet,
enabling you to override the default modifiers.

Variable Name Modify the component’s variable name.

Data Navigator

The JDBC module provides a visual component that provides direct navigation of a
RowSet with a pre-built GUI. This component is useful when you need to create
prototypical applications and when you want to create data entry applications.

You can customize a Data Navigator by setting the following properties under the
properties tab in the Properties Editor of a Data Navigator.

TABLE 2-5 Data Navigator Properties

Property Definition

AutoAccept Automatically accept changes in the database. When you specify
this property, changes you make through the Navigator are either
immediately propagated to the database, or added to the RowSet
and propagated to the database when you request it.

Bound RowSet The RowSet to be controlled by the Data Navigator.
Layout of buttons Determines whether buttons are displayed in one or two rows.

Modification buttons Enables or disables the display of buttons for modification.

Stored Procedures

Stored procedures are a group of SQL statements that form a logical unit and
perform a specific task. Stored procedures encapsulate operations or queries that
execute on a database server. Such procedures, of course, vary in their nature
according to the database management system (DBMS) on whose server they
execute.

Chapter 2 Using Java Data Base Connectivity 23

24

Within the Forte for Java IDE, a stored procedure is a non-visual component that
represents a database stored procedure in your JDBC application. You can call a
stored procedure in response to an event initiated by a user within an application
GUI (such as a button click).

The syntax for a stored procedure is different for each database management system
that Forte for Java supports. For example, one database management system might
use begin , end, or additional keywords to indicate the beginning and ending of the
procedure definition, while a second DBMS might use other keywords to indicate
the same parts of the procedure definition.

The JDBC Tutorial provides information on some of the stored procedures you can
create for different databases, in addition to information on calling a stored
procedure from your JDBC application.

You can customize a stored procedure by setting the following properties under the
properties tab in the Properties Editor of a stored procedure. Once you have
specified these properties in the property sheet, you can connect stored procedures
to any user action.

TABLE 2-6 Stored Procedure Properties

Property Definition

Arguments Represents database data that you want used by the stored
procedure when called from the application.

Bound RowSet Enables you to select a RowSet from a drop-down list that is
refreshed from the database after the stored procedure is called.

Call format Format in which your stored procedure is called. For example, it
might include Name and Arguments that are substitution codes for
the properties with those names on this property sheet.

Connection provider A configured connection source in whose context the stored
procedure is to be called from the application.

Name The name of your called stored procedure.

Programming With JDBC Components

Use the visual and non-visual components provided in the JDBC module in
conjunction with Swing components to create forms that you use to retrieve and
manipulate database data.

For example, a number of Swing components (JList , JTable , JComboBox,

JButton , JToggleButton , JRadioButton , and JCheckbox) are associated with
data models for the data they display. Within the IDE, you use Property Editors and
the Component Inspector to customize the data model for these Swing components

Programming Persistence ¢ August 2001

by specifying the JDBC components with which they interact to access a database.
After you have completed specifying the JDBC components, Forte for Java generates
the corresponding JDBC code.

Setting Data Models for Components

The following Swing components have associated data models.:

= JList

= JTable

= JComboBox
=« JButton

= JToggleButton
= JRadioButton
= JCheckbox

You can configure these data models to use data from the database.

The most common component to display database tables is JTable . The model can
be configured in the property sheet of each Swing component (under the model

property).

Selecting Database Columns

Components that can display multiple rows, such as JTable or JList , also have
the selectionModel property.

JList and JComboBox also have a special kind of model. This model consists of
using one column from one RowSet to work with another column from another
RowSet to display data, using a SQL join. See below for details.

Text components which have the document property (such as JTextField ,
JTextArea , JPasswordField , JTextPane , and JEditorPane) can set up this
property to use data from the database.

To Configure the Data Model for JTable

. For the model property in the JTable 's property sheet, open the custom property
editor by clicking on the value of the property and then clicking the ellipsis (...)
button that appears.

. Choose the TableEditor mode.
. In the RowSet field, choose the RowSet to be displayed in the table.

. Use Fetch columns to load column names into the list.

Chapter 2 Using Java Data Base Connectivity 25

26

. Use the Add, Remove, Edit, Move Up, and Move Down buttons to set the names

and order of the columns in the table.

. Click OK to preserve the changes and close the custom property editor.

To Configure the Selection Model for JTable and JList

. For the selectionModel property in the component's property sheet, open the

custom property editor by clicking on the value of the property and then clicking
the ellipsis button (...) that appears.

. In the RowSet field, choose the RowSet to be displayed in the table or list.

. Click OK to preserve the changes and close the custom property editor.

To Configure the Data Model for JList and JComboBox

. For the model property in the component's property sheet, open the custom

property editor (by clicking on the value of the property and then clicking the
ellipsis button (...) that appears).

. For the Primary RowSet fields, choose the RowSet for the data model to retrieve

rows from, and then select one column from the Column drop-down list.

. If you want, in the Secondary RowSet field, choose the RowSet to display data

from (according to a SQL join). Corresponding columns from the primary and
secondary RowSet must have the same data type.

. If the Join check box is checked, a corresponding component displays the result of

a database join. If it is unchecked, a corresponding component is used as a code
map to set values in the primary rowset.

. Choose a Data column (join column) and Display column (visible data). Click OK

to preserve the changes and close the custom property editor.

To Configure the Data Model for JCheckbox ,
JRadioButton , and JToggleButton

. For the model property in the component's property sheet, open the custom

property editor (by clicking on the value of the property and then clicking the
ellipsis (...) button that appears).

. Choose the RowSet from which the data is to be fetched.

. Choose a column; data from this column will be used to decide if the component

should be selected.

. Enter the database value corresponding to a selected component into the Select

field and the value of an unselected component into the Unselect field.

Programming Persistence ¢ August 2001

. Click OK to preserve the changes and close the custom property editor.

To Configure the Document Model for Text Components

. For the document property in the component's property sheet, open the custom
property editor by clicking on the value of the property and then clicking the
ellipsis button (...) that appears.

. Choose the RowSet from which the data is to be fetched.
. Choose a column in which to display the text component.

. Click OK to preserve the changes and close the custom property editor.

Creating a Visual Form

After you have used the Property Editor to customize Swing components in your
application, Forte for Java enables you to create a visual form associated with the
Swing components that interacts with the database.

To Create a Visual Form With Swing Components That
Interact With a Database

. Create a Swing component form using a template provided in the Forte for Java
IDE.

. Add any needed Connection Source (or Pooled Connection Source),
RowSet, or Stored Procedure nonvisual components to your form from the
Component Palettes.

. Using the corresponding Property Editor, customize these components for the
database entities they represent.

. Add any visual components you need, including the Data Navigator.

. Use the corresponding Property Editor to customize the visual components
appropriately, referencing the RowSet components you need.

As you specify the Swing components to use with your JDBC application, Forte for

Java automatically creates the correct Swing classes to use in your application.

. Use the Properties Editor for the specified form to indicate exceptions that shoul
be caught during runtime and run the form.

Chapter 2 Using Java Data Base Connectivity

d

27

Using the Component Inspector With JDBC Components

You can use the Forte for Java Component Inspector to modify properties for
components you use in your JDBC application. The following components can be
found under Non-visual Components in the Component Inspector:

= NB Cached RowSet

= NB JDBC RowSet

= NB Web RowSet

= Connection Source

= Pooled Connection Source
= Stored Procedure

The Data Navigator component and other Swing components are shown
according to their position in the container hierarchy.

28

Using the JDBC Form Wizard

The JDBC Form Wizard guides you through the creation of a form that can interact
with database tables. It provides a substitute for the explicit editing of properties
that you would otherwise perform if you used the approach outlined in “Using
JDBC Components” on page 18. When you finish running the wizard, you will have
a generated application, a file name for the application, and a package.

The following sections illustrate the JDBC Form Wizard, using the sample PointBase
Server Database that comes included with the Forte for Java IDE.

Programming Persistence ¢ August 2001

v To Open the JDBC Wizard

e Select Tools > JDBC Form Wizard

DEC Form Wizard

JDBC Form Wizard

The JOBC Form Wizard helps you creste a simple database application by guiding
you through 4 simple steps.

Buoth zource and form files will be created by the wizard.

| = Back || Mext = || Firish || Cancel |

FIGURE 2-1 JDBC Form Wizard, Opening

Establishing a Connection

When you use the JDBC Form Wizard or when you use the JDBC tab to create a
JDBC client application, one of the first tasks you must perform is to establish a
connection with the database management system that you want to use.

Typically, the JDBC Form Wizard or Forte for Java connection generates the code
that you can use in your JDBC application when you use the Visual Form Editor or
the JDBC Form Wizard to create a form. The application uses the form to populate
information that it obtains from a database management system.

Chapter 2 Using Java Data Base Connectivity 29

JDBC Form Wizard

Create a database connection

) Existing Connection

=Select from the list= - |

4.
B.

) Mew Connection

Tame: | PointBasze Metwoark Server hd |
Diriver: |c:0m.p0intbase.jdbc:.jdbc:UniversaIDriver |
Database URL: |jdbc:p0irﬂbase: Iocalhost: Q092 izample |
L=er Mame: |public: |
Pazsward: |mm |

[Z] Use PooledCGonnectionSource

| = Back || Mgt = || Finizh || cancel |

FIGURE 2-2 JDBC Form Wizard, Database Connection

The second panel of the JDBC Form Wizard lets you establish a connection with a
database. You can specify the use of a pooled connection for a DataSource in this
panel.

When you need a new connection, you must supply:

=« The name of your database. For example, PointBase Network Server.

= The JDBC driver name for the database. For example,
com.pointbase.jdbc.jdbcUniversalDriver

= The Database URL where the database is located. For example,
jdbc.pointbase://localhost:9092/sample

» User Name
= Password

= Select the Use Pooled Connection Source check box to specify an optional pooled
connection.

= Optionally select the Advanced tab to specify a schema to get tables.

Forte for Java provides these parameters to the JDBC application code that it
generates.

30 Programming Persistence ¢ August 2001

You can select an existing connection by clicking the Use Existing Connection radio
button, and selecting the connection from the drop-down list.

When you select the Next button, Forte for Java calls a method that creates a
database connection based on parameters you enter. You use this connection to the
database in the same way that you use the wizard to write JDBC application code.

Selecting Database Tables or Views

The third panel of the JDBC Form Wizard lets you:
= Select a table or view in the database to which you are connected.

= Specify that you want only read access to a specific table for your generated JDBC
application. This means that the application cannot alter data in the database.

= Add arowlnserted event handler to a table. This event handler handles the
listening for events associated with the application’s insertion of rows into the
tables you select.

= Set the Transaction Isolation level for a table. See “Transaction Isolation Levels”
on page 32.

» Provide a SQL command to run against the tables you specify.

The JDBC Form Wizard lets you execute SQL statements against tables you specify
in the Wizard. You use the data from the SQL output to populate visual forms. You
can specify SQL statements which, when applied to a specific form, generate the
appropriate SQL code. In FIGURE 2-3, Forte for Java provides a default SQL command
to use with the table you have selected.

Chapter 2 Using Java Data Base Connectivity 31

32

JJDBC Form Wizard

Select a table

w0 Tables (0 views RoweSet type: |[NB WiebRowSet -

CLSTOMER_TEL
DISCOUNT_CODE_TEL
MANUF ACTURE_TEL
MICRO_MARKETS_TEL
OFFICE_TEL
OFFICE_TPE_CODE_TEL
ORDER_TEL
PRODUCT_CODE_TEL
PRODUCT_TEL

Connected to jdbepoirtbase:Mocalhost 9092 sample (Usemame: public)

[Z] Read-only [T Add rovinzerted event handler
Tranzaction isalation: | READ_COMMITTED hd |
SGL command: |se|ec:t * from CUSTOMER_THL |

| = Back | | Mgt = I | Finizh | | cancel |

FIGURE 2-3 JDBC Form Wizard, Select a Table

Transaction Isolation Levels

To avoid conflicts during a transaction, a database management system uses locks.
Locks are operative until the application commits the transaction or rolls it back
from the database.

Locks are set according to a transaction isolation level. Locks apply to the entire
ResultSet that is returned to the application or committed from the application to
the database.

Each database management system provides its own default transaction isolation
level. Forte for Java lets you choose between the transaction isolation levels within
the second panel of the JDBC Form Wizard.

Note — The driver and the data base management system must support the
transaction isolation level you use.

Programming Persistence ¢ August 2001

TABLE 2-7 Transaction Isolation Levels

Property Definition

TRANSACTION_READ_COMMITTED Prohibits a transaction from reading a row that has
uncommitted changes in it.

SERIALIZABLE Includes the prohibitions in
TRANSACTION_REPEATABLE_REAR.prohibits the
situation where one transaction reads all rows that
satisfy a WHEREondition, a second transaction
inserts a row that satisfies that WHEREondition, and
the first transaction rereads for the same condition,
retrieving the additional “phantom” row in the
second read.

TRANSACTION_NONE Transactions are not supported.

TRANSACTION_REPEATABLE_READ Prohibits a transaction from reading a row with
uncommitted changes in it. It also prohibits the
situation where one transaction reads a row, a
second transaction alters the row, and the first
transaction rereads the row, getting different values
the second time (that is, a non-repeatable read).

TRANSACTION_READ_UNCOMMITTEI row changed by one transaction can be read by
another transaction before changes in that row are
committed to the database. If changes are
subsequently rolled back, the second transaction
retrieves an invalid row.

Selecting Columns to Display

The fourth panel of the JDBC Form Wizard lets you select columns from the
database tables to include in the form that is displayed. In this panel, you can
specify:

» Columns you want displayed in the application you generate

= The order of the columns you want displayed

= Column parameters:

= Column title

« Column editability

= Default column value

= A Swing component to display the table in the application

In the example provided, JTable (the most common Swing form) is used. The
JTable form displays more than one column of data in the application.

Chapter 2 Using Java Data Base Connectivity

33

34

Other Swing component choices include:

» Jlist :displays a column in a list
= JComboBox: displays one column in a combo box
= JTextField : displays one or more columns in a text field

In FIGURE 2+4, the first Column is selected. It can be removed or moved in position.

JJDBC Form Wizard

Select columns

= e [C] Use Tabbed ‘iews Displayed columns
Select columns

Matme Title: Type Editable | Default value

Aol CUSTOMER... CUSTOMER .. INTEGER (10) O
DISCOUNT_... DISCOUNT .. [CHARACTE... O
Remave 7P ZIP VARCHAR .. O
MAME AME VARCHAR . O
Wove Lip ADDR_LM1 ADDRLNI WVARCHAR .. O
ADDR_LMZ WDDRLMZ WARCHAR . O
[lime Cowm CITY (S153 VARCHAR ... O
STATE STATE CHARACTE... O
Restare 4 PHOMNE PHOME CHARACTE... O
Fax Fax CHARACTE... O
| 41l Editable Et&IL EMAIL VARCHAR .. O
CREDIT_LIMIT CREDIT LIMIT INTEGER (10) O
LAST_Sal.. LAST SALE . |DATE (10) O
LAST_SAL.. LAST SALE . [TIME (15) O

Select a view

[¥] Use JScrollPane

| < Back || Nest = || Finish || Cancel |

FIGURE 2-4 JDBC Form Wizard, Select Columns

If you choose JList or JComboBox, only one column can be displayed, and you can
choose a column to display from the Name property:

1. Select a value in the Name column.

2. Select a column name from the built-in combo box.

v To Edit Column Titles

1. Click on the Title field you want to edit. An edit window appears with two tabs.
2. Select the String Value tab to enter the new name as a simple string value.

3. Select Resource Bundle to enter the name using a resource bundle. Enter the name
of the bundle into Bundle Field, and select any related keys from the Keys combo
box.

Programming Persistence ¢ August 2001

. Select OK to close the edit window.

Selecting a Secondary RowSet

This panel displays a list of all available tables according to the database connection
created on the Connection panel and is enabled only if a view supporting two
RowSets (JList of JCheckbox) is selected.

You can use this panel to populate the secondary RowSet of the generated
application.

To Select a Secondary RowSet

. Check Use Secondary Rowset.

If you check this rowset, the secondary rowset is used in the generated application.
. Select either the Tables or Views radio button.

. Select a type of rowset from the RowSet type combo box.

. Select a table or view from the list.

. Check Read-only if you want the corresponding rowset to be read-only.

. Check Add rowlInserted event handler to add a rowInserted event handler to the
source code of the generated application.

The handler is called when a new row is inserted and enables the creation of default
column values dynamically.

. Choose a transaction isolation level for the rowset using one of the values in the
Transaction isolation combo box.

The default transaction level is READ_COMMITTED

. Use the SQL_command text field to prepare SQL to populate the rowset.
By default, Forte for Java generates the text select * from table-name

. Select a data column to use with a database join.

Selecting this column will display a different field other than the primary column
retrieved; however, it must be of the same data type as the primary column.

Chapter 2 Using Java Data Base Connectivity 35

36

Select secondary rowset

[v¥] Use secondary roveset

) Tables (0 views

Rowe=Set type: | NB WebRowSet -

CUSTOMER_TEL
DISCOUNT_CODE_TEL
MANUF ACTURE_TEL
MICRO_MARKETS_TEL
CFFICE_TEL
CFFICE_TYPE_CODE_TEL

[Z] Read-orly [T Add rovinserted evert handler

Tranzaction isakztion: | READ_COMMITTED - |

SEL command: |se|ec:t * from CLUSTOMER_TEL |

Data column: MAME |rame

|MamME

[vaRcHaR (30| [| |
[vARCHAR (30| J | |

Dizplay column: MAME

| || Mest = || Firish || Cancel |

FIGURE 2-5 JDBC Form Wizard, Select Secondary RowSet

Previewing and Generating an Application

The last panel shows a preview of a generated application. Use this panel to
complete your generated application. In addition, you can select a package and a file
name to create a completed application.

Provide the name of the package under Package and the target file under Target.

You can view the component layout and the layout from the view of the Data
Navigator. What you view depends on the Swing form you have chosen to contain
the data that is manipulated in your application.

Programming Persistence ¢ August 2001

JJDBC Form Wizard

Finish the wizard

rapplication previe:

e componert ey out: |Center hd [« -
v

Dataklavigstor layout: | Morth | +

x| v
=]
L

[w] Add Datahlavigator

) Buttons in one row

® Buttons in two rows

[l Modification buttors visible

[¥] Set auto accept -

rSelect a file to creste

Package: |<default package=[E:\fortedjibinifortedjisampledit | Chooze ..

Target file: |jdchewﬁbp |

[T Owerwrite existing file

| = Back || et = || Finizh || cancel |

FIGURE 2-6 JDBC Form Wizard, Finish the Wizard

Running Your JDBC Application

You can compile, run, and debug JDBC applications as if they were any other form.
If you need special JDBC drivers, ensure they are in Forte for Java’s CLASSPATH, so
they will, by default, be available for external compiling, executing, and debugging
of J]DBC-based forms.

You can run your application external to the IDE by adding paths to these packages
into your CLASSPATH:

= modules/ext/sql.jar

= modules/ext/rowset.jar

= lib/ext/jdbc20x.zip

= A corresponding JDBC driver. JDBC drivers are typically stored in lib/ext.

If a WebRowSetis used in your JDBC application, two more JAR files are required:
= lib/ext/parser.jar
= lib/ext/xerces.jar

Chapter 2 Using Java Data Base Connectivity 37

38 Programming Persistence ¢ August 2001

CHAPTER 3

Transparent Persistence Overview

The Forte for Java Transparent Persistence feature lets you view and manipulate
persistent data stored in JDBC-compliant databases as Java objects, without the need
to know SQL, the JDBC API, or database programming. This chapter provides a brief
overview of the Transparent Persistence programming model.

Whenever you see the terms classes, fields, and objects in this manual, they refer to
classes, fields, and objects for the Java platform.

What Is Transparent Persistence?

Transparent Persistence allows you to access information in data stores as Java
objects, allowing for the separation of Java programming from database
programming. This is done through persistence-capable Java classes, which contain
data from a persistent data store, eliminating the need for SQL or coding specific to
a particular data store.

Using Transparent Persistence and its mapping capabilities, you start with a
relational database and map the columns of relational tables to automatically-
generated or pre-existing Java classes. Transparent Persistence generates
relationships between the Java classes that correspond to relationships between
database tables. Tables and columns that are linked in the database by foreign keys
are similarly connected in Java classes using reference or collection relationships.

Applications access the data store through operations on objects using the Java
programming language, without knowing the database schema or using special
database access languages. You can insert business logic into these Java
programming language classes by defining additional methods and extending the
automatically generated methods.

39

Transparent Persistence lets you map Java classes to a database schema
automatically, using either of two methods:

» Database->Java mapping

This method generates Java classes from a database schema, creating persistence-
capable classes mapped to any or all tables in the schema. This approach is best if
you do not yet have any classes to be mapped.

= Meet-in-the-middle mapping

This method creates a custom mapping between an existing schema and existing
Java classes. Use this approach if you already have classes that you want to use to
access persistent data. You can also use it to fine-tune classes generated by
Database->Java mapping.

Transparent Persistence also has a set of runtime libraries accessed by the
Transparent Persistence API. This APl is a set of Java classes for accessing the
persistent objects from the underlying database, providing the framework for
running the mapped Java classes.

Application developers can work with a set of Java classes that represent the
persistent data their applications need. When an application needs to get data, the
developer calls methods of a Persistence Manager or Query instance, which returns
instances of persistence-capable classes. Another way to obtain data from the
datastore is to navigate reference or collection relationships among persistent
instances. When the application needs to change data it calls methods of the
persistence-capable instances.

The Forte for Java Transparent Persistence module is a preview implementation of
the forthcoming Java Data Objects (JDO) specification. A JDO implementation is a
scalable, portable implementation of the Persistence Manager and other pieces of the
JDO environment defined in the specification. Each JDO implementation enables
persistence-capable classes to interact with some types of database software,
connection managers, and so on.

40

Programming Transparent Persistence

Transparent Persistence anticipates two different types of developers, one with data
store knowledge and the other with application knowledge, each working on
different tasks:

= Developing persistence-capable classes
= Developing persistence-aware applications

Programming Persistence ¢ August 2001

Developing Persistence-Capable Classes

As a developer creating persistence-capable classes, you create a set of classes that
model the data in a persistent data store. Chapter 4 describes the wizards you can
use to develop these classes.

To Create Java Packages From a Database
Schema

. Capture a database schema using the schema capture tool.

This creates a file system representation of the database schema that you can use
without a live connection to the database.

. Map persistence-capable Java classes to your database schema, using one of the
following methods:

= Use the Java Generator wizard to generate new Java classes from the captured
database schema tables along with a mapping from the generated classes to the
schema’s tables.

= Use the Map to Database wizard to make existing Java classes persistence-
capable, and map the database schema to those classes. You can also use this
wizard to customize an existing mapping. For example, you could unmap a field,
map a newly added field, map the class to a table in a different schema, or modify
the mapping after changing and recapturing a schema.

. Add business logic to generated classes.

Edit the source code for the Java classes that correspond to database data. Typically,
you add your business logic to these classes. You might add code to an existing or
generated method, or you might add additional methods to these classes.

. Compile the source code files.

After coding is complete, compile the Java class source files using the Forte for Java
IDE. These are the classes representing database tables.

. Archive or package the persistence-capable and persistence-aware classes.

Package the classes into the .jar file (either for deployment or another
development stage that will not change persistence-capable classes) inside Forte for
Java. Forte for Java will determine whether theses classes are persistence-capable or
persistence-aware classes and enhance them for Transparent Persistence before
adding them to the .jar file. The Enhancer automatically adds all the necessary
support to the byte-code of the class to enable the class to cooperate with the
Transparent Persistence runtime upon accessing persistent fields.

Chapter 3 Transparent Persistence Overview 41

42

Note — If you choose to run or debug the application inside Forte for Java using the
Persistence Executor or Persistence Debugger, the byte-code enhancement will be
done by a special class loader; in this case, there's no need to package the
persistence-capable or -aware classes in a .jar file.

Developing Persistence-Aware Applications

As a developer creating persistence-aware applications, you need to know which
persistence-capable classes model the application domain data, and the standard
Transparent Persistence API for working with those classes. These standard calls
allow the you to select, update, insert, and delete data from the data store. These
calls are discussed in Chapter 5.

After you have persistence-capable Java classes corresponding to database tables,
you can write applications that use those Java classes. When you use the mapped
classes, all of the necessary JDBC statements are generated for you automatically.
You are responsible for transaction demarcation and specifying queries to find
objects of interest in the database. The query is a Java expression-like boolean filter
that is translated into an SQL select statement. See “Querying the Database” on
page 113 for more information on writing queries.

Mapped Java classes can also be accessed directly in Java Server Pages (JSP"") using
Transparent Persistence tags provided as part of JSP. These tags are discussed in
Appendix B, and in Building Web Components.

Transparent Persistence and Enterprise JavaBeans

™

Enterprise Java Beans™ (EJB™) is a component architecture for development and
deployment of distributed business applications. Transparent Persistence supports
integration with Enterprise JavaBeans components in the following areas:

= With Stateful and Stateless session beans as the persistence-aware components
that use persistence-capable classes directly as dependent objects;

= With Bean-Managed Persistence Entity Beans as persistent components that use
persistence-capable instances as delegate objects to actually implement business
methods by accessing and possibly modifying persistent state.

Container-Managed Persistence Entity Beans are not supported in this release.

The integration with Enterprise JavaBean components is described in more detail in
Chapter 6.

Programming Persistence ¢ August 2001

CHAPTER 4

Developing Persistence-Capable
Classes

This chapter describes how to use Transparent Persistence to map between a set of
Java programming language classes and a relational database.

Mapping Capabilities

Mapping refers to the ability to tie an object-oriented model to a relational model of
data—the schema of a relational database. Transparent Persistence provides the
ability to tie a set of interrelated classes containing data and associated behaviors to
the interrelated meta-data of the relational model. You can then use this object
representation of the database to form the basis of a Java application. You can also
customize this mapping to optimize these underlying classes for the particular needs
of an application.

The result is a single data model through which you can access both persistent
database information and regular transient program data. Application developers
need only understand the Java programming language objects; they do not need to
know or understand the underlying database schema.

The mapping changes you make here affect only the Java classes; the database
schema remains as currently defined. The database schema and the Java classes are
separate entities, as FIGURE 4-1 illustrates.

43

44

Database Schema Java Class Mapping

OO
O

A
A

AN

2N

| O

FIGURE 4-1 Mapping a Database to Java Classes

You can either generate both the mapping and the class model from the schema, or
map an existing set of classes to an existing schema.

Note — Transparent Persistence maps each class to tables within a single database
schema. All related classes must also map to that schema.

Mapping Techniques

A persistence-capable class should represent a data entity, such as an employee or a
department. To model a specific data entity, you add persistent fields to the class
that correspond to the columns in the data store.

The simplest kind of modeling is to have a persistence-capable class represent a
single table in the data store, with a persistent field for each of the table’s columns.
An Employee class, for example, would have persistent fields for all of the columns
found in the data store’s EMPLOYEHable, such as lastname |, firsthname
department , and salary

The class developer can also choose to have only a subset of the data store columns
used as persistent fields.

Programming Persistence ¢ August 2001

You can use Transparent Persistence to map Java classes to a database schema using
one of two techniques:

» Database to Java mapping

This technique generates Java classes from a database schema, using the Generate
Java wizard. The wizard creates persistence-capable classes mapped to any or all
tables in the schema. This approach is best if you do not yet have any classes to be
mapped.

In this scenario, you need only to choose which of the tables in the schema will be
mapped. During the modeling process, Transparent Persistence analyzes the
schema, including primary key fields and the foreign keys fields that define
relationships, and creates Java representations of them. The resulting set of objects
reflects the organization of the meta-data in the database. The Java code is
generated automatically.

= Meet-in-the-middle mapping

This technique creates a custom mapping between an existing schema and
existing Java classes, using the Database Mapping wizard and the Properties
window. You should use this approach if you already have classes that you want
to use to access persistent data. You can also use it to modify classes generated by
the previous method.

Mapping Relationships

A relationship can be one-to-one, one-to-many, or many-to-many, depending on the
number of instances of each class in the relationship. Relationships allow you to
navigate from one object to its related objects. In the database, this might be
represented by foreign key columns and, in the case of many-to-many relationships,
join tables. In the Java code, relationships are represented by object reference—either
collections or persistence-capable type fields, depending on the relationship
cardinality.

When Transparent Persistence generates Java code, a collection field represents the
many side of a one-to-many relationship. Transparent Persistence uses a variable of
the actual persistence-capable class type to represent the single side of a one-to-
many relationship.

For example, suppose you have a department object with a relationship to a
collection of employees. You can navigate the relationship from the department
object to see all the employees associated with that department. Similarly, you can
view an employee and also see the department to which it is connected. Many
employees can exist for a department, but there can be only one department per
employee. The database uses a foreign key to make this connection.

Chapter 4 Developing Persistence-Capable Classes 45

46

Continuing the example, the Department class could contain an employees field
of the type HashSet . This HashSet field gives the department object the ability to
represent many employees. In addition, the Employee class contains a department
field of the type Department . The Department reference field allows an employee
to have one department.

The Department class would contain the following code:

private java.util. HashSet employees;

The Employee class would contain the following code:

private Department department;

Relationship fields appear under the Fields node for their class. The fields have some
extra properties to indicate the related class, upper bound, lower bound, and so on.
For meet-in-the-middle mapping, these properties are not set. You need to set them
in the Properties window. See “Setting Options and Properties” on page 71 for more
information.

You can either create a relationship automatically, through the Java Generation
wizard, or by creating the correct type of field in the Java code.

Note — During Java generation, Transparent Persistence ignores a relationship field
when that field references an unmapped class. In such a case, the Transparent
Persistence module treats the relationship fields as ordinary fields.

The Java Generation wizard uses foreign keys from the database tables to determine
relationships. It interprets a join table as a table with foreign keys that refer to
different tables.

For example, suppose you have a DEPARTMENTable and an EMPLOYEEable with a
one-to-many relationship between DEPARTMENdnd EMPLOYEEBoth tables have
primary keys. In addition, the EMPLOYEHable has a separate foreign key column
that contains values corresponding to the DEPARTMENpPrimary key, DEPID. From
this schema, Transparent Persistence generates a Department class and an
Employee class. The Department class contains a field that can hold many
employees, while the Employee class contains a field that can reference only one
department. FIGURE 4-2 illustrates this.

Programming Persistence ¢ August 2001

Database Representation
DEPARTMENT Table

NN

DEPID
primary key

R

DEPID
primary key foreign key

EMPLOYEE Table

Maps to

Department

Java Representation

Employee
Collection of object

Employees

Reference to
one Department

FIGURE 4-2 Foreign Keys and One-to-Many Relationships

The database uses join tables to represent tables in a many-to-many relationship. On
the Java side, the classes at both ends of the relationship use fields that can hold
multiple references to the other objects. FIGURE 4-3 shows how a many-to-many

relationship might look.

Database Representation
PROJECT Table

EMPLOYEE Table

7

EMPLOYEE
PROJECT
// Join Table
EMPID
primary
key

Java Representation

Maps to Collection

PROJID
primary
key

EMPID PROJID

foreign foreign

key key

-«—>» of Projects

Project
object

Collection of

Employee Employees

Object

FIGURE 4-3 Foreign Keys and Many-to-Many Relationships

Note — Transparent Persistence does not support duplicate entries in join tables. The
many side of the relationship is implemented using HashSet , which does not accept

duplicate objects.

Chapter 4 Developing Persistence-Capable Classes 47

48

Managed Relationships

A managed relationship between fields in a pair of classes allows operations on one
side of the relationship to affect the other side.

At runtime, if a field in one instance is modified to refer to another instance, the
referred instance will have its relationship field modified to reflect the change in
relationship.

As described below, Transparent Persistence supports:

= One-one relationships
= One-many relationships
= Many-many relationships

One-One Relationships

With one-one relationships, there is a single-valued field in each class whose type is
the other class. Any change to the field on either side of the relationship is handled
as a relationship change. If the field on this side is changed from a non-null value to
null, then the field on the other side is changed from a non-null value to null. If the
field on this side is changed from null to non-null, then the field on the other side is
changed to refer to this instance. If the field on the other side had been non-null,
then that other relationship is made null before the change is made.

One-Many Relationships

With one-many relationships, there is a single-valued field on the many side and a
multi-valued field (collection) on the one side.

If an instance is added to the collection field, the field on the new instance is
updated to reference the instance containing the collection field. If an instance is
deleted from the collection, the field on the instance will be nullified.

Any change, addition or subtraction of a field on the many side, is handled as a
relationship change. If the field on the many side is changed from null to non-null,
then this instance is added to the collection-valued field on the one side. If the field
on the many side is changed from non-null to null, then this instance is removed
from the collection-valued field on the one side.

Many-Many Relationships

With many-many relationships, there are multi-valued, or collection, fields on both
sides of the relationship. Any change to the contents of the collection on either side
of the relationship is handled as a relationship change. If an instance is added to the

Programming Persistence ¢ August 2001

collection on this side, then this instance is added to the collection on the other side.
If an instance is removed from a collection on this side, then this instance is removed
from the collection on the other side.

Note — No warning is given if you delete one object in a managed relationship.
Transparent Persistence automatically nullifies the relationship on the foreign key
side and deletes the object without asking for confirmation.

You can set the Java Generation options of Transparent Persistence so that managed
relationships are generated automatically. You can set these options in the Customize
Options pane of the Java Generation wizard (see “Generating Persistence-Capable
Classes From a Schema” on page 54), or by choosing Tools > Options, then choosing
Java Generation Options under Transparent Persistence (see “Java Generation
Options” on page 72).

The following procedure describes how to create a managed relationship when you
already have two classes and are taking the “meet-in-the-middle” approach.

To Create a Managed Relationship

. Create one relationship field in each of the two classes.

. Ensure that the fields are marked as persistent. (See “To Make a Field Persistent”
on page 60.)

. In the Explorer window, expand one of the classes and select its relationship field.

. Open the Properties window for the field.

The name of the other class may appear as the value of the Related Class property. If
it does not appear, click the property value and then click the ellipsis button (...) to
choose a related class. If the class is not persistence-capable, you might need to
convert the class (see “Making a Class Persistence-Capable” on page 59).

. Choose the other class and click OK.

. Return to the Properties window and click Related Field. Choose the relationship
field from the other class.

If the field you want does not appear in the drop-down menu, check that it is
marked as persistent. If it is already mapped, unmap it using the drop-down menu
for its Mapping property.

. In the Explorer window, expand the other class and select its relationship field.

. Open the Properties window for the field.

Note that the Related Class property and the Related Field properties have been set
for you.

Your two relationship fields now represent a managed relationship.

Chapter 4 Developing Persistence-Capable Classes 49

To map your relationship to a database, see “Mapping Relationships” on page 45.

50

Developing Persistence-Capable Classes

Capturing a Schema

Before mapping any Java classes to a database schema, you need to capture the
schema. Capturing the schema creates a working copy in your file system. This
allows you to do your work without affecting the database itself.

Note — It is best to store the captured schema in a package. If you do not have a
package to contain the schema, create one by right-clicking on the file system and
selecting New Package.

To Capture a Schema

. You have three ways to display the Database Schema Wizard:

= Right-click on the filesystem and select New > Databases > Database Schema.

= Choose New from the File menu and then, in the Template Chooser, double-click
Databases and select Database Schema.

= Select Capture Database Schema from the Tools menu.

. In the Target Location pane (shown in FIGURE 4-4), type a filename for the working

copy of your schema, then select a package for the captured schema.

Programming Persistence ¢ August 2001

| Capture Database 5chema Wizard x|

Target Location

[ame: |emptest |

Pleaze select a package for the newly crested okject or enter the packag..

@ Filesystems
B 3 cifortedjizampledi

Package: |<defau|t package= [c\fortedjizampledi] |

Directory: |c:\f0rte4jbampledir |

| = Back || Mext = || Finizh || cancel || Help |

FIGURE 4-4 Database Schema Wizard, Target Location

. In the Database Connection pane (shown in FIGURE 4-5), if you have a connection
established, you can select it from the Existing Connection menu. Otherwise,
under New Connection, enter the following information:

The name of the database you are connecting to. (If your database is not listed in
the drop-down menu, you might need to quit the wizard and install the driver in
the IDE before continuing.)

Your system’s JDBC driver.

The JDBC URL for the database, including the driver identifier, server, port, and
database name. For example, jdbc:pointbase://localhost:9092/sample .

The format of a JDBC URL varies depending on which kind of database
management system (DBMS) you use—Oracle, Microsoft SQL Server, or
PointBase—and the version of that DBMS. Ask your system administrator for the
correct URL format for your DBMS.

FIGURE 4-5 shows the PointBase Server network driver, a server localhost |, and
port 9092 for a database called sample . Your data source might be different.

A user name for your database.

The password for that user.

Chapter 4 Developing Persistence-Capable Classes 51

Capture Database 5chema Wizard x|

Steps Databaze Connection

Tem)
Provide connection information for the databaze from which you want to capture the schema.

1.
3_' Databa=ze Connection Either choose an existing database connection, or give details for creating & new connection.
4 Ta

i Existing Connection

johe:pointbase: Mocalhost: 9092Eample [puklic on PLUBLIC] hd |

@) Mewv Connection

Iame: | FoirtBase Netwark Server i |

Drrivver: |com.pointbase.jdbc.jdchni\-'ersaIDriver |

Database URL: |jdbc:p0intbase:.I’.I'Ic:oalhost:9092.fsample |

User Mame: |pub|ic: |

Pazsward: |****** |

| = Back || Next = || Finish || Cancel || Help |

FIGURE 4-5 Database Schema Wizard, Database Connection

4. In the Tables and Views pane (shown in FIGURE 4-6), choose the tables and views
you want to capture, then click Finish.

Note — If you choose one table and exclude another that is referenced to the
included table by a foreign key, both tables will be captured even though you
specified only one.

52 Programming Persistence ¢ August 2001

Capture Database 5chema Wi

Datak etiah
Tables and Views

Tables and Views

Available Tables and Views:

Tahle DISCOUNT _CODE_TEL
Tahle MANUFACTURE_TBL
Tahle PRODUCT_CODE_TEL

Al =

Selected Tables and Yiews:

ahle CUSTOMER_TEL

Tahle MICRO_MARKETS_TEL
Tahle OFFICE_TBL

Tahle PRODUCT_TEL
Tahle SALES_REP_TEL
Tahle SALES_TAX_CODE_TEL

Tahle OFFICE_TYPE_CCDE_TBL
Tahle ORDER_TEL

= Remave

Add Al ==

== Remove All

i

Miote: All referenced tables will be captured automatically.

| = Back

| et = || Finizh || Cancel || Help |

FIGURE 4-6 Database Schema Wizard, Tables and Views

The database and its schema will be represented in the Explorer window, as shown
in FIGURE 4-7

0] emptest
@ o emptest
Q@ CUSTOMER_TBL
@ FB Columns
G- G Indexes
Lo E@ Foreign Keys
o] DISCOUNT_CODE_TBL
Lo MAMUF ACTURE_TBL
o] MICRO_MARKETS_TBL
@ OFFICE_TEL
@ COFFICE_T*PE_CODE_TEL
o] CRDER_TEL
o] PRODUCT _CODE_TBL
@ FRODUCT_TEL
o] SALES_REP_TBL
o] SALES_TAX_CODE_TBL

FIGURE 4-7 Database Schema in the Explorer window

Chapter 4 Developing Persistence-Capable Classes 53

Creating Persistence-Capable Classes

Transparent Persistence maps Java classes to tables in a database schema using one
of two methods:

= Database to Java mapping

To generate Java classes from a database schema, see “Generating Persistence-
Capable Classes From a Schema” on page 54.

= Meet-in-the-middle mapping

To create a custom mapping between an existing schema and existing Java classes,
see “Mapping Existing Classes to a Schema” on page 59.

Generating Persistence-Capable Classes From a Schema

1. Select a schema node and choose the Generate Java command. This displays the
Generate Java Wizard (see FIGURE 4-10), which allows you to:

= Choose the target package that will contain your generated Java classes.
» Customize the options for the classes you are going to generate.
= Select the database tables for which you will generate corresponding Java classes.

2. In the Choose Target Location pane (shown in FIGURE 4-8), select a package from
the packages listed in the dialog window, or enter a new package name in the
Package field.

| emptest - Generate Java x|

Steps Choose Target Location [1 of 4]

1. Select a package for the generated Java clazses or enter & new package name.

@ Filesystems
B 3 cifortedjizampledic

Packae: |db_emp |

Directory: |c::Iforte-'ljlsampledirldb_emp |

| = Back | | Mext = | | Generate | | Cancel | | Help |

FIGURE 4-8 Java Generation Wizard, Choose Target Location

54 Programming Persistence ¢ August 2001

3. In the Customize Options pane (shown in FIGURE 4-9), select the options for the
Java classes you will generate.

You can change them for a single session, or save them as default properties for
future Java generation sessions. TABLE 4-2 describes the options you can set.

Note — You can change these default options at any time in the Java Generation
properties sheet by choosing Tools > Options, then choosing Java Generation
Options under Transparent Persistence. See “Java Generation Options” on page 72.

You can set the rules for how relationship fields are named by clicking the ellipsis
field (...) in Relationship Naming Policy. See “Relationship Naming Policies” on
page 73.

B emptest - Generate Java |

Customize Options [2 of 4]

Reviewy the options below and edit any that you would like to change. Use the "Save as Defaults"
button to make your changes the default options in the future.

[¥] Make Generated Classes Persistence-Capable

[¥] Make Generated Clazzes Implement java o Serializable

Add Java “transient” Maocdifier to:

Al Relationzhip Fields i

For Each Faoreign Key Generate:

- Two Managed Relationship Figlds
) A Single Relationzship Field

() Mo Relationship Figlds

[¥] Far Each Foreign Key Column Generate a Primitive or YWrapper Field

Relationship Maming Policy:

| Commplex Cardinality - || |||

Save as Defaults

= Back | | Ilest = I | Generate | | Cancel | | Help |

FIGURE 4-9 Java Generation Wizard, Customize Options

Chapter 4 Developing Persistence-Capable Classes 55

56

4. In the Table Selection pane (shown in FIGURE 4-10), select the tables and views for

which you want to generate corresponding Java classes.

You can select the tables and views individually, or choose all the tables at once by
selecting Add All Tables, or select all views at once by selecting Add All Views.

Each table is listed under Available. You can use the Add button to specify which
tables to map, and edit the class names by clicking on them.

A listing of <join table> in the Java Classes column indicates that there will be a
many-to-many relationship between the two classes connected by the join table, but
no class is created for the join table itself. If the join table has a primary key, you can
create a class for it by clicking on <join table> and selecting the class from the
drop-down menu, or typing in a class name. This will create a one-to-many
relationship between each of the other two classes and the class mapped to the join
table. To map the two tables without a relationship, remove the join table from the list.

Transparent Persistence only generates classes for tables with primary keys. Tables
without primary keys are not displayed under Tables Available. Join tables without
primary keys appear, but can only link two tables with primary keys, and cannot be
used to map classes directly.

If you want to save classes in different locations, generate the classes for one
location, then re-run the wizard, selecting a new location in the Choose Target
Location panel.

Note that you can map multiple classes to the same table or view by running the
wizard more than once and customizing the name, or by saving files to different
locations.

| emptest - Generate Java |

Table Selection [3 of 4]

Select the database tables for wwhich you would like to generate corresponding Java

clagses. Include any join tables needed for relationships between the classes.
Table Selection

SUMMaty

Ayailable Tables and Yiews: Selected Tables and Yiews:
Table DISCOUNT_CODE_TBL Table | JavaClass| |
i = CUSTOME... \Customer ...
= MAMUIFA . Manufact...

= Remave MICRO_M... Microhdark...
OFFICE_T... |OfficeThl
(OFFICE_T...

Add Al Tables == | [2RDER=T -
= PRODUCT... |ProductCo...
| <= Remove Al PRODUICT... |Procuct Thi

SALES R... |SalesRep...

W Ce T Lo,

Aol All Wiews ==

= Back | | Mext = | | Generate | | Cancel | | Help

FIGURE 4-10 Java Generation Wizard, Table Selection

Programming Persistence ¢ August 2001

Relationship Class Generation

There are many combinations you can choose when selecting tables and views.
TABLE 4-1 illustrates the results of each combination. This list assumes two tables,
“A” and “B,” and a join table “AB.”

TABLE 4-1 Relationship Class Generation

A B AB Results

Added Added Join table Classes A and B are generated, with two collection
relationships, A to B, and B to A.

Added Added Java class name Classes A, B, and AB are generated, with four
relationship fields created (A to AB, AB to A, B to

AB, AB to B).

Added Added Not added A and B are generated, but no relationship fields in
A or B are generated, and the AB table is not used at
runtime.

Added Not Join table You can not complete the wizard unless you add B

added or change the name of AB, so you can generate a

class for the join table.

Added Not Java class name Class A is generated with a collection relationship to
added AB and a primitive field for B.

Added Not Not added Class A is generated with no relationship to B. No
added relationship fields generated.

Not Not Join table The join table AB has an incomplete relationship to

added added A and B. You can not generate Java classes until you

add both A and B or change the join table name to
make it a class.

Not Not Java class name AB is generated with the foreign keys generated as
added added persisting fields of the primitive types of their
foreign key columns.

Chapter 4 Developing Persistence-Capable Classes 57

58

5. Click Generate to create a persistence-capable class for each table you selected

and map all fields and relationships.

If, in the Customize Options pane, you unchecked the Make Generated Classes

Persistence Capable check box, non-persistence-capable Java files are generated
instead.

After you have selected the tables and views in the previous panel, the IDE checks
for incomplete relationships. All classes that are to be generated are listed on the

Summary panel. The panel also displays a list of classes that contain incomplete
relationships.

If you do not map all of the tables in a relationship, the wizard will display
warnings or error messages telling you that the relationship will not be mapped. You
can use the Previous button to go back and modify your mapping, or click Generate
to generate the classes without the relationship.

@ emptest - Generate Java x|

Summary [4 of 4]

Review the following summary . When you are ready to
generate the Java classes, click the Generate button.

Summary

The Following Java Clazses Wil Be Generated:

CustomnerThl
DizcountCodeTbl
MarmfactureThl
MicroMarketsThl
0fficeThl
0fficeTypeCodeThl
OrderThl
ProductCodeThl
ProductThl
SalesFepThl
SalesTaxCodeThl

| = Back | | Mext = | | Generste | | Cancel | | Help

FIGURE 4-11 Java Generation Wizard, Generating Java

If you want to customize your mapped classes, see “Mapping Persistence-Capable
Classes” on page 61.

Note — If you want to generate two separate classes mapped to the same primary
table, use the Java Generation wizard twice, making sure to rename the generated
class. Each of the differently named classes will be mapped to the same table.

Programming Persistence ¢ August 2001

Mapping Existing Classes to a Schema

This section discusses how to use Transparent Persistence to customize mappings or
to create a mapping for an existing object model.

Before you can map a Java class to a database schema, you must make sure that:
» The database schema is captured and mounted in your Explorer filesystem.
See “Capturing a Schema” on page 50 for instructions on how to do this.

= Any classes that have relationships to the class you are mapping must be
persistence-capable. (The class itself becomes persistence-capable automatically
when you start the wizard.)

See “Making a Class Persistence-Capable” on page 59 for instructions on how to
do this.

= All fields that you want to map are marked as persistent.

See “Making a Field Persistent” on page 60 for instructions on how to do this.

You can edit an existing mapping by returning to the Database Mapping command.
The wizard reappears, filled in with all previously set values.

Alternatively, a you can set up or edit a mapping piecemeal by editing the
individual properties in the Properties window. All the mapping and persistence
information can be accessed through the Properties window, but the wizard
provides a way to view and edit groups of classes and fields at one time, providing
a useful overview of your mapping model.

Making a Class Persistence-Capable

A class, and all classes related to it, must be persistence-capable before it can be
mapped to a database table. The Database Mapping wizard automatically converts
your selected class to persistence-capable, but other classes must be converted
directly.

You can convert a set of selected classes at once. You should use this approach when
converting classes that are related to each other. This makes all relationship fields
persistent automatically.

For each class that you want to convert, right-click on the class and select Convert to
Persistence-Capable. To convert a group of classes at once (recommended), multi-
select the classes by holding the Control key down while choosing the classes. Then
right-click and select Convert to Persistence-Capable.

Chapter 4 Developing Persistence-Capable Classes 59

Reverting a Class From Persistence-Capable

Conversely, you can make a persistence-capable class non-persistent by right-
clicking on the class and selecting Revert from Persistence-Capable. This will remove
all schema mappings and persistent properties from the class.

Note that if you then re-convert the class using Convert to Persistence-Capable, the
persistent properties will be restored to their default values, and you will need to
map the class to a database schema, as described in “Meet-in-the-middle mapping”
on page 45.

Making a Field Persistent

When you make a class persistence-capable, every field that can be interpreted as
persistent becomes persistent automatically. If you add any fields, you will need to
make them persistent separately if you want to use them to access persistent data.

v To Make a Field Persistent

1. In the Explorer window, expand the class and the Fields node under it and select
the field.

Persistent fields are displayed with a triangle; relationship fields show a triangle and
an arrow; non-persistent fields are displayed with a circle. (See FIGURE 4-12.)

2. In the Properties window, click on the Persistent property to activate the drop-
down menu, then select True.

You can make the field non-persistent again by selecting False in the drop-down
menu.

© A do_emp
@ @ CustomerThi
@ 5 class CustomerThi
e @ class Cid
@ f Fields
&4 addrlnl
B4 acddrln?
B4 city
&4 credilimit
#@ customerhum
#a discountCode
ﬂ_e dizcourtCodeThiOfDiscourtCode

FIGURE 4-12 Persistent Fields

60 Programming Persistence * August 2001

Mapping Persistence-Capable Classes

v To Map Classes to Tables Using the Database Mapping

Wizard

1. Right-click the class and choose the Map to Database command. This displays the
Database Mapping wizard (see FIGURE 4-13).

Steps

Ouerview

@ class CustomerThl - Map to Database

Overview [1 of 3]

Thiz wizard allows you to set up or edit the database mapping for & Java class.
‘When you are finished, you will have a persistence-capable class that is mapped
to one or more detabase tables.

Befaore you begin, make sure that:

- The database schema to which you would like to map this class is captured into
a filesystem in the Explorer windowy. To capture & schema, choose News. .. from
the File menu and then select DBSchema from the Database folder.

- Any Java classes that have relationships to the class vou are mapping are
perzistence-capable. Otherwise you will not be able to set up the mapping for
thozse relationship fields

- Al fields in this clazs that you intend to be persistert are marked as persistent.
To make a field persistent, view that field's propetties and change the Persistent
property to True.

If your clazs is reacy for mapping, click the Mext button.

| = Back || Next = || Finizh || cancel || Help

FIGURE 4-13 Database Mapping Wizard Overview

2. If you have completed the preliminary tasks, click Next to bring up the Select

Tables pane of the wizard (see FIGURE 4-14). Otherwise, click Cancel, complete the
tasks, and restart the wizard.

3. Select a primary table from the Primary Table combo box, or click Browse to open
the Select Primary Table dialog.

Chapter 4 Developing Persistence-Capable Classes

61

@ class CustomerThl - Map to Database x|

Select Table(s) [2 of 3]

Use the Browese. .. button to select the primary table (from a currently
mourted database schema) to which you want to map your clazss. Then, if
wou weant to map additional tables to this class, click the Add... button to add
a secondary takle.

Claz=: |Cus{0merTbI |
Primary Tahle: |CUSTOMER_TEIL b | | Browse..
Schema: |emptest |

Secondary Tahle(s) (Optional):
SALES _REP_TBL | Add...

| = Back || et = || Finizh || Cancel || Help |

FIGURE 4-14 Database Mapping Wizard, Select Tables

4. If you open the Select Primary Table dialog (see FIGURE 4-15), find a schema and
expand it to find its tables. Then select a table and click OK.

The table you select as the primary table should be the one that most closely matches
your class.

The table you choose as the primary table must have a primary key, and should be
the table that most closely matches the class you are mapping.

& Select Primary Table |
@ Filesystems
@ 3 ciioredizampledic
A do_emp

@ [0 examples

® [tutarial
emptest
@ (P emptest

@ [CUSTOMER_TBL

@ [DISCOUNT CODE_TEL

@ [E MANUFACTURE_TEL

| OK I| Cancel || Help |

FIGURE 4-15 Select Primary Table Editor

62 Programming Persistence * August 2001

5. Once the primary table is set up, you can map one or more secondary tables by
clicking Add to open the Secondary Table Settings dialog box (see FIGURE 4-16).

A secondary table enables you to map fields in your persistence-capable class to
columns that are not part of your primary table. For example, you might add a
DEPARTMENT table as a secondary table in order to include a department name in
your Employee class. A secondary table differs from a relationship, in which one
class is related to another by way of a relationship field. In a secondary table
mapping, fields in the same class are mapped to two different tables. A secondary
table enables you to map your field directly to columns that are not part of your
primary table. You can use this pane to select secondary tables, and to show how
they are linked to the primary table.

A secondary table must be related to the primary table by one or more columns
whose associated rows have the same values in both tables. Normally, this is defined
as a foreign key between the tables. When you select a secondary table from the
drop-down menu, the wizard checks for a foreign key between the two tables. If a
foreign key exists, it is displayed as the reference key by default.

@ Mapped Secondary Table Setup - CustomerThl il

Schema: emptest
Primary Table: CUSTOMER_TBL
Secondary Table: |SALES REP TBL -

Pairs of Columng in Reference Key:

Primary Table Column Type Secondary Table Column Type
MARE WARCHAR LAST_MAME YARCHAR
| Add Pair | | Remove
| OK I | Cancel | | Help |

FIGURE 4-16 Mapped Secondary Table Setup

a. Select a secondary table from the combo box.

Once you select a secondary table, Transparent Persistence checks to see if there is
a foreign key between the primary and secondary tables. If so, the foreign key is
displayed as the default reference key. If there is no foreign key, the editor
displays “Choose Column,” and you must set up a reference key.

Chapter 4 Developing Persistence-Capable Classes 63

64

b. To set up a reference key, click <Choose Column> and select a column from the
drop-down menu.

Once you pick a primary column, the choices in the secondary column are limited
to columns of compatible types. If no column is compatible, the field displays
“No Compatible Columns.” If you select a primary column that is incompatible
with your secondary column, the value of the secondary column reverts to
“Choose Column.”

If no pair of columns seems to relate in a logical manner, so there can be no logical
reference key, you may want to reconsider your choice of a secondary table.

You can select the Add Pair key to set up a complex key using more than one pair
of columns.

6. Click OK to save your selections.

7. Click Next in the Database Mapping wizard to bring up the Field Mappings panel

of the wizard (see FIGURE 4-17).

The Field Mappings panel displays all the persistent fields of the class and their
mapping status. You can map a field to a column by selecting the column in the
drop-down menu for that field, or try to map all unmapped fields by selecting
Automap. Automap will make the most logical selections, ignoring any relationship
fields and any fields that have already been mapped. It will not change any existing
mappings.

If a field in the class is not listed, it is probably not persistent. This could be because
it was added after the class was made persistence-capable or because Persistent was
set to False in the Properties window. To make it persistent, click Finish to exit the
wizard, then change the field’s Properties setting to True.

If you want to map a field to a column from another table that is not available, click
Previous to return to the previous wizard page and add a secondary table that
contains the column you want.

Unmap works on whatever field or fields are selected. You can unmap a group of
fields at once by holding down the Shift key or Control key while selecting the fields
you want. If you want to unmap one item, choose <unmapped> in the drop-down
menu for that field.

Programming Persistence ¢ August 2001

@ class CustomerThl - Map to Database x|

Field Mappings [3 of 3]

Use the drop-dowen menu for each field to map it to a databsse column. To map & field
to more than one column, or ta magp a reflstionship field, use the ... buttan. If you want
to map a field to & column in a takble that is not in the drop-dowen list, return to the
previous screen and add a secondary table to the mapping.

Persistent Field Mappings for Class CustomerThl:

Field fapped Columnis) | Automap
cleirLnt CUSTOMER_TBL.ADDR_LMNT ||
acdrLn2 CUSTOMER_TBL.ADDR_LM2 | .| | Unmap
city CUSTOMER _TBL .CITY .. —
crechtlimit CUSTOMER _TBL.CREDIT_LI.. | .|
customertum CUSTOMER _TBL CUSTOME...
dizcountCocle CUSTOMER _TBL DISCOUMT ...
dizcountCodeThlOfDisco... =mapped relationship= |
email CUSTOMER _TBL ErdaIL |
e CUSTOMER _TBL FiX ..
lastSaleDate CUSTOMER _TBL LAST_Sa.. ||
microbdarketsThiOT Zip =mapped relationzhip= |
name CUSTOMER _TBL MAME
orderThiCollectionForCu... |=mapped relationship= |
phone CUSTOMER_TBL PHOME
state CUSTOMER_TBL.STATE
zip CUSTOMER_TBL.ZIP

| = Back | | Mext = | | Finizh | | Cancel | | Help |

FIGURE 4-17 Database Mapping Wizard Field Mappings

a. To map a field to multiple columns, click the ellipsis button (...) for the
appropriate field in the Field Mappings pane to display the Map Field to
Multiple Columns dialog box (see FIGURE 4-18).

In this dialog box, you add columns to the list of mapped columns. Columns are
from the tables you have mapped to this class.You can change the order of the
columns by using Move Up/Move Down.

If you do not see the column you want to map, you might need to add a
secondary table to your mapping, or change the primary table you have selected.
If no columns are listed, you have not yet mapped a primary table, or you have
mapped a table that has no columns.

If you map a field to more than one column, all columns will be updated with the
value of the first column listed. Therefore, if the value of one of the columns is
changed outside of a Transparent Persistence application, the value will only be
read if the change was made to that first column. Writing a value to the database
overwrites any conflicting changes made to any other columns.

You must also make sure that if you map more than one field to any of these
columns, the mappings cannot partially overlap.

Chapter 4 Developing Persistence-Capable Classes 65

66

| Map Field to Multiple Columns - CustomerTbl. creditLimit x|
Mote: Selecting multtiple columns implies that all columns will have the same value as the field.

Ayailable Columns: Columns in Mapping:
Tahle Column | Tahle | Column

CLUSTOMER_TBL ADDR_LN | Add = CUSTOMER_TEL [CREDIT_LIMIT
CUSTOMER_TBL |AD0R_LN2 =
= Remove

CUSTOMER_TBL CITY
CUSTOMER_TBL /CUSTOMER_M...
CUSTOMER_TBL DISCOUNT_CO...
CUSTOMER_TBL EMAIL
CUSTOMER_TBL FAX
CUSTOMER_TBL LAST_SALE_..
CUSTOMER_TBL LAST_SALE T..
CUSTOMER_TBL MAME

il

| QK || Cancel || Help |

FIGURE 4-18 Map Field to Multiple Columns Dialog Box

Consider the following three examples:

= Field A mapped to Columns A and B, Field B mapped to Column B. Since the
mappings only partially overlap, this example will get a validation error at
compilation.

= Field A mapped to Column A, and Field B mapped to Column B. Since there is
no overlap, this mapping is allowed.

« Field A mapped to Columns A and B, Field B mapped to Columns A and B.
Since the mappings completely overlap, this mapping is allowed.

b. Click OK to save the mapping.

Mapping Relationship Fields

When you have foreign keys between database tables, you usually want to preserve
those relationships in Java class references. Mapping Relationship Fields lets you
specify the relationships that correspond to the class reference fields.

c. To Map a Relationship Field, click on the ellipsis button (...) in the Field
Mappings panel next to the drop-down menu of a relationship field to bring up
the Relationship Mapping editor (FIGURE 4-19).

To use the Relationship Mapping editor outside of the Database Mapping wizard,
click on the relationship field in the Explorer and edit its Mapping property.

Programming Persistence ¢ August 2001

CustomerTbl.discountCodeTblOfDizcountCode - Map Relationship Field il

Initial Setup [1 of 2]

Indicate which persistence-capable class this relstionship field points to by selecting 2
related class. If you want this to be a managed relationship (optional), choose the related
field in the related clazs that should poirt back at thiz field. If the related class iz not
mapped yet, select the primary table to which it should be mapped.

This Class: CustomerThi Related Class: DiscountCodeThl
Thig Field: dizcourtCodeThiOfDizca| Relsted Fisld: customer ThiCollection... w
Primary Table: |CUSTOMER_TBL Primary Table: | DISCOUNT_CODE_TEL w

Inclicate how this relationship will be navigated in the database:

@) Link the Mapped Tables Directly (typically 1.1 or 1. relationship).| B

() Link the Mapped Tables Using a Jain Table (typically n.m relationship). IE\{E/IE

| = Back || Next = || Finish || Cancel || Help |

FIGURE 4-19 Relationship Mapping Editor, Initial Setup

In this pane, verify that the Related Class is set. If the related class is not set,
then set it. If the class you want to select is not persistence-capable, you might
need to cancel out of the editor, convert the class to persistence-capable, then
return.

Verify that the Related Field (if any) is also correct, and that the Primary Table
is set for the related class.

Note — If you have a logical related field, you should choose a Primary Table. That
will create a managed relationship.

Select between linking the tables directly, or through a join table.

d. If your relationships are one-to-one or one-to-many, choose to link the tables
directly. Clicking Next opens the Map to Key pane of the Relationship
Mapping editor (see FIGURE 4-20).

This pane shows:

An existing mapping if there is one and there were no changes on the initial
setup page.

The default mapping if there is no existing mapping or the mapping is no
longer valid.

Chapter 4 Developing Persistence-Capable Classes 67

The editor attempts to determine the most logical key column pairs between
the two related classes, based on existing foreign keys. If there are no foreign
keys, you need to create the key column pairs by selecting local and foreign
columns. The columns in each pair are expected to have the same value.

To create a complex key, use the Add Pair button to add additional Key
Column Pairs.

If the Finish button is disabled, you need to choose a key column pair.

zcountCodeTbl. customerTbICollectionF orDizcountCode - Map Relationzhip Field zl

Map to Key [2 of 2]

Map the relationship field to & key, described as & pair or pairs of columnz. The most
comman way to map a relationship field is to map i to & foreign key or the inverse of a
foreign key. If there is no foreign key defined, you might wwant to map to a reference key
or define a custom key.

2. Map to Key

Thiz Class: DizcourtCodeThl Related Class: CustomerThi
Thiz Field: omer ThiCollectionF orDisc Related Field: dizcountCodeThlOfDiscol

Key Column Pairs

Local Column | Foreign Column
DISCOUMT_CODE_TBEL DISCOUNT _CODE |CUSTOMER_TEIL DISCOUNT_CODE

AddPair || Remove | B—a

Review the default key or define your own custom key. & key contains pairs of columns
from the tables mapped to thiz class and the related class. The columns in each pair are
expected to have the same value. To creste a compound key | use the Add Pair button.

| = Back || et = || Finizsh I| Cancel || Help |

FIGURE 4-20 Relationship Mapping Editor, Map to Key

e. If your relationship is many-to-many, link tables through a join table. Clicking
Next opens the Map to Key: Local to Join pane (see FIGURE 4-21).

This pane shows:

= The first class and field in the relationship
» The join table to be used to create the relationship between the fields

68 Programming Persistence * August 2001

Map to Key: Local to Join [2 of 3]

Choose a join table. Then, map the relstionship field to a key, described as a pair or
pairs of columns. The most common way to map a relationship field is to map it to a
foreign key or the inverse of a foreign key. If there is no foreign key defined, you
might wwant to map to a reference key or define a custom key.

This Class: DizcourtCodeThl Join Takle: MAMUFACTURE_.. w

Thiz Field: stomer ThiCollectionForDi:

Key Column Pairs

Local Column | Jaoin Table Column
DISCOUMT_CODE_TEL DISCOUMNT _CO. . |MANUFACTURE_TEILREP

| EddPaiﬂ || Remoave | IE\{E

Reviewy the default key or define your own custom key. & key contains pairs of
columns from the tables mapped to this clazs. The columns in each pair are expected
to have the same value. To create s compound key, use the Add Pair button.

| = Back || Next = || Finish || Cancel || Help |

FIGURE 4-21 Relationship Mapping Editor, Map to Key: Local to Join

» Key column pairs between the field join table and the table to which the related
class is mapped

In this pane, you choose a join table, then map the relationship field to a key. This
is only the relationship between the table “This Class” is mapped to and the join
table. If you don't have a join table, go back to the previous panel and select Link
the Mapped Tables Directly.

Choose a join table that sits between the two tables that your classes are mapped
to. The Editor will attempt to determine the most logical key column pairs
between the join table and the table that “This Class” is mapped to.

If the tables have a foreign key between them, the editor will use the foreign key
as the default key column pair. If there is no foreign key, then you must create a
key by choosing a pair of columns that will allow navigation from the join table to
the table to which “This Class” is mapped. The columns in each pair are expected
to have the same value.

To create a compound key, use Add pair to add additional Key Column Pairs.

If the Next button is disabled, you need to pick a join table or make sure that at
least one key column pair exists that has columns on both sides.

Chapter 4 Developing Persistence-Capable Classes 69

70

f. Click Next to open the Map to Key: Join to Foreign pane.

In this pane, you relate a second table to the join table you chose in the previous
pane.

The editor will attempt to determine the most logical key column pairs between
the join table and the table that the Related Class is mapped to.

If the tables have a foreign key between them, the editor will use the foreign key
as the default key column pair. If there is no foreign key, then you must create a
key by choosing a pair of columns that will allow navigation from the join table to
the table to which the Related Class is mapped. The columns in each pair are
expected to have the same value.

To create a compound key, use Add Pair to add additional key column pairs.

If the Finish button is disabled, you need to choose a valid key column pair.

@ DiscountCodeTbl. customerThICollectionF oiDiscountCode - Map Relationship Field x|

Map to Key: Join to Foreign [3 of 3]

tdap the relationship field to & key, described as a pair or pairs of columnz. The
maost common way to map & relationship field is to map it to a foreign key or the
inverze of a fareign key. If there iz no foreign key defined, you might want to magp
to a reference key or define a custom key.

Join Takble: PRODUCT_TBEL Related Clazs: Customer Thi
Related Field: discountCodeThiOTDis

Key Column Pairs

Join Table Column | Fareign Column
PRODUCT_TBL.AY AIL [SALES_REP_TBL.QUOTA
Add Pair | | Remove | @/@

Reviews the default key or define your own custom key. & key contains pairs of
columns from the join table and columns from tables mapped to this class. The
columns in each pair are expected to have the same value. To creaste & compound
key, uze the Add Pair button.

| = Back || et = || Finizh || Cancel || Help |

FIGURE 4-22 Relationship Mapping Editor, Map to Key: Join to Foreign

g. Click Finish to return to the Field Mappings pane of the Database Mapping
wizard.

8. Click Finish to close the Field Mappings pane and map the Java classes to the

database schema.

Programming Persistence ¢ August 2001

Setting Options and Properties

Selecting the property sheets of nodes outside the wizards provided by transparent
Persistence lets you affect:

= Continuos validation of persistence classes

= Options for Java Generation

= Policies for naming relationship fields

= Properties of persistence-capable classes and fields

Continuous Validation of Persistence Classes

You can open this property sheet by selecting Tools > Options and choosing the
Transparent Persistence node.

Setting the Validate Java Changes property to True causes Transparent Persistence to
validate changes made in persistence-capable class source code to ensure that they
do not cause compilation errors. If a class is modified so that it is no longer valid, a
warning dialog appears that gives you three choices:

= OK. Transparent Persistence keeps the change, and makes other changes to the
file so that it will not cause a compilation error.

= Undo. Discards the change.
= Ignore. Does nothing. If you choose Ignore, you might encounter difficulties when
compiling.

Setting the property to False is the equivalent to selecting Ignore.

[, Options —|Of x|
© [§ Editor Seftings - & v
@ Execution Settings] ﬂ ﬂ M ﬂ
B Form Objects walidste Java Changes” True
HTTP Server
s Intermationalization
ool R

[J3P & Serviets
O [» JSP & Serviets (Advanced)
Java Elements
Logging Messages (Trace Flags)
Open File Server

)
=
B Output Window
i
5
=

?

Frint Settings
Property Sheet
Rl Plugin Options

?

=0 &%

R0 Settings
Registration Settings
Server Execution Options
System Settings
] Tranzparert Persistence
Java Generation Cptions
@ Update Center

@E{} “Yersioning Settings - [PrUmeES

FIGURE 4-23 Validate Java Changes Property

Chapter 4 Developing Persistence-Capable Classes 71

Java Generation Options

Java Generation Options specify the properties that will be used when Java classes
and mapping information are generated in the Java Generation wizard. You can
override these properties in the second panel of the Java Generation wizard, or by
selecting Tools > Options, then choosing Java Generation Options under Transparent
Persistence. The Java Generation Properties are described in TABLE 4-2. The property

72

sheet is shown in FIGURE 4-24.

TABLE 4-2 Java Generation Properties

Property

Description

Make Persistence-
Capable

Implement

Serializable

Java Transient
Modifier

Primitives for FKs

Relationship
Naming

Relationship Type

Generated Java classes are mapped to a database. If False, you get
plain object wrappers for your tables that don't have Transparent
Persistence functionality.

If True, generated Java classes implement

java.io.Serializable . This makes the class serializable, so it
can be written to a stream between different tiers, such as client and
server.

The transient modifier can be added to certain fields if the class

implements java.io.Serializable . This property lets you add

the transient modifier:

¢ Collection Relationship Fields. Single references will be serialized
together with the owning object.

¢ All Relationship Fields. No related objects, whether single
references or collections, will be serialized with the owner.

¢ No Fields. The complete closure of the objects graph will be
serialized.

Whether or not to generate primitive or wrapper fields for each
foreign key (FK) column. If you generate relationships as well as
primitives fields, there may be implications at runtime.

The policy to use to create names for relationship fields. Simple
Cardinality provides two rules based on the cardinality of the
relationship field. Complex Cardinality provides five rules based on
the cardinality of the field and which side of the foreign key it
represents. The individual rules are editable. Click on the ellipsis
button (...) to open the Relationship Naming Property editor.

The type of relationship to generate for each foreign key:

* Managed Relationship Fields are navigable and updatable from
either side of the relationship.

¢ A Single Relationship Field is navigable and updatable only from
the class which corresponds to the table containing the foreign
key.

¢ If you select None, no relationship fields are generated.

Programming Persistence ¢ August 2001

By Opti =10 x|
& E=P zerviet location - m v
© [Editor Settings —[% | 2 | ® | =
¢ Execution Settings Implement Seriglizable || Trus
B Form Chiects - — A)]
g HTTE Server Java Transient Maodifier|| Collection Relstionship
an Internationalization Make Persistence-Capg| True
i F AR Primitives for FKs True
SR & Serviets
o ‘r)) JSP & Serviets (Advanced) Relstionship Maming Complesx Cardinality
W Java Elements Relationship Types Managed g
Logging Messages (Trace Flags)
&4 Open File Server
B output wincow
@ g Print Settings
E Property Sheet
= RIPugin Options
& 52 RM Settings
& Registration Settings
[Server Execution Options
? Systemn Settings
@ Tranzparent Persistence
Java Generation Options -
e Update Center - M

FIGURE 4-24 Java Generation Options

Relationship Naming Policies

When you generate Java classes for tables that have foreign keys, you will create
special relationship fields. Because these fields are mapped to pairs of columns in
the foreign key, the names for the fields are created by combining the names of the
fields. Although it is recommended that you stay with the default settings, you can
customize the policies for naming those fields.

You can use the Relationship Naming editor to edit the individual rules for the
policy.

To Open the Editor
. Select Tools > Options.

. Expand the Transparent Persistence node and then select Java Generation Options.

. Select the editable field for Relationship Naming, and select either Simple
Cardinality or Complex Cardinality from the drop-down menu.

. Click the ellipsis button (...).
This opens the property editor, as shown in FIGURE 4-25.

Chapter 4 Developing Persistence-Capable Classes 73

Note — You can also open the editor from the second panel of the Java Generation
wizard, by clicking on the Relationship Naming Policy field and click the ellipsis
button (...).

B Property Editor Relationship Naming x|

Chooze and Configure the Maming Policy

Simple Cardinality E@@ H

Complex Cardinality

Plarey-tany <relatedClaszMame=CollectionF or ke
One-0ne, Cther Side <relatedClaszMame=Faor=keyColumnila
One-Cne, FK Side =relatedClassMame=0f=key Calumnian
One-kany, FK Side =relatedClassMame=C0f=key Calumnkam
Cne-tany, Cther Side =relatedClassMame=CollectionFor<kesy

Fropetties

| OK || Cancel || Help |

FIGURE 4-25 Relationship Naming Policy Editor

If you select Simple Cardinality, two rules are displayed, as shown in TABLE 4-3.

TABLE 4-3 Simple Cardinality Naming Policy

Rule Description

Many Side This is the default name for a field representing a collection relationship

One Side This is the default name for a field representing a non-collection
relationship.

74 Programming Persistence August 2001

Selecting Complex Cardinality displays five rules, as shown in TABLE 4-4.

TABLE 4-4 Complex Cardinality Naming Policy

Rule Description

One-Many, FK Side This is the default name for a non-collection field in a 1:n
relationship.

One-Many, Other This is the default name for a collection field in a 1:n relationship.
Side

One-One, FK Side This is the default name for a field on the foreign key side of a 1:1
relationship.

One-One, Other Side This is the default name for a field on the non-foreign key side of a
1:1 relationship.

Many to Many This is the default name for a field in a n:m relationship.

To edit a name, click on the right column and type into the field. To get help with the
editing, select the ellipsis button (...) in the field. That opens the Naming Policy Rule
Editor, shown in FIGURE 4-26.

Your edits are saved when you click OK.

@ Property Editor : <One-One, FK Side> x|

Available Tags:

|<thiSCIassName> i | In=ert Tag

Rule:

|<rela‘tedCIassName=0f<keyCOIumnName> | Default

| OK || Cancel || Help |

FIGURE 4-26 Naming Policy Rule Editor
To Edit a Naming Policy with the Naming Policy Rule Editor, click in the Rule

textbox, then edit the field by inserting a tag from the Available Tags drop-down
menu and clicking Insert Tag, or by entering in the text manually.

Chapter 4 Developing Persistence-Capable Classes 75

76

The tags offered by the drop-down menu are described in TABLE 4-5.

TABLE 45 Relationship Naming Tags

Tag Description

<thisClassName> Uses the name of the class to which this field belongs.

<relatedClassName> Uses the name of the “other” class, the class this relationship points
to.

<keyColumnName> Uses the name of the foreign key column or columns.
<thisTableName> Uses the name of the table that this class maps to.

<relatedTableName> Uses the name of the table that the related class is mapped to.

Any text typed outside a set of brackets (<>) is treated as a string.

The Editor validates the string before closing. It will warn you if the string is not
valid.

Persistence-Capable Class Properties

Persistence-capable classes and persistent fields have several unique properties that
can be specified outside of the Database Mapping wizard. TABLE 4-6 describes the
properties unique to persistence-capable classes.

TABLE 4-6 Properties for Persistence-Capable Classes

Property Description

Key Class An associated class that includes a key field that uniquely identifies a
persistence-capable instance. If you use meet-in-the-middle mapping,
you must set the Key Class manually. See “Key Fields and Key
Classes” on page 81 for more information on setting the Key Class.

Mapped Primary The primary table you select for a persistence-capable class should be

Table the table in the schema that most closely matches the class. You must
specify a primary table in order to map a persistence-capable class.
See “Mapping Existing Classes to a Schema” on page 59 for
information on how to do this.

Mapped Schema The schema containing the tables to which you are mapping the
persistence-capable class. The primary table and any secondary tables
must be from this schema. This setting cannot be made until you
capture the schema as described in “Capturing a Schema” on page 50.

Programming Persistence ¢ August 2001

TABLE 4-6 Properties for Persistence-Capable Classes (Continued)

Property Description

Mapped Secondary Secondary tables let you to map columns that are not part of your

Table(s) primary table to your class fields. For example, you might add a
DEPARTMENTable as a secondary table in order to include a
department name in your Employee class. You can add multiple
secondary tables, but no secondary table is required. This property is
only enabled when Mapped Primary Table is set. See page 63 for
more information on adding a secondary table.

Persistence- Whether the class is persistence-capable or not. This property is only

Capable visible when set to true. To convert a class to persistence-capable, see

“Making a Class Persistence-Capable” on page 59. To revert a class

from perstence-capable, see “Reverting a Class From Persistence-
Capable” on page 60.

FIGURE 4-27 shows the properties for a persistence-capable class.

| Properties of class D[;

~=lalx|

Extends

Implements

Serializable

Key Clazs

db_emp OfficeThi Oid

happed Primary Table || OFFICE_TBL
Mapped Schema emptest
Mapped Secondary Tal

Moddifiers public

Mame OrfficeThl
Perziztence-Capable True

Fropetties | Field Mapping

FIGURE 4-27 Persistence-Capable Class Properties

You can unmap a class by choosing <unmapped> from the drop-down menu for the

Mapped Primary Table property. When you unmap a currently mapped class, a

warning appears if there are field mappings or secondary tables. Click OK if you are

sure that you want to unmap the class. Otherwise, click Cancel to cancel the
mapping status change and leave the class mapped.

Click on the Field Mapping tab at the bottom of the Properties window to see the

field mapping properties for a persistence-capable class (FIGURE 4-28).

Chapter 4 Developing Persistence-Capable Classes

Properties of class CustomerThl 3 [Pr: = |EI|5|

addrLnl CUSTOMER_TBL .ADDR_LM1 -
addrLn2 CUSTOMER_TBL ADDR_LNZ

city CUSTOMER_TBL .CITY

creditlimit CUSTOMER_TBL .CREDIT_LIMIT
discountCocde CUSTOMER_TBL DISCOUNT _COD

dizcountCodeThiOfDiscountCode || =mapped relationships=

email CUSTOMER_TBL EMAIL

fax CUSTOMER_TBL FaX
lastSaleDate CUSTOMER_TBL LAST_SALE D
microbarketsThloT Zip =mapped relationzhip=

name CUSTOMER_TBL MAME

order ThiCollectionFor Customeridum | =mapped relationships=

phone CUSTOMER_TEL PHOME
state CUSTOMER_TEL STATE
it CLHSTOMER THI FIP i

- Field Mapping

FIGURE 4-28 Field Mapping Properties

Persistent Field Properties

To view the properties of a field, right-click on a field node. A Persistent Field
property sheet is shown in FIGURE 4-29.

Properties of discoun!_:' I =]]
Delete Action Maone
Fetch Group Inclependent 2
Initial % alue
Lovwver Bound 1
apping =mapped relationzhip=
Modifiers private transient
Mame discourtCode ThiOfDis
Persistent True
Read Only Falze
Related Class db_emp DiscountCode
Relsted Field cuzstomer ThiCollectiond
Type DizcountCodeThl
Upper Bound 1
Propeties

FIGURE 4-29 Persistent Field Properties

78 Programming Persistence * August 2001

You can map a persistent field by choosing a column from the field’s drop-down
menu in the Mapping property. To map additional columns to that field, click the
ellipsis button (...) to display the Map Field to Multiple Columns dialog box. See
FIGURE 4-18 for an explanation of the dialog box.

To map a relationship field, selecting the field and clicking the ellipsis button (...) to
display the Relationship Mapping editor. See “Mapping Relationship Fields” on
page 66 for an explanation of the dialog box.

You can unmap a field by choosing <unmapped> or <unmapped relationship>
from the drop-down menu.

TABLE 4-7 describes the properties unique to persistent fields.

TABLE 4-7

Properties for Persistent Fields

Property

Description

Delete Action
(Relationship fields
only)

Related Class
(Relationship fields
only)

Related Field
(Relationship fields
only)

Fetch Group

Key Field

Set to Cascade or None. Cascade indicates that when this field is
deleted, all related fields are deleted with it. None indicates that
only the object represented by this field is deleted.

The related class is the class the relationship field points to. For a
collection, the related class identifies the type of objects that make
up its elements. If a field is not a collection, the property will be
disabled.

The related fieldcan be set to a relationship field in the related class.
Setting this property locks the relationship fields into a managed
relationship.

Specify Level , Independent , Default , or None. There are two
types of fetch groups, hierarchical and independent. A setting of
Default for a field means that field will be fetched along with all
other fields that have a setting of Default . When a field in the
Level 1 group is fetched, all fields in group Level 1 and the Default
group are fetched as well.

Related fields are not allowed to be in any fetch group besides
Default

Hierarchical groups include the Default and Level settings, and
build on one another (for example, Level 2 includes Level 1 as well).
Independent groups include the Default
Independent group only (Independent
Independent 1).

If the Fetch Group property is disabled, the field is not persistent,
not mapped, or is a key field and will always be fetched.

group and the specified
2 does not include

If True , the field should be mapped to a column in the primary key
of the persistence-capable class’ primary table.

Chapter 4 Developing Persistence-Capable Classes

80

TABLE 4-7 Properties for Persistent Fields (Continued)

Property

Description

Lower Bound
(Relationship fields
only)

Mapping
Persistent
Read Only

Upper Bound
(Relationship fields
only)

The minimum number of objects a relationship field can hold. The
default of 0 means that the field can be null. On the many side of a
relationship, this value can be set to any integer value not greater
than the Upper Bound. On the one side of a relationship, it can be
set to 1 or 0.

Shows the mapping status for the field.
If True , this field’s value will be stored in the database.
If True , this field’s value is not updatable to the database.

The maximum number of objects a relationship field can hold. On

the many side of a relationship, this can be set to any integer value,
with a default of * (java.lang.integer. MAX_VALUE)- On the one
side of a relationship, the Upper Bound is 1 and cannot be changed.

The field icons in the Explorer change to indicate whether a class or field is
persistence-capable. Persistence-capable classes and fields are marked with a
triangle, as shown in FIGURE 4-30 and FIGURE 4-31.

Not Persistence-Capable

" devPackage
o Departrment
& g class Departrment

. o @5 Employes
Persistence-Capable e ﬁ* Class Employes
FIGURE 4-30 Class Icons
ff Ficlds

Non-persistent & departrent
Persistent B empid
Persistent Relationship Ed employes

FIGURE 4-31 Field Icons

Programming Persistence ¢ August 2001

Key Fields and Key Classes

A Key Class is a class associated with each persistence-capable class that contains
unique identifier information for each Transparent Persistence instance. The Java
generator creates Key Classes and sets Key Fields automatically. However, if you use
meet-in-the-middle mapping, you must set these properties yourself and write the
key class.

If you generate Key Classes and Key Fields, then change the fields, you might need
to update the oid class. If you create a new class using the Transparent Persistence
template, you get a skeleton oid class that you can update.

A Key Class can be either of the following types:
= A static inner class named Oid

= A separate class with suffix Key

In FIGURE 4-27, the Key Class is set to db_emp.OfficeThl.Oid . This is the Oid class
set by the Java generator automatically.

To Set up a Key Class and Key Fields

. Set the Key Class property on the class node. Make sure the Key Class name is a
valid class name.

. Create the Key Class and include all the Key Fields.

Each field in the persistence-capable class marked as a primary key must be declared
in the Key Class. Each field of the Key Class must have the same name and type as
the corresponding field in the persistence-capable class. All fields in the key class
must be declared public. The key class must implement java.io.Serializable ,
and override the equals and hashCode methods.

. Set the Key Field property of each field in the persistence-capable class to True for
all fields mapped to primary keys. All fields not in the persistence-capable class
should be set to False.

Following is an example of an inner Oid Class defined for the Employee class.

public static class Oid {

public long empid;
public Oid() {
}

Chapter 4 Developing Persistence-Capable Classes 81

public boolean equals(java.lang.Object obj) {
if(obj==null ||
Ithis.getClass().equals(obj.getClass())) return(false);
Oid 0=(0Oid) obj;
if(this.empid!=0.empid) return(false);
return(true);

}

public int hashCode() {
int hashCode=0;
hashCode += empid;
return(hashCode);

This next example is a sample Key class defined for the Employees class.

public static class EmployeeKey implements java.io.Serializable{

public long empid;
public EmployeeKey() {
}

public boolean equals(java.lang.Object obj) {
if(obj==null ||
Ithis.getClass().equals(obj.getClass())) return(false);
EmployeeKey = (EmployeeKey) obj;
if(this.empid!=0.empid) return(false);
return(true);

}

public int hashCode() {
int hashCode=0;
hashCode += empid;
return(hashCode);

82 Programming Persistence ¢ August 2001

Running an Application

After you compile your application in Forte for Java, you can either add your
packages to a .jar file or run the application in Forte for Java.

Creating a JAR File

The IDE's JAR packager enables you to create a single JAR (Java ARchive) file from
a hierarchy of files, which you can then use in an application outside the IDE. For
applications to be able to use Transparent Persistence, both persistence-capable
classes and classes that access persistent fields of persistence-capable classes
(persistence-aware classes) must be archived by the IDE's JAR packaging tools (for
example, JAR, WAR, or EAR packager) to provide the enhancement of the classfiles'
byte-code.

When you create a JAR file for persistent classes, you must also take the following
into consideration:

= Do not add the Java files to the JAR file, as this can result in unexpected javac
errors in future compilations. This can be achieved by having the jarContent
node’s File Filter property set to all files except *.java and *.jar . Be careful not
to set it to classes only, which would exclude the mapping files (*.mapping),
which are used by the Transparent Persistence runtime to identify persistence-
capable classes.

= Make sure that your schema file (*.dbschema) is included. If the schema file is in
the specified package, it will be included automatically. Otherwise, you need to
specify the schema files' location in the CLASSPATH.

= When you are using a persistence-aware application outside of the IDE, make
sure the following JAR files are included in your CLASSPATH:
« .../modules/ext/persistence-rt.jar
« .../modules/dbschema.jar
« ..Jlib/ext/xerces.jar
= <package>jar (JAR file with packaged persistence classes)
« The JDBCdriver

v To Create a JAR File

1. Open a JAR Packager template using the New From Template wizard.
2. Specify the contents of the JAR file.
3. Compile the JAR file.

Chapter 4 Developing Persistence-Capable Classes 83

84

Note — If you use the JAR Packager to create a .jar file for use outside of Forte for
Java, you can experience compilation problems unless you accept the default filter of
<all files except *java and *.jar>

For more complete instructions on creating a JAR file, see the Core IDE help topic,
“Using the JAR Packager.”

Running an Application in Forte for Java

Select the class that contains your application’s main() method and select
Persistence Executor as the value of the Executor property in the Execution tab.

This will invoke the Transparent Persistence enhancer upon class loading, and marks
the generated class as implementing the
com.sun.fortedj.persistence.PersistenceCapable interface. This allows
the persistence-capable classes to interact with the runtime environment.

The com.sun.forte4j.persistence.PersistenceCapable interface declares a
set of methods that allows users of persistence-capable classes (application
developers) to check and reset the status of instances of these classes.

Neither the developer of the classes nor the application developer who uses them
needs to be aware of what is in the generated byte code. The class developer can
concentrate on developing an accurate model of the persistent data.

If you don't intend to use the Persistence Executor, for instance, to execute the
persistence-capable classes outside of the Forte for Java IDE, you have to archive
your persistence-capable and persistence-aware classes using the IDE's jar packager.
This ensures that the enhancement is applied to the classes while they get archived.
This step requires that the Transparent Persistence module is enabled in Forte for
Java.

Note — When using persistence-capable classes within a web module for JSP/Servlet
applications, package the persistence-capable classes as a JAR file and put the JAR
into the web-module's web-inf/lib directory. Do not put the persistence-capable
classes directly into the web module's web-inf/classes directory unless you
intend to create a WAR file to deploy the web application. The Transparent
Persistence classfile enhancement only takes place with the IDE's archiving tools (for
examples, a JAR or WAR packager) or if the Persistence Executor is used.

Programming Persistence ¢ August 2001

Supported Data Types

Transparent Persistence supports a set of JDBC 1.0 SQL data types that are used in

mapping Java data fields to SQL types. TABLE 4-8 lists these data types and notes
whether each type is supported.

TABLE 4-8 Supported Data Types

JDBC SQL Data Type

BIGINT
BIT
CHAR
DATE
DECIMAL
DOUBLE
FLOAT
INTEGER
LONGVARCHAR
NUMERIC
REAL
SMALLINT

TABLE 4-9 lists the nullability of supported data types.

TABLE 49 Data Type Conversions in Mappings

Java Type JDBC Type Nullability
boolean BIT NON NULL
java.lang.Boolean BIT NULL

byte TINYINT NON NULL
java.lang.Byte TINYINT NULL

double FLOAT NON NULL
java.lang.Double FLOAT NULL

double DOUBLE NON NULL

Chapter 4 Developing Persistence-Capable Classes

85

86

TABLE 49 Data Type Conversions in Mappings (Continued)

Java Type JDBC Type Nullability
java.lang.Double DOUBLE NULL

float REAL NON NULL
java.lang.Float REAL NULL

int INTEGER NON NULL
java.lang.Integer INTEGER NULL

long BIGINT NON NULL
java.lang.Long BIGINT NULL

long

java.lang.Long

long

java.lang.Long

short

java.lang.Short
java.math.BigDecimal
java.math.BigDecimal
java.math.BigDecimal
java.math.BigDecimal
java.lang.String
java.lang.String

java.lang.String

DECIMAL (scale==0) NON NULL

DECIMAL (scale==0)

NULL

NUMERIC (scale==0) NON NULL

NUMERIC (scale==0)

SMALLINT
SMALLINT
DECIMAL (scale!=0)
DECIMAL (scale!=0)
NUMERIC
NUMERIC

CHAR
CHAR
VARCHAR

NULL
NON NULL
NULL
NON NULL
NULL
NULL
NON NULL
NON NULL
NULL
NON NULL

Note — Transparent Persistence does not support BLOBs as mapped column types.
To fetch or update BLOBs, you need to use separate JDBC transactions.

Programming Persistence ¢ August 2001

CHAPTER 5

Developing Persistence-Aware
Applications

This chapter describes the Transparent Persistence runtime environment and
illustrates how to use it to perform persistence operations. It also addresses
Transparent Persistence programming issues.

The Transparent Persistence API controls interaction with the database. Applications
use the API to establish a connection to a specific database and create transactions.
Insert and delete must occur within the context of a transaction.

Overview

The Transparent Persistence runtime environment gives Java developers a consistent
interface to persistent data, by translating instances of persistence-capable classes
and methods of the Persistence Manager into instructions for the particular database
that the application is using.

You can view the runtime environment with several Java interfaces. These interfaces
provide a set of persistent data methods that provide the functionality for translating
method calls into instructions to a specific database.

After persistence-capable classes are mapped to a schema, you can access persistent
data by calling methods of the persistence-capable classes and the persistence-aware
runtime support classes. You use Forte for Java’s regular editing, compiling, test run,
and deploying facilities to write code that uses persistence-capable classes.

The Transparent Persistence implementation of the runtime classes is defined by the
com.sun.forte4j.persistence interfaces. Transparent Persistence includes a
file called persistence-rt.jar that has implementations of these interfaces.

87

Transparent Persistence applications perform the standard steps for database
interaction with Java method calls, without using a query language or writing Java
code specific to a given database. The standard steps include: connecting to the
database; starting a transaction; selecting, inserting, updating, or deleting persistent
data; then committing (or rolling back) the transaction.

When an application loads data from the database, it uses instances of the
persistence-capable classes that model the data. If the application changes the value
of a persistent field, the Transparent Persistence runtime environment tracks that
change and saves the new value into the database when the application commits its
transaction. When an application needs to get data, the developer calls methods of a
Persistence Manager (which returns instances of persistence-capable classes). When
it needs to change data, it calls methods of the persistence-capable instances, and so
on.

The sections that follow describe the ways in which applications can create and use
instances of persistence-capable classes.

88

Developing Persistence-Aware Classes

Write your application in the Java programming language. Use whatever existing
classes you need and create your own Transparent Persistence objects and classes
just as you would use any other Java object or class. The only difference between
these objects and classes is that the persistent Transparent Persistence objects save
their data in the database. Thus, you do not need to know whether data is from the
database, local variables, or other sources.

Persistence-Aware Logic

FIGURE 5-1 shows a typical architecture for using Transparent Persistence in a real-
world application. The application conforms to a standard J2EE architecture and
features a JSP or servlet component that manages some interaction with end users in
remote locations. The JSP or servlet processes end-user input, determines what
action is required, and then calls on a middle-tier service to carry out that action. If
the end user wants to see an employee record, the JSP or servlet should be able to
call on a middle-tier service that will return the employee records, without needing
to know how that record is obtained. In other words, the JSP or servlet should not
contain persistence-aware logic.

Programming Persistence ¢ August 2001

Persistence Manager Factory

JSP/Servlet
Based on method calls, the

Persistence Manager
generates JDBC calls and

I EnseETET datastore-specific query

language.
Persistence- @N
Aware Class A/'/'

This class creates a
Persistence Manager; calls
methods of persistence-

capable classes, Persistence -
Manager, Query, and

Persistence Manager

Transaction objects; returns a Data Store
persistent instance to the

S Instances of Persistence-Capable
application component

Classes
FIGURE 5-1 Moving Persistence-Aware Logic to Its Own Class
To achieve this, the persistence-aware logic has been moved to a separate class. The

JSP or servlet can request an employee record by calling a method of the persistence-
aware class using an approach like the following:

Employee requestedEmployee =
PersistentAwarelnstance.getEmployeeData("'485843");

The persistent-aware instance can then perform all the operations necessary to
obtain an Employee instance for the employee record that was specified and return
it to the JSP/servlet. The persistent instance remains associated with the Persistence
Manager and its transaction, even after the persistence-aware class has passed it to
the JSP/Servlet. This means that the JSP/servlet can update field values, and the
Persistence Manager will automatically generate a database update operation, and
manage it in accordance with current transaction and concurrency strategy.

If the end user supplies data for a new employee record, the JSP/servlet can create a
new instance and pass it to the persistence-aware class:

Employee newEmployee = new Employee(<data>);
PersistentAwarelnstance.addEmployeeData(newEmployee);

Chapter 5 Developing Persistence-Aware Applications 89

90

The persistent-aware class can handle it like this:

PersistenceManager.makePersistent(newEmployee);

In the architecture shown in FIGURE 5-1, a JSP/servlet handles multiple end users
concurrently. It maintains a separate session for each user, and a session may include
a sequence of HTTP requests exchanged between the end user’s web browser and
the JSP/servlet. When the JSP/servlet calls on the persistence-aware instance for
database services, the persistence-aware instance must be able to track which
JSP/servlet sessions initiated the request, and keep all requests from a single session
isolated from those of other sessions.

A Persistence Manager generally manages a set of TP instances created or fetched in
multiple data store operations, so it is capable of managing persistent instances
generated by a conversational session.

Development Steps

An application developer using Transparent Persistence classes uses methods of
Transparent Persistence classes and runtime environment objects to work with data.
This section summarizes the basic sequence of method calls.

1. Create or obtain a Persistence Manager Factory.

The Persistence Manager Factory is a configurable component, with properties
that hold database connection information. You might already have a Persistence
Manager Factory that has been configured in your environment and is accessible
using JNDI lookup. See “Creating a Persistence Manager Factory” on page 92 for
more information.

2. (Optional) Create a Connection Factory.

This is necessary only if you want to implement connection pooling. See “Pooled
Connections” on page 97 for more information on this approach.

3. Create a Persistence Manager.

Each session will generally create its own Persistence Manager. Unless the
application overrides it, the Persistence Manager will use the connection defined
by the properties of the Persistence Manager Factory. See “Creating a Persistence
Manager” on page 97 for more information.

Programming Persistence ¢ August 2001

8.

Access the transaction from the Persistence Manager by calling
currentTransaction()

In most cases, the application begins a transaction. The transaction object is
obtained from the Persistence Manager, and applies to instances managed by the
Persistence Manager. See “Transactions” on page 101 for more information.

Use the Query interface to access instances of persistence-capable classes from the
database.

Modify the instances by calling their methods. If you want to insert or delete
instances, use the appropriate methods on the PersistenceManager interface.

As the application queries the database, modifies records, and adds new records,
it will create a set of persistent instances that represent the data it needs. The
Persistence Manager manages all the database interactions for this set of
instances. In other words, the set of persistent instances managed by one
Persistence Manager will be the session’s view of the data.

. Commit or abort the transaction.

Commit the transaction to save your updates to the database; abort (roll back) the
transaction to leave the database as it was before your transaction began.

When the application commits the transaction, Transparent Persistence performs
all database interactions indicated by the current status of each persistent
instance. If there are instances that were made persistent during the transaction,
Transparent Persistence will generate inserts; if there are instances that were
deleted during the transaction, it will generate deletes; if there are instances that
were updated during the transaction, it will generate updates.

. Perform additional transactions.

You can reuse the same Persistence Manager instance for additional transaction,
or you can use a different Persistence Manager instance.

Close the Persistence Manager and exit the application.

FIGURE 5-2 presents these steps in a flowchart.

Chapter 5 Developing Persistence-Aware Applications 91

92

1. Construct or obtain
a Persistence Manager
Factory.

|
2. (Optional) Create a
Connection Factory.

|
3. Construct a
Persistence Manager.

I
4. Acquire a Transaction
from the Persistence
Manager.

1
| 5. Start the transaction.

[¥

Database 6. Perform queries and
objects execute the application
business logic.

Data Store

Updated 7. Commit or roll back
database the transaction.
objects

8. Make
another
transaction?

9. Close the Persistence
Manager and exit the
application.

FIGURE 5-2 Transparent Persistence Application Logic

Creating a Persistence Manager Factory

The basis for a persistence-aware application is the Persistence Manager Factory. The
Persistence Manager Factory is implemented as a class that developers can
instantiate directly. Other objects are obtained by calling the appropriate methods of
the Persistence Manager Factory or the Persistence Manager. In many cases, a

Programming Persistence ¢ August 2001

developer starts with a Persistence Manager Factory that has already been
configured in the environment and can be located through JNDI calls. In that case,
the developer can skip to “Creating a Persistence Manager” on page 97.

The standard way for the application to acquire a connection is through the
Persistence Manager Factory. The Persistence Manager Factory’s configurable
properties include the values used to connect to a database. The application
instantiates and configures the Persistence Manager Factory, then creates a
Persistence Manager that will use the connection information configured into the
Persistence Manager Factory.

Create a persistence-aware class by selecting New > Classes > Class. Give the class a

name and click Finish.

TABLE 5-1 discusses each method in detail.

TABLE 5-1

PersistenceManagerFactory

Methods

Method

Description

setOptimistic
getOptimistic
setRetainValues
getRetainValues

setlgnoreCache
getlgnoreCache

setNontransactionalRead
getNontransactionalRead

setConnectionFactory
getConnectionFactory

setConnectionMinPool
getConnectionMinPool

setConnectionMaxPool
getConnectionMaxPool

setConnectionFactoryName
getConnectionFactoryName

setConnectionTransactionlsolation
getConnectionTransactionlsolation

The transaction mode that specifies concurrency control. The
default is true.

The transaction mode that specifies the treatment of persistent
instances after commit. The default is true.

The query mode that specifies whether cached instances are
considered when evaluating the filter expression. This is always
true. Changing to "false’ throws
JDOUnsupportedOptionException

The Persistence Manager mode that allows nontransactional
instances to read outside of a transaction. The default is true.

The connection factory from which database connections are
obtained.

Minimum number of connections in the connection pool

Maximum number of connections in the connection pool

The name of the Connection Factory from which database
connections are obtained. This name is looked up with JNDI to
locate the Connection Factory.

Chooses a nondefault isolation level.

The level argument is any of the
java.sgl.Connection. TRANSACTION_*
by the underlying database.

options supported

Chapter 5 Developing Persistence-Aware Applications

93

TABLES-1 PersistenceManagerFactory Methods (Continued)

Method Description

getPersistenceManager Returns a Persistence Manager instance with the specified
properties. The default values for option settings are set to the
value specified in the Persistence Manager Factory before
returning the instance.
After the first use of getPersistenceManager, none of the set
methods will succeed.

getProperties Transparent Persistence stores certain nonoperational properties
and make those properties available to the application using a
Properties instance. This method retrieves the Properties
instance. Each key and value is a String. The keys required for
this implementation are:

VendorName: The name of the vendor.
VersionNumber: The version number string.

Any Persistence Manager Factory property settings become the
default settings for Persistence Managers created by the factory
and, after a Persistence Manager is created, the Persistence
Manager Factory can no longer be changed.

QueryTimeout This method avoids deadlocks in the database by waiting a

UpdateTimeout specified number of seconds for the completion of the query or
update associated with this instance of the Transaction before
timing out.

The value is stored in seconds; zero means unlimited. It is the
default for all Transactions to the underlining database.
Persistence Manager Factory settings cannot be changed after
creation of the first Persistence Manager. Transaction timeout
can be changed as needed.

PointBase does not currently support

PreparedStatement.setQueryTimeout() . Add
,locks.timeout=value to the URL or pointbase.ini file to
use any other than default value (current default value is set to
60 seconds). However, be aware that locks.timeout=0 sets

the timeout to 0 seconds, rather than the

setQueryTimeout(0) behavior of setting it to unlimited.
Locks.timout is set on the server side, not the client side. This
means the value will hold for all connections.

Connecting to Databases

Connections are opened and managed by the Transparent Persistence runtime
environment. The Persistence Manager Factory is a configurable component, and its
configurable properties include the values used to connect to a database. The
resulting Persistence Manager uses the connection information that was configured

94 Programming Persistence * August 2001

into the Persistence Manager Factory, such as the database’s URL and a valid user
name and password for the database. When the application first performs an
operation that requires a connection, such as submitting a query for execution, the
Persistence Manager opens a connection.

There are four connection management scenarios:

= Simple connection

= Pooled connections

» Distributed transactions
= Managed connections

In a non managed environment (simple and pooled connections), transaction
completion is handled by the Connection that is managed internally by the
Transaction. In the managed environment, transaction completion is handled by the
XAResource associated with the Connection. In both cases, the Persistence Manager
implementation is responsible for setting up the appropriate interface to the
Connection infrastructure.

Connection Factory

For implementations that layer on top of standard Connector implementations, the
configuration typically supports all of the associated Connection Factory properties.
You can configure the Connection Factory directly or through the Persistence
Manager Factory.

TABLE 5-2 discusses each method in detail.

TABLE 5-2 ConnectionFactory Methods

Method Description

URL URL for the data source.

UserName Name of the user establishing the connection.

Password Password for the user.

DriverName Driver name for the connection.

ServerName Name of the server for the data source.

PortNumber Port number for establishing connection to the data source.
MaxPool Maximum number of connections in the connection pool.
MinPool Minimum number of connections in the connection pool.
MsWait Number of milliseconds to wait for an available connection

from the connection pool before throwing an exception.

Chapter 5 Developing Persistence-Aware Applications 95

TABLE5-2 ConnectionFactory Methods (Continued)

Method Description
LogWriter PrintWriter to which messages should be sent.
LoginTimeout Number of seconds to wait for a new connection to be

established to the data source.

Transactionlsolation Transaction isolation level for all connections.

Simple Connections

In the simplest case, the Persistence Manager directly connects to the database and
manages transactional data. In this case, there is no reason to expose any Connection
properties other than those needed to identify the user and the data source. During
transaction processing, the Connection is used to satisfy data read, write, and
transaction completion requests from the Persistence Manager.

If the application does not require pooled connections, only the following properties
of the PersistenceManagerFactory need to be configured:

= ConnectionUserName -Name of the user establishing the connection
= ConnectionPassword -Password for the user

= ConnectionURL -URL for the data source

= ConnectionDriverName -Driver name for the connection

These will become the default values for any Persistence Manager instances created
by that Persistence Manager Factory.

For example, the constructor might initialize a Persistence Manager Factory as
follows:

public DataSource() {

PersistenceManagerFactory pmf = new

PersistenceManagerFactorylmpl();
pmf.setConnectionUserName("scott");
pmf.setConnectionPassword("tiger");

pmf.setConnectionDriverName("oracle.jdbc.driver.OracleDriver");
pmf.setConnectionURL("jdbc:oracle:thin:@DIESEL:1521:0RCL");
setOptimistic(false); // It is true by default.

96 Programming Persistence * August 2001

Pooled Connections

In a slightly more complex situation, the Persistence Manager Factory creates
multiple Persistence Manager instances that use connection pooling to reduce
resource consumption. The Persistence Managers are used in single database
transactions. In this case, a pooling Connection Factory is a separate component
used by the Persistence Manager instances. The Persistence Manager Factory will
include a reference to the connection pooling component, either as a JNDI name or
as an object reference. The connection pooling component is configured separately,
and the Persistence Manager Factory needs to be configured to use it.

If any other connection properties are required, then you must configure
setConnectionMinPool and setConnectionMaxPool in the Persistence
Manager Factory.

During the execution of a session’s business method, running a long-duration
optimistic transaction, a connection might be required to fetch data from the
database. The Persistence Manager requests a connection from the connection pool
to satisfy the request. Upon completion of the request, the connection is returned to
the pool.

In a database transaction, Transaction keeps the acquired connection for the
duration of the session. After completion of the session (either commit or rollback),
the connection is returned to the pool and reused for a subsequent transaction.

Creating a Persistence Manager

The Persistence Manager is the starting point for the application’s interaction with
the Transparent Persistence runtime environment. It encapsulates information about
a specific database, opens a connection, and manages queries and transactions. A
Persistence Manager Factory must be configured before you can declare a
Persistence Manager.

In a persistence-aware class, declare a Persistence Manager and create a Persistence
Manager instance:

private PersistenceManager pm;
this.pm = pmf.getPersistenceManager();

Chapter 5 Developing Persistence-Aware Applications 97

Each Persistence Manager supports one transaction at a time, and this transaction
applies to all of the transactional instances of persistence-capable classes that it
creates. To work with the transaction, the application obtains a transaction object
from the Persistence Manager:

Transaction myTx = myPersistenceManager.currentTransaction();

In most cases, the application will be running local transactions from a single
database. The application starts and completes these transactions by calling
Transaction object methods:

myTx.begin();
myTx.commit(); // or myTx.rollback();

The Persistence Manager normally manages all interactions with the database,
including refreshing cached copies of persistent data, and the application only needs
to identify transaction boundaries.

TABLE 5-3 discusses each method in detail.

TABLES5-3 PersistenceManager Methods

Method

Description

isClosed

close

currentTransaction

newQuery

Returns false upon construction of the Persistence Manager instance.
Returns true only after the close method completes successfully.

Verifies that the Transaction is not active. Otherwise, it throws an
exception.

Releases all resources (e.g., Transaction).

After the close method completes, all Persistence Manager methods
except isClosed() throw an exception.

Returns the Transaction instance associated with the Persistence
Manager. If the Transaction instance returned is not active, it cannot
be used for transaction completion, but it can be used to set flags.

The Persistence Manager instance is a factory for query instances,
and queries are executed in the context of the Persistence Manager
instance. The actual query execution might be performed by the
Persistence Manager or might be delegated by the Persistence
Manager to its database.

98 Programming

Persistence ¢ August 2001

TABLE 5-3 PersistenceManager

Methods (Continued)

Method

Description

getExtent

getObjectByld

getObjectld

getTransactionallnstance

Returns a read-only Collection that contains all of the instances in the
named class, and if the subclasses flag is true, all of the instances of
the named class and its subclasses. The primary use for the collection
returned as a result of this method is as a parameter to a Query
instance. For this usage, the collection typically will not be
instantiated in the JVM except if its elements are iterated. It is
typically only used to identify the prospective database instances.

You cannot call PersistenceManager.getExtent with the
argument subclasses=true . The collection returned by
PersistenceManager.getExtent may only be used within
queries. The method iterator is the only supported method for an
extent collection. Other collection methods—such as size and
add—will throw either an UnsupportedOperationException ora
JDOUnsupportedOptionException

Returns a persistent instance that has the specified object identity in
the cache. If no instance is active in the cache, it creates a hollow
instance, populates its primary key fields with values from the
Objectld, and returns it.

If the instance does not exist in the database, this method will not
fail. But a subsequent access of the fields of the instance will throw
an exception. Further, if a relationship is established to this instance,
then the transaction in which the association was made will fail.

Returns the object identity of the specified instance. The identity is
guaranteed to be unique only in the context of the Persistence
Manager that created the identity, and only for the first two types of
Identity—those that are managed by the application and those that
are managed by the database (not supported for this release).

Within a Persistence Manager instance, the Objectld returned will be
unique among all Instances associated with the Persistence Manager
regardless of the type of Objectld.

If the application makes a change to the Objectld returned by this
method, there is no effect on the instance from which the Objectld
was obtained. That is, the returned Objectld is a copy (clone) of local
instance.

Returns a persistent instance valid for this instance of the Persistence
Manager. Use this method when acquiring an instance for a
Persistence Manager when the current instance is associated with a
different Persistence Manager.
aPersistenceManager.getTransactionallnstance(pc) is a
shorthand for

aPersistenceManager.getObjectByld(pc.getStateManager
().getPersistenceManager().getObjectld(pc))

Chapter 5 Developing Persistence-Aware Applications

99

TABLE 5-3 PersistenceManager

Methods (Continued)

Method

Description

makePersistent

deletePersistent

getPersistenceManagerFactory

setUserObject / getUserObject

getProperties

getObjectldClass

Inserts a persistent instance into the database. It must be called in the
context of an active transaction. makePersistent will assign an object
identity to the instance and transition it to persistent-new. During
flush (using commit, or a user Query in a pessimistic transaction) of
this instance, any transient instance reachable from this instance
using persistent fields of this instance will behave as if the
makePersistent method were executed on it, as well.

This method throws JDOUserException if another object with the
same ObjectIdentity is already associated with this Persistence
Manager.

This method has no effect on persistent instances managed by this
Persistence Manager. It throws a JDOUserException if the instance is
already managed by a different Persistence Manager.

Deletes a persistent instance(s) from the database. It must be called in
the context of an active transaction. The representation in the
database will be deleted when this instance is flushed to the database
(using commit, or user Query in pessimistic transaction).

Note that this behavior is not exactly the inverse of makePersistent,
due to the transitive nature of makePersistent. The implementation
might delete dependent database objects depending on
implementation-specific policy options (such as cascade delete).
This method throws an exception if the instance is managed by a
different Persistence Manager or if the instance is transient.

This method has no effect on instances already deleted in the
transaction.

Returns the Persistence Manager Factory that created this Persistence
Manager.

The application might manage persistent instances by using an
associated object for bookkeeping. These methods let you manage
the associated object. The parameter is not inspected or used in any
way by the implementation.

Transparent Persistence stores certain nonoperational properties and
make those properties available to the application through a
Properties instance. This method retrieves the Properties instance.
Each key and value is a String. The keys required for this
implementation are:

¢ VendorName: The name of the vendor.

¢ VersionNumber: The version number string.

For the application to construct instances of the Objectld class, there
is a method that returns the Objectld class given the persistence
capable class.

100 Programming Persistence ¢ August 2001

TABLES5-3 PersistenceManager Methods (Continued)

Method

Description

newSCOlnstance

Returns a new Second Class Object instance of the type specified,
with the owner and field name to notify upon changes to the value of
any of its fields. If a collection class is created, then the class does not
restrict the element types, allows nulls to be added as elements, and
has an initial size of zero.

newCollectioninstance Returns a new Collection instance of the type (or interface) specified,

with the owner and field name to notify upon changes to the value of
any of its fields. The collection class restricts the element types
allowed to the elementType or instances assignable to the
elementType, and allows nulls to be added as elements based on the
setting of allowNulls. The Collection has an initial size as specified
by the initialSize parameter.

Transactions

Insert and delete operations must occur within the context of a transaction.
Transactions ensure the consistency of database reads and updates. They guard
against system problems, such as disk crashes, that would corrupt the consistency of
the database. Transactions also ensure that separate applications concurrently
accessing and updating the same data within the database do so correctly. When you
operate within the context of a transaction, it ensures that either all or none of your
updates are written to the database.

Each Persistence Manager supports one transaction at a time, and this transaction
applies to all of the transactional instances of persistence capable classes that it
“owns.” To work with the transaction, the application obtains the transaction object
from the Persistence Manager:

Transaction myTrans = myPersistenceManager.currentTransaction();

In most cases the application will be running local transactions with a single
database. The application starts and completes these transactions by calling
transaction object methods:

Transaction txn=pm.currentTransaction();
txn.begin();

...operations...

txn.commit();

}

Chapter 5 Developing Persistence-Aware Applications 101

catch (Exception e) {
txn.rollback();

}

The Persistence Manager manages all interactions with the database, including
refreshing cached copies of persistent data. The application needs only to identify
transaction boundaries.

TABLE 5-4 discusses each method in detail.

TABLE 5-4 Transaction Methods

Method Description

begin Start a new Transaction. Throws a JDOUserException if
the transaction is already active.

commit The commit method performs the following operations:
¢ Transitions a deleted instance to transient.
e If retainValues is false, transitions persistent instances to
the hollow state, clearing all non-primary-key fields.
e If retainValues is true, transitions persistent instances to
the persistent-nontransactional state, keeping all current
field values.

rollback The rollback method performs the following operations:

¢ Transitions persistent-new instances to transient,
restoring the fields to their pre-persistent values.

e If retainValues is false, transitions persistent instances to
the hollow state, clearing all non-primary-key fields.

e If retainValues is true, transitions persistent instances to
the persistent-nontransactional state, restoring the fields
to their pre-modified values.

getPersistenceManager Returns the Persistence Manager associated with this
Transaction instance.

isActive Tells whether there is an active transaction.

getRetainValues If this flag is set to true,

setRetainValues e commit transitions persistent instances to the

persistent-nontransactional state, keeping all current
field values.

e rollback transitions persistent instances to the
persistent-nontransactional state, restoring the fields to
their pre-modified values.

If this flag is set to false,

e commit transitions persistent instances to the hollow
state, clearing all non-primary-key fields.

¢ rollback transitions persistent instances to the hollow
state, clearing all non-primary-key fields.

102 Programming Persistence ¢ August 2001

TABLE 5-4 Transaction Methods (Continued)

Method Description
getOptimistic If this flag is set to true, then optimistic concurrency is
setOptimistic used for managing transactions. The optimistic setting

passed replaces the optimistic setting currently active. If
set to true, then NontransactionalRead is set to true. The
default is true.

getNontransactionalRead These methods access the flag that allows nontransactional

setNontransactionalRead instances to be read outside of a transaction. If this flag is
set to true, then queries and navigation are allowed
without an active transaction. If this flag is set to false,
then queries and navigation outside an active transaction
throw an exception. The default is true.

getSynchronization Synchronization is supported for both managed and non

setSynchronization managed environments. A Synchronization instance
registered with the Transaction remains registered until
changed explicitly by another setSynchronization.

Only one Synchronization instance can be registered with
the Transaction. If the application requires more than one
instance to receive synchronization callbacks, then the
application instance is responsible for managing them and
forwarding callbacks to them. Any Synchronization
instance already registered will be replaced.

The beforeCompletion method will be called before the
behavior specified for the transaction completion method
commit. The beforeCompletion method will not be
called before rollback. The afterCompletion method
will be called after the transaction completion methods are
finished. The parameter for the afterCompletion (int
status) method will be either
Status.STATUS_COMMITTED or
Status.STATUS_ROLLEDBACK.

Chapter 5 Developing Persistence-Aware Applications 103

104

TABLE 5-4 Transaction Methods (Continued)

Method Description
QueryTimeout This method avoids deadlocks in the database by waiting
UpdateTimeout a specified number of seconds before executing the query

or update associated with this instance of the Transaction.
The value is stored in seconds; zero means unlimited. For
example:

tx.setQueryTimeout(6);

tx.setUpdateTimeout(10);

PointBase does not currently support
PreparedStatement.setQueryTimeout() . Add
,locks.timeout=value to the URL or pointbase.ini

file to use any other than default value (current default
value is set to 60 seconds). However, be aware that

locks.timeout=0 sets the timeout to 0 seconds, rather
than the setQueryTimeout(0) behavior of setting it to
unlimited.

Locks.timout is set on the server side, not the client
side. This means the value will hold for all connections.

Transaction Isolation Levels

The transaction isolation level specifies the degree to which a transaction is separate
from any concurrent transactions. Multiple users accessing the same database need
to set a balance between performance and the degree of certainty in their view of the
data. When accessing a database, certain inconsistencies can occur:

= Dirty read

A read of uncommitted data. If Transaction A reads data from a database that has
been modified by Transaction B, and the change is rolled back instead of being
committed, Transaction A will have read data that is no longer correct.

= Nonrepeatable read

Data returned by a query that would be different if the query were repeated
within the same transaction. If one transaction reads a row, then another
transaction updates or deletes the row and commits, the first transaction, on re-
read, gets different data. Nonrepeatable reads can occur when other users are
updating the same data you are reading.

» Phantom insert

A read by one user that fetches a row that was inserted by another user’s
transaction. For example, one user’s SELECTstatement might select four rows
from a table the first time it is executed and five rows the next item if a second
user has, in the meantime, inserted a row that satisfies the first user’s query.

Programming Persistence * August 2001

Specifying a higher isolation level eliminates these inconsistencies, but decreases the
performance of your application due to increased overhead, and leads to decreased
system concurrency.

Transparent Persistence uses the default isolation level for the database
(TRANSACTION_READ_COMMITTE®r Oracle and MSSQL and
TRANSACTION_SERIALIZABLEfor PointBase).

java.sqgl.Connection uses the following SQL naming:

int TRANSACTION_NONE = 0;

int TRANSACTION_READ_UNCOMMITTED = 1;
int TRANSACTION_READ_COMMITTED =2;
int TRANSACTION_REPEATABLE_READ = 4;
int TRANSACTION_SERIALIZABLE =38;

TABLE 5-5 shows which access inconsistencies are possible under each of these
settings.

TABLE 5-5 Isolation Levels

Level Dirty Read Nonrepeatable Read Phantom Insert
TRANSACTION_READ_UNCOMMITTEDossible Possible Possible
TRANSACTION_READ_COMMITTED Not Possible Possible Possible
TRANSACTION_REPEATABLE_READ Not Possible Not Possible Possible
TRANSACTION_SERIALIZABLE Not Possible Not Possible Not Possible

With the TRANSACTION_NONEetting, transactions are not supported at all.

Note — Oracle does not support TRANSACTION_READ_UNCOMMITT&D
TRANSACTION_REPEATABLE_READansparent Persistence does not validate any
of the settings you use; unsupported settings will result in constraint violations from
your database.

Concurrency Control

Programming in a database environment is transaction-based. Transactions ensure
that multiple users concurrently accessing the database do so correctly—that is,
transactions ensure the integrity of the database. This means that any insert or delete
operations must be made within the context of a transaction.

Chapter 5 Developing Persistence-Aware Applications 105

106

Transparent Persistence handles concurrent transactions in two ways:
= Optimistic Transaction Management (default)

With optimistic concurrency control, transactions assume that they will finish
before another transaction changes the same data. The system assumes that the
transaction will commit. However, it rolls back the transaction if it detects a
conflict—that is, if another transaction changes the same data and commits while
the first transaction is still in progress.

When the application starts a transaction, the Persistence Manager records the
beginning state of any database records it is using. Before committing the
transaction, it compares the beginning state of the database records with the
current state, to determine whether some other user has updated the database
while the transaction was in progress.

= Data Store Transaction Management

With data store transaction management, transactions are handled by the
database and the specified transaction isolation level. See “Transaction Isolation
Levels” on page 104 for more information.

When the application starts a transaction, the Persistence Manager instructs the
database itself to begin a transaction. This means that between the first data
access until the commit, there is an active database transaction.

The Persistence Manager Factory has methods that let you set the default
concurrency management strategy. The Transaction object has methods that let you
set the concurrency management strategy before beginning a transaction.

Optimistic transactions take longer to execute than database transactions. This is
because each optimistic transaction consists of two database transactions: one read
transaction for the query, which is closed at query completion, and a write
transaction for the commit. Additionally, the transaction to commit the updates is
labor-intensive for the database, because it must check for rows that match the
originally selected object. However, optimistic transactions allow for optimal
concurrency, because database records are locked for a minimal amount of time.

If an optimistic transaction fails, you receive an exception with an attached failed
object array.

Recovery of database transactions is handled by the database. For example, the
database may check for deadlocks or timeouts, and then cancel or roll back the
transaction appropriately.

You should use optimistic transactions when you will have transactions that involve
user “think time,” such as within web applications. Use database transactions when
you will have transactions that are executed quickly on a server (for example, in
batch applications or within the method of a stateless session bean or a servlet).

Programming Persistence * August 2001

Retain Values

You can set the Persistence Manager to retain values outside of the context of a
transaction. This is most beneficial for optimistic transactions or for selecting data
outside the context of any transactions. This means that data is cached locally, even
outside the context of a transaction. This allows faster access of the data, but you
might risk having stale data in your local cache if the database was updated outside
of the IDE.

If you turn off retainValues , then the fields in the default fetch group are reread
the first time one of them is accessed. Each field not in the default fetch group is read
in once when it is first accessed.

Note — If retainValues() is set to true, the following situations occur:
tx.begin();
Object 01 = c.get(i);
c.add(o); /I This will cause reload, and will remove all

/I existing duplicate elements.
ol ==c.get(i); // This can return true or false depending on the
/I contents of the new collection.

Coding With Optimistic Concurrency Control

Setting the Optimistic ~ flag to true has the side effect of setting the
NontransactionalRead flag to true as well.

With optimistic concurrency control, the less time your transactions are open, the
more likely they are to commit successfully. The longer a transaction is open, the
greater the risk of another transaction modifying data that is involved in your
transaction. If the system detects that another transaction has modified data that you
are trying to change, it throws a JDODataStoreException during flush or commit,
and you will need to roll back the transaction.

Optimistic transactions are useful when there are long-running transactions that
rarely affect the same instances. In these cases, the database will exhibit better
performance by deferring database exclusion on modified instances until commit.

With optimistic transactions, instances queried or read from the database will not be
transactional unless they are modified, deleted, or marked by the application as
transactional in the transaction.

At commit time, instances that have been made transactional will be verified against
the current contents of the database, to ensure that the state in the database is the
same as the “before image” of the instance in the transaction.

Chapter 5 Developing Persistence-Aware Applications 107

108

If any instance is found to have changed, an exception is thrown that contains the
list of instances that failed the verification. The optimistic transaction stays active,
and you need to roll back the transaction.

In the case of concurrent updates, Transparent Persistence applications running in
optimistic mode throw a JDODataStoreException

Optimistic transaction management is specified by the Optimistic ~ setting on
Transaction

At flush or commit, only fields in the same fetch group are checked for concurrent
changes.

When you are ready to actually commit your data modifications to the database, the
system checks if that data has been changed by any other transaction since the time
your transaction first read the data. If the data has not been changed, then your
transaction can complete. If any data has been changed, then you need to roll back
your updates.

Note — When Transparent Persistence rolls back a transaction because of a
concurrency conflict, it is likely that one or more of the original values have been
changed by another transaction.

Coding With Data Store Concurrency Control

The data store concurrency control approach depends on the particular database you
are using, and how you have set the isolation level.

Under the data store approach, after you update an object, you can proceed with
your transaction and be assured of a successful commit, unless a deadlock or error
occurs.

Deadlocks occur in situations where multiple transactions attempt to update the
same sets of records. For example, one transaction locks record A and waits to obtain
a lock on record B. At the same time, another transaction has locked record B and is
waiting to obtain a lock on record A. Neither transaction relinquishes the lock it
already holds, and they both deadlock because they are waiting for locks that they
will never acquire. Different database management systems handle deadlock
situations differently.

For example, in an application using Transparent Persistence, transaction A
successfully updates persistent object O1, and then tries to update persistent object
02 Concurrently, another transaction, B, successfully updates persistent object O2,
and then tries to update persistent object O1, causing a deadlock in the database. You

Programming Persistence * August 2001

might get a deadlock even if one transaction had read Ol and wanted to update O2,
and the other transaction had read O2and wanted to update OL The outcome of this
deadlock depends on which DBMS you are using.

Microsoft SQL Server does not detect deadlocks. You need to call
setQueryTimeout() and setUpdateTimeout() on the transaction to specify the
amount of time the query should wait before timing out. The default is to wait
forever.

In contrast, Oracle detects deadlocks between concurrent transactions only when one
user commits a conflicting transaction. In such situations, the first committed
transaction succeeds; the other transaction is rolled back.

In general, keep data store concurrency transactions short to avoid locking out other
transactions. Lockouts are less of a problem if you are dealing with applications that
run under exclusive control—that is, applications that gain control over a portion (or
all) of a database and exclude all other applications, such as an accounts payable
check-generating application.

Accessing the Database

This section specifies the life cycle for persistence-capable class instances. The classes
include behavior as specified by the class (bean) developer and additional behavior
as provided by the reference enhancer or Transparent Persistence. The enhancement
of the classes allows application developers to treat Transparent Persistence
instances as if they were normal instances, with automatic fetching of the persistent
state from the database.

A persistence-capable class has persistent fields and relationship fields that model a
class of data in a database. For an application to actually work with specific entities
from the database, it must create and work with instances of the persistence-capable
class that models the data. If, for example, the application is using an Employee
class that models the employee database table, the application needs instances of
that Employee class.

After the application has persistent instances that represent data, the behavior of
each instance is linked to the transactional store with which it is associated.
Transparent Persistence automatically tracks changes made to the values in the
instance, and automatically refreshes values from the database and saves values into
the database as required to preserve the transactional integrity of the data. This
means that application code can operate on the persistent instances as Java instances,
and the Transparent Persistence runtime environment will perform all of the
database interactions indicated by the application’s actions.

Chapter 5 Developing Persistence-Aware Applications 109

110

During the life of a persistent instance, it transitions among various states until it is
finally garbage collected by the JVM. During its life, the state transitions are

governed by the behaviors executed on it directly as well as behaviors executed on
the Persistence Manager by both the application and by the execution environment.

During the life cycle, instances at times might be inconsistent with the database as of
the beginning of the transaction. If instances are inconsistent, they are called “dirty”.
Instances made newly persistent, deleted, or modified in the transaction are dirty.

At times, Transparent Persistence stores the state of persistent instances in the
database. This process is called “flushing,” and it does not affect the dirty state of the
instances.

This section summarizes the ways in which applications can create and work with
instances of persistence-capable classes. It also introduces some of the terminology
Transparent Persistence uses for instance manipulation and instance status. Instance
status is primarily maintained for the runtime environment, but the application
might occasionally need to check it or reset it.

Overflow Protection

Write protection for the database is handled by the database driver. Transparent
Persistence does not do any separate write validation.

When reading from the database, you will get a JDOUserException if the value
returned from the database is a number less than the MIN_VALUEor greater than the
MAX_VALURllowed for the field type. For example, you might set the values of
short to be between -32768 and 32768, inclusive:

java.lang.Short:
public static final short MIN_VALUE = -32768;
public static final short MAX_VALUE = 32767;

The overflow validation on read is done for types short , int ,long , byte , Short ,
Integer , Long, and Byte .

Programming Persistence * August 2001

Inserting Persistent Data

When the client supplies data for a new record, the application handles it by creating
a new persistent instance:

Employee newEmployee = new Employee(<data>);
Il Instance status is now "transient."
pMgr.makePersistent(newEmployee);

I/ Instance status is now "persistent-new."

When the transaction is committed, the Transparent Persistence runtime
environment generates an SQL insert operation (or its equivalent) for the data
encapsulated in this instance.

This is a two-step process. When the newEmployee instance is constructed, it is not
associated with the persistence manger and is not automatically saved when the
transaction ends. The makePersistent() call associates the newEmployee
instance with the Persistence Manager, which manages its values for the application.

Updating Persistent Data

When an application needs to change data in a persistent instance it does so by
acting directly on the instance:

selectedEmployee.setVacationHours(132);
/I Instance status is now "dirty."

When the transaction is committed, the Transparent Persistence runtime
environment generates an SQL update operation (or its equivalent) for the data
encapsulated in this instance. After the transaction commits, the instance’s status
will be reset.

Transparent Persistence does not support updates to SCO Collections that cause the
removal of an element by index, because the underlying collection can be changed
during the update operation by way of a refetch from the database.

Chapter 5 Developing Persistence-Aware Applications 111

112

Deleting Persistent Data

When the application needs to delete data represented by a persistent instance, it
does so by calling a Persistence Manager method:

persistenceManager.deletePersistent(selectedEmployee);
Il Instance status is now marked for deletion.

When the transaction is committed, the Transparent Persistence runtime
environment generates SQL delete operation (or its equivalent) for the data
represented by this instance.

Transparent Persistence supports two types of delete semantics:
= None (default)

If an object is deleted, related objects in one-way relationships are left untouched.

In a managed relationship, the relationships between the deleted object and
related objects are nullified.

= Cascade
If an object is deleted, all related objects are deleted at flush or commit.

For example, consider the classes Department and Employee , where
Department has an Employee Collection, and Employee has a reference to a
Department

If the Employee relationship is marked for cascade delete, deleting a

Department instance will also delete all Employee instances associated with this

Department

If the Department relationship is marked for cascade delete, deleting an

Employee instance will also delete the Department instance referenced from this

Employee . It will not delete other Employee instances associated with that
Department unless Employee relationships are marked for cascade delete as
well.

You can specify the deletion method in the Delete Action field of the Properties for a
persistence-capable class. See “Setting Options and Properties” on page 71.

Note — Setting cascade delete on the many side of a one-to-many or many-to-many
relationship can result in unwanted deletions. Cascade delete should be set only on
one-to-one relationships or on the one side of a one-to-many relationship.

Programming Persistence * August 2001

An example of deleting all objects on one side of a many-to-many relationship
would be deleting all projects from a relationship between projects and employees.
The code would be as follows:

Collection p = e.getProjects();
Object[] a = p.toArray();
p.clear();
pm.deletePersistent(a);

Querying the Database

Queries allow you to access persistent data without writing separate SQL
statements. You can run your code on any of a number of different databases, and
you can re-map the persistence-capable classes to a different database, possibly with
a different schema, without changing the code.

When the application needs data from the database, it uses the newQuery() method
to obtain a Query object from the Persistence Manager, uses methods from the Query
interface to define a query, and executes the query. The following example shows
how this is done:

Class empClass = Employee.class;

Collection empExtent = pMgr.getExtent(empClass, false);
String empFilter = "id == 59439";

Query q = pMgr.newQuery(empClass, empExtent, empFilter);
Collection result = (Collection) g.execute();

Chapter 5 Developing Persistence-Aware Applications 113

114

A query is defined by the elements shown in TABLE 5-6.

TABLE5-6 Query Elements

Element

Requirement

Description

Candidate class

Candidate
collection

Query filter

Query parameters

Query variables

Import statements

Ordering

Required

Required

Required

Optional

Optional

Optional

Optional

This defines the class of the instances in the candidate
collection that are considered for this query. The class
is used to scope the names in the query filter. The
candidate class of a query must be persistence-
capable. It is defined by a newQuery argument or by
the Query method setClass

This is the extent collection (see the
PersistenceManager.getExtent method) of the
candidate class and defines the input collection for the
query. It is defined by a newQuery argument or by
the Query method setCandidates

Querying memory collections is not supported; the
extent collection is the only valid candidate collection
for a query.

The filter is a String that specifies which objects from
the candidate collection are returned by the query. It is
defined by a newQuery argument or by the Query
method setFilter . The default is “true”, which
means that all instances are returned.

A query might have one or more parameters that are
bound to actual values at query execution time. The
definition follows the syntax for formal parameters in
the Java language. It is defined by the Query method
declareParameters

The query filter might use unbound variables in order
to navigate a collection relationship. It follows the
syntax for local variables in the Java language. It is
defined by the Query method declareVariables

Parameters and variables might come from a class
other than the candidate class, and the names might
need to be declared in an import statement to
eliminate ambiguity. The syntax is the same as in the
Java import statement. It is defined by the Query
method declarelmports

You can order the result set by a field of the candidate
class. The ordering specification includes the list of
fields with the ascending/descending indicator. It is
defined by the Query method setOrdering

Programming Persistence * August 2001

The Persistence Manager is the factory of Query instances and queries are executed
in the context of a Persistence Manager. Any persistence-capable instances returned
by the query are associated with the Persistence Manager and its transaction. This
Persistence Manager’s automatic update/refresh process will include these
instances. There might be multiple query instances active in the same Persistence
Manager.

Use a newQuery() method in the Persistence Manager for each query you want to
create. The preceding example constructs a query instance with the candidate class,
candidate collection, and filter specified. Other options are shown in TABLE 5-7.

TABLE5-7 newQuery Options

Method Description

Query newQuery() Construct an empty query instance.

Query newQuery Construct a query instance from another query. The parameter
(Object query) might be a serialized /restored Query instance from a different

execution environment, or the parameter might be currently
bound to a Persistence Manager. Any of the elements Class,
Filter, Import declarations, Variable declarations, Parameter
declarations, or Ordering from the parameter Query are copied
to the new Query instance, but a candidate collection element
is discarded.

Query newQuery Construct a query instance with the candidate class specified.
(Class cls)

Query newQuery Construct a query instance with the candidate class and
(Class cls, candidate collection specified.

Collection cln)

Query newQuery Construct a query instance with the candidate class and filter
(Class cls, String specified.

filter)

Query newQuery Construct a query instance with the candidate class, the
(Class cls, candidate collection, and filter specified.

Collection cln,
String filter)

Chapter 5 Developing Persistence-Aware Applications 115

116

TABLE 5-8 discusses each method of the Query interface in detail.

TABLE5-8 Query Interface Methods

Method

Description

void setClass (Class
resultClass)

void setCandidates
(Collection
candidateCollection)

void setFilter
(String filter)

void
declareParameters
(String parameters)

void
declareVariables
(String variables)

void declarelmports
(String imports)
void setOrdering
(String ordering)

void setlgnoreCache
(boolean flag);
boolean
getlgnoreCache ()

void compile ()

Binds the candidate class to the query instance.

Binds the candidate collection to the query instance.

Binds the query filter to the query instance.

Binds the parameter declarationsto the query instance. This
method defines the parameter types and names that will be
used by a subsequent execute method.

Binds the unbound variable declarations to the query instance.
This method defines the types and names of variables that will
be used in the filter but not provided as values by the execute
method.

Binds the import statements to the query instance.

Binds the ordering statements to the query instance.

Allows you to request that queries be optimized to return
approximate results by ignoring changed values in the cache.
This option is only useful for optimistic transactions and
allows the database to return results that do not take modified
cached instances into account. setlgnoreCache (false) is
not supported.

Requires the Query instance to validate any elements bound to
the query instance and report any inconsistencies by throwing
an exception.

The Query interface provides methods that execute the query based on the
parameters given. Query.execute always returns a collection of objects. In the
preceding example, the query selects a single object, but the dynamic type of the

result of g.execute

Programming Persistence * August 2001

is Collection
result collection and lterator.next

. This means that you must iterate through the
returns the Employee .

Query Filters

The query filter is a Java Boolean expression that is evaluated for each instance in
the collection. If no filter is specified, the default is true , which filters the input
collection only for class type.

Simple Filter Expressions

The simplest form is a relational expression that compares a candidate class field
with a literal value:

g.setFilter("id == 59439");

You can also include the Boolean operators & && |, || and ! as well as the
arithmetic operators +, -, *, and / . For example, in the following code, the first line
filters elements with a first name of John and a last name of Jones. The second line
filters elements with a first name of John or a salary greater than 200,000.

g.setFilter("firsthame == \"John\" & lastname == \"Jones\"");
g.setFilter("firstname ==\"John\" | salary > 200000.0");

Identifiers in the filter expression denote fields of the candidate class, unless the
name is defined as a parameter, variable, or imported as a class name. For example,
firstname ,lastname , and salary are fields of the Employee class. As in the Java
language, this is a reserved word referring to the element of the candidate
collection being evaluated.

The following filter expressions are equivalent:

g.setFilter("firstname == \"John\"");
g.setFilter("this.firstname == \"John\"");

Any assignment, pre- and post-increment, and pre- and post-decrement operators
are not allowed. Therefore, filter expressions do not have a side effect on the objects
to be returned. The supported method calls are Collection.contains ,
Collection.isEmpty, String.startsWith and String.endsWith . In contrast to
the Java language, equality and ordering comparisons between primitives and
instances of wrapper classes are valid, as are equality and ordering comparisons of
Date fields and Date parameters. You can also include other relational operators <,
<=, >,>= and !=, and Boolean operators such as & and &&

Chapter 5 Developing Persistence-Aware Applications 117

118

Query Parameters

A query parameter is the only part of a query definition that is not fixed at query
declaration. A parameter’s actual value is passed to the execute method. The
following query returns the employees with a first name specified by the execute
method call:

Class empClass = Employee.class;

String filter = "firsthame == name";

Collection empExtent = pMgr.getExtent(empClass, false);
String param = "String name";

Query g = pMgr.newQuery(empClass, empExtent, filter);
g.declareParameters(param);

Collection result = (Collection) g.execute("John");

Here firstname denotes a field in the persistence-capable class Employee , and
name denotes the query parameter name. The actual value of the parameter name is
specified as an argument of execute . The call g.execute("John") returns a
collection of Employee instances with a firsthname value of John. You can reuse
the same query instance to return Employee instances with a different name by
calling execute again and passing a different parameter value, as in
g.execute("Sue")

The declaration of the query parameter defines the name and type of the query
parameter. The actual value passed to execute must be compatible with the
parameter type. A query can define multiple parameters. The parameters passed to
execute associate in order with the parameter declarations.

Each parameter of the execute method is an object that is either the value of the
corresponding parameter or the wrapped value of a primitive parameter.

Note — Any parameters passed to the execute methods are used only for the
current execution, and are not remembered for future execution.

The methods from the query API that define query elements setClass
setCandidates , setFilter , declarelmports , declareParameters
declareVariables , and setOrdering are replacing, not additive. This means if

Programming Persistence * August 2001

these methods are called twice before query execution, the second call overwrites the
settings from the first call. In the following sample code, the query is defined taking
a single parameter called lastname

Query query = pm.newQuery(Employee.class);
query.declareParameters("String firstname");
query.declareParameters("String lastname");

If you want to create a query taking two parameters, you have to define them in a
single declareParameters call:

Query query = pm.newQuery(Employee.class);
guery.declareParameters("String firstname, String lastname");

Relationship Navigation

The query filter may navigate a relationship the same as in the Java language. The
following query returns Employee instances where the value of the namefield in the
associated Department instance is equal to the value passed as a parameter:

Class empClass = Employee.class;

String filter = "department.name == depName";
Collection empExtent = pm.getExtent (empClass, false);
String param = "String depName";

Query g = pm.newQuery (empClass, empExtent, filter);
g.declareParameters (param);

Collection emps = (Collection) g.execute ("R&D");

Query variables are used to navigate a collection relationship. The filter expression
includes a call of the method Collection.contains to specify the scope of the
variable. The call is followed by a Boolean expression that defines the condition for
the instances in the collection relationship. The following query selects all
Department instances containing at least one Employee instance with a salary

Chapter 5 Developing Persistence-Aware Applications 119

120

greater than the value passed as a parameter. The expression emps.contains
(emp) defines the Employee collection relationship as the scope of the variable emp,
and emp.salary > sal defines the condition for the Employee instances.

Class depClass = Department.class;

Collection deptExtent = pm.getExtent (depClass, false);
String imports = "import mypackage.Employee";

String vars = "Employee emp";

String filter = "emps.contains (emp) & emp.salary > sal";
Query q = pm.newQuery (depClass, deptExtent, filter);
g.declareParameters (param);

g.declareVariables (vars);

Collection deps = (Collection) g.execute (new Float (30000.));

Transparent Persistence supports comparing relationships fields with persistent
instances. For example, a filter expression could compare the department field of
Employee with a Department query parameter: "department == dept"

Note — Transparent Persistence does not support multiple contains clauses for the
same variable. A declared variable must be used in a filter.

Ordering Specification

The following query selects all Employee instances having a salary greater than
30000, in ascending order of salary:

Class empClass = Employee.class;

Collection empExtent = pMgr.getExtent(empClass, false);
String empFilter = "salary > 30000.0";

Query q = pMgr.newQuery(empClass, empExtent, empFilter);
g.setOrdering("salary ascending");

Collection result = (Collection) g.execute();

The parameter passed to setOrdering allows multiple ordering declarations
separated by commas. The result set is ordered using the first ordering expression.
Those entries where the first ordering expression yields the same value are ordered
using the second ordering expression, then the third ordering expression, and so on.
You can specify an ordering expression that includes relationship navigation as well.

Programming Persistence * August 2001

The following ordering declaration causes the query above to return Employees in
ascending order of the name of the associated department. Employees from the same
department are ordered by salary.

g.setOrdering(“department.name ascending, salary ascending”);

String Operations

String fields and values in filter expression are compared using the == and !=
operators. Transparent Persistence supports wild card queries using the String
methods startsWith and endsWith . The following filter expression selects all
Employee instances having a first name that starts with M

String empFilter = "firstname.startsWith("M");

Queries in Optimistic and Data Store Transactions

A query executed in a data store transaction first flushes changes from the
transaction and then evaluates the query in the data store. This means the query
result reflects any changes made in this transaction prior to query execution. In
optimistic transactions, there is no flushing, so the query result might not reflect
current changes or might include instances that do not satisfy the query result
because of recent changes in the transaction. You can execute a query outside of a
transaction if nontransactional reads are allowed.

Expression Capabilities

Following are the capabilities of the expressions supported by Transparent
Persistence:

= Operators applied to all types where they are defined in the Java language, as
shown in TABLE 5-9:

TABLE5-9 Query Operators

Operator Description

== equal
1= not equal

> greater than

Chapter 5 Developing Persistence-Aware Applications 121

122

TABLE5-9 Query Operators (Continued)

Operator Description

less than

greater than or equal

less than or equal

Boolean logical AND (not bitwise)
conditional AND

Boolean logical OR (not bitwise)

conditional OR

Boolean or integer bitwise invert

binary or unary addition or String concatenation
binary subtraction or numeric sign inversion
times

divide by

logical invert

Parentheses to explicitly mark operator precedence
Cast operator (class)
Promotion of numeric operands for comparisons

Equality and ordering comparison and arithmetic operations on object-valued
fields of wrapper types (Boolean , Byte , Short , Integer , Long, Float , and
Double) and of BigDecimal and Biglinteger

This uses the wrapped values as comparands or operands.
Equality comparison of object-valued fields of PersistenceCapable types

This uses the Transparent Persistence Identity comparison of the references. Thus,
two objects will compare equal if they have the same Transparent Persistence
Identity.

Equality comparison of object-valued fields of non-PersistenceCapable types
This uses the equals method of the field type.
String concatenation

Only concatenation of strings is supported. For example, String + primitive
is not supported.

Programming Persistence * August 2001

Examples

This section includes several examples of typical queries. Each example is
accompanied by a description and its equivalent ANSI SQL statement.

The examples use the following definitions for persistence-capable classes:

package com.xyz.hr;
class Employee {
String name;

Float salary;
Department dept;
Employee boss;

}

package com.xyz.hr;
class Department {
String name;
Collection emps;

}

Single-Table Select

This query selects all Employee instances from the extent.

ANSI SQL equivalent: SELECT * FROM EMPLOYEE

Class empClass = Class.forName("com.xyz.hr.Employee");
Collection clnEmployee = pm.getExtent (empClass, false);
String filter = "true";

Query q = pm.newQuery (empClass, clnEmployee, filter);
Collection emps = (Collection) g.execute ();

Single-Table Select With Constraint

This query selects all Employee instances that have a field value that passes a
Boolean test; in this case, where the salary is greater than the constant 30000.

ANSI SQL equivalent: SELECT * FROM EMPLOYEE WHERE SALARY > 30000

Chapter 5 Developing Persistence-Aware Applications

123

124

The Float value for salary is unwrapped for the comparison with the literal
value. If the value for the salary field in the candidate instance is null , it cannot
be unwrapped for the comparison, and the candidate instance is rejected.

Class empClass = Class.forName("com.xyz.hr.Employee");
Collection cInEmployee = pm.getExtent (empClass, false);
String filter = "salary > 30000.00";

Query g = pm.newQuery (empClass, clnEmployee, filter);
Collection emps = (Collection) g.execute ();

Single-Table Select With Parameterized Constraint

This query selects all Employee instances that have a field value that passes a
Boolean test that uses a parameter; in this case, where the salary is greater than the
value passed as a parameter.

ANSI SQL equivalent: SELECT * FROM EMPLOYEE WHERE SALARY > ?

The parameter declaration is a String containing one or more parameter type
declarations separated by commas. This follows the Java syntax for method
signatures.

If the value for the salary field in a candidate instance is null , then it cannot be
unwrapped for the comparison, and the candidate instance is rejected.

Class empClass = Class.forName("com.xyz.hr.Employee");
Collection clnEmployee = pm.getExtent (empClass, false);
String filter = "salary > sal";

String param = "Float sal";

Query g = pm.newQuery (empClass, clnEmployee, filter);
g.declareParameters (param);

Collection emps = (Collection) g.execute (new Float (30000.));

Programming Persistence * August 2001

Single-Table Select With Ordering Clause

This query selects a list of objects ordered by the value of one or more of the object’s
fields.

The ordering statement is a String containing one or more ordering declarations
separated by commas. Each ordering declaration is the name of the field in the name
scope of the target class followed by ascending or descending

ANSI SQL equivalent: SELECT * FROM EMPLOYEE ORDER BY LASTNAME
ASCENDING, FIRSTNAME ASCENDING

Class empClass = Class.forName("com.xyz.hr.Employee");
Collection clnEmployee = pm.getExtent (empClass, false);
String filter = "true™;

Query q = pm.newQuery (empClass, clnEmployee, filter);
query.setOrdering("lastname ascending, firstname ascending")
Collection emps = g.execute ();

Join Across a “to-one” Relationship

This query selects a list of objects that have a referenced object that matches a
Boolean test; in this case, where the value of the name field in the Department
instance associated with the Employee instance is equal to the value passed as a
parameter.

ANSI SQL equivalent: SELECT EMPLOYEE.* FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.DEPTNAME = ? AND EMPLOYEE.DEPTID =
DEPARTMENT.DEPTID

If the value for the dept field in a candidate instance is null , then it cannot be
navigated for the comparison, and the candidate instance is rejected.

Class empClass = Class.forName("com.xyz.hr.Employee");
Collection cInEmployee = pm.getExtent (empClass, false);
String filter = "dept.name == name";

String param = "String Engineering";

Query q = pm.newQuery (empClass, clnEmployee, filter);
g.declareParameters (“String name”);

Collection emps = (Collection) g.execute (“Engineering”);

Chapter 5 Developing Persistence-Aware Applications 125

126

Join Across a “to-many” Relationship

This query selects a list of objects that have one or more objects in a referenced
collection that match a Boolean test; in this case, all Department instances where the
collection of Employee instances contains at least one Employee instance having a
salary greater than the value passed as a parameter.

ANSI SQL equivalent: SELECT DEPARTMENT.* FROM DEPARTMENT, EMPLOYEE
WHERE EMPLOYEE.SALARY > 30000 AND DEPARTMENT.DEPTID =
EMPLOYEE.DEPTID

Class depClass = Class.forName("com.sun.xyz.Department");
Collection clnDepartment = pm.getExtent (depClass, false);
String vars = "Employee emp";

String filter = "emps.contains (emp) & emp.salary > sal";
String param = "float sal";

Query q = pm.newQuery (depClass, clnDepartment, filter);
g.declareParameters (param);

g.declareVariables (vars);

Collection deps = (Collection) g.execute (new Float (30000.));

Overlapping Primary Key and Foreign Key

Transparent Persistence supports overlapping primary and foreign keys, but there
are several issues to be aware of. As an example, consider the following schema:

CREATE TABLE Order

(
orderNumber INT PRIMARY KEY,
customerName VARCHAR2(32) NULL,
requestedDate DATE NULL

)

CREATE TABLE Lineltem

(
lineltemNumber INT NOT NULL,
orderNumber INT NOT NULL,
price FLOAT NOT NULL,
description VARCHAR2(100) NULL,
PRIMARY KEY (lineltemNumber, orderNumber),
FOREIGN KEY (orderNumber) REFERENCES Order(orderNumber)

Programming Persistence * August 2001

The persistence-capable classes would look as follows:

public class Order

{
int ordernumber;
String customername;
Date requesteddate;
HashSet lineitems;

}

public class Lineitem

{
int lineitemnumber;
int ordernumber;
float price;
String description;
Order order;

}

Since Transparent Persistence does not support modifying primary keys, it does not
support modifying the relationship between Order and Lineitem . For example, in
order to add a Lineitem to an Order , you would need to modify the
Lineitem.ordernumber , which is part of the primary key. Similarly, if you try to
remove a Lineitem from an Order , you would need to set the
Lineitem.ordernumber to zero, which could cause a constraint violation in the
database. In both cases, Transparent Persistence would not update the Oids nor
rehash the instances in the cache.

To deal with this situation, use the guidelines in the following sections:

Creating an Order/Lineitem Relationship

For this example, the code below creates an Order/Lineitem relationship:

tx.begin();

Order o = new Order();
o.setOrdernumber(1);
o.setCustomername("peter");
HashSet items = new HashSet();
o.setLineitems(ltems);

Lineitem It = new Lineitem();
It.setLineitemnumber(1);
It.setOrdernumber(1);

Chapter 5 Developing Persistence-Aware Applications 127

128

You need to explicitly set the ordernumber to the ordernumber of an existing
Order . The Order can either be persistent in the database already or it can be in the
process of being made persistent.

items.add(lt);

Note — Once the Lineitem.ordernumber is set to 1, it can only be added to Order
1’s lineitems collection.

pm.makePersistent(o);
tx.commit();

Deleting Order/Lineitem Relationship

The code example below properly removes an Order/Lineitem relationship.

tx.begin();
Ordero = /I fetch the Order
Lineitem It = /I get the Lineitem you want to remove

You can remove a Lineitem from an Order as long as you explicitly delete it within
the same transaction. Note that you can interchange the following two lines

pm.deletePersistent(lt);
o.getLineitems().remove(lt);

Similarly, you can remove all Lineitems from an Order as long as you explicitly
delete them all within the same transaction.

pm.deletePersistent(o.getLineitems());
o.getLineitems().clear();

tx.commit();

Programming Persistence * August 2001

Restrictions

Following is the list of restrictions:

= Moving a Lineitem from one Order to another is not supported. You need to
remove or delete it from one Order and create a new one to be added to another
Order .

= Lineitem.setOrder() is not supported. For example:

Lineitem It = o.getLineitems().get(0);

This will throw a JDOUnsupportedOptionException

It.setOrder(null);

The following lines of code will cause a JDOUserException at commit time:

o.getLineitems.add(lt);
It.setOrder(0);

Fetch Groups

A fetch group is a group of persistent fields that will be retrieved together. When an
application requests the value of one field in the group, values for all fields in the
group are loaded together. This provides more efficient transfer of values that are
frequently used together, such as the fields that make up an employee address. The
class developer can analyze the fields in the database record and decide whether
adding fetch groups to the class definition will improve performance of the class.

You can specify Level, Independent, Default, or None. There are two types of
settings, hierarchical and independent.

Hierarchical groups include the Default and Level settings, and build on one
another. A setting of Default for a field means that field will be fetched along with
all other fields that have a setting of Default. When a field in the Level 1 group is
fetched, all fields in group Level 1 and the Default group are fetched as well.

By default, Transparent Persistence includes all persistent fields except relationship
fields in the Default fetch group. If the Fetch Group property is disabled, the field is
not persistent, not mapped, or is a key field and will always be fetched. Relationship
fields must have a setting of None.

Chapter 5 Developing Persistence-Aware Applications 129

130

Checking Instance Status

The preceding discussions of basic operations queries, updates, and so on, have
touched on the status of persistent instances and demonstrated some of the ways in
which the Persistence Manager sets the status of instances it is managing, and then
uses that status to determine which operations are required at transaction
boundaries. If necessary the developer can check and reset the status of instances.

The recommended approach for applications to interrogate the state of the instance
is to use the class JDOHelper . This class provides static methods that delegate to the
instance if it implements PersistenceCapable , and if not, returns the values that
would have been returned by a transient instance.

Methods available include, but are not limited to, the following:

isDirty()
makeDirty()

Transparent Persistence Identity

Java defines two concepts for determining whether two instances are the same
instance or whether they represent the same data:

= Java object identity is entirely managed by the JVM. Instances are identical if and
only if they occupy the same storage location within the JVM.

= Java object equality is determined by the class. Instances are equal if they
represent the same data, such as the same value for an integer or equivalent bits
in a bit array.

The interaction between Java object identity and equality is important for
Transparent Persistence developers. Java object equality is application-specific, and
Transparent Persistence does not change the application’s implementation of
equality. There is only one instance in each Persistence Manager representing the
persistent state of each corresponding database object. Therefore, Transparent
Persistence defines object identity differently from both the JVM object identity and
the application equality.

Applications should implement equality for persistence-capable classes differently
from the default implementation, which uses the JVM object identity. This is because
the JVM object identity of a persistent instance cannot be guaranteed between
Persistence Managers and across space and time, except in very specific cases.

Programming Persistence * August 2001

If persistent instances are stored in the database and are queried using the == query
operator or are referred by a persistent collection that enforces identity (Set, Map),
then the implementation of equals should exactly match the Transparent Persistence
implementation of equality, using the primary key or Oid as the key. This is not
enforced, but if not correctly implemented, the semantics of collections can differ.

To avoid confusion with Java object identity, this manual refers to the Transparent
Persistence concept as Transparent Persistence identity. Transparent Persistence
identity is used for databases in which the values in the instance determine the
identity of the object in the database. Transparent Persistence identity is managed by
the application and enforced by the database.

The Persistence Manager manages instance identity for the developer, but then when
comparing persistent instances (for example, with the = = operator), it is the
Transparent Persistence Oids that are compared.

Oid Class

The Oid class (Object ID) is specific for each persistence-capable class. It is a
characteristic of the persistence-capable class and must be created at mapping time.

Each Persistence Manager must manage the cache of Transparent Persistence
instances so that only one such instance is associated with each Persistence Manager
that encapsulates a database object.

To accomplish this, each Transparent Persistence class has an associated Oid class
that includes a field or fields whose values uniquely identify a Transparent
Persistence instance. Each instance of a Transparent Persistence class has an
associated instance of the ID class that holds the identifier. This allows the runtime
environment to compare Oids and manage identity and equality of the Transparent
Persistence instances.

With many databases, the identity of an entity is determined by a value found in the
data. This is typical of relational database systems, in which each row or object has a
key value that identifies it. For this kind of database, the Oid class created by the
Java generator is a “primary key class,” with a field that holds the primary key
value.

An Oid class can be either of the following types:

= Static nested class with the suffix Oid (default)
= Separate class with suffix Key

Both suffixes are case-insensitive.

As an example, of the name of the persistence-capable class is
mypackage.Employee , valid Oid class names are mypackage.Employee.Oid or
mypackage.EmployeeKey

Chapter 5 Developing Persistence-Aware Applications 131

132

Note — For each field of a persistence-capable class, the Properties window has a
Boolean Key Field option. However, the Oid class defines key fields as those fields in
the persistence-capable class that have matching (public) fields in the Oid class of
equal name and type.

To avoid a conflict, you need to ensure that the Key Field settings of your
persistence-capable classes match the structure of your Oid classes:

= A field in the persistence-capable class marked as a primary key must be declared
in the Oid class

= A field in the Oid class must be marked as a primary key and be present in the
persistence-capable class

= A persistence-capable class and an Oid class field of same name must be of
consistent types

Uniquing

Transparent Persistence identity of persistent instances is managed by the
implementation. For a managed Transparent Persistence identity, only one persistent
instance is associated with a specific database object per Persistence Manager
instance, regardless of how the persistent instance is acquired:

= PersistenceManager.getObjectByld(Object oid)
= Query via a Query instance associated with the Persistence Manager instance

= Navigation from a persistent instance associated with the Persistence Manager
instance

= PersistenceManager.makePersistent(Object pc)
= PersistenceManager.getTransactionallnstance(Object pc)

A primary key identity is associated with a specific set of fields. The fields associated
with the primary key are a property of the persistence-capable class and cannot be
changed after the class is enhanced for use at runtime. When a transient instance is
made persistent, the implementation uses the values of the fields associated with the
primary key to construct the Transparent Persistence identity.

Mapping

For each persistence-capable class, the Java Generator generates a public static
nested class called Oid . You can access this class with <className>.0id . At the
time of generation, you specify whether a class is persistence-capable. The GUI does
not protect the primary key fields of each persistence-capable class and the fields of

Programming Persistence * August 2001

<className>.0id from changes You must maintain consistency between the
names and types of primary key fields of persistence-capable classes and the names
and types of fields of <className>.Oid

The following example creates and accesses an Oid class for class Employee :

Employee.Oid eieio = new Employee.Oid();

eieio.id = 142857;

Employee emp = (Employee) myPM.getObjectByld (eieio);
String name = emp.getName();

Persistent Object Model

The Java execution environment supports different kinds of classes that are of
interest to the developer. Typically, application classes are highly interconnected, and
the instances of those classes include the entire contents of the database.

Applications typically deal with a small number of persistent instances at a time.
Transparent Persistence creates the appearance that the application can access the
entire graph of connected instances, while in reality only a small subset of instances
needs to be instantiated in the JVM.

Chapter 5 Developing Persistence-Aware Applications 133

?

C Persistent objects Q
¢ ‘/1
C Instantlated perS|stent objects »}(

/ \ Database virtual objects

‘_>‘ ’ %4 Mapping function

Transient objects

Data Store

Within a JVM, there can be multiple independent units of work that must be isolated
from each other. Transparent Persistence permits the instantiation of the same

database object into multiple Java instances. Whenever a reference is followed from
one persistent instance to another, Transparent Persistence instantiates the required

The storage of objects in databases is different from the storage of objects in the JVM.
Transparent Persistence creates a mapping between the Java instances and the
objects in the database, using metadata that is available at runtime.

There is no restriction on types of non persistent fields of persistence-capable classes.
These fields behave exactly as defined by the Java language. Persistent fields of
persistence-capable classes have restrictions in Transparent Persistence, based on the

JVM
FIGURE 5-3 Instantiated Persistent Objects
instance into the JVM.
characteristics of the types of the fields in the class definition.
134 Programming Persistence ¢ August 2001

Architecture

In Java, variables (including fields of classes) have types. Types are either primitive
types or reference types. Reference types are either classes or interfaces. Arrays are
treated as classes.

Instances are of a specific class, determined when the instance is constructed.
Instances may be assigned to variables if they are assignment-compatible with the
variable type.

The Transparent Persistence object model distinguishes between two kinds of
classes: those that are persistence-capable and those that are not. User-defined
classes are persistence-capable unless their state depends on the state of inaccessible
or remote objects (for example, if they extend java.net.Socketimpl or
implement their behavior by using native calls).

System-defined classes (those defined in java.lang , java.io ,java.net , and so
on) are not persistence-capable, nor are they allowed to be any of the following
persistent field types:

= All primitive types (boolean, byte, short, int, long, char, float and double)

= All immutable object class types (Boolean, Character, Integer, Long, Float, Double
and String as Second Class Objects)

= Mutable object class types from the java.util package (Date, ArrayList, and
Vector) and mutable object class types from the java.sql package as Mutable
Second Class Objects (Date, Time, Timestamp)

Persistent and Transient Objects

Classes associated with a database are designated as persistence-capable classes.
Objects representing these classes can be either persistent objects or transient objects.
Persistent objects are stored in a database. Transient objects exist only for the
duration of the program that instantiates them.

All classes whose instances can be stored in a database must implement the
PersistenceCapable interface. Transparent Persistence automatically adds the
implementation of this interface when it enhances Java classes.

Chapter 5 Developing Persistence-Aware Applications 135

Field Types of Persistent-Capable Classes

In persistence-capable classes, fields can be persistent, transactional non persistent,
or nontransactional non persistent.

Persistent Fields

TABLE 5-10 describes the persistent field types.

TABLE 5-10 Persistent Field Types

Field Type Description

Primitive Transparent Persistence supports fields of any of the
primitive types boolean , byte , short ,int ,long , char,
float , and double . Primitive values are stored in the
database associated with their owning First Class Object.
They have no Transparent Persistence Identity.

Immutable Object Class Transparent Persistence supports fields of immutable object
classes and can choose to support them as Second Class
Objects or First Class Objects.

package java.lang: Boolean , Character , Integer ,
Long, Float , Double , and String

Transparent Persistence applications should not depend on
whether these fields are treated as Second Class Objects or
First Class Objects.

Mutable Object Class Transparent Persistence supports fields of mutable object
classes and may choose to support them as Second Class
Objects or First Class Objects.

package java.util: Date and HashSet
package java.sql: Date , Time, and Timestamp .

Because the treatment of these fields might be as Second
Class Objects, the behavior of these mutable object classes
when used in a persistent instance is not identical to their
behavior in a transient instance.

PersistenceCapable Class Transparent Persistence supports fields of
PersistenceCapable class types as First Class Objects.

Collection Interface Transparent Persistence supports fields of interface types.
package java.util: Collection and Set

136 Programming Persistence ¢ August 2001

Persistent and Non-Persistent Fields

A persistence-capable class can have both persistent fields and non-persistent fields.

Persistent fields are used to represent persistent data, and the Transparent
Persistence runtime environment manages them for users of the class. This means
that the Transparent Persistence runtime environment will automatically
synchronize a persistent field’s value with the database, flush object values to the
database, and so on, in accordance with current transaction status, and
concurrency management strategy.

Non-persistent fields are managed by application logic; they do not participate in
the Transparent Persistence mechanism. The application can use them for values
that are derived from persistent values, values used in a transaction that do not
need to be saved to the database, and so on.

JDO Interfaces

The JDO interfaces, found in a package named com.sun.forte4j.persistence ,
are:

PersistenceManagerFactory —Allows users of Transparent Persistence classes
(application developers) to create Persistence Managers.

Developers cannot use Persistence Manager constructors, but use a Persistence
Manager Factory to create a Persistence Manager. The Transparent Persistence
API includes a class that implements this interface. The application instantiates
the Persistence Manager Factory, configures its properties, and then creates a
Persistence Manager. Any Persistence Manager Factory property settings become
default settings for Persistence Managers created by the factory. If you want to
use connection pooling, the Persistence Manager Factory can be used to set these
properties as well.

PersistenceManager -Manages and manipulates persistence-capable classes
(which results in database selects, insert, updates, deletes) in transactional mode.

The Persistence Manager normally manages all interactions with the database,
including refreshing cached copies of persistent data. The application needs only
to identify transaction boundaries.

Each Persistence Manager manages a set of persistence-capable class instances
created by the application, or that the Persistence Manager fetches in response to
a query constructed by the application. Each Persistence Manager is capable of
one transaction. In other words, a Persistence Manager generally manages a set of
persistent instances created or fetched by a single client session, and each client
session generally requires its own Persistence Manager. A Persistence Manager
can connect to only one database (it can use multiple tables from that database),
so some client sessions will need to obtain more than one Persistence Manager
from more than one Persistence Manager Factory.

Chapter 5 Developing Persistence-Aware Applications 137

138

= Transaction —Allows users of persistence-capable classes to start and commit or
roll back transactions.

Developers obtain an object that implements this interface from the Persistence
Manager. Transaction boundaries apply to persistent instances that are managed
by that Persistence Manager. If the application is performing multiple database
transactions, they must use multiple Persistence Managers.

= Query —Allows users of persistence-capable classes to construct queries.

Developers obtain an object that implements this interface from the Persistence
Manager, then use Query methods to construct a query in JDO query syntax.
Completed queries can be executed by calling their execute() methods. Results
are returned to the application as a collection of instances of a Transparent
Persistence class.

= JDO exceptions—-The JDO specification defines JDOException and a number of
other exceptions derived from it. These are unchecked runtime exceptions.
Application developers should code to catch those JDO exceptions their
application might throw.

Transparent Persistence includes a .jar file that contains the implementations of
these interfaces. The Persistence Manager Factory is implemented as a class that
developers can instantiate directly; the other objects will be obtained by calling the
appropriate factory methods.

By definition, a persistence-capable class is one that implements the
PersistenceCapable interface. This interface provides a set of methods that allow
users of Transparent Persistence classes (application developers) to check the status
of Transparent Persistence instances.

Transparent Persistence classes must implement this interface, but the class
developer does not write the implementation code. Instead, it is generated by
Transparent Persistence during enhancement. After a class has been enhanced, it is
able to interact with the Transparent Persistence runtime environment. Neither the
developer of persistence-capable classes nor the application developer who uses
them needs to be aware of what is in the generated code that implements the
PersistenceCapable interface.

Transparent Persistence classes can be portable, which means that they can be
moved from one JDO environment to another, be enhanced again in the new
environment, and operate properly.

Programming Persistence * August 2001

JDO Exceptions

TABLE 5-11 summarizes the exceptions associated with the rule violations.

TABLE 5-11 JDO User Exceptions
Exception Explanation
JDOException You cannot make an object persistent from a class

(“Object is not
PersistenceCapable ")

JDOUserException
(“An instance with the same primary
key already exists in this PM cache”)

JDOFatalUserException
(“PM is closed”)

JDOFatallnternalException

JDOUnsupportedOptionException

JDODataStoreException

JDOQueryException
(“Missing candidate class
specification.”)

JDOQueryException
(“Missing candidate collection
specification.”)

JDOQueryException
(“Candidate collection does not match
candidate class <class>.")

JDOQueryException
(“Wrong number of arguments.”)

JDOQueryException
(“Unbound query parameter ‘param’.”)

JDOQueryException

(“Incompatible type of actual parameter.

Cannot convert ‘java.lang.String” to
,long/.,l)

that does not implement PersistenceCapable

You cannot use makePersistent on a different
Java object with the same database identity.

You cannot access a closed Persistence Manager.

There has been an unexpected error at mapping
or runtime.

You cannot use an unsupported option (for
example, setlgnoreCache(false)).

There is a conflict in the database or an integrity
constraint violation.

The candidate class not specified. See the Query
method setClass

The candidate collection not specified. See the
Query method setCandidates

The candidate collection is not the extent
collection from the candidate class.

There are more actual parameters passed to
executes than are defined in
declareParameters

The Query method execute does not get a value
for the Query parameter ‘param’.

The type of the actual parameter is not
compatible with the type in the parameter
declaration.

Chapter 5 Developing Persistence-Aware Applications

139

TABLE 5-11 JDO User Exceptions (Continued)

Exception Explanation

JDOQueryException This form indicates a problem with the Query
(“<method> column(<nr>): <problem definition. <method> is one of the Query
description>.”) methods (setFilter , declareParameters

setOrdering , and so on). <nr> is the column
number of the error. <problem description> is a
description of the error, such as Syntax error or
Invalid arguments(s) for '<’.

For example, the filter expression
"this.michael == " would result in a
JDOQueryException("setFilter

column(6): Field 'michael’ not

defined for class

‘com.xyz.hr.Employee’.") , if the class

Employee does not define a field michael .

Debugging Persistence-Aware
Applications

The Persistence Debugger lets you debug persistence-aware applications without the
need to package the persistence-capable classes as a JAR file. Like the Persistence
Executor, the Persistence Debugger uses a special classloader to apply the
enhancement of the classfiles for Transparent Persistence when they are loaded.

v To Debug an Application

1. Make sure the JDBC driver is mounted or listed in your CLASSPATH.

2. Open the application within the IDE debugging environment.

3. Select Project > Settings

4. Choose Debugger Types, then choose Persistence Debugger.

5. Use the Persistence debugger as you would any other Forte for Java debugger.

For more information on using the Forte for Java debugging environment, see
“Debugging a Program” in the Core IDE online help.

140 Programming Persistence ¢ August 2001

CHAPTER 6

Using Transparent Persistence With
Enterprise Java Beans

This chapter describes how you can use Transparent Persistence with Enterprise Java
Bean components, and includes sample code for using persistence-capable classes
with J2EE™ Reference Implementation (J2EE RI) and iPlanet™ Application Server
(iAS) applications.

Note — Forte for Java does not provide for deployment of Enterprise JavaBeans that
use Transparent Persistence that were developed outside the Forte for Java IDE.

How Transparent Persistence Works in
Enterprise Beans

Transparent Persistence provides you with an object view of persistent data stored in
relational databases. The persistent instances can be used in the Enterprise Beans
environment as helper objects with session beans or entity beans. You can use
Transparent Persistence to improve performance in an enterprise bean so that it does not
need to access the database as frequently. Instead of coding separate get and set
methods, you can use serialized persistence-capable classes as value objects that
display and update multiple fields.

To use Transparent Persistence in an Enterprise Beans environment, first develop
persistence-capable classes as you would for any persistent application. Once these
classes have been developed, they can be used with Enterprise Beans.

141

142

When you use persistence-capable classes with Enterprise Beans, the environment is
slightly different compared to use in a two-tier application. These differences have to
do with how the PersistenceManager is obtained and how transactions are managed:

= While the bean instance is activated, you make a JNDI lookup call to find the
Persistence Manager Factory.

= The EJB container and Transparent Persistence coordinate transaction
management in a persistence-aware enterprise bean that doesn’t manage its own
transactions.

An enterprise bean is somewhat different, too, when it uses Transparent Persistence.
The main differences are how business methods are implemented, how
synchronization is handled, and how transactions can be managed.

= Your bean’s business methods are implemented by using a reference to an
instance of a persistence-capable class that accesses and modifies the bean’s state
as required.

= Transaction synchronization is handled by the Persistence Manager, when the
container makes transaction-completion call-backs at appropriate points in the
bean’s life cycle.

= Each business method must acquire its own PersistenceManager instance
from the PersistenceManagerFactory . At the end of the business method, the
PersistenceManager instance must be closed. This allows transaction
synchronization between Transparent Persistence runtime and the container.

= A bean can use container-managed transactions for transaction completion. In
that case, there is no extra code to be added. Or, if the bean manages its own
transactions, it can use either a user transaction (that is, an instance of the
javax.transaction.UserTransaction interface) or a Transparent
Persistence transaction that it acquires from the Persistence Manager.

Session and Entity beans acquire a PersistenceManager, and with it can perform
CRUD (create, read, update, and delete) operations on persistent instances using the
interfaces defined in PersistenceManager, exactly as if the application were running
in a two-tier environment.

To locate persistent instances to use in business methods, call the

getObjectByID(Object oid) method of the
com.sun.forte4j.persistence.PersistenceManager interface, or execute a
query using the com.sun.forte4j.persistence.Query interface. This is no

different from two-tier applications.

Programming Persistence * August 2001

A typical sequence for using Transparent Persistence with Enterprise Java Beans is:

» Develop or map persistence-capable classes within the Transparent Persistence
environment.

= Use the IDE’s E]B Builder wizard to generate an enterprise bean, with code that
does the following;:

= Generates a dynamic JNDI lookup for PersistenceManagerFactory

= Acquires PersistenceManager using a getPersistenceManager() call to
the PersistenceManagerFactory

= Performs desired operations with persistent data
« Closes PersistenceManager

If you want use connection pooling, you must configure the datasource properties
outside of the Persistence Manager Factory.

Enterprise Java Beans, J2EE RI, and iAS are described in detail in the documentation
included with their respective modules. You can also find White papers with more
examples of how Transparent Persistence is used with Enterprise JavaBeans at the
Forte for Java Portal as they become available.

Providing for Serialization

If you intend to pass a persistence-capable class as a parameter or return type of an
EJB method, you must make the class serializable. When you generate persistence-
capable classes, you have the option of defining them to be serializable (that is,
implementing the java.io.Serializable interface).

When you pass an object outside the virtual machine that hosts its Persistence
Manager, the Persistence Manager can no longer track the object’s state. Therefore, if
you want the enterprise bean’s client to be able to update an object that it has
received from the bean’s remote interface, you must provide a bean method that
accepts the modified object and applies the changes to the persistent instance. Or,
you can have the client decide on the changes to be made and use another bean
method to update the information.

Here’s another case. Within a business method, a persistence-capable instance might
refer to another persistence-capable instance that is part of the transaction but has no
associated enterprise-bean component. If such a reference must be returned to the client,
be sure that the instance’s class is serializable.

For example, your entity bean OrderBean uses the persistence-capable class Order
as a helper instance, and Order uses the persistence-capable class Lineltem .To return
an array of persistence-capable Lineltem instances, you make the Lineltem class
serializable, and you write a remote method on OrderBean with the following signature:

public Collection getLineltems()

Chapter 6 Using Transparent Persistence With Enterprise Java Beans 143

To create a serialized copy of a persistence instance, use the JDOHelper method
createSerializedCopy and call it before the call to close PersistenceManager
This is illustrated in the following example.

persistenceManager = persistenceManagerFactory.getPersistenceManager();
/lperform the query or navigation

/ICollection items = ...

Collection result = (Collection)JDOHelper.createSerializedCopy(items);
persistenceManager.close();

return result;

Transactions With Enterprise Beans

Transaction management is the process of telling the container when to begin a
transaction, and when to end it, as well as whether the transaction is to be
committed or rolled back. With enterprise beans, transaction management is handled
in a standard way that varies based on the kind of bean.

When programming Entity Beans and Session Beans with Container Managed
Transaction completion, application components never complete transactions. When
programming Session Beans with Bean Managed Transaction completion, the bean is
responsible for completing transactions.

Regardless of which type of bean you are using, Transparent Persistence will
coordinate with the transaction completion semantics of the container.

The PersistenceManager is a transactional object. That is, it contains information
specific to a particular transaction. The PersistenceManagerFactory manages a pool
of PersistenceManagers, each of which might be associated with a different
transaction. It is important for the bean to get the appropriate PersistenceManager
for the transaction, by getting the PersistenceManager when the thread of execution
is associated with the transaction.

Each business method should get the PersistenceManager from the
PersistenceManagerFactory , and close it at the end of the business method.

For Stateful Session Beans with Bean Managed Transactions, it is a bean decision
when to get the PersistenceManager , because the PersistenceManager might
be managed as a conversational state.

144 Programming Persistence ¢ August 2001

Creating an Enterprise Bean That Uses
Transparent Persistence

The following sections take you through the general process for creating an
enterprise bean that uses persistent-capable classes. The sections assume you have
already created your persistent-capable classes.

Setting the JNDI Lookup

With Enterprise Java Beans (Enterprise JavaBeans), every component that uses
resources needs to identify those resources in the deployment descriptor, and
dynamically obtain them by lookup in JNDI at runtime. JDBC Connections are an
example of resources that are managed by the container and looked up by the bean
components. In Transparent Persistence, the Persistence Manager Factory is a
resource that needs to be configured as the deployment descriptor, and looked up at
runtime.

The recommended approach is to declare the PersistenceManagerFactory
reference in java:comp/env/jdo/ persistencemanagerfactoryname.

When the corresponding name is given to the InitialContext at runtime, the
container finds the appropriate Persistence Manager Factory and returns it to the
bean.

The Persistence Manager Factory is the resource that is shared among many beans,
and is associated with a JDBC DataSource. With enterprise beans, all the beans that
use the same DataSource should share the same PersistenceManagerFactory. This
allows different beans in the same transaction to find the same Persistence Manager.

During bean development, you identify the Persistence Manager Factory to be used
by name. During deployment, the name is associated with a specific
PersistenceManagerFactory . At runtime, the named Persistence Manager
Factory is found by looking up the name with JNDI.

v To Perform a JNDI Lookup

In the bean, put the following variables:

String persistenceManagerFactoryResourceName = "java:comp/env/jdo/ pmfname",
PersistenceManagerFactory persistenceManagerFactory;

Chapter 6 Using Transparent Persistence With Enterprise Java Beans 145

146

In the setSessionContext method, include the following code:

InitialContext initialContext = new InitialContext();
persistenceManagerFactory= (PersistenceManagerFactory)
initialContext.lookup(persistenceManagerFactoryResourceName);

You can use the Session Bean template to create a new session bean with the JNDI
lookup code already added. Then you need only to replace a place holder for the
JNDI name with the actual name and add required references to the bean’s property
sheet.

To Create a Transparent Persistence-Aware Session Bean
Using the IDE

. Choose File > New > Session Bean.

The E]B Builder wizard appears.

. Choose the type of bean you want: container-managed transactions (CMT bean) or

bean-managed transactions (BMT bean).

. Check the Use Transparent Persistence check box, and click Next.

Note — If you are creating a stateful CMT bean, you will have the option to
implement the SessionSynchronization interface. Do not check this option.

The EJB Components pane appears.

. Continue with the template until you create your bean.

The Bean appears in the explorer window, as shown in FIGURE 6-1.

Lo H"'l PersistentBean

© & PersistertBean (EJA)
@ [B* PersistentBeanElD
Lo H"'l PersistentBeanHome

FIGURE 6-1 Persistent Enterprise Bean

. Right-click on the bean in the explorer window and choose Properties.
. Select the J2EE RI tab.
. Enter a value for the JNDI Name property.

. Replace the generated JNDI name for the Persistence Manager Factory with the

actual name.

Programming Persistence * August 2001

Setting Resource References

When setting up an Enterprise JavaBean with J2EE RI or iAS, you need to identify
the Persistence Manager Factory as a Resource Factory Reference. You can do this
through the Enterprise JavaBean property sheet.

To Set the Persistence Manager Factory as a Resource
Reference

. Right-click the Enterprise JavaBean node in the Explorer window.

. Click on the value for Resource Factory References, then click on the ellipsis (...)
button. A property editor opens.

. Click on the Add button. The Add Resource Reference window opens.
. Add the name of the Persistence Manager Factory.

. Select com.sun.fortedj.persistence.PersistenceManagerFactory from the Type drop-
down menu.

. If you plan to deploy the application into the J2EE RI server, select the J2EE RI tab
and enter the JNDI name exactly as in Step 4.

. Click OK to finish.

Note — If you are creating an Enterprise JavaBean with iAS, you will also need to
add the reference to the Data Source in the Property sheet, using the same procedure
as listed above.

Using Bean-Managed Transactions

You must decide whether to complete transactions by using the

javax.transaction.UserTransaction supplied by the container, or the
com.sun.fortedj.persistence. Transaction supplied by the
PersistenceManager

If you want to use the same PersistenceManager for multiple transactions, then you
must complete transactions using

com.sun.fortedj.persistence. Transaction . If you get a Persistence
Manager for each transaction, it is your choice which technique to use.

Chapter 6 Using Transparent Persistence With Enterprise Java Beans 147

To use com.sun.forte4j.persistence.Transaction for transaction
completion, use the following code as an example:

/I business method with multiple transactions with the same PersistenceManager
persistenceManager = persistenceManagerFactory.getPersistenceManager();
persistenceManager.currentTransaction().begin();

Il perform persistent operations in the first transaction
persistenceManager.currentTransaction().commit();
PersistenceManager.currentTransaction().begin();

/I perform persistent operations in the second transaction
persistenceManager.currentTransaction().commit();

persistenceManager.close();

If you use javax.transaction.UserTransaction for transaction completion,
then you must begin the transaction before getting the PersistenceManager from the
PersistenceManagerFactory, and close the PersistenceManager before you commit
the transaction.

To use javax.transaction.UserTransaction for transaction completion, use
the following code as an example:

sessionContext.getUserTransaction().begin();

persistenceManager = persistenceManagerFactory.getPersistenceManager();
Il perform persistent operations in the first transaction
persistenceManager.close();

sessionContext.getUserTransaction().commit();

148

Using Container-Managed Transactions

When programming Entity Beans and Session Beans with Container Managed
Transaction completion, application components never complete transactions.
Transparent Persistence will coordinate with the transaction completion semantics of
the container.

Programming Persistence * August 2001

v To Use a Container-Managed Transaction

1. In the bean, put the following variable:

PersistenceManager persistenceManager;

2. In each business method, wrap the following code around operations on
persistent instances:

persistenceManager = persistenceManagerFactory.getPersistenceManager();
I/ perform persistent operations
persistenceManager.close();

The following is an example of a container-managed transaction:

public java.lang.String addEmployee(long empid,
java.lang.String lastName,
java.lang.String firstName,
double salary) {
Employee emp = new Employee();
emp.setEmpid(empid);
emp.setLastname(lastName);
emp.setFirstname(firstName);
emp.setSalary(salary);

try {
persistenceManager =

persistenceManagerFactory.getPersistenceManager(dbuser, dbpasswd);
persistenceManager.makePersistent(emp);
return "Created Employee: " + emp.getEmpid();
} catch (Exception e) {
e.printStackTrace();
return "Failed Create Employee: " + empid + ": " + e.toString();
} finally {
persistenceManager.close();

}

Chapter 6 Using Transparent Persistence With Enterprise Java Beans 149

Integrating Transparent Persistence Into
the J2EE Reference Implementation

You can use Transparent Persistence with the J2EE RI (version 1.2.2 only) as
described previously, with the following added procedures.

1. Copy the JDBC driver and the following three files from the module installation
directory to [2ZEE_HOME/lib/system

» IDE_Installlmodules/dbschema.jar
» IDE_Installlmodules/ext/persistence-rt.jar
» IDE_Installllib/ext/xerces.jar

Note — IDE_Install will either be the IDE installation directory, or the Forte for Java
(FFJ) user directory if you downloaded the FF] module from the Update Center.

2. Edit J2EE_HOME/bin/userconfig.sh script to add the JDBC driver and above
three jars to the J2EE_CLASSPATH.

3. Set the JNDI lookup for the Persistence Manager Factory and your datasource.

a. Edit J2EE_HOME/config/default.properties

« Add
com.sun.fortedj.persistence.internal.EJB.j2sdkeel21Helper to
the list of drivers to be loaded at the server startup time to enable the
integration:

jdbc.drivers=...:com.sun.forte4j.persistence.internal.ejb.j2sdkeel21Helper

= Register PersistenceManagerFactory as a data source, replacing
jdo/ empPMF and jdbc/ datasource with your own settings of JNDI names for
the Persistence Manager Factory and DataSource:

jdbc20.datasources=jdo/empPMF|

xadatasource.0.jndiname=jdo/ empPMF

xadatasource.0.classname =
com.sun.fortedj.persistence.PersistenceManagerFactorylmpl

xadatasource.0.prop.ConnectionFactoryName=jdbc/ datasource

xadatasource.0.prop.Optimistic=false

150 Programming Persistence ¢ August 2001

Note — Make sure there are no trailing spaces or non-displayed characters in the
above lines, because the J2EE server will not recognize them. Also, verify that the
value for transaction.timeout is set to "0".

b. Edit the J2EE RI startup script to add a system property.

By default, Transparent Persistence requires that each persistence-capable class be
loaded by only one class loader. The effect of this standard behavior with J2EE RI
is that persistence-capable classes can only be used with one J2EE application,
and redeployment of the application is not possible. Adding the following system
property to the J2EE RI startup script changes this default behavior.

-Dcom.sun.fortedj.persistence.model.multipleClassLoaders

c. Give the system property one of the following values:

= ignore : Use only one persistence-capable class definition. This setting is
suitable where the same persistence-capable class is used in multiple
applications and the class definition is identical in each one, or where you are
using the persistence-capable class in only one application, and are modifying
it during the develop/deploy/test cycle.

= reload : Replace the existing persistence-capable class definition. This setting
is suitable where you are using the persistence-capable class in only one
application, and are modifying it during a develop/deploy/test cycle.

In a Solaris environment, set the PROPS variable in $J2EE_HOME/bin/j2ee to:

PROPS="-Dcom.sun.enterprise.home=$J2EE_HOME -
Djava.security.policy==$J2EE_HOME!/lib/security/server.policy
-Dcom.sun.fortedj.persistence.model.multipleClassLoaders=reload"

In a Windows environment, directly change the %JAVACMD®& mmand in j2ee.bat

%JAVACMD% -Djava.security.policy==%J2EE_HOME%\lib\security\
server.policy -Dcom.sun.enterprise.home=%J2EE_HOME% -
Dcom.sun.forte4j.persistence.model.multipleClassLoaders=reload -
classpath "%CPATH%" com.sun.enterprise.server.J2EEServer %1 %2

. Start the J2EE RI server, and create your Enterprise JavaBean as described in the
Enterprise JavaBean and J2EE RI documentation.

You will also need to set the PersistenceManagerFactory as a Resource reference, as
described in “Setting Resource References” on page 147.

Chapter 6 Using Transparent Persistence With Enterprise Java Beans 151

Note — If you need to do a rollback in J2EE RI business methods that use container-
managed transactions for transaction demarcation, you must prepare a serialized
copy of a persistence instance before calling ctx.setRollbackOnly() . See
“Providing for Serialization” on page 143.

Integrating Transparent Persistence With
the iPlanet Application Server

The iPlanet Application Server (1AS) 6.0 SP3 plug-in module provides an application
program interface (API) for the iPlanet application and web server plugin modules.
You can use Transparent Persistence with the iAS as described in Using Transparent
Persistence with Enterprise JavaBeans with the following added procedures:

1. Change registry parameters to be able to register and perform a JNDI lookup of
the persistenceManagerFactory resource reference.

a. Run kregedit (located at IAS_Install_dir/ias/bin/kregedit on Solaris
or kregedit.bat on Windows.)

b. Click on SOFTWARE\iPlanet > Application Server 6.0 > jndiConfig.
c. Select Edit >Add Key, then type jdo.
d. Right-click on jdo.

e. Select Edit >Add Value. Add the following:

« contextClassName
« com.netscape.server.jdo.PMFContext

f. Select Edit > Add Value again. Add the following;:

« factoryClassName
« com.netscape.server.jdo.PMFContextFactory

2. Add the necessary JAR files to the CLASSPATH.

a. On Solaris:

152 Programming Persistence ¢ August 2001

= Insert the following code before the THIRD_PARTY_JDBC_CLASSPATHne in
IAS_Install_dir/ias/env/iasenv.ksh :

FFJ_IDE=IDE_Install TP_PATH=$FFJ_IDE/modules/dbschema.jar:
$FFJ_IDE/lib/ext/xerces.jar:$FFJ_IDE/modules/ext/persistence-
rt.jar:$FFJ_IDE/iPlanet/jdoias/iaspmf.jar:$FFJ_IDE/iPlanet/jdoias

= Add the Transparent Persistence path $TP_PATHin front of the CLASSPATH:
CLASSPATH=$TP_PATHexisting code
b. In a Windows environment, you'll need to edit the Java CLASSPATH:

= Select SOFTWARE\iPlanet Application Server 6.0 Java CLASSPATH registry
and add the following in front of the path:

IDE_Install/modules/dbschema.jar:IDE_Install/lib/ext/xerces.jar:IDE_Install/mo
dules/ext/persistence-rt.jar:IDE_Install/iPlanet/jdoias/iaspmf.jar:
IDE_Install/iPlanet/jdoias

3. Restart the iPlanet Application Server.
Follow the steps in the documentation to enable the iPlanet plugin.
4. Add and register PersistenceManagerFactory.

a. Click on JDO(TP) Persistence Manager Factories, choose Add a Persistence
Manager Factory, and fill in values for the properties:

Connection Factory = jdbc/PointBase

//("jdbc/" + DataSource name)

Persistence Manager Factory Name = empPMF
//(other boolean settings are optional)

b. Right-click on the created Persistence Manager Factory (empPMF and choose
Register. Choose your server in the Select Server to Register window. Press the
Register button.

c. Set the PersistenceMangerFactory as a Resource Factory using the Enterprise
JavaBean Property sheet.

This is described in “Setting Resource References” on page 147. You also need to
set DataSource reference for all Enterprise JavaBeans that use
PersistenceManagerFactory

5. Follow steps in the plug-in documentation to fix resource references for iAS
deployment of your beans.

Chapter 6 Using Transparent Persistence With Enterprise Java Beans 153

154 Programming Persistence ¢ August 2001

APPENDIX A

System Requirements

Transparent Persistence supports development and use of persistence-capable
classes with the DB2 Universal Database, Oracle 8i, PointBase, and Microsoft SQL
Server.

In addition to the Transparent Persistence module, running in Forte for Java, you
need one of the following supported JDBC drivers installed in the lib/ext
subdirectory of the Forte for Java installation directory:

WebLogic for SQL Server 2000 driver

PointBase Embedded 3.5 driver with PointBase bundled in IDE
ORACLE 8i 8.1.6 Thin

DB2 Universal Database, Version 7.1

Note — Transparent Persistence depends on ANTLR 2.7.0 in order to parse query
statements. ANTLR 2.7.0 is included, and works automatically, but will conflict with
other versions of ANTLR you may have in your runtime JVM. Be sure to disable any
other versions of ANTLR before running Transparent Persistence.

Your CLASSPATHvariable needs to include the following software:
= A supported JDBC driver
» Transparent Persistence runtime package, persistence-rt.jar

« dbschema.jar from the modules directory of the Forte for Java installation,
from <FFJ install root>/modules/dbschema.jar

= An XML SAXParser from <FF] install root>/lib/ext/xerces.jar
The location of the persistence-rt.jar and dbschema jar files depend on how you
install the Transparent Persistence and DBSchema modules:

= If you install the modules at the same time you install the IDE, the files will be
located in <install root>/modules/ext

= If you install the modules from the Update Center running in multi-user mode
(the default), they will be in <ffjuser>/modules/ext

155

= If you install the modules from the Update Center in single user mode, they will
be in <install root>/modules/ext

Note — If you are running Transparent Persistence when you modify your
CLASSPATHvariable, you will need to restart Forte for Java for the changes to take
effect.

156 Programming Persistence ¢ August 2001

APPENDIX B

Transparent Persistence JSP Tags

Transparent Persistence supports the JSP tags PersistenceManager and
jdoQuery . For general information on JSP tags, refer to Building Web Components in
the Forte for Java Programming Series.

PersistenceManager Tag

The PersistenceManager tag creates a PersistenceManager that is used by the
jdoQuery tag to retrieve objects through a database.jdbc ~ connection. You can
store the Persistence Manager in any of the four scopes: application, session, request
or page. The default scope is application.

PersistenceManager attributes:

id (required)

The ID under which the PersistenceManager information is stored. The JDO
Query tag uses id to retrieve the objects. The attribute can be set statically or
using a JSP expression.

scope

The scope where the PersistenceManager is stored. The value needs to be
application, session, request, or page. The attribute can be set statically or using a
JSP expression.

connection (required)

The attribute specifies the connection ID, which is used to retrieve the connection
information. The attribute can be set statically or using JSP expression.

connectionScope

157

The scope where the connection ID is searched. The value needs to be application,
session, request, or page. If the attribute is not specified, the system searches all the
scopes in the following order: page, request, session, application. The attribute can
be set statically or using JSP expression.

PersistenceManager Tag Example:

<% @taglib uri="/WEB-INF/lib/dbtags.jar" prefix="jdbc" %>
<% @taglib uri="/WEB-INF/lib/tptags.jar" prefix="jdo" %>
<jdbc:connection id="conn"
driver="weblogic.jdbc.mssqlserver4.Driver"
url="jdbc:weblogic:mssqglserver4:marina@bete:1433"
user="mv" password="mv" />

<jdo:persistenceManager id="empPM" connection="conn" />

jdoQuery Tag

The jdoQuery tag is used to query the database and get the results. These results
then can be passed to iterator tags in order to be displayed.

The jdoQuery tag supports the standard SQL statements Insert, Update, Delete and
Select. Because the SQL statement is specified in the body instead of as an attribute,
JSP scripting can be used to control how query is created.

jdoQuery attributes:
» ID (required)

The ID under which the query instance is stored. If a queryid instance is present
in the scope specified by queryscope, then the body of the query is not executed.
Note that queryid is different from the Resultsld . Resultsld is the ID under
which the results are stored.

= className (required)

Fully qualified class name (package.subpackage.ClassName) of the Object
that will be retrieved from the database.

= filter

The filter (for example, emp.salary < 10000) used to construct query to
retrieve the Objects from the database.

= imports

The import string that will be used to resolve the class names and variables used
in the constructed query.

158 Programming Persistence ¢ August 2001

variables

The variables that will be used in constructing the query for retrieving the objects
from database.

persistenceManager (required)
The PersistenceManager id used to construct and execute the query.
persistenceManagerScope

The scope where the PersistenceManager ID is searched. The value needs to
be one of the following: application, session, request, page. If the value is not set,
the system searches all the scopes in the following order: page, request, session,
application. The attribute can be set statically or using JSP expression.

resultsid (required)

The result data from the query is stored under the value specified by this
attribute. The attribute can be set statically or using JSP expression.

resultsScope

The scope where the result data is stored. The value specified should be one of the
following: application, session, request, page.

jdoQuery Tag Example:

<% @taglib uri="/WEB-INF/lib/dbtags.jar" prefix="jdbc" %>
<% @taglib uri="/WEB-INF/lib/tptags.jar" prefix="jdo" %>
<jdbc:connection id="conn"
driver="weblogic.jdbc.mssqlserver4.Driver"
url="jdbc:weblogic:mssqlserver4:marina@bete:1433"
user="mv" password="mv" />

<jdo:persistenceManager id="empPM" connection="conn" />
<jdo:jdoQuery id="employeeQuery"
persistenceManager="empPM"
className="empdept.post.Employee"
resultsid="employeeDS" resultsScope="session" />

<% printJDOQueryResults(pageContext,out,"employeeDS"); %>
<jdbc:cleanup scope="session" status="ok" />

Appendix B Transparent Persistence JSP Tags 159

160 Programming Persistence ¢ August 2001

APPENDIX C

Restrictions and Limitations

In this appendix, we discuss unsupported or restricted features, the ways database-
specific behaviors and limitations can affect your use of Transparent Persistence and
the results you might receive, and file migration information for developers who
have created classes using previous versions of Transparent Persistence.

The issues covered in this section are:
= Unsupported features and restrictions

= Restrictions and limitations on the use of Transparent Persistence with the
following;:

« PointBase 3.5 Network (Multi-User) Server Product, bundled with the IDE.
» Oracle 8.1.6 Thin Driver

= WebLogic JDBC driver 5.1.0 for Microsoft SQL Server 2000

« DB2 Universal Database, Version 7.1

= The Microsoft JDBC-ODBC bridge

= Migrating classes created by earlier versions of Transparent Persistence

Unsupported Features

Transparent Persistence does not currently support the following features:
= Tables without primary keys

= The ability to update primary key values

= Join tables with extra columns

» User-defined concurrency groups

= User-defined, large object, and national character set datatypes, such as Blobs,
Clobs, text, nChar, nVarchar, and ntext

161

= Inheritance: A persistence-capable class cannot extend directly or indirectly from
another class.

= Relationships between classes across multiple database schemas
= Inserting and deleting object graphs containing circular dependencies

= Views that do not include all the primary key columns of the table (simple and
composite primary keys). Transparent Persistence does not support views if they
do not contain all the primary key columns.

= The runtime behavior of classes mapped to views is subject to the limitations of
the underlying database with regard to updating and deleting views. If the
limitations are violated, then the database will throw an exception. Some of these
limitations include:

= Views having aggregate functions (for example, SUM, AVG, max, min,
count, and count(*)) in their definitions

= Views having user-defined functions
= Views having WITH CHECK OPTIOBRh their definition
= Views having the group by clause in their definition

= Views having the order by clause in their definition

162

Restrictions

The following features are supported, but restricted in some cases.

Application Class Loaders

Transparent Persistence assumes that two persistent-capable classes that have a
relationship are loaded using the same class loader. Transparent Persistence does not
support the scenario that two classes having the same class name are loaded by
different class loaders. This will result in a JDOFatalUserException , “class
class.Name loaded by multiple class loaders”.

In an application server environment, this restriction can be resolved by using the
com.sun.forte4j.persistence.model.multipleClassLoaders option , as
described in Chapter 6.

Programming Persistence * August 2001

Comparing Collection Relationships

You cannot compare a collection relationship with a non-null value. The query will
result in a JDOUnsupportedOptionException

User-Defined Clone() Methods

Transparent Persistence requires that a newly created clone of a persistence instance
of a persistence-capable class is a transient instance with respect to Transparent
Persistence. For almost all cases, this can be ensured by the Transparent Persistence's
enhancer, which either generates an appropriate clone() methods (if none has been
defined by the user) or adds some code to the byte-code of a user-defined clone()
method.

The created clone is marked to be transient right after a generated or user-defined
clone method has returned from calling the clone method of the superclass
(super.clone()). Therefore, no user-defined clone methods in all superclasses of a
persistence-capable class can directly or indirectly invoke code that accesses any
persistent fields of the newly created clone. Such an invocation would cause an
interaction with the Transparent Persistence runtime before the clone has been
marked as transient in the persistence-capable subclass.

User-Defined Constructors

The Transparent Persistence runtime creates instances of a persistence-capable class
using a special constructor that is added by the enhancer. This constructor does not
call any other, constructors of the persistence-capable class (for example, user-
defined constructors), but instead invokes a no-argument (also called the “default”)
constructor of the superclass of the persistence-capable class. This imposes the
following restrictions upon persistence-capable classes:

= The superclass must provide a default constructor accessible to the persistence-
capable subclass.

= For persistence-capable classes, no user-defined constructors or initializations of
non-static instance fields will be executed on instances created by the Transparent
Persistence runtime as result of a query or relationship navigation.

Appendix C Restrictions and Limitations 163

Database Limitations and Restrictions

The following limitations and restrictions apply only to specific databases, as
detailed below.

PointBase 3.5 Network (Multi-User) Server

This section describes how the PointBase Network Server 3.5, bundled with the IDE,
behaves in certain circumstances.

Error Message: “java.net.SocketException: Socket

closed ”
If PersistenceManagerFactory is configured without connection pooling and
there are several instances of the PersistenceManagerFactory created that are

not in use any more, the garbage collection process prints the following message to
the System.out when the connection is closed:

java.net.SocketException: Socket closed

The exception is ignored internally, so there is no affect on runtime.

PointBase Database version 3.4

Transparent Persistence cannot support the PointBase Database version 3.4 because
PointBase Database version 3.4 does not support regular identifiers within quote
marks.

To run your application with this version, you need to override 3.5 settings by
creating a file .tpersistence.properties with the following two lines:

database.pointbase. QUOTE_CHAR_END=
database.pointbase. QUOTE_CHAR_START=

Place this file in the root directory of the application that calls the database.

164 Programming Persistence ¢ August 2001

ISEmpty() Method

Using the isEmpty() method in a filter will throw a JDBC SQLException. An example
of such a query is:

query.setFilter(“employees.isEmpty()”);

Location of PointBase Network Server

The Database Schema wizard assumes that the PointBase Network Server is located
in the directory from which you started the database. For example, if you start the
database from the IDE, it will assume the database is located in:

Forte_Home\pointbase\network\databases

Multiple Relationship Fields in a Fetch Group

You cannot put multiple relationship fields in a fetch group if you are using the
PointBase Network Server.

Workaround: For each related field, make sure the Fetch Group property is set to
none.

Oracle 8.1.6 Thin Driver

This section describes how the Oracle 8.1.6 database behavior can affect Transaction
Persistence under certain circumstances.

Concurrent Transactions

Data store transactions with isolation level SERIALIZABLE behave differently in
Oracle than they do with other supported databases. For example, note the
following two transactions:

Transaction 1: Fetch an object into cache, then modify the object fields in the cache.

Transaction 2: Fetch an object with the same primary key values into another cache,
then modify the object fields in the cache.

Most databases would put a read lock on the row and prevent you from committing
transaction 2 before you commit transaction 1. Oracle, however, only blocks a
transaction if another uncommitted transaction modifies the same row. If you try to

Appendix C Restrictions and Limitations 165

commit Transaction 2 before transaction 1, Oracle will commit transaction 2, then
throw an exception, with the message cannot serialize access for this
transaction

Concurrent Update Operations

If you attempt concurrent update operations in a multi-threaded environment with
Oracle, the process might hang.

Acquiring a Connection

The Oracle Thin Driver requires that a user name and password be specified when
acquiring a connection. It can be specified when initializing a Persistence Manager
Factory in a non-managed environment, or in a managed environment either when
configuring the properties of a data source, or by providing non-null arguments to
the method PersistenceManagerFactory.getPersistenceManager(user,
password) .

WebLogic JDBC Driver 5.1.0 for Microsoft SQL
Server 2000

This section describes how the WebLogic JDBC driver 5.1.0 for Microsoft SQL Server
2000 behavior can affect Transaction Persistence under certain circumstances.

One-to-One Relationships

An exception is thrown when you try to delete an instance that participates in One-
to-one relationships if one of the foreign key columns has a unique constraint on it.
Workaround: Null out the relationships in one transaction and then delete the
instance in a new transaction.

J2EE Reference Implementation Application Server

If you are using the J2EE RI Application Server with the WebLogic driver, and the
driver file is separate from the license file, you must repackage the license file into
the driver file to have the java.security.AllPermission for all components of
this driver.

166 Programming Persistence ¢ August 2001

DB2 Universal Database, Version 7.1

This section describes how the DB2 Universal database behavior can affect
Transaction Persistence under certain circumstances.

One-One Relationships

You can not remove one-one relationships, or set them to “null” because DB2 adds a
unique constraint to the Foreign Key column.

Columns With UNIQUE Constraints

Columns with UNIQUE constraints cannot have multiple null values.

DT_VARCHAR2_2000 Data Types

Transparent Persistence supports the DB2 DT_VARCHAR?2_2000 data type, with the
following restrictions:

= Do not put DT_VARCHAR?2_2000 fields in the default fetch group. The query will
fail. To prevent this, explicitly exclude JDBC Type DT_VARCHAR2_2000 fields
from the default fetch group while mapping the table.

= You can only use DT_VARCHAR2_2000 fields in queries where the value of the
DT_VARCHAR?2_2000 field is compared to null. For example,
DT_VARCHAR2_2000Field == null , or DT_VARCHAR2_2000Field != null

= You cannot use Update and Delete operations during the commit of optimistic
transactions. Use the Datastore transaction instead.

=« DT_VARCHAR2_2000 fields can only be updated with entries that are less than or
equal to 4000 bytes in size.

Select Statements

DB2 does not support queries that result in SELECT statement with ? <op> ?. This
can happen if you compare literals or query parameters.

Also, if a query attempts to select a record locked for an update, the application will
hang. This can happen in a data store transaction when updated instances are
flushed to the database prior to query execution.

Appendix C Restrictions and Limitations 167

Microsoft JDBC-ODBC Bridge

This section describes behavior of the Microsoft JDBC-ODBC Bridge
(SQLSRV32.DLL) version 2.0001 (03.70.0623) that may affect Transparent Persistence:

Concatenation
Queries that concatenate strings (for example, queries with the filters startsWith

endsWith , or uses + (such as "Engi" + "neering")) return 0 rows, but will not
throw any exception.

Dates

Dates 2079-06-07 00:00:00.0 and higher fail for updates with the SQLException:
Datetime field overflow

Migrating Files

The file format for persistent classes has changed in this version of the Transparent
Persistence module. Old files can be viewed and will run in this version, and can be
used in an application that uses both old and new files. However, files in the new
format will not work with older versions of the Transparent Persistence Module.

If you open and modify a previously created persistent file, Transparent Persistence
will ask you if it can migrate your class to the latest format.

You can choose to:

= Save Now, which commits the modification and migrates the file immediately.

= Save Later, which migrates the file the first time the file is saved.

= Cancel, which cancels any modifications to the file and the file remains in its
original format.

168 Programming Persistence ¢ August 2001

Index

A

Application Class Loaders
Restrictions, 162
Application development, 90

B
boolean, 116

C
Capturing a schema, 50
Cascading delete, 112

Classes
Key, 81,131
QOid, 81,131

persistence-capable, 41, 54,59, 61, 76, 81, 84

CLASSPATH, 37, 83,155
Collection, 48
Collection fields, 48

com.sun.fortedj.persistence. Transaction, 147

compile, 116

Component Inspector
using, 28

Concurrency, 9, 14

Concurrency control, 106
optimistic, 107

Connecting to databases, 94

Connection Factory, 90

Connection Management, 14
Connection pooling, 97
Connection resources, 9

Connection source, 19, 28
database URL, 19
JDBC driver name, 19
user name, 19

Connections (to databases), multiple
concurrent, 11
Constructors
restrictions, 163
Container Managed Transaction, 148
CRUD, 8

D
Data models, 24
setting for components, 25
Data Navigator, 19,23, 28
Data store concurrency, 106, 108
Data types
conversions, 85
supported, 85
Database Explorer
using with JDBC, 17
Database mapping
Map to Database command, 61
Database Mapping Wizard
Map classes to table, 61
Database Mapping wizard, 45, 59
Select Tables pane, 61

Index 169

Database Schema wizard, 50

DB2 Universal Database, 161, 167
dbschema jar, 83

Developing applications, 90

E
Enhancing, 13,41, 83
Enterprise Beans
providing for serialization, 143
Enterprise beans
transactions, 144
Enterprise Java Bean components, 141
Enterprise JavaBean components, 141
Entity Beans, 144
Establishing a connection, 29
Establishing a new connection
Advanced tab, 30
database name, 30
database URL, 30
driver name, 30
password, 30
Pooled Connection Source, 30
User Name, 30

example applications, location, 5

F

Features
Unsupported, 161
unsupported, 161

Fetch Group, 79

Fetch groups, 129

Fields
Key, 81,131
persistent, 60, 64, 66, 79, 81
relationship, 66, 79

File migration, 168

|

iAS, 141,152

Instance status, 130

iPlanet Application Server, 152
Isolation levels, 104

J

J2EE RI, 141, 150

JAR files, 37

JAR packager, 83

Java Data Objects, 40

Java Database Connectivity, 15

Java Generation Properties
Implement Serializable, 72
Java Transient Modifier, 72
Make Persistence-Capable, 72
Primitives Fields for FKs, 72
Relationship Naming, 72
Relationship Type, 72

Java Generation wizard, 46, 54
Customize Options, 55
Table Selection, 56

java.io.Serializable, 72, 143

Javadoc
using in Forte for Java, 5

javax.transaction.UserTransaction, 142, 147

JDBC, 10
JButton, 24
JCheckbox, 24
JComboBox, 24, 34
JList, 24
Jlist, 34
JRadioButton, 24
JTable, 24
JTextField, 34
JToggleButton, 24
programming, 15
programming model, 10
reference materials, 16

Selecting Database Columns, 25
support for multiple concurrent connections, 11
visual and non-visual components, 24

JDBC Form Wizard
previewing and generating an application, 36
selecting database tables, 31

G

Generate Java wizard, 45
Generating Java from a schema, 56
getObjectByID(Object oid), 142

Index 170 Programming Persistence « August 2001

JDBC tab in component palette, 19

JDBC visual form
creating, 27

JDBC-ODBC Bridge, 168
JDBC-ODBC bridge, 161
JDO exceptions, 139
JDO Identity, 130

JDO identity, 132

JDO interfaces, 137
JNDI, 142, 145

Join tables, 45, 56

Join to Foreign pane, 70

K

Key class, 131

Key classes, 81,131
Key fields, 81,131

L

Local to Join pane, 68

M
Managed relationship, 48

Many-many relationships, 48
Map Field to Multiple Columns dialog, 65
Map Relationship Field dialog box, 66

Map to Key
Join to Foreign pane, 70
Local to Join pane, 68
Map to Key pane, 67
Mapping
Database ->Java, 54
Database to Java, 40, 45
description, 43

Meet-in-the-middle, 40, 45, 54, 59

relationships, 45
techniques, 44
Methods
Collection.contains, 117
Collection.isEmpty, 117

getObjectByID(Object oid), 142

String.endsWith, 117
String.startsWith, 117
methods

com.sun.fortedj.persistence. Transaction, 147

javax.transaction.UserTransaction, 147

Migrating
classes, 168
files, 168

N

NBCachedRowSet, 19, 28
as a type of RowSet, 20

NBJDBCRowSet, 19, 28
as a type of RowSet, 20

NBWebRowSet, 19, 28
as a type of RowSet, 20

Non-visual components, 18

O
QOid class, 131
Oid classes, 81,131

One-many relationships, 48

One-one relationships, 48

Optimistic concurrency, 106, 107
Optimistic concurrency control, 107
Oracle8i 8.1.6 Thin, 161, 165

Overflow protection, 110

P

Password, 19

Persistence Manager, 13,87, 90, 93,96, 97, 101, 106,

107,110, 112, 113, 130, 131, 132, 137

Persistence Manager Factory, 13, 90, 92, 96, 100,

106, 137
Persistence-aware logic, 88

Persistence-capable class
reverting from, 60

Persistence-capable classes, 13,41,54,59, 61,76, 81,

84

migrating files from earlier versions, 168

Index 171

persistence-rt.jar, 83, 87
Persistent data

defined, 7

deleting, 112

inserting, 111

querying, 113

updating, 111
Persistent field properties, 77
Persistent fields, 60, 64, 66,79, 81, 136
Persistent object model, 133
PointBase Network Server, 161, 164
Pooled Connection Source, 19, 28

Previewing and generating an application, 36

Primary keys, 56
Primary table, 62,76
Properties

Field properties, 77
Properties Editor, 23
Properties window, 45, 59,76

Q
Queries, 113
Query, 91

R
Relationship class

generation, 57
Relationship Class Generation, 57
Relationship fields, 66, 79
Relationship Mapping Editor

Map to Key pane, 67
Relationship Mapping editor, 67
Relationship naming

Java Generation wizard, 72
Relationships, 45

managed, 48

many-many, 48

One-many, 48

one-one, 48
Resource Factory Reference, 147
Restrictions

Application Class Loaders, 162

Index 172 Programming Persistence « August 2001

constructors, 163
User-defined clone() methods, 163
User-defined constructors, 163

Restrictions and limitations, 161
Retain values, 107

RowSet
Other Properties and Event tabs, 21

RowSet object, 20
Running an Application, 84
Running Your JDBC Application, 37

S

Schema, 50

Secondary Table Settings dialog, 63
Select Primary Table dialog, 62
Select Tables pane, 61

Selecting a secondary rowset, 35
Selecting columns to display, 33
Selecting database tables, 31
Session Beans, 144

Setting Resource References, 147
Stored Procedure, 19, 28

Stored procedure, 24
Synchronization, 8

System requirements, 155

T

Transaction, 105

Transaction isolation levels, 32, 104

Transactions, 101

Transactions, committing, 11

Transparent Persistence, 12
programming, 40

Transparent Persistence Identity, 130

U

Uniquing, 132
Unsupported Features, 161
Unsupported features, 161

Upgrading, 168
User-defined Clone() Methods
Restrictions, 163

User-defined constructors
restrictions, 163

V
Visual Components, 18
void, 116

W
WebLogic for SQL Server, 161
WebLogic for SQLServer, 166
Wizards
Database Mapping, 45, 59
Database Schema, 50
Generate Java, 45
Java Generation, 46, 54

X

xerces.jar, 83,155

Index 173

Index 174 Programming Persistence « August 2001

	Programming Persistence
	Contents
	Figures
	Tables
	Preface
	Before You Read This Book
	How This Book Is Organized
	Typographic Conventions
	Related Documentation
	Documentation Available Online
	Online Help
	Examples
	Javadoc Documentation

	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Sun Welcomes Your Comments

	Overview of Persistence Programming
	About Persistence
	Representation of Persistent Data
	Application Issues

	Java Database Programming Models
	Java Database Connectivity (JDBC)
	JDBC Programming Model

	Transparent Persistence
	Transparent Persistence Programming Model

	Using Java Data Base Connectivity
	Programming JDBC
	General Programming Steps
	JDBC Reference Materials
	Learning JDBC Programming
	Technical Articles
	Getting Started With JDBC
	JDBC Basics

	Using the Database Explorer
	Using JDBC Components
	The JDBC Tab
	Connection Source
	Pooled Connection Source
	Understanding RowSets
	Other Properties, Event, and Code Generation Tabs for a RowSet
	Data Navigator
	Stored Procedures

	Programming With JDBC Components
	Setting Data Models for Components
	To Configure the Data Model for JTable
	To Configure the Selection Model for JTable and JList
	To Configure the Data Model for JList and JComboBox
	To Configure the Data Model for JCheckbox, JRadioButton, and JToggleButton
	To Configure the Document Model for Text Components
	Creating a Visual Form
	To Create a Visual Form With Swing Components That Interact With a Database
	Using the Component Inspector With JDBC Components

	Using the JDBC Form Wizard
	To Open the JDBC Wizard
	Establishing a Connection
	Selecting Database Tables or Views

	Selecting Columns to Display
	To Edit Column Titles

	Selecting a Secondary RowSet
	To Select a Secondary RowSet
	Previewing and Generating an Application

	Running Your JDBC Application

	Transparent Persistence Overview
	What Is Transparent Persistence?
	Programming Transparent Persistence
	Developing Persistence-Capable Classes
	To Create Java Packages From a Database Schema
	Developing Persistence-Aware Applications
	Transparent Persistence and Enterprise JavaBeans

	Developing Persistence-Capable Classes
	Mapping Capabilities
	Mapping Techniques
	Mapping Relationships
	Managed Relationships
	One-One Relationships
	One-Many Relationships
	Many-Many Relationships
	To Create a Managed Relationship

	Developing Persistence-Capable Classes
	Capturing a Schema
	To Capture a Schema
	Creating Persistence-Capable Classes
	Generating Persistence-Capable Classes From a Schema
	Mapping Existing Classes to a Schema

	To Make a Field Persistent
	To Map Classes to Tables Using the Database Mapping Wizard

	Setting Options and Properties
	Continuous Validation of Persistence Classes
	Java Generation Options
	Relationship Naming Policies
	To Open the Editor
	Persistence-Capable Class Properties
	Persistent Field Properties

	Key Fields and Key Classes
	To Set up a Key Class and Key Fields

	Running an Application
	Creating a JAR File
	To Create a JAR File
	Running an Application in Forte for Java

	Supported Data Types

	Developing Persistence-Aware Applications
	Overview
	Developing Persistence-Aware Classes
	Persistence-Aware Logic
	Development Steps
	Creating a Persistence Manager Factory
	Connecting to Databases
	Connection Factory
	Simple Connections
	Pooled Connections

	Creating a Persistence Manager
	Transactions
	Transaction Isolation Levels

	Concurrency Control
	Retain Values
	Coding With Optimistic Concurrency Control
	Coding With Data Store Concurrency Control

	Accessing the Database
	Overflow Protection
	Inserting Persistent Data
	Updating Persistent Data
	Deleting Persistent Data

	Querying the Database
	Query Filters
	Expression Capabilities
	Examples

	Overlapping Primary Key and Foreign Key
	Creating an Order/Lineitem Relationship
	Deleting Order/Lineitem Relationship
	Restrictions

	Fetch Groups
	Checking Instance Status
	Transparent Persistence Identity
	Oid Class
	Uniquing
	Mapping

	Persistent Object Model
	Architecture
	Persistent and Transient Objects

	Field Types of Persistent-Capable Classes
	Persistent Fields
	Persistent and Non-Persistent Fields

	JDO Interfaces
	JDO Exceptions

	Debugging Persistence-Aware Applications
	To Debug an Application

	Using Transparent Persistence With Enterprise Java Beans
	How Transparent Persistence Works in Enterprise Beans
	Providing for Serialization
	Transactions With Enterprise Beans

	Creating an Enterprise Bean That Uses Transparent Persistence
	Setting the JNDI Lookup
	To Perform a JNDI Lookup
	To Create a Transparent Persistence-Aware Session Bean Using the IDE

	Setting Resource References
	To Set the Persistence Manager Factory as a Resource Reference

	Using Bean-Managed Transactions
	Using Container-Managed Transactions
	To Use a Container-Managed Transaction

	Integrating Transparent Persistence Into the J2EE Reference Implementation
	Integrating Transparent Persistence With the iPlanet Application Server

	System Requirements
	Transparent Persistence JSP Tags
	PersistenceManager Tag
	jdoQuery Tag

	Restrictions and Limitations
	Unsupported Features
	Restrictions
	Application Class Loaders
	Comparing Collection Relationships
	User-Defined Clone() Methods
	User-Defined Constructors

	Database Limitations and Restrictions
	PointBase 3.5 Network (Multi-User) Server
	Error Message: “java.net.SocketException: Socket closed”
	PointBase Database version 3.4
	isEmpty() Method
	Location of PointBase Network Server
	Multiple Relationship Fields in a Fetch Group

	Oracle 8.1.6 Thin Driver
	Concurrent Transactions
	Concurrent Update Operations
	Acquiring a Connection

	WebLogic JDBC Driver 5.1.0 for Microsoft SQL Server 2000
	One-to-One Relationships
	J2EE Reference Implementation Application Server

	DB2 Universal Database, Version 7.1
	One-One Relationships
	Columns With UNIQUE Constraints
	DT_VARCHAR2_2000 Data Types
	Select Statements

	Microsoft JDBC-ODBC Bridge
	Concatenation
	Dates

	Migrating Files

	Index

