Example 9-2 shows the producer/consumer problem with the producer and consumer in separate processes. The main routine maps zero-filled memory (that it shares with its child process) into its address space. Note that mutex_init() and cond_init() must be called because the type of the synchronization variables is USYNC_PROCESS.
A child process is created that runs the consumer. The parent runs the producer.
This example also shows the drivers for the producer and consumer. The producer_driver() simply reads characters from stdin and calls producer(). The consumer_driver() gets characters by calling consumer() and writes them to stdout.
The data structure for Example 9-2 is the same as that used for the solution with condition variables (see "Nested Locking with a Singly Linked List").
main() { int zfd; buffer_t *buffer; zfd = open("/dev/zero", O_RDWR); buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t), PROT_READ|PROT_WRITE, MAP_SHARED, zfd, 0); buffer->occupied = buffer->nextin = buffer->nextout = 0; mutex_init(&buffer->lock, USYNC_PROCESS, 0); cond_init(&buffer->less, USYNC_PROCESS, 0); cond_init(&buffer->more, USYNC_PROCESS, 0); if (fork() == 0) consumer_driver(buffer); else producer_driver(buffer); } void producer_driver(buffer_t *b) { int item; while (1) { item = getchar(); if (item == EOF) { producer(b, `\0'); break; } else producer(b, (char)item); } } void consumer_driver(buffer_t *b) { char item; while (1) { if ((item = consumer(b)) == '\0') break; putchar(item); } }
A child process is created to run the consumer; the parent runs the producer.