
Solaris Internationalization Guide
For Developers

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 805-4123–10
October 1998

Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunDocs, Java, the Java Coffee Cup logo, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc. SunOS, Solaris, X11, SPARC, UNIX, PostScript, OpenWindows, AnswerBook,
SunExpress, SPARCprinter, JumpStart, Xlib
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunDocs, Java, le logo Java Coffee Cup, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface xvii

1. Solaris Internationalization Overview 1

New Internationalization Features in Solaris 7 1

Internationalization and Localization 2

Basic Steps in Internationalization 3

What Is a Locale? 3

Full and Partial Locales 4

Locales 4

Locale Categories 5

Using Locale Categories for Localization 6

Time Formats 6

Date Formats 7

Numbers 8

Currency 9

Word and Letter Differences 10

Keyboard Differences 12

Other Differences 13

Punctuation 13

Symbols 13

Contents iii

Measurements 13

Gender 13

Titles and Addresses 13

Paper Sizes 14

Creating Worldwide Software: The Book 14

Overview 15

2. Contents of the Base Solaris Product 17

Summary of the Base Product 17

Core Set of Locales 18

New Locales 19

Extended Set of Locales 22

Unicode Locale: en_US.UTF-8 23

User Locales in the Base Solaris Product 24

Multiple Key Compose Sequences for Locales 25

Keyboard Support in the Base Solaris 7 Product 26

Changing Between Keyboards on SPARC 26

Changing Between Keyboards on x86 27

Codesets for x86 28

Locales in the Base Installation 28

Using JumpStart 29

3. Contents of the Localized Solaris 7 Products 31

The European Localized Solaris 7 Product 31

Font Formats 44

Summary of Asian Locales 44

Korean in the Solaris 7 Product 45

Chinese: Simplified and Traditional 47

Japanese Input Systems 53

Korean Solaris 7 Product 58

iv Solaris Internationalization Guide For Developers ♦ October 1998

61

How to Use the iconv Command 61

4. Overview of en_US.UTF-8 Locale Support 63

en_US.UTF-8 Locale Support Overview 63

System Environment 65

Code Conversions 71

Script Selection and Input Modes 75

Unicode Hexadecimal Code Input Method Input Mode 89

Table Lookup Input Method Input Mode 89

Input Mode Switch Key Sequence Summary 89

Printing 90

DtMail 91

Programming Environment 92

Font Set Used with X Applications 92

XmFontList Definition as CDE/Motif Applications 94

5. Installation 95

Adding Packages 95

H How to Add Packages to a Standalone System 95

Installing Software From a Mounted CD 96

Installing Software From a Remote Package Server 97

Installing the Localization Product 98

European Packages 98

French Files 99

German Files 100

Italian Files 101

Spanish Files 102

Swedish Files 103

Detailed Descriptions of European Files 104

Contents v

European Codesets 113

European Font Packages 113

Asian Packages 114

Description of General Packages 124

Asian Localization Packages Disk Space 158

6. Internationalization Framework in the Solaris 7 Environment 163

Codeset Independence Support 163

The CSI Approach 164

CSI-enabled Commands 164

Solaris 7 CSI-enabled Libraries 166

Locale Database 167

Process Code Format 167

Multibyte Support Environment (MSE) 167

Dynamically Linked Applications 168

libw and libintl 169

ctype Macros 170

Internationalization APIs in libc 171

genmsg Utility 179

7. X/DPS 181

Localization Resource Category 182

Information on Language Interpreters 182

8. Desktop Environments 183

Overview 183

Locales 184

Integrating Fonts 184

Input Methods 185

Internationalization and CDE 185

Matching Fonts to Character Sets 185

vi Solaris Internationalization Guide For Developers ♦ October 1998

Storage of Localized Text 186

Xlib Dependencies 186

Message Guidelines 186

Internationalization and Distributed Networks 187

Mail Interchange 187

OpenWindows 188

9. Printing 189

Localization Printing Support Under the Solaris 7 Operating Environment 189

European Printing Support 189

Asian Multibyte Printing Support 191

CDE Font Downloader 192

Technical Description 192

Reference Documents 193

10. Complex Text Layout 195

Overview of CTL Technology 195

Overview of CTL Architecture 196

Changes in Motif to Support CTL Technology 196

XmDirection 197

Description 197

For More Information 197

XmStringDirection 198

Description 198

Related Information 198

XmRendition 198

New Resources 199

Additional Behavior 200

XmText , XmTextField 200

Description 200

Contents vii

New Resources 201

Action Routines 202

Additional Behavior 202

Action Routines 203

XmTextFieldGetLayoutModifier 211

Purpose 211

Synopsis 211

Description 212

Return Value 212

Related Information 212

XmTextGetLayoutModifier 212

Purpose 212

Synopsis 212

Description 212

Return Value 213

Related Information 213

XmTextFieldSetLayoutModifier 213

Purpose 213

Synopsis 213

Description 213

Related Information 213

XmTextSetLayoutModifier 214

Purpose 214

Synopsis 214

Description 214

Related Information 214

XmStringDirectionCreate 214

Synopsis 214

viii Solaris Internationalization Guide For Developers ♦ October 1998

Description 214

Related Information 215

UIL 215

How to Develop CTL Applications 215

Layout Direction 215

Creating a Rendition 217

Editing a Rendition 218

Related Information 218

Creating a Render Table in a Resource File 218

Creating a Render Table in an Application 219

Horizontal Tabs 220

Mouse Selection 221

Keyboard Selection 222

Text Resources and Geometry 222

Porting Instructions 223

Index 225

Contents ix

x Solaris Internationalization Guide For Developers ♦ October 1998

Tables

TABLE P–1 Typographic Conventions xx

TABLE 1–1 International Time Formats 6

TABLE 1–2 International Date Formats 7

TABLE 1–3 International Numeric Conventions 8

TABLE 1–4 International Monetary Conventions 9

TABLE 1–5 Common International Page Sizes 14

TABLE 2–1 Core Set of Locales in SUNWploc and SUNWplow 18

TABLE 2–2 New or Changed User Locales 19

TABLE 2–3 New User Locales To Support the Euro Currency 21

TABLE 2–4 Extended Set of Locales in SUNWploc1 and SUNWplow1 22

TABLE 2–5 User Locales Included in Solaris 7 Product 24

TABLE 2–6 Layouts for Type 4 Keyboards 26

TABLE 2–7 Locales Offered at Installation 28

TABLE 3–1 European 7 Locales 31

TABLE 3–2 Eastern European Locales in the Solaris 7 Product 36

TABLE 3–3 iconv Support 37

TABLE 3–4 New Locales and Corresponding Codeset Names 39

TABLE 3–5 Summary of Asian Locales 44

TABLE 3–6 Codeset Conversions Supported for Korean ko , ko.UTF-8 46

Tables xi

TABLE 3–7 Solaris 7 TrueType Fonts for the zh Locale 48

TABLE 3–8 Solaris 7 Bitmap Fonts for the zh Locale 48

TABLE 3–9 TrueType Fonts for the zh.GBK Locale 48

TABLE 3–10 Bitmap Fonts for the zh.GB K Locale 49

TABLE 3–11 Codeset Conversions for Simplified Chinese 49

TABLE 3–12 Traditional Chinese Truetype Fonts for the zh_TW Locales 50

TABLE 3–13 Traditional Chinese BitMap Fonts for the zh_TW Locales 51

TABLE 3–14 Traditional Chinese TrueType Fonts for the zh_TW.BIG5 Locales 51

TABLE 3–15 Traditional Chinese BitMap Fonts for the zh_TW.BIG5 Locales 51

TABLE 3–16 Codeset Conversions for Traditional Chinese 51

TABLE 3–17 Japanese Input Systems 53

TABLE 3–18 Japanese TrueType Fonts 53

TABLE 3–19 Japanese Bitmap Fonts 54

TABLE 3–20 iconv Conversion Support 54

TABLE 3–21 Solaris 7 Korean CID/Type 1 Fonts for the ko Locale 58

TABLE 3–22 Solaris 7 Korean Bitmap Fonts for the ko Locale 59

TABLE 3–23 Solaris 7 Korean CID/Type 1 Fonts for the ko.UTF-8 Locale 59

TABLE 3–24 Solaris 7 Korean Bitmap Fonts for the ko.UTF-8 Locale 59

TABLE 3–25 Korean ICONV 60

TABLE 4–1 32–bit STREAMS Modules Supported by en_US.UTF-8 66

TABLE 4–2 64–bit STREAMS Modules Supported by en_US.UTF-8 66

TABLE 4–3 Available Code Conversions in en_US.UTF-8 71

TABLE 4–4 Common Latin-1 Compose Sequences for Sparc 76

TABLE 4–5 Common Latin-2 Compose Sequences 80

TABLE 4–6 Common Latin-4 Compose Sequences 82

TABLE 4–7 Common Latin-5 Compose Sequences 84

TABLE 4–8 Common Latin-9 Compose Sequences 84

TABLE 4–9 Input Mode Switch Key Sequences 89

xii Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–1 Pan-European Files for Localization and Windowing 98

TABLE 5–2 French Files for Localization and Windowing 99

TABLE 5–3 German Files for Localization and Windowing 100

TABLE 5–4 Italian Files for Localization and Windowing 101

TABLE 5–5 Spanish Files for Localization and Windowing 102

TABLE 5–6 Swedish Files for Localization and Windowing 103

TABLE 5–7 European Package Descriptions 104

TABLE 5–8 Font Packages in the Solaris 7 Product 113

TABLE 5–9 Common Asian Packages for Localization and Windowing 114

TABLE 5–10 Korean Packages for Localization and Windowing 115

TABLE 5–11 Simplified Chinese Packages for Localization and Windowing 116

TABLE 5–12 Traditional Chinese Packages for Localization and Windowing 118

TABLE 5–13 Simplified Chinese Packages 120

TABLE 5–14 Japanese Packages for Localization and Windowing 122

TABLE 5–15 Thai Packages for Localization and Windowing 124

TABLE 5–16 General Packages 124

TABLE 5–17 Korean Packages 125

TABLE 5–18 Traditional Chinese Packages 126

TABLE 5–19 zh.GBK Packages 130

TABLE 5–20 Thai Language Packages 131

TABLE 5–21 Japanese Packages 132

TABLE 5–22 ko Locale 138

TABLE 5–23 ko.UTF-8 Locale 140

TABLE 5–24 zh Locale 141

TABLE 5–25 zh.GBK Locale 142

TABLE 5–26 th_TH Locale 143

TABLE 5–27 zh_TW Locale 144

TABLE 5–28 zh_TW.BIG5 Locale 146

Tables xiii

TABLE 5–29 ja/ja_JP.PCK Common Packages 146

TABLE 5–30 ja Locale 148

TABLE 5–31 ja_JP.PCK Locale 150

TABLE 5–32 CDE Packages 152

TABLE 5–33 MB Required for Software Groups (SPARC) 158

TABLE 5–34 MB Required for Software Groups (x86) 158

TABLE 5–35 MB Required for ko and ko plus ko.UTF-8 (SPARC) 159

TABLE 5–36 MB Required for ko and ko plus UTF-8 (x86) 159

TABLE 5–37 MB Required for zh_TW and zh_TW.BIG5 (SPARC) 160

TABLE 5–38 MB Required for zh_TW and zh_TW.BIG5 (x86) 160

TABLE 5–39 MB Required for zh and zh.GBK (SPARC) 160

TABLE 5–40 MB Required for zh and zh.GBK (x86) 161

TABLE 6–1 CSI-enabled Commands in Solaris 7 165

TABLE 6–2 Stub Entry Points in libw and libintl 169

TABLE 6–3 Internationalization APIs in libc 171

TABLE 9–1 prolog.ps Fonts 190

TABLE 9–2 Japanese Printer Support 191

xiv Solaris Internationalization Guide For Developers ♦ October 1998

Figures

Figure 4–1 Cyrillic Keyboard 85

Figure 4–2 Greek Euro Keyboard 86

Figure 4–3 Greek UNIX Keyboard 86

Figure 4–4 Arabic Keyboard 87

Figure 4–5 Hebrew Keyboard 88

Figure 4–6 Thai Keyboard 88

Figure 10–1 Tabbing Behavior 221

Figures xv

xvi Solaris Internationalization Guide For Developers ♦ October 1998

Preface

The Solaris Internationalization Guide for Developers describes internationalization
features that are new in SolarisTM .7. It contains important information on how to use
Solaris .7 to build global software products that support various languages and
cultural conventions.

Specifically, this guide contains:

� Guidelines and tips for developers on how to use Solaris 7 to write applications
for international markets.

� An overall view of internationalization topics that apply to various layers within
the Solaris environment.

� Pointers to more detailed documentation.

Where appropriate, this guide points you to other guides in the documentation set
that contain additional or more detailed information on internationalization features
in this release.

Who Should Use This Guide
This guide is intended for software developers who want to design global products
and applications for the Solaris 7 environment software developers.

This guide assumes knowledge of the C programming language, and a few chapters
discuss X11TM NeWS window system toolkits.

All operating system information pertains to the Solaris7 SunOSTM 5.7 operating
environment. The hardware platforms covered are SPARCTM and Intel x86. For the
most part, support for these architectures is identical, but a note appears when this is
not the case. SunOS 5.6 SPARC architecturex86 architectures (SPARC and x86)

Preface xvii

Organization and Summary
The chapters in this guide are organized as follows:

� Chapter 1, tells what’s new and provides an overview of the localized products
available on the base Solaris release, the European localized release, and the Asian
localized releases.

� Chapter 2, describes the contents of the Solaris 7 base product as it relates to
locales.

� Chapter 3, describes Codeset Independence (CSI) support for Extended UNIX®

Code (EUC) and non-EUC codesets.

� Chapter 4, covers the system environment, code conversions, script selection,
printing, and the programming environment.

� Chapter 5, describes the procedures for installing the localization packages.

� Chapter 6, contains details about the internationalization features incorporated
into this release.

� Chapter 7, contains a detailed look at the procedures to write a localized version
of codesets, formats, collation, and messaging.

� Chapter 8, covers the Solaris desktop environments: the Common Desktop
Environment (CDE) and OpenWindowsTM . The section on CDE has an overview of
the application internationalization process, including locale management,
localized resources, and font management.

� Chapter 9, covers printing support under the Solaris 7 operating environment,
with specific information for European and Asian printing.

� Chapter 10, includes information about CTL extensions that enable Motif APIs to
support writing systems that require complex transformation between logical and
physical text representations, such as Arabic, Hebrew, and Thai.

Related Books and Sites
For information about the Java development Kit, seehttp://java.sun.com/
docs/books/tutorial/i18n/index.html http://java.sun.com/docs/books/
tutorial/i18n/index.html.

Tuthill, Bill and David Smallberg. Creating Worldwide Software: Solaris International
Developer’s Guide, 2nd edition. Mountain View, California, Sun Microsystems Press,
1997. Available through books@sun.com and www.sun.com/books/ . The book
offers a general overview of the internationalization process under the Solaris
operating system.

xviii Solaris Internationalization Guide For Developers ♦ October 1998

Common Desktop Environment: Internationalization Programmer’s Guide. Mountain
View, California, SunSoft Press, 1996. The CDE documentation set can be ordered by
title through SunExpress. The CDE Programmer’s guide is also part of the CDE
Developer’s AnswerBook TM set that is shipped on the Solaris documentation CD.
Available through the SunDocs program (see “Ordering Sun Documents” on page xix
Contains information on locale management, font management, distributed
networks, User Interface Language (UIL), Xt, and Xlib dependencies.

OSF/Motif Programmer’s Guide, Release 1.2. Englewood Cliffs, New Jersey,
Prentice-Hall, 1993. The Open Software Foundation’s (OSF) Guide describes how to
use the OSF/Motif application programming interface to create Motif applications. It
presents an overview of Motif widget set architecture, explains the Motif toolkit, and
gives models and examples of Motif applications.

OSF/Motif Programmer’s Reference, Release 1.2. Englewood Cliffs, New Jersey,
Prentice-Hall, 1992. The Open Software Foundation’s (OSF) Reference is the collection
of reference pages to OSF/Motif commands, functions, toolkit, window manager,
user interface language commands, and functions.

PostScript Language Reference Manual, Second Edition. Adobe Systems Inc.,
Addison-Wesley, 1990. The standard reference work for PostScript covers the
fundamentals of PostScript as a device-independent printing language.

PostScript Language Reference Manual Supplement. Adobe Systems Inc., 1994.

Programming the Display PostScript System with X. Reading, Mass., Adobe Systems
Inc., Addison-Wesley, 1993. For application developers working with X Windows and
Display PostScript to produce information for the screen display and the printer
output.

OLIT Reference Manual. Sun Microsystems, 1994.

XView Developer’s Notes. O’Reilly & Associates, 1992.

Ordering Sun Documents
The SunDocs program provides more than 250 manuals from Sun Microsystems, Inc.
If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals from SunDocs.

For a list of documents and how to order them, see the catalog section of the
SunExpressTM Internet site at http://www.sun.com/sunexpress .

xix

Typographic Conventions
Table P–1 describes the typographic conventions used in this guide.

TABLE P–1 Typographic Conventions

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su

Password:

AaBbCc123 Command-line placeholder:

replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These
are called class options.

You must be root to do this.

xx Solaris Internationalization Guide For Developers ♦ October 1998

CHAPTER 1

Solaris Internationalization Overview

The Solaris 7 product includes full Unicode 2.0 support, as defined in ISO-10646, for
selected locales. Solaris 7 is a major release for Sun’s international markets. It
includes a number of new features for Asian customers and significantly expands
language support for Eastern Europe and the Baltic States.

New Internationalization Features in
Solaris 7
� Increased Unicode support

� Unicode 2.0 supported through English and Korean locales.
� Six new UTF-8 Unicode locales added: French, German, Italian, Spanish,

Swedish, and Europe. (Europe returns the Euro as the default currency
symbol).

� UTF-8 locales support multiple input and output for all European locales as
well as Korean, Japanese, Traditional Chinese and Simplified Chinese.
Enhancements have been made to the en_US.UTF-8 locale so that users can
input and display text from different writing scripts such as Japanese, Thai,
Chinese, Hebrew, Arabic, Korean and Russian. Users can easily switch between
the scripts without having to change or install a new locale.

� Codeset conversion utilities have been enhanced for better data interoperability in
the Russian locale.

� Expanded language coverage

1

� Euro currency. All foreign exchange, banking, and finance industries in the
European community are converting from using their local currencies to using
the Euro. Solaris 7 software has added support for the Euro currency with six
new user locales.

� CDE applications included in Asian versions to support Complex Text Layout
(CTL) locales. Complex text support has been integrated for complex text
layout languages, which require special text pre-processing to handle
bidirectional, composite, and context-sensitive text.

� Solaris 7 software supports Motif 2.1, which includes five new Motif widgets.
Motif 2.1 is MT-safe and includes software for CTL locale support.

� zh.GBK locale for Simplified Chinese in the People’s Republic of China. This
feature supports GBK Character Set, a superset of GB2312 which is used in the
zh locale.

� The English and European translations for the Solaris 7 operating environment
have been combined on a single CD. As a result, more locale selections are
available during installation of this combined CD than were seen previously.

� The Desktop Font Downloader allows users to download, remove, re-encode
and convert fonts, check status, and perform other administrative tasks on a
PostScipt printer.

Internationalization and Localization
Internationalization is the process of making software portable between languages or
regions, while localization is the process of adapting software for specific languages
or regions. International software can be developed using interfaces that modify
program behavior at run time in accordance with specific cultural requirements.
Localization involves establishing on-line information to support a language or
region, called a locale.

Unlike software that must be completely rewritten before it can work with different
native languages and customs, internationalized software does not require rewriting.
It can be ported from one locale to another without change. The Solaris system is
internationalized, providing the infrastructure and interfaces you need to create
internationalized software. and Chapter 4 describe what facilities are available and
how to use them.

Internationalization and localization are different procedures.

� Internationalization is the process of making software that is independent of any
locale. It can then be easily adapted to specific locales.

The following localized products are available in the Solaris 7 operating
environment:

� English and European Solaris (German, French, Spanish, Swedish, Italian)

2 Solaris Internationalization Guide For Developers ♦ October 1998

� Simplified Chinese Solaris

� Traditional Chinese Solaris

� Japanese Solaris

� Korean Solaris

Basic Steps in Internationalization
An internationalized application’s executable image is portable between languages
and regions. To internationalize software, you should:

� Use the interfaces described in this book to create software whose environment
can be modified dynamically without the necessity of recompiling the software.

� Separate software into executable and messages. The messages include all
printable and displayable messages that the user sees. Keep the message strings in
a message catalog.

Message strings are translated for a language and a region. A locale includes the
message strings and methods to specify sorting.

Locales are not the same as a language. A language may contain various regions. For
example, French is spoken in France and Canada, but each country has different
ways of displaying monetary and time information.

To use a localized version of a product, the user sets the environment variables
(described in “Locale Categories ” on page 5). The product then displays the user
messages in their translated form. , , Date, time, currency and other information is
formatted and displayed according to locale-specific conventions.

What Is a Locale?
A locale may be composed of both a base language and the country of use. This
allows for specific differences by country such as currency units notation.

The key concept for application programs is that of a program’s locale. The locale is
an explicit model and definition of a native-language environment. The notion of a
locale is explicitly defined and included in the library definitions of the ANSII C
Language standard.

The locale consists of a number of categories for which there is language-dependent
formatting or other specifications. A program’s locale defines its codesets, date and
time formatting conventions, monetary conventions, decimal formatting conventions,
and collation (sort) order.

Solaris Internationalization Overview 3

A locale name contains language, territory, and possibly codeset, although territory is
dropped when not needed. Codeset is usually assumed. For example, German is de ,
an abbreviation for Deutsch, while Swiss German is de_CH, CHbeing an abbreviation
for Confederation Helvetica.

Note - More than one locale may be associated with a particular language. This
allows for regional differences such as currency notation. For example, an
English-speaking user in the United States can select the en_US locale (English for
the United States). An English-speaking user in Great Britain can select en_GB
(English for Great Britain).

Generally the locale name is specified by the LANGenvironment variable. Locale
categories are subordinate to LANG, but may be set separately, in which case they
override LANG. If LC_ALL is set, it overrides not only LANG, but all the separate
locale categories as well.

Full and Partial Locales
A full Solaris locale has all of the listed functions and the localized system messages
in that language. The German de locale is a full locale. A German language user sees
all system messages in German.

Partial locales have the listed functions but they don’t provide localized messages.
For example, the Russian ru locale can process input, output, sorting, and so on, but
it does not have localized messages in Russian. For this reason it is a partial locale.

Some partial locales do use non-English messages because there may be a full locale
with the localized messages. For example, the de_AT is a partial locale for Austria.
Austrians speaks German but use a different currency. The Austrian locale is a subset
of the German de locale. It displays messages in German and currency in Austrian
shillings instead of German marks.

Locales
Different cultures use different conventions for writing the date, the time, numbers,
currency, delimiting words and phrases, and quoting material.

A locale defines the behavior of a program at runtime according to a language or
cultural region’s conventions. Throughout the system, a locale determines the
behavior of the following:

� Encoding and processing of text data

� Identifying the language and encoding of resource files and their text values

4 Solaris Internationalization Guide For Developers ♦ October 1998

� Rendering and layout of text strings

� Interchanging text that is used for interclient text communication

� Encoding and decoding for interclient text communication

� Selecting the input method (that is, which codeset is generated) and the processing
of text data

� Font and icon files that are culturally specific

� Actions and file types

� User Interface Definition (UID) files

� Date and time formats

� Numeric formats

� Monetary formats

� Collation order

� Format for informative and diagnostic messages and interactive responses

The Solaris environment separates language and culture-dependent information from
the application and saves it outside the application.

By separating the language and culture-dependent information from the application,
the developer does not need to translate, rewrite, or recompile the application for
each market. The only requirement to enter a new market is to localize the external
information to the local language and customs.

Locale Categories
The locale categories are as follows:

� LC_CTYPE

Controls the behavior of character handling functions.

� LC_TIME

Specifies date and time formats, including month names, days of the week, and
common full and abbreviated representations.

� LC_MONETARY

Specifies monetary formats. Few SunOS system commands or library routines
actually use this category.

� LC_NUMERIC

Specifies the decimal separator (or radix character) and the thousands separator.

� LC_COLLATE

Specifies the sorting order for a locale and the string conversions required to attain
this ordering.

Solaris Internationalization Overview 5

� LC_MESSAGES

Specifies the language in which the localized messages are written.

� LO_LTYPE

Specifies the language engine which provides information about language
rendering. Language rendering (or text rendering) consists of text shaping and
directionality.

Using Locale Categories for Localization
The localization of a product should be done in consultation with native users in that
target language or region. Certain styles and information styles and formats may
seem perfectly obvious and universal to the developer, but to the user, these look
either awkward, wrong, or even offensive. The following pages describe the elements
that the Solaris operating environment allows you to control and specify so that you
can successfully internationalize your product.

Time Formats
Table 1–1 shows some of the ways to write 11:59 P.M.

TABLE 1–1 International Time Formats

Locale Format

Canadian 23:59

Finnish 23.59

German 23.59 Uhr

Norwegian Kl 23.59

U.K. 11.59 PM

Thai 13:10 PM

Time is represented by both a 12-hour clock and a 24-hour clock. The hour and
minute separator can be either a colon (:)or a period (.).

6 Solaris Internationalization Guide For Developers ♦ October 1998

Time zone splits occur between and within countries. Although a time zone can be
described in terms of how many hours it is ahead of, or behind, Greenwich Mean
Time (GMT), this number is not always an integer. For example, Newfoundland is in
a time zone that is half an hour different from the adjacent time zone.

Daylight Savings Time (DST) starts and ends on different dates that can vary from
country to country.

Date Formats
Table 1–2 shows some of the date formats used around the world. Note that even
within a country, there may be variations.

TABLE 1–2 International Date Formats

Locale Convention Example

Canadian (English and
French)

yyyy-mm-dd 1998-08-13

Danish dd/mm/yy 13/08/98

Finnish dd.mm.yyyy 13.08.1998

French dd/mm/yy 13/08/98

German dd.mm.yy 13.08.98

Italian dd.mm.yy 13.08.98

Norwegian dd.mm.yy 13.08.98

Spanish dd-mm-yy 13-08-98

Swedish yyyy-mm-dd 1998-08-13

UK-English dd/mm/yy 13/08/98

US-English mm-dd-yy 08-13-98

Thai dd/mm/yyyy 10/12/2539

Solaris Internationalization Overview 7

Numbers

Decimal and Thousands Separators
Great Britain and the United States are two of the few places in the world that use a
period to indicate the decimal place. Many other countries use a comma instead. The
decimal separator is also called the radix character. Likewise, while the U.K. and U.S.
use a comma to separate thousands groups, many other countries use a period
instead, and some countries separate thousands groups with a thin space. Table 1–3
shows some commonly used numeric formats.

TABLE 1–3 International Numeric Conventions

Locale Large Number

Canadian (English and French) 4 294 967 295,00

Danish 4.294.967.295,00

Finnish 4.294.967.295,00

French 4.294.967.295,00

German 4 294 967 295,00

Italian 4.294.967.295,00

Norwegian 4.294.967.295,00

Spanish 4.294.967.295,00

Swedish 4.294.967.295,00

UK-English 4,294,967,295.00

US-English 4,294,967,295.00

Thai 4,294,967,295.00

Data files containing locale-specific formats will be misinterpreted when transferred
to a system in a different locale. For example, a file containing numbers in a French
format is not useful to a U.K.-specific program.

8 Solaris Internationalization Guide For Developers ♦ October 1998

List Separators
There are no particular locale conventions that specify how to separate numbers in a
list. They are sometimes comma-delimited in the UK and the U.S., but often spaces
and semicolons are used.

Currency
Currency units and presentation order vary greatly around the world. Table 1–4
shows monetary formats in some countries.

TABLE 1–4 International Monetary Conventions

Locale Currency Example

Canadian (English) Dollar ($) $1 234.56

Canadian (French) Dollar ($) 1 234.56$

Danish Kroner (kr) kr.1.234,56

Finnish Markka (mk) 1.234 mk

French Franc (F) F1.234,56

German Deutsche Mark (DM) 1,234.56DM

Italian Lira (L) L1.234,56

Japanese Yen 41,234 Yen

Norwegian Krone (kr) kr 1.234,56

Spanish Peseta (Pts) 1.234,56Pts

Swedish Krona (Kr) 1234.56KR

UK-English Pound 31,234.56 pounds

US-English Dollar ($) $1,234.56

Thai Baht 2539 Baht

Solaris Internationalization Overview 9

Note - Local and international symbols for currency can differ. For example, the
designation for the French franc is “F” in France but this is often written as FRF’
internationally to distinguish it from other francs, such as the Swiss franc or the
Polynesian franc.

Be aware also that a converted currency amount may take up more or less space than
the original amount. To illustrate: $1,000 can become L1.307.000.

Word and Letter Differences

Word Delimiters
In English, words are separated by a space character. In languages such as Chinese,
Japanese and Thai, however, there is often no delimiter between words.

Word Order
The order of words in phrases and sentences varies between languages. For instance,
the order of the words “cat” and “black” in “a black cat” is reversed in the
equivalent Spanish phrase, “uno gato negro.” And in French, the negatives “ne” and
“pas” surround the word they negate, as in the phrase “I do not speak,” which in
French is “Je ne parle pas.”

Sort Order
Sorting order for particular characters is not the same in all languages. For example,
the character “ö” sorts with the ordinary “o” in Germany, but sorts separately in
Sweden, where it is the last letter of the alphabet. In some languages, characters have
weight to determine the priority of the character sequences. For example, in Thai, the
Thai dictionary defines sorting through the sequences of characters which have
different weights.

Character Sets

Number of Characters
While the English alphabet contains only 26 characters, some languages contain
many more characters. Japanese, for example, can contain over 40,000 characters;
Chinese even more.

10 Solaris Internationalization Guide For Developers ♦ October 1998

Western European Alphabets
The alphabets of most western European countries are similar to the standard
26-character alphabet used in English-speaking countries, but there are often some
additional basic characters, some marked (or accented) characters, and some ligatures.

Japanese Text
Japanese text is composed of three different scripts mixed together: Kanji ideographs
derived from Chinese, and two phonetic scripts (or syllabaries), Hiragana and
Katakana.

Although each character in Hiragana has an equivalent in Katakana, Hiragana is the
most common script, with cursive rather than block-like letter forms. Kanji characters
are used to write root words. Katakana is mostly used to represent “foreign”
words—words “imported” from languages other than Japanese.

There are tens of thousands of Kanji characters, but the number commonly used has
been declining steadily over the years. Now only about 3500 are frequently used,
although the average Japanese writer has a vocabulary of about 2000 Kanji
characters. Nonetheless, computer systems must support more than 7000 because
that is what the Japan Industry Standard (JIS) requires. In addition, there are about
170 Hiragana and Katakana characters. On average 55% of Japanese text is Hiragana,
35% Kanji, and 10% Katakana. Arabic numerals and Roman letters are also present in
Japanese text.

Although it is possible to avoid the use of Kanji completely, most Japanese readers
find text containing Kanji easier to understand.

Korean Text
Korean text can be written using a phonetic writing system called Hangul. Hangul
has more than 11,000 characters, which are composed by 19 consonants, 21 vowels
and optional 27 consonants. About 3,000 Hangul characters from the whole Hangul
characters are usually used in Korean computer systems. Korean also uses
ideographs based on the set invented in China, called Hanja. Korean text requires
over 6,000 Hanja characters. Hanja is used mostly to avoid confusion when Hangul
would be ambiguous. Hangul characters are formed by combining consonants and
vowels. After combining them together, they can compose one syllable, which is a
Hangul character. Hangul characters are often arranged in a square, so that the
group takes up the same space as a Hanja character. Arabic numerals, Roman letters
and special symbol characters are also present in Korean text.

Thai Text
A Thai character can be defined as a column position on a display screen with four
display cells. Each column position can have up to three characters. The composition

Solaris Internationalization Overview 11

of a display cell is based on the Thai character’s classification. Some Thai characters
can be composed with another character’s classification. If they can be composed
together, both characters will be in the same cell. Otherwise, they will be in separate
cells.

Chinese Text
Chinese usually consists entirely of characters from the ideographic script called
Hanzi. In the People’s Republic of China (PRC) there are about 7000 commonly used
Hanzi characters in GB2312 (zh locale) and more than 20,000 characters in the GBK
(zh.GBK) locale. In Taiwan, current standards require more than 13000 characters;
6000 others have been recently standardized but are considered rare.

If a character is not a root character, it usually consists of two or more parts, two
being most common. In two-part characters, one part generally represents meaning,
and the other represents pronunciation. Occasionally both parts represent meaning.
The radical is the most important element, and characters are traditionally arranged
by radical, of which there are several hundred. The same sound can be represented
by many different characters, which are not interchangeable in usage. The same
character can even have different sounds.

Some characters are more appropriate than others in a given context—the
appropriate one is distinguished phonetically by the use of tones. By contrast,
spoken Japanese and Korean lack tones.

There are several phonetic systems for representing Chinese. In the People’s Republic
of China the most common is pinyin, which uses roman characters and is widely
employed in the West for place names such as Beijing. The Wade-Giles system is an
older phonetic system, formerly used for place names such as Peking. In Taiwan
zhuyin (or bopomofo), a phonetic alphabet with unique letter forms, is often used
instead.

Commercial applications, particularly those that deal with people’s names, need to
consider the impact of codeset expansion. Many Chinese people have names
containing characters that do not exist in any standard codeset. Space needs to be
provided in unassigned codesets to deal with this issue.

Keyboard Differences
Not all characters on the U.S. keyboard appear on other keyboards. Similarly, other
keyboards often contain many characters not visible on the U.S. keyboard. However,
on Sparc machines, the Compose key can be used to produce any character in the
ISO Latin-1 codeset on any keyboard that supports it.

12 Solaris Internationalization Guide For Developers ♦ October 1998

Note - The Compose key can be used with English or European locales, but not with
Korean, Chinese, or Japanese locales.

Other Differences
Punctuation
Both the position and the type of punctuation symbols can vary between languages.
In Spanish, “¿” and “¡” appear at the beginnings of sentences, while in Finnish
colons (:)can occur inside words.

Symbols
Commonly used symbols in one culture often have no meaning in another culture.
For example, because the common U.S. rural mailbox does not exist in other
countries, it would not make a universal email icon.

Measurements
While most countries now use the metric system of measurement, the United States,
parts of Canada, and the Great Britain (albeit unofficially) still use the imperial
system. The symbols for feet (‘) and inches (“) are not understood in all countries.

Gender
The spelling of adjectives, articles, and nouns are gender-dependent in some
languages. In French, for example, “un petit gamin” and “une petite gamine” both
mean “a cute kid.” The first expression, however, refers to a boy, and the second
expression to a girl. Also, neuter objects in English (“a computer” for example) have
gender in other languages (“un ordinateur” is a masculine noun in French).

Titles and Addresses
Mr., Miss, Mrs., and Ms. are common titles in the U.S. but are not used in many
other countries. The order in which addresses are written is different too.

Solaris Internationalization Overview 13

Address formats differ from country to country. In many countries, the postal code
includes letters as well as numbers.

The order of writing addresses differs from country to country. The order of writing
first name and last name is also different.

Paper Sizes
Within each country a small number of paper sizes are commonly used, normally
with one of those sizes being much more common than the others. Most countries
follow ISO Standard 216 “Writing paper and certain classes of printed
matter—Trimmed sizes—A and B series.”

Internationalized applications should not make assumptions about the page sizes
available to them. The Solaris system provides no support for tracking output page
size; this is the responsibility of the application program. Table 1–5 shows Common
International Page Sizes.

TABLE 1–5 Common International Page Sizes

Paper Type Dimensions Countries

ISO A4 21.0 cm by 29.7 cm Everywhere except U.S.

ISO A5 14.8 cm by 21.0 cm Everywhere except U.S.

JIS B4 25.9 cm by 36.65 cm Japan

JIS B5 18.36 cm by 25.9 cm Japan

U.S. Letter 8.5 inch by 11 inches U.S. and Canada

U.S. Legal 8.5 inch by 14 inches U.S. and Canada

Creating Worldwide Software: The Book
The book Creating Worldwide Software, 2nd edition, by Bill Tuthill and David
Smallberg (SunSoft Press, 1997), is a guide to localizing for the Solaris platform. The
book is recommended for developers who work with the Solaris system See “Related
Books and Sites” on page xviii for a full citation.

14 Solaris Internationalization Guide For Developers ♦ October 1998

Overview
The book Creating Worldwide Software is for developers and managers who develop
products for the worldwide UNIX platform, especially for the Sun Solaris system.

� Chapter 1, “Winning in Global Markets,” briefly shows the market potential of
internationalizing your products and defines the steps of internationalization and
localization.

� Chapter 2, “Understanding Linguistic and Cultural Differences,” shows through
examples how an item will appear in various cultures.

� Chapter 3, “Encoding Character Sets,” describes how to encode character sets in
any language.

� Chapter 4, “Establishing Your Locale Environment,“ looks at how a user selects a
locale. It leads you through the steps of creating a specific locale for your product,
including formats for time, date, money, and so on.

� Chapter 5, “Messaging for Program Translation,” explains how to prepare your
product to handle localized messages. It discusses how to create and install your
translated message catalogs.

� Chapter 6, “Displaying Localized Text,” discusses font, user interface, and printing
issues.

� Chapter 7, “Handling Language Input,” discusses the various input methods for
various languages.

� Chapter 8, “Working with CDE,” explains the CDE environment and your
localization.

� Chapter 9, “Motif Programming,” discusses how to write applications under Motif
and CDE.

� Chapter 10, “X11 Programming,” discusses internationalization with X11.

� Chapter 11, “Communicating Network Data,” discusses issues in sharing and
distributing data across networks.

� Chapter 12, “Writing International Documentation,” includes guidelines for
writing manuals and documentation to be translated.

� Chapter 13, “Product Localization,” discusses business issues.

� Chapter 14, “Standards Organizations,” is a summary of the international
standards organizations.

� Chapter 15, “Internationalization Checklist,” has a checklist for
internationalization.

� Appendix A, “Languages, Territories, and Locale Names,” lists the standard
names for languages, locales, and so on.

� Appendix B, “Locale Summaries and Keyboard Layouts,” lists many locale-specific
information and keyboard layouts.

� Appendix C, “OpenWindows and DevGuide,” explains how internationalization
works with OpenWindows.

Solaris Internationalization Overview 15

� Appendix D, “XView Programming,” discusses internationalization with XView.

� Appendix E, “OLIT Programming,” discusses internationalization with OPEN
LOOK Intrinsics Toolkit (OLIT).

� Appendix F, “Example Program,” offers a complete source code for an
internationalized Motif application.

� Appendix G, “Annotated Bibliography,” is a summary of additional suggested
books.

� Appendix H, “Glossary,” is a list of key terms.

16 Solaris Internationalization Guide For Developers ♦ October 1998

CHAPTER 2

Contents of the Base Solaris Product

Summary of the Base Product
Solaris 7 includes partial locales, which provide the functionality needed for
entering, displaying, and printing in local languages while using an English
interface. It also includes the en_US.UTF-8 locale, which also uses an English
interface, and supports the Unicode UTF-8 character encoding standard.

The base English Solaris 7 product includes the Euro full locales, a number of partial
European locales as well as the en_US.UTF-8 locale.

The File System Safe Universal Transformation Format, or UTF-8 , is an encoding
defined by X/Open as a multi-byte representation of Unicode. UTF-8 is a variant of
UNICODE. UTF-8 provides input and output support for all Solaris single-byte
locales.

Partial locales can be split into two groups: the core set and the extended set. The
core set is packaged in SUNWploc (operating system locale) and SUNWplow(window
system locale). Since these packages are part of the end user cluster, they are
installed automatically. The extended set of locales is packaged in SUNWploc1
(operating system locale) and SUNWplow1(Window system locale). SUNWpldte has
CDE support for the Eastern European locales.

SUNWploc1 and SUNWplow1are available on the entire cluster only. SUNWploc1
and SUNWplow1need to be added to your system before you can use the locales in
the extended set.

17

Core Set of Locales
The core set of locales is installed automatically. The core sets are listed in Table 2–1.

TABLE 2–1 Core Set of Locales in SUNWploc and SUNWplow

Locale Language Country Encoding

de German Germany ISO-8859-1

en_AU English Australia ISO-8859-1

en_CA English Canada ISO-8859-1

en_UK changed to
en_GB

English Great Britain ISO-8859-1

en_US English United States ISO-8859-1

en_US.UTF-8 English United States UTF-8

es Spanish Spain ISO-8859-1

es_AR Spanish Argentina ISO-8859-1

es_BO Spanish Bolivia ISO-8859-1

es_CL Spanish Chile ISO-8859-1

es_CO Spanish Columbia ISO-8859-1

es_CR Spanish Costa Rica ISO-8859-1

es_EC Spanish Ecuador ISO-8859-1

es_GT Spanish Guatemala ISO-8859-1

es_MX Spanish Mexico ISO-8859-1

es_NI Spanish Nicaragua ISO-8859-1

es_PA Spanish Panama ISO-8859-1

18 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 2–1 Core Set of Locales in SUNWploc and SUNWplow (continued)

Locale Language Country Encoding

es_PE Spanish Peru ISO-8859-1

es_PY Spanish Paraguay ISO-8859-1

es_SV Spanish El Salvador ISO-8859-1

es_UY Spanish Uruguay ISO-8859-1

es_VE Spanish Venezuela ISO-8859-1

fr French France ISO-8859-1

it Italian Italy ISO-8859-1

sv Swedish Sweden ISO-8859-1

New Locales
Solaris software already supports most of the Western European locales and, in this
release, has focused on expanding its support for the Eastern European, Thai, and
the Middle Eastern regions. New and changed user locales in the Solaris 7 operating
environment are listed in Table 2–2

TABLE 2–2 New or Changed User Locales

Region Locale Name ISO Codeset Comments

Albania sq_AL 8859-2

Bosnia nr 8859-2

Bulgaria bg_BG 8859-5

Croatia hr_HR 8859-2

Contents of the Base Solaris Product 19

TABLE 2–2 New or Changed User Locales (continued)

Region Locale Name ISO Codeset Comments

Finland su changed to fi 8859-15 Changed to comply with
ISO standards

France fr UTF-8

Germany de UTF-8

Macedonia mk_MK 8859-5

Israel he 8859-8

Italy it UTF-8

Norway
(nynorsk)

no_NY 8859-1

P.R. China zh.GBK GBK GBK is a superset of
GB2312

Romania ro_RO 8859-2

Russia ru KOI-8 The default codeset has
been changed to KOI-8
from ISO 8859-5

Saudi
Arabia

ar 8859-6

Serbia sr_SP 8859-5

Slovakia sk_SK 8859-2

Slovenia sl_SI 8859-2

Spain es UTF-8

Sweden sv UTF-8

Thailand th_TH TIS 620-2533 Thai character codeset
has been registered to
ISO 8859-11

20 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 2–2 New or Changed User Locales (continued)

Region Locale Name ISO Codeset Comments

Great
Britain

en_UK changed to
en_GB

8859-15 Changed to comply with
ISO standards

United
States

en_US UTF-8

Solaris 7 software has added support for the Euro currency by adding six new user
locales. These are included in Table 2–3 Note that local currency symbols are still
available for backwards compatibility.

TABLE 2–3 New User Locales To Support the Euro Currency

Region Locale Name ISO Codeset

Austria de_AT 8859-15

Belgium
(French)

fr_BE 8859-15

Belgium (Dutch) nl_BE 8859-15

Denmark da 8859-15

England en_EU 8859-15

Finland su changed to fi 8859-15

France fr 8859-15

Germany de 8859-15

Ireland en_IE 8859-15

Italy it 8859-15

Netherlands nl 8859-15

Contents of the Base Solaris Product 21

TABLE 2–3 New User Locales To Support the Euro Currency (continued)

Region Locale Name ISO Codeset

Portugal pt 8859-15

Spain es 8859-15

Sweden sv 8859-15

Great Britain en_GB 8859-15

Europe en_EU 8859-15

Extended Set of Locales
The extended set of locales is not installed automatically. If you want to use locales
listed in Table 2–4 you need to install them manually.

TABLE 2–4 Extended Set of Locales in SUNWploc1 and SUNWplow1

Locale Language Country Encoding

cz Czech Czechoslovakia ISO-8859-2

da Danish Denmark ISO-8859-15

de_AT German Austria ISO-8859-15

de_CH German Switzerland ISO-8859-1

el Greek Greece ISO-8859-7

en_IE English Ireland ISO-8859-1

en_NZ English New Zealand ISO-8859-1

et Estonian Estonia ISO-8859-15

fr_BE French Belgium ISO-8859-1

fr_CA French Canada ISO-8859-1

22 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 2–4 Extended Set of Locales in SUNWploc1 and SUNWplow1 (continued)

Locale Language Country Encoding

fr_CH French Switzerland ISO-8859-1

hu Hungarian Hungary ISO-8859-2

lt Lithuanian Lithuania ISO-8859-13

lv Latvian Latvia ISO-8859-13

nl Dutch Netherlands ISO-8859-1

nl_BE Dutch Belgium ISO-8859-1

no Norwegian Norway ISO-8859-1

pl Polish Poland ISO-8859-2

pt Portuguese Portugal ISO-8859-1

pt_BR Portuguese Brazil ISO-8859-1

ru Russian Russia ISO-8859-5

su Finnish Finland ISO-8859-1

tr Turkish Turkey ISO-8859-9

Unicode Locale: en_US.UTF-8
The en_US.UTF-8 locale is a multiscript locale that can input and output text in
multiple scripts, including single-byte and multi-byte scripts. This locale is part of
the developer cluster. This is the first locale with this capability in the Solaris
operating environment.

This locale uses UTF-8 (Universal Character Set Transformation Format for 8 bits)
encoding, which was developed by the X/Open-Uniforum Joint Internationalization
Working Group (XoJIG). This standard has been adopted by the Unicode
Consortium, the International Standards Organization, and the International
Electrotechnical Commission as a part of Unicode 2.0 and ISO/IEC 10646-1.

Contents of the Base Solaris Product 23

en_US.UTF-8 supports computation for every code point value, which is defined in
Unicode 2.0 and ISO/IEC 10646-1. In Solaris 7, language script support is not limited
to pan-European locales, but also includes Asian scripts such as Korean, Traditional
Chinese, Simplified Chinese, and Japanese. Input method support has been enabled
for the following language scripts only. Due to limited font resources, Solaris 7
software includes only character glyphs from the following codesets:

� ISO 8859-1 (most Western European languages, such as English, French, Spanish,
and German)

� ISO 8859-2 (most Central European languages, such as Czech, Polish, and
Hungarian)

� ISO 8859-4 (Scandinavian and Baltic languages)

� ISO 8859-5 (Russian)

� ISO 8859-6 (Arabic)

� ISO 8859–7 (Greek)

� ISO 8859–8 (Hebrew)

� ISO 8859-9 (Turkish)

� ISO 8859–11 (Thai) or TIS 620.2533

User Locales in the Base Solaris Product
The Base Solaris 7 product includes the locale support listed in Table 2–5.

TABLE 2–5 User Locales Included in Solaris 7 Product

Country Locale-Name ISO codeset

Austria de_AT (German Partial Locale) 8859-1

Estonia et 8859-1

Czech cz 8859-2

Hungary hu 8859-2

Poland pl 8859-2

Latvia lv 8859-4

24 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 2–5 User Locales Included in Solaris 7 Product (continued)

Country Locale-Name ISO codeset

Lithuania lt 8859-13

Russia ru 8859-5

Greece el.sun_eu_greek 8859-7
(modified)

Turkey tr 8859-9

These locales are supported through the SUNWploc1 (for operating system support),
SUNWplow1(for OpenWindows support), and SUNWpldte (for locales support)
packages, which are part of the entire cluster. The fonts for these locales have the
format SUNiXxf .

� i X represents the ISO 8859 codeset.

� xf indicates whether the font is optional or required.

SUNWi1rf contains the required font and SUNWi1of contains the optional font for
an ISO 8859-1 codeset locale. These packages are in different clusters; install the
entire cluster or selectively add the appropriate packages. After the packages have
been installed, users can login through dtlogin to either CDE or OpenWindows
and use the characters associated with their locale.

Multiple Key Compose Sequences for
Locales
The Solaris 7 operating environment supports “compose sequences” to create the
diacritical marks used in writing the scripts covered in the following codesets:

� ISO 8859-2 (Latin2) Czech, Polish, and Hungarian

� ISO 8859-4 (Latin4) Latvian and Lithuanian

� ISO 8859-9 (Latin5) Turkish

These are the diacritic characters that can be created with the following keys and the
Compose key.

� diaeresis = citation (“)(for example, Compose + A + “ = Ä)

� caron = v (for example, Compose + E + v = E caron)

Contents of the Base Solaris Product 25

� breve = u

� ogonek = a

� doubleacute = > greater

� degree symbol = O + 0 (o plus zero)

� currency symbol = 0 + x (zero plus x)

Keyboard Support in the Base Solaris 7
Product
The following locales have keyboard layouts for SPARC (X-server) and X86 (Xserver
PLUS console):

� Czech

� Hungary

� Poland

� Latvia

� Lithuania

� Russia

� Greece

� Turkey

[X-server is CDE and OW, console is command line]

Changing Between Keyboards on SPARC
Support for changing layouts in the Solaris product is achieved only by using the
dip-switch settings under the keyboard. The keyboard layout is determined by the
dip switches. A list of keyboard layouts and corresponding defined dip-switch
settings is at /usr/openwin/share/etc/keytables/keytable.map .

The following table Table 2–6 is for a type 4 keyboard .(1=switch up 0=switch down).

26 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 2–6 Layouts for Type 4 Keyboards

Dip Switch in Hex Keyboard Setting in Binary

51 Hungary5.kt 110011

52 Poland5.kt 110100

53 Czech5.k 110101

54 Russia5.kt 110110

55 Latvia5.k 110111

56 Turkey5.kt 111000

57 Greece5.kt 111001

58 Lithuania5.kt 111011

Changing the layout from U.S./UK to Czech is done by changing the dip-switch
settings to the setting defined in the file (the file defines the switches in hex. This
needs to be converted into binary as it was shown in Table 2–6) and then re-booting.

Russian and Greek keyboard support can be toggled on and off using the SPARC
Compose key (Ctrl+Shift+F1 on x86).

Changing Between Keyboards on x86
On x86, a keyboard is selected during the kdmconfig part of install. To change this
at any time after installation, use kdmconfig :

1. Exit CDE/OW to the command line.

2. Type kdmconfig -u (kdmconfig unconfigure).

3. Type kdmconfig to run the program.

4. Follow instructions to get a keyboard layout.

There are no ‘utilities’ for either SPARC or x86 (apart from standard UNIX tools such
as xmodmap, pcmapkeys) bundled into Solaris 7 for switching keyboards.

Contents of the Base Solaris Product 27

Codesets for x86
The default codeset on the Solaris system for x86 is ISO-8859-1. The IBM DOS 437
codeset is provided as an option in text mode. That is, if you choose to download
IBM DOS 437 codeset by typing:

loadfont -c 437
pcmapkeys -f /usr/share/lib/keyboards/437/en_US

there is no support for nonstandard U.S. date, time, currency, numbers, units, and
collation. There will be no support for non-English message and text presentation,
and no multibyte character support. Therefore, non-Microsoft Windows users should
use the IBM DOS 437 codeset only in the default C locale.

� You must be in the text mode to download the IBM codeset, not the graphics
mode.

� If you are not using the standard U.S. PC keyboard, replace en_US with the
keyboard map related to your keyboard.

� To download the default codeset in text mode, type:

loadfont -c 8859
pcmapkeys -f /usr/share/lib/keyboards/8859/en_US

� See the man Pages(1): User Commands loadfont (1) and pcmapkeys (1) man
pages.

Locales in the Base Installation
The installation window in the base Solaris 7 product offers several English language
locales. To use 8-bit characters, install one of the en_XX options, as shown in Table
2–7. The locale used in the installation becomes the default system locale.

TABLE 2–7 Locales Offered at Installation

Locale Name Language/Territory Codeset

C U.S. English 7-bit

en_AU Australian English 8-bit

en_CA Canadian English 8-bit

28 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 2–7 Locales Offered at Installation (continued)

Locale Name Language/Territory Codeset

en_UK UK English 8-bit

en_US U.S. English 8-bit

Using JumpStart
To enable JumpStartTM for the 8-bit locales, add the line locale xx (substituting the
appropriate 8-bit locale for xx, for example, en_US) to the JumpStart profile file. (For
complete instructions, see Chapter 4 of Automating Solaris Installation, available from
SunSoft Press.) Current JumpStart users should set the default locale to bypass the
language prompt during installation.

Contents of the Base Solaris Product 29

30 Solaris Internationalization Guide For Developers ♦ October 1998

CHAPTER 3

Contents of the Localized Solaris 7
Products

The European Localized Solaris 7
Product
European Solaris is available in three localized versions: French, German, and
European. All three versions of Solaris share the same software media, which
includes a fully localized CDE environment, error messages, and on-line
documentation in six languages—French, German, Spanish, Swedish, Italian, and
English. The difference is in the printed documentation. The French and German
Solaris products include localized printed documentation, while the printed
documentation for the European version is in English only.

Table 3–1 shows a list of locales in the European product. This includes both full and
partial locales.

TABLE 3–1 European 7 Locales

Locale Name Language/Territory

C POSIX English (7-bit) ASCII C

cz Czech Republic

da Denmark

31

TABLE 3–1 European 7 Locales (continued)

Locale Name Language/Territory

de Germany

de_AT Austria

de_CH Switzerland

de.ISO8859-15 Germany

el Greece

en_AU Australia

en_CA Canada

en_IE Ireland

en_NZ New Zealand

en_UK Great Britain

en_US U.S.

es Spain

es_AR Argentina

es_BO Bolivia

es_CL Chile

es_CO Colombia

es_CR Costa Rica

es_EC Ecuador

es_GT Guatemala

32 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–1 European 7 Locales (continued)

Locale Name Language/Territory

es_MX Mexico

es_NI Nicaragua

es_PA Panama

es_PE Peru

es_PY Paraguay

es_SV El Salvador

es_UY Uruguay

es_VE Venezuela

et Estonia

fr France

fr_BE Belgium (French)

fr_CA Canada (French)

fr_CH Switzerland (French)

fr.ISO8859-15 France

fr.UTF-8 France

hu Hungary

it.ISO8859-15 Italy

it.UTF-8 Italy

it.ISO8859-15 Italy

Contents of the Localized Solaris 7 Products 33

TABLE 3–1 European 7 Locales (continued)

Locale Name Language/Territory

lt.ISO8859-13 Lithuania

lv.ISO8859-13 Latvia

nl Netherlands

nl_BE Netherlands/Belgium

no Norway

pl Poland

pt_BR Portuguese Brazil

ru Russia

it.ISO8859-15 Italy

es.ISO8859-15 Spain

sv.ISO8859-15 Sweden

en_EU.ISO8859-15 Europe

en_GB.ISO8895-15 Britain

fr_BE.ISO8895-15 Belgium

nl.ISO8895-15 Netherlands

nl_BE.ISO8895-15 Belgium

pt.ISO8895-15 Portugal

de.-AT.ISO8895-15 Austria

en_IE.ISO8859-15 Ireland

34 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–1 European 7 Locales (continued)

Locale Name Language/Territory

da.ISO8859-15 Denmark

fi.ISO8859-15 Finland

el_EURO Greece

sun_eu_greek Greece

de.UTF-8 Germany

de.ISO8859-15 Germany

fr.UTF-8 France

it.UTF-8 Italy

es.UTF-8 Spain

es.ISO8859-15 Spain

sv.UTF-8 Sweden

sv.ISO8859-15 Sweden

en_UTF.8 Europe

en_ISO8859-15 Europe

All of these locales are also present in the base Solaris 7 release.

As mentioned, the locales include partial locales. These are based on core locales for
the main language. For example, the fr_CA (French Canadian) is based on the fr
(French) locale. These partial locales utilize the messages that are delivered into its
parent locale (French for fr_CA). If a locale hasn’t been fully localized, then it may
contain only English messages.

A number of Eastern European locales have also been added into the Solaris 7
product, which may be based on other ISO standards. Previously Sun locales were

Contents of the Localized Solaris 7 Products 35

based on ISO-8859-1. The Eastern European locales are based on other ISO standards,
as shown in Table 3-2.

Locales that are not listed are still based on ISO-8859-1.

TABLE 3–2 Eastern European Locales in the Solaris 7 Product

Locale Name Language/Territory ISO

de_AT German (Austrian) 8859-1

et Estonian 8859-15

cz Czech 8859-2

hu Hungarian 8859-2

pl Polish 8859-2

lv Latvian 8859-13

lt Lithuanian 8859-13

ru Russian 8859-5

el Greek 8859-7

tr Turkish 8859-9

sq_AL Albanian 8859-2

sk_SK Slovakian 8859-2

sl_SL Slovenian 8859-2

hr_HR Croatian 8859-2

nr Bosnian 8859-2

ro_RO Romanian 8859-2

sr_SP Serbian 8859-5

36 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–2 Eastern European Locales in the Solaris 7 Product (continued)

Locale Name Language/Territory ISO

bg_BG Bulgarian 8859-5

mk_MK Macedonian 8859-5

ru.KOI8-R Russian KOI8-R

ar Arabic 8859-6

he Hebrew 8859-8

th_TH Thai 8859-11 (TIS 620.2533)

All of the locales support character input and output. There is also iconv support for
many of the major codesets. (For more on iconv , see iconv (1)The iconv modules
are available on the end-user cluster of the Euro product. See Table 3–3 for details.

TABLE 3–3 iconv Support

Code Symbol Target Code Symbol Comment

ISO 8859-2 iso2 MS 1250 win2 Windows Latin 2

ISO 8859-2 iso2 MS 852 dos2 MS-DOS Latin 2

ISO 8859-2 iso2 Mazovia maz Mazovia

ISO 8859-2 iso2 DHN dhn Dom Handlowy Nauki

MS 1250 win2 ISO 8859-2 iso2 ISO Latin 2

MS 1250 win2 MS 852 dos2 MS-DOS Latin 2

MS 1250 win2 Mazovia maz Mazovia

MS 1250 win2 DHN dhn Dom Handlowy Naduki

Contents of the Localized Solaris 7 Products 37

TABLE 3–3 iconv Support (continued)

Code Symbol Target Code Symbol Comment

MS 852 dos2 ISO 8859-2 iso2 ISO Latin 2

MS 852 dos2 MS 1250 win2 Windows Latin 2

MS 852 dos2 Mazovia maz Mazovia

MS 852 dos2 DHN dhn Dom Handlowy Nauki

Mazovia maz ISO 8859-2 iso2 ISO Latin 2

Mazovia maz MS 1250 win2 Windows Latin 2

Mazovia maz MS 852 dos2 MS-DOS Latin 2

Mazovia maz DHN dhn Dom Handlowy Nauki

DHN dhn ISO 8859-2 iso2 ISO Latin 2

DHN dhn MS 1250 win2 Windows Latin 2

DHN dhn MS 852 dos2 MS-DOS latin 2

DHN dhn Mazovia maz Mazovia

ISO 8859-5 iso5 KOI8-R koi8 KOI8-R

ISO 8859-5 iso5 PC Cyrillic alt Alternative PC Cyrillic

ISO 8859-5 iso5 MS 1251 win5 Windows Cyrillic

ISO 8859-5 iso5 Mac Cyrillic mac Macintosh Cyrillic

OKI8-R koi8 ISO 8859-5 iso5 ISO 8859-5 Cyrillic

KOI8-R koi8 PC Cyrillic alt Alternative PC Cyrillic

KOI8-R koi8 MS 1251 win5 Windows Cyrillic

38 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–3 iconv Support (continued)

Code Symbol Target Code Symbol Comment

KOI8-R koi8 Mac Cyrillic mac Macintosh Cyrillic

PC Cyrillic alt ISO 8859-5 iso5 ISO 8859-5 Cyrillic

PC Cyrillic alt KOI8-R koi8 KOI8-R

PC Cyrillic alt MS 1251 win5 Windows Cyrillic

PC Cyrillic alt Mac Cyrillic mac Macintosh Cyrillic

MS 1251 win5 ISO 8859-5 iso5 ISO 8859-5 Cyrillic

MS 1251 win5 KOI8-R koi8 KOI8-R

MS 1251 win5 PC Cyrillic alt Alternative PC Cyrillic

MS 1251 win5 Mac Cyrillic mac Macintosh Cyrillic

Mac Cyrillic mac ISO 8859-5 iso5 ISO 8859-5 Cyrillic

Mac Cyrillic mac KOI8-R koi8 KOI8-R

Mac Cyrillic mac PC Cyrillic alt Alternative PC Cyrillic

Mac Cyrillic mac MS 1251 win5 Windows Cyrillic

Table 3–4 contains a list of the Solaris 7 environment locales and their corresponding
codeset names.

TABLE 3–4 New Locales and Corresponding Codeset Names

Locale nl_langinfo
(CODESET)

ICONV name Product

ar ISO8859-6 ISO8859-6 Base/Euro

bg_BG ISO8859-5 ISO8859-5 Base/Euro

Contents of the Localized Solaris 7 Products 39

TABLE 3–4 New Locales and Corresponding Codeset Names (continued)

Locale nl_langinfo
(CODESET)

ICONV name Product

C 646 646 Base/Euro

cz ISO8859-2 ISO8859-2 Base/Euro

da ISO8859-1 ISO8859-1 Base/Euro

da.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

de ISO8859-1 ISO8859-1 Base/Euro

de.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

de_UTF-8 UTF-8 UTF-8 Base/Euro

de_AT ISO8859-1 ISO8859-1 Base/Euro

de_AT.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

de_CH ISO8859-1 ISO8859-1 Base/Euro

el ISO8859-7 ISO8859-7 Base/Euro

el.sun_eu_greek ISO8859-15 ISO8859-15 Base/Euro

en_AU ISO8859-1 ISO8859-1 Base/Euro

en_CA ISO8859-1 ISO8859-1 Base/Euro

en_EU.ISO8859-15 ISO8859-15 ISO8859-1 Base/Euro

en_EU.UTF-8 UTF-8 UTF-8 Base/Euro

en_GB ISO8859-1 ISO8859-1 Base/Euro

en_GB.ISO8859-15 ISO8859-15 ISO8859-1 Base/Euro

en_IE ISO8859-1 ISO8859-1 Base/Euro

en_IE.ISO8859-15 ISO8859-15 ISO8859-1 Base/Euro

en_NZ ISO8859-1 ISO8859-1 Base/Euro

en_US ISO8859-1 ISO8859-1 Base/Euro

en_US.UTF-8 UTF-8 UTF-8 Base/Euro

es ISO8859-1 ISO8859-1 Base/Euro

es.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

es_AR ISO8859-1 ISO8859-1 Base/Euro

es_BO ISO8859-1 ISO8859-1 Base/Euro

es_CL ISO8859-1 ISO8859-1 Base/Euro

es_CO ISO8859-1 ISO8859-1 Base/Euro

40 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–4 New Locales and Corresponding Codeset Names (continued)

Locale nl_langinfo
(CODESET)

ICONV name Product

es_CR ISO8859-1 ISO8859-1 Base/Euro

es_EC ISO8859-1 ISO8859-1 Base/Euro

es_GT ISO8859-1 ISO8859-1 Base/Euro

es_MX ISO8859-1 ISO8859-1 Base/Euro

es-NI ISO8859-1 ISO8859-1 Base/Euro

es_PA ISO8859-1 ISO8859-1 Base/Euro

es_PE ISO8859-1 ISO8859-1 Base/Euro

es_PY ISO8859-1 ISO8859-1 Base/Euro

es_SV ISO8859-1 ISO8859-1 Base/Euro

es.UTF-8 UTF-8 UTF-8 Base/Euro

es_UY ISO8859-1 ISO8859-1 Base/Euro

et_VE ISO8859-1 ISO8859-1 Base/Euro

et ISO8859-1 ISO8859-1 Base/Euro

fi ISO8859-1 ISO8859-1 Base/Euro

fi.IOO8859-15 ISO8859-15 ISO8859-15 Base/Euro

fr ISO8859-1 ISO8859-1 Base/Euro

fr.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

fr.UTF-8 UTF-8 UTF-8 Base/Euro

fr_BE ISO8859-1 ISO8859-1 Base/Euro

fr_BE.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

fr_CA ISO8859-1 ISO8859-1 Base/Euro

fr_CH ISO8859-1 ISO8859-1 Base/Euro

he ISO8859-8 ISO8859-8 Base/Euro

he_IL ISO8859-8 ISO8859-8 Base/Euro

hr_HR ISO8859-2 ISO8859-2 Base/Euro

hu ISO8859-2 ISO8859-2 Base/Euro

it ISO8859-1 ISO8859-1 Base/Euro

it.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

it.UTF-8 UTF-8 UTF-8 Base/Euro

Contents of the Localized Solaris 7 Products 41

TABLE 3–4 New Locales and Corresponding Codeset Names (continued)

Locale nl_langinfo
(CODESET)

ICONV name Product

ja eucJP eucJP Japanese

ja_JP.PCK PCK PCK Japanese

ja_JP.UTF-8 UTF-8 UTF-8 Japanese

ko 5601 ko_KR-euc Korean

ko.UTF-8 UTF-8 UTF-8 Korean

lt ISO8859-4 ISO8859-4 Base/Euro

lv ISO8859-4 ISO8859-4 Base/Euro

mk_MK ISO8859-5 ISO8859-5 Base/Euro

nl ISO8859-1 ISO8859-1 Base/Euro

nl.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

nl_BE ISO8859-1 ISO8859-1 Base/Euro

nl_BE.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

no ISO8859-1 ISO8859-1 Base/Euro

no_NY ISO8859-1 ISO8859-1 Base/Euro

nr ISO8859-2 ISO8859-2 Base/Euro

pl ISO8859-2 ISO8859-2 Base/Euro

POSIX 646 646 Base/Euro

pt ISO8859-1 ISO8859-1 Base/Euro

pt.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

pt_BR ISO8859-1 ISO8859-1 Base/Euro

ro_RO ISO8859-2 ISO8859-2 Base/Euro

ru ISO8859-5 ISO8859-5 Base/Euro

ru.KOI8-R KOI8-R KOI8-R Base/Euro

sk_SK ISO8859-2 ISO8859-2 Base/Euro

sl_SI ISO8859-2 ISO8859-2 Base/Euro

sq_AL ISO8859-2 ISO8859-2 Base/Euro

sr_SP ISO8859-5 ISO8859-5 Base/Euro

sv ISO8859-1 ISO8859-1 Base/Euro

sv.ISO8859-15 ISO8859-15 ISO8859-15 Base/Euro

42 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–4 New Locales and Corresponding Codeset Names (continued)

Locale nl_langinfo
(CODESET)

ICONV name Product

sv.UTF-8 UTF-8 UTF-8 Base/Euro

th_TH TIS620.2533 TIS620.2533 Base/Euro

tr ISO8859-9 ISO8859-9 Base/Euro

zh gb2312 gb2312 Simplified Chinese

zh.GBK GBK zh_CN.gbk Simplified Chinese

zh_TW cns11643 zh_TW-euc Traditional Chinese

zh_TW.BIG5 BIG5 zh_TW_Big5 Traditional Chinese

Note - Locale naming conventions are as follows:

language[_territory][.codeset] where language is from ISO639 and territory is from
ISO3166.

All locales with Base/Euro in the Product column are also available as Japanese,
Korean, Simplified Chinese, and Traditional Chinese products.

All Solaris product locales preserve the Portable Character Set characters with
US-ASCII code values.

Note - 5601 signifies the Korean EUC codeset containing KS C 5636 and KS C
5601–1987.

646 signifies ISO/IEC 646, which is US-ASCII.

eucJP signifies the Japanese EUC codeset. It contains JIS X0201–1976, JIS X0208–1983,
and JIS X0212–1990.

gb2312 signifies Simplified Chinese EUC codeset, which contains GV 1988–80 and GB
2312–80.

PCK is also known as Shift JIS (SJIS).

UTF-8 is the UTF-8 of ISO/IEC 10646–1 containing various approved amendments
and UNICODE 2.1

GBK signifies GB extensions. This includes all GB 2312–80 characters and all Unified
Han characters of ISO/IEC 10646–1, as well as Japanese Hiragana and Katagana
characters. It also includes many characters of Chinese, Japanese, and Korean
character sets and of ISO/IEC 10646–1.

Contents of the Localized Solaris 7 Products 43

Font Formats
There are many different font formats. The extension lets you determine the font type.

� PostScript Type 1 Fonts , which are also known as Adobe Type Manager (ATM)
fonts, Type 1, and outline fonts, contain information in outline form that allows a
PostScript printer or ATM to generate fonts of any size. Most of these fonts also
contain hints that allow fonts to be rendered more readable at a low resolution or
a small type size.

� Bitmap Fonts contain a picture of the font at a specific size that has been
optimized to look good at that specific size. If the font is scaled larger or smaller,
the quality may degrade. On the other hand, bitmap fonts display quickly.

Location of Fonts on the System

Fonts are located at:

/usr/openwin/lib/locale/iso_8859_x/X11/fonts/X11/Type1/afm

or

/usr/openwin/lib/locale/iso_8859_x/X11/fonts/X11/75dpi

Adding and Removing Font Packages

To manually add font packages to the system:

1. Always add the required font packages before the optional font packages.

2. When you are removing font packages from the system, remove the optional font
packages first.

You must follow this procedure to add or remove fonts. The class action scripts in
the font packages depend on this for proper function. The optional font packages
contain scripts that concatenate information onto the required font packages that are
already resident on the system. If the required font packages are not there, problems
may occur.

Summary of Asian Locales
Table 3–6 shows the Asian locales supported by these Asian products.

44 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–5 Summary of Asian Locales

CD Set Locale Name Description
Supported
Character Set

Korean ko UTF-8 Korean (UTF-8 locale) KS C 5601-1992

KS C 5700-1995

Simplified
Chinese

zh GBK Simplified Chinese ()EUC)

Simplified Chinese (GBK)

GB 2312-1980

GBK

Traditional
Chinese

zh_TW
zh_TW.BIG5

Traditional Chinese (EUC)

Traditional Chinese (BIG5)

CNS 11643 1992

BIG5

Japanese ja

ja_JP.PCK

ja_JP.UTF-8

Japanese EUC

Japanese PCK1

Japanese UTF-8

JIS x 0201-1976

JIS x 0208-1990

JIS x 0212-1990

VDC 2

UDC 3

1. ja_JP.PCK doesn’t support JIS x 0212–1990
2. VDC: Vendor Defined Character. VDCs occupy unused (reserved) code points of JIS X 0208–1990 or JIS X

0212–1990
3. UDC: User Defined Character. UDCs occupy unused (reserved) code points of JIS X 0208–1990 or JIS X

0212–1990 (also unused for VDCs.)

Korean in the Solaris 7 Product
In December 1995, the Korean government announced a standard Korean codeset,
KSC-5700, which is based on ISO-10646-1/Unicode 2.0. The standard codeset replaces
KSC 5601, which was based on ISO-2022.

The ISO-10646 character set uses 2 (UCS-2; Universal Character Set two-byte form) or
4 (UCS-4) bytes to represent each character.

The ISO-10646 character set cannot be used directly on IBM-PC-based operating
systems. For example, the kernel and many other modules of the Solaris operating
environment interpret certain byte values as control instructions, such as a null
character (0x00) in any string. The ISO-10646 character set can be encoded with any
bit combinations in the first or subsequent bytes. The ISO-10646 characters cannot be

Contents of the Localized Solaris 7 Products 45

freely transmitted through the Solaris system with these limitations. In order to
establish a migration path, the ISO-10646 character set defines the UCS
Transformation Format (UTF), which recodes the ISO-10646 characters without using
C0 controls (0x00..0x1F), C1 controls (0x80..0x9F), space (0x20), and DEL (0x7F).

The ko.UTF-8 is a Solaris locale to support KSC-5700, the Korean standard codeset.
It supports all characters in the previous KSC 5601 and all 11,172 Korean characters.
Korean UTF-8 supports the Korean language-related ISO-10646 characters and fonts.
Because ISO-10646 covers all characters in the world, all of the various input
methods and fonts are supplied so that you may input and output any character in
any language. Before Universal UTF/UCS becomes available, Korean UTF-8 supports
the ISO-10646 code subset that is related to Korean characters as well as all other
characters in the previous Korean standard codeset, and Extended ASCII.

Table 3–6 lists the Korean codesets.

TABLE 3–6 Codeset Conversions Supported for Korean ko , ko.UTF-8

Code Symbol TargetCode Symbol

UTF-8 ko_KR-UTF-8 Wansung ko_KR-euc

UTF-8 ko_KR-UTF-8 Johap ko_KR-johap92

UTF-8 ko_KR-UTF-8 Packed ko_KR-johap

UTF-8 ko_KR-UTF-8 ISO-2022-KR ko_KR-iso2022-7

Wansung ko_KR-euc UTF-8 ko_KR-UTF-8

Johap ko_KR-johap92 UTF-8 ko_KR-UTF-8

Packed ko_KR-johap UTF-8 ko_KR-UTF-8

ISO-2022-KR ko_KR-iso2022-7 UTF-8 ko_KR-UTF-8

Wansung ko_KR-euc Johap ko_KR-johap92

Wansung ko_KR-euc Packed ko_KR-johap

Wansung ko_KR-euc N-Byte ko_KR-nbyte

Wansung ko_KR-euc ISO-2022-KR ko_KR-iso2022-7

46 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–6 Codeset Conversions Supported for Korean ko , ko.UTF-8 (continued)

Code Symbol TargetCode Symbol

Johap ko_KR-johap92 Wansung ko_KR-euc

Packed ko_KR-johap Wansung ko_KR-euc

N-Byte ko_KR-nbyte Wansung ko_KR-euc

ISO-2022-KR ko_KR-iso2022-7 Wansung ko_KR-euc

Chinese: Simplified and Traditional
Simplified Chinese in the Solaris 7 environment provides two locales: zh and
zh.GBK . In the zh locale, the EUC scheme is usesd to encode GB2312–80 The
zh.GBK locale supports the GBK codeset, which is a superset of GB2312–80.

Simplified Chinese is used mostly in the People’s Republic of China (PRC) and in
Singapore..

The following input methods are supported for the zh locale

� New QuanPin

� New ShuangPin

� Quanpy

� Location

� PinYin

� Stroke

� Golden

� Intelligent Pinyin

� Simplified Chinese Symbol

The following input methods are supported for the zh.GBK locale

� New QuanPin

� New ShuangPin

� Quanpy

Contents of the Localized Solaris 7 Products 47

� GBK Code

� Japanese

� Hanja

� Zhuyin

� Unicode

Table 3–7 shows the TrueType Fonts for the zh Locale

TABLE 3–7 Solaris 7 TrueType Fonts for the zh Locale

Full Family Name Subfamily Format Vendor Encoding

Fangsong R TrueType Hanyi GB2312.1980

Hei R TrueType Monotype GB2312.1980

Kai R TrueType Monotype GB2312.1980

Song R TrueType Monotype GB2312.1980

Table 3–8 shows the Bitmap Fonts for the zh Locale

TABLE 3–8 Solaris 7 Bitmap Fonts for the zh Locale

Full Family Name Subfamily Format Encoding

Song B PCF (14,16) GB2312.1980

Song R PCF (12,14,16,20,24) GB2312.1980

Table 3–9 shows the TrueType Fonts for the zh.GBK Locale

TABLE 3–9 TrueType Fonts for the zh.GBK Locale

Full Family
NameS

Subfamily Format Vendor Encoding

Fansong R TrueType Zhongyi GBK

Hei R TrueType Zhongyi GBK

Kai R TrueType Zhongyi GBK

Song R TrueType Zhongyi GBK

48 Solaris Internationalization Guide For Developers ♦ October 1998

Table 3–10 shows the Bitmap Fonts for the zh.GB K Locale

TABLE 3–10 Bitmap Fonts for the zh.GB K Locale

Full Family Name Subfamily Format Encoding

Song R PCF (12,14,16,20,24) GBK

Table 3–11 shows the supported codeset conversions for Simplified Chinese.

TABLE 3–11 Codeset Conversions for Simplified Chinese

Code Symbol TargetCode Symbol

GB2312-80 zh_CN.euc ISO 2022-7 zh_CN.iso2022-7

ISO 2022-7 zh_CN.iso2022-7 GB2312-80 zh_CN.euc

GB2312-80 zh_CN.euc ISO 2022-CN zh_CN.iso2022-CN

ISO-2022-CN zh_CN.iso2022-CN GB2312-80 zh_CN.euc

UTF-8 UTF-8 GB2312-80 zh_CN.euc

GB2312-80 zh_CN.euc UTF-8 UTF-8

zh.GBK zh_CN.gbk ISO2022-CN zh_CN.iso2022-CN

ISO2022-CN zh_CN.iso2022-CN zh.GBK zh_CN.gbk

zh.GBK zh_CN.gbk Big-5 zh_TW-Big5

Big-5 zh_TW-Big5 zh.GBK zh_CN.gbk

GB2312-80 zh_CN.euc Big-5 zh_TW-Big5

Big-5 zh_TW-Big5 GB2312-80 zh_CN.euc

UTF-8 UTF-8 zh.GBK zh_CN.gbk

Contents of the Localized Solaris 7 Products 49

TABLE 3–11 Codeset Conversions for Simplified Chinese (continued)

Code Symbol TargetCode Symbol

zh.GBK zh_CN.gbk UTF-8 UTF-8

UTF-8 UTF-8 ISO2022-CN zh_CN.iso2022-CN

ISO2022-CN zh_CN.iso2022-CN UTF-8 UTF-8

Traditional Chinese in the Solaris 7 product provides two locales: zh_TW and
zh_TW.BIG5 . In the zh_TW locale, the EUC scheme is used to encode CNS
11643.1992 codeset. The zh_TW.BIG5 locale supports the Big-5 codeset.

Traditional Chinese is used mostly in Taiwan and Hong Kong.

Traditional Chinese supports the following input methods:

� Chuyin

� I-Tien

� Telecode

� TsangChieh

� CheinI

� NeiMa

� ChuangHsing

� Array

� BoShiaMy

� DaYi

Table 3–12 shows Traditional Chinese Truetype Fonts for the zh_TW Locales

TABLE 3–12 Traditional Chinese Truetype Fonts for the zh_TW Locales

Full Family
Name

Subfamily Format Vendor Encoding

Hei R Truetype Hanyi CNS11643.1992

Kai R Truetype Hanyi CNS11643.1992

Ming R Truetype Hanyi CNS11643.1992

Table 3–13 shows the Traditional Chinese BitMap Fonts for the zh_TW Locales

50 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–13 Traditional Chinese BitMap Fonts for the zh_TW Locales

Full Family Name Subfamily Format Encoding

Ming R PCF (12,14,16,20,24) CNS11643.1992

Table 3–14 shows the Traditional Chinese TrueType Fonts for the zh_TW.BIG5
Locales

TABLE 3–14 Traditional Chinese TrueType Fonts for the zh_TW.BIG5 Locales

Full Family
Name

Subfamily Format Vendor Encoding

Hei R TrueType Hanyi Big5

Kai R TrueType Hanyi Big5

Ming R TrueType Hanyi Big5

Table 3–15 shows the Traditional Chinese BitMap Fonts for the zh_TW.BIG5 Locales

TABLE 3–15 Traditional Chinese BitMap Fonts for the zh_TW.BIG5 Locales

Full Family Name Subfamily Format Encoding

Ming R PCF (12,14,16,20,24) Big5

Table 3–16 shows the supported codeset conversions for Traditional Chinese.

TABLE 3–16 Codeset Conversions for Traditional Chinese

Code Symbol TargetCode Symbol

CNS 11643 zh_TW-euc Big-5 zh_TW-Big5

CNS 11643 zh_TW-euc ISO 2022-7 zh_TW-iso2022-7

Big-5 zh_TW-Big5 CNS 11643 zh_TW-euc

Big-5 zh_TW-Big5 ISO 2022-7 zh_TW-iso2022-7

Contents of the Localized Solaris 7 Products 51

TABLE 3–16 Codeset Conversions for Traditional Chinese (continued)

Code Symbol TargetCode Symbol

ISO 2022-7 zh_TW-iso2022-7 CNS 11643 zh_TW-euc

ISO 2022-7 zh_TW-iso2022-7 Big-5 zh_TW-Big5

CNS 11643 zh_TW-eu ISO 2022-CN-EXT zh_TW-iso2022-
CN-EXT

ISO
2022-CN-EXT

zh_TW-iso2022-CN-EXT CNS 11643 zh_TW-euc

Big-5 zh_TW-Big5 ISO 2022-CN zh_TW-iso2022-
CN

ISO 2022-CN zh_TW-iso2022-CN Big-5 zh_TW-Big5

UTF-8 UTF-8 CNS 11643 zh_TW-euc

CNS 11643 zh_TW-euc UTF-8 UTF-8

UTF-8 UTF-8 Big-5 zh_TW-Big5

Big-5 zh_TW-Big5 UTF-8 UTF-8

UTF-8 UTF-8 ISO 2022-7 zh_TW-iso2022-7

ISO 2022-7 zh_TW-iso2022-7 UTF-8 UTF-8

ISO
2022-CN-EXT

zh_TW-iso2022-CN-EX Big-5 zh_TW-Big5

Big-5 zh_TW-Big5 ISO 2022-CN-EXT zh_TW-iso2022-
CN-EXT

52 Solaris Internationalization Guide For Developers ♦ October 1998

Japanese Input Systems
Three Japanese input systems are bundled in Japanese Solaris 7. They can be used in
the ja , ja_JP.PCK and ja_JP.UTF-8 locales. However, some maintenance utilities
do not support the PCK codeset.

The Japanese Input System is shown below in Table 3–17.

TABLE 3–17 Japanese Input Systems

Name Description

Wnn6 Wnn6 consists of the Kana-Kanji conversion server (jserver) , interface module
for htt (X Input Method Server) called xjsi.so , utilities, and dictionaries. Wnn6
is the default Japanese input system.

Wnn6 supports JIS X 0201-1976, JIS X 0208-1990 and JIS X0212-1990 character sets.

ATOK8 ATOK8consists of atok8 X Input Method Server, utilities, and dictionaries. ATOK8
is a popular Japanese input system facility in the Japanese PC market. ATOK7was
released with Solaris 2.1 until 2.5.1 has been replaced by ATOK8.

ATOK8supports JIS X 0201-1976 and JIS X 0208-1990 character sets.

cs00 cs00 consists of the Kana-Kanji conversion server (cs00), interface module for
htt (X Input Method Server) called xci.so , utilities, and dictionaries. cs00 has
been bundled with Japanese Solaris since Solaris 2.1

cs00 supports JIS X 0201-1976, JIS X 0208-1990 and JIS X 0212-1990 character sets.

Japanese TrueType Fonts are show below in Table 3–18.

TABLE 3–18 Japanese TrueType Fonts

Full Family Name Subfamily Format Vendor Encoding

hg gothic b R TrueType RICOH JISX0208.1983,
JISX0201.1976

hg mincho l R TrueType RICOH JISX0208.1983,
JISX0201.1976

heiseimin R TrueType RICOH JISX0212.1990

Japanese Bitmap Fonts are shown in Table 3–19 below.

Contents of the Localized Solaris 7 Products 53

TABLE 3–19 Japanese Bitmap Fonts

Full Family Name Subfamily Format Vendor Encoding

gothic R, B PCF(12,14,16,20,24) JISX0208.1983,

JISX0201.1976

minchou R PCF(12,14,16,20,24) JISX0208.1983,

JISX0201.1976

hg gothic b R PCF(12,14,16,18,20,24) RICOH JISX0208.1983,
JISX0201.1976

hg mincho l R PCF(12,14,16,18,20,2) RICOH JISX0208.1983,
JISX0201.1976

heiseimin R PCF(12,14,16,18,20,24) RICOH JISX0212.1990

Japanese Locales
Japanese Solaris 7 supports three locales. The ja locale is based on Japanese EUC.
The ja_JP.PCK locale is based on PC-Kanji code (Shift JIS) and the ja_JP.UTF-8 locale
is based on UTF-8.

Japanese Messages and man Pages
Some messages and manual pages have been translated into Japanese in Japanese
Solaris 7.

Japanese Character Code Converter for iconv

The following table shows supported conversion with iconv (1) and iconv (3). See
the iconv_ja(5)man page for details.

Table 3–20 shows iconv Conversion Support.

54 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–20 iconv Conversion Support

Source Code Target Code

eucJP PCK

eucJP JIS7

eucJP SJIS

eucJP UTF-8

eucJP jis

eucJP ibmj

SJIS eucJP

SJIS ISO-2022-JP

SJIS UTF-8

SJIS jis

SJIS ibmj

PCK eucJP

PCK UTF-8

PCK ISO-2022-JP

PCK jis

PCK ibmj

ISO-2022-JP eucJP

ISO-2022-JP PCK

ISO-2022-JP SJIS

Contents of the Localized Solaris 7 Products 55

TABLE 3–20 iconv Conversion Support (continued)

Source Code Target Code

UTF-8 eucJP

UTF-8 SJIS

UTF-8 PCK

JIS7 eucJP

jis eucJP

jis PCK

jis SJIS

ibmj eucJP

ibmj PCK

UTF-8 ISO-2022-JP

ISO-2022-JP UTF-8

eucJP UTF-8-Java

UTF-8-Java eucJP

PCK UTF-8-Java

UTF-8-Java PCK

eucJP ISO-2022-JP.RFC1468

PCK ISO-2022-JP.RFC1468

UTF-8 ISO-2022-JP.RFC1468

eucJP ibmj-EBCDIK

56 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–20 iconv Conversion Support (continued)

Source Code Target Code

ibmj-EBCDIK eucJP

PCK ibmj-EBCDIK

ibmj-EBCDIK PCK

Japanese Character Code Converter for TTY STREAMS
There are TTY STREAMS modules that perform code conversion between an
encoding for a specific terminal and an encoding for a specific locale. With an
appropriate STREAMS module, a user can log in from a Japanese terminal into a
Japanese locale, even if the encoding between the terminal and the Japanese locale
does not match. tty (1) controls the behavior of those STREAMS modules.

Japanese-specific Printer Support
The Japanese Solaris 7 product supports the following Japanese-specific printers:

� Epson VP-5085 (based on ESC/P)

� NEC PC-PR201 (based on 201PL)

� Canon LASERSHOT (based on LIPS)

� Japanese PostScript Printer

JLE Binary Compatibility Package
The Japanese Solaris 7 package also provides Japanese Solaris 1.1.x
binary-compatibility packages that are the same as the base products.

User-Defined Character (UDC) Support
To handle User-Defined Characters, sdtudctool has been available since the Solaris
2.6 release. Sdtudctool handles both outline (Type1) and bitmap (PCF) fonts. Some
utilities are also available to migrate the UDC fonts that were created by old utilities,
such as fontedit , type3creator andfontmanager in prior releases.

Contents of the Localized Solaris 7 Products 57

Korean Solaris 7 Product
The Korean Solaris product, used mostly in Korea, supports all the locales available
in the English/Euro products. Additionally, it supports two Korean locales: ko and
ko.UTF-8 . In the ko locale, the EUC scheme is used to encode KSC 5601-1987. The
ko.UTF-8 locale supports the KSC 5700-1995/Unicode 2.0 codeset, which is a super
set of KSC 5601-1987. These two locales look the same for the end user, but the
internal character encoding is different. The Korean Solaris product supports the
following Input Methods

for the ko locale:

� Hangul 2–BeolSik (1 set of consonants and 1 set of vowels)

� Hangul-Hanja conversion

� Special character

� Hexadecimal code

for the ko.UTF-8 locale:

� Hangul 2–BeolSik (1 set of consonants and 1 set of vowels)

� Hangul-Hanja conversion

� Special character

� Hexadecimal code

The following fonts are available in the Korean version of the Solaris 7 product:

TABLE 3–21 Solaris 7 Korean CID/Type 1 Fonts for the ko Locale

Full Family
Name

Subfamily Format Vendor Encoding

Gothic R CID/Type 1 Hanyang Adobe-Korean

Graphic R CID/Type 1 Hanyang Adobe-Korean

Haeso R CID/Type 1 Hanyang Adobe-Korean

Kodig R CID/Type 1 Hanyang Adobe-Korean

Myeongijo R CID/Type 1 Hanyang Adobe-Korean

Pilki R CID/Type 1 Hanyang Adobe-Korean

Roundgothic R CID/Type 1 Hanyang Adobe-Korean

58 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–22 Solaris 7 Korean Bitmap Fonts for the ko Locale

Full Family Name Subfamily Format Encoding

Gothic R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Graphic R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Haeso R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Kodig R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Myeongijo R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Pilki R/B PCF (12,14,16,18,20,24) KSC 5601-1987

Roundgothic R/B PCF (12,14,16,18,20,24) KSC 5601-1987

TABLE 3–23 Solaris 7 Korean CID/Type 1 Fonts for the ko.UTF-8 Locale

Full Family
Name

Subfamily Format Vendor Encoding

Gothic R CID/Type 1 Hanyang Adobe-Korean

Graphic R CID/Type 1 Hanyang Adobe-Korean

Haeso R CID/Type 1 Hanyang Adobe-Korean

Kodig R CID/Type 1 Hanyang Adobe-Korean

Myeongijo R CID/Type 1 Hanyang Adobe-Korean

Pilki R CID/Type 1 Hanyang Adobe-Korean

TABLE 3–24 Solaris 7 Korean Bitmap Fonts for the ko.UTF-8 Locale

Full Family Name Subfamily Format Encoding

Gothic R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

Graphic R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

Haeso R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

Kodig R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

Contents of the Localized Solaris 7 Products 59

TABLE 3–24 Solaris 7 Korean Bitmap Fonts for the ko.UTF-8 Locale (continued)

Full Family Name Subfamily Format Encoding

Myeongijo R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

Pilki R/B PCF (12,14,16,18,20,24) KSC 5601-1992
(Johap)

TABLE 3–25 Korean ICONV

Code Symbol Target Code Symbol

KSC 5601-1987 1506 UTF-8 UTF-8

ISO 646 646 KSC 5601-1987 5601

KSC 5601-1987 EUC-KR UTF-8 UTF-8

KSC 5601-1987 KSC5601 UTF-8 UTF-8

UTF-8 UTF-8 KSC 5601-1987 5601

UTF-8 UTF-8 KSC 5601-1987 EUC-KR

UTF-8 UTF-8 KSC 5601-1987 KSC 5601

UTF-8 ko-KR-UTF-8 IBM CP 933 cp 933

UTF-8 ko-KR-UTF-8 KSC 5601-1987 ko_KR-euc

UTF-8 ko-KR-UTF-8 ISO2022-KR ko_KR-iso2022-7

UTF-8 ko-KR-UTF-8 KSC 5601-1987 -
Johap

ko_KR-johap

UTF-8 ko-KR-UTF-8 KSC5601-1992 - Johap ko_KR-johap92

IBM CP933 cp933 UTF-8 ko_KR-UTF-8

KSC 5601-1987 ko_KR-euc UTF-8 ko_KR-UTF-8

KSC 5601-1987 ko_KR-euc ISO 2022-KR ko_KR-iso2022-7

KSC 5601-1987 ko_KR-euc KSC 5601-1987 -
Johap

ko_KR-johap

KSC 5601-1987 ko_KR-euc KSC 5601-1992 -
Johap

ko_KR-johap92

KSC 5601-1987 ko_KR-euc KSC
5601-1992-Annex:4

ko_KR-nbyte

ISO 2022-KR iso2022-7 UTF-8 ko_KR-UTF-8

ISO 2022-KR iso2022-7 KSC 5601-1987 ko_KR-euc

60 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 3–25 Korean ICONV (continued)

Code Symbol Target Code Symbol

KSC 5601-1987 - Johap ko-KR-johap UTF-8 ko_KR-UTF-8

KSC 5601-1987 - Johap ko-KR-johap KSC 5601-1987 ko_KR-euc

KSC 5601-1992 - Johap ko-KR-johap92 UTF-8 ko_KR-UTF-8

KSC 5601-1992 - Johap ko-KR-johap92 KSC 5601-1987 ko_KR-euc

KSC 5601-1992 - Annex:4 ko-KR-nbyte KSC 5601-1987 ko_KR-euc

How to Use the iconv Command
The iconv command converts the characters or sequences of characters in a file
from one codeset to another, then writes the results to standard output. If there is no
conversion for a particular character, it is converted into an underscore ‘_’ in the
target codeset. See the iconv (1) man page for more information.

The following options are supported:

� -f fromcode Symbol of the input codeset.

� -t tocode Symbol of the output codeset.

To convert a mail file from one encoding into another, use the iconv command:

example% iconv -f from_codeset -t to_codeset mail.codeset > mail.codeset

Contents of the Localized Solaris 7 Products 61

62 Solaris Internationalization Guide For Developers ♦ October 1998

CHAPTER 4

Overview of en_US.UTF-8 Locale
Support

en_US.UTF-8 Locale Support
Overview
en_US.UTF-8 locale is the flagship Unicode locale in the Solaris 7 product that
supports and provides multi-scripts processing capability by using UTF-8 as its
codeset.

Note - UTF-8 is a file system safe Universal Character Set Transformation Format of
Unicode / ISO/IEC 10646-1 formulated by XoJIG of X/Open in 1992 and approved
by ISO and IEC as Amendment 2 to ISO/IEC 10646-1:1993 in 1996.

The locale supports computation of all characters defined in Unicode 2.1 / ISO/IEC
10646-1:1993 with Amendment 1 to 5 in the locale. However, due to a limited set of
font resources and the fact that few users intend to use all of the code point values,
users of the en_US.UTF-8 locale will see only character glyphs from the following
character sets:

� ISO 8859-1 (Latin-1)

� ISO 8859-2 (Latin-2)

� ISO 8859-4 (Latin-4)

� ISO 8859-5 (Latin/Cyrillic)

� ISO 8859–6 (Arabic)

� ISO 8859-7 (Latin/Greek)

63

� ISO 8859–8 (Hebrew)

� ISO 8859-9 (Latin-5)

� BIG5 (Traditional Chinese)

� GB 2312-1980 (Simplified Chinese)

� JIS X0201-1976, JIS X0208-1983 (Japanese)

� KS C 5601-1992 Annex 3 (Korean)

� ISO 8859-8 (Hebrew)

� ISO 8859–11 TIS 620.7573 (Thai)

The above coverage of the scripts has significantly increased in the Solaris 7 product,
which now also supports the following range of scripts:

� Western/Eastern/Northern European

� Greek

� Turkish

� Cyrillic

� Simplified Chinese

� Traditional Chinese

� Japanese

� Korean

� Arabic

� Hebrew

� Thai

Since this locale is primarily for developers, it belongs to the developer’s cluster of
the Solaris 7 product. Thus, when you install the Solaris 7 product, you should
choose the developer’s cluster to install the locale on your system.

Exactly the same level of en_US.UTF-8 locale support is provided for both 32-bit
and 64-bit Solaris systems.

Note - Motif and CDE desktop applications and libraries support the
en_US.UTF-8 locale. However, OpenWindows, XView, and, OPENLOOK DeskSet
applications and libraries do not support the en_US.UTF-8 locale.

64 Solaris Internationalization Guide For Developers ♦ October 1998

System Environment

Locale Environment Variable
To use the en_US.UTF-8 locale environment, make sure to choose the locale first. Be
sure you have the en_US.UTF-8 locale installed on your system.

To use the en_US.UTF-8 locale environment

1. In a TTY environment, choose the locale first, by setting the LANGenvironment
variable to en_US.UTF-8 , as in the following C-shell example:

system% setenv LANG en_US.UTF-8

2. Make sure that other categories are not set (or are set to en_US.UTF-8) since
the LANGenvironment variable has a lower priority than other environment
variables such as LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_NUMERIC, LC_MONETARYand LC_TIME at setting the locale. See the
setlocale (3C) man page for more details about the hierarchy of environment
variables.

3. To check current locale settings in various categories, use the locale(1)
utility. locale (1

)

system% locale
LANG=en_US.UTF-8

LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_ALL=

You can also start the en_US.UTF-8 environment from the CDE desktop. At the
CDE login screen’s Options -> Language menu, choose en_US.UTF-8 .

Overview of en_US.UTF-8 Locale Support 65

TTY Environment Setup
To ensure correct text edit operation by a terminal or by a terminal emulator such as
dtterm(1) , users should push certain locale-specific STREAMS modules onto their
Streams.

For more information on STREAMS modules and streams in general, see the
STREAMS Programming Guide.

Table 4–1 shows STREAMS modules supported by the en_US.UTF-8 locale in the
terminal environment:

TABLE 4–1 32–bit STREAMS Modules Supported by en_US.UTF-8

32–bit STREAMS Module Description

/usr/kernel/strmod/eucu8 UTF-8 STREAMS module for tail side

/usr/kernel/strmod/u8euc UTF-8 STREAMS module for head side

/usr/kernel/strmod/u8lat1 Code conversion STREAMS module
betweenUTF-8 and ISO 8859-1 (Western
Europe)

/usr/kernel/strmod/u8lat2 Code conversion STREAMS module between
UTF-8 and ISO 8859-2 (Eastern Europe)

/usr/kernel/strmod/u8koi8 Code conversion STREAMS module
betweenUTF-8 and KOI8-R (Cyrillic)

Table 4–2 lists the 64–bit STREAMS Modules Supported by en_US.UTF-8 .

TABLE 4–2 64–bit STREAMS Modules Supported by en_US.UTF-8

64-bit STREAMS module Description

/usr/kernel/strmod/sparcv9/eucu8 UTF-8 STREAMS module for tail side

/usr/kernel/strmod/sparcv9/u8euc UTF-8 STREAMS module for head side

/usr/kernel/strmod/sparcv9/u8lat1 Code conversion STREAMS module
betweenUTF-8 and ISO 8859-1 (Western
European)

66 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 4–2 64–bit STREAMS Modules Supported by en_US.UTF-8 (continued)

64-bit STREAMS module Description

/usr/kernel/strmod/sparcv9/u8lat2 Code conversion STREAMS module between
UTF-8 and ISO 8859-2 (Eastern European)

/usr/kernel/strmod/sparcv9/u8koi8 Code conversion STREAMS module
betweenUTF-8 and KOI8-R (Cyrillic)

Loading a STREAMS Module at Kernel
To load a STREAMS module at kernel, first become root:

system% su
Password:

system#

To determine whether you are running a 32-bit Solaris or 64-bit Solaris system, use
the isainfo(1) utility as follows:

system# isainfo -v
64-bit sparcv9 applications
32-bit sparc applications
system#

If the command returns this information, you are running the 64-bit Solaris system. If
you are running the 32-bit Solaris system, the utility shows the following:

system# isainfo -v
32-bit sparc applications
system#

Use modinfo (1M) to be certain that your system has not already loaded the
STREAMS module:

system# modinfo | grep eucu8 modulename

If the STREAMS module, such as eucu8 , is already installed, the output will look as
follows:

system# modinfo | grep eucu8
89 ff798000 4b13 18 1 eucu8 (eucu8 module)

Overview of en_US.UTF-8 Locale Support 67

(Continuation)

system#

If the module is already installed, you don’t need to load it. However, if the module
has not yet been loaded, use modload (1M)as follows:

system# modload /usr/kernel/strmod/eucu8 modulename

This loads the 32–bit eucu8 STREAMS module at the kernel, so you can push it onto
a Stream. If you are running the 64–bit Solaris product, use modload (1M) as follows:

system# modload /usr/kernel/strmod/sparcv9/eucu8

The STREAMS module is installed at the kernel, and you can now push it onto a
Stream.

To unload a module from the kernel, use modunload (1M), as shown below. In this
example, the eucu8 module is being unloaded.

system# modinfo | grep eucu8
89 ff798000 4b13 18 1 eucu8 (eucu8 module)
system# modunload -i 89

dtterm and Terminals Capable of Input and Output of UTF-8
Characters
The dtterm(1) and any terminal that supports input and output of the UTF-8
codeset should have the following STREAMS configuration:

head <-> ttcompat <-> u8euc <-> ldterm <-> eucu8 <-> pseudo-TTY

In this example, u8euc and eucu8 are the modules supported by the en_US.UTF-8
locale. Make sure you already loaded the STREAMS modules into the kernel as
specified in the previous section.

To set up the above STREAMS configuration, use, strchg (1) as shown below:

68 Solaris Internationalization Guide For Developers ♦ October 1998

system% cat > /tmp/mystreams
ttcompat
u8euc
ldterm
eucu8
ptem

^D
system% strchg -f /tmp/mystreams

When using strchg (1) , be sure you are either root or the owner of the device. To
see the current configuration of STREAMS, use strconf (1) as shown below:

system% strconf
ttcompat
u8euc
ldterm
eucu8
ptem
pts
system%

To revert to the original configuration, set the STREAMS configuration again as
shown below:

system% cat > /tmp/orgstreams
ttcompat
ldterm
ptem
^D
system% strchg -f /tmp/orgstreams

Terminal Support for Latin-1, Latin-2, or KOI8-R
For terminals that support only Latin-1 (ISO 8859-1), Latin-2 (ISO 8859-2), or KOI8-R,
you should have the following STREAMS configuration:

head <-> ttcompat <-> u8euc <-> ldterm <-> eucu8 <-> u8lat1 <-> TTY

Note - This configuration is only for terminals that support Latin-1. For Latin-2
terminals, replace the STREAMS module u8lat1 with u8lat2 . For KOI8-R
terminals, replace the module with u8koi8 .

To set up the STREAMS configuration shown above, use strchg (1), as follows:

system% cat > tmp/mystreams
ttcompat

Overview of en_US.UTF-8 Locale Support 69

(Continuation)

u8euc
ldterm
eucu8
u8lat1
ptem
^D
system% strchg -f /tmp/mystreams

Be sure that you are either root or the owner of the device when you use strchg (1).
To see the current configuration, use strchg (1) , as follows:

system% strconf
ttcompat
u8euc
ldterm
eucu8
u8lat1
ptem
pts
system%

To revert to the original configuration, set the STREAMS configuration as follows:

system% cat > /tmp/orgstreams
ttcompat
ldterm
ptem
^D
system% strchg -f /tmp/orgstreams

Setting Terminal Options
To set up the UTF-8 text edit behavior on TTY, you must first set some terminal
options using stty (1) as follows:

system% /bin/stty cs8 -istrip defeucw

Note - Since /usr/ucb/stty is not yet internationalized, you should use
/bin/stty instead.

You can also query the current settings using stty (1) with the -a option, as shown
below:

70 Solaris Internationalization Guide For Developers ♦ October 1998

system% /bin/stty -a

Saving the Settings in ~/.cshrc

Assuming the necessary STREAMS modules are already loaded with the kernel, you
can save the following lines in your .cshrc file (C shell example) for convenience:

setenv LANG en_US.UTF-8
if ($?USER != 0 && $?prompt != 0) then

cat >! /tmp/mystreams$$ << _EOF
ttcompat
u8euc
ldtterm
eucu8
ptem

_EOF
/bin/strchg -f /tmp/mystream$$
/bin/rm -f /tmp/mystream$$
/bin/stty cs8 -istrip defeucw

endif

With these lines in your.cshrc file, you do not have to type all of the commands
each time. Note that the second _EOFshould be in the first column of the file. You
can also create a file called mystreams and save it so the .cshrc references to
mystreams instead of creating it whenever you start a C shell.

Code Conversions
The en_US.UTF-8 locale supports various code conversions among major codesets
of several countries through iconv (1) and iconv (1).

The available fromcode and tocode names that can be applied to iconv(1) and
iconv_open(3) are shown in Table 4–3.

TABLE 4–3 Available Code Conversions in en_US.UTF-8

From Code To Code Description

646 UTF-8 ISO 646 (US-ASCII) to UTF-8

UTF-8 646 UTF-8 to ISO 646 (US-ACII)

UTF-8 8859-1 UTF-8 to ISO 8859-1

UTF-8 8859-2 UTF-8 to ISO 8859-2

Overview of en_US.UTF-8 Locale Support 71

TABLE 4–3 Available Code Conversions in en_US.UTF-8 (continued)

From Code To Code Description

UTF-8 8859-3 UTF-8 to ISO 8859-3

UTF-8 8859-4 UTF-8 to ISO 8859-4

UTF-8 8859-5 UTF-8 to ISO 8859-5 (Cyrillic)

UTF-8 8859-6 UTF-8 to ISO 8859-6 (Arabic)

UTF-8 8859-7 UTF-8 to ISO 8859-7 (Greek)

UTF-8 8859-8 UTF-8 to ISO 8859-8 (Hebrew)

UTF-8 8859-9 UTF-8 to ISO 8859-9

UTF-8 8859-10 UTF-8 to ISO 8859-10

UTF-8 8859-11 UTF-8 to TIS 620.2533 (Thai)

UTF-8 8859-15 UTF-8 to ISO 8859-15

8859-1 UTF-8 ISO 8859-1 to UTF-8

8859-2 UTF-8 ISO 8859-2 to UTF-8

8859-3 UTF-8 ISO 8859-3 to UTF-8

8859-4 UTF-8 ISO 8859-4 to UTF-8

8859-5 UTF-8 ISO 8859-5 (Cyrillic) to UTF-8

8859-6 UTF-8 ISO 8859-6 (Arabic) to UTF-8

8859-7 UTF-8 ISO 8859-7 (Greek) to UTF-8

8859-8 UTF-8 ISO 8859-8 (Hebrew) to UTF-8

8859-9 UTF-8 ISO 8859-9 to UTF-8

8859-10 UTF-8 ISO 8859-10 to UTF-8

8859-11 UTF-8 TIS 620.2553 to UTF-8

8859-15 UTF-8 ISO 8859-15 to UTF-8

UTF-8 KOI8-R UTF-8 to KOI8-R (Cyrillic)

72 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 4–3 Available Code Conversions in en_US.UTF-8 (continued)

From Code To Code Description

KOI8-R UTF-8 KOI8-R (Cyrillic) to UTF-8

UTF-8 UCS-2 UTF-8 to UCS-2

UCS-2 UTF-8 UCS-2 to UTF-8

UTF-8 UCS-4 UTF-8 to UCS-4

UCS-4 UTF-8 UCS-4 to UTF-8

UTF-8 UTF-7 UTF-8 to UTF-7

UTF-7 UTF-8 UTF-7 to UTF-8

UTF-8 UTF-16 UTF-8 to UTF-16

UTF-16 UTF-8 UTF-16 to UTF-8

UTF-8 eucJP UTF-8 to Japanese EUC (JIS X0201-1976, JIS
X0208-1983, and JIS X0212-1990)

UTF-8 PCK UTF-8 to Japanese PC Kanji (SJIS)

UTF-8 ISO-2022-JP UTF-8 to Japanese MIME character set
ISO-2022-JP

eucJP UTF-8 Japanese EUC to UTF-8

PCK UTF-8 Japanese PC Kanji (SJIS) to UTF-8

ISO-2022-JP UTF-8 Japanese MIME character set to UTF-8

UTF-8 ko_KR-euc UTF-8 to Korean EUC (KS C 5636 and KS C
5601-1987)

UTF-8 ko_KR-johap UTF-8 to Korean Johap (KS C 5601-1987)

UTF-8 ko_KR-johap92 UTF-8 to Korean Johap (KS C 5601-1992)

UTF-8 ko_KR-iso2022-7 UTF-8 to ISO-2022-KR

ko_KR-euc UTF-8 Korean EUC to UTF-8

ko_KR-johap UTF-8 Korean Johap (KS C 5601-1987) to UTF-8

Overview of en_US.UTF-8 Locale Support 73

TABLE 4–3 Available Code Conversions in en_US.UTF-8 (continued)

From Code To Code Description

ko_KR-johap92 UTF-8 Korean Johap (KS C 5601-1992) to UTF-8

ko_KR-iso2022-7 UTF-8 ISO-2022-KR to UTF-8

ko_KR-cp933 UTF-8 IBM MBCS CP933 to UTF-8

UTF-8 gb2312 UTF-8 to Simplified Chinese EUC (GB 1988-1980
and GB2312-1980)

UTF-8 iso2022 UTF-8 to ISimplified Chinese MIME character
set (ISO-2022-cn)

UTF-8 GBK UTF-8 to Simplified Chinese MIME character set
(ISO-2022-cn)

gb2312 UTF-8 Chinese/PRC EUC (GB 2312-1980) to UTF-8

iso2022 UTF-8 ISO-2022-CN to UTF-8

GBK UTF-8 Simplified Chinese GBK to UTF-8

UTF-8 zh_TW-euc UTF-8 to Traditional Chinese EUC (CNS
11643-1992)

UTF-8 zh_TW-big5 UTF-8 to Traditional Chinese Big5

UTF-8 zh_TW-iso2022-7 UTF-8 to Traditional Chinese MIME character set
(ISO-2022-TW)

UTF-8 zh_TW-cp937 UTF-8 to IBM MBCS CP937

zh_TW-euc UTF-8 Traditional Chinese EUC to UTF-8

zh_TW-big5 UTF-8 Traditional Chinese Big5 to UTF-8

zh_TW-iso2022-7 UTF-8 Traditional Chinese MIME character set
(ISO-2022-TW) to UTF-8

zh_TW-cp937 UTF-8 IBM MBCS CP937 to UTF-8

For more details on iconv code conversion, see the , iconv (1) and
iconv_open (3), iconv (3), and iconv_close (3) man pages. For more information
on available code conversions, see iconv_en_US.UTF-8(5) .

74 Solaris Internationalization Guide For Developers ♦ October 1998

Script Selection and Input Modes
The en_US.UTF-8 locale supports multiple scripts. There are a total of eight input
modes in the en_US.UTF-8 locale:

� English/European

� Cyrillic

� Greek

� Arabic

� Hebrew

� Thai

� Unicode Hexadecimal code input method

� Table lookup input method

English/European Input Mode
The English/European input mode includes not only the English alphabet but also
characters with diacritical marks (for example, á, è, î, õ, and ü) and special characters
(such as ¡, §, ¿) from European scripts.

This input mode is the default mode for any application. The input mode is
displayed at the bottom left corner of the GUI application.

[English]

To insert characters with diacritical marks or special characters from Latin-1, Latin-2,
Latin-4, Latin-5 and Latin-9, you must type a Compose sequence, as shown in the
following examples:

� For Ä, press and release Compose, then A, and then "

� For ¿, press and release Compose, then +, and then -

When there is no <Compose> key available on your keyboard, you can substitute for
the <Compose> key by simultaneously pressing the <Control> key and <shift-T>
together.

For the input of the Euro currency symbol (Unicode value U+20AC) from the locale,
you can use any one of following input sequences:

� <AltGraph> and <e> together

� <AltGraph> and <4> together, or

� <AltGraph> and <5> together

Overview of en_US.UTF-8 Locale Support 75

These input sequences mean that you press both keys simultaneously. If there is no
<AltGraph> key available on your keyboard, you can substitute the <Alt> key for
the <AltGraph> key.

The following tables are the most commonly used Compose sequences in Latin-1,
Latin-2, Latin-4,Latin—5 and Latin-9 script input for Sparc.

Note - To start these sequences, type <Compose> key and release it.

Table 4–4 lists the Common Latin-1 Compose Sequences.

TABLE 4–4 Common Latin-1 Compose Sequences for Sparc

Press and
Release

Press and
Release Result

[Spacebar] [Spacebar] Non-breaking space

s 1 Superscripted 1

s 2 Superscripted 2

s 3 Superscripted 3

! ! Inverted exclamation mark

x o Currency symbol ¤

p ! Paragraph symbol ¶

/ u mu u

’ ’ apostrophe ’

’ " acute accent ’́

, , cedilla ’̧’

" " dieresis ’̈

- ^ macron ’

o o degree ’�’

x x multiplication sign ’x’

+ - plus-minus ¿

76 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 4–4 Common Latin-1 Compose Sequences for Sparc (continued)

Press and
Release

Press and
Release Result

- - soft hyphen –

- : division sign /

- a ordinal (feminine) a ã

a - ordinal (feminine) a ã

- o ordinal (masculine) o õ

o - ordinal (masculine) o õ

- , not sign

. . middle dot ’

1 2 vulgar fraction 1/2

1 4 vulgar fraction 1/4

3 4 vulgar fraction 3/4

< < left double angle quotation mark «

> > right double angle quotation mark »

? ? inverted question mark ¿

A ‘ A grave À

A ’ A acute Á

A * A ring above Å

A " A dieresis Ä

A ^ A circumflex Â

A ~ A tilde Ã

A E AE diphthong Æ

C , C cedilla Ç

Overview of en_US.UTF-8 Locale Support 77

TABLE 4–4 Common Latin-1 Compose Sequences for Sparc (continued)

Press and
Release

Press and
Release Result

C o copyright sign ©

D - Capital eth D

E ‘ E grave È

E ’ E acute É

E " E dieresis Ë

E ^ E circumflex Ê

I ‘ I grave Ì

I ’ I acute Í

I " I dieresis Ï

I ^ I circumflex Î

L - pound sign \xa3

N ~ N tilde Ñ

O ‘ O grave Ò

O ’ O acute Ó

O / O slash Ø

O " O dieresis Ö

O ^ O circumflex Ô

O ~ O tilde Õ

R O registered mark ®

T H Thorn P

U ‘ U grave Ù

78 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 4–4 Common Latin-1 Compose Sequences for Sparc (continued)

Press and
Release

Press and
Release Result

U ’ U acute Ú

U " U dieresis Ü

U ^ U circumflex Û

Y ’ Y acute Y

Y - yen sign \xb4

a ‘ a grave à

a ’ a acute á

a * a ring above å

a " a dieresis ä

a ^ a circumflex â

a ~ a tilde ã

a ^ a circumflex â

a e ae diphthong æ

c , c cedilla ç

c / cent sign \xa2

c o copyright sign ©

d - eth d

e ‘ e grave è

e ’ e acute é

e " e dieresis ë

e ^ e circumflex ê

i ‘ i grave ì

Overview of en_US.UTF-8 Locale Support 79

TABLE 4–4 Common Latin-1 Compose Sequences for Sparc (continued)

Press and
Release

Press and
Release Result

i ’ i acute í

i " i dieresis ï’

i ^ i circumflex î’

n ~ n tilde ñ

o ‘ o grave ò

o ’ o acute ó

o / o slash ø

o " o dieresis ö

o ^ o circumflex ô

o ~ o tilde õ

s s German double s ß

t h thorn p

u ‘ u grave ù

u ’ u acute ú

u " u dieresis ü

u ^ u circumflex û

y ’ y acute y

y " y dieresis ÿ

| | broken bar |

Note - Compose sequences defined in Table 4–3 are not included in Table 4–4..

Table 4–5 lists the Common Latin-2 Compose Sequences.

80 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 4–5 Common Latin-2 Compose Sequences

Press and
Release

Press and
Release Result

a ’ ogonek á

u ’ ’ breve ü

v ’ ’ caron

" ’ ’ double acute

A

¨

a A ogonek a

A u A breve

C ’ C acute

C v C caron

D v D caron

- D D stroke

E v E caron

E a E ogonek

L ’ L acute

L - L stroke

L > L caron

N ’ N acute

N v N caron

O > O double acute

S ’ S acute

S v S caron

S , S cedilla

R ’ R acute

Overview of en_US.UTF-8 Locale Support 81

TABLE 4–5 Common Latin-2 Compose Sequences (continued)

Press and
Release

Press and
Release Result

R v R caron

T v T caron

T , T cedilla

U * U ring above

U > U double acute

Z ’ Z acute

Z v Z caron

Z . Z dot above

Table 4–5 contains the Latin-2 compose sequences.

Note - Compose sequences defined in Table 4–3 or Table 4-4 are not included in
Table 4–5.

Table 4–6 lists the Common Latin-4 Compose Sequences.

TABLE 4–6 Common Latin-4 Compose Sequences

Press and
Release

Press and
Release Result

k k kra

A _ A macron

E _ E macron

E . E dot above

G , G cedilla

I _ I macron

I ~ I tilde

82 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 4–6 Common Latin-4 Compose Sequences (continued)

Press and
Release

Press and
Release Result

I a I ogonek

K , K cedilla

L , L cedilla

N , N cedilla

O _ O macron

R , R cedilla

T | T stroke

U ~ U tilde

U a U ogonek

U _ U macron

N N Eng

a _ a macron

e _ e macron

e . e dot above

g , g cedilla

i _ i macron

i ~ i tilde

i a i ogonek

k , k cedilla

l , l cedilla

n , n cedilla

o _ o macron

Overview of en_US.UTF-8 Locale Support 83

TABLE 4–6 Common Latin-4 Compose Sequences (continued)

Press and
Release

Press and
Release Result

r , r cedilla

t | t stroke

u ~ u tilde

u a u ogonek

u _ u macron

n n eng

Note - Compose sequences defined in Table 4-3 or Table 4–4 or Table 4–5 are not
included in Table 4–6.

Table 4–7 lists the Common Latin-5 Compose Sequences.

TABLE 4–7 Common Latin-5 Compose Sequences

Press and
Release

Press and
Release Result

G u G breve

I . I dot above

g u g breve

i . i dotless

Any compose sequences already described do not re-appear in this table.

Table 4–8 lists the Common Latin-9 Compose Sequences.

84 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 4–8 Common Latin-9 Compose Sequences

Press and
Release

Press and
Release

Result

o e Diphthong oe

O E Diphthong OE

Y " Y diaresis

Cyrillic Input Mode
To switch to Cyrillic input mode from English input mode, press Compose c c. If you
are currently in Greek input mode, first return to English input mode, then switch to
Cyrillic mode.

The input mode is displayed at the bottom left corner of your GUI application.

[Cyrillic]

After you switch to Cyrillic input mode, you cannot enter English text. To switch
back to English input mode, type Control-Space. The Russian keyboard layout
appears in Figure 4–1.

Esc

Control Alt

Caps

Lat/
Pyc

Alt
Graph

F2F1

1
!

‘
~

2
@

3
#

4
$

6
^

7
&

9
(

0

POIUYTREW

A S D F G H J K L :

:

;

;

?
/

>
.

.

<
\
| MNBVCXZ

,

,

|
\

“

“

´

Q

)

[
{

]
}

=-
_

8
*

5
%%

F3 F4 F5 F6 F7 F8 F9 F10 F1F11 F12

No

Figure 4–1 Cyrillic Keyboard

Overview of en_US.UTF-8 Locale Support 85

Greek Input Mode
To switch to Greek input mode from English input mode, press Compose g g. If you
are currently in Cyrillic input mode, first return to English input mode and then
switch to Greek mode.

The input mode is displayed at the left bottom corner of your GUI application .

[Greek]

After you switch to Greek input mode, you cannot enter English text. To switch back
to English input mode, type Control-Space. The Greek keyboard layouts appear in
Figures 4–2 and 4–3.

Esc

Control Alt

Caps Lock

LAT
Alt
Graph

F2F1

1
!

‘
~

2
@

3
#

4
$

6
^

7
&

9
(

0

POIUYTREW

A S
Σ

D
∆

F
Φ

G H
Γ

J
Ξ

K L
Λ

:

:;

;

?
/

>
.

.<
<

< MNBV
Ω

CXZ
Ψ ,

|
\

“
´´

¨

Θ
Q

ς Ρ Π

)

[
{

]
}

=
+

-
_

8
*

5
%

F3 F4 F5 F6 F7 F8 F9 F10 F1F11 F12

Figure 4–2 Greek Euro Keyboard

Esc

AltCaps Lock Alt
Graph

`\
| ~

OIYTE

A S
Σ

D
∆

F
Φ

HG
Γ

J
Ξ

K L
Λ

MNBV
Ω

XZ C
Ψ

:; ?
/

>
.

.<
,

:
;

“
´´

¨

U
Θ

Q W
ς

R
Ρ

P
Π [

{
]
}

1
!

2
@

3
#

4
$

6
^

7
&

9
(

0
)

=
+

-
_

8
*

5
%

F2F1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

LAT

Shift

Return

Back
space

Tab

Ctrl

Shift

Figure 4–3 Greek UNIX Keyboard

86 Solaris Internationalization Guide For Developers ♦ October 1998

Arabic Input Mode
To switch to Arabic input mode, type <Compose> + <g> + <g> from your current
input mode. The input mode is displayed at the left bottom corner of your GUI
application Once you switch to the Arabic input mode, you have to switch back to
English/European input mode to enter English/European characters by typing
<Control> and <Space> together.

Shift

Return

Back
Space

Alt
Graph

F12

Shift

Control

Caps Lock

Figure 4–4 Arabic Keyboard

Hebrew Input Mode
To switch into Hebrew input mode, type <Compose> <h> <h> from your current
input mode. The input mode is displayed at the left bottom corner of your GUI
application.

Once you switched into the Hebrew input mode, you have to switch back to the
English/European input mode to enter English/European characters by typing
<Control> and <Space> and together. You can also switch into other input modes by
typing the corresponding input mode switch key sequence. The Hebrew keyboard
layout is shown at following figure:

Overview of en_US.UTF-8 Locale Support 87

Com-
pose

Alt
Graph

AltControl

Caps

Esc F1 F2 F3 F4 F5 F6 F7 F8 F9 EscF10 F11 F12

~ @
2;

!
1

#
3

$
4

%
5

^
6

*
8

(
9

)
0

_
-

+
=

Q
/

W , E R T Y U I O P
[

}
]

A S D F G H J K L :
;

“
´ , \

?
/

>
.

<
,

MNBVCXZ|
\

&
7

{

|

.

Figure 4–5 Hebrew Keyboard

Thai Input Mode
To switch into Thai input mode, type <Compose> <t> <t> from your current input
mode. The input mode will be displayed at the left bottom corner of your GUI
application.

[Thai]

Once you have switched into the Thai input mode, you have to switch back to
English/European input mode to enter English/European characters by typing
<Control> and <Space> together. You can also switch into other input modes by
typing the corresponding input mode switch key sequence. The Thai keyboard
layout is shown at following figure:

Figure 4–6 Thai Keyboard

88 Solaris Internationalization Guide For Developers ♦ October 1998

Unicode Hexadecimal Code Input Method Input
Mode
To switch into the Unicode hexadecimal code input method input mode, type
<Compose> <l> <l> from your current input mode. The input mode is displayed at
the left bottom corner of your GUI application:

To use this input mode, you need to know about the hexadecimal code point values
of the characters. Refer to The Unicode Standard, Version 2.0 for the mapping
between code point values and characters. To input a character, type four
hexadecimal digits, for instance, 00a1 for Inverted Exclamation Mark, 03b2 for Greek
Small Letter Beta, ac00 for a Korean Hangul Syllable KA, 30a2 for Japanese Katakana
Letter A, 4e58 for a Unified Han character and so on. Users can use both uppercase
and lowercase letters of A, B, C, D, E, and, F for hexadecimal digits. If you mistype a
digit or two, you can delete the digits by using the <Delete> key or the <Backspace>
key.

Table Lookup Input Method Input Mode
To switch into table lookup input method input mode, type <Compose> <l> <l>
from your current input mode. The input mode is displayed at the left bottom corner
of your GUI application.

Once you turn on the input mode, there is a lookup window showing multiple
candidates of Unicode characters. You can choose any one of the candidates by
moving your pointer and clicking the left button on your mouse. You can also select
any one of the candidates by choosing a left-hand- side letter associated with each of
the candidates.

Once you are finished using the current input mode, you can switch into other input
mode by typing corresponding input mode switch key sequence.

Input Mode Switch Key Sequence Summary
Starting in the Solaris 7 environment, , users can switch from one input mode to
another without any restrictions. The following table shows the input mode switch
key sequences for each input mode.

TABLE 4–9 Input Mode Switch Key Sequences

Input Mode Key Sequences

English/European <Control> + <Space>

Cyrillic <Compose> <c> <c>

Overview of en_US.UTF-8 Locale Support 89

TABLE 4–9 Input Mode Switch Key Sequences (continued)

Input Mode Key Sequences

Greek <Compose> <g> <g>

Arabic <Compose> <a> <r>

Hebrew <Compose> <h> <h>

Thai <Compose> <t> <t>

Unicode hexadecimal code input method <Compose> <u> <h>

Table lookup input method <Compose> <l> <l>

Printing
The en_US.UTF-8 locale provides a printing utility, xutops(1) . This utility can
print flat text files written in UTF-8 using X11 bitmap fonts available on the system.
Because the output from the utility is standard PostScript, the output can be sent to
any PostScript printer.

To use the utility, type the following:

system% xutops filename | lp

You can also use the utility as a filter since the utility accepts stdin stream:

system% lpr filename | xutops | lp

You can set the utility as a printing filter for a line printer. For example, the
following command sequence tells the printer service LP that the printer lp1
accepts only xutops format files. This command line also installs the printer lp1 on
port/dev/ttya . See the lpadmin (1M) man page for more details.

system# lpadmin -p lp1 -v /dev/ttya -I XUTOPS
system# accept lp1

system# enable lp1

Using lpfilter (1M), you can add the utility as a filter as follows:

system# lpfilter -f filtername -F pathname

90 Solaris Internationalization Guide For Developers ♦ October 1998

The command tells the printer that a converter (in this case, xutops) is available
through the filter description file named pathname. Pathname can be as follows:

Input types: simple
Output types: XUTOPS
Command: /usr/openwin/bin/xutops

The filter converts the default type file input to PostScript output using
/usr/openwin/bin/xutops .

To print a UTF-8 text file, use the following command:

system% lp -T XUTOPS UTF-8-file

DtMail
As a result of increased coverage in scripts, Solaris 7 DtMail running in the
en_US.UTF-8 locale supports various MIME character sets shown below.

� US-ASCII (7-bit US ASCII)

� UTF-8 (UCS Transmission Format 8 of Unicode)

� UTF-7 (UCS Transmission Format 7 of Unicode)

� ISO-8859-1 (Latin-1)

� ISO-8859-2 (Latin-2)

� ISO-8859-3 (Latin-3)

� ISO-8859-4 (Latin-4)

� ISO-8859-5 (Latin/Cyrillic)

� ISO-8859-6 (Latin/Arabic)

� ISO-8859-7 (Latin/Greek)

� ISO-8859-8 (Latin/Hebrew)

� ISO-8859-9 (Latin-5)

� ISO-8859-10 (Latin-6)

� ISO-8859-15 (Latin-9)

� KOI8-R (Cyrillic)

� ISO-2022-JP (Japanese)

� ISO-2022-KR and EUC-KR (Korean)

Overview of en_US.UTF-8 Locale Support 91

� ISO-2022-CN (Simplified Chinese)

� ISO-2022-TW (Traditional Chinese)

This support allows users to view virtually any kind of email encoded in various
MIME character sets from any region of the world in a single instance of DtMail. The
decoding of received email is done by DtMail, which looks at the MIME character set
and content transfer encoding provided with the email. However, in case of sending,
you need to specify a MIME character set that is understood by the recipient mail
user agent (in other words, mail client), unless you want to use the default MIME
character set provided by the en_US.UTF-8 locale. To switch the character set of
out-going email, at the ’New Message’ window, type either <CONTROL> + <Y> or
click the "Format" menu button and then again click on the "Change Char Set" button
by using your mouse. The next available character set name will be displayed at left
bottom corner on top of the Send button. If your email message header or message
body contains characters that cannot be represented by the MIME charset specified,
the system automatically switches the MIME character set to the UTF-8 that can
represent any characters.

If your message contains characters from the 7-bit US-ASCII character set only, your
email’s default MIME character set is US-ASCII . Any mail user agent can interpret
such email message without any loss of characters or information.

If your message contains characters from a mixture of scripts, your email’s default
MIME character set is UTF-8 and any 8-bit characters of UTF-8 is encoded with
Quoted-Printable encoding.. For more detail on MIME, registered MIME charsets and
Quoted-Printable encoding, refer to RFC 2045, 2046, 2047, 2048, 2049, 2279, 2152,
2237, 1922, 1557, 1555, and, 1489.

Programming Environment
Appropriately, internationalized applications should automatically enable the
en_US.UTF-8 locale, but proper FontSet/XmFontList definitions in the application’s
resource file are required.

For information on internationalized applications, see Creating Worldwide Software:
Solaris International Developer’s Guide, 2nd edition.

Font Set Used with X Applications
The en_US.UTF-8 locale in the Solaris 7 environment supports fonts for the
following character sets.

� ISO 8859-1

92 Solaris Internationalization Guide For Developers ♦ October 1998

� ISO 8859-2

� ISO 8859-4

� ISO 8859-5

� ISO 8859-7

� ISO 8859-9

� ISO 8859–15

� BIG5

� GB 2312–1980

� JISX 0201.1976

� JISX 0208.1983

� KSC 5601.1992–3

� ISO 8859–6–1

� ISO 8859–8

� TIS 620.2533–1

Because the Solaris 7 environment supports the CDE desktop environment, each
character set has a guaranteed sets of fonts.

The following is a list of the Latin-1 fonts that are supported in the Solaris 7 product.
-dt-interface system-medium-r-normal-xxs sans

utf-10-100-72-72-p-59-iso8859-1
-dt-interface system-medium-r-normal-xs sans

utf-12-120-72-72-p-71-iso8859-1
-dt-interface system-medium-r-normal-s sans

utf-14-140-72-72-p-82-iso8859-1
-dt-interface system-medium-r-normal-m sans

utf-17-170-72-72-p-97-iso8859-1
-dt-interface system-medium-r-normal-l sans

utf-18-180-72-72-p-106-iso8859-1
-dt-interface system-medium-r-normal-xl sans

utf-20-200-72-72-p-114-iso8859-1
-dt-interface system-medium-r-normal-xxl sans

utf-24-240-72-72-p-137-iso8859-1

For information on CDE common font aliases, including -dt-interface user-*
and -dt-application-* aliases, see Common Desktop Environment:
Internationalization Programmer’s Guide.

In the en_US.UTF-8 locale, utf is also supported as a common font alias. A font set
for an application should have a collection of fonts that contains each of the
character sets, as in the following example.

fs = XCreateFontSet(display,
"-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-1,

Overview of en_US.UTF-8 Locale Support 93

(Continuation)

-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-2,
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-5,
-dt-interface system-medium-r-normal-s*-utf*-*-*-*-*-*-*-iso8859-6,

-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-7,
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-8,

-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-9",
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-15",

-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-big5-1",
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-gb2312.1980-0",
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-jisx0201.1976-0",
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-jisx0208.1983-0",
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-kcs5601.1992-3",
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-tis620.2533-0",

&missing_ptr, &missing_count, &def_string);

XmFontList Definition as CDE/Motif Applications
As with FontSet definition, the XmFontList resource definition of an application
should also include each font of the character sets that the locale supports.

CODE EXAMPLE 4–1 XmNFontList definition for the en_US.UTF-8 locale

*fontList:\
-dt-interface system-medium-r-normal-s*-*-*-*-*-*-*-*-iso8859-1;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-2;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-4;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-5;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-7;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-8;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-9;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-iso8859-15;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-big5-1;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-gb2312.1980-0;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-jisx0201.1976-0;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-jisx0208.1983-0;\
-dt-interface system-medium-r-normal-s*utf-*-*-*-*-*-*-*-tis620.2533-0:

For more details on the XmFontList and the XmNFontList, refer to the
XmFontList(3X) man page, OSF/Motif Programmer’s Guide and the resource section of
each Motif widget in the OSF/Motif Programmer’s Reference Manual.

94 Solaris Internationalization Guide For Developers ♦ October 1998

CHAPTER 5

Installation

The Solaris 7 product allows you to install more than one locale on a machine. This
allows the developer to test different locales or to work in different locales for
different projects. This chapter describes how to add additional locales on the
machine.

Adding Packages
This section describes how to install packages with the pkgadd command.

How to Add Packages to a Standalone System
1. Log in as root.

2. Remove any packages with the same name as the ones you are adding.

This ensures that the system keeps a proper record of software that has been
added and removed. There may be times when you want to maintain multiple
versions of the same application on the system. For strategies on how to do this,
see “Guidelines for Removing Packages,” and for task information, see “How to
Remove a Package.” Both of these can be found in the System Administration
Guide

3. Add one or more software packages to the system.

pkgadd -a admin-file -d device-name pkgid...

95

In this command,

-a admin-file (Optional) Specifies an administration file that pkgadd should
consult during the installation. (For details about using an
administration file, see the System Administration Guide.

-d device-name Specifies the absolute path to the software packages. Device-name can
be a path to a device, a directory, or a spool directory. If you do not
specify the path where the package resides, the pkgadd command
checks the default spool directory (/var/spool/pkg). If the
package is not there, the package installation fails.

pkgid (Optional) Is the name of one or more packages (separated by
spaces) to be installed. If spaces are omitted, the pkgadd command
installs all available packages.

If pkgadd encounters a problem during installation of the package, it displays a
message related to the problem, followed by this prompt:

Do you want to continue with this installation?

Respond with yes , no , or quit . If more than one package has been specified,
type no to stop the installation of the package being installed. pkgadd continues
to install the other packages. Type quit to stop the installation.

4. Verify that the package has been installed successfully, using the pkgchk
command.

pkgchk -v pkgid

If pkgchk determines there are no errors, it returns a list of installed files.
Otherwise, it reports the error.

Installing Software From a Mounted CD
The following example shows a command to install the SUNWaudio package from a
CD mounted on the Solaris 2.6 operating environment or compatible versions. The
example also shows use of the pkgchk command to verify that the package files
were installed properly.

pkgadd -d /cdrom/cdrom0/s0/Solaris_2.7/Product SUNWaudio
.
.
.
Installation of SUNWaudio> complete.

(continued)

96 Solaris Internationalization Guide For Developers ♦ October 1998

(Continuation)

pkgchk -v SUNWaudio
/usr
/usr/bin
/usr/bin/audioconvert
/usr/bin/audioplay
/usr/bin/audiorecord

Installing Software From a Remote Package Server
If the packages you want to install are available from a remote system, you can
mount the directory containing the packages (in package format) manually and
install packages on the local system. The following example shows the commands to
do this. In this example, assume the remote system named package-server has
software packages in the /latest-packages directory. The mount command
mounts the packages locally on /mnt , and the pkgadd command installs the
SUNWaudio package.

mount -F nfs -o ro package-server:/latest-packages /mnt
pkgadd -d /mnt SUNWaudio
.
.
.
Installation of SUNWaudio> was successful.

If the automounter is running at your site, you do not need to mount the remote
package server manually. Instead, use the automounter path (in this case,
/net/package-server/latest-packages) as the argument to the -d option.

pkgadd -d /net/package-server/latest-packages SUNWaudio
.
.
.
Installation of SUNWaudio> was successful.

The following example is similar to the previous one, except it uses the -a option
and specifies an administration file named noask-pkgadd . In this example, assume
the noask-pkgadd administration file is in the default location,
/var/sadm/install/admin .

Installation 97

pkgadd -a noask-pkgadd -d /net/package-server/latest-packages SUNWaudio
.
.
.
Installation of SUNWaudio> was successful.

Installing the Localization Product
Table 5–1 contains the list of common packages for the operating system localization
and the window system localization.

European Packages

TABLE 5–1 Pan-European Files for Localization and Windowing

Locale OS Common Packages Win Common Packages

All Euro SUNWploc

SUNWploc1

SUNWenise

SUNWeuise

SUNWplow

SUNWplow1

SUNWpldte

98 Solaris Internationalization Guide For Developers ♦ October 1998

French Files

TABLE 5–2 French Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages

Desktop
Packages

fr SUNWfros SUNWfoaud

SUNWfobk

SUNWfodcv

SUNWfodem

SUNWfodst

SUNWfodte

SUNWfoimt

SUNWforte

SUNWfrbas

SUNWfrdst

SUNWfrdte

SUNWfrhe

SUNWfrhed

SUNWfrim

SUNWfris

SUNWfrwm

SUNWftltk

SUNWfwacx

SUNWfxplt

Installation 99

German Files

TABLE 5–3 German Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages

Desktop
Packages

de SUNWdeos SUNWdoaud

SUNWdobk

SUNWdodcv

SUNWdodem

SUNWdodst

SUNWdodte

SUNWdoimt

SUNWdorte

SUNWdebas

SUNWdedst

SUNWdedte

SUNWdehe

SUNWdehed

SUNWdeim

SUNWdeis

SUNWdewm

SUNWdtltk

SUNWdwacx

SUNWdxplt

100 Solaris Internationalization Guide For Developers ♦ October 1998

Italian Files

TABLE 5–4 Italian Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages

Desktop
Packages

it SUNWitos SUNWioaud

SUNWiobk

SUNWiodcv

SUNWiodem

SUNWiodst

SUNWiodte

SUNWioimt

SUNWiorte

SUNWitbas

SUNWitdst

SUNWitdte

SUNWithe

SUNWithed

SUNWitim

SUNWitis

SUNWitwm

SUNWitltk

SUNWiwacx

SUNWixplt

Installation 101

Spanish Files

TABLE 5–5 Spanish Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages

Desktop
Packages

es SUNWesos SUNWeoaud

SUNWeobk

SUNWeodcv

SUNWeodem

SUNWeodst

SUNWeodte

SUNWeoimt

SUNWeorte

SUNWesbas

SUNWesdst

SUNWesdte

SUNWeshe

SUNWeshed

SUNWesim

SUNWesis

SUNWeswm

SUNWetltk

SUNWewacx

SUNWexplt

102 Solaris Internationalization Guide For Developers ♦ October 1998

Swedish Files

TABLE 5–6 Swedish Files for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages

Desktop
Packages

sv SUNWsvos SUNWsoaud

SUNWsobk

SUNWsodcv

SUNWsodem

SUNWsodst

SUNWsodte

SUNWsoimt

SUNWsorte

SUNWsvbas

SUNWsvdst

SUNWsvdte

SUNWsvhe

SUNWsvhed

SUNWsvim

SUNWsvis

SUNWsvwm

SUNWstltk

SUNWswacx

SUNWsxplt

Installation 103

Detailed Descriptions of European Files

TABLE 5–7 European Package Descriptions

Package Name Package Description

SUNWerdm European OILBN ReadMe Directory

SUNWi1of ISO-8859-1 (Latin-1) Optional Fonts

SUNWi1of ISO-8859-1 (Latin-1) Optional Fonts

SUNWi2of X11 fonts for ISO-8859-2 character set (optional fonts)

SUNWi2rf X11 fonts for ISO-8859-2 character set (required fonts)

SUNWi4of X11 fonts for ISO-8859-4 character set (optional fonts)

SUNWi4rf X11 fonts for ISO-8859-4 character set (required fonts)

SUNWi5of X11 fonts for ISO-8859-5 character set (optional fonts)

SUNWi5rf X11 fonts for ISO-8859-5 character set (required fonts)

SUNWi7of X11 fonts for ISO-8859-7 character set (optional fonts)

SUNWi7rf X11 fonts for ISO-8859-7 character set (required fonts)

SUNWi9of X11 fonts for ISO-8859-9 character set (optional fonts)

SUNWi9rf X11 fonts for ISO-8859-9 character set (required fonts)

SUNWioaud Italian OPEN LOOK Audio applications

SUNWiobk Italian OpenWindows online handbooks

SUNWiodcv Italian OPEN LOOK document and help viewer applications

SUNWiodem Italian OPEN LOOK demo programs

SUNWiodst Italian OPEN LOOK deskset tools

104 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–7 European Package Descriptions (continued)

Package Name Package Description

SUNWiodte Italian OPEN LOOK desktop environment

SUNWioimt Italian OPEN LOOK imagetool

SUNWiorte Italian OPEN LOOK toolkits runtime environment

SUNWislcc XSH4 conversion for Eastern European locales

SUNWisolc XSH4 conversion for ISO Latin character sets

SUNWitbas Base L10N it CDE functionality to run a CDE application

SUNWitdst Italian CDE Desktop Applications messages

SUNWitdte Italian CDE Desktop Environment

SUNWithe Italian CDE Help Runtime Environment

SUNWithed Italian CDE Help Developer Environment

SUNWithev Italian CDE Online Help

SUNWitim Italian CDE Imageviewer

SUNWitis Italian install software localization

SUNWitltk Italian ToolTalk binaries and shared libraries

SUNWitos Italian OS localization

SUNWitpmw Italian (EUC) Localizations for Power Management OW Utilities

SUNWitreg Italian Solaris User Registration prompts at desktop login for user
registration

SUNWitwm Italian CDE Desktop Window Manages Messages

SUNWiwacx Italian OPEN LOOK AccessX

Installation 105

TABLE 5–7 European Package Descriptions (continued)

Package Name Package Description

SUNWiwbcp Italian OpenWindows Binary Compatibility Package

SUNWixplt Italian X Windows platform software

SUNWeoaud Spanish OPEN LOOK Audio applications

SUNWeobk Spanish OpenWindows online handbooks

SUNWeodcv Spanish OPEN LOOK document and help viewer applications

SUNWeodem Spanish OPEN LOOK demo programs

SUNWeodst Spanish OPEN LOOK deskset tools

SUNWeodte Spanish OPEN LOOK desktop environment

SUNWeoimt Spanish OPEN LOOK imagetool

SUNWeorte Spanish OPEN LOOK toolkits runtime environment

SUNWesbas Base L10N fr CDE functionality to run a CDE application

SUNWesdst Spanish CDE Desktop Applications

SUNWesdte Spanish CDE Desktop Environment

SUNWeshe Spanish CDE Help Runtime Environment

SUNWeshed Spanish CDE Help Developer Environment

SUNWeshev Spanish CDE Online Help

SUNWesim Spanish CDE Desktop apps

SUNWesis Spanish install software localization

SUNWesos Spanish OS localization

106 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–7 European Package Descriptions (continued)

Package Name Package Description

SUNWespmw Spanish (EUC) Localizations for Power Management OW Utilities

SUNWesreg Solaris User Registration prompts at desktop login for user registration

SUNWeswm Spanish CDE Desktop window manages messages

SUNWetltk Spanish ToolTalk binaries and shared libraries

SUNWenise English partial locales enabling during install

SUNWeuise European partial locales enabling during install

SUNWewacx Spanish OPEN LOOK AccessX

SUNWexplt Spanish X Windows platform software

SUNWfbcp French OS Binary Compatibility Package

SUNWfoaud French OPEN LOOK Audio applications

SUNWfobk French OpenWindows online handbooks

SUNWfodcv French OPEN LOOK document and help viewer applications

SUNWfodem French OPEN LOOK demo programs

SUNWfodst French OPEN LOOK deskset tools

SUNWfodte French OPEN LOOK desktop environment

SUNWfoimt French OPEN LOOK imagetool

SUNWforte French OPEN LOOK toolkits runtime environment

SUNWfrbas Base L10N fr CDE functionality to run a CDE application

SUNWfrdst French CDE Desktop Applications

Installation 107

TABLE 5–7 European Package Descriptions (continued)

Package Name Package Description

SUNWfrdte French CDE Desktop Environment

SUNWfrhe French CDE Help Runtime Environment

SUNWfrhed French CDE Help Developer Environment

SUNWfrhev French CDE Online Help

SUNWfrim French CDE ImageViewer

SUNWfris French install software localization

SUNWfros French OS localization

SUNWfrpmw French (EUC) Localizations for Power Management OW Utilities

SUNWfrwm French CDE Desktop Window Manages Messages

SUNWftltk French ToolTalk binaries and shared libraries

SUNWfwacx French OPEN LOOK AccessX

SUNWfwbcp French OpenWindows Binary Compatibility Package

SUNWfxplt French X Windows platform software

SUNWf8bas Base L10N fr CDE functionality to run a CDE application

SUNWf8dst CDE Desktop Applications

SUNWf8dte CDE Desktop Environment

lSUNWf8he CDE Help L10N fr Runtime Environment

SUNWf8im CDE Desktop Applications

SUNWf8wm French UTF-8 CDE Desktop Window Manages Messages

108 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–7 European Package Descriptions (continued)

Package Name Package Description

SUNWd8bas Base L10N German UTF-8 CDE functionality to run a CDE application

SUNWd8dst CDE Desktop Applications

SUNWd8dte CDE Desktop Login Environment

SUNWd8he CDE Help L10N German UTF-8 Runtime Environment

SUNWd8im CDE Desktop Applications

SUNWd8wm German UTF-8 CDE Desktop Window Manages Messages

SUNWdbcp German OS Binary Compatibility Package

SUNWdebas Base L10N German CDE functionality to run a CDE application

SUNWe8bas Base L10N Spanish CDE functionality to run a CDE application

SUNWe8dst CDE Desktop Applications

SUNWe8dte CDE Desktop Login Environment

SUNWe8he CDE Help L10N es Runtime Environment

SUNWe8im CDE Desktop applications

SUNWe8wm Spanish UTF-8 CDE Desktop Window Manages Messages

SUNWsoaud Swedish OPEN LOOK Audio applications

SUNWsobk Swedish OpenWindows online handbooks

SUNWsodcv Swedish OPEN LOOK document and help viewer applications

SUNWsodem Swedish OPEN LOOK demo programs

SUNWsodst Swedish OPEN LOOK deskset tools

Installation 109

TABLE 5–7 European Package Descriptions (continued)

Package Name Package Description

SUNWsodte Swedish OPEN LOOK desktop environment

SUNWsoimt Swedish OPEN LOOK imagetool

SUNWsorte Swedish OPEN LOOK toolkits runtime environment

SUNWstltk Swedish ToolTalk binaries and shared libraries

SUNWsvbas Base Swedish CDE functionality messages

SUNWsvdst Swedish CDE Desktop Applications messages

SUNWsvdte Swedish CDE Desktop Environment messages

SUNWsvhe Swedish CDE Help Runtime Environment

SUNWsvhed Swedish CDE Help Developer Environment messages

SUNWsvhev Swedish CDE Online Help

SUNWsvim Swedish CDE Image editor messages

SUNWsvis Swedish install software localization

SUNWsvos Swedish OS localization

SUNWsvpmw Swedish (EUC) Localizations for Power Management OW Utilities

SUNWsvreg Swedish Solaris User Registration prompts at desktop login for user
registration

SUNWsvwm Swedish CDE Desktop Window Manages Messages

SUNWswacx Swedish OPEN LOOK AccessX

SUNWsxplt Swedish X Windows platform software

SUNWdbcp German OS Binary Compatibility Package

110 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–7 European Package Descriptions (continued)

Package Name Package Description

SUNWdebas Base L10N German CDE functionality to run a CDE application

SUNWdedst German CDE Desktop Applications

SUNWdedte German CDE Desktop Login Environment

SUNWdehe German CDE Help Runtime Environment

SUNWdehed German CDE Help Developer Environment

SUNWdehev German CDE Online Help

SUNWdeim German CDE Imageviewer

SUNWdeis German install software localization

SUNWdeos German message files for the OS-Networking consolidation

SUNWdepmw German (EUC) Localizations for Power Management OW Utilities

SUNWdereg German Solaris User Registration prompts at desktop login for user
registration

SUNWdewm German CDE Desktop Window Manages Messages

SUNWdoaud German OPEN LOOK Audio applications

SUNWdobk German OpenWindows online handbooks

SUNWdodcv German OPEN LOOK document and help viewer applications

SUNWdodem German OPEN LOOK demo programs

SUNWdodst German OPEN LOOK deskset tools

SUNWdodte German OPEN LOOK desktop environment

SUNWdoimt German OPEN LOOK imagetool

Installation 111

TABLE 5–7 European Package Descriptions (continued)

Package Name Package Description

SUNWdorte German OPEN LOOK toolkits runtime environment

SUNWdwacx German OPEN LOOK AccessX

SUNWdwbcp German OpenWindows Binary Compatibility Package

SUNWpldte CDE Eastern European locale support

SUNWploc European Partial Locales

SUNWploc1 Supplementary Partial Locales

SUNWplow OpenWindows enabling for Partial Locales

SUNWplow1 OpenWindows enabling for Supplementary Partial Locales

SUNWfrreg

SUNWitreg

SUNWsvreg

SUNWesreg

SUNWdereg

Localized e-reg software messages in the End-User cluster and above

112 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–7 European Package Descriptions (continued)

Package Name Package Description

SUNWfrpmw

SUNWitpmw

SUNWsvpmw

SUNWespmw

SUNWdepmw

Localized Power Management software in the End-User cluster and
above

SUNWfwbcp

SUNWiwbcp

SUNWswbcp

SUNWewbcp

SUNWdwbcp

Localized Binary Compatibility Packages

European Codesets
In the Solaris 7 product, several fonts display characters that are encoded in the
following codesets:

� Latin-1

� Latin-2

� Latin-4

� Cyrillic

� Greek

� Latin-5

European Font Packages
There are a number of font packages in the Solaris 7 product, as shown in Table 5–8

Installation 113

TABLE 5–8 Font Packages in the Solaris 7 Product

Font Package Description

SUNWi2of Latin-2 Optional fonts

SUNWi2rf Latin-2 Required fonts

SUNWi4of Latin-4 Optional fonts

SUNWi4rf Latin-4 Required fonts

SUNWi5of Cyrillic Optional fonts

SUNWi5rf Cyrillic Required fonts

SUNWi7of Greek Optional fonts

SUNWi7rf Greek Required fonts

SUNWi9of Latin-5 Optional fonts

SUNWi9rf Latin-5 Required fonts

� All required font packages are in the developer cluster.

� All fonts (both required and optional) are in the entire cluster.

Asian Packages
The remainder of this chapter covers the Asian packages. Table 5–9 is shown below.

TABLE 5–9 Common Asian Packages for Localization and Windowing

OS Common
Packages

Win dow
Packages

64-bit OS
Packages

64-bit
Windowing
Packages

SUNWale

SUNWaled

SUNWxi18n

SUNWxim

SUNWalex

114 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–10 Korean Packages for Localization and Windowing

Locale OS Packages
Windowing
Packages

64-bit OS
Packages

64-bit
Windowing
Packages

ko SUNWkler

SUNWkleu

SUNWkbcp

SUNWkoaud

SUNWkodcv

SUNWkodem

SUNWklerx

SUNWkleux

SUNWkadis

SUNWkadma

SUNWsadl

SUNWkervl

SUNWkoimt

SUNWkxfnt

SUNWkexir

SUNWkoman

SUNWkxman

SUNWkkcsr

SUNWkodst

SUNWkorte

SUNWkxoft

SUNWkepmw

SUNWkodte

SUNWkltl

SUNWkxplt

SUNWkwbcp

Installation 115

TABLE 5–10 Korean Packages for Localization and Windowing (continued)

Locale OS Packages
Windowing
Packages

64-bit OS
Packages

64-bit
Windowing
Packages

ko.UTF-8 SUNWkiu8

SUNWkuleu

SUNWkiu8x

SUNWkulex

SUNWkuadm

SUNWkusal

SUNWkuadi

SUNWkcoft

SUNWkupmw

SUNWkuxpl

SUNWkuodf

SUNWkuxft

116 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–11 Simplified Chinese Packages for Localization and Windowing

Locale OS Packages Windowing
Packages

64-bit OS
Packages

64-bit
Windowing
Packages

zh
SUNWcleu

SUNWcler

SUNWciu8

SUNWcbcp

SUNWcadis

SUNWcsadl

SUNWcadma

SUNWcervl

SUNWcodcv

SUNWcoimt

SUNWcttf

SUNWcxplt

SUNWcexir

SUNWcodem

SUNWcoman

SUNWcxfnt

SUNWckcsr

SUNWcodst

SUNWciu8x

SUNWcleux

SUNWcorte

SUNWcxman

SUNWcepmw

SUNWcoaud

SUNWcodte

SUNWcltk

SUNWcxoft

Installation 117

TABLE 5–11 Simplified Chinese Packages for Localization and Windowing (continued)

Locale OS Packages Windowing
Packages

64-bit OS
Packages

64-bit
Windowing
Packages

SUNWcttf

SUNWcwbcp

SUNWcxmft

SUNWgleux

SUNWgxplx

zh.GBK
SUNWgleu SUNWgxplx

SUNWgxfnt

SUNWgxman

SUNWgxplt

SUNWgadis

SUNWgodte

SUNWgadma

SUNWgpmw

SUNWgsadl

SUNWgttf

118 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–12 Traditional Chinese Packages for Localization and Windowing

Locale OS Packages
Windowing
Packages

64-bit OS
Packages

64-bit
Windowing
Packages

zh_TW SUNWhler

SUNWhleu

SUNWhiu8

SUNWhbcp

SUNWhadma

SUNWhsadl

SUNWhuccd

SUNWhadis

SUNWhiu8x

SUNWhlerx

SUNWhleux

SUNWhepmw

SUNWhoaud

SUNWhodte

SUNWhtltk

SUNWhxoft

SUNWhervl

SUNWhodcv

SUNWhoimt

SUNWhttf

SUNWhxplt

SUNWhexir

SUNWhodem

SUNWhoman

Installation 119

TABLE 5–12 Traditional Chinese Packages for Localization and Windowing (continued)

Locale OS Packages
Windowing
Packages

64-bit OS
Packages

64-bit
Windowing
Packages

SUNWhxfnt

SUNWhkcsr

SUNWhodst

SUNWhorte

SUNWhwbcp

SUNWhxman

zh_TW.BIG5

SUNW5leu SUNW5adi

SUNW5adma

SUNW5ttf

SUNW5sadl

SUNW5odte

SUNW5xfnt

SUNW5xplt

SUNW5pmw

SUNW5xmft

SUNW5leux SUNW5xplx

TABLE 5–13 Simplified Chinese Packages

Package Name Package Description

SUNWcadis Simplified Chinese (EUC) Localizations for admintool and GUI install

SUNWcadma Simplified Chinese (EUC) Localizations for Software used to perform
system administration tasks

120 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–13 Simplified Chinese Packages (continued)

Package Name Package Description

SUNWcbcp Simplified Chinese (EUC) Language Environment binary compatibility
files.

SUNWcdhj Simplified Chinese (EUC) Localizations for HotJava Browser for Solaris

SUNWcepmw Simplified Chinese (EUC) Localization for Power Management OW
Utilities

SUNWcervl Simplified Chinese (EUC) SunVideo Runtime Support Software

SUNWcexir Simplified Chinese (EUC) XIL Runtime Environment

SUNWckcsr Simplified Chinese (EUC) KCMS Runtime Environment

SUNWcleu Simplified Chinese (EUC) Language Environment specific files

SUNWcoaud Simplified Chinese (EUC) OPENLOOK Audio Applications Package

SUNWcodcv Simplified Chinese (EUC) OPENLOOK Document and Help Viewer
Applications Package

SUNWcodem Simplified Chinese (EUC) OPENLOOK Demo Programs Package

SUNWcodst Simplified Chinese (EUC) OPENLOOK Deskset Tools Package

SUNWcodte Simplified Chinese (EUC) Core OPENLOOK Desktop Package

SUNWcoimt Simplified Chinese (EUC) OPENLOOK Imagetool Package

SUNWcoman Simplified Chinese (EUC) OPENLOOK Toolkit/Desktop Users Man Pages
Package

SUNWcorte Simplified Chinese OPENLOOK Toolkits Runtime Environment Package

SUNWcreg Simplified Chinese Localizations for Solaris User Registration

SUNWcsadl Simplified Chinese (EUC) Localizations for Solstice Admintool launcher
and associated libraries

SUNWctltk Simplified Chinese T(EUC) oolTalk Runtime Package

Installation 121

TABLE 5–13 Simplified Chinese Packages (continued)

Package Name Package Description

SUNWcxfnt Simplified Chinese (EUC) X Windows Platform Required Fonts

SUNWcxman Simplified Chinese (EUC) X Windows Online User Man Pages Package

SUNWcxplt Simplified Chinese (EUC) X Windows Platform Software Package

SUNWgadis Simplified Chinese (zh.GBK) Localizations for admintool and GUI install

SUNWgadma Simplified Chinese (GBK) Localizations for Software used to perform
system administration tasks

SUNWgdhj Simplified Chinese (GBK) Localizations for HotJava Browser for Solaris

SUNWgleu Simplified Chinese (GBK) Language Environment specific file

SUNWgodte Simplified Chinese (GBK) Core OPENLOOK Desktop Package

SUNWgpmw Simplified Chinese (GBK) Localization for Power Management OW
Utilities

SUNWgsadl Simplified Chinese (GBK) Localizations for Solstice Admintool launcher
and associated libraries

SUNWgttf Simplified Chinese (GBK) True Type Fonts

SUNWgxfnt Simplified Chinese (GBK) X Windows Platform required Fonts

SUNWgxman Simplified Chinese (GBK) X Windows Online User Man Pages Package

SUNWgxplt Simplified Chinese (GBK) X Windows Platform Software Package

SUNWcxplt Simplified Chinese (GBK) X Windows Platform Software Package

SUNWciu8x Simplified Chinese (EUC) icon modules for UTF-8

SUNWcleux Simplified Chinese (EUC) Language Environment specific files

122 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–14 Japanese Packages for Localization and Windowing

Locale
OS Common
Packages

Win Common
Packages OS Packages

Desktop
Packages

ja/ja_JP.PCK
common

SUNWjfpr
SUNWjfpu
SUNWjc0d
SUNWjc0r
SUNWjc0u
SUNWjwncr
SUNWjwncu
SUNWjwnsr
SUNWjwnsu
SUNWjiu8
SUNWjman
SUNWjxf3
SUNWjxfa
SUNWxgljf

SUNWJSat8xw
SUNWjc0w
SUNWjwncx
SUNWjwndt
SUNWjreg
SUNWjxcft
SUNWjxfnt
SUNWjxoft
SUNWjfxmn
SUNWjbdf
SUNWjcs3f

ja packages
(Japanese)

SUNWjbcp
SUNWjrdm
SUNWjeman
SUNWjeudc
SUNWjexir
SUNWjmfrn
SUNWjoaud
SUNWjodcv
SUNWjodst
SUNWjodte
SUNWjoimt
SUNWjorte
SUNWjxgld
SUNWjxgle
SUNWjtltk
SUNWjwbcp
SUNWjwbk
SUNWjxplt
SUNWjkcsr
SUNWjoumn
SUNWjxumn
SUNWjxpmn
SUNWjervl
SUNWjffb
SUNWjleo
SUNWjodem
SUNWjsadl
SUNWjsxgl
SUNWjwacx
SUNWjexfa

SUNWjadis
SUNWjadma
SUNWjepmw

Installation 123

TABLE 5–14 Japanese Packages for Localization and Windowing (continued)

Locale
OS Common
Packages

Win Common
Packages OS Packages

Desktop
Packages

ja_JP.PCK
pkgs
(Japanese)

SUNWjpwnu
SUNWjprdm
SUNWjpman
SUNWjpadi
SUNWjppmw
SUNWjpudc
SUNWjpxir
SUNWjpmfr
SUNWjptlt
SUNWjpxge
SUNWjpxpl
SUNWudct
SUNWjpkcs
SUNWjptlm
SUNWjpxpm
SUNWjpxum
SUNWjprvl
SUNWjpffb
SUNWjpleo
SUNWjpsal
SUNWjpsxg
SUNWjpacx
SUNWjpxfa

SUNWjpxgd
SUNWjpadm
SUNWjpadi

TABLE 5–15 Thai Packages for Localization and Windowing

Locale OS Packages Window
Packages

64-bit OS
Packages

64-bit Win
Packages

th_TH SUNWtiu8 SUNWtxplt SUNWtleux

SUNWtleu SUNWtxfnt SUNWtiu8x

SUNWtxodt

Description of General Packages

124 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–16 General Packages

Package Name Package Description

SUNWale
SUNWaled

Asian Language Environment Common Files Asian Language
Environment Common Man Pages

SUNWxi18n
SUNWxim

X Windows Internationalization Common Package X Windows X Input
Method Server Package

Description of Korean Packages

TABLE 5–17 Korean Packages

Package Name Package Description

SUNWkoaud Korean (EUC) OpenLook Audio Applications Package

SUNWkodcv Korean (EUC) OpenLook Document and Help Viewer Applications
Package

SUNWkodem Korean (EUC) OpenLook Demo Programs Package

SUNWkodst Korean (EUC) OpenLook Deskset Tools Package

SUNWkodte Korean (EUC) Core OpenLook Desktop Package

SUNWkoimt Korean (EUC) OpenLook Imagetool Package

SUNWkoman Korean (EUC) OpenLook Toolkit/Desktop Users Man Pages Package

SUNWktltk Korean (EUC) ToolTalk Runtime Package

SUNWkxman Korean (EUC) X Windows Online User Man Pages Package

SUNWkxplt Korean (EUC) X Windows Platform Software Package

SUNWkxfnt Korean (EUC) X Windows Platform required Font Package

SUNWkwbcp Korean OpenWindows Binary Compatibility Package

Installation 125

TABLE 5–17 Korean Packages (continued)

Package Name Package Description

SUNWkepmw Korean (EUC) Power Management OW Utilities

SUNWkkcsr Korean (EUC) Localizations for Kodak Color Management System
Runtime

SUNWkervl Korean (EUC)Localizations for SunVideoTM Runtime Support
Software

SUNWkexir Korean (EUC) Localizations for XIL Runtime Environment

SUNWkdest Korean (EUC) Localized Tools

SUNWkiu8 Korean (EUC) UTF-8 iconv modules for UTF-8

SUNWkuleu Korean UTF-8 Language Environment user files

SUNWkcoft Korean UTF-8 common optional font package

SUNWkuodf Korean UTF-8 Core OPENLOOK Desktop Package

SUNWkupmw Korean UTF-8 Power Management OW Utilities

SUNWkxwft Korean UTF-8 X Windows Platform Required Fonts

SUNWkuxpl Korean UTF-8 X Windows Platform Software Package

SUNWklerx 64-bit Korean (Language Environment root files

SUNWkleux 64-bit Korean Language Environment user files

SUNWkiu8x 64-bit Korean UTF-8)iconv modules

SUNWkulex 64-bit Korean (UTF-8) Language Environment user files

Description of Traditional Chinese Packages

126 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–18 Traditional Chinese Packages

Package Name Package Description

SUNWcbcp Traditional Chinese (EUC) Language Environment Binary
Compatibility Package

SUNWcleu Traditional Chinese (EUC) Language Environment user files

SUNWcoaud Traditional Chinese (EUC) OpenLook Audio Applications Package

SUNWcodcv Traditional Chinese (EUC) OpenLook Doc and Help Viewer
Applications Package

SUNWcodem Traditional Chinese (EUC) OpenLook Demo Programs Package

SUNWcodst Traditional Chinese (EUC) OpenLook Deskset Tools Package

SUNWcodte Traditional Chinese (EUC) Core OpenLook Desktop Package

SUNWcoimt Traditional Chinese (EUC) OpenLook Imagetool Package

SUNWcoman Traditional Chinese (EUC) OpenLook Toolkit/Desktop Users Man
Pages Package

SUNWcorte Traditional Chinese (EUC) OpenLook Toolkits Runtime Environment
Package

SUNWctltk Traditiional Chinese (EUC) ToolTalk Runtime Package

SUNWcwbcp Traditional Chinese (EUC) OpenWindows Binary Compatibility Package

SUNWcxman Traditional Chinese (EUC) X Windows Online User Man Pages Package

SUNWcxoft Traditional Chinese (EUC) X Windows Optional Fonts Package

SUNWcxplt Traditional Chinese X(EUC) Windows Platform Software Package

SUNWcxfnt Traditional Chinese (EUC) X Windows Platform required Font Package

SUNWcepmw Traditional Chinese (EUC) Power Management OW Utilities

SUNWckcsr Traditional Chinese (EUC) for Kodak Color Management System
Runtime

Installation 127

TABLE 5–18 Traditional Chinese Packages (continued)

Package Name Package Description

SUNWcervl Traditional Chinese (EUC) Localizations for SunVideo Runtime Support
Software

SUNWcexir Traditional Chinese (EUC) Localizations for XIL Runtime Environment

SUNWhbcp Traditional Chinese (EUC) Language Environment Binary
Compatibility Package

SUNWhler Traditional Chinese (EUC) Language Environment root files

SUNWhleu Traditional Chinese (EUC) Language Environment user files

SUNWhsadl Traditional Chinese (EUC) Localization for Solstice Admintool launcher
and associated libraries

SUNWhttf Traditional Chinese (EUC) True Type Fonts Package

SUNWhadis Traditional Chinese (EUC) Localization for Admintool and GUI install

SUNWhadma Traditional Chinese (EUC) Localization for Software used to perform
system administration tasks

SUNWhiu8 Traditional Chinese (EUC) iconv modules for UTF-8

SUNWhiu8x Traditional Chinese (EUC) iconv modules for UTF-8

SUNWhlerx Traditional Chinese (EUC) language environment streams modules

SUNWhleux Traditional Chinese (EUC) language environment specific files

SUNWhuccd Traditional Chinese (EUC) User based Chinese Console Display package

SUNWhoaud Traditional Chinese (EUC) OpenLook Audio Applications Package

SUNWhodcv Traditional Chinese (EUC) OpenLook Doc and Help Viewer
Applications Package

SUNWhodem Traditional Chinese (EUC) OpenLook Demo Programs Package

SUNWhodst Traditional Chinese (EUC) OpenLook Deskset Tools Package

128 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–18 Traditional Chinese Packages (continued)

Package Name Package Description

SUNWhodte Traditional Chinese (EUC) Core OpenLook Desktop Package

SUNWhoimt Traditional Chinese (EUC) OpenLook Imagetool Package

SUNWhoman Traditional Chinese (EUC) OpenLook Toolkit/Desktop Users Man
Pages Package

SUNWhorte Traditional Chinese (EUC) OpenLook Toolkits Runtime Environment
Package

SUNWhtltk Traditional Chinese (EUC) ToolTalk Runtime Package

SUNWhwbcp Traditional Chinese (EUC) OpenWindows Binary Compatibility Package

SUNWhxman Traditional Chinese (EUC) X Windows Online User Man Pages Package

SUNWhxoft Traditional Chinese (EUC) X Windows Optional Fonts Package

SUNWhxplt Traditional Chinese (EUC)X Windows Platform Software Package

SUNWhxfnt Traditional Chinese (EUC) X Windows Platform required Font Package

SUNWhepmw Traditional Chinese (EUC) Power Management OW Utilities

SUNWhkcsr Traditional Chinese (EUC) Localize for Kodak Color Management
System Runtime

SUNhervl Traditional Chinese (EUC) Localizations for SunVideo Runtime Support
Software

SUNWhexir Traditional Chinese (EUC) Localizations for XIL Runtime Environment

SUNW5leu Traditional Chinese BIG5 Language Environment user files

SUNW5odte Traditional Chinese BIG5 Core OPENLOOK Desktop Package

SUNW5pmw Traditional Chinese BIG5 Power Management OW Utilities

SUNW5xfnt Traditional Chinese BIG5 X Windows Platform required Fonts Package

SUNW5xoft Traditional Chinese BIG5 X Windows Optional Fonts Package

Installation 129

TABLE 5–18 Traditional Chinese Packages (continued)

Package Name Package Description

SUNW5xplt Traditional Chinese BIG5 X Windows Platform Software Package

SUNWgsadl GBK Solstice Admintool launcher

SUNWgttf GBK True Type Fonts

SUNWgxfntr GBK X Windows Platform Required Fonts Package

SUNWgxman GBK X Windows Online User Man Pages Package

SUNWgxplt GBK X Windows Platform Software Package

SUNWgreg GBK L10N for Solaris User Registration

SUNWgdhj GBK HotJava Browser for Solaris

SUNWgdezt GBK) Localizations for Desktop Power Pack Applications

SUNWgdhez Localizations for Desktop Power Pack Help Volumes

SUNWgleux GBK) 64 Bits Language Environment user files

SUNWgxplx GBK) 64–bits X Windows Platform Software Package

Description of zh.GBK Packages

TABLE 5–19 zh.GBK Packages

Package Name Package Description

SUNWgadis GBK admintool and install software

SUNWgadma GBK system administration applications

SUNWgdab GBK L10N for CDE DTBUILDER

SUNWgdbas GBK L10N for CDE Base

130 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–19 zh.GBK Packages (continued)

Package Name Package Description

SUNWgddst GBK L10N for CDE Desktop Applications

SUNWddte GBK L10N for CDE Desktop Login Environment

SUNWgdft GBK L10N for CDE Fonts

SUNWgdhe GBK L10N for CDE Help Runtime

SUNWgdhev GBK L10N CDE Help Volumes

SUNWgdicn GBK L10N CDE Icons

SUNWgdim GBK L10N CDE Desktop Imagetool

SUNWgdwm GBK L10N CDE desktop Window Manager

SUNWgleu GBK Language Environment user files

SUNWgodte GBK Core OPENLOOK Desktop Package

SUNWgpmw GBK Power Management OW Utilities

SUNWgsadl GBK Solstice Admintool Launcher

SUNWgttf GBK True Type Fonts

SUNWgxfnt GBK X Windows Platform Required Fonts Package

SUNWgxman GBK X Windows Online User Man Pages Package

SUNWgxplt GBK X Windows Platform Software Package

SUNWgreg GBK L10N for Solaris User Registration

SUNWgdhj GBK Hot Java Browser for Solaris

SUNWgdezt Simplified Chinese (GBK) Localizations for Desktop Power Pack
Applications

SUNWgdhez Simplified Chinese (Common) Localizations for Desktop Power Pack
Help Volumes

SUNWgleux 64-bit Chinese (GBK) Language Environment user files

SUNWgxplx 64-bit Chinese/PRC (GBK) X Windows Platform Software Package

Description of Thai Packages

Installation 131

TABLE 5–20 Thai Language Packages

Package Name Package Description

SUNWtiu8 This package contains Thai UTF-8 iconv modules for UTF-8

SUNWtleu Thai Language Environment specific files

SUNWtxtfnt Thai X Windows Platform required Fonts Package

SUNWtxplt Thai X Windows Platform Software Package

SUNWtiu8x Thai 64 Bits UTF-8 iconv modules for UTF-8

SUNWtleux Thai 64 Bits Language Environment user files

SUNWtxodt Thai Core OPENLOOK Desktop Package

Description of Japanese Packages

TABLE 5–21 Japanese Packages

Package Name Package Description

SUNWjfpr Japanese Feature Package root files

SUNWjfpu Japanese Feature Package usr files

SUNWjeuc Japanese (EUC) Feature Package usr files

SUNWjpck Japanese (PCK) Feature Package usr files

JSat8xw Japanese Input System - ATOK8

SUNWjc0d Japanese cs00 user dictionary maintenance tool for CDE Motif

SUNWjc0r Japanese Kana-Kanji Conversion Server cs00 Root Files

132 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–21 Japanese Packages (continued)

Package Name Package Description

SUNWjc0u Japanese Kana-Kanji Conversion Server cs00 User Files

SUNWjc0w Japanese cs00 user dictionary maintenance tool for OPEN LOOK

SUNWjdbas Japanese CDE base

SUNWjdhev Japanese CDE HELP VOLUMES

SUNWjdhj Japanese HotJava Browser for Solaris

SUNWjwncr Wnn6 Client Root Files

SUNWjwncu Wnn6 Client Usr Files (common)

SUNWjwncx Wnn6 Client X Window System Files

SUNWjwndt Wnn6 Client User Files for CDE

SUNWjwnsr Wnn6 Server Root Files

SUNWjwnsu Wnn6 Server Usr Files

SUNWjreg Japanese Solaris User Registration

SUNWjxcft Japanese X Window System common (not required) fonts

SUNWjxfnt Japanese X Window System required fonts

SUNWjadis Japanese (EUC) admintool and install software

SUNWjadma Japanese (EUC) System administration applications

SUNWjbcp Japanese SunOS 4.x Binary Compatibility

SUNWjebas Japanese (EUC) CDE base

SUNWjddst Japanese (EUC) CDE DESKTOP APPS

Installation 133

TABLE 5–21 Japanese Packages (continued)

Package Name Package Description

SUNWjddte Japanese (EUC) CDE DESKTOP LOGIN ENVIRONMENT

SUNWjdhe Japanese (EUC) CDE HELP RUNTIME

SUNWjehev Japanese (EUC) CDE HELP VOLUMES

SUNWjdim Japanese (EUC) Solaris CDE Image Viewer

SUNWjdrme Japanese (EUC) CDE README FILES

SUNWjdwm Japanese (EUC) CDE DESKTOP WINDOW MANAGER

SUNWjepmw Japanese (EUC) Power Management OW Utilities

SUNWjeudc Japanese (EUC) User Defined Character tool for Solaris CDE

SUNWjexir Japanese (EUC) XIL Runtime Environment

SUNWjmfrn Japanese (EUC) Motif RunTime Kit

SUNWjoaud Japanese (EUC) OPEN LOOK Audio applications

SUNWjodcv Japanese(EUC) OPEN LOOK document and help viewer applications

SUNWjodst Japanese (EUC) OPEN LOOK deskset tools

SUNWjodte Japanese (EUC) OPEN LOOK Desktop Environment

SUNWjoimt Japanese (EUC) OPEN LOOK imagetool

SUNWjorte Japanese (EUC) OPEN LOOK toolkits runtime environment

SUNWjrdm Japanese (EUC) On-Line Open Issues ReadMe

SUNWjxgld Japanese (EUC) XGL Generic Loadable Libraries

SUNWjpxgd Japanese (PCK) XGL Generic Loadable Libraries

134 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–21 Japanese Packages (continued)

Package Name Package Description

SUNWjxgle Japanese (EUC) XGL Runtime Environment

SUNWjtltk Japanese (EUC) ToolTalk runtime

SUNWjwbcp Japanese (EUC) OpenWindows binary compatibility

SUNWjwbk Japanese (EUC) OpenWindows online handbooks

SUNWjxplt Japanese (EUC) X Window System platform software

SUNWjpadm Japanese (PCK) System administration applications

SUNWjpadi Japanese (PCK) admintool and install software

SUNWjpbas Japanese (PCK) CDE base

SUNWjpdst Japanese (PCK) CDE DESKTOP APPS

SUNWjpdte Japanese (PCK) CDE DESKTOP LOGIN ENVIRONMENT

SUNWjphe Japanese (PCK) CDE HELP RUNTIME

SUNWjphev Japanese (PCK) CDE HELP VOLUMES

SUNWjpim Japanese (PCK) Solaris CDE Image Viewer

SUNWjprme Japanese (PCK) CDE README FILES

SUNWjpwm Japanese (PCK) CDE DESKTOP WINDOW MANAGER

SUNWjppmw Japanese (PCK) Power Management OW Utilities

SUNWjpudc Japanese (PCK) User Defined Character tool for Solaris CDE

SUNWjpwnu Wnn6 Client Usr Files (PCK)

SUNWjpxir Japanese (PCK) XIL Runtime Environment

Installation 135

TABLE 5–21 Japanese Packages (continued)

Package Name Package Description

SUNWjpmfr Japanese (PCK) Motif RunTime Kit

SUNWjprdm Japanese (PCK) On-Line Open Issues ReadMe

SUNWjptlt Japanese (PCK) ToolTalk runtime

SUNWjpxge Japanese (PCK) XGL Runtime Environment

SUNWjpxpl Japanese (PCK) X Window System platform software

SUNWudct User Defined Character tool for Solaris CDE environment

SUNWjdab Japanese CDE DTBUILDER

SUNWjfxmn Japanese Feature English Man Pages for X Window System

SUNWjiu8

SUNWjman

Japanese iconv modules for UTF-8

Japanese Feature Package Man Pages (English)

SUNWjxoft Japanese X Window System optional fonts

SUNWjeab Japanese (EUC) CDE DTBUILDER

SUNWjdhed Japanese (EUC) CDE HELP DEVELOPER ENVIRONMENT

SUNWjedev Japanese (EUC) Development Environment Package

SUNWjeman Japanese (EUC) Feature Package Man Pages

SUNWjkcsr Japanese (EUC) KCMS Runtime Environment

SUNWjoumn Japanese (EUC) OPEN LOOK toolkit/desktop users Man Pages

SUNWjxumn Japanese (EUC) X Window System online user Man Pages

SUNWjxpmn Japanese (EUC) X Window System online programmers Man Pages

136 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–21 Japanese Packages (continued)

Package Name Package Description

SUNWjpab Japanese (PCK) CDE DTBUILDER

SUNWjphed Japanese (PCK) CDE HELP DEVELOPER ENVIRONMENT

SUNWjpman Japanese (PCK) Development Environment Package

SUNWjpkcs Japanese (PCK) Feature Package Man Pages

SUNWjptlm Japanese (PCK) ToolTalk Man Pages

SUNWjpxpm Japanese (PCK) X Window System online programmers Man Pages

SUNWjpxum Japanese (PCK) X Window System online user Man Pages

SUNWjbdf Japanese BDF font source

SUNWjcs3f Japanese JIS X0212 Type1 fonts for printing

SUNWjxf3 Japanese X Window System hinted F3 fonts

SUNWjxfa Japanese X Window System Font Administrator

SUNWxgljf Japanese XGL Stroke Font

SUNWjervl Japanese (EUC) SunVideo Runtime Support Software

SUNWjffb Japanese (EUC) Creator Graphics (FFB) XGL Support

SUNWjleo Japanese (EUC) ZX XGL support

SUNWjodem Japanese (EUC) OPEN LOOK demo programs

SUNWjsadl Japanese (EUC) Solstice Admintool launch

SUNWjsxgl Japanese (EUC) SX XGL Support

SUNWjwacx Japanese (EUC) AccessX client program

Installation 137

TABLE 5–21 Japanese Packages (continued)

Package Name Package Description

SUNWjexfa Japanese (EUC) X Window System Font Administor

SUNWjprvl Japanese (PCK) SunVideo Runtime Support Software

SUNWjpffb Japanese (PCK) Creator Graphics (FFB) XGL Support

SUNWjpleo Japanese (PCK) ZX XGL support

SUNWjpsal Japanese (PCK) Solstice Admintool launcher

SUNWjpsxg Japanese (PCK) SX XGL Support

SUNWjpacx Japanese (PCK) AccessX client program

SUNWjpxfa Japanese (PCK) X Window System Font Administrator

Table 5–22 and Table 5–23 show which Korean files will be installed for each type of
installation: core, end user, developer, or the entire installation.

TABLE 5–22 ko Locale

Package Name Core End User Developer Entire

SUNWale
X X X X

SUNWaled X X

SUNWxi18n X X X

SUNWkler X X X X

SUNWkleu X X X X

SUNWkbcp X X X

SUNWkoaud X X X

138 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–22 ko Locale (continued)

Package Name Core End User Developer Entire

SUNWkodcv X X X

SUNWkodem X

SUNWkodst X X X

SUNWkodte X X X

SUNWkoimt X X X

SUNWkoman X

SUNWkorte X X X

SUNWktltk X X X

SUNWkwbcp X X X

SUNWkxman X X

SUNWkxplt X X

SUNWkxfnt X X X

SUNWkepmw X X X

SUNWkkcsr
X

X X

SUNWkervl X

SUNWkexir X X X

SUNWkdest X X

Installation 139

TABLE 5–22 ko Locale (continued)

Package Name Core End User Developer Entire

SUNWklerx X X X

SUNWkleux X X X

TABLE 5–23 ko.UTF-8 Locale

Package Name Core End User Developer Entire

SUNWale

SUNWaled

X X X

X

X

X

SUNWxi18n

SUNWxim

X

X

X

X

X

X

SUNWkiu8

SUNWkuleu

X

X

X

X

X

X

X

X

SUNWkcoft

SUNWkuodf

SUNWkuxft

SUNWkupmw

SUNWkuxpl

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SUNWkxmft X

SUNWkuadi X X X

SUNWkuadn X X X

SUNWkusal X X X

140 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–23 ko.UTF-8 Locale (continued)

Package Name Core End User Developer Entire

SUNWkiu8x X X X X

SUNWkulex X X X X

Table 5–24 and Table 5–25 and Table 5–26 shows which Chinese files are installed for
each type of installation: core, end user, developer, or the entire installation.

TABLE 5–24 zh Locale

Package Name Core End User Developer Entire

SUNWaled X X X X

SUNWxi18n X X X

SUNWxim X X X

SUNWcleu X X X X

SUNWcbcp X X X

SUNWcwbcp X X X

SUNWcoaud X X X

SUNWcodcv X X X

SUNWcodem X X X

SUNWcodst X X X

SUNWcodte X X X

SUNWcoimt X X X

Installation 141

TABLE 5–24 zh Locale (continued)

Package Name Core End User Developer Entire

SUNWcoman X X X

SUNWctltk X X X

SUNWctltk X X X

SUNWcxman X X X

SUNWcxoft X X X

SUNWcxplt X X X

SUNWcxfnt X X X

SUNWcepmw X X X

SUNWckcsr X X X

SUNWcervl X X

SUNWcexir X X X

SUNWttf X X X

SUNWcxmft X X X

SUNWcin8x X X X X

SUNWcleux X X X X

142 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–25 zh.GBK Locale

Package Name Core End User Developer Entire

SUNWgadis X X X

SUNWgadma X X X

SUNWgleu
X X X

SUNWgodte X X X

SUNWgpmw X X X

SUNWgsadl X X X

SUNWgttf X X X

SUNWgxfnt X X X

SUNWgxman X X X

SUNWgxplt X X X

SUNWgreg X X X

SUNWgdhj X X X

SUNWgdezt X X X

SUNWgdhez X X X

SUNWgleux X X X X

SUNWgxplx X X X X

Installation 143

TABLE 5–26 th_TH Locale

Package Name Core End User Developer Entire

SUNWtiu8 X X X X

SUNWtleu X X X X

SUNWtxfnt X X X

SUNWtxplt X X X

SUNWtiu8x X X X X

SUNWtleux X X X X

SUNWtxodt X X X

TABLE 5–27 zh_TW Locale

Package Name Core End User Developer Entire

SUNWale X X X X

SUNWaled X X

SUNWxi18n X X X

SUNWxim X X X

SUNWhler X X X X

SUNWhleu X X X X

SUNWhbcp X X X

SUNWhuccd X X X X

SUNWhkccd X X X

SUNWhoaud X X X

SUNWhodcv X X X

144 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–27 zh_TW Locale (continued)

Package Name Core End User Developer Entire

SUNWhodem X X X

SUNWhodst X X X

SUNWhodte X X X

SUNWhoimt X X X

SUNWhoman X X X

SUNWhorte X X X

SUNWhtltk X X X

SUNWhwbcp X X X

SUNWhxman X X X

SUNWhxplt X X X

SUNWhxfnt X X X

SUNWhepmw X X X

SUNWhkcsr X X X

SUNWhervl X X X

SUNWhexir X X

SUNWhiu8x X X X

SUNWhlerx X X X

SUNWhleux X X X

Installation 145

TABLE 5–28 zh_TW.BIG5 Locale

Package Name Core End User Developer Entire

SUNWale X X X X

SUNWaled X X

SUNWxi18n X X X

SUNWxim X X X

SUNWhleu X X X X

SUNW5leu X X X X

SUNW5odte X X X

SUNW5pmw X X X

SUNW5xoft X X X

SUNW5xfnt X X X

SUNW5xplt X X

SUNW5mft X X X

SUNW5ttf X X X

SUNW5leux X X X

SUNW5xplx X X X

Table 5–29, 5–30 and 5–31 show which Japanese files are installed for each type of
installation: core, end user, developer, or the entire installation.

146 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–29 ja/ja_JP.PCK Common Packages

Package Name Core End User Developer Entire

SUNWjfpr X X X X

SUNWjfpu X X X X

JSat8xw X X X

SUNWjpadi X X X

SUNWjpadm X X X

SUNWjc0d X X X

SUNWjc0r X X X

SUNWjc0u X X X

SUNWjc0w X X X

SUNWjwncr X X X

SUNWjwncu X X X

SUNWjwncx X X X

SUNWjwndt X X X

SUNWjwnsr X X X

SUNWjwnsu X X X

SUNWjreg X X X

SUNWjxcft X X X

SUNWjxfnt X X X

SUNWudct X X X

Installation 147

TABLE 5–29 ja/ja_JP.PCK Common Packages (continued)

Package Name Core End User Developer Entire

SUNWjfxmn X X

SUNWjiu8 X X

SUNWjman X X

SUNWjxoft X X

SUNWjbdf X

SUNWjcs3f X

SUNWjxf3 X

SUNWjxfa X

SUNWxgljf X

TABLE 5–30 ja Locale

Package Name Core End User Developer Entire

SUNWjeuc X X X X

SUNWjepmw X X X

SUNWjeudc X X X

SUNWjewnu X X X

SUNWjexir X X X

SUNWjadis X X X

SUNWjadma X X X

148 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–30 ja Locale (continued)

Package Name Core End User Developer Entire

SUNWjbcp X X X

SUNWjmfrn X X X

SUNWjoaud X X X

SUNWjodcv X X X

SUNWjodst X X X

SUNWjodte X X X

SUNWjoimt X X X

SUNWjorte X X X

SUNWjrdm X X X

SUNWjtltk X X X

SUNWjwbcp X X X

SUNWjwbk X X X

SUNWjxgld X X X

SUNWjxgle X X X

SUNWjxplt X X X

SUNWjedev X X

SUNWjeman X X

SUNWjkcsr X X

SUNWjoumn X X

Installation 149

TABLE 5–30 ja Locale (continued)

Package Name Core End User Developer Entire

SUNWjtlmn X X

SUNWjxpmn X X

SUNWjxumn X X

SUNWjervl X

SUNWjexfa X

SUNWjffb X

SUNWjleo X

SUNWjodem X

SUNWjsadl X

SUNWjsxgl X

SUNWjwacx X

TABLE 5–31 ja_JP.PCK Locale

Package Name Core End User Developer Entire

SUNWjpck X X X X

SUNWjppmw X X X

SUNWjpudc X X X

SUNWjpwnu X X X

SUNWjpxir X X X

150 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–31 ja_JP.PCK Locale (continued)

Package Name Core End User Developer Entire

SUNWjpmfr X X X

SUNWjprdm X X X

SUNWjptlt X X X

SUNWjpxgd X X X

SUNWjpxge X X X

SUNWjpxpl X X X

SUNWjpman X X

SUNWjpkcs X X

SUNWjptlm X X

SUNWjpxpm X X

SUNWjprvl X

SUNWjpxum X X

SUNWjpffb X

SUNWjpleo X

SUNWjpsal X

SUNWjpsxg X

SUNWjpxfa X

SUNWjpacx X

Installation 151

Table 5–32 lists the CDE localization packages.

TABLE 5–32 CDE Packages

Locale
CDE Packages CDE Minimum CDE End User CDE

Developers

zh_TW
(Traditional
Chinese)

SUNWhdab SUNWhdbas SUNWhdwm SUNWhdab

SUNWhdbas SUNWhddte SUNWhdhe

SUNWhddst SUNWhdicn SUNWhddst

SUNWhddte SUNWhdhev

SUNWhdhe SUNWhdim

SUNWhdhev SUNWhreg

SUNWhdicn

SUNWhdim

SUNWhdwm

SUNWhreg

zh_TW.BIG5
(Traditional
Chinese)

SUNW5dab SUNW5dbas SUNW5dwm SUNW5dab

SUNW5dbas SUNW5ddte SUNW5dhe

SUNW5ddst SUNW5dicn SUNW5ddst

SUNW5ddte SUNW5dim

SUNW5dhe SUNWhreg

SUNW5dicn

152 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–32 CDE Packages (continued)

Locale
CDE Packages CDE Minimum CDE End User CDE

Developers

SUNW5dim

SUNW5dwm

SUNWhreg

SUNW5dezt

SUNW5dft

SUNWdhed

SUNW5hev

SUNW5hez

zh (Simplified
Chinese)

SUNWcdab SUNWcdbas SUNWcdwm SUNWcdab

SUNWcdbas SUNWcddte SUNWcdhe

SUNWcddst SUNWcdicn SUNWcddst

SUNWcddte SUNWcdft SUNWcdhev

SUNWcdhe SUNWcdim

SUNWcdhev SUNWcreg

SUNWcdicn

SUNWcdim

SUNWcdwm

SUNWcreg

Installation 153

TABLE 5–32 CDE Packages (continued)

Locale
CDE Packages CDE Minimum CDE End User CDE

Developers

SUNWcdezt

SUNWcdft

SUNWcdhed

SUNWcdhex

th_TH SUNWtdbas SUNWtdbas SUNWtddte SUNWtdft

SUNWtddst SUNWtddst

SUNWddte

SUNWtdft

SUNWtdwm

zh.GBK
(Simplified
Chinese)

SUNWgdab SUNWgdab SUNWgdab SUNWgdab

SUNWgdbas SUNWgdbas SUNWgdbas SUNWgdbas

SUNWgddte SUNWgddte SUNWgddte SUNWgddte

SUNWgdhev SUNWgdhev SUNWgdhev SUNWgdhev

SUNWgdhe SUNWgdhe SUNWgdhe SUNWgdhe

SUNWgdim SUNWgdim SUNWgdim SUNWgdim

SUNWgdinc SUNWgdinc SUNWgdinc SUNWgdinc

SUNWgdwm SUNWgdwm SUNWgdwm SUNWgdwm

SUNWgddst SUNWgddst SUNWgddst SUNWgddst

154 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–32 CDE Packages (continued)

Locale
CDE Packages CDE Minimum CDE End User CDE

Developers

SUNWgdtf SUNWgdft SUNWgdft SUNWgdft

SUNWgreg SUNWgreg SUNWgreg SUNWgreg

SUNWgttf SUNWgttf SUNWgttf SUNWgttf

SUNWgdhj SUNWgdhj SUNWgdhj SUNWgdhj

SUNWgdezt SUNWgdezt SUNWgdezt SUNWgdezt

ko (Korean) SUNWkdab SUNWkdbas SUNWkdwm SUNWkdab

SUNWkdbas SUNWkddte SUNWkdhe

SUNWkddst SUNWkdicn SUNWkddst

SUNWkddte SUNWkdft SUNWkdhev

SUNWkdhe SUNWkdim

SUNWkdhev SUNWkreg

SUNWkdicn

SUNWkdim

SUNWkdwm

SUNWkdft

SUNWkreg

SUNWdest

SUNWdezt

Installation 155

TABLE 5–32 CDE Packages (continued)

Locale
CDE Packages CDE Minimum CDE End User CDE

Developers

SUNWdhed

SUNWdhez

ko.UTF-8
Korean)

SUNWkudab SUNWkudbs SUNWkudwm SUNWkudab

SUNWkudbs SUNWkuddt SUNWkudhr

SUNWkudda SUNWkudic SUNWkudda

SUNWkuddt SUNWkudft SUNWkudhv

SUNWkudhr SUNWkudim

SUNWkudhv SUNWkreg

SUNWkudic

SUNWkudim

SUNWkudwm

SUNWkudft

SUNWkreg

SUNWkudhd

SUNWkudhz

SUNWkudzt

ja/ja_JP.PCK
common

SUNWjdbas SUNWjdbas SUNWjdhev SUNWjdab

SUNWjdhev

156 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–32 CDE Packages (continued)

Locale
CDE Packages CDE Minimum CDE End User CDE

Developers

SUNWjdab

SUNWjpdte

ja package SUNWjebas SUNWjdbas SUNWjdhev SUNWjdab

SUNWjddte

SUNWjddst

SUNWjdwm

SUNWjdhe

SUNWjehev

SUNWjdim

SUNWjdrme

SUNWjdhed

SUNWjeab SUNWjphed

SUNWgdicn SUNWgdicn SUNWgdicn SUNWgdicn

SUNWgdwm SUNWgdwm SUNWgdwm SUNWgdwm

SUNWgddst SUNWgddst SUNWgddst SUNWgddst

SUNWgdft SUNWgdft SUNWgdft SUNWgdft

SUNWgdft SUNWgdft SUNWgdft SUNWgdft

SUNWgreg SUNWgreg SUNWgreg SUNWgreg

Installation 157

TABLE 5–32 CDE Packages (continued)

Locale
CDE Packages CDE Minimum CDE End User CDE

Developers

SUNWgttf SUNWgttf SUNWgttf SUNWgttf

SUNWgdhj SUNWgdhj SUNWgdhj SUNWgdhj

SUNWgdezt SUNWgdezt SUNWgdezt SUNWgdezt

SUNWgdhez SUNWgdhez SUNWgdhez SUNWgdhez

Asian Localization Packages Disk Space
The following tables display how much hard disk space, in Megabytes is required by
the various packages.

TABLE 5–33 MB Required for Software Groups (SPARC)

Software Group ko zh zh_TW ja ja_JP.PCK
ja and
ja_JP.PCK

Core System Support 107 105 109 56 57 57

End User System
Support

224 196 190 346 339 354

Developer System
Support

405 307 524 617 608 632

Entire Distribution 481 385 726 798 790 813

158 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–34 MB Required for Software Groups (x86)

Software Group ko zh zh_TW ja ja_JP.PCK
a and
ja_JP.PCK

Core System Support 104 105 109 64 64 64

End User System
Support

183 183 217 339 339 347

Developer System
Support

356 289 597 598 606 622

Entire Distribution 415 349 765 763 763 778

TABLE 5–35 MB Required for ko and ko plus ko.UTF-8 (SPARC)

Software Group ko ko.UTF-8 ko plus ko.UTF-8

core system 131 132 135

end user 621 636 702

developer 909 923 990

entire 966 980 1047

enire + OEM 973 988 1054

TABLE 5–36 MB Required for ko and ko plus UTF-8 (x86)

Software
Group

ko ko.UTF-8 ko plus UTF-8

core system 97 98 101

end user 448 466 528

developer 710 729 791

entire 756 774 836

Installation 159

TABLE 5–37 MB Required for zh_TW and zh_TW.BIG5 (SPARC)

Software Group zh_TW zh_TW.BIG5 zh_TW &
zh_TW.BIG5

core system 137 174 174

end user 601 573 660

developer 885 857 944

entire 942 914 1001

entire + OEM 953 924 1011

TABLE 5–38 MB Required for zh_TW and zh_TW.BIG5 (x86)

Software Group zh_TW zh_TW.BIG5 zh_TW &
zh_TW.BIG5

core user 98 137 137

end user 422 400 482

developer 678 656 738

entire 723 701 784

TABLE 5–39 MB Required for zh and zh.GBK (SPARC)

Software Group zh zh.GBK zh & zh.GBK

core system 132 139 139

end user 543 531 575

developer 826 831 874

entire 883 888 931

entire + OEM 894 898 942

160 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 5–40 MB Required for zh and zh.GBK (x86)

Software Group zh zh.GBK zh & zh.GBK

core system 99 100 104

end user 368 355 399

developer 625 627 671

entire 670 672 716

Installation 161

162 Solaris Internationalization Guide For Developers ♦ October 1998

CHAPTER 6

Internationalization Framework in the
Solaris 7 Environment

This chapter discusses several new internationalization features contained in the
Solaris 7 environment.

� Codeset independence support

� Locale database

� Process code format (wide character expression)

� libw and libintl

� ctype macros

� genmsg utility

This chapter also contains information useful for developing internationalized
applications such as:

� Dynamically linked applications

� Solaris 7 internationalized APIs

Codeset Independence Support
Before the release of the Solaris 7 operating system, the Sun OS and the Solaris
internationalization framework supported only Extended UNIX Code (EUC)
representation. This prevented support of new encodings that didn’t fit the EUC
model, such as PC-Kanji in Japan, Big-5 in Taiwan and GBK in the People’s Republic
of China.

163

Because a large part of the computer market demands non-EUC codeset support,
Solaris 7 provides a solid framework to enable both EUC and non-EUC codeset
support. This support is called Codeset Independence, or CSI.

The goal of CSI is to remove EUC dependencies on specific codesets or encoding
methods from Solaris OS libraries and commands. The CSI architecture allows the
Solaris operating environment to support any UNIX file system safe encoding. CSI
supports a number of new codesets, such as UTF-8, PC-Kanji1, and Big-5.

The CSI Approach
Codeset Independence allows application and platform software developers to keep
their code independent of encoding, such as UTF-8, and also provides the ability to
adopt any new encoding without having to modify the source code. This architecture
approach differs from Java internationalization in that Java requires applications to be
Unicode-dependent and also requires code conversions throughout the application.

Many existing internationalized applications (for example, Motif) automatically
inherit CSI support from the underlying system. These applications work in the new
locales without modification. OPEN LOOK applications, however, that are XView/
OLIT based, don’t work in the new locales because XView is codeset-dependent.

CSI is inherently independent from any codesets. However, the following
assumptions on file code encodings (codesets) still apply to Solaris 7:

� File code is a superset of ASCII.

Unicode (16-bits fixed width) cannot be supported as file code.

� NULL (0x00) is not part of multibyte characters for support of null-terminated
multibyte character strings.

� Slash / (0x2f) is not part of multibyte characters for support of the UNIX path
names.

� Only stateless file code encodings are supported.

CSI-enabled Commands
Table 6–1 contains CSI-enabled commands in Solaris 7. These commands are marked
with CSI capabilities on their man page.

All commands are in the /usr/bin directory, unless otherwise noted.

1. Japanese Solaris 2.5.1 supports PC Kanji (also known as Shift-JIS).

164 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 6–1 CSI-enabled Commands in Solaris 7

/usr/lib/diffh acctcom gencat script

/usr/sbin/accept apropos getopt sdiff

/usr/sbin/reject batch getoptcvt settime

/usr/ucb/lpr bdiff head sh

/usr/xpg4/bin/awk cancel join split

/usr/xpg4/bin/cp cat jsh strconf

/usr/xpg4/bin/date catman kill strings

/usr/xpg4/bin/du chgrp ksh sum

/usr/xpg4/bin/ed chmod lp tabs

/usr/xpg4/bin/edit chown man tar

/usr/xpg4/bin/egrep cmp mkdir tee

/usr/xpg4/bin/env col msgfmt touch

/usr/xpg4/bin/ex comm news tty

/usr/xpg4/bin/expr compress nroff uncompress

/usr/xpg4/bin/fgrep cpio pack unexpand

/usr/xpg4/bin/grep csh paste uniq

/usr/xpg4/bin/ln csplit pcat unpack

/usr/xpg4/bin/ls cut pg wc

/usr/xpg4/bin/more diff printf whatis

Internationalization Framework in the Solaris 7 Environment 165

TABLE 6–1 CSI-enabled Commands in Solaris 7 (continued)

/usr/xpg4/bin/mv diff3 priocntl write

/usr/xpg4/bin/nice disable ps xargs

/usr/xpg4/bin/nohup echo pwd zcat

/usr/xpg4/bin/od expand rcp

/usr/xpg4/bin/pr file red

/usr/xpg4/bin/rm fine remsh

/usr/xpg4/bin/sed fold rksh

/usr/xpg4/bin/sort ftp rmdir

/usr/xpg4/bin/tail rsh

/usr/xpg4/bin/tr

/usr/xpg4/bin/vedit

/usr/xpg4/bin/vi

/usr/xpg4/bin/view

Solaris 7 CSI-enabled Libraries
Nearly all functions in Solaris 7libc (/usr/lib/libc.so) are CSI-enabled.
However, the following functions inlibc are not CSI-enabled because they are EUC
dependent functions:

� csetcol() csetlen() euccol()

� euclen() eucscol() getwidth()

The following macros are not CSI-enabled because they are EUC dependent:

166 Solaris Internationalization Guide For Developers ♦ October 1998

� csetno() wcsetno()

In the Solaris 7 product, libgen (/usr/ccs/lib/libgen.a are internationalized,
but not CSI enabled.

In the Solaris 7 product, libcurses (/usr/ccs/lib/libcurses.a are
internationalized, but not CSI enabled.

Locale Database
The locale database format and structure in Solaris 7 have changed from previous
Solaris releases. The locale database is private and subject to change in a future
release. Therefore, when developing an internationalized application, do not directly
access the locale database. Instead, use the Solaris internationalization APIs.

Note - When using Solaris 7, use the locale databases that are included with the
Solaris 7 product. Do not use locales from previous Solaris versions.

Process Code Format
The process code format in the Solaris 7 product is private and subject to change in a
future release. Therefore, when developing an international application, do not
assume the process code format is the same. Instead use the Solaris
internationalization APIs that are described in .

Multibyte Support Environment (MSE)
A multibyte character is a character that cannot be stored in a single byte, such as
Chinese, Japanese, or Korean characters. These characters require two or three bytes
of storage. A more precise definition can be found in ISO/IEC 9899:1990 subclause
3.13. The programming model allows these multibyte characters to be read in as
logical units and stored internally as wide characters. These wide characters can be
processed by the program as logical entities in their own right. Finally, these wide
characters can be written out (undergoing appropriate translation) as logical units.
This is analogous to the way single byte characters are read in, manipulated, and
written out again. The MSE provides a comparable set of interfaces to perform this

Internationalization Framework in the Solaris 7 Environment 167

processing. The MSE allows programs to be written to handle multibyte characters
using the same programming model that is used for single byte characters.

Dynamically Linked Applications
Solaris 7 users can choose how to link applications with the system libraries, such as
libc , by using dynamic linking or static linking. However, any application that
requires internationalization features in the system libraries must be dynamically
linked. If the application has been statically linked, the operation to set the locale to
other than C and POSIX using the setlocale function will fail. Statically linked
applications can be operated only in C and POSIX locales.

By default, the linker program tries to link the application dynamically. If the
command line options to the linker and the compiler include -Bstatic or -dn
specifications, your application may be statically linked. You can check whether an
existing application is dynamically linked using the /usr/bin/ldd command.

For example, if you type:

% /usr/bin/ldd /sbin/sh

the command displays the following message:

% ldd: /sbin/sh: file is not a dynamic executable or shared object

The message indicates the /sbin/sh command is not a dynamically linked
program. Also, if you type:

% /usr/bin/ldd /usr/bin/ls

the command displays the following message:

% libc.so.1 => /usr/lib/libc.so.1
% libdl.so.1 => /usr/lib/libdl.so.1

This message indicates the /usr/bin/ls command has been dynamically linked
with two libraries, libc.so.1 and libdl.so.1 .

To summarize, if the message from the ldd command to the application does not
contain a libc.so.1 entry, it indicates that the application has been statically linked
with libc . In that case, you need to change the command line options to the linker
so that dynamic linking is used instead, then re-link the application.

168 Solaris Internationalization Guide For Developers ♦ October 1998

libw and libintl
In the Solaris 7 release, the implementation of libw and libintl has been moved
to libc . The shared objects libw .so .1 and libintl.so.1 are provided as filters
on libc.so.1 , and the archives libw.a and libintl.a are provided as links to
an empty archive.

The shared objects ensure runtime compatibility for existing applications and,
together with the archives, provide compilation environment compatibility for
building applications. However, it is no longer necessary to build applications
against libw or libintl .

For more information on filters see the Linker and Libraries Guide.

Table 6–2 shows the stub entry points in libw and libintl .

Internationalization Framework in the Solaris 7 Environment 169

TABLE 6–2 Stub Entry Points in libw and libintl

fgetwc fgetws fputwc fputws getwc

getwchar getws isenglish isideogram isnumber

isphonogram isspecial iswalnum iswalpha iswcntrl

iswctype iswdigit iswgraph iswlower iswprint

iswpunct iswspace iswupper iswxdigit putwc

putwchar putws strtows towlower towupper

ungetwc watoll wcscat wcschr wcscmp

wcscoll wcscpy wcscspn wcsftime wcslen

wcsncat wcsncmp wcsncpy wcspbrk wcsrchr

wcsspn wcstod wcstok wcstol wcstoul

wcswcs wcswidth wcsxfrm wctype wcwidth

wscasecmp wscat wschr wscmp wscol

wscoll wscpy wscspn wsdup wslen

wsncasecmp wsncat wsncmp wsncpy wspbrk

wsprintf wsrchr wsscanf wsspn wstod

libw

wstok wstol wstoll wstostr wsxfrm

libintl bindtextdomain dcgettext dgettext gettext textdomain

ctype Macros
Character classification and character transformation macros are defined in
/usr/include/ctype.h . The Solaris 7 environment provides a new set of ctype
macros. The new macros support character classification and transformation

170 Solaris Internationalization Guide For Developers ♦ October 1998

semantics defined by XPG4. To access the new set of macros, one of the following
conditions must be met:

� _XPG4_CHAR_CLASSis defined,

� _XOPEN_SOURCEand _XOPEN_VERSION=4are defined, or

� _XOPEN_SOURCEand _XOPEN_SOURCE_EXTENDED=1are defined

This means that all XPG4and XPG4.2 applications automatically have the new
macros. Since _XOPEN_SOURCE, _XOPEN_VERSION, and
_XOPEN_SOURCE_EXTENDEDbring in extra XPG4related features in addition to new
ctype macros, non-XPG4or XPG4.2 applications should use
__XPG4_CHAR_CLASS__.

There are corresponding ctype functions. The Solaris 7 functions also support XPG4
semantics.

Refer to the ctype ctype (3C) man page for details.

Internationalization APIs in libc
Solaris 7 offers two sets of APIs:

� Multibye (file codes)

� Wide characters (process code)

Applications process in wide character codes.

When a program takes input from a file, convert your file’s multibyte data into wide
character process code with the mbtwoc and mbtowcs APIs. To convert the file
output data from wide character format into multibyte format, use the wcstombs
and wctomb APIs.

Table 6–3 shows a list of internationalization APIs included in Solaris 7.

TABLE 6–3 Internationalization APIs in libc

API Type Library Routine Description

Messaging functions

catclose() Close a message catalog.

catgets() Read a program message.

Internationalization Framework in the Solaris 7 Environment 171

TABLE 6–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

catopen() Open a message catalog.

dgettext() Get a message from a message catalog with
domain specified.

dcgettext() Get a message from a message catalog with
domain and category specified.

textdomain() Set and query the current domain.

bindtextdomain() Bind the path for a message domain.

Code conversion

iconv() Convert codes.

iconv_close() Deallocate the conversion descriptor.

iconv_open() Allocate the conversion descriptor.

Regular expression

regcomp() Compile the regular expression.

regexec() Execute the regular expression matching.

regerror() Provide a mapping from error codes to error
message.

regfree() Free memory allocated by regcomp().

Wide character class

wctype() Define character class.

wctrans Define character mapping.

towctrans Wide-character mapping.

172 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 6–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

setlocale() Modify and query a program’s locale.

nl_langinfo() Get language and cultural information of
current locale.

localeconv() Get monetary and numeric formatting
information of current locale.

Character
classification

isalpha() Is character alphabetic?

isupper() Is character uppercase?

islower() Is character lowercase?

isdigit() Is character a digit?

isxdigit() Is character a hex digit?

isalnum() Is character alphabetic or digital?

isspace() Is character a space?

ispunct() Is character a punctuation mark?

isprint() Is character printable?

iscntrl() Is character a control character?

isascii() Is character an ASCII character?

isgraph() Is character a visible character?

Internationalization Framework in the Solaris 7 Environment 173

TABLE 6–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

isphonogram() Is wide character a phonogram?

isideogram() Is wide character an ideogram?

isenglish() Is wide character in English alphabet from a
supplementary codeset?

isnumber() Is wide character a digit from a
supplementary codeset?

isspecial() Is special wide character from a
supplementary codeset?

iswalpha() Is wide character alphabetic?

iswupper() Is wide character uppercase?

iswlower() Is wide character lowercase?

iswdigit() Is wide character a digit?

iswxdigit() Is wide character a hex digit?

iswalnum() Is wide character an alphabetic character or
digit?

iswspace() Is wide character white space?

iswpunct() Is wide character a punctuation mark?

iswprint() Is wide character a printable character?

iswgraph() Is wide character a visible character?

iswcntrl() Is wide character a control character?

iswascii() Is wide character an ASCII character?

toupper() Convert a lowercase character to uppercase.

174 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 6–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

tolower() Convert an uppercase character to lowercase.

towupper() Convert a lowercase wide character to
uppercase.

towlower() Convert an uppercase wide character to
lowercase.

Character collation

strcoll() Collate character strings.

strxfrm() Transform character strings for comparison.

wcscoll() Collate wide character strings.

wcsxfrm() Transform wide character strings for
comparison.

Monetary handling

strfmon() Convert monetary value to string
representation.

Date and time
handling

getdate() Convert user format date and time.

strftime() Convert date and time to string
representation.

strptime() Date and time conversion.

Multibyte handling

btowc Single-byte to wide-character conversion.

mbrlen() Get number of bytes in character
(restartable).

mbsinit() Determine conversion object status .

Internationalization Framework in the Solaris 7 Environment 175

TABLE 6–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

mbtowc() Convert a character to a wide-character code
(restartable).

mbstowcs() Convert a character string to a
wide-character string (restartable).

Wide characters

wcsncat() Concatenate wide character strings to length
n.

wsdup() Duplicate wide character string.

wcscmp() Compare wide character strings.

wcsncmp() Compare wide character strings to length n.

wcscpy() Copy wide character strings.

wcsncpy() Copy wide character strings to length n.

wcschr() Find character in wide character string.

wcsrchr() Find character in wide character string from
right.

wcslen() Get length of wide character string.

wscol() Return display width of wide character
string.

wcsspn() Return span of one wide character string in
another.

wcscspn() Return span of one wide character string not
in another.

wcspbrk() Return pointer to one wide character string
in another.

wcstok() Move token through wide character string.

176 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 6–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

wcswcs() Find string in wide character string.

wcstombs() Convert wide character string to multibyte
string.

wctomb() Convert wide character to multibyte
character.

wcwidth() Determine number of column positions of a
wide character.

wcswidth() Determine number of column positions of a
wide character string.

wctob Wide-character to single-byte conversion.

wcrtomb Convert a wide-character code to a character
(restartable).

wcsrtombs Interpret wide character string according to
format.

Wide formatting

wsprintf() Generate wide character string according to
format.

wsscanf() Formatted input conversion.

fwprintf Print formatted wide-character output.

fwscanf Convert formatted wide-character input.

wprintf Print formatted wide-character output.

wscanf Convert formatted wide-character input.

swprintf Print formatted wide-character output.

swscanf Convert formatted wide-character input.

Internationalization Framework in the Solaris 7 Environment 177

TABLE 6–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

vfwprintf Wide-character formatted output of a stdarg
argument list.

vswprintf Wide-character formatted output of a stdarg
argument list.

Wide numbers

wcstol() Convert wide character string to long integer.

wcstoul() Convert wide character string to unsigned
long integer.

wcstod() Convert wide character string to double
precision.

Wide strings

wscasecmp() Compare wide character strings, ignore case
differences.

wsncasecmp() Process code string operations.

wcsstr Find a wide-character substring.

wmemchr Find a wide-character in memory.

wmemcmp Compare wide-characters in memory.

wmemcpy Copy wide-characters in memory.

wmemmove Copy wide-characters in memory with
overlapping areas.

wmemset Set wide-characters in memory.

Wide standard I/O

fgetwc() Get multibyte character from stream, convert
to wide character.

getwchar() Get multibyte character from stdin , convert
to wide char.acter.

178 Solaris Internationalization Guide For Developers ♦ October 1998

TABLE 6–3 Internationalization APIs in libc (continued)

API Type Library Routine Description

fgetws() Get multibyte string from stream, convert to
wide character.

getws() Get multibyte string from stdin , convert to
wide character.

fputwc() Convert wide character to multibyte
character, puts to stream.

fwide Set stream orientation.

putwchar() Convert wide character to multibyte
character, puts to stdin .

fputws() Convert wide character to multibyte string,
puts to stream.

putws() Convert wide char acter to multibyte string,
puts to stdin .

ungetwc() Push a wide character back into input
stream.

genmsg Utility
The new genmsg utility can be used with the catgets() family of functions to
create internationalized source message catalogs. The utility examines a source
program file for calls to functions in catgets and builds a source message catalog
from the information it finds. For example:

% cat example.c
...
/* NOTE: %s is a file name */
printf(catgets(catd, 5, 1, "%s cannot be opened."));
/* NOTE: "Read" is a past participle, not a present

tense verb */
printf(catgets(catd, 5, 1, "Read"));
...

(continued)

Internationalization Framework in the Solaris 7 Environment 179

(Continuation)

% genmsg -c NOTE example.c
The following file(s) have been created.

new msg file = "example.c.msg"
% cat example.c.msg
$quote "
$set 5
1 "%s cannot be opened"

/* NOTE: %s is a file name */
2 "Read"

/* NOTE: "Read" is a past participle, not a present
tense verb */

In the above example, genmsg is run on the source file example.c , which produces
a source message catalog named example.c.msg . The -c option with the argument
NOTEcauses genmsg to include comments in the catalog. If a comment in the source
program contains the string specified, the comment appears in the message catalog
after the next string extracted from a call to catgets() .

You can use genmsg to number the messages in a message set automatically.

For more information, see the genmsg(1) man page.

Note - The material in this section is used with permission from Creating Worldwide
Software: Solaris International Developer’s Guide, 2nd edition by Bill Tuthill and David
A. Smallberg, published by Sun Microsystems Press/Prentice Hall. (c)1997 Sun
Microsystems, Inc.

180 Solaris Internationalization Guide For Developers ♦ October 1998

CHAPTER 7

X/DPS

The X Window System has been extended with the X Display PostScript system
(often described as X/DPS). It uses application-callable libraries on the client side
and corresponding extensions on the X server side.

Internationalization and localization issues using Adobe System’s PostScriptTM are
documented in several books from Adobe Systems, Inc.:

� PostScript Language Reference Manual, Second Edition. Adobe Systems Inc.,
Addison Wesley, 1990.

� PostScript Language Reference Manual Supplement. Adobe Systems Inc., December
1994.

� Programming the Display PostScript System with X. Adobe Systems Inc., Addison
Wesley, 1993.

This set of books is essential for successfully developing PostScript applications.

The PostScript Language Reference Manual (Second Edition) is the standard reference
work for PostScript. It is the definitive documentation of every operator, Display
PostScript (DPS), Level 1, and Level 2. The book covers the fundamentals of
PostScript as a device-independent printing language. The special capabilities for
handling fonts and characters in PostScript are covered. The book’s Appendix E also
covers standard character sets and encoding vectors. It discusses the organization of
fonts that are built into interpreters or supplied from other sources.

Programming the Display PostScript System with X is for application developers
who are working with X Windows and Display PostScript. The book documents how
to write applications that use Display PostScript to produce information for the
screen display and the printer output. It describes coding techniques in detail.

181

Localization Resource Category
The localization resource category specifies which natural language (for
example, English or Japanese) is supported. This category is made up of dictionaries
that contain the keys Language , Country , CharSet , and others. These keys are in
the %Console% device parameter set.

“<</Language/EN /Country/U.S. /CharSet/ISO-646-ISV>>

“<</Language/JA /Country null /CharSet/JIS-...>> ”

In the example with Japanese, the null value shows that no dialect was selected for
Japanese.

Unique names should be used for each item in the localization resource category.

Information on Language Interpreters
Page Description Language (PDL) interpreters can be assigned to a PostScript
product. An application or printer driver uses the PDL resource category to see
which PDL interpreter has been assigned.

Control languages can also be assigned. An application or printer driver can use
ControlLanguage to see which control languages are available on a PostScript
product.

The PDL and ControlLanguage resource categories are available.

The PDL and ControlLanguage resource categories are made up of key/value
pairs. See the Adobe PostScript documentation for more information.

182 Solaris Internationalization Guide For Developers ♦ October 1998

CHAPTER 8

Desktop Environments

The Common Desktop Environment (CDE) is the standard GUI desktop interface for
Solaris 7. Not only is it the user’s main interface to the system, it is also the interface
in which many of the user’s locale settings are apparent. The German user sees a
German interface; the French user sees a French interface.

The Common Desktop Environment: Internationalization Programmer’s Guide provides
information for internationalizing the desktop to enable applications to support
various languages and cultural conventions in a consistent user interface.

Overview
CDE is fully internationalized so that any application can run using any locale that
has been installed in the system. By keeping the language- and culture-dependent
information separate from the application source code, the application does not need
to be rewritten or recompiled to be marketed in different countries. Instead, the
external information only has to be localized to match the target language and
customs.

The application interface has been standardized to allow functionality in any locale,
including East Asia. Solaris 7 complies with the Portable Operating Systems Interface
for Computer Environments (POSIX and X/Open specifications, which are also
referred to as XPG4.2)

It is important that each layer within the desktop use the proper internationalization
interface standards which are described in the following sources:

� X Window System, The Complete Reference to Xlib, Xprotocol, ICCM, XLFD-X
Version, Release 5, Digital Press, 1992.

183

� IEEE Std. 1003.1-1990. Information Technology-Portable Operating System
Interface (POSIX)-Part 1: System Application Program Interface (API). ISO/IEC
9945-1:1990.

� OSF Motif 1.2 Programmer’ Reference, Revision 1.2, Open Software Foundation,
Prentice Hall, 1992.

� X/Open CAE Specification Commands and Utilities, Issue 4, X/Open Company
Ltd., 1992.

� Common Desktop Environment: Programmer’s Guide, Addison Wesley, 1995. The
Solaris 7 updated version is supplied online with the CDE AnswerBooks. See
“Related Books and Sites” on page xviii for more information.

Locales
Most single-display clients operate in a single locale. This is set with the environment
variable, usually $LANGor a set of LC_ environment variables including $LC_CTYPE.

The LC_CTYPEcategory of the locale is used by the environment to identify the
locale-specific features used at runtime. The fonts and input methods are determined
by the LC_CTYPEcategory.

Xtprograms that are enabled for internationalization are expected to call the
XtSetLanguageProc() function (which calls setlocale() by default) to set the
locale.

Integrating Fonts
Your application may be used by someone sitting at an X terminal or by someone at
a remote workstation across a network. In these situations, the fonts available to the
user’s X display from the X window server might be different than your application’s
defaults, and some fonts may not be available.

The standard interface font names defined by CDE are guaranteed to be available on
all CDE-compliant systems. These names do not specify actual fonts. Instead, they
are aliases that each system vendor maps to its best available fonts. If you use only
these font names in your application, you can be sure of getting the closest matching
font on any CDE-compliant system.

See Solaris Common Desktop Environment: Programmer’s Guide, Chapter 2
“Integrating Fonts,” and also the CDE man pages DtStdInterfaceFontNames (5)
and DtStdAppFontNames (5) for additional information.

184 Solaris Internationalization Guide For Developers ♦ October 1998

Input Methods
CDE provides the ability to enter localized input for an internationalized application
that is using Xm Toolkit. The XmText[Field] widgets are enabled to interface with
input methods from each locale. Input methods are internationalized because some
languages write their text from right-to-left, top-to-bottom, and so forth. Within the
same application, you can use several fonts that use different input methods.

The pre-edit area displays the string that is being pre-edited. This can be done in
four modes: OffTheSpot, OverTheSpot (default), Root, and None. In OffTheSpot
mode, the location is just below the MainWindow area at the right of the status area.
In OverTheSpot mode, the pre-edit area is at the cursor point. In Root mode, the
pre-edit and status areas are separate from the client’s window.

Internationalization and CDE
Multiple environments may exist within a common open system to support various
languages. Each of these is called a locale. A locale specifies the language, fonts, and
customs to display data. CDE is fully internationalized so that any application can
run in any locale. Any application should be code-set-independent and include
support for any multibyte codeset.

All components are shipped as a single, worldwide executable. These support the
U.S.A., Europe (Western and Eastern), Japan, Korea, Taiwan, Thailand and China.

Matching Fonts to Character Sets
Various sets of fonts are used to render a locale’s characters. The specific font
character set depends on the locale. This information should be in a locale specific
app-defaults file. It will contain font sets, fonts, and font lists.

XmFontSet specifies the locale-dependent fonts. The resource name is *fontSet .
Fonts should not be specifically named. The resource name for XFontStruct is
*font . Font lists contain lists of fonts and font sets. XFontList specifies the fonts.

Desktop Environments 185

Storage of Localized Text
Text strings in each language should be stored outside of the application and in
directories that are identified by locale names. These strings are stored in three types
of files: resource files, message catalogs, and private files.

Resource files and message catalogs are both files that deliver text strings. Resource
files are compiled when they are loaded and message catalogs are precompiled and
ready to be accessed. Any application should be codeset-independent and include
support for any multibyte codeset. Private files may be databases of information that
include some text strings. Ideally, text strings should be in resource files or message
catalogs. If text strings are supplied in a private file, then a tool should also be
developed to extract and replace text strings.

Xlib Dependencies
X locale supports one or more of the locales defined by the host environment. Direct
XlibTM conforms to the American National Standards Institute (ANSI) C library and
the locale announcement method is the setlocale() function. This function
configures the locale operation of both the host C library and Xlib. The operation of
Xlib is governed by the LC_CTYPEcategory; this is called the current locale. The
XSupportsLocale() function is used to determine whether the current locale is
supported by X.

Message Guidelines
Message guidelines should be developed and used to create a consistent format and
style for text. Use clear and simple English so that all users, including those whose
command of English is minimal, can understand every message. The book Common
Desktop Environment: Internationalization Programmer’s Guide ends with a number of
guidelines for producing clear, concise, translatable messages. Messages should
explain the problem and suggest how to perform the action successfully. Comments
to the translators should also be included that explain concepts, variables, and so
forth. The book includes several lists of suggestions for the format style of the
message catalogs and the style of the messages themselves.

Before sending out the message catalogs to be translated, it is useful to have the
message catalogs translated from English into international English, that is, into a
simplified English that can be easily translated into other languages. This speeds up
the translation process, reduces the translator queries, and saves costs.

186 Solaris Internationalization Guide For Developers ♦ October 1998

Internationalization and Distributed
Networks
This section of the book covers the exchange of information between applications on
different hosts. The transfer of data has to consider several parameters:

� The sender’s and receiver’s codeset

� Whether the protocol is 7-bit or 8-bit

� The type of interchange encoding allowed by the protocol

If the remote host uses the same codeset as the local host, and if the protocol allows
8-bit data, no conversion is needed. If the protocol allows only 7-bit data, the 8-bit
code points must be mapped onto 7-bit ASCII values. There are various strategies for
conversion.

If the remote host’s codeset is different from that of the local host, the following two
cases may apply. The conversion depends on the specific protocol. If the protocol
allows 8-bit data, the protocol will need to specify which side does the conversion. If
the protocol allows only 7-bit data, a 7-bit interchange encoding is needed along with
an identifying character repertoire.

Mail Interchange
With the increased use of the Internet and the ease of communicating with people
around the world, an email message can be viewed on many platforms and dozens
of locales. Standards for email interchange, however, are restricted by desktop
machines for which the default email standard is Simple Mail Transfer Protocol
(SMTP), which supports only 7-bit transmission channels.

The sending agent converts the body of the message into a standard format and
labels it as body. The receiving agent looks at the body and, if it supports the
character encoding, converts the body into the local character set.

Due to the fact that dtmail now uses the Language Conversion Library (LCL),
dtmail has the capacity to support multibyte characters in both the subject line, the
mail body, and in attachments. There is also the ability for dtmail to have
characters of different encodings within the same mail, for example, SJIS and EUC
encodings for the Japanese (ja) locale.

Desktop Environments 187

OpenWindows
Solaris 7 does not have any changes in OpenWindows with regard to
internationalization. Applications that were developed for previous versions of
Solaris will run in Solaris 7 without any changes.

The XView toolkit is not codeset independent. Applications that use the XView
toolkit are not supported in non-EUC locales, such as ja_JP.PCK , en_US.UTF-8 , or
ko.UTF-8 .

For information on international XView, see the internationalization portions of the
XView Developer’s Notes.

For information on international OLIT, see the internationalization chapter of the
OLIT Reference Manual.

188 Solaris Internationalization Guide For Developers ♦ October 1998

CHAPTER 9

Printing

Localization Printing Support Under the
Solaris 7 Operating Environment
Solaris provides support for PostScript printers. Custom print filters are available to
convert localized text to PostScript. See mp(1) and postprint (1)postprint man
pages for further details. The ability to download fonts onto a printer is also present.

For more details see the download (1)download man pages. This support is
configured for PostScript printers.

No internationalization-specific changes were made to printing in the Solaris 7
product. Look for printing information in the AnswerBook; the System Administration
Guide has several chapters that discuss printing.

European Printing Support
For European locales based on character sets that are not ISO-8859, such as Greek
and Russian, prolog.ps files are supplied. The files are located in
/usr/openwin/lib/ locale/print .

When you print in one of these locales, the files are automatically downloaded to the
printer. These fonts are PostScript Type 1 and include Times, Helvetica, and Courier.

These are in normal, bold, italic, and bold-italic styles.

189

This allows printing on PostScript printers from both CDE and OpenWindows
desktops. From a command line, use /usr/openwin/bin/mp <filename> | lp in
each locale that is not based on ISO 8859–1 character sets.

For the Eastern European locales such as Russian, non iso-8859-1 encoded,
prolog.ps files are supplied. The files are located in:

/usr/openwin/lib/ locale/locale/ directories/print/prolog.ps

for each relevant locale. At directories, insert one of the following

/iso8859-2/

/iso8859-4/

/iso8859-5/

/iso8859-7/

/iso8859-9/

/iso8859-10/

The files are downloaded automatically when you print in one of the Eastern
European locales. A minimum set of fonts allow printing.

The fonts in the prolog.ps files are defined in Table 9–1 below.

TABLE 9–1 prolog.ps Fonts

/LC_Courier

/LC_Courier-Italic

/LC_Courier-Bold

/LC_Courier-BoldOblique

CourierCyr AliasFont

CourierCyr Inclined AliasFont

CourierCyr Bold AliasFont

CourierCyr BoldInclined AliasFont

/LC_Times-Roman

/LC_Times-Italic

/LC_Times-Bold

/LC_Times-BoldOblique

TimesNewRomanCyr

TimesNewRomanCyr-Inclined Aliasfont

TimesNewRomanCyr-Bold AliasFont

TimesNewRomanCyr-BoldIncl AliasFont

/LC_Helvetica

/LC_Helvetica-Italic

/LC_Helvetica-Bold

/LC_Helvetica-BoldOblique

LucidaSansCyr AliasFont

LucidaSansCyr ItalicFont

LucidaSansCyr-Bold AliasFont

LucidaSansCyr-BoldItalic AliasFont

190 Solaris Internationalization Guide For Developers ♦ October 1998

Asian Multibyte Printing Support
The xetops and xutops utilities convert Asian text into a bitmapped graphics
printed image. This allows you to print Asian characters on PostScript-based printers
even without Asian fonts resident on the printers.

A typical command line for printing such a file would be as follows:

system% pr <filename> | xetops |lp

or

system% pr <filename> | xutops |lp (for the ko.UTF-8 locale)

Japanese Solaris 7 supports the following Japanese-specific printers:

� Japanese PostScript printer

� Epson VP-5085 (based on ESC/P)

� NEC PC-PR201 (based on 201PL)

� Canon LASERSHOT (based on LIPS)

Japanese texts can be printed with these printers through the LP print service. Table
9–2 shows the relation between these printers and user components. See JFP User’s
Guide for further details.

TABLE 9–2 Japanese Printer Support

Printer terminfo(-T) interface(-i) content(-I) filter

Japanese PS PS jstandard postscript jpostprint

Epson VP-5085 epson-vp5085 jstandard None jprconv

NEC PC-PR201 nec-pr201 jstandard None jprconv

Canon
LASERSHOT

canon-ls-a408 jstandard None jprconv

Use the following to set up a Japanese PostScript printer.

In the following example, the PostScript printer name is lw . The /dev/lp1 is the
device that is associated with the printer. For more information, see the
lpadmin (1M)lpadmin man page.

Printing 191

lpadmin -p lw -v /dev/lp1 -T PS -I postscript
lpadmin -p lw -i /usr/lib/lp/model/jstandard
cd /etc/lp/fd
lpfilter -x -f postprint
lpfilter -f jpostprint -F jpostprint.fd
accept lw
enable lw
/etc/init.d/lp stop
/etc/init.d/lp start

To print, use the following operation:

% lp -d lw Japanese Text File

Note - These features are supported only on Japanese Solaris. Input codesets to a
printer depend on the system locale.

CDE Font Downloader
PostScript printers connected to a Solaris host may each have different sets of
resident fonts. Users can purchase additional fonts and install them on the host or
they can remove fonts. There are a number of different ways to accomplish this task.
Note, however, that there is no user-level command to manage fonts on a PostScript
printer.

Font Downloader is a CDE application for managing fonts on PostScript printers.
Specifically it will provide the following functionality:

� Download PostScript fonts to a Postscript printer

� Download TrueType fonts to a PostScript printer

� Remove previously downloaded font from a printer

� Check printer memory

� List all fonts available on the printer

� Print character samples

� Reformat hard disk on the printer

Technical Description
Font downloader/manager program code is reused for the DT Font Downloader. In
addition, the following functionality is provided:

192 Solaris Internationalization Guide For Developers ♦ October 1998

� GUI front end

� Support of generic PostScript printers

� Support TrueType font downloading as type 42 fonts

� Support TrueType - PostScript type 3 font conversion

� Change the encoding vectors of the fonts

As a result, DT Font Downloader supports type 1, type 3, type 9 (CID 0), type 10
(CID 1), type 11 (CID 2), and type 42 fonts.

If the printer doesn’t support TrueType glyph procedures (font types 11 and 42) fonts
are converted to one of the supported formats before downloading.

TrueType binary font files located on the host cannot be used in the printer without
converting them to a different format. Some printers may support TrueType glyph
procedures. Downloading fonts to such printers requires translating single byte
TrueType fonts to Type 42 fonts and double byte TrueType font to Type 11 fonts.

Printers with no support for TrueType glyph procedures do not interpret Type 42 or
Type 11 fonts. In this case more complex translation is required.

Single-byte TrueType fonts can be translated to Type 3 fonts with loss of quality
because of interpolation and hint conversion involved in such a translation.
Double-byte TrueType fonts can be translated to Type 10 fonts.

Reference Documents
� PostScript Language Reference Manual, Adobe Systems. - 2nd ed. ISBN 0-201-18127-4

- defines PostScript language and fonts

� PostScript Language Extension for CID-Keyed Fonts. PostScriptTM Software Version
2015 Adobe Systems 29 June 1995

� The Type 42 Font Format Specification. Adobe Systems Technical Note #5012 1 March
1993

� Fontadmin Functional Specification - 12/04/95 - documents font downloader

� TrueType Font File Version 1.00 Microsoft Corporation —available from
ftp.microsoft.com - documents TrueType fonts

Printing 193

194 Solaris Internationalization Guide For Developers ♦ October 1998

CHAPTER 10

Complex Text Layout

Overview of CTL Technology
Complex Text Layout (CTL) extensions enable Motif APIs to support writing systems
that require complex transformations between logical and physical text
representations, such as Arabic, Hebrew, and Thai. CTL Motif provides character
shaping, such as ligatures, diacritics, and segment ordering, and supports the
transformation of static and dynamic text widgets. It also supports right-to-left and
left-to-right text orientation and tabbing for dynamic text widgets. Since text
rendering is handled through the rendition layer, other widget libraries can be easily
extended to support CTL.

To leverage the new features, users must have the Portable Layout Services (PLS)
library and the appropriate language engine. CTL uses PLS as the interface to the
language engine, and uses the language engine to transform text before it is
rendered. Applications that support CTL must include additional resources as
described in the CTL documentation.

Specifically, XmCTLsupports the following complex language shaping and reordering
features provided by underlying locale-dependent PLS module transformations:

� Positional variation

� Ligation (many-to-one) and character composition (one-to-many)

� Diacritics

� Bi-directionality

� Symmetrical swapping

� Numeral shaping

� String validation

195

Overview of CTL Architecture
The CTL architecture is organized as shown in the diagram below. Dt Apps at the
top of the stack employs Motif CTL functionality for rendering text. Motif in turn
interfaces with locale-specific language engines using PLS and performs
transformations to support positional variation, numeral shaping, and so on.

Dt Apps

Motif

Portable Layout Services
(PLS)

Arabic
Language
Engine

Hebrew
Language
Engine

The CTL architecture is built to support new languages by simply adding a new
locale-specific engine. In other words, support for Thai and Vietnamese can be added
without altering Motif or Dt Apps.

Changes in Motif to Support CTL
Technology

196 Solaris Internationalization Guide For Developers ♦ October 1998

XmDirection
The XmNlayoutDirection resource1 controls object layout. It interacts with the
orientation value of the LayoutObject in the following manner.

Description
First, when XmNlayoutDirection is specified as XmDEFAULT_DIRECTION, then
the widget’s layout direction is set at creation time from the governing pseudo-XOC.
In the case of dynamic text (XmText and XmTextField), the governing
pseudo-XOC is the one that is associated with the XmRendition used for the
widget. In the case of static text (XmList , XmLabel , XmLabelG), the layout direction
is set from the first compound string component that specifies a direction. This
specification happens in one of two ways:

� Directly, if the component is of type XmSTRING_COMPONENT_LAYOUT_PUSHor
XmSTRING_COMPONENT_DIRECTION

� Indirectly, if the component is of type XmSTRING_COMPONENT_LOCALE_TEXT,
XmSTRING_COMPONENT_WIDECHAR_TEXT, or XmSTRING_COMPONENT_TEXT,
from the component’s associated XmRendition ’s associated LayoutObject .

Second, if XmNlayoutDirection is not specified as XmDEFAULT_DIRECTION, and
the XmNlayoutModifier @ls orientation value is not specified explicitly in
the layout modifier string, then the XmNlayoutDirection value is passed through
to the XOC and its LayoutObject .

If both XmNlayoutDirection and the XmNlayoutModifier @ls orientation
value are explicitly specified, then the behavior is mixed; the XmNlayoutDirection
controls widget object layout, and the XmNlayoutModifier @ls orientation
value controls layout transformations.

For More Information
For more information, see CAE Specification: Portable Layout Services:
Context-dependent and Directional Text, The Open Group: Feb 1997; ISBN
1-85912-142-X; document number C616.

1. See section 11.3 of the Motif Programmer’s Guide (Release 2.1) for an overview of XmNlayoutDirection , and
especially for a description of the interaction between XmStringDirection and XmNlayoutDirection .

Complex Text Layout 197

XmStringDirection
XmStringDirection is the data type used to specify the direction in which the
system displays characters of a string.

Description
The XmNlayoutDirection resource sets a default rendering direction for any
compound string (XmString) that does not have a component specifying the
direction of that string. Therefore, to set the layout direction, all that is required is to
set the appropriate value for the XmNlayoutDirection resource. It is not required
that you create compound strings with specific direction components. When the
application renders an XmString , it should look to see if the string was created with
an explicit direction(XmStringDirection). If there is no direction component, the
application should check the value of the XmNlayoutDirection resource for the
current widget and use that value as the default rendering direction for the
XmString .

Related Information
See also XmRendition and XmDirection .

XmRendition
CTL adds the following new pseudo resources to XmRendition :

198 Solaris Internationalization Guide For Developers ♦ October 1998

New Resources
Name Class/Type Access Default Value

XmNfontType XmCFontType/XmFontType CSG XmAS_IS

XmNlayoutAttrObject XmClayoutAttrObject /String CG NULL

XmNlayoutModifier XmCLayoutModifier /String CSG NULL

XmNfontType Specifies the type of the Rendition font object.
For CTL, the value of this resource must be the
XmFONT_IS_XOCvalue. If it is not, then the
XmNlayoutAttrObject and
XmNlayoutModifier resources are ignored.

When the value of this resource is
XmFont_IS_XOC, and if the XmNfont resource is
not specified, then at create time the value of the
XmNfontName resource gets converted into an
XOC object in either the locale specified by the
XmNlayoutAttrObject resource or the current
locale. Furthermore, the value of the
XmNlayoutModifier resource gets passed
through to any LayoutObject associated with
the XOC.

XmNlayoutAttrObject Specifies the layout AttrObject argument to be
used to create the Layout Object associated with
the XOC associated with this XmRendition .
Refer to the Layout Services
m_create_layout() specification for the
syntax and semantics of this string. (See the
description of XmNfontType above for an
explanation of the interaction between the Layout
Modifier Orientation output value and the
XmNlayoutDirection widget resource.)

XmNlayoutModifier Specifies the layout values to be passed through
to the Layout Object associated with the XOC
associated with this XmRendition . For the
syntax and semantics of this string, see CAE
Specification.

Setting this resource using
XmRendition{Retrieve,Update} causes the
string to be passed through to the LayoutObject

Complex Text Layout 199

associated with the XOC associated with this
Rendition. This is the mechanism for configuring
layout services dynamically. Note that
unpredictable behavior may result if the
Orientation , Context , TypeOfText ,
TextShaping , or ShapeCharset are changed.

Additional Behavior
The XmNlayoutModifier affects the layout behavior of the text associated with the
XmRendition . For example, if the layout default treatment of numerals is
NUMERALS_NOMINAL, the user can change to NUMERALS_NATIONALby setting
XmNlayoutModifier to:

� @ls numerals=nominal:national , or

� @ls numerals=:national

The layout values can be classified into the following groups:

� Encoding description: TypeOfText , TextShaping , ShapeCharset (and locale
codeset)

TypeOfText is essentially segment ordering, and can be illustrated with opaque
blocks. It is usually not meaningful to modify these values dynamically through
the Rendition object, and almost certain to result in unpredictable behavior.

� Layout behavior: Orientation , Context , ImplicitAlg , Swapping , Numerals

Orientation and Context should not be modified dynamically; it is safe to
modify ImplicitAlg , Swapping , and Numerals .

� Editing behavior: CheckMode

XmText , XmTextField

Description
Xm CTL extends XmText and XmTextField by adding a parallel set of movement
and deletion actions that operate visually, patterned after the Motif 2.0 CSText
widget. The standard Motif 2.1 Text and TextField do not distinguish between
logical and physical order: “next“ and “forward“ mean “to the right,“ and
“previous“ and “backward“ mean “to the left.“ CSText , however, makes the proper
distinction and defines a new set of actions with strictly physical names (for
example, left-character() , delete-right-word() , and so on). All of these

200 Solaris Internationalization Guide For Developers ♦ October 1998

action routines are defined to be sensitive to the XmNlayoutDirection of the
widget and to call the appropriate “next-“ or “previous-“ action. The Xm CTL
extensions are slightly more complex than CSText ’s in that they are sensitive not to
the global orientation of the widget, but to the specific directionality of the physical
characters surrounding the cursor, as determined by the pseudo-XOC (including
neutral stabilization).

There is also a new resource to control selection policy, to provide a rendition tag,
and to control alignment.

The set of new Xm CTL actions is roughly the cross product of
{Move,Delete,Kill} by {Left,Right} by {Character,Word} , and is listed
below.

New Resources
The following new resources are added to XmText and XmTextField :

Name Class/Type Access Default Value

XmNrenditionTag XmCRenditionTag/XmRString CSG XmFONTLIST_DEFAULT_TAG

XmNalignment XmCAlignment/XmRAlignment CSG XmALIGNMENT_BEGINNING

XmNeditPolicy XmCEditPolicy/XmREditPolicy CSG XmEDIT_LOGICAL

XmNrenditionTag Specifies the rendition tag of the XmRendition
(in the XmNrenderTable resource) to be used
for this widget.

XmNalignment Specifies the text alignment to be used in the
widget. Only XmALIGNMENT_ENDand
XmALIGNMENT_CENTERare supported.

XmNeditPolicy Specifies the editing policy to be used for the
widget, either XmEDIT_LOGICALor
XmEDIT_VISUAL. In the case of
XmEDIT_VISUAL, selection, cursor movement,
and deletion are in a visual style. Setting this
resource also changes the translations for the
standard keyboard movement and deletion
events either to the new “visual“ actions list
below or to the existing logical actions.

Complex Text Layout 201

Action Routines
All of the actions in the following list query the orientation of the character in the
direction specified. If the direction is left-to-right, they call the corresponding
next- /forward- or previous- /backward- variants.

� delete-left-character()

� delete-left-word()

� delete-right-character()

� delete-right-word()

� kill-left-character()

� kill-left-word()

� kill-right-character()

� kill-right-word()

� left-character()

� left-word()

� prev-cell()

� right-character()

� right-word()

� forward-cell()

Additional Behavior
The actions determine the orientation of characters by using the Layout Services
transformation OutToInp and Property buffers (for the nesting level). The
widget’s behavior is therefore dependent on the locale-specific transformation. If the
information in the OutToInp or, especially, Property buffers is inaccurate, the
widget may behave unexpectedly. Moreover, as the locale-specific modules fall
outside of the scope of this specification, bi-directional editing behavior may differ
from platform to platform for the same text, application, resource values, and
LayoutObject configuration.

The visual mode actions result in display cell-based behavior. The logical mode
actions result in logical character-based behavior. For example, the
delete-right-character() operation deletes the input buffer characters that
correspond to the display cell (that is, one input buffer character whole
LayoutObject transformation “property“ byte “new cell indicator“ is 1, and all of
the succeeding characters whose “new cell indicator“2 is 0).

2. For more information on the Property buffer, see the specification for m_transform_layout() in CAE
Specification.

202 Solaris Internationalization Guide For Developers ♦ October 1998

Similarly, for backward-character() , the insertion point is moved backward one
character in the input buffer, and the cursor is redrawn at the visual location
corresponding to the associated output buffer character. This means that several
keystrokes are required to move across a composite display cell; the cursor does not
actually change display location as the insertion point moves across input buffer
characters whose “new cell indicator“ is 0 (that is, diacritics or ligature fragments).

This means deletion operates either from the logical/input buffer side, or from the
display cell level of the physical/output side. There is no mode for a strict, physical
character-by-character deletion, since there is no one-to-one correspondence between
the input and output buffers. A given physical character may represent only a
fragment of a logical character, for example.

Action Routines
The XmText action routines are as follows:

left-character(extend) If the XmNeditPolicy is
XmEDIT_LOGICALand is called without
arguments, it moves the insertion cursor
back logically by a character. If the
insertion cursor is at the beginning of the
line, it moves the insertion cursor to the
logical last character of the previous line
if one exists, otherwise the insertion
cursor position doesn’t change.

If the XmNeditPolicy is
XmEDIT_VISUAL, then the cursor moves
to the left of cursor position. If the
insertion cursor is at the beginning of the
line, then it moves to the end character
of the previous line if one exists.

If it is called with an extend argument,
it moves the insertion cursor as in the
case of no argument and extends the
current selection.

The left-character() action
produces calls to the
XmNmotionVerifyCallback
procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If
called with an extend argument, this
may produce calls to the

Complex Text Layout 203

XmNgainPrimaryCallback
procedures. See the callback description
in the Motif Programmer’s Reference for
more information.

left-word(extend) If the XmNeditPolicy is
XmEDIT_LOGICALand is called without
any arguments, and the insertion cursor
is at the logical starting of the word, it
moves the insertion cursor to the logical
starting of the logical preceding word, if
one exists, otherwise the insertion cursor
position doesn’t change. If the insertion
cursor is in the word but not at the
logical start of the word, it moves the
insertion cursor to the logical start of the
word. If the insertion cursor is at the
logical start of the line, it moves the
insertion cursor to the logical start of the
logical last word in the previous line if
one exists, otherwise the insertion cursor
position doesn’t change.

If the XmNeditPolicy is
XmEDIT_VISUAL and is called without
arguments, it moves the insertion cursor
to the first non-white space character
after the first white space character to
the left or after the beginning of the line.
If the insertion cursor is already at the
beginning of the word, it moves the
insertion cursor to the beginning of the
previous word. If the insertion cursor is
already at the beginning of the line, it
moves to the starting of the last word in
the previous line.

If called with an argument of extend , it
moves the insertion cursor as in the case
of no argument and extends the current
selection.

The left-word() action produces calls
to the XmNmotionVerifyCallback
procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If it is
called with an extend argument, this

204 Solaris Internationalization Guide For Developers ♦ October 1998

may produce calls to the
XmNgainPrimaryCallback
procedures. See the callback description
in the Motif Programmer’s Reference for
more information.

right-character(extend) If the XmNeditPolicy is
XmEDIT_LOGICALand is called without
any arguments, it moves the insertion
cursor logically forward by a character. If
the insertion cursor is at the logical end
of the line, it moves the insertion cursor
to the logical starting of the next line, if
one exists.

If the XmNeditPolicy is
XmEDIT_VISUAL, then the cursor moves
to the right of cursor position. If the
insertion cursor is at the end of the line,
it moves the insertion cursor to the
starting of the next line, if one exists.

If called with an argument of extend , it
moves the insertion cursor as in the case
of no argument and extends the current
selection.

The right-character() action
produces calls to the
XmNmotionVerifyCallback
procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If
called with extend argument, this may
produce calls to the
XmNgainPrimaryCallback
procedures. See the callback description
in the Motif Programmer’s Reference for
more information.

right-word(extend) If the XmNeditPolicy is
XmEDIT_LOGICALand is called without
any arguments, it moves the insertion
cursor to the logical starting of the
logical succeeding word if one exists,
otherwise it moves to the logical end of
the current word. If the insertion cursor
is at the logical end of the line or in the

Complex Text Layout 205

logical last word of the line, it moves the
cursor to the logical first word in the
next line if one exists, otherwise it moves
to the logical end of the current word.

If the XmNeditPolicy is
XmEDIT_VISUAL and is called without
arguments, it moves the insertion cursor
to the first nonwhite space character
after the first white space character to
the right or after the end of the line.

If called with an argument of extend , it
moves the insertion cursor as in the case
of no argument and extends the current
selection.

The left-word() action produces calls
to the XmNmotionVerifyCallback
procedures with the reason value
XmCR_MOVING_INSERT_CURSOR. If
called with extend argument, this may
produce calls to the
XmNgainPrimaryCallback
procedures. See the callback description
in the Motif Programmer’s Reference for
more information.

delete-left-character() If the XmNeditPolicy is
XmEDIT_LOGICAL, it is equivalent to
delete-previous-char . If the
XmNeditPolicy is XmEDIT_VISUAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise it deletes the
character left of the insertion cursor. In
add mode, if there is a non-null
selection, the cursor is not disjointed
from the selection and
XmNpendingDelete is set to True, it
deletes the selection; otherwise it deletes
the character left of the insertion cursor.
This may impact the selection.

The delete-left-character()
action produces calls to the
XmNmodifyVerifyCallback
procedures with reason value

206 Solaris Internationalization Guide For Developers ♦ October 1998

XmCR_MODIFYING_TEXT_VALUEand
the XmNvalueChangedCallback
procedures with reason value
XmCR_VALUE_CHANGED.

delete-right-character() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent to
delete-next-character . If the
XmNeditPolicy is XmEDIT_VISUAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
character right of the insertion cursor. In
add mode, if there is a non-null selection
and the cursor is not disjointed from the
selection, the XmNpendingDelete is set
to True and the selection is deleted;
otherwise, the character right of the
insertion cursor is deleted. This may
impact the selection.

The delete-right-character()
action produces calls to the
XmNmodifyVerify- Callback
procedures with reason value
XmCR_MODIFYING_TEXT_VALUE, and
the XmNvalue- ChangedCallback
procedures with reason value
XmCR_VALUE_CHANGED.

delete-left-word() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent to
delete-prev-word() . If the
XmNeditPolicy is XmEDIT_LOGICAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
characters left of the insertion cursor to
the next space, punctuation character,
tab, or beginning-of-line character. In
add mode, if there is a non-null
selection, the cursor is not disjointed
from the selection; otherwise it deletes
the characters left of the insertion cursor
the right space, tab, or beginning-of-line
character. In add mode, if there is a
non-null selection, the cursor is not

Complex Text Layout 207

disjointed from the selection, the
XmNpendingDelete is set to True, and
the selection is deleted; otherwise, it
deletes the character left of the insertion
cursor, the right space, tab, or beginning
of new-line character. This may impact
the selection.

delete-right-word() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent to
delete-right-word() . If the
XmNeditPolicy is XmEDIT_LOGICAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
characters right of the insertion cursor to
the next space, punctuation character,
tab, or end-of-line character. In add
mode, if there is a non-null selection, the
cursor is not disjointed from the
selection, XmNpendingDelete is set to
True, and deletes the selection;
otherwise, it deletes the characters right
of the insertion cursor to the next space,
tab, or end-of-line character. This may
impact the selection.

kill-left-character() If the XmNeditPolicy is
XmEDIT_LOGICAL, it is equivalent to
kill-prev-char . If the
XmNeditPolicy is XmEDIT_VISUAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it kills the character
left of the insertion cursor and stores the
character in the cut buffer. In add mode,
if there is a non-null selection, the cursor
is not disjointed from the selection,
XmNpendingDelete is set to True, and
deletes the selection; otherwise, it deletes
the character left of the insertion cursor.
This may impact the selection.

The kill-left-character() action
produces calls to the
XmNmodifyVerifyCallback
procedures with the reason value

208 Solaris Internationalization Guide For Developers ♦ October 1998

XmCR_MODIFYING_TEXT_VALUE, and
produces the
XmNvalueChangedCallback
procedures with the reason value
XmCR_VALUE_CHANGED.

kill-right-character() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent to
delete-next-character . If the
XmNeditPolicy is XmEDIT_VISUAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
character right of the insertion cursor
and stores it in the cut buffer. In add
mode, if there is a non-null selection, the
cursor is not disjointed from the
selection, the XmNpendingDelete is set
to True and deletes the selection;
otherwise, it deletes the character right
of the insertion cursor. This may impact
the selection.

The kill-right-character() action
produces calls to the
XmNmodifyVerify-Callback
procedures with reason value
XmCR_MODIFYING_TEXT_VALUE, and
produces calls to the
XmNvalue-ChangedCallback
procedures with reason value
XmCR_VALUE_CHANGED.

kill-left-word() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent to
delete-prev-word() . If the
XmNeditPolicy is XmEDIT_LOGICAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
characters left of the insertion cursor to
the next space, punctuation character,
tab, or beginning-of-line character. In
add mode, if there is a non-null
selection, the cursor is not disjointed
from the selection; otherwise it deletes
the characters left of the insertion cursor

Complex Text Layout 209

the right space, tab, or beginning-of-line
character and stores it in the cut buffer.
In add mode, if there is a non-null
selection, the cursor is not disjointed
from the selection, XmNpendingDelete
is set to True and deletes the selection;
otherwise it deletes the characters left of
the insertion cursor the right space, tab,
or beginning of new-line character. This
may impact the selection.

kill-right-word() If the XmNeditPolicy is
XmEDIT_VISUAL, it is equivalent to
delete-right-word() . If the
XmNeditPolicy is XmEDIT_LOGICAL,
then in normal mode, if there is a
non-null selection, it deletes the
selection; otherwise, it deletes the
characters right of the insertion cursor to
the next space, tab, or end-of-line
character. In add mode, if there is a
non-null selection, the cursor is not
disjointed from the selection,
XmNpendingDelete is set to True, and
deletes the selection; otherwise, it deletes
the characters right of the insertion
cursor to the next space, punctuation
character, tab, or end-of-line character
and stores in the cut buffer. This may
impact the selection.

A few cell-based routines are implemented to support character composition,
ligatures, and diacritics. In other words, two or more characters might be represented
by a single glyph occupying one presentation cell.

The XmText cell action routines are as follows:

prev-cell(extend) Moves the insertion cursor back one cell. If the
XmNeditPolicy is XmEDIT_LOGICAL, then the
insertion cursor is moved to the start of the cell
that precedes the current cell logically, if one
exists; otherwise it moves to the start of the
current cell.

If the XmNeditPolicy is XmEDIT_VISUAL, then
the cursor moves to the start of cell to the left of
the cursor, if one exists. The prev-cell()
action produces calls to the

210 Solaris Internationalization Guide For Developers ♦ October 1998

XmNmotionVerifyCallback procedures with
the reason value
XmCR_MOVING_INSERT_CURSOR. If called with
an extend argument, this may produce calls to
the XmNgainPrimaryCallback procedures. See
the callback description in the Motif Programmer’s
Reference for more information.

forward-cell(extend) Moves the insertion cursor to the start of the
logical next cell, if one exists; otherwise it moves
it to the end of the cell. If the XmNeditPolicy is
XmEDIT_LOGICAL, then the cursor moves
forward one cell.

If the XmNeditPolicy is XmEDIT_VISUAL, then
the cursor moves to the start of the cell to the
right of the cursor position if one exits; otherwise
it moves to the end of the current cell. The
forward-cell() action produces calls to the
XmNmotionVerifyCallback procedures with
the reason value
XmCR_MOVING_INSERT_CURSOR. If called with
an extend argument, this may produce calls to
the XmNgainPrimaryCallback procedures. See
the callback description in the Motif Programmer’s
Reference for more information.

XmTextFieldGetLayoutModifier

Purpose
A TextField function that returns the layout modifier string that reflects the state
of the layout object tied to its rendition.

Synopsis
#include <Xm/TextF.h>
String XmTextFieldGetLayoutModifier(Widget widget)

Complex Text Layout 211

Description
XmTextFieldGetLayoutModifier accesses the value of the current layout object
settings of the rendition associated with the widget. When the layout object modifier
values are changed using a convenience function, the
XmTextFieldGetLayoutModifier function returns the complete state of the
layout object, not just the changed values.

Return Value
Returns the layout object modifier values in the form of a String value.

Related Information
XmTextField

XmTextGetLayoutModifier

Purpose
A Text function that returns the layout modifier string that reflects the state of the
layout object tied to its rendition.

Synopsis
#include <Xm/Text.h>String XmTextGetLayoutModifier(Widget widget)

Description
XmTextGetLayoutModifier accesses the value of the current layout object settings
of the rendition associated with the widget. When the layout object modifier values
are changed using a convenience function, the XmTextGetLayoutModifier
function returns the complete state of the layout object, not just the changed values.

212 Solaris Internationalization Guide For Developers ♦ October 1998

Return Value
Returns the layout object modifier values in the form of a String value.

Related Information
XmText

XmTextFieldSetLayoutModifier

Purpose
A TextField function that sets the layout modifier values, which changes the
behavior of the layout object tied to its rendition.

Synopsis
#include <Xm/TextF.h>void XmTextFieldSetLayoutModifier(Widget
widget, string layout_modifier)

Description
XmTextFieldSetLayoutModifier modifies the layout object settings of a
rendition associated with the widget. When the layout object modifier values are set
using this convenience function, only the attributes specified in the input parameter
are changed; the rest of the attributes are left untouched.

Related Information
XmTextField

Complex Text Layout 213

XmTextSetLayoutModifier

Purpose
A Text function that sets the layout modifier values, which changes the behavior of
the layout object tied to its rendition.

Synopsis
#include <Xm/Text.h>void XmTextSetLayoutModifier(Widget
widget, string layout_modifier)

Description
XmTextSetLayoutModifier modifies the layout object settings of a rendition
associated with the widget. When the layout object modifier values are set using this
convenience function, only the attributes specified in the input parameter are
changed; the rest of the attributes are left untouched.

Related Information
XmText

XmStringDirectionCreate

Synopsis
#include <Xm/Xm.h>XmString XmStringDirectionCreate(direction)
XmStringDirection direction

Description
XmStringDirectionCreate creates a compound string with a single component, a
direction with the given value. On the other hand, the XmNlayoutDirection

214 Solaris Internationalization Guide For Developers ♦ October 1998

resource sets a default rendering direction for any compound string (XmString) that
does not have a component specifying the direction for that string. Therefore, to set
the layout direction, all that is required is to set the appropriate value for the
XmNlayoutDirection resource. It is not required to create compound strings with
specific direction components. When the application renders an XmString , it should
look to see if the string was created with an explicit direction
(XmStringDirection). If there is no direction component, the application should
check the value of the XmNlayoutDirection resource for the current widget and
use that value as the default rendering direction for the XmString .

Related Information
See also XmRendition , XmDirection .

UIL

UIL Argument Name Argument Type

XmNlayoutAttrObject String

XmNlayoutModifier String

XmNrenditionTag String

XmNalignment Integer

XmNeditPolicy Integer

How to Develop CTL Applications
Layout Direction
The direction of a compound string is stored so that the data structure will be
equally useful for describing text in left-to-right languages such as English, Spanish,
French, and German, as well as for text in right-to-left languages, such as Hebrew

Complex Text Layout 215

and Arabic. In Motif applications, you can set the layout direction using the
XmNlayoutDirection resource from the VendorShell or MenuShell. Manager and
Primitive widgets (as well as Gadgets) also have an XmNlayoutDirection resource.
The default value is inherited from the closest ancestor that has the same resource.

In the case of an XmText widget, you need to specify the vertical direction as well.
Setting the layoutDirection to XmRIGHT_TO_LEFTwill result in the string
direction from right-to-left, but the cursor will move vertically down. If the vertical
direction is important and top to bottom is desired, be sure to specify
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM, which specifies that the components are laid
out from right-to-left first and then top-to-bottom, and will result in the desired
behavior.

Furthermore, the behavior of XmText and TextField widgets is influenced by the
XmNalignment and XmNlayoutModifier resources of the XmRendition . These
resources, in addition to XmNlayoutDirection , control the layout behavior of the
Text widget. This can be illustrated using the example below.

The input string used in the illustration is

The XmNlayoutModifier string @ls orientation= setting values for this
illustration are shown in the left column.

Layout Direction: XmLEFT_TO_RIGHT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

Layout Direction: XmRIGHT_TO_LEFT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

216 Solaris Internationalization Guide For Developers ♦ October 1998

As the illustration shows, XmNAlignment dictates whether the text is flush-right or
-left in conjunction with the layout direction. On the other hand,
XmNlayoutModifier breaks the text into segments and arranges them left-to-right
or right-to-left depending on the orientation value. In other words, if the
XmNlayoutDirection is XmRIGHT_TO_LEFT, and the XmNAlignment value is
XmALIGNMENT_BEGINNING, the string is flush-right.

Creating a Rendition
The following code creates an XmLabel whose XmNlabelString is of the type
XmCHARSET_TEXT, using the Rendition whose tag is “ArabicShaped.” The Rendition
is created with an XmNlayoutAttrObject of “ar“ (corresponding to the locale
name for the Arabic locale) and a layout modifier string that specifies for the output
buffer a Numerals value of NUMERALS_CONTEXTUALand a ShapeCharset value
of “unicode-1.“

The locale-specific layout module transforms its input text (in this example encoded
in ISO 8859-6) in an output buffer of physical characters encoded using the 16-bit
Unicode 2.0 codeset. Since an explicit layout locale has been specified, this text is
rendered properly independent of the runtime locale setting.

int n;
Arg args[10];
Widget w;
XmString labelString;
XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */
labelString = XmStringGenerate("\307\344\310\346\312\", NULL

XmCHARSET_TEXT, "ArabicShaped");
w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,

XmNlabelString, labelString,
XmNlabelType, XmSTRING,

NULL);
n = 0;
XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");

n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;
XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;
XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=:contextual, shapecharset=iso8859-6"); n++;
renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, argcs
s, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);
XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

Complex Text Layout 217

Editing a Rendition
The following code creates a TextField widget and a RenderTable with a single
Rendition . Note that both the XmNlayoutAttrObject and XmNlayoutModifier
pseudo resources have been left unspecified and therefore defaults to NULL. This
means the LayoutObject associated with the Rendition is the default locale’s, if
one exists.

For this example to work properly, the locale must be set to one whose codeset is
ISO 8859-6 and whose locale-specific layout module can support the
IMPLICIT_BASIC algorithm. It then modifies the Rendition’s LayoutObject ’s
ImplicitAlg value via the Rendition’s XmNlayoutModifier pseudo resource.

int n;
Arg args[10];
Widget w;

XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;
w = XmCreateTextField(parent, "text field", args, 0);
n = 0;

XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");
n++;

XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;
renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);
XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

....
n = 0;
XtSetArg(args[n], XmNlayoutModifier, "@ls implicitalg=basic");

n++;
XmRenditionUpdate(rendition, args, n);

Related Information
See also XmDirection , XmText .

Creating a Render Table in a Resource
File
Renditions and render tables may be specified in resource files. For properly
internationalized application, in fact, this is the preferred method. When the render
tables are specified in a file, the program binaries are made independent of the
particular needs of a given locale, and may be easily customized to local needs.

Render tables are specified in resource files with the following syntax:
resource_spec:[tag[, tag]*]

218 Solaris Internationalization Guide For Developers ♦ October 1998

where tag is some string suitable for the XmNtag resource of a rendition.

This line creates an initial render table containing one or more renditions as
specified. The renditions are attached to the specified tags

resource_spec[*|.] rendition[*|.] resource_name: value

The following examples illustrate the CTL resources related to XmRendition that
can be set using resource files. The fontType must be set to FONT_IS_XOCfor the
layout object to take effect. The layoutModifier specified using @ls is passed on
to the layout object by the rendition object.

For a complete list of resources that can be set on the layout object using
layoutModifier , see CAE Specification: Portable Layout Services: Context-dependent
and Directional Text, The Open Group: Feb 1997; ISBN 1-85912-142-X; document
number C616.

Creating a Render Table in an
Application
Before creating a render table, an application program must first have created at least
one of the renditions that is part of the table. The XmRenderTableAddRenditions
function, as its name implies, is also used to augment a render table with new
renditions. To create a new render table, call the
XmRenderTableAddRenditions() function with a NULL argument in place of an
existing render table.

The following code creates a render table using a rendition created with
XmNfontType set to XmFONT_IS_XOC.

int n;
Arg args[10];
Widget w;
XmString labelString;
XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */
labelString = XmStringGenerate("\307\344\310\346\312\", NULL

XmCHARSET_TEXT, "ArabicShaped");
w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,

XmNlabelString, labelString,
XmNlabelType, XmSTRING,

NULL);
n = 0;
XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");

n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;
XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;
XtSetArg(args[n], XmNlayoutModifier,

Complex Text Layout 219

"@ls numerals=nominal:contextual, shapecharset=iso8859-6"); n++;
renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);
renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE);
XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

Horizontal Tabs
To control the placement of text, a compound string can contain tab characters. To
interpret those characters on display, a widget refers to the rendition in effect for that
compound string, where it finds a list of tab stops. However, the dynamic widgets
(TextField and XmText) do not use the tab resource of the rendition. Instead, they
compute the tab width using the formula of 8*(width of character 0) .

The tab measurement is the distance from the left margin of the compound string
display, or from the right margin if the layout direction is right-to-left. It is important
to note that regardless of the direction of the text (Arabic right-to-left or English
left-to-right) the tab inserts space to the right or left as specified by the layout
direction (XmNlayoutDirection).

The text following a tab is always aligned at the tab stop, and the tab stop is
calculated from the start of the widget, which in turn is influenced by
XmNlayoutDirection . The behavior of the tabs and their interaction with
directionality of the text and the XmNlayoutDirection of the widget is illustrated
in Table 10–1.

The input for this illustration is abc\tdef\tgh .

220 Solaris Internationalization Guide For Developers ♦ October 1998

Layout Direction: XmLEFT_TO_RIGHT

Layout Direction: XmRIGHT_TO_LEFT

Figure 10–1 Tabbing Behavior

Mouse Selection
The user makes a primary selection with SELECT (the left mouse button). Pressing
SELECT deselects any existing selection and moves the insertion cursor and the
anchor to the position in the text where the button is pressed. Dragging SELECT
selects all text between the anchor and the pointer position, deselecting any text
outside the range.

The text selected is influenced by the resource XmNeditPolicy , which can be set to
XmEDIT_LOGICALor XmEDIT_VISUAL. If the XmNeditPolicy is set to
XmEDIT_LOGICAL, and if the text selected is bi-directional, the selected text is not be
contiguous visually and is a collection of segments. This is because the text in the
logical buffer does not have a one-to-one correspondence with the display.

As a result, the contiguous buffer of logical characters of bi-directional text when
rendered does not result in a continuous stream of characters. Conversely, when the
XmNeditPolicy is set to XmEDIT_VISUAL, the text selected may be contiguous
visually but is segmented in the logical buffer. So the sequence of selection, deletion,
and insertion of bi-directional text at the same cursor point does not result in the
same string.

Complex Text Layout 221

Keyboard Selection
The selection operation available with the mouse is also available with the keyboard.
The combination of Shift-arrow keys allows the selection of text.

The text selected is influenced by the resource XmNeditPolicy , which can be set to
XmEDIT_LOGICALor XmEDIT_VISUAL. If the XmNeditPolicy is set to
XmEDIT_LOGICAL, and if the text selected is bi-directional, the selected text will not
be contiguous visually and will be a collection of segments. This is because the text
in the logical buffer does not have one-to-one correspondence with the display. As a
result, the contiguous buffer of logical characters of bi-directional text when rendered
will not result in a continuous stream of characters.

Conversely, when the XmNeditPolicy is set to XmEDIT_VISUAL, the text selected
may be contiguous visually but is segmented in the logical buffer. So the sequence of
selection, deletion, and insertion of bi-directional text at the same cursor point does
not result in the same string.

Text Resources and Geometry
Text has several resources that relate to geometry, including the following:

� The render table XmNrenderTable that the widget uses to select a font or font set
and other attributes in which to display the text.

The Text and Textfield widgets can use only the font-related rendition
resources, such as XmNfontType , and can also specify the attributes of the layout
object, such as XmNlayoutAttrObject , usually a locale identifier, and
XmNlayoutModifier , which specifies the layout values to be passed through to
the Layout Object associated with the XOC associated with this XmRendition .

� A resource (XmNwordWrap) that specifies whether lines are broken at word
boundaries when the text would be wider than the widget.

Breaking a line at a word boundary does not insert a new line into the text. In the
case of cursive languages like Arabic, if the word length is greater than the widget
length, the word is wrapped to the next line, but the first character in the next line
is shaped independently of the previous character in the logical buffer.

222 Solaris Internationalization Guide For Developers ♦ October 1998

Porting Instructions
The new CTL enabled Motif library can be found in /usr/dt/lib/libXm.so.4 . If
your application links to libXm.so.3 (ldd app_name shows which library the
application is linking to), then it will not support Complex Text Layout (CTL). In
order to port the existing applications to enable CTL, you need to perform the
following steps.

1. Add -DSUN_CTLto your Makefile. This flag is important and includes the
necessary data structures to support CTL. This should be set during compilation.

2. Recompile the existing application. It will automatically link with the CTL
enabled Motif library libXm.so.4 .

3. Add the following resources to your application resource file. Without these
resources the layout engine of the locale will not launch.

4. Refer to the sample application attached with your documentation.

Note - Use the font name that is available and appropriate to your locale in the
fontName resource.

5. If you want the cell-based character movement (Thai) in XmTextField or
XmText widgets, set the translations of the corresponding widgets as follows.
Refer to the documentation for further detailed explanation.

XmText.translations: #override \n\

<Key>osfRight:forward-cell() \n\

<Key>osfLeft:backward-cell() \n\

<Key>osfDelete:delete-next-cell() \n\

<Key>osfBackSpace:delete-previous-cell() \n\

Complex Text Layout 223

224 Solaris Internationalization Guide For Developers ♦ October 1998

Index

Numbers
16-bit Unicode 2.0 codeset, 217
32–bit STREAMS, 66
64–bit STREAMS, 66

A
adding packages, 95
addresses, formats, 13
Adobe Type Manager (ATM) fonts, 44
alphabets, 10, 11
APIs, 171, 179

using to develop applications, 167
applications

FontSet/XmFontList definitions, 92
internationalizing, 92
linking to system libraries, 168
XPG4, 171

architectures (SPARC and x86), xvii
Asian

packages, 114
printing support, 191

ATM fonts, 44
ATOK8, 53
AttrObject, 199

B
base language, 3
base Solaris 2.6, 17, 23

locales supported, 24
Bi-directionality, 195
Big-5

codeset, 163
bin/stty, 70
/bin/stty directory, 70
bitmap

fonts, 44
books@sun.com, xviii
bopomofo in Chinese, 12
breve, 26

C
caron, 26
catgets(), 179
CD

installing software from, 96
CDE, 183

en_US.UTF-8 locale support of, 23
input methods, 185
localization packages, 152
using fonts for locales, 25

Central European languages, character
support, 24

character classification macros, 171
character shaping, 195
character support, 24
character transformation macros, 171

Index-225

characters
number, 10

Chinese
package files, 126

Chinese text
bopomofo, 12
linguistic introduction, 12
pinyin, 12
zhuyin, 12

code conversion STREAMS modules, 66
code conversions, 71, 74
codeset, 4

Big-5, 163
character support, 24
Extended UNIX Code (EUC), 163
Shift-JIS, 163

Codeset conversion utilities, 1
Codeset Independence, 164
command names,
command-line placeholder,
commands

CSI-capable, 164
Common Desktop Environment (book), xix
Common Desktop Environment

Internationalization
Programmer’s Guide, 183

complex language shaping, 195
Complex Text Layout (CTL), 2

CTL, 195
Compose c c sequence, 85
Compose g g sequence, 86
Compose Key, 13
compose sequences

Latin-1, 76, 77, 80
Latin-2, 81, 82
Latin-4, 82 to 84
Latin-5, 84, 90

compose sequences, for new locales, 25
Context, 200
conversion

multibyte and wide character process
code, 171

conversions, 71, 74
converting characters, 61
core locales, 18, 19
country of use, 3
creating

message catalogs, 179

Creating Worldwide Software, xviii, 14
cs00, 53
.cshrc, 71
CSI, , see Codeset Independence,
CSI-capable commands, 164
CSI-enabled libraries, 166
CSText, 200
CTL architecture, 196
ctype

macros, 171
currency, 3

presentation order of, 9
sizes of, 10
units of, 9

currency symbol, 26
Cyrillic input mode, 85
Czech

character support, 24
keyboards, 25

D
Date, 3
date formats, 7
Daylight Savings Time (DST), 7
decimal places, 8
degree symbol, 26
delimiters

numeric, 8
thousands, 8
word, 10

descriptions of European package files, 104
desktop environments, 183
Desktop Font Downloader, 2
desktop layers, 183
deutsche mark, 9
developer’s cluster, in Solaris 2.6, 23, 64
diacritical marks, 25

in English input mode, 75
diacritics, 195
diaeresis, 25
directories,
disk space

Asian packages, 158
documentation, ordering, xix
dollar, 9
doubleacute, 26

Index-226 Solaris Internationalization Guide For Developers ♦ October 1998

DST (Daylight Savings Time), 7
Dt Apps, 196
dtlogin command, 25
dtmail, 187
dtterm, 68
dynamic linking, 168
dynamic text widgets, 195

E
Editing behavior, 200
English

character support, 24
input mode, 75
language locales, 28

English Solaris 2.6, , see base Solaris 2.6,
en_US.UTF-8

code conversions, 71
fontset definitions, 92, 94
overview, 17, 63
printing utility, 90

Euro currency, 2
European Codesets, 113
European font packages, 113
European printing support, 189
European Solaris, 2
extended locales, 22, 23
Extended UNIX Code (EUC), 163

F
file code, 164
file names,
fonts

across different platforms, 184
adding or removing, 44
formats, 44
location, 44
packages for Europe, 113
SUNiXxf format for new locales, 25
X11 bitmaps, 90

FontSet definitions, 92, 94
FontSet/XmFontList definitions, 92
formats

addresses, 13
currency, 9
dates, 7
numeric, 8

time, 6
franc, 9
French package files, 99
Full Solaris locale, 4

G
gender in language, 13
genmsg utility, 179, 180
German

character support, 24
package files, 100

GMT offset, 7
Greek

character support, 24
input mode, 86

Greenwich Mean Time offset, 7

H
Hangul in Korean, 11
Hanja in Korean, 11
Hanzi in Chinese, 12
head side module, 66
Hiragana in Japanese, 11
Horizontal Tabs, 220
Hungarian

character support, 24
keyboards, 25

I
IBM DOS 437, 28
iconv, 37

command, 71
how to use, 61
Japanese character code conversion, 54

imperial system, 13
input modes

Cyrillic, 85
English, 75
Greek, 86

installation, 95, 98
Internationalization, 2
internationalization

ISO Latin-1, 3
Java, 164

internationalization APIs, 171, 179

Index-227

internationalizing applications, 92
ISO 8859, 63
ISO 8859-n character support, 24
ISO Latin-1, 3
ISO-10646, 1
Italian package files, 101

J
ja, 53
Japanese

package files, 132
Solaris, 3

Japanese text
Hiragana, 11
Kanji, 11
Katakana, 11
linguistic introduction, 11

Japanese-specific printer support, 57
Java internationalization, 164
ja_JP.PCK, 53
JLE Binary, 57
JumpStart, 29

K
Kanji in Japanese, 11
Katakana in Japanese, 11
key compose sequences, 25
Keyboard Selection, 222
keyboards, 12

Changing keyboards on x86, 27
Changing on SPARC, 26
Czech, 25
Hungarian, 25
Latvian, 25
Lithuanian, 25
Polish, 25
Support in Solaris 2.6, 26
Turkish, 25

Korean package files, 125
Korean Solaris, 3
Korean text

Hangul, 11
Hanja, 11
linguistic introduction, 11

krona, 9
krone, 9

kroner, 9
KSC-5700, 46

L
LANG, 65
LANG environment variable, 65, 184
language, 3
Language Conversion Library, 187
language engine, 195
language-dependent rendering., 6
Latin-1 compose sequences, 76, 77, 80
Latin-2 compose sequences, 81, 82
Latin-4 compose sequences, 82 to 84
Latin-5 compose sequences, 84, 90
Latin-n terminals, 69
Latvian keyboards, 25
Layout behavior, 200
Layout Direction, 215
Layout Modifier Orientation, 199
Layout Services, 199
layoutDirection, 216
LayoutObject, 197, 199
LCL, 187
LC_ALL, 4
LC_COLLATE, 5, 6
LC_CTYPE, 5
LC_MESSAGES, 6
LC_MONETARY, 5
LC_NUMERIC, 5
LC_TIME, 5
left-character(), 203
libc, 168, 171
libintl, 169
libraries, linking applications to, 168
libw, 169
Ligation, 195
ligatures, 195
linking applications, 168
lira, 9
list separators, 9
Lithuanian keyboards, 25
loading

STREAMS modules, 67, 68
locale, 3
locale utility, 65
locale(1), 65

Index-228 Solaris Internationalization Guide For Developers ♦ October 1998

locales, 2 to 4, 24
categories of, 5
compose sequences, 25
core, 17 to 19
database, 163, 167
environment variables, 65, 184
extended, 17, 22, 23
font format, 25
full, 4
operating system, 17
partial, 4, 17
what is..., 3
window system, 17

localization, 2
localization resource category, 182
LO_LTYPE, 6
lpadmin command, 90
lpfilter command, 90
lpr command, 90
@ls numerals=:national, 200
@ls numerals=nominal:national, 200

M
macros

ctype, 171
mail interchange, 187
markka, 9
mbtowcs, 171
mbtwoc, 171
message catalogs, creating, 179
metric system, 13
modinfo command, 67
modload command, 68
Motif 2.1, 2
Mouse Selection, 221
mp(1), 189
multi-byte Unicode representation, 17
multibyte file code, 171
multiple input, 1
mystreams file, 71
m_create_layout(), 199

N
NULL (0x00), 164
number of characters, 10
Numbers, 8

Numeral shaping, 195
numeral shaping, 196
Numerals, 217
NUMERALS_CONTEXTUAL, 217
NUMERALS_NATIONAL, 200
NUMERALS_NOMINAL, 200
numeric conventions, 8

O
ogonek, 26
OLIT Reference Manual, xix
on-screen computer output,
OpenWindows

changes, 188
using fonts for locales, 25

operating system locale, 17
order for sorting, 10
ordering documentation, xix
Orientation, 200
OSF/Motif Programmer’s Guide, xix
OSF/Motif Programmer’s Reference, xix
outline fonts, 44
OutToInp, 202

P
packages

adding, 95
Page Description Language (PDL)

interpreters, 182
page sizes, 14
paper sizes, 14
partial locales, 17
Partial Solaris locale, 4
PDL interpreters, 182
People’s Republic of China, 2, 12
peseta, 9
pinyin in Chinese, 12
pkgadd command, 95
pkgchk command, 96
PLS, 195
Polish

character support, 24
keyboards, 25

Portable Layout Services (PLS)
PLS, 195

Index-229

Porting Instructions, 223
positional variation, 196
POSIX, 183
postprint(1), 189
PostScipt printer, 2
PostScript, 44, 182

output, 90
support under Solaris, 189
Type 1 fonts, 44

PostScript Language Reference Manual, xix,
182

PostScript Language Reference Manual
Supplement, xix, 182

pound, 9
printing, 90
printing support

Asian, 191
European, 189
Japanese, 57

Programming the Display PostScript System
with X, xix, 182

Property, 202
pseudo-XOC, 197
punctuation, 13

R
radix, 8
radix characters, 8
region, 3
remote package server

installing software from, 97, 98
Render Table, 218
Rendition, 217
Russian

character support, 24

S
saving

STREAMS modules settings, 71
sbin/sh, 168
/sbin/sh command, 168
Scandinavian and Baltic language character

support, 24
script selection, 75
segment ordering, 195
separators

list, 9
thousands, 8
word, 10

setenv command, 65
setlocale man page, 65
setting

terminal options, 70
setup

TTY environment, 66
ShapeCharset, 200, 217
Shift-JIS codeset, 163
shortcuts. , see compose sequences,
Simple Mail Transfer Protocol, 187
single-display clients, 184
Slash (0x2f), 164
Smallberg, David, xviii, 14
SMTP, 187
Solaris

Asian, 44
Austrian, 36
base product, 17, 23
Chinese, 49
contents, 31
Czech, 36
Eastern European, 3
English, 31
Estonian, 36
European, 31
French, 2, 31
German, 2, 31
Greek, 36
Hungarian, 36
Italian, 2, 31
Japanese, 3, 53
Japanese printing support, 191
Korean, 3, 45
Latvian, 36
Lithuanian, 36
localized products in, 2
Polish, 36
PostScript support, 189
Russian, 36
Simplified Chinese, 3
Spanish, 2, 31
Swedish, 2, 31
Traditional Chinese, 3
Turkish, 36

Index-230 Solaris Internationalization Guide For Developers ♦ October 1998

sort order, 10
Spanish

character support, 24
package files, 102

SPARC architecture, xvii
SPARC keyboards, 26
standalone system

adding packages to, 95, 96
standards

interface, 183
internationalization, 183

stateless file code encodings, 164
static and dynamic text, 195
static linking, 168
strchg command, 69
strconf command, 70
STREAMS modules

loading, 67, 68
saving settings, 71

String validation, 196
String XmTextFieldGetLayoutModifier, 211
stty command, 71
stub entry points, in libw and libintl, 169
su command, 67
SunDocs program, xix
SUNWpldte, 25
SUNWploc, 17
SUNWploc1, 17, 25
SUNWplow, 17
SUNWplow1, 17, 25
Swedish package files, 103
symbols, 13
Symmetrical swapping, 195
system libraries

linking applications to, 168

T
tabbing, 195
Tabbing Behavior, 221
tail side module, 66
terminal options, setting, 70
terminal support for Latin-1, Latin-2, or

KOI8-R, 69
terminals

Latin-n, 69
Latin-n terminals, 69

text orientation, 195

text rendering, 195
Text Resources and Geometry, 222
TextField, 216, 213
TextShaping, 200
Thai text, 11
thousands separators, 8
time, 3
Time Formats, 6
time zones, 7
titles,
titles in language, 13
TTY environment setup, 66
TTY STREAMS, 57
Turkish

character support, 24
keyboards, 25

Tuthill, Bill, xviii, 14
Type 1 fonts, 44
TypeOfText, 200

U
u8lat1 STREAMS module, 69
u8lat2 STREAMS module, 69
UIL, 215
Unicode 2.0, 1, 17

support, 1
Universal Character Set Transformation

Format for 8 bits encoding, ,
see UTF-8 encoding,

user type,
usr/bin/ldd, 168
usr/ucb/stty, 70
/usr/ucb/stty directory, 70
UTF-8, 1
UTF-8 encoding, 23
utilities

genmsg, 179, 180
locale, 65
printing, 90

W
wcstombs, 171
wctomb, 171
Western European alphabets, 11

Index-231

Western European languages, character
support, 24

wide character
expression, 163
process code, 171

window system locale, 17
Wnn6, 53
words

delimiters, 10
order of, 10, 28

X
X Display PostScript, 182
X Window System, 182
X/DPS, 181
X/Open-Uniforum Joint Internationalization

Working Group, 23
X11 bitmap fonts, 90
x86

architecture, xvii
keyboards, 27

xetops, 191
XFontStruc, 185
Xlib dependencies, 186
XmALIGNMENT_CENTER, 201
XmALIGNMENT_END, 201
XmCR_MOVING_INSERT_CURSOR, 203, 204
XmDEFAULT_DIRECTION, 197
XmDirection, 198, 215
XmEDIT_LOGICAL, 201, 204, 205, 221
XmEDIT_VISUAL, 201, 204, 221
XmFontSet, 185
XmFont_IS_XO, 199
XmFONT_IS_XOC, 199, 219
XmLabel, 197, 217
XmLabelG, 197
XmList, 197
XmNalignment, 201, 216
XmNAlignment, 217
XmNeditPolicy, 201, 204, 221
XmNfont, 199

XmNfontName, 199
XmNfontType, 199
XmNgainPrimaryCallback, 204, 205
XmNlabelString, 217
XmNlayoutAttrObject, 199
XmNlayoutDirection, 197 to 199, 214, 216
XmNlayoutModifier, 197, 199, 200, 216, 217
XmNmotionVerifyCallback, 203, 204
XmNrenderTable, 201, 222
XmNrenditionTag, 201
XmRenderTableAddRenditions, 219
XmRendition, 197 to 201, 216, 215
XmRendition{Retrieve,Update}, 199
XmString, 198, 215
XmStringDirection, 198, 214
XmStringDirectionCreate, 214
XmSTRING_COMPONENT_DIRECTION, 197
XmSTRING_COMPONENT_LAYOUT_PUSH, 197
XmSTRING_COMPONENT_LOCALE_TEXT, 197
XmSTRING_COMPONENT_TEXT, 197
XmSTRING_COMPONENT_WIDECHAR_TEXT, 197
XmText, 197, 200, 201, 216
XmTextField, 197, 200, 201, 212
XmTextFieldGetLayoutModifier, 212
XmTextFieldSetLayoutModifier, 213
XmTextGetLayoutModifier, 212
XmTextSetLayoutModifier, 214
XoJIG, 23
XPG4 applications, 171
xutops, 191
xutops utility, 90
XView Developer’s Notes, xix
XView toolkit, 188

Y
yen, 9

Z
zh.GBK, 2
zhuyin in Chinese, 12

Index-232 Solaris Internationalization Guide For Developers ♦ October 1998

