NSAPI Programmer’s Guide
Sun™ ONE Web Server

Version 6.1

817-6252-10
April 2004

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.

Copyright 2004 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, J2EE, JSP, Solaris, Sun ONE, iPlanet, and all Sun, Java, and Sun ONE-based trademarks
and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
Netscape is a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the US
and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

Mozilla is a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries.
Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of Sun
Microsystems, Inc. and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, Java, J2EE, JSP, Solaris, Sun ONE, et iPlanet sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et d’autre pays.

UNIX est une marque enregistree aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company Ltd.
Netscape est une marque de Netscape Communications Corporation aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

Mozilla est une marque de Netscape Communications Corporation aux Etats-Unis et a d'autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut étre reproduite sous quelque forme ou par
quelque moyen que ce soit sans 1’autorisation écrite préalable de Sun Microsystems, Inc. et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ETAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU A
UN BUT PARTICULIER OU DE NON CONTREFACON SONT EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES A LA LOL

Contents

About ThisGuide i it it et aa s 13
Who Should Use This Guide i 13
Using the Documentation 14
How This Guide Is Organized i 16
Documentation Conventions i 18
Product SUPPOrt 19
Chapter 1 SyntaxandUseofobj.conf......... ...ttt 21
How the Server Handles Requests from Clients o ... 22
HTTP BaSICS . v v vttt 22
NSAPLFIIters 24
Steps in the Request-handling Process i i i 24
Directives for Handling Requests i 25
Dynamic Reconfiguration 26
Server Instructions in obj.conf 26
Summary of the Directives i 27
Configuring HTTP CompPressionttt 30
The Objectand Client Tags i 32
The Object Tagt 32
Objects that Use the name Attribute i i, 33
Objects that Use the ppath Attribute 33

The Client Tag 34
Client Tag Parameters i i 34
Variables Defined inserver.xml 37
Flow of Controlinobj.conf 37
AuthTranso 38
NameTrans 38

4

How and When the Server Processes Other Objects, 39

PathCheck e e 40
ObJectTYPe . oo 40
Setting the Type By File Extension i i, 41
Forcing the Type o 41
Input . 43
OUtpUL .. 43
<374 T 44
Service Examples 44
Default Service DIreCtiVE . . . oottt et e e 46
AdALOg ..o 46
0 47
Changes in Function Flow 47
Internal Redirectsttt e e e e e e e 47
RS aItS .ottt 47
URI Translationttt e e et e e e e e ettt et et ettt e 48
Syntax Rules for Editing obj.conf 48
Order Of DIreCtVES . ..ottt e e e e e e e 48
Parameters 49
Case Sensitivity ... 49
SePATAtOrS . . .ottt 49
QUOLES .+ ottt ettt e e e e e e 49
SPACES .. 49
Line ContinuUationttt et e et it e e e 50
Path Nameso e e e e 50
(@003 501 4 1= o X =P 50
About obj.conf Directive Examples 50
Chapter 2 SAFsinthemagnus.confFilettt 53
CINAEXAINIE oottt e et e e e e e e e e 55
define-perf-bucket 57
ANS-CaChe-INito e e e 58
Ll XTIt ottt e e e e e 59
fleX-TOtate-TNatttt e e e e e 64
IOl ..o 65
TNl o e e e e e 67
F 0¥ R ot = Y 68
TN FIIEEr-0Tder . . . ot e e 69
INitJ2ee .. 70
NI E-UROMIE ... e 71
Load-moOdUleso e 72
Nt ale) o TcTo) LS o 1 73
Perf-init ... 73

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

POOLHINIL . 74

register-http-method 75
S €= 1 1< L P 76
thread-pool-init 77
Chapter 3 Creating CuStOM SAFSc.iiiiiiiiii i iiinaa i rararnnnnnnss 79
Future Compatibility Issues i 80
The SAF Interfacettt e e e et e e e et e et e 80
SAF Parametersottt ittt e et e e e e e 80
pb (parameter block) 81

STL (SESSION) - e vt vttt e e e ettt et e e e e e e e e e e e e e e e e e 81

TG (TEQUESE) oo 82
ResUIt COdeS ..ottt e e e e e e 83
Creating and Using Custom SAFs 84
Wrrite the Source Codettt e e e e e e e e 84
Compileand Link 85
Include Directory and nsapi.h File i 85
LaDraries . ..ot e e 86
Linker Commands and Options for Generating a Shared Object 86
Additional Linker Flags 87
Compiler Flags 87
Compiling 3.x Plugins on AIX 88

Load and Initialize the SAF e 89
Instruct the Server to Call the SAFs e e 89
Restart the Server e e e e e 91
Test the SAF . ..o e e e 91
Overview of NSAPI C FUNCHONSottt i e e e ettt et et e 92
Parameter Block Manipulation Routines i 92
Protocol Utilities for Service SAFSt e 93
Memory Management 93
File /O i e e 94
NetwWork I/ O o e e 94
Treads . ..ot e e 94

L 5T 95
Virtual SerVerottt e 96
Required Behavior of SAFs for Each Directive oo 96
NIt SA S ot e 97
AUthTrans SAFSo e e e e 98
NameTrans SAFS o e e e 98
PathCheck SAFS . ..ot e e e e e e e e e 98
ObjectType SAFS . ..o 99
Input SAFs ... 99
Output SAFs . ..o 99

6

SerVICE SA S . oo 100

Brror SAFS . .o e e 100
AdALOg SAFS . ..o 100
CGIto NSAPTI CONVETISION & . vttt ettt ettt et et e e e e ettt e e ettt ettt 101
Chapter 4 Creating CustomF Filters ..ottt et inenaenns 103
Future Compatibility Issues 103
The NSAPL Filter Interfaceo ot it e e e et et et ettt 104
Filter Methodsot e e e et e e e e 104
C Prototypes for Filter Methods 104
91T 105
<310 0 10)72 < 106
LU o 106
TEAA . oot e 106
7 < 107
7 T (< 107
SENAIIlE ... 107
Position of Filtersin the Filter Stack i e e 108
Filters that Alter Content-Length 110
Creating and Using Custom Filters i i 111
Wrrite the Source Codettt e e e e e e e 111
Compileand Link 112
Load and Initialize the Filter i e et et 112
Instruct the Server to Insert the Filter i e 113
Restart the Server e e e e e 114
Test the FIltert e e e e et et et et e et e 114
Overview of NSAPI Functions for Filter Development 114
Chapter 5 Examples of Custom SAFsandFiltersiiiiiiiinnnnnns 115
Examplesinthe Build 116
AuthTrans Example 117
Installing the Example 117
SOUTCE COAR ..ttt ettt e e e s 118
NameTrans Example 119
Installing the Example 120
SOUTCE COR .. ittt ettt e e e e 120
PathCheck Example 123
Installing the Example 123
SOUTCE COR .. ittt ittt e et e e 124
ObjectType Example o 126
Installing the Example 127
SOUTCE COAR ..ttt ettt e e e 127

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Output Example ... 129

Installing the Example 129
SOUICE COAE .ottt e e e e 129
Service Example 135
Installing the Example 136
SOUICE COAE .ottt ettt e e e 136
More Complex Service Example 138
AddLog Example i 138
Installing the Example 139
SOUICE COAE .ottt ettt e e e e e e 139
Quality of Service Example 141
Installing the Example 141
SOUICE COAE .ottt ettt e e e e e 141
Chapter 6 Creating Custom Server-parsed HTMLTagscvvviriinrnrnnnnnns 149
Define the Functions that Implementthe Tag 150
Write an Initialization FUNCHON i e i et 154
Load the New Tagintothe Server 154
Chapter 7 NSAPIFunction Referenceciiiiiiiiiiinnnnernrnrnnnnnns 155
NSAPI Functions (in Alphabetical Order) 155
CALLOC ..o e e 156
CNfO_fINd ... 156
CONAVAT_INIE ..ottt ettt et et e e e e s 157
condvar_notify 158
condvar_terminateo ittt s 158
CONAVAT_WALE .« oottt et ettt e et e e e et e e e e e e e s 159
(a0 o L <1 <) o PP 159
Tl XAt . ottt e e 160
£a) s L 5 PP 160
Crit_terminatet e e e e 161
daemon_atresStartt e s 161
fO O 162
ol o 1o =T 163
filebuf_buf2sd e 163
FlebUL_ClOSE . ..ottt e s 164
filebuf_getc 165
filebuf_open 165
filebuf_open_nostat 166
FIEET_Create . ..ottt e e e 167
flter_find ... e 168
FtEr_INSEIt .ottt e 169

8

filter_layer 169

fIOr _NAINE . ..o 170
IO TOIMOVE . oot 170
fIUSI .o e 171
FREE .. e 172
UG OXOC . oottt e e e 172
fUNC_fINd . .o 173
FUNC NS Tt . oot e e e 173
91T 174
Jog @ITOT ..o 175
M A LLOC o e 176
net_flUSh ... 177
net_ip2host 177
Net_reaAd . . oo 178
net_sendfile 179
Nl WII e . .o 180
netbuf _buf2sd 181
Netbuf_CloSe 181
netbuf_getc 182
netbuf_grab 182
netbuf_open 183
nsapi_module_init 183
NSAPI_RUNTIME_VERSIONttt it e et it et e 184
NSAPL _VERSION ...ttt e e e et e e e e e e e e e e 185
PATAM_CIEAte e 185
Param_free 186
PPIOCK _COPY oot 186
pblock_create 187
pblock _dup ... o 187
pblock_find 188
pblock_findval 189
pblock_free 189
pblock_nninsert 190
pblock _nvinsert 190
PPlock _pb2enyv 191
pblock_pblock2str 191
PPloCK_PInsert o 192
Pblock_remove 193
pblock_str2pblock 193
PERM _CALLOC .. e e e e et e e e e e e e e e 194
PERM _FREE . ..o e e e e e 195
PERM M A LLOC ..ot e e e e e e e e e 195
PERM _REALLOC .. et e e e e e e e e e e e e 196

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

PERM_STRDURPttt et e e e e e e e e e e e e 197

prepare_nsapi_thread 197
protocol_dump822 198
protocol_set_finfo 199
protocol_start_reSponse 199
protocol_status 200
protocol_uri2url 201
protocol_uri2url_dynamic 202
TEAA .ot 203
REALLOC . e e e e e e e e e 204
<30 10)72 < 204
TeqUESt_get_ VS ... 205
request_header 205
request_stat_path 206
request_translate_uri........ 207
SENAIlE ... 208
SESSION_AIIS & ottt ettt e e e e e e e 209
SESSION_IMAXAIIS . . oot ettt ettt et e e e e e e e e e e e 209
SheXP_CaSECINP\t 210
SheXP_CINP .o 210
shexp_match 211
shexp_valid 212
STRDUP ..t e e e e 213
SYSEEIM_EITINSG e 213
System_fcloSe 214
system_floCK 215
system_fopenRO 215
system_fopenRW 216
system_fopenWA ... 216
system_fread ... 217
system_fwrite 217
system_fwrite_atomic 218
system_gmtime 219
system_localtime 219
system_lseek 220
SYSEEM_IeName 221
system_ulock 221
system_unix2local 222
systhread_attach 222
systhread_current 223
systhread_getdata 223
systhread_newkey 224
systhread_setdata 224

10

systhread_sleep i 225

systhread_start 225
systhread_timerset........ 226
USE_NSAPI_VERSION ...ttt e e e e e et e et e e 226
U AN OXOC . ottt 228
util_chdir2path 228
util_chdir2path 229
util_cookie_find 229
Ut env_find ... 230
U eV fTee . . o 230
util_env_replace 231
U NV ST L oo e 231
util_getline 232
Ut hoStname e 232
util_is mozilla 233
U IS UL o 233
L8R o Y= Y 234
util ater _than 234
util_sh_escape 235
util_snprintf 235
util_sprintf ... 236
Utl_StrcasecmP 237
U St M .. o 237
Util_StrNCaseCNDo 238
Utl_UTI_eSCape 239
UL UTT S Vil .. 239
UL UTI_Parse 240
util_uri_unescape 240
util_vsnprintf 241
util_vsprintf 242
VS_alloC Slot ..o 242
vs_get_data 243
vs_get_default_httpd_object 243
VS_get_dOC_TOOt 244
vs_get_httpd_objset 244
VS_get_id ... 245
vs_get_mime_type 245
vs_lookup_config var 246
VS_register_Chb 246
VS_Set_data . ..ot 247
VS_tTanSlate_UIT ... oottt 248
7 (< 248
7 T (< 249

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Chapter 8 Data Structure Referenceciiiiiiiiiiiii i iiiiarnnnnnns 251

Privatization of Some Data Structuresottt e e e e 252
<L) (o) W 253
PPIOCK .o 253
P entTY 254
PD_Param 254
SESSION->CHENE . . ottt et e e e e 254
Request 255
1] 7 | 256
1S3 010 T<3's o N 256
IO o et e e e e 257
sendfiledata i e 257
FaOr oot e e 258
33T =3 4 @0 4 S 258
FlterLayert 258
FilterMethods e e e e e 259
Chapter 9 Using Wildcard Patternsc.iiiiiiiiiiiiii e iaarnnnnnns 261
Wildeard Patternsttt e e e e 261
Wildcard Examples o 262
Chapter 10 Time Formatsciiiiriiii it iie et rnnaernnaernnnnaannnns 265
Chapter 11 Dynamic Results Caching Functions, 267
dr_cache_destroy 268
dr_cache_nit e 269
dr_cache_refresh i 270
1o B T=1 A7 o 8 <P 271
ol 4 U=y B 1 L <P 274
Chapter 12 Hypertext Transfer Protocolttt iiiinnens 277
Complianceo 277
Requests 278

Request Method, URI, and Protocol Version 278

Request Headers i e 278

Request Data 279
ReSpOnSes 279

HTTP Protocol Version, Status Code, and Reason Phraseccovou... 279

Response Headers i 281

Response Data 281
Buffered Streams i 282

11

12

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

About This Guide

This guide discusses how to use Netscape Server Application Programmer's
Interface (NSAPI) to build plugins that define Server Application Functions (SAFs)
to extend and modify Sun™ Open Net Environment (Sun ONE) Web Server 6.1.
The guide also provides a reference of the NSAPI functions you can use to define
new plugins.

This preface contains the following topics:

Who Should Use This Guide
Using the Documentation
How This Guide Is Organized
Documentation Conventions

Product Support

Who Should Use This Guide

The intended audience for this guide is the person who develops, assembles, and
deploys NSAPI plugins in a corporate enterprise. This guide assumes you are
familiar with the following topics:

HTTP

HTML

NSAPI

C programming

Software development processes, including debugging and source code
control

13

Using the Documentation

Using the Documentation

The Sun ONE Web Server manuals are available as online files in PDF and HTML
formats from the following location:

http://docs.sun.com/db/prod/slwebsrvithic

The following table lists the tasks and concepts described in the Sun ONE Web
Server manuals.

Table1 Sun ONE Web Server Documentation Roadmap

For Information About See the Following

Late-breaking information about the Release Notes
software and documentation

Getting started with Sun ONE Web Server, Getting Started Guide
including hands-on exercises that

introduce server basics and features

(recommended for first-time users)

Performing installation and migration Installation and Migration Guide
tasks:

¢ Installing Sun ONE Web Server and its
various components, supported
platforms, and environments

e Migrating from Sun ONE Web Server
4.1 or 6.0 to Sun ONE Web Server 6.1

14 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

http://docs.sun.com/db/prod/s1websrv#hic

Using the Documentation

Table1 Sun ONE Web Server Documentation Roadmap
For Information About See the Following

Performing the following administration Administrator’s Guide
tasks:

¢ Using the Administration and
command-line interfaces

¢ Configuring server preferences
¢ Using server instances
* Monitoring and logging server activity

¢ Using certificates and public key
cryptography to secure the server

¢ Configuring access control to secure
the server

e Using Java™ 2 Platform, Enterprise
Edition (J2EE™ platform) security
features

¢ Deploying applications
* Managing virtual servers

¢ Defining server workload and sizing
the system to meet performance needs

* Searching the contents and attributes
of server documents, and creating a
text search interface

¢ Configuring the server for content
compression

¢ Configuring the server for web
publishing and content authoring
using WebDAV

Using programming technologies and Programmer’s Guide
APIs to do the following:

¢ Extend and modify Sun ONE Web
Server

¢ Dynamically generate content in
response to client requests

* Modify the content of the server

About This Guide 15

How This Guide Is Organized

Table1 Sun ONE Web Server Documentation Roadmap

For Information About See the Following

Creating custom Netscape Server NSAPI Programmer’s Guide

Application Programmer’s Interface

(NSAPI) plugins

Implementing servlets and JavaServer Programmer’s Guide to Web Applications
Pages™ (JSP™) technology in Sun ONE

Web Server

Editing configuration files Administrator’s Configuration File Reference

Tuning Sun ONE Web Server to optimize Performance Tuning, Sizing, and Scaling
performance Guide

How This Guide Is Organized

This guide has the following chapters:

16

Chapter 1, “Syntax and Use of obj.conf”

This chapter describes the configuration file obj . conf. The chapter discusses
the syntax and use of directives in this file, which instruct the server how to
process HTTP requests.

Chapter 2, “SAFs in the magnus.conf File”

This chapter discusses the SAFs you can set in the configuration file
magnus . conf to configure the Sun ONE Web Server during initialization.

Chapter 3, “Creating Custom SAFs”

This chapter discusses how to create your own plugins that define new SAFs to
modify or extend the way the server handles requests.

Chapter 4, “Creating Custom Filters”

This chapter discusses how to create your own custom filters that you can use
to intercept, and potentially modify, incoming content presented to or
generated by another function.

Chapter 5, “Examples of Custom SAFs and Filters”

This chapter describes examples of custom SAFs to use at each stage in the
request-handling process.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

How This Guide Is Organized

Chapter 6, “Creating Custom Server-parsed HTML Tags”
This chapter explains how to create custom server-parsed HTML tags.
Chapter 7, “NSAPI Function Reference”

This chapter presents a reference of the NSAPI functions. You use NSAPI
functions to define SAFs.

Chapter 8, “Data Structure Reference”
This chapter discusses some of the commonly used NSAPI data structures.
Chapter 9, “Using Wildcard Patterns”

This chapter lists the wildcard patterns you can use when specifying values in
obj.conf and various predefined SAFs.

Chapter 10, “Time Formats”

This chapter lists time formats.

Chapter 11, “Dynamic Results Caching Functions”

This chapter explains how to create a results caching plugin.
Chapter 12, “Hypertext Transfer Protocol”

This chapter gives an overview of HTTP.

Appendix A, “Alphabetical List of NSAPI Functions and Macros”

This appendix provides an alphabetical list of NSAPI functions and macros.

About This Guide 17

Documentation Conventions

Documentation Conventions

This section describes the types of conventions used throughout this guide.
¢ File and directory paths

These are given in UNIX® format (with forward slashes separating directory
names). For Windows versions, the directory paths are the same, except that
backslashes are used to separate directories.

e URLs are given in the format:
http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server's directory structure; and file is
an individual file name. Italic items in URLs are placeholders.

e Font conventions include:

o The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
path names, directory names, and HTML tags.

o Italic monospace type is used for code variables.

o Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

o Bold typeis used as either a paragraph lead-in or to indicate words used in
the literal sense.

¢ Installation root directories are indicated by install_dir in this guide.
By default, the location of install_dir is as follows:
o On UNIX-based platforms: /opt/SUNWwbsvr/

o On Windows: C:\Sun\WebServer6.1

18 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Product Support

Product Support

If you have problems with your system, contact customer support using one of the
following mechanisms:

¢ The online support web site at:
http://www.sun.com/supportraining/
e The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

e Description of the problem, including the situation where the problem occurs
and its impact on your operation.

* Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem.

® Detailed steps on the methods you have used to reproduce the problem.

¢ Any error logs or core dumps.

About This Guide 19

http://www.sun.com/supportraining/

Product Support

20 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide * April 2004

Chapter 1

Syntax and Use of obj.conf

The obj . conf configuration file contains directives that instruct the Sun™ Open
Net Environment (Sun ONE) Web Server how to handle HTTP and HTTPS
requests from clients and service web server content such as native server plugins
and CGI programs. You can modify and extend the request-handling process by
adding or changing the instructions in obj . conf.

All obj . conf files are located in the instance_dir/config directory, where
instance_dir is the path to the installation directory of the server instance. There is
one obj . conf file for each virtual server class, unless several virtual server classes
are configured to share an obj.conf file. Whenever this guide refers to "the
obj.conf file," it refers to all obj . conf files or to the obj . conf file for the virtual
server class being described.

By default, the obj . conf file for the initial virtual server class is named obj . conf,
and the obj . conf files for the administrator-defined virtual server classes are
named virtual_ server class_id.obj.conf. Editing one of these files directly or
through the Administration interface changes the configuration of a virtual server
class.

This chapter discusses server instructions in obj . conf, the use of OBJECT tags, the
use of variables, the flow of control in obj . conf, the syntax rules for editing
obj.conf, and a note about example directives.

NOTE For detailed information about the standard directives and
predefined Server Application Functions (SAFs) that are used in the
obj . conf file, see the Sun ONE Web Server 6.1 Administrator’s
Configuration File Reference.

21

How the Server Handles Requests from Clients

This chapter has the following sections:

* How the Server Handles Requests from Clients
¢ Dynamic Reconfiguration

¢ Server Instructions in obj.conf

e Configuring HTTP Compression

e The Object and Client Tags

® Variables Defined in server.xml

¢ Flow of Control in obj.conf

* Changes in Function Flow

e Syntax Rules for Editing obj.conf

e About obj.conf Directive Examples

How the Server Handles Requests from Clients

22

Sun ONE Web Server is a web server that accepts and responds to Hypertext
Transfer Protocol (HTTP) requests. Browsers such as Netscape™ Communicator
communicate using several protocols including HTTP and FTP. The Sun ONE Web
Server handles HTTP specifically.

For more information about the HTTP protocol, refer to Chapter 12, “Hypertext
Transfer Protocol” and also the latest HTTP specification.

HTTP Basics

As a quick summary, the HTTP /1.1 protocol works as follows:

¢ The client (usually a browser) opens a connection to the server and sends a
request.

* The server processes the request, generates a response, and closes the
connection if it finds a Connection: Close header.

The request consists of a line indicating a method such as GET or poST, a Universal
Resource Identifier (URI) indicating which resource is being requested, and an
HTTP protocol version separated by spaces.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

How the Server Handles Requests from Clients

This is normally followed by a number of headers, a blank line indicating the end
of the headers, and sometimes body data. Headers may provide various
information about the request or the client body data. Headers are typically only
sent for POST and PUT methods.

The example request shown below would be sent by a Netscape browser to request
the server foo. com to send back the resource in /index.html. In this example, no
body data is sent because the method is GET (the point of the request is to get some
data, not to send it).

GET /index.html HTTP/1.0

User-agent: Mozilla

Accept: text/html, text/plain, image/jpeg, image/gif, */*
Host: foo.com

The server receives the request and processes it. It handles each request
individually, although it may process many requests simultaneously. Each request
is broken down into a series of steps that together make up the request-handling
process.

The server generates a response that includes the HTTP protocol version, HTTP
status code, and a reason phrase separated by spaces. This is normally followed by
a number of headers. The end of the headers is indicated by a blank line. The body
data of the response follows. A typical HTTP response might look like this:

HTTP/1.0 200 OK

Server: Sun-ONE-Web-Server/6.1
Content-type: text/html
Content-length: 83

<HTML>

<HEAD><TITLE>Hello World</Title></HEAD>
<BODY>Hello World</BODY>

</HTML>

Chapter 1 Syntax and Use of obj.conf 23

How the Server Handles Requests from Clients

24

The status code and reason phrase tell the client how the server handled the
request. Normally the status code 200 is returned, indicating that the request was
handled successfully and the body data contains the requested item. Other result
codes indicate redirection to another server or the browser’s cache, or various types
of HTTP errors such as 404 Not Found.

NSAPI Filters

In previous versions of the Web Server, the NSAPI API allowed multiple Server
Application Functions (SAFs) to interact in request processing. For example, one
SAF could be used to authenticate the client after which a second SAF would
generate the content.

In addition to the existing NSAPI interfaces, Sun ONE Web Server introduces
NSAPI filters that enable a function to intercept (and potentially modify) the
content presented to or generated by another function.

For more information on NSAPI filters in Sun ONE Web Server 6.1, see Chapter 4,
“Creating Custom Filters.”

Two new NSAPI stages, Input and Output, can be used to insert filters in
obj.conf. The Input and Output stages are described later in this chapter.

Steps in the Request-handling Process

When the server first starts up it performs some initialization and then waits for an
HTTP request from a client (such as a browser). When it receives a request, it first
selects a virtual server. For details about how the virtual server is determined, see
the Sun ONE Web Server 6.1 Administrator’s Configuration File Reference Guide.

After the virtual server is selected, the obj . conf file for the virtual server class
specifies how the request is handled in the following steps:

1. AuthTrans (authorization translation)

Verify any authorization information (such as name and password) sent in the
request.

2. NameTrans (name translation)

Translate the logical URI into a local file system path.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

How the Server Handles Requests from Clients

3. PathCheck (path checking)

Check the local file system path for validity and check that the requestor has
access privileges to the requested resource on the file system.

4. ObjectType (object typing)

Determine the MIME-type (Multi-purpose Internet Mail Encoding) of the
requested resource (for example, text/html, image/gif, and so on).

5. Input (prepare to read input)
Select filters that will process incoming request data read by the service step.
6. Output (prepare to send output)

Select filters that will process outgoing response data generated by the
Service step.

7. Service (generate the response)

Generate and return the response to the client.
8. AddLog (adding log entries)

Add entries to log file(s).
9. Error (service)

This step is executed only if an error occurs in the previous steps. If an error
occurs, the server logs an error message and aborts the process.

Directives for Handling Requests

The file obj . conf contains a series of instructions, known as directives, that tell the
Sun ONE Web Server what to do at each stage in the request-handling process.
Each directive invokes a Server Application Function (SAF) with one or more
arguments. Each directive applies to a specific stage in the request-handling
process. The stages are AuthTrans, NameTrans, PathCheck, ObjectType, Input,
output, Service, and AddLog.

For example, the following directive applies during the NameTrans stage. It calls
the document -root function with the root argument set to
D://Sun/WebServer6l/Serverl/docs. (The document -root function translates
the http://server_name/ part of the URL to the document root, which in this
example is D: //Sun/WebServer61l/Serverl/docs.)

NameTrans fn="document-root" root="D:/Sun/WebServer6l/Serverl/docs"

Chapter 1 Syntax and Use of obj.conf 25

Dynamic Reconfiguration

The functions invoked by the directives in obj . conf are known as SAFs.

Dynamic Reconfiguration

You do not need to restart the server for changes to certain configuration files to
take effect (for example, obj . conf, mime. types, server.xml, and virtual
server-specific ACL files). All you need to do is apply the changes by clicking the
Apply link and then clicking the Load Configuration Files button on the Apply
Changes screen. If there are errors in installing the new configuration, the previous
configuration is restored.

When you edit obj . conf and apply the changes, a new configuration is loaded
into memory that contains all of the information from the dynamically
configurable files.

Every new connection references the newest configuration. Once the last session
referencing a configuration ends, the now unused old configuration is deleted.

Server Instructions in obj.conf

26

The obj . conf file contains directives that instruct the server how to handle
requests received from clients such as browsers. These directives appear inside
OBJECT tags.

Each directive calls a function, indicating when to call it and specifying arguments
for it.

The syntax of each directive is:

Directive fn=func-name namel="valuel"...nameN="valueN"

For example:

NameTrans fn="document-root" root="D:/Sun/WebServer6l/Serverl/docs"

Directive indicates when this instruction is executed during the request-handling
process. The value is one of AuthTrans, NameTrans, PathCheck, ObjectType,
Service, AddLog, and Error.

The value of the £fn argument is the name of the SAF to execute. All directives must
supply a value for the £n parameter; if there’s no function, the instruction won’t do
anything.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Server Instructions in obj.conf

The remaining parameters are the arguments needed by the function, and they
vary from function to function.

Sun ONE Web Server is shipped with a set of built-in Server Application Functions
(SAFs) that you can use to create and modify directives in obj . conf. For more
information about these predefined SAFs, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference. You can also define new SAFs, as
discussed in Chapter 3, “Creating Custom SAFs.”

The magnus . conf file contains Init directive SAFs that initialize the server. For
more information, see Chapter 2, “SAFs in the magnus.conf File.”

Summary of the Directives

Following are the categories of server directives and a description of what each
does. Each category corresponds to a stage in the request-handling process. The
section “Flow of Control in obj.conf” on page 37 explains exactly how the server
decides which directive or directives to execute in each stage.

NOTE For detailed information about the standard directives and
predefined Server Application Functions (SAFs) that are used in the
obj . conf file, see the Sun ONE Web Server 6.1 Administrator’s
Configuration File Reference.

® AuthTrans

Verifies any authorization information (normally sent in the Authorization
header) provided in the HTTP request and translates it into a user and/or a
group. Server access control occurs in two stages. AuthTrans verifies the
authenticity of the user. Later, PathCheck tests the user’s access privileges for
the requested resource.

AuthTrans fn=basic-auth userfn=ntauth auth-type=basic
userdb=none

This example calls the basic-auth function, which calls a custom function (in
this case ntauth, to verify authorization information sent by the client. The
Authorization header is sent as part of the basic server authorization scheme.

L4 NameTrans

Translates the URL specified in the request from a logical URL to a physical file
system path for the requested resource. This may also result in redirection to
another site. For example:

Chapter 1 Syntax and Use of obj.conf 27

Server Instructions in obj.conf

28

NameTrans fn="document-root"
root="D:/Sun/WebServerél/Serverl/docs"

This example calls the document - root function with a root argument of
D:/Sun/WebServeré6l/Serverl/docs. The function document -root function
translates the http://server_name/ part of the requested URL to the document
root, which in this case is D: /Sun/WebServer61/Serverl/docs. Thus a
request for http://server-name/docl.html is translated to
D:/Sun/WebServeré6l/Serverl/docs/docl.html.

PathCheck

Performs tests on the physical path determined by the NameTrans step. In
general, these tests determine whether the path is valid and whether the client
is allowed to access the requested resource. For example:

PathCheck fn="find-index" index-names="index.html, home.html"

This example calls the £ind-index function with an index-names argument of
index.html, home.html. If the requested URL is a directory, this function
instructs the server to look for a file called either index.html or home.html in
the requested directory.

ObjectType

Determines the MIME (Multi-purpose Internet Mail Encoding) type of the
requested resource. The MIME type has attributes type (which indicates
content type), encoding, and language. The MIME type is sent in the headers
of the response to the client. The MIME type also helps determine which
Service directive the server should execute.

The resulting type may be:

o A common document type such as text/html or image/gif (for example,
the file name extension .gif translates to the MIME type image/gif).

o Aninternal server type. Internal types always begin with
magnus-internal.

For example:
ObjectType fn="type-by-extension"

This example calls the type-by-extension function, which causes the server
to determine the MIME type according to the requested resource’s file
extension.

Input

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Server Instructions in obj.conf

Selects filters that will process incoming request data read by the service step.
The Input directive allows you to invoke the insert-filter SAF in order to
install filters that process incoming data. All Input directives are executed
when the server or a plugin first attempts to read entity body data from the
client. The Input directives are executed at most once per request. For
example:

Input fn="insert-filter" filter="http-decompression"

This directive instructs the insert-filter function to add a filter named
http-decompression to the filter stack, which would decompress incoming
HTTP request data before passing it to the Service step.

Output

Selects filters that will process outgoing response data generated by the
Service step. The output directive allows you to invoke the insert-filter
SAF to install filters that process outgoing data. All output directives are
executed when the server or a plugin first attempts to write entity body data
from the client. The output directives are executed at most once per request.
For example:

Output fn="insert-filter" filter="http-compression"

This directive instructs the insert-filter function to add a filter named
http-compression to the filter stack, which would compress outgoing HTTP
response data generated by the service step.

Service

Generates and sends the response to the client. This involves setting the HTTP
result status, setting up response headers (such as Content -Type and
Content-Length), and generating and sending the response data. The default
response is to invoke the send-file function to send the contents of the
requested file along with the appropriate header files to the client.

The default service directive is:

Service method=" (GET |HEAD|POST)" type="*~magnus-internal/*"
fn="send-file"

This directive instructs the server to call the send-£file function in response to
any request whose method is GET, HEAD, or POST, and whose type does not
begin with magnus-internal/. (Note the use of the special characters *~ to
mean “does not match.”)

Another example is:

Chapter 1 Syntax and Use of obj.conf 29

Configuring HTTP Compression

Service method=" (GET |HEAD)" type="magnus-internal/imagemap"
fn="imagemap"

In this case, if the method of the request is either GET or HEAD, and the type of
the requested resource is "magnus-internal/imagemap," the function
imagemap is called.

¢ AddLog

Adds an entry to a log file to record information about the transaction. For
example:

AddLog fn="flex-log" name="access"

This example calls the £f1ex-1og function to log information about the current
request in the log file named access.

L4 Error

Handles an HTTP error. This directive is invoked if a previous directive results
in an error. Typically the server handles an error by sending a custom HTML
document to the user describing the problem and possible solutions.

For example:

Error fn="send-error" reason="Unauthorized"
path="D:/Sun/WebServer6l/Serverl/errors/unauthorized.html"

In this example, the server sends the file in
D:/Sun/WebServeré6l/Serverl/errors/unauthorized.html whenever a
client requests a resource that it is not authorized to access.

Configuring HTTP Compression

When compression is enabled in the server, an entry gets added to the obj . conf
file. A sample entry is shown below:

Output fn="insert-filter" filter="http-compression" type="text/*"
Depending on the options specified, this line might also contain these options:
vary="on" compression-level="9"

To restrict compression to documents of only a particular type, or to exclude
browsers that don’t work well with compressed content, you would need to edit
the obj . conf file, as discussed below.

30 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

Configuring HTTP Compression

The option that appears as:
type="text/*"

restricts compression to documents that have a MIME type of text/+* (for example,
text/ascii, text/css, text/html, and so on). This can be modified to compress

only certain types of documents. If you want to compress only HTML documents,
for example, you would change the option to:

type="text/html"

Alternatively, you can specifically exclude browsers that are known to misbehave
when they receive compressed content (but still request it anyway) by using the
<Client> tag as follows:

<Client match="none"\

browser="*MSIE [1-3]*"\

browser="*MSIE [1-5]*Mac*"\

browser="Mozilla/[1-4] *Nav*">

Output fn="insert-filter" filter="http-compression" type="text/*"
</Client>

This restricts compression to browsers that are not any of the following;:
¢ Internet Explorer for Windows earlier than version 4

¢ Internet Explorer for Macintosh earlier than version 6

e Netscape Navigator/Communicator earlier than version 6

Internet Explorer on Windows earlier than version 4 may request compressed data
at times, but does not correctly support it. Internet Explorer on Macintosh earlier
than version 6 does the same. Netscape Communicator version 4.x requests
compression, but only correctly handles compressed HTML. It will not correctly
handle linked CSS or JavaScript from the compressed HTML, so administrators
often simply prevent their servers from sending any compressed content to that
browser (or earlier).

For more information about the <Client> tag, see the “The Client Tag” on page 34.

Chapter 1 Syntax and Use of obj.conf 31

The Object and Client Tags

The Object and Client Tags

32

This section discusses the use of <Object> and <Client> tags in the file obj . conf.

<Object> tags group directives that apply to requests for particular resources,
while <client> tags group directives that apply to requests received from specific
clients.

These tags are described in the following topics:
e The Object Tag
* The Client Tag

The Object Tag

Directives in the obj . conf file are grouped into objects that begin with an
<Object> tag and end with an </0Object> tag. The default object provides
instructions to the server about how to process requests by default. Each new
object modifies the default object’s behavior.

An Object tag may have a name attribute or a ppath attribute. Either parameter
may be a wildcard pattern. For example:

<Object name="cgi">
- Or -
<Object ppath="/usr/sun/webserver6l/serverl/docs/private/*">

The server always starts handling a request by processing the directives in the
default object. However, the server switches to processing directives in another
object after the NameTrans stage of the default object if either of the following
conditions is true:

e The successful NameTrans directive specifies a name argument.

¢ The physical path name that results from the NameTrans stage matches the
ppath attribute of another object.

When the server has been alerted to use an object other than the default object, it
processes the directives in the other object before processing the directives in the
default object. For some steps in the process, the server stops processing directives
in that particular stage (such as the service stage) as soon as one is successfully
executed, whereas for other stages the server processes all directives in that stage,
including the ones in the default object as well as those in the additional object. For
more details, see “Flow of Control in obj.conf” on page 37.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

The Object and Client Tags

Objects that Use the name Attribute

If a NameTrans directive in the default object specifies a name argument, the server
switches to processing the directives in the object of that name before processing
the remaining directives in the default object.

For example, the following NameTrans directive in the default object assigns the
name cgi to any request whose URL starts with http://server_name/cgi/:

<Object name="default"s>
NameTrans fn="pfx2dir" from="/cgi"
dir="D:/sun/webserveré6l/serverl/docs/mycgi" name="cgi"

</Object>

When that NameTrans directive is executed, the server starts processing directives
in the object named cgi:

<Object name="cgi">
more directives...
</Object>

Objects that Use the ppath Attribute

When the server finishes processing the NameTrans directives in the default object,
the logical URL of the request will have been converted to a physical path name. If
this physical path name matches the ppath attribute of another object in obj . conf,
the server switches to processing the directives in that object before processing the
remaining ones in the default object.

For example, the following NameTrans directive translates the
http://server_name/ part of the requested URL to
D:/Sun/WebServer6l/Serverl/docs/ (which is the document root directory):

<Object name="default"s>
NameTrans fn="document-root"
root="D:/Sun/WebServer6l/Serverl/docs"

</Object>

Chapter 1 Syntax and Use of obj.conf 33

The Object and Client Tags

34

The URL http://server_name/internalplani.html would be translated to
D:/Sun/WebServeré6l/Serverl/docs/internalplanl.html. However, suppose
that obj . conf contains the following additional object:

<Object ppath="*internal*">
more directives...
</Object>

In this case, the partial path *internal#* matches the path
D:/Sun/WebServer6l/Serverl/docs/internalplanl.html. So now the server
starts processing the directives in this object before processing the remaining
directives in the default object.

The Client Tag

The <client> tag is used to limit execution of a set of directives to requests
received from specific clients. Directives listed between the <Client> and
</Client> tags are executed only when information in the client request matches
the parameter values specified.

Client Tag Parameters

The following table lists the <Client> tag parameters.

Table 1-1 Client Tag Parameters

Parameter Description

browser User-agent string sent by a browser to the Web Server
chunked Boolean value set by a client requesting chunked encoding
code HTTP response code

dns DNS name of the client

internal Boolean value indicating internally generated request

ip IP address of the client

keep-alive Boolean value indicating the client has requested a

keep-alive connection

keysize Key size used in an SSL transaction

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

The Object and Client Tags

Table 1-1 Client Tag Parameters

Parameter Description

match Match mode for the <Client> tag; valid values are all,
any, and none

method HTTP method used by the browser

name Name of an object as specified in a previous NameTrans
statement

odds Sets a random value for evaluating the enclosed directive;
specified as either a percentage or a ratio (for example, 20%
or 1/5)

path Physical path to the requested resource

ppath Physical path of the requested resource

query Query string sent in the request

reason Text version of the HTTP response code

restarted Boolean value indicating a request has been restarted

secret-keysize
security

type

uri

urlhost

Secret key size used in an SSL transaction
Indicates an encrypted request

Type of document requested (such as text /html or
image/gif)

URI section of the request from the browser

DNS name of the virtual server requested by the client (the
value is provided in the Host header of the client request)

The <Client> tag parameters provide greater control over when and if directives
are executed. In the following example, use of the odds parameter gives a request a
25% chance of being redirected:

<Client odds="25%">

</Client>

NameTrans fn="redirect" from="/Pogues"
url-prefix="http://pogues.example.com"

One or more wildcard patterns can be used to specify Client tag parameter values.

Chapter 1 Syntax and Use of obj.conf

35

The Object and Client Tags

36

Wildcards can also be used to exclude clients that match the parameter value
specified in the <Client tag>. In the following example, the <Client> tag and the
AddLog directive are combined to direct the Web Server to log access requests from
all clients except those from the specified subnet:

<Client ip="~192.85.250.*">
AddLog fn="flex-log" name="access"
</Client>

Using the ~ wildcard negates the expression, so the Web Server excludes clients
from the specified subnet.

You can also create a negative match by setting the match parameter of the Client
tag to none. In the following example, access requests from the specified subnet are
excluded, as are all requests to the virtual server www. sunone. com:

<Client match="none" ip="192.85.250.*" urlhost="www.sunone.com">
AddLog fn="flex-log" name="access"
</Client>

For more information about wildcard patterns, see Chapter 9, “Using Wildcard
Patterns.”

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Variables Defined in server.xml

Variables Defined in server.xml

You can define variables in the server.xml file and reference them in an obj . conf
file. For example, the following server.xml code defines and uses a variable called
docroot:

<!DOCTYPE SERVER SYSTEM "server.dtd" [
<!ATTLIST VARS
docroot CDATA #IMPLIED

<VS id="a.com" connections="1sl" urlhosts="a.com"
mime="mimel" aclids="std">
<property name="docroot” value="/opt/SUNWwbsvr/docs” />
</VS>

You can reference the variable in obj . conf as follows:
NameTrans fn=document-root root="Sdocroot"

Using this docroot variable saves you from having to define document roots for
virtual server classes in the obj . conf files. It also allows you to define different
document roots for different virtual servers within the same virtual server class.

NOTE Variable substitution is allowed only in an obj . conf file. It is not
allowed in any other Sun ONE Web Server configuration files. Any
variable referenced in an obj . conf file must be defined in the
server.xml file.

For more information about defining variables, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference.

Flow of Control in obj.conf

Before the server can process a request, it must direct the request to the correct
virtual server. For details about how the virtual server is determined, see the Sun
ONE Web Server 6.1 Administrator’s Configuration File Reference.

After the virtual server is determined, the server executes the obj . conf file for the
virtual server class to which the virtual server belongs. This section discusses how
the server decides which directives to execute in obj . conf.

Chapter 1 Syntax and Use of obj.conf 37

Flow of Control in obj.conf

38

AuthTrans

When the server receives a request, it executes the AuthTrans directives in the
default object to check that the client is authorized to access the server.

If there is more than one AuthTrans directive, the server executes them all (unless
one of them results in an error). If an error occurs, the server skips all other
directives except for Error directives.

NameTrans

Next, the server executes a NameTrans directive in the default object to map the
logical URL of the requested resource to a physical path name on the server’s file
system. The server looks at each NameTrans directive in the default object in turn,
until it finds one that can be applied.

If there is more than one NameTrans directive in the default object, the server
considers each directive until one succeeds.

The NameTrans section in the default object must contain exactly one directive that
invokes the document - root function. This functions translates the
http://server_name/part of the requested URL to a physical directory that has
been designated as the server’s document root. For example:

NameTrans fn="document-root" root="D:/Sun/WebServer6l/serverl/docs"

The directive that invokes document - root must be the last directive in the
NameTrans section so that it is executed if no other NameTrans directive is
applicable.

The pfx2dir (prefix to directory) function is used to set up additional mappings
between URLs and directories. For example, the following directive translates the
URL http://server_name/cgi/ into the directory path name
D:/Sun/WebServer6l/serverl/docs/mycgi/:

NameTrans fn="pfx2dir" from="/cgi"
dir="D:/Sun/WebServer6l/serverl/docs/mycgi"

Notice that if this directive appeared after the one that calls document - root, it
would never be executed, with the result that the resultant directory path name
would be D: /Sun/WebServer61/serverl/docs/cgi/ (not mycgi). This illustrates
why the directive that invokes document - root must be the last one in the
NameTrans section.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Flow of Control in obj.conf

How and When the Server Processes Other Objects

As a result of executing a NameTrans directive, the server might start processing
directives in another object. This happens if the NameTrans directive that was
successfully executed specifies a name or generates a partial path that matches the
name Or ppath attribute of another object.

If the successful NameTrans directive assigns a name by specifying a name
argument, the server starts processing directives in the named object (defined with
the OBJECT tag) before processing directives in the default object for the rest of the
request-handling process.

For example, the following NameTrans directive in the default object assigns the
name cgi to any request whose URL starts with http: //server_name/cgi/.

<Object name="default"s>

NameTrans fn="pfx2dir" from="/cgi"
dir="D:/Sun/WebServeré6l/serverl/docs/mycgi" name="cgi"

</Object>

When that NameTrans directive is executed, the server starts processing directives
in the object named cgi:

<Object name="cgi">
more directives...
</Object>

When a NameTrans directive has been successfully executed, there will be a
physical path name associated with the requested resource. If the resultant path
name matches the ppath (partial path) attribute of another object, the server starts
processing directives in the other object before processing directives in the default
object for the rest of the request-handling process.

Chapter 1 Syntax and Use of obj.conf 39

Flow of Control in obj.conf

40

For example, suppose obj . conf contains an object as follows:

<Object ppath="*internal*">
more directives...
</Object>

Now suppose the successful NameTrans directive translates the requested URL to
the path name D: /Sun/WebServer6l/serverl/docs/internalplanl.html. In
this case, the partial path *internal* matches the path
D:/Sun/WebServer6l/serverl/docs/internalplanl.html. So now the server
would start processing the directives in this object before processing the remaining
directives in the default object.

PathCheck

After converting the logical URL of the requested resource to a physical path name
in the NameTrans step, the server executes PathCheck directives to verify that the
client is allowed to access the requested resource.

If there is more than one PathCheck directive, the server executes all of the
directives in the order in which they appear, unless one of the directives denies
access. If access is denied, the server switches to executing directives in the Exrror
section.

If the NameTrans directive assigned a name or generated a physical path name that
matches the name or ppath attribute of another object, the server first applies the
pathCheck directives in the matching object before applying the directives in the
default object.

ObjectType

Assuming that the PathCheck directives all approve access, the server next
executes the ObjectType directives to determine the MIME type of the request. The
MIME type has three attributes: type, encoding, and language. When the server
sends the response to the client, the type, 1anguage, and encoding values are
transmitted in the headers of the response. The type also frequently helps the
server to determine which service directive to execute to generate the response to
the client.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Flow of Control in obj.conf

If there is more than one ObjectType directive, the server applies all of the
directives in the order in which they appear. However, once a directive sets an
attribute of the MIME type, further attempts to set the same attribute are ignored.
The reason that all 0bjectType directives are applied is that one directive may set
one attribute, for example type, while another directive sets a different attribute,
such as language.

As with the pathCheck directives, if another object has been matched to the request
as a result of the NameTrans step, the server executes the 0bjectType directives in
the matching object before executing the objectType directives in the default
object.

Setting the Type By File Extension

Usually the default way the server figures out the MIME type is by calling the
type-by-extension function. This function instructs the server to look up the
MIME type according to the requested resource’s file extension in the MIME types
table. This table was created during virtual server initialization by the MIME types
file (which is usually called mime. types).

For example, the entry in the MIME types table for the extensions .html and . htmis
usually:

type=text/html exts=htm,html

which says that all files with the extension .htm or .html are text files formatted as
HTML, and the type is text/html.

Note that if you make changes to the MIME types file, you must reconfigure the
server before those changes can take effect.

For more information about MIME types, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference Guide.

Forcing the Type

If no previous ObjectType directive has set the type, and the server does not find a
matching file extension in the MIME types table, the type still has no value even after
type-by-expression has been executed. Usually if the server does not recognize
the file extension, it is a good idea to force the type to be text/plain, so that the
content of the resource is treated as plain text. There are also other situations where
you might want to set the type regardless of the file extension, such as forcing all
resources in the designated CGI directory to have the MIME type

magnus-internal/cgi.

The function that forces the type is force-type.

Chapter 1 Syntax and Use of obj.conf 41

Flow of Control in obj.conf

42

For example, the following directives first instruct the server to look in the MIME
types table for the MIME type, then if the type attribute has not been set (that is,
the file extension was not found in the MIME types table), set the type attribute to
text/plain.

ObjectType fn="type-by-extension"
ObjectType fn="force-type" type="text/plain"

If the server receives a request for a file abc . dogs, it looks in the MIME types table,
does not find a mapping for the extension . dogs, and consequently does not set the
type attribute. Since the type attribute has not already been set, the second
directive is successful, forcing the type attribute to text/plain.

The following example illustrates another use of force-type. In this example, the
type is forced to magnus-internal/cgi before the server gets a chance to look in
the MIME types table. In this case, all requests for resources in
http://server_name/cgi/ are translated into requests for resources in the
directory D: /Sun/WebServer61l/serverl/docs/mycgi/. Since a name is assigned
to the request, the server processes ObjectType directives in the object named cgi
before processing the ones in the default object. This object has one objectType
directive, which forces the type to be magnus-internal/cgi.

NameTrans fn="pfx2dir" from="/cgi"
dir="D:/Sun/WebServer6l/serverl/docs/mycgi" name="cgi"
<Object name="cgi">

ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi"

</Object>

The server continues processing all 0bjectType directives including those in the
default object, but since the type attribute has already been set, no other directive
can set it to another value.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Flow of Control in obj.conf

Input

The Input directive selects filters that will process incoming request data read by
the service step. It allows you to invoke the insert-filter SAF in order to
install filters that process incoming data.

The Input directives are executed at most once per request.

You can define the appropriate position of a specific filter within the filter stack.
For example, filters that translate content from XML to HTML are placed higher in
the filter stack than filters that compress data for transmission. You can use the
filter create function to define the filter's position in the filter stack, and
init-filter-order to override the defined position.

When two or more filters are defined to occupy the same position in the filter stack,
filters that were inserted later will appear higher than filters that were inserted
earlier. That is, the order of Input fn="insert-filter" and Output
fn="insert-filter" directivesin obj.conf becomesimportant.

For more information, see “Chapter 4, “Creating Custom Filters.”

Output

The output directive selects filters that will process outgoing response data
generated by the service step. The output directive allows you to invoke the
insert-filter SAF to install filters that process outgoing data. All output
directives are executed when the server or a plugin first attempts to write entity
body data from the client.

The output directives are executed at most once per request.

You can define the appropriate position of a specific filter within the filter stack.
For example, filters that translate content from XML to HTML are placed higher in
the filter stack than filters that compress data for transmission. You can use the
filter create function to define the filter's position in the filter stack,
init-filter-order to override the defined position.

When two or more filters are defined to occupy the same position in the filter stack,
filters that were inserted later will appear higher than filters that were inserted
earlier. That is, the order of Input fn="insert-filter" and Output
fn="insert-filter" directivesin obj.conf becomesimportant.

For more information, see Chapter 4, “Creating Custom Filters.”

Chapter 1 Syntax and Use of obj.conf 43

Flow of Control in obj.conf

44

Service

Next, the server needs to execute a Service directive to generate the response to
send to the client. The server looks at each Service directive in turn, to find the
first one that matches the type, method and query string. If a Service directive
does not specify type, method, or query string, then the unspecified attribute
matches anything.

If there is more than one service directive, the server applies the first one that
matches the conditions of the request, and ignores all remaining Service
directives.

As with the pathCheck and ObjectType directives, if another object has been
matched to the request as a result of the NameTrans step, the server considers the
Service directives in the matching object before considering the ones in the default
object. If the server successfully executes a Service directive in the matching
object, it will not get around to executing the Service directives in the default
object, since it only executes one service directive.

Service Examples

For an example of how Service directives work, consider what happens when the
server receives a request for the URL D: /server_name/jos.html. In this case, all
directives executed by the server are in the default object.

¢ The following NameTrans directive translates the requested URL to
D:/Sun/WebServer6l/serverl/docs/jos.html:

NameTrans fn="document-root"
root="D:/Sun/WebServerél/serverl/docs"

e Assume that the Pathcheck directives all succeed.

* The following objectType directive tells the server to look up the resource’s
MIME type in the MIME types table:

ObjectType fn="type-by-extension"

¢ The server finds the following entry in the MIME types table, which sets the
type attribute to text/html:

type=text/html exts=htm,html

* The server invokes the following Service directive. The value of the type
parameter matches anything that does not begin with magnus-internal/. (For
a list of all wildcard patterns, see Chapter 9, “Using Wildcard Patterns.”) This
directive sends the requested file, jos.html, to the client.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Flow of Control in obj.conf

Service method=" (GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file""

Here is an example that involves using another object:

¢ The following NameTrans directive assigns the name personnel to the
request.

NameTrans fn=assign-name name=personnel from=/personnel

® Asaresult of the name assignment, the server switches to processing the
directives in the object named personnel. This object is defined as:

<Object name="personnel">
Service fn="index-simple"
</Object>

* The personnel object has no PathCheck or ObjectType directives, so the server
processes the PathCheck and ObjectType directives in the default object.
Let's assume that all PathCheck and ObjectType directives succeed.

e When processing service directives, the server starts by considering the
Service directive in the personnel object, which is:

Service fn="index-simple"

¢ The server executes this Service directive, which calls the index-simple
function.

Since a service directive has now been executed, the server does not process
any other Service directives. (However, if the matching object had not had a
Service directive that was executed, the server would continue looking at
Service directives in the default object.)

Chapter 1 Syntax and Use of obj.conf 45

Flow of Control in obj.conf

46

Default Service Directive

There is usually a Service directive that does the default task (sends a file) if no
other service directive matches a request sent by a browser. This default directive
should come last in the list of Service directives in the default object, to ensure it
only gets called if no other Service directives have succeeded. The default
Service directive is usually:

Service method=" (GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file"

This directive matches requests whose method is GET, HEAD, or POST, which covers
nearly virtually all requests sent by browsers. The value of the type argument uses
special pattern-matching characters. For complete information about the special
pattern-matching characters, see Chapter 9, “Using Wildcard Patterns.”

The characters “*~” mean “anything that doesn’t match the following characters,”
so the expression *~magnus-internal/ means “anything that doesn’t match
magnus-internal/.” An asterisk by itself matches anything, so the whole
expression *~magnus-internal/* matches anything that does not begin with
magnus-internal/.

So if the server has not already executed a service directive when it reaches this
directive, it executes the directive so long as the request method is GET, HEAD or
poST, and the value of the type attribute does not begin with magnus-internal/.
The invoked function is send-£ile, which simply sends the contents of the
requested file to the client.

AddLog

After the server generate the response and sends it to the client, it executes AddLog
directives to add entries to the log files.

All AddLog directives are executed. The server can add entries to multiple log files.

Depending on which log files are used and which format they use, the Init section
in magnus. conf may need to have directives that initialize the logs. For example, if
one of the AddLog directives calls £1ex-1log, which uses the extended log format,
the Init section must contain a directive that invokes flex-init to initialize the
flexible logging system.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Changes in Function Flow

For more information about initializing logs, see the discussion of the functions
flex-init and init-clf in Chapter 2, “SAFs in the magnus.conf File.”

For more information about £lex-1log, see information about predefined SAFs in
the obj . conf file in the Sun ONE Web Server 6.1 Administrator’s Configuration File
Reference.

Error

If an error occurs during the request-handling process, such as if a PathCheck or
AuthTrans directive denies access to the requested resource, or the requested
resource does not exist, the server immediately stops executing all other directives
and immediately starts executing the Error directives.

Changes in Function Flow

There are times when the function flow changes from the normal request-handling
process. This happens during internal redirects, restarts, and URI translation
functions.

Internal Redirects

An example of an internal redirect is a servlet include or forward. In this case,
because there is no exposed NSAPI function to handle an internal redirect, when
an internal redirect occurs, the request structure is copied into rq->orig_rq. For
more information on the request data structure, see “Request” on page 255.

Restarts

A restart occurs when a REQ RESTART is returned from a PathCheck or Service
function. For example, when a CGl is redirected using a relative path.

On a restart, much of the request is cleared. Some elements of the HTTP request
(rg->regpb), the server’s “working” variables (rg- >vars), and response headers
(rg->srvhdrs) are cleared. The method, protocol, and c1f-request variables from

rq->regpb are saved. The saved variables are put back into the data structure. The

Chapter 1 Syntax and Use of obj.conf 47

Syntax Rules for Editing obj.conf

new URl is inserted (and if there is a query string in the new URI, that too is
inserted) into rg->reqpb. The parameter rq->rq_attr.req restartedissetto 1.
For more information on the request data structure, see “Request” on page 255,
and for more information on the rq parameter, see “rq (request)” on page 82.

URI Translation

At times it is necessary to find the physical path for a URI without actually running
arequest. The function request_translate_uri does this. A new request
structure is created and run through the AuthTrans and NameTrans stages to get
the physical path. Thereafter, the new request is freed.

Syntax Rules for Editing obj.conf

48

Several rules are important in the obj . conf file. Be very careful when editing this
file. Simple mistakes can make the server fail to start or operate correctly.

CAUTION Do not remove any directives from any obj .conf file that are
present in the obj . conf file that exists when you first install Sun
ONE Web Server. The server may not function properly.

Order of Directives

The order of directives is important, since the server executes them in the order
they appear in obj . conf. The outcome of some directives affect the execution of
other directives.

For PathCheck directives, the order within the PathcCheck section is not so
important, since the server executes all pathCheck directives. However, the order
within the ObjectType section is very important, because if an ObjectType
directive sets an attribute value, no other objectType directive can change that
value. For example, if the default objectType directives were listed in the
following order (which is the wrong way around), every request would have its
type value set to text/plain, and the server would never have a chance to set the
type according to the extension of the requested resource.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Syntax Rules for Editing obj.conf

ObjectType fn="force-type" type="text/plain"
ObjectType fn="type-by-extension"

Similarly, the order of directives in the Service section is very important. The
server executes the first Service directive that matches the current request and
does not execute any others.

Parameters

The number and names of parameters depends on the function. The order of
parameters on the line is not important.

Case Sensitivity

Items in the obj . conf file are case-sensitive including function names, parameter
names, many parameter values, and path names.

Separators

The C language allows function names to be composed only of letters, digits, and
underscores. You may use the hyphen (-) character in the configuration file in place
of underscore (_) for your C code function names. This is only true for function
names.

Quotes

Quotes (") are only required around value strings when there is a space in the
string. Otherwise they are optional. Each open-quote must be matched by a
close-quote.

Spaces

® Spaces are not allowed at the beginning of a line except when continuing the
previous line.

Chapter 1 Syntax and Use of obj.conf 49

About obj.conf Directive Examples

e Spaces are not allowed before or after the equal (=) sign that separates the
name and value.

® Spaces are not allowed at the end of a line or on a blank line.

Line Continuation

A long line may be continued on the next line by beginning the next line with a
space or tab.

Path Names

Always use forward slashes (/) rather than backslashes (\) in path names under
Windows. Backslash escapes the next character.

Comments

Comments begin with a pound (#) sign. If you manually add comments to
obj.conf, then use the Server Manager interface to make changes to your server,
the Server Manager will wipe out your comments when it updates obj . conf.

About obj.conf Directive Examples

50

Every line in the obj . conf file begins with one of the following keywords:

AuthTrans
NameTrans
PathCheck
ObjectType
Input
Output
Service
AddLog
Error
<Object
</Object>

If any line of any example begins with a different word in the manual, the line is
wrapping in a way that it does not in the actual file. In some cases this is due to line
length limitations imposed by the PDF and HTML formats of the manuals.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

About obj.conf Directive Examples

For example, the following directive is all on one line in the actual obj . conf file:

NameTrans fn="pfx2dir" from="/cgi"
dir="D:/Sun/WebServeré6l/serverl/docs/mycgi" name="cgi"

Chapter 1 Syntax and Use of obj.conf 51

About obj.conf Directive Examples

52 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

Chapter 2

SAFs in the magnus.conf File

When the Sun ONE Web Server starts up, it looks in a file called magnus. conf in
the server-id/config directory to establish a set of global variable settings that
affect the server’s behavior and configuration. Sun ONE Web Server executes all of
the directives defined in magnus . conf. The order of the directives is not important.

NOTE When you edit the magnus . conf file, you must restart the server for
the changes to take effect.

This chapter lists the Init SAFs that can be specified in magnus . conf in Sun ONE
Web Server 6.1. For information about the other, non-SAF directives in

magnus . conf, see the Sun ONE Web Server 6.1 Administrator’s Configuration File
Reference.

The Init directives initialize the server (for example they load and initialize
additional modules and plugins, and initialize log files).

The Init directives are SAFs, like obj . conf directives, and have SAF syntax rather
than the simpler variable value syntax of other magnus. conf directives.

They are located in magnus . conf because, like other magnus . conf directives, they
are executed only once at server startup.

Each 1nit directive has an optional LateInit parameter. For the UNIX platform,
if LateInit is set to yes, the function is executed by the child process after it is
forked from the parent. If LateInit issettono or is not provided, the function is
executed by the parent process before the fork. When the server is started up by
user root but runs as another user, any activities that must be performed as the user
root (such as writing to a root-owned file) must be done before the fork. Functions
that create threads, with the exception of thread-pool-init, should execute after
the fork (that is, the relevant Init directive should have LateInit=yes set).

53

54

For all platforms, any function that requires access to a fully parsed configuration
should have LateInit=yes setonits Init directive.

Upon failure, Init-class functions return REQ_ABORTED. The server logs the error
according to the instructions in the Error directives in obj . conf, and terminates.
Any other result code is considered a success.

Syntax
Init functions have the following syntax:

Init fn=function paraml="valuel" . ..paramN="valueN"
Directives have the following syntax:
directive value

The following Init-class functions and their parameters are described in detail in
this chapter:

® cindex-init changes the default characteristics for fancy indexing.
® define-perf-bucket creates a performance bucket.

® dns-cache-init configures DNS caching.

® flex-init initializes the flexible logging system.

® flex-rotate-init enables rotation for flexible logs.

® init-cgi changes the default settings for CGI programs.

® init-clf initializes the Common Log subsystem.

® init-dav initializes the WebDAYV subsystem.

e init-filter-order controls the position of specific filters within filter stacks.
® init-j2ee initializes the Java subsystem.

® init-uhome loads user home directory information.

® load-modules loads shared libraries into the server.

e nt-console-init enables the Windows console, which is the command-line
shell that displays standard output and error streams.

® perf-init enables system performance measurement via performance
buckets.

® pool-init configures pooled memory allocation.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

cindex-init

® register-http-method lets you extend the HTTP protocol by registering new
HTTP methods.

* stats-init enables reporting of performance statistics in XML format.

® thread-pool-init configures an additional thread pool.

cindex-init
Applicable in Init-class directives.

The function cindex-init sets the default settings for common indexing.
Common indexing (also known as fancy indexing) is performed by the Service
function index-common. Indexing occurs when the requested URL translates to a
directory that does not contain an index file or home page, or no index file or home
page has been specified.

In common (fancy) indexing, the directory list shows the name, last modified date,
size, and description for each indexed file or directory.

Parameters
The following table describes parameters for the cindex-init function.

Table 2-1 cindex-init parameters

Parameter Description

opts (Optional) String of letters specifying the options to
activate. Currently there is only one possible option:

s tells the server to scan each HTML file in the directory
being indexed for the contents of the HTML <TITLE> tag
to display in the description field. The <TITLE> tag must
be within the first 255 characters of the file. This option is
off by default.

The search for <TITLE> is not case-sensitive.

Chapter 2 SAFs in the magnus.conf File 55

cindex-init

Table 2-1 cindex-init parameters

Parameter

Description

widths

timezone

format

ignore

icon-uri

(Optional) Specifies the width for each column in the
indexing display. The string is a comma-separated list of
numbers that specify the column widths in characters for
name, last-modified date, size, and description,
respectively.

The default values for the widths parameter are 22, 18, 8,
33.

The final three values (corresponding to last-modified date,
size, and description, respectively) can each be set to 0 to
turn the display for that column off. The name column
cannot be turned off. The minimum size of a column (if the
value is nonzero) is specified by the length of its title. For
example, the minimum size of the date column is 5 (the
length of “Date” plus one space). If you set a nonzero value
for a column that is less than the length of its title, the
width defaults to the minimum required to display the
title.

(Optional) Indicates whether the last-modified time is
shown in local time or in Greenwich Mean Time. The
values are GMT or 1local. The defaultis local.

(Optional) Parameter determines the format of the last
modified date display. It uses the format specification for
the UNIX function strftime ().

The default is $d-%b-%Y %H: %M.

(Optional) Specifies a wildcard pattern for file names the
server should ignore while indexing. File names starting
with a period (.) are always ignored. The default is to only
ignore file names starting with a period (.).

(Optional) Specifies the URI prefix the index-common
function uses when generating URLs for file icons (.gif
files). By default, it is /mc-icons/.If icon-uri is
different from the default, the pfx2dir function in the
NameTrans directive must be changed so that the server
can find these icons.

56 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

define-perf-bucket

Example

Init fn=cindex-init widths=50,1,1,0

Init fn=cindex-init ignore=*private*

Init fn=cindex-init widths=22,0,0,50

define-perf-bucket

Applicable in Init-class directives.

The define-perf-bucket function creates a performance bucket, which you can
use to measure the performance of SAFs in obj . conf (for more information about
predefined SAFs that are used in obj . conf, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference).

For more information about performance buckets, see the Sun ONE Web Server 6.1
Performance Tuning, Sizing, and Scaling Guide.

Parameters
The following table describes parameters for the define-perf-bucket function.

Table 2-2 define-perf-bucket parameters

Parameter Description
name Name for the bucket (for example, cgi-bucket).
description Description of what the bucket measures (for example, CGI
Stats).
Example

Init fn="define-perf-bucket" name="cgi-bucket" description="CGI
Stats"

Chapter 2 SAFs in the magnus.conf File 57

dns-cache-init

See Also
perf-init

dns-cache-init
Applicable in Init-class directives.

The dns-cache-init function specifies that DNS lookups should be cached when
DNS lookups are enabled. If DNS lookups are cached, then when the server gets a
client’s host name information, it stores that information in the DNS cache. If the
server needs information about the client in the future, the information is available
in the DNS cache.

You may specify the size of the DNS cache and the time it takes before a cache
entry becomes invalid. The DNS cache can contain 32 to 32768 entries; the default
value is 1024 entries. Values for the time it takes for a cache entry to expire
(specified in seconds) can range from 1 second to 1 year; the default value is

1200 seconds (20 minutes).

Parameters
The following table describes parameters for the dns-cache-init function.

Table 2-3 dns-cache-init parameters

Parameter Description

cache-size (Optional) Specifies how many entries are contained in the
cache. Acceptable values are 32 to 32768; the default
value is 1024.

expire (Optional) Specifies how long (in seconds) it takes for a
cache entry to expire. Acceptable values are 1 t0 31536000
(1 year); the default is 1200 seconds (20 minutes).

Example

Init fn="dns-cache-init" cache-size="2140" expire="600"

58 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

flex-init

flex-init

Applicable in Init-class directives.

The flex-init function opens the named log file to be used for flexible logging
and establishes a record format for it. The log format is recorded in the first line of
the log file. You cannot change the log format while the log file is in use by the
server.

The £lex-1og function (applicable in AddLog-class directives) writes entries into
the log file during the AddLog stage of the request-handling process.

The log file stays open until the server is shut down or restarted (at which time all
logs are closed and reopened).

NOTE If the server has AddLog-stage directives that call £1ex-1og, the
flexible log file must be initialized by flex-init during server
initialization.

For more information about f1lex-1og, see information about

predefined SAFs in the obj . conf file in the Sun ONE Web Server
6.1 Administrator’s Configuration File Reference.

You may specify multiple log file names in the same flex-init function call. Then
use multiple AddLog directives with the f1ex-1og function to log transactions to
each log file.

The flex-init function may be called more than once. Each new log file name and
format will be added to the list of log files.

If you move, remove, or change the currently active log file without shutting down
or restarting the server, client accesses might not be recorded. To save or backup
the currently active log file, you need to rename the file and then restart the server.
The server first looks for the log file by name, and if it doesn’t find it, creates a new
one (the renamed original log file is left for you to use).

For information on rotating log files, see flex-rotate-init.

The flex-init function has three parameters: one that names the log file, one that
specifies the format of each record in that file, and one that specifies the logging
mode.

Parameters
The following table describes parameters for the flex-init function.

Chapter 2 SAFs in the magnus.conf File 59

flex-init

Table 2-4 flex-init parameters

Parameter Description

logFileName Name of the parameter is the name of the log file. The
value of the parameter specifies either the full path to the
log file or a file name relative to the server’s logs
directory. For example:

access="/usr/netscape/server4/https-servern
ame/logs/access"
mylogfile = "logl"

You will use the log file name later, as a parameter to the
flex-1log function (applicable in AddLog-class
directives).

buffer-size Specifies the size of the global log buffer. The default is
8192. See the third flex-init example below.

buffers-per-file Specifies the number of buffers for a given log file. The
default value is determined by the server.

Access log entries can be logged in strict chronological
order by using a single buffer per log file. To accomplish
this, add buffers-per-file="1" to the Init
fn="flex-log-init" line in magnus.conf. This
ensures that requests are logged in chronological order.
Note that this approach will result in decreased
performance when the server is under heavy load.

format.logFileName Specifies the format of each log entry in the log file.

For information about the format, see the “More on Log
Format” section below.

More on Log Format

The flex-init function recognizes anything contained between percent signs (%)
as the name portion of a name-value pair stored in a parameter block in the server.
(The one exception to this rule is the $SYSDATE% component, which delivers the
current system date.) $SYSDATE$ is formatted using the time format

%d/%b/%Y: %$H: $M: %S plus the offset from GMT.

(See Chapter 3, “Creating Custom SAFs” for more information about parameter
blocks, and Chapter 7, “NSAPI Function Reference” for functions that manipulate
pblocks.)

60 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide ¢ April 2004

flex-init

Any additional text is treated as literal text, so you can add to the line to make it
more readable. Typical components of the formatting parameter are listed in the
following table Table 2-5. Certain components might contain spaces, so they
should be bounded by escaped quotes (\").

If no format parameter is specified for a log file, the common log format is used:

"$Ses->client.ip% - %Reg->vars.auth-user$% [%$SYSDATE%]
\"%$Reqg->regpb.clf-request%\" %Reqg->srvhdrs.clf-status$
$Reg->srvhdrs.content-length%"

You can now log cookies by logging the Reg- >headers.cookie.name component.

In the following table, the components that are enclosed in escaped double quotes
(\") are the ones that could potentially resolve to values that have white spaces.

Table 2-5 Typical Components of flex-init Formatting

Flex-log Option Component

Client host name (unless %Ses->client.ip$%
iponly is specified in

flex-log or DNS name is

not available) or IP

address

Client DNS name %$Ses->client.dns%

System date $SYSDATES

Full HTTP request line "$Reqg->regpb.clf-request%\"
Status $Req->srvhdrs.clf-status%

Response content length $Reg->srvhdrs.content-length%

Response content type %$Req->srvhdrs.content-type%
Referer header "$Req->headers.referers\"
User-agent header "$Reqg->headers.user-agent%\"
HTTP method %$Req->regpb.method%

HTTP URI $Reqg->regpb.uri%

HTTP query string $Reqg->regpb.query$

HTTP protocol version $Req->regpb.protocol%
Accept header %$Reqg->headers.accept%

Date header %$Req->headers.date%

Chapter 2 SAFs in the magnus.conf File 61

flex-init

Table 2-5

Typical Components of flex-init Formatting

Flex-log Option

Component

If-Modified-Since
header

Authorization header

Any header value

$Reg->headers.if-modified-since%

$Reg->headers.authorization%

%Reg->headers.headername%

Name of authorized
user

$Reg->vars.auth-user%

Value of a cookie $Reqg->headers.cookie.name%

Value of any variable $Req->vars.varname$%

in Reg->vars
Virtual server ID $vsid%
Duration $duration%

Records the time in microseconds the server spent
handling the request. Statistics must be enabled for the
server instance before $duration% can be used. For
information about enabling statistics, see the Sun ONE
Web Server 6.1 Administrator’s Guide.

Examples
The first example below initializes flexible logging into the file
/usr/sun/webserver6l/serverl/https-servername/logs/access.

Init fn=flex-init
access="/usr/sun/webserveré6l/serverl/https-servername/logs/access"
format.access="%Ses->client.ip% - %Reg->vars.auth-user$%
[$SYSDATE%] \"%Reg->regpb.clf-request%\" %$Reg->srvhdrs.clf-status%
%Reg->srvhdrs.content-length%"

62 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide ¢ April 2004

flex-init

This will record the following items:

* IP or host name, followed by the three characters “ - ”
¢ User name, followed by the two characters “ [”
e System date, followed by the two characters “] ”

e Full HTTP request in quotes, followed by a single space

e HTTP result status in quotes, followed by a single space

¢ Content length

This is the default format, which corresponds to the Common Log Format (CLF).

It is advisable that the first six elements of any log always be in exactly this format,
because a number of log analyzers expect that as output.

The second example initializes flexible logging into the file
/usr/sun/webserveré6l/serverl/https-servername/logs/extended.

Init fn=flex-init
extended="/usr/sun/webserveré6l/serverl/https-servername/logs/exten
ded" format.extended="%Ses->client.ip% - %$Reqg->vars.auth-user%
[$SYSDATE%] \"%Reg->regpb.clf-request%\" %$Reg->srvhdrs.clf-status%
%$Reqg->srvhdrs.content-length% %Reg->headers.referer%
\"%Reqg->headers.user-agent%\" %$Reg->regpb.method% %$Reqg->regpb.uri%
$Reqg->regpb.query% %$Req->regpb.protocol%"

The third example shows how logging can be tuned to prevent request handling
threads from making blocking calls when writing to log files, instead delegating
these calls to the log flush thread.

Doubling the size of the buffer-size and num-buffers parameters from their
defaults and lowering the value of the LogFlushInterval magnus. conf directive
to 4 seconds (see Chapter 2, “SAFs in the magnus.conf File”) frees the
request-handling threads to quickly write the log data.

Chapter 2 SAFs in the magnus.conf File 63

flex-rotate-init

Init fn=flex-init buffer-size=16384 num-buffers=2000
access="/usr/sun/webserveré6l/serverl/https-servername/logs/access"
format.access="%Ses->client.ip% - %Reg->vars.auth-user$%
[$SYSDATE%] \"%Reg->regpb.clf-request%\" %$Reg->srvhdrs.clf-status%
%Reqg->srvhdrs.content-length%"

See Also
flex-rotate-init

flex-rotate-init

Applicable in Init-class directives.

The flex-rotate-init function configures log rotation for all log files on the
server, including error logs and the common-1log, flex-1log, and
record-useragent AddLog SAFs. Call this function in the Init section of

magnus . conf before calling flex-init. The flex-rotate-init function allows
you to specify a time interval for rotating log files. At the specified time interval,
the server moves the log file to a file whose name indicates the time of moving. The
log functions in the AddLog stage in obj . conf then start logging entries in a new
log file. The server does not need to be shut down while the log files are being
rotated.

NOTE The server keeps all rotated log files forever, so you will need to
clean them up as necessary to free disk space.

By default, log rotation is disabled.

Parameters
The following table describes parameters for the flex-rotate-init function.

64 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

init-cqi

init-cgi

Table 2-6 flex-rotate-init parameters

Parameter

Description

rotate-start

rotate-interval

rotate-access

rotate-error

rotate-callback

Indicates the time to start rotation. This value is a four-digit
string indicating the time in 24-hour format. For example,
0900 indicates 9 a.m., while 1800 indicates 9 p.m.

Indicates the number of minutes to elapse between each
log rotation.

(Optional) Determines whether common-1log, flex-1log,
and record-useragent logs are rotated (AddLog SAFs).
Values are yes (the default), and no.

(Optional) Determines whether error logs are rotated.
Values are yes (the default), and no.

(Optional) Specifies the file name of a user-supplied
program to execute following log file rotation. The
program is passed the post-rotation name of the rotated log
file as its parameter.

Example

This example enables log rotation, starting at midnight and occurring every hour.

Init fn=flex-rotate-init rotate-start=2400 rotate-interval=60

See Also
flex-init

Applicable in Init-class directives.

The init-cgi function performs certain initialization tasks for CGI execution.
Two options are provided: timeout of the execution of the CGI script, and
establishment of environment variables.

Chapter 2 SAFs in the magnus.conf File 65

init-cgi

Parameters
The following table describes parameters for the init-cgi function.

Table 2-7 init-cgi parameters

Parameter Description

timeout (Optional) Specifies how many seconds the server waits for
CGI output. If the CGI script has not delivered any output
in that many seconds, the server terminates the script. The
default is 300 seconds.

cgistub-path (Optional) Specifies the path to the CGI stub binary. If not
specified, Sun ONE Web Server looks in the following
directories in the following order, relative to the server
instance’s config directory: . . /private/Cgistub,
then ../../bin/https/bin/Cgistub.

Use the first directory to house an suid Cgistub (that is, a
Cgistub owned by root that has the set-user-ID-on-exec bit
set). Use the second directory to house a non-suid Cgistub.
The second directory is the location used by Sun ONE Web
Server 4.x servers.

If present, the . . /private directory must be owned by
the server user and have permissions d? ?x------ . This
prevents other users (for example, users with shell
accounts or CGI access) from using Cgistub to set their uid.

For information about installing an suid Cgistub, see the
Sun ONE Web Server 6.1 Programmer’s Guide.

env-variable (Optional) Specifies the name and value for an
environment variable that the server places into the
environment for the CGI. You can set any number of
environment variables in a single init-cgi function.

Example

Init fn=init-cgi LD _LIBRARY PATH=/usr/lib;/usr/local/lib

66 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide ¢ April 2004

init-clf

init-clf

Applicable in Init-class directives.

The init-clf function opens the named log files to be used for common logging.
The common- 1og function writes entries into the log files during the AddLog stage of
the request-handling process. The log files stay open until the server is shut down
(at which time the log files are closed) or restarted (at which time the log files are
closed and reopened).

NOTE If the server has an AddLog-stage directive that calls common-1log,
common log files must be initialized by init-clf during
initialization.

NOTE This function should only be called once. If it is called again, the

new call will replace log file names from all previous calls.

If you move, remove, or change the log file without shutting down or restarting the
server, client accesses might not be recorded. To save or backup a log file, you need
to rename the file (and for UNIX, send the -HUP signal), and then restart the server.
The server first looks for the log file by name, and if it doesn’t find it, creates a new
one (the renamed original log file is left for you to use).

For information on rotating log files, see flex-rotate-init.

Parameters
The following table describes parameters for the init-clf function.

Chapter 2 SAFs in the magnus.conf File 67

init-dav

Table 2-8 init-clf parameters

Parameter Description

logFileName Name of the parameter is the name of the log file. The
value of the parameter specifies either the full path to the
log file or a file name relative to the server’s logs
directory. For example:

access="/usr/netscape/server4/https-servern
ame/logs/access"
mylogfile = "logl"

You will use the log file name later, as a parameter to the
common- log function (applicable in AddLog-class
directives).

Examples

Init fn=init-clf
access=/usr/netscape/serverd/https-boots/logs/access

Init fn=init-clf templog=/tmp/mytemplog templog2=/tmp/mytemplog?2

See Also
flex-rotate-init

init-dav
Applicable in Init-class directives.

The init-dav function performs initialization tasks to load the WebDAYV plugin.

Parameters
This function requires a LateInit=yes parameter.

68 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide ¢ April 2004

init-filter-order

Example

Init fn="load-modules" shlib="/slwsé6.1/1lib/libdavplugin.so"
funcs="init-dav,ntrans-dav, service-dav"

shlib flags="(global |now)"

Init fn="init-dav" LateInit=yes

Example

Init fn=init-cgi LD _LIBRARY PATH=/usr/lib;/usr/local/lib

init-filter-order
Applicable in Init-class directives.

The init-filter-order Init SAF can be used to control the position of specific
filters within filter stacks. For example, init-filter-order can be used to ensure
that a filter that converts outgoing XML to XHTML is inserted above a filter that
converts outgoing XHTML to HTML.

Filters that appear higher in the filter stack are given an earlier opportunity to
process outgoing data, and filters that appear lower in the filter stack are given an
earlier opportunity to process incoming data.

The appropriate position of a specific filter within the filter stack is defined by the
filter developer. For example, filters that translate content from XML to HTML are
placed higher in the filter stack than filters that compress data for transmission.
Filter developers use the filter create function to define the filter's position in
the filter stack. init-filter-order can be used to override the position defined
by the filter developer.

When two or more filters are defined to occupy the same position in the filter stack,
filters that were inserted later will appear higher than filters that were inserted
earlier. That is, the order of Input fn="insert-filter" and Output
fn="insert-filter" directivesin obj.conf becomesimportant. For example,
consider two filters, xhtml-to-html and xml-to-xhtml, which convert XHTML to
HTML and XML to XHTML, respectively. Since both filters transform data from

Chapter 2 SAFs in the magnus.conf File 69

init-j2ee

init-j2ee

one format to another, they may be defined to occupy the same position in the filter
stack. To transform XML documents to XHTML and then to HTML before sending
the data to the client, output fn="insert-filter" directivesin obj.conf would

appear in the following order:
Output fn="insert-filter" filter="xhtml-to-html"
Output fn="insert-filter" filter="xml-to-xhtml"

In general, administrators should use the order of Input fn="insert-filter"
and Ooutput fn="insert-filter" directivesin obj.conf to control the position
of filters in the filter stack. init-filter-order should only be used to address
specific filter interoperability problems.

NOTE The 1oad-module SAFs that create the filters should be called
before init-filter-order attempts to order them.

Parameters
The following table describes parameters for the init-filter-order function.

Table 2-9 init-filter-order parameters

Parameter Description

filters Comma-separated list of filters in the order they should
appear within a filter stack, listed from highest to lowest.

Example

Init fn="init-filter-order"
filters="xml-to-xhtml,xhtml-to-html, http-compression"

Applicable in Init-class directives.

The init-j2ee function initializes the Java subsystem.

Parameters
This function requires a LateInit=yes parameter.

70 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

init-uhome

Example

Init fn="load-modules" shlib="install dir/lib/libj2eeplugin.so"
funcs="init-j2ee,ntrans-j2ee, service-j2ee, error-j2ee"

shlib flags="(global |now)"

Init fn="init-j2ee" LateInit=yes

init-uhome
Applicable in Init-class directives.

UNIX Only. The init-uhome function loads information about the system’s user
home directories into internal hash tables. This increases memory usage slightly,
but improves performance for servers that have a lot of traffic to home directories.

Parameters
The following table describes parameters for the init-uhome function.

Table 2-10 init-uhome parameters

Parameter Description

pwfile (Optional) Specifies the full file system path to a file other
than /etc/passwd. If not provided, the default UNIX
path (/etc/passwd) is used.

Examples

Init fn=init-uhome

Init fn=init-uhome pwfile=/etc/passwd-http

Chapter 2 SAFs in the magnus.conf File 71

load-modules

load-modules

Applicable in Init-class directives.

The 1oad-modules function loads a shared library or dynamic-link library (DLL)
into the server code. Specified functions from the library can then be executed from
any subsequent directives. Use this function to load new plugins or SAFs.

If you define your own SAFs, you get the server to load them by using the
load-modules function and specifying the shared library or DLL to load.

Parameters
The following table describes parameters for the 1oad-modules function.

Table 2-11 load-modules parameters

Parameter Description

shlib Specifies either the full path to the shared library or DLL,
or a file name relative to the server configuration directory.

funcs Comma-separated list of the names of the functions in the
shared library or DLL to be made available for use by other
Init directives or by Service directives in obj . conf.
The list should not contain any spaces. The dash (-)
character may be used in place of the underscore (_)
character in function names.

NativeThread (Optional) Specifies which threading model to use.

no causes the routines in the library to use user-level
threading.

yes enables kernel-level threading. The default is yes.

pool Name of a custom thread pool, as specified in
thread-pool-init.

Examples

Init fn=load-modules shlib="C:/mysrvfns/corpfns.dll"
funcs="moveit"

Init fn=load-modules shlib="/mysrvfns/corpfns.so"
funcs="myinit,myservice"
Init fn=myinit

72 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

nt-console-init

nt-console-init
Applicable in Init-class directives.

The nt -console-init function enables the Windows console, which is the
command-line shell that displays standard output and error streams.

Parameters
The following table describes parameters for the nt-console-init function.

Table 2-12 nt-console-init parameters

Parameter Description

stderr Directs error messages to the Windows console. The
required and only value is console.

stdout Directs output to the Windows console. The required and
only value is console.

Example

Init fn="nt-console-init" stdout=console stderr=console

perf-init
Applicable in Init-class directives.

The perf-init function enables system performance measurement via
performance buckets.

For more information about performance buckets, see the Sun ONE Web Server 6.1
Performance Tuning, Sizing, and Scaling Guide.

Parameters
The following table describes parameters for the perf-init function.

Chapter 2 SAFs in the magnus.conf File 73

pool-init

pool-init

Table 2-13 perf-init parameters

Parameter Description

disable Flag to disable the use of system performance
measurement via performance buckets. Should have a
value of true or false. Default value is true.

Example

Init fn=perf-init disable=false

See Also
define-perf-bucket

Applicable in Init-class directives.

The pool-init function changes the default values of pooled memory settings.
The size of the free block list may be changed or pooled memory may be entirely
disabled.

Memory allocation pools allow the server to run significantly faster. If you are
programming with the NSAPI, note that MALLOC, REALLOC, CALLOC, STRDUP, and
FREE work slightly differently if pooled memory is disabled. If pooling is enabled,
the server automatically cleans up all memory allocated by these routines when
each request completes. In most cases, this will improve performance and prevent
memory leaks. If pooling is disabled, all memory is global and there is no clean-up.

If you want persistent memory allocation, add the prefix PERM _ to the name of each
routine (PERM_MALLOC, PERM_REALLOC, PERM_CALLOC, PERM_STRDUP, and
PERM_FREE).

74 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

register-http-method

NOTE Any memory you allocate from Init-class functions will be
allocated as persistent memory, even if you use MALLOC. The server
cleans up only the memory that is allocated while processing a
request, and because Init-class functions are run before processing
any requests, their memory is allocated globally.

Parameters
The following table describes parameters for the pool-init function.

Table 2-14 pool-init parameters

Parameter Description
free-size (Optional) Maximum size in bytes of free block list. May
not be greater than 1048576.
disable (Optional) Flag to disable the use of pooled memory.
Should have a value of true or false. Default value is
false.
Example

Init fn=pool-init disable=true

register-http-method

Applicable in Init-class directives.

This function lets you extend the HTTP protocol by registering new HTTP
methods. (You do not need to register the default HTTP methods.)

Upon accepting a connection, the server checks if the method it received is known
to it. If the server does not recognize the method, it returns a “s01 Method Not
Implemented” error message.

Parameters
The following table describes parameters for the register-http-method
function.

Chapter 2 SAFs in the magnus.conf File 75

stats-init

Table 2-15 register-http-method parameters

Parameter Description
methods Comma-separated list of the names of the methods you are
registering.
Example

The following example shows the use of register-http-method and a Service
function for one of the methods.

Init fn="register-http-method" methods="MY METHOD1,MY METHOD2"
Service fn="MyHandler" method="MY METHOD1"

stats-init

Applicable in Init-class directives.

The stats-init function enables reporting of performance statistics in XML
format. The actual report is generated by the stats-xml function in obj . cont.

Parameters
The following table describes parameters for the stats-init function.

Table 2-16 stats-init parameters

Parameter Description

update-interval Period in seconds between statistics updates within the
server. Set higher for better performance, lower for more
frequent updates. The minimum value is 1; the default is 5.

virtual-servers Maximum number of virtual servers for which statistics are
tracked. This number should be set higher than the number
of virtual servers configured. Smaller numbers result in
lower memory usage. The minimum value is 1; the default
is 1000.

profiling Enables NSAPI performance profiling using buckets if set
to yes. This can also be enabled through the perf-init
Init SAF. The default is no, which results in slightly
better server performance.

76 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

thread-pool-init

Example

Init fn="stats-init" update-interval="5" virtual-servers="2000"
profiling="vyes"

thread-pool-init
Applicable in Init-class directives.

The thread-pool-init function creates a new pool of user threads. A pool must
be declared before it is used. To tell a plugin to use the new pool, specify the pool
parameter when loading the plugin with the Init-class function load-modules.

One reason to create a custom thread pool would be if a plugin is not thread-aware,
in which case you can set the maximum number of threads in the pool to 1.

The older parameter NativeThread=yes always engages one default native pool,
called NativePool.

The native pool on UNIX is normally not engaged, as all threads are OS-level
threads. Using native pools on UNIX may introduce a small performance
overhead, as they’ll require an additional context switch; however, they can be
used to localize the jvm. stickyAttach effect or for other purposes, such as
resource control and management, or to emulate single-threaded behavior for
plugins.

On Windows, the default native pool is always being used and Sun ONE Web
Server uses fibers (user-scheduled threads) for initial request processing. Using
custom additional pools on Windows introduces no additional overhead.

In addition, native thread pool parameters can be added to the magnus . conf file
for convenience. For more information, see “Native Thread Pools” in the chapter
“Syntax and Use of magnus.conf” in the Sun ONE Web Server 6.1 Administrator’s
Configuration File Reference.

Parameters
The following table describes parameters for the thread-pool-init function.

Table 2-17 thread-pool-init parameters

Parameter Description

name Name of the thread pool.

Chapter 2 SAFs in the magnus.conf File 77

thread-pool-init

Table 2-17 thread-pool-init parameters

Parameter

Description

maxthreads
minthreads

queueSize

stackSize

Maximum number of threads in the pool.
Minimum number of threads in the pool.

Size of the queue for the pool. If all threads in the pool are
busy, further request-handling threads that want to get a
thread from the pool will wait in the pool queue. The
number of request-handling threads that can wait in the
queue is limited by the queue size. If the queue is full, the
next request-handling thread that comes to the queue is
turned away, with the result that the request is turned
down, but the request-handling thread remains free to
handle another request instead of becoming locked up in
the queue.

Stack size of each thread in the native (kernel) thread pool.

Example

Init fn=thread-pool-init name="my-custom-pool" maxthreads=5
minthreads=1 queuesize=200

Init fn=load-modules shlib="C:/mydir/myplugin.dll"
funcs="tracker" pool="my-custom-pool"

See Also
load-modules

78 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

Chapter 3

Creating Custom SAFs

This chapter describes how to write your own NSAPI plugins that define custom
Server Application Functions (SAFs). Creating plugins allows you to modify or
extend the Sun ONE Web Server’s built-in functionality. For example, you can
modify the server to handle user authorization in a special way or generate
dynamic HTML pages based on information in a database.

This chapter has the following sections:

e Future Compeatibility Issues

The SAF Interface

e SAF Parameters

e Result Codes

* Creating and Using Custom SAFs

e Overview of NSAPI C Functions

® Required Behavior of SAFs for Each Directive
¢ CGI to NSAPI Conversion

Before writing custom SAFs, you should familiarize yourself with the
request-handling process, as described in general in “Steps in the
Request-handling Process” on page 24, and in greater detail in the Sun ONE Web
Server 6.1 Administrator’s Configuration File Reference. Also, before writing a custom
SAF, check to see if a built-in SAF already accomplishes the tasks you have in
mind.

See Chapter 2, “SAFs in the magnus.conf File” for a list of the predefined Init
SAFs. For information about predefined SAFs used in the obj . conf file, see the
Sun ONE Web Server 6.1 Administrator’s Configuration File Reference.

79

Future Compatibility Issues

For a complete list of the NSAPI routines for implementing custom SAFs, see
Chapter 7, “NSAPI Function Reference.”

Future Compatibility Issues

The NSAPI interface may change in a future version of Sun ONE Web Server. To
keep your custom plugins upgradeable, do the following:

* Make sure plugin users know how to edit the configuration files (such as
magnus.conf and obj.conf) manually. The plugin installation software
should not be used to edit these configuration files.

¢ Keep the source code so you can recompile the plugin.

The SAF Interface

All SAFs (custom and built-in) have the same C interface regardless of the
request-handling step for which they are written. They are small functions
designed for a specific purpose within a specific request-response step. They
receive parameters from the directive that invokes them in the obj . conf file, from
the server, and from previous SAFs.

Here is the C interface for a SAF:
int function(pblock *pb, Session *sn, Request *rqg);
The next section discusses the parameters in detail.

The SAF returns a result code that indicates whether and how it succeeded. The
server uses the result code from each function to determine how to proceed with
processing the request. See “Result Codes” on page 83 for details of the result
codes.

SAF Parameters

80

This section discusses the SAF parameters in detail. The parameters are:

®* pb (parameter block) -- contains the parameters from the directive that
invokes the SAF in the obj . conf file.

®* sn (session) -- contains information relating to a single TCP/IP session.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

SAF Parameters

®* rg (request) -- contains information relating to the current request.

pb (parameter block)

The pb parameter is a pointer to a pblock data structure that contains values
specified by the directive that invokes the SAF. A pblock data structure contains a
series of name-value pairs.

For example, a directive that invokes the basic-nsca function might look like:

AuthTrans fn=basic-ncsa auth-type=basic
dbm=/sun/serveré6l/userdb/rs

In this case, the pb parameter passed to basic-ncsa contains name-value pairs that
correspond to auth-type=basic and
dbm=/Sun/WebServer6l/serverl/userdb/rs.

NSAPI provides a set of functions for working with pblock data structures. For
example, pblock_findval () returns the value for a given name in a pblock. See
“Parameter Block Manipulation Routines” on page 92 for a summary of the most
commonly used functions for working with parameter blocks.

sh (session)

The sn parameter is a pointer to a session data structure. This parameter contains
variables related to an entire session (that is, the time between the opening and
closing of the TCP/IP connection between the client and the server). The same sn
pointer is passed to each SAF called within each request for an entire session. The
following list describes the most important fields in this data structure (see
Chapter 7, “NSAPI Function Reference” for information about NSAPI routines for
manipulating the session data structure).

® gsn->client

Pointer to a pblock containing information about the client such as its IP
address, DNS name, or certificate. If the client does not have a DNS name or if
it cannot be found, it will be set to -none.

® sn->csd

Chapter 3 Creating Custom SAFs 81

SAF Parameters

Platform-independent client socket descriptor. You will pass this to the
routines for reading from and writing to the client.

rq (request)

The rq parameter is a pointer to a request data structure. This parameter contains
variables related to the current request, such as the request headers, URI, and local
file system path. The same request pointer is passed to each SAF called in the
request-response process for an HTTP request.

The following list describes the most important fields in this data structure (see
Chapter 7, “NSAPI Function Reference” for information about NSAPI routines for
manipulating the request data structure).

rg->vars

Pointer to a pblock containing the server’s “working” variables. This includes
anything not specifically found in the following three pblocks. The contents of
this pblock vary depending on the specific request and the type of SAF. For
example, an AuthTrans SAF may insert an auth-user parameter into
rq->vars which can be used subsequently by a pathCheck SAF.

rgq->regpb

Pointer to a pblock containing elements of the HTTP request. This includes the
HTTP method (GET, POST, and so on), the URI, the protocol (normally
HTTP/1.0), and the query string. This pblock does not normally change
throughout the request-response process.

rg->headers

Pointer to a pblock containing all of the request headers (such as User-Agent,
If-Modified-Since, and so on) received from the client in the HTTP request.
See Chapter 12, “Hypertext Transfer Protocol” for more information about
request headers. This pblock does not normally change throughout the
request-response process.

rg->srvhdrs

Pointer to a pblock containing the response headers (such as Server, Date,
Content-Type, Content-Length, and so on) to be sent to the client in the
HTTP response. See Chapter 12, “Hypertext Transfer Protocol” for more
information about response headers.

82 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

Result Codes

The rg parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, rq contains whatever
values were inserted or modified by previously executed SAFs. On output, rq
contains any modifications or additional information inserted by the SAF. Some
SAFs depend on the existence of specific information provided at an earlier step in
the process. For example, a pathCheck SAF retrieves values in rq- >vars that were
previously inserted by an AuthTrans SAF.

Result Codes

Upon completion, a SAF returns a result code. The result code indicates what the
server should do next. The result codes are:

REQ PROCEED

Indicates that the SAF achieved its objective. For some request-response steps
(AuthTrans, NameTrans, Service, and Error), this tells the server to proceed
to the next request-response step, skipping any other SAFs in the current step.
For the other request-response steps (PathCheck, ObjectType, and AddLog),
the server proceeds to the next SAF in the current step.

REQ NOACTION

Indicates that the SAF took no action. The server continues with the next SAF
in the current server step.

REQ ABORTED

Indicates that an error occurred and an HTTP response should be sent to the
client to indicate the cause of the error. A SAF returning REQ_ABORTED should
also set the HTTP response status code. If the server finds an Error directive
matching the status code or reason phrase, it executes the SAF specified. If not,
the server sends a default HTTP response with the status code and reason
phrase plus a short HTML page reflecting the status code and reason phrase
for the user. The server then goes to the first AddLog directive.

REQ EXIT

Indicates the connection to the client was lost. This should be returned when
the SAF fails in reading or writing to the client. The server then goes to the first
AddLog directive.

Chapter 3 Creating Custom SAFs 83

Creating and Using Custom SAFs

Creating and Using Custom SAFs

84

Custom SAFs are functions in shared libraries that are loaded and called by the
server. Follow these steps to create a custom SAF:

1. Write the Source Code using the NSAPI functions. Each SAF is written for a
specific directive.

2. Compile and Link the source code to create a shared library (.so, .s1, or .d11)
file.

3. Load and Initialize the SAF by editing the magnus . conf file to:
o Load the shared library file containing your custom SAF(s)
o Initialize the SAF if necessary

4. Instruct the Server to Call the SAFs by editing obj . conf to call your custom
SAF(s) at the appropriate time.

5. Restart the Server.

6. Test the SAF by accessing your server from a browser with a URL that triggers
your function.

The following sections describe these steps in greater detail.

Write the Source Code

Write your custom SAFs using NSAPI functions. For a summary of some of the
most commonly used NSAPI functions, see “Overview of NSAPI C Functions” on
page 92. For information about available routines, see Chapter 7, “NSAPI Function
Reference.”

For examples of custom SAFs, see nsapi/examples/ in the server root directory,
and also see Chapter 5, “Examples of Custom SAFs and Filters.”

The signature for all SAFs is:
int function(pblock *pb, Session *sn, Request *rq);
For more details on the parameters, see “SAF Parameters” on page 80.

The Sun ONE Web Server runs as a multi-threaded single process. On UNIX
platforms there are actually two processes (a parent and a child), for historical
reasons. The parent process performs some initialization and forks the child
process. The child process performs further initialization and handles all of the
HTTP requests.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Creating and Using Custom SAFs

Keep the following in mind when writing your SAF:

¢ Write thread-safe code

¢ Blocking may affect performance

¢ Write small functions with parameters and configure them in obj . conf

e Carefully check and handle all errors (and log them so you can determine the
source of problems and fix them)

If necessary, write an initialization function that performs initialization tasks
required by your new SAFs. The initialization function has the same signature as
other SAFs:

int function(pblock *pb, Session *sn, Request *rq);

SAFs expect to be able to obtain certain types of information from their parameters.
In most cases, parameter block (pblock) data structures provide the fundamental
storage mechanism for these parameters A pblock maintains its data as a collection
of name-value pairs. For a summary of the most commonly used functions for
working with pblock structures, see “Parameter Block Manipulation Routines” on
page 92.

When defining a SAF, you do not specifically state which directive it is written for.
However, each SAF must be written for a specific directive (such as AuthTrans,
Service, and so on). Each directive expects its SAFs to behave in particular ways,
and your SAF must conform to the expectations of the directive for which it was
written. For details of what each directive expects of its SAFs, see “Required
Behavior of SAFs for Each Directive” on page 96.

Compile and Link

Compile and link your code with the native compiler for the target platform. For
UNIX, use the gmake command. For Windows, use the nmake command. For
Windows, use Microsoft Visual C++ 6.0 or newer. You must have an import list
that specifies all global variables and functions to access from the server binary.
Use the correct compiler and linker flags for your platform. Refer to the example
Makefile in the server_root/plugins/nsapi/examples directory.

Adbhere to the following guidelines for compiling and linking.
Include Directory and nsapi.h File

Add the server_root /plugins/include (UNIX) or server_root\plugins\include
(Windows) directory to your makefile to include the nsapi .h file.

Chapter 3 Creating Custom SAFs 85

Creating and Using Custom SAFs

Libraries

Add the server_root/bin/https/1ib (UNIX) or server_root\bin\https\bin
(Windows) library directory to your linker command.

The following table lists the library that you need to link to.

Table 3-1 Libraries

Platform Library

Windows ns-httpd40.d11 (in addition to the standard
Windows libraries)

HP-UX libns-httpd40.sl

All other UNIX libns-httpd40.so

platforms

Linker Commands and Options for Generating a Shared Object

To generate a shared library, use the commands and options listed in the following
table.

Table 3-2 Linker Commands and Options

Platform Options

Solaris™ Operating 1d -Gorcc -G

System (SPARC®

Platform Edition)

Windows link -LD

HP-UX cc +Z -b -Wl,+s -Wl,-B,symbolic

AIX cc -p 0 -berok -blibpath:$ (LD _RPATH)
Compaq cc -shared

Linux gcc -shared

IRIX cc -shared

86 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

Creating and Using Custom SAFs

Additional Linker Flags

Use the linker flags in the following table to specify which directories should be
searched for shared objects during runtime to resolve symbols.

Table 3-3 Linker Flags

Platform Flags

Solaris SPARC -R dir:dir

Windows (no flags, but the ns-httpd40.d11 file must be in the
system PATH variable)

HP-UX -W1, +b,dir, dir

AIX -blibpath:dir:dir

Compaq -rpath dir:dir

Linux -W1, -rpath, dir:dir

IRIX -W1, -rpath,dir:dir

On UNIX, you can also set the library search path using the LD_LIBRARY PATH
environment variable, which must be set when you start the server.

Compiler Flags
The following table lists the flags and defines you need to use for compilation of

your source code.

Table 3-4 Compiler Flags and Defines

Parameter Description

Solaris SPARC -DXP_UNIX -D REENTRANT -KPIC -DSOLARIS
Windows -DXP_WIN32 -DWIN32 /MD

HP-UX -DXP_UNIX -D REENTRANT -DHPUX

AIX -DXP_UNIX -D REENTRANT -DAIX $ (DEBUG)
Compaq -DXP_UNIX -KPIC

Linux -DLINUX -D REENTRANT -fPIC

IRIX -032 -exceptions -DXP_UNIX -KPIC

All platforms -MCC_HTTPD -NET SSL

Chapter 3 Creating Custom SAFs 87

Creating and Using Custom SAFs

88

The following table lists the optional flags and defines you can use.

Table 3-5 Optional Flags and Defines

Flag/Define Platforms Description

-DSPAPI20 All Needed for the proxy utilities
function include file putil.h

Compiling 3.x Plugins on AIX

For AIX only, plugins built for 3.x versions of the server must be relinked to work
with 4.x and 6.x versions. The files you need, which are in the
server_root/plugins/nsapi/examples/ directory, are as follows:

e The Makefile file has the -G option instead of the old -bM: SRE -berok -brtl
-bnoentry options.

® A script, relink_36plugin, modifies a plugin built for 3.x versions of the
server to work with 4.x and 6.x versions. The script’s comments explain its use.

Sun ONE Web Server 4.x and 6.x versions are built on AIX 4.2, which natively
supports runtime-linking. Because of this, NSAPI plugins, which reference
symbols in the ns-ht tpd main executable, must be built with the -G option, which
specifies that symbols must be resolved at runtime.

Previous versions of Sun ONE Web Server, however, were built on AIX 4.1, which
did not support native runtime-linking. Sun ONE Web Server had specific
additional software to enable plugins. No special runtime-linking directives were
required to build plugins. Because of this, plugins that have been built for previous
server versions on AIX will not work with Sun ONE Web Server 4.x and 6.x
versions as they are.

However, they can easily be relinked to work with Sun ONE Web Server 4.x and
6.x versions. The relink_36plugin script relinks existing plugins. Only the
existing plugin itself is required for the script; original source and . o files are not
needed. More specific comments are in the script itself. Since all AIX versions from
4.2 onward natively support runtime-linking, no plugins for Sun ONE Web Server
versions 4.x and later will need to be relinked.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Creating and Using Custom SAFs

Load and Initialize the SAF

For each shared library (plugin) containing custom SAFs to be loaded into the Sun
ONE Web Server, add an Init directive that invokes the 1oad-modules SAF to
magnus . conf.

The syntax for a directive that calls 1oad-modules is:
Init fn=load-modules shlib=[path]sharedlibname funcs="SAF1,..,.SAFn"
® shlibis the local file system path to the shared library (plugin).

® funcs is a comma-separated list of function names to be loaded from the
shared library. Function names are case-sensitive. You may use dash a (-) in
place of an underscore (_) in function names. There should be no spaces in the
function name list.

If the new SAFs require initialization, be sure that the initialization function is
included in the funcs list.

For example, if you created a shared library animations. so that defines two SAFs
do_small anim() and do _big anim() and also defines the initialization function
init_my animations, you would add the following directive to load the plugin:

Init fn=load-modules shlib=animations.so
funcs="do_small anim,do big anim,init my animations"

If necessary, also add an Init directive that calls the initialization function for the
newly loaded plugin. For example, if you defined the function

init_my new_ SAF () to perform an operation on the maxAnimLoop parameter, you
would add a directive such as the following to magnus . conf:

Init fn=init my animations maxAnimLoop=5

Instruct the Server to Call the SAFs

Next, add directives to obj . conf to instruct the server to call each custom SAF at
the appropriate time. The syntax for directives is:

Directive fn=function-name [namel="valuel"] ... [nameN="valueN"]

e Directive is one of the server directives, such as AuthTrans, Service, and so on.

Chapter 3 Creating Custom SAFs 89

Creating and Using Custom SAFs

* function-name is the name of the SAF to execute.

* nameN="valueN" are the names and values of parameters which are passed to
the SAF.

Depending on what your new SAF does, you might need to add just one directive
to obj . conf, or you might need to add more than one directive to provide
complete instructions for invoking the new SAF.

For example, if you define a new AuthTrans or PathCheck SAF, you could just add
an appropriate directive in the default object. However, if you define a new
Service SAF to be invoked only when the requested resource is in a particular
directory or has a new kind of file extension, you would need to take extra steps.

If your new service SAF is to be invoked only when the requested resource has a
new kind of file extension, you might need to add an entry to the MIME types file
so that the type value gets set properly during the objectType stage. Then you
could add a service directive to the default object that specifies the desired type
value.

If your new Service SAF is to be invoked only when the requested resource is in a
particular directory, you might need to define a NameTrans directive that generates
a name or ppath value that matches another object, and then in the new object you
could invoke the new service function.

For example, suppose your plugin defines two new SAFs, do_small_anim() and
do_big_anim(), which both take speed parameters. These functions run
animations. All files to be treated as small animations reside in the directory
D:/Sun/WebServeré6l/serverl/docs/animations/small, while all files to be
treated as full-screen animations reside in the directory
D:/Sun/WebServeré6l/serverl/docs/animations/fullscreen.

To ensure that the new animation functions are invoked whenever a client sends a
request for either a small or full-screen animation, you would add NameTrans
directives to the default object to translate the appropriate URLs to the
corresponding path names and also assign a name to the request.

NameTrans fn=pfx2dir from="/animations/small"
dir="D:/Sun/WebServer6l/serverl/docs/animations/small"
name="small anim"

NameTrans fn=pfx2dir from="/animations/fullscreen"
dir="D:/Sun/WebServer6l/serverldocs/animations/fullscreen"
name="fullscreen anim"

90 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

Creating and Using Custom SAFs

You also need to define objects that contain the service directives that run the
animations and specify the speed parameter.

<Object name="small anim">
Service fn=do small anim speed=40
</Object>

<Object name="fullscreen anim">
Service fn=do big anim speed=20
</Object>

Restart the Server

After modifying obj . conf, you need to restart the server. A restart is required for
all plugins that implement SAFs and/or filters.

Test the SAF

Test your SAF by accessing your server from a browser with a URL that triggers
your function. For example, if your new SAF is triggered by requests to resources
in http://server-name/animations/small, try requesting a valid resource that
starts with that URL

You should disable caching in your browser so that the server is sure to be
accessed. In Netscape Navigator you may hold the shift key while clicking the
Reload button to ensure that the cache is not used. (Note that the shift-reload trick
does not always force the client to fetch images from source if the images are
already in the cache.)

You may also wish to disable the server cache using the cache-init SAF.

Examine the access log and error log to help with debugging.

Chapter 3 Creating Custom SAFs 91

Overview of NSAPI C Functions

Overview of NSAPI C Functions

92

NSAPI provides a set of C functions that are used to implement SAFs. They serve
several purposes. They provide platform independence across Sun ONE Web
Server operating system and hardware platforms. They provide improved
performance. They are thread-safe which is a requirement for SAFs. They prevent
memory leaks. And they provide functionality necessary for implementing SAFs.
You should always use these NSAPI routines when defining new SAFs.

This section provides an overview of the function categories available and some of
the more commonly used routines. All of the public routines are detailed in
Chapter 7, “NSAPI Function Reference.”

The main categories of NSAPI functions are:
e Parameter Block Manipulation Routines
* Protocol Utilities for Service SAFs

* Memory Management

e FileI/O
e NetworkI/O
e Threads

e Utilities

e Virtual Server

Parameter Block Manipulation Routines

The parameter block manipulation functions provide routines for locating, adding,
and removing entries in a pblock data structure:

® pblock_findval returns the value for a given name in a pblock.
® pblock_nvinsert adds a new name-value entry to a pblock.

* pblock_remove removes a pblock entry by name from a pblock. The entry is
not disposed. Use param_free to free the memory used by the entry.

®* param free frees the memory for the given pblock entry.

® pblock_pblock2str creates a new string containing all of the name-value
pairs from a pblock in the form “name=value name=value.” This can be a useful
function for debugging.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Overview of NSAPI C Functions

Protocol Utilities for Service SAFs

Protocol utilities provide functionality necessary to implement Service SAFs:

® request_header returns the value for a given request header name, reading
the headers if necessary. This function must be used when requesting entries
from the browser header pblock (rg->headers).

®* protocol_status sets the HTTP response status code and reason phrase.

® protocol_start_response sendsthe HTTP response and all HTTP headers
to the browser.

Memory Management

Memory management routines provide fast, platform-independent versions of the
standard memory management routines. They also prevent memory leaks by
allocating from a temporary memory (called “pooled” memory) for each request,
and then disposing the entire pool after each request. There are wrappers for
standard memory routines for using permanent memory. To disable pooled
memory for debugging, see the built-in SAF pool-init in Chapter 2, “SAFs in the
magnus.conf File.”

¢ MALLOC

® FREE

¢ PERM STRDUP
® REALLOC

® CALLOC

® PERM MALLOC
® PERM FREE

¢ PERM STRDUP
® PERM REALLOC

¢ PERM CALLOC

Chapter 3 Creating Custom SAFs 93

Overview of NSAPI C Functions

File 1/0

The file I/O functions provide platform-independent, thread-safe file I/ O routines.
® system_fopenRO opens a file for read-only access.

®* system_fopenRW opens a file for read-write access, creating the file if
necessary.

® system fopenWA opens a file for write-append access, creating the file if
necessary.

e system fclose closes a file.
e system fread reads from a file.
e system fwrite writes to a file.

* system fwrite_atomic locks the given file before writing to it. This avoids
interference between simultaneous writes by multiple threads.

Network 1/O

Network I/O functions provide platform-independent, thread-safe network 1/0
routines. These routines work with SSL when it’s enabled.

® netbuf grab reads from a network buffer’s socket into the network buffer.
* netbuf_getc getsa character from a network buffer.

e net flush flushes buffered data.

®* net_read reads bytes from a specified socket into a specified buffer.

* net_sendfile sends the contents of a specified file to a specified a socket.

® net write writes to the network socket.

Threads

Thread functions include functions for creating your own threads that are
compatible with the server’s threads. There are also routines for critical sections
and condition variables.

® systhread start creates a new thread.

® systhread_sleep puts a thread to sleep for a given time.

94 Sun ONE Web Server 6.1 ¢« NSAPI Programmer’s Guide * April 2004

Overview of NSAPI C Functions

crit_init creates a new critical section variable.

crit_enter gains ownership of a critical section.

crit_exit surrenders ownership of a critical section.

crit_terminate disposes of a critical section variable.

condvar init creates a new condition variable.

condvar_notify awakens any threads blocked on a condition variable.
condvar wait blocks on a condition variable.

condvar_terminate disposes of a condition variable.

prepare_nsapi_thread allows threads that are not created by the server to
act like server-created threads.

Utilities
Utility functions include platform-independent, thread-safe versions of many

standard library functions (such as string manipulation), as well as new utilities
useful for NSAPL

daemon_atrestart (UNIX only) registers a user function to be called when
the server is sent a restart signal (HUP) or at shutdown.

condvar_init gets the next line (up to a LF or CRLF) from a buffer.
util_hostname gets the local host name as a fully qualified domain name.
util later than compares two dates.

util_sprintf is the same as the standard library routine sprintf ().
util_strftime is the same as the standard library routine strftime ().

util_uri_escape converts the special characters in a string into URI-escaped
format.

util_uri_unescape converts the URI-escaped characters in a string back into
special characters.

NOTE You cannot use an embedded null in a string, because NSAPI

functions assume that a null is the end of the string. Therefore,
passing unicode-encoded content through an NSAPI plugin
doesn’t work.

Chapter 3 Creating Custom SAFs 95

Required Behavior of SAFs for Each Directive

Virtual Server

The virtual server functions provide routines for retrieving information about
virtual servers.

request_get_vs finds the virtual server to which a request is directed.

vs_alloc_slot allocates a new slot for storing a pointer to data specific to a
certain virtual server.

vs_get_data finds the value of a pointer to data for a given virtual server and
slot.

vs_get_default_httpd_object obtains a pointer to the default (or root)
object from the virtual server's virtual server class configuration.

vs_get doc_root finds the document root for a virtual server.

vs_get_httpd_objset obtains a pointer to the virtual server class
configuration for a given virtual server.

vs_get_id finds the ID of a virtual server.

vs_get_mime_type determines the MIME type that would be returned in the
Content-Type: header for the given URL

vs_lookup_config_var finds the value of a configuration variable for a given
virtual server.

vs_register_cb allows a plugin to register functions that will receive
notifications of virtual server initialization and destruction events.

vs_set_data sets the value of a pointer to data for a given virtual server and
slot.

vs_translate_uri translates a URI as though it were part of a request for a
specific virtual server.

Required Behavior of SAFs for Each Directive

When writing a new SAF, you should define it to do certain things, depending on
which stage of the request-handling process will invoke it. For example, SAFs to be
invoked during the Init stage must conform to different requirements than SAFs
to be invoked during the service stage.

96

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Required Behavior of SAFs for Each Directive

The rg parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, rq contains whatever
values were inserted or modified by previously executed SAFs. On output, rq
contains any modifications or additional information inserted by the SAF. Some
SAFs depend on the existence of specific information provided at an earlier step in
the process. For example, a pathCheck SAF retrieves values in rq- >vars that were
previously inserted by an AuthTrans SAF.

This section outlines the expected behavior of SAFs used at each stage in the
request-handling process.

e Init SAFs

e AuthTrans SAFs
e NameTrans SAFs
e PathCheck SAFs
* ObjectType SAFs
¢ Input SAFs

* Output SAFs

e Service SAFs

e Error SAFs

e AddLog SAFs

For more detailed information about these SAFs, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference.

Init SAFs

e Purpose: Initialize at startup.

e (Called at server startup and restart.

e rgand snare NULL.

¢ Initialize any shared resources such as files and global variables.

* Canregister callback function with daemon_atrestart () to clean up.

* Onerror, insert error parameter into pb describing the error and return
REQ ABORTED.

Chapter 3 Creating Custom SAFs 97

Required Behavior of SAFs for Each Directive

98

e If successful, return REQ PROCEED.

AuthTrans SAFs

® Purpose: Verify any authorization information. Only basic authorization is
currently defined in the HTTP /1.0 specification.

¢ Check for Authorization header in rq- >headers that contains the
authorization type and uu-encoded user and password information. If header
was not sent, return REQ NOACTION.

e If header exists, check authenticity of user and password.

e If authentic, create auth-type, plus auth-user and/or auth-group parameter
in rq->vars to be used later by pathCheck SAFs.

¢ Return REQ_PROCEED if the user was successfully authenticated, REQ_NOACTION
otherwise.

NameTrans SAFs

e Purpose: Convert logical URI to physical path.

e Perform operations on logical path (ppath in rg- >vars) to convert it into a full
local file system path.

® Return REQ_PROCEED if ppath in rq- >vars contains the full local file system
path, or REQ_NOACTION if not.

* To redirect the client to another site, change ppath in rq- >vars to /URL. Add
url to rq->vars with full URL (for example, http://home .netscape.com/).
Return REQ PROCEED.

PathCheck SAFs

e Purpose: Check path validity and user’s access rights.
¢ Check auth-type, auth-user, and/or auth-group in rq->vars.

® Return REQ_PROCEED if user (and group) is authorized for this area (ppath in
rqg->vars).

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Required Behavior of SAFs for Each Directive

e If not authorized, insert WWiWw-Authenticate to rq- >srvhdrs with a value such
as: Basic; Realm=\"Our private area\".Call protocol status () to set
HTTP response status to PROTOCOL_UNAUTHORIZED. Return REQ ABORTED.

ObjectType SAFs

® Purpose: Determine content-type of data.
e If content-type in rq->srvhdrs already exists, return REQ_NOACTION.
e Determine the MIME type and create content-type in rq->srvhdrs

e Return REQ PROCEED if content-type is created, REQ NOACTION otherwise.

Input SAFs

e Purpose: Insert filters that process incoming (client-to-server) data.

e Input SAFs are executed when a plugin or the server first attempts to read
entity body data from the client.

e Input SAFs are executed at most once per request.

e Return REQ PROCEED to indicate success, or REQ NOACTION to indicate it
performed no action.

Output SAFs

e Purpose: Insert filters that process outgoing (server-to-client) data.

e output SAFs are executed when a plugin or the server first attempts to write
entity body data from the client.

e output SAFs are executed at most once per request.

e Return REQ PROCEED to indicate success, or REQ NOACTION to indicate it
performed no action.

Chapter 3 Creating Custom SAFs 99

Required Behavior of SAFs for Each Directive

100

Service SAFs

Purpose: Generate and send the response to the client.

A service SAF is only called if each of the optional parameters type, method,
and query specified in the directive in obj . conf match the request.

Remove existing content-type from rg->srvhdrs. Insert correct
content-type in rq->srvhdrs.

Create any other headers in rq->srvhdrs.

Call protocol_status to set HTTP response status.

Call protocol_start_response to send HTTP response and headers.
Generate and send data to the client using net_write.

Return REQ PROCEED if successful, REQ_EXIT on write error, REQ ABORTED on
other failures.

Error SAFs

Purpose: Respond to an HTTP status error condition.

The Error SAF is only called if each of the optional parameters code and
reason specified in the directive in obj . conf match the current error.

Error SAFs do the same as Service SAFs, but only in response to an HTTP
status error condition.

AddLog SAFs

Purpose: Log the transaction to a log file.
AddLog SAFs can use any data available in pb, sn, or rg to log this transaction.

Return REQ PROCEED.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

CGl to NSAPI Conversion

CGl to NSAPI Conversion

You may have a need to convert a CGI variable into an SAF using NSAPI. Since the
CGI environment variables are not available to NSAPI, you'll retrieve them from

the NSAPI parameter blocks. The table below indicates how each CGI environment
variable can be obtained in NSAPL

Keep in mind that your code must be thread-safe under NSAPI. You should use
NSAPI functions that are thread-safe. Also, you should use the NSAPI memory

management and other routines for speed and platform independence.

Table 3-6

Parameter Blocks for CGI Variables

CGl getenv()

AUTH_TYPE
AUTH_USER
CONTENT_LENGTH
CONTENT_TYPE
GATEWAY INTERFACE

HTTP_ *

PATH INFO
PATH TRANSLATED

QUERY_ STRING

REMOTE_ADDR

REMOTE_HOST

REMOTE_IDENT

NSAPI
pblock findval ("auth-type", rg-svars);
pblock findval ("auth-user", rg-svars);

pblock findval ("content-length", rg-sheaders);

pblock findval ("content-type", rg->headers);
"CGI/1.1"

pblock findval("*", rg->headers) ;

(* is lowercase; dash replaces underscore)
pblock findval ("path-info", rg-svars);
pblock findval ("path-translated", rg->vars);

pblock findval ("query", rg->regpb) ;

(GET only; POST puts query string in body data)
pblock findval ("ip", sn->client);

session_dns (sn)
sn->client) ;

? session dns(sn) pblock findval ("ip",

pblock findval("from",
(not usually available)

rg->headers) ;

REMOTE_USER pblock findval ("auth-user", rg-svars);
REQUEST METHOD pblock findval ("method", reg->reqgpb) ;
SCRIPT NAME pblock findval ("uri", rg->regpb);
SERVER_NAME char *util hostname () ;
SERVER_PORT conf getglobals () ->Vport;

(as a string)
SERVER_PROTOCOL pblock findval ("protocol", rqg->reqgpb) ;

Chapter 3 Creating Custom SAFs 101

CGl to NSAPI Conversion

Table 3-6

Parameter Blocks for CGI Variables

CGl getenv()

NSAPI

SERVER_SOFTWARE
Sun ONE-specific:
CLIENT_CERT

HOST

HTTPS
HTTPS KEYSIZE

HTTPS_ SECRETKEYSIZ
E

QUERY

SERVER_URL

MAGNUS_VERSION_STRING

pblock findval ("auth-cert", rg-s>vars)

char *session maxdns (sn) ;

(may be null)

security active ? "ON" "OFF";

pblock findval ("keysize", sn->client);

pblock findval ("secret-keysize", sn->client);

pblock findval(query", rg->regpb);
(GET only, POST puts query string in entity-body data)

http uri2url dynamic("","", sn, rq);

102 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Chapter 4

Creating Custom Filters

This chapter describes how to create custom filters that can be used to intercept and
possibly modify the content presented to or generated by another function.

This chapter has the following sections:
e Future Compeatibility Issues

The NSAPI Filter Interface

¢ Filter Methods

e Position of Filters in the Filter Stack
¢ Filters that Alter Content-Length
* Creating and Using Custom Filters

e Overview of NSAPI Functions for Filter Development

Future Compatibility Issues

The NSAPI interface may change in a future version of Sun ONE Web Server. To
keep your custom plugins upgradeable, do the following:

* Make sure plugin users know how to edit the configuration files (such as
magnus . conf and obj.conf) manually. The plugin installation software
should not be used to edit these configuration files.

¢ Keep the source code so you can recompile the plugin.

103

The NSAPI Filter Interface

The NSAPI Filter Interface

Sun ONE Web Server 6.1 extends NSAPI by introducing a new filter interface that
complements the existing Server Application Function (SAF) interface. Filters
make it possible to intercept and possibly modify data sent to and from the server.
The server communicates with a filter by calling the filter's filter methods. Each
filter implements one or more filter methods. A filter method is a C function that
performs a specific operation, such as processing data sent by the server.

Filter Methods

This section describes the filter methods that a filter can implement. To create a
filter, a filter developer implements one or more of these methods. This section
describes the following filter methods:

. insert

e remove

. flush

. read

e write

e writev

e gsendfile

For more information about these methods, see Chapter 7, “NSAPI Function
Reference.”

C Prototypes for Filter Methods

Following is a list of C prototypes for the filter methods:

int insert (FilterLayer *layer, pblock *pb);

void remove (FilterLayer *layer) ;

int flush(FilterLayer *layer);

int read(FilterLayer *layer, void *buf, int amount, int timeout) ;
int write(FilterLayer *layer, const void *buf, int amount) ;

int writev(FilterLayer *layer, const struct iovec *iov, int
iov_size);

int sendfile(FilterLayer *layer, sendfiledata *sfd);

104 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Filter Methods

The layer parameter is a pointer to a FilterLayer data structure, which contains
variables related to a particular instance of a filter. Following is a list of the most
important fields in the FilterLayer data structure:

® context->sn: Contains information relating to a single TCP/IP session (the
same sn pointer that’s passed to SAFs).

® context->rq: Contains information relating to the current request (the same
rq pointer that’s passed to SAFs).

® context->data: Pointer to filter-specific data.

® lower: A platform-independent socket descriptor used to communicate with
the next filter in the stack.

The meaning of the context->data field is defined by the filter developer. Filters
that must maintain state information across filter method calls can use
context - >data to store that information.

For more information about FilterLayer, see “FilterLayer” on page 258.

insert

The insert filter method is called when an SAF such as insert-filter calls the
filter_ insert function to request that a specific filter be inserted into the filter
stack. Each filter must implement the insert filter method.

When insert is called, the filter can determine whether it should be inserted into
the filter stack. For example, the filter could inspect the Content-Type header in
the rq- >srvhdrs pblock to determine whether it is interested in the type of data
that will be transmitted. If the filter should not be inserted, the insert filter
method should indicate this by returning REQ_NOACTION.

If the filter should be inserted, the insert filter method provides an opportunity to
initialize this particular instance of the filter. For example, the insert method
could allocate a buffer with MALLOC and store a pointer to that buffer in
layer->context->data.

The filter is not part of the filter stack until after insert returns. As a result, the
insert method should not attempt to read from, write to, or otherwise interact
with the filter stack.

See Also
insert in “NSAPI Function Reference”

Chapter 4 Creating Custom Filters 105

Filter Methods

remove

The remove filter method is called when a filter stack is destroyed (that is, when the
corresponding socket descriptor is closed), when the server finishes processing the
request the filter was associated with, or when an SAF such as remove-filter calls
the filter remove function. The remove filter method is optional.

The remove method can be used to clean up any data the filter allocated in insert
and to pass any buffered data to the next filter by calling
net write(layer->lower, ...).

See Also
remove in “NSAPI Function Reference”

flush

The £1ush filter method is called when a filter or SAF calls the net flush function.
The £1ush method should pass any buffered data to the next filter by calling
net_write(layer->lower, ...).The flush method is optional, but it should be
implemented by any filter that buffers outgoing data.

See Also
flush in “NSAPI Function Reference”

read

The read filter method is called when a filter or SAF calls the net read function.
Filters that are interested in incoming data (data sent from a client to the server)
implement the read filter method.

Typically, the read method will attempt to obtain data from the next filter by
calling net_read (layer->lower, ...).The read method may then modify the
received data before returning it to its caller.

See Also
read in “NSAPI Function Reference”

106 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Filter Methods

write

The write filter method is called when a filter or SAF calls the net _write function.
Filters that are interested in outgoing data (data sent from the server to a client)
implement the write filter method.

Typically, the write method will pass data to the next filter by calling
net_write(layer->lower, ...).Thewrite method may modify the data before
calling net_write. For example, the http-compression filter compresses data
before passing it on to the next filter.

If a filter implements the write filter method but does not pass the data to the next
layer before returning to its caller (that is, if the filter buffers outgoing data), the
filter should also implement the £1ush method.

See Also
write in “NSAPI Function Reference”

writev

The writev filter method performs the same function as the write filter method,
but the format of its parameters is different. It is not necessary to implement the
writev filter method; if a filter implements the write filter method but not the
writev filter method, the server uses the write method instead of the writev
method. A filter should not implement the writev method unless it also
implements the write method.

Under some circumstances, the server may run slightly faster when filters that
implement the write filter method also implement the writev filter method.

See Also
writev in “NSAPI Function Reference”

sendfile

The sendfile filter method performs a function similar to the writev filter
method, but it sends a file directly instead of first copying the contents of the file
into a buffer. It is not necessary to implement the sendfile filter method; if a filter
implements the write filter method but not the sendfile filter method, the server
will use the write method instead of the sendfile method. A filter should not
implement the sendfile method unless it also implements the write method.

Chapter 4 Creating Custom Filters 107

Position of Filters in the Filter Stack

Under some circumstances, the server may run slightly faster when filters that
implement the write filter method also implement the sendfile filter method.

See Also
sendfile in “NSAPI Function Reference”

Position of Filters in the Filter Stack

108

All data sent to the server (such as the result of an HTML form) or sent from the
server (such as the output of a JSP page) is passed through a set of filters known as
a filter stack. The server creates a separate filter stack for each connection. While
processing a request, individual filters can be inserted into and removed from the
stack.

Different types of filters occupy different positions within a filter stack. Filters that
deal with application-level content (such filters that translates a page from XHTML
to HTML) occupy a higher position than filters that deal with protocol-level issues
(such as filters that format HTTP responses). When two or more filters are defined
to occupy the same position in the filter stack, filters that were inserted later will
appear higher than filters that were inserted earlier.

Filters positioned higher in the filter stack are given an earlier opportunity to
process outgoing data, while filters positioned lower in the stack are given an
earlier opportunity to process incoming data. For example, in the following figure,
the xml-to-xhtml filter is given an earlier opportunity to process outgoing data
than the xhtml -to-html filter.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Figure 4-1 Position of Filters in the Filter Stack

Service fn="send-file”

1r <L —

Highest
Filter ¥ml-to-xhtml]
whtml-to-html]
1T 1L =
—
Lowest .
Filter http—ccmpre551on-]

Position of Filters in the Filter Stack

Content
> Translation
Filters

Content
> Coding
Filter

I

Incoming Outgoing
Request Response
Data Data

When you create a filter with the filter_create function, you specify what
position your filter should occupy in the stack. You can also use the

init-filter-order Init SAF to control the position o

f specific filters within filter

stacks. For example, init-filter-order can be used to ensure that a filter that
converts outgoing XML to XHTML is inserted above a filter that converts outgoing

XHTML to HTML.

For more information, see “filter_create” on page 167 and “init-filter-order” on

page 69.

Chapt:

er 4 Creating Custom Filters 109

Filters that Alter Content-Length

Filters that Alter Content-Length

110

Filters that can alter the length of an incoming request body or outgoing response
body must take special steps to ensure interoperability with other filters and SAFs.

Filters that process incoming data are referred to as input filters. If an input filter
can alter the length of the incoming request body (for example, if a filter
decompresses incoming data) and there is a Content -Length header in the
rq->headers pblock, the filter's insert filter method should remove the
Content-Length header and replace it with a Transfer-encoding: identity
header as follows:

pb_param *pp;

pp = pblock remove ("content-length",
layer->context->rg->headers) ;
if (pp != NULL) {

param_free(pp) ;

pblock nvinsert ("transfer-encoding", "identity",
layer->context->rg->headers) ;

}

Because some SAFs expect a Content -Length header when a request body is
present, before calling the first service SAF the server will insert all relevant
filters, read the entire request body, and compute the length of the request body
after it has been passed through all input filters. However, by default, the server
will read at most 8192 bytes of request body data. If the request body exceeds 8192
bytes after being passed through the relevant input filters, the request will be
cancelled. For more information, see the description of
ChunkedRequestBufferSize in the "Syntax and Use of magnus.conf" chapter in
the Sun ONE Web Server 6.1 Administrator’s Configuration File Reference.

Filters that process outgoing data are referred to as output filters. If an output filter
can alter the length of the outgoing response body (for example, if the filter
compresses outgoing data), the filter's insert filter method should remove the
Content-Length header from rqg->srvhdrs as follows:

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Creating and Using Custom Filters

pb_param *pp;

pp = pblock remove ("content-length",
layer->context->rg->srvhdrs) ;
if (pp != NULL)

param_free (pp) ;

Creating and Using Custom Filters

Custom filters are defined in shared libraries that are loaded and called by the
server. The general steps for creating a custom filter are as follows:

1. Write the Source Code using the NSAPI functions.

2. Compile and Link the source code to create a shared library (.so, .s1, or .d11)
file.

3. Load and Initialize the Filter by editing the magnus. conf file.

4. Instruct the Server to Insert the Filter by editing the obj . conf file to insert your
custom filter(s) at the appropriate time.

5. Restart the Server.

6. Test the Filter by accessing your server from a browser with a URL that
triggers your filter.

These steps are described in greater detail in the following sections.

Write the Source Code

Write your custom filter methods using NSAPI functions. For a summary of the
NSAPI functions specific to filter development, see “Overview of NSAPI Functions
for Filter Development” on page 114. For a summary of general purpose NSAPI
functions, see “Overview of NSAPI Functions for Filter Development” on page 114.
Each filter method must be implemented as a separate function. See “Filter
Methods” on page 104 for the filter method prototypes.

The filter must be created by a call to filter_ create. Typically, each plugin
defines an nsapi_module init function thatis used to call filter create and
perform any other initialization tasks. See nsapi_module_init and filter_create for
more information.

Chapter 4 Creating Custom Filters 111

Creating and Using Custom Filters

112

Filter methods are invoked whenever the server or an SAF calls certain NSAPI
functions such as net_write or filter insert. As a result, filter methods can be
invoked from any thread and should only block using NSAPI functions (for
example, crit_enter and net_read). If a filter method blocks using other
functions (for example, the Windows WaitForMultipleObjects and ReadFile
functions), the server may hang. Also, shared objects that define filters should be
loaded with the NativeThread="no" flag, as described in “Load and Initialize the
Filter” on page 112.

If a filter method must block using a non-NSAPI function, KernelThreads 1
should be set in magnus . conf. For more information about KernelThreads, see the
description in the chapter "Syntax and Use of magnus.conf" in the Sun ONE Web
Server 6.1 Administrator’s Configuration File Reference.

Keep the following in mind when writing your filter:
* Write thread-safe code

e 1O should only be performed using the NSAPI functions documented in “File
I/0O” on page 94 and “Network I/O” on page 94

e Thread synchronization should only be performed using NSAPI functions
documented in “Threads” on page 94

* Blocking may affect performance.
e Carefully check and handle all errors

For examples of custom filters, see server_root/plugins/nsapi/examples and also
Chapter 5, “Examples of Custom SAFs and Filters.”

Compile and Link

Filters are compiled and linked in the same way as SAFs. See “Compile and Link”
on page 85 in the “Creating Custom SAFs” chapter for more information.

Load and Initialize the Filter

For each shared library (plugin) containing custom SAFs to be loaded into the Sun
ONE Web Server, add an Init directive that invokes the 1oad-modules SAF to
magnus . conf. The syntax for a directive that loads a filter plugin is:

Init fn=load-modules shlib=[path]sharedlibname NativeThread="no"

* shlibis the local file system path to the shared library (plugin).

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Creating and Using Custom Filters

® NativeThread indicates whether the plugin requires native threads. Filters
should be written to run on any type of thread (see “Write the Source Code” on
page 111).

When the server encounters such a directive, it calls the plugin's
nsapi module init function to initialize the filter.

Instruct the Server to Insert the Filter

Add an Input or output directive to obj . conf to instruct the server to insert your
filter into the filter stack. The format of the directive is as follows:

Directive fn=insert-filter filter="filter-name" [namel="valuel”] ...
[nameN="valueN"]

e Directive is Input Or Output.
* filter-name is the name of the filter, as passed to filter create, to insert.

* nameN="valueN" are the names and values of parameters that are passed to the
filter's insert filter method.

Filters that process incoming data should be inserted using an Input directive.
Filters that process outgoing data should be inserted using an output directive.

To ensure that your filter is inserted whenever a client sends a request, add the
Input or Ooutput directive to the default object. For example, the following portion
of obj . conf instructs the server to insert a filter named example-replace and pass
it two parameters, from and to:

<Object name="default">

Output fn=insert-filter
filter="example-replace"
from="01ld String"
to="New String"

</Object>

Chapter 4 Creating Custom Filters 113

Overview of NSAPI Functions for Filter Development

Restart the Server

For the server to load your plugin, you must restart the server. A restart is required
for all plugins that implement SAFs and/or filters.

Test the Filter

Test your SAF by accessing your server from a browser. You should disable
caching in your browser so that the server is sure to be accessed. In Netscape
Navigator, you can hold the shift key while clicking the Reload button to ensure
that the cache is not used. (Note that the shift-reload trick does not always force the
client to fetch images from source if the images are already in the cache.) Examine
the access and error logs to help with debugging.

Overview of NSAPI Functions for Filter
Development

NSAPI provides a set of C functions that are used to implement SAFs and filters.
This section lists the functions that are specific to the development of filters. All of
the public routines are described in detail in Chapter 7, “NSAPI Function
Reference.”

The NSAPI functions specific to the development of filters are:

e filter create createsa new filter

* filter_insert inserts the specified filter into a filter stack

* filter_remove removes the specified filter from a filter stack
e filter name returns the name of the specified filter

e filter find finds an existing filter given a filter name

e filter_layer returns the layer in a filter stack that corresponds to the
specified filter

114 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Chapter 5

Examples of Custom SAFs and
Filters

This chapter provides examples of custom Sever Application Functions (SAFs) and
filters for each directive in the request-response process. You may wish to use these
examples as the basis for implementing your own custom SAFs and filters. For
more information about creating your own custom SAFs, see Chapter 3, “Creating
Custom SAFs.” For more information about creating your own filters, see

Chapter 4, “Creating Custom Filters.”

Before writing custom SAFs, you should be familiar with the request-response
process and the role of the configuration file obj . conf (this file is discussed in the
Sun ONE Web Server 6.1 Administrator’s Configuration File Reference).

Before writing your own SAF, check to see if an existing SAF serves your purpose.
The predefined SAFs are discussed in the Sun ONE Web Server 6.1 Administrator’s
Configuration File Reference.

For a list of the NSAPI functions for creating new SAFs, see Chapter 7, “NSAPI
Function Reference.”

This chapter has the following sections:
e Examples in the Build

* AuthTrans Example

¢ NameTrans Example

e PathCheck Example

¢ ObjectType Example

e Output Example

¢ Service Example

115

Examples in the Build

e AddLog Example

¢ Quality of Service Example

Examples in the Build

The nsapi/examples/ or plugins/nsapi/examples subdirectory within the
server installation directory contains examples of source code for SAFs.

You can use the example.mak makefile in the same directory to compile the
examples and create a library containing the functions in all of the example files.

To test an example, load the examples shared library into the Sun ONE Web Server
by adding the following directive in the Init section of magnus. conf:

Init fn=load-modules shlib=examples.so/dll
funcs=function1,function2, function3

The funcs parameter specifies the functions to load from the shared library.

If the example uses an initialization function, be sure to specify the initialization
function in the funcs argument to load-modules, and also add an Init directive
to call the initialization function.

For example, the pathCheck example implements the restrict-by-acf function,
which is initialized by the acf-init function. The following directive loads both
these functions:

Init fn=load-modules yourlibmry funcs=acf-init, restrict-by-act
The following directive calls the acf-init function during server initialization:
Init fn=acf-init file=extra-arg

To invoke the new SAF at the appropriate step in the response handling process,
add an appropriate directive in the object to which it applies, for example:

PathCheck fn=restrict-by-acf

After adding new Init directives to magnus.conf, you always need to restart the
Sun ONE Web Server to load the changes, since Init directives are only applied
during server initialization.

116 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

AuthTrans Example

AuthTrans Example

This simple example of an AuthTrans function demonstrates how to use your own
custom ways of verifying that the user name and password that a remote client
provided is accurate. This program uses a hard-coded table of user names and
passwords and checks a given user's password against the one in the static data
array. The userdb parameter is not used in this function.

AuthTrans directives work in conjunction with PathcCheck directives. Generally,
an AuthTrans function checks if the user name and password associated with the
request are acceptable, but it does not allow or deny access to the request; it leaves
that to a PathCheck function.

AuthTrans functions get the user name and password from the headers associated
with the request. When a client initially makes a request, the user name and
password are unknown so the AuthTrans function and pPathCheck function work
together to reject the request, since they can’t validate the user name and password.
When the client receives the rejection, the usual response is for it to present a dialog
box asking the user for their user name and password, and then the client submits
the request again, this time including the user name and password in the headers.

In this example, the hardcoded-auth function, which is invoked during the
AuthTrans step, checks if the user name and password correspond to an entry in
the hard-coded table of users and passwords.

Installing the Example

To install the function on the Sun ONE Web Server, add the following Init
directive to magnus . conf to load the compiled function:

Init fn=load-modules shlib:yourlibmry funcs=hardcoded-auth

Inside the default object in obj . conf, add the following AuthTrans directive:

AuthTrans fn=basic-auth auth-type="basic" userfn=hardcoded-auth
userdb=unused

Note that this function does not actually enforce authorization requirements, it
only takes given information and tells the server if it's correct or not. The
PathCheck function require-auth performs the enforcement, so add the
following PathCheck directive as well:

Chapter 5 Examples of Custom SAFs and Filters 117

AuthTrans Example

PathCheck fn=require-auth realm="test realm" auth-type="basic"

Source Code

The source code for this example is in the auth. ¢ file in the nsapi/examples/ or
plugins/nsapi/examples subdirectory of the server root directory.

#include "nsapi.h"

typedef struct ({
char *name;

char *pw;

} user s;

static user_ s user _set[] = {
{lljoelll "shmoe"},
{"suzy", "creamcheese"},

{NULL, NULL}

Vi

#include "frame/log.h"

#ifdef cplusplus
extern "C"
#endif
NSAPI PUBLIC int hardcoded auth(pblock *param, Session *sn, Request
*rq)
{
/* Parameters given to us by auth-basic */
char *pwfile = pblock findval ("userdb", param) ;
char *user = pblock findval ("user", param);
char *pw = pblock findval ("pw", param);

/* Temp variables */
register int x;

for(x = 0; user set[x].name != NULL; ++X) {
/* If this isn't the user we want, keep going */
if (strcmp (user, user set[x].name) != 0) continue;

/* Verify password */
if (strcmp (pw, user set[x].pw))
log error (LOG_SECURITY, "hardcoded-auth", sn, rq,
"user %s entered wrong password", user);
/* This will cause the enforcement function to ask */

118 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NameTrans Example

/* user again */
return REQ NOACTION;

}

/* If we return REQ PROCEED, the username will be accepted
*/
return REQ PROCEED;

}

/* No match, have it ask them again */

log error (LOG_SECURITY, "hardcoded-auth", sn, rq,
"unknown user %s", user);

return REQ NOACTION;

NameTrans Example

The ntrans.c file in the nsapi/examples/ or plugins/nsapi/examples
subdirectory of the server root directory contains source code for two example
NameTrans functions:

® explicit pathinfo
This example allows the use of explicit extra path information in a URL.
® https_redirect

This example redirects the URL if the client is a particular version of Netscape
Navigator.

This section discusses the first example. Look at the source code in ntrans. c for
the second example.

NOTE A NameTrans function is used primarily to convert the logical URL
in ppathin rq->vars to a physical path name. However, the
example discussed here, explicit_pathinfo, does not translate
the URL into a physical path name; it changes the value of the
requested URL. See the second example, https_redirect, in
ntrans. ¢ for an example of a NameTrans function that converts the
value of ppath in rg->vars from a URL to a physical path name.

The explicit_pathinfo example allows URLs to explicitly include extra path
information for use by a CGI program. The extra path information is delimited
from the main URL by a specified separator, such as a comma.

Chapter 5 Examples of Custom SAFs and Filters 119

NameTrans Example

For example:
http://server-name/cgi/marketing, /jan/releases/hardware

In this case, the URL of the requested resource (which would be a CGI program) is
http://server-name/cgi/marketing, and the extra path information to give to the
CGI program is /jan/releases/hardware.

When choosing a separator, be sure to pick a character that will never be used as
part of the real URL.

The explicit_pathinfo function reads the URL, strips out everything following
the comma, and puts it in the path-info field of the vars field in the request
object (rg->vars). CGI programs can access this information through the

PATH INFO environment variable.

One side effect of explicit pathinfo is that the scrIpT NaAME CGI environment
variable has the separator character tacked onto the end.

NameTrans directives usually return REQ_PROCEED when they change the path, so
that the server does not process any more NameTrans directives. However, in this
case we want name translation to continue after we have extracted the path info,

since we have not yet translated the URL to a physical path name.

Installing the Example

To install the function on the Sun ONE Web Server, add the following Init
directive to magnus . conf to load the compiled function:

Init fn=load-modules shl ib=yourlibmry funcs=explicit-pathinfo
Inside the default object in obj . conf, add the following NameTrans directive:
NameTrans fn=explicit-pathinfo separator=",6"

This NameTrans directive should appear before other NameTrans directives in the
default object.

Source Code

This example is in the ntrans.c file in the nsapi/examples/ or
plugins/nsapi/examples subdirectory of the server root directory.

#include "nsapi.h"

#include <string.h> /* strchr */
#include "frame/log.h" /* log_error */

120 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NameTrans Example

#ifdef cplusplus
extern "C"
#endif

NSAPI PUBLIC int explicit pathinfo(pblock *pb, Session *sn, Request
*rq)
{

/* Parameter: The character to split the path by */

char *sep = pblock findval ("separator", pb) ;

/* Server variables */
char *ppath = pblock findval ("ppath", rg-s>vars);

/* Temp var */
char *t;

/* Verify correct usage */
if (1sep)
log error (LOG_MISCONFIG, "explicit-pathinfo", sn, rqg,
"missing parameter (need root)");
/* When we abort, the default status code is 500 Server
Error */
return REQ ABORTED;

}

/* Check for separator. If not there, don't do anything */
t = strchr (ppath, sepl0]);
if(lt)
return REQ NOACTION;

/* Truncate path at the separator */

*tyr = '\0';

/* Assign path information */

pblock nvinsert ("path-info", t, rg-s>vars);

/* Normally NameTrans functions return REQ PROCEED when they
change the path. However, we want name translation to
continue after we're done. */

return REQ NOACTION;

}

#include "base/util.h" /* 1s_mozilla */
#include "frame/protocol.h" /* protocol status */
#include "base/shexp.h" /* shexp cmp */

#ifdef cplusplus
extern "C"
#endif

Chapter 5 Examples of Custom SAFs and Filters 121

NameTrans Example

122

NSAPI PUBLIC int https redirect (pblock *pb, Session *sn, Request
*rq)

{

/* Server Variable */

char *ppath = pblock findval ("ppath", rg-s>vars);
/* Parameters */

char *from = pblock findval ("from", pb);

char *url = pblock findval ("url", pb);

char *alt = pblock findval("alt", pb);

/* Work vars */

char *ua;

/* Check usage */

if ((tfrom) || (lurl)) {
log error (LOG_MISCONFIG, "https-redirect", sn, rq,

"missing parameter (need from, url)");

return REQ ABORTED;

!

/* Use wildcard match to see if this path is one we should
redirect */

if (shexp cmp (ppath, from) != 0)

return REQ NOACTION; /* no match */

/* Sigh. The only way to check for SSL capability is to
check UA */

if (request header ("user-agent", &ua, sn, rqg) == REQ ABORTED)
return REQ ABORTED;

/* The is mozilla function checks for Mozilla version 0.96
or greater */
if (util _is mozilla(ua, "0", "96")) {
/* Set the return code to 302 Redirect */
protocol status(sn, rg, PROTOCOL REDIRECT, NULL) ;
/* The error handling functions use this to set the
Location: */
pblock nvinsert ("url", url, rg-s>vars);
return REQ ABORTED;

}

/* No match. 01d client. */

/* If there is an alternate document specified, use it. */
if (alt) |

pb_param *pp = pblock find("ppath", rg-s>vars);

/* Trash the old value */

FREE (pp->value) ;

/* We must dup it because the library will later free

this pblock */
pp->value = STRDUP (alt) ;

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

PathCheck Example

return REQ PROCEED;

}

/* Else do nothing */
return REQ NOACTION;

PathCheck Example

The example in this section demonstrates how to implement a custom SAF for
performing path checks. This example simply checks if the requesting host is on a
list of allowed hosts.

The Init function acf-init loads a file containing a list of allowable IP addresses
with one IP address per line. The PathCheck function restrict_by_act gets the IP
address of the host that is making the request and checks if it is on the list. If the
host is on the list, it is allowed access; otherwise, access is denied.

For simplicity, the stdio library is used to scan the IP addresses from the file.

Installing the Example

To load the shared object containing your functions, add the following line in the
Init section of the magnus . conf file:

Init fn=load-modules yourhbnny funcs=acf-init, restrict-by-act

To call ac£-init to read the list of allowable hosts, add the following line to the
Init section in magnus.conf. (This line must come after the one that loads the
library containing acf-init).

Init fn=acf-init file=fileContainingHostsList

To execute your custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file:

PathCheck fn=restrict-by-acf

Chapter 5 Examples of Custom SAFs and Filters 123

PathCheck Example

Source Code

The source code for this example is in pcheck. c in the nsapi/examples/ or
plugins/nsapi/examples subdirectory within the server root directory.

#include "nsapi.h"

/* Set to NULL to prevent problems with people not calling
acf-init */
static char **hosts = NULL;

#include <stdio.h>

#include "base/daemon.h"

#include "base/util.h" /* util sprintf */
#include "frame/log.h" /* log error */
#include "frame/protocol.h" /* protocol status */

/* The longest line we'll allow in an access control file */
#define MAX ACF_LINE 256

/* Used to free static array on restart */
#ifdef cplusplus

extern "C"

#endif

NSAPI PUBLIC void acf free(void *unused)

{

register int x;

for(x = 0; hosts[x]; ++x)
FREE (hosts [x]) ;

FREE (hosts) ;

hosts = NULL;

}

#ifdef cplusplus
extern "C"
#endif

NSAPI PUBLIC int acf init (pblock *pb, Session *sn, Request *rq)
{

/* Parameter */

char *acf file = pblock findval("file", pb);

/* Working variables */

int num hosts;

FILE *f;

char err [MAGNUS ERROR LEN] ;
char buf [MAX ACF_LINE];

124 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

PathCheck Example

/* Check usage. Note that Init functions have special
error logging */
if (lacf file) {
util sprintf (err, "missing parameter to acf init
(need file)");
pblock nvinsert ("error", err, pb);
return REQ ABORTED;

}
f = fopen(acf file, "r");

/* Did we open it? */
if (1f) |
util sprintf (err, "can't open access control file %s (%s)",
acf file, system errmsg());
pblock nvinsert ("error", err, pb);
return REQ ABORTED;

}

/* Initialize hosts array */

num_hosts = 0;

hosts = (char **) MALLOC(1l * sizeof (char *));
hosts[0] = NULL;

while (fgets (buf, MAX ACF LINE, f)) {
/* Blast linefeed that stdio helpfully leaves on there */
buf [strlen(buf) - 1] = '\0';
hosts = (char **) REALLOC (hosts, (num hosts + 2) *
sizeof (char *));
hosts [num_hosts++] = STRDUP (buf) ;
hosts [num_hosts] = NULL;

!
fclose (f) ;

/* At restart, free hosts array */
daemon_atrestart (acf free, NULL) ;

return REQ PROCEED

}

#ifdef cplusplus
extern "C"
#endif

NSAPI_PUBLIC int restrict_by acf (pblock *pb, Session *sn, Request
*rq)

{

/* No parameters */

Chapter 5 Examples of Custom SAFs and Filters 125

ObjectType Example

/* Working variables */
char *remip = pblock findval ("ip", sn->client);
register int x;

if (thosts)
log error (LOG _MISCONFIG, "restrict-by-acf", sn, rq,
"restrict-by-acf called without call to acf-init");
/* When we abort, the default status code is 500 Server
Error */
return REQ ABORTED;

}

for(x = 0; hosts([x] != NULL; ++x) {
/* If they're on the list, they're allowed */
if (!strcmp (remip, hosts[x]))
return REQ NOACTION;

}

/* Set response code to forbidden and return an error. */
protocol status(sn, rg, PROTOCOL FORBIDDEN, NULL) ;
return REQ ABORTED;

ObjectType Example

The example in this section demonstrates how to implement html2shtml, a custom
SAF that instructs the server to treata .html fileasa . shtml file if a . shtml version
of the requested file exists.

A well-behaved objectType function checks if the content type is already set, and
if so, does nothing except return REQ_NOACTION.

if (pblock findval ("content-type", rg->srvhdrs))
return REQ NOACTION;

The primary task an objectType directive needs to perform is to set the content
type (if it is not already set). This example sets it to
magnus-internal/parsed-html in the following lines:

126 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

ObjectType Example

/* Set the content-type to magnus-internal/parsed-html */
pblock nvinsert ("content-type", "magnus-internal/parsed-html",
rg->srvhdrs) ;

The html2shtml function looks at the requested file name. If it ends with .htm1l,
the function looks for a file with the same base name, but with the extension

.shtml instead. If it finds one, it uses that path and informs the server that the file
is parsed HTML instead of regular HTML. Note that this requires an extra stat call

for every HTML file accessed.

Installing the Example

To load the shared object containing your function, add the following line in the
Init section of the magnus . conf file:

Init fn=load-modules shlib=yourlibrary funcs=html2shtml

To execute the custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file:

ObjectType fn=html2shtml

Source Code

The source code for this example is in otype. c in the nsapi/examples/ or
plugins/nsapi/examples subdirectory within the server root directory.

#include "nsapi.h"

#include <string.h> /* strncpy */
#include "base/util.h"

#ifdef cplusplus

extern "C"

#endif

NSAPI PUBLIC int html2shtml (pblock *pb, Session *sn, Request *rq)

{
/* No parameters */
/* Work variables */

pb_param *path = pblock find("path", rg-s>vars);

Chapter 5 Examples of Custom SAFs and Filters

127

ObjectType Example

*/

struct stat finfo;
char *npath;
int baselen;

/* If the type has already been set, don't do anything */
if (pblock findval ("content-type", rg->srvhdrs))
return REQ NOACTION;

/* If path does not end in .html, let normal object types do
* their job */
baselen = strlen(path->value) - 5;
if (strcasecmp (&path->value [baselen], ".html") != 0)
return REQ NOACTION;

/* 1 = Room to convert html to shtml */

npath = (char *) MALLOC((baselen + 5) + 1 + 1);
strncpy (npath, path->value, baselen);
strcpy (&npath[baselen], ".shtml");

/* If it's not there, don't do anything */
if (stat (npath, &finfo) == -1) {
FREE (npath) ;
return REQ NOACTION;
}
/* Got it, do the switch */
FREE (path->value) ;
path->value = npath;

/* The server caches the stat() of the current path. Update it.
(void) request stat path(NULL, rq);
pblock nvinsert ("content-type", "magnus-internal/parsed-html",

rg->srvhdrs) ;
return REQ PROCEED;

128 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Output Example

Output Example

This section describes an example NSAPI filter named example-replace, which
examines outgoing data and substitutes one string for another. It shows how you
can create a filter that intercepts and modifies outgoing data.

Installing the Example

To load the filter, add the following line in the Init section of the magnus. conf file:

Init fn="load-modules" shlib="<paths>/replace.ext"
NativeThread="no"

To execute the filter during the request-response process for some object, add the
following line to that object in the obj . conf file:

Output fn="insert-filter" type="text/*" filter="example-replace"
from="iPlanet" to="Sun ONE"

Source Code

The source code for this example is in the replace.c file in the
plugins/nsapi/examples subdirectory of the server root directory.

#ifdef XP WIN32

#define NSAPI PUBLIC _ declspec(dllexport)
#else /* !XP WIN32 */

#define NSAPI PUBLIC

#endif /* IXP_WIN32 *x/

/*
* nsapi.h declares the NSAPI interface.
*/

#include "nsapi.h"

Chapter 5 Examples of Custom SAFs and Filters 129

Output Example

130

/*
* ExampleReplaceData will be used to store information between
* filter method invocations. Each instance of the example-replace
* filter will have its own ExampleReplaceData object.

*/
typedef struct ExampleReplaceData ExampleReplaceData;

struct ExampleReplaceData {

char *from; /* the string to replace */

int fromlen; /* length of "from" */

char *to; /* the string to replace "from" with */
int tolen; /* length of "to" */

int matched; /* number of "from" chars matched */

/*

* example replace insert implements the example-replace filter's
* insert method. The insert filter method is called before the

* gerver adds the filter to the filter stack.

*/

#ifdef cplusplus
extern "C"
#endif
int example replace insert (FilterLayer *layer, pblock *pb)
{
const char *from;
const char *to;
ExampleReplaceData *data;

/*
* Look for the string to replace, "from", and the string to
* replace it with, "to". Both values are required.
*/
from = pblock findval ("from", pb);
to = pblock findval("to", pb);
if (from == NULL || to == NULL || strlen(from) < 1) ({
log_error (LOG_MISCONFIG, "example-replace-insert",
layer->context->sn, layer->context->rq,
"missing parameter (need from and to)");
return REQ ABORTED; /* error preparing for insertion */

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Output Example

/*
* Allocate an ExampleReplaceData object that will store
* configuration and state information.

*/
data = (ExampleReplaceData *)MALLOC (sizeof (ExampleReplaceData)) ;
if (data == NULL)

return REQ ABORTED; /* error preparing for insertion */

/* Initialize the ExampleReplaceData */
data->from = STRDUP (from) ;
data->fromlen = strlen(from) ;

data->to = STRDUP (to) ;

data->tolen = strlen(to);

data->matched = 0;

/* Check for out of memory errors */
if (data->from == NULL || data->to == NULL) ({
FREE (data->from) ;
FREE (data->to) ;
FREE (data) ;
return REQ ABORTED; /* error preparing for insertion */

* Store a pointer to the ExampleReplaceData object in the

* FilterLayer. This information can then be accessed from other

* filter methods.
*/

layer->context->data = data;

/* Remove the Content-length: header if we might change the
* body length */

if (data->tolen != data->fromlen) {

pb_param *pp;

pp = pblock remove ("content-length",

layer->context->rg->srvhdrs) ;
if (pp)
param_free (pp) ;

return REQ PROCEED; /* insert filter */

Chapter 5 Examples of Custom SAFs and Filters

131

Output Example

/*

* example replace remove implements the example-replace filter's
* remove method. The remove filter method is called before the

* gerver removes the filter from the filter stack.

*/

#ifdef cplusplus

extern "C"

#endif

void example replace remove (FilterLayer *layer)

{

ExampleReplaceData *data;

/* Access the ExampleReplaceData we allocated in
example replace insert */
data = (ExampleReplaceData *)layer->context->data;

/* Send any partial "from" match */
if (data->matched > 0)
net write(layer->lower, data->from, data->matched);

/* Destroy the ExampleReplaceData object */
FREE (data->from) ;

FREE (data->to) ;

FREE (data) ;

/*

* example replace write implements the example-replace filter's

* write method. The write filter method is called when there is data
* to be sent to the client.

*/

#ifdef cplusplus
extern "C"
#endif
int example replace write(FilterLayer *layer, const void *buf, int
amount)
{
ExampleReplaceData *data;
const char *buffer;
int consumed;
int 1i;
int unsent;

132 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Output Example

int rv;
/* Access the ExampleReplaceData we allocated in
example replace insert */

data = (ExampleReplaceData *)layer->context->data;

/* Check for "from" matches in the caller's buffer */

buffer = (const char *)buf;
consumed = 0;
for (i = 0; i < amount; i++) {
/* Check whether this character matches */
if (buffer[i] == data->from[data->matched]) {

/* Matched a(nother) character */
data->matched++;

/* If we've now matched all of "from"... */

if (data-s>matched == data->fromlen) {
/* Send any data that preceded the match */
unsent = 1 + 1 - consumed - data-s>matched;

if (unsent > 0) {
rv = net write(layer->lower, &buffer [consumed],
unsent) ;
if (xrv != unsent)
return IO_ERROR;

}

/* Send "to" in place of "from" */
rv = net write(layer->lower, data->to, data->tolen);
if (xrv != data->tolen)

return IO_ERROR;

/* We've handled up to and including buffer[i] */
consumed = i + 1;

/* Start looking for the next "from" match from
scratch */
data->matched = 0;

}

} else if (data-s>matched > 0) {
/* This match didn't pan out, we need to backtrack */
int j;
int backtrack = data->matched;
data->matched 0;

/* Check for other potential "from" matches
* preceding buffer[i] */

Chapter 5 Examples of Custom SAFs and Filters 133

Output Example

134

for (j = 1; j < backtrack; j++) {
/* Check whether this character matches */
if (data->from[j] == data->from[data->matched]) {
/* Matched a(nother) character */
data->matched++;

} else if (data-smatched > 0) ({
/* This match didn't pan out, we need to
* backtrack */
j -= data-s>matched;
data->matched = 0;

}

/* If the failed (partial) match begins before the
buffer... */
unsent = backtrack - data->matched;
if (unsent > i) {
/* Send the failed (partial) match */
rv = net write(layer->lower, data->from, unsent);
if (rv != unsent)
return IO_ERROR;

/* We've handled up to, but not including,
* buffer([i] */
consumed = 1i;

}

/* We're not done with buffer[i] yet */

i--;

}

/* Send any data we know won't be part of a future
* "from" match */
unsent = amount - consumed - data->matched;

if (unsent > 0) {
rv = net write(layer->lower, &buffer[consumed], unsent) ;

if (rv != unsent)
return IO ERROR;

return amount;

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Service Example

/*
* This is the module initialization entry point for this NSAPI
* plugin. The server calls this entry point in response to the
* Tnit fn="load-modules" line in magnus.conf.

*/

NSAPI PUBLIC nsapi module init (pblock *pb, Session *sn, Request *rq)
{

FilterMethods methods = FILTER METHODS INITIALIZER;

const Filter *filter;

Create the example-replace filter. The example-replace filter
has order FILTER CONTENT TRANSLATION, meaning it transforms
content (entity body data) from one form to another. The
example-replace filter implements the write filter method,
meaning it is interested in outgoing data.
/
methods.insert = &example replace_insert;
methods.remove = &example replace remove;

methods.write = &example replace write;

filter = filter create("example-replace",
FILTER_CONTENT TRANSLATION,

&methods) ;

L T

if (filter == NULL) {
pblock nvinsert ("error", system errmsg(), pb);
return REQ ABORTED; /* error initializing plugin */

return REQ PROCEED; /* success */

Service Example

This section discusses a very simple service function called simple_service. All
this function does is send a message in response to a client request. The message is
initialized by the init_simple_service function during server initialization.

For a more complex example, see the file service.c in the examples directory,
which is discussed in “More Complex Service Example” on page 138.

Chapter 5 Examples of Custom SAFs and Filters 135

Service Example

Installing the Example

To load the shared object containing your functions, add the following line in the
Init section of the magnus . conf file:

Init fn=load-modules shlib=yourlibrary
funcs=simple-service-init, simple-service

To call the simple-service-init function to initialize the message representing
the generated output, add the following line to the Init section in magnus. conf.
(This line must come after the one that loads the library containing
simple-service-init.)

Init fn=simple-service-init
generated-output="<H1>Generated output msg</H1>"

To execute the custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file:

Service type="text/html" fn=simple-service

The type="text/html" argument indicates that this function is invoked during
the service stage only if the content -type has been set to text/html.

Source Code

#include <nsapi.h>
static char *simple msg = "default customized content";

/* This is the initialization function.
* It gets the value of the generated-output parameter
* gpecified in the Init directive in magnus.conf
*/
NSAPI PUBLIC int init-simple-service(pblock *pb, Session *sn,
Request *rq)
{

/* Get the message from the parameter in the directive in

136 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

}

Service Example

* magnus.conf

*/
simple msg = pblock findval ("generated-output", pb);
return REQ PROCEED;

/* This is the customized Service SAF.

* It sends the "generated-output" message to the client.

*/

NSAPI PUBLIC int simple-service(pblock *pb, Session *sn, Request
*rq)

{

int return value;
char msg length([8];

/* Use the protocol status function to set the status of the
* response before calling protocol start response.

*/

protocol status(sn, rg, PROTOCOL OK, NULL) ;

/* Although we would expect the ObjectType stage to

* get the content-type, set it here just to be

* completely sure that it gets set to text/html.

*/

param_ free (pblock remove ("content-type", rg-ssrvhdrs));
pblock nvinsert ("content-type", "text/html", rg->srvhdrs);

/* If you want to use keepalive, need to set content-length

header.

* The util itoa function converts a specified integer to a
* string, and returns the length of the string. Use this
* function to create a textual representation of a number.

*/

util itoa(strlen(simple msg), msg length);
pblock nvinsert ("content-length", msg length, rg->srvhdrs);

/* Send the headers to the client*/
return value = protocol start response(sn, rq);
if (return value == REQ NOACTION) {

/* HTTP HEAD instead of GET */

return REQ PROCEED;

}

/* Write the output using net write*/

return value = net write(sn->csd, simple msg,
strlen(simple msg)) ;

if (return value == IO _ERROR) {
return REQ EXIT;

Chapter 5 Examples of Custom SAFs and Filters

137

AddLog Example

return REQ PROCEED;

More Complex Service Example

The send-images function is a custom SAF that replaces the doit.cgi
demonstration available on the iPlanet home pages. When a file is accessed as
/dirl/dir2/something.picgroup, the send-images function checks if the file is
being accessed by a Mozilla/1.1 browser. If not, it sends a short error message. The
file something. picgroup contains a list of lines, each of which specifies a file name
followed by a content-type (for example, one.gif image/gif).

To load the shared object containing your function, add the following line at the
beginning of the magnus. conf file:

Init fn=load-modules shl ib=yourlibmry funcs=send-images
Also, add the following line to the mime. types file:
type=magnus-internal/picgroup exts=picgroup

To execute the custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file (send-images takes an
optional parameter, delay, which is not used for this example):

Service method= (GET|HEAD) type=magnus-internal/picgroup
fn=send-images

The source code is in service.c in the nsapi/examples/ or
plugins/nsapi/examples subdirectory within the server root directory.

AddLog Example

The example in this section demonstrates how to implement brief-1log, a custom
SAF for logging only three items of information about a request: the IP address, the
method, and the URI (for example, 198.93.95.99 GET
/jocelyn/dogs/homesneeded.html).

138 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

AddLog Example

Installing the Example

To load the shared object containing your functions, add the following line in the

Init section of the magnus . conf file:

Init fn=load-modules shlib=y0uﬂﬂvaﬂ/funcs=brief—init,brief—log

To call brief-init to open the log file, add the following line to the Init section in
magnus . conf. (This line must come after the one that loads the library containing

brief-init.)
Init fn=brief-init file=/tmp/brief.log

To execute your custom SAF during the AddLog stage for some object, add the
following line to that object in the obj . conf file:

AddLog fn=brief-log

Source Code

The source code is in addlog. c is in the nsapi/examples/ or
plugins/nsapi/examples subdirectory within the server root directory.

#include "nsapi.h"

#include "base/daemon.h" /* daemon atrestart */
#include "base/file.h" /* system fopenWA, system fclose */
#include "base/util.h" /* sprintf */

/* File descriptor to be shared between the processes */
static SYS FILE logfd = SYS ERROR _FD;

#ifdef cplusplus
extern "C"
#endif
NSAPI PUBLIC void brief terminate(void *parameter)
{
system fclose(logfd) ;
logfd = SYS ERROR FD;

}

#ifdef cplusplus

extern "C"

#endif

NSAPI PUBLIC int brief init (pblock *pb, Session *sn, Request *rq)

Chapter 5 Examples of Custom SAFs and Filters

139

AddLog Example

/* Parameter */
char *fn = pblock findval("file", pb);

if (1fn)
pblock nvinsert ("error", "brief-init: please supply a file
name", pb);
return REQ ABORTED;
}

logfd = system fopenWA (fn) ;
if (logfd == SYS ERROR FD) ({
pblock nvinsert ("error", "brief-init: please supply a file
name", pb);
return REQ ABORTED;
}

/* Close log file when server is restarted */
daemon atrestart (brief terminate, NULL) ;
return REQ PROCEED;

}

#ifdef cplusplus

extern "C"

#endif

NSAPI PUBLIC int brief log(pblock *pb, Session *sn, Request *rq)

{

/* No parameters */

/* Server data */

char *method = pblock findval ("method", rg->regpb);
char *uri = pblock findval ("uri", rqg->regpb) ;

char *ip = pblock findval("ip", sn->client);

/* Temp vars */
char *logmsg;
int len;

logmsg = (char ¥*)
MALLOC (strlen(ip) + 1 + strlen(method) + 1 + strlen(uri) + 1
+ 1)
len = util sprintf(logmsg, "%s %s %$s\n", ip, method, uri);
/* The atomic version uses locking to prevent interference */
system fwrite atomic(logfd, logmsg, len);
FREE (logmsg) ;

return REQ PROCEED;

140 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Quality of Service Example

Quality of Service Example

The code for the gos-handler (AuthTrans) and gos-error (Error) SAFs is
provided as an example in case you want to define your own SAFs for quality of
service handling.

For more information about predefined SAFs, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference.

Installing the Example

Inside the default object in obj . conf, add the following AuthTrans and Error
directives:

AuthTrans fn=gos-handler

Error fn=gos-error code=503

Source Code

The source code for this example is in the gos. c file in the
plugins/nsapi/examples subdirectory of the server root directory.

#include "nspr.h"
#include "base/pblock.h"
#include "frame/log.h"
#include "frame/http.h"

void decode (const char* wval, PRInt32* var, pblock* pb)

{

char* pbval;

if ((lvar) || (tval) || (!pb))
return;

pbval = pblock findval(val, pb);

if (!pbval)

Chapter 5 Examples of Custom SAFs and Filters 141

Quality of Service Example

return;

*var = atoi (pbval) ;

gos_error_sample

This function is meant to be an error handler for an HTTP 503 error
code, which is returned by gos handler when QOS limits are exceeded
and enforced.

This sample function just prints out a message about which
limits were exceeded.

NSAPI PUBLIC int gos_error sample(pblock *pb, Session *sn, Request
*rq)
{

char error[1024] = "";

char* err header "<HTML><HEAD><TITLE>Unable to service
request</TITLE></HEAD><BODY>";

char* err footer = "</BODY></HTML>";

PRBool ours = PR_FALSE;

PRInt32 vs bw = 0, vs bwlim = 0, vs bw ef = 0,

vs _conn = 0, vs_connlim = 0, vs conn ef = 0,
vsc_bw = 0, vsc_bwlim = 0, vsc bw ef = 0,
vsc_conn = 0, vsc_connlim = 0, vsc_conn ef = 0,
srv_bw = 0, srv_bwlim = 0, srv_bw ef = 0,
srv_conn = 0, srv_connlim = 0, srv_conn_ef = 0;

pblock* apb = rg-s>vars;

decode ("vs_bandwidth", &vs bw, apb) ;
decode ("vs_connections", &vs conn, apb);

decode ("vs_bandwidth limit", &vs bwlim, apb);
decode ("vs_bandwidth enforced", &vs bw ef, apb);

decode ("vs_connections limit", &vs connlim, apb) ;
decode ("vs_connections enforced", &vs_conn ef, apb);

decode ("vsclass bandwidth", &vsc bw, apb);
decode ("vsclass_ connections", &vsc conn, apb);

142 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Quality of Service Example

decode ("vsclass_bandwidth limit", &vsc_bwlim, apb);
decode ("vsclass_bandwidth enforced", &vsc _bw ef, apb);

decode ("vsclass_connections limit", &vsc_connlim, apb) ;
decode ("vsclass_connections enforced", &vsc_conn ef, apb);

decode ("server bandwidth", &srv_bw, apb);
decode ("server connections", &srv_conn, apb);

decode ("server bandwidth limit", &srv_bwlim, apb) ;
decode ("server bandwidth enforced", &srv _bw ef, apb);

decode ("server connections_limit", &srv_connlim, apb);
decode ("server connections_enforced", &srv_conn_ef, apb);

if ((vs_bwlim) && (vs_bw>vs bwlim))
{
/* VS bandwidth limit was exceeded, display it */
ours = PR _TRUE;
sprintf (error, "<P>Virtual server bandwidth limit of %d
Current VS bandwidth : %d . <P>",
vs_bwlim, vs bw);

}i

if ((vs_connlim) && (vs_conn>vs_connlim))
{
/* VS connection limit was exceeded, display it */
ours = PR_TRUE;
sprintf (error, "<P>Virtual server connection limit of %d
Current VS connections : %d . <P>",
vs_connlim, vs_conn) ;
Vi

if ((vsc_bwlim) && (vsc_bw>vsc bwlim))
{
/* VSCLASS bandwidth limit was exceeded, display it */
ours = PR_TRUE;
sprintf (error, "<P>Virtual server class bandwidth limit of
Current VSCLASS bandwidth : %d . <P>",
vsc_bwlim, vsc_bw) ;

o\
[oh

}i

if ((vsc_connlim) && (vsc_conn>vsc_connlim))

{

/* VSCLASS connection limit was exceeded, display it */
ours = PR_TRUE;
sprintf (error, "<P>Virtual server class connection limit of

Chapter 5 Examples of Custom SAFs and Filters 143

Quality of Service Example

$d . Current VSCLASS connectiong : %$d . <P>",
vsc_connlim, vsc_conn) ;

}i

if ((srv_bwlim) && (srv_bws>srv bwlim))

{

/* SERVER bandwidth limit was exceeded, display it */
ours = PR _TRUE;
sprintf (error, "<P>Global bandwidth limit of %d . Current
bandwidth : %4 . <P>",
srv_bwlim, srv_bw);
Vi

if ((srv_connlim) && (srv_conn>srv_connlim))

{

/* SERVER connection limit was exceeded, display it */
ours = PR_TRUE;
sprintf (error, "<P>Global connection limit of %d . Current

connections : %d . <P>",
srv_connlim, srv_conn) ;

}i

if (ours)

{

/* this was really a QOS failure, therefore send the error

page */
pb_param *pp = pblock remove ("content-type", rg->srvhdrs);

if (pp != NULL)
param_free (pp);

pblock nvinsert ("content-type", "text/html", rqg-s>srvhdrs);

protocol start response(sn, rq);
net write(sn->csd, err header, strlen(err header));
net write(sn->csd, error, strlen(error));
net write(sn->csd, err footer, strlen(err footer));
return REQ PROCEED;

}

else

{
/* this 503 didn't come from a QOS SAF failure, let someone
else handle it */
return REQ PROCEED;
Vi

144 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Quality of Service Example

gos_handler_ sample

This is an NSAPI AuthTrans function.

It examines the QOS values in the request and compares them to the

QOS limits.

It does several things:
1) It will log errors if the Q0S limits are exceeded.

2) It will return REQ ABORTED with a 503 error code if the QOS limits
are exceeded, and the Q0S limits are set to be enforced. Otherwise

it will return REQ_PROCEED.

NSAPI PUBLIC int gos_handler sample(pblock *pb, Session *sn, Request

*rq)

{

PRBool ok = PR TRUE;

PRInt32 vs bw = 0, vs bwlim = 0, vs bw ef = 0,

vs _conn = 0, vs_connlim = 0, vs conn ef = 0,
vsc_bw = 0, vsc_bwlim = 0, vsc bw ef = 0,
vsc_conn = 0, vsc_connlim = 0, vsc_conn ef = 0,
srv_bw = 0, srv_bwlim = 0, srv_bw ef = 0,
srv_conn = 0, srv_connlim = 0, srv_conn _ef = 0;

pblock* apb = rg->vars;

decode ("vs_bandwidth", &vs bw, apb) ;

decode ("vs_connections", &vs conn, apb);

decode ("vs_bandwidth limit", &vs bwlim, apb) ;

decode ("vs_bandwidth enforced", &vs bw ef, apb);

decode ("vs_connections limit", &vs connlim, apb) ;

decode ("vs_connections enforced", &vs_conn ef, apb);

decode ("vsclass bandwidth", &vsc bw, apb);

decode ("vsclass_ connections", &vsc conn, apb);

decode ("vsclass bandwidth limit", &vsc _bwlim, apb) ;

decode ("vsclass bandwidth enforced", &vsc bw ef, apb);

decode ("vsclass connections limit", &vsc_connlim, apb) ;

decode ("vsclass_connections enforced", &vsc conn ef, apb);

Chapter 5 Examples of Custom SAFs and Filters

145

Quality of Service Example

decode ("server bandwidth", &srv_bw, apb);
decode ("server connections", &srv_conn, apb);

decode ("server bandwidth limit", &srv_bwlim, apb) ;
decode ("server bandwidth enforced", &srv _bw ef, apb);

decode ("server connections_limit", &srv_connlim, apb);
decode ("server connections_enforced", &srv_conn_ef, apb);

if ((vs_bwlim) && (vs_bw>vs bwlim))
{
/* bandwidth limit was exceeded, log it */
ereport (LOG_FAILURE, "Virtual server bandwidth limit of %d
exceeded. Current VS bandwidth : %d", &vs bwlim, vs_bw);

if (vs_bw_ef)
{
/* and enforce it */
ok = PR_FALSE;
}i
Vi

if ((vs_connlim) && (vs_conn>vs_connlim))
/* connection limit was exceeded, log it */
ereport (LOG_FAILURE, "Virtual server connection limit of %d
exceeded. Current VS connections : %d", &vs_connlim, vs_conn) ;

if (vs_conn_ef)
{
/* and enforce it */
ok = PR_FALSE;
}i
}i

if ((vsc_bwlim) && (vsc_bw>vsc _bwlim))
{
/* bandwidth limit was exceeded, log it */
ereport (LOG_FAILURE, "Virtual server class bandwidth limit
of %d exceeded. Current VSCLASS bandwidth : %d", &vsc_bwlim,
vsc_bw) ;

if (vsc_bw ef)

{

/* and enforce it */
ok = PR_FALSE;

}i

146 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Quality of Service Example

Vi

if ((vsc_connlim) && (vsc_conn>vsc_connlim))
/* connection limit was exceeded, log it */
ereport (LOG_FAILURE, "Virtual server class connection limit
of %d exceeded. Current VSCLASS connections : %d", &vsc_ connlim,
vsc_conn) ;

if (vsc_conn ef)
{
/* and enforce it */
ok = PR_FALSE;
}i
}i

if ((srv_bwlim) && (srv_bws>srv bwlim))
{
/* bandwidth limit was exceeded, log it */
ereport (LOG_FAILURE, "Global bandwidth limit of %d exceeded.
Current global bandwidth : %d", &srv_bwlim, srv bw);

if (srv_bw ef)
{
/* and enforce it */
ok = PR_FALSE;
}i
Vi

if ((srv_connlim) && (srv_conn>srv_connlim))

{

/* connection limit was exceeded, log it */
ereport (LOG_FAILURE, "Global connection limit of %d
exceeded. Current global connections : %d", &srv_connlim, srv_conn) ;

if (srv_conn ef)

{

/* and enforce it */
ok = PR_FALSE;
}i

if (ok)

{
}

return REQ PROCEED;

Chapter 5 Examples of Custom SAFs and Filters 147

Quality of Service Example

else

/* one of the limits was exceeded
therefore, we set HTTP error 503 "server too busy" */
protocol_status(sn, rg, PROTOCOL_SERVICE UNAVAILABLE, NULL) ;
return REQ ABORTED;

148 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Chapter 6

Creating Custom Server-parsed
HTML Tags

HTML files can contain tags that are executed on the server. For general
information about server-parsed HTML tags, see the Sun ONE Web Server 6.1
Programmer’s Guide to Web Applications.

In Sun ONE Web Server 6.1, you can define your own server-side tags. For
example, you could define the tag HELLO to invoke a function that prints "Hello
World!" You could have the following code in your hello.shtml file:

<html>
<head>
<title>shtml custom tag example</title>
</head>
<body>
<!--#HELLO-->
</body>
</html>

When the browser displays this code, each occurrence of the HELLO tag calls the
function.

The steps for defining a customized server-parsed tag are listed below, and
described in this chapter:

1. Define the Functions that Implement the Tag.

You must define the tag execution function. You must also define other
functions that are called on tag loading and unloading, and on page loading
and unloading.

149

Define the Functions that Implement the Tag

2. Write an Initialization Function.

Write an initialization function that registers the tag using the shtml_add_tag
function.

3. Load the New Tag into the Server.

Define the Functions that Implement the Tag

150

Define the functions that implement the tags in C, using NSAPI.

* Include the header shtml_public.h, which is in the directory
install_dir/include/shtml.

¢ Link against the SHTML shared library. On Windows, shtml.d11 is in
install_dir/bin. On UNIX platforms, 1ibshtml.so or .sl is in install_dir/1ib.

ShtmlTagExecuteFunc is the actual tag handler. It gets called with the usual
NSAPIpblock, Session, and Request variables. In addition, it also gets passed the
TagUserData created from the result of executing the tag loading and page loading
functions (if defined) for that tag.

The signature for the tag execution function is:

typedef int (*ShtmlTagExecuteFunc) (pblock*, Session*, Request*,
TagUserData, TagUserData) ;

Write the body of the tag execution function to generate the output to replace the
tag in the . shtml page. Do this in the usual NSAPI way, using the net_write
NSAPI function, which writes a specified number of bytes to a specified socket
from a specified buffer.

For more information about writing NSAPI plugins, see Chapter 3, “Creating
Custom SAFs.”

For more information about net_write and other NSAPI functions, see Chapter 7,
“NSAPI Function Reference.”

The tag execution function must return an int that indicates whether the server
should proceed to the next instruction in obj . conf, which is one of:

e REQ PROCEED -- the execution was successful
® REQ NOACTION -- nothing happened
e REQ ABORTED -- an error occurred

® REQ EXIT -- the connection was lost

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Define the Functions that Implement the Tag

The other functions you must define for your tag are:

ShtmlTagInstanceLoad

This is called when a page containing the tag is parsed. It is not called if the
page is retrieved from the browser's cache. It basically serves as a constructor,
the result of which is cached and is passed into ShtmlTagExecuteFunc
whenever the execution function is called.

ShtmlTagInstanceUnload

This is basically a destructor for cleaning up whatever was created in the
ShtmlTagInstanceLoad function. It gets passed the result that was originally
returned from the ShtmlTagInstanceLoad function.

ShtmlTagPageLoadFunc

This is called when a page containing the tag is executed, regardless of whether
the page is still in the browser's cache. This provides a way to make
information persistent between occurrences of the same tag on the same page.

ShtmlTagPageUnLoadFn

This is called after a page containing the tag has executed. It provides a way to
clean up any allocations done in a ShtmlTagPageLoadFunc and hence gets
passed the result returned from the shtmlTagPageLoadFunc.

The signatures for these functions are:

#define TagUserData void*
typedef TagUserData (*ShtmlTagInstanceLoad) (

const char* tag, pblock*, const char*, size t);
typedef void (*ShtmlTagInstanceUnload) (TagUserData) ;
typedef int (*ShtmlTagExecuteFunc) (

pblock*, Session*, Request*, TagUserData, TagUserData) ;
typedef TagUserData (*ShtmlTagPageLoadFunc) (

pblock* pb, Session*, Request*);
typedef void (*ShtmlTagPageUnLoadFunc) (TagUserData) ;

Here is the code that implements the HELLO tag:

/*
* mytag.c: NSAPI functions to implement #HELLO SSI calls
*/

#include "nsapi.h"

Chapter 6 Creating Custom Server-parsed HTML Tags

151

Define the Functions that Implement the Tag

#include "shtml/shtml_public.h"
/* FUNCTION : mytag con
*
* DESCRIPTION: ShtmlTagInstanceLoad function
*/
#ifdef cplusplus
extern "C"
#endif
TagUserData
mytag con(const char* tag, pblock* pb, const char* cl, size t t1)

{
}

/* FUNCTION : mytag des
*
* DESCRIPTION: ShtmlTagInstanceUnload
*/
#ifdef cplusplus
extern "C"
#endif
void
mytag des (TagUserData v1)
{
}

/* FUNCTION : mytag load
* DESCRIPTION: ShtmlTagPagelLoadFunc

*/
#ifdef cplusplus
extern "C"
#endif
TagUserData
mytag load(pblock *pb, Session *sn, Request *rq)

{
}

/* FUNCTION : mytag unload
*
* DESCRIPTION: ShtmlTagPageUnloadFunc
*/

#

#ifdef cplusplus

extern "C"

#endif

void

mytag unload (TagUserData v2)
{

}

return NULL;

return NULL;

152 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Define the Functions that Implement the Tag

/* FUNCTION : mytag
* DESCRIPTION: ShtmlTagExecuteFunc

*/
#ifdef cplusplus
extern "C"
#endif

int
mytag (pblock* pb, Session* sn, Request* rqg, TagUserData t1,
TagUserData t2)

{

char* buf;

int length;
char* client;
buf = (char *) MALLOC(100*sizeof (char)) ;
length = util sprintf (buf, "<hl>Hello World! </hl>", client);
if (net write(sn->csd, buf, length) == IO ERROR)
{
FREE (buf) ;

return REQ ABORTED;
}
FREE (buf) ;
return REQ PROCEED;
}
/* FUNCTION : mytag init
* DESCRIPTION: initialization function, calls shtml add tag() to
* load new tag
*/
#
#ifdef cplusplus
extern "C"
#endif
int
mytag init (pblock* pb, Session* sn, Request* rq)
{
int retval = 0;
// NOTE: ALL arguments are required in the shtml add tag() function
retVal = shtml add tag("HELLO", mytag con, mytag des, mytag,
mytag load, mytag unload) ;
return retVal;

}

/* end mytag.c */

Chapter 6 Creating Custom Server-parsed HTML Tags 153

Write an Initialization Function

Write an Initialization Function

In the initialization function for the shared library that defines the new tag, register
the tag using the function shtml_add_tag. The signature is:

NSAPI_PUBLIC int shtml add tag (

const char* tag,

ShtmlTagInstancelLoad ctor,
ShtmlTagInstanceUnload dtor,
ShtmlTagExecuteFunc execFn,
ShtmlTagPageLoadFunc pagelLoadFn,
ShtmlTagPageUnLoadFunc pageUnLoadFn) ;

Any of these arguments can return NULL except for the tag and execFn.

Load the New Tag into the Server

154

After creating the shared library that defines the new tag, you load the library into
the Sun ONE Web Server in the usual way for NSAPI plugins. That is, add the
following directives to the configuration file magnus . conf:

Add an Init directive whose fn parameter is 1oad-modules and whose shlib
parameter is the shared library to load. For example, if you compiled your tag into
the shared object install_dir/hello. so, it would be:

Init funcs="mytag,mytag init" shlib="install dir/hello.so"
fn="locad-modules"

Add another Init directive whose £n parameter is the initialization function in the
shared library that uses shtml_add_tag to register the tag. For example:

Init fn="mytag init"

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Chapter 7

NSAPI Function Reference

This chapter lists all of the public C functions and macros of the Netscape Server
Applications Programming Interface (NSAPI) in alphabetic order. These are the
functions you use when writing your own Server Application Functions (SAFs).

See Chapter 2, “SAFs in the magnus.conf File” for a list of the predefined Init SAFs.
For more information about the other predefined SAFs used in obj . conf, see the
Sun ONE Web Server 6.1 Administrator’s Configuration File Reference.

Each function provides the name, syntax, parameters, return value, a description of
what the function does, and sometimes an example of its use and a list of related
functions.

For more information on data structures, see Chapter 8, “Data Structure
Reference,” and also look in the nsapi . h header file in the include directory in the
build for Sun ONE Web Server 6.1.

NSAPI Functions (in Alphabetical Order)

For an alphabetical list of function names, see Appendix A, “Alphabetical List of
NSAPI Functions and Macros.”

C D F L M N P R S U \%

155

NSAPI Functions (in Alphabetical Order)

C

CALLOC

The caLLoc macro is a platform-independent substitute for the C library routine
calloc. It allocates num*size bytes from the request’s memory pool. If pooled

memory has been disabled in the configuration file (with the pool-init built-in
SAF), PERM_CALLOC and CALLOC both obtain their memory from the system heap.

Syntax
void *CALLOC (int size)

Returns
A void pointer to a block of memory.

Parameters
int size is the size in bytes of each element.

Example
char *name;
name = (char *) CALLOC(100) ;

See Also
FREE, REALLOC, STRDUP, PERM MALLOC, PERM FREE, PERM REALLOC,
PERM_STRDUP

cinfo_find

The cinfo_find() function uses the MIME types information to find the type,
encoding, and/or language based on the extension(s) of the Universal Resource
Identifier (URI) or local file name. Use this information to send headers
(rg->srvhdrs) to the client indicating the content -type, content -encoding, and
content - language of the data it will be receiving from the server.

The name used is everything after the last slash (/) or the whole string if no slash is
found. File name extensions are not case-sensitive. The name may contain multiple
extensions separated by period (.) to indicate type, encoding, or language. For
example, the URl a/b/filename.jp.txt.zip could represent a Japanese
language, text/plain type, zip encoded file.

156 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Syntax
cinfo *cinfo find(char *uri);

Returns
A pointer to a newly allocated cinfo structure if content info was found, or NULL
if no content was found.

The cinfo structure that is allocated and returned contains pointers to the

content-type, content -encoding, and content-1language, if found. Each is a
pointer into static data in the types database, or NULL if not found. Do not free
these pointers. You should free the cinfo structure when you are done using it.

Parameters
char *uri is a Universal Resource Identifier (URI) or local file name. Multiple file
name extensions should be separated by periods (.).

condvar_init

The condvar init function is a critical-section function that initializes and returns
a new condition variable associated with a specified critical-section variable. You
can use the condition variable to prevent interference between two threads of
execution.

Syntax
CONDVAR condvar_ init (CRITICAL id) ;

Returns
A newly allocated condition variable (CONDVAR).

Parameters
CRITICAL idis a critical-section variable.

See Also

condvar notify, condvar terminate, condvar wait, crit init,
crit _enter, crit exit, crit terminate

Chapter 7 NSAPI Function Reference 157

NSAPI Functions (in Alphabetical Order)

condvar_notify

The condvar_notify function is a critical-section function that awakens any
threads that are blocked on the given critical-section variable. Use this function to
awaken threads of execution of a given critical section. First, use crit_enter to
gain ownership of the critical section. Then use the returned critical-section
variable to call condvar_notify to awaken the threads. Finally, when
condvar_notify returns, call crit_exit to surrender ownership of the critical
section.

Syntax
void condvar notify (CONDVAR cv) ;

Returns

void

Parameters
CONDVAR cv is a condition variable.

See Also
condvar init, condvar terminate, condvar wait, crit init,
crit _enter, crit exit, crit terminate

condvar_terminate

The condvar terminate function is a critical-section function that frees a
condition variable. Use this function to free a previously allocated condition
variable.

Warning
Terminating a condition variable that is in use can lead to unpredictable results.

Syntax
void condvar_ terminate (CONDVAR cv) ;

Returns

void

Parameters
CONDVAR cv is a condition variable.

158 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

See Also
condvar init, condvar notify, condvar wait, crit init, crit enter,
crit _exit, crit terminate

condvar_wait

The condvar_wait function is a critical-section function that blocks on a given
condition variable. Use this function to wait for a critical section (specified by a
condition variable argument) to become available. The calling thread is blocked
until another thread calls condvar notify with the same condition variable
argument. The caller must have entered the critical section associated with this
condition variable before calling condvar_wait.

Syntax
void condvar_ wait (CONDVAR cv) ;

Returns
void

Parameters
CONDVAR cv is a condition variable.

See Also
condvar init, condvar terminate, condvar notify, crit init,
crit enter, crit exit, crit terminate

crit_enter

The crit_enter function is a critical-section function that attempts to enter a
critical section. Use this function to gain ownership of a critical section. If another
thread already owns the section, the calling thread is blocked until the first thread
surrenders ownership by calling crit_exit.

Syntax
void crit_enter (CRITICAL crvar) ;

Returns
void

Parameters
CRITICAL crvar is a critical-section variable.

Chapter 7 NSAPI Function Reference 159

NSAPI Functions (in Alphabetical Order)

160

See Also
crit _init, crit exit, crit terminate

crit_exit

The crit_exit function is a critical-section function that surrenders ownership of
a critical section. Use this function to surrender ownership of a critical section. If
another thread is blocked waiting for the section, the block will be removed and the
waiting thread will be given ownership of the section.

Syntax
void crit exit (CRITICAL crvar) ;

Returns
void

Parameters
CRITICAL crvar is a critical-section variable.

See Also
crit init, crit enter, crit terminate

crit_init

The crit_init function is a critical-section function that creates and returns a new
critical-section variable (a variable of type cRITICAL). Use this function to obtain a
new instance of a variable of type CRITICAL (a critical-section variable) to be used

in managing the prevention of interference between two threads of execution. At
the time of its creation, no thread owns the critical section.

Warning
Threads must not own or be waiting for the critical section when crit_terminate
is called.

Syntax
CRITICAL crit_init (void) ;

Returns
A newly allocated critical-section variable (CRITICAL).

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Parameters
none

See Also
crit _enter, crit exit, crit terminate

crit_terminate

The crit terminate function is a critical-section function that removes a
previously allocated critical-section variable (a variable of type cR1TICAL). Use this
function to release a critical-section variable previously obtained by a call to
crit_init.

Syntax
void crit terminate (CRITICAL crvar) ;

Returns
void

Parameters
CRITICAL crvar is a critical-section variable.

See Also
crit _init, crit enter, crit exit

daemon_atrestart

The daemon_atrestart function lets you register a callback function named by fn
to be used when the server terminates. Use this function when you need a callback
function to deallocate resources allocated by an initialization function. The

daemon_atrestart function is a generalization of the magnus_atrestart function.

The magnus . conf directives TerminateTimeout and ChildRestartCallback also
affect the callback of NSAPI functions.

Syntax
void daemon atrestart (void (*fn) (void *), void *data) ;

Chapter 7 NSAPI Function Reference 161

NSAPI Functions (in Alphabetical Order)

162

Returns
void

Parameters
void (* fn) (void *) is the callback function.

void *data is the parameter passed to the callback function when the server is
restarted.

Example

/* Register the log close function, passing it NULL */
/* to close *a log file when the server is */

/* restarted or shutdown. */

daemon_atrestart (log close, NULL) ;

NSAPI PUBLIC void log close(void *parameter)

{

system fclose(global logfd) ;

}

fc_open

The £c_open function returns a pointer to PRFileDesc that refers to an open file
(fileName). The £ileName must be the full path name of an existing file. The file is
opened in read mode only. The application calling this function should not modify
the currency of the file pointed to by the PRFileDesc * unless the DUP_FILE_DESC is
also passed to this function. In other words, the application (at minimum) should
not issue a read operation based on this pointer that would modify the currency for
the PRFileDesc *. If such a read operation is required (that may change the
currency for the PRFileDesc *), then the application should call this function with
the argument DUP_FILE_DESC.

On a successful call to this function, a valid pointer to PRFileDesc is returned and
the handle 'FcHAl' is properly initialized. The size information for the file is stored
in the 'filesize' member of the handle.

Syntax
PRFileDesc *fc open(const char *fileName, FcHdl *hD1l, PRUint32 flags,
Session *sn, Request *rq);

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Returns
Pointer to PRFileDesc, or NULL on failure.

Parameters
const char *fileName is the full path name of the file to be opened.

FcHAd1+hD1 is a valid pointer to a structure of type FcH4l.
PRUint32 flags canbe 0 or DUP_FILE_DESC.
Session *snis a pointer to the session.

Request *rgqis a pointer to the request.

fc_close

The fc_close function closes a file opened using fc_open. This function should
only be called with files opened using fc_open.

Syntax
void fc close (PRFileDesc *fd, FcHdl *hDl;

Returns
void

Parameters
PRFileDesc *fdis a valid pointer returned from a prior call to fc_open.

FcHd1 +*hDl is a valid pointer to a structure of type FcHd1. This pointer must have
been initialized by a prior call to fc_open.

filebuf buf2sd

The filebuf_ buf2sd function sends a file buffer to a socket (descriptor) and
returns the number of bytes sent.

Use this function to send the contents of an entire file to the client.

Syntax
int filebuf buf2sd(filebuf *buf, SYS NETFD sd) ;

Chapter 7 NSAPI Function Reference 163

NSAPI Functions (in Alphabetical Order)

164

Returns
The number of bytes sent to the socket if successful, or the constant T0_ERROR if the
file buffer could not be sent.

Parameters
filebuf *buf is the file buffer that must already have been opened.

SYS_NETFD sd is the platform-independent socket descriptor. Normally this will be
obtained from the csd (client socket descriptor) field of the sn (session) structure.

Example
if (filebuf buf2sd(buf, sn->csd) == IO _ERROR)
return (REQ EXIT) ;

See Also
filebuf close, filebuf open, filebuf open nostat, filebuf getc

filebuf close

The filebuf close function deallocates a file buffer and closes its associated file.

Generally, use £ilebuf_open first to open a file buffer, and then filebuf_getc to
access the information in the file. After you have finished using the file buffer, use
filebuf close to close it.

Syntax
void filebuf close(filebuf *buf) ;

Returns
void

Parameters
filebuf *buf is the file buffer previously opened with filebuf_open.

Example
filebuf close (buf) ;

See Also
filebuf open, filebuf open nostat, filebuf buf2sd, filebuf getc

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

filebuf_getc

The filebuf_ getc function retrieves a character from the current file position and
returns it as an integer. It then increments the current file position.

Use filebuf_getc to sequentially read characters from a buffered file.

Syntax
filebuf getc(filebuf b);

Returns

An integer containing the character retrieved, or the constant 10_EOF or I0_ERROR
upon an end of file or error.

Parameters
filebuf b is the name of the file buffer.

See Also
filebuf close, filebuf buf2sd, filebuf open, filter_ create

filebuf_open

The £ilebuf_open function opens a new file buffer for a previously opened file. It
returns a new buffer structure. Buffered files provide more efficient file access by
guaranteeing the use of buffered file I/O in environments where it is not supported
by the operating system.

Syntax
filebuf *filebuf open(SYS FILE fd, int sz);

Returns

A pointer to a new buffer structure to hold the data if successful, or NULL if no
buffer could be opened.

Parameters

SYS_FILE fd is the platform-independent file descriptor of the file which has
already been opened.

int sz is the size, in bytes, to be used for the buffer.

Chapter 7 NSAPI Function Reference 165

NSAPI Functions (in Alphabetical Order)

166

Example
filebuf *buf = filebuf open(fd, FILE BUFFERSIZE) ;
if (!tbuf) {

system fclose (£4) ;

}

See Also
filebuf getc, filebuf buf2sd, filebuf close, filebuf open nostat

filebuf_open_nostat

The filebuf_ open nostat function opens a new file buffer for a previously
opened file. It returns a new buffer structure. Buffered files provide more efficient
file access by guaranteeing the use of buffered file I/O in environments where it is
not supported by the operating system.

This function is the same filebuf open, but is more efficient, since it does not
need to call the request_stat_path function. It requires that the stat information
be passed in.

Syntax
filebuf* filebuf open nostat (SYS FILE fd, int sz,
struct stat *finfo) ;

Returns
A pointer to a new buffer structure to hold the data if successful, or NULL if no
buffer could be opened.

Parameters
SYs_FILE fd is the platform-independent file descriptor of the file that has
already been opened.

int sz is the size, in bytes, to be used for the buffer.

struct stat *finfo is the file information of the file. Before calling the
filebuf_open_nostat function, you must call the request_stat_path function to
retrieve the file information.

Example
filebuf *buf = filebuf open nostat (fd, FILE BUFFERSIZE, &finfo);
if (tbuf) {

system fclose (£4) ;

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

See Also
filebuf close, filebuf open, filebuf getc, filebuf buf2sd

filter_create

The filter create function defines a new filter.

The name parameter specifies a unique name for the filter. If a filter with the
specified name already exists, it will be replaced.

Names beginning with magnus- or server- are reserved by the server.

The order parameter indicates the position of the filter in the filter stack by
specifying what class of functionality the filter implements.

The following table describes parameters allowed order constants and their
associated meanings for the filter_create function. The left column lists the
name of the constant, the middle column describes the functionality the filter
implements, and the right column lists the position the filter occupies in the filter
stack.

Table 7-1 filter-create constants

Constant Functionality Filter Implements Position in Filter Stack
FILTER_CONTENT_ TRANSLATION Translates content from one form Top
to another (for example, XSLT)
FILTER_ CONTENT CODING Encodes content (for example, Middle
HTTP gzip compression)
FILTER TRANSFER CODING Encodes entity bodies for Bottom
transmission (for example, HTTP
chunking)

The methods parameter specifies a pointer to a FilterMethods structure. Before
calling filter create, you must first initialize the FilterMethods structure
using the FILTER_METHODS_INITIALIZER macro, and then assign function
pointers to the individual FilterMethods members (for example, insert, read,
write, and so on) that correspond to the filter methods the filter will support.

filter create returns const Filter *,a pointer to an opaque representation of
the filter. This value may be passed to filter_insert to insert the filter in a
particular filter stack.

Chapter 7 NSAPI Function Reference 167

NSAPI Functions (in Alphabetical Order)

168

Syntax
const Filter *filter create(const char *name, int order, const
FilterMethods *methods) ;

Returns
The const Filter * thatidentifies the filter or NULL if an error occurred.

Parameters
const char *name isthe name of the filter.

int order is one of the order constants above.

const FilterMethods *methods contains pointers to the filter methods the filter
supports.

Example

FilterMethods methods = FILTER METHODS INTIALIZER;

const Filter *filter;

/* This filter will only support the "read" filter method */
methods.read = my input filter read;

/* Create the filter */

filter = filter create("my-input-filter",
FILTER CONTENT_ TRANSLATION,
&methods) ;

filter_find

The filter find function finds the filter with the specified name.

Syntax
const Filter *filter find(const char *name) ;

Returns
The const Filter * thatidentifies the filter, or NULL if the specified filter does
not exist.

Parameters
const char *name isthe name of the filter of interest.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

filter_insert

The filter insert function inserts a filter into a filter stack, creating a new filter
layer and installing the filter at that layer. The filter layer's position in the stack is
determined by the order value specified when filter_create was called, and
any explicit ordering configured by init-filter-order.If a filter layer with the
same order value already exists in the stack, the new layer is inserted above that
layer.

Parameters may be passed to the filter using the pb and data parameters. The
semantics of the data parameter are defined by individual filters. However, all
filters must be able to handle a data parameter of NULL.

When possible, plugin developers should avoid calling filter_insert directly,
and instead use the insert-filter SAF (applicable in Input-class directives).

Syntax
int filter insert (SYS NETFD sd, pblock *pb, Session *sn, Request
*rq, void *data, const Filter *filter);

Returns

Returns REQ_PROCEED (if the specified filter was inserted successfully, or
REQ_NOACTION if the specified filter was not inserted because it was not required.
Any other return value indicates an error.

Parameters
sys NETFD sd is NULL (reserved for future use).

pblock *pb is a set of parameters to pass to the specified filter's init method.
Session *sn is the Session.

Request *rg is the Request.

void *data is filter-defined private data.

const Filter *filter is the filter to insert.

filter_layer

The filter layer function returns the layer in a filter stack that corresponds to
the specified filter.

Syntax
FilterLayer *filter layer(SYS NETFD sd, const Filter *filter);

Chapter 7 NSAPI Function Reference 169

NSAPI Functions (in Alphabetical Order)

170

Returns
The topmost FilterLayer * associated with the specified filter, or NULL if the
specified filter is not part of the specified filter stack.

Parameters
SYS_NETFD sd is the filter stack to inspect.

const Filter *filter is the filter of interest.

fiter _name

The filter name function returns the name of the specified filter. The caller
should not free the returned string.

Syntax
const char *filter name(const Filter *filter);

Returns
The name of the specified filter, or NULL if an error occurred.

Parameters
const Filter *filter is the filter of interest.

filter _remove

The filter_remove function removes the specified filter from the specified filter
stack, destroying a filter layer. If the specified filter was inserted into the filter stack
multiple times, only that filter's topmost filter layer is destroyed.

When possible, plugin developers should avoid calling filter remove directly,
and instead use the remove-filter SAF (applicable in Input-, Output-, Service-,
and Error-class directives).

Syntax
int filter remove (SYS NETFD sd, const Filter *filter);

Returns

Returns REQ_PROCEED if the specified filter was removed successfully or
REQ_NOACTION if the specified filter was not part of the filter stack. Any other
return value indicates an error.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Parameters
SYS _NETFD sd is the filter stack, sn->csd.

const Filter *filter is the filter to remove

flush

The f1ush filter method is called when buffered data should be sent. Filters that
buffer outgoing data should implement the £1lush filter method.

Upon receiving control, a £1ush implementation must write any buffered data to
the filter layer immediately below it. Before returning success, a £1lush
implementation must successfully call the net_flush function:

net flush(layer->lower) .

Syntax
int flush(FilterLayer *layer);

Returns
0 onsuccess or -1 if an error occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

Example
int myfilter flush(FilterLayer *layer)
{
MyFilterContext context = (MyFilterContext
*) layer->context->data;
if (context-sbuf.count) ({
int rv;
rv = net write(layer->lower, context->buf.data,
context->buf.count) ;

if (xrv != context->buf.count)
return -1; /* failed to flush data */
context->buf.count = 0;

}

return net flush(layer->lower) ;

}

See Also
net flush

Chapter 7 NSAPI Function Reference 171

NSAPI Functions (in Alphabetical Order)

172

FREE

The FREE macro is a platform-independent substitute for the C library routine
free. It deallocates the space previously allocated by MALLOC, CALLOC, or STRDUP
from the request’s memory pool.

Syntax
FREE (void *ptr) ;

Returns
void

Parameters
void *ptr isa (void *) pointer to a block of memory. If the pointer is not one
created by MALLOC, CALLOC, or STRDUP, the behavior is undefined.

Example
char *name;
name = (char *) MALLOC(256) ;

FREE (name) ;

See Also
CALLOC, REALLOC, STRDUP, PERM MALLOC, PERM FREE, PERM REALLOC,
PERM_STRDUP

func_exec

The func_exec function executes the function named by the £n entry in a specified
pblock. If the function name is not found, it logs the error and returns
REQ_ABORTED.

You can use this function to execute a built-in Server Application Function (SAF)
by identifying it in the pblock.

Syntax
int func_exec(pblock *pb, Session *sn, Request *rq);

Returns
The value returned by the executed function, or the constant REQ_ABORTED if no
function was executed.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Parameters
pblock pb is the pblock containing the function name (£n) and parameters.

Session *sn is the Session.
Request *rg is the Request.

The session and Request parameters are the same as the ones passed into your
SAF.

See Also
log error

func_find

The func_find function returns a pointer to the function specified by name. If the
function does not exist, it returns NULL.

Syntax
FuncPtr func_ find(char *name) ;

Returns
A pointer to the chosen function, suitable for dereferencing, or NULL if the
function could not be found.

Parameters
char *name is the name of the function.

Example
/* this block of code does the same thing as func_exec */
char *afunc = pblock findval ("afunction", pb) ;
FuncPtr afnptr = func_ find(afunc) ;
if (afnptr)
return (afnptr) (pb, sn, rq);

See Also
func exec

func_insert

The func_insert function dynamically inserts a named function into the server's
table of functions. This function should only be called during the Init stage.

Chapter 7 NSAPI Function Reference 173

NSAPI Functions (in Alphabetical Order)

174

Syntax
FuncStruct *func_ insert (char *name, FuncPtr fn);

Returns
Returns the Funcstruct structure that identifies the newly inserted function. The
caller should not modify the contents of the FuncStruct structure.

Parameters
char *name is the name of the function.

FuncPtr fn is the pointer to the function.

Example
func_insert ("my-service-saf", &my_ service_saf);

See Also
func exec, func find

insert

The insert filter method is called when a filter is inserted into a filter stack by the
filter insert function or insert-filter SAF (applicable in Input-class
directives).

Syntax
int insert(FilterLayer *layer, pblock *pb) ;

Returns

Returns REQ_PROCEED if the filter should be inserted into the filter stack,
REQ_NOACTION if the filter should not be inserted because it is not required, or
REQ_ABORTED if the filter should not be inserted because of an error.

Parameters
FilterLayer *layer is the filter layer at which the filter is being inserted.

pblock +*pb is the set of parameters passed to filter_insert or specified by the
fn="insert-filter" directive.

Example
FilterMethods myfilter methods = FILTER METHODS_ INITIALIZER;
const Filter *myfilter;
int myfilter insert(FilterLayer *layer, pblock *pb)

{

if (pblock findval ("dont-insert-filter", pb))

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

return REQ NOACTION;
return REQ PROCEED;

}

myfilter methods.insert = &myfilter insert;
myfilter = filter create("myfilter", &myfilter methods) ;

log_error

The log_error function creates an entry in an error log, recording the date, the
severity, and a specified text.

Syntax
int log_error (int degree, char *func, Session *sn, Request *rq,
char *fmt, ...);

Returns
0 if the log entry was created, or -1 if the log entry was not created.

Parameters
int degree specifies the severity of the error. It must be one of the following
constants:

LOG_WARN -- warning

LOG_MISCONFIG -- a syntax error or permission violation
LOG_SECURITY -- an authentication failure or 403 error from a host
LOG_FAILURE -- an internal problem

LOG_CATASTROPHE -- a nonrecoverable server error

LOG_INFORM -- an informational message

char *func is the name of the function where the error has occurred.
Session *sn is the Session.
Request *rg is the Request.

The session and Request parameters are the same as the ones passed into your
SAF.

char *fmt specifies the format for the printf function that delivers the message.

Chapter 7 NSAPI Function Reference 175

NSAPI Functions (in Alphabetical Order)

176

... represents a sequence of parameters for the printf function.

Example
log error (LOG_WARN, "send-file", sn, rq,
"error opening buffer from %s (%s)"), path,

system_errmsg (£d)) ;

See Also
func_exec

MALLOC

The MALLOC macro is a platform-independent substitute for the C library routine
malloc. It normally allocates from the request’s memory pool. If pooled memory
has been disabled in the configuration file (with the pool-init built-in SAF),
PERM_MALLOC and MALLOC both obtain their memory from the system heap.

Syntax
void *MALLOC (int size)

Returns
A void pointer to a block of memory.

Parameters
int size is the number of bytes to allocate.

Example

/* Allocate 256 bytes for a name */
char *name;
name = (char *) MALLOC(256) ;

See Also
FREE, CALLOC, REALLOC, STRDUP, PERM MALLOC, PERM FREE, PERM CALLOC,
PERM REALLOC, PERM STRDUP

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

net_flush

The net_f1lush function flushes any buffered data. If you require that data be sent
immediately, call net_f1lush after calling network output functions such as
net_write oOrnet_sendfile.

Syntax
int net_ flush(SYS_NETFD sd) ;

Returns
0 on success, or a negative value if an error occurred.

Parameters
SYS_NETFD sd is the socket to flush.

Example

net write(sn->csd, "Please wait... ", 15);
net flush(sn->csd) ;

/* Perform some time-intensive operation */

net write(sn->csd, "Thank you.\n", 11);

See Also
net_write, net_sendfile

net_ip2host

The net_ip2host function transforms a textual IP address into a fully-qualified
domain name and returns it.

NOTE This function works only if the DNS directive is enabled in the
magnus . conf file. For more information, see Chapter 2, “SAFs in
the magnus.conf File.”

Syntax
char *net ip2host (char *ip, int verify);

Chapter 7 NSAPI Function Reference 177

NSAPI Functions (in Alphabetical Order)

178

Returns
A new string containing the fully-qualified domain name if the transformation was
accomplished, or NULL if the transformation was not accomplished.

Parameters
char *ip is the IP address as a character string in dotted-decimal notation:
nnn.nnn.nnn.nnn

int verify, if nonzero, specifies that the function should verify the fully-qualified
domain name. Though this requires an extra query, you should use it when
checking access control.

net read

The net_read function reads bytes from a specified socket into a specified buffer.
The function waits to receive data from the socket until either at least one byte is
available in the socket or the specified time has elapsed.

Syntax
int net read (SYS NETFD sd, char *buf, int sz, int timeout) ;

Returns

The number of bytes read, which will not exceed the maximum size, sz. A negative
value is returned if an error has occurred, in which case errno is set to the constant
ETIMEDOUT if the operation did not complete before t imeout seconds elapsed.

Parameters
SYS_NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer to receive the bytes.
int sz is the maximum number of bytes to read.

int timeout is the number of seconds to allow for the read operation before
returning. The purpose of timeout is not to return because not enough bytes were
read in the given time, but to limit the amount of time devoted to waiting until
some data arrives.

See Also
net write

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

net_sendfile

The net_sendfile function sends the contents of a specified file to a specified a
socket. Either the whole file or a fraction may be sent, and the contents of the file
may optionally be preceded and/or followed by caller-specified data.

Parameters are passed to net_sendfile inthe sendfiledata structure. Before
invoking net_sendfile, the caller must initialize every sendfiledata structure
member.

Syntax
int net sendfile(SYS NETFD sd, const sendfiledata *sfd);

Returns
A positive number indicates the number of bytes successfully written, including
the headers, file contents, and trailers. A negative value indicates an error.

Parameters
SYS NETFD sd is the socket to write to.

const sendfiledata *sfd identifies the data to send.

Example
The following service SAF sends a file bracketed by the strings "begin" and "end."

#include <string.h>
#include "nsapi.h"

NSAPI_PUBLIC int service net sendfile(pblock *pb, Session *sn,
Request *rq)
{

char *path;

SYS FILE fd;

struct sendfiledata sfd;

int rv;

path = pblock findval ("path", rg->vars);
fd = system fopenRO (path) ;
if (1£4) {
log error (LOG_MISCONFIG, "service-net-sendfile", sn, rq,
"Error opening %s (%s)", path, system errmsg()) ;
return REQ ABORTED;

}

sfd.fd = f4; /* file to send */
sfd.offset = 0; /* start sending from the

Chapter 7 NSAPI Function Reference 179

NSAPI Functions (in Alphabetical Order)

beginning */

sfd.len = 0; /* send the whole file */

sfd.header = "begin"; /* header data to send
before the file */

sfd.hlen = strlen(sfd.header) ; /* length of header data
*/

sfd.trailer = "end"; /* trailer data to send
after the file */

sfd.tlen = strlen(sfd.trailer); /* length of trailer data
*/

/* send the headers, file, and trailers to the client */

rv = net sendfile(sn->csd, &sfd);

system fclose (£fd);

if (rv < 0) {

log error (LOG_INFORM, "service-net-sendfile", sn, rq,"Error
sending %s (%s)", path, system errmsg()) ;
return REQ ABORTED;

!

return REQ PROCEED;
}
See Also
net flush
net_write

The net_write function writes a specified number of bytes to a specified socket
from a specified buffer.

Syntax
int net write(SYS NETFD sd, char *buf, int sz);

Returns
The number of bytes written, which may be less than the requested size if an error
occurred.

Parameters
SYS_NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer containing the bytes.

180 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

int sz is the number of bytes to write.

Example
if (net write(sn->csd, FIRSTMSG, strlen(FIRSTMSG)) == IO _ERROR)
return REQ EXIT;

See Also
net read

netbuf buf2sd

The netbuf buf2sd function sends a buffer to a socket. You can use this function
to send data from IPC pipes to the client.

Syntax
int netbuf buf2sd(netbuf *buf, SYS NETFD sd, int len);

Returns
The number of bytes transferred to the socket, if successful, or the constant
IO _ERROR if unsuccessful.

Parameters
netbuf *buf is the buffer to send.

SYS_NETFD sd is the platform-independent identifier of the socket.

int len is the length of the buffer.

See Also
netbuf close, netbuf getc, netbuf grab, netbuf open

netbuf close

The netbuf close function deallocates a network buffer and closes its associated
files. Use this function when you need to deallocate the network buffer and close
the socket.

You should never close the netbuf parameter in a session structure.

Syntax
void netbuf close (netbuf *buf);

Chapter 7 NSAPI Function Reference 181

NSAPI Functions (in Alphabetical Order)

182

Returns
void

Parameters
netbuf *buf is the buffer to close.

See Also
netbuf buf2sd, netbuf getc, netbuf grab, netbuf open

netbuf_getc

The netbuf_getc function retrieves a character from the cursor position of the
network buffer specified by b.

Syntax
netbuf getc(netbuf b);

Returns
The integer representing the character if one was retrieved, or the constant 10_EOF
or I0_ERROR for end of file or error.

Parameters
netbuf b is the buffer from which to retrieve one character.

See Also
netbuf buf2sd, netbuf close, netbuf grab, netbuf open

netbuf_grab

The netbuf_grab function reads sz number of bytes from the network buffer’s
(buf) socket into the network buffer. If the buffer is not large enough it is resized.
The data can be retrieved from buf->inbuf on success.

This function is used by the function netbuf_buf2sd.

Syntax
int netbuf grab (netbuf *buf, int sz);

Returns
The number of bytes actually read (between 1 and sz) if the operation was
successful, or the constant I0_EOF or I0_ERROR for end of file or error.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Parameters
netbuf *buf is the buffer to read into.

int sz is the number of bytes to read.

See Also
netbuf buf2sd, netbuf close, netbuf grab, netbuf open

netbuf_open

The netbuf_open function opens a new network buffer and returns it. You can use
netbuf_open to create a netbuf structure and start using buffered I/O on a socket.

Syntax
netbuf* netbuf open(SYS NETFD sd, int sz);

Returns
A pointer to a new netbuf structure (network buffer).

Parameters
SYS_NETFD sd is the platform-independent identifier of the socket.

int sz is the number of characters to allocate for the network buffer.

See Also
netbuf buf2sd, netbuf close, netbuf getc, netbuf grab

nsapi_module_.init

Plugin developers may define an nsapi_module_init function, which is a module
initialization entry point that enables a plugin to create filters when it is loaded.
When an NSAPI module contains an nsapi_module init function, the server will
call that function immediately after loading the module. The nsapi_module init
presents the same interface as an Init SAF, and it must follow the same rules.

The nsapi_module_init function may be used to register SAFs with
func_insert, create filters with filter_create, register virtual server
initialization/destruction callbacks with vs_register_cb, and perform other
initialization tasks.

Syntax
int nsapi module init (pblock *pb, Session *sn, Request *rq);

Chapter 7 NSAPI Function Reference 183

NSAPI Functions (in Alphabetical Order)

184

Returns
REQ_PROCEED On success, Or REQ ABORTED ON €rror.

Parameters
pblock *pb is a set of parameters specified by the £fn="1oad-modules" directive.

Session *sn (the Session)is NULL.

Request *rg (the Request)is NULL.

NSAPI_RUNTIME_VERSION

The NSAPI_RUNTIME VERSION macro defines the NSAPI version available at
runtime. This is the same as the highest NSAPI version supported by the server the
plugin is running in. The NSAPI version is encoded as in USE_NSAPI_VERSION.

The value returned by the NSAPI_RUNTIME_VERSION macro is valid only in
iPlanet™ Web Server 6.0, Netscape Enterprise Server 6.0, and Sun ONE Web
Server 6.1. That is, the server must support NSAPI 3.1 for this macro to return a
valid value. Additionally, to use NSAPI_RUNTIME_VERSION, you must compile
against an nsapi.h header file that supports NSAPI 3.2 or higher.

Plugin developers should not attempt to set the value of the
NSAPI_RUNTIME_VERSION macro directly. Instead, see the USE_NSAPI_VERSION
macro.

Syntax
int NSAPI RUNTIME VERSION

Example

NSAPI_PUBLIC int log nsapi_runtime version(pblock *pb, Session *sn,

Request *rqg)

log error (LOG INFORM, "log-nsapi-runtime-version", sn, rq,

"Server supports NSAPI version %d.%d\n",
NSAPI RUNTIME VERSION / 100,
NSAPI RUNTIME VERSION % 100) ;

return REQ PROCEED;

}

See Also
NSAPI VERSION, USE_NSAPI VERSION

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

NSAPI_VERSION

The NsAPI_VERSION macro defines the NSAPI version used at compile time. This
value is determined by the value of the USE_NSAPI_VERSION macro, or, if the
plugin developer did not define USE_NSAPI_VERSION, by the highest NSAPI
version supported by the nsapi.h header the plugin was compiled against. The
NSAPI version is encoded as in USE_NSAPI VERSION.

Plugin developers should not attempt to set the value of the NSAPI_VERSION
macro directly. Instead, see the USE_NSAPI_VERSION macro..

Syntax
int NSAPI_ VERSION

Example

Example

NSAPI PUBLIC int log nsapi compile time version(pblock *pb, Session

*sn, Request *rq) {

log error (LOG_INFORM, "log-nsapi-compile-time-version", sn, rqg,

"Plugin compiled against NSAPI version %d.%d\n",
NSAPI VERSION / 100,
NSAPI VERSION % 100);

return REQ PROCEED;

}

See Also
NSAPI_ RUNTIME VERSION, USE_NSAPI VERSION

param_create

The param create function creates a pb_param structure containing a specified
name and value. The name and value are copied. Use this function to prepare a
pb_param structure to be used in calls to pblock routines such as pblock pinsert.

Syntax
pb_param *param create(char *name, char *value);

Chapter 7 NSAPI Function Reference 185

NSAPI Functions (in Alphabetical Order)

186

Returns
A pointer to a new pb_param structure.

Parameters
char *name is the string containing the name.

char *value is the string containing the value.

Example
pb _param *newpp = param create("content-type", "text/plain");
pblock pinsert (newpp, rg->srvhdrs);

See Also
param free, pblock pinsert, pblock remove

param_free

The param_free function frees the pb_param structure specified by pp and its
associated structures. Use the param_free function to dispose a pb_param after
removing it from a pblock with pblock_remove.

Syntax
int param free(pb_param *pp) ;

Returns
1 if the parameter was freed or o if the parameter was NULL.

Parameters
pb_param *pp is the name-value pair stored in a pblock.

Example
if (param free(pblock remove ("content-type", rg-srvhdrs)))
return; /* we removed it */

See Also
param create, pblock pinsert, pblock remove

pblock_copy

The pblock_copy function copies the entries of the source pblock and adds them
into the destination pblock. Any previous entries in the destination pblock are left
intact.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Syntax
void pblock copy(pblock *src, pblock *dst);

Returns
void

Parameters
pblock *src is the source pblock.
pblock *dst is the destination pblock.

Names and values are newly allocated so that the original pblock may be freed, or
the new pblock changed without affecting the original pblock.

See Also
pblock create, pblock dup, pblock free, pblock find, pblock findval,
pblock remove, pblock nvinsert

pblock_create

The pblock_create function creates a new pblock. The pblock maintains an
internal hash table for fast name-value pair lookups.

Syntax
pblock *pblock create(int n);

Returns
A pointer to a newly allocated pblock.

Parameters
int n is the size of the hash table (number of name-value pairs) for the pblock.

See Also

pblock copy, pblock dup, pblock find, pblock findval, pblock free,
pblock nvinsert, pblock remove

pblock_dup

The pblock_dup function duplicates a pblock. It is equivalent to a sequence of
pblock create and pblock copy.

Chapter 7 NSAPI Function Reference 187

NSAPI Functions (in Alphabetical Order)

188

Syntax
pblock *pblock dup (pblock *src);

Returns
A pointer to a newly allocated pblock.

Parameters
pblock *src is the source pblock.

See Also
pblock create, pblock find, pblock findval, pblock free,
pblock nvinsert, pblock remove

pblock_find

The pblock_find function finds a specified name-value pair entry in a pblock, and
returns the pb_param structure. If you only want the value associated with the
name, use the pblock findval function.

This function is implemented as a macro.

Syntax
pb_param *pblock find(char *name, pblock *pb);

Returns
A pointer to the pb_param structure if one was found, or NULL if name was not
found.

Parameters
char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.
See Also

pblock copy, pblock dup, pblock findval, pblock free,
pblock nvinsert, pblock remove

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

pblock_findval

The pblock_findval function finds the value of a specified name in a pblock. If
you just want the pb_param structure of the pblock, use the pblock_£ind function.

The pointer returned is a pointer into the pblock. Do not FREE it. If you want to
modify it, do a STRDUP and modify the copy.

Syntax
char *pblock findval (char *name, pblock *pb) ;

Returns
A string containing the value associated with the name or NULL if no match was
found.

Parameters
char *name is the name of a name-value pair.
pblock *pb is the pblock to be searched.

Example
see pblock nvinsert.

See Also

pblock create, pblock copy, pblock find, pblock free,
pblock nvinsert, pblock remove, request header

pblock_free

The pblock_free function frees a specified pblock and any entries inside it. If you
want to save a variable in the pblock, remove the variable using the function
pblock_remove and save the resulting pointer.

Syntax
void pblock free(pblock *pb) ;

Returns
void

Parameters
pblock *pb is the pblock to be freed.

Chapter 7 NSAPI Function Reference 189

NSAPI Functions (in Alphabetical Order)

190

See Also
pblock copy, pblock create, pblock dup, pblock find, pblock findval,
pblock nvinsert, pblock remove

pblock_nninsert

The pblock_nninsert function creates a new entry with a given name and a
numeric value in the specified pblock. The numeric value is first converted into a
string. The name and value parameters are copied.

Syntax
pb _param *pblock nninsert (char *name, int value, pblock *pb);

Returns
A pointer to the new pb_param structure.

Parameters
char *name is the name of the new entry.

int value is the numeric value being inserted into the pblock. This parameter
must be an integer. If the value you assign is not a number, then instead use the
function pblock_nvinsert to create the parameter.

pblock *pb is the pblock into which the insertion occurs.

See Also

pblock copy, pblock create, pblock find, pblock free,
pblock nvinsert, pblock remove, pblock str2pblock

pblock_nvinsert

The pblock_nvinsert function creates a new entry with a given name and
character value in the specified pblock. The name and value parameters are
copied.

Syntax
pb_param *pblock nvinsert (char *name, char *value, pblock *pb);

Returns
A pointer to the newly allocated pb_param structure.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Parameters
char *name is the name of the new entry.

char *value is the string value of the new entry.

pblock *pb is the pblock into which the insertion occurs.

Example
pblock nvinsert ("content-type", "text/html", rg->srvhdrs);

See Also
pblock copy, pblock create, pblock find, pblock free,
pblock nninsert, pblock remove, pblock str2pblock

pblock_pb2env

The pblock_pb2env function copies a specified pblock into a specified
environment. The function creates one new environment entry for each
name-value pair in the pblock. Use this function to send pblock entries to a
program that you are going to execute.

Syntax
char **pblock pb2env(pblock *pb, char **env);

Returns
A pointer to the environment.

Parameters
pblock *pb is the pblock to be copied.

char **env is the environment into which the pblock is to be copied.

See Also
pblock copy, pblock create, pblock find, pblock free,
pblock nvinsert, pblock remove, pblock str2pblock

pblock_pblock2str

The pblock_pblock2str function copies all parameters of a specified pblock into
a specified string. The function allocates additional nonheap space for the string if
needed.

Use this function to stream the pblock for archival and other purposes.

Chapter 7 NSAPI Function Reference 191

NSAPI Functions (in Alphabetical Order)

192

Syntax
char *pblock pblock2str(pblock *pb, char *str);

Returns

The new version of the str parameter. If str is NULL, this is a new string;
otherwise, it is a reallocated string. In either case, it is allocated from the request’s
memory pool.

Parameters
pblock *pb is the pblock to be copied.

char *str is the string into which the pblock is to be copied. It must have been
allocated by MALLOC or REALLOC, not by PERM_MALLOC Oor PERM_REALLOC (which
allocate from the system heap).

Each name-value pair in the string is separated from its neighbor pair by a space,
and is in the format name="value."

See Also
pblock copy, pblock create, pblock find, pblock free,
pblock nvinsert, pblock remove, pblock str2pblock

pblock_pinsert

The function pblock pinsert inserts a pb_param structure into a pblock.

Syntax
void pblock pinsert (pb _param *pp, pblock *pb);

Returns
void

Parameters

pb_param *pp isthe pb param structure to insert.
pblock *pb is the pblock.

See Also

pblock copy, pblock create, pblock find, pblock free,
pblock nvinsert, pblock remove, pblock str2pblock

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

pblock_remove

The pblock_remove function removes a specified name-value entry from a
specified pblock. If you use this function, you should eventually call param_free
to deallocate the memory used by the pb_param structure.

Syntax
pb_param *pblock remove (char *name, pblock *pb) ;

Returns
A pointer to the named pb_param structure if it was found, or NULL if the named
pb_param was not found.

Parameters
char *name is the name of the pb_param to be removed.

pblock *pb is the pblock from which the name-value entry is to be removed.

See Also
pblock copy, pblock create, pblock find, pblock free,
pblock nvinsert, param create, param free

pblock_str2pblock

The pblock_str2pblock function scans a string for parameter pairs, adds them to
a pblock, and returns the number of parameters added.

Syntax
int pblock str2pblock(char *str, pblock *pb);

Returns
The number of parameter pairs added to the pblock, if any, or -1 if an error
occurred.

Parameters
char *str is the string to be scanned.

The name-value pairs in the string can have the format name=value or
name="value."

Chapter 7 NSAPI Function Reference 193

NSAPI Functions (in Alphabetical Order)

194

All backslashes (\) must be followed by a literal character. If string values are
found with no unescaped = signs (no name=), it assumes the names 1, 2, 3, and so
on, depending on the string position. For example, if pblock_str2pblock finds
"some strings together," the function treats the strings as if they appeared in
name-value pairs as 1="some" 2="strings" 3="together."

pblock *pb is the pblock into which the name-value pairs are stored.

See Also
pblock copy, pblock create, pblock find, pblock free,
pblock nvinsert, pblock remove, pblock pblock2str

PERM_CALLOC

The PERM_CALLOC macro is a platform-independent substitute for the C library
routine calloc. It allocates int size bytes of memory that persist after the request
that is being processed has been completed. If pooled memory has been disabled in
the configuration file (with the pool-init built-in SAF), PERM_CALLOC and CALLOC
both obtain their memory from the system heap.

Syntax
void *PERM_ CALLOC (int size)

Returns
A void pointer to a block of memory.

Parameters
int size is the size in bytes of each element.

Example
char **name;
name = (char **) PERM CALLOC(100) ;

See Also
PERM FREE, PERM STRDUP, PERM MALLOC, PERM REALLOC, MALLOC, FREE,
CALLOC, STRDUP, REALLOC

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

PERM_FREE

The PERM_FREE macro is a platform-independent substitute for the C library
routine free. It deallocates the persistent space previously allocated by
PERM_MALLOC, PERM_CALLOC, Or PERM_STRDUP. If pooled memory has been disabled
in the configuration file (with the pool-init built-in SAF), PERM_FREE and FREE
both deallocate memory in the system heap.

Syntax
PERM FREE (void *ptr) ;

Returns
void

Parameters

void *ptr isa (void *) pointer to block of memory. If the pointer is not one
created by PERM_MALLOC, PERM_CALLOC, Or PERM_STRDUP, the behavior is
undefined.

Example
char *name;
name = (char *) PERM MALLOC(256) ;

PERM_FREE (name) ;

See Also
FREE, MALLOC, CALLOC, REALLOC, STRDUP, PERM MALLOC, PERM CALLOC,
PERM REALLOC, PERM_STRDUP

PERM_MALLOC

The PERM_MALLOC macro is a platform-independent substitute for the C library
routine malloc. It provides allocation of memory that persists after the request that
is being processed has been completed. If pooled memory has been disabled in the
configuration file (with the pool-init built-in SAF), PERM_MALLOC and MALLOC
both obtain their memory from the system heap.

Syntax
void *PERM MALLOC (int size)

Returns
A void pointer to a block of memory.

Chapter 7 NSAPI Function Reference 195

NSAPI Functions (in Alphabetical Order)

Parameters
int size is the number of bytes to allocate.

Example

/* Allocate 256 bytes for a name */
char *name;

name = (char *) PERM MALLOC(256) ;

See Also
PERM_FREE, PERM STRDUP, PERM CALLOC, PERM REALLOC, MALLOC, FREE,
CALLOC, STRDUP, REALLOC

PERM_REALLOC

The PERM_REALLOC macro is a platform-independent substitute for the C library
routine realloc. It changes the size of a specified memory block that was
originally created by MALLOC, CALLOC, or STRDUP. The contents of the object remains
unchanged up to the lesser of the old and new sizes. If the new size is larger, the
new space is uninitialized.

Warning
Calling PERM_REALLOC for a block that was allocated with MALLOC, CALLOC, or
STRDUP will not work.

Syntax
void *PERM REALLOC (vod *ptr, int size)

Returns
A void pointer to a block of memory.

Parameters
void *ptr a void pointer to a block of memory created by PERM_MALLOC,
PERM_CALLOC, Or PERM_STRDUP.

int size is the number of bytes to which the memory block should be resized.

Example
char *name;
name = (char *) PERM MALLOC(256) ;
if (NotBigEnough())
name = (char *) PERM REALLOC(512) ;

196 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

See Also
PERM MALLOC,PERM FREE, PERM CALLOC, PERM STRDUP, MALLOC, FREE,
STRDUP, CALLOC, REALLOC

PERM_STRDUP

The PERM_STRDUP macro is a platform-independent substitute for the C library
routine strdup. It creates a new copy of a string in memory that persists after the
request that is being processed has been completed. If pooled memory has been
disabled in the configuration file (with the pool-init built-in SAF), PERM_STRDUP
and STRDUP both obtain their memory from the system heap.

The PERM_STRDUP routine is functionally equivalent to:

newstr = (char *) PERM MALLOC (strlen(str) + 1);
strcpy (newstr, str);

A string created with PERM_STRDUP should be disposed with PERM_FREE.

Syntax
char *PERM_ STRDUP (char *ptr) ;

Returns
A pointer to the new string.

Parameters
char *ptr isa pointer to a string.

See Also
PERM MALLOC,PERM FREE, PERM CALLOC, PERM REALLOC, MALLOC, FREE,
STRDUP, CALLOC, REALLOC

prepare_nsapi_thread

The prepare_nsapi_thread function allows threads that are not created by the
server to act like server-created threads. This function must be called before any
NSAPI functions are called from a thread that is not server-created.

Chapter 7 NSAPI Function Reference 197

NSAPI Functions (in Alphabetical Order)

198

Syntax
void prepare nsapi thread(Request *rqg, Session *sn);

Returns
void

Parameters
Request *rg is the Request.
Session *sn is the Session.

The Request and Session parameters are the same as the ones passed into your
SAF.

See Also
protocol start_ response

protocol_dump822

The protocol_dumps22 function prints headers from a specified pblock into a
specific buffer, with a specified size and position. Use this function to serialize the
headers so that they can be sent, for example, in a mail message.

Syntax
char *protocol dump822(pblock *pb, char *t, int *pos, int tsz);

Returns
A pointer to the buffer, which will be reallocated if necessary.

The function also modifies *pos to the end of the headers in the buffer.

Parameters
pblock *pb is the pblock structure.

char *t is the buffer, allocated with MALLOC, CALLOC, or STRDUP.
int *pos is the position within the buffer at which the headers are to be dumped.

int tsz is the size of the buffer.

See Also
protocol start response, protocol status

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

protocol_set_finfo

The protocol set finfo function retrieves the content-1length and
last-modified date from a specified stat structure and adds them to the
response headers (rq- >srvhdrs). Call protocol_set_finfo before calling
protocol start response.

Syntax
int protocol set finfo(Session *sn, Request *rqg, struct stat
*finfo) ;

Returns

The constant REQ_PROCEED if the request can proceed normally, or the constant
REQ_ABORTED if the function should treat the request normally but not send any
output to the client.

Parameters
Session *sn is the Session.

Request *rg is the Request.

The session and Request parameters are the same as the ones passed into your
SAF.

stat *finfo isthe stat structure for the file.

The stat structure contains the information about the file from the file system. You
can get the stat structure info using request_stat_path.

See Also
protocol start response, protocol status

protocol_start_response

The protocol_start_response function initiates the HTTP response for a
specified session and request. If the protocol version is HTTP/0.9, the function
does nothing, because that version has no concept of status. If the protocol version
is HTTP/1.0, the function sends a status line followed by the response headers. Use
this function to set up HTTP and prepare the client and server to receive the body
(or data) of the response.

Syntax
int protocol start response (Session *sn, Request *rq);

Chapter 7 NSAPI Function Reference 199

NSAPI Functions (in Alphabetical Order)

200

Returns
The constant REQ_PROCEED if the operation succeeded, in which case you should
send the data you were preparing to send.

The constant REQ_NOACTION if the operation succeeded but the request method was
HEAD, in which case no data should be sent to the client.

The constant REQ_ABORTED if the operation did not succeed.

Parameters
Session *sn is the Session.

Request *rg is the Request.

The session and Request parameters are the same as the ones passed into your
SAF.

Example
/* A noaction response from this function means the request was HEAD
*/
if (protocol start response(sn, rg) == REQ NOACTION) {
filebuf close(groupbuf); /* close our filex*/
return REQ PROCEED;

}

See Also
protocol status

protocol_status

The protocol status function sets the session status to indicate whether an error
condition occurred. If the reason string is NULL, the server attempts to find a
reason string for the given status code. If it finds none, it returns “Unknown
reason.” The reason string is sent to the client in the HTTP response line. Use this
function to set the status of the response before calling the function
protocol_start_ response.

For the complete list of valid status code constants, please refer to the file
"nsapi.h" in the server distribution.

Syntax
void protocol status(Session *sn, Request *rqg, int n, char *r);

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Returns
void, but it sets values in the Session/Request designated by sn/rq for the status
code and the reason string.

Parameters
Session *sn is the Session.

Request *rg is the Request.

The session and Request parameters are the same as the ones passed into your
SAF.

int n is one of the status code constants above.

char *r isthe reason string.

Example
/* 1f we find extra path-info, the URL was bad so tell the */
/* browser it was not found */
if (t = pblock_findval ("path-info", rg-s>vars)) ({
protocol status(sn, rqg, PROTOCOL NOT FOUND, NULL) ;
log error (LOG_WARN, "function-name", sn, rg, "%s not found",
path) ;
return REQ ABORTED;

}

See Also
protocol start response

protocol_uri2url

The protocol_uri2url function takes strings containing the given URI prefix and
URI suffix, and creates a newly allocated, fully qualified URL in the form
http:// (server) : (port) (prefix) (suffix).See protocol uri2url dynamic.

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the
value for either parameter.

Syntax
char *protocol uri2url (char *prefix, char *suffix);

Returns
A new string containing the URL.

Chapter 7 NSAPI Function Reference 201

NSAPI Functions (in Alphabetical Order)

202

Parameters
char *prefix is the prefix.

char *suffix is the suffix.

See Also
protocol_start response, protocol status, pblock nvinsert,
protocol uri2url dynamic

protocol_uri2url_dynamic

The protocol_uri2url function takes strings containing the given URI prefix and
URI suffix, and creates a newly allocated, fully qualified URL in the form
http:// (server) : (port) (prefix) (suffix).

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the
value for either parameter.

The protocol uri2url dynamic function is similar to the protocol uri2url
function, but should be used whenever the session and request structures are
available. This ensures that the URL it constructs refers to the host that the client
specified.

Syntax
char *protocol uri2url (char *prefix, char *suffix, Session *sn,
Request *rq) ;

Returns
A new string containing the URL.

Parameters
char *prefix is the prefix.

char *suffix is the suffix.
Session *sn is the Session.
Request *rg is the Request.

The session and Request parameters are the same as the ones passed into your
SAF.

See Also
protocol_start response, protocol status, protocol uri2url dynamic

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

read

The read filter method is called when input data is required. Filters that modify or
consume incoming data should implement the read filter method.

Upon receiving control, a read implementation should fill buf with up to amount
bytes of input data. This data may be obtained by calling the net_read function, as
shown in the example below.

Syntax
int read(FilterLayer *layer, void *buf, int amount, int timeout) ;

Returns
The number of bytes placed in buf on success, 0 if no data is available, or a
negative value if an error occurred.

Parameters

FilterLayer *layer is the filter layer in which the filter is installed.

void *buf is the buffer in which data should be placed.

int amount is the maximum number of bytes that should be placed in the buffer.

int timeout is the number of seconds to allow for the read operation before
returning. The purpose of timeout is not to return because not enough bytes were
read in the given time, but to limit the amount of time devoted to waiting until
some data arrives.

Example
int myfilter read(FilterLayer *layer, void *buf, int amount, int
timeout)
return net read(layer->lower, buf, amount, timeout);
See Also
net read

Chapter 7 NSAPI Function Reference 203

NSAPI Functions (in Alphabetical Order)

204

REALLOC

The REALLOC macro is a platform-independent substitute for the C library routine
realloc. It changes the size of a specified memory block that was originally
created by MALLOC, CALLOC, or STRDUP. The contents of the object remains
unchanged up to the lesser of the old and new sizes. If the new size is larger, the
new space is uninitialized.

Warning
Calling REALLOC for a block that was allocated with PERM_MALLOC, PERM_CALLOC, OF
PERM_STRDUP will not work.

Syntax
void *REALLOC (void *ptr, int size);

Returns
A pointer to the new space if the request could be satisfied.

Parameters
void *ptr isa (void *) pointer to a block of memory. If the pointer is not one
created by MALLOC, CALLOC, or STRDUP, the behavior is undefined.

int size is the number of bytes to allocate.

Example
char *name;
name = (char *) MALLOC(256) ;
if (NotBigEnough())
name = (char *) REALLOC(512) ;
See Also

MALLOC, FREE, STRDUP, CALLOC, PERM MALLOC, PERM FREE, PERM REALLOC,
PERM_CALLOC, PERM_STRDUP

remove

The remove filter method is called when the filter stack is destroyed, or when a
filter is removed from a filter stack by the filter remove function or
remove-filter SAF (applicable in Input-, Output-, Service-, and Error-class
directives).

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Note that it may be too late to flush buffered data when the remove method is
invoked. For this reason, filters that buffer outgoing data should implement the
flush filter method.

Syntax
void remove (FilterLayer *layer) ;

Returns
void

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

See Also
flush

request_get_vs

The request_get_vs function finds the virtualServer* to which a request is
directed.

The returned virtualserver+ is valid only for the current request. To retrieve a
virtual server ID that is valid across requests, use vs_get_id.

Syntax
const VirtualServer* request get vs(Request* rq);

Returns
The virtualserver* to which the request is directed.

Parameters
Request *rqis the request for which the virtualServer= is returned.

See Also
vs_get_id

request_header

The request_header function finds an entry in the pblock containing the client’s
HTTP request headers (rg->headers). You must use this function rather than
pblock_findval when accessing the client headers, since the server may begin
processing the request before the headers have been completely read.

Chapter 7 NSAPI Function Reference 205

NSAPI Functions (in Alphabetical Order)

206

Syntax
int request header (char *name, char **value, Session *sn, Request
*rq) ;

Returns
A result code, REQ PROCEED if the header was found, REQ_ABORTED if the header
was not found, REQ_EXIT if there was an error reading from the client.

Parameters
char *name is the name of the header.

char **value is the address where the function will place the value of the
specified header. If none is found, the function stores a NULL.

Session *sn is the Session.
Request *rg is the Request.

The session and Request parameters are the same as the ones passed into your
SAF.

See Also
request create, request free

request_stat_path

The request stat_ path function returns the file information structure for a
specified path or, if none is specified, the path entry in the vars pblock in the
specified request structure. If the resulting file name points to a file that the server
can read, request_stat_path returns a new file information structure. This
structure contains information on the size of the file, its owner, when it was
created, and when it was last modified.

You should use request_stat_path to retrieve information on the file you are
currently accessing (instead of calling stat directly), because this function keeps
track of previous calls for the same path and returns its cached information.

Syntax
struct stat *request stat path(char *path, Request *rq);

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Returns

Returns a pointer to the file information structure for the file named by the path
parameter. Do not free this structure. Returns NULL if the file is not valid or the
server cannot read it. In this case, it also leaves an error message describing the
problem in rq->staterr.

Parameters

char *path is the string containing the name of the path. If the value of path is
NULL, the function uses the path entry in the vars pblock in the request structure
denoted by rq.

Request +*rg is the request identifier for a Server Application Function call.

Example
fi = request stat path(path, rq);

See Also
request create, request_ free, request_header

request_translate_uri

The request_translate_uri function performs virtual to physical mapping on a
specified URI during a specified session. Use this function when you want to
determine which file would be sent back if a given URI is accessed.

Syntax
char *request translate uri(char *uri, Session *sn);

Returns
A path string if it performed the mapping, or NULL if it could not perform the
mapping.

Parameters
char *uri isthe name of the URIL

Session *sn is the Session parameter that is passed into your SAF.

See Also
request create, request free, request header

Chapter 7 NSAPI Function Reference 207

NSAPI Functions (in Alphabetical Order)

S

sendfile

The sendfile filter method is called when the contents of a file are to be sent.
Filters that modify or consume outgoing data may choose to implement the
sendfile filter method.

If a filter implements the write filter method but not the sendfile filter method,
the server will automatically translate net_sendfile calls to net_write calls. Asa
result, filters interested in the outgoing data stream do not need to implement the
sendfile filter method. However, for performance reasons, it is beneficial for
filters that implement the write filter method to also implement the sendfile
filter method.

Syntax
int sendfile(FilterLayer *layer, const sendfiledata *data) ;

Returns
The number of bytes consumed, which may be less than the requested amount if an
error occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

const sendfiledata *sfd identifies the data to send.
Example

int myfilter sendfile(FilterLayer *layer, const sendfiledata
*gfd)

{
}

return net sendfile(layer->lower, sfd);

See Also
net sendfile

208 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

session_dns

The session_dns function resolves the IP address of the client associated with a
specified session into its DNS name. It returns a newly allocated string. You can
use session_dns to change the numeric IP address into something more readable.

The session maxdns function verifies that the client is who it claims to be; the
session_dns function does not perform this verification.

NOTE This function works only if the DNS directive is enabled in the
magnus . conf file. For more information, see Chapter 2, “SAFs in
the magnus.conf File.”

Syntax
char *session dns(Session *sn);

Returns
A string containing the host name, or NULL if the DNS name cannot be found for
the IP address.

Parameters
Session *sn is the Session.

The session is the same as the one passed to your SAF.

session_maxdns

The session_maxdns function resolves the IP address of the client associated with
a specified session into its DNS name. It returns a newly allocated string. You can
use session_maxdns to change the numeric IP address into something more
readable.

NOTE This function works only if the DNs directive is enabled in the
magnus . conf file. For more information, see Chapter 2, “SAFs in
the magnus.conf File.”

Syntax
char *session maxdns(Session *sn) ;

Chapter 7 NSAPI Function Reference 209

NSAPI Functions (in Alphabetical Order)

210

Returns

A string containing the host name, or NULL if the DNS name cannot be found for
the IP address.

Parameters
Session *sn is the Session.

The Session is the same as the one passed to your SAF.

shexp_casecmp

The shexp_casecmp function validates a specified shell expression and compares
it with a specified string. It returns one of three possible values representing match,
no match, and invalid comparison. The comparison (in contrast to that of the
shexp cmp function) is not case-sensitive.

Use this function if you have a shell expression like * .netscape . com and you want
to make sure that a string matches it, such as foo.netscape.com.

Syntax
int shexp casecmp (char *str, char *exp);

Returns
o0 if a match was found.

1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters
char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

See Also
shexp cmp, shexp match, shexp valid

shexp_cmp

The shexp_casecmp function validates a specified shell expression and compares
it with a specified string. It returns one of three possible values representing match,
no match, and invalid comparison. The comparison (in contrast to that of the
shexp casecmp function) is case-sensitive.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Use this function if you have a shell expression like * .netscape . com and you want
to make sure that a string matches it, such as foo.netscape.com.

Syntax
int shexp cmp(char *str, char *exp);

Returns
o0 if a match was found.

1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters
char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

Example
/* Use wildcard match to see if this path is one we want */
char *path;
char *match = "/usr/netscape/*";
if (shexp cmp(path, match) != 0)
return REQ NOACTION; /* no match */

See Also
shexp casecmp, shexp match, shexp valid

shexp_match

The shexp_match function compares a specified prevalidated shell expression
against a specified string. It returns one of three possible values representing
match, no match, and invalid comparison. The comparison (in contrast to that of
the shexp_casecmp function) is case-sensitive.

The shexp_match function doesn’t perform validation of the shell expression;
instead the function assumes that you have already called shexp_valid.

Use this function if you have a shell expression such as * .netscape.com, and you
want to make sure that a string matches it, such as foo.netscape. com.

Syntax
int shexp match(char *str, char *exp);

Chapter 7 NSAPI Function Reference 211

NSAPI Functions (in Alphabetical Order)

212

Returns
o0 if a match was found.

1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters
char *str is the string to be compared.

char *exp is the prevalidated shell expression (wildcard pattern) to compare
against.

See Also
shexp casecmp, shexp cmp, shexp valid

shexp_valid

The shexp_valid function validates a specified shell expression named by exp.
Use this function to validate a shell expression before using the function
shexp_match to compare the expression with a string.

Syntax
int shexp valid(char *exp);

Returns
The constant NON_sxP if exp is a standard string.

The constant INVALID sXxP if exp is a shell expression, but invalid.

The constant VALID_ sxP if exp is a valid shell expression.

Parameters
char *exp is the shell expression (wildcard pattern) to be validated.

See Also
shexp casecmp, shexp match, shexp cmp

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

STRDUP

The sTRDUP macro is a platform-independent substitute for the C library routine
strdup. It creates a new copy of a string in the request’s memory pool.

The sTRDUP routine is functionally equivalent to:

newstr = (char *) MALLOC(strlen(str) + 1);
strcpy (newstr, str);

A string created with sTRDUP should be disposed with FREE.

Syntax
char *STRDUP (char *ptr);

Returns
A pointer to the new string.

Parameters
char *ptr isa pointer to a string.

Example

char *namel = "MyName";
char *name2 = STRDUP (namel) ;
See Also

MALLOC, FREE, CALLOC, REALLOC, PERM MALLOC, PERM FREE, PERM CALLOC,
PERM_REALLOC, PERM_STRDUP

system_errmsg

The system errmsg function returns the last error that occurred from the most
recent system call. This function is implemented as a macro that returns an entry
from the global array sys_errlist. Use this macro to help with I/O error
diagnostics.

Syntax
char *system errmsg(int paraml) ;

Chapter 7 NSAPI Function Reference 213

NSAPI Functions (in Alphabetical Order)

Returns

A string containing the text of the latest error message that resulted from a system
call. Do not FREE this string.

Parameters
int paraml isreserved, and should always have the value 0.

See Also

system fopenRO, system fopenRW, system fopenWA, system lseek,
system fread, system fwrite, system fwrite atomic, system flock,
system ulock, system fclose

system_fclose

The system_fclose function closes a specified file descriptor. The system _fclose
function must be called for every file descriptor opened by any of the
system_fopen functions.

Syntax
int system fclose(SYS FILE £d);

Returns
0 if the close succeeded, or the constant T0_ERROR if the close failed.

Parameters
SYs_FILE fd is the platform-independent file descriptor.

Example
SYS FILE logfd;
system_ fclose (logfd) ;

See Also

system errmsg, system fopenRO, system fopenRW, system fopenWA,
system lseek, system fread, system fwrite, system fwrite atomic,
system flock, system ulock

214 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

system_flock

The system_flock function locks the specified file against interference from other
processes. Use system_flock if you do not want other processes to use the file you
currently have open. Overusing file locking can cause performance degradation
and possibly lead to deadlocks.

Syntax
int system flock(SYS FILE £fd) ;

Returns
The constant 10 OKay if the lock succeeded, or the constant 10_ERROR if the lock
failed.

Parameters
sys_FILE fd is the platform-independent file descriptor.

See Also

system errmsg, system fopenRO, system fopenRW, system fopenWA,
system lseek, system fread, system fwrite, system fwrite atomic,
system ulock, system fclose

system_fopenRO

The system fopenro function opens the file identified by path in read-only mode
and returns a valid file descriptor. Use this function to open files that will not be
modified by your program. In addition, you can use system_fopenRO to open a
new file buffer structure using filebuf_open.

Syntax
SYS FILE system fopenRO(char *path);

Returns
The system-independent file descriptor (Sys_rILE) if the open succeeded, or o if
the open failed.

Parameters
char *path is the file name.

See Also

system errmsg, system fopenRW, system fopenWA, system lseek,
system fread, system fwrite, system fwrite atomic, system flock,
system ulock, system fclose

Chapter 7 NSAPI Function Reference 215

NSAPI Functions (in Alphabetical Order)

216

system_fopenRW

The system_fopenRW function opens the file identified by path in read-write
mode and returns a valid file descriptor. If the file already exists, system_fopenRW
does not truncate it. Use this function to open files that will be read from and
written to by your program.

Syntax
SYS FILE system fopenRW(char *path);

Returns
The system-independent file descriptor (sys_rILE) if the open succeeded, or o if
the open failed.

Parameters
char *path is the file name.

Example
SYS FILE fd;
fd = system fopenRO (pathname) ;
if (fd == SYS ERROR FD)
break;
See Also

system errmsg, system fopenRO, system fopenWA, system lseek,
system fread, system fwrite, system fwrite atomic, system flock,
system ulock, system fclose

system_fopenWA

The system_fopenwa function opens the file identified by path in write-append
mode and returns a valid file descriptor. Use this function to open those files to
which your program will append data.

Syntax
SYS FILE system fopenWA(char *path) ;

Returns
The system-independent file descriptor (sys_rILE) if the open succeeded, or o if
the open failed.

Parameters
char *path is the file name.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

See Also

system errmsg, system fopenRO, system fopenRW, system lseek,
system fread, system fwrite, system fwrite atomic, system flock,
system ulock, system fclose

system_fread

The system_fread function reads a specified number of bytes from a specified file
into a specified buffer. It returns the number of bytes read. Before system_fread
can be used, you must open the file using any of the system_fopen functions
(except system_ fopenWA).

Syntax
int system fread(SYS FILE fd, char *buf, int sz);

Returns

The number of bytes read, which may be less than the requested size if an error
occurred or the end of the file was reached before that number of characters were
obtained.

Parameters
Sys_FILE fd is the platform-independent file descriptor.

char *buf is the buffer to receive the bytes.

int sz is the number of bytes to read.

See Also

system errmsg, system fopenRO, system fopenRW, system fopenWA,
system lseek, system fwrite, system fwrite atomic, system flock,
system ulock, system fclose

system_fwrite

The system_fwrite function writes a specified number of bytes from a specified
buffer into a specified file.

Before system_fwrite can be used, you must open the file using any of the
system_fopen functions (except system_fopenRr0).

Syntax
int system fwrite(SYS FILE fd, char *buf, int sz);

Chapter 7 NSAPI Function Reference 217

NSAPI Functions (in Alphabetical Order)

218

Returns

The constant 10_OKaY if the write succeeded, or the constant I0_ERROR if the write
failed.

Parameters
SYs_FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

See Also

system errmsg, system fopenRO, system fopenRW, system fopenWA,
system lseek, system fread, system fwrite atomic, system flock,
system ulock, system fclose

system_fwrite_atomic

The system fwrite_atomic function writes a specified number of bytes from a
specified buffer into a specified file. The function also locks the file prior to
performing the write, and then unlocks it when done, thereby avoiding
interference between simultaneous write actions. Before system fwrite atomic
can be used, you must open the file using any of the system_fopen functions,
except system_ fopenRO.

Syntax
int system fwrite atomic(SYS FILE fd, char *buf, int sz);

Returns
The constant 10_OKay if the write/lock succeeded, or the constant 10_ERROR if the
write/lock failed.

Parameters
sys_FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

Example

SYS FILE logfd;

char *logmsg = "An error occurred.";

system fwrite atomic(logfd, logmsg, strlen(logmsg)) ;

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

See Also

system errmsg, system fopenRO, system fopenRW, system fopenWA,
system lseek, system fread, system fwrite, system flock,
system ulock, system fclose

system_gmtime

The system gmtime function is a thread-safe version of the standard gmt ime
function. It returns the current time adjusted to Greenwich Mean Time.

Syntax
struct tm *system gmtime (const time t *tp, const struct tm *res);

Returns

A pointer to a calendar time (tm) structure containing the GMT time. Depending on
your system, the pointer may point to the data item represented by the second
parameter, or it may point to a statically-allocated item. For portability, do not
assume either situation.

Parameters
time t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

Example

time t tp;

struct tm res, *resp;

tp = time (NULL) ;

resp = system gmtime (&tp, &res);

See Also
system localtime, util strftime

system_localtime

The system localtime function is a thread-safe version of the standard
localtime function. It returns the current time in the local time zone.

Syntax
struct tm *system localtime(const time t *tp, const struct tm *res);

Chapter 7 NSAPI Function Reference 219

NSAPI Functions (in Alphabetical Order)

220

Returns

A pointer to a calendar time (tm) structure containing the local time. Depending on
your system, the pointer may point to the data item represented by the second
parameter, or it may point to a statically-allocated item. For portability, do not
assume either situation.

Parameters
time t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

See Also
system gmtime, util strftime

system_lseek

The system_lseek function sets the file position of a file. This affects where data
from system freador system fwrite is read or written.

Syntax
int system lseek(SYS FILE fd, int offset, int whence);

Returns
The offset, in bytes, of the new position from the beginning of the file if the
operation succeeded, or -1 if the operation failed.

Parameters
sys_FILE fd is the platform-independent file descriptor.

int offset is a number of bytes relative to whence. It may be negative.
int whence is one of the following constants:

SEEK_SET, from the beginning of the file.

SEEK_CUR, from the current file position.

SEEK_END, from the end of the file.

See Also

system errmsg, system fopenRO, system fopenRW, system fopenWA,
system fread, system fwrite, system fwrite atomic, system flock,
system ulock, system fclose

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

system_rename

The system_rename function renames a file. It may not work on directories if the
old and new directories are on different file systems.

Syntax
int system rename (char *old, char *new);

Returns
0 if the operation succeeded, or -1 if the operation failed.

Parameters
char *old is the old name of the file.

char *new is the new name for the file.

system_ulock

The system_ulock function unlocks the specified file that has been locked by the
function system_lock. For more information about locking, see system flock.

Syntax
int system ulock(SYS FILE £fd) ;

Returns
The constant 10_0OkaY if the operation succeeded, or the constant I0_ERROR if the
operation failed.

Parameters
SYs_FILE fd is the platform-independent file descriptor.

See Also

system errmsg, system fopenRO, system fopenRW, system fopenWA,
system fread, system fwrite, system fwrite atomic, system flock,
system fclose

Chapter 7 NSAPI Function Reference 221

NSAPI Functions (in Alphabetical Order)

222

system_unix2local

The system_unix2local function converts a specified UNIX-style path name to a
local file system path name. Use this function when you have a file name in the
UNIX format (such as one containing forward slashes), and you need to access a
file on another system such as Windows. You can use system unix2local to
convert the UNIX file name into the format that Windows accepts. In the UNIX
environment this function does nothing, but may be called for portability.

Syntax
char *system unix2local (char *path, char *1p);

Returns
A pointer to the local file system path string.

Parameters
char *path is the UNIX-style path name to be converted.

char *1p is the local path name.

You must allocate the parameter 1p, and it must contain enough space to hold the
local path name.

See Also
system fclose, system flock, system fopenRO, system fopenRW,
system fopenWA, system fwrite

systhread_attach

The systhread_attach function makes an existing thread into a
platform-independent thread.

Syntax
SYS THREAD systhread attach(void) ;

Returns
A sys_THREAD pointer to the platform-independent thread.

Parameters
none

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

See Also

systhread current, systhread getdata, systhread init,
systhread newkey, systhread setdata, systhread sleep,
systhread start, systhread timerset

systhread_current

The systhread_current function returns a pointer to the current thread.

Syntax
SYS THREAD systhread current (void) ;

Returns
A sYs_THREAD pointer to the current thread.

Parameters
none

See Also
systhread getdata, systhread newkey, systhread setdata,
systhread sleep, systhread start, systhread timerset

systhread_getdata

The systhread_getdata function gets data that is associated with a specified key
in the current thread.

Syntax
void *systhread getdata(int key);

Returns

A pointer to the data that was earlier used with the systhread_setkey function
from the current thread, using the same value of key if the call succeeds. Returns
NULL if the call did not succeed; for example, if the systhread_setkey function
was never called with the specified key during this session.

Parameters

int key is the value associated with the stored data by a systhread_setdata
function. Keys are assigned by the systhread_newkey function.

Chapter 7 NSAPI Function Reference 223

NSAPI Functions (in Alphabetical Order)

224

See Also
systhread_current, systhread newkey, systhread setdata,
systhread sleep, systhread start, systhread timerset

systhread_newkey

The systhread_newkey function allocates a new integer key (identifier) for
thread-private data. Use this key to identify a variable that you want to localize to
the current thread, then use the systhread setdata function to associate a value
with the key.

Syntax
int systhread newkey(void) ;

Returns
An integer key.

Parameters
none

See Also
systhread_current, systhread getdata, systhread_ setdata,
systhread sleep, systhread start, systhread timerset

systhread_setdata

The systhread setdata function associates data with a specified key number for
the current thread. Keys are assigned by the systhread_newkey function.

Syntax
void systhread setdata(int key, void *data);

Returns
void

Parameters
int key is the priority of the thread.

void *data is the pointer to the string of data to be associated with the value of
key.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

See Also
systhread current, systhread getdata, systhread newkey,
systhread sleep, systhread start, systhread timerset

systhread_sleep

The systhread_sleep function puts the calling thread to sleep for a given time.

Syntax
void systhread sleep(int milliseconds) ;

Returns
void

Parameters
int milliseconds is the number of milliseconds the thread is to sleep.

See Also
systhread current, systhread getdata, systhread newkey,
systhread setdata, systhread start, systhread timerset

systhread_start

The systhread_start function creates a thread with the given priority, allocates
a stack of a specified number of bytes, and calls a specified function with a
specified argument.

Syntax

SYS THREAD systhread start (int prio, int stksz,
void (*fn) (void *), void *arg) ;

Returns

A new SYS_THREAD pointer if the call succeeded, or the constant
SYS_THREAD ERROR if the call did not succeed.

Parameters
int prio is the priority of the thread. Priorities are system-dependent.

int stksz is the stack size in bytes. If stksz is zero (0), the function allocates a
default size.

void (*fn) (void *) is the function to call.

Chapter 7 NSAPI Function Reference 225

NSAPI Functions (in Alphabetical Order)

226

void *arg is the argument for the £n function.

See Also
systhread current, systhread getdata, systhread newkey,
systhread setdata, systhread sleep, systhread timerset

systhread_timerset

The systhread_timerset function starts or resets the interrupt timer interval for
a thread system.

Because most systems don’t allow the timer interval to be changed, this should be
considered a suggestion, rather than a command.

Syntax
void systhread timerset (int usec);

Returns
void

Parameters
int usec is the time, in microseconds

See Also
systhread current, systhread getdata, systhread newkey,
systhread setdata, systhread sleep,systhread start

USE_NSAPI_VERSION

Plugin developers can define the USE_NSAPI_VERSION macro before including the
nsapi.h header file to request a particular version of NSAPI. The requested
NSAPI version is encoded by multiplying the major version number by 100 and
then adding this to the minor version number. For example, the following code
requests NSAPI 3.2 features:

#define USE NSAPI VERSION 302 /* We want NSAPI 3.2 (Web Server 6.1)
*/

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

#include "nsapi.h"

To develop a plugin that is compatible across multiple server versions, define
USE_NSAPI_VERSION to the highest NSAPI version supported by all of the target
server versions.

The following table lists server versions and the highest NSAPI version supported
by each:

Table 7-2 NSAPI Versions Supported by Different Servers

Server Version NSAPI Version
iPlanet Web Server 4.1 3.0
iPlanet Web Server 6.0 3.1
Netscape Enterprise Server 6.0 3.1
Netscape Enterprise Server 6.1 3.1
Sun ONE Application Server 7.0 3.1
Sun ONE Web Server 6.1 3.2

It is an error to request a version of NSAPI higher than the highest version
supported by the nsapi.h header that the plugin is being compiled against.
Additionally, to use USE_NSAPI_VERSION, you must compile against an nsapi.h
header file that supports NSAPI 3.2 or higher.

Syntax
int USE_NSAPI VERSION

Example
The following code can be used when building a plugin designed to work with
iPlanet Web Server 4.1 and Sun ONE Web Server 6.1:

#define USE_NSAPI_VERSION 300 /* We want NSAPI 3.0 (Web Server 4.1)
*/

#include "nsapi.h"

See Also
NSAPI_RUNTIME VERSION, NSAPI VERSION

Chapter 7 NSAPI Function Reference 227

NSAPI Functions (in Alphabetical Order)

228

util_can_exec

UNIX Only

The util_can_exec function checks that a specified file can be executed, returning
either a 1 (executable) or a 0. The function checks if the file can be executed by the
user with the given user and group ID.

Use this function before executing a program using the exec system call.

Syntax
int util can exec(struct stat *finfo, uid t uid, gid t gid);

Returns
1 if the file is executable, or o if the file is not executable.

Parameters
stat *finfo isthe stat structure associated with a file.

uid_t uid is the UNIX user id.

gid_t gid is the UNIX group id. Together with uid, this determines the
permissions of the UNIX user.

See Also
util env create, util getline, util hostname

util_chdir2path

The util_chdirz2path function changes the current directory to a specified
directory, where you will access a file.

When running under Windows, use a critical section to ensure that more than one
thread does not call this function at the same time.

Use util_chdir2path when you want to make file access a little quicker, because
you do not need to use a full path.

Syntax
int util chdir2path(char *path) ;

Returns
0 if the directory was changed, or -1 if the directory could not be changed.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Parameters
char *path is the name of a directory.

The parameter must be a writable string because it isn’t permanently modified.

util_chdir2path

The util_chdir2path function changes the current directory to a specified
directory, where you will access a file.

When running under Windows, use a critical section to ensure that more than one
thread does not call this function at the same time.

Use util_chdir2path when you want to make file access a little quicker, because
you do not need to use a full path.

Syntax
int util chdir2path(char *path) ;

Returns
0 if the directory was changed, or -1 if the directory could not be changed.

Parameters
char *path is the name of a directory.

The parameter must be a writable string because it isn’t permanently modified.

util_cookie_find

The util cookie_find function finds a specific cookie in a cookie string and
returns its value.

Syntax
char *util cookie find(char *cookie, char *name) ;

Returns

If successful, returns a pointer to the NULL-terminated value of the cookie.
Otherwise, returns NULL. This function modifies the cookie string parameter by
null-terminating the name and value.

Parameters
char *cookie is the value of the Cookie: request header.

Chapter 7 NSAPI Function Reference 229

NSAPI Functions (in Alphabetical Order)

230

char *name is the name of the cookie whose value is to be retrieved.

util_env_find

The util_env_find function locates the string denoted by a name in a specified
environment and returns the associated value. Use this function to find an entry in
an environment.

Syntax
char *util env find(char **env, char *name);

Returns
The value of the environment variable if it is found, or NULL if the string was not
found.

Parameters
char **env is the environment.

char *name isthe name of an environment variable in env.

See Also
util env replace, util env str, util env free, util env create

util_env_free

The util_env_free function frees a specified environment. Use this function to
deallocate an environment you created using the function util_env_create.

Syntax

void util env free(char **env);

Returns
void

Parameters
char **env is the environment to be freed.

See Also
util env replace, util env str, util env find, util env create

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

util_env_replace

The util_env_replace function replaces the occurrence of the variable denoted
by a name in a specified environment with a specified value. Use this function to
change the value of a setting in an environment.

Syntax
void util env replace(char **env, char *name, char *value);

Returns
void

Parameters
char **env is the environment.
char *name is the name of a name-value pair.

char *value is the new value to be stored.

See Also
util_env_str, util env free, util env_find, util_ env_create

util_env_str

The util_env_str function creates an environment entry and returns it. This
function does not check for nonalphanumeric symbols in the name (such as the
equal sign “="). You can use this function to create a new environment entry.

Syntax
char *util env_ str(char *name, char *value);

Returns
A newly allocated string containing the name-value pair.

Parameters
char *name is the name of a name-value pair.

char *value isthe new value to be stored.

See Also

util env replace, util env free, util env_ find, util env create

Chapter 7 NSAPI Function Reference 231

NSAPI Functions (in Alphabetical Order)

232

util_getline

The util_getline function scans the specified file buffer to find a line feed or
carriage return/line feed terminated string. The string is copied into the specified
buffer, and NULL-terminates it. The function returns a value that indicates
whether the operation stored a string in the buffer, encountered an error, or
reached the end of the file.

Use this function to scan lines out of a text file, such as a configuration file.

Syntax
int util getline(filebuf *buf, int lineno, int maxlen, char *line);

Returns
0 if successful; 1ine contains the string.

1 if the end of file was reached; 1ine contains the string.

-1if an error occurred; 1ine contains a description of the error.

Parameters
filebuf *buf is the file buffer to be scanned.

int lineno is used to include the line number in the error message when an error
occurs. The caller is responsible for making sure the line number is accurate.

int maxlen isthe maximum number of characters that can be written into 1.

char *1 is the buffer in which to store the string. The user is responsible for
allocating and deallocating 1ine.

See Also
util_can_exec, util_env_create, util hostname

util_hostname

The util hostname function retrieves the local host name and returns it as a
string. If the function cannot find a fully-qualified domain name, it returns NULL.
You may reallocate or free this string. Use this function to determine the name of
the system you are on.

Syntax
char *util hostname (void) ;

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Returns
If a fully-qualified domain name was found, returns a string containing that name;
otherwise, returns NULL if the fully-qualified domain name was not found.

Parameters
none

util_is_mozilla

The util is_mozilla function checks whether a specified user-agent header
string is a Netscape browser of at least a specified revision level, returning a 1 if it
is, and 0 otherwise. It uses strings to specify the revision level to avoid ambiguities
such as 1.56 > 1.5.

Syntax
int util is mozilla(char *ua, char *major, char *minor);

Returns
1 if the user-agent is a Netscape browser, or 0 if the user-agent is not a Netscape
browser.

Parameters
char *ua is the user-agent string from the request headers.

char *major is the major release number (to the left of the decimal point).

char *minor is the minor release number (to the right of the decimal point).

See Also
util is url, util later than

util_is_url

The util_is_url function checks whether a string is a URL, returning 1 if it is and
0 otherwise. The string is a URL if it begins with alphabetic characters followed by
a colon (¢).

Syntax
int util is url(char *url);

Chapter 7 NSAPI Function Reference 233

NSAPI Functions (in Alphabetical Order)

234

Returns

1 if the string specified by url is a URL, or 0 if the string specified by url is nota
URL.

Parameters
char *url is the string to be examined.

See Also
util_is mozilla, util later than

util_itoa

The util_itoa function converts a specified integer to a string, and returns the
length of the string. Use this function to create a textual representation of a
number.

Syntax
int util itoa(int i, char *a);

Returns
The length of the string created.

Parameters
int i is the integer to be converted.

char *a is the ASCII string that represents the value. The user is responsible for
the allocation and deallocation of a, and it should be at least 32 bytes long.

util_later_than

The util later_than function compares the date specified in a time structure
against a date specified in a string. If the date in the string is later than or equal to
the one in the time structure, the function returns 1. Use this function to handle
RFC 822, RFC 850, and ctime formats.

Syntax
int util later_ than(struct tm *1lms, char *ims);

Returns
1 if the date represented by ims is the same as or later than that represented by the
1ms, or 0 if the date represented by ims is earlier than that represented by the 1ms.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Parameters
tm *1lms is the time structure containing a date.

char *ims is the string containing a date.

See Also
util_strftime

util_sh_escape

The util_sh escape function parses a specified string and places a backslash (\)
in front of any shell-special characters, returning the resultant string. Use this
function to ensure that strings from clients won’t cause a shell to do anything
unexpected.

The shell-special characters are the space plus the following characters:

&;\||l|*?~<>A() [] {}s\#|

Syntax
char *util sh escape(char *s);

Returns
A newly allocated string.

Parameters
char *s is the string to be parsed.

See Also
util uri escape

util_snprintf

The util_ snprintf function formats a specified string, using a specified format,
into a specified buffer using the printf-style syntax and performs bounds
checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
runtime library of your compiler.

Syntax
int util snprintf (char *s, int n, char *fmt, ...);

Chapter 7 NSAPI Function Reference 235

NSAPI Functions (in Alphabetical Order)

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

int n is the maximum number of bytes allowed to be copied.

char *fmt is the format string. The function handles only %d and %s strings; it
does not handle any width or precision strings.

... represents a sequence of parameters for the printf function.

See Also
util sprintf, util vsnprintf, util vsprintf

util_sprintf

The util_sprintf function formats a specified string, using a specified format,
into a specified buffer, using the print £-style syntax without bounds checking. It
returns the number of characters in the formatted buffer.

Because util_sprintf doesn’t perform bounds checking, use this function only if
you are certain that the string fits the buffer. Otherwise, use the function

util snprintf. For more information, see the documentation on the printf
function for the runtime library of your compiler.

Syntax
int util sprintf (char *s, char *fmt, ...);

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

char *fmt is the format string. The function handles only %d and %s strings; it
does not handle any width or precision strings.

... represents a sequence of parameters for the printf function.

236 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Example

char *logmsg;

int len;

logmsg = (char *) MALLOC(256) ;

len = util sprintf(logmsg, "%s %s %s\n", ip, method, uri);
See Also

util snprintf, util vsnprintf, util vsprintf

util_strcasecmp

The util_strcasecmp function performs a comparison of two alphanumeric
strings and returns a -1, 0, or 1 to signal which is larger or that they are identical.

The comparison is not case-sensitive.

Syntax
int util strcasecmp (const char *sl, const char *s2);

Returns
1if s1 is greater than s2.

0if s1is equal to s2.

-1if s1isless than s2.

Parameters
char +*s1 is the first string.

char *s2 is the second string.

See Also
util_strncasecmp

util_strftime

The util strftime function translates a tm structure, which is a structure
describing a system time, into a textual representation. It is a thread-safe version of
the standard strftime function

Syntax
int util strftime(char *s, const char *format, const struct tm *t);

Chapter 7 NSAPI Function Reference 237

NSAPI Functions (in Alphabetical Order)

Returns
The number of characters placed into s, not counting the terminating NULL
character.

Parameters
char *s is the string buffer to put the text into. There is no bounds checking, so
you must make sure that your buffer is large enough for the text of the date.

const char *format is a format string, a bit like a print£ string in that it consists
of text with certain $x substrings. You may use the constant HTTP_DATE_FMT to
create date strings in the standard Internet format. For more information, see the
documentation on the printf function for the runtime library of your compiler.
Refer to Chapter 10, “Time Formats” for details on time formats.

const struct tm *t isa pointer to a calendar time (tm) structure, usually created
by the function system localtime or system_gmtime.

See Also
system localtime, system gmtime

util_strncasecmp

The util_strncasecmp function performs a comparison of the first n characters in
the alphanumeric strings and returns a -1, 0, or 1 to signal which is larger or that
they are identical.

The function’s comparison is not case-sensitive.

Syntax
int util strncasecmp (const char *sl, const char *s2, int n);

Returns
1if s1 is greater than s2.

0if s1is equal to s2.

-1if s1isless than s2.

Parameters
char +*s1 is the first string.

char *s2 is the second string.

int n is the number of initial characters to compare.

238 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

See Also
util strcasecmp

util_uri_escape

The util_uri_escape function converts any special characters in the URI into the
URI format ($xx, where xx is the hexadecimal equivalent of the ASCII character),
and returns the escaped string. The special characters are %?#: +&*"<>, space,
carriage return, and line feed.

Use util_uri_escape before sending a URI back to the client.

Syntax
char *util uri escape(char *d, char *s);

Returns
The string (possibly newly allocated) with escaped characters replaced.

Parameters

char *d isastring. If d is not NULL, the function copies the formatted string into
d and returns it. If d is NULL, the function allocates a properly sized string and
copies the formatted special characters into the new string, then returns it.

The util_uri_escape function does not check bounds for the parameter d.
Therefore, if d is not NULL, it should be at least three times as large as the string s.

char *s is the string containing the original unescaped URL

See Also
util_uri_is evil, util uri_parse, util_uri unescape

util_uri_is_euvil

The util_uri_is_evil function checks a specified URI for insecure path
characters. Insecure path characters include //, /./,/../and/., /.. (also for
Windows. /) at the end of the URI. Use this function to see if a URI requested by
the client is insecure.

Syntax
int util uri is_evil (char *t);

Chapter 7 NSAPI Function Reference 239

NSAPI Functions (in Alphabetical Order)

240

Returns
1 if the URI is insecure, or o if the URI is OK.

Parameters
char *t isthe URI to be checked.

See Also
util_uri_escape, util uri parse

util_uri_parse

The util uri_parse function converts //, /./,and /*/. ./ into / in the specified
URI (where * is any character other than /). You can use this function to convert a
URI’s bad sequences into valid ones. First use the function util_uri_is_evil to
determine whether the function has a bad sequence.

Syntax
void util uri parse(char *uri);

Returns
void

Parameters
char *uri isthe URI to be converted.

See Also
util_uri_is evil, util uri_unescape

util_uri_unescape

The util uri unescape function converts the encoded characters of a URI into
their ASCII equivalents. Encoded characters appear as $xx, where xx is a
hexadecimal equivalent of the character.

NOTE You cannot use an embedded null in a string, because NSAPI
functions assume that a null is the end of the string. Therefore,
passing unicode-encoded content through an NSAPI plugin
doesn’t work.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Syntax

void util uri unescape(char *uri);

Returns
void

Parameters
char *uri is the URI to be converted.

See Also
util uri escape, util uri is evil, util uri parse

util_vsnprintf

The util_vsnprintf function formats a specified string, using a specified format,
into a specified buffer using the vprint £-style syntax and performs bounds
checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
runtime library of your compiler.

Syntax
int util vsnprintf (char *s, int n, register char *fmt, va_ list
args) ;

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

int n is the maximum number of bytes allowed to be copied.

register char *fmt is the format string. The function handles only %d and %s
strings; it does not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to
va_ start.

See Also
util sprintf, util vsprintf

Chapter 7 NSAPI Function Reference 241

NSAPI Functions (in Alphabetical Order)

util_vsprintf

The util_vsprintf function formats a specified string, using a specified format,
into a specified buffer using the vprint £-style syntax without bounds checking. It
returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
runtime library of your compiler.

Syntax
int util vsprintf (char *s, register char *fmt, va list args);

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

register char *fmt is the format string. The function handles only %d and %s
strings; it does not handle any width or precision strings.

va_list args isan STD argument variable obtained from a previous call to
va_start.

See Also
util snprintf, util vsnprintf

vs_alloc_slot

The vs_alloc_slot function allocates a new slot for storing a pointer to data
specific to a certain VirtualServer=. The returned slot number may be used in
subsequent vs_set_data and vs_get_data calls. The returned slot number is
valid for any virtualServer*.

The value of the pointer (which may be returned by a call to vs_set_data) defaults
to NULL for every virtualServer*.

Syntax
int vs_alloc_slot (void) ;

242 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Returns
A slot number on success, or -1 on failure.

See Also
vs_get data,vs_set data

vs_get_data

The vs_get_data function finds the value of a pointer to data for a given
vVirtualServer* and slot. The slot must be a slot number returned from
vs_alloc_slot or vs_set data.

Syntax
void* vs get data(const VirtualServer* vs, int slot);

Returns
The value of the pointer previously stored via vs_set_data, or NULL on failure.

Parameters
const VirtualServer* vs represents the virtual server to query the pointer for.
int slot is the slot number to retrieve the pointer from.

See Also

vs_set data,vs_alloc_slot

vs_get_default_httpd_object

The vs_get_default_httpd_object function obtains a pointer to the default (or
root) httpd_object from the virtual server's httpd_objset (in the configuration
defined by the obj . conf file of the virtual server class). The default object is
typically named default. Plugins may only modify the httpd_object at
VSInitFunc time (see vs_register cb for an explanation of VSInitFunc time).

Do not FREE the returned object.

Syntax
httpd object* vs _get default httpd object (VirtualServer* vs);

Returns
A pointer the default httpd_object, or NULL on failure. Do not FREE this object.

Chapter 7 NSAPI Function Reference 243

NSAPI Functions (in Alphabetical Order)

244

Parameters
VirtualServer* vs represents the virtual server for which to find the default
object.

See Also
vs_get httpd objset,vs register cb

vs_get_doc_root

The vs_get_doc_root function finds the document root for a virtual server. The
returned string is the full operating system path to the document root.

The caller should FREE the returned string when done with it.

Syntax
char* vs_get doc_root (const VirtualServer* vs);

Returns
A pointer to a string representing the full operating system path to the document
root. It is the caller's responsibility to FREE this string.

Parameters
const VirtualServer* vs represents the virtual server for which to find the
document root.

vs_get_httpd_objset

The vs_get_httpd_objset function obtains a pointer to the httpd_objset (the
configuration defined by the obj . conf file of the virtual server class) for a given
virtual server. Plugins may only modify the httpd_objset at VSInitFunc time
(see vs_register_ cb for an explanation of VSInitFunc time).

Do not FREE the returned objset.

Syntax
httpd objset* vs get httpd objset (VirtualServer* vs);

Returns
A pointer to the httpd_objset, or NULL on failure. Do not FREE this objset.

Parameters
VirtualServer+* vs represents the virtual server for which to find the objset.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

See Also
vs_get default httpd object,vs register cb

vs_get_id
The vs_get_id function finds the ID of a VirtualServer*.

The ID of a virtual server is a unique null-terminated string that remains constant
across configurations. Note that while IDs remain constant across configurations,
the value of VirtualServer* pointers do not.

Do not FREE the virtual server ID string. If called during request processing, the
string will remain valid for the duration of the current request. If called during
VSInitFunc processing, the string will remain valid until after the corresponding
VSDestroyFunc function has returned (see vs_register cb).

To retrieve a VirtualServer* that is valid only for the current request, use
request_get_vs.

Syntax
const char* vs_get id(const VirtualServer* vs);

Returns
A pointer to a string representing the virtual server ID. Do not FREE this string.

Parameters
const VirtualServer* Vs represents the virtual server of interest.

See Also
vs_register cb, request get vs

vs_get_mime_type

The vs_get_mime_type function determines the MIME type that would be
returned in the Content-Type: header for the given URL

The caller should FREE the returned string when done with it.

Syntax
char* vs_get mime type(const VirtualServer* vs, const char* uri);

Chapter 7 NSAPI Function Reference 245

NSAPI Functions (in Alphabetical Order)

246

Returns
A pointer to a string representing the MIME type. It is the caller's responsibility to
FREE this string.

Parameters
const VirtualServer* vs represents the virtual server of interest.

const char* uri is the URI whose MIME type is of interest.

vs_lookup_config_var

The vs_lookup_config var function finds the value of a configuration variable
for a given virtual server.

Do not FREE the returned string.

Syntax
const char* vs_lookup_ config var (const VirtualServer* vs, const
char* name) ;

Returns
A pointer to a string representing the value of variable name on success, or NULL
if variable name was not found. Do not FREE this string.

Parameters
const VirtualServer* Vs represents the virtual server of interest.

const char* name is the name of the configuration variable.

VS_register_cb

The vs_register_cb function allows a plugin to register functions that will
receive notifications of virtual server initialization and destruction events. The
vs_register_cb function would typically be called from an 1nit SAF in
magnus . conf.

When a new configuration is loaded, all registered vSInitFunc (virtual server
initialization) callbacks are called for each of the virtual servers before any requests
are served from the new configuration. vSInitFunc callbacks are called in the
same order they were registered; that is, the first callback registered is the first
called.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

When the last request has been served from an old configuration, all registered
VSDestroyFunc (virtual server destruction) callbacks are called for each of the
virtual servers before any virtual servers are destroyed. vSDestroyFunc callbacks
are called in reverse order; that is, the first callback registered is the last called.

Either initfn or destroyfn may be NULL if the caller is not interested in callbacks
for initialization or destruction, respectively.

Syntax
int vs_register cb(VSInitFunc* initfn, VSDestroyFunc* destroyfn) ;

Returns
The constant REQ_PROCEED if the operation succeeded.

The constant REQ_ABORTED if the operation failed.

Parameters

VSInitFunc+* initfnisa pointer to the function to call at virtual server
initialization time, or NULL if the caller is not interested in virtual server
initialization events.

VSDestroyFunc* destroyfn is a pointer to the function to call at virtual server
destruction time, or NULL if the caller is not interested in virtual server destruction
events.

vsS_set data

The vs_set_data function sets the value of a pointer to data for a given virtual
server and slot. The *slot must be -1 or a slot number returned from
vs_alloc_slot.If *slotis -1, vs_set_datacalls vs_alloc_slot implicitly and
returns the new slot number in *slot.

Note that the stored pointer is maintained on a per-virtualServer* basis, not a
per-1D basis. Distinct VirtualServer=s from different configurations may exist
simultaneously with the same virtual server IDs. However, since these are distinct
VirtualServer=s, they each have their own virtualserver*-specific data. Asa
result, vs_set_data should generally not be called outside of VsInitFunc
processing (see vs_register_cb for an explanation of VSInitFunc processing).

Syntax
void* vs set data(const VirtualServer* vs, int* slot, void* data);

Returns
Data on success, or NULL on failure.

Chapter 7 NSAPI Function Reference 247

NSAPI Functions (in Alphabetical Order)

248

Parameters
const VirtualServer* vs represents the virtual server to set the pointer for.

int* slot is the slot number to store the pointer at.

void* data is the pointer to store.

See Also
vs_get_data, vs_alloc_slot,vs_register cb

vs_translate_uri

The vs_translate_uri function translates a URI as though it were part of a
request for a specific virtual server. The returned string is the full operating system
path.

The caller should FREE the returned string when done with it.

Syntax
char* vs_ translate uri(const VirtualServer* vs, const char* uri);

Returns
A pointer to a string representing the full operating system path for the given URL
It is the caller's responsibility to FREE this string.

Parameters

const VirtualServer* vs represents the virtual server for which to translate the
URL

const char* uri is the URI to translate to an operating system path.

write

The write filter method is called when output data is to be sent. Filters that
modify or consume outgoing data should implement the write filter method.

Upon receiving control, a write implementation should first process the data as
necessary, and then pass it on to the next filter layer; for example, by calling
net_write(layer->lower, ...,).If the filter buffers outgoing data, it should
implement the £1ush filter method.

Syntax
int write(FilterLayer *layer, const void *buf, int amount) ;

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

NSAPI Functions (in Alphabetical Order)

Returns
The number of bytes consumed, which may be less than the requested amount if an
error occurred.

Parameters
FilterLayer *layer is the filter layer in which the filter is installed.

const void *buf is the buffer that contains the outgoing data.

int amount is the number of bytes in the buffer.

Example
int myfilter write(FilterLayer *layer, const void *buf, int
amount)
return net write(layer-s>lower, buf, amount);
See Also

flush, net write, writev

writev

The writev filter method is called when multiple buffers of output data are to be
sent. Filters that modify or consume outgoing data may choose to implement the
writev filter method.

If a filter implements the write filter method but not the writev filter method, the
server automatically translates net_writev calls to net_write calls. As a result,
filters interested in the outgoing data stream do not need to implement the writev
filter method. However, for performance reasons, it is beneficial for filters that
implement the write filter method to also implement the writev filter method.

Syntax
int writev(FilterLayer *layer, const struct iovec *iov, int
iov_size);

Returns

The number of bytes consumed, which may be less than the requested amount if an
error occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

Chapter 7 NSAPI Function Reference 249

NSAPI Functions (in Alphabetical Order)

const struct iovec *iov isan array of iovec structures, each of which contains
outgoing data.

int iov_size is the number of iovec structures in the iov array.

Example
int myfilter writev(FilterLayer *layer, const struct iovec *iov,
int iov_size)

{

return net writev(layer->lower, iov, iov_size);

See Also
flush, net write, write

250 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

Chapter 8

Data Structure Reference

NSAPI uses many data structures that are defined in the nsapi.h header file,
which is in the directory server-root/plugins/include.

The NSAPI functions described in Chapter 7, “NSAPI Function Reference” provide
access to most of the data structures and data fields. Before directly accessing a
data structure in naspi . h, check to see if an accessor function exists for it.

For information about the privatization of some data structures in Sun ONE Web
Server 4.x, see “Privatization of Some Data Structures” on page 252.

The rest of this chapter describes public data structures in nsapi . h. Note that data
structures in nsapi . h that are not described in this chapter are considered private
and may change incompatibly in future releases.

This chapter has the following sections:
® Session

¢ pblock

® pb entry

® pb param

® Session->client
® Request

® stat

® shmem s

® cinfo

® sendfiledata

® TFilter

251

Privatization of Some Data Structures

® TFilterContext
® FilterLayer

® TFilterMethods

Privatization of Some Data Structures

252

In Sun ONE Web Server 4.x, some data structures were moved from nsapi.h to
nsapi_pvt.h. The data structures in nsapi_pvt.h are now considered to be
private data structures, and you should not write code that accesses them directly.
Instead, use accessor functions. We expect that very few people have written
plugins that access these data structures directly, so this change should have very
little impact on customer-defined plugins. Look in nsapi_pvt.h to see which data
structures have been removed from the public domain, and to see the accessor
functions you can use to access them from now on.

Plugins written for Enterprise Server 3.x that access contents of data structures
defined in nsapi_pvt.h will not be source compatible with Sun ONE Web Server
4.x and 6.x, that is, it will be necessary to #include "nsapi_pvt.h" to build such
plugins from source. There is also a small chance that these programs will not be
binary compatible with Sun ONE Web Server 4.x and 6.x, because some of the data
structures in nsapi_pvt.h have changed size. In particular, the directive
structure is larger, which means that a plugin that indexes through the directives in
a dtable will not work without being rebuilt (with nsapi_pvt .h included).

We hope that the majority of plugins do not reference the internals of data
structures in nsapi_pvt.h, and therefore that most existing NSAPI plugins will be
both binary and source compatible with Sun ONE Web Server 6.1.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Session

Session

pblock

A session is the time between the opening and closing of the connection between
the client and the server. The session data structure holds variables that apply
session wide, regardless of the requests being sent, as shown here:

typedef struct {
/* Information about the remote client */
pblock *client;

/* The socket descriptor to the remote client */
SYS NETFD csd;

/* The input buffer for that socket descriptor */
netbuf *inbuf;

/* Raw socket information about the remote */
/* client (for internal use) */
struct in_ addr iaddr;

} Session;

The parameter block is the hash table that holds pb_entry structures. Its contents
are transparent to most code. This data structure is frequently used in NSAPI; it
provides the basic mechanism for packaging up parameters and values. There are
many functions for creating and managing parameter blocks, and for extracting,
adding, and deleting entries. See the functions whose names start with pblock_in
Chapter 7, “NSAPI Function Reference.” You should not need to write code that
accesses pblock data fields directly.

typedef struct {

int hsize;

struct pb entry **ht;
} pblock;

Chapter 8 Data Structure Reference 253

pb_entry

pb_entry

The pb_entry is a single element in the parameter block.

struct pb_entry {
pb_param *param;
struct pb_entry *next;

}i

pb_param

The pb_paramrepresents a name-value pair, as stored in a pb_entry.

typedef struct {
char *name, *value;

} pb_param;

Session->client

The session->client parameter block structure contains two entries:
e The ip entry is the IP address of the client machine.

e The dns entry is the DNS name of the remote machine. This member must be
accessed through the session_dns function call:

/*

* session_dns returns the DNS host name of the client for this

* gession and inserts it into the client pblock. Returns NULL if
* unavailable.

*/

char *session dns(Session *sn);

254 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

Request

Request

Under HTTP protocol, there is only one request per session. The request structure
contains the variables that apply to the request in that session (for example, the
variables include the client’s HTTP headers).

typedef struct {
/* Server working variables */
pblock *vars;

/* The method, URI, and protocol revision of this request */
block *reqgpb;

/* Protocol specific headers */
int loadhdrs;
pblock *headers;

/* Server’s response headers */
int senthdrs;
pblock *srvhdrs;

/* The object set constructed to fulfill this request */
httpd objset *os;
} Request;

Chapter 8 Data Structure Reference 255

stat

stat

When a program calls the stat () function for a given file, the system returns a
structure that provides information about the file. The specific details of the

structure should be obtained from your platform’s implementation, but the basic
outline of the structure is as follows:

struct stat {
dev_t
inot t
short
short
short
short
dev_t
off t
time t
time t
time t

st_dev;
st_ino;
st _mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st _size;
st _atime;
st _mtime;
st_ctime;

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

device of inode */

inode number */

mode bits */

number of links to file /*
owner’s user id */

owner'’s group id */

for special files */

file size in characters */
time last accessed */

time last modified */

time inode last changed*/

The elements that are most significant for server plugin API activities are st_size,
st_atime, st_mtime, and st_ctime.

shmem_s

void
HANDLE
int
char
exposed */
SYS_FILE
region */
} shmem s;

typedef struct {

*data;
fdmap;
size;

*name;

fd;

/*

/*
/*

/*

the data */

the maximum length of the data */
internal use: filename to unlink if

internal use: file descriptor for

256 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

cinfo

cinfo

The cinfo data structure records the content information for a file.

typedef struct {

char *type;
/* Identifies what kind of data is in the file*/
char *encoding;

/* encoding identifies any compression or other /*
/* content-independent transformation that’s been /*
/* applied to the file, such as uuencode) */
char *language;
/* Identifies the language a text document is in. */
} cinfo;

sendfiledata

The sendfiledata data structure is used to pass parameters to the net_sendfile
function. It is also passed to the sendfile method in an installed filter in response
to anet_sendfile call.

typedef struct {

SYS FILE fd; /* file to send */

size t offset; /* offset in file to start sending from
*/

size t len; /* number of bytes to send from file */

const void *header; /* data to send before file */

int hlen; /* number of bytes to send before file */

const void *trailer; /* data to send after file */

int tlen; /* number of bytes to send after file */
} sendfiledata;

Chapter 8 Data Structure Reference 257

Filter

Filter

The Filter data structure is an opaque representation of a filter. A Filter
structure is created by calling filter_create.

typedef struct Filter Filter;

FilterContext

The FilterContext data structure stores context associated with a particular filter
layer. Filter layers are created by calling filter_ insert.

Filter developers may use the data member to store filter-specific context
information.

typedef struct ({
pool handle t *pool; /* pool context was allocated from */

Session *sn; /* session being processed */
Request *rqg; /* request being processed */
void *data; /* filter-defined private data */

} FilterContext;

FilterLayer

The FilterLayer data structure represents one layer in a filter stack. The
FilterLayer structure identifies the filter installed at that layer and provides
pointers to layer-specific context and a filter stack that represents the layer
immediately below it in the filter stack.

typedef struct {

Filter *filter; /* the filter at this layer in the filter
stack */

FilterContext *context; /* context for the filter */

SYS NETFD lower; /* access to the next filter layer in the
stack */
} FilterLayer;

258 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

FilterMethods

FilterMethods

The FilterMethods data structure is passed to filter create to define the filter
methods a filter supports. Each new FilterMethods instance must be initialized
with the FILTER METHODS INITIALIZER macro. For each filter method a filter
supports, the corresponding FilterMethods member should point to a function
that implements that filter method.

typedef struct {
size t size;
FilterInsertFunc *insert;
FilterRemoveFunc *remove;
FilterFlushFunc *flush;
FilterReadFunc *read;
FilterWriteFunc *write;
FilterWritevFunc *writev;
FilterSendfileFunc *sendfile;
} FilterMethods;

Chapter 8 Data Structure Reference 259

FilterMethods

260 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

Chapter 9

Using Wildcard Patterns

This chapter describes the format of wildcard patterns used by the Sun ONE Web
Server. These wildcards are used in:

¢ Directives in the configuration file obj . conf (see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference for detailed information about
obj . conf).

¢ Various built-in SAFs (see the Sun ONE Web Server 6.1 Administrator’s
Configuration File Reference for more information about these predefined SAFs).

e Some NSAPI functions (see Chapter 2, “SAFs in the magnus.conf File”).

Wildcard patterns use special characters. If you want to use one of these characters
without the special meaning, precede it with a backslash (\) character.

This chapter has the following sections:
¢ Wildcard Patterns

e Wildcard Examples

Wildcard Patterns

The following table describes wildcard patterns, listing the pattern and its use.

Table 9-1 Wildcard Patterns

Pattern Use
* Match zero or more characters.
? Match exactly one occurrence of any character.

261

Wildcard Examples

Table 9-1 Wildcard Patterns
Pattern Use
| An or expression. The substrings used with this operator can
contain other special characters such as * or $. The substrings must
be enclosed in parentheses, for example, (alb|c), but the
parentheses cannot be nested.
$ Match the end of the string. This is useful in or expressions.
[abc] Match one occurrence of the characters a, b, or c. Within these
expressions, the only character that needs to be treated as a special
character is]; all others are not special.
[a-2z] Match one occurrence of a character between a and z.
["az] Match any character except a or z.

This expression, followed by another expression, removes any
pattern matching the second expression.

Match zero or more characters.

Wildcard Examples

The following table provides wildcard examples, listing the pattern and the result.

Table 9-2 Wildcard Examples

Pattern

Result

*.netscape.com

(quark |energy) .netscape.com

198.93.9[23].7?7?°?

* K
~netscape-

* .netscape.com~quark.netscap
e.com

* .netscape.com~ (quark | energy
|neutrino) .netscape.com

Matches any string ending with the characters .netscape.com.

Matches either quark .netscape . com or
energy.netscape.com.

Matches a numeric string starting with either 198.93 .92 or
198.93.93 and ending with any 3 characters.

Matches any string with a period in it.
Matches any string except those starting with netscape-.

Matches any host from domain net scape . com except for a single
host quark.netscape.com.

Matches any host from domain .netscape . com except for hosts
quark.netscape.com, energy.netscape.com, and
neutrino.netscape.com.

262 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Wildcard Examples

Table 9-2 Wildcard Examples
Pattern Result

* .com~*.netscape.com Matches any host from domain . com except for hosts from
subdomain netscape . com.

type=*~magnus-internal/* Matches any type that does not start with magnus-internal/.

This wildcard pattern is used in the file obj . conf in the catch-all
Service directive.

Chapter 9 Using Wildcard Patterns 263

Wildcard Examples

264 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

Chapter 10

Time Formats

This chapter describes the format strings used for dates and times. These formats
are used by the NSAPI function util_strftime, by some built-in SAFs such as
append-trailer, and by server-parsed HTML (parse-html). The formats are
similar to those used by the strftime C library routine, but not identical.

The following table describes the formats, listing the symbols and their meanings.

Table 10-1 Time Formats
Symbol Meaning
Yoa Abbreviated weekday name (3 chars)
Y%d Day of month as decimal number (01-31)
%S Second as decimal number (00-59)
%M Minute as decimal number (00-59)
%H Hour in 24-hour format (00-23)
%Y Year with century, as decimal number, up to 2099
Y%b Abbreviated month name (3 chars)
Y%h Abbreviated month name (3 chars)
%T Time "HH:MM:SS"
%X Time "HH:MM:SS"
Y%A Full weekday name
%B Full month name
%C "%a %b Y%e %H:%M:%S %Y"
Yoc Date & time "%m/ %d /%y %H:%M:%S"
%D Date "%m/%d/ %y"

265

Table 10-1 Time Formats

Symbol Meaning

Y%oe Day of month as decimal number (1-31) without leading zeros

%ol Hour in 12-hour format (01-12)

Y%oj Day of year as decimal number (001-366)

Yok Hour in 24-hour format (0-23) without leading zeros

%l Hour in 12-hour format (1-12) without leading zeros

Y%m Month as decimal number (01-12)

Yon line feed

Y%p AM./P.M. indicator for 12-hour clock

%R Time "%H:%M"

Yor Time "%I:%M:%S %p"

Yot tab

%U Week of year as decimal number, with Sunday as first day of week
(00-51)

Yow Weekday as decimal number (0-6; Sunday is 0)

%W Week of year as decimal number, with Monday as first day of week
(00-51)

Yox Date "%m/%d/%y"

%oy Year without century, as decimal number (00-99)

%% Percent sign

266 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

Chapter 11

Dynamic Results Caching Functions

The functions described in this chapter allow you to write a results caching plugin
for Sun ONE Web Server. A results caching plugin, which is a Service SAF, caches
data, a page, or part of a page in the web server address space, which the web
server can refresh periodically on demand. An Init SAF initializes the callback
function that performs the refresh.

A results caching plugin can generate a page for a request in three parts:
e A header, such as a page banner, which changes for every request

e Abody, which changes less frequently

e A footer, which also changes for every request

Without this feature, a plugin would have to generate the whole page for every
request (unless an IFRAME is used, where the header or footer is sent in the first
response along with an IFRAME pointing to the body; in this case the browser must
send another request for the IFRAME).

If the body of a page has not changed, the plugin needs to generate only the header
and footer and to call the dr net write function (instead of net_write) with the
following arguments:

e header

e footer

e handle to cache

e key to identify the cached object

The web server constructs the whole page by fetching the body from the cache. If
the cache has expired, it calls the refresh function and sends the refreshed page
back to the client.

267

dr_cache_destroy

An Init SAF that is visible to the plugin creates the handle to the cache. The Init
SAF must pass the following parameters to the dr_cache_init function:

® RefreshFunctionPointer

® FreeFunctionPointer

® KeyComparatorFunctionPtr
® RefreshlInterval

The RefreshInterval value must be a PrintervalTime type. For more
information, see the NSPR reference at:

http://www.mozilla.org/projects/nspr/reference/html/index.html

As an alternative, if the body is a file that is present in a directory within the web
server system machine, the plugin can generate the header and footer and call the
fc_net_write function along with the file name.

This chapter lists the most important functions a results caching plugin can use. For
more information, see the following file:

server_root/plugins/include/drnsapi.h
This chapter has the following sections:

® dr_cache_destroy

e dr_cache_init

e dr _cache_refresh

e dr net write

e fc net write

dr_cache_destroy

The dr_cache_destroy function destroys and frees resources associated with a
previously created and used cache handle. This handle can no longer be used in
subsequent calls to any of the above functions unless another dr_cache_init is
performed.

Syntax
void dr cache destroy(DrHdl *hdl) ;

268 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

http://www.mozilla.org/projects/nspr/reference/html/index.html

dr_cache_init

Parameters
DrHdl *hdl is a pointer to a previously initialized handle to a cache (see
dr_cache init).

Returns
void

Example
dr cache destroy (&myHdl) ;

dr_cache_init

The dr_cache_init function creates a persistent handle to the cache, or NULL on
failure. It is called by an Init SAF.

Syntax
PRInt32 dr_cache init (DrHdl *hdl, RefreshFunc_t ref, FreeFunc_t fre,
CompareFunc_t cmp, PRUint32 maxEntries, PRIntervalTime maxAge) ;

Returns
1 if successful.

0 if an error occurs.

Parameters
The following table describes parameters for the dr_cache_init function.

Table 11-1 dr_cache_init parameters
Parameter Description
DrHd1 hdl Pointer to an unallocated handle.

RefreshFunc_t ref

FreeFunc_t fre
CompareFunc_t cmp

PRUint32
maxEntriesp

PRIntervalTime
maxAgep

pointer to a cache refresh function. This can be
NULL; see the DR_CHECK flag and DR_EXPIR return
value for dr_net write.

Pointer to a function that frees an entry.
Pointer to a key comparator function.

Maximum number of entries possible in the cache for
a given hdl.

The maximum amount of time that an entry is valid.
If 0, the cache never expires.

Chapter 11 Dynamic Results Caching Functions 269

dr_cache_refresh

Example

if (!dr cache init (&hdl, (RefreshFunc_ t)FnRefresh,
(FreeFunc_t)FnFree, (CompareFunc t)FnCompare, 150000,
PR _SecondsToInterval (7200)))

{
ereport (LOG_FAILURE, "dr cache init () failed");
return (REQ ABORTED) ;

dr_cache_refresh

The dr_cache_refresh function provides a way of refreshing a cache entry when
the plugin requires it. This can be achieved by passing NULL for the ref parameter
indr_cache_init and by passing DR_CHECK in a dr_net_write call. If DR_CHECK is
passed to dr_net_write and it returns with DR_EXPIR, the plugin should generate
new content in the entry and call dr_cache_refresh with that entry before calling
dr_net_write again to send the response.

The plugin may simply decide to replace the cached entry even if it has not expired
(based on some other business logic). The dr_cache_refresh function is useful in
this case. This way the plugin does the cache refresh management actively by itself.

Syntax

PRINt32 dr cache refresh(DrHdl hdl, const char *key, PRUint32 klen,
PRIntervalTime timeout, Entry *entry, Request *rqg, Session *sn);

Returns
1 if successful.

0 if an error occurs.

Parameters
The following table describes parameters for the dr_cache_refresh function.

Table 11-2 dr_cache_refresh parameters

Parameter Description

DrHdl hdl Persistent handle created by the dr_cache_init
function.

const char *key Key to cache, search, or refresh.

PRUint32 klen Length of the key in bytes.

270 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

dr_net_write

Table 11-2 dr_cache_refresh parameters

Parameter Description
PRIntervalTime Expiration time of this entry; if a value of 0 is passed,
timeout the maxage value passed to dr_cache_init is used.
Entry *entry The not NULL entry to be cached.
Request *rqg Pointer to the request.
Session *sn Pointer to the session.

Example

Entry entry;

char *key = "MOVIES"

GenNewMovieList (&entry.data, &entry.datalen); // Implemented by
// plugin developer

if (!dr cache refresh(hdl, key, strlen(key), 0, &entry, rqg, sn))

{

ereport (LOG_FAILURE, "dr cache refresh() failed");
return REQ ABORTED;

dr_net write

The dr_net_write function sends a response back to the requestor after
constructing the full page with hdr, the content of the cached entry as the body
(located using the key), and ftr. The hdr, £tr, or hdl can be NULL, but not all of
them can be NULL. If hd1 is NULL, no cache lookup is done; the caller must pass
DR_NONE as the flag.

By default, this function refreshes the cache entry if it has expired by making a call
to the ref function passed to dr_cache_init. If no cache entry is found with the
specified key, this function adds a new cache entry by calling the ref function
before sending out the response. However, if the DR_CHECK flag is passed in the
flags parameter and if either the cache entry has expired or the cache entry
corresponding to the key does not exist, dr_net_write does not send any data out.
Instead it returns with DR_EXPIR.

If ref (passed to dr_cache_init)is NULL, the br_CHECK flag is not passed in the
flags parameter, and the cache entry corresponding to the key has expired or does
not exist, then dr net_write fails with DR_ERROR. However, dr net write
refreshes the cache if ref is not NULL and DR_CHECK is not passed.

Chapter 11 Dynamic Results Caching Functions 271

dr_net_write

If ref (passed to dr_cache_init)is NULL and the DR_CHECK flag is not passed but
DR_IGNORE is passed and the entry is present in the cache, dr_net_write sends out
the response even if the entry has expired. However, if the entry is not found,

dr net write returns DR_ERROR.

If ref (passed to dr_cache_init)is not NULL and the DrR_CHECK flag is not passed
but DR_IGNORE is passed and the entry is present in the cache, dr_net_write sends
out the response even if the entry has expired. However, if the entry is not found,
dr_net_write calls the ref function and stores the new entry returned from ref
before sending out the response.

Syntax

PRInt32 dr net write(DrHdl hdl, const char *key, PRUint32 klen,
const char *hdr, const char *ftr, PRUint32 hlen, PRUint32 flen,
PRIntervalTime timeout, PRUint32 flags, Request *rqg, Session *sn);

Returns
IO OKAY if successful.

IO_ERROR if an error occurs.
DR_ERROR if an error in cache handling occurs.

DR_EXPIR if the cache has expired.

Parameters
The following table describes parameters for the dr_net_write function.

Table 11-3 dr_net_write parameters

Parameter Description

DrHAdl hdl Persistent handle created by the dr_cache_init
function.

const char *key Key to cache, search, or refresh.

PRUint32 klen Length of the key in bytes.

const char *hdr Any header data (which can be NULL).

const char *ftr Any footer data (which can be NULL).

PRUint32 hlen Length of the header data in bytes (which can be 0).

PRUint32 flen Length of the footer data in bytes (which can be 0).

PRIntervalTime Timeout before this function aborts.

timeout

272 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

dr_net_write

Table 11-3 dr_net_write parameters

Parameter

Description

PRUint32 flags

Request *rqg

Session *sn

ORed directives for this function (see the Flags table,
below).

Pointer to the request.

Pointer to the session.

Flags

The following table describes flags for dr_net_write.

Table 11-4 Flags for dr_net_write

Flag Description

DR_NONE Specifies that no cache is used, so the function works
as net_write does; DrHA1 can be NULL.

DR_FORCE Forces the cache to refresh, even if it has not expired.

DR_CHECK Returns DR_EXPIR if the cache has expired; if the
calling function has not provided a refresh function
and this flag is not used, DR_ERROR is returned.

DR_IGNORE Ignores cache expiration and sends out the cache
entry even if it has expired.

DR_CNTLEN Supplies the content-Length header and does a
PROTOCOL_START RESPONSE.

DR_PROTO Does a PROTOCOL_START RESPONSE.

Example

if (dr_net write (Dr,

szFileName, iLenK, NULL, NULL, 0, 0, O,

DR_CNTLEN | DR_PROTO, rg, sn) == IO_ERROR)

{
}

return (REQ EXIT) ;

Chapter 11 Dynamic Results Caching Functions 273

fc_net_write

fc_net_write

The fc_net_ write function is used to send a header and/or footer and a file that
exists somewhere in the system. The fileName should be the full path name of a
file.

Syntax

PRInt32 fc net write(const char *fileName, const char *hdr, const
char *ftr, PRUint32 hlen, PRUint32 flen, PRUint32 flags,
PRIntervalTime timeout, Session *sn, Request *rq) ;

Returns
IO OKAY if successful.

I0_ERROR if an error occurs.

FC_ERROR if an error in file handling occurs.

Parameters
The following table describes parameters for the fc_net_write function.

Table 11-5 fc_net_write parameters

Parameter Description

const char
*fileName

const char *hdr
const char *ftr
PRUint32 hlen
PRUint32 flen

PRUint32 flags

PRIntervalTime
timeout

Request *rqg

Session *sn

File to be inserted.

Any header data (which can be NULL).

Any footer data (which can be NULL).

Length of the header data in bytes (which can be 0).
Length of the footer data in bytes (which can be 0).

ORed directives for this function (see the Flags table,
below).

Timeout before this function aborts.

Pointer to the request.

Pointer to the session.

274 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

fc_net_write

Flags
The following table describes flags for £c_net_write.

Table 11-6 Flags for fc_net_write

Flag Description
FC_CNTLEN supplies the Content -Length header and does a
PROTOCOL_START_ RESPONSE.
FC_PROTO does a PROTOCOL_START_ RESPONSE.
Example
const char *fileName = "/docs/myads/filel.ad";
char *hdr = GenHdr(); // Implemented by plugin

char *ftr

GenFtr(); // Implemented by plugin

if (fc_net write(fileName, hdr, ftr, strlen(hdr), strlen(ftr),
FC_CNTLEN, PR_INTERVAL NO_ TIMEOUT, sn, rq) != IO_OKEY)
{

ereport (LOG_FAILURE, "fc net write() failed");
return REQ ABORTED;

Chapter 11 Dynamic Results Caching Functions 275

fc_net_write

276 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

Chapter 12

Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol (a set of rules that describes
how information is exchanged) that allows a client (such as a web browser) and a
web server to communicate with each other.

HTTP is based on a request-response model. The browser opens a connection to the
server and sends a request to the server. The server processes the request and
generates a response, which it sends to the browser. The server then closes the
connection.

This chapter provides a short introduction to a few HTTP basics. For more
information on HTTP, see the IETF home page at:

http://www.ietf.org/home.html
This chapter has the following sections:
¢ Compliance
* Requests
* Responses

e Buffered Streams

Compliance

Sun ONE Web Server 6.1 supports HTTP/1.1. Previous versions of the server
supported HTTP/1.0. The server is conditionally compliant with the HTTP /1.1
proposed standard, as approved by the Internet Engineering Steering Group
(IESG), and the Internet Engineering Task Force (IETF) HTTP working group.

277

http://www.ietf.org/home.html

Requests

For more information on the criteria for being conditionally compliant, see the
Hypertext Transfer Protocol -- HTTP /1.1 specification (RFC 2068) at:

http://www.ietf.org/rfc/rfc2068.txt?number=2068

Requests
A request from a browser to a server includes the following information:
® Request Method, URI, and Protocol Version
* Request Headers

¢ Request Data

Request Method, URI, and Protocol Version

A browser can request information using a number of methods. The commonly
used methods include the following:

® GET -- Requests the specified resource (such as a document or image)
® HEAD -- Requests only the header information for the document

® POST -- Requests that the server accept some data from the browser, such as
form input for a CGI program

* PUT -- Replaces the contents of a server’s document with data from the browser

Request Headers

The browser can send headers to the server. Most are optional.

The following table lists some of the commonly used request headers.

Table 12-1 Common Request Headers

Request Header Description

Accept File types the browser can accept.

Authorization Used if the browser wants to authenticate itself with a
server; information such as the user name and password are
included.

278 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

http://www.ietf.org/rfc/rfc2068.txt?number=2068

Responses

Table 12-1 Common Request Headers

Request Header Description

User-Agent Name and version of the browser software.

Referer URL of the document where the user clicked on the link.

Host Internet host and port number of the resource being
requested.

Request Data

If the browser has made a POST or PUT request, it sends data after the blank line
following the request headers. If the browser sends a GET or HEAD request, there is
no data to send.

Responses

The server’s response includes the following:
e HTTP Protocol Version, Status Code, and Reason Phrase
* Response Headers

* Response Data

HTTP Protocol Version, Status Code, and
Reason Phrase

The server sends back a status code, which is a three-digit numeric code. The five
categories of status codes are:

® 100-199 a provisional response.

® 200-299 a successful transaction.

* 300-399 the requested resource should be retrieved from a different location.
® 400-499 an error was caused by the browser.

L4 500-599 a serious error occurred in the server.

Chapter 12 Hypertext Transfer Protocol 279

Responses

280

The following table lists some common status codes.

Table 12-2 Common HTTP Status Codes

Status Code

Meaning

200

201

206

302

304

400

401

403

404

408

411

413

414

416

OK; request has succeeded for the method used (GET, POST, HEAD).

The request has resulted in the creation of a new resource reference by the
returned URI.

The server has sent a response to byte range requests.

Found. Redirection to a new URL. The original URL has moved. This is
not an error; most browsers will get the new page.

Use a local copy. If a browser already has a page in its cache, and the page
is requested again, some browsers (such as Netscape Navigator) relay to
the web server the “last-modified” timestamp on the browser’s cached
copy. If the copy on the server is not newer than the browser’s copy, the
server returns a 304 code instead of returning the page, reducing
unnecessary network traffic. This is not an error.

Sent if the request is not a valid HTTP/1.0 or HTTP /1.1 request. For
example HTTP /1.1 requires a host to be specified either in the Host
header or as part of the URI on the request line.

Unauthorized. The user requested a document but didn’t provide a valid
user name or password.

Forbidden. Access to this URL is forbidden.

Not found. The document requested isn’t on the server. This code can also
be sent if the server has been told to protect the document by telling
unauthorized people that it doesn’t exist.

If the client starts a request but does not complete it within the keep-alive
timeout configured in the server, then this response will be sent and the
connection closed. The request can be repeated with another open
connection.

The client submitted a POST request with chunked encoding, which is of
variable length. However, the resource or application on the server
requires a fixed length - a Content - Length header to be present. This
code tells the client to resubmit its request with content-length.

Some applications (e.g., certain NSAPI plugins) cannot handle very large
amounts of data, so they will return this code.

The URI is longer than the maximum the web server is willing to serve.

Data was requested outside the range of a file.

Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

Responses

Table 12-2 Common HTTP Status Codes

Status Code Meaning

500 Server error. A server-related error occurred. The server administrator
should check the server’s error log to see what happened.

503 Sent if the quality of service mechanism was enabled and bandwidth or
connection limits were attained. The server will then serve requests with
that code. See the "quality of service" section.

Response Headers

The response headers contain information about the server and the response data.

The following table lists some common response headers.

Table 12-3 Common Response Headers

Response Header Description

Server Name and version of the web server.

Date Current date (in Greenwich Mean Time).
Last-Modified Date when the document was last modified.

Expires Date when the document expires.

Content-Length Length of the data that follows (in bytes).

Content-Type MIME type of the following data.

WWW-Authenticate Used during authentication and includes information that

tells the browser software what is necessary for
authentication (such as user name and password).

Response Data

The server sends a blank line after the last header. It then sends the response data
such as an image or an HTML page.

Chapter 12 Hypertext Transfer Protocol 281

Buffered Streams

Buffered Streams

Buffered streams improve the efficiency of network I/O (for example, the exchange
of HTTP requests and responses), especially for dynamic content generation.
Buffered streams are implemented as transparent NSPR 1/0O layers, which means
even existing NSAPI modules can use them without any change.

The buffered streams layer adds the following features to the Sun ONE Web
Server:

Enhanced keep-alive support: When the response is smaller than the buffer
size, the buffering layer generates the Content-Length header so that the
client can detect the end of the response and reuse the connection for
subsequent requests.

Response length determination: If the buffering layer cannot determine the
length of the response, it uses HTTP /1.1 chunked encoding instead of the
Content-Length header to convey the delineation information. If the client
only understands HTTP /1.0, the server must close the connection to indicate
the end of the response.

Deferred header writing: Response headers are written out as late as possible
to give the servlets a chance to generate their own headers (for example, the
session management header set-cookie).

Ability to understand request entity bodies with chunked encoding: Though
popular clients do not use chunked encoding for sending POST request data,
this feature is mandatory for HTTP /1.1 compliance.

The improved connection handling and response length header generation
provided by buffered streams also addresses the HTTP /1.1 protocol compliance
issues, where absence of the response length headers is regarded as a category 1
failure. In previous Enterprise Server versions, it was the responsibility of the
dynamic content generation programs to send the length headers. If a CGI script
did not generate the Content-Length header, the server had to close the
connection to indicate the end of the response, breaking the keep-alive mechanism.

However, it is often very inconvenient to keep track of response length in CGI
scripts or servlets, and as an application platform provider, the web server is
expected to handle such low-level protocol issues.

Output buffering has been built in to the functions that transmit data, such as
net_write (see Chapter 7, “NSAPI Function Reference”). You can specify the
following service SAF parameters that affect stream buffering, which are

described in detail in the chapter “Syntax and Use of magnus.conf” in the Sun ONE

Web Server 6.1 Administrator’s Configuration File Reference.

282 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

Buffered Streams

® UseOutputStreamSize
® ChunkedRequestBufferSize
® ChunkedRequestTimeout

The UseOutputStreamSize, ChunkedRequestBufferSize, and
ChunkedRequestTimeout parameters also have equivalent magnus. conf
directives; see “Chunked Encoding” in the chapter “Syntax and Use of
magnus.conf” in the Sun ONE Web Server 6.1 Administrator’s Configuration File
Reference. The obj . conf parameters override the magnus. conf directives.

NOTE The UseOutputStreamSize parameter can be set to zero (0) in the
obj.conf file to disable output stream buffering. For the
magnus . conf file, setting UseOutputStreamSize to zero has no
effect.

To override the default behavior when invoking an SAF that uses one of the
functions net_read or netbuf_grab, you can specify the value of the parameter in
obj . conf, for example:

Service fn="my-service-saf" type=perf UseOutputStreamSize=8192

Chapter 12 Hypertext Transfer Protocol 283

Buffered Streams

284 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

Appendix A

Alphabetical List of NSAPI Functions

and Macros

This appendix provides an alphabetical list for the easy lookup of NSAPI functions

and macros.

CALLOC
cinfo_find
condvar_init
condvar_notify
condvar_terminate
condvar_wait
crit_enter

crit_exit

crit_init

crit_terminate

daemon_atrestart

285

fc_close
fc_open
filebuf_buf2sd
filebuf_close
filebuf_getc
filebuf_open
filebuf_open_nostat
filter_find
filter_insert
filter_layer
filter_name
filter_remove
filter-create
flush

FREE
func_exec
func_find

func_insert

insert

log_error

286 Sun ONE Web Server 6.1 « NSAPI Programmer’s Guide ¢ April 2004

MALLOC

net_flush
net_ip2host
net_read
net_sendfile
net_write
netbuf_buf2sd
netbuf close
netbuf_getc
netbuf_grab
netbuf_open
nsapi_module_init
NSAPI_RUNTIME_VERSION
NSAPI_VERSION

param_create
param_free
pblock_copy
pblock_create
pblock_dup
pblock_find
pblock_findval

Appendix A Alphabetical List of NSAPI Functions and Macros

287

pblock_free
pblock_nninsert
pblock_nvinsert
pblock_pb2env
pblock_pblock2str
pblock_pinsert
pblock_remove
pblock_str2pblock
PERM_CALLOC
PERM_FREE
PERM_MALLOC
PERM_REALLOC
PERM_STRDUP
prepare_nsapi_thread
protocol_dump
protocol_set_finfo
protocol_start_response
protocol_status
protocol_uri2url

protocol_uri2url_dynamic

read
REALLOC
remove
request_get_vs

request_header

288 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

request_stat_path

request_translate_uri

sendfile
session_dns
session_maxdns
shexp_casecmp
shexp_cmp
shexp_match
shexp_valid
STRDUP
system_errmsg
system_fclose
system_flock
system_fopenRO
system_fopenRW
system_fopenWA
system_fread
system_fwrite
system_fwrite_atomic
system_gmtime
system_localtime
system_lseek
system_rename
system_ulock

system_unix2local

Appendix A Alphabetical List of NSAPI Functions and Macros

289

systhread_attach
systhread_current
systhread_getdata
systhread_newkey
systhread_setdata
systhread_sleep
systhread_start

systhread_timerset

USE_NSAPI_VERSION
util_can_exec
util_chdir2path
util_chdir2path
util_cookie_find
util_env_find
util_env_free
util_env_replace
util_env_str
util_getline
util_hostname
util_is_mozilla
util_is_url
util_itoa
util_later_than
util_sh_escape

util_snprintf

290 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

util_sprintf
util_strcasecmp
util_strftime
util_strncasecmp
util_uri_escape
util_uri_is_evil
util_uri_parse
util_uri_unescape
util_vsnprintf

util_vsprintf

vs_alloc_slot

vs_get_data
vs_get_default_httpd_object
vs_get_doc_root
vs_get_httpd_objset
vs_get_id
vs_get_mime_type
vs_lookup_config_var
vs_register_cb

vs_set_data

vs_translate_uri

write

Appendix A Alphabetical List of NSAPI Functions and Macros

291

writev

292 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

A

about this guide 13
contents 16
other resources 14
AddLog 25
example of custom SAF 138
flow of control 46
requirements for SAFs 96, 100
summary 30
Administration interface
more information about 15
alphabetical reference
NSAPI functions 155, 285
API functions
CALLOC 156
cinfo_find 156
condvar_init 157
condvar_notify 158
condvar_terminate 158
condvar_wait 159
crit_enter 159
crit_exit 160
crit_init 160
crit_terminate 161
daemon_atrestart 161
dr_cache_init 269
dr_cache_refresh 270
dr_net_write 271
fc_close 163
fc_net_write 274
filebuf_buf2sd 162,163
filebuf close 164

filebuf_getc 165
filebuf_open 165
filebuf_open_nostat 166
filter_create 167
filter_find 168
filter_insert 169
filter_layer 169
filter_name 170
filter_remove 170
flush 171

FREE 172
func_exec 172
func_find 173
func_insert 173
insert 174
log_error 175
MALLOC 176
net_ip2host 177
net_read 178
net_write 180
netbuf_buf2sd 181
netbuf_close 181
netbuf_getc 182
netbuf_grab 182
netbuf_open 183
param_create 185
param_free 186
pblock_copy 186
pblock_create 187
pblock_dup 187
pblock_find 188
pblock_findval 189
pblock_free 189
pblock_nninsert 190

Index

293

Section A

pblock_nvinsert 190
pblock_pb2env 191
pblock_pblock2str 191
pblock_pinsert 192
pblock_remove 193
pblock_str2pblock 193
PERM_FREE 195
PERM_MALLOC 194, 195, 196
PERM_STRDUP 197
prepare_nsapi_thread 197
protocol_dump822 198
protocol_set_finfo 199
protocol_start_response 199
protocol_status 200
protocol_uri2url 201, 202
read 203

REALLOC 204

remove 204
request_get_vs 205
request_header 205
request_stat_path 206
request_translate_uri 207
sendfile 208

session_dns 209
session_maxdns 209
shexp_casecmp 210
shexp_cmp 210
shexp_match 211
shexp_valid 212
STRDUP 213
system_errmsg 213
system_fclose 214
system_flock 215
system_fopenRO 215
system_fopenRW 216
system_fopenWA 216
system_fread 217
system_fwrite 217
system_fwrite_atomic 218
system_gmtime 219
system_localtime 219
system_lseek 220
system_rename 221

systhread_getdata 223
systhread_newkey 224
systhread_setdata 224
systhread_sleep 225
systhread_start 225
systhread_timerset 226
util_can_exec 228
util_chdir2path 228, 229
util_cookie_find 229
util_env_find 230
util_env_free 230
util_env_replace 231
util_env_str 231
util_getline 232
util_hostname 232
util_is_mozilla 233
util_is_url 233
util_itoa 234
util_later_than 234
util_sh_escape 235
util_snprintf 235
util_strcasecmp 237
util_strftime 237
util_strncasecmp 238
util_uri_escape 239
util_uri_is_evil 239
util_uri_parse 240
util_uri_unescape 240
util_vsnprintf 241
util_vsprintf 242
util-cookie_find 229
util-sprintf 236
vs_alloc_slot 242
vs_get_data 243
vs_get_default_httpd_object 243
vs_get_doc_root 244
vs_get_httpd_objset 244
vs_get_id 245
vs_get_mime_type 245
vs_lookup_config_var 246
vs_register_cb 246
vs_set_data 247
vs_translate_uri 248

system_ulock 220, 221 write 248

system_unix2local 222 writev 249

systhread_attach 222 AUTH_TYPE environment variable 101
systhread_current 223 AUTH_USER environment variable 101

294 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

AuthTrans 24
example of custom SAF 117
flow of control 38
requirements for SAFs 96, 98
summary 27

B

browsers 22

buffered streams 282
buffer-size parameter 60
buffers-per-file parameter 60

C

cache
enabling memory allocation pool 74
cache-size parameter 58
caching
results caching plugin 267
CALLOC API function 156
case sensitivity in obj.conf 49
Cal
environment variables in NSAPI 101
execution 65
to NSAPI conversion 101
cgistub-path parameter 66
chunked encoding 282, 283
cindex-init function 55
cinfo NSAPI data structure 257
cinfo_find API function 156
client
field in session parameter 81
getting DNS name for 254
getting IP address for 254
requests 22
sessions and 253
Client tag 32, 34
CLIENT_CERT environment variable 102
comments in obj.conf 50

Section B

Common Log subsystem

initializing 67
compatibility issues 80, 252
compiling custom SAFs 85
compression, HTTP 30
condvar_init API function 157
condvar_notify API function 158
condvar_terminate API function 158
condvar_wait API function 159

configuration
dynamic 26

CONTENT_LENGTH environment variable 101
CONTENT_TYPE environment variable 101
context->data 105
context->rq 105
context->sn 105
creating
custom filters 103, 111
custom SAFs 79
custom server-parsed HTML tags 149
crit_enter API function 159
crit_exit API function 160
crit_init API function 160
crit_terminate API function 161
csd field in session parameter 81
custom
filters 103,115
SAFs 79, 115
server-parsed HTML tags 149

D

daemon_atrestart API function 161
data structures 251

cinfo 257

compatibility issues 252

Filter 258

FilterContext 258

FilterLayer 258

FilterMethods 259

nsapi.h header file 251

nsapi_pvth 252

Index 295

Section E

pb_entry 254

pb_param 254

pblock 253

privatization of 252

removed from nsapi.h 252

request 255

sendfiledata 257

session 253

Session->client 254

shmem_s 256

stat 256
day of month 265
define-perf-bucket function 57
defining

custom SAFs 79

server-side tags 149
description parameter 57
directives

for handling requests 25

order of 48

summary for obj.conf 27

syntax in obj.conf 26
disable parameter 74,75
DNS names

getting clients 254
dns-cache-init function 58

documentation

Sun ONE Web Server 13
dr_cache_init API function 269
dr_cache_refresh API function 270
dr_net_write API function 271
dynamic link library

loading 72
dynamic reconfiguration 26
dynamic results caching 267

E

environment variables

and init-cgi function 65

CGI to NSAPI conversion 101
env-variables parameter 66
Error directive 25

flow of control 47
requirements for SAFs 96, 100
summary 30

errors

finding most recent system error 213

examples
location in the build 116
of custom filters 115
of custom SAFs (plugins) 115
of custom SAFs in the build 116
quality of service 141
wildcard patterns 262

expire parameter 58

F

fancy indexing 55
fc_close API function 163
fc_net_write API function 274
file descriptor

closing 214

locking 215

opening read-only 215

opening read-write 216

opening write-append 216

reading into a buffer 217

unlocking 220, 221

writing from a buffer 217

writing without interruption 218
file I/O routines 94
file name extensions

object type 41
filebuf buf2sd API function 162, 163
filebuf_close API function 164
filebuf_getc API function 165
filebuf_open API function 165
filebuf_open_nostat API function 166
filter methods 104

C prototypes for 104

FilterLayer data structure 105

flush 106

insert 105

remove 106

296 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

sendfile 107
write 107
writev 107

Filter NSAPI data structure 258
filter_create API function 167
filter_find API function 168
filter_insert API function 169
filter_layer API function 169
filter_name API function 170
filter_remove API function 170
FilterContext NSAPI data structure 258
FilterLayer NSAPI data structure 105, 258
context->data 105
context->rq 105
context->sn 105
lower 105
FilterMethods NSAPI data structure 259
filters
altering Content-length 110
creating custom 103
examples of 115
functions used to implement 114
input 110
interface 104
methods 104
NSAPI function overview 114
output 110
stack position 108
using 111
filters parameter 70
flexible logging 59
flex-init formatting 61
flex-init function 59
flex-log function 30, 46, 59
flex-rotate-init function 64
flow of control 37
flush API function 106, 171
fn argument
in directives in obj.conf 26
force-type function 41
forcing object type 41
format parameter 56
formats, time 265
forward slashes 50

Section G

FREE API function 172
free-size parameter 75
func_exec API function 172
func_find API function 173
func_insert API function 173
funcs parameter 72, 89

functions
reference 155

G

-G option 88

GATEWAY_INTERFACE environment variable 101

GMT time
getting thread-safe value 219

H

headers
field in request parameter 82
request 278
response 281
HOST environment variable 102
HTML tags
creating custom 149
HTTP
basics 22
buffered streams 282
compliance with HTTP/1.1 277
HTTP/1.1 specification 278
overview 277
registering methods 75
requests 278
responses 279
status codes 279
HTTP compression 30
HTTP_* environment variable 101
http-compression filter 29
http-decompression filter 29
HTTPS environment variable 102

Index

297

Section |

HTTPS_KEYSIZE environment variable 102
HTTPS_SECRETKEYSIZE environment variable 102

icon-uri parameter 56
IETF home page 277
ignore parameter 56
include directory

for SAFs 85
indexing

fancy 55

Init SAFs in magnus.conf 53
requirements for SAFs 96, 97
init-cgi function 65
init-clf function 67
init-dav function 68
initializing
for CGI 65
global settings 53
plugins 89
SAFs 89
the WebDAYV subsystem 68
init-uhome function 71
Input 25
flow of control 43
requirements for SAFs 96, 99
summary 28
input filters 110
insert API function 105, 174

IP address
getting client’s 254

L

Latelnit parameter 53
layer parameter 105
line continuation 50
linking SAFs 85
loading

custom SAFs 89

plugins 89

SAFs 89
load-modules function 72

example 89
localtime

getting thread-safe value 219
log entries, chronological order 60
log file format 60
log_error API function 175
logFileName parameter 60, 68
logging

cookies 61

flexible 59

rotating logs 64

M

magnus.conf
about 53
SAFsin 53

Makefile file 88
MALLOC API function 176

matching

special characters 261
maxthreads parameter 78
memory allocation

pool-init function 74
memory management routines 93
methods parameter 76
minthreads parameter 78
month name 265

N

name attribute
in obj.conf objects 32
in objects 33

name parameter 57, 77
NameTrans 24

298 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

example of custom SAF 119
flow of control 38
requirements for SAFs 96, 98
summary 27
native thread pools
defining in obj.conf 77
NativeThread parameter 72, 77
net_ip2host API function 177
net_read API function 178
net_write API function 180
netbuf_buf2sd API function 181
netbuf_close API function 181
netbuf_getc API function 182
netbuf_grab API function 182
netbuf_open API function 183
network I/0 routines 94
nondefault objects
processing 39
NSAPI
alphabetical function reference 155, 285
CGI environment variables 101
data structure reference 251
filter interface 104
function overview 92
NSAPI filters
interface 104
methods 104
nsapi.h 251
nsapi_pvth 252
nt-console-init function 73

o)

obj.conf
adding directives for new SAFs 89
case sensitivity 49
Client tag 34
comments 50
directive syntax 26
directives 26
directives summary 27
flow of control 37
Object tag 32

Section O

order of directives 48
parameters for directives 49
predefined SAFs 21
processing other objects 39
server instructions 26
standard directives 21
syntax rules 48
use 21
Object tag 32
name attribute 32
ppath attribute 32
object type
forcing 41
setting by file extension 41
objects
processing nondefault objects 39
ObjectType 25
example of custom SAF 126
flow of control 40
requirements for SAFs 96, 99
summary 28
opts parameter 55
order
of directives in obj.conf 48
of filters in filter stack 108
Output 25
example of custom SAF 129
flow of control 43
requirements for SAFs 96, 99
summary 29
output filters 110

P

param_create API function 185
param_free API function 186
parameter block
manipulation routines 92
SAF parameter 81
parameters
for obj.conf directives 49
for SAFs 80

path name

Index

299

Section Q

converting UNIX-style to local 222
path names 50
PATH_INFO environment variable 101
PATH_TRANSLATED environment variable 101
PathCheck 25
example of custom SAF 123
flow of control 40
requirements for SAFs 96, 98
summary 28
patterns 261
pb SAF parameter 81
pb_entry NSAPI data structure 254
pb_param NSAPI data structure 254

pblock
NSAPI data structure 253
pblock_copy API function 186
pblock_create API function 187
pblock_dup API function 187
pblock_find API function 188
pblock_findval API function 189
pblock_free API function 189
pblock_nninsert API function 190
pblock_nvinsert API function 190
pblock_pb2env API function 191
pblock_pblock2str API function 191
pblock_pinsert API function 192
pblock_remove API function 193
pblock_str2pblock API function 193
perf-init function 73
PERM_FREE API function 195
PERM_MALLOC API function 194, 195, 196
PERM_STRDUP API function 197
pfx2dir function 39
plugins
compatibility issues 80, 252
creating 79
example of new plugins 115
instructing the server to use 89
loading and initializing 89
private data structures 252
pool parameter 72
pool-init function 74
ppath attribute

in obj.conf objects 32

in objects 33
predefined SAFs in obj.conf 21
preface 13
prepare_nsapi_thread API function 197
private data structures 252
processing nondefault objects 39
product support 19
profiling parameter 76
protocol utility routines 93
protocol_dump822 API function 198
protocol_set_finfo API function 199
protocol_start_response API function 199
protocol_status API function 200
protocol_uri2url API function 201, 202
pwfile parameter 71

Q

qos.c file 141

quality of service
example code 141

QUERY environment variable 102
QUERY_STRING environment variable 101
queueSize parameter 78

quotes 49

R

read API function 106, 203
REALLOC API function 204
reference

data structure 251

NSAPI functions 155
register-http-method function 75
relink_36plugin file 88
REMOTE_ADDR environment variable 101
REMOTE_HOST environment variable 101
REMOTE_IDENT environment variable 101

300 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

REMOTE_USER environment variable 101
remove API function 106, 204
replace.c 129
REQ_ABORTED response code 83
REQ_EXIT response code 83
REQ_NOACTION response code 83
REQ_PROCEED response code 83
reqpb

field in request parameter 82
request

NSAPI data structure 255

SAF parameter 82
request headers 278
request_get_vs API function 205
request_header API function 205
REQUEST_METHOD environment variable 101
request_stat_path API function 206
request_translate_uri API function 207
request-handling process 96

flow of control 37

steps 24
request-response model 277
requests

directives for handling 25

how server handles 22

HTTP 278

methods 22

steps in handling 24
requirements for SAFs 96

AddLog 100

AuthTrans 98

Error directive 100

Init 97

Input 99

NameTrans 98

ObjectType 99

Output 99

PathCheck 98

Service 100
response headers 281
responses

HTTP 279
result codes 83
results caching plugin 267

Section S

important functions used by 268
rotate-access parameter 65
rotate-callback parameter 65
rotate-error parameter 65
rotate-interval parameter 65
rotate-start parameter 65
rotating logs 64
rq SAF parameter 82
rq->headers 82
rq->reqpb 82
rg->srvhdrs 82
rq->vars 82
rules

for editing obj.conf 48

S

SAFs
compiling and linking 85
creating 79
examples of custom SAFs 115
in magnus.conf 53
include directory 85
interface 80
loading and initializing 89
parameters 80
predefined 21
result codes 83
return values 83
signature 80
testing 91
SCRIPT_NAME environment variable 101
search patterns 261
sendfile API function 107, 208
sendfiledata NSAPI data structure 257
separators 49
server
flow of control 37
initialization directives in magnus.conf 53
instructions for using plugins 89
instructions in obj.conf 26
processing nondefault objects 39

Index

301

Section S

request handling 22

server.xml
variables defined in 37

SERVER_NAME environment variable 101
SERVER_PORT environment variable 101
SERVER_PROTOCOL environment variable 101
SERVER_SOFTWARE environment variable 102
SERVER_URL environment variable 102

server-parsed HTML tags

creating custom 149

more information 149
Service 25

default directive 46

directives for new SAFs (plugins) 91

example of custom SAF 135

examples 44

flow of control 44

requirements for SAFs 96, 100

summary 29
session

defined 253

NSAPI data structure 253

resolving the IP address of 209
session SAF parameter 81
Session->client NSAPI data structure 254
session_dns API function 209
session_maxdns API function 209
shared library

loading 72
shell expression

comparing (case-blind) to a string 210

comparing (case-sensitive) to a string 210, 211

validating 212

shexp_casecmp API function 210
shexp_cmp API function 210
shexp_match API function 211
shexp_valid API function 212

shlib parameter 72, 89

shmem_s NSAPI data structure 256
ShtmlTaglInstanceLoad function 151
ShtmlTagInstanceUnload function 151
ShtmlTagPageLoadFunc function 151
ShtmlTagPageUnLoadFn 151

sn SAF parameter 81

sn->client 81
sn->csd 81

socket
closing 181
reading from 178
sending a buffer to 181
sending file buffer to 163
writing to 180

spaces 49
special characters 261
sprintf, see util_sprintf 236
srvhdrs

field in request parameter 82
stackSize parameter 78
stat NSAPI data structure 256
stats-init function 76
status codes 279
stderr parameter 73
stdout parameter 73
STRDUP API function 213

streams

buffered 282
string

creating a copy of 213
Sun ONE Web Server documentation 14
support 19
syntax

directives in obj.conf 26

for editing obj.conf 48
system_errmsg API function 213
system_fclose API function 214
system_flock API function 215
system_fopenRO API function 215
system_fopenRW API function 216
system_fopenWA API function 216
system_fread API function 217
system_fwrite API function 217
system_fwrite_atomic API function 218
system_gmtime API function 219
system_localtime API function 219
system_lseek API function 220
system_rename API function 221
system_ulock API function 220, 221

302 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

system_unix2local API function 222
systhread_attach API function 222
systhread_current API function 223
systhread_getdata API function 223
systhread_newkey API function 224
systhread_setdata API function 224
systhread_sleep API function 225
systhread_start API function 225
systhread_timerset API function 226

T

tags
Client 34
creating custom 149
Object 32
testing custom SAFs 91
thread
allocating a key for 224
creating 225
getting a pointer to 223
getting data belonging to 223
putting to sleep 225
setting data belonging to 224
setting interrupt timer 226
thread pools
defining in obj.conf 77
thread routines 94
thread-pool-init function 77
time formats 265
timeout parameter 66
timezones parameter 56

U

unicode 95, 240
update-interval parameter 76

URL
translated to file path 27

util_can_exec API function 228

Section T

util_chdir2path API function 228, 229
util_cookie_find API function 229
util_env_find API function 230
util_env_free API function 230
util_env_replace API function 231
util_env_str API function 231
util_getline API function 232
util_hostname API function 232
util_is_mozilla API function 233
util_is_url API function 233
util_itoa API function 234
util_later_than API function 234
util_sh_escape API function 235
util_snprintf API function 235
util_sprintf API function 236
util_strcasecmp API function 237
util_strftime API function 237, 265
util_strncasecmp API function 238
util_uri_escape API function 239
util_uri_is_evil API function 239
util_uri_parse API function 240
util_uri_unescape API function 240
util_vsnprintf API function 241
util_vsprintf API function 242
utility routines 95

\'}

vars
field in request parameter 82

virtual server routines 96

virtual-servers parameter 76

vs_alloc_slot API function 242

vs_get_data API function 243

vs_get_default_httpd_object API function 243

vs_get_doc_root API function 244

vs_get_httpd_objset API function 244

vs_get_id API function 245

vs_get_mime_type API function 245

vs_lookup_config_var API function 246

Index

303

Section W

vs_register_cb API function 246
vs_set_data API function 247
vs_translate_uri API function 248
vsnprintf, see util_vsnprintf 241
vsprintf, see util_vsprintf 242

W

weekday 265

widths parameter 56
wildcard patterns 261

write API function 107, 248
writev API function 107, 249

304 Sun ONE Web Server 6.1 * NSAPI Programmer’s Guide ¢ April 2004

	NSAPI Programmer’s Guide
	Contents
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Documentation Conventions
	Product Support

	Syntax and Use of obj.conf
	How the Server Handles Requests from Clients
	HTTP Basics
	NSAPI Filters
	Steps in the Request-handling Process
	Directives for Handling Requests

	Dynamic Reconfiguration
	Server Instructions in obj.conf
	Summary of the Directives

	Configuring HTTP Compression
	The Object and Client Tags
	The Object Tag
	Objects that Use the name Attribute
	Objects that Use the ppath Attribute

	The Client Tag
	Client Tag Parameters

	Variables Defined in server.xml
	Flow of Control in obj.conf
	AuthTrans
	NameTrans
	How and When the Server Processes Other Objects

	PathCheck
	ObjectType
	Setting the Type By File Extension
	Forcing the Type

	Input
	Output
	Service
	Service Examples
	Default Service Directive

	AddLog
	Error

	Changes in Function Flow
	Internal Redirects
	Restarts
	URI Translation

	Syntax Rules for Editing obj.conf
	Order of Directives
	Parameters
	Case Sensitivity
	Separators
	Quotes
	Spaces
	Line Continuation
	Path Names
	Comments

	About obj.conf Directive Examples

	SAFs in the magnus.conf File
	cindex-init
	define-perf-bucket
	dns-cache-init
	flex-init
	flex-rotate-init
	init-cgi
	init-clf
	init-dav
	init-filter-order
	init-j2ee
	init-uhome
	load-modules
	nt-console-init
	perf-init
	pool-init
	register-http-method
	stats-init
	thread-pool-init

	Creating Custom SAFs
	Future Compatibility Issues
	The SAF Interface
	SAF Parameters
	pb (parameter block)
	sn (session)
	rq (request)

	Result Codes
	Creating and Using Custom SAFs
	Write the Source Code
	Compile and Link
	Include Directory and nsapi.h File
	Libraries
	Linker Commands and Options for Generating a Shared Object
	Additional Linker Flags
	Compiler Flags
	Compiling 3.x Plugins on AIX

	Load and Initialize the SAF
	Instruct the Server to Call the SAFs
	Restart the Server
	Test the SAF

	Overview of NSAPI C Functions
	Parameter Block Manipulation Routines
	Protocol Utilities for Service SAFs
	Memory Management
	File I/O
	Network I/O
	Threads
	Utilities
	Virtual Server

	Required Behavior of SAFs for Each Directive
	Init SAFs
	AuthTrans SAFs
	NameTrans SAFs
	PathCheck SAFs
	ObjectType SAFs
	Input SAFs
	Output SAFs
	Service SAFs
	Error SAFs
	AddLog SAFs

	CGI to NSAPI Conversion

	Creating Custom Filters
	Future Compatibility Issues
	The NSAPI Filter Interface
	Filter Methods
	C Prototypes for Filter Methods
	insert
	remove
	flush
	read
	write
	writev
	sendfile

	Position of Filters in the Filter Stack
	Filters that Alter Content-Length
	Creating and Using Custom Filters
	Write the Source Code
	Compile and Link
	Load and Initialize the Filter
	Instruct the Server to Insert the Filter
	Restart the Server
	Test the Filter

	Overview of NSAPI Functions for Filter Development

	Examples of Custom SAFs and Filters
	Examples in the Build
	AuthTrans Example
	Installing the Example
	Source Code

	NameTrans Example
	Installing the Example
	Source Code

	PathCheck Example
	Installing the Example
	Source Code

	ObjectType Example
	Installing the Example
	Source Code

	Output Example
	Installing the Example
	Source Code

	Service Example
	Installing the Example
	Source Code
	More Complex Service Example

	AddLog Example
	Installing the Example
	Source Code

	Quality of Service Example
	Installing the Example
	Source Code

	Creating Custom Server-parsed HTML Tags
	Define the Functions that Implement the Tag
	Write an Initialization Function
	Load the New Tag into the Server

	NSAPI Function Reference
	NSAPI Functions (in Alphabetical Order)
	CALLOC
	cinfo_find
	condvar_init
	condvar_notify
	condvar_terminate
	condvar_wait
	crit_enter
	crit_exit
	crit_init
	crit_terminate
	daemon_atrestart
	fc_open
	fc_close
	filebuf_buf2sd
	filebuf_close
	filebuf_getc
	filebuf_open
	filebuf_open_nostat
	filter_create
	filter_find
	filter_insert
	filter_layer
	filter_name
	filter_remove
	flush
	FREE
	func_exec
	func_find
	func_insert
	insert
	log_error
	MALLOC
	net_flush
	net_ip2host
	net_read
	net_sendfile
	net_write
	netbuf_buf2sd
	netbuf_close
	netbuf_getc
	netbuf_grab
	netbuf_open
	nsapi_module_init
	NSAPI_RUNTIME_VERSION
	NSAPI_VERSION
	param_create
	param_free
	pblock_copy
	pblock_create
	pblock_dup
	pblock_find
	pblock_findval
	pblock_free
	pblock_nninsert
	pblock_nvinsert
	pblock_pb2env
	pblock_pblock2str
	pblock_pinsert
	pblock_remove
	pblock_str2pblock
	PERM_CALLOC
	PERM_FREE
	PERM_MALLOC
	PERM_REALLOC
	PERM_STRDUP
	prepare_nsapi_thread
	protocol_dump822
	protocol_set_finfo
	protocol_start_response
	protocol_status
	protocol_uri2url
	protocol_uri2url_dynamic
	read
	REALLOC
	remove
	request_get_vs
	request_header
	request_stat_path
	request_translate_uri
	sendfile
	session_dns
	session_maxdns
	shexp_casecmp
	shexp_cmp
	shexp_match
	shexp_valid
	STRDUP
	system_errmsg
	system_fclose
	system_flock
	system_fopenRO
	system_fopenRW
	system_fopenWA
	system_fread
	system_fwrite
	system_fwrite_atomic
	system_gmtime
	system_localtime
	system_lseek
	system_rename
	system_ulock
	system_unix2local
	systhread_attach
	systhread_current
	systhread_getdata
	systhread_newkey
	systhread_setdata
	systhread_sleep
	systhread_start
	systhread_timerset
	USE_NSAPI_VERSION
	util_can_exec
	util_chdir2path
	util_chdir2path
	util_cookie_find
	util_env_find
	util_env_free
	util_env_replace
	util_env_str
	util_getline
	util_hostname
	util_is_mozilla
	util_is_url
	util_itoa
	util_later_than
	util_sh_escape
	util_snprintf
	util_sprintf
	util_strcasecmp
	util_strftime
	util_strncasecmp
	util_uri_escape
	util_uri_is_evil
	util_uri_parse
	util_uri_unescape
	util_vsnprintf
	util_vsprintf
	vs_alloc_slot
	vs_get_data
	vs_get_default_httpd_object
	vs_get_doc_root
	vs_get_httpd_objset
	vs_get_id
	vs_get_mime_type
	vs_lookup_config_var
	vs_register_cb
	vs_set_data
	vs_translate_uri
	write
	writev

	Data Structure Reference
	Privatization of Some Data Structures
	Session
	pblock
	pb_entry
	pb_param
	Session->client
	Request
	stat
	shmem_s
	cinfo
	sendfiledata
	Filter
	FilterContext
	FilterLayer
	FilterMethods

	Using Wildcard Patterns
	Wildcard Patterns
	Wildcard Examples

	Time Formats
	Dynamic Results Caching Functions
	dr_cache_destroy
	dr_cache_init
	dr_cache_refresh
	dr_net_write
	fc_net_write

	Hypertext Transfer Protocol
	Compliance
	Requests
	Request Method, URI, and Protocol Version
	Request Headers
	Request Data

	Responses
	HTTP Protocol Version, Status Code, and Reason Phrase
	Response Headers
	Response Data

	Buffered Streams

	Alphabetical List of NSAPI Functions and Macros
	Index

