Event Notification Service Manual

IPlanet™ Messaging and Collaboration

IPlanet Calendar Server5.1 andiPlanet Messaging Server5.2

January 2002

Copyright © 2002 Sun Microsystems, Inc. All rights reserved.

Sun™, Sun Microsystems™, the Sun logo™, iPlanet™, the iPlanet logo™, and JavaScript™ are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries. UNIX® is a registered trademark in the United States and other
countries, exclusively licensed through X/Open Company, Ltd. Netscape™ and the Netscape N logo are registered trademarks of
Netscape Communications Corporation in the U.S. and other countries. Other Netscape logos, product names, and service names are
also trademarks of Netscape Communications Corporation, which may be registered in other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of Sun
Microsystems, Inc. and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc. Tous droits réservés.

Sun™, Sun Microsystems™, the Sun logo™, iPlanet™, the iPlanet logo™, et JavaScript™ sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et d’autre pays. UNIX® est une marque enregistree aux Etats-Unis et
dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. Netscape™ et the Netscape N logo sont des marques
déposées de Netscape Communications Corporation aux Etats-Unis et d’autre pays. Les autres logos, les noms de produit, et les
noms de service de Netscape sont des marques déposées de Netscape Communications Corporation dans certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut étre reproduite sous quelque forme ou par
quelque moyen que ce soit sans 1’autorisation écrite préalable de Sun Microsystems, Inc. et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ETAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU A
UN BUT PARTICULIER OU DE NON CONTREFACON SONT EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES A LA LOL

Contents

AbOUt This GUIAE e e e e e e 7
Who Should Read This BOOKo oot e e ettt et e 7
What You Need to0 KNow o e e e e e e e e 7
How This Book is Organized i i 8
Conventions Used in This Manualttt e it ettt et 8
Where to Find Related Information ittt 9
Chapter 1 Introduction to Event Notification Service 11
Event Notification Service OVEIVIEWttt e e et ettt ettt 11
ENS iniPlanet Calendar SErveriii ittt ettt e 12
ENS in iPlanet Messaging Serverottt 12
Event Referenceso e e e e 13
iPlanet Calendar Server Event Reference Example 14
iPlanet Messaging Server Event Reference Example 14
ENS Connection POOLINGo o i 14
Multiple Pool EXtension 15
Event Notification Service Architectureciuiiniiein ittt ittt 15
NoOtify . . 16
SUDSCIIDE . . oot e 17
Unsubscribe e 17
How iPlanet Calendar Server Interacts with ENS 17
iPlanet Calendar Server Alarm Queue ittt 18
iPlanet Calendar Server Daemonsiii ittt et et 19
Alarm Transfer Reliability 20
iPlanet Calendar Server Example......... 20
How iPlanet Messaging Server Interacts with ENS, 22
Event Notification Service APTOVerviewoii it ittt 24
DS N d @ 7 =3 v4 T 7P 24
ENS Java APTOVEIVIEWot e e e e e e e e e e e 25
Building and Running Custom Applicationso 26
Location of Sample Code o 26

Location of Include Files i 26

Dynamically Linked/Shared Libraries 27
Runtime Library Path Variable 30
Chapter 2 Event Notification Service C APl Reference 31
Publisher API FUNCIONS LiSt oot e e e et ettt ettt e 32
Subscriber APT Functions List oot i e et et e 32
Publish and Subscribe Dispatcher Functions List 33
Publisher AP 33
publisher_t 34
publisher_cb_t 34
publisher new_a 35
publisher new_s 36
publish_a 36
Publish_so 37
publisher_delete 38
publisher_get_subscriber 38
renl_create_publisher 39
renl_cancel publisher 40
SUDSCIIbEr AP . .. e 40
SUDSCI DTt . ..o 41
subscription_t 41
SUDSCIIbEr _Ch . . o 41
subscriber_notify_cb_t 42
SUDSCIIDOr MW _a ..o e 42
SUDSCI DO W S . .ottt 43
SUDSCIIDE @ . ..o 44
UNSUDSCIIDE_a . .. o 45
subscriber_delete 46
subscriber_get_publisher 46
renl_create_subscriber 46
renl_cancel_subscriber 47
Publish and Subscribe Dispatcher API 48
pas_dispatcher_t 48
pas_dispatcher_new 48
pas_dispatcher_delete 49
pas_dispatch 49
pas_shutdown 50
Chapter 3 Event Notification Service Java (JMS) APl Reference 51
Event Notification Service Java (JMS) API Implementation................ 51
Prerequisites to Use the Java API 51

4 iPlanet Messaging and Collaboration Event Notification Service Manual ¢ January 2002

Sample Java Programs 52

Setting Up Your Environment i 52
To Compile the JmsSample Program i 52
To Compile the JBiff Program i 53
To Run the JmsSample Program i 53
To Run the JBiff Demo Program i 54
Java (JMS) APTOVEIVIEWottt ettt et et e e e e e e e e e et e e e e ees 54
New Proprietary Methods 55
com.iplanet.ens.jms.EnsTopicConnFactory i 55
com.iplanet.ensjms.EnsTOPIiCo 55
Implementation Notes 56
Shortcomings of the Current Implementation, 56
Notification Delivery 56
JMS Headersottt e e e e e 56
MiSCEllaneouUS oottt e 57
Chapter 4 iPlanet Calendar Server Specific Information 59
iPlanet Calendar Server Notificationsttt i 59
Format of Calendar Notificationsiiiiiiiin i 62
iPlanet Calendar Server Sample Code i 62
Sample Publisher and Subscriber 62
Publisher Code Sample 62
Subscriber Code Sample 65
Reliable Publisher and Subscriber 68
Reliable Publisher Sample 68
Reliable Subscriber Sample 71
Chapter 5 iPlanet Messaging Server Specific Information 75
iPlanet Messaging Server Events and Parameters o L. 75
Parameters e 76
Payloado 78
Examples 79
iPlanet Messaging Server Sample Code i 81
Sample Publisher 81
Sample Subscriber 86
Implementation NOtes 91
GlOSSaY .ttt e e 93
INOEX o o e 95

6 iPlanet Messaging and Collaboration Event Notification Service Manual ¢ January 2002

About This Guide

This manual describes the iPlanet™ Event Notification Service (ENS) architecture
and APIs for iPlanet™ Messaging Server and iPlanet™ Calendar Server. It gives
detailed instructions on the ENS APIs that you can use to customize your server
installation.

This preface contains the following sections:

Who Should Read This Book
What You Need to Know

How This Book is Organized
Conventions Used in This Manual

Where to Find Related Information

Who Should Read This Book

This manual is for programmers who want to customize applications in order to
implement iPlanet Messaging Server and iPlanet Calendar Server.

What You Need to Know

This book assumes that you are a programmer with a knowledge of C/C++ and
Java Messaging Service, and that you have a general understanding of the
following:

The Internet and the World Wide Web

Messaging and calendaring concepts

How This Book is Organized

This book contains the following chapters and appendix:
® About This Guide (this chapter)
e Chapter 1, “Introduction to Event Notification Service”

This chapter describes the iPlanet Event Notification Service (ENS)
components, architecture, and Application Programming Interfaces (APIs).

e Chapter 2, “Event Notification Service C API Reference”
This chapter describes the ENS C APL
* Chapter 3, “Event Notification Service Java (JMS) API Reference”
This chapter describes the ENS Java API and provides sample code.
e Chapter 4, “iPlanet Calendar Server Specific Information”

This chapter describes the iPlanet Calendar Server event notifications and
provides sample iPlanet Calendar Server code.

¢ Chapter 5, “iPlanet Messaging Server Specific Information”

This chapter describes the iPlanet Messaging Server event references and
provides sample iPlanet Messaging Server code.

* “Glossary”

Conventions Used in This Manual

8

Monospaced font - This typeface is used for any text that appears on the computer
screen. It is also used for filenames, distinguished names, functions, and examples.

Italicized font - This is used to represent text that you enter using information that is
unique to your installation (for example, variables). It is used for server paths and
names and account IDs.

All paths specified in this manual are in UNIX format. If you are using a Windows
NT-based iPlanet Messaging Server or iPlanet Calendar Server, you should assume
the Windows NT equivalent file paths whenever UNIX file paths are shown in this
book.

iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

Where to Find Related Information

In addition to this guide, these other documents are available:

¢ iPlanet Messaging Server Documentation
http://docs.iplanet.com/docs/manuals/messaging.html
e iPlanet Calendar Server Documentation

http://docs.iplanet.com/docs/manuals/calendar.html

About This Guide

9

10 iPlanet Messaging and Collaboration Event Notification Service Manual ¢ January 2002

Chapter 1

Introduction to Event Notification
Service

This chapter provides an overview of the iPlanet Event Notification Service (ENS)
components, architecture, and Application Programming Interfaces (APIs).

This chapter contains these sections:
¢ Event Notification Service Overview
¢ Event Notification Service Architecture

¢ Event Notification Service API Overview

Event Notification Service Overview

The Event Notification Service (ENS) is iPlanet’s underlying publish-and-subscribe
service available in the following iPlanet products:

e jPlanet Calendar Server, Release 5.0 and later

e iPlanet Messaging Server, Release 5.1 and later (integrated but not enabled)

NOTE See Appendix C in the iPlanet Messaging Server 5.2 Administrator’s

Guide for instructions on enabling and administering ENS in iPlanet
Messaging Server.

11

Event Notification Service Overview

ENS acts as a dispatcher used by iPlanet applications as a central point of collection
for certain types of events that are of interest to them. Events are changes to the
value of one or more properties of a resource. In this structure, a URI (Uniform
Resource Identifier) represents an event. Any application that wants to know when
these types of events occur registers with ENS, which identifies events in order and
matches notifications with subscriptions. Event examples include:

e Arrival of new mail to a user’s inbox
® User’s mailbox has exceeded its quota
e (Calendar reminders

Specifically, ENS accepts reports of events that can be categorized, and notifies
other applications that have registered an interest in certain categories of events.

Event Notification Service provides a server and APIs for publishers and
subscribers. A publisher makes an event available to the notification service; and a
subscriber tells the notification service that it wants to receive notifications of a
specific event. See “Event Notification Service API Overview,” on page 24 for more
information on the ENS APIs.

ENS in iPlanet Calendar Server

By default, ENS is enabled in iPlanet Calendar Server. For iPlanet Calendar Server
you do not need to do anything else to use ENS.

A user who wants to subscribe to notifications other than the alarms generated by
iPlanet Calendar Server needs to write a subscriber.

There is sample ENS C publisher and subscriber code bundled with iPlanet
Calendar Server. See “iPlanet Calendar Server Sample Code,” on page 62 for that
code.

Sample iPlanet Calendar Server code is provided with the product in the following
directory:

Jopt/SUNWics5/cal/csapi/samples/ens

ENS in iPlanet Messaging Server

ENS and iBiff (the ENS publisher for iPlanet Messaging Server, also referred to as
the notification plug-in to iPlanet Messaging Server) are bundled in iPlanet
Messaging Server. However, by default, they are not enabled.

12 iPlanet Messaging and Collaboration Event Notification Service Manual ¢ January 2002

Event Noatification Service Overview

To subscribe to notifications in iPlanet Messaging Server, you need to first perform
the following two items on the iPlanet Messaging Server host:

¢ Load the iBiff notification plug-in
¢ Stop and restart the messaging server

See Appendix C in the iPlanet Messaging Server 5.2 Administrator’s Guide for the
instructions to enable ENS on iPlanet Messaging Server.

A user who wants to subscribe to iPlanet Messaging Server notifications needs to
write a subscriber to the ENS API. To do so, the subscriber needs to know what the
various iPlanet Messaging Server notifications are. See Chapter 5, “iPlanet
Messaging Server Specific Information” for that information.

iPlanet Messaging Server comes bundled with sample ENS C publisher and
subscriber code. See “iPlanet Messaging Server Sample Code,” on page 81 for more
information.

Sample iPlanet Messaging Server code is provided with the product in the
following directory:

server-root/bin/msg/enssdk/examples

Event References

Event references identify an event handled by ENS. Event references use the
following URI syntax (as specified by RFC 2396):

scheme:ll authority resourcel[? paraml=valuel¶m2=value2&aram3=value3]
where:
e scheme is the access method, such as http , imap, ftp , or wcap.

For iPlanet Calendar Server and iPlanet Messaging Server, the ENS scheme is
enp.

* authority is the DNS domain or hostname that controls access to the resource.

* resource is the path leading to the resource in the context of the authority. It can
be composed of several path components separated by a slash (“/ ”).

® param is the name of a parameter describing the state of a resource.
® oalue is its value. There can be zero or more parameter/value pairs.

In general, all iPlanet Calendar Server events start with the following:

Chapter 1 Introduction to Event Notification Service 13

Event Notification Service Overview

enp:/llics

The iPlanet Messaging Server notification plug-in iBiff uses the following scheme
and resource by default:

enp://127.0.0.1/store

NOTE Although the event reference has a URI syntax, the scheme,
authority, and resource have no special significance. They are
merely used as strings with no further interpretation in ENS.

iPlanet Calendar Server Event Reference Example

The following is an example event reference URI to subscribe to all event alarms
with a calendar ID of jac :

enp://lics/alarm?calid=jac

NOTE This is not meant to be used by end users.

iPlanet Messaging Server Event Reference Example

The following is an example event reference that requests a subscription to all
NewMsgevents for a user whose user ID is blim :

enp://127.0.0.1/store?evtType=NewMsg&mailboxName=blim

When using ENS with iPlanet Messaging Server, the user id you specify is case
sensitive.

NOTE This is not meant to be used by end users.

ENS Connection Pooling

The connection pooling feature of ENS enables a pool of subscribers to receive
notifications from a single event reference. For every event, ENS chooses one
subscriber from the pool to send the notification to. Thus, only one subscriber in
the pool receives the notification. The ENS server balances sending of notifications
among the subscribers. This enables the client to have a pool of subscribers that
work together to receive all notifications from a single event reference.

14 iPlanet Messaging and Collaboration Event Notification Service Manual ¢ January 2002

Event Notification Service Architecture

For example, if notifications are being published to the event reference
enp://127.0.0.1/store , a subscriber will normally subscribe to this event
reference to receive notifications. To have a pool of subscribers receive all the
notifications to this event reference, each subscriber in the pool only needs to
subscribe to the event reference enp+pool://127.0.0.1/store instead. The ENS
server chooses one subscriber from the pool to send the notification to.

NOTE The publisher still sends notifications to the simple event reference,
in the example above enp://127.0.0.1/store , that is, the
publisher has no knowledge of the subscriber pool.

Multiple Pool Extension

Connection pooling can support multiple pools of subscribers. That is, you can
have two pools of subscribers, each pool receiving all the notifications from the
event reference. The syntax of the event reference for the subscriber is:

enp+pool[. poolid]://[domain/event

where poolid is a string using only base64 alphabet. (See REC1521, Table 1, for what
the base64 alphabet contains.) So, for example, to have two pools of subscribers to
the event reference enp://127.0.0.1/store , each pool could subscribe to the
following event references:

enp+pool.1://127.0.0.1/store --> for first pool of subscribers
enp+pool.2://127.0.0.1/store --> for second pool of subscribers

Event Notification Service Architecture

On the Solaris platform, ENS runs as a daemon, enpd, along with other iPlanet
daemons in various calendar or messaging server configurations, to collect and
dispatch events that occur to properties of resources. On the Windows NT
platform, ENS runs as a service, enpd.exe .

For ENS, an event is a change that happens to a resource, while a resource is an
entity such as a calendar or inbox. For example, adding an entry to a calendar (the
resource) generates an event, which is stored by ENS. This event can then be
subscribed to, and a notification would then be sent to the subscriber.

The ENS architecture enables the following three things to occur:

Chapter 1 Introduction to Event Notification Service 15

Event Notification Service Architecture

Notification - This is a message that describes an event occurrence. Sent by the
event publisher, it contains a reference to the event, as well as any additional
parameter/value pairs added to the URI, and optional data (the payload) used
by the event consumers, but opaque to the notification service. Whoever is
interested in the event can subscribe to it.

Subscription - This is a message sent to subscribe to an event. It contains an
event reference, a client-side request identifier, and optional parameter/value
pairs added to the URL The subscription applies to upcoming events (that is, a
subscriber asks to be notified of upcoming events).

Unsubscription - This message cancels (unsubscribes) an existing subscription.
An event subscriber tells ENS to stop relaying notifications for the specified
event.

Notify

ENS notifies its subscribers of an event by sending a notification. Notify is also
referred to as “publish.” A notification can contain the following items:

An event reference (which, optionally, can contain parameter/value pairs)

Optional application-specific data (“opaque” for ENS, but the publisher and
subscriber agree apriori to the format of the data)

The optional application-specific data is referred to as the “payload.”

There are two kinds of notifications:

Unreliable notification - Notification sent from an event publisher to a
notification server. If the publisher does not know nor care about whether
there are any consumers, or whether they get the notification, this request does
not absolutely need to be acknowledged. However, a publisher and a
subscriber, who are mutually aware of each other, can agree to set up a reliable
event notification link (RENL) between themselves. In this case, once the
subscriber has processed the publisher’s notification, it sends an
acknowledgment notification back to the publisher.

Reliable notification - Notification sent from a server to a subscriber as a
result of a subscription. This type of notification should be acknowledged. A
reliable notification contains the same attributes as an unreliable notification.

See “Publisher API,” on page 33 for more information.

16 iPlanet Messaging and Collaboration Event Notification Service Manual ¢ January 2002

Event Notification Service Architecture

Subscribe

ENS receives a request to be notified of events. The request sent by the event
subscriber is a subscription. The subscription is valid during the life of the session,
or until it is cancelled (unsubscribed).

A subscription can contain the following items:
* An event reference (which, optionally, can contain parameter/value pairs)
* Arequest identifier

See “Subscriber API,” on page 40 for more information.

Unsubscribe

ENS receives a request to cancel an existing subscription. See “Subscriber APL” on
page 40 for more information.

How iPlanet Calendar Server Interacts with ENS

Figure 1-1 on page 18 shows how ENS interacts with iPlanet Calendar Server
through the alarm queue and two daemons, csadmind and csnotifyd

Chapter 1 Introduction to Event Notification Service 17

Event Notification Service Architecture

Figure 1-1

ENS in iPlanet Calendar Server Overview

csadmind

csnotifyd

Subscription

Store
(In Memory)

iPlanet Calendar Server Alarm Queue

ENS is an alarm dispatcher. This decouples alarm delivery from alarm generation.
It also enables the use of multiple delivery methods, such as email and wireless
communication. The csadmind daemon detects events by sensing changes in the
state of the alarm queue. The alarm queue’s state changes every time an alarm is
placed in the queue. An alarm is queued when a calendar event generates an
alarm. The following URIs represent these kind of events:

for events:
enp://lics/eventalarm?calid= calid&uid= uid&rid= rid&aid= aid
for todos (tasks):

enp://lics/todoalarm?calid= calid&uid= uid&rid= rid&aid= aid

18 iPlanet Messaging and Collaboration Event Notification Service Manual ¢ January 2002

Event Notification Service Architecture

where:

calid is the calendar ID.
uid is the event/todo (task) ID within the calendar.
rid is the recurrence id for a recurring event/todo (task).

aid is the alarm ID within the event/todo (task). In case there are multiple
alarms, the aid identifies the correct alarm.

The publisher csadmind dequeues the alarms and sends notifications to enpd. The
enpd daemon then checks to see if anyone is subscribed to this kind of event and
sends notifications to the subscriber, csnotifyd , for any subscriptions it finds.
Other subscribers to alarm notifications (reminders) can be created and deployed
within an iPlanet Calendar Server installation. These three daemons interacting
together implement event notification for iPlanet Calendar Server.

iPlanet Calendar Server Daemons

iPlanet Calendar Server includes two daemons that communicate to the ENS
daemon, enpd:

csadmind

The csadmind daemon contains a publisher that submits notifications to the
notification service by sending alarm events to ENS. It manages the iPlanet
Calendar Server alarm queue. It implements a scheduler, which lets it know
when an alarm has to be generated. At such a point, csadmind publishes an
event. ENS receives and dispatches the event notification.

To ensure alarm transfer reliability, csadmind requires acknowledgment for
certain events or event types. (See “Alarm Transfer Reliability,” on page 20.)
The csadmind daemon uses Reliable Event Notification Links (RENLs) to
accomplish acknowledgment.

csnotifyd

The csnotifyd ~ daemon is the subscriber that expresses interest in particular
events (subscribes), and receives notifications about these subscribed-to events
from ENS, and sends notice of these events and todos (tasks) to its clients by
email.

Chapter 1 Introduction to Event Notification Service 19

Event Notification Service Architecture

Though the ability to unsubscribe is part of the ENS architecture, csnotifyd
does not bother to unsubscribe to events for the following two reasons: there is
no need to unsubscribe or resubscribe during normal runtime; and due to the
temporary nature of the subscriptions store (it is held in memory), all
subscriptions are implicitly unsubscribed when the connection to ENS is
shutdown.

The csnotifyd ~ daemon subscribes to enp:///ics/alarm/ . The todo (task) or
event is specified in a parameter.

Alarm Transfer Reliability

To ensure that no alarm ever gets lost, csadmind and csnotifyd ~ use the RENL
feature of ENS for certain types of alarms. For these alarms, csadmind requests an
end-to-end acknowledgment for each notification it sends, while csnotifyd , after
successfully processing it, generates a notification acknowledgment for each RENL
alarm notifications it receives.

For these RENL alarms, should the network, the ENS daemon, or csnotifyd fail to
handle a notification, csadmind will not receive any acknowledgment, and will not
remove the alarm from the alarm queue. The alarm will, therefore, be published
again after a timeout.

iPlanet Calendar Server Example

A typical ENS publish and subscribe cycle for iPlanet Calendar Server resembles
the following:

1. The event subscriber, csnotifyd , expresses interest in an event (subscribes).

2. The event publisher, csadmind , detects events and sends notification
(publishes).

3. ENS publishes the event to the subscriber.

4. The event subscriber cancels interest in the event (unsubscribes). This step
happens implicitly when the connection to ENS is shutdown.

Figure 1-2 on page 21 illustrates this cycle and Table 1-1 on page 21 provides the
narrative for the figure.

20 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Event Notification Service Architecture

Figure 1-2 Example Event Notification Service Publish and Subscribe Cycle for iPlanet Calendar Server
Event Publisher Event Subscriber
. 1. Subscribe .
csadmind csnotifyd
4. Unsubscribe
7/
2. Publish - -
ENS 3. Publish (relayed)
enpd
Table 1-1 Example Event Notification Service Publish and Subscribe Cycle
Action ENS Response
1. Thecsnotifyd daemon sends a subscription ENS stores the subscription in the subscriptions
request to ENS. database.
2. The csadmind daemon sends a notification ENS queries the subscriptions database for
request to ENS. subscriptions matching the notification.
3. Thecsnotifyd daemon receives a notification =~ When ENS receives a notification from a publisher,
from ENS. it looks up its internal subscription table to find
subscriptions matching the event reference of the
notification. Then for each subscription, it relays a
copy of the notification to the subscriber who owns
this subscription.
4. Currently, csnotifyd does not bother sending Because the subscriptions store is in memory only

cancellation requests to ENS.

(not in a database), all subscriptions are implicitly
unsubscribed when the connection to ENS is
shutdown.

Chapter 1 Introduction to Event Notification Service

21

Event Notification Service Architecture

How iPlanet Messaging Server Interacts with
ENS

Figure 1-3 on page 23 shows how ENS interacts with iPlanet Messaging Server. In
this figure, each oval represents a process, and each rectangle represents a host
computer running the enclosed processes.

The iPlanet ENS server delivers notifications from the iPlanet Messaging Server
notification plug-in to ENS clients (that is, iBiff subscribers). There is no guarantee
of the order of notification prior to the ENS server because the events are coming
from different processes (MTA stored , and imapd).

Notifications flow from the iBiff plug-in in the MTA stored , and imap processes to
ENS enpd. The ENS client subscribes to the ENS, and receives notifications. When
iBiff is enabled, iPlanet Messaging Server publishes the notifications with the iBiff
plug-in, but no iPlanet Messaging Server services subscribe to these notifications.
A customer-provided ENS subscriber or client should be written to consume the
notifications and do whatever is necessary. That is, iPlanet Messaging Server itself
does not depend on or use the notifications for its functions, and this is why ENS
and iBiff are not enabled by default when you install iPlanet Messaging Server.

The iPlanet Messaging Server architecture enforces that a given set of mailboxes is
served by a given host computer. A given mailbox is not served by multiple host
computers. There are several processes manipulating a given mailbox but only one
computer host serving a given mailbox. Thus, to receive notifications, end-users
only need to subscribe to the ENS daemon that serves the mailbox they are
interested in.

iPlanet Messaging Server enables you to have either one ENS server for all
mailboxes—that is, one ENS server for all the computer hosts servicing the
message store—or multiple ENS servers, perhaps one ENS server per computer
host. The second scenario is more scalable. Also, in this scenario, end users must
subscribe to multiple ENS servers to get the events for mailboxes they are
interested in.

Thus, the architecture requires an ENS server per computer host. The ENS servers
and the client processes do not have to be co-located with each other or with
messaging servers.

22 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

Event Notification Service Architecture

Figure 1-3 ENS in iPlanet Messaging Server Overview

Q/ iBiff

Message Store
ENS

- iBiff enpd

Chapter 1 Introduction to Event Notification Service 23

Event Notification Service API Overview

Event Notification Service APl Overview

24

This section provides an overview of the two APIs for ENS, a C APl and a Java API,
which is a subset of the Java Messaging Service (JMS) API. Starting with iPlanet
Messaging Server 5.2 and iPlanet Calendar Server 5.1, a Java API to ENS has been
added. The Java API conforms to the Java Message Service specification (JMS).
Two sample Java subscribers are provided using the JMS API.

For detailed information on the ENS C API, see Chapter 2, “Event Notification
Service C API Reference.” For detailed information on the Java (JMS) API, see
Chapter 3, “Event Notification Service Java (JMS) API Reference.” For JMS
documentation, use the following URL:

http://java.sun.com/products/jms/docs.html

ENS C API Overview

ENS implements the following three APIs:
¢ DPublisher API

A publisher sends notification of a subscribed-to event to ENS, which then
distributes it to the subscribers. Optionally, in iPlanet Calendar Server, the
application can request acknowledgment of receipt of the notification. To do
this, a Reliable Event Notification Link (RENL) is necessary. An RENL has a
publisher, a subscriber, and a unique ID, which identify notifications that are
subject to acknowledgment. The publisher informs the application of the
receipt of an acknowledgment by invoking the end2end_ack callback passed to
publish_a . Currently, only iPlanet Calendar Server supports RENL.

e Subscriber API

A subscriber is a client to the notification service which expresses interest in
particular events. When the notification service receives a notification about
one of these events from a publisher, it relays the notification to the subscriber.

A subscriber may also unsubscribe, which cancels an active subscription.

In iPlanet Calendar Server, to enable an RENL, the subscriber declares its
existence to ENS, which then transparently generates notification
acknowledgment on behalf of the subscriber application. The subscriber can
revoke the RENL at any time.

iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

Event Notification Service API Overview

¢ Publish and Subscribe Dispatcher API

When an asynchronous publisher is used, ENS needs to borrow threads from a
thread pool in order to invoke callbacks. The application can either choose to
create its own thread pool and pass it to ENS, or it can let ENS create and
manage its own thread pool. In either case, ENS creates and uses a dispatcher
object to instantiate the dispatcher used (pas_dispatcher_t).

GDisp (libasync) is the dispatcher supported.

ENS Java API Overview

The Java API for ENS uses a subset of the standard JMS API, with the addition of
two new proprietary methods:

e com.iplanet.ens.jms.EnsTopicConnFactory
e com.iplanet.ens.jms.EnsTopic

The following list of JMS object classes is used in the Java API for ENS:
® javax.jms.TopicSubscriber

® javax.jms.TopicSession

® javax.jms.TopicPublisher

® javax.jms.TopicConnection

® javax.ms.TextMessage

® javax.ms.Session

® javax.ms.MessageProducer

® javax.jms.MessageConsumer

® javax.ms.Message

® javax.jms.ConnectionMetaData

® javax.jms.Connection

NOTE The Java API for ENS does not implement all the JMS object classes.
When customizing, use only the object classes found on this list.

Chapter 1 Introduction to Event Notification Service 25

Event Notification Service API Overview

26

Building and Running Custom Applications

To assist you in building your own custom publisher and subscriber applications,
iPlanet Messaging Server and iPlanet Calendar Server include sample code. This
section tells you where to find the sample code, where the APIs” include (header)
files are located, and where the libraries are that you need to build and run your
custom programs.

NOTE This section applies to the C API only.

Location of Sample Code

iPlanet Calendar Server
iPlanet Calendar Server includes four simple sample programs to help you get
started. The code for these samples resides in the following directory:

/opt/SUNWics5/cal/csapi/samples/ens

iPlanet Messaging Server

iPlanet Messaging Server 5.1 and higher contains sample programs to help you
learn how to receive notifications. These sample programs are located in the
server-root/bin/msg/enssdk/examples directory.

Location of Include Files

iPlanet Calendar Server

The include (header) files for the publisher and subscriber APIs are: publisher.h
suscriber.h , and pasdisp.h (publish and subscribe dispatcher). They are located
in the CSAPIinclude directory. The defaultinclude path is:

Jopt/SUNWics5/cal/csapi/include
iPlanet Messaging Server
The default include path for iPlanet Messaging Server is:

server-root /bin/msg/enssdk/include

iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

Event Notification Service API Overview

Dynamically Linked/Shared Libraries

iPlanet Calendar Server

Your custom code must be linked with the dynamically linked library libens ,
which implements the publisher and subscriber APIs. On some platforms all the
dependencies of libens must be provided as part of the link directive. These
dependencies, in order, are:

1. libgap
libcyrus

libyasr

2.

3

4. libasync
5. libnspr3
6. libplsd4
7. libplc3

iPlanet Calendar Server uses these libraries; therefore, they are located in the
server’s bin directory. The default libens path is:

Jopt/SUNWics5/cal/bin

NOTE For NT, in order to build publisher and subscriber applications,
you also need the archive files (.lib files) corresponding to all the
earlier mentioned libraries. These are located in the CSAPI library
directory, lib . The defaultlib pathis:

drive :\Program Files\iPlanet\cal\csapi\lib

iPlanet Messaging Server
The libraries for iPlanet Messaging Server are located in the following directory:
server-root [bin/msg/lib

Refer to server-root [bin/msg/enssdk/examples/Makefile.sample to help
determine what libraries are needed.This makefile contains instructions on how to
compile and run the apub and asub programs. This file also describes what
libraries are needed, and what the LD_LIBRARY_PATH should be.

Chapter 1 Introduction to Event Notification Service 27

Event Notification Service API Overview

Figure 1-4 Makefile.sample File

#

Sample makefile
#

your C compiler
CC=gcc

#LIBS
Your library path should include <server-root>/bin/msg/lib
LIBS = -lens -lgap -Ixenp -lcyrus -Ichartable -lyasr -lasync

all: apub asub

apub: apub.c
$(CC) -0 apub -1 ../include apub.c $(LIBS)

asub: asub.c
$(CC) -0 asub -I ../include asub.c $(LIBS)

run:
@echo 'run <server-root>/msg-<instance>/start-ens’
@echo run asub localhost 7997
@echo run apub localhost 7997

28 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

Event Notification Service API Overview

NOTE

The Windows NT distribution includes the following additional
files:

server-root \bin\msg\enssdk\examples
bin\msg\enssdk\examples\libens.lib
bin\msg\enssdk\examples\libgap.lib
bin\msg\enssdk\examples\libxenp.lib
bin\msg\enssdk\examples\libcyrus.lib
bin/msg\enssdk\examples\libchartable.lib
bin\msg\enssdk\examples\libyasr.lib
bin\msg\enssdk\examples\libasync.lib
bin\msg\enssdk\examples\asub.dsw
bin\msg\enssdk\examples\apub.dsp
bin\msg\enssdk\examples\asub.dsp

To build on Windows NT:

1. Asample VC++ workspace is provided in asub.dsw . It has two
projects in it: asub.dsp and apub.dsp .

The required .lib files to link is in the same directory as
asub.c and apub.c .

2. Torun, it requires that the following DLLs are in your path.

libens.dll
libgap.dll
libxenp.dll
libcyrus.dll
libchartable.dll
libyasr.dll
libasync.dll

The simplest way to accomplish this is to include server-root
in\msg\lib in your PATH

Chapter 1 Introduction to Event Notification Service 29

Event Notification Service API Overview

Runtime Library Path Variable

iPlanet Calendar Server

In order for your custom programs to find the necessary runtime libraries, which
are located in the /opt/SUNWics5/cal/bin directory, make sure your
environment’s runtime library path variable includes this directory. The name of
the variable is platform dependent:

e SunOS and Linux: LD_LIBRARY_PATH
o NT: PATH
e HPUX: SHLIB_PATH

iPlanet Messaging Server

For iPlanet Messaging Server, you need to set your LD_LIBRARY_PATHto
server-root [bin/msg/lib

30 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

Chapter 2

Event Notification Service C API
Reference

This chapter details the ENS C AP it is divided into three main sections:
e Publisher API

® Subscriber API
e Publish and Subscribe Dispatcher API

31

Publisher API Functions List

Publisher API Functions List

This chapter includes a description of the following Publisher functions, listed in
Table 2-1:

Table 2-1 ENS Publisher API Functions List

Definition/Function Description

publisher_t Definition for a publisher.

publisher_cb_t Generic callback function acknowledging an asynchronous call.
publisher_new_a Creates a new asynchronous publisher.

publisher_new_s Creates a new synchronous publisher.

publish_a Sends an asynchronous notification to the notification service.
publish_s Sends a synchronous notification to the notification service.
publisher_delete Terminates a publish session.

publisher_get_subscriber Creates a subscriber using the publisher’s credentials.
renl_create_publisher Creates an RENL, which enables the invocation of end2end_ack .
renl_cancel_publisher Cancels an RENL.

Subscriber API Functions List

This chapter includes a description of following Subscriber functions, listed in
Table 2-2:

Table 2-2 ENS Subscriber API Functions List

Definition/Function Description

subscriber_t Definition of a subscriber.

subscription_t Definition of a subscription.

subscriber_cb_t Generic callback function acknowledging an asynchronous call.
subscriber_notify_cb_t Synchronous callback; called upon receipt of a notification.
subscriber_new_a Creates a new asynchronous subscriber.

subscriber_new_s Creates a new synchronous subscriber.

subscribe_a Establishes an asynchronous subscription.

32 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

Publish and Subscribe Dispatcher Functions List

Table 2-2 ENS Subscriber API Functions List (Continued)

unsubscribe_a
subscriber_delete
subscriber_get_publisher
renl_create_subscriber

renl_cancel_subscriber

Cancels an asynchronous subscription.

Terminates a subscriber.

Creates a publisher using the subscriber’s credentials.
Creates the subscription part of the RENL.

Cancels an RENL.

Publish and Subscribe Dispatcher Functions List

This chapter includes a description of the following Publish and Subscribe
Dispatcher functions, listed in Table 2-3:

Table 2-3 ENS Publish and Subscribe Dispatcher Functions List

Definition/Function
pas_dispatcher_t
pas_dispatcher_new
pas_dispatcher_delete
pas_dispatch

pas_shutdown

Description

Definition of a publish and subscribe dispatcher.

Creates a dispatcher.

Destroys a dispatcher created with pas_dispatcher_new
Starts the dispatch loop of an event notification environment.

Stops the dispatch loop on an event notification environment started with
pas_dispatch

Publisher API

The Publisher API consists of one definition and nine functions:

® publisher_t

® publisher_cb_t

® publisher_new_a

® publisher_new_s

® publish_a

® publish_s

® publisher_delete

Chapter 2 Event Notification Service C API Reference 33

Publisher API

® publisher_get_subscriber
® renl_create_publisher

* renl_cancel_publisher

publisher_t

Purpose.
A publisher.

Syntax
typedef struct enc_struct publisher_t;

Parameters
None.

Returns
Nothing.

publisher_cb_t

Purpose.
Generic callback function invoked by ENS to acknowledge an asynchronous call.

Syntax
typedef void (*publisher_cb_t) (void *arg, int rc, void *data);

Parameters

arg Context variable passed by the caller.

rc The return code.

data For an open, contains a newly created context.
Returns

Nothing.

34 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Publisher API

publisher_new_a

Purpose
Creates a new asynchronous publisher.

Syntax

void publisher_new_a (pas_dispatcher_t *disp,
void *worker,
const char *host,
unsigned short port,
publisher_cb_t cbdone,
void *cbarg);

Parameters
disp P&S thread pool context returned by pas_dispatcher_new
worker Application worker. If not NULL, grouped with existing workers
created by ENS to service this publisher session. Used to prevent
multiple threads from accessing the publisher data at the same time.
host Notification server host name.
port Notification server port.
cbdone The callback invoked when the publisher has been successfully created,
or could not be created.
There are three Parameters to cbdone :
e charg
The first argument.
e A status code.
If non-zero, the publisher could not be created; value specifies
cause of the failure.
* The new active publisher.
charg First argument of cbdone .
Returns

Nothing. It passes the new active publisher as third argument of chdone callback.

Chapter 2 Event Notification Service C API Reference 35

Publisher API

publisher_new_s

Purpose
Creates a new synchronous publisher.

Syntax

publisher_t *publisher_new_s (pas_dispatcher_t *disp,
void *worker,
const char *host,
unsigned short port);

Parameters

disp P&S thread pool context returned by pas_dispatcher_new.

worker Application worker. If not NULL, grouped with existing workers created
by ENS to service this publisher session. Used to prevent multiple
threads from accessing the publisher data at the same time.

host Notification server host name.

port Notification server port.

Returns

A new active publisher (publisher_t).

publish_a

Purpose
Sends an asynchronous notification to the notification service.

Syntax

void publish_a (publisher_t *publisher,
const char *event_ref,
const char *data,
unsigned int datalen,
publisher_cb_t cbdone,
publisher_cb_t end2end_ack,
void *cbarg,
unsigned long timeout);

36 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Publisher API

Parameters

publisher_t The active publisher.

event_ref The event reference. This is a URI identifying the modified resource.

data The event data. The body of the notification message. It is opaque to
the notification service, which merely relays it to the events’
subscriber.

datalen The length in bytes of the data.

cbdone The callback invoked when the data has been accepted or deemed

end2end_ack

unacceptable by the notification service. What makes a notification
acceptable depends on the protocol used. The protocol may choose to
use the transport acknowledgment (TCP) or use its own
acknowledgment response mechanism.

The callback function invoked after acknowledgment from the
consumer peer (in an RENL) has been received. Used only in the
context of an RENL.

charg The first argument of cbdone or end2end_ack when invoked.
timeout The length of time to wait for an RENL to complete.

Returns

Nothing.

publish_s

Purpose

Sends a synchronous notification to the notification service.

Syntax

int publish_s (publisher_t *publisher,

const char *event_ref,
const char *data,
unsigned int datalen);

Chapter 2 Event Notification Service C API Reference 37

Publisher API

Parameters

publisher The active publisher.

event_ref The event reference. This is a URI identifying the modified resource.

data The event data. The body of the notification message. It is opaque to the
notification service, which relays it to the events’ subscriber.

datalen The length in bytes of the data.

Returns

Zero if successful; a failure code if unsuccessful. If an RENL, the call does not
return until the consumer has completely processed the notification and has
successfully acknowledged it.

publisher_delete

Purpose
Terminates a publish session.

Syntax
void publisher_delete (publisher_t *publisher);

Parameters

publisher The publisher to delete.

Returns
Nothing.

publisher_get_subscriber

Purpose
Creates a subscriber using the credentials of the publisher.

Syntax
struct subscriber_struct * publisher_get_subscriber(publisher_t
*publisher);

38 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

Publisher API

Parameters

publisher The publisher whose credentials are used to create the subscriber.

Returns
The subscriber, or NULLif the creation failed. If the creation failed, use the
subscriber_new to create the subscriber.

renl_create_publisher

Purpose

Declares an RENL, which enables the end2end_ack invocation. After this call
returns, the end2end_ack argument is invoked when an acknowledgment
notification matching the specified publisher and subscriber is received.

Syntax

void renl_create_publisher (publisher_t *publisher,
const char *renl_id,
const char *subscriber,
publisher_cb_t cbdone,
void *charg);

Parameters

publisher The active publisher.

renl_id The unique RENL identifier. This allows two peers to be able to set up
multiple RENLs between them.

subscriber The authenticated identity of the peer.

cbdone The callback invoked when the RENL is established.

cbharg The first argument of cbdone, when invoked.

Returns

Nothing.

Chapter 2 Event Notification Service C API Reference

39

Subscriber API

renl_cancel_publisher

Purpose

This cancels an RENL. This does not prevent more notifications being sent, but
should a client acknowledgment be received, the end2end_ack argument of
publish will no longer be invoked. All RENLs are automatically destroyed when
the publisher is deleted. Therefore, this function does not need to be called to free
RENL-related memory before deleting a publisher.

Syntax
void renl_cancel_publisher (renl_t *renl);

Parameters

renl The RENL to cancel.

Returns
Nothing.

Subscriber API

The Subscriber API includes two definitions and ten functions:
e subscriber_t

® subscription_t

e subscriber_cb_t

e subscriber_notify _cb_t

e subscriber_new_a

e subscriber new_s

e subscribe_a

® unsubscribe_a

e subscriber_delete

e subscriber_get_publisher
e renl_create_subscriber

e renl_cancel_subscriber

40 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

subscriber_t

Purpose
A subscriber.

Syntax
typedef struct enc_struct subscriber_t;

Parameters
None.

Returns

Nothing.

subscription_t

Purpose
A subscription.

Syntax

Subscriber API

typedef struct subscription_struct subscription_t;

Parameters
None.

Returns
Nothing.

subscriber cb_t

Purpose

Generic callback function invoked by ENS to acknowledge an asynchronous call.

Syntax

typedef void (*subscriber_cb_t) (void *arg,

int rc,
void *data);

Chapter 2 Event Notification Service C API Reference 41

Subscriber API

Parameters

arg Context variable passed by the caller.

rc The return code.

data For an open, contains a newly created context.
Returns

Nothing

subscriber_notify_cb_t

Purpose
Subscriber callback; called upon receipt of a notification.

Syntax
typedef void (*subscriber_notify_cb_t) (void *arg,
char *event,

char *data,
int datalen);
Parameters
arg Context pointer passed to subscribe (notify_arg).
event The event reference (URI). The notification event reference matches the
subscription, but may contain additional information called event
attributes, such as a uid .
data The body of the notification. A MIME object.
datalen Length of the data.
Returns

Zero if successful, non-zero otherwise.

subscriber new a

Purpose
Creates a new asynchronous subscriber.

42 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Syntax

Subscriber API

void subscriber_new_a (pas_dispatcher_t *disp,

void *worker,

const char *host,
unsigned short port,
subscriber_cb_t cbdone,
void *cbarg);

Parameters
disp Thread dispatcher context returned by pas_dispatcher_new
worker Application worker. If not NULL, grouped with existing workers created
by ENS to service this subscriber session. Used to prevent multiple
threads from accessing the subscriber data at the same time. Only usable if
the caller creates and dispatches the GDisp context.
host Notification server host name or IP address.
port Subscription service port number.
cbdone The callback invoked when the subscriber session becomes active and
subscriptions can be issued.
There are three parameters to cbdone :
e charg
The first argument.
e A status code.
If non-zero, the subscriber could not be created; value specifies cause
of the failure.
e The new active subscriber (subscriber_t).
cbharg First argument of cbdone .
Returns

Nothing. It passes the new active subscriber as third argument of cbdone callback.

subscriber new s

Purpose

Creates a new synchronous subscriber.

Chapter 2 Event Notification Service C API Reference 43

Subscriber API

Syntax

subscriber_t *subscriber_new_s (pas_dispatcher_t *disp,
const char *host,
unsigned short port);

Parameters
disp Publish and subscribe dispatcher returned by pas_dispatcher_new
worker Application worker. If not NULL, grouped with existing workers created by

ENS to service this publisher session. Used to prevent multiple threads from
accessing the publisher data at the same time. Only usable if the caller
creates and dispatches the GDisp context.

host Notification server host name or IP address.
port Subscription service port number.
Returns

A new active subscriber (subscriber_t).

subscribe_a

Purpose
Establishes an asynchronous subscription.

Syntax

void subscribe_a (subscriber_t *subscriber,
const char *event_ref,
subscriber_notify_cb_t notify_cb,
void *notify_arg,
subscriber_cb_t cbdone,
void *charg):

Parameters

subscriber The subscriber.

event_ref The event reference. This is a URI identifying the event’s source.

notify_cb The callback invoked upon receipt of a notification matching this
subscription.

notify_arg The first argument of notify_arg . May be called at any time, by any

thread, while the subscription is still active.

44 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Subscriber API

cbdone Called when an unsubscribe completes. It has three Parameters:
e charg (seebelow).
¢ Status code.
* A pointer to an opaque subscription object.

charg The first argument of cbdone .

Returns
Nothing.

unsubscribe_a

Purpose
Cancels an asynchronous subscription.

Syntax

void unsubscribe_a (subscriber_t *subscriber,
subscription_t *subscription,
subscriber_cb_t cbdone,
void *cbarg);

Parameters

subscriber The disappearing subscriber.

subscription The subscription to cancel.

cbdone Called when an unsubscribe completes. It has three parameters:
e cbarg (see below).
e Status code.
* A pointer to an opaque subscription object.

cbharg The first argument of cbdone .

Returns

Nothing.

Chapter 2 Event Notification Service C API Reference 45

Subscriber API

subscriber_delete

Purpose
Terminates a subscriber.

Syntax
void subscriber_delete (subscriber_t *subscriber);

Parameters

subscriber The subscriber to delete.

Returns.
Nothing

subscriber_get_publisher

Purpose
Creates a publisher, using the credentials of the subscriber.

Syntax
struct publisher_struct *subscriber_get_publisher (subscriber_t
*subscriber);

Parameters

subscriber The subscriber whose credentials are used to create the publisher.

Returns
The publisher, or NULLif creation failed. In case the creation fails, use the
publisher_new

renl create_subscriber

Purpose
Creates the subscription part of an RENL.

46 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

Subscriber API

Syntax

renl_t *renl_create_subscriber (subscription_t *subscription,
const char *renl_id,
const char *publisher);

Parameters

subscription The subscription.

renl_id The unique RENL identifier. This allows two peers to be able to set up
multiple RENLs between them.

publisher The authenticated identity of the peer.

Returns

The opaque RENL object.

renl cancel subscriber

Purpose

This cancels an RENL. It does not cancel a subscription. It tells ENS not to
acknowledge any more notifications received for this subscription. It destroys the
RENL object, the application may no longer use this RENL. All RENLs are
automatically destroyed when the subscription is canceled. Therefore, this function
does not need to be called to free RENL-related memory before deleting a
subscriber.

Syntax
void renl_cancel_subscriber (renl_t *renl);

Parameters

renl The RENL to cancel.

Returns
Nothing.

Chapter 2 Event Notification Service C API Reference 47

Publish and Subscribe Dispatcher API

Publish and Subscribe Dispatcher API

The Publish and Subscribe Dispatcher API includes one definition and four
functions:

® pas_dispatcher_t

e pas_dispatcher_new

e pas_dispatcher_delete
* pas_dispatch

* pas_shutdown

NOTE The only thread dispatcher supported is GDisp (libasync).

pas_dispatcher_t

Purpose
A publish and subscribe dispatcher.

Syntax
typedef struct pas_dispatcher_struct pas_dispatcher _t;

Parameters
None.

Returns

Nothing.

pas_dispatcher_new

Purpose
Creates or advertises a dispatcher.

Syntax
pas_dispatcher_t *pas_dispatcher_new (void *disp);

48 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

Publish and Subscribe Dispatcher API

Parameters

dispcx The dispatcher context. If NULL, to start dispatching notifications, the
application must call pas_dispatch

If not NULL, the dispatcher is a libasync dispatcher.

Returns
The dispatcher to use when creating publishers or subscribers
(pas_dispatcher_t).

pas_dispatcher_delete

Purpose
Destroys a dispatcher created with pas_dispatcher_new

Syntax
void pas_dispatcher_delete (pas_dispatcher_t *disp);

Parameters

disp The event notification client environment.

Returns
Nothing.
pas_dispatch

Purpose
Starts the dispatch loop of an event notification environment. It has no effect if the
application uses its own thread pool.

Syntax
void pas_dispatch (pas_dispatcher_t *disp);

Parameters

disp The new dispatcher.

Chapter 2 Event Notification Service C API Reference 49

Publish and Subscribe Dispatcher API

Returns
Nothing.

pas_shutdown

Purpose

Stops the dispatch loop of an event notification environment started with
pas_dispatch . It has no effect if an application-provided dispatcher was passed to
pas_dispatcher_new

Syntax
void pas_shutdown (pas_dispatcher_t *disp);

Parameters

disp The dispatcher context to shutdown.

Returns
Nothing.

50 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Chapter 3

Event Notification Service Java (JMS)
APl Reference

This chapter describes the implementation of the Java (JMS) API in ENS and the
Java API itself.

This chapter contains these sections:
e Event Notification Service Java (JMS) API Implementation
e Java (JMS) API Overview

* Implementation Notes

Event Notification Service Java (JMS) API
Implementation

The ENS Java API is included with iPlanet Messaging Server 5.2 and iPlanet
Calendar Server 5.1. The Java API conforms to the Java Message Service
specification (JMS).

ENS acts as a provider to Java Message Service. Thus, it provides a Java API to
ENS. The software consists of the base library plus a demo program.

Prerequisites to Use the Java API

To use the Java API, you need ENS enabled. For instructions on enabling ENS in
iPlanet Messaging Server, see Appendix C in the iPlanet Messaging Server 5.2
Administrator’s Guide. By default, ENS is already enabled in iPlanet Calendar
Server.

51

Event Notification Service Java (JMS) API Implementation

In addition, you need to install the following software, which is not provided with
either iPlanet Messaging Server or iPlanet Calendar Server:

¢ Java Development Kit (JDK) 1.2 or later
* Java Message Service 1.0.2a or later (tested with 1.0.2a)

You can download this software from http://java.sun.com

Sample Java Programs

The iPlanet Messaging Server 5.2 sample programs, JnsSample and JBiff , are
stored in the server-root /bin/msg/enssdk/java/com/iplanet/ens/samples

directory. JmsSample is a generic ENS sample program. JBiff isiPlanet Messaging
Server specific.

For JBiff , you will need the following additional items:
* Java Mail jar file (tested with JavaMail 1.2)
* Java Activation Framework (required by JavaMail, tested with JAF1.0.1)

You can download these items from http://java.sun.com

Setting Up Your Environment

This section describes what to do to be able to compile and run the sample
programs.

To Compile the ImsSample Program

1. Set your CLASSPATHo include the following:
ens jar file - ens. jar

(For iPlanet Messaging Server, the ens.jar is located in the
server-root ljavaljars/ directory.)

Java Message Service - full-path ~ /[jms1.0.2/jms.jar
2. Change to the server-root /bin/msg/enssdk/java directory.
3. Run the following command:

javac com/iplanet/ens/samples/JmsSample.java

52 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Event Notification Service Java (JMS) API Implementation

To Compile the JBiff Program

1.

Set your CLASSPATHo include the following;:
ens jar file - ens. jar

(For iPlanet Messaging Server, the ens.jar is located in the
server-root ljavaljars/ directory.)

Java Message Service - full-path ~ /jms1.0.2/jms.jar

JavaMail - full-path /javamail-1.2/mail.jar

Java Activation Framework - full-path /jaf-1.0.1/activation.jar
Change to the server-root /bin/msg/enssdk/java directory.
Run the following command:

javac com/iplanet/ens/samples/JBiff.java

To Run the JmsSample Program

1.

2.

Change to the server-root /bin/msg/enssdk/java directory.
Run the following command:

java com.iplanet.ens.samples.JmsSample

You are prompted for three items:

o ENS event reference (for example, for iPlanet Messaging Server:
enp://127.0.0.1/store)

o ENShostname

o ENS port (typically 7997)

Publish events.

For iPlanet Messaging Server, the two ways to publish events are:

o You can use the apub C sample program for ENS. See “iPlanet Messaging
Server Sample Code,” on page 81 for more information.

o If you have enabled ENS, configure iBiff to publish iPlanet Messaging
Server related events.

For iPlanet Calendar Server, events are published by the calendar server.

Chapter 3 Event Notification Service Java (JMS) API Reference 53

Java (JMS) API Overview

To Run the JBiff Demo Program

Prerequisite: To run the JBiff demo program, you need to enable ENS in iPlanet
Messaging Server. See Appendix C in the iPlanet Messaging Server 5.2
Administrator’s Guide for instructions on enabling ENS.

NOTE The demo is currently hardcoded to use the ENS event reference
enp://127.0.0.1/store . This is the default event reference used
by the iBiff notification plug-in.

1. Change to the server-root /bin/msg/enssdk/java directory.
2. Run the following:

java com.iplanet.ens.samples.JBiff
3. The program prompts for your userid, hostname, and password.

The code assumes that the ENS server and the IMAP server are running on
hostname. The userid and password are the IMAP username and password to
access the IMAP account.

The two test programs are ENS subscribers. You receive events from iBiff when
email messages flow through iPlanet Messaging Server. Alternately you can use
the apub C sample program to generate events. See “iPlanet Messaging Server
Sample Code,” on page 81 for more information.

Java (JMS) API Overview

The Java API for ENS uses a subset of the standard Java Messaging Service (JMS)
API, with the addition of two new proprietary methods:

e com.iplanet.ens.jms.EnsTopicConnFactory
e com.iplanet.ens.jms.EnsTopic

JMS requires the creation of a TopicConnectionFactory and a Topic , which is
provided by the two ENS proprietary classes.

For more information on the standard JMS classes and methods, see the JMS
documentation at:

http://java.sun.com/products/jms/docs.html

54 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Java (JMS) API Overview

New Proprietary Methods

The two proprietary method classes are EnsTopicConnFactory and EnsTopic .

com.iplanet.ens.jms.EnsTopicConnFactory

About the method

The method is a constructor that returns a javax.jms.TopicConnectionFactory
Instead of using a JNDI-style lookup to obtain the TopicConnectionFactory
object, this method is provided.

Syntax

public EnsTopicConnFactory (String name,
String hostname,
int port,
OutputStream logStream)

throws java.io.IOException

Arguments

Table 3-1 Arguments for EnsTopicConnFactory

Arguments Type Explanation

name String The client ID for the javax.jms.Connection
hostname String The hostname for the ENS server.

port int The TCP port for the ENS server.

logStream OutputStream Where messages are logged (cannot be null).

com.iplanet.ens.jms.EnsTopic

About this method
The method is a constructor that returns a javax.jms.Topic . Instead of using a
JNDI-style lookup to obtain the javax.jms.Topic ~ , this method is provided.

Syntax
public EnsTopic (String eventRef)

Chapter 3 Event Notification Service Java (JMS) API Reference 55

Implementation Notes

Arguments

Table 3-2 Arguments for EnsTopic

Arguments Type Explanation

eventRef String The ENS event reference.

Implementation Notes

This section describes items to be aware of when implementing the ENS Java API.

Shortcomings of the Current Implementation

The current implementation of the Java API does not supply an initial provider
interface.

JMS Topic Connection Factory and ENS Destination are called out explicitly. These

are com.iplanet.ens.jms.EnsTopicConnFactory and
com.iplanet.ens.jms.EnsTopic . ENS does not use JNDI to get the
TopicConnectionFactory and Topic objects.

Notification Delivery

The notification is delivered as a javax.jms.TextMessage . The parameter/values
of the ENS event reference are provided as property names to the TextMessage.
The payload is provided as the data of the TextMessage.

JMS Headers

* JMSDeliveryMode is always set to NON_PERSISTENTthat is, no storing of
message for future delivery).

* JMSRedelivered is always set to false.

* JMSMessagelD is set to an internal id. Specifically it is not set to the SMTP
MessagelD in the header of the email message for iPlanet Messaging Server.

e The payload is always a javax.jms.TextMessage . It corresponds to the ENS
payload.

56 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Implementation Notes

e JMSDestination is set to the full event reference (that is, it includes the
parameter/values specific to this notification).

¢ JMSCorrelationID - Set to an internal sequence number.
* JMSTimestamp - Set to the time the message was sent.

o For iPlanet Messaging Server and iBiff, this corresponds to the timestamp
parameter.

o This is unused in iPlanet Calendar Server.
e JMSType - The type of notification.

o For iPlanet Messaging Server and iBiff, this corresponds to the evtType
parameter.

o This is unused in iPlanet Calendar Server.
* Additional properties:

o Each parameter/value in the even reference becomes a property in the
header. All property values are of type String.

Unused headers are: JMSExpiration, JMSpriority, JMSReplyTo.

Miscellaneous

* MessageSelectors are not implemented.

® JMS uses the concept of durable and non-durable subscribers. A durable
subscriber is a feature where notifications are guaranteed to be sent to
subscribers even when they are offline, or if something catastrophic occurs,
such as the ENS server going down after receiving the notification from the
publisher but before delivering it to the subscriber.

o Non-durable subscribers are implemented.

o You can also use durable subscribers, however, the full functionality of
being a durable subscriber is not implemented.

o This aspect of being a durable subscriber is implemented: the publisher is
acknowledged only after the subscriber receives a message.

o This aspect of being a durable subscriber is not implemented: the message
is not persistent, and delivery is not made to offline subscribers (after they
come back online). In particular, JMSRedelivered is always set to false.

Chapter 3 Event Notification Service Java (JMS) API Reference 57

Implementation Notes

58 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Chapter 4

IPlanet Calendar Server Specific
Information

This chapter describes the iPlanet Calendar Server specific items you need to use
the ENS APIs.

This chapter contains these sections:
¢ iPlanet Calendar Server Notifications

e iPlanet Calendar Server Sample Code

IPlanet Calendar Server Notifications

There are two parts to the format of an iPlanet Calendar Server notification:
® The event reference - A URL identifying the event.

® The payload - The data describing the event. Three different payload formats
are supported: binary, text/calendar, and text/XML.

There are two types of calendar notifications: alarm notifications, which relay
reminders; and calendar update notifications, which distribute changes to the
calendar database. The following describes both types of calendar notifications.

e Alarm notifications. These notifications relay reminders. They are published
by the csadmind daemon whenever it wants to send a reminder. The default
subscriber for these alarms in iPlanet Messaging and Collaboration Event
Notification Service is the csnotifyd ~ daemon. Notifications consumed by
csnotifyd have a binary payload and are acknowledged (reliable).

Additionally, the server can be configured to generate one additional
notification for each reminder, which can be consumed by a third party
notification infrastructure.

59

iPlanet Calendar Server Notifications

Table 4-1 has information on how the two different alarm notifications are
enabled, their base event URLs, and the event payload format for each. (See
“Format of Calendar Notifications,” on page 62.)

Table 4-1 Alarm Notifications

Type Enabled by Base Event URL Event Payload Format
Defaultalarm Default enp:/llics Binary
notification
Optional Inics.conf , the existing Inics.conf ,thevalueof Inics.conf |, the value of
alarm non-null value of caldb.serveralarms. caldb.serveralarms.
notification caldb.serveralarms. url content

contenttype

Event URL parameters are the same for either one:

o calid -CalendarID

o uid - Component, either event or todo (task) ID
o rid -Recurrence ID

o aid - Alarm ID

o comptype - An event or a todo (task)

e Calendar update notifications. These notifications distribute changes to the
calendar database. They are published by the cshttpd or csdwpd daemons
whenever a change is made to the database (if the notification is enabled for
this type of change).

Table 4-2 lists each type of calendar update notification, and the ics.conf
setting and base even URL for each of them.

Table 4-2 Calendar Update Notifications

Types Enabling ics.conf Parameters Base Event URLs and ics.conf Parameters
(all parameters default to “yes”)

Calendar caldb.berkeleydb.ensmsg.createcal caldb.berkeleydb.ensmsg.createcal

creation .url

default value:
enp:/llics/calendarcreate

60 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

iPlanet Calendar Server Notifications

Table 4-2 Calendar Update Notifications (Continued)

Types Enabling ics.conf Parameters Base Event URLs and ics.conf Parameters
(all parameters default to “yes”)
Calendar caldb.berkeleydb.ensmsg.deletecal caldb.berkeleydb.ensmsg.deletecal
deletion .url
default value:
enp://lics/calendardelete
Calendar caldb.berkeleydb.ensmsg.modifycal caldb.berkeleydb.ensmsg.modifycal
modification .url

Event creation

Event
modification

Event deletion

Todo (task)
creation

Todo (task)

modification

Todo (task)
deletion

caldb.berkeleydb.ensmsg.

createevent

caldb.berkeleydb.ensmsg.

modifyevent

caldb.berkeleydb.ensmsg.

deleteevent

caldb.berkeleydb.ensmsg.

createtodo

caldb.berkeleydb.ensmsg.

modifytodo

caldb.berkeleydb.ensmsg.

deletetodo

default value:
enp:/llics/calendarmodify

caldb.berkeleydb.ensmsg.

createevent.url

default value:
enp:/llics/caleventcreate

caldb.berkeleydb.ensmsg.

modifyevent.url

default value:
enp://lics/caleventmodify

caldb.berkeleydb.ensmsg.

deleteevent.url

default value:
enp:/lics/caleventdelete

caldb.berkeleydb.ensmsg.

createtodo.url

default value:
enp:/llics/caltodocreate

caldb.berkeleydb.ensmsg.

modifytodo

default value:
enp://lics/caltodomodify

caldb.berkeleydb.ensmsg.

deletetodo.url

default value:
enp:/llics/caltododelete

Chapter 4

iPlanet Calendar Server Specific Information

61

iPlanet Calendar Server Sample Code

Event URL parameters include:
o calid -CalendarID
o uid - Component, either event ortodo (task) ID

o rid -Recurrence ID

Format of Calendar Notifications

There are two parts to a notification:
o Event reference - URL identifying the event.

o Payload - Data describing the event. Three data formats are supported:
binary, text/calendar, text/XML.

IPlanet Calendar Server Sample Code

iPlanet Calendar Server ships with a complete ENS implementation. If you wish to
customize it, you may use the ENS APIs to do so. The following four code samples,
a simple publisher and subscriber pair, and a reliable publisher and subscriber
pair, illustrate how to use the ENS API. The sample code is provided with the
product in the following directory:

/opt/SUNWics5/cal/csapi/samples/ens

Sample Publisher and Subscriber

This sample code pair establishes a simple interactive asynchronous publisher and
subscriber.

Publisher Code Sample

/*
* Copyright 2000 by Sun Microsystems, Inc.
* All rights reserved

*

* apub : simple interactive asynchronous publisher using
*

* Syntax:

* apub host port

*/

62 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

iPlanet Calendar Server Sample Code

#include <stdlib.h>
#include <stdio.h>

#include "pasdisp.h"
#include "publisher.h"

static pas_dispatcher_t *disp = NULL;
static publisher_t *_publisher = NULL;
static int _shutdown = 0;

static void _read_stdin();

static void _exit_usage()

{
printf("\nUsage:\napub host port\n");
exit(5);
}
static void _exit_error(const char *msg)
{
printf("%s\n", msg);
exit(1);
}
static void _call_shutdown()
{
_shutdown = 1;
pas_shutdown(disp);
}

static void _open_ack(void *arg, int rc, void *enc)
_publisher = (publisher_t *)enc;
(void *)arg;
if (!_publisher)
printf("Failed to create publisher with status %d\n", rc);

_call_shutdown();
return;

}
_read_stdin();

return;

}

static void _publish_ack(void *arg, int rc, void *ignored)

(void *)ignored;

free(arg);

Chapter 4 iPlanet Calendar Server Specific Information 63

iPlanet Calendar Server Sample Code

if (rc '=0)
{

printf("Publish failed with status %d\n", rc);

_call_shutdown();

return;
}
_read_stdin();
return;
}
static void _read_stdin()
{
static char input[1024];
printf("apub> ");
fflush(stdout);
while (!_shutdown)
{
if ('fgets(input, sizeof(input), stdin))
continue;
}else {
char *message;
unsigned int message_len;
input[strlen(input) - 1] = 0; /* Strip off the \n */
if (Yinput =="." && input[1] == 0)
{
publisher_delete(_publisher);
_call_shutdown();
break;
}
message = strdup(input);
message_len = strlen(message);
publish(_publisher, "enp:/lyoyo.com/xyz",message,
message_len,
_publish_ack, NULL, (void *)message, 0);
return;
}
}
return;
}

64 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

main(int argc, char **argv)

{
unsigned short port = 7997,

char host[256];
if (argc < 2) _exit_usage();
if (*(argv[1]) =="0’)
{
strepy(host, "127.0.0.1");

}else {
strcpy(host, argv[1]);

if (argc > 2)

port = (unsigned short)atoi(argv[2]);
}
disp = pas_dispatcher_new(NULL);

iPlanet Calendar Server Sample Code

if (disp == NULL) _exit_error("Can’t create publisher");

publisher_new_a(disp, NULL, host, port, _open_ack, disp);

pas_dispatch(disp);
_shutdown = 1;
pas_dispatcher_delete(disp);
exit(0);

Subscriber Code Sample
/*

* Copyright 1997 by Sun Microsystems, Inc.

* All rights reserved

*

* asub : example asynchronous subscriber
*

* Syntax:

* asub host port

*/

#include <stdlib.h>
#include <stdio.h>

#include "pasdisp.h"
#include "subscriber.h"

Chapter 4

iPlanet Calendar Server Specific Information

65

iPlanet Calendar Server Sample Code

static pas_dispatcher_t *disp = NULL;
static subscriber_t * subscriber = NULL,;
static subscription_t *_subscription = NULL;
static renl_t *_renl = NULL;

static void _exit_usage()

{
printf("\nUsage:\nasub host port\n");
exit(5);
}
static void _exit_error(const char *msg)
{
printf("%s\n", msg);
exit(1);
}
static void _subscribe_ack(void *arg, int rc, void *subscription)
{
(void)arg;
if (Irc)
{
_subscription = subscription;
printf("Subscription successful\n®);
}else {
printf("Subscription failed - status %d\n", rc);
pas_shutdown(disp);
}
}
static void _unsubscribe_ack(void *arg, int rc, void *ignored)
{
(void *)ignored;
(void *)arg;
if (rc 1= 0)
{
printf("Unsubscribe failed - status %d\n", rc);
}
subscriber_delete(_subscriber);
pas_shutdown(disp);
}
static int _handle_notify(void *arg, char *url, char *str, int len)
{
(void *)arg;
printf("[%s] %.*s\n", url, len, (str) ? str: "(null)");
return O;
}

66 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

iPlanet Calendar Server Sample Code

static void _open_ack(void *arg, int rc, void *enc)

{
_subscriber = (subscriber_t *)enc;
(void *)arg;
if (rc)
{
printf("Failed to create subscriber with status %d\n", rc);
pas_shutdown(disp);
return;
}
subscribe(_subscriber, "enp:/lyoyo.com/xyz",
_handle_notify, NULL,
_subscribe_ack, NULL);
return;
}
static void _unsubscribe(int sig)
{
(int)sig;
unsubscribe(_subscriber, _subscription, _unsubscribe_ack, NULL);
}
main(int argc, char **argv)
{

unsigned short port = 7997,
char host[256];

if (argc < 2) _exit_usage();
if (*(argv[1]) =="0))
{

strcpy(host, "127.0.0.1");
}else {
strepy(host, argv[1]);

}
if (argc > 2)
{
port = (unsigned short)atoi(argv([2]);
}

disp = pas_dispatcher_new(NULL);
if (disp == NULL) _exit_error("Can’t create publisher");

subscriber_new_a(disp, NULL, host, port, _open_ack, NULL);
pas_dispatch(disp);
pas_dispatcher_delete(disp);

Chapter 4 iPlanet Calendar Server Specific Information 67

iPlanet Calendar Server Sample Code

exit(0);

Reliable Publisher and Subscriber

This sample code pair establishes a reliable asynchronous publisher and
subscriber.

Reliable Publisher Sample
/*
* Copyright 2000 by Sun Microsystems, Inc.
* All rights reserved
*
* rpub : simple *reliable* interactive asynchronous publisher.
* |tis designed to be used in combination with rsub,
* the reliable subscriber.
*
* Syntax:
* rpub host port
*/

#include <stdlib.h>
#include <stdio.h>

#include "pasdisp.h"
#include "publisher.h"

static pas_dispatcher_t *disp = NULL;
static publisher_t *_publisher = NULL;
static int _shutdown = 0;

static renl_t *_renl;

static void _read_stdin();

static void _exit_usage()

{
printf("\nUsage:\nrpub host port\n™);
exit(5);
}
static void _exit_error(const char *msg)
{
printf("%s\n", msg);
exit(1);
}

iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

iPlanet Calendar Server Sample Code

static void _call_shutdown()

{
_shutdown = 1;
pas_shutdown(disp);
}
static void _renl_create_cb(void *arg, int rc, void *ignored)
{
(void *)arg;
(void *)ignored;
if (!_publisher)
printf("Failed to create RENL - status %d\n", rc);
_call_shutdown();
return;
}
_read_stdin();
return;
}

static void _publisher_new_cb(void *arg, int rc, void *enc)

_publisher = (publisher_t *)enc;
(void *)arg;

if (I_publisher)

{
printf("Failed to create publisher - status %d\n", rc);
_call_shutdown();
return;

}

renl_create_publisher(_publisher, "renl_id", NULL,
_renl_create_cb,NULL);

return;
}
static void _recv_ack(void *arg, int rc, void *ignored)
{

(void *)ignored;

Chapter 4 iPlanet Calendar Server Specific Information

69

iPlanet Calendar Server Sample Code

}

if (rc <0)

{
printf("Acknowledgment Timeout\n");
}elseif (rc==0){
printf("Acknowledgment Received\n");

}
fflush (stdout);

_read_stdin();
free(arg);

return;

static void _read_stdin()

{

static char input[1024];

printf("rpub>");
fflush(stdout);
while (!_shutdown)
{
if (!fgets(input, sizeof(input), stdin))
{
continue;
}else {
char *message;
unsigned int message_len;

input[strlen(input) - 1] = 0; /* Strip off the \n */

if (*input =="." && input[1] == 0)

{
publisher_delete(_publisher);
_call_shutdown();
break;

}

message = strdup(input);
message_len = strlen(message);

/* five seconds timeout */

publish(_publisher, "enp://yoyo.com/xyz",
message, message_len,
NULL, _recv_ack, message, 5000);

return;

return;

70 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

iPlanet Calendar Server Sample Code

main(int argc, char **argv)

{
unsigned short port = 7997,
char host[256];

if (argc < 2) _exit_usage();
if (*(argv[1]) =="0’)
{
strepy(host, "127.0.0.1");
}else {
strcpy(host, argv[1]);
}
if (argc > 2)
{

}

disp = pas_dispatcher_new(NULL);
if (disp == NULL) _exit_error("Can’t create publisher");

port = (unsigned short)atoi(argv[2]);

publisher_new_a(disp, NULL, host, port, _publisher_new_cb,
NULL);

pas_dispatch(disp);

_shutdown = 1;

pas_dispatcher_delete(disp);

exit(0);

Reliable Subscriber Sample
/*
* Copyright 1997 by Sun Microsystems, Inc.

* All rights reserved
*

* asub : example asynchronous subscriber

*

* Syntax:
* asub host port
*/

#include <stdlib.h>
#include <stdio.h>

#include "pasdisp.h"
#include "subscriber.h"

Chapter 4 iPlanet Calendar Server Specific Information 71

iPlanet Calendar Server Sample Code

static pas_dispatcher_t *disp = NULL;
static subscriber_t * subscriber = NULL,;
static subscription_t *_subscription = NULL;
static renl_t *_renl = NULL;

static void _exit_usage()

{
printf("\nUsage:\nasub host port\n");
exit(5);
}
static void _exit_error(const char *msg)
{
printf("%s\n", msg);
exit(1);
}

static void _subscribe_ack(void *arg, int rc, void *subscription)

{
(void)arg;
if (rc)
{

_subscription = subscription;
printf("Subscription successful\n®);

_renl = renl_create_subscriber(_subscription, "renl_id",

NULL);
}else {
printf("Subscription failed - status %d\n", rc)
pas_shutdown(disp);
}
}

static void _unsubscribe_ack(void *arg, int rc, void *ignored)

{

(void *)ignored,;

(void *)arg;
if (rc '=0)
{

printf("Unsubscribe failed - status %d\n", rc);

}

subscriber_delete(_subscriber);
pas_shutdown(disp);

iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

iPlanet Calendar Server Sample Code

static int _handle_notify(void *arg, char *url, char *str, int len)
{

(void *)arg;

printf("[%s] %.*s\n", url, len, (str) ? str: "(null)");

return O;

}
static void _open_ack(void *arg, int rc, void *enc)

{

_subscriber = (subscriber_t *)enc;

(void *)arg;

if (rc)

{
printf("Failed to create subscriber with status %d\n", rc);
pas_shutdown(disp);
return;

}

subscribe(_subscriber, "enp://lyoyo.com/xyz",_handle_notify,
NULL,_subscribe_ack, NULL);

return;
}
static void _unsubscribe(int sig)
{
(int)sig;
unsubscribe(_subscriber, _subscription, _unsubscribe_ack, NULL);
}
main(int argc, char **argv)
{

unsigned short port = 7997,
char host[256];

if (argc < 2) _exit_usage();
if (*(argv[1]) =="0’)
{
strcpy(host, "127.0.0.1");
}else {
strepy(host, argv[1]);

}
if (argc > 2)
{
port = (unsigned short)atoi(argv[2]);
}

disp = pas_dispatcher_new(NULL);
if (disp == NULL) _exit_error("Can’t create publisher");

Chapter 4 iPlanet Calendar Server Specific Information

73

iPlanet Calendar Server Sample Code

subscriber_new_a(disp, NULL, host, port, _open_ack, NULL);
pas_dispatch(disp);

pas_dispatcher_delete(disp);

exit(0);

74 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Chapter 5

IPlanet Messaging Server Specific
Information

This chapter describes the iPlanet Messaging Server specific items you need to use
the ENS APIs.

This chapter contains these sections:
¢ iPlanet Messaging Server Events and Parameters

e iPlanet Messaging Server Sample Code

IPlanet Messaging Server Events and
Parameters

For iPlanet Messaging Server, there is only one event reference, which can be
composed of several parameters. Each parameter has a value and a payload.

iPlanet Messaging Server supports the following types of events:
* NewMsg - New message was received by the system into the user’s mailbox.

¢ DeleteMsg - User deleted a message (in the IMAP protocol, expunged) from
the mailbox.

* UpdateMsg - Message was appended to the mailbox (other than by NewMsg).
for example, the user copied an email message to the mailbox.

¢ ReadMsg - Message in the mailbox was read (in the IMAP protocol, the
message was marked Seen).

e PurgeMsg - Message was purged (in the IMAP protocol, expunged) from the
mailbox by the system.

75

iPlanet Messaging Server Events and Parameters

The following applies to the above supported events:
¢ All events relate only to the INBOX.

* The NewMsg notification is issued only after the message is deposited in the
user mailbox (as opposed to “after it was accepted by the server and queued in
the message queue”).

* Both the DeleteMsg and the PurgeMsg events correspond to when a message is
deleted from the user’s mailbox (in the IMAP protocol, the message is
expunged). It is not when a message is marked for deletion in the IMAP
protocol. The only difference between the two events is who deleted the
message. DeleteMsg indicates that the user deleted the message, while
PurgeMsg indicates that iPlanet Messaging Server deleted the message (for
example, if the message has expired).

¢ The notification will carry several pieces of information depending on the
event type, for example, NewMsgindicates the IMAP uid of the new message.

e Events are not generated for POP3 client access.

Parameters

iBiff will use the following format for the ENS event reference:
enp://127.0.0.1/store ?param=value¶ml=valuel ¶m2=value2

The event key enp://127.0.0.1/store has no significance other than its
uniqueness as a string. For example, the hostname portion of the event key has no
significance as a hostname. It is simply a string that is part of the URL. However,
the event key is user configurable. The list of iBiff configuration parameters is
listed in a separate section below.

The second part of the event reference consists of parameter/value pairs. This part
of the event reference is separated from the event key by a question mark (?). The
parameter and value are separated by an equals sign (=). The parameter/value
pairs are separated by an ampersand (&). Note that there can be empty values, for
which the value simply does not exist.

Table 5-1 on page 77 describes the mandatory configuration parameters that need
to be included in every notification.

76 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

iPlanet Messaging Server Events and Parameters

Table 5-1 Mandatory Configuration Parameters

Parameter Data Type Description

evtType string Specifies the event type. One of NewMsg, UpdateMsg,
ReadMsg, DeleteMsg, or PurgeMsg.

mailboxName string Specifies the mailbox name in the message store. The
mailboxName has the format uid@domain, where uid is
the userid, and domain is the domain the user belongs to.
The @domain portion is added only when the user does
not belong to the default domain (i.e. the userisin a
hosted domain).

timestamp 64-bit integer Specifies the number of milliseconds since the epoch
(midnight GMT, January 1, 1970).

process string Specifies the name of the process that generated the event.
If the process name is unknown, the process id will be
used (an integer).

hostname string The hostname of the machine that generated the event.

Table 5-2 describes the optional configuration parameters, depending on the event
type.

Table 5-2 Optional Configuration Parameters

Parameter Data Type Description
numMsgs unsigned 32-bit Specifies the number of existing messages.
integer
size unsigned 32-bit Specifies the size of the message. Note that this may not
integer be the size of payload, since the payload is typically a
truncated version of the message.
uidVvalidity unsigned 32-bit Specifies the IMAP uid validity parameter.
integer
imapUid unsigned 32-bit Specifies the IMAP uid parameter.
integer
uidSeqSeen string Specifies the list of uids that are marked seen in IMAP
syntax, such as “1:6.”
lastUid unsigned 32-bit Specifies the last IMAP uid value that was used.
integer

Chapter 5 iPlanet Messaging Server Specific Information 77

iPlanet Messaging Server Events and Parameters

Table 5-2 Optional Configuration Parameters (Continued)

Parameter Data Type Description

hdrLen unsigned 32-bit Specifies the size of the message header. Note that this

integer might not be the size of the header in the payload,

because it might have been truncated.

qUsed signed 32-bit integer ~ Specifies the disk space used in quota in kilobytes.

gMax signed 32-bit integer ~ Specifies the disk space quota in kilobytes. The value is
set to -1 to indicate no quotas.

gMsgUsed signed 32-bit integer ~ Specifies the number of messages used in quota. Should
be the same value as numMsgs.

gMsgMax signed 32-bit integer ~ Specifies the quota for max number of messages. The
value is set to -1 to indicate no quotas.

NOTE Subscribers should allow for undocumented parameters when
parsing the event reference. This allows for future compatibility
when new parameters are added.

Payload

Depending on the event, there may be the following data in the payload portion of

the ENS notification:
® The headers of the message - (string) - The length will be limited to a certain
(configurable) size. See configuration parameters in a separate section below.

¢ The first few bytes of the body of the message - (string). The actual number of
bytes will be configurable. See configuration parameters in a separate section
below.

Table 5-3 shows the parameters that are available for each event type.

Table 5-3 Available Parameters for Each Event Type

Field Name NewMsg, UpdateMsg ReadMsg DeleteMsg, PurgeMsg
numMsgs Yes No Yes

size Yes No No

uidValidity Yes Yes Yes

78 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

iPlanet Messaging Server Events and Parameters

Table 5-3 Available Parameters for Each Event Type (Continued)

Field Name NewMsg, UpdateMsg ReadMsg DeleteMsg, PurgeMsg
imapUid Yes No Yes
uidSegSeen No Yes No
uidSeqgDel No Yes No
lastUid No No Yes
hdrLen Yes No No
gUsed Yes No Yes
gMax Yes No Yes
gMsgUsed Yes No Yes
gMsgMax Yes No Yes
payload (headers/body) Yes No No
Examples

The following example shows a NewMsg event reference (it is actually a single line
that is broken up to several lines for readability):

enp://127.0.0.1/store?eviType=NewMsg&mailboxName=ketu310×tamp=972423964000
&process=16233&hostname=ketu&numMsgs=1&size=3339&uidValidity=972423964&
imapUid=1&hdrLen=810

This is the associated payload, note that the body portion has been truncated:

Chapter 5 iPlanet Messaging Server Specific Information 79

iPlanet Messaging Server Events and Parameters

Return-path: <>

Received: from process-daemon.ketu.siroe.com by ketu.siroe.com
(iPlanet Messaging Server 5.0 (built Oct 17 2000))

id <0G2YO0OCO01F4SlY@ketu.siroe.com> for ketu310@ims-ms-daemon
(ORCPT ketu310@siroe.com); Tue, 24 Oct 2000 14:46:04 -0700 (PDT)
Received: from ketu.siroe.com

(iPlanet Messaging Server 5.0 (built Oct 17 2000))

id <0G2Y00CO1F4RIX@ketu.siroe.com>; Tue, 24 Oct 2000 14:46:04 -0700 (PDT)
Date: Tue, 24 Oct 2000 14:46:04 -0700 (PDT)

From: Internet Mail Delivery

Subject: Delivery Notification: Delivery has failed

To: ketu310@siroe.com

Message-id: <0G2Y00CO5F4SIX@ketu.siroe.com>

MIME-version: 1.0

Content-type: multipart/report; report-type=delivery-status;
boundary="Boundary_(ID_VITrnulgC5fernL2SCzhQ)"

--Boundary_(ID_VITrnulgC5ferdJnL2SCzhQ)
ontent-type: text/plain; charset=us-ascii
Content-langua

This is another example, this time for the DeleteMsg event (again it is a single line
that is broken up for readability). Note that this example shows a mailboxName for
the userid blim in the hosted domain symult.com

enp://127.0.0.1/store?evtType=DeleteMsg&mailboxName=blim@symult.com&
timestamp=972423953000&process=15354&hostname=ketu&numMsgs=0&
uidValidity=972423928&imapUid=2&lastUid=2

And a third example showing a ReadMsg event (again the line is broken up for
readability). Note that this example shows an empty value for the uidSeqSeen
parameter. It also shares the same userid as the previous example, however this
corresponds to a different user, a user in the default domain.

enp://127.0.0.1/store?eviType=ReadMsg&mailboxName=blim×tamp=972423952000&
process=15354&hostname=ketu&uidValidity=972423928&uidSeqSeen=&uidSeqDel=1

80 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

iPlanet Messaging Server Sample Code

IPlanet Messaging Server Sample Code

iPlanet Messaging Server ships with a complete ENS implementation but by
default it is not enabled. To enable ENS in iPlanet Messaging Server, see Appendix
Cin the iPlanet Messaging Server 5.2 Administrator’s Guide.

The following two code samples illustrate how to use the ENS API The sample
code is provided with the product in the following directory:

server-root /bin/msg/enssdk/examples

Sample Publisher

This sample code provides a simple interactive asynchronous publisher.
/*
* Copyright 2000 by Sun Microsystems, Inc.

* All rights reserved

*/

Iz

*

* apub

* -

* a simple interactive asynchronous publisher

*

*

* This simplistic program publishes events using the hard-coded
* event reference

* enp://127.0.0.1/store

* and the data entered at the prompt as notification payload.

* Enter "." to end the program.

*

* |f you happen to run the corresponding subscriber, asub, on the

* same notification server, you will notice the sent data printed

Chapter 5 iPlanet Messaging Server Specific Information 81

iPlanet Messaging Server Sample Code

* out in the asub window.

*

* Syntax:

* $ apub <host> <port>

* where

* <host> is the notification server hostname

* <port> is the notification server IP port number

*/

#include <stdlib.h>

#include <stdio.h>

#include "pasdisp.h"
#include "publisher.h”

static pas_dispatcher_t *disp = NULL;
static publisher_t *_publisher = NULL;

static int _shutdown = 0;

static void _read_stdin();

static void _exit_usage()

{
printf("\nUsage:\napub host port\n");
exit(5);

static void _exit_error(const char *msg)

{
printf("%s\n", msg);
exit(1);

82 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

iPlanet Messaging Server Sample Code

static void _call_shutdown()

{

_shutdown = 1;

pas_shutdown(disp);

static void _open_ack(void *arg, int rc, void *enc)

{

_publisher = (publisher_t *)enc;

(void *)arg;
if (!_publisher) {
printf("Failed to create publisher with status %d\n", rc);
_call_shutdown();

return;

_read_stdin();

return;

static void _publish_ack(void *arg, int rc, void *ignored)

{

(void *)ignored,;

free(arg);

Chapter 5 iPlanet Messaging Server Specific Information 83

iPlanet Messaging Server Sample Code

if (rc'=0) {
printf("Publish failed with status %d\n", rc);

_call_shutdown();

return;
}
_read_stdin();
return;
}

static void _read_stdin()

{
static char input[1024];

printf("apub>");
fflush(stdout);
while (!_shutdown) {
if ([fgets(input, sizeof(input), stdin)) {
continue;
}else {
char *message;

unsigned int message_len;

input[strlen(input) - 1] = 0; /* Strip off the \n */

if (*input =="." && input[1] == 0) {
publisher_delete(_publisher);
_call_shutdown();

break;

84 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

iPlanet Messaging Server Sample Code

message = strdup(input);
message_len = strlen(message);
publish(_publisher, "enp://127.0.0.1/store",
message, message_len,
_publish_ack, NULL, (void *)message, 0);

return;

return;

main(int argc, char **argv)
{

unsigned short port = 7997;
char host[256];

if (argc < 2) _exit_usage();
if (*(argv[1]) =="0") {
strcpy(host, "127.0.0.1");
}else {
strepy(host, argv([1]);
}
if (argc > 2) {
port = (unsigned short)atoi(argv[2]);

disp = pas_dispatcher_new(NULL);

Chapter 5 iPlanet Messaging Server Specific Information 85

iPlanet Messaging Server Sample Code
if (disp == NULL) _exit_error("Can’t create publisher");
publisher_new_a(disp, NULL, host, port, _open_ack, disp);
pas_dispatch(disp);
_shutdown = 1;
pas_dispatcher_delete(disp);

exit(0);

Sample Subscriber

This sample code provides a simple subscriber.
/*
* Copyright 1997 by Sun Microsystems, Inc.

* All rights reserved

*

*/
/*
*
* asub
* -
* a simple subscriber

*

*

* This simplistic program subscribes to events matching the

* hard-coded event reference:

86 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

iPlanet Messaging Server Sample Code

* enp://127.0.0.1/store

* |t subsequently received messages emitted by the apub processes
* if any are being used, and prints the payload of each received
* notification to stdout.

*

* Syntax:

* $asub <host> <port>

* where

* <host> is the notification server hostname

* <port> is the notification server IP port number

*

#include <stdlib.h>

#include <stdio.h>

#include "pasdisp.h"

#include "subscriber.h"

static pas_dispatcher_t *disp = NULL;
static subscriber_t * subscriber = NULL;
static subscription_t *_subscription = NULL;

static renl_t *_renl = NULL;

static void _exit_usage()

{
printf("\nUsage:\nasub host port\n");
exit(5);

}

static void _exit_error(const char *msg)

{

printf("%s\n", msg);

Chapter 5 iPlanet Messaging Server Specific Information 87

iPlanet Messaging Server Sample Code

exit(1);

static void _subscribe_ack(void *arg, int rc, void *subscription)

{
(void)arg;
if (Irc) {
_subscription = subscription;
printf("Subscription successful\n™);
subscriber_keepalive(_subscriber, 30000);
}else {
printf("Subscription failed - status %d\n", rc);
pas_shutdown(disp);
}
}

static void _unsubscribe_ack(void *arg, int rc, void *ignored)

{
(void *)ignored,;

(void *)arg;

if (rc 1= 0) {

printf("Unsubscribe failed - status %d\n", rc);

subscriber_delete(_subscriber);

pas_shutdown(disp);

88 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

iPlanet Messaging Server Sample Code

static int _handle_notify(void *arg, char *url, char *str, int len)

{
(void *)arg;
printf("[%s] %.*s\n", url, len, (str) ? str : "(null)");
return O;

}

static void _open_ack(void *arg, int rc, void *enc)

{
_subscriber = (subscriber_t *)enc;
(void *)arg;
if (rc) {
printf("Failed to create subscriber with status %d\n", rc);
pas_shutdown(disp);
return;
}
subscribe(_subscriber, "enp://127.0.0.1/store",
_handle_notify, NULL,
_subscribe_ack, NULL);
return;
}

static void _unsubscribe(int sig)

{
(int)sig;
unsubscribe(_subscriber, _subscription, _unsubscribe_ack, NULL);

Chapter 5 iPlanet Messaging Server Specific Information 89

iPlanet Messaging Server Sample Code

main(int argc, char **argv)

{
unsigned short port = 7997;

char host[256];

if (argc < 2) _exit_usage();
if (*(argv[1]) =="0") {
strepy(host, "127.0.0.1");
}else {
strcpy(host, argv[1]);

}
if (argc > 2) {
port = (unsigned short)atoi(argv[2]);

disp = pas_dispatcher_new(NULL);

if (disp == NULL) _exit_error("Can’t create publisher");

subscriber_new_a(disp, NULL, host, port, _open_ack, NULL);

pas_dispatch(disp);

pas_dispatcher_delete(disp);

exit(0);
}

90 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Implementation Notes

Implementation Notes

The current implementation does not provide security on events that can be
subscribed to. Thus, a user could register for all events, and portions of all other
users’ mail. Because of this it is strongly recommended that the ENS subscriber be
on the “safe” side of the firewall at the very least.

Chapter 5 iPlanet Messaging Server Specific Information 91

Implementation Notes

92 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

Glossary

consumed Notifications received and processed by a service are said to be
consumed by the process.

event Generation of data for an event reference. For iPlanet Calendar Server, this
occurs when there is a change in a resource (calendar). For iPlanet Messaging
Server, there is a list of events that occur (NewMsg DeleteMsg , and so on).

event consumer Synonym for event subscriber.

event producer Synonym for event publisher.

event publisher An application that makes events known to other applications.

event reference Identifies an event handled by ENS. It complies with URI syntax
defined by RFC 2396.

event subscriber An application that consumes events.
iBiff The name given to the plug-in that publishes message store notifications in
iPlanet Messaging Server. It includes the specification of how to subscribe to the

notifications.

iPlanet Event Notification Service Application framework relaying notifications
sent to subscribers by publishers.

notification Message describing an event occurrence. Sent by the event
publisher, it contains a reference to the event as well as optional data used by the

event consumers, but opaque to the notification service.

notification service Receives subscriptions and notifications from other servers.
Relays notifications to subscribers.

93

notification server A notification service is made up of one or more server
instances, each running on a separate host.

notify A synonym for publish.

payload The data describing an event. Three different payload formats are
supported: binary, text/calendar, and text/XML.

publish Send a notification. An event publisher makes an event available to the
notification service.

reliable event notification link (RENL) An RENL has a publisher, a subscriber,
and a unique ID, which identify notifications that are subject to acknowledgment.

resource A piece of data accessed from the IP network. For example, a calendar is
a resource.

resource state The value of attributes that describe a resource. For example, a
meeting time.

subscribe Send a subscription. An event subscriber tells the notification service
that it wants to receive notifications of a specific event.

subscription Message sent by the event subscriber. Contains an event reference,
a client-side request identifier, and optional access control rules.

task In Calendar Express on the client side, a component of a calendar that
specifies something to be done. On the server side, a task is also called a todo.

todo IniPlanet Calendar Server, on the server side, a a component of a calendar
that specifies something to be done. In Calendar Express on the client side, a todo is
called a task.

unsubscribe Cancels a subscription. An event subscriber tells the notification
service to stop relaying notifications for the specified event.

unsubscription This message cancels (unsubscribes) an existing subscription. An

event subscriber tells the notification service to stop relaying notifications for the
specified event.

94 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

A

alarm transfer reliability 20
APIs
ENS
publish and subscribe dispatcher 48
publisher 33
subscriber 40

C

configuration parameters
general 77

custom applications
building and running 26

E

ENS
code samples
publisher 62
daemons
csadmind 31
csnotifyd 31
publish and subscribe dispatcher API 48
publisher API 33
RENL definition 33
subscriber API 40
subscriber_new_a function 42

Index

ENS APIs
functions list

publish and subscribe dispatcher 48
publisher 33
subscriber 40

publish and subscribe dispatcher functions

pas_dispatch 49
pas_dispatcher_delete 49
pas_dispatcher_new 48
pas_dispatcher_t definition 48
pas_shutdown 50

publisher functions

publish_a 36

publish_s 37
publisher_cb_t 34
publisher_delete 38
publisher_new_a 35
publisher_new_s 36
publisher_t 34
renl_cancel_publisher 40
renl_create_publisher 39

subscriber functions

renl_cancel_subscriber 47
renl_create_subscriber 46
subscribe_a 44
subscriber_cb_t 41
subscriber_delete 46
subscriber_new_a 42
subscriber_new_s 43
subscriber_notify_cb_t 42
subscriber_t 41
subscription_t 41
unsubscribe_a 45

ENS C API overview 24

95

ENS connection pooling 14
ENS Java API
overview 25
Event Notification Service
API overview 24
architecture 15
enabling in iPlanet Messaging Server 13
how iPlanet Calendar Server interacts with 17
how iPlanet Messaging Server interacts with 22
in iPlanet Calendar Server 12
in iPlanet Messaging Server 12
overview 11
event references
iPlanet Calendar Server example 14
iPlanet Messaging Server example 14
overview 13

iBiff notification plug-in 12, 14
include files
location of 26
iPlanet Calendar Server
alarm queue 18
and ENS 12
daemons 19
ENS example 20
iPlanet Messaging Server
and ENS 12
enabling ENS 13

N

notification
overview 16
reliable 16
unreliable 16

P

pas_dispatch function (ENS) 49
pas_dispatcher_delete function (ENS) 49
pas_dispatcher_new function (ENS) 48
pas_dispatcher_t definition (ENS) 48
pas_shutdown function (ENS) 50
publish and subscribe dispatcher functions (ENS)
list 48
pas_dispatch 49
pas_dispatcher_delete 49
pas_dispatcher_new 48
pas_dispatcher_t definition t 48
pas_shutdown 50
publish_a function (ENS) 36
publish_s function (ENS) 37
publisher_cb_t function (ENS) 34
publisher_delete function (ENS) 38
publisher_new_a function (ENS) 35
publisher_new_s function (ENS) 36
publisher_t function (ENS) 34

R

Reliable Event Notification Link (RENL) (ENS) 24,
33

renl_cancel_publisher function (ENS) 40
renl_cancel_subscriber function (ENS) 47
renl_create_publisher function (ENS) 39
renl_create_subscriber function (ENS) 46
runtime library path variable 30

S

sample code
location of 26
shared libraries
iPlanet Calendar Server 27
iPlanet Messaging Server 27
subscribe_a function (ENS) 44

96 iPlanet Messaging and Collaboration Event Notification Service Manual * January 2002

subscriber_cb_t function (ENS) 41
subscriber_delete function (ENS) 46
subscriber_new_a function (ENS) 42
subscriber_new_s function (ENS) 43
subscriber_t function (ENS) 41

subscription
overview 16

subscription_t function (ENS) 41

U

unsubscribe_a function (ENS) 45
unsubscription
overview 16

Index

97

98 iPlanet Messaging and Collaboration Event Notification Service Manual « January 2002

	About This Guide
	Who Should Read This Book
	What You Need to Know
	How This Book is Organized
	Conventions Used in This Manual
	Where to Find Related Information

	Introduction to Event Notification Service
	Event Notification Service Overview
	ENS in iPlanet Calendar Server
	ENS in iPlanet Messaging Server
	Event References
	iPlanet Calendar Server Event Reference Example
	iPlanet Messaging Server Event Reference Example

	ENS Connection Pooling
	Multiple Pool Extension

	Event Notification Service Architecture
	Notify
	Subscribe
	Unsubscribe
	How iPlanet Calendar Server Interacts with ENS
	iPlanet Calendar Server Alarm Queue
	iPlanet Calendar Server Daemons
	Alarm Transfer Reliability
	iPlanet Calendar Server Example

	How iPlanet Messaging Server Interacts with ENS

	Event Notification Service API Overview
	ENS C API Overview
	ENS Java API Overview
	Building and Running Custom Applications
	Location of Sample Code
	Location of Include Files
	Dynamically Linked/Shared Libraries
	Runtime Library Path Variable

	Event Notification Service C API Reference
	Publisher API Functions List
	Subscriber API Functions List
	Publish and Subscribe Dispatcher Functions List
	Publisher API
	publisher_t
	publisher_cb_t
	publisher_new_a
	publisher_new_s
	publish_a
	publish_s
	publisher_delete
	publisher_get_subscriber
	renl_create_publisher
	renl_cancel_publisher
	Subscriber API
	subscriber_t
	subscription_t
	subscriber_cb_t
	subscriber_notify_cb_t
	subscriber_new_a
	subscriber_new_s
	subscribe_a
	unsubscribe_a
	subscriber_delete
	subscriber_get_publisher
	renl_create_subscriber
	renl_cancel_subscriber
	Publish and Subscribe Dispatcher API
	pas_dispatcher_t
	pas_dispatcher_new
	pas_dispatcher_delete
	pas_dispatch
	pas_shutdown

	Event Notification Service Java (JMS) API Reference
	Event Notification Service Java (JMS) API Implementation
	Prerequisites to Use the Java API
	Sample Java Programs
	Setting Up Your Environment
	To Compile the JmsSample Program
	To Compile the JBiff Program
	To Run the JmsSample Program
	To Run the JBiff Demo Program

	Java (JMS) API Overview
	New Proprietary Methods
	com.iplanet.ens.jms.EnsTopicConnFactory
	com.iplanet.ens.jms.EnsTopic

	Implementation Notes
	Shortcomings of the Current Implementation
	Notification Delivery
	JMS Headers
	Miscellaneous

	iPlanet Calendar Server Specific Information
	iPlanet Calendar Server Notifications
	Format of Calendar Notifications

	iPlanet Calendar Server Sample Code
	Sample Publisher and Subscriber
	Publisher Code Sample
	Subscriber Code Sample

	Reliable Publisher and Subscriber
	Reliable Publisher Sample
	Reliable Subscriber Sample

	iPlanet Messaging Server Specific Information
	iPlanet Messaging Server Events and Parameters
	Parameters
	Payload
	Examples

	iPlanet Messaging Server Sample Code
	Sample Publisher
	Sample Subscriber

	Implementation Notes

	Index

