
man Pages(4): File Formats

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 805-3176-10
October 1998

Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunDocs, Java, the Java Coffee Cup logo, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunDocs, Java, le logo Java Coffee Cup, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

PREFACE xi

Intro(4) 2

acct(4) 13

admin(4) 15

aliases(4) 19

a.out(4) 24

ar(4) 26

archives(4) 29

asetenv(4) 32

asetmasters(4) 35

audit_class(4) 38

audit_control(4) 40

audit_data(4) 43

audit_event(4) 44

audit.log(4) 45

audit_user(4) 51

bootparams(4) 52

cdtoc(4) 55

clustertoc(4) 58

Contents iii

compver(4) 63

copyright(4) 64

core(4) 65

default_fs(4) 68

defaultrouter(4) 69

depend(4) 70

device_allocate(4) 72

device.cfinfo(4) 75

device_maps(4) 80

dfstab(4) 82

dhcp(4) 83

dhcp_network(4) 84

dhcptab(4) 88

dhcptags(4) 98

dialups(4) 104

dirent(4) 105

dir_ufs(4) 106

d_passwd(4) 107

driver.conf(4) 109

environ(4) 113

ethers(4) 115

fd(4) 116

filehdr(4) 117

format.dat(4) 119

fspec(4) 124

fstypes(4) 126

fs_ufs(4) 127

group(4) 130

iv man Pages(4): File Formats ♦ October 1998

holidays(4) 132

hosts(4) 134

hosts.equiv(4) 136

inetd.conf(4) 139

init.d(4) 141

inittab(4) 143

issue(4) 146

keytables(4) 147

krb.conf(4) 156

krb.realms(4) 157

ldapfilter.conf(4) 158

ldapsearchprefs.conf(4) 160

ldaptemplates.conf(4) 164

libadm(4) 169

libaio(6) 170

libbsdmalloc(4) 172

libbsm(4) 173

libc(4) 175

libcfgadm(4) 195

libci(4) 196

libcmd(4) 197

libcrypt(4) 198

libcurses(4) 199

libdevid(4) 202

libdevinfo(4) 203

libdl(4) 205

libdmi(4) 207

libdmimi(4) 208

Contents v

libelf(4) 209

libform(4) 211

libgen(4) 213

libintl(4) 215

libkrb(4) 216

libkstat(4) 218

libkvm(4) 219

libl(4) 220

libmalloc(4) 221

libmapmalloc(4) 222

libmenu(4) 223

libmp(4) 225

libmtmalloc(4) 227

libnisdb(4) 228

libnsl(4) 229

libpam(4) 237

libpanel(4) 239

libplot(4) 240

libpthread(4) 242

librac(4) 245

libresolv(4) 247

librpcsoc(4) 250

librpcsvc(4) 251

librt(4) 252

libsec(4) 254

libsocket(4) 255

libssagent(4) 257

libssasnmp(4) 258

vi man Pages(4): File Formats ♦ October 1998

libsys(4) 259

libthread(4) 264

libthread_db(4) 268

libtnfctl(4) 270

libucb(4) 272

libvolmgt(4) 274

libw(4) 276

libxfn(4) 278

libxnet(4) 282

liby(4) 284

limits(4) 285

loadfont(4) 290

logindevperm(4) 294

loginlog(4) 295

magic(4) 296

mech(4) 298

mnttab(4) 299

netconfig(4) 300

netgroup(4) 305

netid(4) 308

netmasks(4) 310

netrc(4) 312

networks(4) 314

nisfiles(4) 315

nologin(4) 318

note(4) 319

nscd.conf(4) 320

nsswitch.conf(4) 323

Contents vii

order(4) 330

ott(4) 331

packagetoc(4) 332

packingrules(4) 337

pam.conf(4) 340

passwd(4) 346

pathalias(4) 349

path_to_inst(4) 350

pci(4) 352

pcmcia(4) 357

phones(4) 358

pkginfo(4) 359

pkgmap(4) 367

platform(4) 371

power.conf(4) 375

printers(4) 382

printers.conf(4) 386

proc(4) 395

profile(4) 426

protocols(4) 428

prototype(4) 429

pseudo(4) 434

publickey(4) 435

queuedefs(4) 436

remote(4) 438

resolv.conf(4) 442

rmmount.conf(4) 446

rmtab(4) 449

viii man Pages(4): File Formats ♦ October 1998

rpc(4) 450

rpld.conf(4) 451

rt_dptbl(4) 453

sbus(4) 460

sccsfile(4) 463

scsi(4) 466

securenets(4) 468

services(4) 470

shadow(4) 471

sharetab(4) 473

shells(4) 474

sock2path(4) 475

space(4) 476

sulog(4) 477

sysbus(4) 479

sysidcfg(4) 482

syslog.conf(4) 486

system(4) 490

telnetrc(4) 494

term(4) 495

terminfo(4) 498

TIMEZONE(4) 559

timezone(4) 560

tnf_kernel_probes(4) 561

ts_dptbl(4) 569

ttydefs(4) 577

ttysrch(4) 578

ufsdump(4) 580

Contents ix

updaters(4) 586

utmp(4) 587

utmpx(4) 588

vfstab(4) 589

vold.conf(4) 590

ypfiles(4) 594

Index 596

x man Pages(4): File Formats ♦ October 1998

PREFACE

Overview
A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information. A
man page is intended to answer concisely the question “What does it do?” The man
pages in general comprise a reference manual. They are not intended to be a tutorial.

The following contains a brief description of each section in the man pages and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2 of
this volume.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character set tables.

� Section 6 contains available games and demos.

PREFACE xi

� Section 7 describes various special files that refer to specific hardware peripherals,
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

� Section 9 provides reference information needed to write device drivers in the
kernel operating systems environment. It describes two device driver interface
specifications: the Device Driver Interface (DDI) and the Driver/Kernel Interface
(DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer may include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about
man pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full pathname is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument
order is required.

The following special characters are used in this
section:

[] The option or argument enclosed in
these brackets is optional. If the brackets
are omitted, the argument must be
specified.

. . . Ellipses. Several values may be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, ‘
"filename . . ." .

xii man Pages(4): File Formats
♦ October 1998

| Separator. Only one of the arguments
separated by this character can be
specified at time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES.. Interactive
commands, subcommands, requests, macros,
functions and such, are described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class which supplies appropriate
parameters to the ioctl (2) system call is called
ioctl and generates its own heading. ioctl
calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl
calls are used for a particular class of devices all
of which have an io ending, such as mtio (7D)

OPTIONS This lists the command options with a concise
summary of what each option does. The options
are listed literally and in the order they appear in
the SYNOPSIS section. Possible arguments to
options are discussed under the option, and
where appropriate, default values are supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output - standard
output, standard error, or output files - generated
by the command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed in

xiii

tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section is provided as a guidance on use.
This section lists special rules, features and
commands that require in-depth explanations.
The subsections listed below are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of
how to use a command or function. Wherever
possible a complete example including command
line entry and machine response is shown.
Whenever an example is given, the prompt is
shown as example% or if the user must be
superuser, example# . Examples are followed by
explanations, variable substitution rules, or
returned values. Most examples illustrate
concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion and

xiv man Pages(4): File Formats
♦ October 1998

values other than zero for various error
conditions.

FILES This section lists all filenames referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes (5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes
the form of an aside to the user, covering points
of special interest. Critical information is never
covered here.

BUGS This section describes known bugs and wherever
possible, suggests workarounds.

xv

CHAPTER

File Formats

1

File Formats Intro(4)

NAME Intro – introduction to file formats

DESCRIPTION This section outlines the formats of various files. The C structure declarations
for the file formats are given where applicable. Usually, the headers containing
these structure declarations can be found in the directories /usr/include or
/usr/include/sys . For inclusion in C language programs, however, the
syntax #include <filename.h> or #include <sys/ filename.h> should be used.

Because the operating system now allows the existence of multiple file system
types, there are several instances of multiple manual pages with the same
name. These pages all display the name of the FSType to which they pertain,
in the form name_ fstype at the top of the page. For example, fs_ufs (4).

INTERFACES Descriptions of shared objects may include a definition of the global symbols
that define the shared objects’ public interface, for example SUNW_1.1. Other
interfaces may exist within the shared object, for example
SUNW_private.1.1 . The public interface provides a stable, committed set of
symbols for application development. The private interfaces are for internal
use only, and may change at any time.

For many shared objects, an archive library is provided for backward
compatibility. Use of these libraries may restrict an applications ability to
migrate between different Solaris releases. As dynamic linking is the preferred
compilation method on Solaris, the use of these libraries is discouraged.
Name Description

Intro (4) introduction to file formats

TIMEZONE(4) set default system time zone and locale

a.out (4) Executable and Linking Format (ELF) files

acct (4) per-process accounting file format

addresses (4) See aliases (4)

admin (4) installation defaults file

aliases (4) addresses and aliases for sendmail

ar (4) archive file format

archives (4) device header

asetenv (4) ASET environment file

asetmasters (4) ASET master files

Last modified 16 Feb 1996 SunOS 5.7 2

Intro(4) File Formats

audit.log (4) audit trail file

audit_class (4) audit class definitions

audit_control (4) control information for system audit daemon

audit_data (4) current information on audit daemon

audit_event (4) audit event definition and class mapping

audit_user (4) per-user auditing data file

bootparams (4) boot parameter data base

cdtoc (4) CD-ROM table of contents file

cklist.high (4) See asetmasters (4)

cklist.low (4) See asetmasters (4)

cklist.med (4) See asetmasters (4)

clustertoc (4) cluster table of contents description file

compver (4) compatible versions file

copyright (4) copyright information file

core (4) core image file

d_passwd (4) dial-up password file

default_fs (4) specify the default file system type for local or
remote file systems

defaultrouter (4) configuration file for default router(s)

depend (4) software dependencies file

device.cfinfo (4) devconfig configuration files

device_allocate (4) device_allocate file

device_maps (4) device_maps file

dfstab (4) file containing commands for sharing resources
across a network

3 SunOS 5.7 Last modified 16 Feb 1996

File Formats Intro(4)

dhcp (4) file containing default parameter values for the
location and type of the databases used by the
DHCP service

dhcp_network (4) dhcp network DHCP database

dhcptab (4) DHCP configuration parameter table

dhcptags (4) DHCP option mnemonic mapping table

dialups (4) list of terminal devices requiring a dial-up
password

dir (4) See dir_ufs (4)

dir_ufs (4) format of ufs directories

dirent (4) file system independent directory entry

driver.conf (4) driver configuration files

dumpdates (4) See ufsdump (4)

eisa (4) See sysbus (4)

environ (4) user-preference variables files for ATT FACE

ethers (4) Ethernet address to hostname database or domain

fbtab (4) See logindevperm (4)

fd (4) file descriptor files

filehdr (4) file header for common object files

format.dat (4) disk drive configuration for the format command

forward (4) See aliases (4)

fs (4) See default_fs (4)

fs_ufs (4) format of a ufs file system volume

fspec (4) format specification in text files

fstypes (4) file that registers distributed file system packages

group (4) group file

Last modified 16 Feb 1996 SunOS 5.7 4

Intro(4) File Formats

holidays (4) prime/nonprime table for the accounting system

hosts (4) host name database

hosts.equiv (4) trusted remote hosts and users

inetd.conf (4) Internet servers database

init.d (4) initialization and termination scripts for changing
init states

inittab (4) script for init

inode (4) See fs_ufs (4)

inode_ufs (4) See fs_ufs (4)

intro (4) See Intro (4)

isa (4) See sysbus (4)

issue (4) issue identification file

keytables (4) keyboard table descriptions for loadkeys and
dumpkeys

krb.conf (4) Kerberos configuration file

krb.realms (4) host to Kerberos realm translation file

ldapfilter.conf (4) configuration file for LDAP filtering routines

ldapsearchprefs.conf (4)configuration file for LDAP search preference
routines

ldaptemplates.conf (4) configuration file for LDAP display template
routines

lib300 (4) See libplot (4)

lib300s (4) See libplot (4)

lib4014 (4) See libplot (4)

lib450 (4) See libplot (4)

libadm (4) general administrative library

5 SunOS 5.7 Last modified 16 Feb 1996

File Formats Intro(4)

libaio (6) the asynchronous I/O library

libbsdmalloc (4) memory allocator interface library

libbsm (4) basic security library

libc (4) the C library

libcfgadm (4) library of configuration adminstartion interfaces

libci (4) Sun Solstice Enterprise Agent Component
Interface Library

libcmd (4) commands library

libcrypt (4) encryption/decryption library

libcurses (4) screen handling and optimization library

libdevid (4) device id library

libdevinfo (4) the device information library

libdl (4) the dynamic linking interface library

libdmi (4) Sun Solstice Enterprise Agent DMI Library

libdmimi (4) Sun Solstice Enterprise Agent Management
Interface Library

libelf (4) ELF access library

libform (4) forms library

libgen (4) string pattern-matching library

libintl (4) internationalization library

libkrb (4) Kerberos library

libkstat (4) kernel statistics library

libkvm (4) Kernel Virtual Memory access library

libl (4) user interfaces to lex library

libmalloc (4) memory allocation library

Last modified 16 Feb 1996 SunOS 5.7 6

Intro(4) File Formats

libmapmalloc (4) an alternative memory allocator library

libmenu (4) menus library

libmp (4) multiple precision library

libmtmalloc (4) the multi-threaded memory allocator library

libnisdb (4) NIS+ Database access library

libnsl (4) the network services library

libpam (4) interface library for PAM (Pluggable
Authentication Module)

libpanel (4) panels library

libplot (4) graphics interface libraries

libposix4 (4) See librt (4)

libpthread (4) POSIX threads library

librac (4) remote asynchronous calls library

libresolv (4) resolver library

librpcsoc (4) obsolete RPC library

librpcsvc (4) miscellaneous RPC services library

librt (4) POSIX.1b Realtime Extensions library

libsec (4) File Access Control List library

libsocket (4) the sockets library

libssagent (4) Sun Solstice Enterprise Agent Library

libssasnmp (4) Sun Solstice Enterprise SNMP Library

libsys (4) the system library

libtermcap (4) See libcurses (4)

libtermlib (4) See libcurses (4)

7 SunOS 5.7 Last modified 16 Feb 1996

File Formats Intro(4)

libthread (4) the threads library

libthread_db (4) threads debugging library

libtnfctl (4) library of TNF probe control routines for use by
processes and the kernel

libucb (4) the UCB compatibility library

libvolmgt (4) volume management library

libvt0 (4) See libplot (4)

libw (4) the wide character library

libxfn (4) the XFN interface library

libxnet (4) X/Open Networking Interfaces library

liby (4) user interfaces to yacc library

limits (4) header for implementation-specific constants

loadfont (4) format of a font file used as input to the loadfont
utility

logindevperm (4) login-based device permissions

loginlog (4) log of failed login attempts

magic (4) file command’s magic number file

mech(4) mechanism and QOP files

mnttab (4) mounted file system table

netconfig (4) network configuration database

netgroup (4) list of network groups

netid (4) netname database

netmasks (4) network mask database

netrc (4) file for ftp remote login data

networks (4) network name database

Last modified 16 Feb 1996 SunOS 5.7 8

Intro(4) File Formats

nisfiles (4) NIS+ database files and directory structure

nologin (4) message displayed to users attempting to log on
in the process of a system shutdown

note (4) specify legal annotations

nscd.conf (4) name service cache daemon configuration

nsswitch.conf (4) configuration file for the name service switch

order (4) package installation order description file

ott (4) FACE object architecture information

packagetoc (4) package table of contents description file

packingrules (4) packing rules file for cachefs and filesync

pam.conf (4) configuration file for pluggable authentication
modules

passwd (4) password file

path_to_inst (4) device instance number file

pathalias (4) alias file for FACE

pci (4) configuration files for PCI device drivers

pcmcia (4) PCMCIA nexus driver

phones (4) remote host phone number database

pkginfo (4) package characteristics file

pkgmap(4) package contents description file

platform (4) directory of files specifying supported platforms

power.conf (4) power management configuration information file

pref (4) See environ (4)

printers (4) user-configurable printer alias database

printers.conf (4) system printing configuration database

9 SunOS 5.7 Last modified 16 Feb 1996

File Formats Intro(4)

proc (4) /proc, the process file system

profile (4) setting up an environment for user at login time

protocols (4) protocol name database

prototype (4) package information file

pseudo (4) configuration files for pseudo device drivers

publickey (4) public key database

qop (4) See mech(4)

queuedefs (4) queue description file for at, batch, and cron

remote (4) remote host description file

resolv.conf (4) configuration file for name server routines

rhosts (4) See hosts.equiv (4)

rmmount.conf (4) removable media mounter configuration file

rmtab (4) remote mounted file system table

rpc (4) rpc program number data base

rpld.conf (4) Remote Program Load (RPL) server configuration
file

rt_dptbl (4) real-time dispatcher parameter table

sbus (4) configuration files for SBus device drivers

sccsfile (4) format of an SCCS history file

scsi (4) configuration files for SCSI target drivers

securenets (4) configuration file for NIS security

services (4) Internet services and aliases

shadow (4) shadow password file

sharetab (4) shared file system table

shells (4) shell database

Last modified 16 Feb 1996 SunOS 5.7 10

Intro(4) File Formats

sock2path (4) file that maps sockets to transport providers

space (4) disk space requirement file

sulog (4) su command log file

sysbus (4) device tree properties for ISA and EISA bus
device drivers

sysidcfg (4) system identification configuration file

syslog.conf (4) configuration file for syslogd system log daemon

system (4) system configuration information file

telnetrc (4) file for telnet default options

term (4) format of compiled term file

terminfo (4) terminal and printer capability database

timezone (4) default timezone data base

tnf_kernel_probes (4) TNF kernel probes

ts_dptbl (4) time-sharing dispatcher parameter table

ttydefs (4) file contains terminal line settings information for
ttymon

ttysrch (4) directory search list for ttyname

tune.high (4) See asetmasters (4)

tune.low (4) See asetmasters (4)

tune.med (4) See asetmasters (4)

ufsdump (4) incremental dump format

uid_aliases (4) See asetmasters (4)

updaters (4) configuration file for NIS updating

utmp (4) utmp and wtmp entry formats

utmpx (4) utmpx and wtmpx entry formats

11 SunOS 5.7 Last modified 16 Feb 1996

File Formats Intro(4)

variables (4) See environ (4)

vfstab (4) table of file system defaults

vold.conf (4) Volume Management configuration file

wtmp(4) See utmp (4)

wtmpx (4) See utmpx (4)

ypfiles (4) Network Information Service Version 2, formerly
knows as YP

Last modified 16 Feb 1996 SunOS 5.7 12

acct(4) File Formats

NAME acct – per-process accounting file format

SYNOPSIS #include <sys/types.h>

#include <sys/acct.h>

DESCRIPTION Files produced as a result of calling acct (2) have records in the form defined
by <sys/acct.h> , whose contents are:

typedef ushort_t comp_t; /* pseudo "floating point"
representation */

/* 3 bit base-8 exponent in the high */
/* order bits, and a 13-bit fraction */
/* in the low order bits. */

struct acct
{

char ac_flag; /* Accounting flag */
char ac_stat; /* Exit status */
uid_t ac_uid; /* Accounting user ID */
gid_t ac_gid; /* Accounting group ID */
dev_t ac_tty; /* control tty */
time_t ac_btime; /* Beginning time */
comp_t ac_utime; /* accounting user time in clock */

/* ticks */
comp_t ac_stime; /* accounting system time in clock */

/* ticks */
comp_t ac_etime; /* accounting total elapsed time in clock */

/* ticks */
comp_t ac_mem; /* memory usage in clicks (pages) */
comp_t ac_io; /* chars transferred by read/write */
comp_t ac_rw; /* number of block reads/writes */
char ac_comm[8]; /* command name */

};
/*

* Accounting Flags
*/

#define AFORK 01 /* has executed fork, but no exec */
#define ASU 02 /* used super-user privileges */
#define ACCTF 0300 /* record type */
#define AEXPND 040 /* Expanded Record Type − default */

In ac_flag , the AFORKflag is turned on by each fork and turned off by an
exec . The ac_comm field is inherited from the parent process and is reset by
any exec . Each time the system charges the process with a clock tick, it also
adds to ac_memthe current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem / (ac_stime + ac_utime) can be viewed as an
approximation to the mean process size, as modified by text sharing.

13 SunOS 5.7 Last modified 19 May 1994

File Formats acct(4)

The structure tacct , (which resides with the source files of the accounting
commands), represents a summary of accounting statistics for the user id
ta_uid . This structure is used by the accounting commands to report statistics
based on user id.

/*
* total accounting (for acct period), also for day
*/

struct tacct {
uid_t ta_uid; /* user id */
char ta_name[8]; /* login name */
float ta_cpu[2]; /* cum. cpu time in minutes, */

/* p/np (prime/non-prime time) */
float ta_kcore[2]; /* cum. kcore-minutes, p/np */
float ta_con[2]; /* cum. connect time in minutes, */

/* p/np */
float ta_du; /* cum. disk usage (blocks)*/
long ta_pc; /* count of processes */
unsigned short ta_sc; /* count of login sessions */
unsigned short ta_dc; /* count of disk samples */
unsigned short ta_fee; /* fee for special services */

};

ta_cpu , ta_kcore , and ta_con contain usage information pertaining to
prime time and non-prime time hours. The first element in each array
represents the time the resource was used during prime time hours. The
second element in each array represents the time the resource was used during
non-prime time hours. Prime time and non-prime time hours may be set in the
holidays file (see holidays (4)).

ta_kcore is a cumulative measure of the amount of memory used over the
accounting period by processes owned by the user with uid ta_uid . The
amount shown represents kilobyte segments of memory used, per minute.

ta_con represents the amount of time the user was logged in to the system.

FILES
/etc/acct/holidays prime/non-prime time table

SEE ALSO acctcom (1), acct (1M), acctcon (1M), acctmerg (1M), acctprc (1M),
acctsh (1M), prtacct (1M), runacct (1M), shutacct (1M), acct (2),
exec (2), fork (2)

NOTES The ac_memvalue for a short-lived command gives little information about
the actual size of the command, because ac_memmay be incremented while a
different command (for example, the shell) is being executed by the process.

Last modified 19 May 1994 SunOS 5.7 14

admin(4) File Formats

NAME admin – installation defaults file

DESCRIPTION admin is a generic name for an ASCII file that defines default installation
actions by assigning values to installation parameters. For example, it allows
administrators to define how to proceed when the package being installed
already exists on the system.

/var/sadm/install/admin/default is the default admin file delivered
with this release. The default file is not writable, so to assign values different
from this file, create a new admin file. There are no naming restrictions for
admin files. Name the file when installing a package with the −a option of
pkgadd (1M). If the −a option is not used, the default admin file is used.

Each entry in the admin file is a line that establishes the value of a parameter
in the following form:

param=value

Eleven parameters can be defined in an admin file, but it is not required to
assign values to all eleven parameters. If a value is not assigned, pkgadd (1M)
asks the installer how to proceed.

The eleven parameters and their possible values are shown below except as
noted. They may be specified in any order. Any of these parameters (except
the mail parameter) can be assigned the value ask , which means that if the
situation occurs the installer is notified and asked to supply instructions at that
time (see NOTES).
basedir Indicates the base directory where relocatable packages are

to be installed. If there is no basedir entry in the file, the
installer will be prompted for a path name, as if the file
contained the entry basedir=ask . This parameter can also
be set to default (entry is basedir=default). In this
instance, the package is installed into the base directory
specified by the BASEDIRparameter in the pkginfo (4) file.

mail Defines a list of users to whom mail should be sent
following installation of a package. If the list is empty, no
mail is sent. If the parameter is not present in the admin file,
the default value of root is used. The ask value cannot be
used with this parameter.

runlevel Indicates resolution if the run level is not correct for the
installation or removal of a package. Options are:

nocheck Do not check for run level.

15 SunOS 5.7 Last modified 7 Feb 1997

File Formats admin(4)

quit Abort installation if run level is not met.

conflict Specifies what to do if an installation expects to overwrite a
previously installed file, thus creating a conflict between
packages. Options are:

nocheck Do not check for conflict; files in conflict
will be overwritten.

quit Abort installation if conflict is detected.

nochange Override installation of conflicting files;
they will not be installed.

setuid Checks for executables which will have setuid or setgid bits
enabled after installation. Options are:

nocheck Do not check for setuid executables.

quit Abort installation if setuid processes are
detected.

nochange Override installation of setuid processes;
processes will be installed without setuid
bits enabled.

action Determines if action scripts provided by package developers
contain possible security impact. Options are:

nocheck Ignore security impact of action scripts.

quit Abort installation if action scripts may
have a negative security impact.

partial Checks to see if a version of the package is already partially
installed on the system. Options are:

nocheck Do not check for a partially installed
package.

Last modified 7 Feb 1997 SunOS 5.7 16

admin(4) File Formats

quit Abort installation if a partially installed
package exists.

instance Determines how to handle installation if a previous version
of the package (including a partially installed instance)
already exists. Options are:

quit Exit without installing if an instance of the
package already exists (does not overwrite
existing packages).

overwrite Overwrite an existing package if only one
instance exists. If there is more than one
instance, but only one has the same
architecture, it overwrites that instance.
Otherwise, the installer is prompted with
existing instances and asked which to
overwrite.

unique Do not overwrite an existing instance of a
package. Instead, a new instance of the
package is created. The new instance will
be assigned the next available instance
identifier.

idepend Controls resolution if other packages depend on the one to
be installed. Options are:

nocheck Do not check package dependencies.

quit Abort installation if package dependencies
are not met.

rdepend Controls resolution if other packages depend on the one to
be removed. Options are:

nocheck Do not check package dependencies.

quit Abort removal if package dependencies
are not met.

17 SunOS 5.7 Last modified 7 Feb 1997

File Formats admin(4)

space Controls resolution if disk space requirements for package
are not met. Options are:

nocheck Do not check space requirements
(installation fails if it runs out of space).

quit Abort installation if space requirements
are not met.

EXAMPLES EXAMPLE 1 Sample of admin file.

Below is a sample admin file.

basedir=default
runlevel=quit
conflict=quit
setuid=quit
action=quit
partial=quit
instance=unique
idepend=quit
rdepend=quit
space=quit

SEE ALSO pkgadd (1M), pkginfo (4)

NOTES The value ask should not be defined in an admin file that will be used for
non-interactive installation (since by definition, there is no installer
interaction). Doing so causes installation to fail when input is needed.

Last modified 7 Feb 1997 SunOS 5.7 18

aliases(4) File Formats

NAME aliases, addresses, forward – addresses and aliases for sendmail

SYNOPSIS /etc/mail/aliases

/etc/mail/aliases.dir

/etc/mail/aliases.pag

~ /.forward

DESCRIPTION These files contain mail addresses or aliases, recognized by sendmail (1M) for
the local host:
/etc/passwd Mail addresses (usernames) of local

users.

/etc/mail/aliases Aliases for the local host, in ASCII
format. Root can edit this file to add,
update, or delete local mail aliases.
Additionally, sendmail (1M) will
build the DBM files for
/etc/mail/aliases if they are
missing, so long as the
/etc/mail/aliases* files are
owned by root and root has exclusive
write permission.

/etc/mail/aliases. {dir , pag} The aliasing information from
/etc/mail/aliases , in binary,
dbm format for use by
sendmail (1M) . The program
newaliases (1) , which is invoked
automatically by sendmail (1M) ,
maintains these files. Also,
sendmail (1M) will build the DBM
files for /etc/mail/aliases .
{dir, pag} if they are missing, so
long as /etc/mail/aliases .
{dir, pag} is owned by root and
root has exclusive write permission.

~ /.forward Addresses to which a user’s mail is
forwarded (see
Automatic Forwarding , below).

In addition, the NIS name services aliases map mail.aliases , and the NIS+
mail_aliases table, both contain addresses and aliases available for use across
the network.

19 SunOS 5.7 Last modified 7 Nov 1997

File Formats aliases(4)

Addresses As distributed, sendmail (1M) supports the following types of addresses:

Local Usernames username

Each local username is listed in the local host’s /etc/passwd file.

Local Filenames pathname

Messages addressed to the absolute pathname of a file are appended to that file.

Commands | command

If the first character of the address is a vertical bar (|), sendmail (1M)
pipes the message to the standard input of the command the bar precedes.

DARPA-standard
Addresses

username @domain

If domain does not contain any ‘ . ’(dots), then it is interpreted as the name of
a host in the current domain. Otherwise, the message is passed to a mailhost
that determines how to get to the specified domain. Domains are divided into
subdomains separated by dots, with the top-level domain on the right.
Top-level domains include:
.COM Commercial organizations.

.EDU Educational organizations.

.GOV Government organizations.

.MIL Military organizations.
For example, the full address of John Smith could be:

js@jsmachine.Podunk-U.EDU

if he uses the machine named jsmachine at Podunk University.

uucp Addresses . . . [host !]host ! username

These are sometimes mistakenly referred to as ‘‘Usenet’’ addresses. uucp (1C)
provides links to numerous sites throughout the world for the remote copying
of files.

Last modified 7 Nov 1997 SunOS 5.7 20

aliases(4) File Formats

Other site-specific forms of addressing can be added by customizing the
sendmail.cf configuration file. See sendmail (1M) for details. Standard
addresses are recommended.

Aliases

Local Aliases /etc/mail/aliases is formatted as a series of lines of the form

aliasname : address [, address]

aliasname is the name of the alias or alias group, and address is the address of a
recipient in the group. Aliases can be nested. That is, an address can be the
name of another alias group. Because of the way sendmail (1M) performs
mapping from upper-case to lower-case, an address that is the name of another
alias group must not contain any upper-case letters.

Lines beginning with white space are treated as continuation lines for the
preceding alias. Lines beginning with # are comments.

Special Aliases An alias of the form:

owner-aliasname : address

directs error-messages resulting from mail to aliasname to address , instead of
back to the person who sent the message.

An alias of the form:

aliasname : :include: pathname

with colons as shown, adds the recipients listed in the file pathname to the
aliasname alias. This allows a private list to be maintained separately from the
aliases file.

NIS/NIS+ Domain
Aliases

The aliases file on the master NIS server is used for the mail.aliases NIS map,
which can be made available to every NIS client. The mail_aliases table serves
the same purpose on a NIS+ server. Thus, the /etc/mail/aliases* files on
the various hosts in a network will one day be obsolete. Domain-wide aliases
should ultimately be resolved into usernames on specific hosts. For example, if
the following were in the domain-wide alias file:

jsmith:js@jsmachine

then any NIS/NIS+ client could just mail to jsmith and not have to
remember the machine and username for John Smith.

21 SunOS 5.7 Last modified 7 Nov 1997

File Formats aliases(4)

If a NIS/NIS+ alias does not resolve to an address with a specific host, then
the name of the NIS/NIS+ domain is used. There should be an alias of the
domain name for a host in this case.

For example, the alias:

jsmith:root

sends mail on a NIS/NIS+ client to root@podunk-u if the name of the NIS/
NIS+ domain is podunk-u .

Automatic
Forwarding

When an alias (or address) is resolved to the name of a user on the local host,
sendmail (1M) checks for a ~ /.forward file, owned by the intended recipient,
in that user’s home directory, and with universal read access. This file can
contain one or more addresses or aliases as described above, each of which is
sent a copy of the user’s mail.

Care must be taken to avoid creating addressing loops in the ~ /.forward file.
When forwarding mail between machines, be sure that the destination
machine does not return the mail to the sender through the operation of any
NIS aliases. Otherwise, copies of the message may "bounce." Usually, the
solution is to change the NIS alias to direct mail to the proper destination.

A backslash before a username inhibits further aliasing. For instance, to invoke
the vacation program, user js creates a ~ /.forward file that contains the line:

\\js, "|/usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into
the vacation program.

FILES
/etc/passwd password file

/etc/nisswitch.conf workstation server definition

/etc/mail/aliases mail aliases file (ascii)

/etc/mail/aliases.dir database of mail aliases (binary)

/etc/mail/aliases.pag database of mail aliases (binary)

/etc/mail/sendmail.cf sendmail configuration file

~ /.forward forwarding information file

Last modified 7 Nov 1997 SunOS 5.7 22

aliases(4) File Formats

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsndmr

SEE ALSO newaliases (1) , passwd (1) , uucp (1C) , vacation (1) , sendmail (1M) ,
dbm(3B) , passwd (4) , attributes (5)

NOTES Because of restrictions in dbm(3B) , a single alias cannot contain more than
about 1000 characters. Nested aliases can be used to circumvent this limit.

23 SunOS 5.7 Last modified 7 Nov 1997

File Formats a.out(4)

NAME a.out – Executable and Linking Format (ELF) files

SYNOPSIS #include <elf.h>

DESCRIPTION The file name a.out is the default output file name from the link editor, ld (1).
The link editor will make an a.out executable if there were no errors in
linking. The output file of the assembler, as (1), also follows the format of the
a.out file although its default file name is different.

Programs that manipulate ELF files may use the library that elf (3E)
describes. An overview of the file format follows. For more complete
information, see the references given below.

Linking View Execution View

ELF header ELF header

Program header
table

Program header
table

optional

Section 1 Segment 1

. . .

Section n Segment 2

. . .

.

Section header
table

Section header
table

optional

An ELF header resides at the beginning and holds a ‘‘road map’’ describing
the file’s organization. Sections hold the bulk of object file information for the
linking view: instructions, data, symbol table, relocation information, and so

Last modified 3 Jul 1990 SunOS 5.7 24

a.out(4) File Formats

on. Segments hold the object file information for the program execution view.
As shown, a segment may contain one or more sections.

A program header table, if present, tells the system how to create a process
image. Files used to build a process image (execute a program) must have a
program header table; relocatable files do not need one. A section header table
contains information describing the file’s sections. Every section has an entry
in the table; each entry gives information such as the section name, the section
size, etc. Files used during linking must have a section header table; other
object files may or may not have one.

Although the figure shows the program header table immediately after the
ELF header, and the section header table following the sections, actual files
may differ. Moreover, sections and segments have no specified order. Only the
ELF header has a fixed position in the file.

When an a.out file is loaded into memory for execution, three logical
segments are set up: the text segment, the data segment (initialized data
followed by uninitialized, the latter actually being initialized to all 0’s), and a
stack. The text segment is not writable by the program; if other processes are
executing the same a.out file, the processes will share a single text segment.

The data segment starts at the next maximal page boundary past the last text
address. If the system supports more than one page size, the ‘‘maximal page’’
is the largest supported size. When the process image is created, the part of the
file holding the end of text and the beginning of data may appear twice. The
duplicated chunk of text that appears at the beginning of data is never
executed; it is duplicated so that the operating system may bring in pieces of
the file in multiples of the actual page size without having to realign the
beginning of the data section to a page boundary. Therefore, the first data
address is the sum of the next maximal page boundary past the end of text
plus the remainder of the last text address divided by the maximal page size.
If the last text address is a multiple of the maximal page size, no duplication is
necessary. The stack is automatically extended as required. The data segment is
extended as requested by the brk (2) system call.

SEE ALSO as (1), cc (1B), ld (1), brk (2), elf (3E)

ANSI C Programmer’s Guide

25 SunOS 5.7 Last modified 3 Jul 1990

File Formats ar(4)

NAME ar – archive file format

SYNOPSIS #include <ar.h>

DESCRIPTION The archive command ar is used to combine several files into one. Archives
are used mainly as libraries to be searched by the link editor ld .

Each archive begins with the archive magic string.

#define ARMAG "!<arch>\n" /* magic string */
#define SARMAG 8 /* length of magic string */

Following the archive magic string are the archive file members. Each file
member is preceded by a file member header which is of the following format:

#define ARFMAG "‘\n" /* header trailer string */

struct ar_hdr /* file member header */
{

char ar_name[16]; /* ’/’ terminated file member name */
char ar_date[12]; /* file member date */
char ar_uid[6] /* file member user identification */
char ar_gid[6] /* file member group identification */
char ar_mode[8] /* file member mode (octal) */
char ar_size[10]; /* file member size */
char ar_fmag[2]; /* header trailer string */

};

All information in the file member headers is in printable ASCII. The numeric
information contained in the headers is stored as decimal numbers (except for
ar_mode which is in octal). Thus, if the archive contains printable files, the
archive itself is printable.

If the file member name fits, the ar_name field contains the name directly, and
is terminated by a slash (/) and padded with blanks on the right. If the
member’s name does not fit, ar_name contains a slash (/) followed by a decimal
representation of the name’s offset in the archive string table described below.

The ar_date field is the modification date of the file at the time of its insertion
into the archive. Common format archives can be moved from system to
system as long as the portable archive command ar is used.

Each archive file member begins on an even byte boundary; a newline is
inserted between files if necessary. Nevertheless, the size given reflects the
actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

Each archive that contains object files (see a.out (4)) includes an archive
symbol table. This symbol table is used by the link editor ld to determine
which archive members must be loaded during the link edit process. The

Last modified 1 Jul 1998 SunOS 5.7 26

ar(4) File Formats

archive symbol table (if it exists) is always the first file in the archive (but is
never listed) and is automatically created and/or updated by ar .

The archive symbol table has a zero length name (that is, ar_name[0] is
’/’), ar_name[1]==’ ’ , etc.). All ‘‘words’’ in this symbol table have four
bytes, using the machine-independent encoding shown below. All machines
use the encoding described here for the symbol table, even if the machine’s
‘‘natural’’ byte order is different.

0 1 2 3
0x01020304 01 02 03 04

The contents of this file are as follows:

1. The number of symbols. Length: 4 bytes.

2. The array of offsets into the archive file. Length: 4 bytes * ‘‘the number of
symbols’’.

3. The name string table. Length: ar_size – 4 bytes * (‘‘the number of symbols’’
+ 1).

As an example, the following symbol table defines 4 symbols. The archive
member at file offset 114 defines name. The archive member at file offset 122
defines object. The archive member at file offset 426 defines function and the
archive member at file offset 434 defines name2.

Example Symbol
Table

Offset +0 +1 +2 +3

0 | 4 | 4 offset entries
|___________________|

4 | 114 | name
|___________________|

8 | 122 | object
|___________________|

12 | 426 | function
|___________________|

16 | 434 | name2
|___________________|

20 | n | a | m | e |
|____|____|____|____|

24 | \0 | o | b | j |
|____|____|____|____|

28 | e | c | t | \0 |
|____|____|____|____|

32 | f | u | n | c |
|____|____|____|____|

36 | t | i | o | n |
|____|____|____|____|

40 | \0 | n | a | m |
|____|____|____|____|

44 | e | 2 | \0 | |
|____|____|____|____|

27 SunOS 5.7 Last modified 1 Jul 1998

File Formats ar(4)

The string table contains exactly as many null terminated strings as there are
elements in the offsets array. Each offset from the array is associated with the
corresponding name from the string table (in order). The names in the string
table are all the defined global symbols found in the common object files in the
archive. Each offset is the location of the archive header for the associated
symbol.

If some archive member’s name is more than 15 bytes long, a special archive
member contains a table of file names, each followed by a slash and a
new-line. This string table member, if present, will precede all ‘‘normal’’
archive members. The special archive symbol table is not a ‘‘normal’’ member,
and must be first if it exists. The ar_name entry of the string table’s member
header holds a zero length name ar_name[0]==’/’ , followed by one trailing
slash (ar_name[1]==’/’), followed by blanks (ar_name[2]==’ ’ , etc.).
Offsets into the string table begin at zero. Example ar_name values for short
and long file names appear below.

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
__

0 | f | i | l | e | _ | n | a | m | e | _ |
|____|____|____|____|____|____|____|____|____|____|

10 | s | a | m | p | l | e | / | \n | l | o |
|____|____|____|____|____|____|____|____|____|____|

20 | n | g | e | r | f | i | l | e | n | a |
|____|____|____|____|____|____|____|____|____|____|

30 | m | e | x | a | m | p | l | e | / | \n |
|____|____|____|____|____|____|____|____|____|____|

Member Name ar_name

short-name | short-name/ | Not in string table

| |
file_name_sample | /0 | Offset 0 in string table

| |
longerfilenamexample | /18 | Offset 18 in string table
_____________________|______________|___________________________

SEE ALSO ar (1), ld (1), strip (1), a.out (4)

NOTES strip will remove all archive symbol entries from the header. The archive
symbol entries must be restored via the −ts options of the ar command
before the archive can be used with the link editor ld .

Last modified 1 Jul 1998 SunOS 5.7 28

archives(4) File Formats

NAME archives – device header

DESCRIPTION

/* Magic numbers */
#define CMN_ASC 0x070701 /* Cpio Magic Number for −c header */
#define CMN_BIN 070707 /* Cpio Magic Number for Binary header */
#define CMN_BBS 0143561 /* Cpio Magic Number for Byte-Swap header */
#define CMN_CRC 0x070702 /* Cpio Magic Number for CRC header */
#define CMS_ASC "070701" /* Cpio Magic String for −c header */
#define CMS_CHR "070707" /* Cpio Magic String for odc header */
#define CMS_CRC "070702" /* Cpio Magic String for CRC header */
#define CMS_LEN 6 /* Cpio Magic String length */
/* Various header and field lengths */
#define CHRSZ 76 /* −H odc size minus filename field */
#define ASCSZ 110 /* −c and CRC hdr size minus filename field */
#define TARSZ 512 /* TAR hdr size */
#define HNAMLEN 256 /* maximum filename length for binary and

odc headers */
#define EXPNLEN 1024 /* maximum filename length for −c and

CRC headers */
#define HTIMLEN 2 /* length of modification time field */
#define HSIZLEN 2 /* length of file size field */
/* cpio binary header definition */
struct hdr_cpio {

short h_magic, /* magic number field */
h_dev; /* file system of file */

ushort_t h_ino, /* inode of file */
h_mode, /* modes of file */
h_uid, /* uid of file */
h_gid; /* gid of file */

short h_nlink, /* number of links to file */
h_rdev, /* maj/min numbers for special files */
h_mtime[HTIMLEN], /* modification time of file */
h_namesize, /* length of filename */

h_filesize[HSIZLEN]; /* size of file */
char h_name[HNAMLEN]; /* filename */

} ;
/* cpio −H odc header format */
struct c_hdr {

char c_magic[CMS_LEN],
c_dev[6],
c_ino[6],
c_mode[6],
c_uid[6],
c_gid[6],
c_nlink[6],
c_rdev[6],
c_mtime[11],
c_namesz[6],
c_filesz[11],
c_name[HNAMLEN];

} ;
/* −c and CRC header format */
struct Exp_cpio_hdr {

char E_magic[CMS_LEN],
E_ino[8],

29 SunOS 5.7 Last modified 3 Jul 1990

File Formats archives(4)

E_mode[8],
E_uid[8],
E_gid[8],
E_nlink[8],
E_mtime[8],
E_filesize[8],
E_maj[8],
E_min[8],
E_rmaj[8],
E_rmin[8],
E_namesize[8],
E_chksum[8],
E_name[EXPNLEN];

} ;
/* Tar header structure and format */
#define TBLOCK 512 /* length of tar header and data blocks */
#define TNAMLEN 100 /* maximum length for tar file names */
#define TMODLEN 8 /* length of mode field */
#define TUIDLEN 8 /* length of uid field */
#define TGIDLEN 8 /* length of gid field */
#define TSIZLEN 12 /* length of size field */
#define TTIMLEN 12 /* length of modification time field */
#define TCRCLEN 8 /* length of header checksum field */
/* tar header definition */
union tblock {

char dummy[TBLOCK];
struct header {

char t_name[TNAMLEN]; /* name of file */
char t_mode[TMODLEN]; /* mode of file */
char t_uid[TUIDLEN]; /* uid of file */
char t_gid[TGIDLEN]; /* gid of file */
char t_size[TSIZLEN]; /* size of file in bytes */
char t_mtime[TTIMLEN]; /* modification time of file */
char t_chksum[TCRCLEN]; /* checksum of header */
char t_typeflag; /* flag to indicate type of file */
char t_linkname[TNAMLEN]; /* file this file is linked with */
char t_magic[6]; /* magic string always "ustar" */
char t_version[2]; /* version strings always "00" */
char t_uname[32]; /* owner of file in ASCII */
char t_gname[32]; /* group of file in ASCII */
char t_devmajor[8]; /* major number for special files */
char t_devminor[8]; /* minor number for special files */
char t_prefix[155]; /* pathname prefix */

} tbuf;
};
/* volcopy tape label format and structure */
#define VMAGLEN 8
#define VVOLLEN 6
#define VFILLEN 464
struct volcopy_label {

char v_magic[VMAGLEN],
v_volume[VVOLLEN],
v_reels,
v_reel;

long v_time,
v_length,
v_dens,

Last modified 3 Jul 1990 SunOS 5.7 30

archives(4) File Formats

v_reelblks, /* u370 added field */
v_blksize, /* u370 added field */
v_nblocks; /* u370 added field */

char v_fill[VFILLEN];
long v_offset; /* used with -e and -reel options */
int v_type; /* does tape have nblocks field? */

} ;

31 SunOS 5.7 Last modified 3 Jul 1990

File Formats asetenv(4)

NAME asetenv – ASET environment file

SYNOPSIS /usr/aset/asetenv

DESCRIPTION The asetenv file is located in /usr/aset , the default operating directory of
the Automated Security Enhancement Tool (ASET). An alternative working
directory can be specified by the administrators through the aset −d
command or the ASETDIR environment variable. See aset (1M). asetenv
contains definitions of environment variables for ASET.

There are 2 sections in this file. The first section is labeled
User Configurable Parameters. It contains, as the label indicates, environment
variables that the administrators can modify to customize ASET behavior to
suit their specific needs. The second section is labeled
ASET Internal Environment Variables and should not be changed. The
configurable parameters are explained as follows:
TASK This variable defines the list of tasks that aset

will execute the next time it runs. The available
tasks are:

tune Tighten system files.

usrgrp Check user/group.

sysconf Check system configuration
file.

env Check environment.

cklist Compare system files checklist.

eeprom Check eeprom (1M)
parameters.

firewall Disable forwarding of IP
packets.

CKLISTPATH_LOW

CKLISTPATH_MED

CKLISTPATH_HIGH These variables define the list of directories to be
used by aset to create a checklist file at the low,
medium, and high security levels, respectively.
Attributes of all the files in the directories defined
by these variables will be checked periodically
and any changes will be reported by aset .
Checks performed on these directories are not

Last modified 13 Sep 1991 SunOS 5.7 32

asetenv(4) File Formats

recursive. aset only checks directories explicitly
listed in these variables and does not check
subdirectories of them.

YPCHECK This variable is a boolean parameter. It specifies
whether aset should extend checking (when
applicable) on system tables to their NIS
equivalents or not. The value true enables it
while the value false disables it.

UID_ALIASES This variable specifies an alias file for user ID
sharing. Normally, aset warns about multiple
user accounts sharing the same user ID because it
is not advisable for accountability reason.
Exceptions can be created using an alias file. User
ID sharing allowed by the alias file will not be
reported by aset . See asetmasters (4) for the
format of the alias file.

PERIODIC_SCHEDULE This variable specifies the schedule for periodic
execution of ASET. It uses the format of
crontab (1) entries. Briefly speaking, the variable
is assigned a string of the following format:

minutes hours day-of-month month day-of-week

Setting this variable does not activate the periodic
schedule of ASET. To execute ASET periodically,
aset (1M) must be run with the −p option. See
aset (1M). For example, if PERIODIC_SCHEDULE
is set to the following, and aset (1M) was started
with the −p option, aset will run at 12:00
midnight every day:

0 0 * * *

EXAMPLES EXAMPLE 1 Sample asetenv file showing the settings of the ASET configurable
parameters.

The following is a sample asetenv file, showing the settings of the ASET
configurable parameters:

33 SunOS 5.7 Last modified 13 Sep 1991

File Formats asetenv(4)

CKLISTPATH_LOW=/etc:/
CKLISTPATH_MED=$CHECKLISTPATH_LOW:/usr/bin:/usr/ucb
CKLISTPATH_HIGH=$CHECKLISTPATH_MED:/usr/lib:/usr/sbin
YPCHECK=false
UID_ALIASES=/usr/aset/masters/uid_aliases
PERIODIC_SCHEDULE="0 0 * * *"
TASKS="env sysconf usrgrp"

When aset −p is run with this file, aset is executed at midnight of every
day. The / and /etc directories are checked at the low security level; the / ,
/etc , /usr/bin , and /usr/ucb directories are checked at the medium
security level; and the / , /etc , /usr/bin , /usr/lib , and /usr/sbin
directories are checked at the high security level. Checking of NIS system files
is disabled. The /usr/aset/masters/uid_aliases file specifies the used
IDs available for sharing. The env , sysconf , and usrgrp tasks will be
performed, checking the environment variables, various system tables, and the
local passwd and group files.

SEE ALSO crontab (1), aset (1M), asetmasters (4)

ASET Administrator Manual

Last modified 13 Sep 1991 SunOS 5.7 34

asetmasters(4) File Formats

NAME asetmasters, tune.low, tune.med, tune.high, uid_aliases, cklist.low, cklist.med,
cklist.high – ASET master files

SYNOPSIS /usr/aset/masters/tune.low

/usr/aset/masters/tune.med

/usr/aset/masters/tune.high

/usr/aset/masters/uid_aliases

/usr/aset/masters/cklist.low

/usr/aset/masters/cklist.med

/usr/aset/masters/cklist.high

DESCRIPTION The /usr/aset/masters directory contains several files used by the
Automated Security Enhancement Tool (ASET). /usr/aset is the default
operating directory for ASET. An alternative working directory can be
specified by the administrators through the aset −d command or the
ASETDIR environment variable. See aset (1M) .

These files are provided by default to meet the need of most environments.
The administrators, however, can edit these files to meet their specific needs.
The format and usage of these files are described below.

All the master files allow comments and blank lines to improve readability.
Comment lines must start with a leading "#" character.
tune.low

tune.med

tune.high These files are used by the tune task (see aset (1M))to
restrict the permission settings for system objects. Each file is
used by ASET at the security level indicated by the suffix.
Each entry in the files is of the form:

pathname mode owner group type

where

pathname is the full pathname

mode is the permission setting

35 SunOS 5.7 Last modified 13 Sep 1991

File Formats asetmasters(4)

owner is the owner of the object

group is the group of the object

type is the type of the object It can be symlink
for a symbolic link, directory for a
directory, or file for everything else.

Regular shell wildcard ("*", "?", ...) characters can be used in
the pathname for multiple references. See sh (1) . The mode is
a five-digit number that represents the permission setting.
Note that this setting represents a least restrictive value. If
the current setting is already more restrictive than the
specified value, ASET does not loosen the permission
settings.For example, if mode is 00777 , the permission will not be changed, since it is

always less restrictive than the current setting.
Names must be used for owner and group instead
of numeric ID’s. ? can be used as a “don’t care”
character in place of owner , group , and type to
prevent ASET from changing the existing values
of these parameters.

uid_alias This file allows user ID’s to be shared by multiple user
accounts. Normally, ASET discourages such sharing for
accountability reason and reports user ID’s that are shared.
The administrators can, however, define permissible sharing
by adding entries to the file. Each entry is of the form:

uid=alias1=alias2=alias3= ...

where

uid is the shared user id

alias? is the user accounts sharing the user ID

For example, if sync and daemon share the user ID 1 , the
corresponding entry is:

1=sync=daemon

Last modified 13 Sep 1991 SunOS 5.7 36

asetmasters(4) File Formats

cklist.low

cklist.med

cklist.high These files are used by the cklist task (see aset (1M)),
and are created the first time the task is run at the low ,
medium , and high levels. When the cklist task is run, it
compares the specified directory’s contents with the
appropriate cklist. level file and reports any discrepancies.

EXAMPLES EXAMPLE 1 Examples of valid entries for the tune.low , tune.med , and
tune.high files.

The following is an example of valid entries for the tune.low , tune.med ,
and tune.high files:

/bin 00777 root staffsymlink
/etc 02755 root staffdirectory
/dev/sd* 00640 rootoperatorfile

SEE ALSO aset (1M) , asetenv (4)

ASET Administrator Manual

37 SunOS 5.7 Last modified 13 Sep 1991

File Formats audit_class(4)

NAME audit_class – audit class definitions

SYNOPSIS /etc/security/audit_class

DESCRIPTION /etc/security/audit_class is an ASCII system file that stores class
definitions. Programs use the getauclassent (3) routines to access this
information.

The fields for each class entry are separated by colons. Each class entry is a
bitmap and is separated from each other by a newline.

Each entry in the audit_class file has the form:

mask:name:description

The fields are defined as follows:
mask The class mask.

name The class name.

description The description of the class.
The classes are now user-configurable. Each class is represented as a bit in the
class mask which is an unsigned integer. Thus, there are 32 different classes
available, plus two meta-classes – all and no .

all represents a conjunction of all allowed classes, and is provided as a
shorthand method of specifying all classes.

no is the "invalid" class, and any event mapped solely to this class will not be
audited. (Turning auditing on to the all meta class will NOT cause events
mapped solely to the no class to be written to the audit trail.)

EXAMPLES EXAMPLE 1 Sample of an audit_class file.

Here is a sample of an audit_class file:

0x00000000:no:invalid class
0x00000001:fr:file read
0x00000002:fw:file write
0x00000004:fa:file attribute access
0x00000008:fm:file attribute modify
0x00000010:fc:file create
0x00000020:fd:file delete
0x00000040:cl:file close
0xffffffff:all:all classes

Last modified 31 Dec 1996 SunOS 5.7 38

audit_class(4) File Formats

FILES
/etc/security/audit_class

SEE ALSO bsmconv (1M), getauclassent (3), audit_event (4)

NOTES It is possible to deliberately turn on the no class in the kernel, in which case
the audit trail will be flooded with records for the audit event AUE_NULL.

The functionality described in this man page is available only if the Basic
Security Module (BSM) has been enabled. See bsmconv (1M) for more
information.

39 SunOS 5.7 Last modified 31 Dec 1996

File Formats audit_control(4)

NAME audit_control – control information for system audit daemon

SYNOPSIS /etc/security/audit_control

DESCRIPTION The audit_control file contains audit control information used by
auditd (1M). Each line consists of a title and a string, separated by a colon.
There are no restrictions on the order of lines in the file, although some lines
must appear only once. A line beginning with ‘#’ is a comment.

Directory definition lines list the directories to be used when creating audit
files, in the order in which they are to be used. The format of a directory line is:

dir: directory-name

directory-name is where the audit files will be created. Any valid writable
directory can be specified.

The following configuration is recommended:

/etc/security/audit/ server/files

where server is the name of a central machine, since audit files belonging to
different servers are usually stored in separate subdirectories of a single audit
directory. The naming convention normally has server be a directory on a server
machine, and all clients mount /etc/security/audit/ server at the same
location in their local file systems. If the same server exports several different
file systems for auditing, their server names will, of course, be different.

There are several other ways for audit data to be arranged: some sites may
have needs more in line with storing each host’s audit data in separate
subdirectories. The audit structure used will depend on each individual site.

The audit threshold line specifies the percentage of free space that must be
present in the file system containing the current audit file. The format of the
threshold line is:

minfree: percentage

where percentage is indicates the amount of free space required. If free space
falls below this threshold, the audit daemon auditd (1M) invokes the shell
script audit_warn (1M). If no threshold is specified, the default is 0%.

The audit flags line specifies the default system audit value. This value is
combined with the user audit value read from audit_user (4) to form the

Last modified 31 Dec 1996 SunOS 5.7 40

audit_control(4) File Formats

process audit state. The user audit value overrides the system audit value. The
format of a flags line is:

flags: audit-flags

where audit-flags specifies which event classes are to be audited. The character
string representation of audit-flags contains a series of flag names, each one
identifying a single audit class, separated by commas. A name preceded by ‘−’
means that the class should be audited for failure only; successful attempts are
not audited. A name preceded by ‘+’ means that the class should be audited
for success only; failing attempts are not audited. Without a prefix, the name
indicates that the class is to be audited for both successes and failures. The
special string all indicates that all events should be audited; −all indicates
that all failed attempts are to be audited, and +all all successful attempts. The
prefixes ^ , ^−, and ^+ turn off flags specified earlier in the string (^− and ^+
for failing and successful attempts, ^ for both). They are typically used to reset
flags.

The non-attributable flags line is similar to the flags line, but this one contain
the audit flags that define what classes of events are audited when an action
cannot be attributed to a specific user. The format of a naflags line is:

naflags: audit-flags

The flags are separated by commas, with no spaces.

The following table lists the predefined audit classes:

short name long name short description
no no_class null value for turning off event preselection
fr file_read Read of data, open for reading, etc.
fw file_write Write of data, open for writing, etc.
fa file_attr_acc Access of object attributes: stat, pathconf, etc.
fm file_attr_mod Change of object attributes: chown, flock, etc.
fc file_creation Creation of object
fd file_deletion Deletion of object
cl file_close close(2) system call
pc process Process operations: fork, exec, exit, etc.
nt network Network events: bind, connect, accept, etc.
ip ipc System V IPC operations
na non_attrib non-attributable events
ad administrative administrative actions: mount, exportfs, etc.
lo login_logout Login and logout events
ap application Application auditing
io ioctl ioctl(2) system call
ex exec exec(2) system call
ot other Everything else
all all All flags set

41 SunOS 5.7 Last modified 31 Dec 1996

File Formats audit_control(4)

Note that the classes are configurable, see audit_class (4).

EXAMPLES EXAMPLE 1 Sample /etc/security/audit_control file for the machine
eggplant.

Here is a sample /etc/security/audit_control file for the machine
eggplant:

dir: /etc/security/jedgar/eggplant
dir: /etc/security/jedgar.aux/eggplant
#
Last-ditch audit file system when jedgar fills up.
#
dir: /etc/security/global/eggplant
minfree: 20
flags: lo,ad,-all,^-fm
naflags: lo,ad

This identifies server jedgar with two file systems normally used for audit
data, another server global used only when jedgar fills up or breaks, and
specifies that the warning script is run when the file systems are 80% filled. It
also specifies that all logins, administrative operations are to be audited
(whether or not they succeed), and that failures of all types except failures to
access object attributes are to be audited.

FILES /etc/security/audit_control

/etc/security/audit_warn

/etc/security/audit/*/*/*

/etc/security/audit_user

SEE ALSO audit (1M), audit_warn (1M), auditd (1M), bsmconv (1M), audit (2),
getfauditflags (3), audit.log (4), audit_class (4), audit_user (4)

NOTES The functionality described in this man page is available only if the Basic
Security Module (BSM) has been enabled. See bsmconv (1M) for more
information.

Last modified 31 Dec 1996 SunOS 5.7 42

audit_data(4) File Formats

NAME audit_data – current information on audit daemon

SYNOPSIS /etc/security/audit_data

DESCRIPTION The audit_data file contains information about the audit daemon. The file
contains the process ID of the audit daemon, and the pathname of the current
audit log file. The format of the file is:

pid>: <pathname>

Where pid is the process ID for the audit daemon, and pathname is the full
pathname for the current audit log file.

EXAMPLES EXAMPLE 1 A sample audit_data file.

64:/etc/security/audit/server1/19930506081249.19930506230945.bongos

FILES
/etc/security/audit_data

SEE ALSO audit (1M), auditd (1M), bsmconv (1M), audit (2), audit.log (4)

NOTES The functionality described in this man page is available only if the Basic
Security Module (BSM) has been enabled. See bsmconv (1M) for more
information.

43 SunOS 5.7 Last modified 31 Dec 1996

File Formats audit_event(4)

NAME audit_event – audit event definition and class mapping

SYNOPSIS /etc/security/audit_event

DESCRIPTION /etc/security/audit_event is an ASCII system file that stores event
definitions and specifies the event to class mappings. Programs use the
getauevent (3) routines to access this information.

The fields for each event entry are separated by colons. Each event is separated
from the next by a newline.

Each entry in the audit_event file has the form:

number:name:description: flags

The fields are defined as follows:
number The event number.

name The event name.

description The description of the event.

flags Flags specifying classes to which the event is
mapped.

EXAMPLES EXAMPLE 1 Sample of the audit_event file entries.

Here is a sample of the audit_event file entries:

7:AUE_EXEC:exec(2):pc,ex
79:AUE_OPEN_WTC:open(2) - write,creat,trunc:fc,fd,fw
6152:AUE_login:login - success or failure:lo
6153:AUE_logout:logout:lo
6154:AUE_telnet:login - through telnet:lo
6155:AUE_rlogin:login - through rlogin:lo

FILES
/etc/security/audit_event

SEE ALSO bsmconv (1M), getauevent (3), audit_control (4)

NOTES The functionality described in this man page is available only if the Basic
Security Module (BSM) has been enabled. See bsmconv (1M) for more
information.

Last modified 31 Dec 1996 SunOS 5.7 44

audit.log(4) File Formats

NAME audit.log – audit trail file

SYNOPSIS #include <bsm/audit.h>

#include <bsm/audit_record.h>

DESCRIPTION audit.log files are the depository for audit records stored locally or on an
audit server. These files are kept in directories named in the file
audit_control (4). They are named to reflect the time they are created and
are, when possible, renamed to reflect the time they are closed as well. The
name takes the form

yyyymmddhhmmss.not_terminated.hostname

when open or if the auditd (1M) terminated ungracefully, and the form

yyyymmddhhmmss. yyyymmddhhmmss.hostname

when properly closed. yyyy is the year, mmthe month, dd day in the month,
hh hour in the day, mmminute in the hour, and ss second in the minute. All
fields are of fixed width.

The audit.log file begins with a standalone file token and typically ends
with one also. The beginning file token records the pathname of the
previous audit file, while the ending file token records the pathname of the
next audit file. If the file name is NULL the appropriate path was unavailable.

The audit.log files contains audit records. Each audit record is made up of
audit tokens. Each record contains a header token followed by various data
tokens. Depending on the audit policy in place by auditon (2), optional other
tokens such as trailers or sequences may be included.

The tokens are defined as follows:

The file token consists of:

token ID
char

seconds of time uint_t
milliseconds of time uint_t
file name length short
file pathname null terminated string

The header token consists of:

token ID
char

record byte count ulong_t

45 SunOS 5.7 Last modified 30 Apr 1997

File Formats audit.log(4)

version # char (1)
event type ushort_t
event modifier ushort_t
seconds of time uint_t
milliseconds of time uint_t

The trailer token consists of:

token ID
char

trailer magic number ushort_t
record byte count ulong_t

The arbitrary data token is defined:

token ID
char

how to print char
basic unit char
unit count char
data items

depends on basic unit

The in_addr token consists of:

token ID
char

internet address char

The ip token consists of:

token ID
char

version and ihl char
type of service char
length short
id ushort_t
offset ushort_t
ttl char
protocol char
checksum ushort_t
source address long
destination address long

The iport token consists of:

token ID
char

Last modified 30 Apr 1997 SunOS 5.7 46

audit.log(4) File Formats

port address short

The opaque token consists of:

token ID
char

size short
data char, size chars

The path token consists of:

token ID
char

path length short
path null terminated string

The process token consists of:

token ID
char

auid ulong_t
euid ulong_t
egid ulong_t
ruid ulong_t
rgid ulong_t
pid ulong_t
sid ulong_t
terminal ID ulong_t (port ID)
ulong_t (machine ID)

The return token consists of:

token ID
char

error number char
return value long

The subject token consists of:

token ID
char

auid ulong_t
euid ulong_t
egid ulong_t
ruid ulong_t
rgid ulong_t
pid ulong_t
sid ulong_t

47 SunOS 5.7 Last modified 30 Apr 1997

File Formats audit.log(4)

terminal ID ulong_t (port ID)
ulong_t (machine ID)

The System V IPC token consists of:

token ID
char

object ID type char
object ID long

The text token consists of:

token ID
char

text length short
text null terminated string

The attribute token consists of:

token ID
char

mode ulong_t
uid ulong_t
gid ulong_t
file system id long
node id long
device ulong_t

The groups token consists of:

token ID
char

number short
group list long, size chars

The System V IPC permission token consists of:

token
ID char

uid ulong_t
gid ulong_t
cuid ulong_t
cgid ulong_t
mode ulong_t
seq ulong_t
key long

Last modified 30 Apr 1997 SunOS 5.7 48

audit.log(4) File Formats

The arg token consists of:

token ID
char

argument # char
argument value long
string length short
text null terminated string

The exec_args token consists of:

token ID
char

count long
text count null

terminated string(s)

The exec_env token consists of:

token ID
char

count long
text count null

terminated string(s)

The exit token consists of:

token ID
char
status long
return value long

The socket token consists of:

token ID
char

socket type short
local port short
local Internet address char
remote port short
remote Internet address char

The seq token consists of:

token ID
char

sequence number long

49 SunOS 5.7 Last modified 30 Apr 1997

File Formats audit.log(4)

SEE ALSO audit (1M), auditd (1M), bsmconv (1M), audit (2), auditon (2), au_to (3),
audit_control (4)

NOTES Each token is generally written using the au_to (3) family of function calls.

The functionality described in this man page is available only if the Basic
Security Module (BSM) has been enabled. See bsmconv (1M) for more
information.

Last modified 30 Apr 1997 SunOS 5.7 50

audit_user(4) File Formats

NAME audit_user – per-user auditing data file

SYNOPSIS /etc/security/audit_user

DESCRIPTION audit_user is an access-restricted ASCII system file that stores per-user
auditing preselection data. Programs use the getauusernam (3) routines to
access this information.

The fields for each user entry are separated by colons. Each user is separated
from the next by a newline. audit_user does not have general read
permission.

Each entry in the audit_user file has the form:

username:always-audit-flags:never-audit-flags

The fields are defined as follows:
username The user’s login name.

always-audit-flags Flags specifying event classes to always audit.

never-audit-flags Flags specifying event classes to never audit.

EXAMPLES EXAMPLE 1 Sample audit_user file.

Here is a sample audit_user file:

other:lo,ad:io,cl
fred:lo,ex,+fc,-fr,-fa:io,cl
ethyl:lo,ex,nt:io,cl

FILES
/etc/security/audit_user

/etc/passwd

SEE ALSO bsmconv (1M), getauusernam (3), audit_control (4), passwd (4),

NOTES The functionality described in this man page is available only if the Basic
Security Module (BSM) has been enabled. See bsmconv (1M) for more
information.

51 SunOS 5.7 Last modified 31 Dec 1996

File Formats bootparams(4)

NAME bootparams – boot parameter data base

SYNOPSIS /etc/bootparams

DESCRIPTION The bootparams file contains a list of client entries that diskless clients use
for booting. Diskless booting clients retrieve this information by issuing
requests to a server running the rpc.bootparamd (1M) program. The
bootparams file may be used in conjunction with or in place of other sources
for the bootparams information. See nsswitch.conf (4).

For each client the file contains an entry with the client’s name and a list of
boot parameter values for that client. Each entry should have the form:

clientname identifier-specifier ...

The first item of each entry is the host name of the diskless client. The asterisk
(’*’) character may be used as a "wildcard" in place of the client name in a
single entry. That entry will apply to all clients for whom there is not an entry
that specifically names them.

This is followed by one or more whitespace characters and a series of
identifier-specifiers separated by whitespace characters.

Each identifier-specifier has the form:

identifier=server: pathname

or

identifier=domain-name

The first form is used for file-specific identifiers. A file-specific identifier is a
key that is used by diskless clients to identify a file or filesystem. server is the
name of the server that will provide the file or filesystem to the diskless client,
and pathname is the path to the exported file or filesystem on the specified
server. The equal sign (’=’) and colon (’:’) characters are used in the indicated
positions. There should not be any whitespace within an identifier-specifier.

Non-file-specific identifiers use the second form of identifier-specifier. One
non-file-specific value for identifier is supported: the assignment of the client’s
domain name. In this case, the value used for identifier is domain . domain-name
must be the client’s domain name. The algorithm for determining a client’s

Last modified 13 Jan 1995 SunOS 5.7 52

bootparams(4) File Formats

domain name is to first check for a domain identifier in the client-specific
entry and then in "wildcard" entry. If none is found, the server’s domain name
is used.

An entry may be split across multiple lines of the file. The backslash (’\’)
character should be used as the last character of a line to signify that the entry
continues on the next line. The line may only be split in places where
whitespace is allowed in the entry.

A variation of the first form (identifier=server: pathname) is used for the ns key
which forces sysidtool (1M) to use a specific name service. By default,
sysidtool uses NIS+ in preference to NIS if it can find a NIS+ server for the
system’s domain on the subnet. This key may be necessary if you are trying to
set up a hands-off installation, or if the name server is on a different subnet,
which is common with NIS+.

If this key is not used, sysidtool uses broadcast to attempt to bind to either
a NIS+ or NIS server; if a name server is not on the local subnet, which is
possible for NIS+, the bind will fail, automatic configuration of the name
service will fail, and an interactive screen is displayed, prompting the user to
specify the name service.

The ns entry has the form:

ns= [server] : [nameservice] [(netmask)]

where:
server the name of a server that will provide a name service to bind

to

nameservice the name service (nis , nisplus , or none);

netmask a series of four numbers separated by periods that specifies
which portion of an IP address is the network part, and
which is the host part.

The ns keyword can be set in add_install_client or by Host Manager.

EXAMPLES EXAMPLE 1 Example of an entry in the bootparams file.

Here is an example of an entry in the bootparams file:

client1 root=server1:/export/client1/root \
swap=server1:/export/client1/swap \
domain=bldg1.workco.com
root=server2:/export/client2/root ns=:nis
root=server2:/export/client2/root ns=watson:

root=server2:/export/client2/root

53 SunOS 5.7 Last modified 13 Jan 1995

File Formats bootparams(4)

ns=mach:nisplus(255.255.255.0)

FILES
/etc/bootparams

SEE ALSO rpc.bootparamd (1M), sysidtool (1M), nsswitch.conf (4)

x86 only rpld (1M)

NOTES Solaris diskless clients use the identifiers "root", "swap", and "dump" to look
up the pathnames for the root filesystem, a swap area, and a dump area,
respectively. These are the only identifiers meaningful for SPARC diskless
booting clients.

For x86 booting clients, the additional keyword identifiers "numbootfiles,"
"bootfile," and "bootaddr" are used (see rpld (1M)).

Last modified 13 Jan 1995 SunOS 5.7 54

cdtoc(4) File Formats

NAME cdtoc – CD-ROM table of contents file

DESCRIPTION The table of contents file, .cdtoc , is an ASCII file that describes the contents
of a CD-ROM or other software distribution media. It resides in the top-level
directory of the file system on a slice of a CD-ROM. It is independent of file
system format, that is, the file system on the slice can be either UFS or HSFS.

Each entry in the .cdtoc file is a line that establishes the value of a parameter
in the following form:

PARAM=value

Blank lines and comments (lines preceded by a pound-sign, ‘‘#’’) are also
allowed in the file. Parameters are grouped by product, with the beginning of
a product defined by a line of the form:

PRODNAME=value

Each product is expected to consist of one or more software packages that are
stored together in a subdirectory on the distribution media. There can be any
number of products described within the file. There is no required order in
which the parameters must be specified, except that the parameters must be
grouped by product and the PRODNAME parameter must appear first in the
list of parameters for each product specified. Each parameter is described
below. All of the parameters are required for each product.
PRODNAME The full name of the product. This must be

unique within the .cdtoc file and is preferably
unique across all possible products. This value
may contain white space. The length of this value
is limited to 256 ASCII characters; other
restrictions may apply (see below).

PRODVERS The version of the product. The value can contain
any combination of letters, numbers, or other
characters. This value may contain white space.
The length of this value is limited to 256 ASCII
characters; other restrictions may apply (see
below).

PRODDIR The name of the top-level directory containing
the product. This name should be relative to the
top-level directory of the distribution media, for
example, Solaris_2.6/Product . The number
of path components in the name is limited only
by the system’s maximum path name length,

55 SunOS 5.7 Last modified 4 Oct 1996

File Formats cdtoc(4)

which is 1024 ASCII characters. Any single
component is limited to 256 ASCII characters.
This value cannot contain white space.

The lengths of the values of PRODNAME and PRODVERS are further
constrained by the fact that the initial install programs and swmtool (1M)
concatenate these values to produce the full product name. swmtool (1M)
concatenates the two values (inserting a space) to produce the name displayed
in its software selection menu, for example, Solaris 2.6 . For unbundled
products the combined length of the values of PRODNAME and PRODVERS
must not exceed 256 ASCII characters.

When you install OS services with Solstice Host Manager, directories for
diskless clients and Autoclient systems are created by constructing names
derived from a concatenation of the values of PRODNAME, PRODVERS, and
client architecture, for example,
/export/exec/Solaris_2. x_sparc.all/usr/platform . The length of
the component containing the product name and version must not exceed 256
ASCII characters. Thus, for products corresponding to bundled OS releases (for
example, Solaris 2.4), the values of PRODNAME and PRODVERS are
effectively restricted to lengths much less than 256 .

The initial install programs and swmtool (1M) use the value of the PRODDIR
macro in the .cdtoc file to indicate where packages can be found.

EXAMPLES EXAMPLE 1 Sample of .cdtoc file.

Here is a sample .cdtoc file:

#
.cdtoc file -- Online product family CD
#
PRODNAME=Online DiskSuite
PRODVERS=2.0
PRODDIR=Online_DiskSuite_2.0
#
PRODNAME=Online Backup
PRODVERS=2.0
PRODDIR=Online_Backup_2.0

This example corresponds to the following directory layout on a CD-ROM
partition:

/.cdtoc
/Online_DiskSuite_2.0

./SUNWmddr.c

./SUNWmddr.m

Last modified 4 Oct 1996 SunOS 5.7 56

cdtoc(4) File Formats

./SUNWmddu
/Online_Backup_2.0

./SUNWhsm

The bundled release of Solaris 2.6 includes the following .cdtoc file:

PRODNAME=Solaris
PRODVERS=2.6
PRODDIR=Solaris_2.6/Product

This file corresponds to the following directory layout on slice 0 of the Solaris
2.6 product CD:

/.cdtoc
/Solaris_2.6/Product

./SUNWaccr

./SUNWaccu

./SUNWadmap

.

.

.

./SUNWutool

SEE ALSO swmtool (1M), clustertoc (4), packagetoc (4), pkginfo (4)

57 SunOS 5.7 Last modified 4 Oct 1996

File Formats clustertoc(4)

NAME clustertoc – cluster table of contents description file

DESCRIPTION The cluster table of contents file, .clustertoc , is an ASCII file that describes
a hierarchical view of a software product. A .clustertoc file is required for
the base OS product. The file resides in the top-level directory containing the
product.

The hierarchy described by .clustertoc can be of arbitrary depth, although
the initial system installation programs assume that it has three levels. The
hierarchy is described bottom-up, with the packages described in
.packagetoc at the lowest layer. The next layer is the cluster layer which
collects packages into functional units. The highest layer is the meta-cluster
layer which collects packages and clusters together into typical configurations.

The hierarchy exists to facilitate the selection or deselection of software for
installation at varying levels of granularity. Interacting at the package level
gives the finest level of control over what software is to be installed.

Each entry in the .clustertoc file is a line that establishes the value of a
parameter in the following form:

PARAM=value

A line starting with a pound-sign, ‘‘#’’, is considered a comment and is ignored.

Parameters are grouped by cluster or meta-cluster. The start of a cluster
description is defined by a line of the form:

CLUSTER=value

The start of a meta-cluster description is defined by a line of the form:

METACLUSTER=value

There is no order implied or assumed for specifying the parameters for a
(meta-)cluster with the exception of the CLUSTER or METACLUSTER
parameter, which must appear first and the END parameter which must
appear last.

Each parameter is described below. All of the parameters are mandatory.
CLUSTER The cluster identifier (for example, SUNWCacc).

The identifier specified must be unique within the
package and cluster identifier namespace defined
by a product’s .packagetoc and .clustertoc
files. The identifiers used are subject to the same

Last modified 6 Sep 1995 SunOS 5.7 58

clustertoc(4) File Formats

constraints as those for package identifiers. These
constraints are (from pkginfo (4)):

‘‘All characters in the abbreviation must be
alphanumeric and the first may not be numeric.
The abbreviation is limited to a maximum length
of nine characters. install , new, and all are
reserved abbreviations.’’

A cluster must be described before another
cluster or meta-cluster may refer to it.

METACLUSTER The metacluster identifier (for example,
SUNWCprog). The identifier specified must be
unique within the package and cluster identifier
namespace defined by a product’s .packagetoc
and .clustertoc files. The identifiers used are
subject to the same constraints as those for
package identifiers. These constraints are (from
pkginfo (4)):

‘‘All characters in the abbreviation must be
alphanumeric and the first may not be numeric.
The abbreviation is limited to a maximum length
of nine characters. install , new, and all are
reserved abbreviations.’’

Meta-clusters cannot contain references to other
meta-clusters.

NAME The full name of the (meta-)cluster. The length of
the name string supplied may not exceed 256
characters.

VENDOR The name of the (meta-)cluster’s vendor. The
length of the vendor string supplied may not
exceed 256 characters.

VERSION The version of the (meta-)cluster. The length of
the version string supplied may not exceed 256
characters.

DESC An informative textual description of the
(meta-)cluster’s contents. The length of the
description supplied may not exceed 256
characters. The text should contain no newlines.

59 SunOS 5.7 Last modified 6 Sep 1995

File Formats clustertoc(4)

SUNW_CSRMEMBER Indicates that the package or cluster is a part of
the (meta-) cluster currently being described. The
value specified is the identifier of the package or
cluster. There may be an arbitrary number of
SUNW_CSRMEMBER parameters per
(meta-)cluster.

SUNW_CSRMBRIFF Indicates that the package is to be included
dynamically in the (meta-)cluster currently being
described. The value of this parameter must
follow the following format:

SUNW_CSRMBRIFF=(<test >
<test_arc>)<package>

This line will be converted into a
SUNW_CSRMEMBER entry at media installation
time if the test provided matches the platform on
which the media is being installed. There may be
zero or more SUN_CSRMBRIFF parameters per
(meta-)cluster.

SUNW_CSRMBRIFF=(<test> <value>)<package>where the the <test> is either the builtin test of
"platform" or a shell script which returns shell
true (0) or shell false (1) depending on the tests
being performed in the script. <value> is passed
to the test as the first argument and can be used
to create a script that tests for multiple hardware
objects. Finally <package> is the package that will
be included in the final .clustertoc file as a
SUNW_CSRMEMBER. See
parse_dynamic_clustertoc (1M) for more
information about the scripts.

EXAMPLES EXAMPLE 1 A cluster description.

The following is an example of a cluster description in a .clustertoc file.

CLUSTER=SUNWCacc
NAME=System Accounting
DESC=System accounting utilities
VENDOR=Sun Microsystems, Inc.
VERSION=7.2
SUNW_CSRMEMBER=SUNWaccr
SUNW_CSRMEMBER=SUNWaccu

Last modified 6 Sep 1995 SunOS 5.7 60

clustertoc(4) File Formats

END

EXAMPLE 2 A meta-cluster description.

The following is an example of a meta-cluster description in a .clustertoc
file.

METACLUSTER=SUNWCreq
NAME=Core System Support
DESC=A pre-defined software configuration consisting of the minimum
required software for a standalone, non-networked workstation.
VENDOR=Sun Microsystems, Inc.
VERSION=2.x
SUNW_CSRMEMBER=SUNWadmr
SUNW_CSRMEMBER=SUNWcar
SUNW_CSRMEMBER=SUNWCcs
SUNW_CSRMEMBER=SUNWCcg6
SUNW_CSRMEMBER=SUNWCdfb
SUNW_CSRMEMBER=SUNWkvm
SUNW_CSRMEMBER=SUNWCnis
SUNW_CSRMEMBER=SUNWowdv
SUNW_CSRMEMBER=SUNWter
END

EXAMPLE 3 A meta-cluster description with a dynamic cluster entry.

The following is an example of a meta-cluster description with a dynamic
cluster entry as indicated by the use of the SUNW_CSRMBRIFF parameter
entries.

METACLUSTER=SUNWCprog
NAME=Developer System Support
DESC=A pre-defined software configuration consisting of the
typical software used by software developers.
VENDOR=Sun Microsystems, Inc.
VERSION=2.5
SUNW_CSRMEMBER=SUNWCadm
SUNW_CSRMBRIFF=(smcc.dctoc tcx)SUNWCtcx
SUNW_CSRMBRIFF=(smcc.dctoc leo)SUNWCleo
SUNW_CSRMBRIFF=(smcc.dctoc sx)SUNWCsx
. . .
END

SEE ALSO parse_dynamic_clustertoc (1M), cdtoc (4), order (4), packagetoc (4),
pkginfo (4)

61 SunOS 5.7 Last modified 6 Sep 1995

File Formats clustertoc(4)

NOTES The current implementation of the initial system installation programs depend
on the .clustertoc describing three required meta-clusters for the base OS
product:

SUNWCall contains all of the software packages in the OS
distribution.

SUNWCuser contains the typical software packages for an end-user of the
OS distribution.

SUNWCreq contains the bare-minimum packages required to boot and
configure the OS to the point of running a multi-user shell.

Last modified 6 Sep 1995 SunOS 5.7 62

compver(4) File Formats

NAME compver – compatible versions file

DESCRIPTION compver is an ASCII file used to specify previous versions of the associated
package which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with
which the current version is backward compatible.

Since some packages may require installation of a specific version of another
software package, compatibility information is extremely crucial. Consider, for
example, a package called "A" which requires version "1.0" of application "B"
as a prerequisite for installation. If the customer installing "A" has a newer
version of "B" (version 1.3), the compver file for "B" must indicate that "1.3" is
compatible with version "1.0" in order for the customer to install package "A".

EXAMPLES EXAMPLE 1 Sample compver file.

A sample compver file is shown below:

Version 1.3
Version 1.0

SEE ALSO pkginfo (4)

Application Packaging Developer’s Guide

NOTES The comparison of the version string disregards white space and tabs. It is
performed on a word-by-word basis. Thus, "Version 1.3" and "Version 1.3"
would be considered the same.

The entries in the compver file must match the values assigned to the
VERSIONparameter in the pkginfo (4) files.

63 SunOS 5.7 Last modified 4 Oct 1996

File Formats copyright(4)

NAME copyright – copyright information file

DESCRIPTION copyright is an ASCII file used to provide a copyright notice for a package.
The text may be in any format. The full file contents (including comment lines)
are displayed on the terminal at the time of package installation.

SEE ALSO Application Packaging Developer’s Guide

Last modified 7 Feb 1997 SunOS 5.7 64

core(4) File Formats

NAME core – core image file

DESCRIPTION The operating system writes out a core image of a process when it is
terminated due to the receipt of some signals. The core image is called core
and is written in the process’s working directory (provided it can be; normal
access controls apply). A process with an effective user ID different from the
real user ID will not produce a core image.

The core file contains all the process information pertinent to debugging:
contents of hardware registers, process status, and process data. The format of
a core file is object file specific.

For ELF executable programs (see a.out (4)), the core file generated is also an
ELF file, containing ELF program and file headers. The e_type field in the file
header has type ET_CORE. The program header contains an entry for every
segment that was part of the process address space, including shared library
segments. The contents of the writable segments are also part of the core image.

The program header of an ELF core file also contains entries for two NOTE
segments, each containing several note entries as described below. The note
entry header and core file note type (n_type) definitions are contained in
<sys/elf.h> . The first NOTEsegment exists for binary compatibility with old
programs that deal with core files. It contains structures defined in
<sys/old_procfs.h> . New programs should recognize and skip this NOTE
segment, advancing instead to the new NOTEsegment. The old NOTEsegment
will be deleted from core files in a future release.

The old NOTEsegment contains the following entries. Each has entry name
"CORE" and presents the contents of a system structure:
prpsinfo_t n_type : NT_PRPSINFO. This entry contains information of

interest to the ps (1) command, such as process status, CPU
usage, "nice" value, controlling terminal, user-ID, process-ID,
the name of the executable, and so forth. The prpsinfo_t
structure is defined in <sys/old_procfs.h> .

char array n_type : NT_PLATFORM. This entry contains a string
describing the specific model of the hardware platform on
which this core file was created. This information is the same
as provided by sysinfo (2) when invoked with the
command SI_PLATFORM.

auxv_t array n_type : NT_AUXV. This entry contains the array of auxv_t
structures that was passed by the operating system as

65 SunOS 5.7 Last modified 17 Mar 1998

File Formats core(4)

startup information to the dynamic linker. Auxiliary vector
information is defined in <sys/auxv.h> .

Following these entries, for each light-weight process (LWP) in the process, the
old NOTEsegment contains an entry with a prstatus_t structure, plus other
optionally-present entries describing the LWP, as follows:
prstatus_t n_type : NT_PRSTATUS. This structure contains things of

interest to a debugger from the operating system, such as the
general registers, signal dispositions, state, reason for
stopping, process-ID, and so forth. The prstatus_t
structure is defined in <sys/old_procfs.h> .

prfpregset_t n_type : NT_PRFPREG. This entry is present only if the LWP
used the floating-point hardware. It contains the
floating-point registers. The prfpregset_t structure is
defined in <sys/procfs_isa.h> .

gwindows_t n_type : NT_GWINDOWS. This entry is present only on a
SPARC machine and only if the system was unable to flush
all of the register windows to the stack. It contains all of the
unspilled register windows. The gwindows_t structure is
defined in <sys/regset.h> .

prxregset_t n_type : NT_PRXREG. This entry is present only if the
machine has extra register state associated with it. It contains
the extra register state. The prxregset_t structure is
defined in <sys/procfs_isa.h> .

The new NOTEsegment contains the following entries. Each has entry name
"CORE" and presents the contents of a system structure:
psinfo_t n_type : NT_PSINFO. This structure contains information of

interest to the ps (1) command, such as process status, CPU
usage, "nice" value, controlling terminal, user-ID, process-ID,
the name of the executable, and so forth. The psinfo_t
structure is defined in <sys/procfs.h> .

pstatus_t n_type : NT_PSTATUS. This structure contains things of
interest to a debugger from the operating system, such as
pending signals, state, process-ID, and so forth. The
pstatus_t structure is defined in <sys/procfs.h> .

char array n_type : NT_PLATFORM. This entry contains a string
describing the specific model of the hardware platform on
which this core file was created. This information is the same
as provided by sysinfo (2) when invoked with the
command SI_PLATFORM.

Last modified 17 Mar 1998 SunOS 5.7 66

core(4) File Formats

auxv_t array n_type : NT_AUXV. This entry contains the array of auxv_t
structures that was passed by the operating system as
startup information to the dynamic linker. Auxiliary vector
information is defined in <sys/auxv.h> .

Following these entries, for each LWP in the process, the new NOTEsegment
contains an entry with an lwpsinfo_t structure plus an entry with an
lwpstatus_t structure, plus other optionally-present entries describing the
LWP, as follows:
lwpsinfo_t n_type : NT_LWPSINFO. This structure contains information

of interest to the ps (1) command, such as LWP status, CPU
usage, "nice" value, LWP-ID, and so forth. The lwpsinfo_t
structure is defined in <sys/procfs.h> .

lwpstatus_t n_type : NT_LWPSTATUS. This structure contains things of
interest to a debugger from the operating system, such as the
general registers, the floating point registers, state, reason for
stopping, LWP-ID, and so forth. The lwpstatus_t structure
is defined in <sys/procfs.h> .

gwindows_t n_type : NT_GWINDOWS. This entry is present only on a
SPARC machine and only if the system was unable to flush
all of the register windows to the stack. It contains all of the
unspilled register windows. The gwindows_t structure is
defined in <sys/regset.h> .

prxregset_t n_type : NT_PRXREG. This entry is present only if the
machine has extra register state associated with it. It contains
the extra register state. The prxregset_t structure is
defined in <sys/procfs_isa.h> .

asrset_t n_type : NT_ASRS. This entry is present only on a SPARC
V9 machine and only if the process is a 64-bit process. It
contains the ancillary state registers for the LWP. The
asrset_t structure is defined in <sys/regset.h> .

The size of the core file created by a process may be controlled by the user (see
getrlimit (2)).

SEE ALSO adb (1), gcore (1), ps (1), crash (1M), getrlimit (2), setuid (2),
sysinfo (2), elf (3E), a.out (4), proc (4), signal (5)

ANSI C Programmer’s Guide

67 SunOS 5.7 Last modified 17 Mar 1998

File Formats default_fs(4)

NAME default_fs, fs – specify the default file system type for local or remote file
systems

DESCRIPTION When file system administration commands have both specific and generic
components (for example, fsck (1M)), the file system type must be specified.
If it is not explicitly specified using the −F FSType command line option, the
generic command looks in /etc/vfstab in order to determine the file system
type, using the supplied raw or block device or mount point. If the file system
type can not be determined by searching /etc/vfstab , the command will
use the default file system type specified in either /etc/default/fs or
/etc/dfs/dfstypes , depending on whether the file system is local or
remote.

The default local file system type is specified in /etc/default/fs by a line
of the form LOCAL=fstype (for example, LOCAL=ufs). The default remote file
system type is determined by the first entry in the /etc/dfs/fstypes file.

File system administration commands will determine whether the file system
is local or remote by examining the specified device name. If the device name
starts with ‘‘/’’ (slash), it is considered to be local; otherwise it is remote.

The default file system types can be changed by editing the default files with a
text editor.

FILES
/etc/vfstab list of default parameters for each file system

/etc/default/fs the default local file system type

/etc/dfs/fstypes the default remote file system type

SEE ALSO fsck (1M) , fstypes (4) , vfstab (4)

Last modified 20 Mar 1992 SunOS 5.7 68

defaultrouter(4) File Formats

NAME defaultrouter – configuration file for default router(s)

SYNOPSIS /etc/defaultrouter

DESCRIPTION The /etc/defaultrouter file defines the default routers the system will use.

The format of the file is as follows:

The /etc/defaultrouter file can contain the hostnames or IP addresses of
one or more default routers, separated by white space. If you use hostnames,
each hostname must also be listed in the local /etc/hosts file, because no
name services are running at the time that this script is run.

Lines beginning with the ‘‘#’’ character are treated as comments.

The default routes listed in this file replace those added by the kernel during
diskless booting. An empty /etc/defaultrouter file will cause the default
route added by the kernel to be deleted.

FILES
/etc/defaultrouter Configuration file containing the

hostnames or IP addresses of one or
more default routers.

SEE ALSO hosts (4)

69 SunOS 5.7 Last modified 7 Mar 1997

File Formats depend(4)

NAME depend – software dependencies file

DESCRIPTION depend is an ASCII file used to specify information concerning software
dependencies for a particular package. The file is created by a software
developer.

Each entry in the depend file describes a single software package. The
instance of the package is described after the entry line by giving the package
architecture and/or version. The format of each entry and subsequent instance
definition is:

type pkg name
(arch)version

(arch)version
. . .

The fields are:
type Defines the dependency type. Must be one of the following

characters:

P Indicates a prerequisite for installation; for example,
the referenced package or versions must be installed.

I Implies that the existence of the indicated package
or version is incompatible.

R Indicates a reverse dependency. Instead of defining
the package’s own dependencies, this designates
that another package depends on this one. This type
should be used only when an old package does not
have a depend file, but relies on the newer package
nonetheless. Therefore, the present package should
not be removed if the designated old package is still
on the system since, if it is removed, the old package
will no longer work.

pkg Indicates the package abbreviation.

name Specifies the full package name.

(arch)version Specifies a particular instance of the software. A version
name cannot begin with a left parenthesis. The instance
specifications, both (arch) and version, are completely

Last modified 4 Oct 1996 SunOS 5.7 70

depend(4) File Formats

optional, but each (arch)version pair must begin on a new line
that begins with white space. A null version set equates to
any version of the indicated package.

EXAMPLES EXAMPLE 1 Sample of depend file.

Here is a sample depend file:

#ident "@(#)pkg.compat:depend 1.1"
P nsu Networking Support Utilities
P inet Internet Utilities
P sys System Header Files
P src_compat Source Compatibility Files

SEE ALSO Application Packaging Developer’s Guide

71 SunOS 5.7 Last modified 4 Oct 1996

File Formats device_allocate(4)

NAME device_allocate – device_allocate file

SYNOPSIS /etc/security/device_allocate

DESCRIPTION The device_allocate file contains mandatory access control information
about each physical device. Each device is represented by a one line entry of
the form:

device-name;device-type;reserved;reserved;alloc;device-exec
where
device-name This is an arbitrary ASCII string naming the

physical device. This field contains no embedded
white space or non-printable characters.

device-type This is an arbitrary ASCII string naming the
generic device type. This field identifies and
groups together devices of like type. This field
contains no embedded white space or
non-printable characters.

reserved This field is reserved for future use.

reserved This field is reserved for future use.

alloc This field contains an arbitrary string which
controls whether or not a device is allocatable. If
the field contains only an asterisk (*), the device
is not allocatable. Otherwise, the device may be
allocated and deallocated in the normal fashion.

device-exec This is the physical device’s data purge program
to be run any time the device is acted on by
allocate (1M). This is to ensure that all usable
data is purged from the physical device before it
is reused. This field contains the filename of a
program in /etc/security/lib or the full
pathname of a cleanup script provided by the
system administrator.

The device_allocate file is an ASCII file that resides in the
/etc/security directory.

Lines in device_allocate can end with a ‘\ ’ to continue an entry on the
next line.

Comments may also be included. A ‘#’ makes a comment of all further text
until the next NEWLINE not immediately preceded by a ‘\ ’.

Leading and trailing blanks are allowed in any of the fields.

Last modified 31 Dec 1996 SunOS 5.7 72

device_allocate(4) File Formats

The device_allocate file must be created by the system administrator
before device allocation is enabled.

The device_allocate file is owned by root, with a group of sys, and a
mode of 0644.

EXAMPLES EXAMPLE 1 Declare that physical device st0 is a type st . st is allocatable.

Declare that physical device st0 is a type st . st is allocatable, and the script
used to clean the device after running deallocate (1M) is named
/etc/security/lib/st_clean .

scsi tape
st0;\

st;\
reserved;\
reserved;\
alloc;\

/etc/security/lib/st_clean;\

Declare that physical device fd0 is of type fd . fd is allocatable, and the script
used to clean the device after running deallocate (1M) is named
/etc/security/lib/fd_clean .

floppy drive
fd0;\

fd;\
reserved;\
reserved;\
alloc;\

/etc/security/lib/fd_clean;\

Note that making a device allocatable means that you need to allocate and
deallocate them to use them (with allocate (1M) and deallocate (1M)). If
a device is allocatable, there will be an asterisk (*) in the alloc field, and one
can use the device without allocating and deallocating it.

FILES
/etc/security/device_allocate Contains list of allocatable devices

SEE ALSO allocate (1M), bsmconv (1M), deallocate (1M), list_devices (1M)

73 SunOS 5.7 Last modified 31 Dec 1996

File Formats device_allocate(4)

NOTES The functionality described in this man page is available only if the Basic
Security Module (BSM) has been enabled. See bsmconv (1M) for more
information.

Last modified 31 Dec 1996 SunOS 5.7 74

device.cfinfo(4) File Formats

NAME device.cfinfo – devconfig configuration files

SYNOPSIS device.cfinfo

DESCRIPTION device.cfinfo files pass information about device configuration to the
devconfig (1M) program. They allow devconfig (1M) to provide the user
with valid ranges for device attributes.

devconfig (1M) associates a device with its cfinfo file by name. For
example, the device logi for the Logitec Bus Mouse has the devconfig (1M)
configuration file logi.cfinfo associated with it in the DEVCONFIGHOME
directory. DEVCONFIGHOMEis /usr/lib/devconfig by default and may be
set in the user’s environment.

Below is a yaccish grammar of a cfinfo file:

cfinfo_file: cfinfo_devspec EOF

;

cfinfo_devspec: cfinfo_spec_list SEMICOLON

;

cfinfo_spec_list: cfinfo_spec |

cfinfo_spec_list cfinfo_spec

;

cfinfo_spec: comment |

attr_value_pair NEWLINE

;

comment: POUNDSIGN |

POUNDSIGN STRING

;

attr_value_pair: ATTR_NAME EQUALS STRING |

ATTR_OWNAME EQUALS STRING

ATTR_TITLE EQUALS STRING |

ATTR_CATEGORY EQUALS STRING |

75 SunOS 5.7 Last modified 31 Dec 1996

File Formats device.cfinfo(4)

ATTR_INSTANCE EQUALS STRING |

ATTR_CLASS EQUALS STRING |

ATTR_TYPE EQUALS STRING |

ATTR_REAL EQUALS STRING |

ATTR_AUTO EQUALS STRING |

NAME EQUALS value_spec_string

;

value_spec_string: QUOTE value_spec QUOTE

;

value_spec: value_type COMMA value_list

;

value_type: | /* EMPTY */

TYPE_NUMERIC |

TYPE_STRING |

TYPE_VAR

;

value_list: integer_value_list |

string_value_list

;

integer_value_list: INTEGER |

INTEGER COLON INTEGER |

INTEGER COMMA integer_value_list

;

string_value_list: STRING |

Last modified 31 Dec 1996 SunOS 5.7 76

device.cfinfo(4) File Formats

STRING COMMA string_value_list

;

ATTR_NAME name # device name specified in
driver.conf

ATTR_CLASS class # device class specified in
driver.conf

ATTR_TYPE type # device type specified in
OWconfig

ATTR_OWNAME __owname__ # device name specified in
OWconfig

ATTR_TITLE __title__ # device title displayed by
devconfig

ATTR_CATEGORY __category__ # device category

ATTR_INSTANCE __instance__ # device unit

ATTR_REAL __real__ # attributes to write to
driver.conf

ATTR_AUTO __auto__ # self-identifying device
attribute

TYPE_NUMERIC numeric # precedes an integer
value list

TYPE_STRING string # precedes a string values
list

TYPE_VAR var # precedes a variable
specification

The first value in a value_list is the default value picked by
devconfig (1M) for the attribute. An attribute name of the form __name__ is
used internally by devconfig (1M). Number ranges are specified as n1:n2. An
internal attribute of the type var specifies a configurable portion of a real
attribute. (See examples below.) Certain internal attributes have an expanded
form when displayed. These attributes are listed in the file abbreviations in
DEVCONFIGHOME. The file abbreviations also includes a list of name
mappings for certain category names. If the __real__ attribute is present, only
the attribute names it specifies are written to a driver.conf file. Otherwise, all
non-internal attributes are written.

77 SunOS 5.7 Last modified 31 Dec 1996

File Formats device.cfinfo(4)

EXAMPLES EXAMPLE 1 Device configuration file logi.cfinfo for the LOGITECH bus mouse.

Here is the device configuration file logi.cfinfo for the LOGITECH bus
mouse. The driver configuration file for this device is called logi.conf .

name="logi"
__owname__="pointer:0"
__title__="Logitec bus mouse"

__category__="pointer"
class="sysbus"

type="LOGI-B"
buttons="var,__nbuttons__"
__nbuttons__="numeric,2:3"
dev="/dev/logi"
intr="numeric,1","var,__irq__"
__irq__="numeric,2:5"
__real__="name","class","intr"

;

The driver name for the LOGITECH Bus Mouse is logi . The device name in
OWconfig (see the OpenWindows Desktop Reference Manual is pointer:0 .
The device category is pointer ; the device category is displayed as
pointing devices , however, since there is a category mapping for
pointer in the abbreviations file. The device class is sysbus as specified
in the file /kernel/drv/classes. A device of class owin does not have a device
driver associated with it. The device IPL is 1. The device IRQ is substituted by
the variable __irq__ and has a range of 2 to 5. A name mapping for
__irq__ exists in abbreviations and so __irq__ is displayed as
Interrupt (IRQ): . The device attributes written to logi.conf are name,
class , and intr as specified by the __real__ " entry.

The resulting entry in logi.conf is:

name="logi" class="sysbus" intr=1,2;

The resulting entry in OWconfig is:

type="LOGI-B" buttons=3 dev="/dev/logi" class="owin"
name="pointer:0";

Here is an example of a self-identifying device.

name="lp"
__title__="Parallel printer port"
__category__="lp"

class="sysbus"
__auto__="string,true"

;

Last modified 31 Dec 1996 SunOS 5.7 78

device.cfinfo(4) File Formats

The driver for the parallel port automatically identifies it, and devconfig (1M)
treats this device as self-identifying.

FILES
abbreviations

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

SEE ALSO devconfig (1M), driver.conf (4), attributes (5) OpenWindows Desktop
Reference Manual

79 SunOS 5.7 Last modified 31 Dec 1996

File Formats device_maps(4)

NAME device_maps – device_maps file

SYNOPSIS /etc/security/device_maps

DESCRIPTION The device_maps file contains access control information about each physical
device. Each device is represented by a one line entry of the form:

device-name : device-type : device-list :
where
device-name This is an arbitrary ASCII string naming the

physical device. This field contains no embedded
white space or non-printable characters.

device-type This is an arbitrary ASCII string naming the
generic device type. This field identifies and
groups together devices of like type. This field
contains no embedded white space or
non-printable characters.

device-list This is a list of the device special files associated
with the physical device. This field contains valid
device special file path names separated by white
space.

The device_maps file is an ASCII file that resides in the /etc/security
directory.

Lines in device_maps can end with a ‘\ ’ to continue an entry on the next line.

Comments may also be included. A ‘#’ makes a comment of all further text
until the next NEWLINE not immediately preceded by a ‘\ ’.

Leading and trailing blanks are allowed in any of the fields.

The device_maps file must be created by the system administrator before
device allocation is enabled.

This file is owned by root, with a group of sys , and a mode of 0644.

EXAMPLES EXAMPLE 1 A sample device_maps file.

scsi tape
st1:\
rmt:\
/dev/rst21 /dev/nrst21 /dev/rst5 /dev/nrst5 /dev/rst13 \
/dev/nrst13 /dev/rst29 /dev/nrst29 /dev/rmt/1l /dev/rmt/1m \
/dev/rmt/1 /dev/rmt/1h /dev/rmt/1u /dev/rmt/1ln /dev/rmt/1mn \

/dev/rmt/1n /dev/rmt/1hn /dev/rmt/1un /dev/rmt/1b /dev/rmt/1bn:\

Last modified 31 Dec 1996 SunOS 5.7 80

device_maps(4) File Formats

FILES
/etc/security/device_maps

SEE ALSO allocate (1M), bsmconv (1M), deallocate (1M), dminfo (1M),
list_devices (1M)

NOTES The functionality described in this man page is available only if the Basic
Security Module (BSM) has been enabled. See bsmconv (1M) for more
information.

81 SunOS 5.7 Last modified 31 Dec 1996

File Formats dfstab(4)

NAME dfstab – file containing commands for sharing resources across a network

DESCRIPTION dfstab resides in directory /etc/dfs and contains commands for sharing
resources across a network. dfstab gives a system administrator a uniform
method of controlling the automatic sharing of local resources.

Each line of the dfstab file consists of a share (1M) command. The dfstab
file can be read by the shell to share all resources. System administrators can
also prepare their own shell scripts to execute particular lines from dfstab .

The contents of dfstab are executed automatically when the system enters
run-level 3.

SEE ALSO share (1M), shareall (1M)

Last modified 3 Jul 1990 SunOS 5.7 82

dhcp(4) File Formats

NAME dhcp – file containing default parameter values for the location and type of the
databases used by the DHCP service

DESCRIPTION The dhcp file resides in directory /etc/default and contains parameters for
specifying the type and location of DHCP service databases.

The dhcp file format is ASCII; comment lines begin with the crosshatch (#)
character. Parameters consist of a keyword followed by an equals (=) sign
followed by the parameter value, of the form:

Keyword=Value

Two parameters are currently supported:

Keyword Value

RESOURCE Can be either nisplus or
files

PATH Path to data files

The value of the PATH keyword is specified as an absolute path for the files
resource, or a fully-qualified directory for the nisplus resource. The preferred
method of modifying the dhcp file is through use of the dhcpconfig (1M)
command.

SEE ALSO dhcpconfig (1M), in.dhcpd (1M)

83 SunOS 5.7 Last modified 30 Sep 1996

File Formats dhcp_network(4)

NAME dhcp_network – dhcp network DHCP database

DESCRIPTION The dhcp network database is used to map a Dynamic Host Configuration
Protocol (DHCP) client’s client identifier to an IP address and the associated
configuration parameters of that address. This database is located by the
DHCP server at runtime upon receipt of a BOOTP request.

The dhcp network databases can exist as NIS+ tables or ASCII files. Since the
format of the file could change, the preferred method of managing the dhcp
network databases is through the use of the pntadm (1M) command.

Each entry in a dhcp network database has the form:

Client_ID Flags Client_IP Server_IP Lease Macro #Comment

The fields are defined as follows:
Client_ID The client identifier field, Client_ID , is an ASCII

hexadecimal representation of the unique octet string value
of the DHCP Client Identifier Option (code 61) which
identifies a DHCP client. In the absence of the DHCP Client
Identifier Option, the DHCP client is identified using the
form given below for BOOTP clients. The number of
characters in this field must be an even number, with a
maximum length of 64 characters. Valid characters are 0 - 9
and A-F. Entries with values of 00 are freely available for
dynamic allocation to requesting clients. BOOTP clients are
identified by the concatenation of the network’s hardware
type (as defined by RFC 1340, titled "Assigned Numbers")
and the client’s hardware address. For example, the
following BOOTP client has a hardware type of ’01 ’ (10mb
ethernet) and a hardware address of 8:0:20:11:12:b7 , so
its client identifier would be: 010800201112B7

Flags The Flags field is a decimal value, the bit fields of which
can have a combination of the following values:

1 (PERMANENT)

Evaluation of the Lease field is turned off (lease is
permanent). If this bit is not set, Evaluation of the Lease
field is enabled and the Lease is DYNAMIC.

2 (MANUAL)

This entry has a manual client ID binding (cannot be
reclaimed by DHCP server). Client will not be allocated
another address.

Last modified 30 Mar 1998 SunOS 5.7 84

dhcp_network(4) File Formats

4 (UNUSABLE)

When set, this value means that either through ICMP echo
or client DECLINE, this address has been found to be
unusable. Can also be used by the network administrator
to prevent a certain client from booting, if used in
conjunction with the MANUALflag.

8 (BOOTP)

This entry is reserved for allocation to BOOTP clients only.

Client_IP The Client_IP field holds the IP address for this entry.
This value must be unique in the database.

Server_IP This field holds the IP address of the DHCP server which
owns this client IP address, and thus is responsible for initial
allocation to a requesting client.

Lease This numeric field holds the entry’s absolute lease expiration
time, and is in seconds since January 1, 1970 . It can be
decimal, or hexadecimal (if 0x prefixes number). The special
value -1 is used to denote a permanent lease.

Macro This ASCII text field contains the dhcptab macro name
used to look up this entry’s configuration parameters in the
dhcptab (4) database.

Comment This ASCII text field contains an optional comment.

TREATISE ON
LEASES

This section describes how the DHCP/BOOTP server calculates a client’s
configuration lease using information contained in the dhcptab (4) and dhcp
network databases. The server consults the LeaseTim and LeaseNeg
symbols in the dhcptab , and the Flags and Lease fields of the chosen dhcp
network database record.

The server first examines the Flags field for the identified dhcp network
record. If the PERMANENTflag is on, then the client’s lease is considered
permanent.

If the PERMANENTflag is not on, then the server checks if the client’s lease as
represented by the Lease field in the dhcp network record has expired. If
not, then the server checks if the client has requested a new lease. If the
LeaseNeg symbol has not been included in the client’s dhcptab parameters,
then the client’s requested lease extension is ignored, and the lease is set to be
the time remaining as shown by the Lease field. If the LeaseNeg symbol has
been included, then the server will extend the client’s lease to the value it

85 SunOS 5.7 Last modified 30 Mar 1998

File Formats dhcp_network(4)

requested if this requested lease is less than or equal to the current time plus
the value of the client’s LeaseTim dhcptab parameter.

If the client’s requested lease is greater than policy allows (value of
LeaseTim), then the client is given a lease equal to the current time plus the
value of LeaseTim . If LeaseTim is not set, then the default LeaseTim value
is one hour.

For more information about the dhcptab symbols discussed in this section,
see dhcptab (4).

EXAMPLES EXAMPLE 1 Database entry for dynamic allocation.

The following dhcp network database entry is free for dynamic allocation.
The IP address for this entry is 10.0.0.5 , the IP address of the DHCP server
that can initially allocate this address is 10.0.0.1 , the lease expires
754012553 , or Mon Nov 22 18:55:53 1993 , and the dhctab macro
associated with this entry is called 10netnis :

00 0 10.0.0.5 10.0.0.1 754012553 10netnis

EXAMPLE 2 Manually administered entry with a permanent lease.

The following entry shows a manually administered entry for client ID
010000C0EFA4A, which has a permanent lease (that is,
MANUAL | PERMANENT == 3):

010000C0EFA4A 3 10.0.0.25 10.0.0.1 -1 10netnis

EXAMPLE 3 Manually administered unusable entry.

The following entry shows a MANUALentry which has been marked as
UNUSABLE(that is, MANUAL | UNUSABLE == 6):

0408072097C9F 6 10.0.0.26 10.0.0.1 764258362 10netdns

EXAMPLE 4 Previously unused DYNAMIC entry.

The following entry for IP address 10.0.0.27 shows a previously unused,
DYNAMICentry which uses dhcptab macro 10netnis and is owned by
DHCP server 10.0.0.2 :

00 0 10.0.0.27 10.0.0.2 0 10netnis

EXAMPLE 5 Reserved entry.

The following entry is reserved for BOOTP clients:

00 08 10.0.0.27 10.0.0.3 0 10netnis

Last modified 30 Mar 1998 SunOS 5.7 86

dhcp_network(4) File Formats

FILES
/var/dhcp/NNN_NNN_NNN_NNN

Where NNN_NNN_NNN_NNNare database file(s) or NIS+ tables(s).

/var/dhcp/dhcptab

file or NIS+ table

SEE ALSO dhcpconfig (1M), dhtadm (1M), in.dhcpd (1M), pntadm (1M), dhcptab (4)

Reynolds, J. and J. Postel, Assigned Numbers, STD 2, RFC 1340, USC/
Information Sciences Institute, July 1992,

87 SunOS 5.7 Last modified 30 Mar 1998

File Formats dhcptab(4)

NAME dhcptab – DHCP configuration parameter table

DESCRIPTION The dhcptab macro table allows network administrators to organize groups of
configuration parameters as macro definitions, which can then be further used
in the definition of other useful macros. These macros can be configured such
that the DHCP server will return their values to DHCP and BOOTP clients.

The preferred method of managing the dhcptab macro table is through the
use of the dhtadm (1M) utility. The syntax described in the balance of this
manual page is intended for informational purposes.

Syntax of the
dhcptab Table

The syntax of the dhcptab table is as follows:

Comments begin with the cross-hatch (#) character in the first position on the
line and end with a carriage return. Lines can be continued by escaping the
carriage return character with a backslash (Teri) character.

dhcptab records contain three (3) fields:

Name Type Value

The fields are defined as follows:
Name This field identifies the record and is used as the search key

into the dhcptab table. A Namemust consist of ASCII
characters. If the record is of type Macro , then the length is
limited to 64 characters. If the record is of type Symbol , then
the length is limited to 8 characters.

Type This field specifies the type of record. Currently, there are
only two legal values for Type :

m (Macro) This record is a DHCP macro definition.

s (Symbol) This record is a DHCP symbol definition.
It is used to define vendor and site-specific
options.

Value This field contains the value for the specified type of record.
For the macro type, the value will consist of a series of
symbol=value pairs, separated by the colon (:) character. For
the symbol type, the value will consist of a series of fields,
separated by a comma (,), which define a symbol’s
characteristics. Once defined, a symbol can be used in macro
definitions.

Symbol
Characteristics

The fields describing the characteristics of a symbol are as follows:

Last modified 30 Mar 1998 SunOS 5.7 88

dhcptab(4) File Formats

Context Code Type Granularity Maximum

These fields are defined as follows:
Context This field defines the context in which the symbol definition

is to be used. It can have three values:

Extend

This symbol defines a standard option, codes from 77-127.
The use of this symbol type is for adding new standard
options added since the release of the dhcp server.

Site

This symbol defines a site-specific option, codes 128-254.

Vendor=Client Class ...

This symbol defines a vendor-specific option, codes 1-254.
The Vendor context takes ASCII string arguments which
identify the client class that this vendor option is
associated with. Multiple client class names can be
specified, separated by white space. Only those clients
whose client class matches one of these values will see this
option.

Code This field specifies the option code number associated with
this symbol. Valid values are 128-254 for site-specific options,
and 1-254 for vendor-specific options.

Type This field defines the type of data expected as a value for
this symbol. Legal values are:

ASCII NVT ASCII text. Value is enclosed in
double-quotes ("). Granularity setting has
no effect on symbols of this type, since
ASCII strings have a natural granularity of
one (1).

BOOLEAN No value is associated with this data type.
Presence of symbols of this type denote
boolean TRUE, whereas absence denotes
FALSE. Granularity and Miximum values
have no meaning for symbols of this type.

IP Dotted decimal form of an Internet
address. Multi-IP address granularity is
supported.

89 SunOS 5.7 Last modified 30 Mar 1998

File Formats dhcptab(4)

NUMBER An unsigned number with a supported
granularity of 1, 2, 4, and 8 octets.

OCTET Uninterpreted ASCII representation of
binary data. The client identifier is one
example of an OCTETstring. Valid
characters are 0–9, [a-f] [A-F]. One ASCII
character represents one nibble (4 bits),
thus two ASCII characters are needed to
represent an 8 bit quantity. The granularity
setting has no effect on symbols of this
type, since OCTETstrings have a natural
granularity of one (1).

Granularity This value specifies how many objects of Type define a
single instance of the symbol value. For example, the
static route option is defined to be a variable list of routes.
Each route consists of two IP addresses, so the Type is
defined to be IP , and the data’s granularity is defined to be
2 IP addresses. The granularity field affects the IP and
NUMBERdata types.

Maximum This value specifies the maximum items of Granularity
which are permissible in a definition using this symbol. For
example, there can only be one IP address specified for a
subnet mask, so the Maximum number of items in this case is
one (1). A Maximum value of zero (0) means that a variable
number of items is permitted.

The following example defines a site-specific option called MystatRt , of code
130 , type IP, and granularity 2, and a Maximum of 0. This definition
corresponds to the internal definition of the static route option (StaticRt).

MystatRt s Site,130,IP,2,0

Macro Definitions The following example illustrates a macro defined using the MystatRt site
option symbol just defined:

10netnis m :MystatRt=3.0.0.0 10.0.0.30:

Macro records can be specified in the Macro field in dhcp network databases
(see dhcp_network (4)), which will bind particular macro definitions to
specific IP addresses.

If present, four macro definitions are consulted by the DHCP server to
determine the options that are returned to the requesting client:

Last modified 30 Mar 1998 SunOS 5.7 90

dhcptab(4) File Formats

Client Class Network IP Address Client

Identifier

These macros are processed as follows:
Client Class A macro called by the ASCII representation of the

client class is searched for in the dhcptab . If
found, then its symbol/value pairs will be
selected for delivery to the client. This
mechanism permits the network administrator to
select configuration parameters to be returned to
all clients of the same class.

Network A macro named by the dotted Internet form of
the network address of the client’s network (for
example, 10.0.0.0) is searched for in the
dhcptab . If found, then its symbol/value pairs
will be combined with those of the
Client Class macro. If a symbol exists in both
macros, then the Network macro value overrides
the value defined in the Client Class macro.
This mechanism permits the network
administrator to select configuration parameters
to be returned to all clients on the same network.

IP Address This macro is specified in the dhcp network
database for the record assigned to the requesting
client. If this macro is found in the dhcptab ,
then its symbol/value pairs will be combined
with those of the Client Class macro and the
Network macro. This mechanism permits the
network administrator to select configuration
parameters to be returned to clients using a
particular IP address. It can also be used to
deliver a macro defined to include
"server-specific" information by including this
macro definition in all dhcp network database
entries owned by a specific server.

Client Identifier A macro named by the ASCII representation of
the client’s unique identifier as shown in the
dhcp network table, dhcp_network (4). If
found, its symbol/value pairs are combined to
the sum of the Client Class , Network , and
IP Address macros. Any symbol collisions are
replaced with those specified in the client

91 SunOS 5.7 Last modified 30 Mar 1998

File Formats dhcptab(4)

identifier macro. This mechanism permits the
network administrator to select configuration
parameters to be returned to a particular client,
regardless of what network that client is
connected to.

Internal Symbol
Names

The following table maps the available internal symbol names to RFC-2132
options:

Symbol Code Description

Subnet 1 Subnet Mask, dotted
Internet address (IP).

UTCoffst 2 Coordinated Universal
time offset (seconds).

Router 3 List of Routers, IP.

Timeserv 4 List of RFC-868 servers, IP.

IEN116ns 5 List of IEN 116 name
servers, IP.

DNSserv 6 List of DNS name servers,
IP.

Logserv 7 List of MIT-LCS UDP log
servers, IP.

Cookie 8 List of RFC-865 cookie
servers, IP.

Lprserv 9 List of RFC-1179 line
printer servers, IP.

Impress 10 List of Imagen Impress
servers, IP.

Resource 11 List of RFC-887 resource
location servers, IP.

Hostname 12 Client’s hostname, value
from hosts database.

Bootsize 13 Number of 512 octet
blocks in boot image,
NUMBER.

Dumpfile 14 Path where core image
should be dumped, ASCII.

DNSdmain 15 DNS domain name, ASCII.

Last modified 30 Mar 1998 SunOS 5.7 92

dhcptab(4) File Formats

Symbol Code Description

Swapserv 16 Client’s swap server, IP.

Rootpath 17 Client’s Root path, ASCII.

ExtendP 18 Extensions path, ASCII.

IpFwdF 19 IP Forwarding Enable/
Disable, NUMBER.

NLrouteF 20 Non-local Source Routing,
NUMBER.

PFilter 21 Policy Filter, IP,IP.

MaxIpSiz 22 Maximum datagram
Reassembly Size,
NUMBER.

IpTTL 23 Default IP Time to Live,
(1=<x<=255), NUMBER.

PathTO 24 RFC-1191 Path MTU
Aging Timeout, NUMBER.

PathTbl 25 RFC-1191 Path MTU
Plateau Table, NUMBER.

MTU 26 Interface MTU, x>=68,
NUMBER.

SameMtuF 27 All Subnets are Local,
NUMBER.

Broadcst 28 Broadcast Address, IP.

MaskDscF 29 Perform Mask Discovery,
NUMBER.

MaskSupF 30 Mask Supplier, NUMBER.

RDiscvyF 31 Perform Router Discovery,
NUMBER.

RSolictS 32 Router Solicitation
Address, IP.

StaticRt 33 Static Route, Double IP
(network router).

TrailerF 34 Trailer Encapsulation,
NUMBER.

ArpTimeO 35 ARP Cache Time out,
NUMBER.

93 SunOS 5.7 Last modified 30 Mar 1998

File Formats dhcptab(4)

Symbol Code Description

EthEncap 36 Ethernet Encapsulation,
NUMBER.

TcpTTL 37 TCP Default Time to Live,
NUMBER.

TcpKaInt 38 TCP Keepalive Interval,
NUMBER.

TcpKaGbF 39 TCP Keepalive Garbage,
NUMBER.

NISdmain 40 NIS Domain name, ASCII.

NISservs 41 List of NIS servers, IP.

NTPservs 42 List of NTP servers, IP.

NetBNms 44 List of NetBIOS Name
servers, IP.

NetBDsts 45 List of NetBIOS
Distribution servers, IP.

NetBNdT 46 NetBIOS Node type
(1=B-node, 2=P, 4=M, 8=H)

NetBScop 47 NetBIOS scope, ASCII.

XFontSrv 48 List of X Window Font
servers, IP.

XDispMgr 49 List of X Window Display
managers, IP.

LeaseTim 51 Lease Time Policy, (-1 =
PERM), NUMBER.

Message 56 Message to be displayed
on client, ASCII.

T1Time 58 Renewal (T1) time,
NUMBER.

T2Time 59 Rebinding (T2) time,
NUMBER.

NW_dmain 62 NetWare/IP Domain
Name, ASCII.

NWIPOpts 63 NetWare/IP Options,
OCTET (unknown type).

Last modified 30 Mar 1998 SunOS 5.7 94

dhcptab(4) File Formats

Symbol Code Description

NIS+dom 64 NIS+ Domain name,
ASCII.

NIS+serv 65 NIS+ servers, IP.

TFTPsrvN 66 TFTP server hostname,
ASCII.

OptBootF 67 Optional Bootfile path,
ASCII.

MblIPAgt 68 Mobile IP Home Agent, IP.

SMTPserv 69 Simple Mail Transport
Protocol Server, IP.

POP3serv 70 Post Office Protocol
(POP3) Server, IP.

NNTPserv 71 Network News Transport
Proto. (NNTP) Server, IP.

WWWservs 72 Default WorldWideWeb
Server, IP.

Fingersv 73 Default Finger Server, IP.

IRCservs 74 Internet Relay Chat Server,
IP.

STservs 75 StreetTalk Server, IP.

STDAservs 76 StreetTalk Directory Assist.
Server, IP.

BootFile N/A File to Boot, ASCII.

BootSrvA N/A Boot Server, IP.

BootSrvN N/A Boot Server Hostname,
ASCII.

LeaseNeg N/A Lease is Negotiable Flag,
(Present=TRUE)

Include N/A Include listed macro
values in this macro.

EXAMPLES EXAMPLE 1 An example dhcptab file.

Below is an example dhcptab file, illustrating the concepts described above:

95 SunOS 5.7 Last modified 30 Mar 1998

File Formats dhcptab(4)

#
PCNFS vendor options. First define them, then use them in
our Client Class macro definition to establish proper context.
#
SolarNet framework servers. Note that this symbol is valid for two
client classes, "SUNW.PCNFS.5.1" and "SUNW.PCNFSPRO.1.1".
SNadmfw s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,1,ASCII,1,0
PCNFS servers. Note that two client classes are specified for
this symbol.
Pcnfsd s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,2,IP,1,0
NFS Read and Write sizes. Unsigned shorts.
SNnfsRd s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,4,NUMBER,2,1
SNnfsWr s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,5,NUMBER,2,1
NFS Timout in 1/10’s of a second. An unsigned short.
SNnfsTim s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,6,NUMBER,2,1
NFS Retries, an unsigned short.
SNnfsTry s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,7,NUMBER,2,1
PC-Admin login script file.
SNClogin s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,8,ASCII,1,0
PC-Admin logout script file.
SNClgout s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,9,ASCII,1,0
PC-Admin script server.
SNCserv s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,10,IP,1,0
Path to PC-Admin scripts on server.
SNCpath s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,11,ASCII,1,0
PC-Admin Boot script file.
SNCboot s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,12,ASCII,1,0
Timezone (TZ)
SN_TZ s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,13,ASCII,1,0
Site specific option.
SiteTest s Site,128,IP,1,1
PCNFS client class. This option will automatically be returned
to clients specifying "SUNW.PCNFS.5.1.1" as their Client Class.
Predefined, Site, or vendor symbols can be used in this definition.
However, note that vendor symbols used here whose Client Class does not
match will be omitted in the response to the client.
SUNW.PCNFS.5.1.1 m :SNadmfw="doppelbock pilsner": \

:Pcnfsd=10.0.5.26 10.0.5.5 10.0.4.1: :SNnfsRd=1024:SNnfsWr=8192: \
:SNnfsTim=56:SNnfsTry=6: :Impress=10.0.0.254:

Set the locale. EST’s offset is 18000 seconds. Note also the use
of the SN_TZ (which will overwrite UTCoffst for SUNW.PCNFS.5.1.1 and
SUNW.PCNFSPRO.1.1 clients).
Locale m :UTCoffst=18000:SN_TZ="EST5EDT":
Netbios node type is broadcast (1).
NetBIOS m :NetBNms=10.0.5.1 10.0.4.1:NetBNdT=0x1: \

:NetBDsts=10.0.5.5 10.0.5.6 10.0.4.2: :NetBScop="NB.This.Is.A.Nis.DOMAIN":
This macro includes the definitions for Locale and NetBIOS.
Lease is renegotiable, and the maximum lease a client can request
is 2 hours (7200 seconds)
#
Note that this macro definition includes the SUNW.PCNFS.5.1.1 and
SUNW.PCNFSPRO.1.1 Vendor symbol for SolarNet login script file name.
Only those clients whose Client Class is SUNW.PCNFS.5.1.1 or
SUNW.PCNFSPRO.1.1 will see this value.
5netnis m :Subnet=255.255.255.0:Router=10.0.5.26 10.0.5.27: \

:Include=Locale:SNCpath="/opt/SUNWpcnet/1.5/site/pcnfs": \
:SNCboot="boot.snc":SNCserv=10.0.5.26:Timeserv=10.0.5.5: \

Last modified 30 Mar 1998 SunOS 5.7 96

dhcptab(4) File Formats

:NISdmain="This.Is.A.Nis.DOMAIN":NISservs=10.0.5.210: \
:Message="NIS client, Welcometo the 5 net.": \
:SiteTest=1.0.0.0:LeaseTim=7200:LeaseNeg:Include=NetBIOS: \
:SNClogin="login.snc":

This macro defines a short lease - only 5 minutes! Note the use
of the pcnfsd vendor option here. Note also that the server will
return the client’s hostname by consulting the hosts database for
the value.
15netnis m :Subnet=255.255.255.0:Router=10.0.15.226: \

:Include=Locale:SNCpath="/opt/solarnet":SNCboot="site.snc": \
:SNCserv=10.0.15.226:Timeserv=10.0.5.5: \
:NISdmain="Another.Nis.Domain.COM":NISservs=10.0.15.6: \
:Message="NIS client, Welcome to the 15 net.": \
:LeaseTim=300:LeaseNeg:Pcnfsd=10.0.15.226:Hostname:

5netdns m :Subnet=255.255.255.0:Router=10.0.5.26 10.0.5.26: \
:SNCserv=10.0.5.26:SNCpath="/opt/SUNWpcnet/site/pcnfs": \
:SNCboot="boot.snc":Include=Locale:Timeserv=10.0.5.5: \
:DNSdmain="East.Sun.COM":DNSserv=10.0.15.6 15.0.1.15: \
:Message="DNS client, Welcome to the 5 net.":LeaseNeg:

This macro is named by a client’s client identifier. Its options
will be combined with those of the Client Class macro
and per network macro, if defined. Regardless of where this client
boots, these options will follow it!
010800C0EE0E4C m :Impress=10.0.20.55:

FILES
/var/dhcp/dhcptab file or NIS+ table.

SEE ALSO dhcpconfig (1M), dhtadm (1M), in.dhcpd (1M), dhcp_network (4)

Alexander, S., and R. Droms, DHCP Options and BOOTP Vendor Extensions,
RFC 2132, Silicon Graphics, Inc., Bucknell University, March 1997.

Droms, R., Interoperation Between DHCP and BOOTP, RFC 1534, Bucknell
University, October 1993.

Droms, R., Dynamic Host Configuration Protocol, RFC 2131, Bucknell
University, March 1997.

Wimer, W., Clarifications and Extensions for the Bootstrap Protocol, RFC 1542,
Carnegie Mellon University, October 1993.

97 SunOS 5.7 Last modified 30 Mar 1998

File Formats dhcptags(4)

NAME dhcptags – DHCP option mnemonic mapping table

DESCRIPTION For the most part, parameters (henceforth referred to as options) returned to
the client by the DHCP/BOOTP protocol are encoded in the so-called vendor
field of the BOOTPpacket. Each option is identified numerically, and also
carries a length specifier. The purpose of dhcptags is to indentify the type of
each option, to label each with a short mnemonic text string for use by
dhcpinfo (1), and to give a longer textual description.

OPTIONS

General Options Options defined by DHCP are of three general types:
Standard All client and server DHCP implementations agree on the

semantics. These are administered by the Internet Naming
Authority (IANA). These options are numbered from 1 to
127.

Site-specific Within a specific site, all client and server implementations
agree as to the semantics. However, at another site the type
and meaning of the option may be quite different. These
options are numbered from 128 to 254.

Vendor-specific Each vendor may define 256 options unique to that vendor.
The vendor is identified within a DHCP packet by the
"Vendor Class" option (#60). An option with a specific
numeric identifier belonging to one vendor will, in general,
have a type and semantics different from that of a different
vendor. Vendor options are "super-encapsulated" into the
vendor field (#43); within a specific DHCP packet there may
be several instances of option #43.

Pseudo Options As well as the three general types, the Solaris DHCP implementation defines
certain "pseudo" options, numbered from 512 upward. These are a convenient
method for referring to items which either correspond to fixed fields in the
BOOTPpacket (such as the siaddr field) or which, though not options
themselves, are used in constructing valid options (for example, the
home directory used in constructing the exact path to a boot image).

In general, the agent (see dhcpagent (1M)) knows little if anything about the
semantics of any of the first three kinds of option, except for the subnet mask
and broadcast address. Its only duty is to acquire and store this data and to
make it available to other interested parties (see dhcpinfo (1)). The
responsibility for understanding and using the data rests with these third
parties. Pseudo tags, on the contrary, have a specific meaning to
dhcpagent (1M), and consequently it is meaningless to add to this list. The

Last modified 9 May 1997 SunOS 5.7 98

dhcptags(4) File Formats

only useful edit that can be performed on the pseudo tags is to change the
textual description or the mnemonic.

USAGE Blank lines and those whose first non-whitespace character is ’#’ are ignored.
Data entries are written one per line and have five fields. An individual entry
cannot be continued onto another line.

The fields are (in order):

� Tag number

� Mnemonic identifier

� Vendor class

� Data type

(One from the following case insensitive values):
byte

octet

int1 A 1-byte value

int2 A 2-byte value

int4 A 4-byte value

string A printable character string

ip An IP address

iplist A list of IP addresses

int2list A list of 2-byte values

opaque An array of 1-byte values

boolean Either true or false

� Long name

Standard Option List Table of Standard Tags

Tag Number Identifier Data Type Description

1 NetMask ip Subnet mask

2 UTCoffst time Time offset from GMT

99 SunOS 5.7 Last modified 9 May 1997

File Formats dhcptags(4)

Table of Standard Tags

Tag Number Identifier Data Type Description

3 Router iplist IP addresses of routers

4 Timeserv iplist IP addresses of time servers

5 IEN116ns iplist IP addresses of IEN=116 name servers

6 DNSserv iplist IP addresses of domain name servers

7 Logserv iplist IP addresses of remote logging servers

8 Cookie iplist IP address list of fortune cookie servers

9 Lprserv iplist IP address list of print servers

10 Impress iplist IP address list of impress servers

11 Resource iplist IP address list of RLP servers

12 Hostname string hostname (or nodename) of client

13 Bootsize int16 size (in 512 blocks) of client boot file

14 Dumpfile string path name of Merit dump file

15 DNSdmain string DNS domain name

16 Swapserv ip ip address of swap file server

17 Rootpath ip

18 ExtendP string

19 IPFwdF boolean Enable IP forwarding

20 NLrouteF boolean

21 PFilter iplist IP address list of policy filter servers

22 MaxIpSiz int16 Maximum reassembly size of IP datagram

23 IpTTL byte IP time-to-live field

24 PathTO time PMTU timeout

25 PathTbl int16list PMTU plateaus

26 MTU int16 Maximum transmission unit

27 SameMtuF boolean Subnets are local

28 Broadcst ip IP broadcast address of interface

29 MaskDscf boolean When true perform mask discovery

30 MaskSupF boolean When true supply subnet masks

31 RDiscvyF boolean Perform route discovery

Last modified 9 May 1997 SunOS 5.7 100

dhcptags(4) File Formats

Table of Standard Tags

Tag Number Identifier Data Type Description

32 RsolictS ip IP address for router solicitation

33 StaticRt iplist Pairs of IP addresses for all static routes

34 TrailerF boolean Perform trailer encapsulation

35 ArpTimeO time Timeout interval for entry in ARP cache

36 EthEncap boolean Perform Ethernet encapsulation

37 TcpTTL byte TCP time-to-live

38 TcpKaInt time TCP keep alive interval

39 TcpKaGbF boolean Send TCP keep alive garbage octet

40 NISdmain string NIS domain name

41 NISservs iplist IP address list of NIS servers

42 NTPservs iplist IP address list of NTP servers

44 NetBNms iplist IP address list of NetBios name servers

45 NetBDsts iplist IP address list of NetBios DG servers

46 NetBNdT byte NetBios node type

47 NetBScop string NetBios scope

48 XFontSrv iplist IP address list of X font servers

49 XDispMgr iplist IP address list of X display managers

50 RequestIP ip IP address requested by client

51 LeaseTim time Lease duration (secs)

52 Overload byte File and/or sname fields overloaded

53 MsgType byte DHCP message type

54 ServerIp ip IP address of DHCP server selected by
client

55 rv opaque DHCP options requested by client

56 Message string Message from DHCP server to client

57 MaxMsgSz byte Maximum BOOTP message size
acceptable

58 T1Time time DHCP renewal interval

59 T2Time time DHCP rebind interval

60 Vendor string Client’s vendor class

101 SunOS 5.7 Last modified 9 May 1997

File Formats dhcptags(4)

Table of Standard Tags

Tag Number Identifier Data Type Description

61 ClientID opaque Client identifier

62 NW_domain string Netware domain

63 NWIPopts string Netware options

64 NIS+dom string NIS+ domain name

65 NIS+serv iplist IP address list of NIS+ servers

66 TFTPsrvN string Boot file server name

67 OptBootF string Path to boot file on boot file server

68 MblIPAgt iplist IP address list of mobile IP home agents

69 SMTPserv iplist IP address list of SMTP servers

70 POP3serv iplist IP address list of POP servers

71 NNTPserv iplist IP address list of NNTP servers

72 WWWsertvs iplist IP address list of WWW servers

73 Finfgersv iplist IP address list of Finger servers

74 IRCservs iplist IP address list of IRC servers

75 STservs iplist IP address list of StreetTalk servers

76 STDAservs iplist IP address list of STDA servers

77 UserClass string Client’s user class

FILES
/etc/dhcp/dhcptags

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

SEE ALSO dhcpinfo (1), dhcpagent (1M), attributes (5)

Alexander, S., and R. Droms, DHCP Options and BOOTP Vendor Extensions,
RFC 2132, Silicon Graphics, Inc., Bucknell University, March 1997.

Last modified 9 May 1997 SunOS 5.7 102

dhcptags(4) File Formats

Droms, R., Dynamic Host Configuration Protocol, RFC 2131, Bucknell
University, March 1997.

103 SunOS 5.7 Last modified 9 May 1997

File Formats dialups(4)

NAME dialups – list of terminal devices requiring a dial-up password

SYNOPSIS /etc/dialups

DESCRIPTION dialups is an ASCII file which contains a list of terminal devices that require
a dial-up password. A dial-up password is an additional password required of
users who access the computer through a modem or dial-up port. The correct
password must be entered before the user is granted access to the computer.
The set of ports that require a dial-up password are listed in the dialups file.

Each entry in the dialups file is a single line of the form:

terminal-device

where
terminal-device The full path name of the terminal device that

will require a dial-up password for users
accessing the computer through a modem or
dial-up port.

The dialups file should be owned by the root user and the root group. The
file should have read and write permissions for the owner (root) only.

EXAMPLES EXAMPLE 1 A sample dialups file.

Here is a sample dialups file:

/dev/term/a
/dev/term/b
/dev/term/c

FILES
/etc/d_passwd dial-up password file

/etc/dialups list of dial-up ports requiring dial-up passwords

SEE ALSO d_passwd (4)

Last modified 4 May 1994 SunOS 5.7 104

dirent(4) File Formats

NAME dirent – file system independent directory entry

SYNOPSIS #include <dirent.h>

DESCRIPTION Different file system types may have different directory entries. The dirent
structure defines a file system independent directory entry, which contains
information common to directory entries in different file system types. A set of
these structures is returned by the getdents (2) system call.

The dirent structure is defined:

struct dirent {
ino_t d_ino;
off_t d_off;
unsigned short d_reclen;
char d_name[1];

};

The d_ino is a number which is unique for each file in the file system. The
d_off entry contains a value which is interpretable only by the filesystem that
generated it. It may be supplied as an offset to lseek (2) to find the entry
following the current one in a directory. The field d_name is the beginning of
the character array giving the name of the directory entry. This name is null
terminated and may have at most MAXNAMLENcharacters. This results in file
system independent directory entries being variable length entities. The value
of d_reclen is the record length of this entry. This length is defined to be the
number of bytes between the current entry and the next one, so that the next
structure will be suitably aligned.

SEE ALSO getdents (2), lseek (2)

105 SunOS 5.7 Last modified 6 Jan 1998

File Formats dir_ufs(4)

NAME dir_ufs, dir – format of ufs directories

SYNOPSIS #include <sys/param.h>

#include <sys/types.h>

#include <sys/fs/ufs_fsdir.h>

DESCRIPTION A directory consists of some number of blocks of DIRBLKSIZ bytes, where
DIRBLKSIZ is chosen such that it can be transferred to disk in a single atomic
operation (for example, 512 bytes on most machines).

Each DIRBLKSIZ -byte block contains some number of directory entry
structures, which are of variable length. Each directory entry has a
struct direct at the front of it, containing its inode number, the length of
the entry, and the length of the name contained in the entry. These entries are
followed by the name padded to a 4 byte boundary with null bytes. All names
are guaranteed null-terminated. The maximum length of a name in a directory
is MAXNAMLEN.

#define DIRBLKSIZ DEV_BSIZE
#define MAXNAMLEN 256
struct direct {

ulong_t d_ino; /* inode number of entry */
ushort_t d_reclen; /* length of this record */
ushort_t d_namlen; /

* length of string in d_name */
\011char\011d_name[MAXNAMLEN + 1];\011/
* name must be no longer than this */
};

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Unstable

SEE ALSO fs_ufs (4) , attributes (5)

Last modified 3 Jul 1990 SunOS 5.7 106

d_passwd(4) File Formats

NAME d_passwd – dial-up password file

SYNOPSIS /etc/d_passwd

DESCRIPTION A dial-up password is an additional password required of users who access
the computer through a modem or dial-up port. The correct password must be
entered before the user is granted access to the computer.

d_passwd is an ASCII file which contains a list of executable programs
(typically shells) that require a dial-up password and the associated encrypted
passwords. When a user attempts to log in on any of the ports listed in the
dialups file (see dialups (4)), the login program looks at the user’s login
entry stored in the passwd file (see passwd (4)), and compares the login shell
field to the entries in d_passwd . These entries determine whether the user will
be required to supply a dial-up password.

Each entry in d_passwd is a single line of the form:

login-shell: password:

where
login-shell The name of the login program that will require an

additional dial-up password.

password A 13-character encrypted password. Users accessing the
computer through a dial-up port or modem using login-shell
will be required to enter this password before gaining access
to the computer.

d_passwd should be owned by the root user and the root group. The file
should have read and write permissions for the owner (root) only.

If the user’s login program in the passwd file is not found in d_passwd or if
the login shell field in passwd is empty, the user must supply the default
password. The default password is the entry for /usr/bin/sh . If d_passwd
has no entry for /usr/bin/sh , then those users whose login shell field in
passwd is empty or does not match any entry in d_passwd will not be
prompted for a dial-up password.

Dial-up logins are disabled if d_passwd has only the following entry:

/usr/bin/sh:*:

107 SunOS 5.7 Last modified 4 May 1994

File Formats d_passwd(4)

EXAMPLES EXAMPLE 1 Sample d_passwd file.

Here is a sample d_passwd file:

/usr/lib/uucp/uucico:q.mJzTnu8icF0:
/usr/bin/csh:6k/7KCFRPNVXg:
/usr/bin/ksh:9df/FDf.4jkRt:
/usr/bin/sh:41FuGVzGcDJlw:

Generating An
Encrypted Password

The passwd (see passwd (1)) utility can be used to generate the encrypted
password for each login program. passwd generates encrypted passwords for
users and places the password in the shadow (see shadow (4)) file. Passwords
for the d_passwd file will need to be generated by first adding a temporary
user id using useradd (see useradd (1M)), and then using passwd (1) to
generate the desired password in the shadow file. Once the encrypted version
of the password has been created, it can be copied to the d_passwd file.

For example:

1. Type useradd tempuser and press Return. This creates a user named
tempuser .

2. Type passwd tempuser and press Return. This creates an encrypted
password for tempuser and places it in the shadow file.

3. Find the entry for tempuser in the shadow file and copy the encrypted
password to the desired entry in the d_passwd file.

4. Type userdel tempuser and press Return to delete tempuser .

These steps must be executed as the root user.

FILES
/etc/d_passwd dial-up password file

/etc/dialups list of dial-up ports requiring dial-up passwords

/etc/passwd password file

/etc/shadow shadow password file

SEE ALSO passwd (1), useradd (1M), dialups (4), passwd (4), shadow (4)

WARNINGS When creating a new dial-up password, be sure to remain logged in on at least
one terminal while testing the new password. This ensures that there is an
available terminal from which you can correct any mistakes that were made
when the new password was added.

Last modified 4 May 1994 SunOS 5.7 108

driver.conf(4) File Formats

NAME driver.conf – driver configuration files

SYNOPSIS driver.conf

DESCRIPTION Driver configuration files pass information about device drivers and their
configuration to the system. Most device drivers do not have to have
configuration files. Drivers for devices that are self-identifying, such as the SBus
devices on many systems, can usually obtain all the information they need
from the FCode PROM on the SBus card using the DDI property interfaces.
See ddi_prop_get_int (9F) and ddi_prop_lookup (9F) for details.

The system associates a driver with its configuration file by name. For
example, a driver in /usr/kernel/drv called wombat has the driver
configuration file wombat.conf associated with it. By convention, the driver
configuration file lives in the same directory as the driver.

The syntax of a single entry in a driver configuration file takes one of three
forms:

name=" node name" parent=" parent name"
[property-name=value ...];

In this form, the parent name can be either a simple nexus driver name to
match all instances of that parent/node, or the parent name can be a specific
full pathname, beginning with a slash (/) character, identifying a specific
instance of a parent bus.

Alternatively, the parent can be specified by the type of interface it presents to
its children.

name=" node name" class=" class name"
[property-name=value ...];

For example, the driver for the SCSI host adapter may have different names on
different platforms, but the target drivers can use class scsi to insulate
themselves from these differences.

Entries of either form above correspond to a device information (devinfo) node
in the kernel device tree. Each node has a name which is usually the name of

109 SunOS 5.7 Last modified 4 Mar 1997

File Formats driver.conf(4)

the driver, and a parent name which is the name of the parent devinfo node it
will be connected to. Any number of name-value pairs may be specified to
create properties on the prototype devinfo node. These properties can be
retrieved using the DDI property interfaces (for example,
ddi_prop_get_int (9F) and ddi_ddi_prop_lookup (9F)). The prototype
devinfo node specification must be terminated with a semicolon (;).

The third form of an entry is simply a list of properties.

[property-name=value ...];

A property created in this way is treated as global to the driver. It can be
overridden by a property with the same name on a particular devinfo node,
either by creating one explicitly on the prototype node in the driver.conf file or
by the driver.

Items are separated by any number of newlines, SPACE or TAB characters.

The configuration file may contain several entries to specify different device
configurations and parent nodes. The system may call the driver for each
possible prototype devinfo node, and it is generally the responsibility of the
drivers probe (9E) routine to determine if the hardware described by the
prototype devinfo node is really present.

Property names should obey the same naming convention as Open Boot
PROM properties, in particular they should not contain at-sign (@), or slash (/)
characters. Property values can be decimal integers or strings delimited by
double quotes ("). Hexadecimal integers can be constructed by prefixing the
digits with 0x .

A comma separated list of integers can be used to construct properties whose
value is an integer array. The value of such properties can be retrieved inside
the driver using ddi_prop_lookup_int_array (9F).

Comments are specified by placing a # character at the beginning of the
comment string, the comment string extends for the rest of the line.

EXAMPLES EXAMPLE 1 Example of a configuration file called ACME,simple.conf .

Here is a configuration file called ACME,simple.conf for a VME bus frame
buffer called ACME,simple .

Last modified 4 Mar 1997 SunOS 5.7 110

driver.conf(4) File Formats

#
Copyright (c) 1993, by ACME Fictitious Devices, Inc.
#
#ident "@(#)ACME,simple.conf 1.3 93/09/09"
name="ACME,simple" class="vme"

reg=0x7d,0x400000,0x110600;

This example creates a prototype devinfo node called ACME,simple under all
parent nodes of class vme. It specifies a property called reg that consists of an
array of three integers. The reg property is interpreted by the parent node, see
vme(4) for further details.

Here is a configuration file called ACME,example.conf for a pseudo device
driver called ACME,example .

#
Copyright (c) 1993, ACME Fictitious Devices, Inc.
#
#ident "@(#)ACME,example.conf 1.2 93/09/09"
name="ACME,example" parent="pseudo" instance=0

debug-level=1;
name="ACME,example" parent="pseudo" instance=1;
whizzy-mode="on";
debug-level=3;

This example creates two devinfo nodes called ACME,example which will
attach below the pseudo node in the kernel device tree. The instance
property is only interpreted by the pseudo node, see pseudo (4) for further
details. A property called debug-level will be created on the first devinfo
node which will have the value 1. The example driver will be able to fetch the
value of this property using ddi_prop_get_int (9F).

Two global driver properties are created, whizzy-mode (which will have the
string value "on") and debug-level (which will have the value 3). If the
driver looks up the property whizzy-mode on either node, it will retrieve the
value of the global whizzy-mode property ("on"). If the driver looks up the
debug-level property on the first node, it will retrieve the value of the
debug-level property on that node (1). Looking up the same property on the
second node will retrieve the value of the global debug-level property (3).

SEE ALSO pci (4), pseudo (4), sbus (4), scsi (4), vme(4), probe (9E),
ddi_getlongprop (9F), ddi_getprop (9F), ddi_getproplen (9F),
ddi_prop_op (9F)

Writing Device Drivers

111 SunOS 5.7 Last modified 4 Mar 1997

File Formats driver.conf(4)

WARNINGS To avoid namespace collisions between multiple driver vendors, it is strongly
recommended that the name property of the driver should begin with a
vendor-unique string. A reasonably compact and unique choice is the vendor
over-the-counter stock symbol.

Last modified 4 Mar 1997 SunOS 5.7 112

environ(4) File Formats

NAME environ, pref, variables – user-preference variables files for AT&T FACE

SYNOPSIS $ HOME /pref/.environ

$ HOME /pref/.variables

$ HOME /FILECABINET/.pref

$ HOME /WASTEBASKET/.pref

DESCRIPTION The .environ , .pref , and .variables files contain variables that indicate
user preferences for a variety of operations. The .environ and .variables
files are located under the user’s $ HOME /pref directory. The .pref files are
found under $ HOME /FILECABINET , $ HOME /WASTEBASKET, and any
directory where preferences were set via the organize command. Names and
descriptions for each variable are presented below. Variables are listed one per
line and are of the form variable = value .

.environ Variables Variables found in .environ include:
LOGINWIN[1-4] Windows that are opened when FACE is

initialized

SORTMODE Sort mode for file folder listings. Values include
the following hexadecimal digits:

1 sorted
alphabetically by
name

2 files most recently
modified first

800 sorted
alphabetically by
object type

The values above may be listed in reverse order
by ORing the following value:

1000 list objects in
reverse order. For
example, a value of
1002 will produce a
folder listing with
files LEAST recently
modified displayed
first. A value of

113 SunOS 5.7 Last modified 3 Jul 1990

File Formats environ(4)

1001 would
produce a "reverse"
alphabetical by
name listing of the
folder

DISPLAYMODE Display mode for file folders. Values include the
following hexadecimal digits:

0 file names only

4 file names and brief
description

8 file names,
description, plus
additional
information

WASTEPROMPT Prompt before emptying wastebasket (yes/no)?

WASTEDAYS Number of days before emptying wastebasket

PRINCMD[1-3] Print command defined to print files.

UMASK Holds default permissions that files will be
created with.

.pref Variables Variables found in .pref are the following:
SORTMODE which has the same values as the SORTMODE

variable described in .environ above.

DISPMODE which has the same values as the DISPLAYMODE
variable described in .environ above.

.variable Variables Variables found in .variables include:
EDITOR Default editor

PS1 shell prompt

Last modified 3 Jul 1990 SunOS 5.7 114

ethers(4) File Formats

NAME ethers – Ethernet address to hostname database or domain

DESCRIPTION The ethers file is a local source of information about the (48 bit) Ethernet
addresses of hosts on the Internet. The ethers file can be used in conjunction
with or instead of other ethers sources, including the NIS maps
ethers.byname and ethers.byaddr and the NIS+ table ethers . Programs
use the ethers (3N) routines to access this information.

The ethers file has one line for each host on an Ethernet. The line has the
following format:

Ethernet-address official-host-name

Items are separated by any number of SPACE and/or TAB characters. A ‘#’
indicates the beginning of a comment extending to the end of line.

The standard form for Ethernet addresses is “x: x: x: x: x: x” where x is a
hexadecimal number between 0 and ff, representing one byte. The address
bytes are always in network order. Host names may contain any printable
character other than SPACE, TAB, NEWLINE, or comment character.

FILES
/etc/ethers

SEE ALSO ethers (3N), hosts (4), nsswitch.conf (4)

115 SunOS 5.7 Last modified 10 Dec 1991

File Formats fd(4)

NAME fd – file descriptor files

DESCRIPTION These files, conventionally called /dev/fd/0 , /dev/fd/1 , /dev/fd/2 , and
so on, refer to files accessible through file descriptors. If file descriptor n is
open, these two system calls have the same effect:

fd = open("/dev/fd/ n",mode);
fd = dup(n);

On these files creat (2) is equivalent to open , and mode is ignored. As with
dup , subsequent reads or writes on fd fail unless the original file descriptor
allows the operations.

For convenience in referring to standard input, standard output, and standard
error, an additional set of names is provided: /dev/stdin is a synonym for
/dev/fd/0 , /dev/stdout for /dev/fd/1 , and /dev/stderr for
/dev/fd/2 .

SEE ALSO creat (2), dup (2), open (2)

DIAGNOSTICS open (2) returns −1 and EBADF if the associated file descriptor is not open.

Last modified 3 Jul 1990 SunOS 5.7 116

filehdr(4) File Formats

NAME filehdr – file header for common object files

SYNOPSIS #include <filehdr.h>

DESCRIPTION Every common object file begins with a 20-byte header. The following C
struct declaration is used:

struct filehdr
{

unsigned short f_magic ; /* magic number */
unsigned short f_nscns ; /* number of sections */
long f_timdat ; /* time & date stamp */
long f_symptr ; /* file ptr to symtab */
long f_nsyms ; /* number of symtab entries */
unsigned short f_opthdr ; /* sizeof(opt and header) */
unsigned short f_flags ; /* flags */

};

f_symptr is the byte offset into the file at which the symbol table can be
found. Its value can be used as the offset in fseek (3S) to position an I/O
stream to the symbol table. The UNIX system optional header is 28 bytes. The
valid magic numbers are given below:

#define I386MAGIC 0514 /* i386 Computer
*/

#define WE32MAGIC 0560 /* 3B2, 3B5, and
3B15 computers */

#define N3BMAGIC 0550 /* 3B20 computer
*/

#define NTVMAGIC 0551 /* 3B20 computer
*/

#define VAXWRMAGIC 0570 /* VAX writable
text segments */

#define VAXROMAGIC 0575 /* VAX read only
sharable

text segments */

The value in f_timdat is obtained from the time (2) system call. Flag bits
currently defined are:

117 SunOS 5.7 Last modified 3 Jul 1990

File Formats filehdr(4)

#define F_RELFLG 0000001 /* relocation
entries stripped */

#define F_EXEC 0000002 /* file is executable
*/

#define F_LNNO 0000004 /* line numbers
stripped */

#define F_LSYMS 0000010 /* local symbols
stripped */

#define F_AR16WR 0000200 /* 16-bit DEC host
*/

#define F_AR32WR 0000400 /* 32-bit DEC host
*/

#define F_AR32W 0001000 /* non-DEC host
*/

#define F_BM32ID 0160000 /* WE32000 family
ID field */

#define F_BM32B 0020000 /* file contains WE
32100 code */

#define F_BM32MAU 0040000 /* file reqs MAU
to execute */

#define F_BM32RST 0010000 /* this object file
contains restore

work around [3B5/
3B2 only] */

SEE ALSO time (2), fseek (3S), a.out (4)

Last modified 3 Jul 1990 SunOS 5.7 118

format.dat(4) File Formats

NAME format.dat – disk drive configuration for the format command

DESCRIPTION format.dat enables you to use your specific disk drives with format (1M).
On Solaris 2.3 and compatible systems, format will automatically configure
and label SCSI drives, so that they need not be defined in format.dat . Three
things can be defined in the data file:

� search paths

� disk types

� partition tables.

Syntax The following syntax rules apply to the data file:

� The pound # sign is the comment character. Any text on a line after a pound
sign is not interpreted by format .

� Each definition in the format.dat file appears on a single logical line. If
the definition is more than one line long, all but the last line of the
definition must end with a backslash (\).

� A definition consists of a series of assignments that have an identifier on the
left side and one or more values on the right side. The assignment operator
is the equal sign (=). Assignments within a definition must be separated by
a colon (:).

� White space is ignored by format (1M). If you want an assigned value to
contain white space, enclose the entire value in double quotes ("). This will
cause the white space within quotes to be preserved as part of the
assignment value.

� Some assignments can have multiple values on the right hand side. Separate
values by a comma (,).

Keywords The data file contains disk definitions that are read in by format (1M) when it
starts up. Each definition starts with one of the following keywords:
search_path , disk_type , and partition .
search_path 4.x: Tells format which disks it should search for when it

starts up. The list in the default data file contains all the
disks in the GENERIC configuration file. If your system has
disks that are not in the GENERIC configuration file, add
them to the search_path definition in your data file. The
data file can contain only one search_path definition.
However, this single definition lets you specify all the disks
you have in your system.

119 SunOS 5.7 Last modified 4 Apr 1994

File Formats format.dat(4)

5.x: By default, format (1M) understands all the logical
devices that are of the form /dev/rdsk/cntndnsn ; hence
search_path is not normally defined on a 5.x system.

disk_type Defines the controller and disk model. Each disk_type
definition contains information concerning the physical
geometry of the disk. The default data file contains
definitions for the controllers and disks that the Solaris
operating system supports. You need to add a new
disk_type only if you have an unsupported disk. You can
add as many disk_type definitions to the data file as you
want.

The following controller types are supported by
format (1M):

XY450 Xylogics 450 controller (SMD)

XD7053 Xylogics 7053 controller (SMD)

MD21 SCSI, but using ESDI devices (also known
as shoebox)

SCSI True SCSI (CCS or SCSI-2)

ISP-80 IPI panther controller

Note: The disk_type and partition definition entries
must have ‘‘ctlr = MD21’’ for scsi disk devices for 4.1.1
release. But for 4.1.2, 4.1.3 and 5.x releases, the entries should
say ‘‘ctlr = SCSI.’’

The keyword itself is assigned the name of the disk type.
This name appears in the disk’s label and is used to identify
the disk type whenever format (1M) is run. Enclose the
name in double quotes to preserve any white space in the
name.

Below are lists of identifiers for supported controllers. Note
that an asterisk (’*’) indicates the identifier is mandatory for
that controller – it is not part of the keyword name.

The following identifiers are assigned values in all
disk_type definitions:

acyl* alternate cylinders

asect alternate sectors per track

atrks alternate tracks

Last modified 4 Apr 1994 SunOS 5.7 120

format.dat(4) File Formats

fmt_time formatting time per cylinder

ncyl* number of logical cylinders

nhead* number of logical heads

nsect* number of logical sectors per
track

pcyl* number of physical cylinders

phead number of physical heads

psect number of physical sectors per
track

rpm* drive RPM

These identifiers are for SCSI and MD-21 Controllers

read_retries page 1 byte 3 (read retries)

write_retries page 1 byte 8 (write retries)

cyl_skew page 3 bytes 18-19 (cylinder skew)

trk_skew page 3 bytes 16-17 (track skew)

trks_zone page 3 bytes 2-3 (tracks per zone)

cache page 38 byte 2 (cache parameter)

prefetch page 38 byte 3 (prefetch parameter)

max_prefetch page 38 byte 4 (minimum prefetch)

min_prefetch page 38 byte 6 (maximum prefetch)

Note: The Page 38 values are device-specific. Refer the user
to the particular disk’s manual for these values.

For SCSI disks, the following geometry specifiers may cause
a mode select on the byte(s) indicated:

asect page 3 bytes 4-5 (alternate sectors per
zone)

atrks page 3 bytes 8-9 (alt. tracks per logical
unit)

phead page 4 byte 5 (number of heads)

psect page 3 bytes 10-11 (sectors per track)

121 SunOS 5.7 Last modified 4 Apr 1994

File Formats format.dat(4)

And these identifiers are for SMD Controllers Only

bps* bytes per sector (SMD)

bpt* bytes per track (SMD)

Note: under SunOS 5.x, bpt is only required for SMD disks.
Under SunOS 4.x, bpt was required for all disk types, even
though it was only used for SMD disks.

And this identifier is for XY450 SMD Controllers Only

drive_type* drive type (SMD) (just call this "xy450
drive type")

partition Defines a partition table for a specific disk type. The
partition table contains the partitioning information, plus a
name that lets you refer to it in format (1M). The default
data file contains default partition definitions for several
kinds of disk drives. Add a partition definition if you
repartitioned any of the disks on your system. Add as many
partition definitions to the data file as you need.

Partition naming conventions differ in SunOS 4.x and in
SunOS 5.x.

4.x: the partitions are named as a, b, c , d, e, f , g, h.

5.x: the partitions are referred to by numbers 0, 1, 2, 3, 4, 5,
6, 7.

EXAMPLES EXAMPLE 1 A sample disk_type and partition .

Following is a sample disk_type and partition definition in format.dat
file for SUN0535 disk device.

disk_type = "SUN0535" \
: ctlr = SCSI : fmt_time = 4 \
: ncyl = 1866 : acyl = 2 : pcyl = 2500 : nhead = 7 : nsect = 80 \
: rpm = 5400

partition = "SUN0535" \
: disk = "SUN0535" : ctlr = SCSI \

: 0 = 0, 64400 : 1 = 115, 103600 : 2 = 0, 1044960 : 6 = 300, 876960

FILES
/etc/format.dat default data file if format −x is not

specified, nor is there a format.dat
file in the current directory.

Last modified 4 Apr 1994 SunOS 5.7 122

format.dat(4) File Formats

SEE ALSO format (1M) System Administration Guide, Volume I

123 SunOS 5.7 Last modified 4 Apr 1994

File Formats fspec(4)

NAME fspec – format specification in text files

DESCRIPTION It is sometimes convenient to maintain text files on the system with
non-standard tabs, (tabs that are not set at every eighth column). Such files
must generally be converted to a standard format, frequently by replacing all
tabs with the appropriate number of spaces, before they can be processed by
system commands. A format specification occurring in the first line of a text
file specifies how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by
blanks and surrounded by the brackets <: and :> . Each parameter consists of
a keyletter, possibly followed immediately by a value. The following
parameters are recognized:
ttabs The t parameter specifies the tab settings for the file. The

value of tabs must be one of the following:

A list of column numbers separated by commas, indicating tabs
set at the specified columns
A ’ −’ followed immediately by an integer
n, indicating tabs at intervals of
n columns

specification
A ’ −’ followed by the name of a ‘‘canned’’ tab

Standard tabs are specified by t −8, or equivalently,
t1,9,17,25, etc. The canned tabs that are recognized are
defined by the tabs (1) command.

ssize The s parameter specifies a maximum line size. The value of
size must be an integer. Size checking is performed after
tabs have been expanded, but before the margin is
prepended.

mmargin The mparameter specifies a number of spaces to be
prepended to each line. The value of margin must be an
integer.

d The d parameter takes no value. Its presence indicates that
the line containing the format specification is to be deleted
from the converted file.

Last modified 3 Jul 1990 SunOS 5.7 124

fspec(4) File Formats

e The e parameter takes no value. Its presence indicates that
the current format is to prevail only until another format
specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t −8 and
m0. If the s parameter is not specified, no size checking is performed. If the
first line of a file does not contain a format specification, the above defaults are
assumed for the entire file. The following is an example of a line containing a
format specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to
code the d parameter.

SEE ALSO ed(1), newform (1), tabs (1)

125 SunOS 5.7 Last modified 3 Jul 1990

File Formats fstypes(4)

NAME fstypes – file that registers distributed file system packages

DESCRIPTION fstypes resides in directory /etc/dfs and lists distributed file system
utilities packages installed on the system. For each installed distributed file
system type, there is a line that begins with the file system type name (for
example, ‘‘nfs’’), followed by white space and descriptive text.

The file system indicated in the first line of the file is the default file system;
when Distributed File System (DFS) Administration commands are entered
without the option −F fstypes, the system takes the file system type from the
first line of the fstypes file.

The default file system can be changed by editing the fstypes file with any
supported text editor.

SEE ALSO dfmounts (1M), dfshares (1M), share (1M), shareall (1M), unshare (1M)

Last modified 18 Dec 1991 SunOS 5.7 126

fs_ufs(4) File Formats

NAME fs_ufs, inode_ufs, inode – format of a ufs file system volume

SYNOPSIS #include <sys/param.h>

#include <sys/types.h>

#include <sys/fs/ufs_fs.h>

#include <sys/fs/ufs_inode.h>

DESCRIPTION Standard UFS file system storage volumes have a common format for certain
vital information. Every volume is divided into a certain number of blocks.
The block size is a parameter of the file system. Sectors 0 to 15 contain primary
and secondary bootstrapping programs.

The actual file system begins at sector 16 with the super-block. The layout of
the super-block is defined by the header <sys/fs/ufs_fs.h> .

Each disk drive contains some number of file systems. A file system consists of
a number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, and by the information in the
cylinder group blocks. The super-block is critical data and is replicated before
each cylinder group block to protect against catastrophic loss. This is done at
file system creation time and the critical super-block data does not change, so
the copies need not be referenced.

fs_clean fs_clean indicates the state of the file system. The FSCLEANstate indicates
an undamaged, cleanly unmounted file system. The FSACTIVE state indicates
a mounted file system that has been updated. The FSSTABLEstate indicates an
idle mounted file system. The FSFIX state indicates that this fs is mounted,
contains inconsistent file system data and is being repaired by fsck . The
FSBADstate indicates that this file system contains inconsistent file system
data. It is not necessary to run fsck on any unmounted file systems with a
state of FSCLEANor FSSTABLE. mount (2) will return ENOSPC if a UFS file
system with a state of FSACTIVE is being mounted for read-write.

To provide additional safeguard, fs_clean could be trusted only if
fs_state contains a value equal to FSOKAY- fs_time , where FSOKAYis a
constant integer. Otherwise, fs_clean is treated as though it contains the
value of FSACTIVE .

Addresses stored in inodes are capable of addressing fragments of “blocks.”
File system blocks of at most, size MAXBSIZEcan be optionally broken into 2,
4, or 8 pieces, each of which is addressable; these pieces may be DEV_BSIZE
or some multiple of a DEV_BSIZE unit.

127 SunOS 5.7 Last modified 17 Nov 1994

File Formats fs_ufs(4)

Large files consist exclusively of large data blocks. To avoid undue wasted disk
space, the last data block of a small file is allocated only as many fragments of
a large block as are necessary. The file system format retains only a single
pointer to such a fragment, which is a piece of a single large block that has
been divided. The size of such a fragment is determinable from information in
the inode, using the blksize(fs, ip, lbn) macro.

The file system records space availability at the fragment level; aligned
fragments are examined to determine block availability.

The root inode is the root of the file system. Inode 0 cannot be used for normal
purposes and historically, bad blocks were linked to inode 1. Thus the root
inode is 2 (inode 1 is no longer used for this purpose; however numerous
dump tapes make this assumption, so we are stuck with it). The lost+found
directory is given the next available inode when it is initially created by
mkfs (1M) .

fs_minfree fs_minfree gives the minimum acceptable percentage of file system blocks
which may be free. If the freelist drops below this level only the super-user
may continue to allocate blocks. fs_minfree may be set to 0 if no reserve of
free blocks is deemed necessary, however severe performance degradations
will be observed if the file system is run at greater than 90% full; thus the
default value of fs_minfree is 10%.

Empirically the best trade-off between block fragmentation and overall disk
utilization at a loading of 90% comes with a fragmentation of 8; thus the
default fragment size is an eighth of the block size.

fs_optim fs_optim specifies whether the file system should try to minimize the time
spent allocating blocks, or if it should attempt to minimize the space
fragmentation on the disk. If the value of fs_minfree is less than 10%, then
the file system defaults to optimizing for space to avoid running out of full
sized blocks. If the value of fs_minfree is greater than or equal to 10%,
fragmentation is unlikely to be problematical, and the file system defaults to
optimizing for time.

Cylinder group related limits : Each cylinder keeps track of the availability of
blocks at different rotational positions, so that sequential blocks can be laid out
with minimum rotational latency. fs_nrpos is the number of rotational
positions which are distinguished. With the default fs_nrpos of 8, the
resolution of the summary information is 2ms for a typical 3600 rpm drive.

fs_rotdelay fs_rotdelay gives the minimum number of milliseconds to initiate another
disk transfer on the same cylinder. It is used in determining the rotationally
optimal layout for disk blocks within a file; the default value for
fs_rotdelay varies from drive to drive (see tunefs (1M)).

Last modified 17 Nov 1994 SunOS 5.7 128

fs_ufs(4) File Formats

fs_maxcontig fs_maxcontig gives the maximum number of blocks, belonging to one file,
that will be allocated contiguously before inserting a rotational delay.

Each file system has a statically allocated number of inodes. An inode is
allocated for each NBPI bytes of disk space. The inode allocation strategy is
extremely conservative.

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is
possible to create files of size 2^32 with only two levels of indirection.
MINBSIZE must be large enough to hold a cylinder group block, thus changes
to (struct cg) must keep its size within MINBSIZE . Note: super-blocks are
never more than size SBSIZE .

The path name on which the file system is mounted is maintained in
fs_fsmnt . MAXMNTLENdefines the amount of space allocated in the
super-block for this name.

The limit on the amount of summary information per file system is defined by
MAXCSBUFS. It is currently parameterized for a maximum of two million
cylinders.

Per cylinder group information is summarized in blocks allocated from the
first cylinder group’s data blocks. These blocks are read in from fs_csaddr
(size fs_cssize)in addition to the super-block.

Note: sizeof (struct csum) must be a power of two in order for the
fs_cs macro to work.

The inode is the focus of all file activity in the file system. There is a unique
inode allocated for each active file, each current directory, each mounted-on
file, text file, and the root. An inode is “named” by its device/i-number pair.
For further information, see the header <sys/fs/ufs_inode.h> .

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Unstable

SEE ALSO fsck_ufs (1M) , mkfs_ufs (1M) , tunefs (1M) , mount (2) , attributes (5)

129 SunOS 5.7 Last modified 17 Nov 1994

File Formats group(4)

NAME group – group file

DESCRIPTION The group file is a local source of group information. The group file can be
used in conjunction with other group sources, including the NIS maps
group.byname and group.bygid and the NIS+ table group . Programs use
the getgrnam (3C) routines to access this information.

The group file contains a one-line entry for each group recognized by the
system, of the form:

groupname:password: gid:user-list

where
groupname The name of the group.

gid The group’s unique numerical ID (GID) within the system.

user-list A comma-separated list of users allowed in the group.
The maximum value of the gid field is 2137483647. To maximize
interoperability and compatibility, administrators are recommended to assign
groups using the range of GIDs below 60000 where possible.

If the password field is empty, no password is demanded. During user
identification and authentication, the supplementary group access list is
initialized sequentially from information in this file. If a user is in more groups
than the system is configured for, {NGROUPS_MAX}, a warning will be given
and subsequent group specifications will be ignored.

Malformed entries cause routines that read this file to halt, in which case
group assignments specified further along are never made. To prevent this
from happening, use grpck (1B) to check the /etc/group database from time
to time.

Previous releases used a group entry beginning with a ‘+’ (plus sign) or ‘−’
(minus sign) to selectively incorporate entries from NIS maps for group. If still
required, this is supported by specifying group:compat in
nsswitch.conf (4). The ‘‘compat’’ source may not be supported in future
releases. The preferred sources are, ‘‘files’’ followed by ‘‘nisplus’’. This has the
effect of incorporating the entire contents of the NIS+ group table after the
group file.

EXAMPLES EXAMPLE 1 Sample of a group file.

Here is a sample group file:

root::0:root
stooges:q.mJzTnu8icF.:10:larry,moe,curly

Last modified 14 May 1998 SunOS 5.7 130

group(4) File Formats

and the sample group entry from nsswitch.conf:

group: files nisplus

With these entries, the group stooges will have members larry , moe, and
curly , and all groups listed in the NIS+ group table are effectively
incorporated after the entry for stooges .

If the group file was:

root::0:root
stooges:q.mJzTnu8icF.:10:larry,moe,curly
+:

and the group entry from nsswitch.conf:

group: compat

all the groups listed in the NIS group.bygid and group.byname maps
would be effectively incorporated after the entry for stooges.

SEE ALSO groups (1), grpck (1B), newgrp (1), getgrnam (3C), initgroups (3C),
nsswitch.conf (4), unistd (5)

System Administration Guide, Volume I

131 SunOS 5.7 Last modified 14 May 1998

File Formats holidays(4)

NAME holidays – prime/nonprime table for the accounting system

SYNOPSIS /etc/acct/holidays

DESCRIPTION The /etc/acct/holidays file describes which hours are considered prime
time and which days are holidays. Holidays and weekends are considered
non-prime time hours. /etc/acct/holidays is used by the accounting
system.

All lines beginning with an "* " are comments.

The /etc/acct/holidays file consists of two sections. The first
non-comment line defines the current year and the start time of prime and
non-prime time hours, in the form:

current_year prime_start non_prime_start

The remaining non-comment lines define the holidays in the form:

month/daycompany_holiday

Of these two fields, only the month/day is actually used by the accounting
system programs.

The /etc/acct/holidays file must be updated each year.

EXAMPLES EXAMPLE 1 Example of the /etc/acct/holidays file.

The following is an example of the /etc/acct/holidays file:

* Prime/Nonprime Table for the accounting system
*
* Curr Prime Non-Prime
* Year Start Start
*

1991 0830 1800
*
* only the first column (month/day) is significant.
*
* month/day Company

* Holiday
*

1/1 New Years Day

Last modified 28 Mar 1991 SunOS 5.7 132

holidays(4) File Formats

5/30 Memorial Day
7/4 Indep. Day
9/5 Labor Day

11/24 Thanksgiving Day
11/25 day after Thanksgiving
12/25 Christmas

12/26 day after Christmas

SEE ALSO acct (1M)

133 SunOS 5.7 Last modified 28 Mar 1991

File Formats hosts(4)

NAME hosts – host name database

SYNOPSIS /etc/inet/hosts

/etc/hosts

DESCRIPTION The hosts file is a local database that associates the names of hosts with their
Internet Protocol (IP) addresses. The hosts file can be used in conjunction
with, or instead of, other hosts databases, including the Domain Name System
(DNS), the NIS hosts map and the NIS+ hosts table. Programs use library
interfaces to access information in the hosts file.

The hosts file has one entry for each IP address of each host. If a host has
more than one IP address, it will have one entry for each, on consecutive lines.
The format of each line is:

IP-address official-host-name nicknames . . .

Items are separated by any number of SPACE and/or TAB characters. The first
item on a line is the host’s IP address. The second entry is the host’s official
name. Subsequent entries on the same line are alternative names for the same
machine, or “nicknames.” Nicknames are optional.

For a host with more than one IP address, consecutive entries for these
addresses may contain the same or differing nicknames. Different nicknames
are useful for assigning distinct names to different addresses.

A call to gethostbyname (3N) returns a hostent structure containing the
union of all addresses and nicknames from each line containing a matching
official name or nickname.

A ‘#’ indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines that search the file.

Network addresses are written in the conventional “decimal dot” notation and
interpreted using the inet_addr routine from the Internet address
manipulation library, inet (3N).

This interface supports host names as defined in Internet RFC 952 which states:

A “name” (Net, Host, Gateway, or Domain name) is a text string up to 24
characters drawn from the alphabet (A-Z), digits (0-9), minus sign (−), and
period (.). Note that periods are only allowed when they serve to delimit
components of “domain style names”. (See RFC 921, “Domain Name System
Implementation Schedule,” for background). No blank or space characters are
permitted as part of a name. No distinction is made between upper and lower
case. The first character must be an alpha character. The last character must
not be a minus sign or period.

Last modified 21 Mar 1995 SunOS 5.7 134

hosts(4) File Formats

Although the interface accepts host names longer than 24 characters for the
host portion (exclusive of the domain component), choosing names for hosts
that adhere to the 24 character restriction will insure maximum interoperability
on the Internet.

A host which serves as a GATEWAY should have “−GATEWAY“ or “−GW” as
part of its name. Hosts which do not serve as Internet gateways should not
use “−GATEWAY” and “−GW” as part of their names. A host which is a TAC
should have “−TAC” as the last part of its host name, if it is a DoD host. Single
character names or nicknames are not allowed.

RFC 952 has been modified by RFC 1123 to relax the restriction on the first
character being a digit.

EXAMPLES EXAMPLE 1 Example of a typical line from the hosts file.

Here is a typical line from the hosts file:

192.9.1.20 gaia # John Smith

SEE ALSO in.named (1M), gethostbyname (3N), inet (3N), nsswitch.conf (4),
resolv.conf (4)

NOTES /etc/inet/hosts is the official SVR4 name of the hosts file. The symbolic
link /etc/hosts exists for BSD compatibility.

135 SunOS 5.7 Last modified 21 Mar 1995

File Formats hosts.equiv(4)

NAME hosts.equiv, rhosts – trusted remote hosts and users

DESCRIPTION The /etc/hosts.equiv and .rhosts files provide the “remote
authentication” database for rlogin (1) , rsh (1) , rcp (1) , and rcmd (3N) .
The files specify remote hosts and users that are considered “trusted”. Trusted
users are allowed to access the local system without supplying a password.
The library routine ruserok() (see rcmd (3N))performs the authentication
procedure for programs by using the /etc/hosts.equiv and .rhosts files.
The /etc/hosts.equiv file applies to the entire system, while individual
users can maintain their own .rhosts files in their home directories.

These files bypass the standard password-based user authentication
mechanism. To maintain system security, care must be taken in creating and
maintaining these files.

The remote authentication procedure determines whether a user from a remote
host should be allowed to access the local system with the identity of a local
user. This procedure first checks the /etc/hosts.equiv file and then checks
the .rhosts file in the home directory of the local user who is requesting
access. Entries in these files can be of two forms. Positive entries allow access,
while negative entries deny access. The authentication succeeds when a
matching positive entry is found. The procedure fails when the first matching
negative entry is found, or if no matching entries are found in either file. The
order of entries is important. If the files contain both positive and negative
entries, the entry that appears first will prevail. The rsh (1) and rcp (1)
programs fail if the remote authentication procedure fails. The rlogin
program falls back to the standard password-based login procedure if the
remote authentication fails.

Both files are formatted as a list of one-line entries. Each entry has the form:
hostname [username]

Hostnames must be the official name of the host, not one of its nicknames.

Negative entries are differentiated from positive entries by a ‘−’ character
preceding either the hostname or username field.

Positive Entries If the form:
hostname

is used, then users from the named host are trusted. That is, they may access
the system with the same user name as they have on the remote system. This
form may be used in both the /etc/hosts.equiv and .rhosts files.

If the line is in the form:
hostname username

then the named user from the named host can access the system. This form
may be used in individual .rhosts files to allow remote users to access the
system as a different local user . If this form is used in the /etc/hosts.equiv

Last modified 23 Jun 1997 SunOS 5.7 136

hosts.equiv(4) File Formats

file, the named remote user will be allowed to access the system as any local
user.

netgroup (4) can be used in either the hostname or username fields to match
a number of hosts or users in one entry. The form:

+@netgroup
allows access from all hosts in the named netgroup. When used in the
username field, netgroups allow a group of remote users to access the system as
a particular local user. The form:

hostname +@ netgroup
allows all of the users in the named netgroup from the named host to access
the system as the local user. The form:

+@netgroup1 +@netgroup2
allows the users in netgroup2 from the hosts in netgroup1 to access the system
as the local user.

The special character ‘+’ can be used in place of either hostname or username
to match any host or user. For example, the entry+
will allow a user from any remote host to access the system with the same
username. The entry + username
will allow the named user from any remote host to access the system. The entry

hostname +
will allow any user from the named host to access the system as the local user.

Negative Entries Negative entries are preceded by a ‘−’ sign. The form:− hostname
will disallow all access from the named host. The form:−@netgroup
means that access is explicitly disallowed from all hosts in the named
netgroup. The form:

hostname − username
disallows access by the named user only from the named host, while the form:

+ −@netgroup
will disallow access by all of the users in the named netgroup from all hosts.

Search Sequence To help maintain system security, the /etc/hosts.equiv file is not checked
when access is being attempted for super-user. If the user attempting access is
not the super-user, /etc/hosts.equiv is searched for lines of the form
described above. Checks are made for lines in this file in the following order:

+ +@ netgroup −@ netgroup − hostname hostname

137 SunOS 5.7 Last modified 23 Jun 1997

File Formats hosts.equiv(4)

The user is granted access if a positive match occurrs. Negative entries apply
only to /etc/hosts.equiv and may be overridden by subsequent .rhosts
entries.

If no positive match occurred, the .rhosts file is then searched if the user
attempting access maintains such a file. This file is searched whether or not the
user attempting access is the super-user. As a security feature, the .rhosts
file must be owned by the user who is attempting access. Checks are made for
lines in .rhosts in the following order:

+ +@ netgroup −@ netgroup − hostname hostname

FILES
/etc/hosts.equiv system trusted hosts and users

~/.rhosts user’s trusted hosts and users

SEE ALSO rcp (1) , rlogin (1) , rsh (1) , rcmd (3N) , hosts (4) , netgroup (4) ,
passwd (4)

WARNINGS Positive entries in /etc/hosts.equiv that include a username field (either an
individual named user, a netgroup, or ‘ + ’sign) should be used with extreme
caution. Because /etc/hosts.equiv applies system-wide, these entries
allow one, or a group of, remote users to access the system as any local user .
This can be a security hole. For example, because of the search sequence, an
/etc/hosts.equiv file consisting of the entries

+ −hostxxx

will not deny access to “hostxxx”.

Last modified 23 Jun 1997 SunOS 5.7 138

inetd.conf(4) File Formats

NAME inetd.conf – Internet servers database

SYNOPSIS /etc/inet/inetd.conf

/etc/inetd.conf

DESCRIPTION The inetd.conf file contains the list of servers that inetd (1M) invokes
when it receives an Internet request over a socket. Each server entry is
composed of a single line of the form:

service-name endpoint-type protocol wait-status uid
server-program server-arguments

Fields are separated by either SPACE or TAB characters. A ‘#’ (number sign)
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines that search this file.
service-name The name of a valid service listed in the

services file. For RPC services, the value of the
service-name field consists of the RPC service
name or program number, followed by a ’/’
(slash) and either a version number or a range of
version numbers (for example, rstatd/2-4).

endpoint-type Can be one of:

stream for a stream socket,

dgram for a datagram socket,

raw for a raw socket,

seqpacket for a sequenced packet socket

tli for all tli endpoints

protocol Must be a recognized protocol listed in the file
/etc/inet/protocols . For RPC services, the
field consists of the string rpc followed by a ’/’
(slash) and either a ’*’ (asterisk), one or more
nettypes, one or more netids, or a combination of
nettypes and netids. Whatever the value, it is first
treated as a nettype. If it is not a valid nettype,
then it is treated as a netid. For example, rpc/*
for an RPC service using all the transports
supported by the system (the list can be found in

139 SunOS 5.7 Last modified 22 Feb 1994

File Formats inetd.conf(4)

the /etc/netconfig file), equivalent to saying
rpc/visible rpc/ticots for an RPC service
using the Connection-Oriented Transport Service.

wait-status nowait for all but “single-threaded” datagram
servers — servers which do not release the socket
until a timeout occurs. These must have the
status wait . Do not configure udp services as
nowait . This will cause a race condition where
the inetd program selects on the socket and the
server program reads from the socket. Many
server programs will be forked and performance
will be severly compromised.

uid The user ID under which the server should run.
This allows servers to run with access privileges
other than those for root.

server-program Either the pathname of a server program to be
invoked by inetd to perform the requested
service, or the value internal if inetd itself
provides the service.

server-arguments If a server must be invoked with command line
arguments, the entire command line (including
argument 0) must appear in this field (which
consists of all remaining words in the entry). If
the server expects inetd to pass it the address of
its peer (for compatibility with 4.2BSD executable
daemons), then the first argument to the
command should be specified as ‘%A’. No more
than five arguments are allowed in this field.

FILES
/etc/netconfig network configuration file

/etc/inet/protocols Internet protocols

/etc/inet/services Internet network services

SEE ALSO rlogin (1), rsh (1), in.tftpd (1M), inetd (1M), services (4)

NOTES /etc/inet/inetd.conf is the official SVR4 name of the inetd.conf file.
The symbolic link /etc/inetd.conf exists for BSD compatibility.

Last modified 22 Feb 1994 SunOS 5.7 140

init.d(4) File Formats

NAME init.d – initialization and termination scripts for changing init states

SYNOPSIS /etc/init.d

DESCRIPTION /etc/init.d is a directory containing initialization and termination scripts
for changing init states. These scripts are linked when appropriate to files in
the rc?.d directories, where ‘?’ is a single character corresponding to the init
state. See init (1M) for definitions of the states.

File names in rc?.d directories are of the form [SK]nn<init.d filename> ,
where S means start this job, K means kill this job, and nn is the relative
sequence number for killing or starting the job. When entering a state (init
S,0,2,3,etc.) the rc[S0-6] script executes those scripts in /etc/rc[S0-6].d
that are prefixed with K followed by those scripts prefixed with S. When
executing each script in one of the
/etc/rc[S0-6] directories, the /sbin/rc[S0-6] script passes a
single argument. It passes the argument ’stop’ for scripts prefixed with K and
the argument ’start’ for scripts prefixed with S. There is no harm in applying
the same sequence number to multiple scripts. In this case the order of
execution is deterministic but unspecified.

Guidelines for selecting sequence numbers are provided in READMEfiles
located in the directory associated with that target state. For example,
/etc/rc[S0-6].d/README . Absence of a READMEfile indicates that there are
currently no established guidelines.

EXAMPLES EXAMPLE 1 Example of /sbin/rc2 .

When changing to init state 2 (multi-user mode, network resources not
exported), /sbin/rc2 is initiated by the init process. The following steps are
performed by /sbin/rc2 .

1. In the directory /etc/rc2.d are files used to stop processes that should
not be running in state 2. The filenames are prefixed with K. Each K file in
the directory is executed (by /sbin/rc2) in alpha-numeric order when the
system enters init state 2. See example below.

2. Also in the rc2.d directory are files used to start processes that should be
running in state 2. As in the Step 1, each S file is executed.

Assume the file /etc/netdaemon is a script that will initiate networking
daemons when given the argument ’start’, and will terminate the daemons if
given the argument ’stop’. It is linked to /etc/rc2.d/S68netdaemon , and
to /etc/rc0.d/K67netdaemon . The file is executed by
/etc/rc2.d/S68netdaemon start when init state 2 is entered and by
/etc/rc0.d/S67netdaemon stop when shutting the system down.

SEE ALSO init (1M)

141 SunOS 5.7 Last modified 23 Feb 1994

File Formats init.d(4)

NOTES /sbin/rc2 has references to the obsolescent rc.d directory. These references
are for compatibility with old INSTALL scripts. New INSTALL scripts should
use the init.d directory for related executables. The same is true for the
shutdown.d directory.

Last modified 23 Feb 1994 SunOS 5.7 142

inittab(4) File Formats

NAME inittab – script for init

DESCRIPTION The file /etc/inittab controls process dispatching by init . The processes
most typically dispatched by init are daemons.

The inittab file is composed of entries that are position dependent and have
the following format:

id: rstate: action: process

Each entry is delimited by a newline; however, a backslash (\) preceding a
newline indicates a continuation of the entry. Up to 512 characters for each
entry are permitted. Comments may be inserted in the process field using the
convention for comments described in sh (1). There are no limits (other than
maximum entry size) imposed on the number of entries in the inittab file.
The entry fields are:
id

One or two characters used to uniquely identify an entry.

rstate

Define the run level in which this entry is to be processed. Run-levels
effectively correspond to a configuration of processes in the system. That is,
each process spawned by init is assigned a run level(s) in which it is
allowed to exist. The run levels are represented by a number ranging from 0
through 6. For example, if the system is in run level 1, only those entries
having a 1 in the rstate field are processed.

When init is requested to change run levels, all processes that do not have
an entry in the rstate field for the target run level are sent the warning signal
SIGTERMand allowed a 5-second grace period before being forcibly
terminated by the kill signal SIGKILL . The rstate field can define multiple
run levels for a process by selecting more than one run level in any
combination from 0 through 6. If no run level is specified, then the process
is assumed to be valid at all run levels 0 through 6.

There are three other values, a, b and c , which can appear in the rstate field,
even though they are not true run levels. Entries which have these
characters in the rstate field are processed only when an init or telinit
process requests them to be run (regardless of the current run level of the
system). See init (1M). These differ from run levels in that init can never
enter run level a, b or c . Also, a request for the execution of any of these
processes does not change the current run level. Furthermore, a process
started by an a, b or c command is not killed when init changes levels.
They are killed only if their line in inittab is marked off in the action

143 SunOS 5.7 Last modified 3 Jul 1990

File Formats inittab(4)

field, their line is deleted entirely from inittab , or init goes into
single-user state.

action

Key words in this field tell init how to treat the process specified in the
process field. The actions recognized by init are as follows:

respawn

If the process does not exist, then start the process; do not wait for its
termination (continue scanning the inittab file), and when the process
dies, restart the process. If the process currently exists, do nothing and
continue scanning the inittab file.

wait

When init enters the run level that matches the entry’s rstate, start the
process and wait for its termination. All subsequent reads of the inittab
file while init is in the same run level cause init to ignore this entry.

once

When init enters a run level that matches the entry’s rstate, start the
process, do not wait for its termination. When it dies, do not restart the
process. If init enters a new run level and the process is still running
from a previous run level change, the program is not restarted.

boot

The entry is to be processed only at init ’s boot-time read of the
inittab file. init is to start the process and not wait for its termination;
when it dies, it does not restart the process. In order for this instruction to
be meaningful, the rstate should be the default or it must match init ’s
run level at boot time. This action is useful for an initialization function
following a hardware reboot of the system.

bootwait

The entry is to be processed the first time init goes from single-user to
multi-user state after the system is booted. (If initdefault is set to 2,
the process runs right after the boot.) init starts the process, waits for its
termination and, when it dies, does not restart the process.

powerfail

Execute the process associated with this entry only when init receives a
power fail signal, SIGPWR(see signal (3C)).

Last modified 3 Jul 1990 SunOS 5.7 144

inittab(4) File Formats

powerwait

Execute the process associated with this entry only when init receives a
power fail signal, SIGPWR, and wait until it terminates before continuing
any processing of inittab .

off

If the process associated with this entry is currently running, send the
warning signal SIGTERMand wait 5 seconds before forcibly terminating
the process with the kill signal SIGKILL . If the process is nonexistent,
ignore the entry.

ondemand

This instruction is really a synonym for the respawn action. It is
functionally identical to respawn but is given a different keyword in
order to divorce its association with run levels. This instruction is used
only with the a, b or c values described in the rstate field.

initdefault

An entry with this action is scanned only when init is initially invoked.
init uses this entry to determine which run level to enter initially. It does
this by taking the highest run level specified in the rstate field and using
that as its initial state. If the rstate field is empty, this is interpreted as
0123456 and init will enter run level 6. This will cause the system to
loop (it will go to firmware and reboot continuously). Additionally, if
init does not find an initdefault entry in inittab , it requests an
initial run level from the user at reboot time.

sysinit

Entries of this type are executed before init tries to access the console
(that is, before the Console Login: prompt). It is expected that this
entry will be used only to initialize devices that init might try to ask the
run level question. These entries are executed and init waits for their
completion before continuing.

process

Specify a command to be executed. The entire process field is prefixed
with exec and passed to a forked sh as sh −c ’exec command ’. For this
reason, any legal sh syntax can appear in the process field.

SEE ALSO sh (1), who(1), init (1M), ttymon (1M), exec (2), open (2), signal (3C)

145 SunOS 5.7 Last modified 3 Jul 1990

File Formats issue(4)

NAME issue – issue identification file

DESCRIPTION The file /etc/issue contains the issue or project identification to be printed
as a login prompt. issue is an ASCII file that is read by program getty and
then written to any terminal spawned or respawned from the lines file.

FILES
/etc/issue

SEE ALSO login (1)

Last modified 3 Jul 1990 SunOS 5.7 146

keytables(4) File Formats

NAME keytables – keyboard table descriptions for loadkeys and dumpkeys

DESCRIPTION These files are used by loadkeys (1) to modify the translation tables used by
the keyboard streams module and generated by (see loadkeys (1)) from those
translation tables.

Any line in the file beginning with # is a comment, and is ignored. # is treated
specially only at the beginning of a line.

Other lines specify the values to load into the tables for a particular keystation.
The format is either:

key number list_of_entries

or

swap
number1 with number2

or

key number1 same as
number2

or a blank line, which is ignored.

key number list_of_entries

sets the entries for keystation number from the list given. An entry in that list is
of the form

tablename code

where tablename is the name of a particular translation table, or all . The
translation tables are:

147 SunOS 5.7 Last modified 12 Feb 1997

File Formats keytables(4)

base entry when no shifts are active
shift

entry when "Shift" key is down
caps entry when "Caps Lock" is in effect
ctrl entry when "Control" is down
altg entry when "Alt Graph" is down
numl entry when "Num Lock" is in effect
up entry when a key goes up

All tables other than up refer to the action generated when a key goes down.
Entries in the up table are used only for shift keys, since the shift in question
goes away when the key goes up, except for keys such as "Caps Lock" or
"Num Lock"; the keyboard streams module makes the key look as if it were a
latching key.

A table name of all indicates that the entry for all tables should be set to the
specified value, with the following exception: for entries with a value other
than hole , the entry for the numl table should be set to nonl , and the entry
for the up table should be set to nop .

The code specifies the effect of the key in question when the specified shift key
is down. A code consists of either:

� A character, which indicates that the key should generate the given
character. The character can either be a single character, a single character
preceded by ^ which refers to a "control character" (for instance, ^c is
control-C), or a C-style character constant enclosed in single quote
characters (’), which can be expressed with C-style escape sequences such
as \r for RETURN or \000 for the null character. Note that the single
character may be any character in an 8-bit character set, such as ISO 8859/1.

� A string, consisting of a list of characters enclosed in double quote
characters ("). Note that the use of the double quote character means that a
code of double quote must be enclosed in single quotes.

� One of the following expressions:
shiftkeys+leftshift the key is to be the left-hand "Shift" key

shiftkeys+rightshift the key is to be the right-hand "Shift" key

shiftkeys+leftctrl the key is to be the left-hand "Control" key

shiftkeys+rightctrl the key is to be the right-hand "Control" key

shiftkeys+alt the key is to be the "Alt" shift key

shiftkeys+altgraph the key is to be the "Alt Graph" shift key

Last modified 12 Feb 1997 SunOS 5.7 148

keytables(4) File Formats

shiftkeys+capslock the key is to be the "Caps Lock" key

shiftkeys+shiftlock the key is to be the "Shift Lock" key

shiftkeys+numlock the key is to be the "Num Lock" key

buckybits+systembit the key is to be the "Stop" key in SunView; this is
normally the L1 key, or the SETUP key on the
VT100 keyboard

buckybits+metabit the key is to be the "meta" key. That is, the "Left"
or "Right" key on a Sun-2 or Sun-3 keyboard or
the "diamond" key on a Sun-4 keyboard

compose the key is to be the "Compose" key

ctrlq on the "VT100" keyboard, the key is to transmit
the control-Q character (this would be the entry
for the "Q" key in the ctrl table)

ctrls on the "VT100" keyboard, the key is to transmit
the control-S character (this would be the entry
for the "S" key in the ctrl table)

noscroll on the "VT100" keyboard, the key is to be the "No
Scroll" key

string+uparrow the key is to be the "up arrow" key

string+downarrow the key is to be the "down arrow" key

string+leftarrow the key is to be the "left arrow" key

string+rightarrow the key is to be the "right arrow" key

string+homearrow the key is to be the "home" key

fa_acute the key is to be the acute accent "floating accent"
key

fa_cedilla the key is to be the cedilla "floating accent" key

fa_cflex the key is to be the circumflex "floating accent"
key

149 SunOS 5.7 Last modified 12 Feb 1997

File Formats keytables(4)

fa_grave the key is to be the grave accent "floating accent"
key

fa_tilde the key is to be the tilde "floating accent" key

fa_umlaut the key is to be the umlaut "floating accent" key

nonl this is used only in the Num Lock table; the key
is not to be affected by the state of Num Lock

pad0 the key is to be the "0" key on the numeric
keypad

pad1 the key is to be the "1" key on the numeric
keypad

pad2 the key is to be the "2" key on the numeric
keypad

pad3 the key is to be the "3" key on the numeric
keypad

pad4 the key is to be the "4" key on the numeric
keypad

pad5 the key is to be the "5" key on the numeric
keypad

pad6 the key is to be the "6" key on the numeric
keypad

pad7 the key is to be the "7" key on the numeric
keypad

pad8 the key is to be the "8" key on the numeric
keypad

pad9 the key is to be the "9" key on the numeric
keypad

paddot the key is to be the "." key on the numeric keypad

padenter the key is to be the "Enter" key on the numeric
keypad

Last modified 12 Feb 1997 SunOS 5.7 150

keytables(4) File Formats

padplus the key is to be the "+" key on the numeric
keypad

padminus the key is to be the "−" key on the numeric
keypad

padstar the key is to be the "*" key on the numeric keypad

padslash the key is to be the "/" key on the numeric
keypad

padequal the key is to be the "=" key on the numeric
keypad

padsep the key is to be the "," (separator) key on the
numeric keypad

lf(n) the key is to be the left-hand function key n

rf(n) the key is to be the right-hand function key n

tf(n) the key is to be the top function key n

bf(n) the key is to be the "bottom" function key n

nop the key is to do nothing

error this code indicates an internal error; to be used
only for keystation 126, and must be used there

idle this code indicates that the keyboard is idle (that
is, has no keys down); to be used only for all
entries other than the numl and up table entries
for keystation 127, and must be used there

oops this key exists, but its action is not defined; it has
the same effect as nop

reset this code indicates that the keyboard has just
been reset; to be used only for the up table entry
for keystation 127, and must be used there.

swap number1 with number2exchanges the entries for keystations number1 and
number2.

151 SunOS 5.7 Last modified 12 Feb 1997

File Formats keytables(4)

key number1 same as number2sets the entries for keystation number1 to be the
same as those for keystation number2. If the file
does not specify entries for keystation number2,
the entries currently in the translation table are
used; if the file does specify entries for keystation
number2, those entries are used.

EXAMPLES EXAMPLE 1 Example that sets keystation 15 to be a “hole”.

The following entry sets keystation 15 to be a “hole” (that is, an entry
indicating that there is no keystation 15); sets keystation 30 to do nothing when
Alt Graph is down, generate "!" when Shift is down, and generate "1" under all
other circumstances; and sets keystation 76 to be the left-hand Control key.

key 15 all hole
key 30 base 1 shift ! caps 1 ctrl 1 altg nop
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl

The following entry exchanges the Delete and Back Space keys on the Type 4
keyboard:

swap 43 with 66

Keystation 43 is normally the Back Space key, and keystation 66 is normally
the Delete key.

The following entry disables the Caps Lock key on the Type 3 and U.S. Type 4
keyboards:

key 119 all nop

The following specifies the standard translation tables for the U.S. Type 4
keyboard:

key 0 all hole
key 1 all buckybits+systembit up buckybits+systembit
key 2 all hole
key 3 all lf(2)

Last modified 12 Feb 1997 SunOS 5.7 152

keytables(4) File Formats

key 4 all hole
key 5 all tf(1)
key 6 all tf(2)
key 7 all tf(10)
key 8 all tf(3)
key 9 all tf(11)
key 10 all tf(4)
key 11 all tf(12)
key 12 all tf(5)
key 13 all shiftkeys+altgraph up shiftkeys+altgraph
key 14 all tf(6)
key 15 all hole
key 16 all tf(7)
key 17 all tf(8)
key 18 all tf(9)
key 19 all shiftkeys+alt up shiftkeys+alt
key 20 all hole
key 21 all rf(1)
key 22 all rf(2)
key 23 all rf(3)
key 24 all hole
key 25 all lf(3)
key 26 all lf(4)
key 27 all hole
key 28 all hole
key 29 all ^[
key 30 base 1 shift ! caps 1 ctrl 1 altg nop
key 31 base 2 shift @ caps 2 ctrl ^@ altg nop
key 32 base 3 shift # caps 3 ctrl 3 altg nop
key 33 base 4 shift $ caps 4 ctrl 4 altg nop
key 34 base 5 shift % caps 5 ctrl 5 altg nop
key 35 base 6 shift ^ caps 6 ctrl ^^ altg nop
key 36 base 7 shift & caps 7 ctrl 7 altg nop
key 37 base 8 shift * caps 8 ctrl 8 altg nop
key 38 base 9 shift (caps 9 ctrl 9 altg nop
key 39 base 0 shift) caps 0 ctrl 0 altg nop
key 40 base - shift _ caps - ctrl ^_ altg nop
key 41 base = shift + caps = ctrl = altg nop
key 42 base ‘ shift ~ caps ‘ ctrl ^^ altg nop
key 43 all ’\b’
key 44 all hole
key 45 all rf(4) numl padequal
key 46 all rf(5) numl padslash
key 47 all rf(6) numl padstar
key 48 all bf(13)
key 49 all lf(5)
key 50 all bf(10) numl padequal
key 51 all lf(6)
key 52 all hole
key 53 all ’\t’
key 54 base q shift Q caps Q ctrl ^Q altg nop
key 55 base w shift W caps W ctrl ^W altg nop
key 56 base e shift E caps E ctrl ^E altg nop
key 57 base r shift R caps R ctrl ^R altg nop
key 58 base t shift T caps T ctrl ^T altg nop
key 59 base y shift Y caps Y ctrl ^Y altg nop
key 60 base u shift U caps U ctrl ^U altg nop

153 SunOS 5.7 Last modified 12 Feb 1997

File Formats keytables(4)

key 61 base i shift I caps I ctrl ’\t’ altg nop
key 62 base o shift O caps O ctrl ^O altg nop
key 63 base p shift P caps P ctrl ^P altg nop
key 64 base [shift { caps [ctrl ^[altg nop
key 65 base] shift } caps] ctrl ^] altg nop
key 66 all ’\177’
key 67 all compose
key 68 all rf(7) numl pad7
key 69 all rf(8) numl pad8
key 70 all rf(9) numl pad9
key 71 all bf(15) numl padminus
key 72 all lf(7)
key 73 all lf(8)
key 74 all hole
key 75 all hole
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl
key 77 base a shift A caps A ctrl ^A altg nop
key 78 base s shift S caps S ctrl ^S altg nop
key 79 base d shift D caps D ctrl ^D altg nop
key 80 base f shift F caps F ctrl ^F altg nop
key 81 base g shift G caps G ctrl ^G altg nop
key 82 base h shift H caps H ctrl ’\b’ altg nop
key 83 base j shift J caps J ctrl ’\n’ altg nop
key 84 base k shift K caps K ctrl ’\v’ altg nop
key 85 base l shift L caps L ctrl ^L altg nop
key 86 base ; shift : caps ; ctrl ; altg nop
key 87 base ’\’’ shift ’"’ caps ’\’’ ctrl ’\’’ altg nop
key 88 base ’\\’ shift | caps ’\\’ ctrl ^\ altg nop
key 89 all ’\r’
key 90 all bf(11) numl padenter
key 91 all rf(10) numl pad4
key 92 all rf(11) numl pad5
key 93 all rf(12) numl pad6
key 94 all bf(8) numl pad0
key 95 all lf(9)
key 96 all hole
key 97 all lf(10)
key 98 all shiftkeys+numlock
key 99 all shiftkeys+leftshift up shiftkeys+leftshift
key 100 base z shift Z caps Z ctrl ^Z altg nop
key 101 base x shift X caps X ctrl ^X altg nop
key 102 base c shift C caps C ctrl ^C altg nop
key 103 base v shift V caps V ctrl ^V altg nop
key 104 base b shift B caps B ctrl ^B altg nop
key 105 base n shift N caps N ctrl ^N altg nop
key 106 base m shift M caps M ctrl ’\r’ altg nop
key 107 base , shift < caps , ctrl , altg nop
key 108 base . shift > caps . ctrl . altg nop
key 109 base / shift ? caps / ctrl ^_ altg nop
key 110 all shiftkeys+rightshift up shiftkeys+rightshift
key 111 all ’\n’
key 112 all rf(13) numl pad1
key 113 all rf(14) numl pad2
key 114 all rf(15) numl pad3
key 115 all hole
key 116 all hole
key 117 all hole

Last modified 12 Feb 1997 SunOS 5.7 154

keytables(4) File Formats

key 118 all lf(16)
key 119 all shiftkeys+capslock
key 120 all buckybits+metabit up buckybits+metabit
key 121 base ’ ’ shift ’ ’ caps ’ ’ ctrl ^@ altg ’ ’
key 122 all buckybits+metabit up buckybits+metabit
key 123 all hole
key 124 all hole
key 125 all bf(14) numl padplus
key 126 all error numl error up hole
key 127 all idle numl idle up reset

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SEE ALSO loadkeys (1), attributes (5)

155 SunOS 5.7 Last modified 12 Feb 1997

File Formats krb.conf(4)

NAME krb.conf – Kerberos configuration file

SYNOPSIS /etc/krb.conf

DESCRIPTION krb.conf contains configuration information describing the Kerberos realm
and the Kerberos key distribution center (KDC) servers for known realms.

krb.conf contains the name of the local realm in the first line, followed by
lines indicating realm/host entries. The first token is a realm name, and the
second is the hostname of a host running a KDC for that realm. There can be
multiple lines for a given realm; the servers are tried in order until an active
one is found. The words admin server following the hostname indicate that the
host also provides an administrative database server. For example:

ATHENA.MIT.EDU
ATHENA.MIT.EDU kerberos-1.mit.edu admin server
ATHENA.MIT.EDU kerberos-2.mit.edu
LCS.MIT.EDU kerberos.lcs.mit.edu admin server

The Kerberos configuration information can also be supplied using the
krb.conf NIS map. If /etc/krb.conf is not found (or the requested
information is not found in it), and the system is running NIS, then the
information will be obtained from the NIS map. If neither the file nor the NIS
map are found, then the Kerberos library will use the domainname (as
returned by domainname (1M)) as the Kerberos realm, and the host kerberos
as the location of the KDC. There is no default for the admin server.

Note that every time krb.conf is modified, kerbd (1M) needs to be restarted.

SEE ALSO domainname (1M), kerbd (1M), ypmake(1M), krb.realms (4)

BUGS There is no NIS+ support yet for the krb.conf map.

Last modified 6 Jan 1992 SunOS 5.7 156

krb.realms(4) File Formats

NAME krb.realms – host to Kerberos realm translation file

SYNOPSIS /etc/krb.realms

DESCRIPTION krb.realms provides a translation from a hostname to the Kerberos realm
name for the services provided by that host.

Each line of the translation file is in one of the following forms:

host_name kerberos_realm
domain_name kerberos_realm

domain_name should be of the form .XXX.YYY, for example, .LCS.MIT.EDU .

If a hostname exactly matches the host_name field in a line of the first form, the
corresponding kerberos_realm is used as the realm of the host. If a hostname
does not match any host_name in the file, but its domain exactly matches the
domain_name field in a line of the second form, the corresponding
kerberos_realm is used as the realm of the host.

If no translation entry applies, the host’s realm is considered to be the
hostname’s domain portion converted to upper case.

SEE ALSO krb_realmofhost (3N)

BUGS There is no NIS or NIS+ support for this information.

157 SunOS 5.7 Last modified 6 Jan 1992

File Formats ldapfilter.conf(4)

NAME ldapfilter.conf – configuration file for LDAP filtering routines

SYNOPSIS /etc/opt/SUNWconn/ldap/current/ldapfilter.conf

DESCRIPTION The ldapfilter.conf file contains information used by the LDAP filtering
routines.

Blank lines and lines that begin with a hash character (’#’) are treated as
comments and ignored. The configuration information consists of lines that
contain one to five tokens. Tokens are separated by white space, and double
quotes can be used to include white space inside a token.

The file consists of a sequence of one or more filter sets. A filter set begins
with a line containing a single token called a tag.

The filter set consists of a sequence of one or more filter lists. The first line in a
filter list must contain four or five tokens: the value pattern, the delimiter list, a
filter template, a match description, and an optional search scope. The value pattern
is a regular expression that is matched against the value passed to the LDAP
library call to select the filter list.

The delimiter list is a list of the characters (in the form of a single string) that
can be used to break the value into distinct words.

The filter template is used to construct an LDAP filter (see description below)

The match description is returned to the caller along with a filter as a piece of
text that can be used to describe the sort of LDAP search that took place. It
should correctly compete both of the following phrases: "One match description
match was found for..." and "Three match description matches were found for...."

The search scope is optional, and should be one of "base", "onelevel", or
"subtree". If search scope is not provided, the default is "subtree".

The remaining lines of the filter list should contain two or three tokens, a filter
template, a match description and an optional search scope .

The filter template is similar in concept to a printf (3) style format string.
Everything is taken literally except for the character sequences:
%v Substitute the entire value string in place of the %v.

%v$ Substitute the last word in this field.

%vN Substitute word N in this field (where N is a single digit 1-9).
Words are numbered from left to right within the value
starting at 1.

%vM-N Substitute the indicated sequence of words where M and N
are both single digits 1-9.

Last modified 25 May 1998 SunOS 5.7 158

ldapfilter.conf(4) File Formats

%vN- Substitute word N through the last word in value where N
is again a single digit 1-9.

EXAMPLES EXAMPLE 1 The following ldap filter configuration file contains two filter sets,
example1 and example2 onelevel , each of which contains four filter lists.

ldap filter file
#
example1
"=" " " "%v" "arbitrary filter"
"[0-9][0-9--]*" " " "(telephoneNumber=*%v)" "phone number"

"@" " " "(mail=%v)" "email address"

"^.[. _].*" ". _" "(cn=%v1* %v2-)" "first initial"

".*[. _].$" ". _" "(cn=%v1-*)" "last initial"

"[. _]" ". _" "(|(sn=%v1-)(cn=%v1-))" "exact"
"(|(sn~=%v1-)(cn~=%v1-))" "approximate"

".*" ". " "(|(cn=%v1)(sn=%v1)(uid=%v1))" "exact"
"(|(cn~=%v1)(sn~=%v1))" "approximate"

"example2 onelevel"
"^..$" " " "(|(o=%v)(c=%v)(l=%v)(co=%v))" "exact" "onelevel"

"(|(o~=%v)(c~=%v)(l~=%v)(co~=%v))" "approximate"
"onelevel"

" " " " "(|(o=%v)(l=%v)(co=%v)" "exact" "onelevel"
"(|(o~=%v)(l~=%v)(co~=%v)" "approximate" "onelevel"

"." " " "(associatedDomain=%v)" "exact" "onelevel"

".*" " " "(|(o=%v)(l=%v)(co=%v)" "exact" "onelevel"
"(|(o~=%v)(l~=%v)(co~=%v)" "approximate" "onelevel"

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap_getfilter (3N), ldap_ufn (3N), attributes (5)

159 SunOS 5.7 Last modified 25 May 1998

File Formats ldapsearchprefs.conf(4)

NAME ldapsearchprefs.conf – configuration file for LDAP search preference routines

SYNOPSIS /etc/opt/SUNWconn/ldap/current/ldapsearchprefs.conf

DESCRIPTION The ldapsearchprefs.conf file contains information used by LDAP when
searching the directory. Blank lines and lines that start with a hash (’#’)
character are treated as comments and ignored. Non-comment lines contain
one or more tokens. Tokens are separated by white space, and double quotes
can be used to include white space inside a token.

Search preferences are typically used by LDAP-based client programs to
specify what a user may search for, which attributes are searched, and which
options are available to the user.

The first non-commment line specifies the version of the template information
and must contain the token Version followed by an integer version number.
For example:

Version 1

The current version is 1, so the above example is always the correct opening
line.

The remainder of the file consists of one or more search preference
configurations. The first line of a search preference is a human-readable name
for the type of object being searched for, for example People or
Organizations . This name is stored in the so_objtypeprompt member of the
ldap_searchobj structure (see ldap_searchpref (3N)). For example,

People

specifies a label for a search preference designed to find X.500 entries for
people.

The next line specifies a list of options for this search object. The only option
currently allowed is "internal" which means that this search object should not
be presented directly to a user. Options are placed in the so_options member of
the ldap_searchobj structure and can be tested using the
LDAP_IS_SEARCHOBJ_OPTION_SET() macro. Use "" if no special options
are required.

The next line specifes a label to use for "Fewer Choices" searches. "Fewer
Choices" searches are those where the user’s input is fed to the ldap_filter
routines to determine an appropriate filter to use. This contrasts with
explicitly-constructed LDAP filters, or "More Choices" searches, where the user
can explicitly construct an LDAP filter.

For example:

"Search For:"

Last modified 25 May 1998 SunOS 5.7 160

ldapsearchprefs.conf(4) File Formats

can be used by LDAP client programs to label the field into which the user can
type a "Fewer Choices" search.

The next line specifies an LDAP filter prefix to append to all "More Choices"
searched. This is typically used to limit the types of entries returned to those
containing a specific object class. For example:

"(&(objectClass=person)"

would cause only entries containing the object class person to be returned by a
search. Note that parentheses may be unbalanced here, since this is a filter
prefix, not an entire filter.

The next line is an LDAP filter tag which specifies the set of LDAP filters to be
applied for "Fewer Choices" searching. The line

"x500-People"

would tell the client program to use the set of LDAP filters from the ldap filter
configuration file tagged "x500-People".

The next line specifies an LDAP attribute to retrieve to help the user choose
when several entries match the search terms specified. For example:

"title"

specifies that if more than one entry matches the search criteria, the client
program should retrieve the title attribute that and present that to the user
to allow them to select the appropriate entry. The next line specifies a label for
the above attribute, for example,

"Title:"

Note that the values defined so far in the file are defaults, and are intended to
be overridden by the specific search options that follow.

The next line specifies the scope of the LDAP search to be performed.
Acceptable values are subtree, onelevel, and base.

The next section is a list of "More Choices" search options, terminated by a line
containing only the string END. For example:

"Common Name" cn 11111 "" ""
"Surname" sn 11111 "" ""
"Business Phone" "telephoneNumber" 11101 "" ""
END

Each line represents one method of searching. In this example, there are three
ways of searching - by Common Name, by Surname, and by Business Phone
number. The first field is the text which should be displayed to user. The
second field is the attribute which will be searched. The third field is a bitmap
which specifies which of the match types are permitted for this search type. A
"1" value in a given bit position indicates that a particular match type is valid,

161 SunOS 5.7 Last modified 25 May 1998

File Formats ldapsearchprefs.conf(4)

and a "0" indicates that is it not valid. The fourth and fifth fields are,
respectively, the select attribute name and on-screen name for the selected
attribute. These values are intended to override the defaults defined above. If
no specific values are specified, the client software uses the default values
above.

The next section is a list of search match options, terminated by a a line
containing only the string END. Example:

"exactly matches" "(%a=%v))"
"approximately matches" "(%a~=%v))"
"starts with" "(%a=%v*))"
"ends with" "(%a=*%v))"
"contains" "(%a=*%v*))"
END

In this example, there are five ways of refining the search. For each method,
there is an LDAP filter suffix which is appended to the ldap filter.

EXAMPLES EXAMPLE 1 The following example illustrates one possible configuration of search
preferences for "people".

Version number
Version 1
Name for this search object
People
Label to place before text box user types in
"Search For:"
Filter prefix to append to all "More Choices" searches
"(&(objectClass=person)"
Tag to use for "Fewer Choices" searches - from ldapfilter.conf file
"x500-People"
If a search results in > 1 match, retrieve this attribute to help
user distinguish between the entries...
multilineDescription
...and label it with this string:
"Description"
Search scope to use when searching
subtree
Follows a list of "More Choices" search options. Format is:
Label, attribute, select-bitmap, extra attr display name, extra attr ldap name
If last two are null, "Fewer Choices" name/attributes used
"Common Name" cn 11111 "" ""
"Surname" sn 11111 "" ""
"Business Phone" "telephoneNumber" 11101 "" ""
"E-Mail Address" "mail" 11111 "" ""
"Uniqname" "uid" 11111 "" ""
END
Match types
"exactly matches" "(%a=%v))"
"approximately matches" "(%a~=%v))"
"starts with" "(%a=%v*))"
"ends with" "(%a=*%v))"
"contains" "(%a=*%v*))"
END

Last modified 25 May 1998 SunOS 5.7 162

ldapsearchprefs.conf(4) File Formats

In this example, the user may search for People. For "fewer choices" searching,
the tag for the ldapfilter.config (4) file is "x500-People".

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap_searchpref (3N) attributes (5)

163 SunOS 5.7 Last modified 25 May 1998

File Formats ldaptemplates.conf(4)

NAME ldaptemplates.conf – configuration file for LDAP display template routines

SYNOPSIS /etc/opt/SUNWconn/ldap/current/ldaptemplates.conf

DESCRIPTION The ldaptemplates.conf file contains information used by the LDAP
display routines.

Blank lines and lines that start with a hash character (’#’) are treated as
comments and ignored. Non-comment lines contain one or more tokens.
Tokens are separated by white space, and double quotes can be used to
include white space inside a token.

The first non-commment line specifies the version of the template information
and must contain the token Version followed by an integer version number.
For example,

Version 1

The current version is 1, so the above example is always the correct first line.

The remainder of the file consists of one or more display templates. The first
two lines of the display template each contain a single token that specifies
singular and plural names for the template in a user-friendly format. For
example,

"Person"
"People"

specifies appropriate names for a template designed to display person
information.

The next line specifies the name of the icon or similar element that is
associated with this template. For example,

"person icon"

The next line is a blank-separated list of template options. "" can be used if no
options are desired. Available options are: addable (it is appropriate to allow
entries of this type to be added), modrdn (it is appropriate to offer the
modify rdn operation), altview (this template is an alternate view of
another template). For example,

"addable" "modrdn"

The next portion of the template is a list of X.500 object classes that is used to
determine whether the template should be used to display a given entry. The
object class information consists of one or more lines, followed by a
terminating line that contains the single token END. Each line contains one or

Last modified 25 May 1998 SunOS 5.7 164

ldaptemplates.conf(4) File Formats

more object class names, all of which must be present in a directory entry.
Multiple lines can be used to associate more than one set of object classes with
a given template. For example,

emailPerson
orgPerson
END

means that the template is appropriate for display of emailPerson entries or
orgPerson entries.

The next line after the object class list is the name of the attribute to
authenticate as to make changes (use "" if it is appropriate to authenticate as
the entry itself). For example,

"owner"

The next line is the default attribute to use when naming a new entry, for
example,

"cn"

The next line is the distinguished name of the default location under which
new entries are created. For example,

"o=XYZ, c=US"

The next section is a list of rules used to assign default values to new entries.
The list should be terminated with a line that contains the single token END.
Each line in this section should either begin with the token constant and be
followed by the name of the attribute and a constant value to assign, or the
line should begin with addersdn followed by the name of an attribute whose
value will be the DN of the person who has authenticated to add the entry. For
example,

constant associatedDomain XYZ.us
addersdn seeAlso
END

The last portion of the template is a list of items to display. It consists of one or
more lines, followed by a terminating line that contains the single token END.
Each line is must begin with the token samerow or the token item

It is assumed that each item appears on a row by itself unless it was preceded
by a samerow line (in which case it should be displayed on the same line as

165 SunOS 5.7 Last modified 25 May 1998

File Formats ldaptemplates.conf(4)

the previous item, if possible). Lines that begin with samerow should not have
any other tokens on them.

Lines that begin with item must have at least three more tokens on them: an
item type, a label, and an attribute name. Any extra tokens are taken as extra
arguments.

The item type token must be one of the following strings:
cis case-ignore string attributes

mls multiline string attributes

mail RFC-822 conformant mail address attributes

dn distinguished name pointer attributes

bool Boolean attributes

jpeg JPEG photo attributes

jpegbtn a button that will retrieve and show a JPEG photo attribute

fax FAX T.4 format image attributes

faxbtn a button that will retrieve and show a FAX photo attribute

audiobtn audio attributes

time UTC time attributes

date UTC time attributes where only the date portion should be
shown

url labeled Uniform Resource Locator attributes

searchact define an action that will do a directory search for other
entries

linkact define an action which is a link to another display template

protected for an encrypted attribute, with values displayed as asterisks
An example of an item line for the drink attribute (displayed with label "Work
Phone"):

item cis "Work Phone" telephoneNumber

Last modified 25 May 1998 SunOS 5.7 166

ldaptemplates.conf(4) File Formats

EXAMPLES EXAMPLE 1 The following template configuration file contains a templates for
display of people entries.

#
LDAP display templates
#
Version must be 1 for now
#
Version 1
#
Person template
"Person"
"People"

name of the icon that is associated with this template
"person icon"

blank-separated list of template options ("" for none)
"addable"

#
objectclass list
person
END

#
name of attribute to authenticate as ("" means auth as this entry)
""

#
default attribute name to use when forming RDN of a new entry
#
"cn"

#
default location when adding new entries (DN; "" means no default)
"o=XYZ, c=US"

#
rules used to define default values for new entries
END

#
list of items for display
item jpegbtn "View Photo" jpegPhoto "Next Photo"
item audiobtn "Play Sound" audio
item cis "Also Known As" cn
item cis "Title" title
item mls "Work Address" postalAddress
item cis "Work Phone" telephoneNumber
item cis "Fax Number" facsimileTelephoneNumber
item mls "Home Address" homePostalAddress
item cis "Home Phone" homePhone
item cis "User ID" uid
item mail "E-Mail Address" mail
item cis "Description" description
item dn "See Also" seeAlso

167 SunOS 5.7 Last modified 25 May 1998

File Formats ldaptemplates.conf(4)

END

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap_disptmpl (3N) ldap_entry2text (3N) attributes (5)

Last modified 25 May 1998 SunOS 5.7 168

libadm(4) File Formats

NAME libadm – general administrative library

SYNOPSIS cc [flag ...] file ... −ladm [library ...]

DESCRIPTION Functions in this library provide Device management, VTOC handling, regular
expressions and Packaging routines.

The shared object libadm.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

advance asysmem circf

compile devattr devfree

devreserv getdev getdgrp

getvol listdev listdgrp

loc1 loc2 locs

nbra pkgdir pkginfo

pkgnmchk pkgparam read_vtoc

reservdev sed step

sysmem write_vtoc

FILES
/usr/lib/libadm.a archive library

/usr/lib/libadm.so.1 shared object

/usr/lib/sparcv9/libadm.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO pvs (1), read_vtoc (3X), sysmem(3), intro (4), attributes (5), regexp (5)

169 SunOS 5.7 Last modified 4 Aug 1998

Games and Demos libaio(6)

NAME libaio – the asynchronous I/O library

SYNOPSIS cc [flag . . .] file . . . −laio [library . . .]

DESCRIPTION Functions in this library provide routines for asynchronous I/O.

The shared object libaio.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SISCD_2.3 (SPARConly) − The SPARC Compliance Definition, revision
2.3:

aiocancel aioread aiowait

aiowrite

SUNW_1.1 (generic):

aio_close aio_fork aioread64

aiowrite64 assfail close

fork sigaction sigignore

signal sigset

SUNW_1.1 (SPARC) - This interface inherits all definitions from the
generic SUNW_1.1 and the SISCD_2.3.

SUNW_1.1 (i386) - This interface contains all definitions from
SISCD_2.3, and inherits all definitions from the
generic SUNW_1.1.

FILES
/usr/lib/libaio.so.1 shared object

/usr/lib/sparcv9/libaio.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

Last modified 4 Aug 1998 SunOS 5.7 170

libaio(6) Games and Demos

SEE ALSO pvs (1), intro (2), intro (3), aiocancel (3), aioread (3), aiowait (3),
aiowrite (3), intro (4), attributes (5)

171 SunOS 5.7 Last modified 4 Aug 1998

File Formats libbsdmalloc(4)

NAME libbsdmalloc – memory allocator interface library

SYNOPSIS cc [flag . . .] file . . . −lbsdmalloc [library . . .]

#include <stdlib.h>

DESCRIPTION The shared object libbsdmalloc.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

free malloc realloc

FILES
/usr/lib/libbsdmalloc.a archive library

/usr/lib/libbsdmalloc.so.1 shared object

/usr/lib/sparcv9/libbsdmalloc.so.1 64−bit shared object

ATTRIBUTES See attributes (5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT Level Unsafe

SEE ALSO pvs (1), bsdmalloc (3X), attributes (5),

Last modified 4 Aug 1998 SunOS 5.7 172

libbsm(4) File Formats

NAME libbsm – basic security library

SYNOPSIS cc [flag . . .] file . . . −lbsm [library . . .]

DESCRIPTION Functions in this library provide basic security, library object reuse and
auditing.

The shared object libbsm.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

au_close audit auditon

auditsvc au_open au_preselect

au_to_arg au_to_attr au_to_cmd

au_to_data au_to_groups au_to_in_addr

au_to_ipc au_to_iport au_to_me

au_to_newgroups au_to_opaque au_to_path

au_to_process au_to_return au_to_socket

au_to_subject au_to_text au_user_mask

au_write endac endauclass

endauevent endauuser getacdir

getacflg getacmin getacna

getauclassent getauclassent_r getauclassnam

getauclassnam_r getaudit getauditflagsbin

getauditflagschar getauevent getauevent_r

getauevnam getauevnam_r getauevnonam

getauevnum getauevnum_r getauid

getauuserent getauuserent_r getauusernam

getauusernam_r getfauditflags setac

setauclass setauclassfile setaudit

setauevent setaueventfile setauid

setauuser setauuserfile testac

FILES
/usr/lib/libbsm.a archive library

173 SunOS 5.7 Last modified 4 Aug 1998

File Formats libbsm(4)

/usr/lib/libbsm.so.1 shared object

/usr/lib/sparcv9/libbsm.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level See individual man page for each
function.

SEE ALSO pvs (1), intro (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 174

libc(4) File Formats

NAME libc – the C library

SYNOPSIS cc [flag . . .] file . . . −lc [library . . .]

DESCRIPTION Functions in this library provide various facilities defined by System V, ANSI
C, POSIX, and so on. See standards (5). In addition, those facilities previously
defined in the internationalization and the wide-character libraries are now
defined in this library.

The shared object libc.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4). Many
features in this library are implemented upon dynamic linking. Some of these
features are not implemented in the archive version.

Interface names followed by an asterisk (*) do not appear in the 64–bit version
of the library.

INTERFACES
SYSVABI_1.3 (generic) − The System V Application Binary

Interface, Third Edition:

abort abs _access

access _acct acct

_alarm alarm _altzone

asctime __assert atexit

atof atoi atol

bsearch calloc _catclose

catclose _catgets catgets

_catopen catopen _cfgetispeed

cfgetispeed _cfgetospeed cfgetospeed

_cfsetispeed cfsetispeed _cfsetospeed

cfsetospeed _chdir chdir

_chmod chmod _chown

chown _chroot chroot

_cleanup clearerr clock

_close close _closedir

closedir _creat creat

_ctermid ctermid ctime

__ctype _cuserid cuserid

175 SunOS 5.7 Last modified 4 Aug 1998

File Formats libc(4)

_daylight daylight difftime

div _dup dup

_dup2 dup2 _environ

environ _execl execl

_execle execle _execlp

execlp _execv execv

_execve execve _execvp

execvp _exit exit

_fattach fattach _fchdir

fchdir _fchmod fchmod

_fchown fchown fclose

_fcntl fcntl _fdetach

fdetach _fdopen fdopen

feof ferror fflush

fgetc fgetpos fgets

__filbuf _fileno fileno

__flsbuf _fmtmsg fmtmsg

fopen _fork fork

_fpathconf fpathconf fprintf

fputc fputs fread

free freopen frexp

fscanf fseek fsetpos

_fstat fstat _fstatvfs

fstatvfs _fsync fsync

ftell _ftok ftok

fwrite getc getchar

_getcontext getcontext _getcwd

getcwd _getdate getdate

_getdate_err getdate_err _getegid

getegid getenv _geteuid

geteuid _getgid getgid

_getgrgid getgrgid _getgrnam

Last modified 4 Aug 1998 SunOS 5.7 176

libc(4) File Formats

getgrnam _getgroups getgroups

_getlogin getlogin _getmsg

getmsg _getopt getopt

_getpass getpass _getpgid

getpgid _getpgrp getpgrp

_getpid getpid _getpmsg

getpmsg _getppid getppid

_getpwnam getpwnam _getpwuid

getpwuid _getrlimit getrlimit

gets _getsid getsid

_getsubopt getsubopt _gettxt

gettxt _getuid getuid

_getw getw gmtime

_grantpt grantpt _hcreate

hcreate _hdestroy hdestroy

_hsearch hsearch _initgroups

initgroups __iob _ioctl

ioctl isalnum isalpha

_isascii isascii _isastream

isastream _isatty isatty

iscntrl isdigit isgraph

islower _isnan isnan

_isnand isnand isprint

ispunct isspace isupper

isxdigit _kill kill

labs _lchown lchown

ldexp ldiv _lfind

lfind _link link

localeconv localtime _lockf

lockf logb longjmp

_lsearch lsearch _lseek

lseek _lstat lstat

177 SunOS 5.7 Last modified 4 Aug 1998

File Formats libc(4)

_makecontext makecontext malloc

mblen mbstowcs mbtowc

_memccpy memccpy memchr

memcmp _memcntl memcntl

memcpy memmove memset

_mkdir mkdir _mkfifo

mkfifo _mknod mknod

_mktemp mktemp mktime

_mlock mlock _mmap

mmap _modf modf

_monitor monitor _mount

mount _mprotect mprotect

_msgctl msgctl _msgget

msgget _msgrcv msgrcv

_msgsnd msgsnd _msync

msync _munlock munlock

_munmap munmap _nextafter

nextafter _nftw nftw

_nice nice _nl_langinfo

nl_langinfo _numeric _open

open _opendir opendir

optarg opterr optind

optopt _pathconf pathconf

_pause pause _pclose

pclose perror _pipe

pipe _poll poll

_popen popen printf

_profil profil _ptrace

ptrace _ptsname ptsname

putc putchar _putenv

putenv _putmsg putmsg

_putpmsg putpmsg puts

Last modified 4 Aug 1998 SunOS 5.7 178

libc(4) File Formats

_putw putw qsort

raise rand _read

read _readdir readdir

_readlink readlink _readv

readv realloc remove

_rename rename rewind

_rewinddir rewinddir _rmdir

rmdir _scalb scalb

scanf _seekdir seekdir

_semctl semctl _semget

semget _semop semop

setbuf _setcontext setcontext

_setgid setgid _setgroups

setgroups setjmp setlabel

setlocale _setpgid setpgid

_setpgrp setpgrp _setrlimit

setrlimit _setsid setsid

_setuid setuid setvbuf

_shmat shmat _shmctl

shmctl _shmdt shmdt

_shmget shmget _sigaction

sigaction _sigaddset sigaddset

_sigaltstack sigaltstack _sigdelset

sigdelset _sigemptyset sigemptyset

_sigfillset sigfillset _sighold

sighold _sigignore sigignore

_sigismember sigismember _siglongjmp

siglongjmp signal _sigpause

sigpause _sigpending sigpending

_sigprocmask sigprocmask _sigrelse

sigrelse _sigsend sigsend

_sigsendset sigsendset _sigset

179 SunOS 5.7 Last modified 4 Aug 1998

File Formats libc(4)

sigset _sigsetjmp sigsetjmp

_sigsuspend sigsuspend _sleep

sleep sprintf srand

sscanf _stat stat

_statvfs statvfs _stime

stime strcat strchr

strcmp strcoll strcpy

strcspn _strdup strdup

strerror strftime strlen

strncat strncmp strncpy

strpbrk strrchr strspn

strstr strtod strtok

strtol strtoul strxfrm

_swab swab _swapcontext

swapcontext _symlink symlink

_sync sync _sysconf

sysconf system _tcdrain

tcdrain _tcflow tcflow

_tcflush tcflush _tcgetattr

tcgetattr _tcgetpgrp tcgetpgrp

_tcgetsid tcgetsid _tcsendbreak

tcsendbreak _tcsetattr tcsetattr

_tcsetpgrp tcsetpgrp _tdelete

tdelete _tell tell

_telldir telldir _tempnam

tempnam _tfind tfind

_time time _times

times _timezone timezone

tmpfile tmpnam _toascii

toascii _tolower tolower

_toupper toupper _tsearch

tsearch _ttyname ttyname

Last modified 4 Aug 1998 SunOS 5.7 180

libc(4) File Formats

_twalk twalk _tzname

tzname _tzset tzset

_ulimit ulimit _umask

umask _umount umount

_uname uname ungetc

_unlink unlink _unlockpt

unlockpt _utime utime

vfprintf vprintf vsprintf

_wait wait _waitid

waitid _waitpid waitpid

wcstombs wctomb _write

write _writev writev

_xftw

SYSVABI_1.3 (SPARC) − The SPARC Processor Supplement.
This interface contains all of the
generic SYSVABI_1.3, and defines:

_Q_add _Q_cmp _Q_cmpe

_Q_div _Q_dtoq _Q_feq

_Q_fge _Q_fgt _Q_fle

_Q_flt _Q_fne _Q_itoq

_Q_mul _Q_neg _Q_qtod

_Q_qtoi _Q_qtos _Q_qtou

_Q_sqrt _Q_stoq _Q_sub

_Q_utoq .div __dtou

__ftou __huge_val .mul

.rem .stret1 .stret2

.stret4 .stret8 .udiv

.umul .urem

181 SunOS 5.7 Last modified 4 Aug 1998

File Formats libc(4)

SYSVABI_1.3 (i386) − The Intel386 Processor Supplement.
This interface contains all of the
generic SYSVABI_1.3, and defines:

__flt_rounds _fp_hw __fpstart

_fpstart _fxstat __huge_val

_lxstat _nuname nuname

_sbrk sbrk _xmknod

_xstat

SISCD_2.3 (SPARConly) − The SPARC Compliance Definition,
revison 2.3. This interface inherits all
definitions from SYSVABI_1.3, and
defines:

_addseverity addseverity asctime_r

_crypt crypt ctime_r

__div64 __dtoll __dtoull

_encrypt encrypt endgrent

endpwent ___errno errno

fgetgrent fgetgrent_r fgetpwent

fgetpwent_r flockfile __ftoll

__ftoull funlockfile getchar_unlocked

getc_unlocked getgrent getgrent_r

getgrgid_r getgrnam_r _getitimer

getitimer getlogin_r getpwent

getpwent_r getpwnam_r getpwuid_r

_gettimeofday gettimeofday gmtime_r

_iob localtime_r __mul64

putchar_unlocked putc_unlocked rand_r

readdir_r __rem64 _sbrk

sbrk setgrent _setitimer

setitimer _setkey setkey

setpwent strtok_r _sysinfo

Last modified 4 Aug 1998 SunOS 5.7 182

libc(4) File Formats

sysinfo ttyname_r __udiv64

__umul64 __urem64

SUNW_1.1 (generic):

a64l acl

addsev adjtime

altzone ascftime

_assert atoll

bcmp bcopy

brk _bufendtab

__builtin_alloca bzero

cfree cftime

closelog cond_broadcast

cond_destroy cond_init

cond_signal cond_timedwait

cond_wait confstr

csetcol csetlen

ctermid_r _ctype

dbm_close dbm_delete

dbm_fetch dbm_firstkey

dbm_nextkey dbm_open

dbm_store decimal_to_double

decimal_to_extended decimal_to_quadruple

decimal_to_single double_to_decimal

drand48 econvert

ecvt endnetgrent

endspent endusershell

endutent endutxent

erand48 euccol

euclen eucscol

_exithandle exportfs

extended_to_decimal facl

183 SunOS 5.7 Last modified 4 Aug 1998

File Formats libc(4)

fchroot fconvert

fcvt ffs

fgetspent fgetspent_r

_filbuf file_to_decimal

finite _flsbuf

fnmatch fork1

fpclass fpgetmask

fpgetround fpgetsticky

fpsetmask fpsetround

fpsetsticky fstatfs

ftime ftruncate

ftw func_to_decimal

gconvert gcvt

_getdate_err_addr getdents

getdtablesize gethostid

gethostname gethrtime

gethrvtime getmntany

getmntent getnetgrent

getnetgrent_r getpagesize

getpriority getpw

getrusage getspent

getspent_r getspnam

getspnam_r getusershell

getutent getutid

getutline getutmp

getutmpx getutxent

getutxid getutxline

getvfsany getvfsent

getvfsfile getvfsspec

getwd getwidth

glob globfree

gsignal hasmntopt

Last modified 4 Aug 1998 SunOS 5.7 184

libc(4) File Formats

iconv iconv_close

iconv_open index

initstate innetgr

_insque insque

isnanf jrand48

killpg l64a

ladd _lastbuf*

lckpwdf lcong48

ldivide lexp10

lfmt llabs

lldiv llog10

llseek lltostr

lmul lone

lrand48 lshiftl

lsub lten

_lwp_cond_broadcast _lwp_cond_signal

_lwp_cond_timedwait _lwp_cond_wait

_lwp_continue _lwp_create

_lwp_exit _lwp_getprivate

_lwp_info _lwp_kill

_lwp_makecontext _lwp_mutex_lock

_lwp_mutex_trylock _lwp_mutex_unlock

_lwp_self _lwp_sema_init

_lwp_sema_post _lwp_sema_wait

_lwp_setprivate _lwp_suspend

_lwp_wait lzero

madvise __major

__makedev makeutx

memalign mincore

__minor mlockall

modctl modff

modutx mrand48

185 SunOS 5.7 Last modified 4 Aug 1998

File Formats libc(4)

munlockall mutex_destroy

_mutex_held mutex_init

_mutex_lock mutex_lock

mutex_trylock mutex_unlock

nfs_getfh nrand48

_nsc_trydoorcall _nss_XbyY_buf_alloc

_nss_XbyY_buf_free nss_default_finders

nss_delete nss_endent

nss_getent _nss_netdb_aliases

nss_search nss_setent

__nsw_extended_action __nsw_freeconfig

__nsw_getconfig openlog

pfmt plock

p_online __posix_asctime_r

__posix_ctime_r __posix_getgrgid_r

__posix_getgrnam_r __posix_getlogin_r

__posix_getpwnam_r __posix_getpwuid_r

__posix_readdir_r* __posix_sigwait

__posix_ttyname_r pread

__priocntl __priocntlset

processor_bind processor_info

psiginfo psignal

pthread_condattr_destroy pthread_condattr_getpshared

pthread_condattr_init pthread_condattr_setpshared

pthread_cond_broadcast pthread_cond_destroy

pthread_cond_init pthread_cond_signal

pthread_cond_timedwait pthread_cond_wait

pthread_mutexattr_destroy pthread_mutexattr_
getprioceiling

pthread_mutexattr_getprotocol pthread_mutexattr_getpshared

pthread_mutexattr_init pthread_mutexattr_
setprioceiling

pthread_mutexattr_setprotocol pthread_mutexattr_setpshared

Last modified 4 Aug 1998 SunOS 5.7 186

libc(4) File Formats

pthread_mutex_destroy pthread_mutex_getprioceiling

pthread_mutex_init pthread_mutex_lock

pthread_mutex_setprioceiling pthread_mutex_trylock

pthread_mutex_unlock putpwent

putspent pututline

pututxline pwrite

qeconvert qecvt

qfconvert qfcvt

qgconvert qgcvt

quadruple_to_decimal random

realpath reboot

re_comp re_exec

regcomp regerror

regexec regfree

_remque remque

rindex rwlock_init

rw_rdlock _rw_read_held

rw_read_held rw_tryrdlock

rw_trywrlock rw_unlock

_rw_write_held rw_write_held

rw_wrlock seconvert

seed48 select

_sema_held sema_held

sema_init sema_post

sema_trywait sema_wait

setbuffer setcat

setegid seteuid

sethostname setlinebuf

setlogmask setnetgrent

setpriority setregid

setreuid setspent

setstate settimeofday

187 SunOS 5.7 Last modified 4 Aug 1998

File Formats libc(4)

setusershell setutent

setutxent sfconvert

sgconvert _sibuf

sig2str sigfpe

sigwait single_to_decimal

_sobuf srand48

srandom ssignal

statfs str2sig

strcasecmp strfmon

string_to_decimal strncasecmp

strptime strsignal

strtoll strtoull

swapctl sync_instruction_memory

_sys_buslist _syscall

syscall _sys_cldlist

_sys_fpelist sysfs

_sys_illlist* _syslog

syslog _sys_nsig*

_sys_segvlist _sys_siginfolistp

_sys_siglist _sys_siglistn

_sys_siglistp _sys_traplist

thr_continue thr_create

thr_exit thr_getconcurrency

thr_getprio thr_getspecific

thr_join thr_keycreate

thr_kill thr_min_stack

thr_self thr_setconcurrency

thr_setprio thr_setspecific

thr_sigsetmask thr_stksegment

thr_suspend thr_yield

tmpnam_r truncate

ttyslot uadmin

Last modified 4 Aug 1998 SunOS 5.7 188

libc(4) File Formats

ualarm ulckpwdf

ulltostr unordered

updwtmp updwtmpx

usleep ustat

utimes utmpname

utmpxname valloc

vfork vhangup

vlfmt vpfmt

vsyslog wait3

wait4 wordexp

wordfree __xpg4

yield

SUNW_1.1 (SPARC) − This interface inherits all definitions
from the generic SUNW_1.1 and the
SISCD_2.3, and defines:

__flt_rounds

SUNW_1.1 (i386) − This interface contains all definitions
from SISCD_2.3, inherits all
definitions from the generic
SUNW_1.1 and the SYSVABI_1.3, and
defines:

_thr_errno_addr

SUNW_1.2 − SUNW_1.17 (generic) − These interfaces inherit all
definitions from the generic
SUNW_1.1, and define:

basename bindtextdomain

bsd_signal _creat64*

creat64* dbm_clearerr

dbm_error dcgettext

dgettext directio

dirname fgetpos64*

fgetwc fgetws

189 SunOS 5.7 Last modified 4 Aug 1998

File Formats libc(4)

fopen64* fputwc

fputws freopen64*

fseeko fseeko64*

fsetpos64* _fstat64*

fstat64* _fstatvfs64*

fstatvfs64* ftello

ftello64* _ftruncate64*

ftruncate64* _ftw64*

ftw64* _getdents64*

getdents64* _getexecname

getexecname getpassphrase

_getrlimit64* getrlimit64*

gettext getwc

getwchar getws

isenglish isideogram

isnumber isphonogram

isspecial iswalnum

iswalpha iswcntrl

iswctype iswdigit

iswgraph iswlower

iswprint iswpunct

iswspace iswupper

iswxdigit __loc1

_lockf64* lockf64*

_longjmp _lseek64*

lseek64* _lstat64*

lstat64* _lwp_sema_trywait

_mkstemp64* mkstemp64*

_mmap64* mmap64*

_nftw64* nftw64*

_ntp_adjtime ntp_adjtime

_ntp_gettime ntp_gettime

Last modified 4 Aug 1998 SunOS 5.7 190

libc(4) File Formats

_open64* open64*

_pread64* pread64*

pset_assign pset_bind

pset_create pset_destroy

pset_info pthread_atfork

pthread_attr_destroy pthread_attr_getdetachstate

pthread_attr_getinheritsched pthread_attr_getschedparam

pthread_attr_getschedpolicy pthread_attr_getscope

pthread_attr_getstackaddr pthread_attr_getstacksize

pthread_attr_init pthread_attr_setdetachstate

pthread_attr_setinheritsched pthread_attr_setschedparam

pthread_attr_setschedpolicy pthread_attr_setscope

pthread_attr_setstackaddr pthread_attr_setstacksize

pthread_cancel __pthread_cleanup_pop

__pthread_cleanup_push pthread_create

pthread_detach pthread_equal

pthread_exit pthread_getschedparam

pthread_getspecific pthread_join

pthread_key_create pthread_key_delete

pthread_kill pthread_once

pthread_self pthread_setcancelstate

pthread_setcanceltype pthread_setschedparam

pthread_setspecific pthread_sigmask

pthread_testcancel putwc

putwchar putws

_pwrite64* pwrite64*

_readdir64* readdir64*

_readdir64_r* readdir64_r*

regcmp regex

_resolvepath resolvepath

_rwlock_destroy rwlock_destroy

_sema_destroy sema_destroy

191 SunOS 5.7 Last modified 4 Aug 1998

File Formats libc(4)

_setjmp _setrlimit64*

setrlimit64* _s_fcntl*

s_fcntl* siginterrupt

sigstack s_ioctl*

snprintf _stat64*

stat64* _statvfs64*

statvfs64* strtows

textdomain tmpfile64*

towctrans towlower

towupper _truncate64*

truncate64* ungetwc

vsnprintf watoll

wcscat wcschr

wcscmp wcscoll

wcscpy wcscspn

wcsftime wcslen

wcsncat wcsncmp

wcsncpy wcspbrk

wcsrchr wcsspn

wcstod wcstok

wcstol wcstoul

wcswcs wcswidth

wcsxfrm wctrans

wctype wcwidth

wscasecmp wscat

wschr wscmp

wscol wscoll

wscpy wscspn

wsdup wslen

wsncasecmp wsncat

wsncmp wsncpy

wspbrk wsprintf

Last modified 4 Aug 1998 SunOS 5.7 192

libc(4) File Formats

wsrchr wsscanf

wsspn wstod

wstok wstol

wstoll wstostr

wsxfrm _xftw64*

__xpg4_putmsg __xpg4_putpmsg

SUNW_1.18 (generic) − These interfaces inherit all
definitions from the generic
SUNW_1.1, and define:

btowc __fbufsize

__flbf _flushbf

__fpending __fpurge

__freadable __freading

__fwritable __fwriting

fwide fwprintf

fwscanf getloadavg

mbsinit mbsrtowcs

mbrlen mbrtowc

pcsample pthread_attr_getguardsize

pthread_attr_setguardsize pthread_getconcurrency

pthread_setconcurrency pthread_mutexattr_gettype

pthread_mutexattr_settype pthread_rwlock_destroy

pthread_rwlock_init pthread_rwlock_rdlock

pthread_rwlock_tryrdlock pthread_rwlock_wrlock

pthread_rwlock_trytrywrlock pthread_rwlock_unlock

pthread_rwlockattr_destroy pthread_rwlockattr_init

pthread_rwlockattr_getpshared pthread_rwlockattr_setpshared

swprintf swscanf

vswprintf vswprintf

vwprintf wcrtomb

wcsrtombs wcsstr

wctob wmemchr

193 SunOS 5.7 Last modified 4 Aug 1998

File Formats libc(4)

wmemcmp wmemcpy

wmemmove wmemset

wprintf wscanf

FILES
/usr/lib/libc.a archive library

/usr/lib/libc.so.1 shared object

/usr/lib/sparcv9/libc.so.1 64–bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO pvs (1), intro (2), intro (3), intro (4), attributes (5), lf64 (5),
standards (5)

Last modified 4 Aug 1998 SunOS 5.7 194

libcfgadm(4) File Formats

NAME libcfgadm – library of configuration adminstartion interfaces

SYNOPSIS cc [flag . . .] file . . . −lcfgadm −ldevinfo −ldl [library . . .]

#include <config_admin.h>

DESCRIPTION Interfaces in this library provide services for configuration administration.

The shared object libcfgadm.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

config_ap_id_cmp config_change_state

config_help config_list

config_private_func config_stat

config_strerror config_test

config_unload_libs

FILES
/usr/lib/libcfgadm.so.1 shared object

/usr/lib/sparcv9/libcfgadm.so.1 64–bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT Level Mt-Safe

SEE ALSO pvs (1), cfgadm (1M), config_admin (3x), intro (4) attributes (5)

195 SunOS 5.7 Last modified 4 Aug 1998

File Formats libci(4)

NAME libci – Sun Solstice Enterprise Agent Component Interface Library

SYNOPSIS cc [flag . . .] file . . . −lci −ldmi −lnsl −lrwtool [library . .]

DESCRIPTION The libci library provides Component Interface API functions.

INTERFACES DmiRegisterCi DmiUnRegisterCi DmiOriginateEvent

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO libdmi (4), attributes (5)

Last modified 17 Dec 1996 SunOS 5.7 196

libcmd(4) File Formats

NAME libcmd – commands library

SYNOPSIS cc [flag . . .] file . . −lcmd [library . . .]

DESCRIPTION Functions in this library include searching default files, obtaining the terminal
type, performing checksums, and storage and reading of the magic file.

The shared object libcmd.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

ckmtab defcntl defopen

defread getterm mkmtab

prtmtab sumepi sumout

sumpro sumupd

FILES
/usr/lib/libcmd.a archive library

/usr/lib/libcmd.so.1 shared object

/usr/lib/sparcv9/libcmd.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level MT-Safe

SEE ALSO intro (4), magic (4), attributes (5)

197 SunOS 5.7 Last modified 4 Aug 1998

File Formats libcrypt(4)

NAME libcrypt – encryption/decryption library

SYNOPSIS cc [flag . . .] file . . . −lcrypt [library . . .]

DESCRIPTION Functions in this library provide encoding and decoding handling routines.

The shared object libcrypt.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

crypt encrypt setkey

FILES
/usr/lib/libcrypt.a archive library

/usr/lib/libcrypt.so.1 shared object

/usr/lib/sparcv9/libcrypt.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO crypt (1), encrypt (3C), setkey (3C), intro (4)

Last modified 3 Oct 1997 SunOS 5.7 198

libcurses(4) File Formats

NAME libcurses, libtermcap, libtermlib – screen handling and optimization library

SYNOPSIS cc [flag . . .] file . . . −lcurses [library . . .]

DESCRIPTION Functions in this library provide a terminal-independent method of updating
character screens with reasonable optimization.

The shared objects libcurses.so.1 , libtermcap.so.1 , and
libtermlib.so.1 provide the public interfaces defined below.

For additional information on shared object interfaces, see intro (4) .

INTERFACES SUNW_1.1 (generic):

baudrate can_change_color cbreak

color_content copywin crmode

curserr curs_set def_prog_mode

def_shell_mode delay_output delkeymap

delscreen delwin derwin

doupdate dupwin endwin

erasechar filter flushinp

getbmap getmouse _getsyx

getwin has_colors has_ic

has_il idlok immedok

init_color init_pair initscr

isendwin keyname keypad

killchar longname m_addch

m_addstr map_button m_clear

m_erase _meta m_initscr

m_move m_newterm mouse_off

mouse_on mouse_set m_refresh

mvcur mvderwin mvprintw

mvscanw mvwin mvwprintw

mvwscanw napms newkey

newpad newscreen newterm

newwin nocbreak nocrmode

noraw pair_content pechochar

199 SunOS 5.7 Last modified 20 Jan 1998

File Formats libcurses(4)

pechowchar pnoutrefresh prefresh

printw putwin raw

request_mouse_pos reset_prog_mode reset_shell_mode

resetty _ring ripoffline

savetty scanw scr_dump

setcurscreen _setecho _setnonl

_setqiflush setsyx setupterm

slk_attroff slk_attron slk_attrset

slk_clear slk_label slk_noutrefresh

slk_refresh slk_restore slk_set

slk_start slk_touch start_color

termattrs termname traceoff

traceon typeahead unctrl

ungetch ungetwch vidupdate

vwprintw vwscanw waddch

waddchnstr waddnstr waddnwstr

waddwch waddwchnstr wattroff

wattron wattrset wbkgd

wborder wclrtobot wclrtoeol

wcursyncup wdelch wechochar

wechowchar wgetch wgetnstr

wgetnwstr wgetstr wgetwch

wgetwstr whline winchnstr

winchstr winnstr winnwstr

winsch winsdelln winsnstr

winsnwstr winstr winswch

winwch winwchnstr winwstr

wmouse_position wmove wnoutrefresh

wprintw wredrawln wrefresh

wscanw wscrl wsetscrreg

Last modified 20 Jan 1998 SunOS 5.7 200

libcurses(4) File Formats

wstandend wstandout wsyncdown

wsyncup wtouchln wvline

FILES
/usr/lib/libcurses.a archive library

/usr/lib/libcurses.so.1 shared object

/usr/lib/sparcv9/libcurses.so.1 64-bit shared object

/usr/lib/libtermcap.a archive library

/usr/lib/libtermcap.so.1 shared object

/usr/lib/sparcv9/libtermcap.so.1 64-bit shared object

/usr/lib/libtermlib.a archive library

/usr/lib/libtermlib.so.1 shared object

/usr/lib/sparcv9/libtermlib.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO curses (3X) , intro (4) , attributes (5)

201 SunOS 5.7 Last modified 20 Jan 1998

File Formats libdevid(4)

NAME libdevid – device id library

SYNOPSIS cc [flag . . .] file . . . −ldevid [library . . .]

#include <devid.h>

DESCRIPTION Functions in this library provide unique device ids for identifying a device,
independent of the device’s name or device number.

The shared object libdevid.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (global):

devid_compare devid_deviceid_to_nmlist

devid_free devid_free_nmlist

devid_get devid_get_minor_name

devid_sizeof

FILES
/usr/lib/libdevid.so.1 The location of the device id library

interfaces.

/usr/lib/libdevid.so A symlink to
/usr/lib/libdevid.so.1 .

/usr/lib/sparcv9/libdevid.so.1 64-bit shared object.

ATTRIBUTES See attributes (5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT Level MT−Safe

SEE ALSO pvs (1), intro (4), attributes (5)

Last modified 16 Oct 1997 SunOS 5.7 202

libdevinfo(4) File Formats

NAME libdevinfo – the device information library

SYNOPSIS cc [flag ...]file ... −ldevinfo [library...]

DESCRIPTION The functions in this library are used to access information on device
configuration.

The shared object libdevinfo.so.1 provides the public interfaces defined
below. For additional information on shared object interfaces, see intro(4)

INTERFACES SUNW_1.1 (evolving):

di_binding_name di_bus_addr

di_child_node di_compatible_names

di_devfs_path di_devfs_path_free

di_devid di_driver_name

di_driver_ops di_drv_first_node

di_drv_next_node di_fini

di_init di_instance

di_minor_devt di_minor_name

di_minor_next di_minor_nodetype

di_minor_spectype di_node_name

di_nodeid di_parent_node

di_prom_fini di_prom_init

di_prom_prop_data di_prom_prop_lookup_bytes

di_prom_prop_lookup_ints di_prom_prop_lookup_strings

di_prom_prop_name di_prom_prop_next

di_prop_bytes di_prop_devt

di_prop_ints di_prop_lookup_bytes

di_prop_lookup_ints di_prop_lookup_strings

di_prop_name di_prop_next

di_prop_type di_prop_strings

di_sibling_node di_walk_minor

di_walk_node

FILES
usr/lib/libdevinfo.a archive library

203 SunOS 5.7 Last modified 12 Jan 1998

File Formats libdevinfo(4)

/usr/lib/libdevinfo.so.1 shared object

/usr/lib/sparcv9/libdevinfo.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWstatl (32-bit)

SUNWcslx (64-bit)

MT Level Safe

Interface Stability Evolving

SEE ALSO pvs (1), libdevinfo (3), intro (4), attributes (5)

Writing Device Drivers

Last modified 12 Jan 1998 SunOS 5.7 204

libdl(4) File Formats

NAME libdl – the dynamic linking interface library

SYNOPSIS cc [flag . . .] file . . . −ldl [library . . .]

DESCRIPTION Functions in this library provide direct access to the dynamic linking facilities.
This library is implemented as a filter on the runtime linker (see ld.so.1 (1)).

The shared object libdl.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SISCD_2.3 (SPARConly) − The SPARC Compliance Definition, revision
2.3:

dlclose dlerror dlopen dlsym

SUNW_1.1 (generic) −

dladdr

SUNW_1.2 (generic) − This interface inherits all definitions
from SUNW_1.1 and defines:

dldump

SUNW_1.3 (generic) − This interface inherits all definitions
from SUNW_1.2 and defines:

dlinfo dlmopen

SUNW_1.1 (SPARC) − This interface inherits all definitions
from SISCD_2.3.

SUNW_1.1 (i386) − This interface contains all SISCD_2.3
definitions.

FILES
/usr/lib/libdl.so.1 shared object

/etc/lib/libdl.so.1 shared object (copy)

/usr/lib/sparcv9/libdl.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

205 SunOS 5.7 Last modified 16 Oct 1997

File Formats libdl(4)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT Level Safe

SEE ALSO ld.so.1 (1), pvs (1), intro (4), attributes (5)

Last modified 16 Oct 1997 SunOS 5.7 206

libdmi(4) File Formats

NAME libdmi – Sun Solstice Enterprise Agent DMI Library

DESCRIPTION The libdmi library is a Solstice Enterprise Agent DMI generic library. It
supports the DMI service provider, management application, and component
instrumentation with data encoding, RPC communication, and other
functionalities. This library is linked with management application and
component instrumentation programs.

SEE ALSO libci (4), libdmimi (4)

207 SunOS 5.7 Last modified 17 Dec 1996

File Formats libdmimi(4)

NAME libdmimi – Sun Solstice Enterprise Agent Management Interface Library

SYNOPSIS cc [flag . . .] file . . . −ldmimi −ldmi −lnsl −lrwtool [library . .]

DESCRIPTION The libdmimi library provides Management Interface API functions.

INTERFACES Initialization functions:

DmiGetConfig DmiGetVersion DmiRegister

DmiSetConfig DmiUnregister

Listing functions:

DmiListAttributes DmiListClassNames DmiListComponents

DmiListComponentsByClass DmiListGroups DmiListLanguages

Operation functions:

DmiAddRow DmiDeleteRow DmiGetAttributes

DmiGetMultiple DmiSetAttributes DmiSetMultiple

Data administration functions:

DmiAddComponent DmiAddGroup DmiAddLanguage

DmiDeleteComponent DmiDeleteGroup DmiDeleteLanguage

FILES
/usr/lib/libdmimi.so.1 shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsadmi

MT-Level Unsafe

SEE ALSO libdmi (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 208

libelf(4) File Formats

NAME libelf – ELF access library

SYNOPSIS cc [flag . . .] file . . . −lelf [library . . .]

#include <libelf.h>

DESCRIPTION Functions in this library let a program manipulate ELF (Executable and
Linking Format) object files, archive files, and archive members. The header
provides type and function declarations for all library services.

The shared object libelf.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

elf32_fsize elf32_getehdr elf32_getphdr

elf32_getshdr elf32_newehdr elf32_newphdr

elf32_xlatetof elf32_xlatetom elf_begin

elf_cntl elf_end elf_errmsg

elf_errno elf_fill elf_flagdata

elf_flagehdr elf_flagelf elf_flagphdr

elf_flagscn elf_flagshdr elf_getarhdr

elf_getarsym elf_getbase elf_getdata

elf_getident elf_getscn elf_hash

elf_kind elf_memory elf_ndxscn

elf_newdata elf_newscn elf_next

elf_nextscn elf_rand elf_rawdata

elf_rawfile elf_strptr elf_update

elf_version nlist

SUNW_1.2 (generic):

elf64_fsize elf64_getehdr elf64_getphdr

elf64_getshdr elf64_newehdr elf64_newphdr

elf64_xlatetof elf64_xlatetom

FILES
/usr/lib/libelf.a archive library

209 SunOS 5.7 Last modified 16 Oct 1997

File Formats libelf(4)

/usr/lib/libelf.so.1 shared object

/usr/lib/sparcv9/libelf.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO pvs (1), elf (3E), intro (4), attributes (5)

Last modified 16 Oct 1997 SunOS 5.7 210

libform(4) File Formats

NAME libform – forms library

SYNOPSIS cc [flag . . .] file . . . −lform [library . . .]

DESCRIPTION Functions in this library provide forms using libcurses (4) routines.

The shared object libform.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

current_field data_ahead data_behind

dup_field dynamic_field_info field_arg

field_back field_buffer field_count

field_fore field_index field_info

field_init field_just field_opts

field_opts_off field_opts_on field_pad

field_status field_term field_type

field_userptr form_driver form_fields

form_init form_opts form_opts_off

form_opts_on form_page form_sub

form_term form_userptr form_win

free_field free_fieldtype free_form

link_field link_fieldtype move_field

new_field new_fieldtype new_form

new_page pos_form_cursor post_form

scale_form set_current_field set_field_back

set_field_buffer set_field_fore set_field_init

set_field_just set_field_opts set_field_pad

set_field_status set_field_term set_field_type

set_fieldtype_arg set_fieldtype_choice set_field_userptr

set_form_fields set_form_init set_form_opts

set_form_page set_form_sub set_form_term

set_form_userptr set_form_win set_max_field

set_new_page unpost_form

211 SunOS 5.7 Last modified 4 Aug 1998

File Formats libform(4)

FILES
/usr/lib/libform.a archive library

/usr/lib/libform.so.1 shared object

/usr/lib/sparcv9/libform.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO intro (4), libcurses (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 212

libgen(4) File Formats

NAME libgen – string pattern-matching library

SYNOPSIS cc [flag . . .] file . . . −lgen [library . . .]

DESCRIPTION Functions in this library provide routines for string pattern-matching and
pathname manipulation.

The shared object libgen.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

advance bgets ___braelist

braelist ___braslist braslist

bufsplit compile copylist

copylist64 eaccess gmatch

isencrypt ___loc1 loc1

___loc2 loc2 ___locs

locs mkdirp ___nbra

nbra p2close p2open

pathfind ___regerrno regerrno

___reglength reglength rmdirp

step strcadd strccpy

streadd strecpy strfind

strrspn strtrns

FILES
/usr/lib/libgen.a archive library

/usr/lib/libgen.so.1 shared object

/usr/lib/sparcv9/libgen.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

213 SunOS 5.7 Last modified 4 Aug 1998

File Formats libgen(4)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO intro (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 214

libintl(4) File Formats

NAME libintl – internationalization library

SYNOPSIS cc [flag . . .] file . . −lintl [library . . .]

#include <libintl.h>

#include <locale.h> /* needed for dcgettext() only */

DESCRIPTION Historically, functions in this library provided wide character translations. This
functionality now resides in libc (4).

This library is maintained to provide backward compatibility for both runtime
and compilation environments. The shared object version is implemented as a
filter on libintl.so.1 , and the archive version is implemented as a null
archive. New application development need not reference either version of
libintl .

The shared object libintl.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

bindtextdomain dcgettext dgettext

gettext textdomain

FILES
/usr/lib/libintl.a a link to /usr/lib/null.a

/usr/lib/libintl.so.1 a filter on libc.so.1

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

/usr/lib/libintl.so.1TT ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Safe with exceptions

SEE ALSO pvs (1), gettext (3C), intro (4), libc (4), attributes (5)

215 SunOS 5.7 Last modified 4 Aug 1998

File Formats libkrb(4)

NAME libkrb – Kerberos library

SYNOPSIS cc [flag . . .] file . . . −lkrb [library . . .]

#include <kerberos/krb.h>

#include <netinet/in.h>

DESCRIPTION Functions in this library provide Kerberos utility routines.

The shared object libkrb.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

ErrorMsg LineNbr authkerb_create

authkerb_getucred authkerb_seccreate create_auth_reply

error_table_name _et_list kerb_error

kerb_get_session_
cred

kerb_get_session_key klog

_kmsgout krbONE krb_err_txt

krb_get_admhst krb_get_cred krb_get_default_
realm

krb_get_krbhst krb_get_lrealm krb_get_phost

krb_kntoln krb_mk_err krb_mk_req

krb_mk_safe krb_net_read krb_net_write

krb_rd_err krb_rd_req krb_rd_safe

krb_realmofhost krb_recvauth krb_sendauth

krb_set_key krb_set_tkt_string log

pkt_cipher _svcauth_kerb svc_kerb_reg

tkt_string xdr_authkerb_cred xdr_authkerb_verf

FILES
/usr/lib/libkrb.a archive library

/usr/lib/libkrb.so.1 shared object

/usr/lib/sparcv9/libkrb.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 4 Aug 1998 SunOS 5.7 216

libkrb(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO pvs (1), kerberos (3N), intro (4), attributes (5)

217 SunOS 5.7 Last modified 4 Aug 1998

File Formats libkstat(4)

NAME libkstat – kernel statistics library

SYNOPSIS cc [flag . . .] file . . . −lkstat [library . . .]

#include <kstat.h>

DESCRIPTION Functions in this library provide a general-purpose mechanism for providing
kernel statistics to users.

The shared object libkstat.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

kstat_chain_update kstat_close kstat_data_lookup

kstat_lookup kstat_open kstat_read

kstat_write

FILES
/usr/lib/libkstat.so.1 shared object

/usr/lib/sparcv9/libkstat.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO pvs (1), kstat (3K), intro (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 218

libkvm(4) File Formats

NAME libkvm – Kernel Virtual Memory access library

SYNOPSIS cc [flag . . .] file . . . −lkvm [library . . .]

#include <kvm.h>

DESCRIPTION Functions in this library provide application access to kernel symbols,
addresses and values. The individual routines are documented in Section 3K of
the reference manuals.

All of the libkvm routines are UNCOMMITTED. The UNCOMMITTED
classification is due to the fact that there is almost nothing which can be put as
a symbol in a namelist which has release-to-release stability. The syntax of
these routines is historically stable release-to-release, but being
UNCOMMITTED, the door is always open for change.

The shared object libkvm.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

kvm_close kvm_getcmd kvm_getproc

kvm_getu kvm_kread kvm_kwrite

kvm_nextproc kvm_nlist kvm_open

kvm_read kvm_setproc kvm_uread

kvm_uwrite kvm_write

FILES
/usr/lib/libkvm.so.1 shared object

/usr/lib/sparcv9/libkvm.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

/usr/lib/libkvm.so.1 ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcsl x(64-bit)

MT-Level Unsafe

SEE ALSO pvs (1), intro (4), attributes (5)

219 SunOS 5.7 Last modified 4 Aug 1998

File Formats libl(4)

NAME libl – user interfaces to lex library

SYNOPSIS cc [flag . . .] file . . −ll [library . . .]

DESCRIPTION Functions in this library provide user interfaces to the lex (1) library.

The shared object libl.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

allprint allprint_w sprint

sprint_w yyless yyless_e

yyless_w yyracc yyreject

yyreject_e yyreject_w yywrap

FILES
/usr/lib/libl.a archive library

/usr/lib/libl.so.1 shared object

/usr/lib/sparcv9/libl.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO lex (1), intro (4), attributes (5)

Last modified 4 Aug1998 SunOS 5.7 220

libmalloc(4) File Formats

NAME libmalloc – memory allocation library

SYNOPSIS cc [flag . . .] file . . . −lmalloc [library . . .]

DESCRIPTION Functions in this library provide routines for memory allocation.

The shared object libmalloc.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

calloc _cfree cfree

free _mallinfo mallinfo

malloc _mallopt mallopt

realloc

FILES
/usr/lib/libmalloc.a archive library

/usr/lib/libmalloc.so.1 shared object

/usr/lib/sparcv9/libmalloc.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO intro (4), attributes (5)

221 SunOS 5.7 Last modified 4 Aug1998

File Formats libmapmalloc(4)

NAME libmapmalloc – an alternative memory allocator library

SYNOPSIS cc [flag . . .] file . . . −lmapmalloc [library . . .]

#include <stdlib.h>

DESCRIPTION Functions in this library provide a collection of malloc routines that use
mmap(2) instead of sbrk (2) for acquiring heap space.

The shared object libmapmalloc.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

calloc cfree free

mallinfo malloc mallopt

memalign realloc valloc

FILES
/usr/lib/libmapmalloc.a archive library

/usr/lib/libmapmalloc.so.1 shared object

/usr/lib/sparcv9/libmapmalloc.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO pvs (1), mmap(2), sbrk (2), malloc (3C), malloc (3X), mapmalloc (3X),
intro (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 222

libmenu(4) File Formats

NAME libmenu – menus library

SYNOPSIS cc [flag . . .] file . . . −lmenu [library . . .]

DESCRIPTION Functions in this library provide menus using libcurses (4) routines.

The shared object libmenu.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

current_item free_item free_menu

item_count item_description item_index

item_init item_name item_opts

item_opts_off item_opts_on item_term

item_userptr item_value item_visible

menu_back menu_driver menu_fore

menu_format menu_grey menu_init

menu_items menu_mark menu_opts

menu_opts_off menu_opts_on menu_pad

menu_pattern menu_sub menu_term

menu_userptr menu_win new_item

new_menu pos_menu_cursor post_menu

scale_menu set_current_item set_item_init

set_item_opts set_item_term set_item_userptr

set_item_value set_menu_back set_menu_fore

set_menu_format set_menu_grey set_menu_init

set_menu_items set_menu_mark set_menu_opts

set_menu_pad set_menu_pattern set_menu_sub

set_menu_term set_menu_userptr set_menu_win

set_top_row top_row unpost_menu

FILES
/usr/lib/libmenu.a archive library

/usr/lib/libmenu.so.1 shared object

223 SunOS 5.7 Last modified 4 Aug1998

File Formats libmenu(4)

/usr/lib/sparcv9/libmenu.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO intro (4), libcurses (4), attributes (5)

Last modified 4 Aug1998 SunOS 5.7 224

libmp(4) File Formats

NAME libmp – multiple precision library

SYNOPSIS cc [flag . . .] file . . . −lmp [library . . .]

#include <mp.h>

DESCRIPTION Functions in this library provide various multiple precision routines.

The shared object libmp.so.2 provides the public interfaces defined below.
See INTERFACES.

The shared object libmp.so.1() is available for backwards compatibility
purposes and provides the older versions of these interfaces without the mp_
prepended to them.

Care should be taken in using the static version of this library, libmp.a(),
because it contains both the current and old interfaces.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

mp_gcd mp_itom mp_madd

mp_mcmp mp_mdiv mp_mfree

mp_min mp_mout mp_msqrt

mp_msub mp_mtox mp_mult

mp_pow mp_rpow mp_sdiv

mp_xtom

FILES
/usr/lib/libmp.a archive library

/usr/lib/libmp.so.1() shared object file available for
backwards compatibility

/usr/lib/libmp.so.2 shared object file

/usr/lib/sparcv9/libmp.so.2 64-bit shared object file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

225 SunOS 5.7 Last modified 4 aug 1998

File Formats libmp(4)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO pvs (1), exp (3M), mp(3M), intro (4), attributes (5)

Last modified 4 aug 1998 SunOS 5.7 226

libmtmalloc(4) File Formats

NAME libmtmalloc – the multi-threaded memory allocator library

SYNOPSIS cc [flag . . .] file . . . −lmtmalloc [library . . .]

#include <mtmalloc.h>

DESCRIPTION Functions in this library provide a collection of malloc routines that provide
concurrent access to heap space.

The shared object libmtmalloc.so.1() provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

calloc free

malloc mallocctl

realloc

FILES
/usr/lib/libmtmalloc.so.1 shared object

/usr/lib/sparcv9/libmtmalloc.so.1 64–bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO pvs (1), sbrk (2), malloc (3C), malloc (3X), mapmalloc (3X),
mtmalloc (3T), intro (4), attributes (5)

227 SunOS 5.7 Last modified 4 Aug1998

File Formats libnisdb(4)

NAME libnisdb – NIS+ Database access library

SYNOPSIS cc [flag . . .] file . . . −lnisdb −lnsl [library . . .]

#include <rpcsvc/nis.h>

#include <rpcsvc/nis_db.h>

DESCRIPTION Functions in this library describe the interface between the NIS+ server and
the underlying database.

The shared object libnisdb.so.2() provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_2.1 (generic):

db_create_table db_destroy_table db_first_entry

db_initialize db_list_entries db_massage_dict

db_next_entry db_remove_entry db_reset_next_entry

db_standby db_table_exists db_unload_table

FILES
/usr/lib/libnisdb.a archive library

/usr/lib/libnisdb.so.2 shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisu, SUNWarc

MT-Level Unsafe

SEE ALSO pvs (1), nis_db (3N), intro (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 228

libnsl(4) File Formats

NAME libnsl – the network services library

SYNOPSIS cc [flag . . .] file . . . −lnsl [library . . .]

DESCRIPTION Functions in this library provide routines that provide a transport-level
interface to networking services for applications, facilities for
machine-independent data representation, a remote procedure call mechanism,
and other networking services useful for application programs.

The shared object libnsl.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro (4).

Many features in this library are implemented upon dynamic linking and will
not function correctly if the library is statically linked. Additionally, an
application that statically links this library will not be compliant with the
System V Application Binary Interface.

Further, some symbols are not intended to be referenced directly. Rather, they
are exposed because they are used elsewhere through a private interface. One
such example is the set of symbols beginning with the _xti prefix. Those
symbols are used in implementing the X/Open Transport Interface (XTI)
interfaces documented in libxnet . See libxnet (4).

INTERFACES
SUNW_1.5 (generic)

_xti_accept _xti_alloc

_xti_bind _xti_close

_xti_connect _xti_error

_xti_free _xti_getinfo

_xti_getprotaddr _xti_getstate

_xti_listen _xti_look

_xti_open _xti_optmgmt

_xti_rcv _xti_rcvconnect

_xti_rcvdis _xti_rcvrel

_xti_rcvudata _xti_rcvuderr

_xti_snd _xti_snddis

_xti_sndrel _xti_sndudata

_xti_strerrort _xti_sync

_xti_unbind clnt_create_vers_timed

clnt_door_create rpc_gss_get_error

229 SunOS 5.7 Last modified 4 Aug 1998

File Formats libnsl(4)

rpc_gss_get_mech_info rpc_gss_get_mechanisms

rpc_gss_get_principal_name rpc_gss_get_versions

rpc_gss_getcred rpc_gss_is_installed

rpc_gss_max_data_length rpc_gss_mech_to_oid

rpc_gss_qop_to_num rpc_gss_seccreate

rpc_gss_set_callback rpc_gss_set_defaults

rpc_gss_set_svc_name rpc_gss_svc_max_data_length

svc_door_create svc_get_local_cred

svc_max_pollfd svc_pollfd

SYSVABI_1.3 (generic) − The System V Application Binary
Interface, Third Edition:

authdes_getucred authdes_seccreate

authnone_create authsys_create

authsys_create_default clnt_create

clnt_dg_create clnt_pcreateerror

clnt_perrno clnt_perror

clnt_raw_create clnt_spcreateerror

clnt_sperrno clnt_sperror

clnt_tli_create clnt_tp_create

clnt_vc_create endnetconfig

endnetpath freenetconfigent

getnetconfig getnetconfigent

getnetname getnetpath

getpublickey getsecretkey

host2netname key_decryptsession

key_encryptsession key_gendes

key_setsecret nc_perror

_nderror netdir_free

netdir_getbyaddr netdir_getbyname

netdir_options netname2host

netname2user rpcb_getaddr

Last modified 4 Aug 1998 SunOS 5.7 230

libnsl(4) File Formats

rpcb_getmaps rpcb_gettime

rpcb_rmtcall rpc_broadcast

rpcb_set rpcb_unset

rpc_call rpc_createerr

rpc_reg setnetconfig

setnetpath svc_create

svc_dg_create svcerr_auth

svcerr_decode svcerr_noproc

svcerr_noprog svcerr_progvers

svcerr_systemerr svcerr_weakauth

svc_fd_create svc_fds

svc_getreqset svc_raw_create

svc_reg svc_run

svc_sendreply svc_tli_create

svc_tp_create svc_unreg

svc_vc_create t_accept

taddr2uaddr t_alloc

t_bind t_close

t_connect t_errno

t_error t_free

t_getinfo t_getstate

t_listen t_look

t_open t_optmgmt

t_rcv t_rcvconnect

t_rcvdis t_rcvrel

t_rcvudata t_rcvuderr

t_snd t_snddis

t_sndrel t_sndudata

t_sync t_unbind

uaddr2taddr user2netname

xdr_accepted_reply xdr_array

xdr_authsys_parms xdr_bool

231 SunOS 5.7 Last modified 4 Aug 1998

File Formats libnsl(4)

xdr_bytes xdr_callhdr

xdr_callmsg xdr_char

xdr_double xdr_enum

xdr_float xdr_free

xdr_int xdr_long

xdrmem_create xdr_opaque

xdr_opaque_auth xdr_pointer

xdrrec_create xdrrec_eof

xdrrec_skiprecord xdr_reference

xdr_rejected_reply xdr_replymsg

xdr_short xdrstdio_create

xdr_string xdr_u_char

xdr_u_long xdr_union

xdr_u_short xdr_vector

xdr_void xdr_wrapstring

xprt_register xprt_unregister

SISCD_2.3 (SPARConly) − The SPARC Compliance Definition,
revision 2.3. This interface inherits all
definitions from SYSVABI_1.3, and
defines:

gethostbyaddr gethostbyname

inet_addr inet_netof

inet_ntoa _null_auth

rpc_broadcast_exp svc_fdset

SUNW_1.1 (generic):

authdes_create authdes_lock

auth_destroy callrpc

clnt_broadcast clnt_call

clnt_control clnt_create_timed

clnt_create_vers clnt_destroy

clnt_freeres clnt_geterr

Last modified 4 Aug 1998 SunOS 5.7 232

libnsl(4) File Formats

clntraw_create clnttcp_create

clnt_tp_create_timed clntudp_bufcreate

clntudp_create dbmclose

dbminit delete

des_setparity dial

doconfig endhostent

endrpcent fetch

firstkey gethostbyaddr_r

gethostbyname_r gethostent

gethostent_r get_myaddress

getrpcbyname getrpcbyname_r

getrpcbynumber getrpcbynumber_r

getrpcent getrpcent_r

getrpcport h_errno

inet_ntoa_r key_secretkey_is_set

maxbno nc_sperror

netdir_perror netdir_sperror

nextkey nis_add

nis_add_entry nis_addmember

nis_cache_add_entry_1 nis_cache_read_coldstart_1

nis_cache_refresh_entry_1 nis_cache_remove_entry_1

nis_checkpoint nis_clone_object

nis_creategroup nis_data

nis_destroygroup nis_destroy_object

nis_dir_cmp nis_domain_of

nis_dump nis_dumplog

nis_finddirectory nis_find_item

nis_first_entry nis_freenames

nis_free_request nis_freeresult

nis_freeservlist nis_freetags

nis_getnames nis_get_request

nis_getservlist nis_get_static_storage

233 SunOS 5.7 Last modified 4 Aug 1998

File Formats libnsl(4)

nis_insert_item nis_insert_name

nis_in_table nis_ismember

nis_leaf_of nis_leaf_of_r

nis_lerror nis_list

nis_local_directory nis_local_group

nis_local_host nis_local_principal

nis_lookup nis_make_error

nis_make_rpchandle nis_mkdir

nis_modify nis_modify_entry

nis_name_of nis_next_entry

nis_perror nis_ping

nis_print_directory nis_print_entry

nis_print_group nis_print_group_entry

nis_print_link nis_print_object

nis_print_rights nis_print_table

nis_read_obj nis_remove

nis_remove_entry nis_remove_item

nis_removemember nis_remove_name

nis_rmdir nis_servstate

nis_sperrno nis_sperror

nis_sperror_r nis_stats

nis_verifygroup nis_write_obj

pmap_getmaps pmap_getport

pmap_rmtcall pmap_set

pmap_unset registerrpc

rpc_control sethostent

setrpcent store

svc_auth_reg svc_control

svc_destroy svc_dg_enablecache

svc_done svc_exit

svcfd_create svc_freeargs

svc_getargs svc_getreq

Last modified 4 Aug 1998 SunOS 5.7 234

libnsl(4) File Formats

svc_getreq_common svc_getreq_poll

svc_getrpccaller svcraw_create

svc_register svctcp_create

svcudp_bufcreate svcudp_create

svc_unregister __t_errno

t_getname t_nerr

t_strerror undial

xdr_destroy xdr_getpos

xdr_hyper xdr_inline

xdr_longlong_t xdr_quadruple

xdrrec_endofrecord xdrrec_readbytes

xdr_setpos xdr_sizeof

xdr_u_hyper xdr_u_int

xdr_u_longlong_t yp_all

yp_bind yperr_string

yp_first yp_get_default_domain

yp_master yp_match

yp_next yp_order

ypprot_err yp_unbind

yp_update

SUNW_1.1 (SPARC) − This interface inherits all definitions from the
generic SUNW_1.1 and the SISCD_2.3.

SUNW_1.1 (i386) − This interface contains all definitions from
SISCD_2.3, and inherits all definitions from the
generic SUNW_1.1 and the SYSVABI_1.3.

FILES
/usr/lib/libnsl.a archive library

/usr/lib/libnsl.so.1 shared object

/usr/lib/sparcv9/libnsl.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

235 SunOS 5.7 Last modified 4 Aug 1998

File Formats libnsl(4)

/usr/lib/libnsl.so.1 ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Safe with exceptions

SEE ALSO pvs (1), intro (2), intro (3), intro (4), libxnet (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 236

libpam(4) File Formats

NAME libpam – interface library for PAM (Pluggable Authentication Module)

SYNOPSIS cc [flag . . .] file . . . −lpam [library . . .]

#include <security/pam_appl.h>

DESCRIPTION The shared object libpam.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

pam_acct_mgm pam_authenticate

pam_chauthtok pam_close_session

pam_end pam_get_data

pam_get_item pam_get_user

pam_open_session pam_setcred

pam_set_data pam_set_item

pam_start pam_strerror

SUNW_1.2 (generic):

pam_getenv pam_getenvlist

pam_putenv

FILES
/usr/lib/libpam.so.1

File that implements the PAM framework library.

/etc/pam.conf

Configuration file.

/usr/lib/security/pam_dial_auth.so.1

Authentication management PAM module for dialups.

/usr/lib/security/pam_rhosts_auth.so.1

Authentication management PAM modules that use ruserok().

237 SunOS 5.7 Last modified 4 Aug 1998

File Formats libpam(4)

/usr/lib/security/pam_sample.so.1

Sample PAM module.

/usr/lib/security/pam_unix.so.1

Authentication, account, session and password management PAM module.

ATTRIBUTES See attributes (5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl

MT Level MT-Safe with exceptions

SEE ALSO pvs (1), pam(3), intro (4), pam.conf (4), attributes (5),
pam_dial_auth (5), pam_rhosts_auth (5), pam_sample (5), pam_unix (5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

Last modified 4 Aug 1998 SunOS 5.7 238

libpanel(4) File Formats

NAME libpanel – panels library

SYNOPSIS cc [flag . . .] file . . . −lpanel [library . . .]

DESCRIPTION Functions in this library provide panels using libcurses (4) routines.

The shared object libpanel.so.1() provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

bottom_panel del_panel hide_panel

move_panel new_panel panel_above

panel_below panel_hidden panel_userptr

panel_window replace_panel set_panel_userptr

show_panel top_panel update_panels

FILES
/usr/lib/libpanel.a archive library

/usr/lib/libpanel.so.1 shared object

/usr/lib/sparcv9/libpanel.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO intro (4), libcurses (4), attributes (5)

239 SunOS 5.7 Last modified 4 Aug1998

File Formats libplot(4)

NAME libplot, lib300, lib300s, lib4014, lib450, libvt0 – graphics interface libraries

SYNOPSIS cc [flag . . .] file . . . −lplot [library . . .]

#include <plot.h>

DESCRIPTION Functions in this library generate graphics output.

The shared object libplot.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4) .

INTERFACES SUNW_1.1 (generic):

arc box circle

closepl closevt cont

erase label line

linmod move openpl

openvt point space

FILES
/usr/lib/libplot.a archive library

/usr/lib/libplot.so.1 shared object

/usr/lib/sparcv9/libplot.so.1 64-bit shared object

/usr/lib/lib300.a archive library

/usr/lib/lib300.so.1 shared object

/usr/lib/sparcv9/lib300.so.1 64-bit shared object

/usr/lib/lib300s.a archive library

/usr/lib/lib300s.so.1 shared object

/usr/lib/sparcv9/lib300s.so.1 64-bit shared object

/usr/lib/lib4014.a archive library

/usr/lib/lib4014.so.1 shared object

/usr/lib/sparcv9/lib4014.so.1 64-bit shared object

Last modified 4 Aug 1998 SunOS 5.7 240

libplot(4) File Formats

/usr/lib/lib450.a archive library

/usr/lib/lib450.so.1 shared object

/usr/lib/sparcv9/lib450.so.1 64-bit shared object

/usr/lib/libvt0.a archive library

/usr/lib/libvt0.so.1 shared object

/usr/lib/sparcv9/libvt0.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO pvs (1) , intro (4) , attributes (5)

241 SunOS 5.7 Last modified 4 Aug 1998

File Formats libpthread(4)

NAME libpthread – POSIX threads library

SYNOPSIS cc [flag . . .] file . . . −lpthread [library . . .]

DESCRIPTION Functions in this library provide the POSIX threads. See standards (5). This
library is implemented as a filter on the threads library (see libthread (4)).

The shared object libpthread.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

alarm close

cond_broadcast cond_destroy

cond_init cond_signal

cond_timedwait cond_wait

creat fcntl

fork fork1

fsync _getfp

msync mutex_destroy

mutex_init _mutex_lock

mutex_lock mutex_trylock

mutex_unlock open

pause pthread_atfork

pthread_attr_destroy pthread_attr_getdetachstate

pthread_attr_getinheritsched pthread_attr_getschedparam

pthread_attr_getschedpolicy pthread_attr_getscope

pthread_attr_getstackaddr pthread_attr_getstacksize

pthread_attr_init pthread_attr_setdetachstate

pthread_attr_setinheritsched pthread_attr_setschedparam

pthread_attr_setschedpolicy pthread_attr_setscope

pthread_attr_setstackaddr pthread_attr_setstacksize

pthread_cancel __pthread_cleanup_pop

__pthread_cleanup_push pthread_condattr_destroy

pthread_condattr_getpshared pthread_condattr_init

Last modified 4 Aug 1998 SunOS 5.7 242

libpthread(4) File Formats

pthread_condattr_setpshared pthread_cond_broadcast

pthread_cond_destroy pthread_cond_init

pthread_cond_signal pthread_cond_timedwait

pthread_cond_wait pthread_create

pthread_detach pthread_equal

pthread_exit pthread_getschedparam

pthread_getspecific pthread_join

pthread_key_create pthread_key_delete

pthread_kill pthread_mutexattr_destroy

pthread_mutexattr_getprioceiling pthread_mutexattr_getprotocol

pthread_mutexattr_getpshared pthread_mutexattr_init

pthread_mutexattr_setprioceiling pthread_mutexattr_setprotocol

pthread_mutexattr_setpshared pthread_mutex_destroy

pthread_mutex_getprioceiling pthread_mutex_init

pthread_mutex_lock pthread_mutex_setprioceiling

pthread_mutex_trylock pthread_mutex_unlock

pthread_once pthread_self

pthread_setcancelstate pthread_setcanceltype

pthread_setschedparam pthread_setspecific

pthread_sigmask pthread_testcancel

read rwlock_init

rw_rdlock rw_tryrdlock

rw_trywrlock rw_unlock

rw_wrlock sema_destroy

sema_init sema_post

sema_trywait sema_wait

setitimer sigaction

siglongjmp sigprocmask

sigsetjmp sigsuspend

sigwait sleep

tcdrain thr_continue

thr_create thr_exit

243 SunOS 5.7 Last modified 4 Aug 1998

File Formats libpthread(4)

thr_getconcurrency thr_getprio

thr_getspecific thr_join

thr_keycreate thr_kill

thr_main thr_min_stack

thr_self thr_setconcurrency

thr_setprio thr_setspecific

thr_sigsetmask thr_stksegment

thr_suspend thr_yield

wait waitpid

write

FILES
/usr/lib/libpthread.so.1 shared object

/usr/lib/sparcv9/libpthread.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

/usr/lib/
libpthread.so.1

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO pvs (1), libpthread (3T), libthread (3T), libthread_db (3T),
threads (3T), intro (4), libthread (4), libthread_db (4),
attributes (5), standards (5)

Last modified 4 Aug 1998 SunOS 5.7 244

librac(4) File Formats

NAME librac – remote asynchronous calls library

SYNOPSIS cc [flag . . .] file . . . −lrac −lnsl [library . . .]

#include <rpc/rpc.h>

#include <rpc/rac.h>

DESCRIPTION Functions in this library provide a remote asynchronous call interface to the
RPC library.

The shared object librac.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

clnt_create clnt_create_vers clnt_dg_create

clnt_tli_create clnt_tp_create clnt_vc_create

rac_drop rac_poll rac_recv

rac_send rac_senderr rpcb_getaddr

rpcb_getmaps rpcb_gettime rpcb_rmtcall

rpcb_set rpcb_taddr2uaddr rpcb_uaddr2taddr

rpcb_unset xdrrec_create xdrrec_endofrecord

xdrrec_eof xdrrec_readbytes xdrrec_skiprecord

FILES
/usr/lib/librac.a archive library

/usr/lib/librac.so.1 shared object

/usr/lib/sparcv9/librac.so.1 64-bit shared object file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

245 SunOS 5.7 Last modified 4 Aug 1998

File Formats librac(4)

SEE ALSO pvs (1), rpc_rac (3N), intro (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 246

libresolv(4) File Formats

NAME libresolv – resolver library

SYNOPSIS cc [flag . . .] file . . . −lresolv −lsocket −lnsl [library . . .]

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

DESCRIPTION Functions in this library provide for creating, sending, and interpreting packets
to the Internet domain name servers.

By convention, libresolv.so is a link to one of the shared object files for the
resolver, typically the most recent one.

For additional information on shared object interfaces, see intro (4).

Interfaces The resolver (3N) manual page, and the system include files, describe the
behavior of the functions in libresolv.so.2 .

The shared object libresolv.so.2 provides the public interfaces defined
below.

SUNW_2.1 (generic):

_getlong _getshort _res

__dn_skipname __fp_query __hostalias

__p_cdname __p_class __p_query

__p_rr __p_time __p_type

__putlong dn_comp dn_expand

h_errno res_init res_mkquery

res_send res_search res_query

res_querydomain

Programs are expected to use the aliases defined in <resolv.h> rather than
calling the "__" prefixed procedures, as indicated in the following table. Use of
the routines in the first column is discouraged.

247 SunOS 5.7 Last modified 4 Aug 1998

File Formats libresolv(4)

FUNCTION REFERENCED ALIAS TO USE

__dn_skipname dn_skipname

__fp_query fp_query

__putlong putlong

__p_cdname p_cdname

__p_class p_class

__p_query p_query

__p_rr p_rr

__p_time p_time

__p_type p_type

libresolv.so.1 is an earlier shared library file that provides the public
interfaces defined below. This file is provided for the purpose of backwards
compatibility. There is no plan to fix any of its defects.

The original and complete reference documentation for these routines can only
be found in earlier releases.

SUNW_1.1 (generic):

dn_comp dn_expand dn_skipname

fp_query _getlong _getshort

h_errno hostalias p_cdname

p_class p_query p_rr

p_time p_type putlong

_res res_init res_mkquery

res_query res_querydomain res_search

res_send strcasecmp strncasecmp

FILES
/usr/lib/libresolv.so.1 shared object file for backward

compatibility

/usr/lib/libresolv.so.2 shared object file

/usr/lib/sparcv9/libresolv.so.1 64-bit shared object file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 4 Aug 1998 SunOS 5.7 248

libresolv(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO pvs (1), resolver (3N), intro (4), attributes (5)

249 SunOS 5.7 Last modified 4 Aug 1998

File Formats librpcsoc(4)

NAME librpcsoc – obsolete RPC library

SYNOPSIS cc [flag . . .] file . . . −L/usr/ucblib −lrpcsoc [library . . .]

#include <rpc/rpc.h>

DESCRIPTION Functions in this library implement socket based RPC calls (using socket calls,
not TLI). Applications that require this library should link it before libnsl ,
which implements the same calls over TLI .

This library is provided for compatibility only; new applications should not
link in this library.

The shared object librpcsoc.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

clnttcp_create clntudp_bufcreate clntudp_create

get_myaddress getrpcport rtime

svcfd_create svctcp_create svcudp_bufcreate

svcudp_create svcudp_enablecache

FILES
/usr/ucblib/librpcsoc.so.1 shared object

/usr/ucblib/sparcv9/librpcsoc.so.1 64–bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu (32-bit)

SUNWscpux (64-bit)

MT-Level Unsafe

SEE ALSO pvs (1), rpc_soc (3N), intro (4), libnsl (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 250

librpcsvc(4) File Formats

NAME librpcsvc – miscellaneous RPC services library

SYNOPSIS cc [flag . . .] file . . . −lrpcsvc [library . . .]

#include <rpc/rpc.h>

#include <rpcsvc/rstat.h>

DESCRIPTION Functions in this library provide miscellaneous RPC services. See the man
pages in Section 3N for the individual functions.

The shared object librpcsvc.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

havedisk rnusers rstat

rusers rwall xdr_statstime

xdr_statsvar xdr_utmpidlearr

FILES
/usr/lib/librpcsvc.a archive library

/usr/lib/librpcsvc.so.1 shared object

/usr/lib/sparcv9/librpcsvc.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO pvs (1), rstat (3N), intro (4), attributes (5)

251 SunOS 5.7 Last modified 4 Aug 1998

File Formats librt(4)

NAME librt, libposix4 – POSIX.1b Realtime Extensions library

SYNOPSIS cc [flag . . .] file . . . −lrt [library . . .]

cc [flag . . .] file . . . −lposix4 [library . . .]

See the man pages for the individual interfaces in section 3R for information on required headers.

DESCRIPTION librt is the preferred name for this library. The name libposix4 is
maintained for backward compatibility and should be avoided. Functions in
this library provide most of the interfaces specified by the POSIX.1b Realtime
Extension. See standards (5) . Specifically, this includes the interfaces defined
under the Asynchronous I/O, Message Passing, Process Scheduling, Realtime
Signals Extension, Semaphores, Shared Memory Objects, Synchronized I/O,
and Timers options. The interfaces defined under the Memory Mapped Files,
Process Memory Locking, and Range Memory Locking options are provided in
libc (4) .

The shared objects librt.so.1 and libposix4.so.1 provide the public
interfaces defined below.

For additional information on shared object interfaces, see intro (4) .

INTERFACES SUNW_1.1 (generic):

aio_cancel aio_error aio_fsync

aio_read aio_return aio_suspend

aio_write clock_getres clock_gettime

clock_settime fdatasync lio_listio

mq_close mq_getattr mq_notify

mq_open mq_receive mq_send

mq_setattr mq_unlink nanosleep

sched_getparam sched_get_priority_

max

sched_get_priority_

min

sched_getscheduler sched_rr_get_

interval

sched_setparam

sched_setscheduler sched_yield sem_close

sem_destroy sem_getvalue sem_init

sem_open sem_post sem_trywait

sem_unlink sem_wait shm_open

shm_unlink sigqueue sigtimedwait

Last modified 4 Aug 1998 SunOS 5.7 252

librt(4) File Formats

sigwaitinfo timer_create timer_delete

timer_getoverrun timer_gettime timer_settime

FILES
/usr/lib/librt.so.1 shared object

/usr/lib/sparcv9/librt.so.1 64-bit shared object file

/usr/lib/libposix4.so.1 shared object

/usr/lib/sparcv9/libposix4.so.1 64-bit shared object file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO pvs (1) , intro (4) , libc (4) , attributes (5) , standards (5)

253 SunOS 5.7 Last modified 4 Aug 1998

File Formats libsec(4)

NAME libsec – File Access Control List library

SYNOPSIS cc [flag . . .] file . . . −lsec [library . . .]

#include <sys/acl.h>

DESCRIPTION Functions in this library provide comparison and manipulation of File Access
Control Lists.

The shared object libsec.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

aclcheck aclfrommode aclfromtext

aclsort acltomode acltotext

FILES
/usr/lib/libsec.so.1 shared object

/usr/lib/libsec.a archive library

/usr/lib/sparcv9/libsec.so.1 64-bit shared object file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO pvs (1), intro (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 254

libsocket(4) File Formats

NAME libsocket – the sockets library

SYNOPSIS cc [flag . . .] file . . . −lsocket [library . . .]

DESCRIPTION Functions in this library provide routines that provide the socket
internetworking interface, primarily used with the TCP/IP protocol suite.

The shared object libsocket.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES
SISCD_2.3 (SPARConly) - The SPARC Compliance Definition,

revision 2.3:

accept bind connect

getpeername getprotobyname getprotobynumber

getprotoent getservbyname getservbyport

getsockname getsockopt inet_lnaof

inet_makeaddr inet_network listen

recv recvfrom recvmsg

send sendmsg sendto

setsockopt shutdown socket

SUNW_1.1 (generic):

bindresvport endnetent endprotoent

endservent ether_aton ether_hostton

ether_line ether_ntoa ether_ntohost

fcntl getnetbyaddr getnetbyaddr_r

getnetbyname getnetbyname_r getnetent

getnetent_r getprotobyname_r getprotobynumber_r

getprotoent_r getservbyname_r getservbyport_r

getservent getservent_r htonl

htons ioctl ntohl

ntohs rcmd rexec

255 SunOS 5.7 Last modified 4 Aug 1998

File Formats libsocket(4)

rresvport ruserok setnetent

setprotoent setservent socketpair

SUNW_1.1 (SPARC) - This interface inherits all definitions from the
generic SUNW_1.1 and the SISCD_2.3.

SUNW_1.1 (i386) - This interface contains all definitions from
SISCD_2.3, and inherits all definitions from the
generic SUNW_1.1.

FILES
/usr/lib/libsocket.a archive library

/usr/lib/libsocket.so.1 shared object

/usr/lib/sparcv9/libsocket.so.1 64-bit shared object file

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

/usr/lib/libsocket.so.1 ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO pvs (1), intro (2), intro (3), intro (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 256

libssagent(4) File Formats

NAME libssagent – Sun Solstice Enterprise Agent Library

SYNOPSIS cc [flag . . .] file . . . −lssagent [library . .]

DESCRIPTION The libssagent is a high level API library. The libssagent is dependent
on libssasnmp . This library contains the starting point of the request-driven
engine, that always runs in the background within the subagent. It receives
SNMP requests, evaluates variables, calls the appropriate functions, and sends
the correct responses.

INTERFACES Object Identifier(OID) helper functions:

SSAOidCmp SSAOidCpy SSAOidDup

SSAOidNew SSAOidFree SSAOidInit

SSAOidString SSAOidStrToOid SSAOidZero

String helper functions:

SSAStringCpy SSAStringInit SSAStringToChar

SSAStringZero

FILES
/usr/lib/libssagent.so.1 shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsasnm

MT-Level Unsafe

SEE ALSO libssasnmp (4), attributes (5)

257 SunOS 5.7 Last modified 4 Aug 1998

File Formats libssasnmp(4)

NAME libssasnmp – Sun Solstice Enterprise SNMP Library

SYNOPSIS cc [flag . . .] file . . . −lssasnmp [library . .]

DESCRIPTION The libssasnmp library provides low-level SNMP API functions.

� ASN.1 serialization (encoding/decoding) module

� SNMP PDU development routines

� SNMP session module

� Low level SNMP based API functions

� Error-handling module

� Trace (debugging) module

INTERFACES SSAAgentIsAlive SSAGetTrapPort SSARegSubagent

SSARegSubtree SSARegSubtable SSASendTrap

SSASubagentOpen

FILES
/usr/lib/libssasnmp.so.1 shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsasnm

MT-Level Unsafe

SEE ALSO libssagent (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 258

libsys(4) File Formats

NAME libsys – the system library

SYNOPSIS cc [flag . . .] file . . . −lsys [library . . .]

DESCRIPTION Functions in this library provide basic system services. This library is
implemented as a filter on the C library (see libc (4)).

The shared object libsys.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES
SYSVABI_1.3 (generic) - The System V Application Binary

Interface, Third Edition:

_access access _acct

acct _alarm alarm

_altzone atexit calloc

_catclose catclose _catgets

catgets _catopen catopen

_chdir chdir _chmod

chmod _chown chown

_chroot chroot _close

close _closedir closedir

_creat creat __ctype

_daylight daylight _dup

dup _environ environ

_execl execl _execle

execle _execlp execlp

_execv execv _execve

execve _execvp execvp

_exit exit _fattach

fattach _fchdir fchdir

_fchmod fchmod _fchown

fchown _fcntl fcntl

_fdetach fdetach _fork

fork _fpathconf fpathconf

free _fstat fstat

259 SunOS 5.7 Last modified 4 Aug 1998

File Formats libsys(4)

_fstatvfs fstatvfs _fsync

fsync _ftok ftok

_getcontext getcontext _getcwd

getcwd _getegid getegid

_geteuid geteuid _getgid

getgid _getgrgid getgrgid

_getgrnam getgrnam _getgroups

getgroups _getlogin getlogin

_getmsg getmsg _getpgid

getpgid _getpgrp getpgrp

_getpid getpid _getpmsg

getpmsg _getppid getppid

_getpwnam getpwnam _getpwuid

getpwuid _getrlimit getrlimit

_getsid getsid _gettxt

gettxt _getuid getuid

_grantpt grantpt _initgroups

initgroups _ioctl ioctl

_isastream isastream _kill

kill _lchown lchown

_link link localeconv

_lseek lseek _lstat

lstat _makecontext makecontext

malloc _memcntl memcntl

_mkdir mkdir _mknod

mknod _mlock mlock

_mmap mmap _mount

mount _mprotect mprotect

_msgctl msgctl _msgget

msgget _msgrcv msgrcv

_msgsnd msgsnd _msync

msync _munlock munlock

Last modified 4 Aug 1998 SunOS 5.7 260

libsys(4) File Formats

_munmap munmap _nice

nice _numeric _open

open _opendir opendir

_pathconf pathconf _pause

pause _pipe pipe

_poll poll _profil

profil _ptrace ptrace

_ptsname ptsname _putmsg

putmsg _putpmsg putpmsg

_read read _readdir

readdir _readlink readlink

_readv readv realloc

remove _rename rename

_rewinddir rewinddir _rmdir

rmdir _seekdir seekdir

_semctl semctl _semget

semget _semop semop

_setcontext setcontext _setgid

setgid _setgroups setgroups

setlocale _setpgid setpgid

_setpgrp setpgrp _setrlimit

setrlimit _setsid setsid

_setuid setuid _shmat

shmat _shmctl shmctl

_shmdt shmdt _shmget

shmget _sigaction sigaction

_sigaddset sigaddset _sigaltstack

sigaltstack _sigdelset sigdelset

_sigemptyset sigemptyset _sigfillset

sigfillset _sighold sighold

_sigignore sigignore _sigismember

sigismember _siglongjmp siglongjmp

261 SunOS 5.7 Last modified 4 Aug 1998

File Formats libsys(4)

signal _sigpause sigpause

_sigpending sigpending _sigprocmask

sigprocmask _sigrelse sigrelse

_sigsend sigsend _sigsendset

sigsendset _sigset sigset

_sigsetjmp sigsetjmp _sigsuspend

sigsuspend _stat stat

_statvfs statvfs _stime

stime strcoll strerror

strftime strxfrm _swapcontext

swapcontext _symlink symlink

_sync sync _sysconf

sysconf system _telldir

telldir _time time

_times times _timezone

timezone _ttyname ttyname

_tzname tzname _ulimit

ulimit _umask umask

_umount umount _uname

uname _unlink unlink

_unlockpt unlockpt _utime

utime _wait wait

_waitid waitid _waitpid

waitpid _write write

_writev writev

SYSVABI_1.3 (SPARC) - The SPARC Processor Supplement.
This interface contains all of the
generic SYSVABI_1.3, and defines:

_Q_add _Q_cmp _Q_cmpe

_Q_div _Q_dtoq _Q_feq

_Q_fge _Q_fgt _Q_fle

_Q_flt _Q_fne _Q_itoq

Last modified 4 Aug 1998 SunOS 5.7 262

libsys(4) File Formats

_Q_mul _Q_neg _Q_qtod

_Q_qtoi _Q_qtos _Q_qtou

_Q_sqrt _Q_stoq _Q_sub

_Q_utoq .div __dtou

__ftou __huge_val .mul

.rem .stret1 .stret2

.stret4 .stret8 .udiv

.umul .urem

SYSVABI_1.3 (i386) - The Intel386 Processor Supplement.
This interface contains all of the
generic SYSVABI_1.3, and defines:

__flt_rounds _fp_hw _fpstart

_fxstat __huge_val _lxstat

_nuname nuname _sbrk

sbrk _xmknod _xstat

SISCD_2.3 (SPARConly) - The SPARC Compliance Definition,
revision 2.3. This interface inherits all
definitions from SYSVABI_1.3.

FILES
/usr/lib/libsys.so.1 shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

/usr/lib/libc.so.1 ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl

MT-Level Safe

SEE ALSO pvs (1), intro (2), intro (3), intro (4), libc (4), attributes (5)

263 SunOS 5.7 Last modified 4 Aug 1998

File Formats libthread(4)

NAME libthread – the threads library

SYNOPSIS cc [flag . . .] file . . . −lthread [library . . .]

DESCRIPTION Functions in this library provide routines that provide threading support.

The shared object libthread.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES
SISCD_2.3 (SPARConly) - The SPARC Compliance Definition,

revision 2.3:

cond_broadcast cond_destroy

cond_init cond_signal

cond_timedwait fork1

mutex_destroy mutex_init

mutex_lock mutex_trylock

mutex_unlock rwlock_destroy

rwlock_init rw_rdlock

rw_tryrdlock rw_trywrlock

rw_unlock rw_wrlock

sema_destroy sema_init

sema_post sema_trywait

sema_wait sigwait

thr_continue thr_create

thr_exit thr_getconcurrency

thr_getprio thr_getspecific

thr_join thr_keycreate

thr_kill thr_main

thr_min_stack thr_self

thr_setconcurrency thr_setprio

thr_setspecific thr_sigsetmask

thr_stksegment thr_suspend

thr_yield

SUNW_1.1 (generic):

Last modified 4 Aug 1998 SunOS 5.7 264

libthread(4) File Formats

alarm close

creat fcntl

fork fsync

_getfp lwp_self

msync _mutex_held

_mutex_lock open

pause pthread_atfork

pthread_attr_destroy pthread_attr_getdetachstate

pthread_attr_getinheritsched pthread_attr_getschedparam

pthread_attr_getschedpolicy pthread_attr_getscope

pthread_attr_getstackaddr pthread_attr_getstacksize

pthread_attr_init pthread_attr_setdetachstate

pthread_attr_setinheritsched pthread_attr_setschedparam

pthread_attr_setschedpolicy pthread_attr_setscope

pthread_attr_setstackaddr pthread_attr_setstacksize

pthread_cancel __pthread_cleanup_pop

__pthread_cleanup_push pthread_condattr_destroy

pthread_condattr_getpshared pthread_condattr_init

pthread_condattr_setpshared pthread_cond_broadcast

pthread_cond_destroy pthread_cond_init

pthread_cond_signal pthread_cond_timedwait

pthread_cond_wait pthread_create

pthread_detach pthread_equal

pthread_exit pthread_getschedparam

pthread_getspecific pthread_join

pthread_key_create pthread_key_delete

pthread_kill pthread_mutexattr_destroy

pthread_mutexattr_getprioceiling pthread_mutexattr_getprotocol

pthread_mutexattr_getpshared pthread_mutexattr_init

pthread_mutexattr_setprioceiling pthread_mutexattr_setprotocol

pthread_mutexattr_setpshared pthread_mutex_destroy

pthread_mutex_getprioceiling pthread_mutex_init

265 SunOS 5.7 Last modified 4 Aug 1998

File Formats libthread(4)

pthread_mutex_lock pthread_mutex_setprioceiling

pthread_mutex_trylock pthread_mutex_unlock

pthread_once pthread_self

pthread_setcancelstate pthread_setcanceltype

pthread_setschedparam pthread_setspecific

pthread_sigmask pthread_testcancel

read _rw_read_held

_rw_write_held _sema_held

setcontext setitimer

sigaction sigpending

sigprocmask sigsuspend

sleep tcdrain

wait waitpid

write

SUNW_1.1 (SPARC) - This interface inherits all definitions from the
generic SUNW_1.1 and the SISCD_2.3, and
defines:

siglongjmp sigsetjmp

SUNW_1.1 (i386) - This interface contains all definitions from
SISCD_2.3, inherits all definitions from the
generic SUNW_1.1, and defines:

siglongjmp sigsetjmp

FILES
/usr/lib/libthread.so.1 shared object

/usr/lib/sparcv9/libthread.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 4 Aug 1998 SunOS 5.7 266

libthread(4) File Formats

/usr/lib/libthread.so.1 ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (64-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO pvs (1), intro (2), libpthread (3T), libthread (3T), libthread_db (3T),
threads (3T), intro (4), libpthread (4), libthread_db (4),
attributes (5)

267 SunOS 5.7 Last modified 4 Aug 1998

File Formats libthread_db(4)

NAME libthread_db – threads debugging library

SYNOPSIS cc [flag . . .] file . . . /usr/lib/libthread_db.so.1 [library . . .]

#include <proc_service.h>

#include <thread_db.h>

DESCRIPTION Functions is this library are useful for building debuggers for multi-threaded
programs.

The shared object libthread_db.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

td_init td_log td_ta_delete

td_ta_get_nthreads td_ta_get_ph td_ta_map_id2thr

td_ta_map_lwp2thr td_ta_new td_ta_thr_iter

td_ta_tsd_iter td_thr_get_info td_thr_getfpregs

td_thr_getgregs td_thr_getxregs td_thr_getxregsize

td_thr_setfpregs td_thr_setgregs td_thr_setprio

td_thr_setsigpending td_thr_setxregs td_thr_sigsetmask

td_thr_tsd td_thr_validate

SUNW_1.2 (generic):

ta_event_addr td_sync_get_info td_sync_setstate$

td_sync_waiters td_ta_clear_event td_ta_enable_stats

td_ta_event_getmsg td_ta_get_stats td_ta_map_addr2sync$

td_ta_reset_stats td_ta_set_event td_ta_setconcurrency

td_ta_sync_iter td_thr_clear_event$ td_thr_dbresume

td_thr_dbsuspend td_thr_event_enable$ td_thr_event_getmsg

td_thr_lockowner td_thr_set_event td_thr_sleepinfo$

FILES
/usr/lib/libthread_db.so.1 shared object

Last modified 4 Aug 1998 SunOS 5.7 268

libthread_db(4) File Formats

/usr/lib/sparcv9/libthread_db.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for description of the following attributes:

/usr/lib/
libthread_db.so.1

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT Level Safe

SEE ALSO pvs (1), libpthread (3T), libthread (3T), libthread_db (3T),
threads (3T), intro (4), libthread (4)

269 SunOS 5.7 Last modified 4 Aug 1998

File Formats libtnfctl(4)

NAME libtnfctl – library of TNF probe control routines for use by processes and the
kernel

SYNOPSIS cc [flag . . .] file . . . −ltnfctl [library . . .]

#include <tnf/tnfctl.h>

DESCRIPTION Functions in this library provide TNF probe control routines for use by
processes and the kernel.

The shared object libtnfctl.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

tnfctl_buffer_alloc tnfctl_buffer_dealloc

tnfctl_check_libs tnfctl_close

tnfctl_continue tnfctl_exec_open

tnfctl_filter_list_add tnfctl_filter_list_delete

tnfctl_filter_list_get tnfctl_filter_state_set

tnfctl_indirect_open tnfctl_internal_open

tnfctl_kernel_open tnfctl_pid_open

tnfctl_probe_apply tnfctl_probe_apply_ids

tnfctl_probe_connect tnfctl_probe_disable

tnfctl_probe_disconnect_all tnfctl_probe_enable

tnfctl_probe_state_get tnfctl_probe_trace

tnfctl_probe_untrace tnfctl_register_funcs

tnfctl_strerror tnfctl_trace_attrs_get

tnfctl_trace_state_set

FILES
/usr/lib/libtnfctl.so.1 shared object

/usr/lib/sparcv9/libtnfctl.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 4 Aug 19 SunOS 5.7 270

libtnfctl(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc (32-bit)

SUNWtnfcx (64-bit)

MT Level MT-Safe with exceptions

SEE ALSO pvs (1), libtnfctl (3X), tracing (3X), intro (4), attributes (5)

NOTES This API is MT-Safe. Multiple threads may concurrently operate on
independent tnfctl handles, which is the typical behavior expected.
libtnfctl does not support multiple threads operating on the same tnfctl
handle. If this is desired, it is the client’s responsibility to implement locking to
ensure that two threads that use the same tnfctl handle are not
simultaneously present in a libtnfctl interface.

271 SunOS 5.7 Last modified 4 Aug 19

File Formats libucb(4)

NAME libucb – the UCB compatibility library

SYNOPSIS cc [flag . . .] file . . . −lucb [library . . .]

DESCRIPTION Functions in this library provide BSD semantics that were removed from the
System V definition.

The shared object libucb.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

alphasort bcmp bcopy

bzero flock fopen

fprintf freopen fstatfs

ftime getdtablesize gethostid

gethostname getpagesize getpriority

getrusage gettimeofday getwd

index killpg longjmp

mctl nice nlist

printf psignal rand

readdir reboot re_comp

re_exec rindex scandir

setbuffer sethostname setjmp

setlinebuf setpgrp setpriority

setregid setreuid settimeofday

sigblock siginterrupt signal

sigpause sigsetmask sigstack

sigvec sigvechandler sleep

sprintf srand statfs

sys_siglist times ualarm

usignal usigpause usleep

vfprintf vprintf vsprintf

wait3 wait4

Last modified 4 Aug 1998 SunOS 5.7 272

libucb(4) File Formats

FILES
/usr/ucblib/libucb.a archive library

/usr/ucblib/libucb.so.1 shared object

/usr/ucblib/sparcv9/libucb.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWscpu, SUNWsra (32-bit)

SUNWscpux (64-bit)

MT-Level Safe with exceptions

SEE ALSO pvs (1), intro (4), attributes (5)

273 SunOS 5.7 Last modified 4 Aug 1998

File Formats libvolmgt(4)

NAME libvolmgt – volume management library

SYNOPSIS cc [flag . . .] file . . . −lvolmgt [library . . .]

#include <volmgt.h>

DESCRIPTION Functions in this library provide access to the volume management services.

The shared object libvolmgt.so.1 provides the public interfaces defined
below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

media_findname media_getattr media_getid

media_setattr volmgt_check volmgt_inuse

volmgt_ownspath volmgt_root volmgt_running

volmgt_symdev volmgt_symname

SUNW_1.2 (generic):

volmgt_acquire volmgt_release

SUNW_1.3 (generic):

volmgt_feature_enabled

FILES
/usr/lib/libvolmgt.a archive library

/usr/lib/libvolmgt.so.1 shared object

/usr/lib/sparcv9/libvolmgt.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Safe with exceptions

Last modified 4 Aug 1998 SunOS 5.7 274

libvolmgt(4) File Formats

SEE ALSO pvs (1), media_findname (3X), intro (4), attributes (5)

NOTES The MT-Level for this library of interfaces is Safe, except for
media_findname (3X), which is Unsafe.

275 SunOS 5.7 Last modified 4 Aug 1998

File Formats libw(4)

NAME libw – the wide character library

SYNOPSIS cc [flag . . .] file . . . [library . . .]

#include <wchar.h>

DESCRIPTION Historically, functions in this library provided wide character translations. This
functionality now resides in libc (4).

This library is maintained to provide backward compatibility for both runtime
and compilation environments. The shared object version is implemented as a
filter on libw.so.1 , and the archive version is implemented as a null archive.
New application development need not reference either version of libw .

The shared object libw.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

fgetwc fgetws fputwc

fputws getwc getwchar

getws isenglish isideogram

isnumber isphonogram isspecial

iswalnum iswalpha iswcntrl

iswctype iswdigit iswgraph

iswlower iswprint iswpunct

iswspace iswupper iswxdigit

putwc putwchar putws

strtows towlower towupper

ungetwc watoll wcscat

wcschr wcscmp wcscoll

wcscpy wcscspn wcsftime

wcslen wcsncat wcsncmp

wcsncpy wcspbrk wcsrchr

wcsspn wcstod wcstok

wcstol wcstoul wcswcs

wcswidth wcsxfrm wctype

wcwidth wscasecmp wscat

Last modified 4 Aug 1998 SunOS 5.7 276

libw(4) File Formats

wschr wscmp wscol

wscoll wscpy wscspn

wsdup wslen wsncasecmp

wsncat wsncmp wsncpy

wspbrk wsprintf wsrchr

wsscanf wsspn wstod

wstok wstol wstoll

wstostr wsxfrm

FILES
/usr/lib/libw.a a link to /usr/lib/null.a

/usr/lib/libw.so.1 a filter on libc.so.1

/usr/lib/sparcv9/libw.so.1 a filter on sparcv9/libc.so.1

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

/usr/lib/libw.so.1 ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWarc (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO pvs (1), intro (3), intro (4), libc (4), attributes (5)

277 SunOS 5.7 Last modified 4 Aug 1998

File Formats libxfn(4)

NAME libxfn – the XFN interface library

SYNOPSIS cc [flag . . .] file . . . −lxfn [library . . .]

#include <xfn/xfn.h>

DESCRIPTION This library provides the implementation of XFN, the X/Open Federated
Naming specification (see xfn (3N) and fns (5)).

The shared object libxfn.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

fn_attr_get fn_attr_get_ids

fn_attr_get_values fn_attribute_add

fn_attribute_assign fn_attribute_copy

fn_attribute_create fn_attribute_destroy

fn_attribute_first fn_attribute_identifier

fn_attribute_next fn_attribute_remove

fn_attribute_syntax fn_attribute_valuecount

fn_attr_modify fn_attrmodlist_add

fn_attrmodlist_assign fn_attrmodlist_copy

fn_attrmodlist_count fn_attrmodlist_create

fn_attrmodlist_destroy fn_attrmodlist_first

fn_attrmodlist_next fn_attr_multi_get

fn_attr_multi_modify fn_attrset_add

fn_attrset_assign fn_attrset_copy

fn_attrset_count fn_attrset_create

fn_attrset_destroy fn_attrset_first

fn_attrset_get fn_attrset_next

fn_attrset_remove fn_bindinglist_destroy

fn_bindinglist_next fn_bindingset_add

fn_bindingset_assign fn_bindingset_copy

fn_bindingset_count fn_bindingset_create

fn_bindingset_destroy fn_bindingset_first

Last modified 4 Aug 1998 SunOS 5.7 278

libxfn(4) File Formats

fn_bindingset_get_ref fn_bindingset_next

fn_bindingset_remove fn_composite_name_append_comp

fn_composite_name_append_name fn_composite_name_assign

fn_composite_name_assign_string fn_composite_name_copy

fn_composite_name_count fn_composite_name_create

fn_composite_name_delete_comp fn_composite_name_destroy

fn_composite_name_first fn_composite_name_from_str

fn_composite_name_from_string fn_composite_name_insert_comp

fn_composite_name_insert_name fn_composite_name_is_empty

fn_composite_name_is_equal fn_composite_name_is_prefix

fn_composite_name_is_suffix fn_composite_name_last

fn_composite_name_next fn_composite_name_prefix

fn_composite_name_prepend_comp fn_composite_name_prepend_name

fn_composite_name_prev fn_composite_name_suffix

fn_compound_name_append_comp fn_compound_name_assign

fn_compound_name_copy fn_compound_name_count

fn_compound_name_delete_all fn_compound_name_delete_comp

fn_compound_name_destroy fn_compound_name_first

fn_compound_name_from_syntax_
attrs

fn_compound_name_get_syntax_
attrs

fn_compound_name_insert_comp fn_compound_name_is_empty

fn_compound_name_is_equal fn_compound_name_is_prefix

fn_compound_name_is_suffix fn_compound_name_last

fn_compound_name_next fn_compound_name_prefix

fn_compound_name_prepend_comp fn_compound_name_prev

fn_compound_name_suffix fn_ctx_bind

fn_ctx_create_subcontext fn_ctx_destroy_subcontext

fn_ctx_get_ref fn_ctx_get_syntax_attrs

fn_ctx_handle_destroy fn_ctx_handle_from_initial

fn_ctx_handle_from_ref fn_ctx_list_bindings

fn_ctx_list_names fn_ctx_lookup

fn_ctx_lookup_link fn_ctx_rename

279 SunOS 5.7 Last modified 4 Aug 1998

File Formats libxfn(4)

fn_ctx_unbind fn_multigetlist_destroy

fn_multigetlist_next fn_namelist_destroy

fn_namelist_next fn_nameset_add

fn_nameset_assign fn_nameset_copy

fn_nameset_count fn_nameset_create

fn_nameset_destroy fn_nameset_first

fn_nameset_next fn_nameset_remove

fn_ref_addr_assign fn_ref_addr_copy

fn_ref_addrcount fn_ref_addr_create

fn_ref_addr_data fn_ref_addr_description

fn_ref_addr_destroy fn_ref_addr_length

fn_ref_addr_type fn_ref_append_addr

fn_ref_assign fn_ref_copy

fn_ref_create fn_ref_create_link

fn_ref_delete_addr fn_ref_delete_all

fn_ref_description fn_ref_destroy

fn_ref_first fn_ref_insert_addr

fn_ref_is_link fn_ref_link_name

fn_ref_next fn_ref_prepend_addr

fn_ref_type fn_status_advance_by_name

fn_status_append_remaining_name fn_status_append_resolved_name

fn_status_assign fn_status_code

fn_status_copy fn_status_create

fn_status_description fn_status_destroy

fn_status_diagnostic_message fn_status_is_success

fn_status_link_code fn_status_link_diagnostic_
message

fn_status_link_remaining_name fn_status_link_resolved_name

fn_status_link_resolved_ref fn_status_remaining_name

fn_status_resolved_name fn_status_resolved_ref

fn_status_set fn_status_set_code

fn_status_set_diagnostic_
message

fn_status_set_link_code

Last modified 4 Aug 1998 SunOS 5.7 280

libxfn(4) File Formats

fn_status_set_link_diagnostic_
message

fn_status_set_link_remaining_
name

fn_status_set_link_resolved_
name

fn_status_set_link_resolved_ref

fn_status_set_remaining_name fn_status_set_resolved_name

fn_status_set_resolved_ref fn_status_set_success

fn_string_assign fn_string_bytecount

fn_string_charcount fn_string_code_set

fn_string_compare fn_string_compare_substring

fn_string_contents fn_string_copy

fn_string_create fn_string_destroy

fn_string_from_composite_name fn_string_from_compound_name

fn_string_from_contents fn_string_from_str

fn_string_from_strings fn_string_from_str_n

fn_string_from_substring fn_string_is_empty

fn_string_next_substring fn_string_prev_substring

fn_string_str fn_valuelist_destroy

fn_valuelist_next

FILES
/usr/lib/libxfn.so.1 shared object

/usr/lib/sparcv9/libxfn.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

/usr/lib/libxfn.so.1 ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns (32-bit)

SUNWfnsx (64-bit)

MT-Level Safe

SEE ALSO pvs (1), intro (3), xfn (3N), intro (4), attributes (5), fns (5)

281 SunOS 5.7 Last modified 4 Aug 1998

File Formats libxnet(4)

NAME libxnet – X/Open Networking Interfaces library

SYNOPSIS cc [flag . . .] file . . . −lxnet [library . . .]

DESCRIPTION Functions in this library provide networking interfaces which comply with the
X/Open CAE Specification, Networking Services, Issue 4.

The shared object libxnet.so.1 and its dependants provide the public
interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

accept bind connect

endhostent endnetent endprotoent

endservent gethostbyaddr gethostbyname

gethostent gethostname getnetbyaddr

getnetbyname getnetent getpeername

getprotobyname getprotobynumber getprotoent

getservbyname getservbyport getservent

getsockname getsockopt h_errno

htonl htons inet_addr

inet_lnaof inet_makeaddr inet_netof

inet_network inet_ntoa listen

ntohl ntohs recv

recvfrom recvmsg send

sendmsg sendto sethostent

setnetent setprotoent setservent

setsockopt shutdown socket

socketpair t_accept t_alloc

t_bind t_close t_connect

t_errno t_error t_free

t_getinfo t_getprotaddr t_getstate

t_listen t_look t_open

t_optmgmt t_rcv t_rcvconnect

t_rcvdis t_rcvrel t_rcvudata

Last modified 4 Aug 1998 SunOS 5.7 282

libxnet(4) File Formats

t_rcvuderr t_snd t_snddis

t_sndrel t_sndudata t_strerror

t_sync t_unbind

FILES
/usr/lib/libxnet.so.1 shared object

/usr/lib/sparcv9/libxnet.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT-Level Safe

SEE ALSO intro (3), attributes (5), standards (5)

283 SunOS 5.7 Last modified 4 Aug 1998

File Formats liby(4)

NAME liby – user interfaces to yacc library

SYNOPSIS cc [flag . . .] file . . . −ly [library . . .]

DESCRIPTION Functions in this library provide user interfaces to the yacc (1) library.

The shared object liby.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro (4).

INTERFACES SUNW_1.1 (generic):

yyerror

FILES
/usr/lib/liby.a archive library

/usr/lib/liby.so.1 shared object

/usr/lib/sparcv9/liby.so.1 64-bit shared object

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl, SUNWbtool (32-bit)

SUNWcslx (64-bit)

MT-Level Unsafe

SEE ALSO yacc (1), intro (4), attributes (5)

Last modified 4 Aug 1998 SunOS 5.7 284

limits(4) File Formats

NAME limits – header for implementation-specific constants

SYNOPSIS #include <limits.h>

DESCRIPTION The header <limits.h> is a list of minimal magnitude limitations imposed
by a specific implementation of the operating system.

Definition Value Comment

_ARG_MAX32 1048320 /* max length of
arguments to exec 32-bit
program */

_ARG_MAX64 2096640 /* max length of
arguments to exec 64-bit
program */

CHAR_BIT 8 /* max # of bits in a "char"
*/

CHAR_MAX 255 /* max value of a "char" */

CHAR_MIN 0 /* min value of a "char" */

CHILD_MAX 25 /* max # of processes per
user id */

CLK_TCK _sysconf(3) /* clock ticks per second
*/

DBL_DIG 15 /* digits of precision of a
"double" */

DBL_MAX 1.7976931348623157E+308 /* max decimal value of a
"double"*/

DBL_MIN 2.2250738585072014E-308 /* min decimal value of a
"double"*/

FCHR_MAX 1048576 /* historical default file
size limit in bytes */

FLT_DIG 6 /* digits of precision of a
"float" */

FLT_MAX 3.40282347e+38F /* max decimal value of a
"float" */

FLT_MIN 1.17549435E-38F /* min decimal value of a
"float" */

INT_MAX 2147483647 /* max value of an "int" */

INT_MIN (-2147483647-1) /* min value of an "int" */

285 SunOS 5.7 Last modified 23 Feb 1998

File Formats limits(4)

Definition Value Comment

LINK_MAX 1000 /* max # of links to a
single file */

LOGNAME_MAX 8 /* max # of characters in a
login name */

LONG_BIT 32 /* # of bits in a "long" */

LONG_MAX 2147483647L /* max value of a "long
int" if _ILP32 defined */

9223372036854775807L /* max value of a "long
int" if _LP64 defined */

LONG_MIN (-2147483647-1L) /* min value of a "long
int" if _ILP32 defined */

(-9223372036854775807L-
1L)

/* min value of a "long
int" if _LP64 defined */

MAX_CANON 256 /* max bytes in a line for
canonical processing */

MAX_INPUT 512 /* max size of a char
input buffer */

MB_LEN_MAX 5 /* max # of bytes in a
multibyte character */

NAME_MAX 14 /* max # of characters in a
file name */

NGROUPS_MAX 16 /* max # of groups for a
user */

NL_ARGMAX 9 /* max value of "digit" in
calls to the

NLS printf() and scanf() */

NL_LANGMAX 14 /* max # of bytes in a
LANG name */

NL_MSGMAX 32767 /* max message number
*/

NL_NMAX 1 /* max # of bytes in N-to-1
mapping characters */

NL_SETMAX 255 /* max set number */

NL_TEXTMAX 255 /* max # of bytes in a
message string */

Last modified 23 Feb 1998 SunOS 5.7 286

limits(4) File Formats

Definition Value Comment

NZERO 20 /* default process priority
*/

OPEN_MAX 20 /* max # of files a process
can have open */

PASS_MAX 8 /* max # of characters in a
password */

PATH_MAX 1024 /* max # of characters in a
path name */

PID_MAX 99999 /* max value for a process
ID */

PIPE_BUF 5120 /* max # bytes atomic in
write to a pipe */

PIPE_MAX 5120 /* max # bytes written to
a pipe in a write */

SCHAR_MAX 127 /* max value of a "signed
char" */

SCHAR_MIN (-128) /* min value of a "signed
char" */

SHRT_MAX 32767 /* max value of a "short
int" */

SHRT_MIN (-32768) /* min value of a "short
int" */

STD_BLK 1024 /* # bytes in a physical I/
O block */

SYS_NMLN 257 /* 4.0 size of utsname
elements */

/* also defined in sys/
utsname.h */

SYSPID_MAX 1 /* max pid of system
processes */

TMP_MAX 17576 /* max # of unique names
generated by tmpnam */

UCHAR_MAX 255 /* max value of an
"unsigned char" */

UID_MAX 2147483647 /* max value for a user or
group ID */

287 SunOS 5.7 Last modified 23 Feb 1998

File Formats limits(4)

Definition Value Comment

UINT_MAX 4294967295 /* max value of an
"unsigned int" */

ULONG_MAX 4294967295UL /* max value of an
"unsigned long int" if
_ILP32 defined */

18446744073709551615UL /* max value of an
"unsigned long int" if
_LP64 defined */

USHRT_MAX 65535 /* max value of an
"unsigned short int" */

USI_MAX 4294967295 /* max decimal value of
an "unsigned" */

WORD_BIT 32 /* # of bits in a "word" or
"int" */

The following POSIX definitions are the most restrictive values to be used by a
POSIX-conforming application (see standards (5)). Conforming
implementations shall provide values at least this large.

_POSIX_ARG_MAX 4096 /* max length of
arguments to exec */

_POSIX_CHILD_MAX 6 /* max # of processes per
user ID */

_POSIX_LINK_MAX 8 /* max # of links to a
single file */

_POSIX_MAX_CANON 255 /* max # of bytes in a line
of input */

_POSIX_MAX_INPUT 255 /* max # of bytes in
terminal input queue */

_POSIX_NAME_MAX 14 /* # of bytes in a filename
*/

_POSIX_NGROUPS_MAX 0 /* max # of groups in a
process */

_POSIX_OPEN_MAX 16 /* max # of files a process
can have open */

Last modified 23 Feb 1998 SunOS 5.7 288

limits(4) File Formats

_POSIX_PATH_MAX 255 /* max # of characters in a
pathname */

_POSIX_PIPE_BUF 512 /* max # of bytes atomic
in write to a pipe */

SEE ALSO standards (5)

289 SunOS 5.7 Last modified 23 Feb 1998

File Formats loadfont(4)

NAME loadfont – format of a font file used as input to the loadfont utility

DESCRIPTION This section describes the format of files that can be used to change the font
used by the console when using the loadfont (1) utility with the −f option.

The format is compatible with the Binary Distribution Format version 2.1 as
developed by Adobe Systems, Inc.; however, certain restrictions apply. Video
cards, when used with the Solaris for x86 system in text mode, only accept
constant width and constant height fonts in certain sizes.

The loadfont utility also requires that there is a description of all 256
characters of the codeset used specified in the fontfile. Certain attributes are
not used by loadfont but are maintained for compatibility purposes.

File Format A loadfont input file is a plain ASCII file containing only printable
characters (octal 40 through 176) and a carriage return at the end of each line.

The information about a particular font should be contained in a single file.
The file begins with information on the font in general, followed by the
information and bitmaps for the individual characters. The file should contain
bitmaps for all 256 characters, and each character should be of the same size.

A font bitmap description file has the following general form, where each item
is contained on a separate line of text in the file. Items on a line are separated
by spaces:

One or more lines beginning with the word COMMENT. These lines can be used
to add comments to the file and will be ignored by the loadfont program.

The word STARTFONTfollowed by the version number 2.1.

The word FONTfollowed by the full name of the font. The name may continue
all the way to the end of the line, and may contain spaces.

The word SIZE followed by the point size of the characters, the x resolution,
and the y resolution of the font. This line is not used by loadfont but it
needs to be there for compatibility purposes.

The word FONTBOUNDINGBOXfollowed by the width in x, height in y, and the
x and y displacement of the lower left-hand corner from the origin. Again, this
line is not used by loadfont but it must be there for compatibility purposes.

Last modified 31 Dec 1996 SunOS 5.7 290

loadfont(4) File Formats

Optionally, the word STARTPROPERTIESfollowed by the number of
properties that follow. If present, the number needs to match the number of
lines following this one before the occurrence of a line beginning with
ENDPROPERTIESThese lines consist of a word for the property name followed
by either an integer or string surrounded by double quotes. Properties named
FONT_ASCENT FONT_DESCENTand DEFAULT_CHARare typically present in
BDF files to define the logical font-ascent and font-descent and the default-char
for the font.

As mentioned above, this section, if it exists, must be terminated by
ENDPROPERTIES.

The word CHARSfollowed by the number of characters that follow. This
number should always be 256 .

This terminates the part of the loadfont input file describing features of the
font in general. The rest of the file contains descriptions of the individual
characters. They consist of the following parts:

The word STARTCHARfollowed by up to 14 characters (no blanks) describing
the character. This can either be something like C0041, which indicates the hex
value of the character or uppercaseA , which describes the character.

The word ENCODINGfollowed by a positive integer representing value by
which this character is represented internally in the codeset for which this font
is used. The integer needs to be specified in decimal.

The word SWIDTHfollowed by the scalable width in x and y of character.
Scalable widths are in units of 1/1000th of the size of the character. The y
value should always be 0; the x value is typically 666 for the type of characters
used with loadfont . The values are not checked by the loadfont utility, but
this line needs to be there for compatibility purposes.

The word DWIDTHfollowed by two numbers, which in a BDFfile would mean
the width in x and y of the character in device units. The y value is always
zero. The x value is typically 8. loadfont checks only for the presence of the
DWIDTHkeyword.

The word BBX followed by the width in x, height in y and x and y
displacement of the lower left-hand corner from the origin of the character.

291 SunOS 5.7 Last modified 31 Dec 1996

File Formats loadfont(4)

Most fonts used by video cards will not use the bottom 4 rows of pixels, which
basically means a vertical (y) displacement of −4. The only width allowed by
loadfont is 8; heights supported are 8, 14, and 16. All BBX lines of the
subsequent characters should list the same height and width as the first one
(because only fixed size fonts are supported).

The optional word ATTRIBUTES followed by the attributes as 4 hex-encoded
characters. The loadfont utility will accept this line, if present, but there is
no meaning attached to it.

The word BITMAP, which indicates the beginning of the bitmap representation
of the character. This line should be followed by height number of lines
(height as specified in the BBX line) representing a hex-encoded bitmap of the
character, one byte per line.

The word ENDCHARindicating the end of the bitmap for this character.

After all the bitmaps, the end of the file is indicated by the ENDFONTkeyword.

Example The following example lists the beginning of the loadfont input file for an 8
by 16 font, supporting the IBM 437 codeset, as well as the bitmap
representation of the character uppercase A.

STARTFONT 2.1
FONT 8x16
SIZE 16 75 75
FONTBOUNDINGBOX 8 16 0 -4
STARTPROPERTIES 3
FONT_DESCENT 4
FONT_ASCENT 12
DEFAULT_CHAR 0
ENDPROPERTIES
CHARS 256
STARTCHAR C0000
ENCODING 0
. . .Bitmap for uppercase A character:
STARTCHAR C0041
ENCODING 65
SWIDTH 666 0
DWIDTH 8 0
BBX 8 16 0 -4
BITMAP
00
00
10
38
6c
c6

Last modified 31 Dec 1996 SunOS 5.7 292

loadfont(4) File Formats

c6
fe
c6
c6
c6
c6
00
00
00
00
ENDCHAR

FILES
/usr/share/lib/*.bdf

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

SEE ALSO loadfont (1), attributes (5)

293 SunOS 5.7 Last modified 31 Dec 1996

File Formats logindevperm(4)

NAME logindevperm, fbtab – login-based device permissions

SYNOPSIS /etc/logindevperm

DESCRIPTION The /etc/logindevperm file contains information that is used by login (1)
and ttymon (1M) to change the owner, group, and permissions of devices
upon logging into or out of a console device. By default, this file contains lines
for the keyboard, mouse, audio, and frame buffer devices.

The owner of the devices listed in /etc/logindevperm is set to the owner of
the console by login (1) . The group of the devices is set to the owner’s group
specified in /etc/passwd . The permissions are set as specified in
/etc/logindevperm .

Fields are separated by TAB and/or SPACE characters. Blank lines and
comments can appear anywhere in the file; comments start with a hashmark, ‘
’, and continue to the end of the line.

The first field specifies the name of a console device (for example,
/dev/console). The second field specifies the permissions to which the
devices in the device_list field (third field) will be set. A device_list is a
colon-separated list of device names. A device entry that is a directory name
and ends with "/*" specifies all entries in the directory (except "." and ".."). For
example, "/dev/fbs/*" specifies all frame buffer devices.

Once the devices are owned by the user, their permissions and ownership can
be changed using chmod(1) and chown (1) , as with any other user-owned file.

Upon logout the owner and group of these devices will be reset by
ttymon (1M) to owner root and root’s group as specified in /etc/passwd
(typically other). The permissions are set as specified in the
/etc/logindevperm file.

FILES
/etc/passwd File that contains user group information.

SEE ALSO chmod(1) , chown (1) , login (1) , ttymon (1M) , passwd (4)

NOTES /etc/logindevperm provides a superset of the functionality provided by
/etc/fbtab in SunOS 4.x releases.

Last modified 16 August 1993 SunOS 5.7 294

loginlog(4) File Formats

NAME loginlog – log of failed login attempts

DESCRIPTION After five unsuccessful login attempts, all the attempts are logged in the file
/var/adm/loginlog . This file contains one record for each failed attempt.
Each record contains the login name, tty specification, and time.

This is an ASCII file. Each field within each entry is separated from the next by
a colon. Each entry is separated from the next by a new-line.

By default, loginlog does not exist, so no logging is done. To enable logging,
the log file must be created with read and write permission for owner only.
Owner must be root and group must be sys .

FILES
/var/adm/loginlog

SEE ALSO login (1), passwd (1)

295 SunOS 5.7 Last modified 3 Jul 1990

File Formats magic(4)

NAME magic – file command’s magic number file

SYNOPSIS /etc/magic

DESCRIPTION The file (1) command identifies the type of a file using, among other tests, a
test for whether the file begins with a certain magic number. The /etc/magic
file specifies what magic numbers are to be tested for, what message to print if
a particular magic number is found, and additional information to extract from
the file.

Each line of the file specifies a test to perform. A test compares the data
starting at a particular offset in the file with a 1-byte, 2-byte, or 4-byte numeric
value or a string. If the test succeeds, a message is printed. The line consists of
the following fields (separated by tabs):

offset type value message

offset A number specifying the offset, in bytes, into the file of the
data which is to be tested.

type The type of the data to be tested. The possible values are:

byte A one-byte value.

short A two-byte value.

long A four-byte value.

string A string of bytes.

The types byte , short , and long may optionally be
followed by a mask specifier of the form &number. If a mask
specifier is given, the value is AND’ed with the number
before any comparisons are done. The number is specified in
C form. For instance, 13 is decimal, 013 is octal, and 0x13 is
hexadecimal.

value The value to be compared with the value from the file. If the type is numeric, this v
string, it is specified as a C string with the usual escapes permitted (for instance, \n

Numeric values may be preceded by a character indicating the
operation to be performed. It may be ‘=’, to specify that the
value from the file must equal the specified value, ‘<’, to
specify that the value from the file must be less than the
specified value, ‘>’, to specify that the value from the file
must be greater than the specified value, ‘&’, to specify that
all the bits in the specified value must be set in the value
from the file, ‘^ ’, to specify that at least one of the bits in the
specified value must not be set in the value from the file, or

Last modified 8 May 1995 SunOS 5.7 296

magic(4) File Formats

x to specify that any value will match. If the character is
omitted, it is assumed to be ‘=’.

For string values, the byte string from the file must match
the specified byte string. The byte string from the file which
is matched is the same length as the specified byte string.

message The message to be printed if the comparison succeeds. If the
string contains a printf (3S) format specification, the value
from the file (with any specified masking performed) is
printed using the message as the format string.

Some file formats contain additional information which is to be printed along
with the file type. A line which begins with the character ‘>’ indicates
additional tests and messages to be printed. If the test on the line preceding
the first line with a ‘>’ succeeds, the tests specified in all the subsequent lines
beginning with ‘>’ are performed, and the messages printed if the tests
succeed. The next line which does not begin with a ‘>’ terminates this.

FILES
/etc/magic

SEE ALSO file (1), file (1B), printf (3S)

BUGS There should be more than one level of subtests, with the level indicated by
the number of ‘>’ at the beginning of the line.

297 SunOS 5.7 Last modified 8 May 1995

File Formats mech(4)

NAME mech, qop – mechanism and QOP files

SYNOPSIS /etc/gss/mech /etc/gss/qop

DESCRIPTION The /etc/gss/mech and /etc/gss/qop files contain tables showing
installed security mechanisms and the Quality of Protection (QOP) associated
with them, respectively. As security mechanisms are installed on the system,
entries are added to these two files. Contents of these files may be accessed
either manually (for example, with cat (1) or more (1))or programmatically
(with either rpc_gss_get_mechanisms (3N) or
rpc_gss_get_mech_info (3N)).

The /etc/gss/mech file contains four fields:
mechanism name ASCII string representing the mechanism.

object identifier RPC OID for this mechanism.

shared library Shared library which implements the services
provided by this mechanism.

kernel module Kernel module which implements the services
provided by this mechanism.

The /etc/gss/qop file contains three fields:
QOP string Name, in ASCII, of this Quality of Protection.

QOP value Numeric value by which RPC identifies this QOP.

mechanism name ASCII string representing the mechanism with
which this QOP is associated.

EXAMPLES EXAMPLE 1 A Typical Entry in /etc/gss/mech

This is a typical entry in a /etc/gss/mech file:

kerberosv5\0111.2.840.113554.1.2.2\011mech_krb5.so\011kmech_krb5

EXAMPLE 2 A Typical Entry in /etc/gss/qop

This is a typical entry in a /etc/gss/qop file:

GSS_KRB5_CONF_C_QOP_DES\0110\011kerberosv5

SEE ALSO rpc (3N) , rpc_gss_get_mechanisms (3N) ,
rpc_gss_get_mech_info (3N) , rpcsec_gss (3N) , attributes ONC+
Developer’s Guide

Last modified 12 May 1998 SunOS 5.7 298

mnttab(4) File Formats

NAME mnttab – mounted file system table

DESCRIPTION The file mnttab resides in /etc and contains information about devices that
are currently mounted. mnttab is read by programs using the routines
described in getmntent (3C). mount (1M) adds entries to this file. umount
removes entries from this file. Each entry is a line of fields separated by spaces
in the form:

special mount_point fstype options time

where
special The name of the resource to be mounted.

mount_point The pathname of the directory on which the filesystem is
mounted.

fstype The file system type of the mounted file system.

options The mount options. (See repective mount file system man
page below in SEE ALSO.)

time The time at which the file system was mounted.
Examples of entries for the special field include the pathname of a block-special
device, the name of a remote filesystem in host:pathname form, or the name of a
‘‘swap file’’ (for instance, a file made with mkfile (1M)).

FILES
/etc/mnttab

SEE ALSO mkfile (1M), mount_cachefs (1M), mount_hsfs (1M), mount_nfs (1M),
mount_pcfs (1M), mount_ufs (1M), mount (1M), setmnt (1M),
getmntent (3C)

299 SunOS 5.7 Last modified 6 Oct 1994

File Formats netconfig(4)

NAME netconfig – network configuration database

SYNOPSIS /etc/netconfig

DESCRIPTION The network configuration database, /etc/netconfig , is a system file used
to store information about networks that are connected to the system. The
netconfig database and the routines that access it (see getnetconfig (3N))
are part of the Network Selection component. The Network Selection
component also includes getnetpath (3N) routines to provide
application-specific network search paths. These routines access the
netconfig database based on the environment variable NETPATH (see
environ (5)).

netconfig contains an entry for each network available on the system.
Entries are separated by newlines. Fields are separated by whitespace and
occur in the order in which they are described below. Whitespace can be
embedded as ‘‘\ blank’’ or ‘‘\ tab’’. Backslashes may be embedded as ‘‘\\ ’’.
Lines in /etc/netconfig that begin with a # (hash) in column 1 are treated
as comments.

Each of the valid lines in the netconfig database correspond to an available
transport. Each entry is of the form:

network ID semantics flag protocol-family protocol-name network-device translation-libraries
network ID A string used to uniquely identify a network.

network ID consists of non-null characters, and
has a length of at least 1. No maximum length is
specified. This namespace is locally significant
and the local system administrator is the naming
authority. All network IDs on a system must be
unique.

semantics The semantics field is a string identifying the
‘‘semantics’’ of the network, that is, the set of
services it supports, by identifying the service
interface it provides. The semantics field is
mandatory. The following semantics are
recognized.

tpi_clts Transport Provider Interface,
connectionless

tpi_cots Transport Provider Interface,
connection oriented

Last modified 22 May 1994 SunOS 5.7 300

netconfig(4) File Formats

tpi_cots_ord Transport Provider Interface,
connection oriented, supports
orderly release.

flag The flag field records certain two-valued (‘‘true’’
and ‘‘false’’) attributes of networks. flag is a string
composed of a combination of characters, each of
which indicates the value of the corresponding
attribute. If the character is present, the attribute
is ‘‘true.’’ If the character is absent, the attribute is
‘‘false.’’ ‘‘- ’’ indicates that none of the attributes
are present. Only one character is currently
recognized:

v Visible (‘‘default’’) network.
Used when the environment
variable NETPATH is unset.

protocol family The protocol family and protocol name fields are
provided for protocol-specific applications. The
protocol family field contains a string that
identifies a protocol family. The protocol family
identifier follows the same rules as those for
network IDs; the string consists of non-null
characters, it has a length of at least 1, and there
is no maximum length specified. A ‘‘−’’ in the
protocol family field indicates that no protocol
family identifier applies (the network is
experimental). The following are examples:

loopback Loopback (local to host).

inet Internetwork: UDP, TCP, etc.

implink ARPANET imp addresses

pup PUP protocols: for example,
BSP

chaos MIT CHAOS protocols

ns XEROX NS protocols

nbs NBS protocols

ecma European Computer
Manufacturers Association

datakit DATAKIT protocols

301 SunOS 5.7 Last modified 22 May 1994

File Formats netconfig(4)

ccitt CCITT protocols, X.25, etc.

sna IBM SNA

decnet DECNET

dli Direct data link interface

lat LAT

hylink NSC Hyperchannel

appletalk Apple Talk

nit Network Interface Tap

ieee802 IEEE 802.2; also ISO 8802

osi Umbrella for all families used
by OSI (for example, protosw
lookup)

x25 CCITT X.25 in particular

osinet AFI = 47, IDI = 4

gosip U.S. Government OSI

protocol name The protocol name field contains a string that
identifies a protocol. The protocol name identifier
follows the same rules as those for network IDs;
that is, the string consists of non-NULL
characters, it has a length of at least 1, and there
is no maximum length specified. A ‘‘−’’ indicates
that none of the names listed apply. The
following protocol names are recognized.

tcp Transmission Control Protocol

udp User Datagram Protocol

icmp Internet Control Message
Protocol

network device The network device is the full pathname of the
device used to connect to the transport provider.
Typically, this device will be in the /dev
directory. The network device must be specified.

Last modified 22 May 1994 SunOS 5.7 302

netconfig(4) File Formats

translation libraries The name-to-address translation libraries support a
‘‘directory service’’ (a name-to-address mapping
service) for the network. A ‘‘−’’ in this field
indicates the absence of any translation libraries.
This has a special meaning for networks of the
protocol family inet : its name-to-address
mapping is provided by the name service switch
based on the entries for hosts and services in
nsswitch.conf (4). For networks of other
families, a ‘‘−’’ indicates non-functional
name-to-address mapping. Otherwise, this field
consists of a comma-separated list of pathnames
to dynamically linked libraries. The pathname of
the library can be either absolute or relative. See
dlopen (3X).

Each field corresponds to an element in the struct netconfig structure.
struct netconfig and the identifiers described on this manual page are
defined in <netconfig.h> . This structure includes the following members:
char * nc_netid Network ID, including NULL

terminator.

unsigned long nc_semantics Semantics.

unsigned long nc_flag Flags.

char * nc_protofmly Protocol family.

char * nc_proto Protocol name.

char * nc_device Full pathname of the network
device.

unsigned long nc_nlookups Number of directory lookup
libraries.

char ** nc_lookups Names of the name-to-address
translation libraries.

unsigned long nc_unused[9] Reserved for future expansion.
The nc_semantics field takes the following values, corresponding to the
semantics identified above:

NC_TPI_CLTS

NC_TPI_COTS

303 SunOS 5.7 Last modified 22 May 1994

File Formats netconfig(4)

NC_TPI_COTS_ORD

The nc_flag field is a bitfield. The following bit, corresponding to the attribute
identified above, is currently recognized. NC_NOFLAGindicates the absence of
any attributes.

NC_VISIBLE

EXAMPLES EXAMPLE 1 A sample netconfig file.

Below is a sample netconfig file:

#
The "Network Configuration" File.
#
Each entry is of the form:
#
<network_id> <semantics> <flags> <protofamily> <protoname>
<device> \
<nametoaddr_libs>
#
The "-" in <nametoaddr_libs> for inet family transports indicates
redirection to the name service switch policies for "hosts" and
"services". The "-" may be replaced by nametoaddr libraries that
comply with the SVr4 specs, in which case the name service switch
will not be used for netdir_getbyname, netdir_getbyaddr,
gethostbyname, gethostbyaddr, getservbyname, and getservbyport.
There are no nametoaddr_libs for the inet family in Solaris anymore.
#
udp tpi_clts v inet udp /dev/udp -
tcp tpi_cots_ord v inet tcp /dev/tcp -
rawip tpi_raw - inet - /dev/rawip -
ticlts tpi_clts v loopback - /dev/ticlts straddr.so
ticotsord tpi_cots_ord v loopback - /dev/ticotsord straddr.so
ticots tpi_cots v loopback - /dev/ticots straddr.so

FILES
<netconfig.h>

SEE ALSO dlopen (3X), getnetconfig (3N), getnetpath (3N), nsswitch.conf (4)

NFS Administration Guide Transport Interfaces Programming Guide

Last modified 22 May 1994 SunOS 5.7 304

netgroup(4) File Formats

NAME netgroup – list of network groups

SYNOPSIS /etc/netgroup

DESCRIPTION A netgroup defines a network-wide group of hosts and users.

Netgroups may be used to restrict access to shared NFS filesystems and for
restricting remote login and shell access.

Network groups are stored in one of the Network Information Services, either
NIS or NIS+, not in a local file.

This manual page describes the format for a file that may be used to supply
input to the makedbm(1M) or nisaddent (1M) programs that are use to build
the NIS map or NIS+ table, respectively.

Each line of the file defines the name and membership of network group. The
line should have the format:

groupname member ...

The items on a line may be separated by a combination of one or more spaces
or tabs.

The groupname is the name of the group being defined. This is followed by a
list of members of the group. Each member is either another group name, all of
whose members are to be included in the group being defined, or a triple of
the form:

(hostname,username,domainname)

In each triple, any of the three fields hostname , username, and domainname ,
can be empty. An empty field signifies a "wildcard" matching any value in that
field. Thus:

everything (, ,this.domain)

defines a group named "everything" for the domain "this.domain" to which
every host and user belongs.

305 SunOS 5.7 Last modified 17 Mar 1998

File Formats netgroup(4)

The domainname field refers to the domain in which the triple is valid, not the
domain containing the host or user.

Netgroups can be used to control NFS mount access (see share_nfs (1M))
and to control remote login and shell access (see hosts.equiv (4)). They can
also be used to control local login access (see passwd (4), shadow (4), and
"compat" in nsswitch.conf (4)).

When used for these purposes, a host is considered a member of a netgroup if
the netgroup contains any triple in which the hostname field matches the
name of the host requesting access and the domainname field matches the
domain of the host controlling access.

Similarly, a user is considered a member of a netgroup if the netgroup contains
any triple in which the username field matches the name of the user requesting
access and the domainname field matches the domain of the host controlling
access.

Note that when netgroups are used to control NFS mount access, access is
granted depending only on whether the requesting host is a member of the
netgroup. Remote login and shell access can be controlled both on the basis of
host and user membership in separate netgroups.

FILES
/etc/netgroup used by /var/yp/Makefile on NIS masters to

build the NIS netgroup map
Note that the netgroup information must always be stored in a network
information service, either NIS or NIS+. The local file is only used to construct
the netgroup NIS maps or NIS+ table; it is never consulted directly.

SEE ALSO nis+ (1), makedbm(1M), nisaddent (1M), share_nfs (1M), innetgr (3N),
hosts (4), hosts.equiv (4), nsswitch.conf (4), passwd (4), shadow (4)

NOTES netgroup requires NIS or NIS+.

Applications may make general membership tests using the innetgr()
function (see innetgr (3N)).

Because the "-" character will not match any specific username or hostname, it
is commonly used as a placeholder that will match only wildcarded
membership queries. So, for example:

onlyhosts (host1,-,our.domain) (host2,-,our.domain)
onlyusers (-,john,our.domain) (-,linda,our.domain)

Last modified 17 Mar 1998 SunOS 5.7 306

netgroup(4) File Formats

effectively define netgroups containing only hosts and only users, respectively.
Any other string that is guaranteed not to be a legal username or hostname
will also suffice for this purpose.

Use of placeholders will improve search performance.

When a machine with multiple interfaces and multiple names is defined as a
member of a netgroup, one must list all of the names (see hosts (4)). A
manageable way to do this is to define a netgroup containing all of the
machine names. For example, for a host "gateway" that has names
"gateway-subnet1" and "gateway-subnet2" one may define the netgroup:

gateway (gateway-subnet1, ,our.domain) (gateway-subnet2, ,our.domain)

and use this netgroup gateway whenever the host is to be included in another
netgroup.

307 SunOS 5.7 Last modified 17 Mar 1998

File Formats netid(4)

NAME netid – netname database

SYNOPSIS /etc/netid

DESCRIPTION The netid file is a local source of information on mappings between
netnames (see secure_rpc (3N)) and user ids or hostnames in the local
domain. The netid file can be used in conjunction with, or instead of, the
network source: NIS or NIS+. The publickey entry in the nsswitch.conf
(see nsswitch.conf (4)) file determines which of these sources will be
queried by the system to translate netnames to local user ids or hostnames.

Each entry in the netid file is a single line of the form:

netname uid: gid, gid, gid . . .

or

netname 0:hostname

The first entry associates a local user id with a netname. The second entry
associates a hostname with a netname.

The netid file field descriptions are as follows:
netname The operating system independent network name for the

user or host. netname has one of two formats. The format
used to specify a host is of the form:

unix.hostname@ domain

where hostname is the name of the host and domain is the
network domain name.

The format used to specify a user id is of the form:

unix. uid@domain

where uid is the numerical id of the user and domain is the
network domain name.

uid The numerical id of the user (see passwd (4)). When
specifying a host name, uid is always zero.

Last modified 23 May 1994 SunOS 5.7 308

netid(4) File Formats

group The numerical id of the group the user belongs to (see
group (4)). Several groups, separated by commas, may be
listed for a single uid.

hostname The local hostname (see hosts (4)).
Blank lines are ignored. Any part of a line to the right of a ‘#’ symbol is
treated as a comment.

EXAMPLES EXAMPLE 1 A sample netid file.

Here is a sample netid file:

unix.789@West.Sun.COM 789:30,65
unix.123@Bldg_xy.Sun.COM 123:20,1521
unix.candlestick@campus1.bayarea.EDU 0:candlestick

FILES
/etc/group groups file

/etc/hosts hosts database

/etc/netid netname database

/etc/passwd password file

/etc/publickey public key database

SEE ALSO netname2user (3N), secure_rpc (3N), group (4), hosts (4),
nsswitch.conf (4), passwd (4), publickey (4)

309 SunOS 5.7 Last modified 23 May 1994

File Formats netmasks(4)

NAME netmasks – network mask database

SYNOPSIS /etc/inet/netmasks

/etc/netmasks

DESCRIPTION The netmasks file contains network masks used to implement IP subnetting.
It supports both standard subnetting as specified in RFC-950 and variable
length subnetting as specified in RFC-1519. When using standard subnetting
there should be a single line for each network that is subnetted in this file with
the network number, any number of SPACE or TAB characters, and the
network mask to use on that network. Network numbers and masks may be
specified in the conventional IP ‘.’ (dot) notation (like IP host addresses, but
with zeroes for the host part). For example,

128.32.0.0 255.255.255.0

can be used to specify that the Class B network 128.32.0.0 should have eight
bits of subnet field and eight bits of host field, in addition to the standard
sixteen bits in the network field.

When using variable length subnetting, the format is identical. However, there
should be a line for each subnet with the first field being the subnet and the
second field being the netmask that applies to that subnet. The users of the
database, such as ifconfig (1M), perform a lookup to find the longest
possible matching mask. It is possible to combine the RFC-950 and RFC-1519
form of subnet masks in the netmasks file. For example,

128.32.0.0 255.255.255.0
128.32.27.0 255.255.255.240
128.32.27.16 255.255.255.240
128.32.27.32 255.255.255.240
128.32.27.48 255.255.255.240
128.32.27.64 255.255.255.240
128.32.27.80 255.255.255.240
128.32.27.96 255.255.255.240
128.32.27.112 255.255.255.240
128.32.27.128 255.255.255.240
128.32.27.144 255.255.255.240
128.32.27.160 255.255.255.240
128.32.27.176 255.255.255.240
128.32.27.192 255.255.255.240
128.32.27.208 255.255.255.240
128.32.27.224 255.255.255.240
128.32.27.240 255.255.255.240
128.32.64.0 255.255.255.192

can be used to specify different netmasks in different parts of the 128.32.0.0
Class B network number. Addresses 128.32.27.0 through 128.32.27.255 have a
subnet mask with 28 bits in the combined network and subnet fields (often
referred to as the subnet field) and 4 bits in the host field. Furthermore,
addresses 128.32.64.0 through 128.32.64.63 have a 26 bits in the subnet field.
Finally, all other addresses in the range 128.32.0.0 through 128.32.255.255 have
a 24 bit subnet field.

Last modified 7 Jan 1997 SunOS 5.7 310

netmasks(4) File Formats

Invalid entries are ignored.

SEE ALSO ifconfig (1M), inet (7P)

Postel, Jon, and Mogul, Jeff, Internet Standard Subnetting Procedure, RFC 950,
Network Information Center, SRI International, Menlo Park, Calif., August
1985.

V. Fuller, T. Li, J. Yu, K. Varadhan, Classless Inter-Domain Routing (CIDR): an
Address Assignment and Aggregation Strategy, RFC 1519, Network Information
Center, SRI International, Menlo Park, Calif., September 1993.

T. Pummill, B. Manning, Variable Length Subnet Table For IPv4, RFC 1878,
Network Information Center, SRI International, Menlo Park, Calif., December
1995.

NOTES /etc/inet/netmasks is the official SVr4 name of the netmasks file. The
symbolic link /etc/netmasks exists for BSD compatibility.

311 SunOS 5.7 Last modified 7 Jan 1997

File Formats netrc(4)

NAME netrc – file for ftp remote login data

DESCRIPTION The .netrc file contains data for logging in to a remote host over the network
for file transfers by ftp (1). This file resides in the user’s home directory on the
machine initiating the file transfer. Its permissions should be set to disallow
read access by group and others (see chmod(1)).

The following tokens are recognized; they may be separated by SPACE, TAB,
or NEWLINE characters:
machine name Identify a remote machine name. The auto-login process

searches the .netrc file for a machine token that matches
the remote machine specified on the ftp command line or as
an open command argument. Once a match is made, the
subsequent .netrc tokens are processed, stopping when the
EOF is reached or another machine token is encountered.

login name Identify a user on the remote machine. If this token is
present, the auto-login process will initiate a login using the
specified name.

password string Supply a password. If this token is present, the auto-login
process will supply the specified string if the remote server
requires a password as part of the login process. Note: if this
token is present in the .netrc file, ftp will abort the
auto-login process if the .netrc is readable by anyone
besides the user.

account string Supply an additional account password. If this token is
present, the auto-login process will supply the specified
string if the remote server requires an additional account
password, or the auto-login process will initiate an ACCT
command if it does not.

macdef name Define a macro. This token functions the same as ftp
macdef . A macro is defined with the specified name; its
contents begin with the next .netrc line and continue until
a null line (consecutive NEWLINE characters) is
encountered. If a macro named init is defined, it is
automatically executed as the last step in the auto-login
process.

EXAMPLES EXAMPLE 1 A sample .netrc file.

A .netrc file containing the following line:
machine ray login demo password mypassword

allows an autologin to the machine ray using the login name demo with
password mypassword .

Last modified 3 Jul 1990 SunOS 5.7 312

netrc(4) File Formats

FILES
~/.netrc

SEE ALSO chmod(1), ftp (1), in.ftpd (1M)

313 SunOS 5.7 Last modified 3 Jul 1990

File Formats networks(4)

NAME networks – network name database

SYNOPSIS /etc/inet/networks

/etc/networks

DESCRIPTION The networks file is a local source of information regarding the networks
which comprise the Internet. The networks file can be used in conjunction
with, or instead of, other networks sources, including the NIS maps
networks.byname and networks.byaddr and the NIS+ table networks .
Programs use the getnetbyname (3N) routines to access this information.

The network file has a single line for each network, with the following
information:

official-network-name network-number aliases
Items are separated by any number of SPACE and/or TAB characters. A ‘#’
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines which search the file. This file is normally created
from the official network database maintained at the Network Information
Control Center (NIC), though local changes may be required to bring it up to
date regarding unofficial aliases and/or unknown networks.

Network numbers may be specified in the conventional dot (‘. ’) notation
using the inet_network routine from the Internet address manipulation
library, inet (7P). Network names may contain any printable character other
than a field delimiter, NEWLINE, or comment character.

SEE ALSO getnetbyaddr (3N), getnetbyname (3N), inet (3N), nsswitch.conf (4),
inet (7P)

NOTES The official SVR4 name of the networks file is /etc/inet/networks . The
symbolic link /etc/networks exists for BSD compatibility.

The network database does not support subnet masks in general, so
getnetbyaddr (3N) cannot differentiate between networks of 11.128.0.0/
255.192.0.0 and 11.128.0.0/255.240.0.0.

Last modified 2 Jun 1997 SunOS 5.7 314

nisfiles(4) File Formats

NAME nisfiles – NIS+ database files and directory structure

SYNOPSIS /var/nis

DESCRIPTION The Network Information Service Plus (NIS+) uses a memory based, replicated
database. This database uses a set of files in the /var/nis directory for
checkpointing to table storage and for maintaining a transaction log.
Additionally, the NIS+ server and client use files in this directory to store
binding and state information.

The NIS+ service implements an authentication and authorization system that
is built upon Secure RPC. In this implementation, the service uses a table
named cred.org_dir. domain-name to store the public and private keys of
principals that are authorized to access the NIS+ namespace. It stores group
access information in the subdomain groups_dir. domain-name as group
objects. These two tables appear as files in the /var/nis/data directory on
the NIS+ server.

Unlike the previous versions of the network information service, in NIS+, the
information in the tables is initially loaded into the service from the ASCII files
on the server and then updated using NIS+ utilities (see nistbladm (1)). Some
sites may wish to periodically regenerate the ASCII files for archival purposes.
To do this, a script should be added in the crontab (1) of the server that lists
these tables and creates the ASCII file from the result.

Note: Except for the NIS_COLDSTARTand NIS_SHARED_DIRCACHEfile, no
other files should be manipulated by commands such as cp (1), mv(1) or
rm(1). The transaction log file keeps logs of all changes made, and hence the
files cannot be manipulated independently.

The files described below are stored in the /var/nis directory:
NIS_COLDSTART Contains NIS+ directory objects that are to be

preloaded into the NIS+ cache at startup time.
This file is usually created at NIS+ installation
time. See nisinit (1M) or nisclient (1M).

NIS_SHARED_DIRCACHE Contains the current cache of NIS+ bindings
being maintained by the cache manager. The
contents can be viewed with
nisshowcache (1M).

client_info Contains configuration information (preferred
servers, options, etc.) for nis_cachemgr (1M)
and (potentially) other NIS+ clients on the
system. It is manipulated by the
nisprefadm (1M) command.

315 SunOS 5.7 Last modified 7 Jan 1997

File Formats nisfiles(4)

.pref_servers A cached copy of preferred server information. It
is maintained by nis_cachemgr. Do not edit
this file manually.

trans.log Contains a transaction log that is maintained by
the NIS+ service. It can be viewed using the
nislog (1M) command. This file contains holes.
Its apparent size may be a lot higher than its
actual size. There is only one transaction log per
server.

data.dict A dictionary that is used by the NIS+ database to
locate its files. It is created by the default NIS+
database package.

data.dict.log The log file for the database dictionary. When the
server is checkpointed (see the −C option of
nisping (1M)), this file will be deleted.

data Contains databases that the server uses.

data/root.object On root servers, this file contains a directory
object that describes the root of the name space.

data/parent.object On root servers, this file contains a directory
object that describes the parent namespace. This
file is created by the nisinit (1M) command.

data/ table_name For each table in the directory there is a file with
the same name that stores the information about
that table. If there are subdirectories within this
directory, the database for the table is stored in
the file, table_name.subdirectory.

data/ table_name.log Contains the database log for the table table_name.
The log file maintains the state of individual
transactions to each database. When a database
has been checkpointed (that is, all changes have
been made to the data/table_name stable storage),
this log file will be deleted.

Currently, NIS+ does not automatically do
checkpointing. The system administrator may
want to do nisping −C operations periodically
(such as, once a day) to checkpoint the log file.

Last modified 7 Jan 1997 SunOS 5.7 316

nisfiles(4) File Formats

This can be done either through a cron (1M) job,
or manually.

data/root_dir On root servers, this file stores the database
associated with the root directory. It is similar to
other table databases. The corresponding log file
is called root_dir.log .

data/cred.org_dir Table containing the credentials of principals in
this NIS+ domain.

data/groups_dir Table containing the group authorization objects
needed by NIS+ to authorize group access.

data/serving_list Contains a list of all NIS+ directories that are
being served by the NIS+ server on this server.
When this server is added or deleted from any
NIS+ directory object, this file is updated by the
server.

SEE ALSO cp (1), crontab (1), mv(1), nis (1), nis_cachemgr (1M), niscat (1),
nismatch (1), nistbladm (1), rm(1), cron (1M), nisclient (1M),
nisinit (1M), nislog (1M), nisping (1M), nisprefadm (1M),
nisshowcache (1M), nis_db (3N), nis_objects (3N)

317 SunOS 5.7 Last modified 7 Jan 1997

File Formats nologin(4)

NAME nologin – message displayed to users attempting to log on in the process of a
system shutdown

SYNOPSIS /etc/nologin

DESCRIPTION The /etc/nologin file contains the message displayed to users attempting to
log on to a machine in the process of being shutdown. After displaying the
contents of the nologin file, the login procedure terminates, preventing the
user from logging onto the machine.

This procedure is preferable to terminating a user’s session by shutdown
shortly after the user has logged on.

Logins by super-user are not affected by this procedure.

The message contained in the nologin file is editable by super-user. A typical
nologin file contains a message similar to:

NO LOGINS: System going down in 10 minutes.

SEE ALSO login (1), rlogin (1), telnet (1), shutdown (1M)

Last modified 21 Dec 1995 SunOS 5.7 318

note(4) File Formats

NAME note – specify legal annotations

SYNOPSIS /usr/lib/note

DESCRIPTION Each file in this directory contains the NOTE(also _NOTE) annotations legal for
a single tool. The name of the file, by convention, should be the tool vendor’s
stock name, followed by a hyphen, followed by the tool name. For example,
for Sun’s lock_lint tool the filename should be SUNW-lock_lint .

The file should contain the names of the annotations understood by the tool,
one per line. For example, if a tool understands the following annotations:

NOTE(NOT_REACHED)
NOTE(MUTEX_PROTECTS_DATA(list_lock, list_head))

then its file in /usr/lib/note should contain the entries:

NOT_REACHED
MUTEX_PROTECTS_DATA

Blank lines, and lines beginning with a pound (#), are ignored.

While /usr/lib/note is the default directory tools search for such files, they
can be made to search other directories instead simply by setting environment
variable NOTEPATHto contain the paths, separated by colons, of directories to
be searched, e.g., /usr/mytool/note:/usr/lib/note .

USAGE These files are used by such tools whenever they encounter NOTEs they do not
understand. If a file in /usr/lib/note contains the annotation, then it is
valid. If no such file contains the annotation, then the tool should issue a
warning complaining that it might be invalid.

ENVIRONMENT
VARIABLES

NOTEPATH specify paths to be searched for annotation files. Paths are
separated by colons (“:”).

SEE ALSO NOTE(3X)

319 SunOS 5.7 Last modified 17 Jan 1995

File Formats nscd.conf(4)

NAME nscd.conf – name service cache daemon configuration

SYNOPSIS /etc/nscd.conf

DESCRIPTION The nscd.conf file contains the configuration information for nscd (1M).
Each line specifies either an attribute and a value, or an attribute, cachename, and
a value. Fields are separated either by SPACE or TAB characters. A ‘#’ (number
sign) indicates the beginning of a comment; characters up to the end of the
line are not interpreted by nscd .

cachename is represented by hosts , passwd , or groups .

attribute supports the following:
logfile debug-file-name Specifies name of the file to

which debug info should be
written. Use /dev/tty for
standard output.

debug-level value Sets the debug level desired.
value may range from 0 (the
default) to 10 . Use of this
option causes nscd (1M) to run
in the foreground and not
become a daemon. Note that
the output of the debugging
command is not likely to
remain the same from
release-to-release; scripts should
not rely on its format.

enable-cache cachename value Enables or disables the specified
cache. value may be either yes
or no .

positive-time-to-live cachename value Sets the time-to-live for positive
entries (successful queries) in
the specified cache. value is in
integer seconds. Larger values
increase cache hit rates and
reduce mean response times,
but increase problems with
cache coherence. Note that sites
that push (update) NIS maps
nightly can set the value to be
the equivalent of 12 hours or
more with very good
performance implications.

Last modified 6 Mar 1995 SunOS 5.7 320

nscd.conf(4) File Formats

negative-time-to-live cachename value Sets the time-to-live for
negative entries (unsuccessful
queries) in the specified cache.
value is in integer seconds. Can
result in significant performance
improvements if there are
several files owned by uids
(user IDs) not in system
databases; should be kept small
to reduce cache coherency
problems.

suggested-size cachename value Sets the suggested number of
hash buckets in the specified
cache. This parameter should be
changed only if the number of
entries in the cache exceeds the
suggested size by more than a
factor of four or five. Since this
is the internal hash table size,
value should remain a prime
number for optimum efficiency.

keep-hot-count cachename value This attribute allows the
administrator to set the number
of entries nscd (1M) is to keep
current in the specified cache.
value is an integer number
which should approximate the
number of entries frequently
used during the day.

check-files cachename value Enables or disables checking the
file belonging to the specified
cachename for changes. If
enabled (which is the default),
changes in the corresponding
file cause the cache to be
invalidated within 10 seconds.
Can be disabled if files are
never modified for a slight
performance boost, particularly
over NFS. value may be either
yes or no .

321 SunOS 5.7 Last modified 6 Mar 1995

File Formats nscd.conf(4)

SEE ALSO nscd (1M), group (4), hosts (4), passwd (4)

WARNINGS The nscd.conf interface is included in this release on an uncommitted basis
only, and is subject to change or removal in a future minor release.

Last modified 6 Mar 1995 SunOS 5.7 322

nsswitch.conf(4) File Formats

NAME nsswitch.conf – configuration file for the name service switch

SYNOPSIS /etc/nsswitch.conf

DESCRIPTION The operating system uses a number of "databases" of information about hosts,
users (passwd /shadow), groups and so forth. Data for these can come from a
variety of sources: host-names and host-addresses, for example, may be found
in /etc/hosts , NIS, NIS+, or DNS. Zero or more sources may be used for
each database; the sources and their lookup order are specified in the
/etc/nsswitch.conf file.

The following databases use the switch file:
Database Used by

aliases sendmail (1M)

automount automount (1M)

bootparams rpc.bootparamd (1M)

ethers ethers (3N)

group getgrnam (3C)

hosts gethostbyname (3N)

(See "Interaction with netconfig" below.)

netgroup innetgr (3N)

netmasks ifconfig (1M)

networks getnetbyname (3N)

passwd getpwnam (3C), getspnam (3C)

protocols getprotobyname (3N)

publickey getpublickey (3N) secure_rpc (3N)

rpc getrpcbyname (3N)

sendmailvars sendmail (1M)

services getservbyname (3N)

(See "Interaction with netconfig" below.)

The following sources may be used:

323 SunOS 5.7 Last modified 28 Apr 1997

File Formats nsswitch.conf(4)

Source Uses

files /etc/hosts , /etc/passwd , /etc/shadow and
so forth

nis NIS (YP)

nisplus NIS+

dns Valid only for hosts ; uses the Internet Domain
Name Service.

compat Valid only for passwd and group ; implements
"+" and "-".

(See "Interaction with +/- syntax" below.)
The compat source may not be supported in
future releases.

There is an entry in /etc/nsswitch.conf for each database. Typically these
entries will be simple, such as "protocols: files" or "networks: files nisplus".
However, when multiple sources are specified, it is sometimes necessary to
define precisely the circumstances under which each source will be tried. A
source can return one of the following codes:
Status Meaning

SUCCESS Requested database entry was found

UNAVAIL Source is not responding or corrupted

NOTFOUND Source responded "no such entry"

TRYAGAIN Source is busy, might respond to retries
For each status code, two actions are possible:
Action Meaning

continue Try the next source in the list

return Return now
The complete syntax of an entry is

<entry> ::= <database> ":" [<source>
[<criteria>]]*
<criteria> ::= "[" <criterion>+ "]"
<criterion> ::= <status> "=" <action>
<status> ::= "success" | "notfound" | "unavail" | "tryagain"
<action> ::= "return" | "continue"

Last modified 28 Apr 1997 SunOS 5.7 324

nsswitch.conf(4) File Formats

Each entry occupies a single line in the file. Lines that are blank, or that start
with white space, are ignored. Everything on a line following a # character is
also ignored; the # character can begin anywhere in a line, to be used to begin
comments. The <database> and <source> names are case-sensitive, but
<action> and <status> names are case-insensitive.

The library functions contain compiled-in default entries that are used if the
appropriate entry in nsswitch.conf is absent or syntactically incorrect.

The default criteria are to continue on anything except SUCCESS; in other
words, [SUCCESS=return NOTFOUND=continue UNAVAIL=continue
TRYAGAIN=continue].

The default, or explicitly specified, criteria are meaningless following the last
source in an entry; and they are ignored, since the action is always to return to
the caller irrespective of the status code the source returns.

Interaction with
netconfig

In order to ensure that they all return consistent results,
gethostbyname (3N), getservbyname (3N), and netdir_getbyname (3N)
functions are all implemented in terms of the same internal library function.
This function obtains the system-wide source lookup policy for hosts and
services based on the inet family entries in netconfig (4) and uses the
switch entries only if the netconfig entries have a "-" in the last column for
nametoaddr libraries. See the NOTESsection in gethostbyname (3N) and
getservbyname (3N) for details.

Interaction with NIS+
NIS/YP-compatibility

Mode

The NIS+ server can be run in "YP-compatibility mode", where it handles
NIS (YP) requests as well as NIS+ requests. In this case, the clients get much
the same results (except for getspnam (3C)) from the "nis" source as from
"nisplus"; however, "nisplus" is recommended instead of "nis".

Interaction with
server in

DNS-forwarding
Mode

The NIS (YP) server can be run in "DNS-forwarding mode", where it forwards
lookup requests to DNS for host-names and -addresses that do not exist in its
database. In this case, specifying "nis" as a source for "hosts" is sufficient to get
DNS lookups; "dns" need not be specified explicitly as a source.

In SunOS 5.3 (Solaris 2.3) and compatible versions, the NIS+ server in "NIS/
YP-compatibility mode" can also be run in "DNS-forwarding mode" (see
rpc.nisd (1M)). Forwarding is effective only for requests originating from its
YP clients; "hosts" policy on these clients should be configured appropriately.

325 SunOS 5.7 Last modified 28 Apr 1997

File Formats nsswitch.conf(4)

Interaction with
Password Aging

When password aging is turned on, only a limited set of possible name services
are permitted for the passwd : database in the /etc/nsswitch.conf file:
passwd: files

passwd: files nis

passwd: files nisplus

passwd: compat

passwd: compat

passwd_compat: nisplus
Any other settings will cause the passwd (1) command to fail when it
attempts to change the password after expiration and will prevent the user
from logging in. These are the only permitted settings when password aging
has been turned on. Otherwise, you can work around incorrect passwd : lines
by using the -r repository argument to the passwd (1) command and
using passwd -r repository to override the nsswitch.conf settings and
specify in which name service you want to modify your password.

Interaction with +/-
syntax

Releases prior to SunOS 5.0 did not have the name service switch but did
allow the user some policy control. In /etc/passwd one could have entries of
the form +user (include the specified user from NIS passwd.byname), -user
(exclude the specified user) and + (include everything, except excluded users,
from NIS passwd.byname). The desired behavior was often "everything in the
file followed by everything in NIS", expressed by a solitary + at the end of
/etc/passwd . The switch provides an alternative for this case ("passwd: files
nis") that does not require + entries in /etc/passwd and /etc/shadow (the
latter is a new addition to SunOS 5.0, see shadow (4)).

If this is not sufficient, the NIS/YP compatibility source provides full +/-
semantics. It reads /etc/passwd for getpwnam (3C) functions and
/etc/shadow for getspnam (3C) functions and, if it finds +/- entries,
invokes an appropriate source. By default, the source is "nis", but this may be
overridden by specifying "nisplus" as the source for the pseudo-database
passwd_compat .

Note that for every /etc/passwd entry, there should be a corresponding
entry in the /etc/shadow file.

The NIS/YP compatibility source also provides full +/- semantics for group ;
the relevant pseudo-database is group_compat .

Useful
Configurations

The compiled-in default entries for all databases use NIS (YP) as the
enterprise level name service and are identical to those in the default
configuration of this file:
passwd: files nis

Last modified 28 Apr 1997 SunOS 5.7 326

nsswitch.conf(4) File Formats

group: files nis

hosts: nis [NOTFOUND=return] files

networks: nis [NOTFOUND=return] files

protocols: nis [NOTFOUND=return] files

rpc: nis [NOTFOUND=return] files

ethers: nis [NOTFOUND=return] files

netmasks: nis [NOTFOUND=return] files

bootparams: nis [NOTFOUND=return] files

publickey: nis [NOTFOUND=return] files

netgroup: nis

automount: files nis

aliases: files nis

services: files nis

sendmailvars: files
The policy "nis [NOTFOUND=return] files" implies "if nis is UNAVAIL, continue
on to files , and if nis returns NOTFOUND,return to the caller; in other
words, treat nis as the authoritative source of information and try files only
if nis is down." This, and other policies listed in the default configuration
above, are identical to the hard-wired policies in SunOS releases prior to 5.0.

If compatibility with the +/- syntax for passwd and group is required, simply
modify the entries for passwd and group to:
passwd: compat

group: compat
If NIS+ is the enterprise level name service, the default configuration should
be modified to use nisplus instead of nis for every database on client
machines. The file /etc/nsswitch.nisplus contains a sample configuration
that can be copied to /etc/nsswitch.conf to set this policy.

If the use of +/- syntax is desired in conjunction with nisplus , use the
following four entries:
passwd: compat

passwd_compat: nisplus

group: compat

327 SunOS 5.7 Last modified 28 Apr 1997

File Formats nsswitch.conf(4)

group_compat: nisplus
In order to get information from the Internet Domain Name Service for hosts
that are not listed in the enterprise level name service, NIS+, use the following
configuration and set up the /etc/resolv.conf file (see resolv.conf (4)
for more details):
hosts: nisplus dns [NOTFOUND=return] files

Enumeration –
getXXXent()

Many of the databases have enumeration functions: passwd has getpwent(),
hosts has gethostent(), and so on. These were reasonable when the only
source was files but often make little sense for hierarchically structured
sources that contain large numbers of entries, much less for multiple sources.
The interfaces are still provided and the implementations strive to provide
reasonable results, but the data returned may be incomplete (enumeration for
hosts is simply not supported by the dns source), inconsistent (if multiple
sources are used), formatted in an unexpected fashion (for a host with a
canonical name and three aliases, the nisplus source will return four
hostents, and they may not be consecutive), or very expensive (enumerating a
passwd database of 5,000 users is probably a bad idea). Furthermore, multiple
threads in the same process using the same reentrant enumeration function
(getXXXent_r() are supported beginning with SunOS 5.3) share the same
enumeration position; if they interleave calls, they will enumerate disjoint
subsets of the same database.

In general, the use of the enumeration functions is deprecated. In the case of
passwd , shadow , and group , it may sometimes be appropriate to use
fgetgrent(), fgetpwent(), and fgetspent() (see getgrnam (3C), getpwnam (3C),
and getspnam (3C), respectively), which use only the files source.

FILES A source named SSS is implemented by a shared object named
nss_SSS.so.1 that resides in /usr/lib .

/etc/nsswitch.conf
configuration file

/usr/lib/nss_compat.so.1 implements "compat" source

/usr/lib/nss_dns.so.1 implements "dns" source

/usr/lib/nss_files.so.1 implements "files" source

/usr/lib/nss_nis.so.1 implements "nis" source

/usr/lib/nss_nisplus.so.1 implements "nisplus" source

/etc/netconfig configuration file for netdir (3N)
functions that redirects hosts/devices
policy to the switch

Last modified 28 Apr 1997 SunOS 5.7 328

nsswitch.conf(4) File Formats

/etc/nsswitch.files sample configuration file that uses
"files" only

/etc/nsswitch.nis sample configuration file that uses
"files" and "nis"

/etc/nsswitch.nisplus sample configuration file that uses
"files" and "nisplus"

SEE ALSO nis+ (1), passwd (1), automount (1M), ifconfig (1M),
rpc.bootparamd (1M), rpc.nisd (1M), sendmail (1M), ethers (3N),
getgrnam (3C), gethostbyname (3N), getnetbyname (3N),
getnetgrent (3N), getprotobyname (3N), getpublickey (3N),
getpwnam (3C), getrpcbyname (3N), getservbyname (3N), getspnam (3C),
netdir (3N), secure_rpc (3N), netconfig (4), resolv.conf (4),
ypfiles (4)

NOTES Within each process that uses nsswitch.conf , the entire file is read only
once; if the file is later changed, the process will continue using the old
configuration.

Programs that use the getXXbyYY() functions cannot be linked statically since
the implementation of these functions requires dynamic linker functionality to
access the shared objects /usr/lib/nss_SSS.so.1 at run time.

The use of both nis and nisplus as sources for the same database is strongly
discouraged since both the name services are expected to store similar
information and the lookups on the database may yield different results
depending on which name service is operational at the time of the request.

The compat source may not be supported in future releases.

Misspelled names of sources and databases will be treated as legitimate names
of (most likely nonexistent) sources and databases.

The following functions do not use the switch: fgetgrent (3C),
fgetpwent (3C), fgetspent (3C), getpw (3C), putpwent (3C), shadow (4).

329 SunOS 5.7 Last modified 28 Apr 1997

File Formats order(4)

NAME order – package installation order description file

DESCRIPTION The package installation order file, .order , is an ASCII file specifying the
order in which packages must be installed based on their prerequisite
dependencies. Any package with prerequisite dependencies must be installed
after any packages it lists as a prerequisite dependency in its depend file.

A .order file is required for the OS product. The .order file must reside in
the top-level directory containing the product.

The ordering is specified as a list of package identifiers, from the first package
to be installed to the last, one package identifier per line.

NOTES The depend file supports incompatible and reverse dependencies. These
dependency types are not recognized in the order file.

SEE ALSO cdtoc (4), clustertoc (4), depend (4), packagetoc (4), pkginfo (4)

Last modified 24 Feb 1993 SunOS 5.7 330

ott(4) File Formats

NAME ott – FACE object architecture information

DESCRIPTION The FACE object architecture stores information about object-types in an ASCII
file named .ott (object type table) that is contained in each directory. This file
describes all of the objects in that directory. Each line of the .ott file contains
information about one object in pipe-separated fields. The fields are (in order):
name the name of the actual system file.

dname the name that should be displayed to the user, or
a dot if it is the same as the name of the file.

description the description of the object, or a dot if the
description is the default (the same as
object-type).

object-type the FACE internal object type name.

flags object specific flags.

mod time the time that FACE last modified the object. The
time is given as number of seconds since 1/1/
1970, and is in hexadecimal notation.

object information an optional field, contains a set of semi-colon
separated name=value fields that can be used by
FACE to store any other information necessary to
describe this object.

FILES .ott is created in any directory opened by FACE.

331 SunOS 5.7 Last modified 3 Jul 1990

File Formats packagetoc(4)

NAME packagetoc – package table of contents description file

DESCRIPTION The package table of contents file, .packagetoc, is an ASCII file containing
all of the information necessary for installing a product release distributed in
package form. It centralizes and summarizes all of the relevant information
about each package in the product. This allows the install software to quickly
read one file to obtain all of the relevant information about each package
instead of having to examine each package at run time to obtain this
information. The .packagetoc file resides in the top-level directory
containing the product.

If a .packagetoc file exists for a product, there must also be a .order file.

Each entry in the .packagetoc file is a line that establishes the value of a
parameter in the following form:

PARAM=value

A line starting with a pound-sign, ‘‘#’’, is considered a comment and is ignored.

Parameters are grouped by package. The start of a package description is
defined by a line of the form:

PKG=value

There is no order implied or assumed for specifying the parameters for a
package with the exception of the PKGparameter, which must appear first.
Only one occurrence of a parameter is permitted per package.

The parameters recognized are described below. Those marked with an
asterisk are mandatory.
PKG* The package identifier (for example,

SUNWaccu). The maximum length of the
identifier is nine characters. All the characters
must be alphanumeric. The first character must
be alphabetic. install , new, and all are
reserved identifiers.

PKGDIR* The name of the directory containing the
package. This directory is relative to the directory
containing the product.

NAME* The full name of the package.

VENDOR The name of the package’s vendor.

Last modified 14 Mar 1997 SunOS 5.7 332

packagetoc(4) File Formats

VERSION The version of the package.

PRODNAME The name of the product to which this package
belongs.

PRODVERS The version of the product to which this package
belongs.

SUNW_PKGTYPE The package type. Valid values are:

root indicates that the package will be
installed in the / file system. The root
packages are the only packages installed
during dataless client installations. The
root packages are spooled during a
server installation to allow the later
installation of diskless clients.

usr indicates that the package will be
installed in the /usr file system.

kvm indicates that the package will be
installed in the /usr/platform file
system.

ow indicates a package that is part of the
bundled OpenWindows product release.
If no SUNW_PKGTYPEmacro is present,
the package is assumed to be of type
usr .

ARCH* The architecture(s) supported by the package.
This macro is taken from the package’s
pkginfo (4) file and is subject to the same length
and formatting constraints.

The install program currently assumes that
exactly one architecture token is specified for a
package. For example, ARCH=sparc.sun4c is
acceptable, but
ARCH=sparc.sun4c, sparc.sun4m is not.

DESC A detailed textual description of the package.

BASEDIR* The default installation base directory of the
package.

333 SunOS 5.7 Last modified 14 Mar 1997

File Formats packagetoc(4)

SUNW_PDEPEND A dependency specification for a prerequisite
package. Each prerequisite dependency must
appear as a separate macro. See depend (4) for
more information on dependencies and instance
specifications.

SUNW_IDEPEND A dependency specification for an incompatible
package. Each incompatible dependency should
appear as a separate macro. See depend (4) for
more information on dependencies and instance
specifications.

SUNW_RDEPEND A dependency specification for a reversed
package dependency. Each reverse dependency
should appear as a separate macro. See
depend (4) for more information on dependencies
and instance specifications.

CATEGORY The category of the package.

SUNW_LOC Indicates that this package contains localizations
for other packages. Such localization packages are
treated as special case packages. Each package
which has a SUNW_LOCmacro must have a
corresponding SUNW_PKGLISTmacro. The value
specified by this macro should be a valid locale.

SUNW_PKGLIST A comma separated list of package identifiers.
Currently this macro is used to indicate which
packages are localized by a localization package.

ROOTSIZE* The space used by the package in the / file
system.

USRSIZE* The space used by the package in the /usr
subtree of the file system.

VARSIZE* The space used by the package in the /var
subtree of the file system.

OPTSIZE* The space used by the package in the /opt
subtree of the file system.

EXPORTSIZE* The space used by the package in the /export
subtree of the file system.

Last modified 14 Mar 1997 SunOS 5.7 334

packagetoc(4) File Formats

USROWNSIZE* The space used by the package in the
/usr/openwin subtree of the file system.

SPOOLEDSIZE* The space used by the spooled version of this
package. This is used during the setup of a server
by the initial system installation programs.

All sizes are specified in bytes. Default disk partitions and file system sizes are
derived from the values provided: accuracy is important.

EXAMPLES EXAMPLE 1 A sample .packagetoc file.

The following is an example package entry in a .packagetoc file.

#ident "@(#)packagetoc.4 1.2 92/04/28"
PKG=SUNWaccr
PKGDIR=SUNWaccr
NAME=System Accounting, (Root)
VENDOR=Sun Microsystems, Inc.
VERSION=8.1
PRODNAME=SunOS
PRODVERS=5.0beta2
SUNW_PKGTYPE=root
ARCH=sparc
DESC=System Accounting, (Root)
BASEDIR=/
CATEGORY=system
ROOTSIZE=11264
VARSIZE= 15360
OPTSIZE=0
EXPORTSIZE=0
USRSIZE=0
USROWNSIZE=0

SEE ALSO cdtoc (4), clustertoc (4), depend (4), order (4), pkginfo (4), pkgmap(4)

NOTES The parameters NAME, VENDOR, VERSION, PRODNAME, PRODVERS,
SUNW_PKGTYPE, SUNW_LOC, SUNW_PKGLIST, ARCH, DESC, BASEDIR, and
CATEGORYare assumed to have been taken directly from the package’s
pkginfo (4) file. The length and formatting restrictions placed on the values
for these parameters are identical to those for the corresponding entries in the
pkginfo (4) file.

The value specified for the parameter PKGDIRshould not exceed 255
characters.

The value specified for the parameters ROOTSIZE, VARSIZE, OPTSIZE,
EXPORTSIZE, USRSIZE and USROWNSIZEmust be a single integer value. The
values can be derived from the package’s pkgmap file by counting all space
consumed by any files installed in the applicable file system. The space

335 SunOS 5.7 Last modified 14 Mar 1997

File Formats packagetoc(4)

includes that used for directory entries and any UFS overhead that exists
because of the way the files are represented (directory allocation scheme;
direct, indirect, double indirect blocks; fragments; etc.)

The following kinds of entries in the pkgmap(4) file should be included in the
space derivation:
f regular file

c character special file

b block special file

p pipe

l hard link

s symbolic link

x, d directory

i packaging installation script or information file (copyright, depend,
postinstall, postremove)

Last modified 14 Mar 1997 SunOS 5.7 336

packingrules(4) File Formats

NAME packingrules – packing rules file for cachefs and filesync

SYNOPSIS $HOME/.packingrules

DESCRIPTION $HOME/.packingrules is a packing rules file for filesync and
cachefspack . $HOME/.packingrules contains a list of directories and files
that are to be packed and synchronized. It also contains a list of directories
and files that are to be specifically excluded from packing and synchronization.
See filesync (1) and cachefspack (1M).

The $HOME/.packingrules file is automatically created if users invoke
filesync with filename arguments. By using filesync options, users can
augment the packing rules in $HOME/.packingrules .

Many users choose to manually create the packing rules file and edit it by
hand. Users can edit $HOME/.packingrules (using any editor) to
permanently change the $HOME/.packingrules file, or to gain access to
more powerful options that are not available from the command line (such as
IGNOREcommands). It is much easier to enter complex wildcard expressions
by editing the $HOME/.packingrules file.

Blank lines and lines that begin with a pound sign (‘#’) are ignored.

Any line can be continued by placing a backslash (‘\ ’) immediately before the
NEWLINE.

All other lines in the $HOME/.packingrules file have one of the following
formats:
PACKINGRULES major. minor. This line is not actually

required, but it should be the first line
of every packing rules file. This line
identifies the packing rules file for the
file (1) command and specifies a
format version number. The current
version number is 1.1. See file (1).

BASEdirectory-1 [directory-2] This line identifies a directory (or pair
of directories) under which files
should be packed and synchronized.
At least one directory name must be
specified. For rules that are to be
used by filesync a second
directory name (where the copies are
to be kept) must also be specified.
The arguments must be fully
qualified path names, and may
include environment variables.

337 SunOS 5.7 Last modified 23 Dec 1996

File Formats packingrules(4)

LIST name . . . This line enumerates a list of files and
sub-directories (beneath the current
BASE) that are to be kept
synchronized. This specification is
recursive, in that specifying the name
of a directory automatically includes
all files and subdirectories it contains.
Regular expressions (as described in
glob and gmatch) are permitted. See
glob (1) and gmatch (3).

IGNOREname . . . This line enumerates a list of files
that are not to be kept synchronized.
Regular expressions (using glob and
gmatch) are permitted.

There are important differences between the arguments to LIST and IGNORE
statements. The arguments to a LIST statement can contain slashes and are
interpreted as file names relative to the BASEdirectories. The arguments to an
IGNOREstatement are simpler names or expressions that cannot contain
slashes. An IGNOREstatement will not override a LIST statement. IGNORE
statements only exclude files that are found beneath LISTed directories.

If the first name argument to a LIST statement begins with an exclamation
point (‘! ’), the remainder of the statement will be executed as a command. The
command will be run in the current BASEdirectory. The output of the
command will be treated as a list of newline separated file names to be
packed/synchronized. The resulting file names will be interpreted relative to
the enclosing BASEdirectory.

If the first name argument to an IGNOREstatement begins with an exclamation
point (‘! ’), the remainder of the statement will be executed as a command. The
command will be run in the current BASEdirectory. The command will be
expected to figure out which names should not be synchronized. The output of
the command will be treated as a list of newline separated file names that
should be excluded from the packing and synchronization list.

Commands will be broken into distinct arguments and run directly with
sh −c . Blanks can be embedded in an argument by escaping them with a
backslash (‘\ ’) or enclosing the argument in double quotes (‘ " ’). Double
quotes can be passed in arguments by escaping the double quotes with a
backslash (‘\ ’).

LIST lines only apply to the BASEstatement that precedes them. IGNORElines
can appear before any BASEstatement (in which case they apply to all BASEs)
or after a BASEstatement (in which case they only apply to the BASEthat

Last modified 23 Dec 1996 SunOS 5.7 338

packingrules(4) File Formats

precedes them). Any number of these statements can occur in any
combination. The order is not important.

EXAMPLES EXAMPLE 1 A sample $HOME.packingrules file.

The use of these statements is illustrated in the following
$HOME.packingrules file.

#
junk files, not worth copying
#
IGNORE core *.o *.bak *%
#
most of the stuff I want to keep in sync is in my $HOME
#
BASE /net/bigserver/export/home/myname $HOME
everything in my work sub-directory should be maintained
LIST work
a few of my favorite mail boxes should be replicated
LIST m/incoming
LIST m/action
LIST m/pending
#
I like to carry around a couple of project directories
but skip all the postscript output
#
BASE /net/bigserver/export/projects $HOME/projects
LIST poindexter epiphany
IGNORE *.ps
#
the foonly package should always be kept on every machine
#
BASE /net/bigserver/opt/foonly /opt/foonly
LIST !cat .packinglist
#
and the latest executables for the standard build environment
#
BASE /net/bigserver/export/buildenv $HOME/buildenv
LIST !find . -type f -a -perm -111 -a -print

SEE ALSO file (1), filesync (1), cachefspack (1M)

339 SunOS 5.7 Last modified 23 Dec 1996

File Formats pam.conf(4)

NAME pam.conf – configuration file for pluggable authentication modules

SYNOPSIS /etc/pam.conf

DESCRIPTION pam.conf is the configuration file for the Pluggable Authentication Module
architecture, or PAM. A PAM module provides functionality for one or more of
four possible services: authentication, account management, session
management, and password management. An authentication service module
provides functionality to authenticate a user and set up user credentials. A
account management module provides functionality to determine if the current
user’s account is valid. This includes checking for password and account
expiration, as well as verifying access hour restrictions. A session management
module provides functionality to set up and terminate login sessions. A
password management module provides functionality to change a user’s
authentication token or password. Each of the four service modules can be
implemented as a shared library object which can be referenced in the
pam.conf configuration file.

Simplified
PAM.CONF

configuration file

The pam.conf file contains a listing of services. Each service is paired with a
corresponding service module. When a service is requested, its associated
module is invoked. Each entry has the following format:

<service_name> <module_type> <control_flag> <module_path> <options>
Below is an example of the pam.conf configuration file with support for
authentication, account management, and session management modules.

login auth required /usr/lib/

security/

pam_unix.so.1

debug

login session required /usr/lib/

security/

pam_unix.so.1

login account required /usr/lib/

security/

pam_unix.so.1

telnet session required /usr/lib/

security/

pam_unix.so.1

other auth required /usr/lib/

security/

pam_unix.so.1

other passwd required /usr/lib/

security/

pam_unix.so.1

Last modified 10 Mar 1997 SunOS 5.7 340

pam.conf(4) File Formats

The service_name denotes the service (for example, login , dtlogin , or
rlogin). The keyword, other, indicates the module all other applications
which have not been specified should use. The other keyword can also be used
if all services of the same module_type have the same requirements. In the
example above, since all of the services use the same session module, they
could have been replace by a single other line.

module_type denotes the service module type: authentication (auth), account
management (account), session management (session), or password
management (password).

The control_flag field determines the behavior of stacking, and will be
discussed in more detail below.

The module_path field specifies the pathname to a shared library object which
implements the service functionality. If the pathname is not absolute, it is
assumed to be relative to /usr/lib/security .

The options field is used by the PAM framework layer to pass module specific
options to the modules. It is up to the module to parse and interpret the
options. This field can be used by the modules to turn on debugging or to pass
any module specific parameters such as a TIMEOUT value. It can also be used
to support unified login. The options supported by the modules are
documented in their respective manual pages. For example, pam_unix (5) lists
the options accepted by the UNIX module.

Integrating Multiple
Authentication

Services With
Stacking

When a service_name of the same module_type is defined more than once, the
service is said to be stacked. Each module referenced in the module_path for that
service is then processed in the order that it occurs in the configuration file.
The control_flag field specifies the continuation and failure semantics of the
modules, and may be requisite, required, optional, or sufficient.

The PAM framework processes each service module in the stack. If all requisite
and required modules in the stack succeed, then success is returned, and
optional and sufficient error values are ignored. If one or more requisite or
required modules fail, then the error value from the first requisite or required
module that failed is returned.

If none of the service modules in the stack are designated as requisite or
required, then the PAM framework requires that at least one optional or sufficient
module succeed. If all fail then the error value from the first service module in
the stack is returned.

The requisite and sufficient flags cause two exceptions to the above semantics. If
a service module that is designated as requisite fails, then the PAM framework
immediately returns an error to the application, and all subsequent service
modules in the stack are ignored. If a prior required service module has failed,

341 SunOS 5.7 Last modified 10 Mar 1997

File Formats pam.conf(4)

then that error is returned. If no prior required service module failed, then the
error from the failed requisite service module is returned.

If a service module that is designated as sufficient succeeds, then the PAM
framework immediately returns success to the application, and all subsequent
services modules in the stack, even requisite and required ones, are ignored,
given that all prior requisite and required modules have also succeeded. If a prior
required module has failed, then the error value from that module is returned.

If any entry in pam.conf is incorrect, or if a module does not exist or cannot
be opened, then all PAM services will fail and users will not be permitted
access to the system. An error will be logged through syslog (3) at the
LOG_CRIT level. To fix incorrect entries in pam.conf , a system administrator
may boot the system in maintenance mode (single user) to edit the file. Below
is a sample configuration file that stacks the su , login , and rlogin services.

su auth requisite /usr/lib/

security/

pam_inhouse.so.1

su auth required /usr/lib/

security/

pam_unix.so.1

debug

login auth required /usr/lib/

security/

pam_unix.so.1

debug

login auth optional /usr/lib/

security/

pam_inhouse.so.1

rlogin auth sufficient /usr/lib/

security/

pam_rhosts_auth.so.1

rlogin auth required /usr/lib/

security/

pam_unix.so.1

In the case of su , the user is authenticated by the Inhouse and UNIX
authentication modules. Because the Inhouse and UNIX authentication
modules are requisite and required, respectively, an error is returned back to the
application if either module fails. In addition, if the requisite authentication
(Inhouse authentication) fails, the UNIX authentication module is never
invoked, and the error is returned immediately back to the application.

In the case of login , the required keyword for control_flag requires that the
user be allowed to login only if the user is authenticated by the UNIX service

Last modified 10 Mar 1997 SunOS 5.7 342

pam.conf(4) File Formats

module. If UNIX authentication fails, control continues to proceed down the
stack, and the Inhouse authentication module is invoked. Inhouse
authentication is optional by virtue of the optional keyword in the control_flag
field. The user can still log in even if Inhouse authentication fails, assuming
the UNIX authentication succeeded.

In the case of rlogin , the sufficient keyword for control_flag specifies that if the
rhosts authentication check succeeds, then PAM should return success to
rlogin and rlogin should not prompt the user for a password. The UNIX
authentication module, which is the next module in the stack, will only be
invoked if the rhosts check fails. This gives the system administrator the
flexibility to determine if rhosts alone is sufficient enough to authenticate a
remote user.

Some modules may return PAM_IGNORE in certain situations. In these cases
the PAM framework ignores the entire entry in pam.conf regardless of
whether or not it is requisite, required, optional or sufficient.

Utilities and Files A following is a list of the utilities that are known to use PAM: include:
login , passwd , su , rlogind , rshd , telnetd , ftpd , rpc.rexd , uucpd ,
init , sac , and ttymon .

The utility dtlogin also uses PAM. Note however that dtlogin is the login
service utility for the Common Desktop Environment (CDE).

The PAM configuration file does not dictate either the name or the location of
the service specific modules. The convention, however, is the following:
/usr/lib/security/pam_<module_name>.so.x

Implements various function of specific authentication services.

/etc/pam.conf

Configuration file.

/usr/lib/libpam.so.1

Implements the PAM framework library.

EXAMPLES EXAMPLE 1 A sample pam.conf configuration file.

The following is a sample pam.conf configuration file. Lines that begin with
the # symbol are treated as comments, and therefore ignored.

#
PAM configuration

343 SunOS 5.7 Last modified 10 Mar 1997

File Formats pam.conf(4)

#
Authentication management for login service is stacked.
Both UNIX and inhouse authentication functions are invoked.

login auth required /usr/lib/

security/

pam_unix.so.1

login auth required /usr/lib/

security/

pam_inhouse.so.1

try_first_pass

dtlogin auth required /usr/lib/

security/

pam_unix.so.1

dtlogin auth required /usr/lib/

security/

pam_inhouse.so.1

try_first_pass

#
Authentication management for rlogin service is stacked.
If the rhost check succeeds, do not continue

rlogin auth sufficient /usr/lib/

security/

pam_rhosts_auth.so.1

rlogin auth required /usr/lib/

security/

pam_unix.so.1

#
Other services use UNIX authentication
other auth required /usr/lib/security/pam_unix.so.1
#
Account management for login service is stacked.
UNIX account management is required
Inhouse account management is optional
login account required /usr/lib/security/pam_unix.so.1
login account optional /usr/lib/security/pam_inhouse.so.1
dtlogin account required /usr/lib/security/pam_unix.so.1
dtlogin account optional /usr/lib/security/pam_inhouse.so.1
other account required /usr/lib/security/pam_unix.so.1
#
Session management
other session required /usr/lib/security/pam_unix.so.1
#
Password management
other password required /usr/lib/security/pam_unix.so.1

Last modified 10 Mar 1997 SunOS 5.7 344

pam.conf(4) File Formats

ATTRIBUTES See attributes (5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

SEE ALSO login (1), passwd (1), in.ftpd (1M), in.rlogind (1M), in.rshd (1M),
in.telnetd (1M), in.uucpd (1M), init (1M), rpc.rexd (1M), sac (1M),
su (1M), ttymon (1M), pam(3), syslog (3), libpam (4), attributes (5),
pam_unix (5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

345 SunOS 5.7 Last modified 10 Mar 1997

File Formats passwd(4)

NAME passwd – password file

SYNOPSIS /etc/passwd

DESCRIPTION /etc/passwd is a local source of information about users’ accounts. The
password file can be used in conjunction with other password sources,
including the NIS maps passwd.byname and passwd.bygid and the NIS+
table passwd . Programs use the getpwnam (3C) routines to access this
information.

Each passwd entry is a single line of the form:

username: password: uid:
gid: gcos-field: home-dir:
login-shell

where
username is the user’s login name. It is recommended that this field

conform to the checks performed by pwck (1M).

password is an empty field. The encrypted password for the user is in
the corresponding entry in the /etc/shadow file.
pwconv (1M) relies on a special value of ’x ’ in the password
field of /etc/passwd . If this value of ’x ’ exists in the
password field of /etc/passwd , this indicates that the
password for the user is already in /etc/shadow and
should not be modified.

uid is the user’s unique numerical ID for the system.

gid is the unique numerical ID of the group that the user
belongs to.

gcos-field is the user’s real name, along with information to pass along
in a mail-message heading. (It is called the gcos-field for
historical reasons.) An ‘‘&’’ (ampersand) in this field stands
for the login name (in cases where the login name appears in
a user’s real name).

home-dir is the pathname to the directory in which the user is initially
positioned upon logging in.

Last modified 14 May 1998 SunOS 5.7 346

passwd(4) File Formats

login-shell is the user’s initial shell program. If this field is empty, the
default shell is /usr/bin/sh .

The maximum value of the uid and gid fields is 2147483647 . To maximize
interoperability and compatibility, administrators are recommended to assign
users a range of UIDs and GIDs below 60000 where possible.

The password file is an ASCII file. Because the encrypted passwords are
always kept in the shadow file, /etc/passwd has general read permission on
all systems and can be used by routines that map between numerical user IDs
and user names.

Previous releases used a password entry beginning with a ‘+’ (plus sign) or ‘−’
(minus sign) to selectively incorporate entries from NIS maps for password. If
still required, this is supported by specifying ‘‘passwd : compat’’ in
nsswitch.conf (4). The "compat" source may not be supported in future
releases. The preferred sources are, "files" followed by "nisplus". This has the
effect of incorporating the entire contents of the NIS+ passwd table after the
password file.

EXAMPLES EXAMPLE 1 A sample passwd file.

Here is a sample passwd file:

root:q.mJzTnu8icF.:0:10:God:/:/bin/csh
fred:6k/7KCFRPNVXg:508:10:& Fredericks:/usr2/fred:/bin/csh

and the sample password entry from nsswitch.conf :

passwd: files nisplus

In this example, there are specific entries for users root and fred to assure
that they can login even when the system is running single-user. In addition,
anyone in the NIS+ table passwd will be able to login with their usual
password, shell and home directory.

If the password file is:

root:q.mJzTnu8icF.:0:10:God:/:/bin/csh
fred:6k/7KCFRPNVXg:508:10:& Fredericks:/usr2/fred:/bin/csh
+

and the password entry from nsswitch.conf is:

passwd: compat

then all the entries listed in the NIS passwd.byuid and passwd.byname
maps will be effectively incorporated after the entries for root and fred .

347 SunOS 5.7 Last modified 14 May 1998

File Formats passwd(4)

FILES
/etc/nsswitch.conf

/etc/passwd

/etc/shadow

SEE ALSO chgrp (1), chown (1), groups (1), login (1), makekey (1), newgrp (1),
nispasswd (1), passwd (1), sh (1), sort (1), chown (1M), domainname (1M),
getent (1M), in.ftpd (1M), passmgmt (1M), pwck (1M), pwconv (1M),
su (1M), useradd (1M), userdel (1M), usermod (1M), a64l (3C),
crypt (3C), getpw (3C), getpwnam (3C), getspnam (3C), putpwent (3C),
group (4), hosts.equiv (4), nsswitch.conf (4), shadow (4), environ (5),
unistd (5)

System Administration Guide, Volume I

Last modified 14 May 1998 SunOS 5.7 348

pathalias(4) File Formats

NAME pathalias – alias file for FACE

SYNOPSIS /usr/vmsys/pathalias

DESCRIPTION The pathalias files contain lines of the form alias= path where path can be
one or more colon-separated directories. Whenever a FACE (Framed Access
Command Environment, see face (1)) user references a path not beginning
with a ‘‘/ ’’, this file is checked. If the first component of the pathname matches
the left-hand side of the equals sign, the right-hand side is searched much like
$PATHvariable in the system. This allows users to reference the folder
$HOME/FILECABINET by typing filecabinet .

There is a system-wide pathalias file called $VMSYS/pathalias , and each
user can also have local alias file called $HOME/pref/pathalias . Settings in
the user alias file override settings in the system-wide file. The system-wide
file is shipped with several standard FACE aliases, such as filecabinet ,
wastebasket , preferences , other_users , etc.

FILES
$HOME/pref/pathalias

$VMSYS/pathalias

SEE ALSO face (1)

NOTES Unlike command keywords, partial matching of a path alias is not permitted,
however, path aliases are case insensitive. The name of an alias should be
alphabetic, and in no case can it contain special characters like ‘‘/ ’’, ‘‘\ ’’, or
‘‘=’’. There is no particular limit on the number of aliases allowed. Alias files
are read once, at login, and are held in core until logout. Thus, if an alias file is
modified during a session, the change will not take effect until the next session.

349 SunOS 5.7 Last modified 3 Jul 1990

File Formats path_to_inst(4)

NAME path_to_inst – device instance number file

SYNOPSIS /etc/path_to_inst

DESCRIPTION /etc/path_to_inst records mappings of physical device names to instance
numbers.

The instance number of a device is encoded in its minor number, and is the
way that a device driver determines which of the possible devices that it may
drive is referred to by a given special file.

In order to keep instance numbers persistent across reboots, the system records
them in /etc/path_to_inst .

This file is read only at boot time, and is updated by add_drv (1M) and
drvconfig (1M).

Note that it is generally not necessary for the system administrator to change
this file, as the system will maintain it.

The system administrator can change the assignment of instance numbers by
editing this file and doing a reconfiguration reboot. However, any changes
made in this file will be lost if add_drv (1M) or drvconfig (1M) is run
before the system is rebooted.

Each instance entry is a single line of the form:
" physical name" instance number
" driver binding name"

where
physical name is the absolute physical pathname of a device.

This pathname must be enclosed in double
quotes.

instance number is a decimal or hexadecimal number.

driver binding name is the name used to determine the driver for the
device. This name may be a driver alias or a
driver name. The driver binding name must be
enclosed in double quotes.

EXAMPLES EXAMPLE 1 Sample path_to_inst entries.

Here are some sample path_to_inst entries:

"/iommu@f,e0000000" 0 "iommu"
"/iommu@f,e0000000/sbus@f,e0001000" 0 "sbus"
"/iommu@f,e0000000/sbus@f,e0001000/sbusmem@e,0" 14 "sbusmem"
"/iommu@f,e0000000/sbus@f,e0001000/sbusmem@f,0" 15 "sbusmem"
"/iommu@f,e0000000/sbus@f,e0001000/ledma@f,400010" 0 "ledma"
"/obio/serial@0,100000" 0 "zs"

Last modified 2 Nov 1995 SunOS 5.7 350

path_to_inst(4) File Formats

"/SUNW,sx@f,80000000" 0 "SUNW,sx"

FILES
/etc/path_to_inst

SEE ALSO add_drv (1M), boot (1M), drvconfig (1M), mknod(1M)

WARNINGS If the file is removed the system may not be bootable (as it may rely on
information found in this file to find the root, usr or swap device). If it does
successfully boot, it will regenerate the file, but after rebooting devices may
end up having different minor numbers than they did before, and special files
created via mknod(1M) may refer to different devices than expected.

For the same reasons, changes should not be made to this file without careful
consideration.

NOTES This document does not constitute an API. path_to_inst may not exist or
may have a different content or interpretation in a future release. The existence
of this notice does not imply that any other documentation that lacks this
notice constitutes an API.

351 SunOS 5.7 Last modified 2 Nov 1995

File Formats pci(4)

NAME pci – configuration files for PCI device drivers

DESCRIPTION The Peripheral Component Interconnect (PCI) bus is a little endian bus. PCI
devices are self-identifying — that is to say the PCI device provides
configuration parameters to the system which allows the system to identify the
device and its driver. The configuration parameters are represented in the form
of name-value pairs that can be retrieved using the DDI property interfaces.
See ddi_prop_lookup (9F) for details.

The PCI bus properties are derived from PCI Configuration Space, or supplied
by the Fcode PROM if it exists. Therefore, driver configuration files are not
necessary for these devices.

However, on some occasions, drivers for PCI devices may use driver
configuration files to provide driver private properties. This can be done
through global property mechanism. See driver.conf (4) for further details.
Driver configuration files can also be used to augment or override properties
for a specific instance of a driver.

All bus drivers of class pci recognize the following properties:

Last modified 4 Mar 1997 SunOS 5.7 352

pci(4) File Formats

reg An arbitrary length array where each element of the array
consists of a 5-tuple of 32-bit values. Each array element
describes a logically contiguous mappable resource on the
PCI bus.

The first 3 values in the 5-tuple describe the PCI address of
the mappable resource. The first tuple contains the following
information:

Bits 0 - 7 8-bit Register
number

Bits 8 - 10 3-bit Function
number

Bits 11 - 15 5-bit Device number

Bits 16 - 23 8-bit Bus number

Bits 24 - 25 2-bit Address Space
type identifier

The Address Space type identifier may be interpreted as
follows:

0x0 Configuration Space

0x1 I/O Space

0x2 32-bit Memory
Space address

0x3 64-bit Memory
Space address

The Bus number is a unique identifying number assigned to
each PCI bus within a PCI domain.

The Device number is a unique identifying number assigned
to each PCI device on a PCI bus. Note that a Device number
is only unique within the set of Device numbers for a
particular bus.

Each PCI device can have 1 to 8 logically independent
functions, each with its own independent set of
configuration registers. Each function on a device is assigned
a Function number. For a PCI device with only one function,
the Function number must be 0.

353 SunOS 5.7 Last modified 4 Mar 1997

File Formats pci(4)

The Register number field selects a particular register within
the set of configuration registers corresponding to the
selected function.

The second and third values in the reg property 5-tuple
specify the 64-bit address of the mappable resource within
the PCI address domain. The second 32-bit tuple
corresponds to the high order 4 bytes of the 64-bit address.
The third 32-bit tuple corresponds to the low order bytes.

The fourth and fifth 32-bit values in the 5-tuple reg property
specify the size of the mappable resource. The size is a 64-bit
value where the fourth tuple corresponds to the high order
bytes of the 64-bit size and the fifth corresponds to the low
order.

The driver can refer to the elements of this array by index,
and construct kernel mappings to these addresses using
ddi_regs_map_setup (9F). The index into the array is
passed as the rnumber argument of
ddi_regs_map_setup (9F).

interrupts This property consists of a single integer element array. Valid
interrupt property values are 1, 2, 3, and 4. This value is
derived directly from the contents of the device’s
Configuration Interrupt Pin register.

A driver should use an index value of 0 when registering its
interrupt handler with ddi_add_intr (9F).All PCI devices support the reg property. The Device number and Function

number as derived from the reg property are used to construct the address
part of the device name under /devices .

Only devices that generate interrupts support an interrupts property.

Occasionally it may be necessary to override or augment the configuration
information supplied by a PCI device. This can be achieved by writing a driver
configuration file that describes a prototype device node specification
containing the additional properties required.

For the system to merge the prototype node specification into an actual device
node, certain conditions must be met. First, the name property must be
identical. Second, the parent property must identify the PCI bus. Third, the
unit-address property must identify the card. The format of the unit-address
property is

DD[,F]

Last modified 4 Mar 1997 SunOS 5.7 354

pci(4) File Formats

where DD is the device number and F is the function number. If the function
number is 0, only DD is specified.

EXAMPLES EXAMPLE 1 A sample configuration file.

An example configuration file called ACME,scsi-hba.conf for a PCI driver
called ACME,scsi-hba follows:

#
Copyright (c) 1995, ACME SCSI Host Bus Adaptor
ident "@(#)ACME,scsi-hba.conf 1.1 96/02/04"
name="ACME,scsi-hba" parent="/pci@1,0/pci@1f,4000"

unit-address="3" scsi-initiator-id=6;
hba-advanced-mode="on";
hba-dma-speed=10;

In this example, we provide a property scsi-initiator-id to specify the SCSI bus
initiator id that the adapter should use, for just one particular instance of
adapter installed in the machine. We use the name property to identify the
driver and the parent property to identify the particular bus the card is
plugged into. This example uses the parent’s full path name to identify the
bus. The unit-address property identifies the card itself, with device number of
3 and function number of 0.

Two global driver properties are also created: hba-advanced-mode (which
has the string value on) and hba-dma-speed (which has the value 10 M bit/
s). These properties apply to all device nodes of the ACME,scsi-hba . The
following is an example configuration file called ACME,foo.conf for a PCI
driver called ACME,foo ;

#
Copyright (c) 1996, ACME Foo driver
ident "@(#)ACME,foo.conf 1.1 95/11/14"
name="ACME,foo" class="pci" unit-address="3,1"

debug-mode=12;

In this example, we provide a property debug-mode for all instances of the
ACME,foo driver with parents of class pci and device and function numbers
of 3 and 1, respectively.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, x86

355 SunOS 5.7 Last modified 4 Mar 1997

File Formats pci(4)

SEE ALSO driver.conf (4), attributes (5), ddi_add_intr (9F),
ddi_prop_lookup (9F), ddi_regs_map_setup (9F)

Writing Device Drivers

IEEE 1275 PCI Bus Binding

Last modified 4 Mar 1997 SunOS 5.7 356

pcmcia(4) File Formats

NAME pcmcia – PCMCIA nexus driver

DESCRIPTION The PCMCIA nexus driver supports PCMCIA card client device drivers. There
are no user-configurable options for this driver.

FILES
/kernel/misc/pcmcia pcmcia driver

SEE ALSO pcmciad (1M)

357 SunOS 5.7 Last modified 19 Jul 1996

File Formats phones(4)

NAME phones – remote host phone number database

SYNOPSIS /etc/phones

DESCRIPTION The file /etc/phones contains the system-wide private phone numbers for
the tip (1) program. /etc/phones is normally unreadable, and so may
contain privileged information. The format of /etc/phones is a series of lines
of the form:

<system-name>[\t]*< phone-number>.
The system name is one of those defined in the remote (4) file and the phone
number is constructed from [0123456789 −=*%] . The ‘=’ and ‘* ’ characters
are indicators to the auto call units to pause and wait for a second dial tone
(when going through an exchange). The ‘=’ is required by the DF02-AC and
the ‘* ’ is required by the BIZCOMP 1030.

Comment lines are lines containing a ‘#’ sign in the first column of the line.

Only one phone number per line is permitted. However, if more than one line
in the file contains the same system name tip (1) will attempt to dial each one
in turn, until it establishes a connection.

FILES
/etc/phones

SEE ALSO tip (1), remote (4)

Last modified 14 Jan 1992 SunOS 5.7 358

pkginfo(4) File Formats

NAME pkginfo – package characteristics file

DESCRIPTION pkginfo is an ASCII file that describes the characteristics of the package
along with information that helps control the flow of installation. It is created
by the software package developer.

Each entry in the pkginfo file is a line that establishes the value of a
parameter in the following form:

PARAM="value"

There is no required order in which the parameters must be specified within
the file. Each parameter is described below. Only fields marked with an
asterisk are mandatory.
PKG* Abbreviation for the package being installed. All characters

in the abbreviation must be alphanumeric and the first may
not be numeric. The abbreviation is limited to a maximum
length of nine characters. install , new, and all are
reserved abbreviations. It is customary to make the first four
letters unique to your company, such as the company’s stock
symbol.

NAME* Text that specifies the package name (maximum length of
256 ASCII characters). Use the NAMEparameter as the
foundation for describing the functionality and purpose of
the package; spell out any acronyms and avoid internal
product/project code names. The DESCparameter can then
be used to expand the descriptive information. Use the NAME
parameter to state as specifically as possible the use of the
package, why a user would need to load it, and so on.

ARCH* A comma-separated list of alphanumeric tokens that indicate
the architecture associated with the package. The pkgmk(1)
tool may be used to create or modify this value when
actually building the package. The maximum length of a
token is 16 characters and it cannot include a comma.

Solaris 2 and Solaris 7’s installation software meaningfully
uses only one architecture token of the form:

<instruction_set_architecture>[.< platform_group>]

where platform_group is intended only for Solaris installation
packages. Third party application software should restrict
itself to ARCHvalues from the following Solaris-supported

359 SunOS 5.7 Last modified 27 Feb 1998

File Formats pkginfo(4)

instruction set architectures (uname -p): sparc , i386 , and
ppc . Examples of Solaris’ platform groups (uname -m) are
sun4u , sun4d , and sun4m for the SPARC® instruction set
and i86pc for the i386 instruction set. See uname(1) and
isalist (1) for more details.

VERSION* Text that specifies the current version associated with the
software package. The maximum length is 256 ASCII
characters and the first character cannot be a left parenthesis.
The pkgmk(1) tool may be used to create or modify this
value when actually building the package. Current Solaris
and Solaris-compatible software practice is to assign this
parameter monotonically increasing Dewey decimal values
of the form:

<major_revision>.< minor_revision>[.< micro_revision>]

where all the revision fields are integers. The versioning
fields can be extended to an arbitrary string of numbers in
Dewey-decimal format, if necessary.

CATEGORY* A comma-separated list of categories under which a package
may be displayed. A package must at least belong to the
system or application category. Categories are
case-insensitive and may contain only alphanumerics. Each
category is limited in length to 16 characters.

DESC Text that describes the package (maximum length of 256
ASCII characters). This parameter value is used to provide
the installer with a description of what the package contains
and should build on the description provided in the NAME
parameter. Try to make the two parameters work together so
that a pkginfo -l will provide a fairly comprehensive
textual description of the package.

VENDOR Used to identify the vendor that holds the software
copyright (maximum length of 256 ASCII characters).

HOTLINE Phone number and/or mailing address where further
information may be received or bugs may be reported
(maximum length of 256 ASCII characters).

Last modified 27 Feb 1998 SunOS 5.7 360

pkginfo(4) File Formats

EMAIL An electronic address where further information is available
or bugs may be reported (maximum length of 256 ASCII
characters).

VSTOCK The vendor stock number, if any, that identifies this product
(maximum length of 256 ASCII characters).

CLASSES A space-separated list of classes defined for a package. The
order of the list determines the order in which the classes are
installed. Classes listed first will be installed first (on a media
by media basis). This parameter may be modified by the
request script.

ISTATES A list of allowable run states for package installation (for
example, "S s 1" allows run states of S, s or 1). Solaris 2 and
Solaris 7 support the run levels s , S, 0, 1, 2, 3, 5, and 6.
Applicable run levels for this parameter are s , S, 1, 2, and 3.
See init (1M) for details.

RSTATES A list of allowable run states for package removal (for
example, "S s 1" allows run states of S, s or 1). Solaris 2 and
Solaris 7 support the run levels s , S, 0, 1, 2, 3, 5, and 6.
Applicable run levels for this parameter are s , S, 1, 2, and 3
See init (1M) for details.

BASEDIR The pathname to a default directory where "relocatable" files
may be installed. If blank, the package is not relocatable and
any files that have relative pathnames will not be installed.
An administrator can override the default directory.

ULIMIT If set, this parameter is passed as an argument to the
ulimit (1) command (see limit (1)), which establishes the
maximum size of a file during installation.

ORDER A list of classes defining the order in which they should be
put on the medium. Used by pkgmk(1) in creating the
package. Classes not defined in this field are placed on the
medium using the standard ordering procedures.

MAXINST The maximum number of package instances that should be
allowed on a machine at the same time. By default, only one
instance of a package is allowed. This parameter must be set
in order to have multiple instances of a package. In order to
support multiple instances of packages (for example,
packages that differ in their ARCHor VERSIONparameter

361 SunOS 5.7 Last modified 27 Feb 1998

File Formats pkginfo(4)

value), the value of this parameter must be high enough to
allow for all instances of a given package, including multiple
versions coexisting on a software server.

PSTAMP Production stamp used to mark the pkgmap(4) file on the
output volumes. Provides a means for distinguishing
between production copies of a version if more than one is
in use at a time. If PSTAMPis not defined, the default is
used. The default consists of the UNIX system machine
name followed by the string "YYYYMMDDHHMM" (year,
month, date, hour, minutes).

INTONLY Indicates that the package should only be installed
interactively when set to any non-null value.

SUNW_PRODNAMESolaris 2 and Solaris 7-only parameter indicating the name of
the product this package is a part of or comprises (maximum
length of 256 ASCII characters). A few examples of currently
used SUNW_PRODNAMEvalues are: "SunOS" ,
"OpenWindows" , and "Common Desktop Environment" .

SUNW_PRODVERSSolaris 2 and Solaris 7-only parameter indicating the version
or release of the product described in SUNW_PRODNAME
(maximum length of 256 ASCII characters). For example,
where SUNW_PRODNAME="SunOS" , and the Solaris 2.x Beta
release, this string could be "5.x BETA" , while for the
Solaris 2.x FCS release, the string would be "5.x" . For
Solaris 7, the string is "5.7" . If the SUNW_PRODNAME
parameter is NULL, so should be the SUNW_PRODVERS
parameter.

SUNW_PKGVERSSolaris 2 and Solaris 7–only parameter indicating of version
of the Solaris 2 or Solaris 7 package interface. It is used to
indicate the version of the Solaris 2 or Solaris 7-specific
software packaging interfaces.

SUNW_PKGVERS="<sunw_package_version>"

where <unw_package_version> has the form x.y[.z] and x, y,
and z are integers. For packages built for this release and
previous releases, use SUNW_PKGVERS="1.0".

Last modified 27 Feb 1998 SunOS 5.7 362

pkginfo(4) File Formats

SUNW_PKGTYPESolaris 2 and Solaris 7-only parameter for Sun internal use
only. Required for packages part of the Solaris 2 and Solaris
7 releases which install into the / , /usr , /usr/kvm , and
/usr/openwin file systems. The Solaris 2 and Solaris 7
installation software must know which packages are part of
which file system to properly install a server/client
configuration. The currently allowable values for this
parameter are root , usr , kvm, and ow. If no
SUNW_PKGTYPEparameter is present, the package is
assumed to be of BASEDIR= /opt. SUNW_PKGTYPEis optional
only for packages which install into the /opt name space as
is the case for the majority of Solaris 2 and Solaris
7-compatible add-on software. See the SUNW_PKGTYPE
parameter in packagetoc (4) for further information.

SUNW_ISA Solaris 2 and Solaris 7-only optional parameter that indicates
a software package contains 64–bit objects if it is set to
sparc9 . If this parameter is not set, the default ISA
(instruction set architecture) is set to the value of the ARCH
parameter.

SUNW_LOC Solaris 2 and Solaris 7-only optional parameter used to
indicate a software package containing localization files for a
given product or application. The parameter value is a
comma-separated list of locales supported by a package. It is
only used for packages containing localization files, typically
the message catalogues. The allowable values for this string
field are those found in the table of Standard Locale Names
located in the Solaris Internationalization Guide For
Developers.

SUNW_LOC="<locale_name>,< locale_name>,..,< locale_name>"

where
<locale_name>::= < language>[_< territory>][.< codeset>]

<language>::= the set of names from ISO 639

<territory>::= the set of territories specified
in ISO 3166

363 SunOS 5.7 Last modified 27 Feb 1998

File Formats pkginfo(4)

<codeset>::= is a string corresponding to the coded
character set

Since a value of C specifies the traditional UNIX system
behavior (American English, en_US), packages belonging to
the C locale are viewed as non-localized packages, and thus
must not have SUNW_LOCand SUNW_PKGLISTincluded in
their pkginfo file. See also the SUNW_LOCparameter in
packagetoc (4) and setlocale (3C) for more information.
This keyword is not recognized by the add-on software
utility Software Manager.

SUNW_PKGLIST Solaris 2 and Solaris 7-only optional parameter used to
associate a localization package to the package(s) from which
it is derived. It is required whenever the SUNW_LOC
parameter is defined. This parameter value is an
comma-separated list of package abbreviations of the form:

SUNW_PKGLIST="pkg1[:version], pkg2[: version],..."

where version (if specified) should match the version string
in the base package specified (see VERSIONparameter in this
manual page). When in use, SUNW_PKGLISThelps determine
the order of package installation. The packages listed in the
parameter will be installed before the localization package in
question is installed. When left blank, SUNW_PKGLIST=" ",
the package is assumed to be required for the locale to
function correctly. See the SUNW_PKGLISTparameter in
packagetoc (4) for more information. This keyword is not
recognized by the add-on software utility Software Manager.

EXAMPLES EXAMPLE 1 A sample pkginfo file.

Here is a sample pkginfo file:

SUNW_PRODNAME="SunOS"
SUNW_PRODVERS="5.5"
SUNW_PKGTYPE="usr"
PKG="SUNWesu"
NAME="Extended System Utilities"
VERSION="11.5.1"
ARCH="sparc"
VENDOR="Sun Microsystems, Inc."
HOTLINE="Please contact your local service provider"

Last modified 27 Feb 1998 SunOS 5.7 364

pkginfo(4) File Formats

EMAIL=""
VSTOCK="0122c3f5566"
CATEGORY="system"
ISTATES="S 2"
RSTATES="S 2"

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability See entries below

PKG value Evolving

VERSION value Evolving

NAME value Evolving

DESC value Evolving

ARCH value Evolving

CATEGORY value Evolving

BASEDIR value Evolving

ISTATES value Evolving

RSTATES value Evolving

MAXINST value Evolving

SUNW_PRODNAME Evolving

SUNW_PRODVERS Evolving

SUNW_PKGVERS Evolving

SUNW_PKGTYPE Unstable

SUNW_LOC Evolving

SUNW_PKGLIST Evolving

SEE ALSO isalist (1), limit (1), pkgmk(1), uname(1), init (1M), setlocale (3C),
clustertoc (4), order (4), packagetoc (4), pkgmap(4), attributes (5)

Application Packaging Developer’s Guide

Solaris Internationalization Guide For Developers

365 SunOS 5.7 Last modified 27 Feb 1998

File Formats pkginfo(4)

NOTES Developers may define their own installation parameters by adding a definition
to this file. A developer-defined parameter must begin with a capital letter.

Trailing white space after any parameter value is ignored. For example,
VENDOR="Sun Microsystems, Inc." is the same as
VENDOR="Sun Microsystems, Inc. " .

Last modified 27 Feb 1998 SunOS 5.7 366

pkgmap(4) File Formats

NAME pkgmap – package contents description file

DESCRIPTION pkgmap is an ASCII file that provides a complete listing of the package
contents. It is automatically generated by pkgmk(1) using the information in
the prototype (4) file.

Each entry in pkgmap describes a single ‘‘deliverable object file.’’ A deliverable
object file includes shell scripts, executable objects, data files, directories, and so
forth. The entry consists of several fields of information, each field separated by
a space. The fields are described below and must appear in the order shown.
part An optional field designating the part number in which the

object resides. A part is a collection of files and is the atomic
unit by which a package is processed. A developer can
choose the criteria for grouping files into a part (for example,
based on class). If no value is defined in this field, part 1 is
assumed.

ftype A one-character field that indicates the file type. Valid values
are:

b block special device

c character special device

d directory

e a file to be edited upon installation or removal (may
be shared by several packages)

f a standard executable or data file

i installation script or information file

l linked file

p named pipe

s symbolic link

v volatile file (one whose contents are expected to
change, like a log file)

x an exclusive directory accessible only by this
package

class The installation class to which the file belongs. This name
must contain only alphanumeric characters and be no longer
than 12 characters. It is not specified if the ftype is i
(information file).

367 SunOS 5.7 Last modified 4 Oct 1996

File Formats pkgmap(4)

pathname pathname may contain variables of the form $variable that
support install-time configuration of the file. variable may be
embedded in the pathname structure. (See prototype (4)
for definitions of variable specifications.)

Do not use the following reserved words in pathname, since
they are applied by pkgadd (1M) using a different
mechanism:

PKG_INSTALL_ROOT
BASEDIR
CLIENT_BASEDIR

major The major device number. The field is only specified for
block or character special devices.

minor The minor device number. The field is only specified for
block or character special devices.

mode The octal mode of the file (for example, 0664). A question
mark (?) indicates that the mode will be left unchanged,
implying that the file already exists on the target machine.
This field is not used for linked files, packaging information
files, or non-installable files.

The mode can contain a variable specification. (See
prototype (4) for definitions of variable specifications.)

owner The owner of the file (for example, bin or root). The field is
limited to 14 characters in length. A question mark (?)
indicates that the owner will be left unchanged, implying
that the file already exists on the target machine. This field is
not used for linked files or non-installable files. It is used
optionally with a package information file. If used, it
indicates with what owner an installation script will be
executed.

The owner can contain a variable specification. (See
prototype (4) for definitions of variable specifications.)

group The group to which the file belongs (for example, "bin" or
"sys"). The field is limited to 14 characters in length. A
question mark (?) indicates that the group will be left
unchanged, implying that the file already exists on the target

Last modified 4 Oct 1996 SunOS 5.7 368

pkgmap(4) File Formats

machine. This field is not used for linked files or
non-installable files. It is used optionally with a package
information file. If used, it indicates with what group an
installation script will be executed.

The group can contain a variable specification. (See
prototype (4) for definitions of variable specifications.)

size The actual size of the file in bytes. This field is not specified
for named pipes, special devices, directories or linked files.

cksum The checksum of the file contents. This field is not specified
for named pipes, special devices, directories, or linked files.

modtime The time of last modification, as reported by the stat (2)
function call. This field is not specified for named pipes,
special devices, directories, or linked files.

Each pkgmap file must have one line that provides information about the
number of parts and maximum size (in 512-byte blocks) of parts that make up
the package. This line is in the following format:

: number_of_parts maximum_part_size

Lines that begin with ‘‘#’’ are comment lines and are ignored.

When files are saved during installation before they are overwritten, they are
normally just copied to a temporary pathname. However, for files whose mode
includes execute permission (but which are not editable), the existing version
is linked to a temporary pathname and the original file is removed. This
allows processes which are executing during installation to be overwritten.

EXAMPLES EXAMPLE 1 A sample pkgmap file.

The following is an example of a pkgmap file:

:2 500
1 i pkginfo 237 1179 541296672
1 b class1 /dev/diskette 17 134 0644 root other
1 c class1 /dev/rdiskette 17 134 0644 root other
1 d none bin 0755 root bin
1 f none bin/INSTALL 0755 root bin 11103 17954 541295535
1 f none bin/REMOVE 0755 root bin 3214 50237 541295541
1 l none bin/UNINSTALL=bin/REMOVE
1 f none bin/cmda 0755 root bin 3580 60325 541295567
1 f none bin/cmdb 0755 root bin 49107 51255 541438368
1 f class1 bin/cmdc 0755 root bin 45599 26048 541295599
1 f class1 bin/cmdd 0755 root bin 4648 8473 541461238
1 f none bin/cmde 0755 root bin 40501 1264 541295622
1 f class2 bin/cmdf 0755 root bin 2345 35889 541295574
1 f none bin/cmdg 0755 root bin 41185 47653 541461242

369 SunOS 5.7 Last modified 4 Oct 1996

File Formats pkgmap(4)

2 d class2 data 0755 root bin
2 p class1 data/apipe 0755 root other
2 d none log 0755 root bin
2 v none log/logfile 0755 root bin 41815 47563 541461333
2 d none save 0755 root bin
2 d none spool 0755 root bin
2 d none tmp 0755 root bin

SEE ALSO pkgmk(1), pkgadd (1M), stat (2), pkginfo (4), prototype (4)

Application Packaging Developer’s Guide

NOTES The pkgmap file may contain only one entry per unique pathname.

Last modified 4 Oct 1996 SunOS 5.7 370

platform(4) File Formats

NAME platform – directory of files specifying supported platforms

SYNOPSIS .platform

DESCRIPTION The Solaris 2.5 release includes the .platform directory, a new directory on
the Solaris CD image. This directory contains files (created by SunSoft and
Solaris OEMs) that define platform support. These files are generically referred
to as platform definition files. They provide a means to map different platform
types into a platform group.

Platform definition files in the .platform directory are used by the installation
software to ensure that software appropriate for the architecture of the system
will be installed.

SunSoft provides a platform definition file named .platform/Solaris .
This file is the only one that can define platform groups to which other
platform definition files can refer. For example, an OEM platform definition file
can refer to any platform group specified in the Solaris platform definition file.

Other platform definition files are delivered by OEMs. To avoid name conflicts,
OEMs will name their platform definition file with an OEM-unique string.
OEM’s should use whatever string they use to make their package names
unique. This unique string is often the OEM’s stock symbol.

Comments are allowed in a platform definition file. A "#" begins a comment
and can be placed anywhere on a line.

Platform definition files are composed of keyword-value pairs, and there are
two kinds of stanzas in the file: platform group definitions and platform
identifications.

� Platform group definitions:

The keywords in a platform group definition stanza are:
PLATFORM_GROUPThe PLATFORM_GROUPkeyword must be the first keyword in

the platform group definition stanza. The value assigned to
this keyword is the name of the platform group, for example:

PLATFORM_GROUP=sun4c

The PLATFORM_GROUPname is an arbitrary name assigned
to a group of platforms. However, PLATFORM_GROUP
typically equals the output of the uname -m command.
PLATFORM_GROUPvalue cannot have white space and is
limited to 256 ASCII characters.

INST_ARCH The instruction set architecture of all platforms in the
platform group, for example:

INST_ARCH=sparc

371 SunOS 5.7 Last modified 30 Aug 1995

File Formats platform(4)

The INST_ARCHkeyword value must be the value returned
by the uname -p command on all platforms in the platform
group.

� Platform identifications:

The keywords in a platform identification stanza are:
PLATFORM_NAME The PLATFORM_NAMEkeyword must be the first

keyword in the platform identification stanza.
The PLATFORM_NAMEis the name assigned to the
platform, for example:

PLATFORM_NAME=SUNW,SPARCstation-5

Typically, this name is the same as the value
returned by the uname -i command on the
machine, but it need not be the same.

The PLATFORM_NAMEvalue cannot have white
space and is limited to 256 ASCII characters. If it
contains parentheses, it must contain only
balanced parentheses. For example. the string
"foo(bar)foo" is a valid value for this keyword,
but "foo(bar" is not.

The other keywords in the platform identification
stanza can be in any order, as long as the
PLATFORM_NAMEkeyword is first.

PLATFORM_ID The value returned by the uname -i command on
the machine, for example:

PLATFORM_ID=SUNW,SPARCstation-5

MACHINE_TYPE The value returned by the uname -m command
on the machine, for example:

MACHINE_TYPE=sun4c

IN_PLATFORM_GROUP The platform group of which the platform is a
member, for example:

IN_PLATFORM_GROUP=sun4c

The platform group name must be specified in
the same file as the platform identification stanza
or in the platform definition file with the name
.platform/Solaris .

Last modified 30 Aug 1995 SunOS 5.7 372

platform(4) File Formats

The IN_PLATFORM_GROUPkeyword is optional.
A platform doesn’t have to belong to a platform
group. If a platform isn’t explicitly assigned to a
platform group, it essentially forms its own
platform group, where the platform group name
is the PLATFORM_NAMEvalue. The
IN_PLATFORM_GROUPvalue typically equals the
output of the uname -m command.
IN_PLATFORM_GROUPvalue cannot have white
space and is limited to 256 ASCII characters.

INST_ARCH The instruction set architecture of the platform,
for example:

INST_ARCH=sparc

This field is only required if the platform does
not belong to a platform group. The INST_ARCH
keyword value must be the value returned by the
uname -p command on all platforms in the
platform group.

COMPATIBILITY The installation program will remain compatible with the old Solaris CD
format. If a Solaris CD image does not contain any platform definition files,
the installation and upgrade programs will select the packages to be installed
based on machine type (i.e., the value returned by the uname -m command).

EXAMPLES EXAMPLE 1 The following example shows platform group definitions from the
.platform/Solaris platform definition file.

#
PLATFORM_GROUP=sun4c
INST_ARCH=sparc
#
PLATFORM_GROUP=sun4d
INST_ARCH=sparc
#
PLATFORM_GROUP=sun4m
INST_ARCH=sparc
#
PLATFORM_GROUP=sun4u
INST_ARCH=sparc

373 SunOS 5.7 Last modified 30 Aug 1995

File Formats platform(4)

EXAMPLE 2 The following example shows platform identification stanzas, which
define systems that belong in a platform group, from the .platform/Solaris
platform definition file.

#
PLATFORM_NAME=SUNW,Sun_4_20
PLATFORM_ID=SUNW,Sun_4_20
IN_PLATFORM_GROUP=sun4c
PLATFORM_NAME=SUNW,Sun_4_25
PLATFORM_ID=SUNW,Sun_4_25
IN_PLATFORM_GROUP=sun4c
#
PLATFORM_NAME=SUNW,SPARCstation-5
PLATFORM_ID=SUNW,SPARCstation-5
IN_PLATFORM_GROUP=sun4m
#
PLATFORM_NAME=SUNW,SPARCstation-10
PLATFORM_ID=SUNW,SPARCstation-10
IN_PLATFORM_GROUP=sun4m

FILES The .platform directory must reside as /
cd_image/Solaris_ vers/.platform , where
cd_image Is the path to the mounted Solaris CD (/cdrom/cdrom0/s0

by default) or the path to a copy of the Solaris CD on a disk.

Solaris_vers Is the version of Solaris: e.g., Solaris_2.5.

NOTES Typically, a platform identification stanza contains either a PLATFORM_IDor a
MACHINE_TYPEstanza, but not both.

If both are specified, both must match for a platform to be identified as this
platform type. Each platform identification stanza must contain either a
PLATFORM_IDvalue or a MACHINE_TYPEvalue. If a platform matches two
different platform identification stanzas—one which matched on the value of
PLATFORM_IDand one which matched on the value of MACHINE_TYPE, the
one that matched on PLATFORM_IDwill take precedence.

The .platform directory is part of the Solaris CD image, whether that be the
Solaris CD or a copy of the Solaris CD on a system’s hard disk.

Last modified 30 Aug 1995 SunOS 5.7 374

power.conf(4) File Formats

NAME power.conf – power management configuration information file

SYNOPSIS /etc/power.conf

DESCRIPTION The power.conf file is used by the power management configuration
program, pmconfig (1M), to initialize the settings for power management of
the system.

There are two types of entries in the power.conf file: device management
entries and system management entries.

Device Management Devices not appearing in this file will not be power managed without explicit
configuration using the power management pseudo driver. See pm(7D). You
should fully understand the power management framework before modifying
device management entries in this file. Although inappropriate settings will
not cause system damage, severe performance reduction may result. An entry
in power.conf will be effective only if the driver for the device supports
device power management.

Device management entries consist of line by line listings of the devices to be
configured. Each line is of the form:

device_name threshold . . . dependents . . .

The fields must be in this order. Each line must contain a device_name field and
a threshold field; it may also contain a dependents field. Fields and sub-fields are
separated by white space (tabs or spaces). A line may be more than 80
characters. If a newline character is preceded by a backslash (’\’) it will be
treated as white space. Comment lines must begin with a hash character (’#’).

The device_name field specifies the device to be configured. device_name is either
a pathname specifying the device special file or a relative pathname containing
the name of the device special file. When using the latter format, instead of
using the full pathname, it is possible to omit the portion of the pathname
specifying the parent devices. This includes the leading ’/’. Using this
"relative" pathname format, the first device found with a full pathname
containing device_name as its tail is matched. In either case, the leading
/devices component of the pathname does not need to be specified.

For example, a SCSI disk target with the following full path name:

/iommu@f,e000/sbus@f,e001/espdma@f,4000/esp@f,8000/sd@1,0

may also be specified as:

sbus@f,e000/espdma@f,4000/esp@f,8000/sd@1,0

375 SunOS 5.7 Last modified 29 Jul 1998

File Formats power.conf(4)

or

esp@f,8000/sd@1,0

or

sd@1,0

The threshold field is used to configure the power manageable components of a
device. These components represent entities within a device that may be
power-managed separately. This field may contain as many integer values as
the device has components. Each threshold time specifies the idle time in
seconds before the respective component may be powered down. If there are
fewer component threshold times than device components, the remaining
components are not power managed. Use a value of −1 to explicitly disable
power-down for a component. At least one component threshold must be
specified per device (in the file).

The dependents field may contain a list of logical dependents for this device. A
logical dependent is a selected device that is not physically connected to the
power managed device (for example, the display and the keyboard). A
dependent device is one that must be idle and powered-down before the
managed device can be powered down. The dependents field entries use the
same format as the first field and are separated by white spaces. A device
must previously have been configured before it can be used as a dependent.

Device power management entries for frame buffers are only effective when
the X window system is not running. If either the Open Window or Common
Desktop Environment window system is running, it takes over power
management of the display devices that it is using.

System Management The system management entries control power management for the entire
system. They are distinguished by the use of the special device names listed
below.

Note that the following autoshutdown entry is not intended to be hand
edited, but to be maintained by the dtpower utility.

If the device_name field contains the special device name autoshutdown , the
threshold value specifies the system idle time (measured as discussed below)
before the system may be shut down by powerd (1M). The threshold value is
followed by start and finish times (each in the format hh:mm) which specify
the time period during which the system may be automatically shut down (see
powerd (1M)). Following the start and finish times is the behavior field, which
can be shutdown , noshutdown , autowakeup , default , or unconfigured .

Last modified 29 Jul 1998 SunOS 5.7 376

power.conf(4) File Formats

Acceptable behavior values and their meanings are:
shutdown The system will be shut down automatically when it has

been idle for the number of minutes specified in the threshold
value and the time of day falls between the start and finish
values.

noshutdown The system is never shut down automatically.

autowakeup If the hardware has the capability to do autowakeup, the
system is shut down as if the value were shutdown and the
system will be restarted automatically the next time the time
of day equals the finish time.

default The behavior of the system will depend upon its model.
Desktop models that were first put into production after
October 1, 1995 will behave as if the behavior field were set to
shutdown . Desktop models first put into production before
this date and server models will act as if the behavior field
were set to noshutdown . The behavior is determine by a
root node property named energystar-v2 .

unconfigured The system will not be shut down automatically. If the
system has just been installed or upgraded, the value of this
field will be changed upon the next reboot. If the power
management package has been added by hand, the dtpower
utility must be run to set the correct autoshutdown
behavior.

If the device_name field contains the special device name statefile , the
threshold value specifies the location of the file used by cpr (7). The cpr
module uses this file to record the state of the system prior to powering it
down.

This entry has the following format:

statefile pathname

where pathname identifies a block special file, for example
/dev/dsk/c1t0d0s3 , or is the absolute pathname of a local ufs file.

If pathname specifies a local ufs file, it cannot be a symbolic link. If the file
does not exist when it is time for a checkpoint to be taken, cpr will create it.
All the directory components of the path must already exist.

If pathname specifies a block special file, then it may be a symbolic link, as long
as it does not have a file system mounted on it.

377 SunOS 5.7 Last modified 29 Jul 1998

File Formats power.conf(4)

The actual size required by cpr to checkpoint the system state at any given
time depends on a variety of factors, including the size of the system’s
memory, the number of loadable drivers/modules in use, the number and type
of processes running, and the amount of user memory that has been “locked
down”.

If cpr fails to complete a checkpoint due to insufficient space on the file
system or block special file specified for the statefile, an explanatory message
will be displayed on the console and written to the system log, and the system
will be returned to its state prior to the checkpoint attempt.

It is recommended that the statefile be placed on a file system with at least 10
Mbytes of free space. In order that a newly installed system will have a
statefile path which meets this requirement, a script run at boot time checks
for the existence of the power.conf file. If the file exists but lacks a statefile
entry, the script will create one using a simple method to determine the
pathname. It first examines the free space in the root file system, and if there is
sufficient space, an appropriate entry is added to power.conf . It then applies
the same test to /usr , if it is a separate file system. If this also fails, it checks
the file system of those remaining (if any) that has the largest number of free
blocks. If all three of these checks fail, a message is be displayed warning the
user of the failure. If the pathname entry is created by the system, the final
component of the name will be .CPR.

To further reduce the possibility of a checkpoint failure, the file system should
have free space equivalent to at least one half of the system’s memory (RAM).
To modify the statefile location, edit the statefile entry in power.conf ,
replacing the existing path with the new one. After saving the file and exiting
the editor, run the pmconfig (1M) command with no arguments.

Some types of application, such as proprietary data base packages, achieve
higher performance by using Solaris system calls that lock a large number of
user pages into memory. In such cases, the amount of space required for the
cpr statefile should be increased by the total space of such locked down
memory.

The device_name field also recognizes the following names:
ttychars If the device_name is ttychars , the threshold field

will be interpreted as the maximum number of
tty characters that can pass through the ldterm
module while still allowing the system to be
considered idle. This value defaults to 0 if no
entry is provided.

loadaverage If the device_name is loadaverage , the (floating
point) threshold field will be interpreted as the
maximum load average that can be seen while

Last modified 29 Jul 1998 SunOS 5.7 378

power.conf(4) File Formats

still allowing the system to be considered idle.
This value defaults to 0.04 if no entry is
provided.

diskreads If the device_name is diskreads , the threshold
field will be interpreted as the maximum number
of disk reads that can be perform by the system
while still allowing the system to be considered
idle. This value defaults to 0 if no entry is
provided.

nfsreqs If the device_name is nfsreqs , the threshold field
will be interpreted as the maximum number of
NFS requests that can be sent or received by the
system while still allowing the system to be
considered idle. Null requests, access requests,
and gettattr requests are excluded from this
count. This value defaults to 0 if no entry is
provided.

idlecheck If the device_name is idlecheck , the device_name
field must be followed by the pathname of a
program to be executed to determine if the
system is idle. If autoshutdown is enabled and
the console keyboard, mouse, tty, CPU (as
indicated by load average), network (as measured
by NFS requests) and disk (as measured by read
activity) have been idle for the amount of time
specified in the autoshutdown entry specified
above, and the time of day falls between the start
and finish times, then this program will be
executed to check for other idleness criteria. The
value of the idle time specified in the above
autoshutdown entry will be passed to the
program in the environment variable
PM_IDLETIME. The process must terminate with
an exit code that represents the number of
minutes that the process considers the system to
have been idle.

There is no default idlecheck entry. The default
behavior is to consider only mouse, keyboard, tty,
load average, NFS requests, and disk reads as
indicators of non-idleness. To extend the
definition of non-idleness, a shell script can be
created that must exit with the number of

379 SunOS 5.7 Last modified 29 Jul 1998

File Formats power.conf(4)

minutes it considers the system to have been idle,
according to its criteria. The path to this new
script can then be stored in the idlecheck entry in
power.conf .

EXAMPLES

power.conf file The following is a sample power.conf file.

This is a sample power management configuration file
Fields must be separated by white space.
#
Name Threshold(s) Logical Dependent(s)
/dev/kbd 1800
/dev/mouse 1800
/dev/fb 0 0 /dev/kbd /dev/mouse
#Example of a second display
/dev/fb1 0 0 /dev/kbd /dev/mouse
This entry is maintained by the dtpower utility
This (default as of SunOS 5.5) entry causes the system to be
shut down after 30 minutes of idle time if it is a model first
shipped after Oct 1, 1995. Older models default to noshutdown.
#
autoshutdown in effect
Auto-Shutdown Idle(min) Start/Finish(hh:mm) Behavior
autoshutdown 30 9:00 9:00 default
Statefile Path
statefile /export/home/.CPR
The idlecheck program is passed the autoshutdown idle time entry in
the environment variable $PM_IDLETIME and it must return the number of
minutes the system has been idle (by its criteria) in its exit code.
idlecheck /home/critical/idlecheck

idlecheck script The following is a sample idlecheck script.

#!/bin/sh
This is a sample idlecheck script which considers the system
not idle if user "critical" is logged in
critical=‘who|grep -w critical‘
if ["$critical"] # if "$critical" is not null string
then

exit 0 # not idle because critical logged in
else

exit $PM_IDLETIME # idle long enough
fi

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 29 Jul 1998 SunOS 5.7 380

power.conf(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpmr

SEE ALSO pmconfig (1M), powerd (1M), sys-suspend (1M), sys-unconfig (1M),
kstat (3K), attributes (5), cpr (7), ldterm (7M), pm(7D)

Writing Device Drivers

NOTES The default behavior for desktop models introduced after October 1, 1995 is to
shut down after 30 minutes of idleness any time of day. The dtpower utility
can be used to change the default.

The default behavior is mandated by the U.S. Government Environmental
Protection Agency as a requirement for EnergyStar compliance. The user will
be prompted to confirm this default at system installation reboot, or during the
first boot after the system is unconfigured by sys-unconfig (1M).

The user may wish to use the dtpower utility to set the autoshutdown start
time to the end of the normal work day, and to set the autoshutdown finish
time to the start of the normal work day.

The physical dependents are automatically included by the power manager and
need not be specified.

The default power.conf file supports the standard hardware configuration.
For each additional power manageable device (such as a second display), a
new entry must be manually added to the power.conf file and
pmconfig (1M) must be executed to activate the new change.

Frequently powering devices up and down may reduce device reliability,
especially for devices not designed for power management. Do not place
additional devices under power management unless the hardware
documentation permits it. At this time most, SCSI hard disks are not
power-manageable.

381 SunOS 5.7 Last modified 29 Jul 1998

File Formats printers(4)

NAME printers – user-configurable printer alias database

SYNOPSIS $HOME/.printers

DESCRIPTION The $HOME/.printers file is a simplified version of the system
/etc/printers.conf file (see printers.conf (4)). Users create the
$HOME/.printers file in their home directory. This optional file is
customizable by the user.

The $HOME/.printers file performs the following functions:

1. Sets personal aliases for all print commands.

2. Sets the interest list for the lpget , lpstat and cancel commands. See
lpget (1M), lpstat (1) and cancel (1).

3. Sets the default printer for the lp , lpr , lpq , and lprm commands. See
lp (1), lpr (1B), lpq (1B), and lprm (1B).

Entries Use a line or full screen editor to create or modify the $HOME/.printers file.

Each entry in $HOME/.printers describes one destination. Entries are one
line consisting of two fields separated by either BLANKs or
TABs and terminated by a NEWLINE. Format for an entry in
$HOME/.printers varies according to the purpose of the entry.

Empty lines can be included for readability. Entries may continue on to
multiple lines by adding a backslash (‘\ ’) as the last character in the line. The
$HOME/.printers file can include comments. Comments have a pound sign
(‘#’) as the first character in the line, and are terminated by a NEWLINE.

Setting Personal Aliases

Specify the alias or aliases in the first field. Separate multiple aliases by a pipe
sign (‘| ’). Specify the destination in the second field. A destination names a
printer or class of printers (see lpadmin (1M)). Specify the destination using
atomic, POSIX-style (server: destination), or Federated Naming Service (FNS)
(.../service /printer /...) names. See printers.conf (4) for information
regarding the naming conventions for atomic and FNS names, and
standards (5) for information regarding POSIX.

Setting the Interest List for lpget, lpstat and cancel

Specify _all in the first field. Specify the list of destinations for the interest
list in the second field. Separate each destinations by a comma (‘, ’). Specify
destinations using atomic, POSIX-style (server: destination), or FNS names
(.../service/printer/ ...). See printers.conf (4) for information
regarding the naming conventions for atomic and FNS names. This list of
destinations may refer to an alias defined in $HOME/.printers .

Last modified 21 Mar 1997 SunOS 5.7 382

printers(4) File Formats

Setting the Default Destination

Specify _default in the first field. Specify the default destination in the
second field. Specify the default destination using atomic, POSIX-style
(server: destination), or FNS names (.../service/printer/ ...). See
printers.conf (4) for information regarding the naming conventions for
atomic and FNS names. The default destination may refer to an alias defined
in $HOME/.printers.

Locating Destination
Information

The print client commands locate destination information in a very specific
order.

Locating Destinations

The print client commands locate destinations in the following order:

1. POSIX-style names.

2. Aliases in $HOME/.printers.

3. Destinations in FNS.

Locating the Interest List for lpstat, lpget and cancel The
lpget , lpstat and cancel commands locate the interest list in the following
order:

1. _all list in $HOME/.printers.

2. _all list in /etc/printers.conf.

3. _all list in FNS.

Locating the Personal Default Destination The default destination
is located differently depending on the command.

The lp command locates the default destination in the following order:

1. lp command’s −d destination option.

2. LPDESTenvironment variable.

3. PRINTERenvironment variable.

4. _default destination in $HOME/.printers.

5. _default destination in /etc/printers.conf .

6. _default destination in FNS.

The lpr , lpq , and lprm commands locate the default destination in the
following order:

1. lpr command’s −P destination option.

2. PRINTERenvironment variable.

3. LPDESTenvironment variable.

383 SunOS 5.7 Last modified 21 Mar 1997

File Formats printers(4)

4. _default destination in $HOME/.printers.

5. _default destination in /etc/printers.conf .

6. _default destination in FNS.

EXAMPLES EXAMPLE 1 Settings.

The following entry sets the interest list to destinations ps , secure , and dog
at server west and finance_ps at site bldg2 .

_all ps,secure,west:dog,site/bldg2/service/printer/finance_ps

The following entry sets the aliases ps , lp , and lw to sparc_printer .

ps|lp|lw sparc_printer

The following entry sets the alias pcl to hplj and sets it as the default
destination.

pcl|_default hplj

The following entry sets the alias secure to destination catalpa at server
tabloid .

secure tabloid:catalpa

The following entry sets the alias insecure to destination legal_ps at site
bldg2 .

insecure site/bldg2/service/printer/legal_ps

FILES
$HOME/.printers User-configurable printer database.

/etc/printers.conf System printer configuration
database.

printers.conf.byname NIS version of
/etc/printers.conf .

fns.ctx_dir. domain NIS+ version of
/etc/printers.conf .

Last modified 21 Mar 1997 SunOS 5.7 384

printers(4) File Formats

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

Stability Level Stable

SEE ALSO cancel (1), lp (1), lpq (1B), lpr (1B), lprm (1B), lpstat (1), lpadmin (1M),
lpget (1M), printers.conf (4), attributes (5), fns (5), standards (5)

System Administration Guide, Volume I

NOTES $HOME/.printers is referenced by the printing commands before further
name resolution is made in /etc/printers.conf or the name service. If the
alias references a destination defined in /etc/printers.conf , it is possible
that the destination is defined differently on different systems. This could
cause output to be sent to an unintended destination if the user is logged in to
a different system.

385 SunOS 5.7 Last modified 21 Mar 1997

File Formats printers.conf(4)

NAME printers.conf – system printing configuration database

SYNOPSIS /etc/printers.conf

NIS printers.conf.byname

NIS+ fns.ctx_dir.domain

DESCRIPTION The printers.conf file is the system printing configuration database. System
administrators use printers.conf to describe destinations for the print
client commands and the print protocol adaptor. A destination names a printer
or class of printers (see lpadmin (1M)). The LP print spooler uses private LP
configuration data for represented in the printers.conf database.

Entries Each entry in printers.conf describes one destination. Entries are one line
consisting of any number of fields separated by colons (‘: ’) and terminated by
a NEWLINE. The first field of each entry specifies the name of the destination
and aliases to which the entry describes. Specify one or more names or aliases
of the destination in this first field. Specify the destination using atomic names.
POSIX-style names are not acceptable. See standards (5). Separate
destination names by pipe signs (‘| ’).

Two destination names are reserved for special use in the first entry. Use _all
to specify the interest list for lpget , lpstat and cancel . Use _default to
specify the default destination.

The remaining fields in an entry are key=value pairs. See
Specifying Configuration Options for details regarding key=value
pairs.

Empty lines can be included for readability. Entries may continue on to
multiple lines by adding a backslash (‘\ ’) as the last character in the line.
printers.conf can include comments. Comments have a pound sign (‘#’) as
the first character in the line, and are terminated by a NEWLINE. Use the
lpset command to create or modify printers.conf (see lpset (1M)). Do
not make changes in printers.conf using an editor.

Specifying
Configuration

Options

key=value pairs are configuration options defined by the system administrator.
key and value may be of arbitrary length. Separate key and value by the equal
(‘=’) character. Client/Server Configuration Options

The following client/server configuration options (represented as key=value
pairs) are supported:
bsdaddr= server, destination[,Solaris] Sets the server and destination

name. Sets if the client
generates protocol extensions
for use with the lp command

Last modified 21 Mar 1997 SunOS 5.7 386

printers.conf(4) File Formats

(see lp (1)). Solaris specifies
a Solaris print server extension.
If Solaris is not specified, no
protocol extensions are
generated. server is the name of
the host containing the queue
for destination. destination is the
atomic name by which the
server knows the destination.

use= destination Sets the destination to continue
searching for configuration
information. destination is an
atomic or Federated Naming
Service (FNS) (.../service /
printer /...) name.

all= destination_list Sets the interest list for the
lpget , lpstat , and cancel
commands. destination_list is a
comma-separated (‘, ’). list of
destinations. Specify destination
using atomic or FNS names
(.../service/printer/ ...). See
lpget (1M), lpstat (1), and
cancel (1).

General Server Options

The following general server configuration options (represented as key=value
pairs) are supported:
spooling-type= spooler[,version] Sets the type of spooler under

which a destination is
configured. Dynamically loads
translation support for the
back-end spooling system from
/usr/lib/print/bsd-adaptor/bsd_spooler. s
Specify spooler as lpsched ,
cascade , or test . lpsched is
used as a default for locally
attached destinations. cascade
is used as a default for
destination spooled on a remote
host. Use test for the test
module to allow the capture of
print requests. If using a
versioned spooler module,

387 SunOS 5.7 Last modified 21 Mar 1997

File Formats printers.conf(4)

version specifies the version of
the translation module.

spooling-type-path= dir_list Sets the location of translation
support for the type of spooler
defined by the
spooling-type key. Locates
translation support for the for
the type of spooler under which
a destination is configured.
dir_list is a comma-separated
(‘, ’) list of absolute pathnames
to the directories used to locate
translation support for the
spooling system set by the
spooling-type key.

LP Server Options

The following LP configuration options (represented as key=value pairs) are
supported:
user-equivalence=true |false Sets whether or not usernames

are considered equivalent when
cancelling a print request
submitted from a different host
in a networked environment.
true means that usernames are
considered equivalent, and
permits users to cancel a print
requests submitted from a
different host.
user-equivalence is set to
false by default. false
means that usernames are not
considered equivalent, and does
not permit users cancel a print
request submitted from a
different host. If
user-equivalence is set to
false , print requests can only
be cancelled by the users on the
host on whichs the print
prequest was generated or by
the super-user on the print
server.

Test Configuration Options

Last modified 21 Mar 1997 SunOS 5.7 388

printers.conf(4) File Formats

The following test configuration options (represented as key=value pairs) are
supported:
test-spooler-available=true |false Sets whether or not the protocol

adaptor accepts connection
requests to the test adaptor for
the destination. true means
that the protocol adaptor
accepts connection requests to
the test adaptor for the
destination.
test-spooler-available is
set to true by default. false
means that the protocol adaptor
does not accept connection
requests to the test adaptor for
the destination.

test-log= dir Sets the location of the log file
generated by the test translation
module. Specify dir as an
absolute pathname.

test-dir= dir Sets the directory to be used
during execution of the test
translation module. Specify dir
as an absolute pathname.

test-access=true |false Sets whether or not the
requesting client has access to
the test translation module.
true means that the requesting
client has access to the test
translation module.
test-access is set to true by
default. false means that the
the requesting client does not
have access to the test
translation module.

test-accepting=true |false Sets whether or not the
configured destination is
accepting job submission
requests. true means that the
configured destination is
accepting job submission
requests. test-accepting is

389 SunOS 5.7 Last modified 21 Mar 1997

File Formats printers.conf(4)

set to true by default. false
means that the configured
destination is not accepting job
submission requests.

test-restart=true |false Sets whether or not a protocol
request to restart the destination
will be honored or return an
error. true means that a
protocol request to restart the
destination will be honored.
test-restart is set to true
by default. false means that a
protocol request to restart the
destination return an error.

test-submit=true |false Sets whether or not a protocol
request to submit a job to a
destination will be honored or
return an error. true means
that a protocol request to
submit a job to a destination
will be honored. test-submit
is set to true by default.
false means that a protocol
request to submit a job to a
destination will not be honored.

test-show-queue-file=file Sets the name of the file whose
contents are to be returned as
the result of a status query.
Specify file as an absolute
pathname.

test-cancel-cancel-file=file Sets the name of the file whose
contents are returned as the
result of a cancellation request.
Specify file as an absolute
pathname.

Locating Destination
Information

The print client commands and the print protocol adaptor locate destination
information in a very specific order. Locating Destinations The print
client commands locate printers in the following order:

1. Aliases in $HOME/.printers.

Last modified 21 Mar 1997 SunOS 5.7 390

printers.conf(4) File Formats

2. Destinations in FNS.

Locating the Interest List for lpstat, lpget and cancel The
lpget , lpstat and cancel commands locate the interest list in the following
order:

1. _all list in $HOME/.printers.

2. _all list in /etc/printers.conf.

3. _all list in FNS.

Locating the Personal Default Destination The default destination
is located differently depending on the command.

The lp command locates the default destination in the following order:

1. lp command’s −d destination option.

2. LPDESTenvironment variable.

3. PRINTERenvironment variable.

4. _default destination in $HOME/.printers.

5. _default destination in /etc/printers.conf .

6. _default destination in FNS.

The lpr , lpq , and lprm commands locate the default destination in the
following order:

1. lpr command’s −P destination option.

2. PRINTERenvironment variable.

3. LPDESTenvironment variable.

4. _default destination in $HOME/.printers.

5. _default destination in /etc/printers.conf .

6. _default destination in FNS.

Looking Up
Destinations Using
Atomic Names and

FNS

Federated Naming Service (FNS) supports resolution of composite names
spanning multiple naming systems. FNS supports several underlying naming
services: NIS+, NIS, and files.

Atomic destination names are resolved using a specific search order. The order
in which atomic destination names are resolved follows:

1. Atomic destination name in /etc/printers.conf .

2. Atomic destination name in Federated Naming Service (FNS) context.

The atomic destination name is searched for in the following FNS contexts
in the order specified: thisuser/service/printer ,
myorgunit/service/printer , thisorgunit/service/printer .

391 SunOS 5.7 Last modified 21 Mar 1997

File Formats printers.conf(4)

In addition to these contexts, any subcontexts of these three contexts are
also searched.

For example, if the target destination is dept_sparc , and if
thisuser/service/printer has a subcontext color , the following
names will be looked up until one is found:
thisuser/service/printer/dept_sparc ,
thisuser/service/printer/color/dept_sparc ,
myorgunit/service/printer/dept_sparc ,
thisorgunit/service/printer/dept_sparc .

3. If NIS is the underlying naming service and if the destination name is not
found in /etc/printers.conf or the FNS contexts, the
printers.conf.byname map is searched for the target destination.

FNS names such as user/jsmith/service/printer/dept_sparc are
looked up in FNS. There are no additional search rules or sources. The
underlying naming service can be NIS+, NIS or files. See fns (5) for an
overview of FNS. See fns_policies (5) for an overview of FNS policies
and defining names such as thisuser and myorgunit .

EXAMPLES EXAMPLE 1 Setting printer configuration.

The following entry sets the interest list for the lpget , lpstat and cancel
commands to printer1 , printer2 and printer3 .

_all:all=printer1,printer2,printer3

The following entry sets the server name to server and and printer name to
ps_printer for destinations printer1 and ps . It does not generate protocol
extensions.

printer1|ps:bsdaddr=server,ps_printer

The following entry sets the server name to server and destination name to
pcl_printer , for destination printer2 . It also generates Solaris protocol
extensions.

printer2:bsdaddr=server,pcl_printer,Solaris

The following entry sets the server name to server and destination name to
new_printer , for destination printer3 . It also sets the printer3 to
continue searching for configuration information to printer
another_printer .

Last modified 21 Mar 1997 SunOS 5.7 392

printers.conf(4) File Formats

printer3:bsdaddr=server,new_printer:use=another_printer

The following entry sets the default destination to continue searching for
configuration information to destination printer1 .

_default:use=printer1

FILES
/etc/printers.conf

System configuration database.

$HOME/.printers

User-configurable printer database.

printers.conf.byname (NIS)

NIS version of /etc/printers.conf .

fns.ctx_dir. domain

NIS+ version of /etc/printers.conf .

/usr/lib/print/bsd-adaptor/bsd_spooler.so*

Spooler translation modules.

/usr/lib/print/in.lpd

BSD print protocol adapter.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

Stability Level Stable

393 SunOS 5.7 Last modified 21 Mar 1997

File Formats printers.conf(4)

SEE ALSO cancel (1), lp (1), lpq (1B), lpr (1B), lprm (1B), lpstat (1), in.lpd (1M),
lpadmin (1M), lpget (1M), lpset (1M), printers (4), attributes (5),
fns (5), fns_policies (5), standards (5)

System Administration Guide, Volume I

Last modified 21 Mar 1997 SunOS 5.7 394

proc(4) File Formats

NAME proc – /proc, the process file system

DESCRIPTION /proc is a file system that provides access to the state of each process and
light-weight process (lwp) in the system. The name of each entry in the /proc
directory is a decimal number corresponding to a process-ID. These entries are
themselves subdirectories. Access to process state is provided by additional
files contained within each subdirectory; the hierarchy is described more
completely below. In this document, ‘‘/proc file’’ refers to a non-directory file
within the hierarchy rooted at /proc . The owner of each /proc file and
subdirectory is determined by the user-ID of the process.

/proc can be mounted on any mount point, in addition to the standard
/proc mount point, and can be mounted several places at once. Such
additional mounts are allowed in order to facilitate the confinement of
processes to subtrees of the file system via chroot (1M) and yet allow such
processes access to commands like ps (1).

Standard system calls are used to access /proc files: open (2), close (2),
read (2), and write (2) (including readv (2), writev (2), pread (2), and
pwrite (2)). Most files describe process state and can only be opened for
reading. ctl and lwpctl (control) files permit manipulation of process state
and can only be opened for writing. as (address space) files contain the image
of the running process and can be opened for both reading and writing. An
open for writing allows process control; a read-only open allows inspection but
not control. In this document, we refer to the process as open for reading or
writing if any of its associated /proc files is open for reading or writing.

In general, more than one process can open the same /proc file at the same
time. Exclusive open is an advisory mechanism provided to allow controlling
processes to avoid collisions with each other. A process can obtain exclusive
control of a target process, with respect to other cooperating processes, if it
successfully opens any /proc file in the target process for writing (the as or
ctl files, or the lwpctl file of any lwp) while specifying O_EXCL in the
open (2). Such an open will fail if the target process is already open for writing
(that is, if an as , ctl , or lwpctl file is already open for writing). There can be
any number of concurrent read-only opens; O_EXCL is ignored on opens for
reading. It is recommended that the first open for writing by a controlling
process use the O_EXCL flag; multiple controlling processes usually result in
chaos.

If a process opens one of its own /proc files for writing, the open succeeds
regardless of O_EXCL and regardless of whether some other process has the
process open for writing. Self-opens do not count when another process
attempts an exclusive open. (A process cannot exclude a debugger by opening
itself for writing and the application of a debugger cannot prevent a process
from opening itself.) All self-opens for writing are forced to be close-on-exec
(see the F_SETFD operation of fcntl (2)).

395 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

Data may be transferred from or to any locations in the address space of the
traced process by applying lseek (2) to position the as file at the virtual
address of interest followed by read (2) or write (2) (or by using pread (2) or
pwrite (2) for the combined operation). The address-map file /proc/ pid/map
can be read to determine the accessible areas (mappings) of the address space.
I/O transfers may span contiguous mappings. An I/O request extending into
an unmapped area is truncated at the boundary. A write request beginning at
an unmapped virtual address fails with EIO; a read request beginning at an
unmapped virtual address returns zero (an end-of-file indication).

Information and control operations are provided through additional files.
<procfs.h> contains definitions of data structures and message formats used
with these files. Some of these definitions involve the use of sets of flags. The
set types sigset_t , fltset_t , and sysset_t correspond, respectively, to
signal, fault, and system call enumerations defined in <sys/signal.h> ,
<sys/fault.h> , and <sys/syscall.h> . Each set type is large enough to
hold flags for its own enumeration. Although they are of different sizes, they
have a common structure and can be manipulated by these macros:

prfillset(&set); /* turn on all flags in set */
premptyset(&set); /* turn off all flags in set */
praddset(&set, flag); /* turn on the specified flag */
prdelset(&set, flag); /* turn off the specified flag */
r = prismember(&set, flag); /* != 0 iff flag is turned on */

One of prfillset() or premptyset() must be used to initialize set before it is
used in any other operation. flag must be a member of the enumeration
corresponding to set .

Every process contains at least one light-weight process, or lwp. Each lwp
represents a flow of execution that is independently scheduled by the
operating system. All lwps in a process share its address space as well as
many other attributes. Through the use of lwpctl and ctl files as described
below, it is possible to affect individual lwps in a process or to affect all of
them at once, depending on the operation.

When the process has more than one lwp, a representative lwp is chosen by
the system for certain process status files and control operations. The
representative lwp is a stopped lwp only if all of the process’s lwps are
stopped; is stopped on an event of interest only if all of the lwps are so
stopped (excluding PR_SUSPENDED lwps); is in a PR_REQUESTED stop only
if there are no other events of interest to be found; or, failing everything else, is
in a PR_SUSPENDED stop (implying that the process is deadlocked). See the

Last modified 17 Mar 1998 SunOS 5.7 396

proc(4) File Formats

description of the status file for definitions of stopped states. See the
PCSTOP control operation for the definition of ‘‘event of interest’’.

The representative lwp remains fixed (it will be chosen again on the next
operation) as long as all of the lwps are stopped on events of interest or are in
a PR_SUSPENDED stop and the PCRUN control operation is not applied to
any of them.

When applied to the process control file, every /proc control operation that
must act on an lwp uses the same algorithm to choose which lwp to act upon.
Together with synchronous stopping (see PCSET), this enables a debugger to
control a multiple-lwp process using only the process-level status and control
files if it so chooses. More fine-grained control can be achieved using the
lwp-specific files.

The system supports two process data models, the traditional 32-bit data
model in which ints, longs and pointers are all 32 bits wide (the ILP32 data
model), and on some platforms the 64-bit data model in which longs and
pointers, but not ints, are 64 bits in width (the LP64 data model). In the LP64
data model some system data types, notably size_t , off_t , time_t and
dev_t , grow from 32 bits to 64 bits as well.

The /proc interfaces described here are available to both 32-bit and 64-bit
controlling processes. However, many operations attempted by a 32-bit
controlling process on a 64-bit target process will fail with EOVERFLOW
because the address space range of a 32-bit process cannot encompass a 64-bit
process or because the data in some 64-bit system data type cannot be
compressed to fit into the corresponding 32-bit type without loss of
information. Operations that fail in this circumstance include reading and
writing the address space, reading the address-map file, and setting the target
process’s registers. There is no restriction on operations applied by a 64-bit
process to either a 32-bit or a 64-bit target processes.

The format of the contents of any /proc file depends on the data model of the
observer (the controlling process), not on the data model of the target process.
A 64-bit debugger does not have to translate the information it reads from a
/proc file for a 32-bit process from 32-bit format to 64-bit format. However, it
usually has to be aware of the data model of the target process. The
pr_dmodel field of the status files indicates the target process’s data model.

To help deal with system data structures that are read from 32-bit processes, a
64-bit controlling program can be compiled with the C preprocessor symbol
_SYSCALL32 defined before system header files are included. This makes
explicit 32-bit fixed-width data structures (like struct stat32) visible to the
64-bit program. See types32 (5).

397 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

DIRECTORY
STRUCTURE

At the top level, the directory /proc contains entries each of which names an
existing process in the system. These entries are themselves directories. Except
where otherwise noted, the files described below can be opened for reading
only. In addition, if a process becomes a zombie (one that has exited but whose
parent has not yet performed a wait (2) upon it), most of its associated /proc
files disappear from the hierarchy; subsequent attempts to open them, or to
read or write files opened before the process exited, will elicit the error
ENOENT.

Although process state and consequently the contents of /proc files can
change from instant to instant, a single read (2) of a /proc file is guaranteed
to return a sane representation of state; that is, the read will be atomic with
respect to the state of the process. No such guarantee applies to successive
reads applied to a /proc file for a running process. In addition, atomicity is
not guaranteed for I/O applied to the as (address-space) file for a running
process or for a process whose address space contains memory shared by
another running process.

A number of structure definitions are used to describe the files. These
structures may grow by the addition of elements at the end in future releases of
the system and it is not legitimate for a program to assume that they will not.

STRUCTURE OF
/proc/ pid

A given directory /proc/ pid contains the following entries. A process can use
the invisible alias /proc/self if it wishes to open one of its own /proc files
(invisible in the sense that the name ‘‘self’’ does not appear in a directory
listing of /proc obtained from ls (1), getdents (2), or readdir (3C)).

as Contains the address-space image of the process; it can be opened for both
reading and writing. lseek (2) is used to position the file at the virtual
address of interest and then the address space can be examined or changed
through read (2) or write (2) (or by using pread (2) or pwrite (2) for the
combined operation).

ctl A write-only file to which structured messages are written directing the system
to change some aspect of the process’s state or control its behavior in some
way. The seek offset is not relevant when writing to this file. Individual lwps
also have associated lwpctl files in the lwp subdirectories. A control message
may be written either to the process’s ctl file or to a specific lwpctl file with
operation-specific effects. The effect of a control message is immediately
reflected in the state of the process visible through appropriate status and
information files. The types of control messages are described in detail later.
See CONTROL MESSAGES.

status Contains state information about the process and the representative lwp. The
file contains a pstatus structure which contains an embedded lwpstatus
structure for the representative lwp, as follows:

Last modified 17 Mar 1998 SunOS 5.7 398

proc(4) File Formats

typedef struct pstatus {
int pr_flags; /* flags (see below) */
int pr_nlwp; /* number of lwps in the process */
pid_t pr_pid; /* process id */
pid_t pr_ppid; /* parent process id */
pid_t pr_pgid; /* process group id */
pid_t pr_sid; /* session id */
id_t pr_aslwpid; /* lwp-id of the aslwp, if any */
id_t pr_agentid; /* lwp-id of the agent lwp, if any */
sigset_t pr_sigpend; /* set of process pending signals */
uintptr_t pr_brkbase; /* virtual address of the process heap */
size_t pr_brksize; /* size of the process heap, in bytes */
uintptr_t pr_stkbase; /* virtual address of the process stack */
size_t pr_stksize; /* size of the process stack, in bytes */
timestruc_t pr_utime; /* process user cpu time */
timestruc_t pr_stime; /* process system cpu time */
timestruc_t pr_cutime; /* sum of children’s user times */
timestruc_t pr_cstime; /* sum of children’s system times */
sigset_t pr_sigtrace; /* set of traced signals */
fltset_t pr_flttrace; /* set of traced faults */
sysset_t pr_sysentry; /* set of system calls traced on entry */
sysset_t pr_sysexit; /* set of system calls traced on exit */
char pr_dmodel; /* data model of the process */
lwpstatus_t pr_lwp; /* status of the representative lwp */

} pstatus_t;

pr_flags is a bit-mask holding the following process flags. For convenience,
it also contains the lwp flags for the representative lwp, described later.
PR_ISSYS process is a system process (see PCSTOP).

PR_VFORKP process is the parent of a vforked child (see PCWATCH).

PR_FORK process has its inherit-on-fork mode set (see PCSET).

PR_RLC process has its run-on-last-close mode set (see PCSET).

PR_KLC process has its kill-on-last-close mode set (see PCSET).

PR_ASYNC process has its asynchronous-stop mode set (see PCSET).

PR_MSACCT process has microstate accounting enabled (see PCSET).

PR_MSFORK process microstate accounting is inherited on fork (see PCSET).

PR_BPTADJ process has its breakpoint adjustment mode set (see PCSET).

PR_PTRACE process has its ptrace-compatibility mode set (see PCSET).
pr_nlwp is the total number of lwps in the process.

399 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

pr_pid , pr_ppid , pr_pgid , and pr_sid are, respectively, the process ID, the
ID of the process’s parent, the process’s process group ID, and the process’s
session ID.

pr_aslwpid is the lwp-ID for the "asynchronous signal lwp" (aslwp). It is
zero if there is no aslwp in the process. The aslwp is the lwp designated to
redirect asynchronous signals to other lwps in a multi-threaded process. See
signal (5) for a description of the aslwp.

pr_agentid is the lwp-ID for the /proc agent lwp (see the PCAGENT
control operation). It is zero if there is no agent lwp in the process.

pr_sigpend identifies asynchronous signals pending for the process.

pr_brkbase is the virtual address of the process heap and pr_brksize is its
size in bytes. The address formed by the sum of these values is the process
break (see brk (2)). pr_stkbase and pr_stksize are, respectively, the
virtual address of the process stack and its size in bytes. (Each lwp runs on a
separate stack; the distinguishing characteristic of the process stack is that the
operating system will grow it when necessary.)

pr_utime , pr_stime , pr_cutime , and pr_cstime are, respectively, the
user CPU and system CPU time consumed by the process, and the cumulative
user CPU and system CPU time consumed by the process’s children, in
seconds and nanoseconds.

pr_sigtrace and pr_flttrace contain, respectively, the set of signals and
the set of hardware faults that are being traced (see PCSTRACE and
PCSFAULT).

pr_sysentry and pr_sysexit contain, respectively, the sets of system calls
being traced on entry and exit (see PCSENTRY and PCSEXIT).

pr_dmodel indicates the data model of the process. Possible values are:
PR_MODEL_ILP32 process data model is ILP32.

PR_MODEL_LP64 process data model is LP64.

PR_MODEL_NATIVE process data model is native.
The constant PR_MODEL_NATIVE reflects the data model of the controlling
process, i.e., its value is PR_MODEL_ILP32 or PR_MODEL_LP64 according to
whether the controlling process has been compiled as a 32-bit program or a
64-bit program, respectively.

pr_lwp contains the status information for the representative lwp:

typedef struct lwpstatus {
int pr_flags; /* flags (see below) */
id_t pr_lwpid; /* specific lwp identifier */

Last modified 17 Mar 1998 SunOS 5.7 400

proc(4) File Formats

short pr_why; /* reason for lwp stop, if stopped */
short pr_what; /* more detailed reason */
short pr_cursig; /* current signal, if any */
siginfo_t pr_info; /* info associated with signal or fault */
sigset_t pr_lwppend; /* set of signals pending to the lwp */
sigset_t pr_lwphold; /* set of signals blocked by the lwp */
struct sigaction pr_action; /* signal action for current signal */
stack_t pr_altstack; /* alternate signal stack info */
uintptr_t pr_oldcontext; /* address of previous ucontext */
short pr_syscall; /* system call number (if in syscall) */
short pr_nsysarg; /* number of arguments to this syscall */
int pr_errno; /* errno for failed syscall */
long pr_sysarg[PRSYSARGS]; /* arguments to this syscall */
long pr_rval1; /* primary syscall return value */
long pr_rval2; /* second syscall return value, if any */
char pr_clname[PRCLSZ]; /* scheduling class name */
timestruc_t pr_tstamp; /* real-time time stamp of stop */
ulong_t pr_instr; /* current instruction */
prgregset_t pr_reg; /* general registers */
prfpregset_t pr_fpreg; /* floating-point registers */

} lwpstatus_t;

pr_flags is a bit-mask holding the following lwp flags. For convenience, it
also contains the process flags, described previously.
PR_STOPPED lwp is stopped.

PR_ISTOP lwp is stopped on an event of interest (see PCSTOP).

PR_DSTOP lwp has a stop directive in effect (see PCSTOP).

PR_STEP lwp has a single-step directive in effect (see PCRUN).

PR_ASLEEP lwp is in an interruptible sleep within a system call.

PR_PCINVAL lwp’s current instruction (pr_instr) is undefined.

PR_ASLWP this is the asynchronous signal lwp for the process.

PR_AGENT this is the /proc agent lwp for the process.
pr_lwpid names the specific lwp.

pr_why and pr_what together describe, for a stopped lwp, the reason for the
stop. Possible values of pr_why and the associated pr_what are:

PR_REQUESTEDindicates that the stop occurred in response to a stop
directive, normally because PCSTOP was applied or because another lwp
stopped on an event of interest and the asynchronous-stop flag (see PCSET)
was not set for the process. pr_what is unused in this case.

401 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

PR_SIGNALLEDindicates that the lwp stopped on receipt of a signal (see
PCSTRACE); pr_what holds the signal number that caused the stop (for a
newly-stopped lwp, the same value is in pr_cursig).

PR_FAULTEDindicates that the lwp stopped on incurring a hardware fault (see
PCSFAULT); pr_what holds the fault number that caused the stop.

PR_SYSENTRYand PR_SYSEXIT indicate a stop on entry to or exit from a
system call (see PCSENTRY and PCSEXIT); pr_what holds the system call
number.

PR_JOBCONTROLindicates that the lwp stopped due to the default action of a
job control stop signal (see sigaction (2)); pr_what holds the stopping
signal number.

PR_SUSPENDEDindicates that the lwp stopped due to internal synchronization
of lwps within the process. pr_what is unused in this case.

pr_cursig names the current signal, that is, the next signal to be delivered to
the lwp, if any. pr_info , when the lwp is in a PR_SIGNALLED or
PR_FAULTED stop, contains additional information pertinent to the particular
signal or fault (see <sys/siginfo.h>).

pr_lwppend identifies any synchronous or directed signals pending for the
lwp. pr_lwphold identifies those signals whose delivery is being blocked by
the lwp (the signal mask).

pr_action contains the signal action information pertaining to the current
signal (see sigaction (2)); it is undefined if pr_cursig is zero.
pr_altstack contains the alternate signal stack information for the lwp (see
sigaltstack (2)).

pr_oldcontext , if not zero, contains the address on the lwp stack of a
ucontext structure describing the previous user-level context (see
ucontext (5)). It is non-zero only if the lwp is executing in the context of a
signal handler.

pr_syscall is the number of the system call, if any, being executed by the
lwp; it is non-zero if and only if the lwp is stopped on PR_SYSENTRY or
PR_SYSEXIT, or is asleep within a system call (PR_ASLEEP is set). If
pr_syscall is non-zero, pr_nsysarg is the number of arguments to the
system call and pr_sysarg contains the actual arguments.

Last modified 17 Mar 1998 SunOS 5.7 402

proc(4) File Formats

pr_rval1 , pr_rval2 , and pr_errno are defined only if the lwp is stopped
on PR_SYSEXIT or if the PR_VFORKP flag is set. If pr_errno is zero,
pr_rval1 and pr_rval2 contain the return values from the system call.
Otherwise, pr_errno contains the error number for the failing system call
(see <sys/errno.h>).

pr_clname contains the name of the lwp’s scheduling class.

pr_tstamp , if the lwp is stopped, contains a time stamp marking when the
lwp stopped, in real time seconds and nanoseconds since an arbitrary time in
the past.

pr_instr contains the machine instruction to which the lwp’s program
counter refers. The amount of data retrieved from the process is
machine-dependent. On SPARC based machines, it is a 32-bit word. On x86
based machines, it is a single byte. In general, the size is that of the machine’s
smallest instruction. If PR_PCINVAL is set, pr_instr is undefined; this
occurs whenever the lwp is not stopped or when the program counter refers to
an invalid virtual address.

pr_reg is an array holding the contents of a stopped lwp’s general registers.
On SPARC based machines the predefined
constants R_G0 ... R_G7, R_O0 ... R_O7, R_L0 ...
R_L7, R_I0 ... R_I7 , R_PC, R_nPC, and R_Y can
be used as indices to refer to the corresponding
registers; previous register windows can be read
from their overflow locations on the stack
(however, see the gwindows file in the
/proc/ pid/lwp/ lwpid subdirectory).
For SPARC V8 (32-bit) controlling processes, the
predefined constants R_PSR, R_WIM, and R_TBR
can be used as indices to refer to the
corresponding special registers. For SPARC V9
(64-bit) controlling processes, the predefined
constants R_CCR, R_ASI , and R_FPRScan be
used as indices to refer to the corresponding
special registers.
On x86 based machines, the predefined constants
SS, UESP, EFL, CS, EIP , ERR, TRAPNO, EAX, ECX,
EDX, EBX, ESP, EBP, ESI , EDI , DS, ES, FS, and
GScan be used as indices to refer to the
corresponding registers.

pr_fpreg is a structure holding the contents of the floating-point registers.

SPARC registers, both general and floating-point, as seen by a 64-bit
controlling process are the V9 versions of the registers, even if the target
process is a 32-bit (V8) process. V8 registers are a subset of the V9 registers.

403 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

If the lwp is not stopped, all register values are undefined.

psinfo Contains miscellaneous information about the process and the representative
lwp needed by the ps (1) command. psinfo is accessible after a process
becomes a zombie. The file contains a psinfo structure which contains an
embedded lwpsinfo structure for the representative lwp, as follows:

typedef struct psinfo {
int pr_flag; /* process flags */
int pr_nlwp; /* number of lwps in the process */
pid_t pr_pid; /* process id */
pid_t pr_ppid; /* process id of parent */
pid_t pr_pgid; /* process id of process group leader */
pid_t pr_sid; /* session id */
uid_t pr_uid; /* real user id */
uid_t pr_euid; /* effective user id */
gid_t pr_gid; /* real group id */
gid_t pr_egid; /* effective group id */
uintptr_t pr_addr; /* address of process */
size_t pr_size; /* size of process image in Kbytes */
size_t pr_rssize; /* resident set size in Kbytes */
dev_t pr_ttydev; /* controlling tty device (or PRNODEV) */
ushort_t pr_pctcpu; /* % of recent cpu time used by all lwps */
ushort_t pr_pctmem; /* % of system memory used by process */
timestruc_t pr_start; /* process start time, from the epoch */
timestruc_t pr_time; /* cpu time for this process */
timestruc_t pr_ctime; /* cpu time for reaped children */
char pr_fname[PRFNSZ]; /* name of exec’ed file */
char pr_psargs[PRARGSZ]; /* initial characters of arg list */
int pr_wstat; /* if zombie, the wait() status */
int pr_argc; /* initial argument count */
uintptr_t pr_argv; /* address of initial argument vector */
uintptr_t pr_envp; /* address of initial environment vector */
char pr_dmodel; /* data model of the process */
lwpsinfo_t pr_lwp; /* information for representative lwp */

} psinfo_t;

Some of the entries in psinfo , such as pr_flag and pr_addr , refer to
internal kernel data structures and should not be expected to retain their
meanings across different versions of the operating system.

pr_pctcpu and pr_pctmem are 16-bit binary fractions in the range 0.0 to 1.0
with the binary point to the right of the high-order bit (1.0 == 0x8000).
pr_pctcpu is the summation over all lwps in the process.

pr_lwp contains the ps (1) information for the representative lwp. If the
process is a zombie, pr_nlwp and pr_lwp.pr_lwpid are zero and the other
fields of pr_lwp are undefined:

typedef struct lwpsinfo {
int pr_flag; /* lwp flags */
id_t pr_lwpid; /* lwp id */

Last modified 17 Mar 1998 SunOS 5.7 404

proc(4) File Formats

uintptr_t pr_addr; /* internal address of lwp */
uintptr_t pr_wchan; /* wait addr for sleeping lwp */
char pr_stype; /* synchronization event type */
char pr_state; /* numeric lwp state */
char pr_sname; /* printable character for pr_state */
char pr_nice; /* nice for cpu usage */
short pr_syscall; /* system call number (if in syscall) */
char pr_oldpri; /* pre-SVR4, low value is high priority */
char pr_cpu; /* pre-SVR4, cpu usage for scheduling */
int pr_pri; /* priority, high value = high priority */
ushort_t pr_pctcpu; /* % of recent cpu time used by this lwp */
timestruc_t pr_start; /* lwp start time, from the epoch */
timestruc_t pr_time; /* cpu time for this lwp */
char pr_clname[PRCLSZ]; /* scheduling class name */
char pr_name[PRFNSZ]; /* name of system lwp */
processorid_t pr_onpro; /* processor which last ran this lwp */
processorid_t pr_bindpro; /* processor to which lwp is bound */
psetid_t pr_bindpset; /* processor set to which lwp is bound */

} lwpsinfo_t;

Some of the entries in lwpsinfo , such as pr_flag , pr_addr , pr_wchan ,
pr_stype , pr_state , and pr_name , refer to internal kernel data structures
and should not be expected to retain their meanings across different versions
of the operating system.

pr_pctcpu is a 16-bit binary fraction, as described above. It represents the
CPU time used by the specific lwp. On a multi-processor machine, the
maximum value is 1/N, where N is the number of CPUs.

cred Contains a description of the credentials associated with the process:

typedef struct prcred {
uid_t pr_euid; /* effective user id */
uid_t pr_ruid; /* real user id */
uid_t pr_suid; /* saved user id (from exec) */
gid_t pr_egid; /* effective group id */
gid_t pr_rgid; /* real group id */
gid_t pr_sgid; /* saved group id (from exec) */
int pr_ngroups; /* number of supplementary groups */
gid_t pr_groups[1]; /* array of supplementary groups */

} prcred_t;

The array of associated supplementary groups in pr_groups is of variable
length; the cred file contains all of the supplementary groups. pr_ngroups
indicates the number of supplementary groups. (See also the PCSCRED control
operation.)

sigact Contains an array of sigaction structures describing the current
dispositions of all signals associated with the traced process (see

405 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

sigaction (2)). Signal numbers are displaced by 1 from array indices, so that
the action for signal number n appears in position n-1 of the array.

auxv Contains the initial values of the process’s aux vector in an array of auxv_t
structures (see <sys/auxv.h>). The values are those that were passed by the
operating system as startup information to the dynamic linker.

ldt This file exists only on x86 based machines. It is non-empty only if the process
has established a local descriptor table (LDT). If non-empty, the file contains
the array of currently active LDT entries in an array of elements of type
struct ssd , defined in <sys/sysi86.h> , one element for each active LDT
entry.

map Contains information about the virtual address map of the process. The file
contains an array of prmap structures, each of which describes a contiguous
virtual address region in the address space of the traced process:

typedef struct prmap {
uintptr_t pr_vaddr; /* virtual address of mapping */
size_t pr_size; /* size of mapping in bytes */
char pr_mapname[PRMAPSZ]; /* name in /proc/pid/object */
offset_t pr_offset; /* offset into mapped object, if any */
int pr_mflags; /* protection and attribute flags */
int pr_pagesize; /* pagesize for this mapping in bytes */
int pr_shmid; /* SysV shared memory identifier */

} prmap_t;

pr_vaddr is the virtual address of the mapping within the traced process and
pr_size is its size in bytes. pr_mapname , if it does not contain a null string,
contains the name of a file in the object directory (see below) that can be
opened read-only to obtain a file descriptor for the mapped file associated
with the mapping. This enables a debugger to find object file symbol tables
without having to know the real path names of the executable file and shared
libraries of the process. pr_offset is the 64-bit offset within the mapped file
(if any) to which the virtual address is mapped.

pr_mflags is a bit-mask of protection and attribute flags:
MA_READ mapping is readable by the traced process.

MA_WRITE mapping is writable by the traced process.

MA_EXEC mapping is executable by the traced process.

Last modified 17 Mar 1998 SunOS 5.7 406

proc(4) File Formats

MA_SHARED mapping changes are shared by the mapped
object.

A contiguous area of the address space having the same underlying mapped
object may appear as multiple mappings due to varying read, write, and
execute attributes. The underlying mapped object does not change over the
range of a single mapping. An I/O operation to a mapping marked
MA_SHAREDfails if applied at a virtual address not corresponding to a valid
page in the underlying mapped object. A write to a MA_SHAREDmapping that
is not marked MA_WRITEfails. Reads and writes to private mappings always
succeed. Reads and writes to unmapped addresses fail.

pr_pagesize is the page size for the mapping, currently always the system
pagesize.

pr_shmid is the shared memory identifier, if any, for the mapping. Its value is
−1 if the mapping is not System V shared memory. See shmget (2).

rmap Contains information about the reserved address ranges of the process. The file
contains an array of prmap structures, as defined above for the map file. Each
structure describes a contiguous virtual address region in the address space of
the traced process that is reserved by the system in the sense that an mmap(2)
system call that does not specify MAP_FIXED will not use any part of it for
the new mapping. Examples of such reservations include the address ranges
reserved for the process stack and the individual thread stacks of a
multi-threaded process.

cwd A symbolic link to the process’s current working directory (see chdir (2)). A
readlink (2) of /proc/ pid/cwd yields a null string. However, it can be
opened, listed, and searched as a directory and can be the target of chdir (2).

root A symbolic link to the process’s root directory. /proc/ pid/root can differ
from the system root directory if the process or one of its ancestors executed
chroot (2) as super-user. It has the same semantics as /proc/ pid/cwd.

fd A directory containing references to the open files of the process. Each entry is
a decimal number corresponding to an open file descriptor in the process.

If an entry refers to a regular file, it can be opened with normal file system
semantics but, to ensure that the controlling process cannot gain greater access
than the controlled process, with no file access modes other than its read/write
open modes in the controlled process. If an entry refers to a directory, it
appears as a symbolic link and can be accessed with the same semantics as
/proc/ pid/cwd. An attempt to open any other type of entry fails with
EACCES.

407 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

object A directory containing read-only files with names corresponding to the
pr_mapname entries in the map and pagedata files. Opening such a file
yields a file descriptor for the underlying mapped file associated with an
address-space mapping in the process. The file name a.out appears in the
directory as an alias for the process’s executable file.

The object directory makes it possible for a controlling process to gain access
to the object file and any shared libraries (and consequently the symbol tables)
without having to know the actual path names of the executable files.

pagedata Opening the page data file enables tracking of address space references and
modifications on a per-page basis.

A read (2) of the page data file descriptor returns structured page data and
atomically clears the page data maintained for the file by the system. That is to
say, each read returns data collected since the last read; the first read returns
data collected since the file was opened. When the call completes, the read
buffer contains the following structure as its header and thereafter contains a
number of section header structures and associated byte arrays that must be
accessed by walking linearly through the buffer.

typedef struct prpageheader {
timestruc_t pr_tstamp; /* real time stamp, time of read() */
ulong_t pr_nmap; /* number of address space mappings */
ulong_t pr_npage; /* total number of pages */

} prpageheader_t;

The header is followed by pr_nmap prasmap structures and associated data
arrays. The prasmap structure contains at least the following elements:

typedef struct prasmap {
uintptr_t pr_vaddr; /* virtual address of mapping */
ulong_t pr_npage; /* number of pages in mapping */
char pr_mapname[PRMAPSZ]; /* name in /proc/pid/object */
offset_t pr_offset; /* offset into mapped object, if any */
int pr_mflags; /* protection and attribute flags */
int pr_pagesize; /* pagesize for this mapping in bytes */
int pr_shmid; /* SysV shared memory identifier */

} prasmap_t;

Each section header is followed by pr_npage bytes, one byte for each page in
the mapping, plus 0-7 null bytes at the end so that the next prasmap structure
begins on an eight-byte aligned boundary. Each data byte may contain these
flags:
PG_REFERENCED page has been referenced.

Last modified 17 Mar 1998 SunOS 5.7 408

proc(4) File Formats

PG_MODIFIED page has been modified.
If the read buffer is not large enough to contain all of the page data, the read
fails with E2BIG and the page data is not cleared. The required size of the read
buffer can be determined through fstat (2). Application of lseek (2) to the
page data file descriptor is ineffective; every read starts from the beginning of
the file. Closing the page data file descriptor terminates the system overhead
associated with collecting the data.

More than one page data file descriptor for the same process can be opened,
up to a system-imposed limit per traced process. A read of one does not affect
the data being collected by the system for the others. An open of the page data
file will fail with ENOMEM if the system-imposed limit would be exceeded.

watch Contains an array of prwatch structures, one for each watched area
established by the PCWATCHcontrol operation. See PCWATCHfor details.

usage Contains process usage information described by a prusage structure which
contains at least the following fields:

typedef struct prusage {
id_t pr_lwpid; /* lwp id. 0: process or defunct */
int pr_count; /* number of contributing lwps */
timestruc_t pr_tstamp; /* real time stamp, time of read() */
timestruc_t pr_create; /* process/lwp creation time stamp */
timestruc_t pr_term; /* process/lwp termination time stamp */
timestruc_t pr_rtime; /* total lwp real (elapsed) time */
timestruc_t pr_utime; /* user level CPU time */
timestruc_t pr_stime; /* system call CPU time */
timestruc_t pr_ttime; /* other system trap CPU time */
timestruc_t pr_tftime; /* text page fault sleep time */
timestruc_t pr_dftime; /* data page fault sleep time */
timestruc_t pr_kftime; /* kernel page fault sleep time */
timestruc_t pr_ltime; /* user lock wait sleep time */
timestruc_t pr_slptime; /* all other sleep time */
timestruc_t pr_wtime; /* wait-cpu (latency) time */
timestruc_t pr_stoptime; /* stopped time */
ulong_t pr_minf; /* minor page faults */
ulong_t pr_majf; /* major page faults */
ulong_t pr_nswap; /* swaps */
ulong_t pr_inblk; /* input blocks */
ulong_t pr_oublk; /* output blocks */
ulong_t pr_msnd; /* messages sent */
ulong_t pr_mrcv; /* messages received */
ulong_t pr_sigs; /* signals received */
ulong_t pr_vctx; /* voluntary context switches */
ulong_t pr_ictx; /* involuntary context switches */
ulong_t pr_sysc; /* system calls */
ulong_t pr_ioch; /* chars read and written */

} prusage_t;

409 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

If microstate accounting has not been enabled for the process (see the
PR_MSACCT flag for the PCSET operation, below), the usage file contains
only an estimate of times spent in the various states. The usage file is
accessible after a process becomes a zombie.

lstatus Contains a prheader structure followed by an array of lwpstatus
structures, one for each lwp in the process (see also /proc/ pid/lwp/ lwpid/
lwpstatus , below). The prheader structure describes the number and size
of the array entries that follow.

typedef struct prheader {
long pr_nent; /* number of entries */
size_t pr_entsize; /* size of each entry, in bytes */

} prheader_t;

The lwpstatus structure may grow by the addition of elements at the end in
future releases of the system. Programs must use pr_entsize in the file
header to index through the array. These comments apply to all /proc files
that include a prheader structure (lpsinfo and lusage , below).

lpsinfo Contains a prheader structure followed by an array of lwpsinfo structures,
one for each lwp in the process. (See also /proc/ pid/lwp/ lwpid/lwpsinfo ,
below.)

lusage Contains a prheader structure followed by an array of prusage structures,
one for each lwp in the process plus an additional element at the beginning
that contains the summation over all defunct lwps (lwps that once existed but
no longer exist in the process). Excluding the pr_lwpid , pr_tstamp ,
pr_create , and pr_term entries, the entry-by-entry summation over all
these structures is the definition of the process usage information obtained
from the usage file. (See also /proc/ pid/lwp/ lwpid/lwpusage , below.)

lwp A directory containing entries each of which names an lwp within the process.
These entries are themselves directories containing additional files as described
below.

STRUCTURE OF
/proc/ pid/lwp/ lwpid

A given directory /proc/ pid/lwp/ lwpid contains the following entries:

lwpctl Write-only control file. The messages written to this file affect the specific lwp
rather than the representative lwp, as is the case for the process’s ctl file.

lwpstatus lwp-specific state information. This file contains the lwpstatus structure for
the specific lwp as described above for the representative lwp in the process’s
status file.

Last modified 17 Mar 1998 SunOS 5.7 410

proc(4) File Formats

lwpsinfo lwp-specific ps (1) information. This file contains the lwpsinfo structure for
the specific lwp as described above for the representative lwp in the process’s
psinfo file.

lwpusage This file contains the prusage structure for the specific lwp as described
above for the process’s usage file.

gwindows This file exists only on SPARC based machines. If it is non-empty, it contains a
gwindows_t structure, defined in <sys/regset.h> , with the values of those
SPARC register windows that could not be stored on the stack when the lwp
stopped. Conditions under which register windows are not stored on the stack
are: the stack pointer refers to nonexistent process memory or the stack pointer
is improperly aligned. If the lwp is not stopped or if there are no register
windows that could not be stored on the stack, the file is empty (the usual
case).

xregs Extra state registers. The extra state register set is architecture dependent; this
file is empty if the system does not support extra state registers. If the file is
non-empty, it contains an architecture dependent structure of type
prxregset_t , defined in <procfs.h> , with the values of the lwp’s extra
state registers. If the lwp is not stopped, all register values are undefined. See
also the PCSXREG control operation, below.

asrs This file exists only for 64-bit SPARC V9 processes. It contains an asrset_t
structure, defined in <sys/regset.h> , containing the values of the lwp’s
platform-dependent ancillary state registers. If the lwp is not stopped, all
register values are undefined. See also the PCSASRS control operation, below.

CONTROL
MESSAGES

Process state changes are effected through messages written to a process’s ctl
file or to an individual lwp’s lwpctl file. All control messages consist of a
long that names the specific operation followed by additional data containing
the operand, if any.

Multiple control messages may be combined in a single write (2) (or
writev (2)) to a control file, but no partial writes are permitted. That is, each
control message, operation code plus operand, if any, must be presented in its
entirety to the write (2) and not in pieces over several system calls. If a
control operation fails, no subsequent operations contained in the same
write (2) are attempted.

Descriptions of the allowable control messages follow. In all cases, writing a
message to a control file for a process or lwp that has terminated elicits the
error ENOENT.

PCSTOP PCDSTOP
PCWSTOP

PCTWSTOP

When applied to the process control file, PCSTOPdirects all lwps to stop and
waits for them to stop, PCDSTOPdirects all lwps to stop without waiting for

411 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

them to stop, and PCWSTOPsimply waits for all lwps to stop. When applied to
an lwp control file, PCSTOPdirects the specific lwp to stop and waits until it
has stopped, PCDSTOPdirects the specific lwp to stop without waiting for it to
stop, and PCWSTOPsimply waits for the specific lwp to stop. When applied to
an lwp control file, PCSTOPand PCWSTOPcomplete when the lwp stops on an
event of interest, immediately if already so stopped; when applied to the
process control file, they complete when every lwp has stopped either on an
event of interest or on a PR_SUSPENDED stop.

PCTWSTOPis identical to PCWSTOPexcept that it enables the operation to time
out, to avoid waiting forever for a process or lwp that may never stop on an
event of interest. PCTWSTOPtakes a long operand specifying a number of
milliseconds; the wait will terminate successfully after the specified number of
milliseconds even if the process or lwp has not stopped; a timeout value of
zero makes the operation identical to PCWSTOP.

An ‘‘event of interest’’ is either a PR_REQUESTED stop or a stop that has been
specified in the process’s tracing flags (set by PCSTRACE, PCSFAULT,
PCSENTRY, and PCSEXIT). PR_JOBCONTROL and PR_SUSPENDED stops are
specifically not events of interest. (An lwp may stop twice due to a stop signal,
first showing PR_SIGNALLED if the signal is traced and again showing
PR_JOBCONTROL if the lwp is set running without clearing the signal.) If
PCSTOPor PCDSTOPis applied to an lwp that is stopped, but not on an event
of interest, the stop directive takes effect when the lwp is restarted by the
competing mechanism. At that time, the lwp enters a PR_REQUESTED stop
before executing any user-level code.

A write of a control message that blocks is interruptible by a signal so that, for
example, an alarm (2) can be set to avoid waiting forever for a process or lwp
that may never stop on an event of interest. If PCSTOPis interrupted, the lwp
stop directives remain in effect even though the write (2) returns an error.
(Use of PCTWSTOPwith a non-zero timeout is recommended over PCWSTOP
with an alarm (2).)

A system process (indicated by the PR_ISSYS flag) never executes at user level,
has no user-level address space visible through /proc , and cannot be stopped.
Applying one of these operations to a system process or any of its lwps elicits
the error EBUSY.

PCRUN Make an lwp runnable again after a stop. This operation takes a long operand
containing zero or more of the following flags:
PRCSIG clears the current signal, if any (see PCCSIG).

PRCFAULTclears the current fault, if any (see PCCFAULT).
PRSTEPdirects the lwp to execute a single
machine instruction. On completion of the
instruction, a trace trap occurs. If FLTTRACE is
being traced, the lwp stops; otherwise, it is sent

Last modified 17 Mar 1998 SunOS 5.7 412

proc(4) File Formats

SIGTRAP. If SIGTRAP is being traced and is not
blocked, the lwp stops. When the lwp stops on an
event of interest, the single-step directive is
cancelled, even if the stop occurs before the
instruction is executed. This operation requires
hardware and operating system support and may
not be implemented on all processors. It is
implemented on SPARC and x86 based machines.
PRSABORTis meaningful only if the lwp is in a PR_SYSENTRY stop or
the lwp to abort execution of the system call (see PCSENTRY and PCS
PRSTOPdirects the lwp to stop again as soon as
possible after resuming execution (see
PCDSTOP). In particular, if the lwp is stopped on
PR_SIGNALLED or PR_FAULTED, the next stop
will show PR_REQUESTED, no other stop will
have intervened, and the lwp will not have
executed any user-level code.

When applied to an lwp control file, PCRUNclears any outstanding
directed-stop request and makes the specific lwp runnable. The operation fails
with EBUSY if the specific lwp is not stopped on an event of interest or has
not been directed to stop or if the agent lwp exists and this is not the agent
lwp (see PCAGENT).

When applied to the process control file, a representative lwp is chosen for the
operation as described for /proc/ pid/status . The operation fails with
EBUSY if the representative lwp is not stopped on an event of interest or has
not been directed to stop or if the agent lwp exists. If PRSTEPor PRSTOPwas
requested, the representative lwp is made runnable and its outstanding
directed-stop request is cleared; otherwise all outstanding directed-stop
requests are cleared and, if it was stopped on an event of interest, the
representative lwp is marked PR_REQUESTED. If, as a consequence, all lwps
are in the PR_REQUESTED or PR_SUSPENDED stop state, all lwps showing
PR_REQUESTED are made runnable.

PCSTRACE Define a set of signals to be traced in the process. The receipt of one of these
signals by an lwp causes the lwp to stop. The set of signals is defined using an
operand sigset_t contained in the control message. Receipt of SIGKILL
cannot be traced; if specified, it is silently ignored.

If a signal that is included in an lwp’s held signal set (the signal mask) is sent
to the lwp, the signal is not received and does not cause a stop until it is
removed from the held signal set, either by the lwp itself or by setting the held
signal set with PCSHOLD.

PCCSIG The current signal, if any, is cleared from the specific or representative lwp.

413 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

PCSSIG The current signal and its associated signal information for the specific or
representative lwp are set according to the contents of the operand siginfo
structure (see <sys/siginfo.h>). If the specified signal number is zero, the
current signal is cleared. The semantics of this operation are different from
those of kill (2) in that the signal is delivered to the lwp immediately after
execution is resumed (even if it is being blocked) and an additional
PR_SIGNALLED stop does not intervene even if the signal is traced. Setting
the current signal to SIGKILL terminates the process immediately.

PCKILL If applied to the process control file, a signal is sent to the process with
semantics identical to those of kill (2). If applied to an lwp control file, a
directed signal is sent to the specific lwp. The signal is named in a long
operand contained in the message. Sending SIGKILL terminates the process
immediately.

PCUNKILL A signal is deleted, that is, it is removed from the set of pending signals. If
applied to the process control file, the signal is deleted from the process’s
pending signals. If applied to an lwp control file, the signal is deleted from the
lwp’s pending signals. The current signal (if any) is unaffected. The signal is
named in a long operand in the control message. It is an error (EINVAL) to
attempt to delete SIGKILL.

PCSHOLD Set the set of held signals for the specific or representative lwp (signals whose
delivery will be blocked if sent to the lwp). The set of signals is specified with
a sigset_t operand. SIGKILL and SIGSTOP cannot be held; if specified, they
are silently ignored.

PCSFAULT Define a set of hardware faults to be traced in the process. On incurring one of
these faults, an lwp stops. The set is defined via the operand fltset_t
structure. Fault names are defined in <sys/fault.h> and include the
following. Some of these may not occur on all processors; there may be
processor-specific faults in addition to these.
FLTILL illegal instruction

FLTPRIV privileged instruction

FLTBPT breakpoint trap

FLTTRACE trace trap (single-step)

FLTWATCH watchpoint trap

FLTACCESS memory access fault (bus error)

FLTBOUNDS memory bounds violation

Last modified 17 Mar 1998 SunOS 5.7 414

proc(4) File Formats

FLTIOVF integer overflow

FLTIZDIV integer zero divide

FLTFPE floating-point exception

FLTSTACK unrecoverable stack fault

FLTPAGE recoverable page fault
When not traced, a fault normally results in the posting of a signal to the lwp
that incurred the fault. If an lwp stops on a fault, the signal is posted to the
lwp when execution is resumed unless the fault is cleared by PCCFAULT or by
the PRCFAULT option of PCRUN. FLTPAGEis an exception; no signal is
posted. The pr_info field in the lwpstatus structure identifies the signal to
be sent and contains machine-specific information about the fault.

PCCFAULT The current fault, if any, is cleared; the associated signal will not be sent to the
specific or representative lwp.

PCSENTRY PCSEXIT These control operations instruct the process’s lwps to stop on entry to or exit
from specified system calls. The set of system calls to be traced is defined via
an operand sysset_t structure.

When entry to a system call is being traced, an lwp stops after having begun
the call to the system but before the system call arguments have been fetched
from the lwp. When exit from a system call is being traced, an lwp stops on
completion of the system call just prior to checking for signals and returning to
user level. At this point, all return values have been stored into the lwp’s
registers.

If an lwp is stopped on entry to a system call (PR_SYSENTRY) or when
sleeping in an interruptible system call (PR_ASLEEP is set), it may be
instructed to go directly to system call exit by specifying the PRSABORT flag
in a PCRUN control message. Unless exit from the system call is being traced,
the lwp returns to user level showing EINTR.

PCWATCH Set or clear a watched area in the controlled process from a prwatch structure
operand:

typedef struct prwatch {
uintptr_t pr_vaddr; /* virtual address of watched area */
size_t pr_size; /* size of watched area in bytes */
int pr_wflags; /* watch type flags */

} prwatch_t;

415 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

pr_vaddr specifies the virtual address of an area of memory to be watched in
the controlled process. pr_size specifies the size of the area, in bytes.
pr_wflags specifies the type of memory access to be monitored as a bit-mask
of the following flags:
WA_READ read access

WA_WRITE write access

WA_EXEC execution access

WA_TRAPAFTER trap after the instruction completes
If pr_wflags is non-empty, a watched area is established for the virtual
address range specified by pr_vaddr and pr_size . If pr_wflags is empty,
any previously-established watched area starting at the specified virtual
address is cleared; pr_size is ignored.

A watchpoint is triggered when an lwp in the traced process makes a memory
reference that covers at least one byte of a watched area and the memory
reference is as specified in pr_wflags . When an lwp triggers a watchpoint, it
incurs a watchpoint trap. If FLTWATCH is being traced, the lwp stops;
otherwise, it is sent a SIGTRAP signal; if SIGTRAP is being traced and is not
blocked, the lwp stops.

The watchpoint trap occurs before the instruction completes unless
WA_TRAPAFTERwas specified, in which case it occurs after the instruction
completes. If it occurs before completion, the memory is not modified. If it
occurs after completion, the memory is modified (if the access is a write access).

pr_info in the lwpstatus structure contains information pertinent to the
watchpoint trap. In particular, the si_addr field contains the virtual address
of the memory reference that triggered the watchpoint, and the si_code field
contains one of TRAP_RWATCH, TRAP_WWATCH, or TRAP_XWATCH,
indicating read, write, or execute access, respectively. The si_trapafter field
is zero unless WA_TRAPAFTER is in effect for this watched area; non-zero
indicates that the current instruction is not the instruction that incurred the
watchpoint trap. The si_pc field contains the virtual address of the
instruction that incurred the trap.

A watchpoint trap may be triggered while executing a system call that makes
reference to the traced process’s memory. The lwp that is executing the system
call incurs the watchpoint trap while still in the system call. If it stops as a
result, the lwpstatus structure contains the system call number and its
arguments. If the lwp does not stop, or if it is set running again without
clearing the signal or fault, the system call fails with EFAULT. If
WA_TRAPAFTER was specified, the memory reference will have completed
and the memory will have been modified (if the access was a write access)
when the watchpoint trap occurs.

Last modified 17 Mar 1998 SunOS 5.7 416

proc(4) File Formats

If more than one of WA_READ, WA_WRITE, and WA_EXEC is specified for a
watched area, and a single instruction incurs more than one of the specified
types, only one is reported when the watchpoint trap occurs. The precedence
is WA_EXEC, WA_READ, WA_WRITE (WA_EXEC and WA_READ take
precedence over WA_WRITE), unless WA_TRAPAFTER was specified, in
which case it is WA_WRITE, WA_READ, WA_EXEC (WA_WRITE takes
precedence).

PCWATCHfails with EINVAL if an attempt is made to specify overlapping
watched areas or if pr_wflags contains flags other than those specified
above. It fails with ENOMEM if an attempt is made to establish more watched
areas than the system can support (the system can support thousands).

The child of a vfork (2) borrows the parent’s address space. When a
vfork (2) is executed by a traced process, all watched areas established for the
parent are suspended until the child terminates or performs an exec (2). Any
watched areas established independently in the child are cancelled when the
parent resumes after the child’s termination or exec (2). PCWATCHfails with
EBUSY if applied to the parent of a vfork (2) before the child has terminated
or performed an exec (2). The PR_VFORKP flag is set in the pstatus
structure for such a parent process.

Certain accesses of the traced process’s address space by the operating system
are immune to watchpoints. The initial construction of a signal stack frame
when a signal is delivered to an lwp will not trigger a watchpoint trap even if
the new frame covers watched areas of the stack. Once the signal handler is
entered, watchpoint traps occur normally. On SPARC based machines, register
window overflow and underflow will not trigger watchpoint traps, even if the
register window save areas cover watched areas of the stack.

Watched areas are not inherited by child processes, even if the traced process’s
inherit-on-fork mode, PR_FORK, is set (see PCSET, below). All watched areas
are cancelled when the traced process performs a successful exec (2).

417 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

PCSET PCUNSET PCSETsets one or more modes of operation for the traced process. PCUNSET
unsets these modes. The modes to be set or unset are specified by flags in an
operand long in the control message:

PR_FORK(inherit-on-fork): When set, the
process’s tracing flags and its inherit-on-fork
mode are inherited by the child of a fork (2),
fork1 (2), or vfork (2). When unset, child
processes start with all tracing flags cleared.
PR_RLC(run-on-last-close): When set and the last
writable /proc file descriptor referring to the
traced process or any of its lwps is closed, all of
the process’s tracing flags and watched areas are
cleared, any outstanding stop directives are
canceled, and if any lwps are stopped on events
of interest, they are set running as though
PCRUN had been applied to them. When unset,
the process’s tracing flags and watched areas are
retained and lwps are not set running on last
close.
PR_KLC(kill-on-last-close): When set and the last writable /proc file de
to the traced process or any of its lwps is closed, the process is terminat
PR_ASYNC(asynchronous-stop): When set, a stop
on an event of interest by one lwp does not
directly affect any other lwp in the process. When
unset and an lwp stops on an event of interest
other than PR_REQUESTED, all other lwps in the
process are directed to stop.
PR_MSACCT(microstate accounting): When set,
microstate accounting is enabled for the process.
This allows the usage file to contain accurate
values for the times the lwps spent in their
various processing states. When unset (the
default), the overhead of microstate accounting is
avoided and the usage file can only contain an
estimate of times spent in the various states.
PR_MSFORK(inherit microstate accounting):
When set, and microstate accounting is enabled
for the process, microstate accounting will be
enabled for future child processes. When unset,
child processes start with microstate accounting
disabled.
PR_BPTADJ(breakpoint trap pc adjustment): On
x86 based machines, a breakpoint trap leaves the
program counter (the EIP) referring to the
breakpointed instruction plus one byte. When
PR_BPTADJis set, the system will adjust the
program counter back to the location of the

Last modified 17 Mar 1998 SunOS 5.7 418

proc(4) File Formats

breakpointed instruction when the lwp stops on a
breakpoint. This flag has no effect on SPARC
based machines, where breakpoint traps leave the
program counter referring to the breakpointed
instruction.
PR_PTRACE(ptrace-compatibility): When set, a
stop on an event of interest by the traced process
is reported to the parent of the traced process via
wait (2), SIGTRAP is sent to the traced process
when it executes a successful exec (2), setuid/
setgid flags are not honored for execs performed
by the traced process, any exec of an object file
that the traced process cannot read fails, and the
process dies when its parent dies. This mode is
deprecated; it is provided only to allow
ptrace (2) to be implemented as a library
function using /proc .

It is an error (EINVAL) to specify flags other than those described above or to
apply these operations to a system process. The current modes are reported in
the pr_flags field of /proc/ pid/status and
/proc/ pid/lwp/ lwp/lwpstatus .

PCSREG Set the general registers for the specific or representative lwp according to the
operand prgregset_t structure.

On SPARC based systems, only the condition-code bits of the processor-status
register (R_PSR) of SPARC V8 (32-bit) processes can be modified by PCSREG.
Other privileged registers cannot be modified at all.

On x86 based systems, only certain bits of the flags register (EFL) can be
modified by PCSREG:these include the condition codes, direction-bit, and
overflow-bit.

PCSREGfails with EBUSY if the lwp is not stopped on an event of interest.

PCSVADDR Set the address at which execution will resume for the specific or
representative lwp from the operand long . On SPARC based systems, both
%pc and %npc are set, with %npc set to the instruction following the virtual
address. On x86 based systems, only %eip is set. PCSVADDRfails with EBUSY
if the lwp is not stopped on an event of interest.

PCSFPREG Set the floating-point registers for the specific or representative lwp according
to the operand prfpregset_t structure. An error (EINVAL) is returned if the
system does not support floating-point operations (no floating-point hardware
and the system does not emulate floating-point machine instructions).
PCSFPREGfails with EBUSY if the lwp is not stopped on an event of interest.

419 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

PCSXREG Set the extra state registers for the specific or representative lwp according to
the architecture-dependent operand prxregset_t structure. An error
(EINVAL) is returned if the system does not support extra state registers.
PCSXREGfails with EBUSY if the lwp is not stopped on an event of interest.

PCSASRS Set the ancillary state registers for the specific or representative lwp according
to the SPARC V9 platform-dependent operand asrset_t structure. An error
(EINVAL) is returned if either the target process or the controlling process is
not a 64-bit SPARC V9 process. Most of the ancillary state registers are
privileged registers that cannot be modified. Only those that can be modified
are set; all others are silently ignored. PCSASRSfails with EBUSY if the lwp is
not stopped on an event of interest.

PCAGENT Create an agent lwp in the controlled process with register values from the
operand prgregset_t structure (see PCSREG, above). The agent lwp is
created in the stopped state showing PR_REQUESTED and with its held signal
set (the signal mask) having all signals except SIGKILL and SIGSTOP blocked.

The PCAGENToperation fails with EBUSY unless the process is fully stopped
via /proc , that is, unless all of the lwps in the process are stopped either on
events of interest or on PR_SUSPENDED, or are stopped on
PR_JOBCONTROL and have been directed to stop via PCDSTOP. It fails with
EBUSY if an agent lwp already exists. It fails with ENOMEM if system
resources for creating new lwps have been exhausted.

Any PCRUN operation applied to the process control file or to the control file
of an lwp other than the agent lwp fails with EBUSY as long as the agent lwp
exists. The agent lwp must be caused to terminate by executing the
_lwp_exit (2) system call before the process can be restarted.

Once the agent lwp is created, its lwp-ID can be found by reading the process
status file. To facilitate opening the agent lwp’s control and status files, the
directory name /propc/ pid/lwp/agent is accepted for lookup operations as
an invisible alias for /proc/ pid/lwp/ lwpid, lwpid being the lwp-ID of the
agent lwp (invisible in the sense that the name ‘‘agent’’ does not appear in a
directory listing of /proc/ pid/lwp obtained from ls (1), getdents (2), or
readdir (3C)).

The purpose of the agent lwp is to perform operations in the controlled
process on behalf of the controlling process: to gather information not directly
available via /proc files, or in general to make the process change state in
ways not directly available via /proc control operations. To make use of an
agent lwp, the controlling process must be capable of making it execute system
calls (specifically, the _lwp_exit (2) system call). The register values given to
the agent lwp on creation are typically the registers of the representative lwp,
so that the agent lwp can use its stack.

Last modified 17 Mar 1998 SunOS 5.7 420

proc(4) File Formats

The agent lwp is not allowed to execute any variation of the fork (2),
exec (2), or _lwp_create (2) system calls. Attempts to do so yield ENOTSUP
to the agent lwp.

PCREAD PCWRITE Read or write the target process’s address space via a priovec structure
operand:

typedef struct priovec {
void *pio_base; /* buffer in controlling process */
size_t pio_len; /* size of read/write request in bytes */
off_t pio_offset; /* virtual address in target process */

} priovec_t;

These operations have the same effect as pread (2) and pwrite (2),
respectively, of the target process’s address space file. The difference is that
more than one PCREADor PCWRITEcontrol operation can be written to the
control file at once, and they can be interspersed with other control operations
in a single write to the control file. This is useful, for example, when planting
many breakpoint instructions in the process’s address space, or when stepping
over a breakpointed instruction. Unlike pread (2) and pwrite (2), no
provision is made for partial reads or writes; if the operation cannot be
performed completely, it fails with EIO.

PCNICE The traced process’s nice (2) value is incremented by the amount in the
operand long . Only the super-user may better a process’s priority in this way,
but any user may lower the priority. This operation is not meaningful for all
scheduling classes.

PCSCRED Set the target process credentials to the values contained in the prcred_t
structure operand (see /proc/ pid/cred). The effective, real, and saved
user-IDs and group-IDs of the target process are set. The target process’s
supplementary groups are not changed; the pr_ngroups and pr_groups
members of the structure operand are ignored. Only the super-user may
perform this operation; for all others it fails with EPERM.

PROGRAMMING
NOTES

For security reasons, except for the psinfo , usage , lpsinfo , lusage ,
lwpsinfo , and lwpusage files, which are world-readable, and except for the
super-user, an open of a /proc file fails unless both the user-ID and group-ID
of the caller match those of the traced process and the process’s object file is
readable by the caller. Except for the world-readable files just mentioned, files
corresponding to setuid and setgid processes can be opened only by the
super-user.

Even if held by the super-user, an open process or lwp file descriptor (other
than file descriptors for the world-readable files) becomes invalid if the traced
process performs an exec (2) of a setuid/setgid object file or an object file that

421 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

the traced process cannot read. Any operation performed on an invalid file
descriptor, except close (2), fails with EAGAIN. In this situation, if any
tracing flags are set and the process or any lwp file descriptor is open for
writing, the process will have been directed to stop and its run-on-last-close
flag will have been set (see PCSET). This enables a controlling process (if it has
permission) to reopen the /proc files to get new valid file descriptors, close
the invalid file descriptors, unset the run-on-last-close flag (if desired), and
proceed. Just closing the invalid file descriptors causes the traced process to
resume execution with all tracing flags cleared. Any process not currently open
for writing via /proc , but that has left-over tracing flags from a previous
open, and that executes a setuid/setgid or unreadable object file, will not be
stopped but will have all its tracing flags cleared.

To wait for one or more of a set of processes or lwps to stop or terminate,
/proc file descriptors (other than those obtained by opening the cwd or root
directories or by opening files in the fd or object directories) can be used in
a poll (2) system call. When requested and returned, either of the polling
events POLLPRI or POLLWRNORM indicates that the process or lwp stopped
on an event of interest. Although they cannot be requested, the polling events
POLLHUP, POLLERR, and POLLNVAL may be returned. POLLHUP indicates
that the process or lwp has terminated. POLLERR indicates that the file
descriptor has become invalid. POLLNVAL is returned immediately if
POLLPRI or POLLWRNORM is requested on a file descriptor referring to a
system process (see PCSTOP). The requested events may be empty to wait
simply for termination.

FILES
/proc directory (list of processes)

/proc/ pid specific process directory

/proc/self alias for a process’s own
directory

/proc/ pid/as address space file

/proc/ pid/ctl process control file

/proc/ pid/status process status

/proc/ pid/lstatus array of lwp status structs

/proc/ pid/psinfo process ps (1) info

/proc/ pid/lpsinfo array of lwp ps (1) info structs

/proc/ pid/map address space map

Last modified 17 Mar 1998 SunOS 5.7 422

proc(4) File Formats

/proc/ pid/rmap reserved address map

/proc/ pid/cred process credentials

/proc/ pid/sigact process signal actions

/proc/ pid/auxv process aux vector

/proc/ pid/ldt process LDT (x86 only)

/proc/ pid/usage process usage

/proc/ pid/lusage array of lwp usage structs

/proc/ pid/pagedata process page data

/proc/ pid/watch active watchpoints

/proc/ pid/cwd symlink to the current working
directory

/proc/ pid/root symlink to the root directory

/proc/ pid/fd directory (list of open files)

/proc/ pid/fd/* aliases for process’s open files

/proc/ pid/object directory (list of mapped files)

/proc/ pid/object/a.out alias for process’s executable file

/proc/ pid/object/* aliases for other mapped files

/proc/ pid/lwp directory (list of lwps)

/proc/ pid/lwp/ lwpid specific lwp directory

/proc/ pid/lwp/agent alias for the agent lwp directory

/proc/ pid/lwp/ lwpid/lwpctl lwp control file

/proc/ pid/lwp/ lwpid/lwpstatus lwp status

/proc/ pid/lwp/ lwpid/lwpsinfo lwp ps (1) info

/proc/ pid/lwp/ lwpid/lwpusage lwp usage

/proc/ pid/lwp/ lwpid/gwindows register windows (SPARC only)

423 SunOS 5.7 Last modified 17 Mar 1998

File Formats proc(4)

/proc/ pid/lwp/ lwpid/xregs extra state registers

/proc/ pid/lwp/ lwpid/asrs ancillary state registers (SPARC
V9 only)

SEE ALSO ls (1), ps (1), chroot (1M), _lwp_create (2), _lwp_exit (2), alarm (2),
brk (2), chdir (2), chroot (2), close (2), creat (2), dup (2), exec (2),
fcntl (2), fork (2), fork1 (2), fstat (2), getdents (2), kill (2), lseek (2),
mmap(2), nice (2), open (2), poll (2), pread (2), ptrace (2), pwrite (2),
read (2), readlink (2), readv (2), shmget (2), sigaction (2),
sigaltstack (2), vfork (2), wait (2), write (2), writev (2), readdir (3C),
siginfo (5), signal (5), types32 (5), ucontext (5)

DIAGNOSTICS Errors that can occur in addition to the errors normally associated with file
system access:
ENOENT The traced process or lwp has terminated after being opened.

EIO A write (2) was attempted at an illegal address in the traced
process.

EBUSY PCSTOP, PCDSTOP, PCWSTOP, or PCTWSTOP was applied
to a system process; an exclusive open (2) was attempted on
a /proc file for a process already open for writing; PCRUN,
PCSREG, PCSVADDR, PCSFPREG, or PCSXREG was
applied to a process or lwp not stopped on an event of
interest; an attempt was made to mount /proc when it was
already mounted; PCAGENT was applied to a process that
was not fully stopped or that already had an agent lwp.

EPERM Someone other than the super-user issued the PCSCRED operation; someone other

ENOSYS An attempt was made to perform an unsupported operation
(such as creat (2), link (2), or unlink (2)) on an entry in
/proc .

EINVAL In general, this means that some invalid argument was
supplied to a system call. A non-exhaustive list of conditions
eliciting this error includes: a control message operation code
is undefined; an out-of-range signal number was specified
with PCSSIG, PCKILL, or PCUNKILL; SIGKILL was
specified with PCUNKILL; PCSFPREG was applied on a
system that does not support floating-point operations;
PCSXREG was applied on a system that does not support
extra state registers.

Last modified 17 Mar 1998 SunOS 5.7 424

proc(4) File Formats

ENOMEM The system-imposed limit on the number of page data file
descriptors was reached on an open of
/proc/ pid/pagedata ; an attempt was made with
PCWATCH to establish more watched areas than the system
can support; the PCAGENT operation was issued when the
system was out of resources for creating lwps.

E2BIG Data to be returned in a read (2) of the page data file
exceeds the size of the read buffer provided by the caller.

EINTR A signal was received by the controlling process while waiting for the traced proc

EAGAIN The traced process has performed an exec (2) of a setuid/
setgid object file or of an object file that it cannot read; all
further operations on the process or lwp file descriptor
(except close (2)) elicit this error.

EOVERFLOW A 32-bit controlling process attempted to read or write the
as file or attempted to read the map, rmap , or pagedata file
of a 64-bit target process. A 32-bit controlling process
attempted to apply one of the control operations PCSREG,
PCSXREG, PCSVADDR, PCWATCH, PCAGENT, PCREAD,
PCWRITE to a 64-bit target process.

NOTES Descriptions of structures in this document include only interesting structure
elements, not filler and padding fields, and may show elements out of order
for descriptive clarity. The actual structure definitions are contained in
<procfs.h> .

BUGS Because the old ioctl (2)-based version of /proc is currently supported for
binary compatibility with old applications, the top-level directory for a process,
/proc/ pid, is not world-readable, but it is world-searchable. Thus, anyone can
open /proc/ pid/psinfo even though ls (1) applied to /proc/ pid will fail
for anyone but the owner or the super-user. Support for the old
ioctl (2)-based version of /proc will be dropped in a future release, at which
time the top-level directory for a process will be made world-readable.

On SPARC based machines, the types gregset_t and fpregset_t defined
in <sys/regset.h> are similar to but not the same as the types
prgregset_t and prfpregset_t defined in <procfs.h> .

425 SunOS 5.7 Last modified 17 Mar 1998

File Formats profile(4)

NAME profile – setting up an environment for user at login time

SYNOPSIS /etc/profile

$HOME/.profile

DESCRIPTION All users who have the shell, sh (1), as their login command have the
commands in these files executed as part of their login sequence.

/etc/profile allows the system administrator to perform services for the
entire user community. Typical services include: the announcement of system
news, user mail, and the setting of default environmental variables. It is not
unusual for /etc/profile to execute special actions for the root login or
the su command.

The file $HOME/.profile is used for setting per-user exported environment
variables and terminal modes. The following example is typical (except for the
comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 022
Tell me when new mail comes in
MAIL=/var/mail/$LOGNAME
Add my /usr/usr/bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set terminal type
TERM=${L0: −u/n/k/n/o/w/n} # gnar.invalid
while :
do

if [−f ${TERMINFO:-/usr/share/lib/terminfo}/?/$TERM]
then break

elif [−f /usr/share/lib/terminfo/?/$TERM]
then break
else echo "invalid term $TERM" 1>&2
fi
echo "terminal: \c"
read TERM

done
Initialize the terminal and set tabs
Set the erase character to backspace
stty erase ’^H’ echoe

FILES
$HOME/.profile user-specific environment

/etc/profile system-wide environment

Last modified 20 Dec 1992 SunOS 5.7 426

profile(4) File Formats

SEE ALSO env (1), login (1), mail (1), sh (1), stty (1), tput (1), su (1M),
terminfo (4), environ (5), term (5)

Solaris Advanced User’s Guide

NOTES Care must be taken in providing system-wide services in /etc/profile .
Personal .profile files are better for serving all but the most global needs.

427 SunOS 5.7 Last modified 20 Dec 1992

File Formats protocols(4)

NAME protocols – protocol name database

SYNOPSIS /etc/inet/protocols

/etc/protocols

DESCRIPTION The protocols file is a local source of information regarding the known
protocols used in the DARPA Internet. The protocols file can be used in
conjunction with or instead of other protocols sources, including the NIS maps
‘‘protcols.byname’’ and ‘‘"protocols.bynumber’’ and the NIS+ table ‘‘protocols’’.
Programs use the getprotobyname (3N) routine to access this information.

The protocols file has one line for each protocol. The line has the following
format:

official-protocol-name protocol-number aliases
Items are separated by any number of blanks and/or TAB characters. A ‘#’
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines which search the file. Protocol names may contain
any printable character other than a field delimiter, NEWLINE, or comment
character.

EXAMPLES EXAMPLE 1 A sample database.

The following is a sample database:

#
Internet (IP) protocols
#
ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol

FILES
/etc/nsswitch.conf configuration file for name-service switch

SEE ALSO getprotobyname (3N), nsswitch.conf (4)

NOTES /etc/inet/protocols is the official SVR4 name of the protocols file. The
symbolic link /etc/protocols exists for BSD compatibility.

Last modified 22 Feb 1994 SunOS 5.7 428

prototype(4) File Formats

NAME prototype – package information file

DESCRIPTION prototype is an ASCII file used to specify package information. Each entry in
the file describes a single deliverable object. An object may be a data file,
directory, source file, executable object, and so forth. This file is generated by
the package developer.

Entries in a prototype file consist of several fields of information separated
by white space. Comment lines begin with a ‘‘#’’ and are ignored. The fields
are described below and must appear in the order shown.
part An optional field designating the part number in which the

object resides. A part is a collection of files and is the atomic
unit by which a package is processed. A developer can
choose criteria for grouping files into a part (for example,
based on class). If this field is not used, part 1 is assumed.

ftype A one-character field that indicates the file type. Valid values
are:

b block special device

c character special device

d directory

e a file to be edited upon installation or removal (may
be shared by several packages)

f a standard executable or data file

i installation script or information file

l linked file

p named pipe

s symbolic link

v volatile file (one whose contents are expected to
change, like a log file)

x an exclusive directory accessible only by this
package

class The installation class to which the file belongs. This name
must contain only alphanumeric characters and be no longer
than 12 characters. The field is not specified for installation
scripts. (admin and all classes beginning with capital letters
are reserved class names.)

429 SunOS 5.7 Last modified 4 Oct 1996

File Formats prototype(4)

pathname The pathname where the file will reside on the target
machine, for example, /usr/bin/mail or bin/ras/proc .
Relative pathnames (those that do not begin with a slash)
indicate that the file is relocatable. The form

path1=path2

may be used for two purposes: to define a link and to define
local pathnames.

For linked files, path1 indicates the destination of the link
and path2 indicates the source file. (This format is mandatory
for linked files.)

For local pathnames, path1 indicates the pathname an object
should have on the machine where the entry is to be
installed and path2 indicates either a relative or fixed
pathname to a file on the host machine which contains the
actual contents.

A pathname may contain a variable specification of the form
$variable. If variable begins with a lower case letter, it is a
build variable. If variable begins with an upper case letter, it
is an install variable. Build variables are bound at build time.
If an install variable is known at build time, its definition is
inserted into the pkginfo (4) file so that it will be available
at install time. If an install variable is not known at build
time, it will be bound at install time.

major The major device number. The field is only specified for
block or character special devices.

minor The minor device number. The field is only specified for
block or character special devices.

mode The octal mode of the file (for example, 0664). A question
mark (?) indicates that the mode will be left unchanged,
implying that the file already exists on the target machine.
This field is not used for linked files or packaging
information files.

The mode can be a variable specification of the form
$variable. If variable begins with a lower case letter, it is a
build variable. If variable begins with an upper case letter, it
is an install variable. Build variables are bound at build time.

Last modified 4 Oct 1996 SunOS 5.7 430

prototype(4) File Formats

If an install variable is known at build time, its definition is
inserted into the pkginfo (4) file so that it will be available
at install time. If an install variable is not known at build
time, it will be bound at install time.

owner The owner of the file (for example, bin or root). The field is
limited to 14 characters in length. A question mark (?)
indicates that the owner will be left unchanged, implying
that the file already exists on the target machine. This field is
not used for linked files or packaging information files.

The owner can be a variable specification of the form
$variable. If variable begins with a lower case letter, it is a
build variable. If variable begins with an upper case letter, it
is an install variable. Build variables are bound at build time.
If an install variable is known at build time, its definition is
inserted into the pkginfo (4) file so that it will be available
at install time. If an install variable is not known at build
time, it will be bound at install time.

group The group to which the file belongs (for example, bin or
sys). The field is limited to 14 characters in length. A
question mark (?) indicates that the group will be left
unchanged, implying that the file already exists on the target
machine. This field is not used for linked files or packaging
information files.

The group can be a variable specification of the form
$variable. If variable begins with a lower case letter, it is a
build variable. If variable begins with an upper case letter, it
is an install variable. Build variables are bound at build time.
If an install variable is known at build time, its definition is
inserted into the pkginfo (4) file so that it will be available
at install time. If an install variable is not known at build
time, it will be bound at install time.

An exclamation point (!) at the beginning of a line indicates that the line
contains a command. These commands are used to incorporate files in other
directories, to locate objects on a host machine, and to set permanent defaults.
The following commands are available:
search Specifies a list of directories (separated by white space) to

search for when looking for file contents on the host
machine. The base name of the path field is appended to each
directory in the ordered list until the file is located. Searches
are not recursive.

431 SunOS 5.7 Last modified 4 Oct 1996

File Formats prototype(4)

include Specifies a pathname which points to another prototype file
to include. Note that search requests do not span include
files.

default Specifies a list of attributes (mode, owner, and group) to be
used by default if attribute information is not provided for
prototype entries which require the information. The defaults
do not apply to entries in include prototype files.

param=value Places the indicated parameter in the current environment.
Spans to subsequent included prototype files.

The above commands may have variable substitutions embedded within them,
as demonstrated in the two example prototype files below.

Before files are overwritten during installation, they are copied to a temporary
pathname. The exception to this rule is files whose mode includes execute
permission, unless the file is editable (that is, ftype is e). For files which meet
this exception, the existing version is linked to a temporary pathname, and the
original file is removed. This allows processes which are executing during
installation to be overwritten.

EXAMPLES EXAMPLE 1 Example 1:

!PROJDIR=/usr/proj
!BIN=$PROJDIR/bin
!CFG=$PROJDIR/cfg
!LIB=$PROJDIR/lib
!HDRS=$PROJDIR/hdrs
!search /usr/myname/usr/bin /usr/myname/src /usr/myname/hdrs
i pkginfo=/usr/myname/wrap/pkginfo
i depend=/usr/myname/wrap/depend
i version=/usr/myname/wrap/version
d none /usr/wrap 0755 root bin
d none /usr/wrap/usr/bin 0755 root bin
! search $BIN
f none /usr/wrap/bin/INSTALL 0755 root bin
f none /usr/wrap/bin/REMOVE 0755 root bin
f none /usr/wrap/bin/addpkg 0755 root bin
!default 755 root bin
f none /usr/wrap/bin/audit
f none /usr/wrap/bin/listpkg
f none /usr/wrap/bin/pkgmk
the following file starts out zero length but grows
v none /usr/wrap/logfile=/dev/null 0644 root bin
the following specifies a link (dest=src)
l none /usr/wrap/src/addpkg=/usr/wrap/bin/rmpkg
! search $SRC
!default 644 root other
f src /usr/wrap/src/INSTALL.sh
f src /usr/wrap/src/REMOVE.sh
f src /usr/wrap/src/addpkg.c
f src /usr/wrap/src/audit.c

Last modified 4 Oct 1996 SunOS 5.7 432

prototype(4) File Formats

f src /usr/wrap/src/listpkg.c
f src /usr/wrap/src/pkgmk.c
d none /usr/wrap/data 0755 root bin
d none /usr/wrap/save 0755 root bin
d none /usr/wrap/spool 0755 root bin
d none /usr/wrap/tmp 0755 root bin
d src /usr/wrap/src 0755 root bin

EXAMPLE 2 Example 2:

this prototype is generated by ’pkgproto’ to refer
to all prototypes in my src directory
!PROJDIR=/usr/dew/projx
!include $PROJDIR/src/cmd/prototype
!include $PROJDIR/src/cmd/audmerg/protofile
!include $PROJDIR/src/lib/proto

SEE ALSO pkgmk(1), pkginfo (4)

Application Packaging Developer’s Guide

NOTES Normally, if a file is defined in the prototype file but does not exist, that file
is created at the time of package installation. However, if the file pathname
includes a directory that does not exist, the file will not be created. For
example, if the prototype file has the following entry:

f none /usr/dev/bin/command

and that file does not exist, it will be created if the directory /usr/dev/bin
already exists or if the prototype also has an entry defining the directory:

d none /usr/dev/bin

433 SunOS 5.7 Last modified 4 Oct 1996

File Formats pseudo(4)

NAME pseudo – configuration files for pseudo device drivers

DESCRIPTION Pseudo devices are devices that are implemented entirely in software. Drivers
for pseudo devices must provide driver configuration files to inform the
system of each pseudo device that should be created.

Configuration files for pseudo device drivers must identify the parent driver
explicitly as pseudo, and must create an integer property called instance which
is unique to this entry in the configuration file.

Each entry in the configuration file creates a prototype devinfo node. Each
node is assigned an instance number which is determined by the value of the
instance property. This property is only applicable to children of the pseudo
parent, and is required since pseudo devices have no hardware address from
which to determine the instance number. See driver.conf (4) for further
details of configuration file syntax.

EXAMPLES EXAMPLE 1 A sample configuration file.

Here is a configuration file called ramdisk.conf for a pseudo device driver
that implements a RAM disk. This file creates two nodes called "ramdisk". The
first entry creates ramdisk node instance 0, and the second creates ramdisk
node, instance 1, with the additional disk-size property set to 512.

#
Copyright (c) 1993, by Sun Microsystems, Inc.
#
#ident "@(#)ramdisk.conf 1.3 93/06/04 SMI"
name="ramdisk" parent="pseudo" instance=0;
name="ramdisk" parent="pseudo" instance=1 disk-size=512;

SEE ALSO driver.conf (4), ddi_prop_op (9F)

Writing Device Drivers

Last modified 15 Jun 1993 SunOS 5.7 434

publickey(4) File Formats

NAME publickey – public key database

SYNOPSIS /etc/publickey

DESCRIPTION /etc/publickey is a local public key database that is used for secure RPC.
The /etc/publickey file can be used in conjunction with or instead of other
publickey databases, including the NIS publickey map and the NIS+ publickey
map. Each entry in the database consists of a network user name (which may
refer to either a user or a hostname), followed by the user’s public key (in hex
notation), a colon, and then the user’s secret key encrypted with a password
(also in hex notation).

The /etc/publickey file contains a default entry for nobody .

SEE ALSO chkey (1), newkey (1M), getpublickey (3N), nsswitch.conf (4)

435 SunOS 5.7 Last modified 6 Mar 1992

File Formats queuedefs(4)

NAME queuedefs – queue description file for at, batch, and cron

SYNOPSIS /etc/cron.d/queuedefs

DESCRIPTION The queuedefs file describes the characteristics of the queues managed by
cron (1M). Each non-comment line in this file describes one queue. The format
of the lines are as follows:

q. [njobj][nicen][nwaitw]

The fields in this line are:
q The name of the queue. a is the default queue for jobs started by

at (1); b is the default queue for jobs started by batch (see at (1)); c is
the default queue for jobs run from a crontab (1) file.

njob The maximum number of jobs that can be run simultaneously in that
queue; if more than njob jobs are ready to run, only the first njob jobs
will be run, and the others will be run as jobs that are currently
running terminate. The default value is 100 .

nice The nice (1) value to give to all jobs in that queue that are not run
with a user ID of super-user. The default value is 2.

nwait The number of seconds to wait before rescheduling a job that was
deferred because more than njob jobs were running in that job’s queue,
or because the system-wide limit of jobs executing has been reached.
The default value is 60 .

Lines beginning with # are comments, and are ignored.

EXAMPLES EXAMPLE 1 A sample file.

#
#
a.4j1n
b.2j2n90w

This file specifies that the a queue, for at jobs, can have up to 4 jobs running
simultaneously; those jobs will be run with a nice value of 1. As no nwait
value was given, if a job cannot be run because too many other jobs are
running cron will wait 60 seconds before trying again to run it.

The b queue, for batch (1) jobs, can have up to 2 jobs running simultaneously;
those jobs will be run with a nice (1) value of 2. If a job cannot be run
because too many other jobs are running, cron (1M) will wait 90 seconds
before trying again to run it. All other queues can have up to 100 jobs running
simultaneously; they will be run with a nice value of 2, and if a job cannot be

Last modified 1 Mar 1994 SunOS 5.7 436

queuedefs(4) File Formats

run because too many other jobs are running cron will wait 60 seconds before
trying again to run it.

FILES
/etc/cron.d/queuedefs queue description file for at , batch ,

and cron .

SEE ALSO at (1), crontab (1), nice (1), cron (1M)

437 SunOS 5.7 Last modified 1 Mar 1994

File Formats remote(4)

NAME remote – remote host description file

SYNOPSIS /etc/remote

DESCRIPTION The systems known by tip (1) and their attributes are stored in an ASCII file
which is structured somewhat like the termcap file. Each line in the file
provides a description for a single system. Fields are separated by a colon ‘: ’.
Lines ending in a ‘\ ’ character with an immediately following NEWLINE are
continued on the next line.

The first entry is the name(s) of the host system. If there is more than one
name for a system, the names are separated by vertical bars. After the name of
the system comes the fields of the description. A field name followed by an ‘=’
sign indicates a string value follows. A field name followed by a ‘#’ sign
indicates a following numeric value.

Entries named tip baudrate are used as default entries by tip , as follows.
When tip is invoked with only a phone number, it looks for an entry of the
form tip baudrate, where baudrate is the baud rate with which the connection
is to be made. For example, if the connection is to be made at 300 baud, tip
looks for an entry of the form tip300 .

CAPABILITIES Capabilities are either strings (str) , numbers (num) , or boolean flags
(bool) . A string capability is specified by capability=value; for example,
‘dv=/dev/harris ’. A numeric capability is specified by capability#value; for
example, ‘xa#99 ’. A boolean capability is specified by simply listing the
capability.
at (str) Auto call unit type. The following lists valid ’at ’ types and

their corresponding hardware:

biz31f Bizcomp 1031, tone dialing

biz31w Bizcomp 1031, pulse dialing

biz22f Bizcomp 1022, tone dialing

biz22w Bizcomp 1022, pulse dialing

df02 DEC DF02

df03 DEC DF03

ventel Ventel 212+

v3451 Vadic 3451 Modem

v831 Vadic 831

hayes Any Hayes-compatible modem

Last modified 17 Jan 1995 SunOS 5.7 438

remote(4) File Formats

at Any Hayes-compatible modem

br (num) The baud rate used in establishing a connection to the remote
host. This is a decimal number. The default baud rate is 300 baud.

cm (str) An initial connection message to be sent to the remote host. For
example, if a host is reached through a port selector, this might be set
to the appropriate sequence required to switch to the host.

cu (str) Call unit if making a phone call. Default is the same as the dv
field.

db (bool) Cause tip (1) to ignore the first hangup it sees. db (dialback)
allows the user to remain in tip while the remote machine
disconnects and places a call back to the local machine. For more
information about dialback configuration, see TCP/IP and Data
Communications Administration Guide

di (str) Disconnect message sent to the host when a disconnect is
requested by the user.

du (bool) This host is on a dial-up line.

dv (str) Device(s) to open to establish a connection. If this file refers to
a terminal line, tip attempts to perform an exclusive open on the
device to insure only one user at a time has access to the port.

ec (bool) Initialize the tip variable echocheck to on , so that tip will
synchronize with the remote host during file transfer by waiting for
the echo of the last character transmitted.

el (str) Characters marking an end-of-line. The default is no characters. tip only recognizes

es (str) The command prefix (escape) character for tip .

et (num) Number of seconds to wait for an echo response when
echo-check mode is on. This is a decimal number. The default value is
10 seconds.

ex (str) Set of non-printable characters not to be discarded when
scripting with beautification turned on. The default value is
“\t\n\b\f ”.

fo (str) Character used to force literal data transmission. The default
value is ‘\377 ’.

439 SunOS 5.7 Last modified 17 Jan 1995

File Formats remote(4)

fs (num) Frame size for transfers. The default frame size is equal to
1024 .

hd (bool) Initialize the tip variable halfduplex to on , so local echo
should be performed.

hf (bool) Initialize the tip variable hardwareflow to on , so hardware
flow control is used.

ie (str) Input end-of-file marks. The default is a null string ("").

nb (bool) Initialize the tip variable beautify to off, so that
unprintable characters will not be discarded when scripting.

nt (bool) Initialize the tip variable tandem to off, so that XON/XOFF
flow control will not be used to throttle data from the remote host.

nv (bool) Initialize the tip variable verbose to off, so that verbose
mode will be turned on.

oe (str) Output end-of-file string. The default is a null string (""). When
tip is transferring a file, this string is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This
may be one of even , odd , none , zero (always set bit 8 to 0), one
(always set bit 8 to 1). The default is none .

pn (str) Telephone number(s) for this host. If the telephone number
field contains an ‘@’ sign, tip searches the /etc/phones file for a list
of telephone numbers — see phones (4). A ‘%’ sign in the telephone
number indicates a 5-second delay for the Ventel Modem.

For Hayes-compatible modems, if the telephone number starts with an
’S’, the telephone number string will be sent to the modem without the
"DT", which allows reconfiguration of the modem’s S-registers and
other parameters; for example, to disable auto-answer:
"pn=S0=0DT5551234 "; or to also restrict the modem to return only
the basic result codes: "pn=S0=0X0DT5551234 ".

pr (str) Character that indicates end-of-line on the remote host. The
default value is ‘ \n’.

ra (bool) Initialize the tip variable raise to on , so that lower case
letters are mapped to upper case before sending them to the remote
host.

Last modified 17 Jan 1995 SunOS 5.7 440

remote(4) File Formats

rc (str) Character that toggles case-mapping mode. The default value is
‘\377 ’.

re (str) The file in which to record session scripts. The default value is
tip.record .

rw (bool) Initialize the tip variable rawftp to on , so that all characters
will be sent as is during file transfers.

sc (bool) Initialize the tip variable script to on , so that everything
transmitted by the remote host will be recorded.

tb (bool) Initialize the tip variable tabexpand to on , so that tabs will
be expanded to spaces during file transfers.

tc (str) Indicates that the list of capabilities is continued in the named
description. This is used primarily to share common capability
information.

EXAMPLES EXAMPLE 1 The capability continuation feature.

Here is a short example showing the use of the capability continuation feature:

UNIX-1200:\
:dv=/dev/cua0:el=^D^U^C^S^Q^O@:du:at=ventel:ie=#$%:oe=^D:br#1200:

arpavax|ax:\
:pn=7654321%:tc=UNIX-1200

FILES
/etc/remote remote host description file.

/etc/phones remote host phone number database.

SEE ALSO tip (1), phones (4)

TCP/IP and Data Communications Administration Guide

441 SunOS 5.7 Last modified 17 Jan 1995

File Formats resolv.conf(4)

NAME resolv.conf – configuration file for name server routines

DESCRIPTION This file helps initialize routines from the resolver (3N) C library. The
resolver routines provide access to the Internet Domain Name System.

The resolver configuration file contains information that is read by the resolver
routines the first time a process calls them. The file is designed to be human
readable and contains a list of keyword-value pairs that provide various types
of resolver information. Keyword-value pairs are of the form:

keyword value
The different configuration options are:
nameserver address Specifies the Internet address in dot-notation

format of one name server to which the resolver
should direct any queries. Up to MAXNS
(currently three) name servers may be listed, on
as many as MAXNS nameserver lines in
resolv.conf . If multiple servers are specified,
the resolver routines query them in the order
listed. If no nameserver lines are present in the
file, resolver routines use the name server on the
local machine.

The algorithm of the resolver routines is: try the
first name server specified. If the query times out,
try the next server listed in the configuration file,
and so on until the complement of servers there
has been exhausted. If those queries also time
out, try the full complement of name servers
again, until the maximum number of retry passes
has been made.

domain name Specifies a local domain name for use as the
default domain.

Most queries for names within a domain can use
short names relative to the local domain. If a
domain line is missing from the configuration
file, the domain is determined from the
environment variable, LOCALDOMAIN,if it is
defined, from the domain name (see
domainname (1M)) by omitting the first level, or
from the host name (gethostname (3C)) by
using everything after the first dot. Finally, if the
host name does not contain a domain part, the
root domain is assumed.

Last modified 7 Jan 1997 SunOS 5.7 442

resolv.conf(4) File Formats

search searchlist Specifies a search list for host-name lookup. The
search list is normally determined from the local
domain name; by default, it contains only the
local domain name. This may be changed by
listing the desired domains for searches in
searchlist. Spaces or tabs must separate domain
names.

Most resolver queries are attempted using each
component of the search path in turn until a
match is found. Note that this process may be
slow and will generate a lot of network traffic if
the servers for the listed domains are not local.
Also queries will time out if no server is available
for one of the domains.

The search list is currently limited to six domains
with a total of 256 characters.

sortlist addresslist Causes addresses returned by
gethostbyname (3C) to be sorted in accordance
with local rules. A sortlist is specified by IP
address netmask pairs. The netmask is optional
and defaults to the natural netmask of the net.
The IP address and optional network pairs are
separated by slashes. Up to 10 pairs may be
specified. For example, the following specification
requires gethostbyname() to return the netmask
pair 130.155.160.0/255.255.240.0 ahead of
the IP address 130.155.0.0 .

sortlist
130.155.160.0/255.255.240.0
130.155.0.0

443 SunOS 5.7 Last modified 7 Jan 1997

File Formats resolv.conf(4)

options optionlist Specifies optional behaviors for various resolver
routines in accordance with optionlist values, each
of which is equivalent to an internal resolver
variable.

The values that may be included as individual
optionlist values are:

debug Sets RES_DEBUGin the
_res.options field.

ndots: n Sets a floor threshold for the
number of dots which must
appear in a name given to
res_query() (see
resolver (3N)) before an
initial absolute (as-is) query is
performed. The default for n is
1. Thus, if there are any dots in
a name, the name is tried first
as an absolute name before any
search-list domain names are
appended to it.

retry: n Sets the number of attempts
made to connect to each name
server. While retry:0 is
allowed, it is equivalent to
retry:1 . The default is 4.

retrans: n Sets the basic retransmit
timeout, in seconds. The
default is 5. An exponential
backoff algorithm is used, so
the default values for retry and
retrans result in
5+10+20+40=75 seconds of total
timeout for each name server.
While retrans:0 is allowed,
it is equivalent to retrans:1 .

The domain and search keywords are mutually exclusive. If more than one
instance of these keywords is present, the last instance takes precedence.

The options established through any search lines in the local resolv.conf
file can be overridden on a per-process basis by setting the environment
variable, LOCALDOMAIN, to a space-separated list of search domains.

Last modified 7 Jan 1997 SunOS 5.7 444

resolv.conf(4) File Formats

The options established through any options lines in the local resolv.conf
file can be amended on a per-process basis by setting the environment
variable, RES_OPTIONS, to a space-separated list of resolver options, These
options are listed above under the options keyword.

The keyword-value pair must appear on a single line, and the keyword (for
instance, nameserver) must start the line. The value or value list follows the
keyword, separated from it by white space characters.

FILES
/etc/resolv.conf

SEE ALSO domainname (1M), in.named (1M), gethostbyname (3N),
gethostname (3C), resolver (3N)

Vixie, Paul;Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide
for BIND (public domain), Internet Software Consortium, 1996.

445 SunOS 5.7 Last modified 7 Jan 1997

File Formats rmmount.conf(4)

NAME rmmount.conf – removable media mounter configuration file

SYNOPSIS /etc/rmmount.conf

DESCRIPTION The rmmount.conf file contains the rmmount (1M) configuration information.
This file describes where to find shared objects that perform actions on file
systems after identifying and mounting them. The rmmount.conf file is also
used to share CD-ROM and floppy file systems.

Actions are executed in the order in which they appear in the configuration file.
The action function can return either 1 or 0. If it returns 0, no further actions
will be executed. This allows the function to control which applications are
executed. For example, action_filemgr always returns 0 if the File Manager
is running, thereby preventing subsequent actions from being executed.

To execute an action after media has been inserted and while the File Manager
is not running, list the action after action_filemgr in the rmmount.conf
file. To execute an action before the File Manager becomes aware of the media,
list the action before action_filemgr in the rmmount.conf file.

The syntax for the rmmount.conf file is as follows.
File system identification ident
filesystem_type shared_object media_type [media_type
. . .]
Actions action
media_type shared_object args_to_so
File system sharing share
media_or_file_system share_command_options
Mount command options mount
media_or_file_system [file_system_spec] -o
mount_command_options

Explanations of the syntax for the File system identification fields are
as follows.
filesystem_type An ASCII string used as the file system type flag

of the mount command (see the −F option of
mount (1M)). It is also used to match names
passed to rmmount (1M) from Volume
Management.

shared_object Programs that identify file systems and perform
actions. This shared_object is found at
/usr/lib/fs/ filesystem_type/shared_object.

media_type The type of media where this file system resides.
Legal values are cdrom and floppy .

Explanations of the syntax for the Actions fields are as follows.
media_type Type of media. This argument is passed in from Volume

Management as VOLUME_TYPE.

Last modified 17 Sep 1997 SunOS 5.7 446

rmmount.conf(4) File Formats

shared_object Programs that identify file systems and perform actions. If
shared_object starts with ‘/’ (slash), the full path name is used;
otherwise, /usr/lib/rmmount is prepended to the name.

args_to_so Arguments passed to the shared_object. These arguments are
passed in as an argc and argv[].

The definition of the interface to Actions is located in
/usr/include/rmmount.h .

Explanations of the syntax for the File system sharing fields are as
follows.
media_or_file_system Either the type of media (CD-ROM or floppy) or

the specific file system to share.

share_command_options Options of the share command. See share (1M)
for more information about these options.

Explanations of the syntax for the Mount command options fields are as
follows.
media_or_file_system Either the type of media (CD-ROM or floppy) or

the specific file system to share.

file_system_spec Specifies one or more file systems to which this
line applies. Defaults to "all" filesystem types.

mount_command_options One or more options to be passed to the mount
command. Multiple options require a space
delimiter.

Default Values The following is an example of an rmmount.conf file.

#
Removable Media Mounter configuration file.
#

File system identification
ident hsfs ident_hsfs.so cdrom
ident ufs ident_ufs.so cdrom floppy
ident pcfs ident_pcfs.so floppy
Actions
action cdrom action_filemgr.so
action floppy action_filemgr.so

447 SunOS 5.7 Last modified 17 Sep 1997

File Formats rmmount.conf(4)

EXAMPLES EXAMPLE 1 Sharing of various file systems.

The following examples show how various file systems are shared using the
share syntax for the rmmount.conf file. These lines are added after the
Actions entries.
share cdrom* Shares all CD-ROMs via NFS and applies no access

restrictions.

share solaris_2.x* Shares CD-ROMs named solaris_2.x* with no
access restrictions.

share cdrom* -o ro=engineering Shares all CD-ROMs via NFS but
exports only to the "engineering"
netgroup.

share solaris_2.x* -d distribution CD Shares CD-ROMs named
solaris_2.x* with no access
restrictions and with the
description that it is a
distribution CD-ROM.

share floppy0 Shares any floppy inserted into floppy drive 0.
The following examples show how different mount options could be used to
customize how rmmount mounts media:
mount cdrom* hsfs -o nrr mounts all High Sierra CD-ROMs with the nrr

(no Rock Ridge extensions) option (see
mount_hsfs (1M))

mount floppy1 -o ro will always mount the second floppy disk
read-only (for all filesystem types)

mount floppy1 -o ro foldcase will always mount the second floppy
disk read-only (for all filesystem
types) and pass the foldcase mount
option

SEE ALSO volcancel (1), volcheck (1), volmissing (1), mount (1M),
mount_hsfs (1M), rmmount (1M), share (1M), vold (1M), vold.conf (4),
volfs (7FS)

NOTES When using the mount options line, verify that the specified options will work
with the specified file system types. The mount command will fail if an
incorrect mount option/filesystem combination is specified. Multiple mount
options require a space delimiter.

Last modified 17 Sep 1997 SunOS 5.7 448

rmtab(4) File Formats

NAME rmtab – remote mounted file system table

SYNOPSIS /etc/rmtab

DESCRIPTION rmtab contains a table of filesystems that are remotely mounted by NFS
clients. This file is maintained by mountd (1M), the mount daemon. The data in
this file should be obtained only from mountd (1M) using the
MOUNTPROC_DUMPremote procedure call.

The file contains a line of information for each remotely mounted filesystem.
There are a number of lines of the form:

hostname: fsname
The mount daemon adds an entry for any client that successfully executes a
mount request and deletes the appropriate entries for an unmount request.

Lines beginning with a hash (’ #’) are commented out. These lines are removed
from the file by mountd (1M) when it first starts up. Stale entries may
accumulate for clients that crash without sending an unmount request.

FILES
/etc/rmtab

SEE ALSO mountd (1M), showmount (1M)

449 SunOS 5.7 Last modified 15 Nov 1990

File Formats rpc(4)

NAME rpc – rpc program number data base

SYNOPSIS /etc/rpc

DESCRIPTION The rpc file is a local source containing user readable names that can be used
in place of RPC program numbers. The rpc file can be used in conjunction
with or instead of other rpc sources, including the NIS maps ‘‘rpc.byname’’
and ‘‘rpc.bynumber’’ and the NIS+ table ‘‘rpc’’.

The rpc file has one line for each RPC program name. The line has the
following format:

name-of-the-RPC-program RPC-program-number
aliases

Items are separated by any number of blanks and/or tab characters. A ‘‘#’’
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines which search the file.

EXAMPLES EXAMPLE 1 RPC database.

Below is an example of an RPC database:

#
rpc
#
rpcbind 100000 portmap sunrpc portmapper
rusersd 100002 rusers
nfs 100003 nfsprog
mountd 100005 mount showmount
walld 100008 rwall shutdown
sprayd 100012 spray
llockmgr 100020
nlockmgr 100021
status 100024
bootparam 100026
keyserv 100029 keyserver

FILES
/etc/nsswitch.conf

SEE ALSO nsswitch.conf (4)

Last modified 10 Dec 1991 SunOS 5.7 450

rpld.conf(4) File Formats

NAME rpld.conf – Remote Program Load (RPL) server configuration file

SYNOPSIS /etc/rpld.conf

DESCRIPTION The /etc/rpld.conf file contains the configuration information for
operation of rpld , the RPL-based network boot server. It is a text file
containing keyword-value pairs and comments. The keyword-value pairs
specify the value to use for parameters used by the RPL server. Comments can
be entered by starting the line using the # character. The user can add
comments to the file for customized configurations. Alternate RPL server
configuration files can be specified when running the RPL server by supplying
a configuration file similar to the default configuration file.

Keywords All keywords are case-sensitive. Not all keywords must be present. (However,
note that the end keyword at the end of the file must be present.) If a keyword
is not present, internal defaults, which are the default values described here,
will be used. Keyword-value pairs are specified by:

keyword = value

DebugLevel Specify the number of error, warning, and information
messages to be generated while the RPL server is running.
The valid range is 0-9. A value of 0 means no message at all,
while a value of 9 will generate the most messages. The
default is 0. Note that it is best to limit the value to 8 or
below; use of level 9 may generate so many debug messages
that the performance of the RPL server may be impacted.

DebugDest A numeric value specifying where to send the messages to:

0 = standard output
1 = syslogd
2 = log file

The default is 2.

MaxClients A numeric value specifying the maximum number of
simultaneous network boot clients to be in service. A value
of −1 means unlimited except where system resources is the
limiting factor. Any positive value will set a limit on the
number of clients to be in service at the same time unless
system resource constraints come in before the limit. The
default is −1.

BackGround A numeric value indicating whether the RPL server should
run in the background or not. A 0 means run in the
background and a 1 means do not run in the background.
The difference is whether the server will relinquish the
controlling terminal or not. The default is 1.

451 SunOS 5.7 Last modified 31 Dec 1996

File Formats rpld.conf(4)

FrameSize The default size of data frames to be used to send bootfile
data to the network boot clients. This size should not exceed
the limits imposed by the underlying physical media. For
ethernet/802.3 , the maximum physical frame size is 1500
octets. The default is 1500. Note that the protocol overhead
of LLC1 and RPL is 32 octets, resulting in a maximum data
length of 1468 octets.

LogFile The log file to which messages will be sent if DebugDest is
set to 2 (the default). The default file is
var/spool/rpld.log .

StartDelay The initial delay factor to use to control the speed of
downloading. In the default mode of operation, the
downloading process does not wait for a positive
acknowledgment from the client before the next data frame
is sent. In the case of a fast server and slow client, data
overrun can result and requests for retransmission will be
frequent. By using a delay factor, the speed of data transfer
is controlled to avoid retransmission requests. Note that the
unit of delay is machine dependent and bears no correlation
with the actual time delayed.

DelayGran Delay granularity. If the initial delay factor is not suitable
and the rate of downloading is either too fast or too slow,
retransmission requests from the clients will be used to
adjust the delay factor either upward (to slow down the data
rate) or downward (to speed up the data rate). The delay
granularity is used as the delay delta for adjustment.

end Keyword at the end of the file. It must be present.

FILES
/etc/rpld.conf

/usr/sbin/rpld

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

SEE ALSO rpld (1M), attributes (5)

Last modified 31 Dec 1996 SunOS 5.7 452

rt_dptbl(4) File Formats

NAME rt_dptbl – real-time dispatcher parameter table

DESCRIPTION The process scheduler (or dispatcher) is the portion of the kernel that controls
allocation of the CPU to processes. The scheduler supports the notion of
scheduling classes where each class defines a scheduling policy, used to
schedule processes within that class. Associated with each scheduling class is a
set of priority queues on which ready to run processes are linked. These
priority queues are mapped by the system configuration into a set of global
scheduling priorities which are available to processes within the class. (The
dispatcher always selects for execution the process with the highest global
scheduling priority in the system.) The priority queues associated with a given
class are viewed by that class as a contiguous set of priority levels numbered
from 0 (lowest priority) to n (highest priority—a configuration dependent
value). The set of global scheduling priorities that the queues for a given class
are mapped into might not start at zero and might not be contiguous
(depending on the configuration).

The real-time class maintains an in-core table, with an entry for each priority
level, giving the properties of that level. This table is called the real-time
dispatcher parameter table (rt_dptbl). The rt_dptbl consists of an array
(config_rt_dptbl[]) of parameter structures (struct rtdpent_t), one
for each of the n priority levels. The structure are accessed via a pointer,
(rt_dptbl), to the array. The properties of a given priority level i are specified
by the ith parameter structure in this array (rt_dptbl[i]).

A parameter structure consists of the following members. These are also
described in the /usr/include/sys/rt.h header file.
rt_globpriThe global scheduling priority associated with this priority level. The

rt_globpri values cannot be changed with dispadmin (1M).

rt_quantumThe length of the time quantum allocated to processes at this level in
ticks (Hz). The time quantum value is only a default or starting value
for processes at a particular level as the time quantum of a real-time
process can be changed by the user with the priocntl command or
the priocntl system call.

An administrator can affect the behavior of the real-time portion of the
scheduler by reconfiguring the rt_dptbl . There are two methods available
for doing this: reconfigure with a loadable module at boot-time or by using
dispadmin (1M) at run-time.

RT_DPTBL
LOADABLE

MODULE

The rt_dptbl can be reconfigured with a loadable module which contains a
new real time dispatch table. The module containing the dispatch table is
separate from the RT loadable module which contains the rest of the real time
software. This is the only method that can be used to change the number of
real time priority levels or the set of global scheduling priorities used by the

453 SunOS 5.7 Last modified 23 Sep 1991

File Formats rt_dptbl(4)

real time class. The relevant procedure and source code is described in the
REPLACING THE RT_DPTBL LOADABLE MODULEsection.

DISPADMIN
CONFIGURATION

FILE

The rt_quantum values in the rt_dptbl can be examined and modified on a
running system using the dispadmin (1M) command. Invoking dispadmin
for the real-time class allows the administrator to retrieve the current
rt_dptbl configuration from the kernel’s in-core table, or overwrite the
in-core table with values from a configuration file. The configuration file used
for input to dispadmin must conform to the specific format described below.

Blank lines are ignored and any part of a line to the right of a # symbol is
treated as a comment. The first non-blank, non-comment line must indicate the
resolution to be used for interpreting the time quantum values. The resolution
is specified as

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the
resolution used is the reciprocal of res in seconds. (For example, RES=1000
specifies millisecond resolution.) Although very fine (nanosecond) resolution
may be specified, the time quantum lengths are rounded up to the next
integral multiple of the system clock’s resolution.

The remaining lines in the file are used to specify the rt_quantum values for
each of the real-time priority levels. The first line specifies the quantum for
real-time level 0, the second line specifies the quantum for real-time level 1,
etc. There must be exactly one line for each configured real-time priority level.
Each rt_quantum entry must be either a positive integer specifying the
desired time quantum (in the resolution given by res), or the value -2
indicating an infinite time quantum for that level.

EXAMPLES EXAMPLE 1 A sample dispadmin configuration file.

The following excerpt from a dispadmin configuration file illustrates the
format. Note that for each line specifying a time quantum there is a comment
indicating the corresponding priority level. These level numbers indicate
priority within the real-time class, and the mapping between these real-time
priorities and the corresponding global scheduling priorities is determined by
the configuration specified in the RT_DPTBLloadable module. The level
numbers are strictly for the convenience of the administrator reading the file
and, as with any comment, they are ignored by dispadmin on input.
dispadmin assumes that the lines in the file are ordered by consecutive,
increasing priority level (from 0 to the maximum configured real-time
priority). The level numbers in the comments should normally agree with this
ordering; if for some reason they don’t, however, dispadmin is unaffected.

Last modified 23 Sep 1991 SunOS 5.7 454

rt_dptbl(4) File Formats

Real-Time Dispatcher Configuration File
RES=1000

TIME QUANTUM PRIORITY

(rt_quantum) LEVEL

100 # 0

100 # 1

100 # 2

100 # 3

100 # 4

100 # 5

90 # 6

90 # 7

. . .

. . .

. . .

10 # 58

10 # 59

REPLACING THE
RT_DPTBL

LOADABLE
MODULE

In order to change the size of the real time dispatch table, the loadable module
which contains the dispatch table information will have to be built. It is
recommended that you save the existing module before using the following
procedure.

1. Place the dispatch table code shown below in a file called rt_dptbl.c An
example of an rt_dptbl.c file follows.

2. Compile the code using the given compilation and link lines supplied.

cc −c −0 −D_KERNEL rt_dptbl.c
ld −r −o RT_DPTBL rt_dptbl.o

3. Copy the current dispatch table in /usr/kernel/sched to
RT_DPTBL.bak .

4. Replace the current RT_DPTBLin /usr/kernel/sched .

5. You will have to make changes in the /etc/system file to reflect the
changes to the sizes of the tables. See system (4). The rt_maxpri variable
may need changing. The syntax for setting this is:

455 SunOS 5.7 Last modified 23 Sep 1991

File Formats rt_dptbl(4)

set RT:rt_maxpri=(class-specific value for maximum real-time priority)

6. Reboot the system to use the new dispatch table.

NOTE: Great care should be used in replacing the dispatch table using this m

The following is an example of a rt_dptbl.c file used for building the new
rt_dptbl .

/* BEGIN rt_dptbl.c */
#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/rt.h>
#include <sys/rtpriocntl.h>
/*

* This is the loadable module wrapper.
*/

#include <sys/modctl.h>
extern struct mod_ops mod_miscops;
/*

* Module linkage information for the kernel.
*/

static struct modlmisc modlmisc = {
&mod_miscops, "realtime dispatch table"

};
static struct modlinkage modlinkage = {

MODREV_1, &modlmisc, 0
};
_init()
{

return (mod_install(&modlinkage));
}
_info (struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));
}
rtdpent_t config_rt_dptbl[] = {

/* prilevel Time quantum */

100, 100,

101, 100,

102, 100,

103, 100,

104, 100,

105, 100,

106, 100,

Last modified 23 Sep 1991 SunOS 5.7 456

rt_dptbl(4) File Formats

107, 100,

108, 100,

109, 100,

110, 80,

111, 80,

112, 80,

113, 80,

114, 80,

115, 80,

116, 80,

117, 80,

118, 80,

119, 80,

120, 60,

121, 60,

122, 60,

123, 60,

124, 60,

125, 60,

126, 60,

127, 60,

128, 60,

129, 60,

130, 40,

131, 40,

132, 40,

133, 40,

134, 40,

135, 40,

136, 40,

137, 40,

457 SunOS 5.7 Last modified 23 Sep 1991

File Formats rt_dptbl(4)

138, 40,

139, 40,

140, 20,

141, 20,

142, 20,

143, 20,

144, 20,

145, 20,

146, 20,

147, 20,

148, 20,

149, 20,

150, 10,

151, 10,

152, 10,

153, 10,

154, 10,

155, 10,

156, 10,

157, 10,

158, 10,

159, 10,

};
/*

* Return the address of config_rt_dptbl
*/ rtdpent_t *

rt_getdptbl()
{

return (config_rt_dptbl);
}

FILES
<sys/rt.h>

Last modified 23 Sep 1991 SunOS 5.7 458

rt_dptbl(4) File Formats

SEE ALSO priocntl (1), dispadmin (1M), priocntl (2), system (4)

System Administration Guide, Volume I System Interface Guide

459 SunOS 5.7 Last modified 23 Sep 1991

File Formats sbus(4)

NAME sbus – configuration files for SBus device drivers

DESCRIPTION The SBus is a geographically addressed peripheral bus present on many
SPARC hardware platforms. SBus devices are self-identifying — that is to say
the SBus card itself provides information to the system so that it can identify
the device driver that needs to be used. The device usually provides additional
information to the system in the form of name-value pairs that can be
retrieved using the DDI property interfaces. See ddi_prop_op (9F) for details.

The information is usually derived from a small Forth program stored in the
FCode PROM on the card, so driver configuration files should be completely
unnecessary for these devices. However, on some occasions, drivers for SBus
devices may need to use driver configuration files to augment the information
provided by the SBus card. See driver.conf (4) for further details.

When they are needed, configuration files for SBus device drivers should
identify the parent bus driver implicitly using the class keyword. This removes
the dependency on the particular bus driver involved since this may be named
differently on different platforms.

All bus drivers of class sbus recognise the following properties:
reg An arbitrary length array where each element of the array consists of a 3-tuple of in

element describes a logically contiguous mappable resource on the SBus.

The first integer of each tuple specifies the slot number the
card is plugged into. The second integer of each 3-tuple
specifies the offset in the slot address space identified by the
first element. The third integer of each 3-tuple specifies the
size in bytes of the mappable resource.

The driver can refer to the elements of this array by index,
and construct kernel mappings to these addresses using
ddi_map_regs (9F). The index into the array is passed as
the rnumber argument of ddi_map_regs().

interrupts An arbitrary length array where each element of the array
consists of a single integer. Each array element describes a
possible SBus interrupt level that the device might generate.

The driver can refer to the elements of this array by index,
and register interrupt handlers with the system using
ddi_add_intr (9F). The index into the array is passed as
the inumber argument of ddi_add_intr().

registers An arbitrary length array where each element of the array consists of a 3-tuple of in
element describes a logically contiguous mappable resource on the SBus.

Last modified 31 Dec 1996 SunOS 5.7 460

sbus(4) File Formats

The first integer of each tuple should be set to −1, specifying
that any SBus slot may be matched. The second integer of
each 3-tuple specifies the offset in the slot address space
identified by the first element. The third integer of each
3-tuple specifies the size in bytes of the mappable resoure.

The registers property can only be used to augment an
incompletely specified reg property with information from a
driver configuration file. It may only be specified in a driver
configuration file.

All SBus devices must provide reg properties to the system. The first two
integer elements of the reg property are used to construct the address part of
the device name under /devices .

Only devices that generate interrupts need to provide interrupts properties.

Occasionally, it may be necessary to override or augment the configuration
information supplied by the SBus device. This can be achieved by writing a
driver configuration file that describes a prototype device information
(devinfo) node specification, containing the additional properties required.

For the system to merge the information, certain conditions must be met. First,
the name property must be the same. Second, either the first two integers (slot
number and offset) of the two reg properties must be the same, or the second
integer (offset) of the reg and registers properties must be the same.

In the event that the SBus card has no reg property at all, the self-identifying
information cannot be used, so all the details of the card must be specified in a
driver configuration file.

EXAMPLES EXAMPLE 1 A sample configuration file.

Here is a configuration file for an SBus card called SUNW,netboard . The card
already has a simple FCode PROM that creates name and reg properties, and
will have a complete set of properties for normal use once the driver and
firmware is complete.

In this example, we want to augment the properties given to us by the
firmware. We use the same name property, and use the registers property
to match the firmware reg property. That way we don’t have to worry about
which slot the card is really plugged into.

We want to add an interrupts property while we are developing the
firmware and driver so that we can start to experiment with interrupts. The
device can generate interrupts at SBus level 3. Additionally, we want to set a
debug-level property to 4.

#
Copyright (c) 1992, by Sun Microsystems, Inc.

461 SunOS 5.7 Last modified 31 Dec 1996

File Formats sbus(4)

#ident "@(#)SUNW,netboard.conf 1.4 92/03/10 SMI"
#
name="SUNW,netboard" class="sbus"

registers=-1,0x40000,64,-1,0x80000,1024
interrupts=3 debug-level=4;

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SEE ALSO driver.conf (4), attributes (5), ddi_add_intr (9F), ddi_map_regs (9F),
ddi_prop_op (9F)

Writing Device Drivers

WARNINGS The wildcarding mechanism of the registers property matches every
instance of the particular device attached to the system. This may not always
be what is wanted.

Last modified 31 Dec 1996 SunOS 5.7 462

sccsfile(4) File Formats

NAME sccsfile – format of an SCCS history file

DESCRIPTION An SCCS file is an ASCII file consisting of six logical parts:
checksum character count used for error detection

delta table log containing version info and statistics about each delta

usernames login names and/or group IDs of users who may add deltas

flags definitions of internal keywords

comments arbitrary descriptive information about the file

body the actual text lines intermixed with control lines
Each section is described in detail below.

Conventions Throughout an SCCS file there are lines which begin with the ASCII SOH
(start of heading) character (octal 001). This character is hereafter referred to as
the control character, and will be represented as ‘^A’. If a line described below
is not depicted as beginning with the control character, it cannot do so and still
be within SCCS file format.

Entries of the form ddddd represent a five digit string (a number between 00000
and 99999).

Checksum The checksum is the first line of an SCCS file. The form of the line is:
^A hddddd

The value of the checksum is the sum of all characters, except those contained
in the first line. The ^Ah provides a magic number of (octal) 064001.

Delta Table The delta table consists of a variable number of entries of the form:

^As inserted / deleted / unchanged
^Ad type sid yr / mo / da hr : mi : se username serial-number predecessor-sn
^Ai include-list
^Ax exclude-list
^Ag ignored-list
^Am mr-number
. . .
^Ac comments . . .
. . .
^Ae

The first line (^As) contains the number of lines inserted/deleted/unchanged
respectively. The second line (^Ad) contains the type of the delta (normal: D,
and removed: R), the SCCS ID of the delta, the date and time of creation of the

463 SunOS 5.7 Last modified 5 Oct 1990

File Formats sccsfile(4)

delta, the user-name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor, respectively.
The ^Ai , ^Ax , and ^Ag lines contain the serial numbers of deltas included,
excluded, and ignored, respectively. These lines do not always appear.

The ^Am lines (optional) each contain one MR number associated with the
delta; the ^Ac lines contain comments associated with the delta.

The ^Ae line ends the delta table entry.

User Names The list of user-names and/or numerical group IDs of users who may add
deltas to the file, separated by NEWLINE characters. The lines containing
these login names and/or numerical group IDs are surrounded by the
bracketing lines ^Au and ^AU. An empty list allows anyone to make a delta.

Flags Flags are keywords that are used internally (see sccs-admin (1) for more
information on their use). Each flag line takes the form:
^Af flagoptional text
The following flags are defined in order of appearance:
^Af t type-of-programDefines the replacement for the 17:21:50 ID keyword.

^Af v program-nameControls prompting for MR numbers in addition to comments; if the
optional text is present it defines an MR number validity checking
program.

^Af i Indicates that the ‘No id keywords ’ message is to generate an error
that terminates the SCCS command. Otherwise, the message is treated
as a warning only.

^Af b Indicates that the −b option may be used with the SCCS get
command to create a branch in the delta tree.

^Af m module nameDefines the first choice for the replacement text of the sccsfile.4 ID
keyword.

^Af f floorDefines the “floor” release; the release below which no deltas may be
added.

^Af c ceilingDefines the “ceiling” release; the release above which no deltas may be
added.

^Af d default-sidThe d flag defines the default SID to be used when none is specified
on an SCCS get command.

^Af n The n flag enables the SCCS delta command to insert a “null” delta
(a delta that applies no changes) in those releases that are skipped
when a delta is made in a new release (for example, when delta 5.1 is
made after delta 2.7, releases 3 and 4 are skipped).

Last modified 5 Oct 1990 SunOS 5.7 464

sccsfile(4) File Formats

^Af j Enables the SCCS get command to allow concurrent edits of the same base SID.

^Af l lock-releasesDefines a list of releases that are locked against editing.

^Af q user definedDefines the replacement for the ID keyword.

^Af e 0|1The e flag indicates whether a source file is encoded or not. A 1
indicates that the file is encoded. Source files need to be encoded when
they contain control characters, or when they do not end with a
NEWLINE. The e flag allows files that contain binary data to be
checked in.

Comments Arbitrary text surrounded by the bracketing lines ^At and ^AT. The
comments section typically will contain a description of the file’s purpose.

Body The body consists of text lines and control lines. Text lines do not begin with
the control character, control lines do. There are three kinds of control lines:
insert, delete, and end, represented by:

^AI ddddd
^AD ddddd
^AE ddddd

respectively. The digit string is the serial number corresponding to the delta
for the control line.

SEE ALSO sccs-admin (1), sccs-cdc (1), sccs-comb (1), sccs-delta (1),
sccs-get (1), sccs-help (1), sccs-prs (1), sccs-prt (1), sccs-rmdel (1),
sccs-sact (1), sccs-sccsdiff (1), sccs-unget (1), sccs-val (1),
sccs (1), what (1)

465 SunOS 5.7 Last modified 5 Oct 1990

File Formats scsi(4)

NAME scsi – configuration files for SCSI target drivers

DESCRIPTION The architecture of the Solaris SCSI subsystem distinguishes two types of
device drivers: SCSI target drivers, and SCSI host adapter drivers. Target
drivers like sd (7D) and st (7D) manage the device on the other end of the
SCSI bus. Host adapter drivers manage the SCSI bus on behalf of all the
devices that share it.

Drivers for host adapters provide a common set of interfaces for target drivers.
These interfaces comprise the Sun Common SCSI Architecture (SCSA) which
are documented as part of the Solaris DDI/DKI. See scsi_ifgetcap (9F),
scsi_init_pkt (9F), and scsi_transport (9F) for further details of these,
and associated routines.

Target drivers for SCSI devices should use a driver configuration file to enable
them to be recognized by the system.

Configuration files for SCSI target drivers should identify the host adapter
driver implicitly using the class keyword to remove any dependency on the
particular host adapter involved.

All host adapter drivers of class scsi recognize the following properties:
target Integer-valued SCSI target identifier that this driver will

claim.

lun Integer-valued SCSI logical unit number (LUN) that this
driver will claim.

All SCSI target drivers must provide target and lun properties. These
properties are used to construct the address part of the device name under
/devices .

The SCSI target driver configuration files shipped with Solaris have entries for
LUN 0 only. For devices that support other LUNs, such as some CD changers,
the system administrator may edit the driver configuration file to add entries
for other LUNs.

EXAMPLES EXAMPLE 1 A sample configuration file.

Here is a configuration file for a SCSI target driver called toaster.conf .

#
Copyright (c) 1992, by Sun Microsystems, Inc.
#
#ident "@(#)toaster.conf 1.2 92/05/12 SMI"
name="toaster" class="scsi" target=4 lun=0;

Add the following lines to sd.conf for a six- CD changer on target 3 , with
LUNs 0 to 5.

Last modified 31 Jan 1995 SunOS 5.7 466

scsi(4) File Formats

name="sd" class="scsi" target=3 lun=1;
name="sd" class="scsi" target=3 lun=2;
name="sd" class="scsi" target=3 lun=3;
name="sd" class="scsi" target=3 lun=4;
name="sd" class="scsi" target=3 lun=5;

It is not necessary to add the line for LUN 0, as it already exists in the file
shipped with Solaris.

SEE ALSO driver.conf (4), sd (7D), st (7D), scsi_ifgetcap (9F),
scsi_init_pkt (9F), scsi_transport (9F)

Writing Device Drivers

ANSI Small Computer System Interface-2 (SCSI-2)

NOTES You need to ensure that the target and lun values claimed by your target
driver do not conflict with existing target drivers on the system. For example,
if the target is a direct access device, the standard sd.conf file will usually
make sd claim it before any other driver has a chance to probe it.

467 SunOS 5.7 Last modified 31 Jan 1995

File Formats securenets(4)

NAME securenets – configuration file for NIS security

SYNOPSIS /var/yp/securenets

DESCRIPTION The /var/yp/securenets file defines the networks or hosts which are
allowed access to information by the Network Information Service (NIS).

The format of the file is as follows:

Lines beginning with the ‘‘#’’ character are treated as comments.

Otherwise, each line contains two fields separated by white space. The first
field is a netmask, the second a network.

The netmask field may be either 255.255.255.255 or the string ‘‘host’’ indicating
that the second field is a specific host to be allowed access.

Both ypserv (1M) and ypxfrd (1M) use the /var/yp/securenets file. The
file is read when the ypserv (1M) and ypxfrd (1M) daemons begin. If
/var/yp/securenets is present, ypserv (1M) and ypxfrd (1M) respond
only to IP addresses in the range given. In order for a change in the
/var/yp/securenets file to take effect, you must kill and restart any active
daemons using ypstop (1M) and ypstart (1M).

EXAMPLES EXAMPLE 1 Access entries.

If individual machines are to be give access, the entry could be:

255.255.255.255 192.9.1.20

or

host 192.0.1.20

If access is to be given to an entire class C network, the entry could be:

255.255.255.0 192.9.1.0

The entry for access to a class B network could be:

255.255.0.0 129.9.0.0

The entry for access to a class A network could be:

255.0.0.0 10.0.0.0

Last modified 17 Mar 1998 SunOS 5.7 468

securenets(4) File Formats

FILES
/var/yp/securenets Configuration file for NIS security.

SEE ALSO ypserv (1M), ypstart (1M), ypstop (1M), ypxfrd (1M)

NOTES The Network Information Service (NIS) was formerly known as Sun Yellow
Pages (YP). The functionality of the two remains the same; only the name has
changed. The name Yellow Pages is a registered trademark in the United
Kingdom of British Telecommunications plc, and may not be used without
permission.

469 SunOS 5.7 Last modified 17 Mar 1998

File Formats services(4)

NAME services – Internet services and aliases

SYNOPSIS /etc/inet/services

/etc/services

DESCRIPTION The services file is a local source of information regarding each service
available through the Internet. The services file can be used in conjunction
with or instead of other services sources, including the NIS maps
“services.byname” and the NIS+ table “services.“ Programs use the
getservbyname (3N) routines to access this information.

The services file contains an entry for each service. Each entry has the form:
service-name port/ protocol aliases

service-name This is the official Internet service name.

port / protocol This field is composed of the port number and
protocol through which the service is provided
(for instance, 512/tcp).

aliases This is a list of alternate names by which the
service might be requested.

Fields can be separated by any number of SPACE and/or TAB characters. A
‘#’ (number sign) indicates the beginning of a comment; characters up to the
end of the line are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

FILES
/etc/nsswitch.conf configuration file for name-service switch

SEE ALSO getservbyname (3N), inetd.conf (4), nsswitch.conf (4)

NOTES /etc/inet/services is the official SVR4 name of the services file. The
symbolic link /etc/services exists for BSD compatibility.

Last modified 22 Feb 1994 SunOS 5.7 470

shadow(4) File Formats

NAME shadow – shadow password file

DESCRIPTION /etc/shadow is an access-restricted ASCII system file that stores users’
encrypted passwords and related information. The shadow file can be used in
conjunction with other shadow sources, including the NIS maps
passwd.byname and passwd.byuid and the NIS+ table passwd . Programs
use the getspnam (3C) routines to access this information.

The fields for each user entry are separated by colons. Each user is separated
from the next by a newline. Unlike the /etc/passwd file, /etc/shadow does
not have general read permission.

Each entry in the shadow file has the form:
username:password:lastchg: min:max:warn:
inactive:expire:flag

The fields are defined as follows:
username The user’s login name (UID).

password A 13-character encrypted password for the user, a lock string
to indicate that the login is not accessible, or no string, which
shows that there is no password for the login.

lastchg The number of days between January 1, 1970, and the date
that the password was last modified.

min The minimum number of days required between password
changes.

max The maximum number of days the password is valid.

warn The number of days before password expires that the user is
warned.

inactive The number of days of inactivity allowed for that user.

expire An absolute date specifying when the login may no longer
be used.

flag Reserved for future use, set to zero. Currently not used.
The encrypted password consists of 13 characters chosen from a 64-character
alphabet (. , / , 0−9, A−Z, a−z). To update this file, use the passwd (1),
useradd (1M), usermod (1M), or userdel (1M) commands.

In order to make system administration manageable, /etc/shadow entries
should appear in exactly the same order as /etc/passwd entries; this
includes ‘‘+’’ and ‘‘-’’ entries if the compat source is being used (see
nsswitch.conf (4)).

471 SunOS 5.7 Last modified 10 Dec 1991

File Formats shadow(4)

FILES
/etc/shadow shadow password file

/etc/passwd password file

/etc/nsswitch.conf name-service switch configuration file

SEE ALSO login (1), passwd (1), useradd (1M), userdel (1M), usermod (1M),
getspnam (3C), putspent (3C), nsswitch.conf (4), passwd (4)

NOTES If password aging is turned on in any name service the passwd: line in the
/etc/nsswitch.conf file must have a format specified in the
nsswitch.conf (4) man page.

If the /etc/nsswitch.conf passwd policy is not in one of the supported
formats, logins will not be allowed upon password expiration because the
software does not know how to handle password updates under these
conditions. See nsswitch.conf (4) for additional information.

Last modified 10 Dec 1991 SunOS 5.7 472

sharetab(4) File Formats

NAME sharetab – shared file system table

DESCRIPTION sharetab resides in directory /etc/dfs and contains a table of local
resources shared by the share command.

Each line of the file consists of the following fields:

pathname resource fstype specific_options description

where
pathname Indicate the path name of the shared resource.

resource Indicate the symbolic name by which remote
systems can access the resource.

fstype Indicate the file system type of the shared
resource.

specific_options Indicate file-system-type-specific options that
were given to the share command when the
resource was shared.

description Describe the shared resource provided by the
system administrator when the resource was
shared.

SEE ALSO share (1M)

473 SunOS 5.7 Last modified 3 Jul 1990

File Formats shells(4)

NAME shells – shell database

SYNOPSIS /etc/shells

DESCRIPTION The shells file contains a list of the shells on the system. Applications use
this file to determine whether a shell is valid (see getusershell (3C)). For
each shell a single line should be present, consisting of the shell’s path, relative
to root.

A hash mark (‘‘#’’) indicates the beginning of a comment; subsequent
characters up to the end of the line are not interpreted by the routines which
search the file. Blank lines are also ignored.

FILES
/etc/shells lists shells on system

SEE ALSO ftpd (1M), vipw (1B), getusershell (3C)

Last modified 10 Aug 1994 SunOS 5.7 474

sock2path(4) File Formats

NAME sock2path – file that maps sockets to transport providers

SYNOPSIS /etc/sock2path

DESCRIPTION The socket mapping file, /etc/sock2path , is a system file that contains the
mappings between the socket (3N) call parameters and the transport provider
driver. Its format is described on the soconfig (1M) manual page.

The init (1M) utility uses the soconfig utility with the sock2path file
during the booting sequence.

EXAMPLES EXAMPLE 1 A sample sock2path file.

The following is a sample sock2path file:

Family Type Protocol Path
2 2 0 /dev/tcp
2 2 6 /dev/tcp
2 1 0 /dev/udp
2 1 17 /dev/udp
1 2 0 /dev/ticotsord
1 1 0 /dev/ticlts
2 4 0 /dev/rawip

SEE ALSO soconfig (1M), socket (3N)

Network Interfaces Programmer’s Guide

475 SunOS 5.7 Last modified 30 Sep 1996

File Formats space(4)

NAME space – disk space requirement file

DESCRIPTION space is an ASCII file that gives information about disk space requirements
for the target environment. The space file defines space needed beyond what
is used by objects defined in the prototype (4) file; for example, files which
will be installed with the installf (1M) command. The space file should
define the maximum amount of additional space that a package will require.

The generic format of a line in this file is:

pathname blocks inodes

Definitions for the fields are as follows:
pathname Specify a directory name which may or may not be the

mount point for a filesystem. Names that do not begin with
a slash (’/ ’) indicate relocatable directories.

blocks Define the number of disk blocks required for installation of
the files and directory entries contained in the pathname
(using a 512-byte block size).

inodes Define the number of inodes required for installation of the
files and directory entries contained in the pathname.

EXAMPLES EXAMPLE 1 A sample file.

extra space required by config data which is
dynamically loaded onto the system
data 500 1

SEE ALSO installf (1M), prototype (4)

Application Packaging Developer’s Guide

Last modified 7 Feb 1997 SunOS 5.7 476

sulog(4) File Formats

NAME sulog – su command log file

SYNOPSIS /var/adm/sulog

DESCRIPTION The sulog file is a record of all attempts by users on the system to execute the
su (1M) command. Each time su (1M) is executed, an entry is added to the
sulog file.

Each entry in the sulog file is a single line of the form:

SU date time
result port user- newuser

where
date The month and date su (1M) was executed. date is

displayed in the form mm/dd where mm is the month
number and dd is the day number in the month.

time The time su (1M) was executed. time is displayed in the
form HH/ MM where HH is the hour number (24 hour
system) and MM is the minute number.

result The result of the su (1M) command. A ‘ + ’sign is displayed
in this field if the su attempt was successful; otherwise a ‘ -
’sign is displayed.

port The name of the terminal device from which su (1M) was
executed.

user The user id of the user executing the su (1M) command.

newuser The user id being switched to with su (1M).

EXAMPLES EXAMPLE 1 A sample sulog file.

Here is a sample sulog file:

SU 02/25 09:29 + console root-sys
SU 02/25 09:32 + pts/3 user1-root
SU 03/02 08:03 + pts/5 user1-root
SU 03/03 08:19 + pts/5 user1-root
SU 03/09 14:24 - pts/5 guest3-root
SU 03/09 14:24 - pts/5 guest3-root
SU 03/14 08:31 + pts/4 user1-root

477 SunOS 5.7 Last modified 6 Jun 1994

File Formats sulog(4)

FILES
/var/adm/sulog su log file

/etc/default/su contains the default location of sulog

SEE ALSO su (1M)

Last modified 6 Jun 1994 SunOS 5.7 478

sysbus(4) File Formats

NAME sysbus, isa, eisa – device tree properties for ISA and EISA bus device drivers

DESCRIPTION Solaris (Intel Platform Edition) supports the ISA and EISA buses as the system
bus. Drivers for devices on these buses use the device tree built by the booting
system to retrieve the necessary system resources used by the driver. These
resources include device I/O port addresses, any interrupt capabilities that the
device may have, any DMA channels it may require, and any
memory-mapped addresses it may occupy.

Configuration files for ISA and EISA device drivers are only necessary to
describe properties used by a particular driver that are not part of the standard
properties found in the device tree. See driver.conf (4) for further details of
configuration file syntax.

The ISA and EISA nexus drivers all belong to class sysbus . All bus drivers of
class sysbus recognize the following properties:
interrupts An arbitrary-length array where each element of the array

represents a hardware interrupt (IRQ) that is used by the
device. In general, this array only has one entry unless a
particular device uses more than one IRQ.

Solaris defaults all ISA and EISA interrupts to IPL 5. This
interrupt priority may be overridden by placing an
interrupt-priorities property in a .conf file for the
driver. Each entry in the array of integers for the
interrupt-priorities property is matched one-to-one
with the elements in the interrupts property to specify
the IPL value that will be used by the system for this
interrupt in this driver. This is the priority that this device’s
interrupt handler will receive relative to the interrupt
handlers of other drivers. The priority is an integer from 1 to
16 . Generally, disks are assigned a priority of 5 , while mice
and printers are lower, and serial communication devices are
higher, typically 7 . 10 is reserved by the system and must
not be used. Priorities 11 and greater are high level priorities
and are generally not recommended (see
ddi_intr_hilevel (9F)).

The driver can refer to the elements of this array by index
using ddi_add_intr (9F) . The index into the array is
passed as the inumber argument of ddi_add_intr() .

Only devices that generate interrupts will have an
interrupts property.

479 SunOS 5.7 Last modified 23 Feb 1998

File Formats sysbus(4)

reg An arbitrary-length array where each element of the array
consists of a 3-tuple of integers. Each array element describes
a contiguous memory address range associated with the
device on the bus.

The first integer of the tuple specifies the memory type, 0
specifies a memory range and 1 specifies an I/O range. The
second integer specifies the base address of the memory
range. The third integer of each 3-tuple specifies the size, in
bytes, of the mappable region.

The driver can refer to the elements of this array by index,
and construct kernel mappings to these addresses using
ddi_map_regs (9F) . The index into the array is passed as
the rnumber argument of ddi_map_regs() .

All sysbus devices will have reg properties. The first tuple
of this property is used to construct the address part of the
device name under /devices . In the case of
Plug and Play ISA devices, the first tuple is a special tuple
that does not denote a memory range, but is used by the
system only to create the address part of the device name.
This special tuple can be recognized by determining if the
top bit of the first integer is set to a one.

The order of the tuples in the reg property is determined by
the boot system probe code and depends on the
characteristics of each particular device. However, the reg
property will maintain the same order of entries from system
boot to system boot. The recommended way to determine
the reg property for a particular device is to use the
prtconf (1M) command after installing the particular
device. The output of the prtconf command can be
examined to determine the reg property for any installed
device.

dma-channels A list of integers that specifies the DMA channels used by
this device. Only devices that use DMA channels will have a
dma-channels property.

It is recommended that drivers for devices connected to the system bus
recognize the following standard property names:
slot The number of the slot containing the device, if known.

(Only for EISA devices).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 23 Feb 1998 SunOS 5.7 480

sysbus(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

SEE ALSO prtconf (1M) , driver.conf (4) , scsi (4) , attributes (5) ,
ddi_add_intr (9F) , ddi_intr_hilevel (9F) , ddi_map_regs (9F) ,
ddi_prop_op (9F)

Writing Device Drivers

481 SunOS 5.7 Last modified 23 Feb 1998

File Formats sysidcfg(4)

NAME sysidcfg – system identification configuration file

DESCRIPTION When a diskless client boots for the first time or a system installs over the
network, the booting software tries to obtain configuration information about
the system (such as the system’s root password or name service) from a
sysidcfg file first and then the name service databases. If the booting
software cannot find the information, it prompts the user to provide the
appropriate information. Like the name service databases, the sysidcfg file
can be used to avoid all the prompts and provide a totally hands-off booting
process.

The sysidcfg file preconfigures information through a set of keywords, and
you can specify one or more of the keywords to preconfigure as much
information as you want. Also, every system that requires different
configuration information must have a different sysidcfg file. For example,
you can use the same sysidcfg file to preconfigure the time zone for
multiple systems if you want all the systems to have the same time zone
configured. However, if you want to preconfigure a different root password for
each of those systems, then each system would need its own sysidcfg file.

Where To Put the
sysidcfg File

The sysidcfg file can reside on a shared NFS network directory or the root
directory on a UFS or PCFS diskette in the system’s diskette drive. If you put
the sysidcfg file on a shared NFS network directory, you have to use the −p
option of the add_install_client (1M) command (see
install_scripts (1M)) to specify where the system being installed can find
the sysidcfg file. If you put the sysidcfg file on a diskette, you need to
make sure the diskette is in the system’s diskette drive when the system boots
(on x86 systems, the sysidcfg file should reside on the Solaris Device
Configuration Assistant diskette).

Only one sysidcfg file can reside in a directory or diskette. If you are
creating more than one sysidcfg file, they must reside in different directories
or diskettes.

Keyword Syntax
Rules

The following rules apply to the keywords in a sysidcfg file:

� Keywords can be in any order

� Keywords are not case sensitive

� Keyword values can be optionally enclosed in single (’) or double (")
quotes

� Only the first instance of a keyword is valid; if you specify the same
keyword more than once, the first keyword specified will be used.

Last modified 28 Mar 1997 SunOS 5.7 482

sysidcfg(4) File Formats

Keywords Platform .nf

Configuration

Information

Keywords Where to Find

Values/Example

All .nf Name service,
domain name,
name server

.nf
name_service=NIS ,
NIS+ , OTHER, NONE

{domain_name= domain_name
name_server=hostname(ip_address)}

.nf
name_service=NIS

{domain_name=chandy.West.Arp.COM

name_server=timber(129.221.2.1)}

All .nf Network
interface, host
name, IP address,
netmask

.nf
network_interface=NONE ,
PRIMARY, value
{hostname= host_name
ip_address= ip_address
netmask= netmask}

.nf
network_interface=le0

{hostname=feron

ip_address=129.222.2.1

netmask=255.255.0.0}

All Root password root_password= root_passwordEncrypted from /

etc/shadow

All .nf Language in
which to display
the install program

system_locale=locale /usr/lib/

locale

All Terminal type terminal= terminal_type/usr/share/

lib/terminfo/

?/*

All Time zone timezone= timezone /usr/share/

lib/zoneinfo/*

All Time and date .nf
timeserver=localhost,

hostname,

ip_address

.nf If you specify
localhost as the
time server, the
system’s time is
assumed to be
correct. If you
specify the
hostname or
ip_address (if you
are not running a
name service) of a
system, that
system’s time is
used to set the
time.

483 SunOS 5.7 Last modified 28 Mar 1997

File Formats sysidcfg(4)

x86 Monitor type monitor= monitor_type.nf Run
kdmconfig −d

filename; append
output to
sysidcfg file

x86 .nf Keyboard
language,
keyboard layout

.nf
keyboard= keyboard_language
{layout= value}

.nf Run
kdmconfig −d

filename; append
output to
sysidcfg file

x86 .nf Graphics card,
color depth,
display resolution,
screen size

.nf
display= graphics_card
{size= screen_size
depth= color_depth
resolution= screen_resolution}

.nf Run
kdmconfig −d

filename; append
output to
sysidcfg file

x86 .nf Pointing device,
number of buttons,
IRQ level

.nf
pointer= pointing_device
{nbuttons= number_buttons
irq= value}

.nf Run
kdmconfig −d

filename; append
output to
sysidcfg file

EXAMPLES EXAMPLE 1 Sample sysidcfg files.

The following example is a sysidcfg file for a group of SPARC systems to
install over the network. (The host names, IP addresses, and netmask of these
systems have been preconfigured by editing the name service.) Because all the
system configuration information has been preconfigured, an automated
installation can be created by using a custom JumpStart profile.

system_locale=en_US
timezone=US/Central
timeserver=localhost
terminal=sun-cmd
name_service=NIS {domain_name=marquee.central.sun.com

name_server=connor(129.152.112.3)}
root_password=m4QPOWNY
system_locale=C

The following example is a sysidcfg file created for a group of x86 systems
to install over the network that all have the same keyboard, graphics cards,
and pointing devices. The device information (keyboard, display, and pointer)
was captured from running kdmconfig −d (see kdmconfig (1M)). In this
example, users would see only the prompt to select a language (system_locale)
for displaying the rest of the Solaris installation program.

Last modified 28 Mar 1997 SunOS 5.7 484

sysidcfg(4) File Formats

keyboard=ATKBD {layout=US-English}
display=ati {size=15-inch}
pointer=MS-S
timezone=US/Central
timeserver=connor
terminal=AT386
name_service=NIS {domain_name=marquee.central.sun.com

name_server=connor(129.152.112.3)}
root_password=URFUni9

SEE ALSO install_scripts (1M), kdmconfig (1M), sysidtool (1M)

Solaris Advanced Installation Guide

485 SunOS 5.7 Last modified 28 Mar 1997

File Formats syslog.conf(4)

NAME syslog.conf – configuration file for syslogd system log daemon

SYNOPSIS /etc/syslog.conf

DESCRIPTION The file /etc/syslog.conf contains information used by the system log
daemon, syslogd (1M), to forward a system message to appropriate log files
and/or users. syslogd preprocesses this file through m4(1) to obtain the
correct information for certain log files, defining LOGHOSTif the address of
"loghost" is the same as one of the addresses of the host that is running
syslogd .

A configuration entry is composed of two TAB-separated fields:
selector action

The selector field contains a semicolon-separated list of priority specifications of
the form:

facility. level [; facility. level]
where facility is a system facility, or comma-separated list of facilities, and level
is an indication of the severity of the condition being logged. Recognized
values for facility include:
user Messages generated by user processes. This is the default

priority for messages from programs or facilities not listed in
this file.

kern Messages generated by the kernel.

mail The mail system.

daemon System daemons, such as in.ftpd (1M)

auth The authorization system: login (1), su (1M), getty (1M),
among others.

lpr The line printer spooling system: lpr (1B), lpc (1B), among
others.

news Reserved for the USENET network news system.

uucp Reserved for the UUCP system; it does not currently use the
syslog mechanism.

cron The cron /at facility; crontab (1), at (1), cron (1M),
among others.

local0-7 Reserved for local use.

mark For timestamp messages produced internally by syslogd .

Last modified 22 Jan 1997 SunOS 5.7 486

syslog.conf(4) File Formats

* An asterisk indicates all facilities except for the mark facility.
Recognized values for level are (in descending order of severity):
emerg For panic conditions that would normally be broadcast to all

users.

alert For conditions that should be corrected immediately, such as
a corrupted system database.

crit For warnings about critical conditions, such as hard device
errors.

err For other errors.

warning For warning messages.

notice For conditions that are not error conditions, but may
require special handling. A configuration entry with a level
value of notice must appear on a separate line.

info Informational messages.

debug For messages that are normally used only when debugging a
program.

none Do not send messages from the indicated facility to the
selected file. For example, a selector of

*.debug;mail.none

will send all messages except mail messages to the selected
file.

The action field indicates where to forward the message. Values for this field
can have one of four forms:

� A filename, beginning with a leading slash, which indicates that messages
specified by the selector are to be written to the specified file. The file will be
opened in append mode.

� The name of a remote host, prefixed with an @, as with: @server, which
indicates that messages specified by the selector are to be forwarded to the
syslogd on the named host. The hostname "loghost" is the hostname given
to the machine that will log syslogd messages. Every machine is "loghost"
by default. See /etc/hosts . It is also possible to specify one machine on a

487 SunOS 5.7 Last modified 22 Jan 1997

File Formats syslog.conf(4)

network to be "loghost" by making the appropriate host table entries. If the
local machine is designated to be "loghost", then syslogd messages are
written to the appropriate files. Otherwise, they are sent to the machine
"loghost" on the network.

� A comma-separated list of usernames, which indicates that messages
specified by the selector are to be written to the named users if they are
logged in.

� An asterisk, which indicates that messages specified by the selector are to be
written to all logged-in users.

Blank lines are ignored. Lines for which the first nonwhite character is a ’#’ are
treated as comments.

EXAMPLES EXAMPLE 1 A sample configuration file.

With the following configuration file:

*.notice /var/log/notice

mail.info /var/log/notice

*.crit /var/log/critical

kern,mark.debug /dev/console

kern.err @server

*.emerg *

*.alert root,operator

*.alert;auth.warning /var/log/auth

syslogd (1M) will log all mail system messages except debug messages and
all notice (or higher) messages into a file named /var/log/notice . It logs
all critical messages into /var/log/critical , and all kernel messages and
20-minute marks onto the system console.

Kernel messages of err (error) severity or higher are forwarded to the
machine named server . Emergency messages are forwarded to all users. The
users root and operator are informed of any alert messages. All messages
from the authorization system of warning level or higher are logged in the
file /var/log/auth .

FILES
/var/log/notice log of all mail system messages (except debug

messages) and all messages of notice level or
higher.

/var/log/critical log of all critical messages

Last modified 22 Jan 1997 SunOS 5.7 488

syslog.conf(4) File Formats

/var/log/auth log of all messages from the authorization system
of warning level or higher

SEE ALSO at (1), crontab (1), logger (1), login (1), lp (1), lpc (1B), lpr (1B), m4(1),
cron (1M), getty (1M), in.ftpd (1M), su (1M), syslogd (1M), syslog (3),
hosts (4)

489 SunOS 5.7 Last modified 22 Jan 1997

File Formats system(4)

NAME system – system configuration information file

DESCRIPTION The system file is used for customizing the operation of the operating system
kernel. The recommended procedure is to preserve the original system file
before modifying it.

The system file contains commands which are read by the kernel during
initialization and used to customize the operation of your system. These
commands are useful for modifying the system’s treatment of its loadable
kernel modules.

The syntax of the system file consists of a list of keyword/value pairs which
are recognized by the system as valid commands. Comment lines must begin
with an asterisk (’*’) and end with a newline character. All commands are
case-insensitive except where noted. A command line can be no more than 80
characters in length.

Commands that modify the system’s operation with respect to loadable kernel
modules require you to specify the module type by listing the module’s
namespace. The following namespaces are currently supported:
drv Modules in this namespace are device drivers.

exec Modules in this namespace are execution format
modules. The following exec modules are
currently provided by SunSoft:

SPARC system: aoutexec
elfexec
intpexec

x86 system: coffexec
elfexec
intpexec

fs These modules are filesystems.

sched These modules implement a process scheduling
algorithm.

strmod These modules are STREAMS modules.

sys These modules implement loadable system-call
modules.

misc These modules do not fit into any of the above
categories, so are considered "miscellaneous"
modules.

Below is a description of each of the supported commands:

Last modified 19 Jun 1997 SunOS 5.7 490

system(4) File Formats

exclude: <namespace>/<modulename>Do not allow the listed loadable kernel module to
be loaded. exclude commands are cumulative;
the list of modules to exclude is created by
combining every exclude entry in the system
file.

include: <namespace>/<modulename>Include the listed loadable kernel module. This is
the system’s default, so using include does not
modify the system’s operation. include
commands are cumulative.

forceload: <namespace>/<modulename>Force this kernel module to be loaded during
kernel initialization. The default action is to
automatically load the kernel module when its
services are first accessed. forceload commands
are cumulative.

rootdev: <device name> Set the root device to the listed value instead of
using the default root device as supplied by the
boot program.

rootfs: <root filesystem type>Set the root filesystem type to the listed value.

moddir: <first module path>[[{:, }<second ...>]...]Set the search path for loadable kernel modules.
This command operates very much like the PATH
shell variable. Multiple directories to search can
be listed together, delimited either by blank
spaces or colons.

set [<module>:]<symbol> {=, |, &} [~][-]<value>Set an integer or character pointer in the kernel or
in the selected kernel module to a new value.
This command is used to change kernel and
module parameters and thus modify the
operation of your system. Assignment operations
are not cumulative, whereas bitwise AND and
OR operations are cumulative.

Operations that are supported for modifying
integer variables are: simple assignment, inclusive
bitwise OR, bitwise AND, one’s complement, and
negation. Variables in a specific loadable module
can be targeted for modification by specifying the
variable name prefixed with the kernel module
name and a colon (:) separator. Values can be
specified as hexadecimal (0x10), Octal (046), or
Decimal (5).

491 SunOS 5.7 Last modified 19 Jun 1997

File Formats system(4)

The only operation supported for modifying
character pointers is simple assignment. Static
string data such as character arrays cannot be
modified using the set command. Use care and
ensure that the variable you are modifying is in
fact a character pointer. The set command is
very powerful, and will likely cause problems if
used carelessly. The entire command, including
the quoted string, cannot exceed 80 characters.
The following escape sequences are supported
within the quoted string:

\n (newline)
\t (tab)
\b (backspace)

EXAMPLES EXAMPLE 1 A sample system file.

The following is a sample system file.

* Force the ELF exec kernel module to be loaded during kernel
* initialization. Execution type modules are in the exec namespace.
forceload: exec/elfexec
* Change the root device to /sbus@1,f8000000/esp@0,800000/sd@3,0:a.
* You can derive root device names from /devices.
* Root device names must be the fully expanded Open Boot Prom
* device name. This command is platform and configuration specific.
* This example uses the first partition (a) of the SCSI disk at
* SCSI target 3 on the esp host adapter in slot 0 (on board)
* of the SBus of the machine.
* Adapter unit-address 3,0 at sbus unit-address 0,800000.
rootdev: /sbus@1,f8000000/esp@0,800000/sd@3,0:a
* Set the filesystem type of the root to ufs. Note that
* the equal sign can be used instead of the colon.
rootfs:ufs
* Set the search path for kernel modules to look first in
* /usr/phil/mod_test for modules, then in /kernel/modules (the
* default) if not found. Useful for testing new modules.
* Note that you can delimit your module pathnames using
* colons instead of spaces: moddir:/newmodules:/kernel/modules
moddir:/usr/phil/mod_test /kernel/modules.
* Set the configuration option {_POSIX_CHOWN_RESTRICTED} :
* This configuration option is enabled by default.
set rstchown = 1
* Disable the configuration option {_POSIX_CHOWN_RESTRICTED} :
set rstchown = 0
* Set the integer variable "maxusers" in the kernel to 16. This is a
* useful tuning parameter.

Last modified 19 Jun 1997 SunOS 5.7 492

system(4) File Formats

set maxusers = 16
* Turn on debugging messages in the modules mydriver. This is useful
* during driver development.
set mydriver:debug = 1
* Bitwise AND the kernel variable "moddebug" with the
* one’s complement of the hex value 0x880, and set
* "moddebug" to this new value.
set moddebug & ~0x880
* Demonstrate the cumulative effect of the SET
* bitwise AND/OR operations by further modifying "moddebug"
* by ORing it with 0x40.
set moddebug | 0x40

WARNINGS system file lines must be fewer than 80 characters in length.

Use care when modifying the system file; it modifies the operation of the
kernel. If you preserved the original system file, you can boot using
boot -a , which will ask you to specify the path to the saved file. This should
allow the system to boot correctly. If you cannot locate a system file that will
work, you may specify /dev/null . This acts as an empty system file, and
the system will attempt to boot using its default settings.

NOTES /etc/system is only read once; at boot time.

493 SunOS 5.7 Last modified 19 Jun 1997

File Formats telnetrc(4)

NAME telnetrc – file for telnet default options

DESCRIPTION The .telnetrc file contains commands that are executed when a connection
is established on a per-host basis. Each line in the file contains a host name,
one or more spaces or tabs, and a telnet (1) command. The host name,
DEFAULT, matches all hosts. Lines beginning with the pound sign (#) are
interpreted as comments and therefore ignored. telnet (1) commands are
case-insensitive to the contents of the .telnetrc file.

The .telnetrc file is retrieved from each user’s HOME directory.

EXAMPLES EXAMPLE 1 A sample file.

In the following example, a .telnetrc file executes the telnet (1) command,
toggle :

weirdhost toggle crmod
Always export $PRINTER
DEFAULT environ export PRINTER

The lines in this file indicate that the toggle argument crmod , whose default
value is "off" (or FALSE), should be enabled when connecting to the system
weirdhost . In addition, the value of the environment variable PRINTER
should be exported to all systems. In this case, the DEFAULTkeyword is used
in place of the host name.

FILES
$HOME/.telnetrc

SEE ALSO telnet (1), in.telnetd (1M), environ (5)

Last modified 9 Jan 1998 SunOS 5.7 494

term(4) File Formats

NAME term – format of compiled term file

SYNOPSIS /usr/share/lib/terminfo/?/*

DESCRIPTION The term file is compiled from terminfo (4) source files using tic (1M).
Compiled files are organized in a directory hierarchy under the first letter of
each terminal name. For example, the vt100 file would have the pathname
/usr/lib/terminfo/v/vt100 . The default directory is
/usr/share/lib/terminfo . Synonyms for the same terminal are
implemented by multiple links to the same compiled file.

The format has been chosen so that it is the same on all hardware. An 8-bit
byte is assumed, but no assumptions about byte ordering or sign extension are
made. Thus, these binary terminfo files can be transported to other hardware
with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the least
significant 8 bits of the value, and the second byte contains the most significant
8 bits. (Thus, the value represented is 256*second+first.) The value −1 is
represented by 0377,0377 , and the value −2 is represented by 0376,0377 ;
other negative values are illegal. The −1 generally means that a capability is
missing from this terminal. The −2 means that the capability has been
cancelled in the terminfo source and also is to be considered missing.

The compiled file is created from the source file descriptions of the terminals
(see the −I option of infocmp) by using the terminfo compiler, tic , and
read by the routine setupterm (see curses (3X)). The file is divided into six
parts in the following order: the header, terminal names, boolean flags,
numbers, strings, and string table.

The header section begins the file six short integers in the format described
below. These integers are:

1. the magic number (octal 0432);

2. the size, in bytes, of the names section;

3. the number of bytes in the boolean
section;

4. the number of short integers in the
numbers section;

5. the number of offsets (short integers) in
the strings section;

6. the size, in bytes, of the string table.

The terminal name section comes next. It contains the first line of the
terminfo description, listing the various names for the terminal, separated by

495 SunOS 5.7 Last modified 3 Jul 1996

File Formats term(4)

the bar (|)character (see term (5)). The section is terminated with an
ASCII NUL character.

The terminal name section is followed by the Boolean section, number section,
string section, and string table.

The boolean flags section consists of one byte for each flag. This byte is either
0 or 1 as the flag is present or absent. The value of 2 means that the flag has
been cancelled. The capabilities are in the same order as the file <term.h >.

Between the boolean flags section and the number section, a null byte is
inserted, if necessary, to ensure that the number section begins on an even byte
offset. All short integers are aligned on a short word boundary.

The numbers section is similar to the boolean flags section. Each capability
takes up two bytes, and is stored as a short integer. If the value represented is
−1 or −2, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer,
in the format above. A value of −1 or −2 means the capability is missing.
Otherwise, the value is taken as an offset from the beginning of the string
table. Special characters in ^X or \c notation are stored in their interpreted
form, not the printing representation. Padding information ($<nn>) and
parameter information (%x) are stored intact in uninterpreted form.

The final section is the string table. It contains all the values of string
capabilities referenced in the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities
than are actually present in the file. Either the database may have been
updated since setupterm has been recompiled (resulting in extra
unrecognized entries in the file) or the program may have been recompiled
more recently than the database was updated (resulting in missing entries).
The routine setupterm must be prepared for both possibilities—this is why
the numbers and sizes are included. Also, new capabilities must always be
added at the end of the lists of boolean, number, and string capabilities.

As an example, here is terminal information on the AT&T Model 37 KSR
terminal as output by the infocmp −I tty37 command:

37|tty37|AT&T model 37 teletype,
hc, os, xon,
bel=^G, cr=\r, cub1=\b, cud1=\n, cuu1=\E7, hd=\E9,
hu=\E8, ind=\n,

Last modified 3 Jul 1996 SunOS 5.7 496

term(4) File Formats

The following is an octal dump of the corresponding term file, produced by
the od -c /usr/share/lib/terminfo/t/tty37 command:

0000000032 001 \0 032 \0 013 \0 021 001 3 \0 3 7 | t

0000020t y 3 7 | A T & T m o d e l

00000403 7 t e l e t y p e \0 \0 \0 \0 \0

0000060\0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 001 \0 \0 \0 \0

0000100001 \0 \0 \0 \0 \0 377 377 377 377 377 377 377 377 377 377

0000120377 377 377 377 377 377 377 377 377 377 377 377 377 377 & \0

0000140 \0 377 377 377 377 377 377 377 377 377 377 377 377 377 377

0000160377 377 " \0 377 377 377 377 (\0 377 377 377 377 377 377

0000200377 377 0 \0 377 377 377 377 377 377 377 377 - \0 377 377

0000220377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*

0000520377 377 377 377 377 377 377 377 377 377 377 377 377 377 $ \0

0000540377 377 377 377 377 377 377 377 377 377 377 377 377 377 * \0

0000560377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*

0001160377 377 377 377 377 377 377 377 377 377 377 377 377 377 3 7

0001200| t t y 3 7 | A T & T m o d e

0001220l 3 7 t e l e t y p e \0 \r \0

0001240\n \0 \n \0 007 \0 \b \0 033 8 \0 033 9 \0 033 7

0001260\0 \0

0001261

Some limitations: total compiled entries cannot exceed 4096 bytes; all entries in
the name field cannot exceed 128 bytes.

FILES
/usr/share/lib/terminfo/?/* compiled terminal description

database

/usr/include/term.h terminfo header

/usr/xpg4/include/term.h X/Open Curses terminfo header

SEE ALSO infocmp (1M), curses (3X), curses (3XC), terminfo (4), term (5)

497 SunOS 5.7 Last modified 3 Jul 1996

File Formats terminfo(4)

NAME terminfo – terminal and printer capability database

SYNOPSIS /usr/share/lib/terminfo/?/*

DESCRIPTION terminfo is a database that describes the capabilities of devices such as
terminals and printers. Devices are described in terminfo source files by
specifying a set of capabilities, by quantifying certain aspects of the device,
and by specifying character sequences that effect particular results. This
database is often used by screen oriented applications such as vi and
curses -based programs, as well as by some system commands such as ls
and more . This usage allows them to work with a variety of devices without
changes to the programs.

terminfo descriptions are located in the directory pointed to by the
environment variable TERMINFOor in /usr/share/lib/terminfo .
terminfo descriptions are generated by tic (1M).

terminfo source files consist of one or more device descriptions. Each
description consists of a header (beginning in column 1) and one or more lines
that list the features for that particular device. Every line in a terminfo source
file must end in a comma (,). Every line in a terminfo source file except the
header must be indented with one or more white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated
fields. White space after each comma is ignored. Embedded commas must be
escaped by using a backslash. Each device entry has the following format:

alias 1 | alias 2 | . . . | alias n | fullname,
capability 1, capability2,
.
.
.
capabilityn,

The first line, commonly referred to as the header line, must begin in column
one and must contain at least two aliases separated by vertical bars. The last
field in the header line must be the long name of the device and it may
contain any string. Alias names must be unique in the terminfo database
and they must conform to system file naming conventions (see tic (1M)); they
cannot, for example, contain white space or slashes.

Every device must be assigned a name, such as "vt100". Device names (except
the long name) should be chosen using the following conventions. The name
should not contain hyphens because hyphens are reserved for use when
adding suffixes that indicate special modes.

Last modified 9 Jul 1996 SunOS 5.7 498

terminfo(4) File Formats

These special modes may be modes that the hardware can be in, or user
preferences. To assign a special mode to a particular device, append a suffix
consisting of a hyphen and an indicator of the mode to the device name. For
example, the -w suffix means "wide mode"; when specified, it allows for a
width of 132 columns instead of the standard 80 columns. Therefore, if you
want to use a "vt100" device set to wide mode, name the device "vt100-w." Use
the following suffixes where possible.

Suffix Meaning Example

-w Wide mode (more than
80 columns)

5410-w

-am With auto. margins
(usually default)

vt100-am

-nam Without automatic
margins

vt100-nam

-n Number of lines on the
screen

2300-40

-na No arrow keys (leave
them in local)

c100-na

-np Number of pages of
memory

c100-4p

-rv Reverse video 4415-rv

The terminfo reference manual page is organized in two sections:

� PART 1: DEVICE CAPABILITIES

� PART 2: PRINTER CAPABILITIES

PART 1: DEVICE
CAPABILITIES

Capabilities in terminfo are of three types: Boolean capabilities (which show
that a device has or does not have a particular feature), numeric capabilities
(which quantify particular features of a device), and string capabilities (which
provide sequences that can be used to perform particular operations on
devices).

In the following table, a Variable is the name by which a C programmer
accesses a capability (at the terminfo level). A Capname is the short name for
a capability specified in the terminfo source file. It is used by a person
updating the source file and by the tput command. A Termcap Code is a
two-letter sequence that corresponds to the termcap capability name. (Note
that termcap is no longer supported.)

499 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

Capability names have no real length limit, but an informal limit of five
characters has been adopted to keep them short. Whenever possible, capability
names are chosen to be the same as or similar to those specified by the ANSI
X3.64-1979 standard. Semantics are also intended to match those of the ANSI
standard.

All string capabilities listed below may have padding specified, with the
exception of those used for input. Input capabilities, listed under the Strings
section in the following tables, have names beginning with key_ . The #i
symbol in the description field of the following tables refers to the ith
parameter.

Booleans Cap- Termcap

Variable name Code Description

auto_left_margin bw bw cub1 wraps from column 0
to

last column

auto_right_marginam am Terminal has automatic
margins

back_color_erase bce be Screen erased with
background color

can_change ccc cc Terminal can re-define
existing color

ceol_standout_glitchxhp xs Standout not erased by
overwriting (hp)

col_addr_glitch xhpa YA Only positive motion for
hpa/mhpa caps

cpi_changes_res cpix YF Changing character pitch
changes

resolution

cr_cancels_micro_modecrxm YB Using cr turns off micro
mode

dest_tabs_magic_smsoxt xt Destructive tabs, magic smso

char (t1061)

eat_newline_glitchxenl xn Newline ignored after 80
columns

(Concept)

Last modified 9 Jul 1996 SunOS 5.7 500

terminfo(4) File Formats

erase_overstrike eo eo Can erase overstrikes with a
blank

generic_type gn gn Generic line type (for
example,

dialup, switch)

hard_copy hc hc Hardcopy terminal

hard_cursor chts HC Cursor is hard to see

has_meta_key km km Has a meta key (shift, sets
parity bit)

has_print_wheel daisy YC Printer needs operator to
change

character set

has_status_line hs hs Has extra "status line"

hue_lightness_saturationhls hl Terminal uses only HLS color

notation (Tektronix)

insert_null_glitch in in Insert mode distinguishes
nulls

lpi_changes_res lpix YG Changing line pitch changes
resolution

memory_above da da Display may be retained
above the screen

memory_below db db Display may be retained
below the screen

move_insert_modemir mi Safe to move while in insert
mode

move_standout_modemsgr ms Safe to move in standout
modes

needs_xon_xoff nxon nx Padding won’t work, xon/
xoff required

no_esc_ctlc xsb xb Beehive (f1=escape, f2=ctrl C)

no_pad_char npc NP Pad character doesn’t exist

non_dest_scroll_regionndscr ND Scrolling region is
nondestructive

non_rev_rmcup nrrmc NR smcup does not reverse
rmcup

501 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

over_strike os os Terminal overstrikes on
hard-copy

terminal

prtr_silent mc5i 5i Printer won’t echo on screen

row_addr_glitch xvpa YD Only positive motion for
vpa /mvpa caps

semi_auto_right_marginsam YE Printing in last column
causes cr

status_line_esc_ok eslok es Escape can be used on the
status line

tilde_glitch hz hz Hazeltine; can’t print tilde (~)

transparent_underlineul ul Underline character
overstrikes

xon_xoff xon xo Terminal uses xon/xoff
handshaking

Numbers Cap- Termcap

Variable name Code Description

bit_image_entwiningbitwin Yo Number of passes for each
bit-map row

bit_image_type bitype Yp Type of bit image device

buffer_capacity bufsz Ya Number of bytes buffered
before printing

buttons btns BT Number of buttons on the
mouse

columns cols co Number of columns in a line

dot_horz_spacing spinh Yc Spacing of dots horizontally
in dots per inch

dot_vert_spacing spinv Yb Spacing of pins vertically in
pins per inch

init_tabs it it Tabs initially every # spaces

label_height lh lh Number of rows in each label

label_width lw lw Number of columns in each
label

Last modified 9 Jul 1996 SunOS 5.7 502

terminfo(4) File Formats

lines lines li Number of lines on a screen
or a page

lines_of_memory lm lm Lines of memory if > lines ;
0 means varies

max_attributes ma ma Maximum combined video
attributes

terminal can display

magic_cookie_glitchxmc sg Number of blank characters
left by

smso or rmso

max_colors colors Co Maximum number of colors
on the screen

max_micro_addressmaddr Yd Maximum value in
micro_..._address

max_micro_jump mjump Ye Maximum value in
parm_..._micro

max_pairs pairs pa Maximum number of
color-pairs on the

screen

maximum_windowswnum MW Maximum number of
definable windows

micro_char_size mcs Yf Character step size when in
micro mode

micro_line_size mls Yg Line step size when in micro
mode

no_color_video ncv NC Video attributes that can’t be
used

with colors

num_labels nlab Nl Number of labels on screen
(start at 1)

number_of_pins npins Yh Number of pins in print-head

output_res_char orc Yi Horizontal resolution in units
per character

output_res_line orl Yj Vertical resolution in units
per line

503 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

output_res_horz_inchorhi Yk Horizontal resolution in units
per inch

output_res_vert_inchorvi Yl Vertical resolution in units
per inch

padding_baud_ratepb pb Lowest baud rate where
padding needed

print_rate cps Ym Print rate in characters per
second

virtual_terminal vt vt Virtual terminal number
(system)

wide_char_size widcs Yn Character step size when in
double

wide mode

width_status_line wsl ws Number of columns in status
line

Strings Cap- Termcap

Variable name Code Description

acs_chars acsc ac Graphic charset pairs
aAbBcC

alt_scancode_esc scesa S8 Alternate escape for scancode
emulation

(default is for vt100)

back_tab cbt bt Back tab

bell bel bl Audible signal (bell)

bit_image_carriage_returnbicr Yv Move to beginning of same
row (use

tparm)

bit_image_newline binel Zz Move to next row of the bit
image (use

tparm)

bit_image_repeat birep Zy Repeat bit-image cell #1 #2
times (use

tparm)

Last modified 9 Jul 1996 SunOS 5.7 504

terminfo(4) File Formats

carriage_return cr cr Carriage return

change_char_pitch cpi ZA Change number of characters
per inch

change_line_pitch lpi ZB Change number of lines per
inch

change_res_horz chr ZC Change horizontal resolution

change_res_vert cvr ZD Change vertical resolution

change_scroll_region csr cs Change to lines #1 through
#2 (vt100)

char_padding rmp rP Like ip but when in replace
mode

char_set_names csnm Zy List of character set names

clear_all_tabs tbc ct Clear all tab stops

clear_margins mgc MC Clear all margins (top,
bottom,

and sides)

clear_screen clear cl Clear screen and home cursor

clr_bol el1 cb Clear to beginning of line,
inclusive

clr_eol el ce Clear to end of line

clr_eos ed cd Clear to end of display

code_set_init csin ci Init sequence for multiple
codesets

color_names colornm Yw Give name for color #1

column_address hpa ch Horizontal position absolute

command_character cmdch CC Terminal settable cmd
character

in prototype

create_window cwin CW Define win #1 to go from
#2,#3 to

#4,#5

cursor_address cup cm Move to row #1 col #2

cursor_down cud1 do Down one line

cursor_home home ho Home cursor (if no cup)

505 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

cursor_invisible civis vi Make cursor invisible

cursor_left cub1 le Move left one space.

cursor_mem_address mrcup CM Memory relative cursor
addressing

cursor_normal cnorm ve Make cursor appear normal

(undo vs/vi)

cursor_right cuf1 nd Non-destructive space
(cursor or

carriage right)

cursor_to_ll ll ll Last line, first column (if no
cup)

cursor_up cuu1 up Upline (cursor up)

cursor_visible cvvis vs Make cursor very visible

define_bit_image_regiondefbi Yx Define rectangular bit-image
region

(use tparm)

define_char defc ZE Define a character in a
character set*

delete_character dch1 dc Delete character

delete_line dl1 dl Delete line

device_type devt dv Indicate language/codeset
support

dial_phone dial DI Dial phone number #1

dis_status_line dsl ds Disable status line

display_clock dclk DK Display time-of-day clock

display_pc_char dispc S1 Display PC character

down_half_line hd hd Half-line down (forward 1/2
linefeed)

ena_acs enacs eA Enable alternate character set

end_bit_image_region endbi Yy End a bit-image region (use
tparm)

enter_alt_charset_mode smacs as Start alternate character set

enter_am_mode smam SA Turn on automatic margins

enter_blink_mode blink mb Turn on blinking

Last modified 9 Jul 1996 SunOS 5.7 506

terminfo(4) File Formats

enter_bold_mode bold md Turn on bold (extra bright)
mode

enter_ca_mode smcup ti String to begin programs that
use cup

enter_delete_mode smdc dm Delete mode (enter)

enter_dim_mode dim mh Turn on half-bright mode

enter_doublewide_modeswidm ZF Enable double wide printing

enter_draft_quality sdrfq ZG Set draft quality print

mode

enter_insert_mode smir im Insert mode (enter)

enter_italics_mode sitm ZH Enable italics

enter_leftward_mode slm ZI Enable leftward carriage
motion

enter_micro_mode smicm ZJ Enable micro motion
capabilities

enter_near_letter_qualitysnlq ZK Set near-letter quality print

enter_normal_quality snrmq ZL Set normal quality print

enter_pc_charset_mode smpch S2 Enter PC character display
mode

enter_protected_mode prot mp Turn on protected mode

enter_reverse_mode rev mr Turn on reverse video mode

enter_scancode_mode smsc S4 Enter PC scancode mode

enter_secure_mode invis mk Turn on blank mode

(characters invisible)

enter_shadow_mode sshm ZM Enable shadow printing

enter_standout_mode smso so Begin standout mode

enter_subscript_mode ssubm ZN Enable subscript printing

enter_superscript_mode ssupm ZO Enable superscript printing

enter_underline_mode smul us Start underscore mode

enter_upward_mode sum ZP Enable upward carriage
motion

mode

507 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

enter_xon_mode smxon SX Turn on xon/xoff
handshaking

erase_chars ech ec Erase #1 characters

exit_alt_charset_mode rmacs ae End alternate character set

exit_am_mode rmam RA Turn off automatic margins

exit_attribute_mode sgr0 me Turn off all attributes

exit_ca_mode rmcup te String to end programs that
use cup

exit_delete_mode rmdc ed End delete mode

exit_doublewide_mode rwidm ZQ Disable double wide printing

exit_insert_mode rmir ei End insert mode

exit_italics_mode ritm ZR Disable italics

exit_leftward_mode rlm ZS Enable rightward (normal)

carriage motion

exit_micro_mode rmicm ZT Disable micro motion
capabilities

exit_pc_charset_mode rmpch S3 Disable PC character display
mode

exit_scancode_mode rmsc S5 Disable PC scancode mode

exit_shadow_mode rshm ZU Disable shadow printing

exit_standout_mode rmso se End standout mode

exit_subscript_mode rsubm ZV Disable subscript printing

exit_superscript_mode rsupm ZW Disable superscript printing

exit_underline_mode rmul ue End underscore mode

exit_upward_mode rum ZX Enable downward (normal)

carriage motion

exit_xon_mode rmxon RX Turn off xon/xoff
handshaking

fixed_pause pause PA Pause for 2-3 seconds

flash_hook hook fh Flash the switch hook

flash_screen flash vb Visible bell (may not move
cursor)

form_feed ff ff Hardcopy terminal page eject

Last modified 9 Jul 1996 SunOS 5.7 508

terminfo(4) File Formats

from_status_line fsl fs Return from status line

get_mouse getm Gm Curses should get button
events

goto_window wingo WG Go to window #1

hangup hup HU Hang-up phone

init_1string is1 i1 Terminal or printer
initialization string

init_2string is2 is Terminal or printer
initialization string

init_3string is3 i3 Terminal or printer
initialization string

init_file if if Name of initialization file

init_prog iprog iP Path name of program for
initialization

initialize_color initc Ic Initialize the definition of
color

initialize_pair initp Ip Initialize color-pair

insert_character ich1 ic Insert character

insert_line il1 al Add new blank line

insert_padding ip ip Insert pad after character
inserted

The ‘‘key_ ’’ strings are sent by specific keys. The ‘‘key_ ’’ descriptions include
the macro, defined in <curses.h> , for the code returned by the curses
routine getch when the key is pressed (see curs_getch (3X)).

Cap- Termcap

Variable name Code Description

key_a1 ka1 K1 KEY_A1, upper left of keypad

key_a3 ka3 K3 KEY_A3, upper right of
keypad

key_b2 kb2 K2 KEY_B2, center of keypad

key_backspace kbs kb KEY_BACKSPACE, sent by
backspace

key

509 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

key_beg kbeg @1 KEY_BEG, sent by
beg(inning) key

key_btab kcbt kB KEY_BTAB, sent by back-tab
key

key_c1 kc1 K4 KEY_C1, lower left of keypad

key_c3 kc3 K5 KEY_C3, lower right of
keypad

key_cancel kcan @2 KEY_CANCEL, sent by cancel
key

key_catab ktbc ka KEY_CATAB, sent by
clear-all-tabs key

key_clear kclr kC KEY_CLEAR, sent by
clear-screen or

erase key

key_close kclo @3 KEY_CLOSE, sent by close
key

key_command kcmd @4 KEY_COMMAND, sent by cmd

(command) key

key_copy kcpy @5 KEY_COPY, sent by copy key

key_create kcrt @6 KEY_CREATE, sent by create
key

key_ctab kctab kt KEY_CTAB, sent by clear-tab
key

key_dc kdch1 kD KEY_DC, sent by
delete-character key

key_dl kdl1 kL KEY_DL, sent by delete-line
key

key_down kcud1 kd KEY_DOWN, sent by terminal

down-arrow key

key_eic krmir kM KEY_EIC, sent by rmir or
smir in

insert mode

key_end kend @7 KEY_END, sent by end key

key_enter kent @8 KEY_ENTER, sent by enter/
send key

Last modified 9 Jul 1996 SunOS 5.7 510

terminfo(4) File Formats

key_eol kel kE KEY_EOL, sent by
clear-to-end-of-line

key

key_eos ked kS KEY_EOS, sent by
clear-to-end-of-screen

key

key_exit kext @9 KEY_EXIT, sent by exit key

key_f0 kf0 k0 KEY_F(0) , sent by function
key f0

key_f1 kf1 k1 KEY_F(1) , sent by function
key f1

key_f2 kf2 k2 KEY_F(2) , sent by function
key f2

key_f3 kf3 k3 KEY_F(3) , sent by function
key f3

key_fB kf4 k4 KEY_F(4) , sent by function
key fB

key_f5 kf5 k5 KEY_F(5) , sent by function
key f5

key_f6 kf6 k6 KEY_F(6) , sent by function
key f6

key_f7 kf7 k7 KEY_F(7) , sent by function
key f7

key_f8 kf8 k8 KEY_F(8) , sent by function
key f8

key_f9 kf9 k9 KEY_F(9) , sent by function
key f9

key_f10 kf10 k; KEY_F(10) , sent by function
key f10

key_f11 kf11 F1 KEY_F(11) , sent by function
key f11

key_f12 kf12 F2 KEY_F(12) , sent by function
key f12

key_f13 kf13 F3 KEY_F(13) , sent by function
key f13

511 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

key_f14 kf14 F4 KEY_F(14) , sent by function
key f14

key_f15 kf15 F5 KEY_F(15) , sent by function
key f15

key_f16 kf16 F6 KEY_F(16) , sent by function
key f16

key_f17 kf17 F7 KEY_F(17) , sent by function
key f17

key_f18 kf18 F8 KEY_F(18) , sent by function
key f18

key_f19 kf19 F9 KEY_F(19) , sent by function
key f19

key_f20 kf20 FA KEY_F(20) , sent by function
key f20

key_f21 kf21 FB KEY_F(21) , sent by function
key f21

key_f22 kf22 FC KEY_F(22) , sent by function
key f22

key_f23 kf23 FD KEY_F(23) , sent by function
key f23

key_f24 kf24 FE KEY_F(24) , sent by function
key f24

key_f25 kf25 FF KEY_F(25) , sent by function
key f25

key_f26 kf26 FG KEY_F(26) , sent by function
key f26

key_f27 kf27 FH KEY_F(27) , sent by function
key f27

key_f28 kf28 FI KEY_F(28) , sent by function
key f28

key_f29 kf29 FJ KEY_F(29) , sent by function
key f29

key_f30 kf30 FK KEY_F(30) , sent by function
key f30

key_f31 kf31 FL KEY_F(31) , sent by function
key f31

Last modified 9 Jul 1996 SunOS 5.7 512

terminfo(4) File Formats

key_f32 kf32 FM KEY_F(32) , sent by function
key f32

key_f33 kf33 FN KEY_F(13) , sent by function
key f13

key_f34 kf34 FO KEY_F(34) , sent by function
key f34

key_f35 kf35 FP KEY_F(35) , sent by function
key f35

key_f36 kf36 FQ KEY_F(36) , sent by function
key f36

key_f37 kf37 FR KEY_F(37) , sent by function
key f37

key_f38 kf38 FS KEY_F(38) , sent by function
key f38

key_f39 kf39 FT KEY_F(39) , sent by function
key f39

key_fB0 kf40 FU KEY_F(40) , sent by function
key fB0

key_fB1 kf41 FV KEY_F(41) , sent by function
key fB1

key_fB2 kf42 FW KEY_F(42) , sent by function
key fB2

key_fB3 kf43 FX KEY_F(43) , sent by function
key fB3

key_fB4 kf44 FY KEY_F(44) , sent by function
key fB4

key_fB5 kf45 FZ KEY_F(45) , sent by function
key fB5

key_fB6 kf46 Fa KEY_F(46) , sent by function
key fB6

key_fB7 kf47 Fb KEY_F(47) , sent by function
key fB7

key_fB8 kf48 Fc KEY_F(48) , sent by function
key fB8

key_fB9 kf49 Fd KEY_F(49) , sent by function
key fB9

513 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

key_f50 kf50 Fe KEY_F(50) , sent by function
key f50

key_f51 kf51 Ff KEY_F(51) , sent by function
key f51

key_f52 kf52 Fg KEY_F(52) , sent by function
key f52

key_f53 kf53 Fh KEY_F(53) , sent by function
key f53

key_f54 kf54 Fi KEY_F(54) , sent by function
key f54

key_f55 kf55 Fj KEY_F(55) , sent by function
key f55

key_f56 kf56 Fk KEY_F(56) , sent by function
key f56

key_f57 kf57 Fl KEY_F(57) , sent by function
key f57

key_f58 kf58 Fm KEY_F(58) , sent by function
key f58

key_f59 kf59 Fn KEY_F(59) , sent by function
key f59

key_f60 kf60 Fo KEY_F(60) , sent by function
key f60

key_f61 kf61 Fp KEY_F(61) , sent by function
key f61

key_f62 kf62 Fq KEY_F(62) , sent by function
key f62

key_f63 kf63 Fr KEY_F(63) , sent by function
key f63

key_find kfnd @0 KEY_FIND, sent by find key

key_help khlp %1 KEY_HELP, sent by help key

key_home khome kh KEY_HOME, sent by home key

key_ic kich1 kI KEY_IC, sent by ins-char/
enter

ins-mode key

key_il kil1 kA KEY_IL , sent by insert-line
key

Last modified 9 Jul 1996 SunOS 5.7 514

terminfo(4) File Formats

key_left kcub1 kl KEY_LEFT, sent by terminal
left-arrow

key

key_ll kll kH KEY_LL, sent by home-down
key

key_mark kmrk %2 KEY_MARK, sent by mark key

key_message kmsg %3 KEY_MESSAGE, sent by
message key

key_mouse kmous Km 0631, Mouse event has
occured

key_move kmov %4 KEY_MOVE, sent by move key

key_next knxt %5 KEY_NEXT, sent by
next-object key

key_npage knp kN KEY_NPAGE, sent by
next-page key

key_open kopn %6 KEY_OPEN, sent by open key

key_options kopt %7 KEY_OPTIONS, sent by
options key

key_ppage kpp kP KEY_PPAGE, sent by
previous-page key

key_previous kprv %8 KEY_PREVIOUS, sent by
previous-object

key

key_print kprt %9 KEY_PRINT, sent by print or
copy key

key_redo krdo %0 KEY_REDO, sent by redo key

key_reference kref &1 KEY_REFERENCE, sent by
reference key

key_refresh krfr &2 KEY_REFRESH, sent by
refresh key

key_replace krpl &3 KEY_REPLACE, sent by
replace key

key_restart krst &4 KEY_RESTART, sent by
restart key

key_resume kres &5 KEY_RESUME, sent by resume
key

515 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

key_right kcuf1 kr KEY_RIGHT, sent by terminal

right-arrow key

key_save ksav &6 KEY_SAVE, sent by save key

key_sbeg kBEG &9 KEY_SBEG, sent by shifted
beginning key

key_scancel kCAN &0 KEY_SCANCEL, sent by
shifted

cancel key

key_scommand kCMD *1 KEY_SCOMMAND, sent by
shifted

command key

key_scopy kCPY *2 KEY_SCOPY, sent by shifted
copy key

key_screate kCRT *3 KEY_SCREATE, sent by
shifted

create key

key_sdc kDC *4 KEY_SDC, sent by shifted
delete-char

key

key_sdl kDL *5 KEY_SDL, sent by shifted
delete-line

key

key_select kslt *6 KEY_SELECT, sent by select
key

key_send kEND *7 KEY_SEND, sent by shifted
end key

key_seol kEOL *8 KEY_SEOL, sent by shifted
clear-line key

key_sexit kEXT *9 KEY_SEXIT, sent by shifted
exit key

key_sf kind kF KEY_SF, sent by
scroll-forward/down

key

key_sfind kFND *0 KEY_SFIND, sent by shifted
find key

Last modified 9 Jul 1996 SunOS 5.7 516

terminfo(4) File Formats

key_shelp kHLP #1 KEY_SHELP, sent by shifted
help key

key_shome kHOM #2 KEY_SHOME, sent by shifted
home key

key_sic kIC #3 KEY_SIC, sent by shifted
input key

key_sleft kLFT #4 KEY_SLEFT, sent by shifted
left-arrow

key

key_smessage kMSG %a KEY_SMESSAGE, sent by
shifted

message key

key_smove kMOV %b KEY_SMOVE, sent by shifted
move key

key_snext kNXT %c KEY_SNEXT, sent by shifted
next key

key_soptions kOPT %d KEY_SOPTIONS, sent by
shifted

options key

key_sprevious kPRV %e KEY_SPREVIOUS, sent by
shifted prev

key

key_sprint kPRT %f KEY_SPRINT, sent by shifted
print key

key_sr kri kR KEY_SR, sent by
scroll-backward/up

key

key_sredo kRDO %g KEY_SREDO, sent by shifted
redo key

key_sreplace kRPL %h KEY_SREPLACE, sent by
shifted replace

key

key_sright kRIT %i KEY_SRIGHT, sent by shifted

right-arrow key

key_srsume kRES %j KEY_SRSUME, sent by shifted
resume

517 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

key

key_ssave kSAV !1 KEY_SSAVE, sent by shifted
save key

key_ssuspend kSPD !2 KEY_SSUSPEND, sent by
shifted

suspend key

key_stab khts kT KEY_STAB, sent by set-tab
key

key_sundo kUND !3 KEY_SUNDO, sent by shifted
undo key

key_suspend kspd &7 KEY_SUSPEND, sent by

suspend key

key_undo kund &8 KEY_UNDO, sent by undo key

key_up kcuu1 ku KEY_UP, sent by terminal
up-arrow key

keypad_local rmkx ke Out of ‘‘keypad-transmit’’
mode

keypad_xmit smkx ks Put terminal in
‘‘keypad-transmit’’ mode

lab_f0 lf0 l0 Labels on function key f0 if
not f0

lab_f1 lf1 l1 Labels on function key f1 if
not f1

lab_f2 lf2 l2 Labels on function key f2 if
not f2

lab_f3 lf3 l3 Labels on function key f3 if
not f3

lab_fB lfB l4 Labels on function key fB if
not fB

lab_f5 lf5 l5 Labels on function key f5 if
not f5

lab_f6 lf6 l6 Labels on function key f6 if
not f6

lab_f7 lf7 l7 Labels on function key f7 if
not f7

Last modified 9 Jul 1996 SunOS 5.7 518

terminfo(4) File Formats

lab_f8 lf8 l8 Labels on function key f8 if
not f8

lab_f9 lf9 l9 Labels on function key f9 if
not f9

lab_f10 lf10 la Labels on function key f10 if
not f10

label_format fln Lf Label format

label_off rmln LF Turn off soft labels

label_on smln LO Turn on soft labels

meta_off rmm mo Turn off "meta mode"

meta_on smm mm Turn on "meta mode" (8th bit)

micro_column_address mhpa ZY Like column_address for
micro

adjustment

micro_down mcud1 ZZ Like cursor_down for micro
adjustment

micro_left mcub1 Za Like cursor_left for micro
adjustment

micro_right mcuf1 Zb Like cursor_right for
micro

adjustment

micro_row_address mvpa Zc Like row_address for micro
adjustment

micro_up mcuu1 Zd Like cursor_up for micro
adjustment

mouse_info minfo Mi Mouse status information

newline nel nw Newline (behaves like cr

followed

by lf)

order_of_pins porder Ze Matches software bits to
print-head pins

orig_colors oc oc Set all color(-pair)s to the
original ones

orig_pair op op Set default color-pair to the
original one

519 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

pad_char pad pc Pad character (rather than
null)

parm_dch dch DC Delete #1 chars

parm_delete_line dl DL Delete #1 lines

parm_down_cursor cud DO Move down #1 lines.

parm_down_micro mcud Zf Like parm_down_cursor

for micro

adjust.

parm_ich ich IC Insert #1 blank chars

parm_index indn SF Scroll forward #1 lines.

parm_insert_line il AL Add #1 new blank lines

parm_left_cursor cub LE Move cursor left #1 spaces

parm_left_micro mcub Zg Like parm_left_cursor

for micro

adjust.

parm_right_cursor cuf RI Move right #1 spaces.

parm_right_micro mcuf Zh Like parm_right_cursor

for micro

adjust.

parm_rindex rin SR Scroll backward #1 lines.

parm_up_cursor cuu UP Move cursor up #1 lines.

parm_up_micro mcuu Zi Like parm_up_cursor for
micro adjust.

pc_term_options pctrm S6 PC terminal options

pkey_key pfkey pk Prog funct key #1 to type
string #2

pkey_local pfloc pl Prog funct key #1 to execute
string #2

pkey_plab pfxl xl Prog key #1 to xmit string #2
and show

string #3

pkey_xmit pfx px Prog funct key #1 to xmit
string #2

Last modified 9 Jul 1996 SunOS 5.7 520

terminfo(4) File Formats

plab_norm pln pn Prog label #1 to show string
#2

print_screen mc0 ps Print contents of the screen

prtr_non mc5p pO Turn on the printer for #1
bytes

prtr_off mc4 pf Turn off the printer

prtr_on mc5 po Turn on the printer

pulse pulse PU Select pulse dialing

quick_dial qdial QD Dial phone number #1,
without

progress detection

remove_clock rmclk RC Remove time-of-day clock

repeat_char rep rp Repeat char #1 #2 times

req_for_input rfi RF Send next input char (for
ptys)

req_mouse_pos reqmp RQ Request mouse position
report

reset_1string rs1 r1 Reset terminal completely to
sane modes

reset_2string rs2 r2 Reset terminal completely to
sane modes

reset_3string rs3 r3 Reset terminal completely to
sane modes

reset_file rf rf Name of file containing reset
string

restore_cursor rc rc Restore cursor to position of
last sc

row_address vpa cv Vertical position absolute

save_cursor sc sc Save cursor position

scancode_escape scesc S7 Escape for scancode
emulation

scroll_forward ind sf Scroll text up

scroll_reverse ri sr Scroll text down

select_char_set scs Zj Select character set

521 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

set0_des_seq s0ds s0 Shift into codeset 0 (EUC set
0, ASCII)

set1_des_seq s1ds s1 Shift into codeset 1

set2_des_seq s2ds s2 Shift into codeset 2

set3_des_seq s3ds s3 Shift into codeset 3

attributes #1-#6

set_a_background setab AB Set background color using
ANSI escape

set_a_foreground setaf AF Set foreground color using
ANSI escape

set_attributes sgr sa Define the video attributes
#1-#9

set_background setb Sb Set current background color

set_bottom_margin smgb Zk Set bottom margin at current
line

set_bottom_margin_parmsmgbp Zl Set bottom margin at line #1
or #2

lines from bottom

set_clock sclk SC Set time-of-day clock

set_color_band setcolor Yz Change to ribbon color #1

set_color_pair scp sp Set current color-pair

set_foreground setf Sf Set current foreground color1

set_left_margin smgl ML Set left margin at current line

set_left_margin_parm smglp Zm Set left (right) margin at
column #1 (#2)

set_lr_margin smglr ML Sets both left and right
margins

set_page_length slines YZ Set page length to #1 lines
(use tparm)

of an inch

set_right_margin smgr MR Set right margin at current
column

set_right_margin_parm smgrp Zn Set right margin at column #1

set_tab hts st Set a tab in all rows, current
column

Last modified 9 Jul 1996 SunOS 5.7 522

terminfo(4) File Formats

set_tb_margin smgtb MT Sets both top and bottom
margins

set_top_margin smgt Zo Set top margin at current line

set_top_margin_parm smgtp Zp Set top (bottom) margin at
line #1 (#2)

set_window wind wi Current window is lines
#1-#2 cols #3-#4

start_bit_image sbim Zq Start printing bit image
graphics

start_char_set_def scsd Zr Start definition of a character
set

stop_bit_image rbim Zs End printing bit image
graphics

stop_char_set_def rcsd Zt End definition of a character
set

subscript_characters subcs Zu List of ‘‘subscript-able’’
characters

superscript_characters supcs Zv List of ‘‘superscript-able’’
characters

tab ht ta Tab to next 8-space hardware
tab stop

these_cause_cr docr Zw Printing any of these chars
causes cr

to_status_line tsl ts Go to status line, col #1

tone tone TO Select touch tone dialing

user0 u0 u0 User string 0

user1 u1 u1 User string 1

user2 u2 u2 User string 2

user3 u3 u3 User string 3

user4 u4 u4 User string 4

user5 u5 u5 User string 5

user6 u6 u6 User string 6

user7 u7 u7 User string 7

user8 u8 u8 User string 8

user9 u9 u9 User string 9

523 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

underline_char uc uc Underscore one char and
move past it

up_half_line hu hu Half-line up (reverse 1/2
linefeed)

wait_tone wait WA Wait for dial tone

xoff_character xoffc XF X-off character

xon_character xonc XN X-on character

zero_motion zerom Zx No motion for the
subsequent character

Sample Entry The following entry, which describes the AT&T 610 terminal, is among the
more complex entries in the terminfo file as of this writing.

610 | 610bct | ATT610 | att610 | AT&T 610; 80 column; 98key keyboard
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, lh#2, lines#24, lw#8, nlab#8, wsl#80,
acsc=‘‘aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
bel=^G, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
civis=\E[?25l, clear=\E[H\E[J, cnorm=\E[?25h\E[?12l,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b,
cud=\E[%p1%dB, cud1=\E[B, cuf=\E[%p1%dC, cuf1=\E[C,
cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A,
cvvis=\E[?12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m,
dl=\E[%p1%dM, dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[1K,
flash=\E[?5h$<200>\E[?5l, fsl=\E8, home=\E[H, ht=\t,
ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
is1=\E[8;0 | \E[?3;4;5;13;15l\E[13;20l\E[?7h\E[12h\E(B\E)0,
is2=\E[0m^O, is3=\E(B\E)0, kLFT=\E[\s@, kRIT=\E[\sA,
kbs=^H, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcud1=\E[B,
kcuf1=\E[C, kcuu1=\E[A, kf1=\EOc, kf10=\ENp,
kf11=\ENq, kf12=\ENr, kf13=\ENs, kf14=\ENt, kf2=\EOd,
kf3=\EOe, kf4=\EOf, kf5=\EOg, kf6=\EOh, kf7=\EOi,
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
ll=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfxl=\E[%p1%d;%p2%l%02dq%?%p1%{9}%<%t\s\s\sF%p1%1d\s\s\s\s\s

\s\s\s\s\s\s%;%p2%s,
pln=\E[%p1%d;0;0;0q%p2%:-16.16s, rc=\E8, rev=\E[7m,
ri=\EM, rmacs=^O, rmir=\E[4l, rmln=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[?3l, sc=\E7,
sgr=\E[0%?%p6%t;1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%t;5%;

%?%p3%p1% | %t;7%;%?%p7%t;8%;m%?%p9%t^N%e^O%;,
sgr0=\E[m^O, smacs=^N, smir=\E[4h, smln=\E[p,
smso=\E[7m, smul=\E[4m, tsl=\E7\E[25;%i%p1%dx,

Types of Capabilities
in the Sample Entry

The sample entry shows the formats for the three types of terminfo
capabilities listed: Boolean, numeric, and string. All capabilities specified in the

Last modified 9 Jul 1996 SunOS 5.7 524

terminfo(4) File Formats

terminfo source file must be followed by commas, including the last
capability in the source file. In terminfo source files, capabilities are
referenced by their capability names (as shown in the previous tables).

Boolean capabilities are specified simply by their comma separated cap names.

Numeric capabilities are followed by the character ‘#’ and then a positive
integer value. Thus, in the sample, cols (which shows the number of columns
available on a device) is assigned the value 80 for the AT&T 610. (Values for
numeric capabilities may be specified in decimal, octal, or hexadecimal, using
normal C programming language conventions.)

Finally, string-valued capabilities such as el (clear to end of line sequence) are
listed by a two- to five-character capname, an ‘=’, and a string ended by the
next occurrence of a comma. A delay in milliseconds may appear anywhere in
such a capability, preceded by $ and enclosed in angle brackets, as in
el=\EK$<3> . Padding characters are supplied by tput . The delay can be any
of the following: a number, a number followed by an asterisk, such as 5* , a
number followed by a slash, such as 5/ , or a number followed by both, such
as 5*/ . A ‘*’ shows that the padding required is proportional to the number
of lines affected by the operation, and the amount given is the
per-affected-unit padding required. (In the case of insert characters, the factor
is still the number of lines affected. This is always 1 unless the device has in
and the software uses it.) When a ‘*’ is specified, it is sometimes useful to
give a delay of the form 3.5 to specify a delay per unit to tenths of
milliseconds. (Only one decimal place is allowed.)

A ‘/’ indicates that the padding is mandatory. If a device has xon defined, the
padding information is advisory and will only be used for cost estimates or
when the device is in raw mode. Mandatory padding will be transmitted
regardless of the setting of xon . If padding (whether advisory or mandatory) is
specified for bel or flash , however, it will always be used, regardless of
whether xon is specified.

terminfo offers notation for encoding special characters. Both \E and \e
map to an ESCAPE character, ^x maps to a control x for any appropriate x,
and the sequences \n, \l, \r, \t, \b, \f , and \s give a newline,
linefeed, return, tab, backspace, formfeed, and space, respectively. Other
escapes include: \^ for caret (^); \\ for backslash (\); \ , for comma (,); \: for
colon (:); and \0 for null. (\0 will actually produce \200 , which does not
terminate a string but behaves as a null character on most devices, providing
CS7 is specified. (See stty (1)). Finally, characters may be given as three octal
digits after a backslash (for example, \123).

Sometimes individual capabilities must be commented out. To do this, put a
period before the capability name. For example, see the second ind in the

525 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

example above. Note that capabilities are defined in a left-to-right order and,
therefore, a prior definition will override a later definition.

Preparing
Descriptions

The most effective way to prepare a device description is by imitating the
description of a similar device in terminfo and building up a description
gradually, using partial descriptions with vi to check that they are correct. Be
aware that a very unusual device may expose deficiencies in the ability of the
terminfo file to describe it or the inability of vi to work with that device. To
test a new device description, set the environment variable TERMINFOto the
pathname of a directory containing the compiled description you are working
on and programs will look there rather than in /usr/share/lib/terminfo .
To get the padding for insert-line correct (if the device manufacturer did not
document it) a severe test is to comment out xon , edit a large file at 9600 baud
with vi , delete 16 or so lines from the middle of the screen, and then press the
u key several times quickly. If the display is corrupted, more padding is
usually needed. A similar test can be used for insert-character.

Section 1-1: Basic
Capabilities

The number of columns on each line for the device is given by the cols
numeric capability. If the device has a screen, then the number of lines on the
screen is given by the lines capability. If the device wraps around to the
beginning of the next line when it reaches the right margin, then it should
have the amcapability. If the terminal can clear its screen, leaving the cursor in
the home position, then this is given by the clear string capability. If the
terminal overstrikes (rather than clearing a position when a character is struck
over) then it should have the os capability. If the device is a printing terminal,
with no soft copy unit, specify both hc and os . If there is a way to move the
cursor to the left edge of the current row, specify this as cr . (Normally this
will be carriage return, control M.) If there is a way to produce an audible
signal (such as a bell or a beep), specify it as bel . If, like most devices, the
device uses the xon-xoff flow-control protocol, specify xon .

If there is a way to move the cursor one position to the left (such as
backspace), that capability should be given as cub1 . Similarly, sequences to
move to the right, up, and down should be given as cuf1 , cuu1 , and cud1 ,
respectively. These local cursor motions must not alter the text they pass over;
for example, you would not normally use ‘‘cuf1 =\s’’ because the space would
erase the character moved over.

A very important point here is that the local cursor motions encoded in
terminfo are undefined at the left and top edges of a screen terminal.
Programs should never attempt to backspace around the left edge, unless bw is
specified, and should never attempt to go up locally off the top. To scroll text
up, a program goes to the bottom left corner of the screen and sends the ind
(index) string.

Last modified 9 Jul 1996 SunOS 5.7 526

terminfo(4) File Formats

To scroll text down, a program goes to the top left corner of the screen and
sends the ri (reverse index) string. The strings ind and ri are undefined
when not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin . These
versions have the same semantics as ind and ri , except that they take one
parameter and scroll the number of lines specified by that parameter. They are
also undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen
when text is output, but this does not necessarily apply to a cuf1 from the
last column. Backward motion from the left edge of the screen is possible only
when bw is specified. In this case, cub1 will move to the right edge of the
previous row. If bw is not given, the effect is undefined. This is useful for
drawing a box around the edge of the screen, for example. If the device has
switch selectable automatic margins, am should be specified in the terminfo
source file. In this case, initialization strings should turn on this option, if
possible. If the device has a command that moves to the first column of the
next line, that command can be given as nel (newline). It does not matter if
the command clears the remainder of the current line, so if the device has no
cr and lf it may still be possible to craft a working nel out of one or both of
them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the
AT&T 5320 hardcopy terminal is described as follows:

5320|att5320|AT&T 5320 hardcopy terminal,
am, hc, os,
cols#132,
bel=^G, cr=\r, cub1=\b, cnd1=\n,
dch1=\E[P, dl1=\E[M,
ind=\n,

while the Lear Siegler ADM−3 is described as

adm3 | lsi adm3,
am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H,
cud1=^J, ind=^J, lines#24,

Section 1-2:
Parameterized Strings

Cursor addressing and other strings requiring parameters are described by a
parameterized string capability, with printf -like escapes (%x) in it. For
example, to address the cursor, the cup capability is given, using two
parameters: the row and column to address to. (Rows and columns are
numbered from zero and refer to the physical screen visible to the user, not to
any unseen memory.) If the terminal has memory relative cursor addressing,
that can be indicated by mrcup .

527 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

The parameter mechanism uses a stack and special %codes to manipulate the
stack in the manner of Reverse Polish Notation (postfix). Typically a sequence
will push one of the parameters onto the stack and then print it in some
format. Often more complex operations are necessary. Operations are in postfix
form with the operands in the usual order. That is, to subtract 5 from the first
parameter, one would use %p1%{5}%−.

The %encodings have the following meanings:
%% outputs ‘%’

%[[:] flags][width[.precision]][doxXs]as in printf , flags are [−+#] and space

%c print pop gives %c

%p[1-9] push ith parm

%P[a-z] set dynamic variable [a-z] to pop

%g[a-z] get dynamic variable [a-z] and push it

%P[A-Z]set static variable [a-z] to pop

%g[A-Z]get static variable [a-z] and push it

%’c’ push char constant c

%{nn} push decimal constant nn

%l push strlen(pop)

%+ %− %* %/ %marithmetic (%mis mod): push(pop integer2 op pop integer1)

%& %| %^bit operations: push(pop integer2 op pop integer1)

%= %> %<logical operations: push(pop integer2 op pop integer1)

%A %Ological operations: and, or

%! %~ unary operations: push(op pop)

%i (for ANSI terminals) add 1 to first parm, if one parm present, or first
two parms, if more than one parm present

Last modified 9 Jul 1996 SunOS 5.7 528

terminfo(4) File Formats

%? expr %t thenpart %e elsepart %;if-then-else, %eelsepart is optional; else-if’s are possible ala Algol 68:
%? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e b5%; ci are
conditions, bi are bodies.

If the ‘‘−’’ flag is used with ‘‘%[doxXs]’’, then a colon (:) must be placed
between the ‘‘%’’ and the ‘‘−’’ to differentiate the flag from the binary ‘‘%−’’
operator, for example ‘‘%:−16.16s ’’.

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12,
needs to be sent \E&a12c03Y padded for 6 milliseconds. Note that the order
of the rows and columns is inverted here, and that the row and column are
zero-padded as two digits. Thus its cup capability is:
cup=\E&a%p2%2.2dc%p1%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a
^T , with the row and column simply encoded in binary,
‘‘cup=^T%p1%c%p2%c’’. Devices that use ‘‘%c’’ need to be able to backspace
the cursor (cub1), and to move the cursor up one line on the screen (cuu1).
This is necessary because it is not always safe to transmit \n , ^D, and \r , as
the system may change or discard them. (The library routines dealing with
terminfo set tty modes so that tabs are never expanded, so \t is safe to
send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus ‘‘cup=\E=%p1%’\s’%+%c%p2%’\s’%+%c ’’. After
sending ‘‘\E= ’’, this pushes the first parameter, pushes the ASCII value for a
space (32), adds them (pushing the sum on the stack in place of the two
previous values), and outputs that value as a character. Then the same is done
for the second parameter. More complex arithmetic is possible using the stack.

Section 1-3: Cursor
Motions

If the terminal has a fast way to home the cursor (to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the
lower left-hand corner can be given as ll ; this may involve going up with
cuu1 from the home position, but a program should never do this itself
(unless ll does) because it can make no assumption about the effect of
moving up from the home position. Note that the home position is the same as
addressing to (0,0): to the top left corner of the screen, not of memory. (Thus,
the \EH sequence on Hewlett-Packard terminals cannot be used for home
without losing some of the other features on the terminal.)

If the device has row or column absolute-cursor addressing, these can be given
as single parameter capabilities hpa (horizontal position absolute) and vpa
(vertical position absolute). Sometimes these are shorter than the more general
two-parameter sequence (as with the Hewlett-Packard 2645) and can be used
in preference to cup . If there are parameterized local motions (for example,
move n spaces to the right) these can be given as cud , cub , cuf , and cuu with

529 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

a single parameter indicating how many spaces to move. These are primarily
useful if the device does not have cup , such as the Tektronix 4025.

If the device needs to be in a special mode when running a program that uses
these capabilities, the codes to enter and exit this mode can be given as smcup
and rmcup . This arises, for example, from terminals, such as the Concept, with
more than one page of memory. If the device has only memory relative cursor
addressing and not screen relative cursor addressing, a one screen-sized
window must be fixed into the device for cursor addressing to work properly.
This is also used for the Tektronix 4025, where smcup sets the command
character to be the one used by terminfo . If the smcup sequence will not
restore the screen after an rmcup sequence is output (to the state prior to
outputting rmcup), specify nrrmc .

Section 1-4: Area
Clears

If the terminal can clear from the current position to the end of the line, leaving
the cursor where it is, this should be given as el . If the terminal can clear
from the beginning of the line to the current position inclusive, leaving the
cursor where it is, this should be given as el1 . If the terminal can clear from
the current position to the end of the display, then this should be given as ed .
ed is only defined from the first column of a line. (Thus, it can be simulated by
a request to delete a large number of lines, if a true ed is not available.)

Section 1-5: Insert/
Delete Line

If the terminal can open a new blank line before the line where the cursor is,
this should be given as il1 ; this is done only from the first position of a line.
The cursor must then appear on the newly blank line. If the terminal can
delete the line which the cursor is on, then this should be given as dl1 ; this is
done only from the first position on the line to be deleted. Versions of il1 and
dl1 which take a single parameter and insert or delete that many lines can be
given as il and dl .

If the terminal has a settable destructive scrolling region (like the VT100) the
command to set this can be described with the csr capability, which takes two
parameters: the top and bottom lines of the scrolling region. The cursor
position is, alas, undefined after using this command. It is possible to get the
effect of insert or delete line using this command — the sc and rc (save and
restore cursor) commands are also useful. Inserting lines at the top or bottom of
the screen can also be done using ri or ind on many terminals without a true
insert/delete line, and is often faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or
non-destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the cursor
to the top line of the scrolling region, and do a reverse index (ri) followed by
a delete line (dl1) or index (ind). If the data that was originally on the bottom
line of the scrolling region was restored into the scrolling region by the dl1 or
ind , then the terminal has non-destructive scrolling regions. Otherwise, it has

Last modified 9 Jul 1996 SunOS 5.7 530

terminfo(4) File Formats

destructive scrolling regions. Do not specify csr if the terminal has
non-destructive scrolling regions, unless ind , ri , indn , rin , dl , and dl1 all
simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all
commands affect, it should be given as the parameterized string wind . The
four parameters are the starting and ending lines in memory and the starting
and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should
be given; if display memory can be retained below, then db should be given.
These indicate that deleting a line or scrolling a full screen may bring
non-blank lines up from below or that scrolling back with ri may bring down
non-blank lines.

Section 1-6: Insert/
Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete
character operations which can be described using terminfo. The most
common insert/delete character operations affect only the characters on the
current line and shift characters off the end of the line rigidly. Other terminals,
such as the Concept 100 and the Perkin Elmer Owl, make a distinction
between typed and untyped blanks on the screen, shifting upon an insert or
delete only to an untyped blank on the screen which is either eliminated, or
expanded to two untyped blanks. You can determine the kind of terminal you
have by clearing the screen and then typing text separated by cursor motions.
Type ‘‘abc def ’’ using local cursor motions (not spaces) between the abc
and the def . Then position the cursor before the abc and put the terminal in
insert mode. If typing characters causes the rest of the line to shift rigidly and
characters to fall off the end, then your terminal does not distinguish between
blanks and untyped positions. If the abc shifts over to the def which then
move together around the end of the current line and onto the next as you
insert, you have the second type of terminal, and should give the capability
in , which stands for ‘‘insert null.’’ While these are two logically separate
attributes (one line versus multiline insert mode, and special treatment of
untyped spaces) we have seen no terminals whose insert mode cannot be
described with the single attribute.

terminfo can describe both terminals that have an insert mode and terminals
which send a simple sequence to open a blank position on the current line.
Give as smir the sequence to get into insert mode. Give as rmir the sequence
to leave insert mode. Now give as ich1 any sequence needed to be sent just
before sending the character to be inserted. Most terminals with a true insert
mode will not give ich1 ; terminals that send a sequence to open a screen
position should give it here. (If your terminal has both, insert mode is usually
preferable to ich1 . Do not give both unless the terminal actually requires both
to be used in combination.) If post-insert padding is needed, give this as a
number of milliseconds padding in ip (a string option). Any other sequence

531 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

which may need to be sent after an insert of a single character may also be
given in ip . If your terminal needs both to be placed into an ‘insert mode’ and
a special code to precede each inserted character, then both smir /rmir and
ich1 can be given, and both will be used. The ich capability, with one
parameter, n, will insert n blanks.

If padding is necessary between characters typed while not in insert mode,
give this as a number of milliseconds padding in rmp .

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (for example, if there is a tab after the insertion
position). If your terminal allows motion while in insert mode you can give
the capability mir to speed up inserting in this case. Omitting mir will affect
only speed. Some terminals (notably Datamedia’s) must not have mir because
of the way their insert mode works.

Finally, you can specify dch1 to delete a single character, dch with one
parameter, n, to delete n characters, and delete mode by giving smdc and
rmdc to enter and exit delete mode (any mode the terminal needs to be placed
in for dch1 to work).

A command to erase n characters (equivalent to outputting n blanks without
moving the cursor) can be given as ech with one parameter.

Section 1-7:
Highlighting,

Underlining, and
Visible Bells

Your device may have one or more kinds of display attributes that allow you
to highlight selected characters when they appear on the screen. The following
display modes (shown with the names by which they are set) may be
available: a blinking screen (blink), bold or extra-bright characters (bold),
dim or half-bright characters (dim), blanking or invisible text (invis),
protected text (prot), a reverse-video screen (rev), and an alternate character
set (smacs to enter this mode and rmacs to exit it). (If a command is
necessary before you can enter alternate character set mode, give the sequence
in enacs or "enable alternate-character-set" mode.) Turning on any of these
modes singly may or may not turn off other modes.

sgr0 should be used to turn off all video enhancement capabilities. It should
always be specified because it represents the only way to turn off some
capabilities, such as dim or blink .

You should choose one display method as standout mode and use it to highlight
error messages and other kinds of text to which you want to draw attention.
Choose a form of display that provides strong contrast but that is easy on the
eyes. (We recommend reverse-video plus half-bright or reverse-video alone.)
The sequences to enter and exit standout mode are given as smso and rmso ,
respectively. If the code to change into or out of standout mode leaves one or
even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then
xmc should be given to tell how many spaces are left.

Last modified 9 Jul 1996 SunOS 5.7 532

terminfo(4) File Formats

Sequences to begin underlining and end underlining can be specified as smul
and rmul , respectively. If the device has a sequence to underline the current
character and to move the cursor one space to the right (such as the
Micro-Term MIME), this sequence can be specified as uc .

Terminals with the ‘‘magic cookie’’ glitch (xmc) deposit special ‘‘cookies’’
when they receive mode-setting sequences, which affect the display algorithm
rather than having extra bits for each character. Some terminals, such as the
Hewlett-Packard 2621, automatically leave standout mode when they move to
a new line or the cursor is addressed. Programs using standout mode should
exit standout mode before moving the cursor or sending a newline, unless the
msgr capability, asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a
bell replacement), then this can be given as flash ; it must not move the
cursor. A good flash can be done by changing the screen into reverse video,
pad for 200 ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the
bottom line (to make, for example, a non-blinking underline into an easier to
find block or blinking underline) give this sequence as cvvis . The boolean
chts should also be given. If there is a way to make the cursor completely
invisible, give that as civis . The capability cnorm should be given which
undoes the effects of either of these modes.

If your terminal generates underlined characters by using the underline
character (with no special sequences needed) even though it does not
otherwise overstrike characters, then you should specify the capability ul . For
devices on which a character overstriking another leaves both characters on
the screen, specify the capability os . If overstrikes are erasable with a blank,
then this should be indicated by specifying eo .

If there is a sequence to set arbitrary combinations of modes, this should be
given as sgr (set attributes), taking nine parameters. Each parameter is either
0 or non-zero, as the corresponding attribute is on or off. The nine parameters
are, in order: standout, underline, reverse, blink, dim, bold, blank, protect,
alternate character set. Not all modes need to be supported by sgr ; only those
for which corresponding separate attribute commands exist should be
supported. For example, let’s assume that the terminal in question needs the
following escape sequences to turn on various modes.

tparm

parameter attribute escape sequence

none \E[0m

p1 standout \E[0;4;7m

533 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

p2 underline \E[0;3m

p3 reverse \E[0;4m

p4 blink \E[0;5m

p5 dim \E[0;7m

p6 bold \E[0;3;4m

p7 invis \E[0;8m

p8 protect not available

p9 altcharset ^O (off) ^N (on)

Note that each escape sequence requires a 0 to turn off other modes before
turning on its own mode. Also note that, as suggested above, standout is set up
to be the combination of reverse and dim. Also, because this terminal has no
bold mode, bold is set up as the combination of reverse and underline. In
addition, to allow combinations, such as underline+blink, the sequence to use
would be \E[0;3;5m . The terminal doesn’t have protect mode, either, but that
cannot be simulated in any way, so p8 is ignored. The altcharset mode is
different in that it is either ^O or ^N, depending on whether it is off or on. If all
modes were to be turned on, the sequence would be \E[0;3;4;5;7;8m^N .

Now look at when different sequences are output. For example, ;3 is output
when either p2 or p6 is true, that is, if either underline or bold modes are
turned on. Writing out the above sequences, along with their dependencies,
gives the following:

sequence when to output terminfo translation

\E[0 always \E[0

;3 if p2 or p6 %?%p2%p6%|%t;3%;

;4 if p1 or p3 or p6 %?%p1%p3%|%p6%|%t;4%;

;5 if p4 %?%p4%t;5%;

;7 if p1 or p5 %?%p1%p5%|%t;7%;

;8 if p7 %?%p7%t;8%;

m always m

^N or ^O if p9 ^N , else ^O %?%p9%t^N%e^O%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6%|%t;3%;%?%p1%p3%|%p6% |%t;4%;%?%p5%t;5%;%?%p1%p5% |%t;7%;%?

Remember that sgr and sgr0 must always be specified.

Last modified 9 Jul 1996 SunOS 5.7 534

terminfo(4) File Formats

Section 1-8: Keypad If the device has a keypad that transmits sequences when the keys are pressed,
this information can also be specified. Note that it is not possible to handle
devices where the keypad only works in local (this applies, for example, to the
unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit or
not transmit, specify these sequences as smkx and rmkx . Otherwise the
keypad is assumed to always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kcub1, kcuf1, kcuu1, kcud1, and khome,
respectively. If there are function keys such as f0, f1, ..., f63, the sequences they
send can be specified as kf0, kf1, ..., kf63 . If the first 11 keys have
labels other than the default f0 through f10, the labels can be given as
lf0, lf1, ..., lf10 . The codes transmitted by certain other special keys
can be given: kll (home down), kbs (backspace), ktbc (clear all tabs), kctab
(clear the tab stop in this column), kclr (clear screen or erase key), kdch1
(delete character), kdl1 (delete line), krmir (exit insert mode), kel (clear to
end of line), ked (clear to end of screen), kich1 (insert character or enter
insert mode), kil1 (insert line), knp (next page), kpp (previous page), kind
(scroll forward/down), kri (scroll backward/up), khts (set a tab stop in this
column). In addition, if the keypad has a 3 by 3 array of keys including the
four arrow keys, the other five keys can be given as ka1 , ka3 , kb2 , kc1 , and
kc3 . These keys are useful when the effects of a 3 by 3 directional pad are
needed. Further keys are defined above in the capabilities list.

Strings to program function keys can be specified as pfkey , pfloc , and pfx .
A string to program screen labels should be specified as pln . Each of these
strings takes two parameters: a function key identifier and a string to program
it with. pfkey causes pressing the given key to be the same as the user typing
the given string; pfloc causes the string to be executed by the terminal in
local mode; and pfx causes the string to be transmitted to the computer. The
capabilities nlab , lw and lh define the number of programmable screen labels
and their width and height. If there are commands to turn the labels on and
off, give them in smln and rmln . smln is normally output after one or more
pln sequences to make sure that the change becomes visible.

Section 1-9: Tabs and
Initialization

If the device has hardware tabs, the command to advance to the next tab stop
can be given as ht (usually control I). A ‘‘backtab’’ command that moves
leftward to the next tab stop can be given as cbt . By convention, if tty modes
show that tabs are being expanded by the computer rather than being sent to
the device, programs should not use ht or cbt (even if they are present)
because the user may not have the tab stops properly set. If the device has
hardware tabs that are initially set every n spaces when the device is powered
up, the numeric parameter it is given, showing the number of spaces the tabs
are set to. This is normally used by tput init (see tput (1)) to determine
whether to set the mode for hardware tab expansion and whether to set the
tab stops. If the device has tab stops that can be saved in nonvolatile memory,

535 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

the terminfo description can assume that they are properly set. If there are
commands to set and clear tab stops, they can be given as tbc (clear all tab
stops) and hts (set a tab stop in the current column of every row).

Other capabilities include: is1 , is2 , and is3 , initialization strings for the
device; iprog , the path name of a program to be run to initialize the device;
and if , the name of a file containing long initialization strings. These strings
are expected to set the device into modes consistent with the rest of the
terminfo description. They must be sent to the device each time the user logs
in and be output in the following order: run the program iprog ; output is1 ;
output is2 ; set the margins using mgc, smgl and smgr ; set the tabs using tbc
and hts ; print the file if ; and finally output is3 . This is usually done using
the init option of tput .

Most initialization is done with is2 . Special device modes can be set up
without duplicating strings by putting the common sequences in is2 and
special cases in is1 and is3 . Sequences that do a reset from a totally
unknown state can be given as rs1 , rs2 , rf , and rs3 , analogous to is1 , is2 ,
is3 , and if . (The method using files, if and rf , is used for a few terminals,
from /usr/share/lib/tabset/* ; however, the recommended method is to
use the initialization and reset strings.) These strings are output by tput
reset, which is used when the terminal gets into a wedged state. Commands
are normally placed in rs1 , rs2 , rs3 , and rf only if they produce annoying
effects on the screen and are not necessary when logging in. For example, the
command to set a terminal into 80-column mode would normally be part of
is2 , but on some terminals it causes an annoying glitch on the screen and is
not normally needed because the terminal is usually already in 80-column
mode.

If a more complex sequence is needed to set the tabs than can be described by
using tbc and hts , the sequence can be placed in is2 or if .

Any margin can be cleared with mgc. (For instructions on how to specify
commands to set and clear margins, see "Margins" below under "PRINTER
CAPABILITIES.")

Section 1-10: Delays Certain capabilities control padding in the tty driver. These are primarily
needed by hard-copy terminals, and are used by tput init to set tty modes
appropriately. Delays embedded in the capabilities cr , ind , cub1 , ff , and
tab can be used to set the appropriate delay bits to be set in the tty driver. If
pb (padding baud rate) is given, these values can be ignored at baud rates
below the value of pb .

Section 1-11: Status
Lines

If the terminal has an extra ‘‘status line’’ that is not normally used by software,
this fact can be indicated. If the status line is viewed as an extra line below the
bottom line, into which one can cursor address normally (such as the Heathkit
h19’s 25th line, or the 24th line of a VT100 which is set to a 23-line scrolling

Last modified 9 Jul 1996 SunOS 5.7 536

terminfo(4) File Formats

region), the capability hs should be given. Special strings that go to a given
column of the status line and return from the status line can be given as tsl
and fsl . (fsl must leave the cursor position in the same place it was before
tsl . If necessary, the sc and rc strings can be included in tsl and fsl to get
this effect.) The capability tsl takes one parameter, which is the column
number of the status line the cursor is to be moved to.

If escape sequences and other special commands, such as tab, work while in
the status line, the flag eslok can be given. A string which turns off the status
line (or otherwise erases its contents) should be given as dsl . If the terminal
has commands to save and restore the position of the cursor, give them as sc
and rc . The status line is normally assumed to be the same width as the rest
of the screen, for example, cols . If the status line is a different width (possibly
because the terminal does not allow an entire line to be loaded) the width, in
columns, can be indicated with the numeric parameter wsl .

Section 1-12: Line
Graphics

If the device has a line drawing alternate character set, the mapping of glyph
to character would be given in acsc . The definition of this string is based on
the alternate character set used in the DEC VT100 terminal, extended slightly
with some characters from the AT&T 4410v1 terminal.

vt100+

glyph name character

arrow pointing right +

arrow pointing left ,

arrow pointing down .

solid square block 0

lantern symbol I

arrow pointing up −

diamond ‘

checker board (stipple) a

degree symbol f

plus/minus g

board of squares h

lower right corner j

upper right corner k

upper left corner l

lower left corner m

537 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

plus n

scan line 1 o

horizontal line q

scan line 9 s

left tee t

right tee u

bottom tee v

top tee w

vertical line x

bullet ~

The best way to describe a new device’s line graphics set is to add a third
column to the above table with the characters for the new device that produce
the appropriate glyph when the device is in the alternate character set mode.
For example,

vt100+ new tty

glyph name char char

upper left corner l R

lower left corner m F

upper right corner k T

lower right corner j G

horizontal line q ,

vertical line x .

Now write down the characters left to right, as in ‘‘acsc=lRmFkTjGq\,x. ’’.

In addition, terminfo allows you to define multiple character sets. See
Section 2-5 for details.

Section 1-13: Color
Manipulation

Let us define two methods of color manipulation: the Tektronix method and
the HP method. The Tektronix method uses a set of N predefined colors
(usually 8) from which a user can select "current" foreground and background
colors. Thus a terminal can support up to N colors mixed into N*N color-pairs
to be displayed on the screen at the same time. When using an HP method the
user cannot define the foreground independently of the background, or
vice-versa. Instead, the user must define an entire color-pair at once. Up to M

Last modified 9 Jul 1996 SunOS 5.7 538

terminfo(4) File Formats

color-pairs, made from 2*M different colors, can be defined this way. Most
existing color terminals belong to one of these two classes of terminals.

The numeric variables colors and pairs define the number of colors and
color-pairs that can be displayed on the screen at the same time. If a terminal
can change the definition of a color (for example, the Tektronix 4100 and 4200
series terminals), this should be specified with ccc (can change color). To
change the definition of a color (Tektronix 4200 method), use initc (initialize
color). It requires four arguments: color number (ranging from 0 to colors −1)
and three RGB (red, green, and blue) values or three HLS colors (Hue,
Lightness, Saturation). Ranges of RGB and HLS values are terminal dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals
(or dual-mode terminals to be operated in HLS mode) one must define a
boolean variable hls ; that would instruct the curses init_color routine to
convert its RGB arguments to HLS before sending them to the terminal. The
last three arguments to the initc string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation
different from RGB and HLS, a mapping to either RGB or HLS must be
developed.

To set current foreground or background to a given color, use setaf (set ANSI
foreground) and setab (set ANSI background). They require one parameter:
the number of the color. To initialize a color-pair (HP method), use initp
(initialize pair). It requires seven parameters: the number of a color-pair
(range=0 to pairs −1), and six RGB values: three for the foreground followed
by three for the background. (Each of these groups of three should be in the
order RGB.) When initc or initp are used, RGB or HLS arguments should
be in the order "red, green, blue" or "hue, lightness, saturation"), respectively.
To make a color-pair current, use scp (set color-pair). It takes one parameter,
the number of a color-pair.

Some terminals (for example, most color terminal emulators for PCs) erase
areas of the screen with current background color. In such cases, bce
(background color erase) should be defined. The variable op (original pair)
contains a sequence for setting the foreground and the background colors to
what they were at the terminal start-up time. Similarly, oc (original colors)
contains a control sequence for setting all colors (for the Tektronix method) or
color-pairs (for the HP method) to the values they had at the terminal start-up
time.

Some color terminals substitute color for video attributes. Such video attributes
should not be combined with colors. Information about these video attributes
should be packed into the ncv (no color video) variable. There is a one-to-one
correspondence between the nine least significant bits of that variable and the
video attributes. The following table depicts this correspondence.

539 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

Bit Decimal

Attribute Position Value

A_STANDOUT 0 1

A_UNDERLINE 1 2

A_REVERSE 2 4

A_BLINK 3 8

A_DIM 4 16

A_BOLD 5 32

A_INVIS 6 64

A_PROTECT 7 128

A_ALTCHARSET 8 256

When a particular video attribute should not be used with colors, the
corresponding ncv bit should be set to 1; otherwise it should be set to zero. To
determine the information to pack into the ncv variable, you must add
together the decimal values corresponding to those attributes that cannot
coexist with colors. For example, if the terminal uses colors to simulate reverse
video (bit number 2 and decimal value 4) and bold (bit number 5 and decimal
value 32), the resulting value for ncv will be 36 (4 + 32).

Section 1-14:
Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this
can be given as pad . Only the first character of the pad string is used. If the
terminal does not have a pad character, specify npc .

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts
and subscripts on hardcopy terminals. If a hardcopy terminal can eject to the
next page (form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times (to
save time transmitting a large number of identical characters) this can be
indicated with the parameterized string rep . The first parameter is the
character to be repeated and the second is the number of times to repeat it.
Thus, tparm(repeat_char, ’x’, 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the Tektronix 4025,
this can be indicated with cmdch. A prototype command character is chosen
which is used in all capabilities. This character is given in the cmdch capability
to identify it. The following convention is supported on some systems: If the
environment variable CCexists, all occurrences of the prototype character are
replaced with the character in CC.

Last modified 9 Jul 1996 SunOS 5.7 540

terminfo(4) File Formats

Terminal descriptions that do not represent a specific kind of known terminal,
such as switch , dialup, patch , and network, should include the gn (generic)
capability so that programs can complain that they do not know how to talk to
the terminal. (This capability does not apply to virtual terminal descriptions for
which the escape sequences are known.) If the terminal is one of those
supported by the system virtual terminal protocol, the terminal number can be
given as vt . A line-turn-around sequence to be transmitted before doing reads
should be specified in rfi .

If the device uses xon/xoff handshaking for flow control, give xon . Padding
information should still be included so that routines can make better decisions
about costs, but actual pad characters will not be transmitted. Sequences to
turn on and off xon/xoff handshaking may be given in smxon and rmxon . If
the characters used for handshaking are not ^S and ^Q, they may be specified
with xonc and xoffc .

If the terminal has a ‘‘meta key’’ which acts as a shift key, setting the 8th bit of
any character transmitted, this fact can be indicated with km. Otherwise,
software will assume that the 8th bit is parity and it will usually be cleared. If
strings exist to turn this ‘‘meta mode’’ on and off, they can be given as smm
and rmm.

If the terminal has more lines of memory than will fit on the screen at once,
the number of lines of memory can be indicated with lm . A value of lm #0
indicates that the number of lines is not fixed, but that there is still more
memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the
terminal can be given as mc0: print the contents of the screen, mc4: turn off the
printer, and mc5: turn on the printer. When the printer is on, all text sent to the
terminal will be sent to the printer. A variation, mc5p, takes one parameter,
and leaves the printer on for as many characters as the value of the parameter,
then turns the printer off. The parameter should not exceed 255. If the text is
not displayed on the terminal screen when the printer is on, specify mc5i
(silent printer). All text, including mc4, is transparently passed to the printer
while an mc5p is in effect.

Section 1-15: Special
Cases

The working model used by terminfo fits most terminals reasonably well.
However, some terminals do not completely match that model, requiring
special support by terminfo . These are not meant to be construed as
deficiencies in the terminals; they are just differences between the working
model and the actual hardware. They may be unusual devices or, for some
reason, do not have all the features of the terminfo model implemented.

Terminals that cannot display tilde (~) characters, such as certain Hazeltine
terminals, should indicate hz .

541 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

Terminals that ignore a linefeed immediately after an am wrap, such as the
Concept 100, should indicate xenl . Those terminals whose cursor remains on
the right-most column until another character has been received, rather than
wrapping immediately upon receiving the right-most character, such as the
VT100, should also indicate xenl .

If el is required to get rid of standout (instead of writing normal text on top
of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks,
should indicate xt (destructive tabs). This capability is also taken to mean that
it is not possible to position the cursor on top of a ‘‘magic cookie.’’ Therefore,
to erase standout mode, it is necessary, instead, to use delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or
control−C characters, should specify xsb , indicating that the f1 key is to be
used for escape and the f2 key for control C.

Section 1-16: Similar
Terminals

If there are two very similar terminals, one can be defined as being just like
the other with certain exceptions. The string capability use can be given with
the name of the similar terminal. The capabilities given before use override
those in the terminal type invoked by use . A capability can be canceled by
placing xx@to the left of the capability definition, where xx is the capability.
For example, the entry

att4424-2|Teletype4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T4424 terminal that does not have the rev , sgr , and smul
capabilities, and hence cannot do highlighting. This is useful for different
modes for a terminal, or for different user preferences. More than one use
capability may be given.

PART 2: PRINTER
CAPABILITIES

The terminfo database allows you to define capabilities of printers as well as
terminals. To find out what capabilities are available for printers as well as for
terminals, see the two lists under "DEVICE CAPABILITIES" that list
capabilities by variable and by capability name.

Section 2-1:
Rounding Values

Because parameterized string capabilities work only with integer values, we
recommend that terminfo designers create strings that expect numeric values
that have been rounded. Application designers should note this and should
always round values to the nearest integer before using them with a
parameterized string capability.

Section 2-2: Printer
Resolution

A printer’s resolution is defined to be the smallest spacing of characters it can
achieve. In general printers have independent resolution horizontally and

Last modified 9 Jul 1996 SunOS 5.7 542

terminfo(4) File Formats

vertically. Thus the vertical resolution of a printer can be determined by
measuring the smallest achievable distance between consecutive printing
baselines, while the horizontal resolution can be determined by measuring the
smallest achievable distance between the left-most edges of consecutive
printed, identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal
and vertical resolution. The view of printing that terminfo currently presents
is one of printing inside a uniform matrix: All characters are printed at fixed
positions relative to each ‘‘cell’’ in the matrix; furthermore, each cell has the
same size given by the smallest horizontal and vertical step sizes dictated by
the resolution. (The cell size can be changed as will be seen later.)

Many printers are capable of ‘‘proportional printing,’’ where the horizontal
spacing depends on the size of the character last printed. terminfo does not
make use of this capability, although it does provide enough capability
definitions to allow an application to simulate proportional printing.

A printer must not only be able to print characters as close together as the
horizontal and vertical resolutions suggest, but also of ‘‘moving’’ to a position
an integral multiple of the smallest distance away from a previous position.
Thus printed characters can be spaced apart a distance that is an integral
multiple of the smallest distance, up to the length or width of a single page.

Some printers can have different resolutions depending on different ‘‘modes.’’
In ‘‘normal mode,’’ the existing terminfo capabilities are assumed to work
on columns and lines, just like a video terminal. Thus the old lines capability
would give the length of a page in lines, and the cols capability would give
the width of a page in columns. In ‘‘micro mode,’’ many terminfo
capabilities work on increments of lines and columns. With some printers the
micro mode may be concomitant with normal mode, so that all the capabilities
work at the same time.

Section 2-3:
Specifying Printer

Resolution

The printing resolution of a printer is given in several ways. Each specifies the
resolution as the number of smallest steps per distance:

Specification of Printer Resolution

Characteristic Number of Smallest Steps

orhi Steps per inch horizontally

orvi Steps per inch vertically

orc Steps per column

orl Steps per line

543 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

When printing in normal mode, each character printed causes movement to
the next column, except in special cases described later; the distance moved is
the same as the per-column resolution. Some printers cause an automatic
movement to the next line when a character is printed in the rightmost
position; the distance moved vertically is the same as the per-line resolution.
When printing in micro mode, these distances can be different, and may be
zero for some printers.

Specification of Printer Resolution

Automatic Motion after Printing

Normal Mode:

orc Steps moved horizontally

orl Steps moved vertically

Micro Mode:

mcs Steps moved horizontally

mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved
when a wide character is printed in normal mode may be different from when
a regular width character is printed. The distance moved when a wide
character is printed in micro mode may also be different from when a regular
character is printed in micro mode, but the differences are assumed to be
related: If the distance moved for a regular character is the same whether in
normal mode or micro mode (mcs=orc), then the distance moved for a wide
character is also the same whether in normal mode or micro mode. This
doesn’t mean the normal character distance is necessarily the same as the wide
character distance, just that the distances don’t change with a change in
normal to micro mode. However, if the distance moved for a regular character
is different in micro mode from the distance moved in normal mode
(mcs<orc), the micro mode distance is assumed to be the same for a wide
character printed in micro mode, as the table below shows.

Specification of Printer Resolution

Automatic Motion after Printing Wide Character

Normal Mode or Micro Mode (mcs =
orc):

widcs Steps moved horizontally

Micro Mode (mcs < orc):

Last modified 9 Jul 1996 SunOS 5.7 544

terminfo(4) File Formats

mcs Steps moved horizontally

There may be control sequences to change the number of columns per inch
(the character pitch) and to change the number of lines per inch (the line
pitch). If these are used, the resolution of the printer changes, but the type of
change depends on the printer:

Specification of Printer Resolution

Changing the Character/Line Pitches

cpi Change character pitch

cpix If set, cpi changes orhi , otherwise
changes orc

lpi Change line pitch

lpix If set, lpi changes orvi , otherwise
changes orl

chr Change steps per column

cvr Change steps per line

The cpi and lpi string capabilities are each used with a single argument, the
pitch in columns (or characters) and lines per inch, respectively. The chr and
cvr string capabilities are each used with a single argument, the number of
steps per column and line, respectively.

Using any of the control sequences in these strings will imply a change in
some of the values of orc , orhi , orl , and orvi . Also, the distance moved
when a wide character is printed, widcs , changes in relation to orc . The
distance moved when a character is printed in micro mode, mcs, changes
similarly, with one exception: if the distance is 0 or 1, then no change is
assumed (see items marked with * in the following table).

Programs that use cpi , lpi , chr , or cvr should recalculate the printer
resolution (and should recalculate other values— see "Effect of Changing
Printing Resolution" under "Dot-Mapped Graphics").

Specification of Printer Resolution

Effects of Changing the Character/Line Pitches

Before After

Using cpi with cpix clear:

orhi ’ orhi

545 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

orc ’ orc = orhi over V sub italic cpi$

Using cpi with cpix set:

$bold orhi ’$ $bold orhi = bold orc cdot V sub italic
cpi$

$bold orc ’$ $bold orc$

Using lpi with lpix clear:

$bold orvi ’$ $bold orvi$

$bold orl ’$ $bold orl = bold orvi over V sub italic lpi$

Using lpi with lpix set:

$bold orvi ’$ $bold orvi = bold orl cdot V sub italic lpi$

$bold orl ’$ $bold orl$

Using chr:

$bold orhi ’$ $bold orhi$

$bold orc ’$ $V sub italic chr$

Using cvr:

$bold orvi ’$ $bold orvi$

$bold orl ’$ $V sub italic cvr$

Using cpi or chr:

$bold widcs ’$ $bold widcs = bold {widcs ’} bold orc
over { bold {orc ’} }$

$bold mcs ’$ $bold mcs = bold {mcs ’} bold orc over {
bold {orc ’} }$

$V sub italic cpi$, $V sub italic lpi$, $V sub italic chr$, and $V sub italic cvr$
are the arguments used with cpi , lpi , chr , and cvr , respectively. The prime
marks (’) indicate the old values.

Section 2-4:
Capabilities that

Cause Movement

In the following descriptions, ‘‘movement’’ refers to the motion of the ‘‘current
position.’’ With video terminals this would be the cursor; with some printers
this is the carriage position. Other printers have different equivalents. In
general, the current position is where a character would be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a
number of full columns or lines. It also has equivalent string capabilities for
control sequences that cause movement a number of smallest steps.

String Capabilities for Motion

Last modified 9 Jul 1996 SunOS 5.7 546

terminfo(4) File Formats

mcub1 Move 1 step left

mcuf1 Move 1 step right

mcuu1 Move 1 step up

mcud1 Move 1 step down

mcub Move N steps left

mcuf Move N steps right

mcuu Move N steps up

mcud Move N steps down

mhpa Move N steps from the left

mvpa Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page.
Also, some printers don’t accept absolute motion to the left of the current
position. terminfo has capabilities for specifying these limits.

Limits to Motion

mjump Limit on use of mcub1, mcuf1 , mcuu1,
mcud1

maddr Limit on use of mhpa, mvpa

xhpa If set, hpa and mhpa can’t move left

xvpa If set, vpa and mvpa can’t move up

If a printer needs to be in a ‘‘micro mode’’ for the motion capabilities described
above to work, there are string capabilities defined to contain the control
sequence to enter and exit this mode. A boolean is available for those printers
where using a carriage return causes an automatic return to normal mode.

Entering/Exiting Micro Mode

smicm Enter micro mode

rmicm Exit micro mode

crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position
varies among printers. Some make no movement, some move to the beginning

547 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

of the next line, others move to the beginning of the same line. terminfo has
boolean capabilities for describing all three cases.

What Happens After Character

Printed in Rightmost Position

sam Automatic move to beginning of same
line

Some printers can be put in a mode where the normal direction of motion is
reversed. This mode can be especially useful when there are no capabilities for
leftward or upward motion, because those capabilities can be built from the
motion reversal capability and the rightward or downward motion capabilities.
It is best to leave it up to an application to build the leftward or upward
capabilities, though, and not enter them in the terminfo database. This
allows several reverse motions to be strung together without intervening
wasted steps that leave and reenter reverse mode.

Entering/Exiting Reverse Modes

slm Reverse sense of horizontal motions

rlm Restore sense of horizontal motions

sum Reverse sense of vertical motions

rum Restore sense of vertical motions

While sense of horizontal motions
reversed:

mcub1 Move 1 step right

mcuf1 Move 1 step left

mcub Move N steps right

mcuf Move N steps left

cub1 Move 1 column right

cuf1 Move 1 column left

cub Move N columns right

cuf Move N columns left

While sense of vertical motions reversed:

mcuu1 Move 1 step down

mcud1 Move 1 step up

mcuu Move N steps down

Last modified 9 Jul 1996 SunOS 5.7 548

terminfo(4) File Formats

mcud Move N steps up

cuu1 Move 1 line down

cud1 Move 1 line up

cuu Move N lines down

cud Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute
motion capabilities. The reverse vertical motion mode should, however, also
reverse the action of the line ‘‘wrapping’’ that occurs when a character is
printed in the right-most position. Thus printers that have the standard
terminfo capability am defined should experience motion to the beginning of
the previous line when a character is printed in the right-most position under
reverse vertical motion mode.

The action when any other motion capabilities are used in reverse motion
modes is not defined; thus, programs must exit reverse motion modes before
using other motion capabilities.

Two miscellaneous capabilities complete the list of new motion capabilities.
One of these is needed for printers that move the current position to the
beginning of a line when certain control characters, such as ‘‘line-feed’’ or
‘‘form-feed,’’ are used. The other is used for the capability of suspending the
motion that normally occurs after printing a character.

Miscellaneous Motion Strings

docr List of control characters causing cr

zerom Prevent auto motion after printing next
single character

Margins terminfo provides two strings for setting margins on terminals: one for the
left and one for the right margin. Printers, however, have two additional
margins, for the top and bottom margins of each page. Furthermore, some
printers require not using motion strings to move the current position to a
margin and then fixing the margin there, but require the specification of where
a margin should be regardless of the current position. Therefore terminfo
offers six additional strings for defining margins with printers.

Setting Margins

549 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

smgl Set left margin at current column

smgr Set right margin at current column

smgb Set bottom margin at current line

smgt Set top margin at current line

smgbp Set bottom margin at line N

smglp Set left margin at column N

smgrp Set right margin at column N

smgtp Set top margin at line N

The last four strings are used with one or more arguments that give the
position of the margin or margins to set. If both of smglp and smgrp are set,
each is used with a single argument, N, that gives the column number of the
left and right margin, respectively. If both of smgtp and smgbp are set, each is
used to set the top and bottom margin, respectively: smgtp is used with a
single argument, N, the line number of the top margin; however, smgbp is used
with two arguments, N and M, that give the line number of the bottom margin,
the first counting from the top of the page and the second counting from the
bottom. This accommodates the two styles of specifying the bottom margin in
different manufacturers’ printers. When coding a terminfo entry for a printer
that has a settable bottom margin, only the first or second parameter should be
used, depending on the printer. When writing an application that uses smgbp
to set the bottom margin, both arguments must be given.

If only one of smglp and smgrp is set, then it is used with two arguments, the
column number of the left and right margins, in that order. Likewise, if only
one of smgtp and smgbp is set, then it is used with two arguments that give
the top and bottom margins, in that order, counting from the top of the page.
Thus when coding a terminfo entry for a printer that requires setting both
left and right or top and bottom margins simultaneously, only one of smglp
and smgrp or smgtp and smgbp should be defined; the other should be left
blank. When writing an application that uses these string capabilities, the pairs
should be first checked to see if each in the pair is set or only one is set, and
should then be used accordingly.

In counting lines or columns, line zero is the top line and column zero is the
left-most column. A zero value for the second argument with smgbp means
the bottom line of the page.

All margins can be cleared with mgc.

Shadows, Italics,
Wide Characters

Five new sets of strings describe the capabilities printers have of enhancing
printed text.

Last modified 9 Jul 1996 SunOS 5.7 550

terminfo(4) File Formats

Enhanced Printing

sshm Enter shadow-printing mode

rshm Exit shadow-printing mode

sitm Enter italicizing mode

ritm Exit italicizing mode

swidm Enter wide character mode

rwidm Exit wide character mode

ssupm Enter superscript mode

rsupm Exit superscript mode

supcs List of characters available as superscripts

ssubm Enter subscript mode

rsubm Exit subscript mode

subcs List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be
shadow-printed, the rshm string is left blank. Thus programs that find a
control sequence in sshm but none in rshm should use the sshm control
sequence before every character to be shadow-printed; otherwise, the sshm
control sequence should be used once before the set of characters to be
shadow-printed, followed by rshm . The same is also true of each of the sitm /
ritm , swidm /rwidm , ssupm/rsupm , and ssubm/ rsubm pairs.

Note that terminfo also has a capability for printing emboldened text (bold).
While shadow printing and emboldened printing are similar in that they
‘‘darken’’ the text, many printers produce these two types of print in slightly
different ways. Generally, emboldened printing is done by overstriking the
same character one or more times. Shadow printing likewise usually involves
overstriking, but with a slight movement up and/or to the side so that the
character is ‘‘fatter.’’

It is assumed that enhanced printing modes are independent modes, so that it
would be possible, for instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing
a wide character should be given in widcs .

If only a subset of the printable ASCII characters can be printed as superscripts
or subscripts, they should be listed in supcs or subcs strings, respectively. If
the ssupm or ssubm strings contain control sequences, but the corresponding
supcs or subcs strings are empty, it is assumed that all printable ASCII
characters are available as superscripts or subscripts.

551 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

Automatic motion made after printing a superscript or subscript is assumed to
be the same as for regular characters. Thus, for example, printing any of the
following three examples will result in equivalent motion:

Bi B i Bi

Note that the existing msgr boolean capability describes whether motion
control sequences can be used while in ‘‘standout mode.’’ This capability is
extended to cover the enhanced printing modes added here. msgr should be
set for those printers that accept any motion control sequences without
affecting shadow, italicized, widened, superscript, or subscript printing.
Conversely, if msgr is not set, a program should end these modes before
attempting any motion.

Section 2-5: Alternate
Character Sets

In addition to allowing you to define line graphics (described in Section 1-12),
terminfo lets you define alternate character sets. The following capabilities
cover printers and terminals with multiple selectable or definable character
sets.

Alternate Character Sets

scs Select character set N

scsd Start definition of character set N, M
characters

defc Define character A, B dots wide,
descender D

rcsd End definition of character set N

csnm List of character set names

daisy Printer has manually changed
print-wheels

The scs , rcsd , and csnm strings are used with a single argument, N, a
number from 0 to 63 that identifies the character set. The scsd string is also
used with the argument N and another, M, that gives the number of characters
in the set. The defc string is used with three arguments: A gives the ASCII
code representation for the character, B gives the width of the character in
dots, and D is zero or one depending on whether the character is a
‘‘descender’’ or not. The defc string is also followed by a string of
‘‘image-data’’ bytes that describe how the character looks (see below).

Character set 0 is the default character set present after the printer has been
initialized. Not every printer has 64 character sets, of course; using scs with

Last modified 9 Jul 1996 SunOS 5.7 552

terminfo(4) File Formats

an argument that doesn’t select an available character set should cause a null
result from tparm .

If a character set has to be defined before it can be used, the scsd control
sequence is to be used before defining the character set, and the rcsd is to be
used after. They should also cause a null result from tparm when used with
an argument N that doesn’t apply. If a character set still has to be selected after
being defined, the scs control sequence should follow the rcsd control
sequence. By examining the results of using each of the scs , scsd , and rcsd
strings with a character set number in a call to tparm , a program can
determine which of the three are needed.

Between use of the scsd and rcsd strings, the defc string should be used to
define each character. To print any character on printers covered by
terminfo , the ASCII code is sent to the printer. This is true for characters in
an alternate set as well as ‘‘normal’’ characters. Thus the definition of a
character includes the ASCII code that represents it. In addition, the width of
the character in dots is given, along with an indication of whether the
character should descend below the print line (such as the lower case letter
‘‘g’’ in most character sets). The width of the character in dots also indicates
the number of image-data bytes that will follow the defc string. These
image-data bytes indicate where in a dot-matrix pattern ink should be applied
to ‘‘draw’’ the character; the number of these bytes and their form are defined
below under ‘‘Dot-Mapped Graphics.’’

It’s easiest for the creator of terminfo entries to refer to each character set by
number; however, these numbers will be meaningless to the application
developer. The csnm string alleviates this problem by providing names for
each number.

When used with a character set number in a call to tparm , the csnm string
will produce the equivalent name. These names should be used as a reference
only. No naming convention is implied, although anyone who creates a
terminfo entry for a printer should use names consistent with the names
found in user documents for the printer. Application developers should allow
a user to specify a character set by number (leaving it up to the user to
examine the csnm string to determine the correct number), or by name, where
the application examines the csnm string to determine the corresponding
character set number.

These capabilities are likely to be used only with dot-matrix printers. If they
are not available, the strings should not be defined. For printers that have
manually changed print-wheels or font cartridges, the boolean daisy is set.

Section 2-6:
Dot-Matrix Graphics

Dot-matrix printers typically have the capability of reproducing
‘‘raster-graphics’’ images. Three new numeric capabilities and three new string
capabilities can help a program draw raster-graphics images independent of

553 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

the type of dot-matrix printer or the number of pins or dots the printer can
handle at one time.

Dot-Matrix Graphics

npins Number of pins, N, in print-head

spinv Spacing of pins vertically in pins per inch

spinh Spacing of dots horizontally in dots per
inch

porder Matches software bits to print-head pins

sbim Start printing bit image graphics, B bits
wide

rbim End printing bit image graphics

The sbim sring is used with a single argument, B, the width of the image in
dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar
to the technique used for most dot-matrix printers: each pass of the printer’s
print-head is assumed to produce a dot-matrix that is N dots high and B dots
wide. This is typically a wide, squat, rectangle of dots. The height of this
rectangle in dots will vary from one printer to the next; this is given in the
npins numeric capability. The size of the rectangle in fractions of an inch will
also vary; it can be deduced from the spinv and spinh numeric capabilities.
With these three values an application can divide a complete raster-graphics
image into several horizontal strips, perhaps interpolating to account for
different dot spacing vertically and horizontally.

The sbim and rbim strings are used to start and end a dot-matrix image,
respectively. The sbim string is used with a single argument that gives the
width of the dot-matrix in dots. A sequence of ‘‘image-data bytes’’ are sent to
the printer after the sbim string and before the rbim string. The number of
bytes is a integral multiple of the width of the dot-matrix; the multiple and the
form of each byte is determined by the porder string as described below.

The porder string is a comma separated list of pin numbers optionally
followed by an numerical offset. The offset, if given, is separated from the list
with a semicolon. The position of each pin number in the list corresponds to a
bit in an 8-bit data byte. The pins are numbered consecutively from 1 to
npins , with 1 being the top pin. Note that the term ‘‘pin’’ is used loosely here;
‘‘ink-jet’’ dot-matrix printers don’t have pins, but can be considered to have an
equivalent method of applying a single dot of ink to paper. The bit positions in
porder are in groups of 8, with the first position in each group the most

Last modified 9 Jul 1996 SunOS 5.7 554

terminfo(4) File Formats

significant bit and the last position the least significant bit. An application
produces 8-bit bytes in the order of the groups in porder .

An application computes the ‘‘image-data bytes’’ from the internal image,
mapping vertical dot positions in each print-head pass into 8-bit bytes, using a
1 bit where ink should be applied and 0 where no ink should be applied. This
can be reversed (0 bit for ink, 1 bit for no ink) by giving a negative pin
number. If a position is skipped in porder , a 0 bit is used. If a position has a
lower case ‘x’ instead of a pin number, a 1 bit is used in the skipped position.
For consistency, a lower case ‘o’ can be used to represent a 0 filled, skipped bit.
There must be a multiple of 8 bit positions used or skipped in porder ; if not,
0 bits are used to fill the last byte in the least significant bits. The offset, if
given, is added to each data byte; the offset can be negative.

Some examples may help clarify the use of the porder string. The AT&T 470,
AT&T 475 and C.Itoh 8510 printers provide eight pins for graphics. The pins
are identified top to bottom by the 8 bits in a byte, from least significant to
most. The porder strings for these printers would be 8,7,6,5,4,3,2,1 .
The AT&T 478 and AT&T 479 printers also provide eight pins for graphics.
However, the pins are identified in the reverse order. The porder strings for
these printers would be 1,2,3,4,5,6,7,8 . The AT&T 5310, AT&T 5320,
DEC LA100, and DEC LN03 printers provide six pins for graphics. The pins
are identified top to bottom by the decimal values 1, 2, 4, 8, 16 and 32. These
correspond to the low six bits in an 8-bit byte, although the decimal values are
further offset by the value 63. The porder string for these printers would be
,,6,5,4,3,2,1;63 , or alternately o,o,6,5,4,3,2,1;63 .

Section 2-7: Effect of
Changing Printing

Resolution

If the control sequences to change the character pitch or the line pitch are
used, the pin or dot spacing may change:

Dot-Matrix Graphics

Changing the Character/Line Pitches

cpi Change character pitch

cpix If set, cpi changes spinh

lpi Change line pitch

lpix If set, lpi changes spinv

Programs that use cpi or lpi should recalculate the dot spacing:

Dot-Matrix Graphics

Effects of Changing the Character/Line Pitches

Before After

555 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

Using cpi with cpix clear:

$bold spinh ’$ $bold spinh$

Using cpi with cpix set:

$bold spinh ’$ $bold spinh = bold spinh ’cdot bold orhi
over { bold {orhi ’} }$

Using lpi with lpix clear:

$bold spinv ’$ $bold spinv$

Using lpi with lpix set:

$bold spinv ’$ $bold spinv = bold {spinv ’} cdot bold
orhi over { bold {orhi ’}}$

Using chr:

$bold spinh ’$ $bold spinh$

Using cvr:

$bold spinv ’$ $bold spinv$

orhi’ and orhi are the values of the horizontal resolution in steps per inch,
before using cpi and after using cpi , respectively. Likewise, orvi’ and orvi
are the values of the vertical resolution in steps per inch, before using lpi and
after using lpi , respectively. Thus, the changes in the dots per inch for
dot-matrix graphics follow the changes in steps per inch for printer resolution.

Section 2-8: Print
Quality

Many dot-matrix printers can alter the dot spacing of printed text to produce
near ‘‘letter quality’’ printing or ‘‘draft quality’’ printing. Usually it is
important to be able to choose one or the other because the rate of printing
generally falls off as the quality improves. There are three new strings used to
describe these capabilities.

Print Quality

snlq Set near-letter quality print

snrmq Set normal quality print

sdrfq Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn’t
have all three levels, one or two of the strings should be left blank as
appropriate.

Section 2-9: Printing
Rate and Buffer Size

Because there is no standard protocol that can be used to keep a program
synchronized with a printer, and because modern printers can buffer data

Last modified 9 Jul 1996 SunOS 5.7 556

terminfo(4) File Formats

before printing it, a program generally cannot determine at any time what has
been printed. Two new numeric capabilities can help a program estimate what
has been printed.

Print Rate/Buffer Size

cps Nominal print rate in characters per
second

bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if
this value is not given, the rate should be estimated at one-tenth the prevailing
baud rate. bufsz is the maximum number of subsequent characters buffered
before the guaranteed printing of an earlier character, assuming proper flow
control has been used. If this value is not given it is assumed that the printer
does not buffer characters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter
‘‘a’’ followed by 1000 additional characters is guaranteed to cause the letter
‘‘a’’ to print. If the same printer prints at the rate of 100 characters per second,
then it should take 10 seconds to print all the characters in the buffer, less if
the buffer is not full. By keeping track of the characters sent to a printer, and
knowing the print rate and buffer size, a program can synchronize itself with
the printer.

Note that most printer manufacturers advertise the maximum print rate, not
the nominal print rate. A good way to get a value to put in for cps is to
generate a few pages of text, count the number of printable characters, and
then see how long it takes to print the text.

Applications that use these values should recognize the variability in the print
rate. Straight text, in short lines, with no embedded control sequences will
probably print at close to the advertised print rate and probably faster than the
rate in cps . Graphics data with a lot of control sequences, or very long lines of
text, will print at well below the advertised rate and below the rate in cps . If
the application is using cps to decide how long it should take a printer to
print a block of text, the application should pad the estimate. If the application
is using cps to decide how much text has already been printed, it should
shrink the estimate. The application will thus err in favor of the user, who
wants, above all, to see all the output in its correct place.

FILES
/usr/share/lib/terminfo/?/* compiled terminal description

database

/usr/share/lib/.COREterm/?/* subset of compiled terminal
description database

557 SunOS 5.7 Last modified 9 Jul 1996

File Formats terminfo(4)

/usr/share/lib/tabset/* tab settings for some terminals, in a
format appropriate to be output to
the terminal (escape sequences that
set margins and tabs)

SEE ALSO ls (1), pg(1), stty (1), tput (1), tty (1), vi (1), infocmp (1M), tic (1M),
printf (3S), curses (3X), curses (3XC)

NOTES The most effective way to prepare a terminal description is by imitating the
description of a similar terminal in terminfo and to build up a description
gradually, using partial descriptions with a screen oriented editor, such as vi ,
to check that they are correct. To easily test a new terminal description the
environment variable TERMINFOcan be set to the pathname of a directory
containing the compiled description, and programs will look there rather than
in /usr/share/lib/terminfo .

Last modified 9 Jul 1996 SunOS 5.7 558

TIMEZONE(4) File Formats

NAME TIMEZONE – set default system time zone and locale

SYNOPSIS /etc/TIMEZONE /etc/default/init

DESCRIPTION This file sets the time zone environment variable TZ, and the locale-related
environment variables LANG, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, and LC_TIME.

/etc/TIMEZONE is a symbolic link to /etc/default/init .

The number of environments that can be set from /etc/default/init is
limited to 20.

SEE ALSO init (1M), ctime (3C), environ (5)

559 SunOS 5.7 Last modified 20 Dec 1992

File Formats timezone(4)

NAME timezone – default timezone data base

SYNOPSIS /etc/timezone

DESCRIPTION The timezone file contains information regarding the default timezone for each
host in a domain. Alternatively, a single default line for the entire domain may
be specified. Each entry has the format:

Timezone-name official-host-or-domain-name

Items are separated by any number of blanks and/or TAB characters. A ‘#’
indicates the beginning of a comment; characters up to the end of the line are
not interpreted by routines which search the file. The timezone is a pathname
relative to the directory /usr/share/lib/zoneinfo .

This file is not actually referenced by any system software; it is merely used as
a source file to construct the NIS timezone.byname map. This map is read
by the program /usr/etc/install/sysIDtool to initialize the timezone of
the client system at installation time.

The timezone file does not set the timezone environment variable TZ. See
TIMEZONE(4) for information to set the TZ environment variable.

EXAMPLES EXAMPLE 1 A sample display of timezone command.

Here is a typical line from the /etc/timezone file:

US/Eastern East.Sun.COM #Sun East Coast

FILES
/etc/timezone

SEE ALSO TIMEZONE(4)

Last modified 12 May 1992 SunOS 5.7 560

tnf_kernel_probes(4) File Formats

NAME tnf_kernel_probes – TNF kernel probes

DESCRIPTION The set of probes (trace instrumentation points) available in the standard
kernel. The probes log trace data to a kernel trace buffer in Trace Normal Form
(TNF). Kernel probes are controlled by prex (1). A snapshot of the kernel trace
buffer can be made using tnfxtract (1) and examined using tnfdump (1).

Each probe has a name and is associated with a set of symbolic keys, or
categories. These are used to select and control probes from prex (1). A probe
that is enabled for tracing generates a TNF record, called an event record. An
event record contains two common members and may contain other
probe-specific data members.

Common Members tnf type name member name

tnf_probe_event tag

tnf_time_delta time_delta

tag encodes TNF references to two other records:

tag describes the layout
of the event record

schedule identifies the
writing thread and
also contains a
64-bit base time in
nanoseconds.

time_delta a 32-bit time offset from the base time; the sum of
the two times is the actual time of the event.

Threads thread_create

tnf_kthread_id tid

tnf_pid pid

tnf_symbol start_pc

Thread creation event.
tid the thread identifier for the new thread

pid the process identifier for the new thread

561 SunOS 5.7 Last modified 4 Mar 1997

File Formats tnf_kernel_probes(4)

start_pc the kernel address of its start routine.
thread_state

tnf_kthread_id tid

tnf_microstate state

Thread microstate transition events.
tid optional; if it is absent, the event is for the writing thread,

otherwise the event is for the specified thread.

state indicates the thread state:

� running in user mode

� running in system mode

� asleep waiting for a user-mode lock

� asleep on a kernel object,

� runnable (waiting for a cpu)

� stopped.

The values of this member are defined in <sys/msacct.h> .
Note that to reduce trace output, transitions between the
system and user microstates that are induced by system calls
are not traced. This information is implicit in the system call
entry and exit events.

thread_exit

Thread termination event for writing thread. This probe has no data members
other than the common members.

Scheduling thread_queue

tnf_kthread_id tid

tnf_cpuid cpuid

tnf_long priority

tnf_ulong queue_length

Thread scheduling events. These are triggered when a runnable thread is
placed on a dispatch queue.
cpuid specifies the cpu to which the queue is attached.

Last modified 4 Mar 1997 SunOS 5.7 562

tnf_kernel_probes(4) File Formats

priority the (global) dispatch priority of the thread.

queue_length the current length of the cpu’s dispatch queue.

Blocking thread_block

tnf_opaque reason

tnf_symbols stack

Thread blockage event. This probe captures a partial stack backtrace when the
current thread blocks.
reason the address of the object on which the thread is blocking.

symbols references a TNF array of kernel addresses representing the
PCs on the stack at the time the thread blocks.

System Calls syscall_start

tnf_sysnum sysnum

System call entry event.
sysnum the system call number. The writing thread implicitly enters

the system microstate with this event.
syscall_end

tnf_long rval1

tnf_long rval2

tnf_long errno

System call exit event.
rval1

rval2 the two return values of the system call

errno the error return.
The writing thread implicitly enters the user microstate with this event.

Page Faults address_fault

563 SunOS 5.7 Last modified 4 Mar 1997

File Formats tnf_kernel_probes(4)

tnf_opaque address

tnf_fault_type fault_type

tnf_seg_access access

Address-space fault event.
address gives the faulting virtual address.

fault_type gives the fault type: invalid page, protection fault, software
requested locking or unlocking.

access gives the desired access protection: read, write, execute or
create. The values for these two members are defined in
<vm/seg_enum.h> .

major_fault

tnf_opaque vnode

tnf_offset offset

Major page fault event. The faulting page is mapped to the file given by the
vnode member, at the given offset into the file. (The faulting virtual address is in
the most recent address_fault event for the writing thread.)

anon_private

tnf_opaque address

Copy-on-write page fault event.
address the virtual address at which the new page is mapped.
anon_zero

tnf_opaque address

Zero-fill page fault event.
address the virtual address at which the new page is mapped.
page_unmap

tnf_opaque vnode

tnf_offset offset

Page unmapping event. This probe marks the unmapping of a file system page
from the system.
vnodeandoffset identify the file and offset of the page being unmapped.

Last modified 4 Mar 1997 SunOS 5.7 564

tnf_kernel_probes(4) File Formats

Pageins and Pageouts pagein

tnf_opaque vnode

tnf_offset offset

tnf_size size

Pagein start event. This event signals the initiation of pagein I/O.
vnodeandoffset identify the file and offset to be paged in.

size specifies the number of bytes to be paged in.
pageout

tnf_opaque vnode

tnf_ulong pages_pageout

tnf_ulong pages_freed

tnf_ulong pages_reclaimed

Pageout completion event. This event signals the completion of pageout I/O.
vnode identifies the file of the pageout request.

pages_pageout the number of pages written out.

pages_freed the number of pages freed after being written out.

pages_reclaimed the number of pages reclaimed after being
written out.

Page Daemon (Page
Stealer)

pageout_scan_start

tnf_ulong pages_free

tnf_ulong pages_needed

Page daemon scan start event. This event signals the beginning of one iteration
of the page daemon.
pages_free the number of free pages in the system.

pages_needed the number of pages desired free.
pageout_scan_end

565 SunOS 5.7 Last modified 4 Mar 1997

File Formats tnf_kernel_probes(4)

tnf_ulong pages_free

tnf_ulong pages_scanned

Page daemon scan end event. This event signals the end of one iteration of the
page daemon.
pages_free the number of free pages in the system.

pages_scanned the number of pages examined by the page daemon.
(Potentially more pages will be freed when any queued
pageout requests complete.)

Swapper swapout_process

tnf_pid pid

tnf_ulong page_count

Address space swapout event. This event marks the swapping out of a process
address space.
pid identifies the process.

page_count reports the number of pages either freed or queued for
pageout.

swapout_lwp

tnf_pid pid

tnf_lwpid lwpid

tnf_kthread_id tid

tnf_ulong page_count

Light-weight process swapout event. This event marks the swapping out of an
LWP and its stack.
pid the LWP’s process identifier

lwpid the LWP identifier

tid member the LWP’s kernel thread identifier.

page_count the number of pages swapped out.
swapin_lwp

Last modified 4 Mar 1997 SunOS 5.7 566

tnf_kernel_probes(4) File Formats

tnf_pid pid

tnf_lwpid lwpid

tnf_kthread_id tid

tnf_ulong page_count

Light-weight process swapin event. This event marks the swapping in of an
LWP and its stack.
pid the LWP’s process identifier

lwpid the LWP identifier

tid the LWP’s kernel thread identifier.

page_count the number of pages swapped in.

Local I/O strategy

tnf_device device

tnf_diskaddr block

tnf_size size

tnf_opaque buf

tnf_bioflags flags

Block I/O strategy event. This event marks a call to the strategy (9E) routine
of a block device driver.
device contains the major and minor numbers of the device.

block the logical block number to be accessed on the device.

size the size of the I/O request.

buf the kernel address of the buf (9S) structure associated with
the transfer.

flags the buf (9S) flags associated with the transfer.
biodone

tnf_device device

tnf_diskaddr block

tnf_opaque buf

567 SunOS 5.7 Last modified 4 Mar 1997

File Formats tnf_kernel_probes(4)

Buffered I/O completion event. This event marks calls to the biodone (9F)
routine.
device contains the major and minor numbers of the device.

block the logical block number accessed on the device.

buf the kernel address of the buf (9S) structure associated with
the transfer.

physio_start

tnf_device device

tnf_offset offset

tnf_size size

tnf_bioflags rw

Raw I/O start event. This event marks entry into the physio (9F) routine
which performs unbuffered I/O.
device contains the major and minor numbers of the device of the

transfer.

offset the logical offset on the device for the transfer.

size the number of bytes to be transferred.

rw the direction of the transfer: read or write (see buf (9S)).
physio_end

tnf_device device

Raw I/O end event. This event marks exit from the physio (9F) routine.
device the major and minor numbers of the device of the transfer.

SEE ALSO prex (1), tnfdump (1), tnfxtract (1), libtnfctl (3X), TNF_PROBE(3X),
tracing (3X), strategy (9E), biodone (9F), physio (9F), buf (9S)

Last modified 4 Mar 1997 SunOS 5.7 568

ts_dptbl(4) File Formats

NAME ts_dptbl – time-sharing dispatcher parameter table

DESCRIPTION The process scheduler (or dispatcher) is the portion of the kernel that controls
allocation of the CPU to processes. The scheduler supports the notion of
scheduling classes where each class defines a scheduling policy, used to
schedule processes within that class. Associated with each scheduling class is a
set of priority queues on which ready to run processes are linked. These
priority queues are mapped by the system configuration into a set of global
scheduling priorities which are available to processes within the class. (The
dispatcher always selects for execution the process with the highest global
scheduling priority in the system.) The priority queues associated with a given
class are viewed by that class as a contiguous set of priority levels numbered
from 0 (lowest priority) to n (highest priority—a configuration-dependent
value). The set of global scheduling priorities that the queues for a given class
are mapped into might not start at zero and might not be contiguous
(depending on the configuration).

Processes in the time-sharing class which are running in user mode (or in
kernel mode before going to sleep) are scheduled according to the parameters
in a time-sharing dispatcher parameter table (ts_dptbl). Processes in the
inter-active scheduling class are also scheduled according to the parameters in
the time-sharing dispatcher parameter table. (Time-sharing processes and
inter-active processes running in kernel mode after sleeping are run within a
special range of priorities reserved for such processes and are not affected by
the parameters in the ts_dptbl until they return to user mode.) The
ts_dptbl consists of an array (config_ts_dptbl[]) of parameter
structures (struct tsdpent_t), one for each of the n priority levels used by
time-sharing processes and inter-active processes in user mode. The structures
are accessed via a pointer, (ts_dptbl), to the array. The properties of a given
priority level i are specified by the ith parameter structure in this array
(ts_dptbl[i]).

A parameter structure consists of the following members. These are also
described in the /usr/include/sys/ts.h header.
ts_globpriThe global scheduling priority associated with this priority level. The

mapping between time-sharing priority levels and global scheduling
priorities is determined at boot time by the system configuration.
ts_globpri is the only member of the ts_dptbl which cannot be
changed with dispadmin (1M).

ts_quantumThe length of the time quantum allocated to processes at this level in
ticks (Hz).

ts_tqexpPriority level of the new queue on which to place a process running at
the current level if it exceeds its time quantum. Normally this field
links to a lower priority time-sharing level that has a larger quantum.

569 SunOS 5.7 Last modified 26 Apr 1994

File Formats ts_dptbl(4)

ts_slpretPriority level of the new queue on which to place a process, that was
previously in user mode at this level, when it returns to user mode
after sleeping. Normally this field links to a higher priority level that
has a smaller quantum.

ts_maxwaitA per process counter, ts_dispwait is initialized to zero each time a
time-sharing or inter-active process is placed back on the dispatcher
queue after its time quantum has expired or when it is awakened
(ts_dispwait is not reset to zero when a process is preempted by a
higher priority process). This counter is incremented once per second
for each process on the dispatcher queue. If a process’s ts_dispwait
value exceeds the ts_maxwait value for its level, the process’s
priority is changed to that indicated by ts_lwait . The purpose of this
field is to prevent starvation.

ts_lwait Move a process to this new priority level if ts_dispwait is greater
than ts_maxwait .

An administrator can affect the behavior of the time-sharing portion of the
scheduler by reconfiguring the ts_dptbl . Since processes in the time-sharing
and inter-active scheduling classes share the same dispatch parameter table
(ts_dptbl), changes to this table will affect both scheduling classes. There are
two methods available for doing this: reconfigure with a loadable module at
boot-time or by using dispadmin (1M) at run-time.

TS_DPTBL
LOADABLE

MODULE

The ts_dptbl can be reconfigured with a loadable module which contains a
new time sharing dispatch table. The module containing the dispatch table is
separate from the TS loadable module which contains the rest of the
time-sharing and inter-active software. This is the only method that can be
used to change the number of time-sharing priority levels or the set of global
scheduling priorities used by the time-sharing and inter-active classes. The
relevant procedure and source code is described in the
REPLACING THE TS_DPTBL LOADABLE MODULEsection.

DISPADMIN
CONFIGURATION

FILE

With the exception of ts_globpri all of the members of the ts_dptbl can
be examined and modified on a running system using the dispadmin (1M)
command. Invoking dispadmin for the time-sharing or inter-active class
allows the administrator to retrieve the current ts_dptbl configuration from
the kernel’s in-core table, or overwrite the in-core table with values from a
configuration file. The configuration file used for input to dispadmin must
conform to the specific format described below.

Blank lines are ignored and any part of a line to the right of a # symbol is
treated as a comment. The first non-blank, non-comment line must indicate the
resolution to be used for interpreting the ts_quantum time quantum values.
The resolution is specified as

Last modified 26 Apr 1994 SunOS 5.7 570

ts_dptbl(4) File Formats

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the
resolution used is the reciprocal of res in seconds (for example, RES=1000
specifies millisecond resolution). Although very fine (nanosecond) resolution
may be specified, the time quantum lengths are rounded up to the next
integral multiple of the system clock’s resolution.

The remaining lines in the file are used to specify the parameter values for
each of the time-sharing priority levels. The first line specifies the parameters
for time-sharing level 0, the second line specifies the parameters for
time-sharing level 1, etc. There must be exactly one line for each configured
time-sharing priority level.

EXAMPLES EXAMPLE 1 A sample from a configuration file.

The following excerpt from a dispadmin configuration file illustrates the
format. Note that for each line specifying a set of parameters there is a
comment indicating the corresponding priority level. These level numbers
indicate priority within the time-sharing and inter-active classes, and the
mapping between these time-sharing priorities and the corresponding global
scheduling priorities is determined by the configuration specified in the ts
master file. The level numbers are strictly for the convenience of the
administrator reading the file and, as with any comment, they are ignored by
dispadmin . dispadmin assumes that the lines in the file are ordered by
consecutive, increasing priority level (from 0 to the maximum configured
time-sharing priority). The level numbers in the comments should normally
agree with this ordering; if for some reason they don’t, however, dispadmin
is unaffected.

Time-Sharing Dispatcher Configuration File RES=1000

#
ts_quantum

ts_tqexp ts_slpret ts_maxwait ts_lwait PRIORITY

LEVEL

500 0 10 5 10 # 0

500 0 11 5 11 # 1

500 1 12 5 12 # 2

500 1 13 5 13 # 3

500 2 14 5 14 # 4

500 2 15 5 15 # 5

450 3 16 5 16 # 6

571 SunOS 5.7 Last modified 26 Apr 1994

File Formats ts_dptbl(4)

450 3 17 5 17 # 7

.

.

.

50 48 59 5 59 # 58

50 49 59 5 59 # 59

REPLACING THE
TS_DPTBL

LOADABLE
MODULE

In order to change the size of the time sharing dispatch table, the loadable
module which contains the dispatch table information will have to be built. It
is recommended that you save the existing module before using the following
procedure.

1. Place the dispatch table code shown below in a file called ts_dptbl.c An
example of this file follows.

2. Compile the code using the given compilation and link lines supplied.
cc −c −0 −D_KERNEL
ts_dptbl.c
ld −r −o TS_DPTBL ts_dptbl.o

3. Copy the current dispatch table in /kernel/sched to TS_DPTBL.bak .

4. Replace the current TS_DPTBLin /kernel/sched .

5. You will have to make changes in the /etc/system file to reflect the
changes to the sizes of the tables. See system (4). The two variables affected
are ts_maxupri and ts_maxkmdpri . The syntax for setting these is as
follows:
set TS:ts_maxupri=(value for max time-sharing user priority)
set TS:ts_maxkmdpri=(number of kernel mode priorities - 1)

6. Reboot the system to use the new dispatch table.

NOTE: Great care should be used in replacing the dispatch table using this m

The following is an example of a ts_dptbl.c file used for building the new
ts_dptbl .

/* BEGIN ts_dptbl.c */
#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/ts.h>
#include <sys/rtpriocntl.h>
/*

* This is the loadable module wrapper.
*/

#include <sys/modctl.h>
extern struct mod_ops mod_miscops;

Last modified 26 Apr 1994 SunOS 5.7 572

ts_dptbl(4) File Formats

/*
* Module linkage information for the kernel.
*/

static struct modlmisc modlmisc = {
&mod_miscops, "Time sharing dispatch table"

};
static struct modlinkage modlinkage = {

MODREV_1, &modlmisc, 0
};
_init()
{

return (mod_install(&modlinkage));
}
_info(modinfop)

struct modinfo *modinfop;
{

return (mod_info(&modlinkage, modinfop));
}
/*

* array of global priorities used by ts procs sleeping or
* running in kernel mode after sleep. Must have at least
* 40 values.
*/

pri_t config_ts_kmdpris[] = {
60,61,62,63,64,65,66,67,68,69,
70,71,72,73,74,75,76,77,78,79,
80,81,82,83,84,85,86,87,88,89,
90,91,92,93,94,95,96,97,98,99,

};
tsdpent_t config_ts_dptbl[] = {

/* glbpri qntm tqexp slprt mxwt lwt */

0, 100, 0, 10, 5, 10,

1, 100, 0, 11, 5, 11,

2, 100, 1, 12, 5, 12,

3, 100, 1, 13, 5, 13,

4, 100, 2, 14, 5, 14,

5, 100, 2, 15, 5, 15,

6, 100, 3, 16, 5, 16,

7, 100, 3, 17, 5, 17,

8, 100, 4, 18, 5, 18,

9, 100, 4, 19, 5, 19,

10, 80, 5, 20, 5, 20,

11, 80, 5, 21, 5, 21,

573 SunOS 5.7 Last modified 26 Apr 1994

File Formats ts_dptbl(4)

12, 80, 6, 22, 5, 22,

13, 80, 6, 23, 5, 23,

14, 80, 7, 24, 5, 24,

15, 80, 7, 25, 5, 25,

16, 80, 8, 26, 5, 26,

17, 80, 8, 27, 5, 27,

18, 80, 9, 28, 5, 28,

19, 80, 9, 29, 5, 29,

20, 60, 10, 30, 5, 30,

21, 60, 11, 31, 5, 31,

22, 60, 12, 32, 5, 32,

23, 60, 13, 33, 5, 33,

24, 60, 14, 34, 5, 34,

25, 60, 15, 35, 5, 35,

26, 60, 16, 36, 5, 36,

27, 60, 17, 37, 5, 37,

28, 60, 18, 38, 5, 38,

29, 60, 19, 39, 5, 39,

30, 40, 20, 40, 5, 40,

31, 40, 21, 41, 5, 41,

32, 40, 22, 42, 5, 42,

33, 40, 23, 43, 5, 43,

34, 40, 24, 44, 5, 44,

35, 40, 25, 45, 5, 45,

36, 40, 26, 46, 5, 46,

37, 40, 27, 47, 5, 47,

38, 40, 28, 48, 5, 48,

39, 40, 29, 49, 5, 49,

40, 20, 30, 50, 5, 50,

41, 20, 31, 50, 5, 50,

42, 20, 32, 51, 5, 51,

Last modified 26 Apr 1994 SunOS 5.7 574

ts_dptbl(4) File Formats

43, 20, 33, 51, 5, 51,

44, 20, 34, 52, 5, 52,

45, 20, 35, 52, 5, 52,

46, 20, 36, 53, 5, 53,

47, 20, 37, 53, 5, 53,

48, 20, 38, 54, 5, 54,

49, 20, 39, 54, 5, 54,

50, 10, 40, 55, 5, 55,

51, 10, 41, 55, 5, 55,

52, 10, 42, 56, 5, 56,

53, 10, 43, 56, 5, 56,

54, 10, 44, 57, 5, 57,

55, 10, 45, 57, 5, 57,

56, 10, 46, 58, 5, 58,

57, 10, 47, 58, 5, 58,

58, 10, 48, 59, 5, 59,

59, 10, 49, 59, 5, 59,

}; short config_ts_maxumdpri = sizeof (config_ts_dptbl)/16 - 1; /* * Return the
address of config_ts_dptbl */ tsdpent_t * ts_getdptbl() { return
(config_ts_dptbl); } /* * Return the address of config_ts_kmdpris */ int *
ts_getkmdpris() { return (config_ts_kmdpris); } /* * Return the address of
ts_maxumdpri */ short ts_getmaxumdpri() { return (config_ts_maxumdpri); }
/* END ts_dptbl.c */

FILES
<sys/ts.h>

SEE ALSO priocntl (1), dispadmin (1M), priocntl (2), system (4)

System Administration Guide, Volume I System Interface Guide

NOTES dispadmin does some limited sanity checking on the values supplied in the
configuration file. The sanity checking is intended to ensure that the new
ts_dptbl values do not cause the system to panic. The sanity checking does
not attempt to analyze the effect that the new values will have on the
performance of the system. Unusual ts_dptbl configurations may have a
dramatic negative impact on the performance of the system.

575 SunOS 5.7 Last modified 26 Apr 1994

File Formats ts_dptbl(4)

No sanity checking is done on the ts_dptbl values specified in the
TS_DPTBLloadable module. Specifying an inconsistent or nonsensical
ts_dptbl configuration through the TS_DPTBL loadable module could cause
serious performance problems and/or cause the system to panic.

Last modified 26 Apr 1994 SunOS 5.7 576

ttydefs(4) File Formats

NAME ttydefs – file contains terminal line settings information for ttymon

DESCRIPTION /etc/ttydefs is an administrative file that contains records divided into
fields by colons (":"). This information used by ttymon to set up the speed and
terminal settings for a TTY port.

The ttydefs file contains the following fields:
ttylabel The string ttymon tries to match against the TTY port’s

ttylabel field in the port monitor administrative file. It often
describes the speed at which the terminal is supposed to run,
for example, 1200 .

initial-flags Contains the initial termio (7I) settings to which the
terminal is to be set. For example, the system administrator
will be able to specify what the default erase and kill
characters will be. initial-flags must be specified in the syntax
recognized by the stty command.

final-flags final-flags must be specified in the same format as initial-flags.
ttymon sets these final settings after a connection request
has been made and immediately prior to invoking a port’s
service.

autobaud If the autobaud field contains the character ’A,’ autobaud
will be enabled. Otherwise, autobaud will be disabled.
ttymon determines what line speed to set the TTY port to
by analyzing the carriage returns entered. If autobaud has
been disabled, the hunt sequence is used for baud rate
determination.

nextlabel If the user indicates that the current terminal setting is not
appropriate by sending a BREAK, ttymon searchs for a
ttydefs entry whose ttylabel field matches the nextlabel
field. If a match is found, ttymon uses that field as its
ttylabel field. A series of speeds is often linked together in
this way into a closed set called a hunt sequence. For
example, 4800 may be linked to 1200 , which in turn is
linked to 2400 , which is finally linked to 4800 .

SEE ALSO sttydefs (1M), ttymon (1M), termio (7I)

System Administration Guide, Volume I

577 SunOS 5.7 Last modified 27 Jan 1994

File Formats ttysrch(4)

NAME ttysrch – directory search list for ttyname

DESCRIPTION ttysrch is an optional file that is used by the ttyname library routine. This
file contains the names of directories in /dev that contain terminal and
terminal-related device files. The purpose of this file is to improve the
performance of ttyname by indicating which subdirectories in /dev contain
terminal-related device files and should be searched first. These subdirectory
names must appear on separate lines and must begin with /dev . Those path
names that do not begin with /dev will be ignored and a warning will be sent
to the console. Blank lines (lines containing only white space) and lines
beginning with the comment character "#" will be ignored. For each file listed
(except for the special entry /dev), ttyname will recursively search through
subdirectories looking for a match. If /dev appears in the ttysrch file, the
/dev directory itself will be searched but there will not be a recursive search
through its subdirectories.

When ttyname searches through the device files, it tries to find a file whose
major/minor device number, file system identifier, and inode number match
that of the file descriptor it was given as an argument. If a match is not found,
it will settle for a match of just major/minor device and file system identifier,
if one can be found. However, if the file descriptor is associated with a cloned
device, this algorithm does not work efficiently because the inode number of
the device file associated with a clonable device will never match the inode
number of the file descriptor that was returned by the open of that clonable
device. To help with these situations, entries can be put into the
/etc/ttysrch file to improve performance when cloned devices are used as
terminals on a system (for example, for remote login). However, this is only
useful if the minor devices related to a cloned device are put into a
subdirectory. (It is important to note that device files need not exist for cloned
devices and if that is the case, ttyname will eventually fail.) An optional
second field is used in the /etc/ttysrch file to indicate the matching criteria.
This field is separated by white space (any combination of blanks or tabs). The
letter Mmeans major/minor device number, F means file system identifier, and
I means inode number. If this field is not specified for an entry, the default is
MFI which means try to match on all three. For cloned devices the field should
be MF, which indicates that it is not necessary to match on the inode number.

Without the /etc/ttysrch file, ttyname will search the /dev directory by
first looking in the directories /dev/term , /dev/pts , and /dev/xt . If a
system has terminal devices installed in directories other than these, it may
help performance if the ttysrch file is created and contains that list of
directories.

EXAMPLES EXAMPLE 1 A sample display of /etc/ttysrch command.

A sample /etc/ttysrch file follows:

Last modified 23 Feb 1994 SunOS 5.7 578

ttysrch(4) File Formats

/dev/term MFI
/dev/pts MFI
/dev/xt MFI
/dev/slan MF

This file tells ttyname that it should first search through those directories
listed and that when searching through the /dev/slan directory, if a file is
encountered whose major/minor devices and file system identifier match that
of the file descriptor argument to ttyname , this device name should be
considered a match.

FILES
/etc/ttysrch

SEE ALSO ttyname (3C)

579 SunOS 5.7 Last modified 23 Feb 1994

File Formats ufsdump(4)

NAME ufsdump, dumpdates – incremental dump format

SYNOPSIS #include <sys/types.h>

#include <sys/inode.h>

#include <protocols/dumprestore.h>

/etc/dumpdates

DESCRIPTION Tapes used by ufsdump (1M) and ufsrestore (1M) contain:

� a header record

� two groups of bit map records

� a group of records describing directories

� a group of records describing files

The format of the header record and of the first record of each description as
given in the include file <protocols/dumprestore.h> is:

#define TP_BSIZE 1024

#define NTREC 10

#define HIGHDENSITYTREC 32

#define CARTRIDGETREC 63

#define TP_NINDIR (TP_BSIZE/2)

#define TP_NINOS (TP_NINDIR / sizeop (long))

#define LBLSIZE 16

#define NAMELEN 64

#define NFS_MAGIC (int) 60012

#define CHECKSUM (int) 84446

union u_data { char s_addrs[TP_NINDIR]; long s_inos[TP_NINOS]; union u_spcl { char dummy[T

long c_type;

time_t c_date;

time_t c_ddate;

long c_volume;

Last modified 7 Jan 1994 SunOS 5.7 580

ufsdump(4) File Formats

daddr_t c_tapea;

ino_t c_inumber;

long c_magic;

long c_checksum;

struct dinode c_dinode;

long c_count;

union u_data c_data;

char c_label[LBLSIZE];

long c_level;

char c_filesys[NAMELEN];

char c_dev[NAMELEN];

char c_host[NAMELEN];

long c_flags;

long c_firstrec;

long c_spare[32];

} s_spcl; } u_spcl; #define spcl u_spcl.s_spcl #define c_addr c_data.s_addrs #define c

#define TS_TAPE 1

#define TS_INODE 2

#define TS_ADDR 4

#define TS_BITS 3

#define TS_CLRI 6

#define TS_END 5

#define TS_EOM 7

#define DR_NEWHEADER 1

#define DR_INODEINFO 2

#define DR_REDUMP 4

#define DR_TRUELIC 8

581 SunOS 5.7 Last modified 7 Jan 1994

File Formats ufsdump(4)

#define DUMPOUTFMT "%-24s %c %s"

#define DUMPINFMT "%24s %c %[^ \] \ "

The constants are described as follows:
TP_BSIZE Size of file blocks on the dump tapes. Note that

TP_BSIZE must be a multiple of DEV_BSIZE .

NTREC Default number of TP_BSIZE byte records in a
physical tape block, changeable by the b option
to ufsdump (1M) .

HIGHDENSITYNTREC Default number of TP_BSIZE byte records in a
physical tape block on 6250 BPI or higher density
tapes.

CARTRIDGETREC Default number of TP_BSIZE records in a
physical tape block on cartridge tapes.

TP_NINDIR Number of indirect pointers in a TS_INODEor
TS_ADDRrecord. It must be a power of 2.

TP_NINOS The maximum number of volumes on a tape.
Used for tape labeling in hsmdumpand
hsmrestore (available with Online:Backup 2.0
optional software package SUNWhsm).

LBLSIZE The maximum size of a volume label. Used for
tape labeling in hsmdumpand hsmrestore
(available with Online:Backup 2.0 optional
software package SUNWhsm).

NAMELEN The maximum size of a host’s name.

NFS_MAGIC All header records have this number in c_magic
.

CHECKSUM Header records checksum to this value.
The TS_ entries are used in the c_type field to indicate what sort of header
this is. The types and their meanings are as follows:
TS_TAPE Tape volume label.

TS_INODE A file or directory follows. The c_dinode field is a copy of
the disk inode and contains bits telling what sort of file this
is.

Last modified 7 Jan 1994 SunOS 5.7 582

ufsdump(4) File Formats

TS_ADDR A subrecord of a file description. See s_addrs below.

TS_BITS A bit map follows. This bit map has a one bit for each inode
that was dumped.

TS_CLRI A bit map follows. This bit map contains a zero bit for all
inodes that were empty on the file system when dumped.

TS_END End of tape record.

TS_EOM floppy EOM — restore compat with old dump
The flags are described as follows:
DR_NEWHEADERNew format tape header.

DR_INFODEINFOHeader contains starting inode info.

DR_REDUMP Dump contains recopies of active files.

DR_TRUEINC Dump is a "true incremental".

DUMPOUTFMT Name, incon, and ctime (date) for printf.

DUMPINFMT Inverse for scanf.
The fields of the header structure are as follows:
s_addrs An array of bytes describing the blocks of the dumped file.

A byte is zero if the block associated with that byte was not
present on the file system; otherwise, the byte is non-zero. If
the block was not present on the file lsystem, no block was
dumped; the block will be stored as a hole in the file. If there
is not sufficient space in this record to describe all the blocks
in a file, TS_ADDRrecords will be scattered through the file,
each one picking up where the last left off

s_inos The starting inodes on tape.

c_type The type of the record.

c_date The date of the previous dump.

c_ddate The date of this dump.

c_volume The current volume number of the dump.

c_tapea The logical block of this record.

583 SunOS 5.7 Last modified 7 Jan 1994

File Formats ufsdump(4)

c_inumber The number of the inode being dumped if this is of type
TS_INODE .

c_magic This contains the value MAGICabove, truncated as needed.

c_checksum This contains whatever value is needed to make the record
sum to CHECKSUM.

c_dinode This is a copy of the inode as it appears on the file system.

c_count The count of bytes in s_addrs .

u_data c_data The union of either u_data c_data The union of either
s_addrs or s_inos .

c_label Label for this dump.

c_level Level of this dump.

c_filesys Name of dumped file system.

c_dev Name of dumped service.

c_host Name of dumped host.

c_flags Additional information.

c_firstrec First record on volume.

c_spare Reserved for future uses.
Each volume except the last ends with a tapemark (read as an end of file). The
last volume ends with a TS_ENDrecord and then the tapemark.

The dump history is kept in the file /etc/dumpdates . It is an ASCII file
with three fields separated by white space:

� The name of the device on which the dumped file system resides.

� The level number of the dump tape; see ufsdump (1M) .

� The date of the incremental dump in the format generated by ctime (3C) .

DUMPOUTFMTis the format to use when using printf (3S) to write an entry to
/etc/dumpdates ; DUMPINFMTis the format to use when using scanf (3S)
to read an entry from /etc/dumpdates .

ATTRIBUTES See attributes (5) for a description of the following attributes:

Last modified 7 Jan 1994 SunOS 5.7 584

ufsdump(4) File Formats

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Unstable

SEE ALSO ufsdump (1M) , ufsrestore (1M) , ctime (3C) , printf (3S) , scanf (3S) ,
attributes (5) , types (5)

585 SunOS 5.7 Last modified 7 Jan 1994

File Formats updaters(4)

NAME updaters – configuration file for NIS updating

SYNOPSIS /var/yp/updaters

DESCRIPTION The file /var/yp/updaters is a makefile (see make(1S)) which is used for
updating the Network Information Service (NIS) databases. Databases can only
be updated in a secure network, that is, one that has a publickey (4)
database. Each entry in the file is a make target for a particular NIS database.
For example, if there is an NIS database named passwd.byname that can be
updated, there should be a make target named passwd.byname in the
updaters file with the command to update the file.

The information necessary to make the update is passed to the update
command through standard input. The information passed is described below
(all items are followed by a NEWLINE except for 4 and 6):
1. Network name of client wishing to make the update (a string).

2. Kind of update (an integer).

3. Number of bytes in key (an integer).

4. Actual bytes of key.

5. Number of bytes in data (an integer).

6. Actual bytes of data.
After receiving this information through standard input, the command to
update the particular database determines whether the user is allowed to make
the change. If not, it exits with the status YPERR_ACCESS.If the user is
allowed to make the change, the command makes the change and exits with a
status of zero. If there are any errors that may prevent the updaters from
making the change, it should exit with the status that matches a valid NIS
error code described in <rpcsvc/ypclnt.h> .

FILES
/var/yp/updaters The makefile used for updating the NIS

databases.

SEE ALSO make(1S), rpc.ypupdated (1M), publickey (4)

NOTES The Network Information Service (NIS) was formerly known as Sun Yellow
Pages (YP). The functionality of the two remains the same; only the name has
changed. The name Yellow Pages is a registered trademark in the United
Kingdom of British Telecommunications plc, and may not be used without
permission.

Last modified 24 Oct 1996 SunOS 5.7 586

utmp(4) File Formats

NAME utmp, wtmp – utmp and wtmp entry formats

SYNOPSIS #include <utmp.h>

DESCRIPTION The utmp database file contains user access and accounting information for
commands such as who(1) , write (1) , and login (1) . The wtmp file contains
the history of user access and accounting information for the utmp database.
The database contained in these files can be manipulated using the getutent()
family of functions. Entries in the database are described by the definitions
and data structures in <utmp.h> . See getutent (3C) .

USAGE The utmp and wtmp files are obsolete. They have been replaced by the
extended database contained in the utmpx and wtmpx files. See utmpx (4) .

Applications should not access these files directly, but should use the functions
described on the getutxent (3C) manual page to interact with these files.
Using these extended APIs will ensure that the utmp and utmpx databases are
maintained consistently.

FILES
/var/adm/utmp user access and accounting information (old

format)

/var/adm/wtmp history of user access and accounting information
for utmp database (old format)

SEE ALSO getutent (3C) , getutxent (3C) , utmpx (4)

587 SunOS 5.7 Last modified 23 Sep 1997

File Formats utmpx(4)

NAME utmpx, wtmpx – utmpx and wtmpx entry formats

SYNOPSIS #include <utmpx.h>

DESCRIPTION The utmpx database file contains user access and accounting information for
commands such as who(1) , write (1) , and login (1) . The wtmpx file
contains the history of user access and accounting information for the utmpx
database. The database contained in these files can be manipulated using the
getutxent() family of functions. Entries in the database are described by the
definitions and data structures in <utmpx.h> . See getutxent (3C) .

The utmpx and wtmpx files are extended database files that have replaced the
obsolete utmp and wtmp files described on the utmp (4) manual page.

USAGE Applications should not access these files directly, but should use the functions
described on the getutxent (3C) manual page to interact with these files.
Using these extended APIs will ensure that the utmp and utmpx databases are
maintained consistently.

FILES
/var/adm/utmpx user access and adminstration information (new

format)

/var/adm/wtmpx history of user access and adminstrative
information (new format)

SEE ALSO getutxent (3C) , utmp (4)

Last modified 8 Oct 1997 SunOS 5.7 588

vfstab(4) File Formats

NAME vfstab – table of file system defaults

DESCRIPTION The file /etc/vfstab describes defaults for each file system. The information
is stored in a table with the following column headings:

.ft 2

device device mount FS fsck mount mount

to mount to fsck point type pass at boot options

The fields in the table are space-separated and show the resource name
(device to mount), the raw device to fsck (device to fsck), the default mount
directory (mount point), the name of the file system type (FS type), the number
used by fsck to decide whether to check the file system automatically
(fsck pass), whether the file system should be mounted automatically by
mountall (mount at boot), and the file system mount options (mount options).
(See respective mount file system man page below in SEE ALSOfor
mount options.) A ’-’ is used to indicate no entry in a field. This may be used
when a field does not apply to the resource being mounted.

The getvfsent (3C) family of routines is used to read and write to
/etc/vfstab .

/etc/vfstab may be used to specify swap areas. An entry so specified,
(which can be a file or a device), will automatically be added as a swap area
by the /sbin/swapadd script when the system boots. To specify a swap area,
the device-to-mount field contains the name of the swap file or device, the
FS-type is "swap", mount-at-boot is "no" and all other fields have no entry.

SEE ALSO fsck (1M), mount (1M), mount_cachefs (1M), mount_hsfs (1M),
mount_nfs (1M), mount_tmpfs (1M), mount_ufs (1M), setmnt (1M),
swap(1M), getvfsent (3C)

System Administration Guide, Volume I

589 SunOS 5.7 Last modified 6 Oct 1994

File Formats vold.conf(4)

NAME vold.conf – Volume Management configuration file

SYNOPSIS /etc/vold.conf

DESCRIPTION The vold.conf file contains the Volume Management configuration
information used by vold (1M). This information includes the database to use,
labels that are supported, devices to use, actions to take when certain media
events occur, and the list of file systems that are unsafe to eject without
unmounting.

Modify vold.conf to specify which program should be called when media
events happen (actions) or when you need to add another device to your
system. See the example section for more information on adding devices.

If you modify vold.conf , you must tell vold to reread vold.conf by
sending a HUP signal. Use

ps -ef | grep
vold

kill -HUP vold_pid

File Format The syntax for the vold.conf file is shown here.

Database to use db
database

Labels supported label
label_type shared_object device

Devices to use use device type special shared_object symname [options]

Actions insert regex [options] program program args eject regex [
options] program program args notify regex [options] program program args

Last modified 23 May 1994 SunOS 5.7 590

vold.conf(4) File Formats

List of file system types unsafe to eject unsafe
fs_type fs_type

Of these syntax fields, you can safely modify Devices to use and Actions .

Devices to Use Field All use device statements must be grouped together by device type. (For
example, all use cdrom statements must be grouped together; and all
use floppy statements must be grouped together.) Here are the explanations
of the syntax for the Devices to use field.
device The type of removable media device to be used.

Legal values are cdrom and floppy .

type The specific capabilities of the device. Legal value
is drive .

special This sh (1) expression specifies the device or
devices to be used. Path usually begins with
/dev .

shared_object The name of the program that manages this
device. vold (1M) expects to find this program in
/usr/lib/vold .

symname The symbolic name that refers to this device. The
symname is placed in the device directory.

options The user, group, and mode permissions for the
media inserted (optional).

The special and symname parameters are related. If special contains any shell
wildcard characters (i.e., has one or more asterisks or question marks in it),
then the syname must have a "%d" at its end. In this case, the devices that are
found to match the regular expression are sorted, then numbered. The first
device will have a zero filled in for the "%d", the second device found will
have a one, and so on.

If the special specification does not have any shell wildcard characters then the
symname parameter must explicitly specify a number at its end (see EXAMPLES
below).

Actions Field Here are the explanations of the syntax for the Actions field.
insert |eject |notify The media event prompting the event

regex This sh (1) regular expression is matched against
each entry in the /vol file system that is being
affected by this event.

591 SunOS 5.7 Last modified 23 May 1994

File Formats vold.conf(4)

options You can specify what user or group name that
this event is to run as (optional).

program The full path name of an executable program to
be run when regex is matched.

program args Arguments to the program.

Default Values The default vold.conf file is shown here.

#
Volume Daemon Configuration file
#
Database to use (must be first)
db db_mem.so
Labels supported
label dos label_dos.so floppy
label cdrom label_cdrom.so cdrom
label sun label_sun.so floppy
Devices to use
use cdrom drive /dev/dsk/c*s2 dev_cdrom.so cdrom%d
use floppy drive /dev/diskette[0-9] dev_floppy.so floppy%d
Actions
insert /vol*/dev/fd[0-9]/* user=root /usr/sbin/rmmount
insert /vol*/dev/dsk/* user=root /usr/sbin/rmmount
eject /vol*/dev/fd[0-9]/* user=root /usr/sbin/rmmount
eject /vol*/dev/dsk/* user=root /usr/sbin/rmmount
notify /vol*/rdsk/* group=tty user=root /usr/lib/vold/volmissing -p
List of file system types unsafe to eject
unsafe ufs hsfs pcfs

EXAMPLES EXAMPLE 1 A sample vold.conf file.

To add a CD-ROM drive to the vold.conf file that does not match the
default regular expression (/dev/rdsk/c*s2), you must explicitly list its
device path and what symbolic name (with %d) you want the device path to
have. For example, to add a CD-ROM drive that has the path
/dev/rdsk/my/cdrom s? (where s? are the different slices), add the following
line to vold.conf (all on one line):

use cdrom drive /dev/rdsk/my/cdroms2 dev_cdrom.so cdrom%d

Then, when a volume is inserted in this CD-ROM drive. volume management
will assign it the next symbolic name. For example, if two CD-ROMs match
the default regular expression, they would be named cdrom0 and cdrom1 ;
and any that match the added regular expression would be named starting
with cdrom2 .

Last modified 23 May 1994 SunOS 5.7 592

vold.conf(4) File Formats

For a diskette that does not match the vold.conf default regular expression
(/dev/floppy [0-9]), a similar line would have to be added for the diskette.
For example, to add a diskette whose path was /dev/my/fd0 , you would add
the following to vold.conf :

use floppy drive /dev/my/fd0 dev_floppy.so floppy%d

SEE ALSO sh (1), volcancel (1), volcheck (1), volmissing (1), rmmount (1M),
vold (1M), rmmount.conf (4), volfs (7FS)

NOTES Volume Management manages both the block and character device for
CD-ROMs and floppy disks; but, to make the configuration file easier to set up
and scan, only one of these devices needs to be specified. If you follow the
conventions specified below, Volume Management figures out both device
names if only one of them is specified. For example, if you specify the block
device, it figures out the pathname to the character device; if you specify the
pathname to the character device, it figures out the block device.

CD-ROM Naming
Conventions

The CD-ROM pathname must have a directory component of rdsk (for the
character device) and dsk for the block device. For example, if you specify the
character device using the line:

use cdrom drive /dev/rdsk/my/cdroms2 dev_cdrom.so cdrom%d

then it is assumed that the block device is at

/dev/dsk/my/cdroms2

Floppy Disk Naming
Conventions

For floppy disks, Volume Management requires that the device pathnames end
in either rfd [0-9] or rdiskette [0-9] for the character device, and fd [0-9] or
diskette [0-9] for the block device. As with the CD-ROM, it generates either
the block name given the character name, or the character name given the
block name.

593 SunOS 5.7 Last modified 23 May 1994

File Formats ypfiles(4)

NAME ypfiles – Network Information Service Version 2, formerly knows as YP

DESCRIPTION The NIS network information service uses a distributed, replicated database of
dbm files (in ASCII form) contained in the /var/yp directory hierarchy on
each NIS server. NIS has been replaced by NIS+, the new version of the
Network Information Service. See nis+ (1). This release only supports the
client functionality of NIS, (see ypclnt (3N)). The client functions are either
supported by the ypserv process running on a machine with an earlier
version of SunOS or by the NIS+ server in "YP-compatibility" mode, (see
rpc.nisd (1M)).

A dbm database served by the NIS server is called an NIS map. An NIS domain
is a subdirectory of /var/yp containing a set of NIS maps on each NIS server.

Standard nicknames are defined in the file /var/yp/nicknames . These
names can be used in place of the full map name in the ypmatch and ypcat
commands. The command ypwhich −mcan be used to display the full set of
nicknames. Each line of the nickname file contains two fields separated by
white space. The first field is the nickname and the second field is the name of
the map that it expands to. The nickname cannot contain a ".".

FILES
/var/yp/nicknames nicknames file

SEE ALSO nis+ (1), nisaddent (1M), nissetup (1M), rpc.nisd (1M), ypbind (1M),
ypinit (1M), dbm(3B), secure_rpc (3N), ypclnt (3N)

NOTES The NIS+ server, rpc.nisd, when run in "YP-compatibility mode", can
support NIS clients only for the standard NIS maps listed below, provided that
it has been set up to serve the corresponding NIS+ tables using nissetup (1M)
and nisaddent (1M). The NIS+ server should serve the directory with the
same name (case sensitive) as the domainname of the NIS client. NIS+ servers
use secure RPC to verify client credentials but the NIS clients do not
authenticate their requests using secure RPC. Therefore, NIS clients can look
up the information stored by the NIS+ server only if the information has "read"
access for an unauthenticated client (i.e. one with "nobody" NIS+ credentials).
NIS maps NIS+ tables

passwd.byname passwd.org_dir

passwd.byuid passwd.org_dir

group.byname group.org_dir

group.bygid group.org_dir

publickey.byname cred.org_dir

Last modified 12 Nov 1996 SunOS 5.7 594

ypfiles(4) File Formats

hosts.byaddr hosts.org_dir

hosts.byname hosts.org_dir

mail.byaddr mail_aliases.org_dir

mail.aliases mail_aliases.org_dir

services.byname services.org_dir

services.byservicename services.org_dir

rpc.bynumber rpc.org_dir

rpc.byname rpc.org_dir

protocols.bynumber protocols.org_dir

protocols.byname protocols.org_dir

networks.byaddr networks.org_dir

networks.byname networks.org_dir

netmasks.bymask netmasks.org_dir

netmasks.byaddr netmasks.org_dir

ethers.byname ethers.org_dir

ethers.byaddr ethers.byname

bootparams bootparams

auto.master auto_master.org_dir

auto.home auto_home.org_dir

auto.direct auto_direct.org_dir

auto.src auto_src.org_dir

595 SunOS 5.7 Last modified 12 Nov 1996

Index

A
a.out — Executable and Linking (ELF) files, 24
accounting files

— acct, 13
— utmp, 587
— utmpx, 588
— wtmp, 587
— wtmpx, 588

accounting system
prime/nonprime hours — holidays, 132

acct — process accounting file format, 13
addresses — addresses for sendmail, 19
admin — installation defaults file, 15
aliases — sendmail aliases file, 19
an alternative memory allocator library —

libmapmalloc, 222
ar — archive file format, 26
archive file format — ar, 26
archives — device header, 29
ASET environment file — asetenv, 32
ASET master files

— asetmasters, 35
— cklist.high, 35
— cklist.low, 35
— cklist.med, 35
— tune.high, 35
— tune.low, 35
— tune.med, 35
— uid_aliases, 35

asetenv — ASET environment file, 32
audit — audit control file, 40, 43
audit trail file

— audit.log, 45

audit.log — audit trail file, 45
audit_class password file, 38
audit_event password file, 44
audit_user password file, 51

B
basic security library — libbsm, 173
boot parameter database — bootparams, 52
BOOTP

network database — dhcp_network, 84
bootparams — boot parameter database, 52

C
C library — libc, 175
CD-ROM table of contents file — cdtoc, 55
cdtoc — CD-ROM table of contents file, 55
.clustertoc — listing of software packages on

product distribution
media, 58

commands library — libcmd, 197
compatible versions file — compver, 63
compver — compatible versions file, 63
configuration file for default router(s) —

defaultrouter, 69
configuration file for LDAP display template

routines
— ldaptemplates.conf, 164

configuration file for LDAP filtering routines
— ldapfilter.conf, 158

configuration file for LDAP search preference
routines

Index-596

— ldapsearchprefs.conf, 160
configuration file for NIS security —

securenets, 468
configuration file, system log daemon —

syslogd, 486
connect accounting

— wtmp, 587
— wtmpx, 588

copyright — copyright information file, 64
core — core image of a terminated process

file, 65

D
database parameters for DHCP — dhcp, 83
defaultrouter — configuration file for default

router(s), 69
default_fs — specify the default file system

type for local or remote file
systems, 68

depend — software dependencies file, 70
devconfig configuration files —

device.cfinfo, 75
device id library — libdevid, 202
device instance number file —

path_to_inst, 350
device.cfinfo — devconfig configuration

files, 75
devices

access control file — device_allocate, 72,
80

devices, capabilities
terminal and printers — terminfo, 498

device_allocate
device access control file, 72

device_maps
device access control file, 80

dfs utilities packages
list — fstypes, 126

dfstab — file containing commands for
sharing resources, 82

dhcp — DHCP database parameters, 83
DHCP

client identifier to IP address mappings —
dhcp_network, 84

configuration parameter table—
dhcptab, 88

DHCP option mnemonic mapping table —
dhcptags, 98

dhcptab — DHCP configuration parameter
table, 88

dhcptags — DHCP option mnemonic mapping
table, 98

dhcp_network — dhcp network DHCP
database, 84

See also pntadm,
dial-up password file — d_passwd, 107
dialups — list of terminal devices requiring a

dial-up password, 104
directory of files specifying supported

platforms — platform, 371
dirent — file system independent directory

entry, 105
dir_ufs — format of ufs directories, 106
disk drive configuration for the format

command — format.dat, 119
disk space requirement file — space, 476
dispatcher, real-time process

parameters — rt_dptbl, 453
dispatcher, time-sharing process

parameters — ts_dptbl, 569
driver.conf — driver configuration file, 109
drivers

driver for EISA devices — eisa, 479
driver for PCI devices — pci, 352
driver for pseudo devices — pseudo, 434
driver for SBus devices — vme, 460
driver for SCSI devices — scsi, 466

dynamic linking interface library — libdl, 205
d_passwd — dial-up password file, 107

Generating An Encrypted Password, 108

E
eisa — configuration file for EISA bus device

drivers, 479
ELF access library — libelf, 209
ELF files — a.out, 24
encryption/decryption library — libcrypt, 198
environ — user-preference variables files for

AT&T FACE, 113
.environ — user-preference variables files for

AT&T FACE, 113
environment

Index-597 man Pages(4): File Formats ♦ October 1998

setting up an environment for user at
login time — profile, 426

ethers — Ethernet addresses of hosts on
Internet, 115

Executable and Linking Format (ELF) files —
a.out, 24

F
FACE

alias file — pathalias, 349
object architecture information — ott, 331

FACE object architecture information
— ott, 331

fd — file descriptor files, 116
File Access Control List library — libsec, 254
file descriptor files — fd, 116
file formats

— intro, 2
file system

defaults — vfstab, 589
mounted— mtab, 299

file that maps sockets to transport providers
— sock2path, 475

filehdr — file header for common object
files, 117

files used by programs
/etc/security/device_allocate —

device_allocate file, 73
/etc/security/device_maps —

device_maps file, 81
format of a ufs file system volume —

fs_ufs, 127
inode, 127
inode_ufs, 127

format of a font file used as input to the
loadfont utility —
loadfont, 290

format.dat — disk drive configuration for the
format command, 119

Keywords, 119
Syntax, 119

forms library — libform, 211
forward — mail forwarding file, 19
fspec — format specification in text files, 124
fstypes — file that lists utilities packages for

distributed file system, 126

fs_ufs — format of a ufs file system
volume, 127

G
general administrative library — libadm, 169
graphics interface libraries

— lib300, 240
— lib300s, 240
— lib4014, 240
— lib450, 240
— libplot, 240
— libvt0, 240

group — local source of group
information, 130

H
holidays — prime/nonprime hours for

accounting system, 132
host name database — hosts, 134
hosts — host name data base, 134
hosts.equiv — trusted hosts list, 136

I
inetd.conf — Internet server database, 139
init.d — initialization and termination scripts

for changing init states, 141
initialization and termination scripts for

changing init states —
init.d, 141

inittab — script for init, 143
inode — format of a ufs file system

volume, 127
inode_ufs — format of a ufs file system

volume, 127
installation

defaults file — admin, 15
internationalization library — libintl, 215
Internet

DHCP database — dhcp_network, 84
Ethernet addresses of hosts — ethers, 115
network name database — networks, 314
protocol name database — protocols, 428
services and aliases — services, 470

Internet servers database — servers, 139

Index-598

isa — configuration file for ISA bus device
drivers, 479

issue — issue identification file, 146

K
Kerberos configuration file

— krb.conf, 156
Kerberos library — libkrb, 216
Kerberos realm translation file

— krb.realms, 157
kernel statistics library — libkstat, 218
Kernel Virtual Memory access library —

libkvm, 219
keyboard table descriptions for loadkeys and

dumpkeys — keytables, 147
keytables — keyboard table descriptions for

loadkeys and dumpkeys, 147

L
ldapfilter.conf — configuration file for LDAP

filtering routines, 158
ldapsearchprefs.conf — configuration file for

LDAP search preference
routines, 160

ldaptemplates.conf — configuration file for
LDAP display template
routines, 164

legal annotations
specify — note, 319

lib300 — graphics interface libraries, 240
lib300s — graphics interface libraries, 240
lib4014 — graphics interface libraries, 240
lib450 — graphics interface libraries, 240
libadm — general administrative library, 169
libaio — the asynchronous I/O library, 170
libbsm — basic security library, 173
libc — the C library, 175
libci — Sun Solstice Enterprise Agent

Component Interface
Library, 196

libcmd — commands library, 197
libcrypt — encryption/decryption library, 198
libcurses — screen handling and optimization

library, 199
libdevid — device id library, 202

libdevinfo — the device information
library, 203

libdl — the dynamic linking interface
library, 205

libdmi — Sun Solstice Enterprise Agent DMI
Library, 207

libdmimi — Sun Solstice Enterprise Agent
Management Interface
Library, 208

libelf — ELF access library, 209
libform — forms library, 211
libgen — string pattern-matching library, 213
libintl — internationalization library, 215
libkrb — Kerberos library, 216
libkstat — kernel statistics library, 218
libkvm — Kernel Virtual Memory access

library, 219
/usr/lib/libkvm.so.1, 219

libl — user interfaces to lex library, 220
libmalloc — memory allocation library, 221
libmapmalloc — an alternative memory

allocator library, 222
libmenu — menus library, 223
libmp — multiple precision library, 225
libmtmalloc — the multi-threaded memory

allocator library, 227
libnisdb — NIS+ Database access library, 228
libnsl — the network services library, 229

/usr/lib/libnsl.so.1, 229
libpanel — panels library, 239
libplot — graphics interface libraries, 240
libposix4 — POSIX.1b Realtime Extensions

library, 252
libpthread — POSIX threads library, 242

/usr/lib/libpthread.so.1, 242
librac — remote asynchronous calls library, 245
library

C library — libc, 175
dynamic linking interface library —

libdl, 205
library file format — ar, 26
libresolv — resolver library, 247
librpcsoc — obsolete RPC library, 250
librpcsvc — Miscellaneous RPC services

library, 251
librt — POSIX.1b Realtime Extensions

library, 252

Index-599 man Pages(4): File Formats ♦ October 1998

libsec — File Access Control List library, 254
/usr/lib/libsec.so.1, 254

libsocket — the sockets library, 255
/usr/lib/libsocket.so.1, 255

libssagent — Sun Solstice Enterprise Agent
Library, 257

libssasnmp — Sun Solstice Enterprise SNMP
Library, 258

libsys — the system library, 259
/usr/lib/libc.so.1, 259

libtermcap — screen handling and
optimization library, 199

libtermlib — screen handling and optimization
library, 199

libthread — the threads library, 264
/usr/lib/libthread.so.1, 264

libthread_db — threads debugging library, 268
libucb — the UCB compatibility library, 272
libvolmgt — volume management library, 274
libvt0 — graphics interface libraries, 240
libw — the wide character library, 276
libxfn — the XFN interface library, 278

/usr/lib/libxfn.so.1, 278
libxnet — X/Open Networking Interfaces

library, 282
liby — user interfaces to yacc library, 284
limits — header for implementation-specific

constants, 285
link editor output — a.out, 24
list of network groups — netgroup, 305
list of terminal devices requiring a dial-up

password — dialups, 104
loadfont — format of a font file used as input

to the loadfont utility, 290
login-based device permissions —

logindevperm, 294
logindevperm — login-based device

permissions, 294
loginlog — log of failed login attempts, 295

M
magic — file command’s magic numbers

table, 296
memory allocation library — libmalloc, 221
menus library — libmenu, 223

message displayed to users attempting to log
on in the process of a system
shutdown — nologin, 318

Miscellaneous RPC services library —
librpcsvc, 251

mounted file system table — mtab, 299
mtab — mounted file system table, 299
multiple precision library — libmp, 225

N
name servers

configuration file — resolv.conf, 442
name service cache daemon configuration —

nscd.conf
nscd.conf, 320

name service switch
configuration file — nsswitch.conf, 323

netconfig — network configuration
database, 300

netgroup — list of network groups, 305
netgroup — list of network groups, 305
netid — netname database, 308
netmasks — network masks for

subnetting, 310
netname database — netid, 308
.netrc — ftp remote login data file, 312
Network Information Service Version 2,

formerly knows as YP —
ypfiles, 594

networks connected to the system —
netconfig, 300

networks — network name database, 314
NFS

remote monted file systems — rmtab, 449
NIS databases

updating — updaters, 586
NIS+ Database access library — libnisdb, 228
nisfiles — NIS+ database files and directory

structure, 315
nologin — message displayed to users

attempting to log on in the
process of a system
shutdown, 318

nonprime hours
accounting system — holidays, 132

note — specify legal annotations, 319

Index-600

nscd.conf — name service cache daemon
configuration, 320

nsswitch.conf — configuration file for the
name service switch, 323

O
object files

file header — filehdr, 117
obsolete RPC library — librpcsoc, 250
.order — installation order of software

packages on product
distribution media, 330

P
package characteristics file

— pkginfo, 359
package contents description file

— pkgmap, 367
package information file — prototype, 429
package installation order file

— order, 330
package table of contents description file

.clustertoc — clustertoc, 58
— packagetoc, 332

.packagetoc — listing of software packages on
product distribution
media, 332

packing rules file for cachefs and filesync —
packingrules, 337

packingrules — packing rules file for cachefs
and filesync, 337

pam.conf — configuration file for pluggable
authentication modules, 340

panels library — libpanel, 239
passwd — password file, 346
passwords

access-restricted shadow system file —
shadow, 471

pathalias — alias file for FACE, 349
path_to_inst — device instance number

file, 350
PCI devices

driver class — pci, 352
pci — drivers for PCI devices, 352
pcmcia — PCMCIA nexus driver, 357
PCMCIA nexus driver — pcmcia, 357

phones — remote host phone numbers, 358
pkginfo — software package characteristics

file, 359
pkgmap — listing of software package

contents, 367
platform — directory of files specifying

supported platforms, 371
POSIX threads library — libpthread, 242
POSIX.1b Realtime Extensions library —

libposix4, 252
power management configuration file —

power.conf, 375
power.conf — power management

configuration file, 375
.pref — user-preference variables files for

AT&T FACE, 113
prime hours

accounting system — holidays, 132
printers — printer alias database, 382
printers.conf — printing configuration

database, 386
proc — /proc, the process file system, 395

PCAGENT, 420
PCCFAULT, 415
PCCSIG, 413
PCKILL, 414
PCNICE, 421
PCREAD PCWRITE, 421
PCRUN, 412
PCSASRS, 420
PCSCRED, 421
PCSENTRY PCSEXIT, 415
PCSET PCUNSET, 418
PCSFAULT, 414
PCSFPREG, 419
PCSHOLD, 414
PCSREG, 419
PCSSIG, 414
PCSTOP PCDSTOP PCWSTOP

PCTWSTOP, 411
PCSTRACE, 413
PCSVADDR, 419
PCSXREG, 420
PCUNKILL, 414
PCWATCH, 415

/proc, the process file system — proc, 395
process accounting

Index-601 man Pages(4): File Formats ♦ October 1998

— acct, 13
process file system — proc, 395
process scheduler (or dispatcher), real-time

parameters — rt_dptbl, 453
process scheduler (or dispatcher), time-sharing

parameters — ts_dptbl, 569
processes

core image of a terminated process file —
core, 65

profile — setting up an environment for user
at login time, 426

project identification file — issue, 146
protocols — names of known protocols in

Internet, 428
prototype — package information file, 429
pseudo devices, 434
pseudo — drivers for pseudo devices, 434
publickey — publickey database for secure

RPC, 435

Q
queuedefs — queue description file for at,

batch, and cron spooled by at
or batch or atrm, 436

R
real-time process dispatcher

parameters — rt_dptbl, 453
real-time process scheduler

parameters — rt_dptbl, 453
remote authentication for hosts and users —

hosts.equiv, .rhosts, 136
remote asynchronous calls library —

librac, 245
remote — remote host descriptions, 438
remote host

phone numbers — phones, 358
remote login data for ftp — netrc, 312
remote mounted file systems

— rmtab, 449
Remote Program Load (RPL) server

configuration file —
rpld.conf, 451

resolv.conf — configuration file for name
server routines, 442

resolver library — libresolv, 247

rmmount.conf — removable media mounter
configuration file

Default Values, 446
Examples, 446

rpc — rpc program number database, 450
RPC program names

for program numbers — rpc, 450
RPC security

public key database — publickey, 435
RPCSEC_GSS mechanism file

— mech, 298
RPCSEC_GSS QOP file

—, 298
rpld.conf — Remote Program Load (RPL)

server configuration file, 451

S
SBus devices

driver class — sbus, 460
sbus — drivers for SBus devices, 460
sccsfile — format of SCCS history file, 463
scheduler, real-time process

parameters — rt_dptbl, 453
scheduler, time-sharing process

parameters — ts_dptbl, 569
screen handling and optimization library

— libcurses, 199
— libtermcap, 199
— libtermlib, 199

SCSI devices
driver class — scsi, 466

scsi — drivers for SCSI devices, 466
securenets — configuration file for NIS

security, 468
sendmail addresses file — addresses, 19
services — Internet services and aliases, 470
shadow password file, 471
share resources across network, commands —

dfstab, 82
shared resources, local

— sharetab, 473
sharetab — shared file system table, 473
shell database — shells, 474
shells — shell database, 474
sock2path — file that maps sockets to

transport providers, 475

Index-602

software dependencies — depend, 70
space — disk space requirement file, 476
specify the default file system type for local or

remote file systems —
default_fs, 68

string pattern-matching library — libgen, 213
su command log file — sulog, 477
sulog — su command log file, 477
Sun Solstice Enterprise Agent Component

Interface Library — libci, 196
Sun Solstice Enterprise Agent DMI Library —

libdmi, 207
Sun Solstice Enterprise Agent Library —

libssagent, 257
Sun Solstice Enterprise Agent Management

Interface Library —
libdmimi, 208

Sun Solstice Enterprise SNMP Library —
libssasnmp, 258

sysbus — configuration files for ISA and EISA
bus device drivers, 479

eisa, 479
isa, 479

sysidcfg — system identification configuration
file, 482

Keyword Syntax Rules, 482
Keywords, 483
Where To Put the sysidcfg File, 482

syslogd.conf — system log daemon
configuration file, 486

system — system configuration
information, 490

system identification configuration file —
sysidcfg, 482

system log configuration file —
syslogd.conf, 486

T
telnet default options file — telnetrc, 494
telnetrc — file for telnet default options, 494
term — format of compiled term file, 495
terminals

line setting information — ttydefs, 577
termination and initialization scripts for

changing init states —
init.d, 141

terminfo — System V terminal capability data
base, 498

test files
format specification — fspec, 124

the asynchronous I/O library — libaio, 170
the device information library —

libdevinfo, 203
the multi-threaded memory allocator library

— libmtmalloc, 227
the network services library — libnsl, 229
the sockets library — libsocket, 255
the system library — libsys, 259
the threads library — libthread, 264
the UCB compatibility library — libucb, 272
the wide character library — libw, 276
the XFN interface library — libxfn, 278
threads debugging library — libthread_db, 268
timezone — set default time zone, 559
time-sharing process dispatcher

parameters — ts_dptbl, 569
time-sharing process scheduler

parameters — ts_dptbl, 569
timed event services

queue description file for at, batch and
cron — queuedefs, 436

timezone — default timezone data base, 560
TNF kernel probes — tnf_kernel_probes, 561
tnf_kernel_probes — TNF kernel probes, 561
ttydefs — terminal line settings

information, 577
ttyname

list of directories with terminal-related
device files — ttysrch, 578

U
ufs

format — dir_ufs, 106
ufsdump — incremental dump format, 580
updaters — configuration file for NIS

updating, 586
user interfaces to lex library — libl, 220
user interfaces to yacc library — liby, 284
user-preference variables files for AT&T FACE

— environ, 113
utmp — format for utmp file, 587
utmp — format for utmpx file, 588

Index-603 man Pages(4): File Formats ♦ October 1998

V
.variables — user-preference variables files for

AT&T FACE, 113
vfstab — defaults for each file system, 589
vold.conf — Volume Management

configuration file, 590
Actions Field, 591
CD-ROM Naming Conventions, 593
Default Values, 592
Devices to Use Field, 591
File Format, 590
Floppy Disk Naming Conventions, 593

Volume Management
configuration file — vold.conf, 590

volume management library — libvolmgt, 274

W
wtmp — format for wtmp file, 587
wtmp — format for wtmpx file, 588

X
X/Open Networking Interfaces library —

libxnet, 282

Y
ypfiles — Network Information Service

Version 2, formerly knows as
YP, 594

Index-604

