D Sun

microsystems

Sun Java™ System

Message Queue 3
Developer’s Guide for C Clients

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0067-10

2005Q1

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http:// waw. sun. cond pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by third
parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp and Javadoc are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
l'adresse htt p: // wan sun. coni patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

L'utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp et Javadoc sont
des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Ce produit est soumis a la législation américaine en matiére de controle des exportations et peut étre soumis a la réglementation en vigueur dans
d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris,
mais de maniére non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matiére de controle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

http://www.sun.com/patents
http://www.sun.com/patents

Contents

Listof Tables 7
List Of Procedures 9
Preface 11
Who Should Use This Booko 11
Before You Read This Book 12
How This Book Is Organized i i 12
Conventions Used in This Book 13
Text CONVENtioNSt 13
Directory Variable Conventions i 13
Related Documentation 14
The Message Queue Documentation Set ..., 14
Online Help i 15
Example Client Applications i 15
The Java Message Service (JMS) Specification o il 16
Related Third-Party Web Site References 16
Sun Welcomes Your COMMENESttt 16
Chapter 1 IntroduUCtioN e e e 17
Message Queue for the C Developer i 18
Building and Running C Clients i e 19
Building C CHents ... e e 19
Header Files and Shared Libraries i i i 19
Pre-Processor Definitions 20

C++ Runtime Library SUpport 21
Providing Runtime Support 21

4

Working With the Sample C-Client Programst 22

Building the Sample Programs 22
To Compile and Linkon Solaris o 22

To Compile and Linkon Linux i i i 22

To Compileon Windows i 22
ToLinkon Windows 23
Running the Sample Programs i 23
Client Application Deployment Considerations oo, 24
Chapter 2 Usingthe C API e e e i 25
Message Queue C Client Setup Operations 26
To Set Up a Message Queue C Client to Produce Messages 26

To Set Up a Message Queue C Client to Consume Messages Synchronously 27

To Set Up a Message Queue C Client to Consume Messages Asynchronously 27
Working With Properties 28
Setting Connection and Message Properties o i i 28
To Set Properties for a Connection 29

To Set Message Properties 30
Getting Message Properties i 30
To Iterate Through a Properties Handle o i i 31
Working With Connections i 32
Defining Connection Properties i 33
Connection Handling 34
Reliabilityo 34

Flow Control 34
Working With Secure Connections i 35
Configuring the Client for Secure Communication, 36
Verification Using Fingerprints i i 37

To Set Up Fingerprint Certification, Do the Following: 37
Coordinating NSS Initialization o i i 37

To Coordinate NSS Initialization i 38
Shutting Down Connectionsot 38
Working With Sessions and Destinations o i i 39
Creating @ SESSIONt 40
Transacted Sessions 40
Message Acknowledgement 40
Receive Mode o 41
Managing @ SESSIONt 42
Creating Destinations 42
Programming Domains 43
Auto-Created Destinations 43
Temporary Destinations i 43
Getting Information About Destinations i 44

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Messages ... 44

CompoSiNg MESSAZES v vttt 44
Message Header 45
Message Body Typesoiiii 46
Composing the Message 46

Sending a MESSAZEo uuti ittt 47

ReceivINg MESSAZES vttt 49
Working With Consumers i 50
Receiving a Message Synchronously i i i 50
Receiving a Message Asynchronously i i 51

Processing @a MeSSagettt 52

Error Handling o 53

To Handle Errorsin YourCode i 53
Memory Management 54
Logging . ..o 55
Chapter 3 Client Design ISSUBSttt e e e e e e e e e e 57
Producers and CONSUIMETSttt it 57
Using Selectors Efficiently 58
Determining Message Order and Priority o i i 59
Managing Threads i 60

Message Queue C Runtime Thread Model o it 60

Concurrent Useof Handles 60

Single-Threaded Session Control, 61

Connection EXCeptions 62

Managing Physical Destination Limits i 62
Managing the Dead Message QUeUE it 63
Factors Affecting Performance 67

Delivery Mode (Persistent/Non-persistent) i, 68

Use of Transactions i 69

AcknowledgementMode 69

Durable vs. Non-Durable Subscriptions i 70

Use of Selectors (Message Filtering) i 71

MESSAGE SIZE . . . vt 71

Message Body Typeo 72

Chapter 4 ReferenCe 73
Data Types 74

Connection Properties 76

Acknowledge Modes 80

Callback Type for Asynchronous Messagingo, .. 81

Callback Type for Connection Exception Handling 83

Contents 5

6

Function Referencet e e e e e 84

Setting a Client Identifier 102
Handling Connection Exceptions i 103
Header Fileso 183
Appendix A Message Queue C APIError Codesiuiiiainnnen... 185
Error Codest 186
X . 193

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Table 1
Table 2
Table 3
Table 4
Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 2-12
Table 2-13
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 4-1

List of Tables

Book CONtentsttt e e 12
Document Conventionsouuie ittt i 13
Message Queue Directory Variable Used by CClients 14
Message Queue DocumentationSet i 14
Locations of C-API Libraries and Header Files 20
Preprocessor Definitions for Supporting Fixed-Size Integer Types 20
Location of C Sample Programs i, 22
Checklist for the Message Queue Administrator 24
Functions Used to Set Properties o i i, 28
Functions Used to Get Message Properties 31
Functions Used to Work with Connectionso iiiiii... 32
Functions Used to Work with Sessions oo, 39
Functions Used to Work with Destinations 42
Functions Used to Construct Messagescooiiiiiiiiiinn. 44
JMS-defined Message Header it 45
C-APIMessage Body Typesooiinuiiii i 46
Functions for Sending Messages 47
Functions Used to Receive Messagest 49
Functions Used to Process Messagescooiiiiiiiiiiiiiiieeaann. 52
Functions Used in Handling Errorso i, 53
Functions Used to Free Memoryo i, 54
Thread Model for NSPR GLOBAL Threadsccoiiiiiiiiii. .. 60
Handles and Concurrencyouuuiiiiiiiiiiii i 61
Message Properties Relating to Dead Message Queue 64
Dead Message Properties i 65
Comparison of High Reliability and High Performance Scenarios 67
Message Queue C-API Data Type Summary, 74

8

Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table A-1

Connection Properties 77
acknow edgeMode Valueso.uuuiiiti i 81
Message Queue C-API Function Summary ..., 84
Message Header Properties i 134
Message Header Properties i 173
Message Queue C-API Header Files 183
Message Queue C Client Error Codes, 186

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

List of Procedures

To Compile and Link on Solaris i 22
To Compileand Link on LinuxXo 22
To Compileon Windows 22
To Link on WIndows e e e e 23
To Set Up a Message Queue C Client to Produce Messages, 26
To Set Up a Message Queue C Client to Consume Messages Synchronously 27
To Set Up a Message Queue C Client to Consume Messages Asynchronously 27
To Set Properties for a Connection 29
To Set Message Properties 30
To Iterate Through a Properties Handle 31
To Set Up Fingerprint Certification, Do the Following: 37
To Coordinate NSS Initializationttt et 38
To Handle Errors in Your Codeo e e 53

10 Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Preface

This book provides programming and reference information for developers
working with Sun Java™ System Message Queue (formerly Sun™ ONE Message
Queue) 3 2005Q1, who want to use the C language binding to the Message Queue
Service to send, receive, and process Message Queue messages.

This preface contains the following sections:

¢ “Who Should Use This Book” on page 11

¢ “How This Book Is Organized” on page 12

e “Conventions Used in This Book” on page 13

e “Related Documentation” on page 14

Who Should Use This Book

This guide is for developers who want to use the C-API in order to write C or C++
messaging programs that can interact with the Message Queue broker to send and
receive JMS messages.

This book assumes that readers are experienced C or C++ programmers and that
they are familiar with the Java Message Service specification.

11

Before You Read This Book

Before You Read This Book

You must read the Message Queue Technical Overview to become familiar with
Message Queue’s implementation of the Java Message Service specification, with
the components of the Message Queue service, and with the basic process of
developing, deploying, and administering a Message Queue application.

How This Book Is Organized

This guide is designed to be read from beginning to end. The following table
briefly describes the contents of each chapter:

12

Table 1 Book Contents

Chapter

Description

Chapter 1, “Introduction”

Chapter 2, “Using the C
API”

Chapter 3, “Client Design

Issues”

Chapter 4, “Reference”

Appendix A, “Message

Queue C API Error Codes”

Introduces the C-API, provides quick start instructions on compiling
and building Message Queue C clients. Introduces the Message
Queue C-Client sample applications that are shipped with Message
Queue, and explains how you set up your environment to run these
examples. Provides a deployment worksheet.

Explains how you use the C-API to construct, to send, to receive,
and to process messages. This chapter also covers error handling,
memory management, and logging.

Explains the major considerations that you need to keep in mind
when designing a Message Queue C client.

Provides complete reference information for the Message Queue
C-API: data structures and functions. It also lists and describes the
contents of the C-API header files.

Lists the code and descriptive string returned for errors that are
returned by C library functions.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Conventions Used in This Book

Conventions Used in This Book

This section provides information about the conventions used in this document.

Text Conventions

Table 2

Document Conventions

Format

Description

italics

nmonospace

(]

ALL CAPS

Key+Key

Key-Key

Italicized text represents a placeholder. Substitute an appropriate
clause or value where you see italic text. Italicized text is also used
to designate a document title, for emphasis, or for a word or phrase
being introduced.

Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names, error
message text, class names, method or function names (including
all elements in the signature), package names, reserved words,
and URLs.

Square brackets to indicate optional values in a command line
syntax statement.

Text in all capitals represents file system types (GIF, TXT, HTML
and so forth), environment variables (IMQ_HOME), or acronyms
(Message Queue, JSP).

Simultaneous keystrokes are joined with a plus sign: Ctrl+A means
press both keys simultaneously.

Consecutive keystrokes are joined with a hyphen: Esc-S means
press the Esc key, release it, then press the S key.

Directory Variable Conventions

Message Queue makes use of three directory variables, one of which is relevant to
C clients. Table 3 describes this variable and explains how it is used on the Solaris,
Windows, and Linux platforms.

Preface 13

Related Documentation

Table 3 Message Queue Directory Variable Used by C Clients

Variable Description

| MQ_HOVE This is generally used in Message Queue documentation to refer to
the Message Queue base directory (root installation directory):

* On Solaris, there is no root Message Queue installation
directory. Therefore, | M) HOVE is not used in Message Queue
documentation to refer to file locations on Solaris.

* On Windows, the root Message Queue installation directory is
set by the Message Queue installer (by default, as C. \ Program
Fi | es\ Sun\ MessageQueue3).

* On Linux, there is no root Message Queue installation directory.
Therefore, | M) HOVE is not used in Message Queue
documentation to refer to file locations on Linux.

e For Sun Java System Application Server on Windows, Solaris,
and Linux, the root Message Queue installation directory is
/i mg, under the Application Server base directory.

In this guide, | M) HOME is shown without platform-specific environment variable
notation or syntax (for example, $| M) HOME on UNIX). Path names generally use
UNIX directory separator notation (/).

Related Documentation

In addition to this guide, Message Queue provides additional documentation
resources.

The Message Queue Documentation Set

The documents that comprise the Message Queue documentation set are listed in
Table 4 in the order in which you would normally use them.

Table 4 Message Queue Documentation Set

Document Audience Description
Message Queue Installation Guide Developers and Explains how to install Message
administrators Queue software on Solaris, Linux, and

Windows platforms.

14 Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Related Documentation

Table 4 Message Queue Documentation Set (Continued)

Document Audience Description
Message Queue Release Notes Developers and Includes descriptions of new features,
administrators limitations, and known bugs, as well

as technical notes.

Message Queue Technical Developers and Introduces the basic concepts of IMS

Overview administrators client design and describes Message
Queue services and tools.

Message Queue Developer’s Guide ~ Developers Provides a quick-start tutorial and

for Java Clients programming information for

developers of Java client programs
using JMS and SAAJ and Message
Queue software.

Message Queue Administration Administrators, also Provides background and information
Guide recommended for needed to perform administration
developers tasks using Message Queue

administration tools.

Message Queue Developer’s Guide ~ Developers Provides programming and reference

for C Clients documentation for developers of
Message Queue C and C++ client
programs that use the Message
Queue software.

Online Help

Message Queue 3 2005Q1 includes command-line utilities for performing Message
Queue message service administration tasks. To access the online help for these
utilities, see the Message Queue Administration Guide.

Message Queue 3 2005Q1 also includes a graphical user interface (GUI)
administration tool, the Administration Console (i ngadni n). Context sensitive
online help is included in the Administration Console.

Example Client Applications

Sample applications that illustrate the C-API are listed and described in Chapter 1,
“Introduction”.

Preface 15

Related Third-Party Web Site References

The Java Message Service (JMS) Specification
The JMS specification can be found at the following location:
http://]ava. sun. con product s/ j ns/ docs. ht m

The specification includes sample JMS Java client code.

Related Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related
information.

NOTE Sun is not responsible for the availability of third-party Web sites
mentioned in this document. Sun does not endorse and is not
responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources.
Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance
on any such content, goods, or services that are available on or
through such sites or resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments
and suggestions.

To share your comments, go to htt p://docs. sun. comand click Send Comments. In

the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document.

16 Message Queue 3 2005Q1 « Developer’s Guide for C Clients

http://java.sun.com/products/jms/docs.html
http://docs.sun.com

Chapter 1

Introduction

This chapter summarizes the differences between the C API and the Java API to
Message Queue and provides a quick start to compiling and running Message
Queue C clients. It covers the following topics:

* “Message Queue for the C Developer” on page 18

¢ “Building and Running C Clients” on page 19

¢ “Working With the Sample C-Client Programs” on page 22

¢ “Client Application Deployment Considerations” on page 24

You should be familiar with the concepts presented in the Message Queue Technical
Owverview before you read this chapter.

Depending on your needs, after you read this chapter, you can proceed either to
Chapter 3, “Client Design Issues” on page 57, which describes the major issues
governing C client design, or to Chapter 2, “Using the C API” on page 25, which
explains how you use C data types and functions to obtain the messaging behavior
that interests you.

The term “C developer” is used generically throughout this book and includes the
C++ developer as well.

17

Message Queue for the C Developer

Message Queue for the C Developer

18

The Message Queue product is an enterprise messaging system that implements
the Java™ Message Specification (JMS) standard as a JMS provider. Message
Queue developers can use two programming interfaces to establish a connection to
the broker, and send or receive messages:

e Cclients use the API described in this manual to send messages to and retrieve
messages from a Message Queue broker.

* Java clients use the Java API, described in the Message Queue Developer’s Guide
for Java Clients, to send messages to and receive messages from a Message
Queue broker.

Message Queue provides a C API to its messaging services to enable legacy C
applications and C++ applications to participate in JMS-based messaging. It is
important to understand however that the Java Message Service specification is a
standard for Java clients only; thus the C API described in this book is specific to
the Message Queue provider and cannot be used with other J]MS providers. A
messaging application that includes a C client cannot be handled by another JMS
provider.

The C interface, compared to the Java interface, does not support the following
features:

* The use of administered objects

* Map, stream, or object message types
¢ Consumer-based flow control

¢ Queue browsers

* JMS application server facilities (ConnectionConsumer, distributed
transactions)

* Receiving or sending SOAP messages
* Receiving or sending compressed JMS messages

* Auto-reconnect or failover, which allows the client runtime to automatically
reconnect to a broker if a connection fails

e The NO ACKNOANLEDGE mode

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Building and Running C Clients

Like the Java interface, the C interface does support the following;:
e Publish/subscribe and point-to-point connections

* Synchronous and asynchronous receives

e CLIENT, AUTQ and DUPS_CK acknowledgement modes

* Local transactions

¢ Session recover

e Temporary topics and queues

* Message selectors

The JMS programming model is the foundation for the design of a Message Queue
C client. Chapter 2, “Using the C AP1” on page 25 explains how this model is
implemented by the C data types and functions used by a Message Queue C client
for delivery of messages.

The next section provides a quick introduction to building and running Message
Queue clients.

Building and Running C Clients

Message Queue provides several sample Message Queue C-client applications that
illustrate how to send and receive messages. Before you run these applications,
read through the next two sections to make sure that you understand the general
procedure and requirements for building and running Message Queue C-Client
programs.

Building C Clients

This section explains how you build Message Queue programs from C source
files.You should already be familiar with writing and compiling C applications.

Header Files and Shared Libraries

The Message Queue C client includes the header files (ngcrt. h), the C client
runtime shared library mycrt, and its direct dependency libraries. When writing a
Message Queue C client application, you should include the header files and link
to the runtime library nycrt.

Chapter 1 Introduction 19

Building and Running C Clients

For each platform, Table 1-1 lists the installed location of the header files and the
supporting runtime library.

Table 1-1 Locations of C-API Libraries and Header Files

Platform Library Header File

Solaris /opt/ SUNWno/lib [opt / SUNW g/ i ncl ude

Solaris/SPARC /opt/ SUNW ng/ | i b/ spar cv9 [opt / SUNW g/ i ncl ude
(64-bit support)

Linux lopt/sun/my/lib [opt / sun/ my/ i ncl ude

Windows IMQHOMBE\li b | MQ_HOME\ i ncl ude

Pre-Processor Definitions

Use the appropriate compiler for your platform, as described in the Message Queue
Release Notes.

When compiling a Message Queue C client application, you need to specify the
preprocess or definition shown for each platform in Table 1-2. This definition is
used to support Message Queue fixed-size integer types.

Table 1-2 Preprocessor Definitions for Supporting Fixed-Size Integer Types

Platform Definition
Solaris SOLARIS
Linux LINUX
Windows WIN32

20 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Building and Running C Clients

C++ Runtime Library Support

When building a Message Queue C client application, you should be aware that the
Message Queue C runtime library is a multi-threaded library and requires C++
runtime library support:

¢ On Solaris, this support is provided by the Sun WorkShop 6 1i bGrun C++
runtime library.

* On Linux, this support is provided by the gcc/ g++ | i bst dc++ runtime library.

* On Windows, this support is provided by Microsoft Windows Visual C++
runtime library msvert.

Providing Runtime Support

To run a Message Queue C-client application, you need to make sure that the
application can find the nycrt shared library. Please consult the documentation for
your compiler to determine the best way to do this.

You also need to make sure that the appropriate C++ runtime support library, as
described in “C++ Runtime Library Support” on page 21 is available.

On Windows you also need to make sure that your application can find the
dependent libraries NSPR and NSS that are shipped with Message Queue. These
may be different from the NSPR and NSS libraries that are installed on your system
to support the Netscape browser and the Sun Java System Application Server. The
mycrt shared library depends directly on the NSPR and NSS versions installed
with Message Queue. If a different version of the libraries is loaded at runtime, you
may get a runtime error specifying that the libraries being used are incompatible.

Chapter 1 Introduction 21

Working With the Sample C-Client Programs

Working With the Sample C-Client Programs

22

This section describes the sample C-Client programs that are installed with
Message Queue and explains how you should build them and run them. Table 1-3
lists the location of the sample programs on each platform.

Table 1-3 Location of C Sample Programs

Platform Directory

Solaris / opt / SUNW ng/ dero/ C
Linux / opt/ sun/ ng/ exanpl es/ C
Windows | MQ_HOVE\ deno\ C

Building the Sample Programs

The following commands illustrate the process of building and linking the sample
application Producer . ¢ on the Solaris, Linux, and Windows platforms. The
commands include the preprocessor definitions needed to support fixed-size
integer types. For options used to support multithreading, please consult
documentation for your compiler.

To Compile and Link on Solaris

QC -compat=5 -nt -DSOLAR'S -1/opt/ SUNWng/include -o Producer \
-L/opt/SUNWMg/lib -Ingert Producer.c

For Solaris/SPARC, if you need 64-bit support, you need to specify the following
compiler options: - xar ch=v9 and - L/ opt / SUNW g/ | i b/ spar cv9. For example, to
compile and link the example application, you would use the following command:

QC -compat =5 -nt -xarch=v9 -DSOLARI S -1/ opt/ SUNWng/i ncl ude -o Producer \
L/ opt/ SUNW g/ | i b/ sparcv9 -1 ngert Producer. ¢

To Compile and Link on Linux

g++ - DLI NUX - D_REENTRANT -1/ opt/sun/my/include -o Producer \
-L/opt/sun/ng/lib -1ngert Producer.c

To Compile on Windows
cl /c /MD-DWN32 -1% MY HOVE% i ncl ude Producer. c

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With the Sample C-Client Programs

O To Link on Windows

['ink Producer.obj /NODEFAULTLIB nsvert.lib \
/LI BPATH % MQ HOME% 1 i b ngert.lib

Running the Sample Programs

The sample C client program files include the following:

* Producer. ¢ and Consuner. ¢, which illustrate how you send a message and
receive it synchronously.

* Producer AsyncConsuner . ¢, which illustrates how you send a message and
receive it asynchronously.

* Request Repl y. ¢, which illustrates how you send and respond to a message
that specifies a reply-to destination.

Before you run any sample programs, you should start the broker. You can display
output describing the command-line options for each program by starting the
program with the -hel p option.

The directory that contains the sample programs also includes a README file that
explains how you should run these samples. For example, the following command,
runs the program Producer . It specifies that the program should connect to the
broker running on the host M/Host and port 8585, and that it should send a
message to the destination My Topi c:

C Producer -h M/Host -p 8585 -d MyTopic

Chapter 1 Introduction 23

Client Application Deployment Considerations

Client Application Deployment Considerations

When you are ready to deploy your client application, you should make sure the
administrator knows your application’s needs. The checklist in Table 1-4 shows the
basic information required. Consult with your administrator to determine the exact
information needed. In some cases, it might be useful to provide a range of values
rather than a specific value. Refer to the Message Queue Administration Guide for
additional information about attribute names and default values.

Table 1-4 Checklist for the Message Queue Administrator

Configuring physical destinations:

Type:

Name:

Attributes:

Maximum number of messages expected:
Maximum size of messages expected:
Maximum message bytes expected:

Configuring Dead Message Queue

Place dead messages on Dead Message Queue
Log the placement of messages on the Dead Message Queue
Discard the body of messages placed on the Dead Message Queue

24 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Chapter 2

Using the C API

This chapter describes how to use C functions to accomplish specific tasks and
provides brief code samples to illustrate some of these tasks. (For clarity, the code
examples shown in the following sections omit a function call status check.)

Following a brief discussion of overall design and a summary of client tasks, the
topics covered include the following:

¢ “Message Queue C Client Setup Operations” on page 26
¢ “Working With Properties” on page 28

¢ “Working With Connections” on page 32

e “Working With Sessions and Destinations” on page 39

e “Working With Messages” on page 44

e “Error Handling” on page 53

¢ “Memory Management” on page 54

* “Logging” on page 55

This chapter does not provide exhaustive information about each function. For
detailed function information, please see the description of that function in
Chapter 4, “Reference” on page 73.

For information on building Message Queue C programs, see Chapter 3, “Client
Design Issues” on page 57.

25

Message Queue C Client Setup Operations

Message Queue C Client Setup Operations

The general procedures for producing and consuming messages are introduced
below. The procedures have a number of common steps which need not be
duplicated if a client is both producing and consuming messages.

26

[J To Set Up a Message Queue C Client to Produce Messages

1.
2.

10.

11.

Call the MXr eat ePr oper t i es function to get a handle to a properties object.

Use one or more of the MBet . . . Property functions to set connection
properties that specify the name of the broker, its port number, and its
behavior.

Use the MO eat eConnect i on function to create a connection.

Use the MXr eat eSessi on function to create a session and to specify its
acknowledge mode and its receive mode. If the session will be used only for
producing messages, use the receive mode M) SESSI ON_SYNC_RECEI VE to avoid
creating a thread for asynchronous message delivery.

Use the MXOr eat eDest i nat i on function to specify a physical destination on the
broker. The destination name you specify must be the same as the name of the
physical destination.

Use the M eat eMessagePr oducer function or the

MX eat eMessagePr oducer For Dest i nat i on function to create a message
producer. (If you plan to send a lot of messages to the same destination, you
should use the MY eat eMessagePr oducer For Dest i nat i on function.)

Use the MY eat eByt esMessage function or the MO eat eText Message function
to get a newly created message handle.

Call the MXCr eat ePr opert i es function to get a handle to a properties object
that will describe the message header properties. This is only required if you
want to set a message header property.

Use one or more of the M¥et . . . Property functions to set properties that
specify the value of the message header properties you want to set.

Use the MXBet MessageHeader s function, passing a handle to the properties
object you created in Step 8 and Step 9.

Repeat Step 8 if you want to define custom message properties, and then use
the MX®et MessagePr oper ti es function to set these properties for your message.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Message Queue C Client Setup Operations

12. Use the MBet MessageRepl yTo function if you want to specify a destination

where replies to the message are to be sent.

13. Use one of the MBendMessage. . . functions to send the message.

To Set Up a Message Queue C Client to Consume Messages Synchronously

1.

2.

7.

8.

Call the MX eat eProper ti es function to get a handle to a properties object.

Use one or more of the M®Bet . . . Property functions to set connection
properties that specify the name of the broker, its port number, and its
behavior.

Use the MO eat eConnect i on function to create a connection.

Use the M)XOr eat eSessi on function to create a session and to specify its receive
mode. Specify M) SESSI ON_SYNC_RECEI VE for a synchronous session.

Use the MXr eat eDest i nati on function to specify a destination on the broker
from which the consumer is to receive messages. The destination name you
specify must be the same as the name of the physical destination.

Use the MXr eat eMessageConsumner function or the
MY eat eDur abl eMessageConsuner function to create a consumer.

Use the Mt ar t Connect i on function to start the connection.

Use one of the MRecei veMessage. . . functions to start message delivery.

To Set Up a Message Queue C Client to Consume Messages Asynchronously

1.

2.

Call the MXr eat ePr opert i es function to get a handle to a properties object.

Use one or more of the M®Bet . . . Property functions to set connection
properties that specify the name of the broker, its port number, and its
behavior.

Use the MO eat eConnect i on function to create a connection.

Use the MXr eat eSessi on function to create a session and to specify its
acknowledge mode and its receive mode. Specify M) SESSI ON_ASYNC RECEI VE
for asynchronous message delivery.

Use the MXr eat eDest i nat i on function to specify a destination on the broker
from which the consumer is to receive messages. The logical destination name
you specify must be the same as the name of the physical destination.

Chapter 2 Using the C APl 27

Working With Properties

6. Write a callback function of type MMessagelLi st ener Func that will be called
when the broker starts message delivery. In the body of this callback function,
use the functions listed in Table 2-11 on page 52, to process the contents of the
incoming message.

7. Use the MY eat eAsyncMessageConsuner function or the
MY eat eAsyncDur abl eMessageConsuner function to create a consumer.

8. Use the M¥t art Connect i on function to start the connection and message
delivery.

Working With Properties

28

When you create a connection, set message header properties, or set user-defined
message properties, you must pass a handle to a properties object. You use the
MXr eat ePr oper ti es function to create this object and to obtain a handle to it.
When you receive a message, you can use specific M)Get . . . Property functions to
obtain the type and value of each message property.

This section describes the functions you use to set and get properties. A property is
defined as a key-value pair.

Setting Connection and Message Properties

You use the functions listed in Table 2-1 to create a handle to a properties object,
and to set properties. You can use these functions to create and define properties
for connections or for individual messages.

Table 2-1 Functions Used to Set Properties

Function Description

MXr eat ePr operti es Creates a properties object and passes back
a handle to it.

MXet Bool Property Sets an MBool property.

MXet Stri ngProperty Sets an MXBtri ng property.

MXet | nt 8Property Sets an MJ nt 8 property.

MXet | nt 16Pr operty Sets an MJ nt 16 property.

MXet | nt 32Pr operty Sets an MJ nt 32 property.

MXet | nt 64Pr operty Sets an MJ nt 64 property.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Properties

Table 2-1 Functions Used to Set Properties (Continued)

Function Description
MXet Fl oat 32Pr operty Sets an M oat 32 property.
MXet Fl oat 64Property Sets an M oat 64 property.

To Set Properties for a Connection

1. Call the MY eat eProper ti es function to get a handle to a newly created
properties object.

2. Call one of the MX®et . .. Property functions to set one of the connection
properties listed in Table 4-2 on page 77. At a minimum, you must specify the
name of the host of the broker to which you want to connect and its port
number.

Which function you call depends on the type of the property you want to set;
for example, to set an M®Bt ri ng property, you call the M®Bet Stri ngProperty
function; to set an MBool property, you call the M¥et Bool Property function;
and so on. Each function that sets a property requires that you pass a key name
and value; these are listed and described in Table 4-2.

3. When you have set all the properties you want to define for the connection,
you can then create the connection, by calling the MXOr eat eConnect i on
function.

Once the connection is created with the properties you specify, you cannot change
its properties. If you need to change connection properties after you have created a
connection, you will need to destroy the old connection and its associated objects
and create a new one with the desired properties. It is a good idea to think through
the desired behavior before you create a connection.

Code Example 2-1 illustrates how you create a properties handle and how you use
it for setting connection properties.

Code Example 2-1 Setting Connection Properties

MXEt at us st at us;
MPropertiesHandl e propertiesHandl e = MQ | NVALI D HANDLE;

status = (MXreateProperties(&ropertiesHandl e);

status = (MXet StringProperty(propertiesHandl e,
MQ BROKER _HOST_PRCPERTY, “Iocal host™));

Chapter 2 Using the C APl 29

Working With Properties

30

Code Example 2-1 Setting Connection Properties (Continued)

status = (MXBet | nt 32Pr operty(propertiesHandl e,
MQ BROKER PCRT_PRCPERTY, 7676));

status = MXBet StringProperty(propertiesHandl e,
M CONNECTI ON_TYPE_PRCPERTY, “TCP"));

The Message Queue C client runtime sets the connection properties that specify the
name and version of the Message Queue product; you can retrieve these using the
MXGet Met aDat a function. These properties are described at the end of Table 4-2,
starting with M) NAVE_PRCPERTY.

To Set Message Properties

Set message properties and message header properties using the same procedure
you used to set connection properties. You can set the following message header
properties for sending a message:

e M CORRELATI ON | D_HEADER PROPERTY
e M) MESSAGE TYPE HEADER PRCPERTY

For more information, see the description of the M®et MessagePr operti es
function.

Getting Message Properties

When you receive a message, if you are interested in the message properties, you
need to obtain a handle to the properties object associated with that message:

e Use the MXCet MessagePr oper ti es function to obtain a handle to the properties
object for user-defined properties.

¢ If you are interested in any message header properties, use the
MXet MessageHeader Proper ti es function to obtain a handle to the header
properties. See Table 4-5 on page 134.

Having obtained the handle, you can iterate through the properties and then use
the appropriate M&Get . . . Property function to determine the type and value of
each property.

Table 2-2 lists the functions you use to iterate through a properties handle and to
obtain the type and value of each property.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Properties

Table 2-2 Functions Used to Get Message Properties

Function

MPropertiesKeylterationStart

MProperti esKeyl t erati onHasNext

MProperti esKeyl t erati onCGet Next

MXGet Proper tyType
MXGet Bool Property
MXet Stri ngProperty
MQet | nt 8Property
MXet | nt 16Pr operty
MXet | nt 32Pr operty
MXet | nt 64Pr operty
MXet Fl oat 32Pr operty
MXet Fl oat 64Property

Description

Starts the iteration process through the specified
properties handle

Returns MQ TRUE if there are additional property keys left
in the iteration.

Passes back the address of the next property key in the
referenced property handle.

Gets the type of the specified property.

Gets the value of the specified MBool type property.
Gets the value of the specified MBt ri ng type property.
Gets the value of the specified M) nt 8 type property.
Gets the value of the specified M) nt 16 type property.
Gets the value of the specified M) nt 32 type property.
Gets the value of the specified M) nt 64 type property.
Gets the value of the specified Ml oat 32 type property.
Gets the value of the specified M| oat 64 type property.

To Iterate Through a Properties Handle
1. Start the process by calling the MJProperti esKeyl terationStart function.

2. Loop using the MProperti esKeyl t erati onHasNext function.

3. Extract the name of each property key by calling the
MXProperti esKeyl terationGet Next function.

4. Determine the type of the property value for a given key by calling the

MXet Pr oper t yType function.

5. Use the appropriate MGet . . . Property function to find the value of the
specified property key and type.

If you know the property key, you can just use the appropriate MXt . . . Property
function to get its value. Code Example 2-2 illustrates how you implement these

steps.

Chapter 2 Using the CAPI 31

Working With Connections

Code Example 2-2 Getting Property Values for a Message Header

MXt at us st at us;

MPr operti esHandl e header sHandl e = MQ | NVALI D HANDLE;

MXBool redelivered,;

Const MBtring ny_nsgtype;

status = (MXet MessageHeader s(messageHandl e, &header sHandl e));

status = (MXet Bool Property(header sHandl e,
MQ REDELI VERED HEADER PRCPERTY, &redelivered));

MXet St ri ngPropert y(header sHandl e,
M2 MESSACGE TYPE HEADER TYPE PRCPERTY, &ny_nsgtype);

stat us

Working With Connections

32

All messaging occurs within the context of a connection: the behavior of the
connection is defined by the properties set for that connection. You use the
functions listed in Table 2-3 to create, start, stop, and close a connection.

Table 2-3 Functions Used to Work with Connections

Function Description

MJ nitializeSSL Initializes the SSL library. You must call this function before you
create any connection that uses SSL.

MXr eat eConnect i on Creates a connection and passes back a handle to it.

Mt ar t Connect i on Starts the specified connection and starts or resumes delivery of
messages.

Mt opConnect i on Stops the specified connection.

MXet Met aDat a Returns a handle to name and version information for the Message

Queue product.

MX oseConnect i on Closes the specified connection.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Connections

Before you create a connection, you must do the following;:

* Define the connection properties. See “Setting Connection and Message
Properties” on page 28 for more information.

* Specify a user name and password for the connection. See the Message Queue
Administration Guide for information on how to set up users.

e Write a connection exception listener function. You will need to pass a
reference to this listener when you create the connection. This function will be
called synchronously when a connection exception occurs for this connection.
For more information, see “Callback Type for Connection Exception
Handling” on page 83.

* If you want a secure connection, call the M) ntitial i zeSSL function to
initialize the SSL library. See “Working With Secure Connections” on page 35
for more information.

When you have completed these steps, you are ready to call MO eat eConnect i on
to create a connection. After you create the connection, you can create a session as
described in “Working With Sessions and Destinations” on page 39.

When you send a message, you do not need to start the connection explicitly by
calling Mt art Connect i on. You do need to call Mt art Connect i on before the
broker can deliver messages to a consumer.

If you need to halt delivery in the course of processing messages, you can call the
MXt opConnect i on function.

Defining Connection Properties

Connection properties specify the following information:
¢ The host name and port of the broker to which you want to connect
* The transport protocol of the connection service used by the client

e How broker and client acknowledgements are handled to support messaging
reliability

¢ How message flow is to be managed
¢ How secure messaging should be implemented

The following sections examine the effect of properties used to manage connection
handling, reliability, message flow, and security.

Chapter 2 Using the C APl 33

Working With Connections

34

Table 4-2 on page 77 lists and describes all properties of a connection. For
information on how to set and change connection properties, see “Working With
Properties” on page 28.

Connection Handling

Connections to a message server are specified by a broker host name and port
number.

e Set M) BROKER NAME PRCPERTY to specify the broker name.
* Set M) BROKER PCRT_PRCPERTY to specify the broker port.

* Set the connection property M) CONNECTI ON_TYPE_PRCPERTY to specify the
underlying transport protocol. Possible values are TCP or SSL.

The MQ_PI NG | NTERVAL_PROPERTY also affects connection handling. This property is
set to the interval (in seconds) that the connection can be idle before the C client
runtime pings the broker to test whether the connection is still alive. This property
is useful for either producers who use the connection infrequently or for clients
who are exclusive consumers, passively waiting for messages to arrive. The default
value is 30 seconds. Setting an interval that is too low may result in some
performance loss. The minimum permitted value is 1 second to prevent this from
happening.

Currently, the C-API does not support auto-reconnect or failover, which allows the
client runtime to automatically reconnect to a broker if a connection fails.

Reliability

Two connection properties enable the acknowledgement of messages sent to the
broker and of messages received from the broker. These are described in “Message
Acknowledgement” on page 40. In addition to setting these properties, you can
also set MQ ACK_TI MEQUT_PRCPERTY, which determines the maximum time that the
client runtime will wait for any broker acknowledgement before throwing an
exception.

Flow Control

A number of connection properties determine the use of Message Queue control
messages by the client runtime. Messages sent and received by Message Queue
clients and Message Queue control messages pass over the same client-broker
connection. Because of this, delays may occur in the delivery of control messages,
such as broker acknowledgements, if these are held up by the delivery of J]MS
messages. To prevent this type of congestion, Message Queue meters the flow of
JMS messages across a connection.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Connections

e Set M) CONNECTI ON_FLOW CQUNT_PRCPERTY to specify the number of Message
Queue messages in a metered batch. When this number of messages is
delivered to the client runtime, delivery is temporarily suspended, allowing
any control messages that had been held up to be delivered. Message delivery
is resumed upon notification by the client runtime, and continues until the
count is again reached.

e M) CONNECTI ON_FLOW LI M T_PROPERTY specifies the maximum number of
unconsumed messages that can be delivered to a client runtime. When the
number of messages reaches this limit, delivery stops and resumes only when
the number of unconsumed messages drops below the specified limit. This
helps a consuming client that is taking a long time to process messages from
being overwhelmed with pending messages that might cause it to run out of
memory.

e M) CONNECTI ON_FLON LI M T_ENABLED PRCPERTY specifies whether the value
MQ_CONNECTI ON_FLOW LI M T_PRCOPERTY is used to control message flow.

You should keep the value of M) CONNECTI ON_FLON COUNT_PRCPERTY low if the
client is doing operations that require many responses from the broker; for
example, the client is using the CLI ENT_ACKNOMLEDGE or AUTO_ACKNOALEDGE modes,
persistent messages, transactions, or if the client is adding or removing consumers.
You can increase the value of M) CONNECTI ON_FLOW COUNT_PROPERTY without
compromising performance if the client has only simple consumers on a
connection using DUPS_OK mode.

The C API does not currently support consumer-based flow control.

Working With Secure Connections

Establishing a secure connection between the client and the broker requires both
the administrator and the developer to do some additional work. The
administrator’s work is described in the Message Queue Administration Guide. In
brief, it requires that the administrator do the following:

* Generate certificates (self-signed or signed by a certificate authority) and add
those certificates to the broker’s keystore

e Enable the ssl j ns connection service in the broker

¢ Provide the password to the certificate keystore when starting the broker

Chapter 2 Usingthe CAPI 35

Working With Connections

36

The developer must also do some work to configure the client for secure
messaging. The work required depends on whether the broker is trusted (the
default setting) and on whether the developer wants to provide an additional
means of verification if the broker is not trusted and the initial attempt to create a
secure connection fails.

The MessageQueue C-API library uses NSS to support the SSL transport protocol
between the Message Queue C client and the Message Queue broker. The
developer must take care if the client application using secure Message Queue
connections uses NSS (for other purposes) directly as well and does NSS
initialization. For additional information, see “Coordinating NSS Initialization” on
page 37.

Configuring the Client for Secure Communication

By default the M) SSL_BROKER | S_TRUSTED property is set to t r ue, and this means
that the Message Queue client runtime will accept any certificate that is presented
to it.

To establish a secure connection, a client must do the following:
1. Setthe MQ CONNECTI ON TYPE_PRCPERTY to SSL.

2. If you want the runtime to check the broker’s certificate, set the
MQ SSL_BRCOKER | S TRUSTED property to f al se. Otherwise, you can leave it to
its default (t r ue) value.

3. Generate the NSS files Cert N. db, keyN. db, and secrod. db using the certificate
database tool certutil. You can find this tool at the following locations:

o Solaris: / usr/sfw bin

o Linux:/opt/sun/private/bin

o Windows: | M) HOVE\ bi n

For directions and an example of using this tool, see

http: //ww nozi | | a. or g/ proj ect s/ security/ pki/nss/tool s/certutil.htn

4. Note the path name of the directory that contains the NSS files you generated
in Step 3.

5. If you have set the M) SSL_BROKER | S_TRUSTED property to f al se, use the
certutil tool to import the root certificate of the authority certifying the
broker into the database files you generated in Step 3.

Make sure that the M) BROKER _HOST_PRCPERTY value is set to the same value as
the (CN) common name in the broker’s certificate.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

Working With Connections

6. Ifyouhave setthe M) SSL_BRCKER | S TRUSTED property to f al se, you have the
option of enabling broker fingerprint-based verification in case authorization
fails. For details, see “Verification Using Fingerprints” on page 37.

7. Call the function MJ ni ti al i zeSSL once (and only once) before creating the
connection, and pass the name of the directory that contains the NSS files you
generated in Step 3. If the broker is trusted, these files can be empty.

You must call this function before you create any connection to the broker,
including connections that do not use SSL.

Verification Using Fingerprints

If certificate authorization fails when the broker is using a certificate authority, it is
possible to give the client runtime another means of establishing a secure
connection by comparing broker certificate fingerprints. If the fingerprints match,
the connection is granted; if they do not match, the attempt to create the connection
will fail.

To Set Up Fingerprint Certification, Do the Following:

1. Set the broker connection property M) SSL_CHECK _BROKER FI NGERPRI NT to
true.

2. Retrieve the broker’s certificate fingerprint by using the java keyt ool -1i st
option on the broker’s keystore file:

You will use the output of this command as the value for the connection
property M) _SSL_BRCKER CERT_FI NGERPRI NT in Step 3. For example, if the
output contains a value like the following:

Certificate fingerprint (MDbB):
F6: A5: Cl: F2: E6: 63: 40: 73: 97: 64: 39: 6C. 1B: 35: OF: 8E

You would specify this value for M) SSL_BRCKER _CERT_FI NGEPRI NT.

3. Set the connection property M) SSL_BROKER CERT_FI NGEPRI NT to the value
obtained in Step 2.

Coordinating NSS Initialization

If your application uses NSS directly, other than to support Message Queue secure
communication, you need to coordinate NSS initialization with the Message Queue
C-API library. There are two cases to consider:

* Your application does not use secure Message Queue connections.
In this case, you should do your application’s NSS initialization before calling

MY eat eConnect i on to create any connection to the Message Queue broker.

Chapter 2 Using the C APl 37

Working With Connections

* Your application does use secure Message Queue connections.

In this case, you should follow the procedure outlined below before calling
MXr eat eConnect i on to create any Message Queue connection.

[J To Coordinate NSS Initialization
1. Call the function M) ni ti al i zeSSL. (You must specify the path to the directory
containing the NSS files as the cer t dbpat h parameter to this function.)

Your application’s use of NSS must specify the same cer t dbpat h value for the
location of its NSS files. (That is, the certificates needed by your application
must be located in the same directory as the certificates needed by Message
Queue.)

Internally, the function M) ni ti al i zeSSL does the following:
o Calls the function NSS | ni t (cert dbpath).
o Sets DOVESTI Ccipher policy using the function NSS_Set Donest i cPol i cy() .

o Enables all cipher suites, including RSA NULL_MD by calling the function
SSL_Q pher Pref Set Def aul t (SSL_RSA WTH NULL_MD5, PR _TRUE).

o Calls the function SSL_Q ear Sessi onCache() .

2. If your application needs different cipher suite settings, after you call the
M nitializeSSL() function, you can modify the cipher suites by calling the
function SSL_QG pher Pr ef Set Def aul t . However, note that these changes will
affect your secure connection to the Message Queue broker as well.

Shutting Down Connections

In order to do an orderly shutdown, you need to close the connection by calling
MY oseConnect i on and then to free the memory associated with the connection by
calling the MJFr eeConnect i on function.

* (losing the connection closes all sessions, producers, and consumers created
from this connection. This also forces all threads associated with this
connection that are blocking in the library to return.

38 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Working With Sessions and Destinations

¢ After all the application threads associated with this connection and its
descendant sessions, producers, consumers, etc. have returned, the application
can call the MJFr eeConnect i on function to release all resources associated with

the connection.

To get information about a connection, call the MGet Met aDat a function. This
returns name and version information for the Message Queue product.

Working With Sessions and Destinations

A session is a single-threaded context for producing and consuming messages. You
can create multiple producers and consumers for a session, but you are restricted to
using them serially. In effect, only a single logical thread of control can use them. A
session supports reliable delivery through acknowledgment options or by using

transactions.

Table 2-4 describes the functions you use to create and manage sessions.

Table 2-4 Functions Used to Work with Sessions

Function

Description

MXr eat eSessi on

MXet Acknow edgeMbde

MQRecover Sessi on

MXRol | BackSessi on

Mo t Sessi on

MY oseSessi on

Creates the specified session and passes back a
handle to it.

Passes back the acknowledgement mode of the
specified session.

Stops message delivery and restarts message
delivery with the oldest unacknowledged message.
(For non-transacted sessions.)

Rolls back a transaction associated with the specified
session.

Commits a transaction associated with the specified
session.

Closes the specified session.

Chapter 2 Using the C APl 39

Working With Sessions and Destinations

40

Creating a Session

The MQCr eat eSessi on function creates a new session and initializes a handle to it in
the sessi onHand| e parameter. The number of sessions you can create for a single
connection is limited only by system resources. You can create a session after you
have created a connection.

When you create a session, you specify whether it is transacted, the acknowledge
mode, and the receive mode. After you create a session, you can create the
producers, consumers, and destinations that use the session context to do their
work.

Transacted Sessions

If you specify that a session be transacted, the acknowledge mode is ignored.
Within a transacted session, the broker tracks sends and receives, completing these
operations only when the client issues a call to commit the transaction. If a send or
receive operation fails, an exception is raised. Your application can handle the
exception by ignoring it, retrying it, or rolling back the entire transaction. When a
transaction is committed, all the successful operations are completed. When a
transaction is rolled back, all successful operations are cancelled.

The scope of a transaction is always a single session. That is, one or more producer
or consumer operations performed in the context of a single session can be
grouped into a single local transaction.

Since transactions span only a single session, you cannot have an end-to-end
transaction encompassing both the production and consumption of a message. (In
other words, the delivery of a message to a destination and the subsequent delivery
of the message to a client cannot be placed in a single transaction.)

Message Queue does not support distributed transactions for C clients.

Message Acknowledgement
Both messages that are sent and messages that are received can be acknowledged.

In the case of message producers, if you want the broker to acknowledge its having
received a non-persistent message (to its physical destination), you must set the
connection’s M) ACK_CON_PRODUCE_PRCPERTY to MQ)_TRUE. If you do so, the sending
function will return only after the broker has acknowledged receipt of the message.
By default, the broker acknowledges receipt of persistent messages.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Sessions and Destinations

Acknowledgements on the consuming side means that the client runtime
acknowledges delivery and consumption of all messages from a physical
destination before the message service deletes the message from that destination.
You can specify one of the following acknowledge modes for the consuming
session when you create that session.

e M) AUTO ACKNOWLEDCE specifies that the session automatically acknowledge
each message consumed by the client.

e M) CLI ENT_ACKNOMLEDGE specifies that the client must explicitly acknowledge
messages by calling MQAcknow edgeMessages. In this case, all messages are
acknowledged that have been consumed up to the point where the
acknowledge function is called. (This could include messages consumed
asynchronously by many different message listeners in that session,
independent of the order in which they were consumed.)

* M) DUPS_OK_ACKNONLEDGE specifies that the session acknowledges receipt of
messages after each ten messages are consumed. It does not guarantee that
messages are delivered and consumed only once.

(The setting of the connection property M) ACK_ON_ACKNOALEDGE_PRCPERTY also
determines the effect of some of these acknowledge modes. For more information,
see Table 4-2 on page 77.)

NOTE In the DUPS_CK_ACKNOALEDGE mode, the session does not wait for
broker acknowledgements. This option can be used in Message
Queue C clients for which duplicate messages are not a problem.
Also, you can call the MRecover Sessi on function to explicitly
request redelivery of messages that have been received but not yet
acknowledged by the client. When redelivering such messages, the
broker will set the header field M) REDLI EVERED HEADER PROPERTY.

Receive Mode

You can specify a session’s receive mode as either M) SESSI ON_SYNC_RECE! VE or
MQ_SESSI ON_ASYNC_RECEI VE. If the session you create will be used for sending
messages only, you should specify M) SESSI ON_SYNC_RECE! VE for its receive mode
for optimization because the asynchronous receive mode automatically allocates
an additional thread for the delivery of messages it expects to receive.

Chapter 2 Using the C APl 41

Working With Sessions and Destinations

42

Managing a Session

Managing a session involves using threads appropriately for the type of session
(synchronous or asynchronous) and managing message delivery for both
transacted and nontransacted sessions. For more information about thread
management, see “Managing Threads” on page 60.

¢ For a session that is not transacted, use the MRecover Sessi on function to
restart message delivery with the last unacknowledged message.

e For a session that is transacted, use the MRl | BackSessi on function to roll
back any messages that were delivered within this transaction. Use the
MConmi t Sessi on function to commit all messages associated with this
transaction.

e Use the M 0seSessi on function to close a session and all its associated
producers and consumers. This function also frees memory allocated for the
session.

You can get information about a session’s acknowledgment mode by calling the
MXet Acknowl edgeMbde function.

Creating Destinations

After creating a session, you can create destinations or temporary destinations for
the messages you want to send. Table 2-5 lists the functions you use to create and
to get information about destinations.

Table 2-5 Functions Used to Work with Destinations

Functions Description

MXr eat eDest i nati on Creates a destination and initializes a handle to it.

MXr eat eTenpor aryDest i nati on Creates a temporary destination and initializes a
handle to it.

MXet Dest i nati onType Returns the type (queue or topic) of the specified
destination.

A destination refers to where a message is destined to go. A physical destination is a
JMS message service entity (a location on the broker) to which producers send
messages and from which consumers receive messages. The message service
provides the routing and delivery for messages sent to a physical destination.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Sessions and Destinations

When a Message Queue C client creates a destination programmatically using the
MXr eat eDest i nat i on function, a destination name must be specified. The function
initializes a handle to a destination data type that holds the identity (name) of the
destination. The important thing to remember is that this function does not create
the physical destination on the broker; this must be done by the administrator. The
destination that is created programmatically however must have the exact same
name and type as the physical destination created on the broker. For example, if
you use the M) eat eDest i nat i on function to create a queue destination called
myMai | QDest , the administrator has to create a physical destination on the broker
named nyMai | QDest .

Destination names starting with “mq” are reserved and should not be used by
client programs.

Programming Domains

When you create a destination, you must also specify its type:

MQ_QUEUE_DESTI NATI ONor M) TGPl C_DESTI NATI ON See the Message Queue Technical
Overview for a discussion of these two types of destinations and how to choose the
type that suits your needs.

Auto-Created Destinations

By default, the i ng. aut ocr eat e. t opi ¢ and i ng. aut ocr eat e. queue broker
properties are turned on. In this case, which is more convenient in a development
environment, the broker automatically creates a physical destination whenever a
message consumer or message producer attempts to access a non-existent
destination. The auto-created physical destination will have the same name as that
of the destination you created using the MYr eat eDest i nati on function.

Temporary Destinations

You use the M) eat eTenpor ar yDest i nat i on to create a temporary destination.
You can use such a destination to implement a simple request/reply mechanism.
When you pass the handle of a temporary destination to the M®et MessageRepl yTo
function, the consumer of the message can use that handle as the destination to
which it sends a reply.

Temporary destinations are explicitly created by client applications and are
automatically deleted when the connection is closed. They are maintained (and
named) by the broker only for the duration of the connection for which they are
created. Temporary destinations are system-generated uniquely for their
connection and only their own connection is allowed to create message consumers
for them.

Chapter 2 Using the C APl 43

Working With Messages

Getting Information About Destinations

Use the MXet Dest i nat i onType function to determine the type of a destination:
queue or topic. There may be times when you do not know the type of the
destination to which you are replying: for example, when you get a handle from
the MJGet MessageRepl yTo function. Because the semantics of queue and topic
destinations differ, you need to determine the type of a destination in order to

reply appropriately.

Working With Messages

44

This section describes how you use the C-API to complete the following tasks:
e Compose a message

* Send a message

* Receive a message

b Process a message

Composing Messages

You can create either a text message or a bytes message. A message, whether text or
bytes, is composed of a header, properties, and a body.

Table 2-6 lists the functions you use to construct messages.

Table 2-6 Functions Used to Construct Messages

Function Description

MXr eat eByt esMessage Creates an MQ BYTES_MESSAGE message.

MXr eat eText Message Creates an MQ TEXT_MESSAGE message.

MXBet MessageHeader s Sets message header properties. (Optional)

MXBet MessagePr operti es Sets user-defined message properties.

MXet Stri ngProperty Sets the body of an M) TEXT_MESSAGE message.

MXet Byt esMessageByt es Sets the body of an M) BYTES MESSAGE message.

MXBet MessageRepl yTo Specifies the destination where replies to this message should
be sent.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Messages

Message Header

A header is required of every message. Header fields contain values used for
routing and identifying messages.

Some header field values are set automatically by Message Queue during the
process of producing and delivering a message, some depend on settings specified
when message producers send a message, and others are set on a
message-by-message basis by the client using the MBet MessageHeader function.
Table 2-7 lists the header fields defined (and required) by JMS and their
corresponding names, as defined by the C-API.

Table 2-7 JMS-defined Message Header
JMS Message Header

Field C-API Message Header Property Name

J\VBDest i nation Defined implicitly when a producer sends a message to a
destination, or when a consumer receives a message from a
destination.

JMVBDel i ver yMode MQ_PERSISTENT_HEADER_PROPERTY

JMBExpi rati on MQ_EXPIRATION_HEADER_PROPERTY

JMSPriority MQ_PRIORITY_HEADER_PROPERTY

J\VBMessagel D MQ_MESSAGE_ID_HEADER_PROPERTY

JNVBTI mest anp MQ_TIMESTAMP_HEADER_PROPERTY

JVBRedel i ver ed MQ_REDELIVERED_HEADER_PROPERTY

JMBCorrel ati onl D MQ_CORRELATION_ID_HEADER_PROPERTY

JMSRepl yTo Set by the M®Bet MessageRepl yTo function, and obtained by the

MXGet MessageRepl yTo function.
JMSType MQ_MESSAGE_TYPE_HEADER_PROPERTY

For additional information about each property type and who sets it, see Table 4-6
on page 173.

Chapter 2 Using the C APl 45

Working With Messages

46

Message Body Types

JMS specifies six classes (or types) of messages. The C-API supports only two of
these types, as described in Table 2-8. If a Message Queue C client expects to
receive messages from a Message Queue Java client, it will be unable to process
messages whose body types are other than those described in Table 2-8. It will also
be unable to process messages that are compressed by the Message Queue Java
client runtime.

Table 2-8 C-API Message Body Types

Type Description

TextMessage A message whose body contains an MQString string, for example
an XML message.

BytesMessage A message whose body contains a stream of uninterpreted bytes.

Composing the Message

Create a message using either the MY eat eByt esMessage function or the

MXr eat eText Message function. Either of these functions returns a message handle
that you can then pass to the functions you use to set the message body, header,
and properties (listed in Table 2-6).

e Use the MBet Text MessageText function to define the body of a text message;
use the MXBet Byt esMessageByt es function to define the body of a bytes
message.

e Use the MBet MessageHeader s to set any message header properties.

The message header can specify up to eight properties; most of these are set by
the client runtime when sending the message or are set by the broker. The
client can set M) CORRELATI ON_| D HEADER PROPERTY and
MQ_MESSAGE TYPE HEADER PRCPERTY for sending a message.

¢ Use the M¥et MessagePr operti es function to set any user-defined properties
for this message.

When you set message header properties or when you set additional user-defined
properties, you must pass a handle to a properties object that you have created
using the MX eat ePr oper ti es function. For more information, see “Working With
Properties” on page 28.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Messages

You can use the MBet MessageRepl yTo function to associate a message with a
destination that recipients can use for replies. To do this, you must first create a
destination that will serve as your reply-to destination. Then, pass a handle to that
destination when you call the MXBet MessageRepl yTo function. The receiver of a
message can use the MJGet MessageRepl yTo function to determine whether a sender
has set up a destination where replies are to be sent.

Sending a Message

Messages are sent by a message producer within the context of a connection and a
session. Once you have obtained a connection, created a session, and composed
your message, you can use the functions listed in Table 2-9 to create a message
producer and to send the message.

Which function you choose to send a message depends on the following factors:

¢ Whether you want the send function to override certain message header
properties

Send functions whose names end in Ext allow you to override default values
for priority, time-to-live, and delivery mode header properties.

* Whether you want to send the message to the destination associated with the
message producer

If you created a message producer with no specified destination, you must
used one of the . . . ToDest i nat i on send functions. If you created a message
producer with a specified destination, you must use one of the other send
functions.

Table 2-9 Functions for Sending Messages

Function Action
MXr eat eMessagePr oducer Creates a message producer with no specified
destination.

MXr eat eMessagePr oducer For Desti nation Creates a message producer with a specified

destination.

MXBendMessage Sends a message for the specified producer.

MXBendMessageExt Sends a message for the specified producer and
allows you to set priority, time-to-live, and delivery
mode.

MXBendMessageToDest i nati on Sends a message to the specified destination.

Chapter 2 Using the C APl 47

Working With Messages

48

Table 2-9 Functions for Sending Messages

MXBendMessageToDest i nat i onExt Sends a message to the specified destination and
allows you to set priority, time-to-live, and delivery
mode.

If you send a message using one of the functions that does not allow you to
override header properties, the following message header fields are set to default
values by the send function.

e MQ PERS| STENT_HEADER PROPERTY will be set to M) PERSI STENT DELI VERY.
e M PR CR TY_HEADER PROPERTY will be set to 4.

e MQ EXPI RATI ON_HEADER PRCOPERTY will be set to 0, which means that the
message will never expire.

To override these values, use one of the extended send functions. For a complete
list of message header properties, see Table 4-5 on page 134.

Message headers also contain fields that can be set by the sending client; in
addition, you can set user-defined message properties as well. For more
information, see “Composing Messages” on page 44.

You can set the connection property M) ACK_CN_PRODUCE_PRCPERTY when you
create the connection to make sure that the message has reached its destination on
the broker:

* By default, the broker acknowledges receiving persistent messages only.

e If you set the property to M) TRUE, the broker acknowledges receipt of all
messages (persistent and non-persistent) from the producing client.

¢ Ifyou set the property to M) FALSE, the broker does not acknowledge receipt of
any message (persistent or non-persistent) from the producing client.

Note that “acknowledgement” in this case is not programmatic but internally
implemented. That is, the client thread is blocked and does not return until the
broker acknowledges messages it receives.

An administrator can set a broker limit, REJECT NEWEST, which allows the broker to
avert memory problems by rejecting the newest incoming message. If the incoming
message is persistent, then an error is returned which the sending client should
handle, perhaps by retrying the send a bit later. If the incoming message is not
persistent, the client has no way of knowing that the broker rejected it. The broker
might also reject a message if it exceeds a specified limit.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Messages

Receiving Messages

Messages are received by a message consumer in the context of a connection and a
session. In order to receive messages, you must explicitly start the connection by
calling the Mt ar t Connect i on function.

Table 2-10 lists the functions you use to create message consumers and to receive

messages.

Table 2-10 Functions Used to Receive Messages

Function

Description

MXr eat eMessageConsuner

MXr eat eDur abl eMessageConsuner

MXr eat eAsyncMessageConsumner

MXr eat eAsyncDur abl eMessageConsuner

MQUnsubscr i beDur abl eMessageConsuner
MXRecei veMessageNoWi t

MXRecei veMessageWi t

MXRecei veMessageW t hTi neout

MAcknow edgeMessages

MX oseMessageConsuner

Creates the specified synchronous consumer and passes back a handle
to it.

Creates a durable synchronous message consumer for the specified
destination.

Creates an asynchronous message consumer for the specified
destination.

Creates a durable asynchronous message consumer for the specified
destination.

Unsubscribes the specified durable message consumer.

Passes a handle back to a message delivered to the specified consumer if
a message is available; otherwise it returns an error.

Passes a handle back to a message delivered to the specified consumer if
a message is available; otherwise it blocks until a message becomes
available.

Passes a handle back to a message delivered to the specified consumer if
a message is available within the specified amount of time.

Acknowledges the specified message and all messages received before it
on the same session

Closes the specified consumer.

Chapter 2 Using the C APl 49

Working With Messages

50

Working With Consumers

When you create a consumer, you need to make several decisions:
¢ Do you want to receive messages synchronously or asynchronously?

If you create a synchronous consumer, you can call one of three kinds of
receive functions to receive your messages. If you create an asynchronous
consumer, you must specify the name of a callback function that the client
runtime can call when a message is delivered to the destination for that
consumer. For information about the callback function signature, see “Callback
Type for Asynchronous Messaging” on page 81.

e If you are consuming messages from a topic, do you want to use a durable or a
nondurable consumer?

A durable consumer receives all the messages published to a topic, including
the ones published while the subscriber is inactive. A nondurable consumer
only receives messages while the subscriber is active.

The broker retains a record of this durable subscription and makes sure that all
messages from the publishers to this topic are retained until they are either
acknowledged by this durable subscriber or until they have expired. Sessions
with durable subscribers must always provide the same client identifier. In
addition, each consumer must specify a durable name using the dur abl eNanme
parameter, which uniquely identifies (for each client identifier) each durable
subscription it creates.

A session’s consumers are automatically closed when you close the session or
connection to which they belong. However, messages will be routed to the durable
subscriber while it is inactive and delivered when a new durable consumer is
recreated. To close a consumer without closing the session or connection to which
it belongs, use the MY oseMessageConsuner function. If you want to close a
durable consumer permanently, you should call the function

Mnsubscr i beDur abl eMessageConsuner after closing it, to delete state information
maintained by the broker on behalf of the durable consumer.

Receiving a Message Synchronously

If you have created a synchronous consumer, you can use one of three receive
functions: MQRecei veMessageNoWi t , MRecei veMessageWi t, or

MXRecei veMessagewi t hTi meQut . In order to use any of these functions, you must
have specified M) SESSI ON_SYNC_RECEI VE for the receive mode when you created
the session.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Working With Messages

When you create a session you must specify one of several acknowledge modes for
that session. If you specify M) CLI ENT_ACKNOALEDGE as the acknowledge mode for
the session, you must explicitly call the MAcknow edgeMessages function to
acknowledge messages that you have received. If the session is transacted, the
acknowledge mode parameter is ignored.

When the receiving function returns, it gives you a handle to the delivered
message. You can pass that handle to the functions described in “Processing a
Message” on page 52, in order to read message properties and information stored
in the header and body of the message.

It is possible that a message can be lost for synchronous consumers in a session
using AUTO_ACKNOALEDGE mode if the provider fails. To prevent this possibility, you
should either use a transacted session or a session in CLI ENT_ACKNOALEDGE mode.

Because distributed applications involve greater processing time, such an
application might not behave as expected if it were run locally. For example,
calling the MQRecei veMessageNoVii t function might return M) NO_ MESSAGE even
when there is a message available to be retrieved on the broker. See the usage notes
provided in the section “MQReceiveMessageNoWait” on page 149 for more
information.

Receiving a Message Asynchronously

To receive a message asynchronously, you must create an asynchronous message
consumer and pass the name of an MQvessageLi st ener Func type callback function.
(Therefore, you must set up the callback function before you create the
asynchronous consumer that will use it.) You should start the connection only after
creating an asynchronous consumer. If the connection is already started, you
should stop the connection before creating an asynchronous consumer.

You are also responsible for writing the message listener function. Mainly, the
function needs to process the incoming message by examining its header, body,
and properties, or it needs to pass control to a function that can do this processing.
The client is also responsible for freeing the message handle (either from within the
listener or from outside of the listener) by calling the MFr eeMessage function.

When you create a session you must specify one of several acknowledge modes for
that session. If you specify MQ CLI ENT_ACKNOALEDGE as the acknowledge mode for
the session, you must explicitly call the MQAcknow edgeMessages function to
acknowledge messages that you have received.

For more information about the signature and content of a call back function, see
“Callback Type for Asynchronous Messaging” on page 81.

Chapter 2 Using the CAPI 51

Working With Messages

52

When the callback function is called by the session delivery of a message, it gives
you a handle to the delivered message. You can pass that handle to the functions
described in “Processing a Message” on page 52, in order to read message
properties and information stored in the header and body of the message.

Processing a Message

When a message is delivered to you, you can examine the message’s properties,
type, headers, and body. The functions used to process a message are described in
Table 2-11.

Table 2-11 Functions Used to Process Messages

Function Description

MXet MessageHeader s Gets message header properties.

MXet MessagePr operti es Gets user-defined message properties.

MXet MessageType Gets the message type: MQ TEXT_MESSAGE or
MQ BYTES_MESSAGE

MXet Text MessageText Gets the body of an M) TEXT _MESSAGE message.

MXet Byt esMessageByt es Gets the body of an MQ BYTES_MESSAGE message.

MXet MessageRepl yTo Gets the destination where replies to this message should be
sent.

If you are interested in a message’s header information, you need to call the
MXGet MessageHeader s function. If you need to read or check any user-defined
properties, you need to call the MQGet MessagePr opert i es function. Each of these
functions passes back a properties handle. For information on how you can read
property values, see “Getting Message Properties” on page 30.

Before you can examine the message body, you can call the MGet MessageType
function to determine whether the message is a text or bytes message. You can then
call the M)Get Text MessageText , or the MQCGet Byt esMessageByt es function to get the
contents of the message.

Some message senders specify a reply destination for their message. Use the
MX et MessageRepl yTo function to determine that destination.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Error Handling

Error Handling

Nearly all Message Queue C functions return an M®t at us result. You can use this
return value to determine whether the function returned successfully and, if not, to
determine the cause of the error.

Table 2-12 lists the functions you use to get error information.

Table 2-12 Functions Used in Handling Errors

Function Description

Mt at usl sError Returns an MQ TRUE if the specified M¥t at us is an error.

MXet St at usCode Returns the error code for the specified Mt at us.

MXet St at usString Returns a descriptive string for the specified Mt at us.

MXet Error Trace Returns the calling thread’s current error trace or NULL if no error

trace is available.

[J To Handle Errors in Your Code
1. Call Mt at usl sError, passing it an MX¥t at us result for the function whose
result you want to test.

2. If the M®Bt at usl sError function returns MQ TRUE, call MXet St at usCode or
MXGet St at usStri ng to identify the error.

3. If the status code and string information is not sufficient to identify the cause of
the error, you can get additional diagnostic information by calling
MXGet Er r or Tr ace to obtain the calling thread’s current error trace if this
information is available.

Chapter 4, “Reference” on page 73, lists common errors returned for each function.
In addition to these errors, the following error codes may be returned by any
Message Queue C function:

e M) STATUS | NVALI D HANDLE
e M) OUT_OF MEMORY
e M) NULL_PTR ARG

In addition, the MQ_TI MEQUT_EXPI RED can return from any Message Queue C
function that communicates with the Message Queue broker if the connection
MQ ACK_TI MEQUT_PRCPERTY is set to a non-zero value.

Chapter 2 Using the C APl 53

Memory Management

Memory Management

Table 2-13 lists the functions you use to free or deallocate memory allocated by the
Message Queue-C client library on behalf of the user. Such deallocation is part of
normal memory management and will prevent memory leaks.

The functions MY oseConnect i on, M oseSessi on, MX oseMessagePr oducer,
and MY oseMessageConsuner are used to free resources associated with
connections, sessions, producers, and consumers.

Table 2-13 Functions Used to Free Memory

Function Description

MJr eeConnect i on Frees memory allocated to the specified connection.
MJreeDest i nati on Frees memory allocated to the specified destination.

MJr eeMessage Frees memory allocated to the specified message.

MJr eeProperties Frees memory allocated to the specified properties handle.
MJFreeString Frees memory allocated to the specified MEt ri ng.

You should free a connection only after you have closed the connection with the
MY oseConnect i on function and after all of the application threads associated
with this connection and its dependent sessions, producers, and consumers have
returned.

You should not free a connection while an application thread is active in a library
function associated with this connection or one of its dependent sessions,
producers, consumers, and destinations.

Freeing a connection does not release resources held by a message associated with
this connection. You must free memory allocated for this message by explicitly
calling the MJFr eeMessage function.

You should not free a properties handle if the properties handle passed to a
function becomes invalid on its return. If you do, you will get an error.

54 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Logging

Logging

The Message Queue C-API library uses two environment variables to control
execution-time logging:

* M) LOG Fl LE specifies the file to which log messages are directed. If you do not
specify a file name for this variable, st derr is used. If M) LOG FI LEis a
directory name, it should include a trailing directory separator.

By default, .n (wherenis 0, 1, 2,...) is appended to the actual log file name. This
is used as a rotation index, and the indices are used sequentially when the
maximum log file size is reached. You can use % to specify a rotation index
replacement in M) LCG Fl LE after the last directory separator. Only the last %
is used if multiple %’ s are specified. the % replacement can be escaped with %
The maximum rotation index is 9, and the maximum log file size is 1 MB. These
limits are not configurable.

e M) LOG LEVEL specifies a numeric level that indicates the detail of logging
information needed. A value of -1 specifies that nothing be logged. By default
the level is set to 3.

Chapter 2 Using the C APl 55

Logging

56 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Chapter 3

Client Design Issues

This chapter describes a number of messaging issues that impact Message Queue C
client design. It covers the following topics:

“Producers and Consumers” on page 57

“Using Selectors Efficiently” on page 58

“Determining Message Order and Priority” on page 59
“Managing Threads” on page 60

“Managing Physical Destination Limits” on page 62
“Managing the Dead Message Queue” on page 63

“Factors Affecting Performance” on page 67

This chapter does not discuss the particulars of the C-API and how to use the data
types and functions it defines to create messaging clients. For this information, see
Chapter 2, “Using the C API” on page 25.

Producers and Consumers

Aside from the reliability your client requires, the design decisions that relate to
producers and consumers include the following:

Do you want to use a point-to-point or a publish/subscribe domain?

There are some interesting permutations here. There are times when you
would want to use publish/subscribe even when you have only one
subscriber. Performance considerations might make the point-to-point model
more efficient than the publish/subscribe model, when the work of sorting
messages between subscribers is too costly. Sometimes these decisions cannot
be made in the abstract, but different prototypes must be developed and tested.

57

Using Selectors Efficiently

Are you using an asynchronous message consumer that does not get called
often or a producer that is seldom used?

You might need to adjust the M) Pl NG | NTERVAL_PRCPERTY when you create
your connection, so that your client gets an exception if the connection should
fail. For more information see “Connection Handling” on page 34.

Are you using a synchronous consumer in a distributed application?

You might need to allow a small time interval between connecting and calling
the MQRecei veMessageNoV&i t function in order not to miss a pending message.
For more information, see usage information in the section
“MQReceiveMessageNoWait” on page 149.

Using Selectors Efficiently

The use of selectors can have a significant impact on the performance of your
application. It's difficult to put an exact cost on the expense of using selectors since
it varies with the complexity of the selector expression, but the more you can do to
eliminate or simplify selectors the better.

One way to eliminate (or simplify) selectors is to use multiple destinations to sort
messages. This has the additional benefit of spreading the message load over more
than one producer, which can improve the scalability of your application. For those
cases when it is not possible to do that, here are some techniques that you can use
to improve the performance of your application when using selectors:

58

Have consumers share selectors. As of version 3.5 of Message Queue, message
consumers with identical selectors “share” that selector in the broker, which
can significantly improve performance. So if there is a way to structure your
application to have some selector sharing, consider doing so.

Use | Ninstead of multiple string comparisons. For example, the following
expression:

color IN('red, 'green’, 'white')
is much more efficient than this expression
color ='red ORcolor ="green’” ORcolor ="white'

especially if the above expression usually evaluates to false.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Determining Message Order and Priority

¢ Use BETVEENinstead of multiple integer comparisons. For example:
si ze BETWEEN 6 AND 10
is generally more efficient than
size >= 6 AND size <= 10
especially if the above expression usually evaluates to true.

® Order the selector expression so that MQ can short circuit the evaluation. The
short circuiting of selector evaluation was added in MQ 3.5 and can easily
double or triple performance when using selectors depending on the
complexity of the expression.

o Ifyouhave two expressions joined by an OR, put the expression that is most
likely to evaluate to TRUE first.

o If you have two expressions joined by an AND, put the expression that is
most likely to evaluate to FALSE first.

For example, if si ze is usually greater than 6, but color is rarely r ed you would
want the order of an CRexpression to be:

size > 6 CRcolor ="'red
If you are using AND:
color ='red AND size > 6

Determining Message Order and Priority

In general, all messages sent to a destination by a single session are guaranteed to
be delivered to a consumer in the order they were sent. However, if they are
assigned different priorities, a messaging system will attempt to deliver higher
priority messages first.

Beyond this, the ordering of messages consumed by a client can have only a rough
relationship to the order in which they were produced. This is because the delivery
of messages to a number of destinations and the delivery from those destinations
can depend on a number of issues that affect timing, such as the order in which the
messages are sent, the sessions from which they are sent, whether the messages are
persistent, the lifetime of the messages, the priority of the messages, the message
delivery policy of queue destinations (see the Message Queue Administration Guide),
and message service availability.

Chapter 3 Client Design Issues 59

Managing Threads

Managing Threads

This section addresses a number of thread management issues that you should be
aware of in designing and programming a Message Queue C client. It covers the
following topics:’

* “Message Queue C Runtime Thread Model” on page 60
¢ “Concurrent Use of Handles” on page 60
¢ “Single-Threaded Session Control” on page 61

¢ “Connection Exceptions” on page 62

Message Queue C Runtime Thread Model

The Message Queue C-API library creates the thread(s) needed to provide runtime
support for a Message Queue C client. It uses NSPR (Netscape Portable Runtime)
G@.CBAL threads. NSPR GLOBAL threads are fully compatible with native threads on
each supported platform. Table 3-1 shows the thread model that the NSPR GLOBAL
threads map to on each platform. For more information on NSPR, please see

http://ww nozi | | a. or g/ proj ect s/ nspr/

Table 3-1 Thread Model for NSPR GLOBAL Threads

Platform Thread Model

Solaris pthreads

Linux pthreads

Windows Win32 threads (from Microsoft Visual C++ runtime library nsvcrt)

Concurrent Use of Handles

Table 3-2 lists the handles (objects) used in a C client program and specifies which
of these may be used concurrently and which can only be used by one logical
thread at a time.

60 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

http://www.mozilla.org/projects/nspr/

Managing Threads

Table 3-2 Handles and Concurrency

Handle Supports Concurrent Use
MPest i nati onHandl e YES

MXonnect i onHandl e YES

MXessi onHandl e NO

MPr oducer Handl e NO

MYConsuner Handl e NO

MMessageHand! e NO

MPr operti esHandl e NO

Single-Threaded Session Control

A session is a single-threaded context for producing and consuming messages.
Multiple threads should not use the same session concurrently nor use the objects it
creates concurrently. The only exception to this occurs during the orderly
shutdown of the session or its connection when the client calls the MY oseSessi on
or the MY oseConnect i on function. Follow these guidelines in designing your
client:

¢ Ifaclient wants to have one thread producing messages and other threads
consuming messages, the client should use a separate session for its producing
thread.

¢ Do not create an asynchronous message consumer while the connection is in
started mode.

* A session created with M9 SESI ON_ASYNC RECEI VE mode uses a single thread to
run all its consumers’ MQMessageLi st ener Func callback functions. Clients that
want concurrent delivery should use multiple sessions.

¢ Do not call the M¥®t opConnect i on, MY oseSessi on, or the MY oseConnect i on
functions from a MQVessageLi st ener Func callback function. (These calls will
not return until delivery of messages has stopped.)

¢ (Call the M¥Fr eeConnect i on function after MY oseConnect i on and all of the
application threads associated with a connection and its sessions, producers,
consumers, etc., have returned.

Chapter 3 Client Design Issues 61

Managing Physical Destination Limits

The Message Queue C runtime library provides one thread to a session in
MQ_SESSI ON_ASYNC_RECEI VE mode for asynchronous message delivery to its
consumers. When the connection is started, all its sessions that have created
asynchronous consumers are dedicated to the thread of control that delivers
messages. Client code should not use such a session from another thread of control.
The only exception to this is the use of MY oseSessi on and MYJ oseConnect i on.

Connection Exceptions

When a connection exception occurs, the Message Queue C library thread that is
provided to the connection calls its MQConnect i onExcept i onLi st ener Func callback
if one exists. If an MConnect i onExcept i onLi st ener Func callback is used for
multiple connections, it can potentially be called concurrently from different
connection threads.

You should not call the MX oseConnecti on function in an
MXonnect i onExcept i onLi st ener Func callback. Instead the callback function
should notify another thread to call MY oseConnect i on and return.

Managing Physical Destination Limits

62

When creating a topic or queue destination, the administrator can specify how the
broker should behave when certain memory limits are reached. Specifically, when
the number of unconsumed messages reaching a physical destination exceeds the
number specified with the maxNunmvsgs property or when the total amount of
memory allowed for unconsumed messages exceeds the number specified with the
maxTot al MsgByt es property, the broker takes one of the following actions,
depending on the setting of the | i m t Behavi or property:

* slows message producers (FLON CONTRCL)

* throws out the oldest message in memory (REMOVE_CLDEST)

¢ throws out the lowest priority message in memory (REMOVE_LON PRI CRI TY)
* rejects the newest messages (REJECT_NEWEST)

If the default value REJECT_NEWEST is specified for the | i mi t Behavi or property, the
broker throws out the newest messages received when memory limits are
exceeded. If the message discarded is a persistent message, the producing client
gets an error which you should handle by resending the message later.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Managing the Dead Message Queue

If any of the other values is selected for the | i mi t Behavi or property or if the
message is not persistent (or persistent and M) ACK_CN_PRODUCE_PRCPERTY is false),
the application client is not notified if a message is discarded. Application clients
should let the administrator know how they prefer this property to be set for best
performance and reliability.

Managing the Dead Message Queue

When a message is deemed undeliverable, it is automatically placed on a special
queue called the dead message queue. A message placed on this queue retains all
of its original headers (including its original destination) and information is added
to the message’s properties to explain why it became a dead message.

¢ For an introduction to dead messages and the dead message queue, see the
Message Queue Technical Overview.

¢ For a description of the destination properties and of the broker properties that
control the system’s use of the dead message queue, see the Message Queue
Administration Guide.

This section describes the message properties that you can set or examine
programatically to determine the following:

* Whether a dead message can be sent to the dead message queue.

* Whether the broker should log information when a message is destroyed or
moved to the dead message queue.

¢ Whether the body of the message should also be stored when the message is
placed on the dead message queue.

* Why the message was placed on the dead message queue and any ancillary
information.

(Message Queue 3 2005Q1 clients can set properties related to the dead message
queue on messages and send those messages to clients compiled against Message
Queue 3.5x or earlier versions. However clients receiving such messages cannot
examine these properties without recompiling against Message Queue 3 2005Q1
libraries.)

The dead message queue is automatically created by the system and called

my. sys. dng. You can write a Java program that uses the message monitoring API,
described in Message Queue Developer’s Guide for Java Clients, to determine whether
that queue is growing, to examine messages on that queue, and so on.

Chapter 3 Client Design Issues 63

Managing the Dead Message Queue

64

You can set the properties described in Table 3-3 for any message to control how
the broker should handle that message if it deems it to be undeliverable. Note that
these message properties are needed only to override default destination, or

default broker-based behavior.

Table 3-3 Message Properties Relating to Dead Message Queue

Property Type

Description

JMS_SUN_PRESERVE_UNDELI VERED Boolean

JMS_SUN_LOG DEAD MESSAGES Boolean

For a dead message, the default value of
unset, specifies that the message should be
handled as specified by the useDMQ property
of the destination to which the message was
sent.

A value of t rue overrides the setting of the
useDMQ property and sends the dead
message to the dead message queue,.

A value of f al se overrides the setting of the
useDMQ property and prevents the dead
message from being placed in the dead
message queue.

The default value of unset, will behave as
specified by the broker configuration
property i mg. desti nati on. | ogDeadMsgs.

A value of t r ue overrides the setting of the

i my. dest i nati on. | ogDeadMsgs broker
property and specifies that the broker should
log the action of removing a message or
moving it to the dead message queue.

A value of f al se overrides the setting of the
i my. dest i nati on. | ogDeadMsgs broker
property and specifies that the broker should
not log these actions.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Managing the Dead Message Queue

Table 3-3 Message Properties Relating to Dead Message Queue (Contined)

Property Type

Description

JMS_SUN_TRUNCATE_MBG BCDY Boolean

The default value of unset, will behave as
specified by the broker property
i mg. desti nati on. DMQ t r uncat eBody.

A value of t r ue overrides the setting of the
i ny. dest i nati on. DMQ t r uncat eBody
property and specifies that the body of the
message should be discarded when the
message is placed in the dead message
queue.

A value of f al se overrides the setting of the
i ny. dest i nati on. DMQ t r uncat eBody
property and specifies that the body of the
message should be stored along with the
message header and properties when the
message is placed in the dead message
queue.

The properties described in Table 3-4 are set by the client runtime for a message

placed in the dead message queue.

Table 3-4 Dead Message Properties

Property Type

Description

JMBXDel i ver yCount Integer

JVB_SUN_DMQ UNDELI VERED TI MESTAMP Long

Specifies the most number of times the
message was delivered to a given
consumer. This value is set only for
ERRCR or UNDELI VERABLE messages.

Specifies the time (in milliseconds) when
the message was placed on the dead
message queue.

Chapter 3 Client Design Issues 65

Managing the Dead Message Queue

66

Table 3-4

Dead Message Properties (Continued)

Property

Type

Description

JVB_SUN_DMQ UNDELI VERED REASCN

JVB_SUN_DMQ PRCDUCI NG BRCKER

JVB_SUN_DMQ UNDELI VERED EXCEPTI ON

JVB_SUN_DMQ_UNDELI VERED COWVENT

JVB_SUN_DMQ BODY_TRUNCATED

String

String

String

String

Boolean

Specifies one of the following values to
indicate the reason why the message
was placed on the dead message queue:

OLDEST

LOW PRI CRI TY
EXPI RED
UNDEL | VERABLE
ERRCR

If the message was marked dead for
multiple reasons, for example it was
undeliverable and expired, only one
reason will be specified by this property.

The ERRCRvalue is returned when a
message cannot be delivered due to an
internal error; this is an unusual
condition. In this case, the sender should
just resend the message.

For message traffic in broker clusters:
specifies the broker name and port
number of the broker that placed the
message on the dead message queue. A
null value indicates that it was the local
broker.

Specifies the name of the exception (if
the message was dead because of an
exception) on either the client or the
broker.

An optional comment provided when the
message is marked dead.

A value of t rue indicates that the
message body was not stored. A value of
f al se indicates that the message body
was stored.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Factors Affecting Performance

Factors Affecting Performance

Application design decisions can have a significant effect on overall messaging
performance. In general, the more reliable the delivery of messages, the more
overhead and bandwidth are required to achieve it. The trade-off between
reliability and performance is a significant design consideration. You can maximize
performance and throughput by choosing to produce and consume non-persistent
messages. On the other hand, you can maximize reliability by producing and
consuming persistent messages using a transacted session. Between these extremes
are a number of options, depending on the needs of your application. This section
describes how these options or factors affect performance. They include the
following:

* Delivery Mode (Persistent/Non-persistent)
* Use of Transactions

¢ Acknowledgement Mode

e Durable vs. Non-Durable Subscriptions

* Use of Selectors (Message Filtering)

* Message Size

* Message Body Type.

Table 3-5 summarizes how application design factors affect messaging
performance. The table shows two scenarios—a high reliability, low performance
scenario and a high performance, low reliability scenario—and the choice of
application design factors that characterizes each. Between these extremes, there
are many choices and trade-offs that affect both reliability and performance.

Table 3-5 Comparison of High Reliability and High Performance Scenarios

Application Design High Reliability High Performance
Factor Low Performance Scenario Low Reliability Scenario
Delivery mode Persistent messages Non-persistent messages
Use of transactions Transacted sessions No transactions
Acknowledgement mode AUTO_ACKNOW.EDGE or DUPS_OK_ACKNONLEDGE

CLI ENT_ACKNONLEDGE
Durable/non-durable Durable subscriptions Non-durable subscriptions
subscriptions
Use of selectors Message filtering No message filtering
Message size Small messages Large messages

Chapter 3 Client Design Issues 67

Factors Affecting Performance

68

Table 3-5 Comparison of High Reliability and High Performance Scenarios (Continued)

Application Design High Reliability High Performance

Factor Low Performance Scenario Low Reliability Scenario
Message body type Complex body types Simple body types

NOTE In the discussion that follows, performance data was generated on a

two-CPU, 1002 Mhz, Solaris 8 system, using file-based persistence.
The performance test first warmed up the Message Queue broker,
allowing the Just-In-Time compiler to optimize the system and the
persistent database to be primed.

Once the broker was warmed up, a single producer and a single
consumer were created, and messages were produced for 30
seconds. The time required for the consumer to receive all produced
messages was recorded, and a throughput rate (messages per
second) was calculated. This scenario was repeated for different
combinations of the application design factors shown in Table 3-5.

Delivery Mode (Persistent/Non-persistent)

Persistent messages guarantee message delivery in case of message server failure.
The broker stores these message in a persistent store until all intended consumers
acknowledge they have consumed the message.

Broker processing of persistent messages is slower than for non-persistent
messages for the following reasons:

¢ A broker must reliably store a persistent message so that it will not be lost
should the broker fail.

* The broker must confirm receipt of each persistent message it receives.
Delivery to the broker is guaranteed once the method producing the message
returns without an exception.

* Depending on the client acknowledgment mode, the broker might need to
confirm a consuming client’s acknowledgement of a persistent message.

The differences in performance for persistent and non-persistent modes can be
significant--about 25% faster for non-persistent messages.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Factors Affecting Performance

Use of Transactions

A transaction guarantees that all messages produced in a transacted session and all
messages consumed in a transacted session will be either processed or not
processed (rolled back) as a unit. The C-API supports local transactions.

A message produced or acknowledged in a transacted session is slower than in a
non-transacted session for the following reasons:

¢ Additional information must be stored with each produced message.

* Insome situations, messages in a transaction are stored when normally they
would not be. For example, a persistent message delivered to a topic
destination with no subscriptions would normally be deleted, however, at the
time the transaction is begun, information about subscriptions is not available.

¢ Information on the consumption and acknowledgement of messages within a
transaction must be stored and processed when the transaction is committed.

Acknowledgement Mode

Other than using transactions, you can ensure reliable delivery by having the client
acknowledge receiving a message. If a session is closed without the client
acknowledging the message or if the message server fails before the
acknowledgment is processed, the broker redelivers that message, setting the

MQ REDEL| VERED HEADER PRCPERTY message header.

For a non-transacted session, the client can choose one of three acknowledgement
modes, each of which has its own performance characteristics:

¢ AUTO ACKNOALEDGE. The system automatically acknowledges a message once
the consumer has processed it. This mode guarantees at most one redelivered
message after a provider failure.

e CLI ENT_ACKNOALEDGE. The application controls the point at which messages are
acknowledged. All messages that have been received in the same session up to
the message where the acknowledge function is called upon are
acknowledged. If the message server fails while processing a set of
acknowledgments, one or more messages in that group might be redelivered.

Note that this behavior models the JMS 1.0.2 specification rather than the JMS
1.1 specification

(Using CLI ENT_ACKNOALEDGE mode is similar to using transactions, except there
is no guarantee that all acknowledgments will be processed together if a
provider fails during processing.)

Chapter 3 Client Design Issues 69

Factors Affecting Performance

70

e DUPS_OK_ACKNOMLEDGE. This mode instructs the system to acknowledge
messages in a lazy manner. Multiple messages can be redelivered after a
provider failure.

Performance is impacted by acknowledgement mode for the following reasons:

e Extra control messages between broker and client are required in
AUTO ACKNOWLEDGE and CLI ENT_ACKNOMLEDGE modes. The additional control
messages add processing overhead and can interfere with JMS payload
messages, causing processing delays.

e In AUTO ACKNOALEDGE and CLI ENT_ACKNON_EDGE modes, the client must wait
until the broker confirms that it has processed the client’s acknowledgment
before the client can consume more messages. (This broker confirmation
guarantees that the broker will not inadvertently redeliver these messages.)

¢ The Message Queue persistent store must be updated with the
acknowledgement information for all persistent messages received by
consumers, thereby decreasing performance.

Durable vs. Non-Durable Subscriptions

Subscribers to a topic destination have either durable or non-durable subscriptions.
Durable subscriptions provide increased reliability at the cost of slower
throughput for the following reasons:

¢ The Message Queue message server must persistently store the list of messages
assigned to each durable subscription so that should a message server fail, the
list is available after recovery.

¢ DPersistent messages for durable subscriptions are stored persistently, so that
should a message server fail, the messages can still be delivered after recovery,
when the corresponding consumer becomes active. By contrast, persistent
messages for non-durable subscriptions are not stored persistently (should a
message server fail, the corresponding consumer connection is lost and the
message would never be delivered).

For nonpersistent messages, performance is about the same for durable and non
durable subscriptions. For persistent messages, performance is about 20% lower
for durable subscriptions than for nondurable subscriptions.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Factors Affecting Performance

Use of Selectors (Message Filtering)

Application developers can have the messaging provider sort messages according
to criteria specified in the message selector associated with a consumer and deliver
to that consumer only those messages whose property value matches the message
selector. For example, if an application creates a subscriber to the topic

W dget O der s and specifies the expression Nunber Of O der s >1000 for the message
selector, messages with a Nunber O Or der s property value of 1001 or more are
delivered to that subscriber.

Creating consumers with selectors lowers performance (as compared to using
multiple destinations) because additional processing is required to handle each
message. When a selector is used, it must be parsed so that it can be matched
against future messages. Additionally, the message properties of each message
must be retrieved and compared against the selector as each message is routed.
However, using selectors provides more flexibility in a messaging application and
may lower resource requirements at the expense of speed.

For more information on using selectors, see “Using Selectors Efficiently” on
page 58

Message Size

Message size affects performance because more data must be passed from
producing client to broker and from broker to consuming client, and because for
persistent messages a larger message must be stored.

However, by batching smaller messages into a single message, the routing and
processing of individual messages can be minimized, providing an overall
performance gain. In this case, information about the state of individual messages
is lost.

Figure 3-1 compares throughput in kilobytes per second for 1k, 10k, and 100k-sized
messages for persistent and non-persistent messages. All messages are sent to a
queue destination and use AUTO ACKNOMLEDGE acknowledgement mode.

Figure 3-1 shows that in both cases there is less overhead in delivering larger
messages compared to smaller messages. You can also see that the almost 50%
performance gain of non-persistent messages over persistent messages shown for
1k and 10k-sized messages is not maintained for 100k-sized messages, probably
because network bandwidth has become the bottleneck in message throughput for
that case.

Chapter 3 Client Design Issues 71

Factors Affecting Performance

Figure 3-1 Performance Impact of a Message Size

G
3 o1k

(2]

§ | 10k
3 00100k
2

Persistent Non-persistent

Message Body Type

The C API supports two message body types:

e BytesMessage: Contains a set of bytes in a format determined by the
application

e TextMessage: Is a simple M¥Btri ng

Since performance varies with the complexity of the data, text messages are
slightly more expensive to send than byte messages.

72 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Chapter 4

Reference

This chapter provides reference documentation for the Message Queue C-API. It
includes information about the following:

e “Data Types” on page 74 describes the C declarations for data types used by
Message Queue messaging

¢ “Function Reference” on page 84 describes the C functions that implement
Message Queue messaging

* “Header Files” on page 183 describes the contents of the C-API header files

For information on building C-Message Queue programs, see Chapter 3, “Client
Design Issues” on page 57.

For information on how you use the C-API to complete specific programming
tasks, see Chapter 2, “Using the C AP1” on page 25.

73

Data Types

Data Types

Table 4-1 summarizes the data types defined by the Message Queue C-API The
table lists data types in alphabetical order and provides cross references for types
that require broader discussion.

Note that Message Queue data types designated as handles map to opaque
structures (objects). Please do not attempt to dereference these handles to get to the
underlying objects. Instead, use the functions provided to access the referenced
objects.

Table 4-1 Message Queue C-API Data Type Summary

MQType Description
Const M®t ri ng A constant Mt ri ng.
MAckMde An enumused to specify the acknowledgement mode of a session.

Possible values include the following:

MQ_AUTO_ACKNOW.EDGE
MQ_CLI ENT_ACKNOALEDGE
MQ_DUPS_OK_ACKNOW.EDGE
MQ_SESSI ON_TRANSACTED.

See “Acknowledge Modes” on page 80 for more information.

MXBool A boolean that can assume one of two values:
MQ_TRUE(=1)
MQ FALSE(=0) .
MXhar char type.
MConnect i onHandl e A handle used to reference a Message Queue connection. You

get this handle when you call the MY eat eConnect i on function.

MXonsurrer Handl e A handle used to reference a Message Queue consumer. A
consumer can be durable, nondurable and synchronous, or
asynchronous. You get this handle when you call one of the
functions used to create consumers. See “Receiving Messages”
on page 49 for more information.

MXel i ver yMode An enumused to specify whether a message is sent persistently:

MQ_NON_PERS!| STENT_DELI VERY
MQ_PERSI STENT_DELI VERY.

You specify this value with the M@BendMessageExt function or the
MXendMessageToDest i nat i onExt function.

MXest i nat i onHandl e A handle used to reference a Message Queue destination. You
get this handle when you call the MY eat eDest i nat i on function
or the MXCr eat eTenpor ar yDest i nat i on function.

74 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Data Types

Table 4-1 Message Queue C-API Data Type Summary (Continued)

MQType

Description

MPest i nati onType

MEr r or

MXonnect i onExcept i onLi st ener Func

M oat 32
M oat 64
MJ nt 16
MJ nt 32
M nt 64

MI nt 8
MvessageHand! e

MVessageli st ener Func

MAvessageType

MPr oducer Handl e

M¥Pr opertiesHandl e

An enum used to specify the type of a destination:

MQ_QUEUE_DESTI NATI ON
MQ_TOPI C_DESTI NATI ON.

You set the destination type using the MXr eat eDest i nati on
function or the MXr eat eTenpor ar yDest i nat i on function.

A 32-bit unsigned integer.

The type of a callback function used for connection exception
handling. For more information, see “Callback Type for
Connection Exception Handling” on page 83.

A 32-bit floating-point number.
A 64-bit floating-point number.
A 16-bit signed integer.
A 32-bit signed integer.
A 64-bit signed integer.
An 8-bit signed integer.

A handle used to reference a Message Queue message. You get
this handle when you call the MXCr eat eByt esMessage function, or
the MY eat eText Message function, or on receipt of a message.

The type of a callback function used for asynchronous message
receipt. For more information, see “Callback Type for
Asynchronous Messaging” on page 81.

An enumpassed back by the MXet MessageType and used to
specify the type of a message; possible values include the
following:

MQ TEXT_MESSAGE
MQ BYTES MESSAGE
MQ_UNSUPPCRTED. MESSAGE.

A handle used to reference a Message Queue producer. You get
this handle when you call MXCr eat eMessagePr oducer or
MXr eat eMessagePr oducer For Dest i nati on.

A handle used to reference Message Queue properties. You use
this handle to define or read connection properties and message
headers or message properties. See “Working With Properties”
on page 28 for more information.

Chapter 4 Reference 75

Data Types

Table 4-1 Message Queue C-API Data Type Summary (Continued)

MQType

Description

MX>Recei veMde

MXessi onHandl e

Mt at us

Mt ring
MJType

An enumused to specify whether consumers are synchronous or
asynchronous. It can be one of the following:

MQ_SESSI ON_SYNC_RECEI VE
MQ_SESSI ON_ASYNC_RECEI VE.

See M) eat eSessi on for more information.

A handle used to reference a Message Queue session. You get
this handle when you call the MXCr eat eSessi on function.

A data type returned by nearly all functions defined in ngcrt. h.
See “Error Handling” on page 53 for more information on how you
handle errors returned by Message Queue functions.

A null terminated UTF-8 encoded character string

An enumused to return the type of a single property; possible
values include the following:

MQ BOOL_TYPE
MQ | NT8_TYPE
MQ | NT16_TYPE
MQ | NT32_TYPE
MQ | NT64_TYPE
MQ FLOAT32_TYPE
MQ FLOAT64_TYPE
MQ STRI NG TYPE
MQ | NVALI D_TYPE

Connection Properties

When you create a connection using the MX eat eConnect i on function, you must
pass a handle to an object of type MPr operti esHandl e. To set the properties
referenced by this handle, you do the following:

1. Call the MX eat eProperti es function to get a handle to a newly created
properties object

2. Call a function to set one of the connection properties listed in Table 4-2.

Which function you call depends on the type of the property you want to set;
for example, to set an Mt ri ng property, you call the M®et St ri ngProperty
function; to set a MBool property, you call the M®Bet Bool Pr operty function;
and so on. Each function that sets a property requires that you pass a key name
(constant) and value; these are listed and described in Table 4-2.

76 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Data Types

3. When you have set all the properties you want to define for the connection,
you can then create the connection, by calling the MO eat eConnect i on

function.

The runtime library sets the connection properties that specify the name and
version of the Message Queue product; you can retrieve these using the

MXGet Met aDat a function. These properties are described at the end of Table 4-2,
starting with M) NAVE_PRCPERTY.

Table 4-2 Connection Properties

Key Name

Description

MQ_CONNECTI ON_TYPE_PRCPERTY

MQ ACK_TI MEQUT_PRCPERTY

MQ BROKER HOST_PROPERTY

MQ Pl NG | NTERVAL_PROPERTY

MQ BROKER PCRT_PRCPERTY

An MEt ri ng specifying the transport protocol of the
connection service used by the client. Supported types are
TCP or SSL.

Default: TCP

A 32-bit integer specifying the maximum time in milliseconds
that the client runtime will wait for any broker
acknowledgement before returning an MQ_TI MEQUT_EXPI RED
error. A value of 0 means there is no time-out.

Default: 0

An MEt ri ng specifying the broker host name to which to
connect.

If you set the property M) SSL_ BROKER | S TRUSTED to

f al se, the value you specify for the property

MQ BRCKER HOST PRCPERTY must match the CN (common
name) of the broker’s certificate.

No default.

A 32-bit integer specifying the interval (in seconds) that the
connection can remain idle before the client runtime tests the
connection by pinging the broker. (The exact amount of time it
takes for the ping to detect connection failure varies with the
system’s TCP configuration.)

A ping interval that is <= 0 turns off the ping for the
connection. The minimum allowable interval is 1 second. This
prevents an application from setting the interval to a value that
would affect performance.

The ping interval is logged at the INFO level by the C client
runtime when a connection is created.

Default: 30 seconds
A 32-bit integer specifying the broker’s primary port number.
No default.

Chapter 4 Reference 77

Data Types

Table 4-2 Connection Properties (Continued)

Key Name

Description

MQ ACK_ON_PRCDUCE_PROPERTY

MQ ACK_ON ACKNOW.EDGE_PROPERTY

M CONNECTI ON_FLOW COUNT_PROPERTY

An MBool specifying whether the producing client waits for
broker acknowledgement of receipt of message from the
producing client.

If set to MY_TRUE, the broker acknowledges receipt of all
messages (persistent and non-persistent) from the producing
client, and the producing client thread will block waiting for
those acknowledgements.

If set to MQ_FALSE, broker does not acknowledge receipt of any
message (persistent or non-persistent) from the producing
client, and the producing client thread will not block waiting for
broker acknowledgements.

Default: the broker acknowledges receipt of persistent
messages only from the producing client, and the producing
client thread will block waiting for those acknowledgements.

An MBool specifying whether the broker confirms
(acknowledges) consumer acknowledgements. A consumer
acknowledgement can be initiated either by the client’s
session or by the consuming client, depending on the session
acknowledgement mode (see Table 4-3). If the session’s
acknowledgement mode is MQ DUPS_CK_ACKNOW.EDCGE, this flag
has no effect.

If set to MY TRUE, the broker acknowledges all consuming
acknowledgements, and the consuming client thread blocks
waiting for these broker acknowledgements.

If set to MY FALSE, the broker does not acknowledge any
consuming client acknowledgements, and the consuming
client thread will not block waiting for such broker
acknowledgements.

Default: MQ TRUE

For more information, see the discussion for the
MAcknow edgeMessages function and “Message
Acknowledgement” on page 40.

A 32-bit integer, greater than 0, specifying the number of
Message Queue messages in a metered batch. When this
number of messages is delivered from the broker to the client
runtime, delivery is temporarily suspended, allowing any
control messages that had been held up to be delivered.
Payload message delivery is resumed upon notification by the
client runtime, and continues until the count is again reached.

Default: 100

78 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Table 4-2 Connection Properties (Continued)

Data Types

Key Name

Description

MQ CONNECTI ON_FLOW LI M T_ENBABLED
_PROPERTY

MQ CONNECTI ON_FLOW LI M T_PROPERTY

MQ SSL_BROKER | S TRUSTED

MQ SSL_CHECK_BROKER FI NGERPRI NT

MQ SSL_BROKER CERT_FI NGERPRI NT

M NAME_PROPERTY

MQ VERS| ON_PROPERTY

An M®Bool specifying whether the value

MQ_CONNECTI ON_FLON LI M T_PRCPERTY is used to control
message flow. Specify M) TRUE to use the value and MQ FALSE
otherwise.

Default: MQ FALSE

A 32-bit integer, greater than 0, specifying the maximum
number of unconsumed messages the client runtime can hold
for each connection. Note however, that unless

MQ_CONNECTI CN_FLOW LI M T_ENBABLED PRCPERTY is MQ TRUE,
this limit is not checked.

When the number of unconsumed messages held by the
client runtime for the connection exceeds the limit, message
delivery stops. It is resumed (in accordance with the flow
metering governed by M9 CONNECTI ON_FLON COUNT_PRCPERTY)
only when the number of unconsumed messages drops below
the value set with this property.

This limit prevents a consuming client that is taking a long time
to process messages from being overwhelmed with pending
messages that might cause it to run out of memory.

Default: 1000

An MQ Bool specifying whether the broker is trusted.
Default: M) TRUE

An MQ Bool . If itis set to M) TRUE and if

MQ SSL_BROKER | S TRUSTEDis MQ FALSE, the broker’s
certificate fingerprint is compared with the

MQ SSL_BROKER CERT_FI NGERPRI NT property value in case of
certificate authorization failure. If they match, the broker’s
certificate is authorized for use in the SSL connection.

Default: MQ FALSE

An M®t ri ng specifying the MD5 hash, in hex format, of the
broker's certificate.

Default: NULL

An M®t ri ng that specifies the name of the Message Queue

product.This property is set by the runtime library. See the
MGt Met aDat a function for more information.

An MJ nt 32 that specifies the version of the Message Queue
product. This property is set by the runtime library. See the
MGt Met aDat a function for more information.

Chapter 4 Reference 79

Data Types

Table 4-2 Connection Properties (Continued)

Key Name Description

MQ_MAJCR VERSI ON_PROPERTY An MJ nt 32 that specifies the major version of the Message
Queue product. For example, if the version is 3.5.0.1, the
major version would be 3.

This property is set by the runtime library. See the
MQCGet Met aDat a function for more information.

M3 M NCR_VERSI ON_PRCPERTY An MJ nt 32 that specifies the minor version of the Message
Queue product. For example, if the version is 3.5.0.1, the
minor version would be 5.

This property is set by the runtime library. See the
MGt Met aDat a function for more information.

M3 M CRO VERSI ON_PRCPERTY An MJ nt 32 that specifies the micro version of the Message
Queue product. For example, if the version is 3.5.0.1, the
micro version would be 0.

This property is set by the runtime library. See the
MGt Met aDat a function for more information.

MQ_SERVI CE_PACK_PRCPERTY An MJ nt 32 that specifies the service pack version of the
Message Queue product. For example, if the version is
3.5.0.1, the service pack version would be 1.

This property is set by the runtime library. See the
MQCGet Met aDat a function for more information.

Acknowledge Modes

The Message Queue runtime supports reliable delivery by using transacted
sessions or through acknowledgement options set at the session level. When you
use the M) eat eSessi on function to create a session, you must specify an
acknowledgement option for that session using the acknow edgeMde parameter.
The value of this parameter is ignored for transacted sessions.

Table 4-3 describes the effect of the options you can set using the acknow edgeMbde
parameter.

80 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Data Types

Table 4-3 acknow edgeMde Values

Enum

Description

MQ_AUTO ACKNOW.EDGE

MR _CLI ENT_ACKNONLEDGE

MQ DUPS_CK_ACKNOW.EDGE

MQ_SESSI ON_TRANSACTED

The session automatically acknowledges each message consumed by the client.
This happens when one of the receive functions returns successfully, or when the
message listener processing the message returns successfully.

The client explicitly acknowledges all messages for the session that have been
consumed up to the point when the MQAcknow edgeMessages function has been
called. See the discussion of the function MQAcknow edgeMessages for additional
information.

The session acknowledges after ten messages have been consumed and does
not guarantee that messages are delivered and consumed only once.

This value is read only. It is set by the library if you have passed M) TRUE for the
i sTransact ed parameter to the MXCr eat eSessi on function. It is returned to you by
the MXet Acknow edgeMde function if the session is transacted.

Callback Type for Asynchronous Messaging

When you call the MXr eat eAsyncMessageConsuner function or the

MXr eat eAsyncDur abl eMessageConsuner function, you must pass the name of an
MVessageli st ener Func type callback function that is to be called when the
consumer receives a message to the specified destination.

The MQMessageLi st ener Func type has the following definition:

MError (* MAvessageli stener Func) (

const MXessi onHandl e sessi onHandl e,
const MXonsuner Handl e consuner Handl e,
MJessageHandl e nessageHand! e

void * cal | backDat a);

Chapter 4 Reference 81

Data Types

Parameters

sessi onHandl e The handle to the session to which this consumer belongs. The
client runtime specifies this handle when it calls your message
listener.

consuner Handl e A handle to the consumer receiving the message. The client
runtime specifies this handle when it calls your message
listener.

messageHand| e A handle to the incoming message. The client runtime specifies
this handle when it calls your message listener.

cal | backDat a The void pointer that you passed to the function

MQCreateAsyncMessageConsumer or the function
MQCreateAsyncDurableMessageConsumer.

The body of a message listener function is written by the receiving client. Mainly,
the function needs to process the incoming message by examining its header, body,
and properties. The client is also responsible for freeing the message handle (either
from within the handler or from outside the handler) by calling MJr eeMessage.

In addition, you should observe the following guidelines when writing the
message listener function:

If you specify M) CLI ENT_ACKNOALEDCE as the acknowledge mode for the
session, you must explicitly call the M§Acknow edgeMessages function to
acknowledge messages that you have received. For more information, see the
description of the function MQAcknow edgeMessages.

Do not try to close the session (or the connection to which it belongs) and
consumer handle in the message listener.

It is possible for a message listener to return an error; however, this is
considered a client programming error. If the listener discovers that the
message is badly formatted or if it cannot process it for some other reason, it
should handle the problem itself by re-directing it to an application-specific
bad-message destination and process it later.

If the message listener does return an error, the client runtime will try to
redeliver the message once if the session’s acknowledge mode is either
MQ_AUTO_ACKNOW.EDGE or MQ_DUPS_OK_ACKNONLEDGE.

82 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Data Types

Callback Type for Connection Exception
Handling

The client runtime will call this function when a connection exception occurs.

The MXConnect i onExcept i onLi st ener Func type has the following definition:

Voi d (* MXonnecti onExcepti onLi st ener Func) (

const MXonnecti onHandl e connecti onHandl e,
MXt atus exception,
void * cal | backDat a);

Parameters

connect i onHandl e The handle to the connection on which the connection
exception occurred. The client runtime sets this handle when it
calls the connection exception handler.

exception An MXt at us for the connection exception that occurred. The
client runtime specifies this value when it calls the exception
handler.

You can pass this status result to any functions used to handle
errors to get an error code or error string. For more information,
see “Error Handling” on page 53.

cal | backDat a Whatever void pointer was passed as the
|'i stener Cal | backDat a parameter to the M eat eConnect i on
for more information.

The body of a connection exception listener function is written by the client. This
function will only be called synchronously with respect to a single connection. If
you install it as the connection exception listener for multiple connections, then it
must be reentrant.

Do not try to close the session (or the connection to which it belongs) in the
exception listener.

Chapter 4 Reference 83

Function Reference

Function Reference

This section describes the C-API functions in alphabetical order. Table 4-4 lists the

C-API functions.

Table 4-4

Message Queue C-API Function Summary

Function

Description

MAcknow edgeMessages

M oseConnect i on
MY oseMessageConsuner
MY oseMessagePr oducer

MX oseSessi on
MConmi t Sessi on
MY eat eAsyncDur abl eMessageConsuner

MY eat eAsyncMessageConsuner

MY eat eByt esMessage
MY eat eConnecti on
MY eat eDest i nati on

MXr eat eDur abl eMessageConsuner

MY eat eMessageConsuner

MXr eat eMessagePr oducer

MY eat eMessagePr oducer For Desti nati on
MY eat eProperti es

MY eat eSessi on

MX eat eTenpor ar yDest i nati on

MY eat eText Message
MJFr eeConnecti on

Acknowledges the specified message and all messages received
before it on the same session.

Closes the specified connection.
Closes the specified consumer.

Closes the specified message producer without closing its
connection.

Closes the specified session.
Commits a transaction associated with the specified session.

Creates a durable asynchronous message consumer for the
specified destination.

Creates an asynchronous message consumer for the specified
destination.

Creates an M) BYTES MESSAGE message.
Creates a connection to the broker.

Creates a a logical destination and passes a handle to it back to
you.

Creates a durable synchronous message consumer for the
specified destination.

Creates a synchronous message consumer for the specified
destination.

Creates a message producer with no default destination.
Creates a message producer with a default destination.
Creates a properties handle.

Creates a session and passes back a handle to the session.

Creates a temporary destination and passes its handle back to
you.

Creates a text message.

Releases memory assigned to the specified connection and to all
resources associated with that connection.

84 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Function Reference

Table 4-4 Message Queue C-API Function Summary (Continued)

Function

Description

MJr eeDesti nati on

MJFr eeMessage
MJXr eeProperties

M¥FreeString
MXet Acknowl edgeMbde

MXet Bool Property
MYt Byt esMessageByt es

MXet Dest i nati onType
Mt Error Tr ace

MXet Fl oat 32Pr operty

MXet Fl oat 64Pr operty

MXCet | nt 16Pr operty

MYCet | nt 32Pr operty

MYCet | nt 64Pr operty

MXCet | nt 8Pr operty
MXet MessageHeader s

MXet MessagePr operti es
MXet MessageRepl yTo

MYt MessageType
MYt Met aDat a
MGt Propert yType
MXCet St at usCode
MXet Stat usString

Releases memory assigned to the specified destination and to all
resources associated with that destination.

Releases memory assigned to the specified message.

Releases the memory allocated to the referenced properties
handle.

Releases the memory allocated to the specified M®t ri ng.
Passes back the acknowledgement mode of the specified session.
Passes back a property of type MXBool .

Passes back the address and size of a M) BYTES MESSAGE
message body.

Passes back the type of the specified destination.

Returns a string describing the stack at the time the specified error
occurred.

Passes back the value of the Ml oat 32 property for the specified
key.

Passes back the value of the Ml oat 64 property for the specified
key.

Passes back the value of the MQ nt 16 property for the specified
key.

Passes back the value of the MY nt 32 property for the specified
key.

Passes back the value of the MY nt 64 property for the specified
key.

Passes back the value of the MJ nt 8 property for the specified key.
Passes back a handle to the header of the specified message.
Passes back a handle to the properties for the specified message.

Passes back the destination where replies to this message should
be sent.

Passes back the type of the specified message.

Passes back Message Queue version information.
Passes back the type of the specified property key.
Returns the code for the specified M¥t at us result.

Returns a string description for the specified M¥t at us result.

Chapter 4 Reference 85

Function Reference

Table 4-4 Message Queue C-API Function Summary (Continued)

Function

Description

MXGet Stri ngProperty

MYt Text MessageText
MI nitializeSSL

MProperti esKeyl t erati onCet Next
MPr operti esKeyl t erat i onHasNext

MPropertiesKeylterationStart
MXRecei veMessageNoVi t

MX>ecei veMessage\i t

MX>Recei veMessageW t hTi neout

MJRecover Sessi on

Mol | BackSessi on
MXendMessage
MXEendMessageExt

MXendMessageToDest i nat i on
MXendMessageToDest i nat i onExt

MXet Bool Property

MXet Byt esMessageByt es

MXet Fl oat 32Pr operty

MXet Fl oat 64Pr operty

MXet | nt 16Pr operty

Passes back the value for the specified property. Type (in the
function name) can be String, Bool , I nt8, I nt16, I nt 32, | nt 64,
Fl oat 32, Fl oat 64.

Passes back the contents of an M9 TEXT_MESSAGE message.

Initializes the SSL library. You must call this function before you
create a connection that uses SSL.

Passes back the next property key in the properties handle.
Returns true if there is another property key in a properties object.
Starts iterating through a properties object.

Passes back a handle to a message delivered to the specified
consumer.

Passes back a handle to a message delivered to the specified
consumer when the message becomes available.

Passes back a handle to a message delivered to the specified
consumer if a message is available within the specified amount of
time.

Stops message delivery and restarts message delivery with the
oldest unacknowledged message.

Rolls back a transaction associated with the specified session.
Sends a message for the specified producer.

Sends a message for the specified producer and allows you to set
priority, time-to-live, and delivery mode.

Sends a message to the specified destination.

Sends a message to the specified destination and allows you to
set message header properties.

Sets an MBool property with the specified key to the specified
value.

Sets the message body for the specified MY BYTES_MESSAGE
message.

Sets an Ml oat 32 property with the specified key to the specified
value.

Sets an M| oat 64 property with the specified key to the specified
value.

Sets an MJ nt 16 property with the specified key to the specified
value.

86 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

Table 4-4

Function Reference

Message Queue C-API Function Summary (Continued)

Function

Description

MXet | nt 32Pr operty

MXet | nt 64Pr operty

MXet | nt 8Pr operty

MXet MessageHeader s
MXet MessagePr operti es
MXEet MessageRepl yTo

MXet Stri ngProperty

MXet Stri ngProperty

MXet Text MessageText
MXEt art Connect i on

Mt at usl sError
MXt opConnect i on

MQnhsubscri beDur abl eMessageConsuner

Sets an MJ nt 32 property with the specified key to the specified
value.

Sets an MJ nt 64 property with the specified key to the specified
value.

Sets an MJ nt 8 property with the specified key to the specified
value.

Sets the header part of the message.
Sets the user-defined properties for the specified message.

Specifies the destination where replies to this message should be
sent.

Sets an MXtri ng property with the specified key to the specified
value.

Sets the message body for the specified MY TEXT_MESSACGE
message.

Defines the body for a text message.

Starts the specified connection to the broker and starts or resumes
message delivery.

Returns MY _TRUE if the specified Mt at us result is an error.

Stops the specified connection to the broker. This stops the broker
from delivering messages.

Unsubscribes the specified durable message consumer.

Chapter 4 Reference 87

MQAcknowledgeMessages

MQAcknowledgeMessages

The MAcknow edgeMessages function acknowledges the specified message and all
messages received before it on the same session. This function is valid only if the
session is created with acknowledge mode set to MY CLI ENT_ACKNOALEDCE.

Return Value

MAcknow edgeMessages (const MXessi onHandl e sessi onHandl e,
const MMessageHandl e messageHandl e) ;

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the session for the consumer that received the
specified message.

messageHand! e A handle to the message that you want to acknowledge. This

handle is passed back to you when you receive the message
(either by calling one of the receive functions or when a
message is delivered to your message listener function.)

Whether you receive messages synchronously or asynchronously, you can call the
MAcknow edgeMessages function to acknowledge receipt of the specified message
and of all messages that preceded it.

When you create a session you specify one of several acknowledge modes for that
session; these are described in Table 4-3. If you specify M) CLI ENT_ACKNOALEDGE as
the acknowledge mode for the session, you must explicitly call the

MAcknow edgeMessages function to acknowledge receipt of messages consumed in
that session.

88 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

MQAcknowledgeMessages

By default, the calling thread to the MQAcknow edgeMessages function will be
blocked until the broker acknowledges receipt of the acknowledgment for the
broker consumed. If, when you created the session’s connection, you specified the
property M) ACK_ON_ACKNONLEDGE_PRCPERTY to be MQ FALSE, the calling thread
will not wait for the broker to acknowledge the acknowledgement.

Common Errors

MQ_SESSI ON_NOT_CLI ENT_ACK_MDE
MQ_MESSAGE _NOT_I N _SESSI ON
MQ_CONCURRENT_ACCESS

MQ_SESSI ON_CLOSED

M BRCKER CLOSED

Chapter 4 Reference 89

MQCloseConnection

MQCloseConnection

The MY oseConnect i on function closes the connection to the broker.

MX oseConnect i on (Monnecti onHandl e connecti onHandl e) ;

Return Value
Mt at us. See the MXBt at usl sError function for more information.

Parameters

connect i onHandl e The handle to the connection that you want to close. This handle is
created and passed back to you by the MXr eat eConnect i on
function.

Closing the connection closes all sessions, producers, and consumers created from
this connection. This also forces all threads associated with this connection that are
blocking in the library to return.

Closing the connection does not actually release all the memory associated with the
connection. After all the application threads associated with this connection (and
its dependent sessions, producers, and consumers) have returned, you should call
the MJFr eeConnect i on function to release these resources.

Common Errors
MQ_CONCURRENT _DEADL OCK

(If the function is called from an exception listener or a consumer’s message
listener.)

90 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

MQCloseMessageConsumer

MQCloseMessageConsumer

The MY oseMessageConsuner function closes the specified message consumer.

MX oseMessageConsuner (MXonsuner Handl e consuner Handl e) ;

Return Value
Mt at us. See the MBt at usl sError function for more information.

Parameters

consuner Handl e The handle to the consumer you want to close. This handle is
created and passed back to you by one of the functions used to
create consumers.

This handle is invalid after the function returns.

A session’s consumers are automatically closed when you close the session or
connection to which they belong. To close a consumer without closing the session
or connection to which it belongs, use the MY oseMessageConsuner function.

If the consumer you want to close is a durable consumer and you want to close this
consumer permanently, you should call the function

MUnsubscr i beDur abl eMessageConsuner after closing the consumer in order to
delete any state information maintained by the broker for this consumer.

Common Errors
MQ_CONSUMER _NOT_I N_SESSI ON

MQ BROKER_CONNECTI ON_CLOSED

Chapter 4 Reference 91

MQCloseMessageProducer

MQCloseMessageProducer

The MXJ oseMessagePr oducer function closes a message producer.

MX oseMessagePr oducer (MPr oducer Handl e producer Handl e) ;

Return Value
Mt at us. See the MXBt at usl sError function for more information.

Parameters

pr oducer Handl e A handle for this producer that was passed to you by the
MXr eat eMessagePr oducer function or by the
MXr eat eMessagePr oducer For Dest i nat i on function.

This handle is invalid after the function returns.

Use the MXJ oseMessagePr oducer function to close a producer without closing its
associated session or connection.

Common Errors
MQ _PRCDUCER _NOT_I N_SESSI ON

92 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

MQCloseSession

MQCloseSession

The MXJ oseSessi on function closes the specified session.

MX oseSessi on (MBessi onHandl e sessi onHandl €) ;

Return Value
Mt at us. See the MBt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the session that you want to close. This handle is
created and passed back to you by the MXr eat eSessi on function.

This handle is invalid after the function returns.

Closing a session closes the resources (producers and consumers) associated with
that session and frees up the memory allocated for that session.

There is no need to close the producers or consumers of a closed session.

Common Errors
MR _CONCURRENT _DEADLOCK

(If called from a consumer’s message listener in the session.)

Chapter 4 Reference 93

MQCommitSession

MQCommitSession
The Mormi t Sessi on function commits a transaction associated with the specified
session.
MXomm t Sessi on (const MXessi onHandl e sessi onHandl e) ;

Return Value
Mt at us. See the MXBt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the transacted session that you want to commit.

A transacted session supports a series of transactions. Transactions organize a
session’s input message stream and output message stream into a series of atomic
units. A transaction’s input and output units consist of those messages that have
been produced and consumed within the session’s current transaction. (Note that
the receipt of a message cannot be part of the same transaction that produces the
message.) When you call the MCommi t Sessi on function, its atomic unit of input is
acknowledged and its associated atomic unit of output is sent.

The completion of a session’s current transaction automatically begins the next
transaction. The result is that a transacted session always has a current transaction
within which its work is done. Use the MRol | BackSessi on function to roll back a
transaction.

Common Errors
MQ_NOT_TRANSACTED_SESSI ON
MQ_CONCURRENT_ACCESS
MQ_SESSI ON_CLCSED

MQ BROKER _CONNECTI ON_CLCSED

94 Message Queue 3 2005Q1 « Developer’'s Guide for C Clients

MQCreateAsyncDurableMessageConsumer

MQCreateAsyncDurableMessageConsumer

The MY eat eAsyncDur abl eMessageConsuner function creates an asynchronous
durable message consumer for the specified destination.

MY eat eAsyncDur abl eMessageConsuner (

Return Value

const MXPessionHandl e sessi onHandl e,

const MDestinationHandl e destinationHandl e,
Const MBt ri ng durabl eNarre,

Const MBtring mnessageSel ector,

MXBool nolLocal ,

MVessageli st ener Func nessageli st ener,

void * |istenerCall backDat a,

MXonsuner Handl e * consurrer Handl €) ;

MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

sessi onHandl e

desti nati onHandl e

dur abl eNane

messageSel ect or

nolLocal

The handle to the session to which this consumer belongs.
This handle is passed back by the MXr eat eSessi on function.
For this asynchronous durable consumer, the session must
have been created with the M) SESSI ON_ASYNC RECEI VE
receive mode.

A handle to a topic destination on which the consumer receives
messages. This handle remains valid after the call.

An M®tri ng specifying a name for the durable subscriber. The
library makes a copy of the dur abl eNane string.

An expression (based on SQL92 conditional syntax) that
specifies the criteria upon which incoming messages should be
selected for this consumer.

Specify a NULL or empty string to indicate that there is no
message selector for this consumer. In this case, all messages
are delivered.

The library makes a copy of the nessageSel ect or string.

For more information about SQL, see X/Open CAE
Specification Data Management: Structured Query Language
(SQL), Version 2, ISBN 1-85912-151-9, March 1966.

Specify MQ TRUE to inhibit delivery of messages published by
this consumer’s own connection.

Chapter 4 Reference 95

MQCreateAsyncDurableMessageConsumer

96

messageli st ener The name of an MQvessageli st ener Func type callback function
that is to be called when this consumer receives a message on
the specified destination.

|'i st enerCal | backDat a A pointer to data that you want passed to your message
listener function when it is called by the library.

consuner Handl e Output parameter for the handle that references the consumer
for the specified destination.

In the case of an asynchronous consumer, you should not start a connection before
calling the M)Or eat eAsyncDur abl eMessageConsuner function. (You should create a
connection, create a session, set up your asynchronous consumer, create the
consumer, and then start the connection.) Attempting to create a consumer when
the connection is not stopped, will result in an M) CONCURRENT_ACCESS error.

The MY eat eAsyncDur abl eMessageConsuner function creates an asynchronous
durable message consumer for the specified destination. You can define
parameters to filter messages and to inhibit the delivery of messages you published
to your own connection. Note that the session’s receive mode (sync/async) must be
appropriate for the kind of consumer you are creating (sync/async). To create a
synchronous durable message consumer for a destination, call the function

MXr eat eDur abl eMessageConsuner .

Durable consumers can only be used for topic destinations. If you are creating an
asynchronous consumer for a queue destination or if you are not interested in
messages that arrive to a topic while you are inactive, you might prefer to use the
function MXr eat eAsyncMessageConsuner .

The broker retains a record of this durable subscription and makes sure that all
messages from the publishers to this topic are retained until they are either
acknowledged by this durable subscriber or until they have expired. Sessions with
durable subscribers must always provide the same client identifier. (See

MXx eat eConnect i on, cl i ent | Dparameter.) In addition, each durable consumer
must specify a durable name using the dur abl eNane parameter, which uniquely
identifies (for each client identifier) the durable subscription when it is created.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQCreateAsyncDurableMessageConsumer

A session’s consumers are automatically closed when you close the session or
connection to which they belong. However, messages will be routed to the durable
subscriber while it is inactive and delivered when the durable consumer is
recreated. To close a consumer without closing the session or connection to which
it belongs, use the MY oseMessageConsuner function. If you want to close a
durable consumer permanently, you should call the

MUnsubscr i beDur abl eMessageConsuner after closing it to delete state information
maintained by the Broker on behalf of the durable consumer.

Common Errors

MQ_NOT_ASYNC RECEl VE_MCDE

MQ | N\VALI D_MESSAGE SELECTCR

MQ _DESTI NATI ON_CONSUMER LI M T_EXCEEDEED

M _TEMPCRARY_DESTI NATI CN_NOT_| N_CONNECTI ON
MY _CONSUMER_NO _DURABLE_NAME

MY _QUEUE_CONSUMER_CANNOT_BE DURABLE
MQ_CONCURRENT_ACCESS

MQ _SESSI ON_CLOSED

MQ_BRCKER CONNECTI ON_CLCSED

Chapter 4 Reference 97

MQCreateAsyncMessageConsumer

MQCreateAsyncMessageConsumer

The MXr eat eAsyncMessageConsurer function creates an asynchronous message
consumer for the specified destination.

98

MY eat eAsyncMessageConsuner

(const MXessionHandl e sessi onHandl e,
const MDestinationHandl e destinationHandl e,
Const M®Bt ri ng messageSel ect or,

MBool

noLocal ,

MXessageli st ener Func nessageli st ener,
void * |istenerCal | BackDat a,
MXonsuner Handl e * consurrer Handl €) ;

Return Value

MXt at us. See the M¥Et at usl sError function for more information.

Parameters

sessi onHandl e

desti nati onHandl e

messageSel ect or

noLocal

The handle to the session to which this consumer belongs.
This handle is created and passed back to you by the

MXr eat eSessi on function. For this asynchronous consumer,
the session must have been created with the

MQ_SESSI ON_ASYNC RECEI VE receive mode.

A handle to the destination on which the consumer receives
messages. This handle remains valid after the call returns.

An expression (based on SQL92 conditional syntax) that
specifies the criteria upon which incoming messages should be
selected for this consumer.

Specify a NULL or empty string to indicate that there is no
message selector for this consumer. In this case, all messages
will be delivered.

The library makes a copy of the nessageSel ect or string.

For more information about SQL, see X/Open CAE
Specification Data Management: Structured Query Language
(SQL), Version 2, ISBN 1-85912-151-9, March 1966.

Specify MQ TRUE to inhibit delivery of messages published by
this consumer’s own connection.

The setting of this parameter applies only to topic destinations.
It is ignored for queues.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQCreateAsyncMessageConsumer

messageli st ener The name of an MQvessageli st ener Func type callback function
that is to be called when this consumer receives a message for
the specified destination.

|'i st enerCal | backDat a A pointer to data that you want passed to your message
listener function when it is called by the library.

consuner Handl e Output parameter for the handle that references the consumer
for the specified destination.

In the case of an asynchronous consumer, you should not start a connection before
calling the M)Or eat eAsyncDur abl eMessageConsuner function. (You should create a
connection, create a session, set up your asynchronous consumers, create the
consumer, and then start the connection.) Attempting to create a consumer when
the connection is not stopped will result in an M) CONCURRENT_ACCESS error.

The MXr eat eAsyncMessageConsurer function creates an asynchronous message
consumer for the specified destination. You can define parameters to filter
messages and to inhibit the delivery of messages you published to your own
connection. Note that the session’s receive mode (sync/async) must be appropriate
for the kind of consumer you are creating (sync/async). To create a synchronous
message consumer for a destination, use the M eat eMessageConsuner function.

If this consumer is on a topic destination, it will only receive messages produced
while the consumer is active. If you are interested in receiving messages published
while this consumer is not active, you should create a consumer using the

MY eat eAsyncDur abl eMessageConsuner function instead.

A session’s consumers are automatically closed when you close the session or
connection to which they belong. To close a consumer without closing the session
or connection to which it belongs, use the MY oseMessageConsuner function.

Common Errors

M2 _NOT_ASYNC_RECEI VE_MODE

MQ | NVALI D_MESSACGE_SELECTCR

MQ_DESTI NATI ON_CONSUMVER LI M T_EXCEEDEED
MQ_TEMPCRARY_DESTI NATI ON_NOT_I N_CONNECTI ON
MQ_CONCURRENT_ACCESS

MQ _SESSI ON_CLCSED

MY BROKER CONNECTI ON_CLCSED

Chapter 4 Reference 99

MQCreateBytesMessage

MQCreateBytesMessage

The MY eat esByt esMessage function creates a bytes message and passes a handle
to it back to you.

MY eat eByt esMessage (MvessageHandl e * nessageHandl €) ;

Return Value
Mt at us. See the MXBt at usl sError function for more information.

Parameters

messageHand! e Output parameter for the handle to the new, empty message.

After you obtain the handle to a bytes message, you can use this handle to define
its content with the M®et Byt esMessageByt es function, to set its headers with the
MXet MessageHeader s function, and to set its properties with the

MXBet MessagePr oper ti es function.

100 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQCreateConnection

MQCreateConnection

The MXr eat eConnect i on function creates a connection to the broker.

If you want to connect to the broker over SSL, you must call the M) ni ti al i zeSSL
function to initialize the SSL library before you create the connection.

MY eat eConnecti on

(MPropertiesHandl e propertiesHandl e
Const M®t ri ng user nane,
Const M®t ri ng password,
ConstMBtring clientlD,
MXonnect i onExcept i onLi st ener Func excepti onLi st ener,
void * |istenerCall BackDat a,
MXonnect i onHandl e * connecti onHandl e) ;

Return Value

MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters

propertiesHandl e

user nane

passwor d

clientID

excepti onLi st ener

A handle that specifies the properties that determine the
behavior of this connection. You must create this handle using
the MXr eat eProperti es function before you try to create a
connection. This handle will be invalid after the function
returns.

See Table 4-2 on page 77 for information about connection
properties.

An M®t ri ng specifying the user name to use when connecting
to the broker.

The library makes a copy of the user name string.

An MXt ri ng specifying the password to use when connecting
to the broker.

The library makes a copy of the passwor d string.

An MXtri ng used to identify the connection. If you use the
connection for a durable consumer, you must specify a
non-NULL client identifier.

The library makes a copy of the cl i ent | Dstring.

A connection-exception callback function used to notify the
user that a connection exception has occurred.

Chapter 4 Reference 101

MQCreateConnection

|'i stenerCal | BackDat a A data pointer that can be passed to the connection
exceptionLi st ener callback function whenever it is called. The
user can set this pointer to any data that may be useful to pass
along to the connection exception listener for this connection.
Set this to NULL if you do not need to pass data back to the
connection exception listener.

connect i onHandl e Output parameter for the handle to the connection that is
created by this function.

The MX eat eConnect i on function creates a connection to the broker. The behavior
of the connection is specified by key values defined in the properties referenced by
the properti esHandl e parameter. You must use the MXr eat ePr operti es function
to define these properties.

You cannot change the properties of a connection you have already created. If you
need different connection properties, you must close and free the old connection
and then create a new connection with the desired properties.

e Use the MXBt art Connect i on function to start or restart the connection. Use the
MXt opConnect i on function to stop a connection.

e Use the M)Cet Met aDat a function to get information about the name of the
Message Queue product and its version.

¢ Use the M oseConnect i on function to close a connection, and then use the
MJFr eeConnect i on function to free the memory allocated for that connection.

Setting a Client Identifier

To keep track of durable subscriptions, Message Queue uses a unique client
identifier that associates a client’s connection with state information maintained by
the message service on behalf of the client. By definition, a client identifier is
unique, and applies to only one connection at a time.

The messaging service uses a client identifier in combination with a durable
subscription name to uniquely identify each durable subscription. If a durable
subscriber is inactive at the time that messages are delivered to a topic destination,
the broker retains messages for that subscriber and delivers them when the

subscriber once again becomes active.

102 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQCreateConnection

Handling Connection Exceptions

Use the except i onLi st ener parameter to pass the name of a user-defined callback
function that can be called synchronously when a connection exception occurs for
this connection. Use the excepti onCal | BackDat a parameter to specify any user
data that you want to pass to the callback function.

Common Errors

MR _| NCOWPATI BLE_LI BRARY

MQ_CONNECTI ON_UNSUPPORTED _TRANSPORT
M _CQULD_NOT_CREATE_THREAD

MY INVALI D CLIENT_I D

M CLI ENT_I D I N USE

M _COULD_NOT_CONNECT_TO BRCKER

MQ SSL_NOT_I NI TI ALI ZED

This error can be returned if M) CONNECTI ON_TYPE_PRCPERTY is SSL and you have
not called the MJ ni ti al i zeSSL function before creating this connection.

Chapter 4 Reference 103

MQCreateDestination

MQCreateDestination

The MY eat eDest i nat i on function creates a a logical destination and passes a
handle to it back to you.

MY eat eDest i nati on (const MXessi onHandl e sessi onHandl e
Const M®Bt ri ng destinati onNane,
MPDest i nati onType desti nationType,
MXest i nati onHandl e * desti nationHandl e);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the session with which you want to associate this
destination.

desti nati onNane An MBt ri ng specifying the logical name of this destination.
The library makes a copy of the dest i nati onNane string. See
discussion below.
Destination names starting with “mq” are reserved and should
not be used by clients.

desti nati onType An enum specifying the destination type, either
MQ_QUEUE_DESTI NATI ON or M) TCPI C_DESTI NATI ON.

desti nati onHandl e Output parameter for the handle to the newly created

destination. You can pass this handle to functions sending
messages or to message producers or consumers.

The MY eat eDest i nat i on function creates a logical destination and passes a
handle to it back to you. Note that the Message Queue administrator has to also
create a physical destination on the broker, whose name and type is the same as the
destination created here, in order for messaging to happen. For example, if you use
this function to create a queue destination called nyMai | QDest, the administrator
has to create a physical destination on the broker named nyMai | QDest .

104 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQCreateDestination

If you are doing development, you can simplify this process by turning on the

i mg. aut ocreat e. topi ¢ or i ny. aut ocr eat e. queue properties for the broker. If you
do this, the broker automatically creates a physical destination whenever a
message consumer or message producer attempts to access a non-existent
destination. The auto-created destination will have the same name as the logical
destination name you specified using the MXr eat eDest i nat i on function. By
default, the broker has the properties i ny. aut ocr eat e. t opi ¢ and

i Ng. aut ocr eat e. queue turned on.

Common Errors
MQ I NVALI D_DESTI NATI ON_TYPE

MQ_SESSI ON_CLOSED

Chapter 4 Reference 105

MQCreateDurableMessageConsumer

MQCreateDurableMessageConsumer

The MY eat eDur abl eMessageConsuner function creates a synchronous durable
message consumer for the specified topic destination.

106

MY eat eDur abl eMessageConsuner

Return Value

(const MXessi onHandl e sessi onHandl e,
const MXestinationHandl e desti nati onHandl e,
Const MBt ri ng durabl eNarre,
Const MBt ri ng messageSel ect or,
MXBool nolLocal
MXonsuner Handl e * consuner Handl e) ;

Mt at us. See the MBt at usl sError function for more information.

Parameters

sessi onHandl e

desti nati onHandl e

dur abl eNane

messageSel ect or

The handle to the session to which this consumer belongs.
This handle is passed back to you by the MXCr eat eSessi on
function. For this (synchronous) durable consumer, the session
must have been created with the M9 _SESSI ON_SYNC_RECEI VE
receive mode.

A handle to a topic destination on which the consumer receives
messages. This handle remains valid after the call returns.

An MXt ri ng specifying the name of the durable subscriber to
the topic destination. The library makes a copy of the
dur abl eNarre string.

An expression (based on SQL92 conditional syntax) that
specifies the criteria upon which incoming messages should be
selected for this consumer.

Specify a NULL or empty string to indicate that there is no
message selector for this consumer. In this case, the consumer
receives all messages. The library makes a copy of the
nessageSel ect or string.

For more information about SQL, see X/Open CAE
Specification Data Management: Structured Query Language
(SQL), Version 2, ISBN 1-85912-151-9, March 1966.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQCreateDurableMessageConsumer

nolLocal Specify MQ TRUE to inhibit delivery of messages published by
this consumer’s own connection.

consuner Handl e Output parameter for the handle that references the consumer
for the specified destination.

The MY eat eDur abl eMessageConsuner function creates a synchronous message
consumer for the specified destination. A durable consumer receives all the
messages published to a topic, including the ones published while the subscriber is
inactive.

You can define parameters to filter messages and to inhibit the delivery of
messages you published to your own connection. Note that the session’s receive
mode (sync/async) must be appropriate for the kind of consumer you are creating
(sync/async). To create an asynchronous durable message consumer for a
destination, call the function MXr eat eAsyncDur abl eMessageConsuner .

Durable consumers are for topic destinations. If you are creating a consumer for a
queue destination or if you are not interested in messages that arrive to a topic
while you are inactive, you should use the function MXr eat eMessageConsurrer .

The broker retains a record of this durable subscription and makes sure that all
messages from the publishers to this topic are retained until they are either
acknowledged by this durable subscriber or until they have expired. Sessions with
durable subscribers must always provide the same client identifier (see

MY eat eConnect i on, cl i ent | Dparameter). In addition, each durable consumer
must specify a durable name using the dur abl eNarme parameter, which uniquely
identifies (for each client identifier) the durable subscription when it is created.

A session’s consumers are automatically closed when you close the session or
connection to which they belong. However, messages will be routed to the durable
subscriber while it is inactive and delivered when the durable consumer is
recreated. To close a consumer without closing the session or connection to which
it belongs, use the MY oseMessageConsuner function. If you want to close a
durable consumer permanently, you should call the

MUnsubscr i beDur abl eMessageConsuner function after closing it to delete state
information maintained by the broker on behalf of the durable consumer.

Chapter 4 Reference 107

MQCreateDurableMessageConsumer

Common Errors
MQ_NOT_SYNC_RECEI VE_MODE

MQ | N\VALI D_MESSAGE_SELECTCR
MQ_DESTI NATI ON_CONSUVER LI M TE_EXCEEDEED
MQ_TEMPCRARY_DESTI NATI ON_NOT_I N_CONNECTI N
MQ_CONSUMER_NO_DURABLE_NAME
MQ_QUEUE_CONSUMER CANNOT_BE_DURABLE
MQ_CONCURRENT_ACCESS

MQ_SESSI ON_CLOSED

MQ_BROKER CONNECTI ON_CLCSED

108 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQCreateMessageConsumer

MQCreateMessageConsumer

The MXr eat eMessageConsuner function creates a synchronous message consumer
for the specified destination.

MY eat eMessageConsuner

Return Value

(const MXessi onHandl e sessi onHandl e,
const MDestinationHandl e destinationHandl e,
Const MBt ri ng nmessageSel ect or,
MXBool nolLocal
MXonsuner Handl e * consurrer Handl e) ;

Mt at us. See the MXBt at usl sError function for more information.

Parameters

sessi onHandl e

desti nati onHandl e

messageSel ect or

noLocal

consumer Handl e

The handle to the session to which this consumer belongs.
This handle is passed back to you by the MXCr eat eSessi on
function. For this (synchronous) consumer, the session must
have been created with the MY _SESSI ON_SYNC_RECEI VE receive
mode.

A handle to the destination on which the consumer receives
messages. This handle remains valid after the call returns.

An expression (based on SQL92 conditional syntax) that
specifies the criteria upon which incoming messages should be
selected for this consumer. Specify a NULL or empty string to
indicate that there is no message selector for this consumer
and that all messages should be returned.

The library makes a copy of the nessageSel ect or string.

For more information about SQL, see X/Open CAE
Specification Data Management: Structured Query Language
(SQL), Version 2, ISBN 1-85912-151-9, March 1966.

Specify MQ TRUE to inhibit delivery of messages published by
this consumer’s own connection. This applies only to topic
destinations; it is ignored for queues.

Output parameter for the handle that references the consumer
for the specified destination.

Chapter 4 Reference 109

MQCreateMessageConsumer

110

The MY eat eMessageConsuner function creates a synchronous message consumer
for the specified destination. You can define parameters to filter messages and to
inhibit the delivery of messages you published to your own connection. Note that
the session’s receive mode (sync/async) must be appropriate for the kind of
consumer you are creating (sync/async). To create an asynchronous message
consumer for a destination, use the MXr eat eAsyncMessageConsuner function.

If the consumer is a topic destination, it can only receive messages that are
published while it is active. To receive messages published while this consumer is
not active, you should create a consumer using either the

MXr eat eDur abl eMessageConsuner function or the

MXr eat eAsyncDur abl eMessageConsuner function, depending on the receive mode
you defined for the session.

A session’s consumers are automatically closed when you close the session or
connection to which they belong. To close a consumer without closing the session
or connection to which it belongs, use the MY oseMessageConsuner function.

Common Errors

MQ_NOT_SYNC RECHEI VE_MXE

MQ | NVALI D MESSACGE_SELECTCR

MQ_DESTI NATI ON_CONSUMVER LI M T_EXCEEDEED
MQ_TEMPCRARY_DESTI NATI ON_NOT_I N_CONNECTI ON
MQ_CONCURRENT_ACCESS

MQ SESSI ON_CLCSED

M2 BROKER _CONNECTI ON_CLCSED

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQCreateMessageProducer

MQCreateMessageProducer

The MYXr eat eMessagePr oducer function creates a message producer that does not
have a specified destination.

MY eat eMessagePr oducer (const MXessi onHandl e sessi onHandl e,

MPr oducer Handl e * producer Handl e) ;

Return Value
MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the session to which this producer should
belong.

pr oducer Handl e Output parameter for the handle that references the producer.

The MY eat eMessagePr oducer function creates a message producer that does not
have a specified destination. In this case, you will specify the destination when
sending the message itself by using either the M®BendMessageToDest i nat i on
function or the MBendMessageToDest i nat i onExt function.

Using the MXOr eat eMessagePr oducer function is appropriate when you want to use
the same producer to send messages to a variety of destinations. If, on the other
hand, you want to use one producer to send many messages to the same
destination, you should use the MXr eat eMessagePr oducer For Dest i nati on
function instead.

A session’s producers are automatically closed when you close the session or
connection to which they belong. To close a producer without closing the session or
connection to which it belongs, use the M)XJ oseMessagePr oducer function.

Common Errors
MQ SESSI ON_CLCSED

Chapter 4 Reference 111

MQCreateMessageProducerForDestination

MQCreateMessageProducerForDestination

112

The MY eat eMessagePr oducer For Dest i nat i on function creates a message
producer with a specified destination.

MY eat eMessagePr oducer For Desti nati on

(const MXessi onHandl e sessi onHandl e,
const MQDestinationHandl e destinationHandl e,
MPr oducer Handl e * producer Handl €) ;

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the session to which this producer belongs.

desti nati onHandl e A handle to the destination where you want this producer to
send all messages. This handle remains valid after the call
returns.

pr oducer Handl e Output parameter for the handle that references the producer.

The MY eat eMessagePr oducer For Dest i nat i on function creates a message
producer with a specified destination. All messages sent out by this producer will
go to that destination. Use the MBendMessage function or the MBendMessageExt
function to send messages for a producer with a specified destination.

Use the MXr eat eMessagePr oducer function when you want to use one producer to
send messages to a variety of destinations.

A session’s producers are automatically closed when you close the session or
connection to which they belong. To close a producer without closing the session or
connection to which it belongs, use the M)XJ oseMessagePr oducer function.

Common Errors
MQ SESSI ON_CLCSED

MQ BROKER_CONNECTI ON_CLOSED

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQCreateProperties

MQCreateProperties

The MXr eat eProper ti es function creates a properties handle and passes it back to
the caller.

MY eat eProperti es (MPropertiesHandl e * propertiesHandl e);

Return Value
Mt at us. See the MBt at usl sError function for more information.

Parameters

propertiesHandl e Output parameter for the handle that references the newly
created properties object.

Use the MY eat ePr oper ti es function to get a properties handle. You can then use
the appropriate MBet . . . Property function to set the desired properties.

Chapter 4 Reference 113

MQCreateSession

MQCreateSession

The MY eat eSessi on function creates a session, defines its behavior, and passes
back a handle to the session.

MY eat eSessi on

Return Value

(const MXonnecti onHandl e connect i onHandl e,

M®Bool isTransacted,

MAckMde acknow edgeMbde,
MXRRecei veMbde recei veMde

MXessi onHandl e * sessi onHandl e) ;

Mt at us. See the MBt at usl sError function for more information.

Parameters

connect i onHandl e

i sTransact ed

acknow edgeMbde

recei veMvde

sessi onHandl e

The handle to the connection to which this session belongs. This
handle is passed back to you by the MXCr eat eConnect i on function.
You can create multiple sessions on a single connection.

An MPBool specifying whether this session is transacted. Specify
MQ_TRUE if the session is transacted. In this case, the
acknow edgeMbde parameter is ignored.

An enumeration of the possible kinds of acknowledgement modes
for the session. See Table 4-3 on page 81 for information on these
values.

After you have created a session, you can determine its
acknowledgement mode by calling the MXet Acknowl edgeMbde
function.

An enumeration specifying whether this session will do
synchronous or asynchronous message receives. Specify
MQ_SESSI ON_SYNC_RECEI VE or M) SESSI ON_ASYNC_RECEI VE.

If the session is only for producing messages, the r ecei veMbde has
no significance. In that case, specify M) SESSI ON_SYNC_RECEI VE to
optimize the session’s resource use.

A handle to this session. You will need to pass this handle to the
functions you use to manage the session and to create
destinations, consumers, and producers associated with this
session.

114 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQCreateSession

The MY eat eSessi on function creates a new session and passes back a handle to it
in the sessi onHandl e parameter. The number of sessions you can create for a single
connection is limited only by system resources. A session is a single-thread context
for producing and consuming messages. You can create multiple producers and
consumers for a session, but you are restricted to use them serially. In effect, only a
single logical thread of control can use them.

A session with a registered message listener is dedicated to the thread of control
that delivers messages to the listener. This means that if you want to send
messages, for example, you must create another session with which to do this. The
only operations you can perform on a session with a registered listener, is to close
the session or the connection.

After you create a session, you can create the producers, consumers, and
destinations that use the session context to do their work.

e For a session that is not transacted, use the MQRecover Sessi on function to
restart message delivery with the last unacknowledged message.

e For a session that is transacted, use the MRl | BackSessi on function to roll
back any messages that were delivered within this transaction. Use the
MConmi t Sessi on function to commit all messages associated with this
transaction.

e For a session that has acknow edgeMde set to M) CLI ENT_ACKNOALEDGE, use
MAcknow edgeMessages to acknowledge consumed messages.

¢ Use the M oseSessi on function to close a session and all its associated
producers and consumers. This function also frees memory allocated for the
session.

Chapter 4 Reference 115

MQCreateTemporaryDestination

MQCreateTemporaryDestination

116

The MXr eat eTenpor ar yDest i nat i on function creates a temporary destination and
passes its handle back to you.

MY eat eTenpor ar yDest i nati on (const MXessi onHandl e sessi onHandl e
MPDest i nati onType desti nationType,
MPest i nati onHandl e * destinati onHandl e) ;

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the session with which you want to associate this
destination.

desti nati onType An enum specifying the destination type, either
MQ_QUEUE_DESTI NATI ON or M) TCPI C_DESTI NATI ON.

desti nati onHandl e Output parameter for the handle to the newly created

temporary destination.

You can use a temporary destination to implement a simple request/reply
mechanism. When you pass the handle of a temporary destination to the

MXBet MessageRepl yTo function, the consumer of the message can use that handle as
the destination to which it sends a reply.

Temporary destinations are explicitly created by client applications; they are
deleted when the connection is closed. They are maintained (and named) by the
broker only for the duration of the connection for which they are created.
Temporary destinations are system-generated uniquely for their connection and
only their own connection is allowed to create message consumers for them.

For more information, see the Message Queue Administration Guide.

Common Errors
MQ I NVALI D_DESTI NATI ON_TYPE

MQ_SESSI ON_CLOSED

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQCreateTextMessage

MQCreateTextMessage

The MY eat esText Message function creates a text message and passes a handle to
it back to you.

MY eat eText Message (MQvessageHandl e * messageHandl e);

Return Value
Mt at us. See the MBt at usl sError function for more information.

Parameters

messageHand! e Output parameter for the handle to the new, empty message.

After you obtain the handle to a text message, you can use this handle to define its
content with the M¥Bet St ri ngPr operty function, to set its headers with the

MXet MessageHeader s function, and to set its properties with the

MXBet MessagePr oper ti es function.

Chapter 4 Reference 117

MQFreeConnection

MQFreeConnection

The MJFr eeConnect i on function deallocates memory assigned to the specified
connection and to all resources associated with that connection.

MJr eeConnecti on (MXonnect i onHandl e connecti onHandl e) ;

Return Value
Mt at us. See the MXBt at usl sError function for more information.

Parameters

connect i onHandl e A handle to the connection you want to free.

You must call this function after you have closed the connection with the

MY oseConnect i on function and after all of the application threads associated
with this connection and its dependent sessions, producers, and consumers have
returned.

You must not call this function while an application thread is active in a library
function associated with this connection or one of its dependent sessions,
producers, consumers, and destinations.

Calling this function does not release resources held by a message or a destination
associated with this connection. You must free memory allocated for a message or
a destination by explicitly calling the MJFr eeMessage or the MJFr eeDest i nati on
function.

Common Errors
MR _STATUS CONNECTI ON_NOT_QLOSED

118 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQFreeDestination

MQFreeDestination

The MJFreeDest i nat i on function frees memory allocated for the destination
referenced by the specified handle.

MJ¥r eeDesti nati on (MDest i nati onHandl e destinati onHandl e);

Return Value
Mt at us. See the MBt at usl sError function for more information.

Parameters

desti nati onHandl e A handle to the destination you want to free.

Calling the MJr eeConnect i on or the MY oseSessi on function does not
automatically free destinations created for the connection or for the session.

Chapter 4 Reference 119

MQFreeMessage

MQFreeMessage

The MFreeMessage function frees memory allocated for the message referenced by
the specified handle.

MJ¥Fr eeMessage (MvessageHandl e messageHandl e) ;

Return Value
Mt at us. See the MXBt at usl sError function for more information.

Parameters

messageHand! e A handle to the message you want to free.

Calling the MJr eeConnect i on function does not automatically free messages
associated with that connection.

120 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQFreeProperties

MQFreeProperties

The M¥FreeProperti es function frees the memory allocated to the referenced
properties object.

MJr eeProperti es (MPropertiesHandl e propertiesHandl e);

Return Value
Mt at us. See the MBt at usl sError function for more information.

Parameters

propertiesHandl e A handle to the properties object you want to free.

You should not free a properties handle if the properties handle passed to a
function becomes invalid on its return. If you do, you will get an error.

Chapter 4 Reference 121

MQFreeString

MQFreeString

The MJFreeStri ng function frees the memory allocated for the specified M¥Bt ri ng.

M¥reeString (M®Btring statusString);

Return Value
Mt at us. See the MXBt at usl sError function for more information.

Parameters

statusString An MEtri ng returned by the MQGet St at usSt ri ng function or by
the MGt Er r or Tr ace function.

122 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQGetAcknowledgeMode

MQGetAcknowledgeMode

The MXet Acknow edgeMbde function passes back the acknowledgement mode of
the specified session.

MXet Acknowl edgenode (const MXessi onHandl e sessi onHandl e

MAckMbde * ackMode) ;

Return Value
MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the session whose acknowledgement mode you want
to determine.

ackMode Output parameter for the ackMde. The ackMde returned can be

one of four enumeration values. See Table 4-3 on page 81 for
information about these values.

If you want to change the acknowledge mode, you need to create another session
with the desired mode.

Chapter 4 Reference 123

MQGetBoolProperty

MQGetBoolProperty

The MXGet Bool Property function passes back the value of the MBool property for

the specified key.

MXGet Bool Property (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
MXBool * val ue);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

propertiesHandl e A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

val ue Output parameter for the property value.

Common Errors
MR _NOT_FQOUND

MQ | NVALI D_TYPE_CONVERS! ON

124 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQGetBytesMessageBytes

MQGetBytesMessageBytes

The MXGet Byt esMessageByt es function passes back the address and size of a bytes
message body.

MXet Byt esMessageByt es (const MvessageHandl e messageHandl e,
const MJnt8 * nessageBytes
M nt 32 * messageByt esS ze);

Return Value
MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

messageHand! e A handle to a message that is passed to you when you receive
a message.

messageByt es Output parameter that contains the start address of the bytes
that constitute the body of this bytes message.

messageByt esS ze Output parameter that contains the size of the message body

in bytes.

After you obtain the handle to a message, you can use the MGet MessageType to
determine its type and, if the type is MQ BYTES_MESSAGE, you can use the
MXGet Byt esMessageByt es function to retrieve the message bytes (message body).

The bytes message passed to you by this function is not a copy. You should not
modify the bytes or attempt to free it.

Chapter 4 Reference 125

MQGetDestinationType

MQGetDestinationType

126

The MXGet Dest i nat i onType passes back the type of the specified destination.
MXet Dest i nati onType (const MQPestinati onHandl e desti nati onHandl e,

MPDest i nati onType * destinationType);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters
desti nati onHandl e A handle to the destination whose type you want to know.
desti nati onType Output parameter for the destination type; either

MQ_QUEUE._DESTI NATI ON or M TGPI C_DESTI NATI ON.

Use the MXet Dest i nat i onType function to determine the type of a destination:
queue or topic. There may be times when you do not know the type of the
destination to which you are replying: for example, when you get a handle from
the MJGet MessageRepl yTo function. Because the semantics of queue and topic
destinations differ, you need to determine the type of a destination in order to

reply appropriately.

Once you have created a destination with a specified type, you cannot change the
type dynamically. If you want to change the type of a destination, you need to free
the destination using the MJFr eeDest i nat i on function and then to create a new
destination, with the desired type, using the MXr eat eDest i nat i on or the

MXr eat eTenpor aryDest i nat i on function.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQGetErrorTrace

MQGetErrorTrace

The MXet Er r or Tr ace function returns an M®t ri ng describing the error trace at the
time when a function call failed for the calling thread.

MXEtring MXetErrorTrace ()

Having found that a Message Queue function has not returned successfully, you
can get an error trace when the error occurred by calling the MXet Er r or Tr ace
function in the same thread that called the unsuccessful Message Queue function.

The MXGet Error Trace function returns an M®t ri ng describing the error trace if it
can determine this information. The function will return a NULL string if there is no
error trace available.

The following is an example of an error trace output.

connect:../../../../src/share/cclient/iol TOPSocket . cpp: 195: ny: - 5981
readBrokerPorts:../../../../src/share/cclient/client/PortMpper
dient.cpp: 48: my: - 5981
connect:../../../../..Isrc/sharel/cclient/client/protocol/
TCPPr ot ocol Handl er. cpp: 111: my: - 5981
connect ToBroker:../../../../src/share/cclient/client/Connection.
cpp: 412: ny: - 5981
openConnection:../../../../src/share/cclient/client/Connection.
cpp: 227: ng: 1900
MY eat eConnectionkxt:../../../../src/share/cclient/cshin
i Monnect i onShi m cpp: 102: ng: 1900

You must call the MFr eeStri ng function to free the MBt ri ng returned by the
MXGet Er r or Tr ace function when you are done.

Chapter 4 Reference 127

MQGetFloat32Property

MQGetFloat32Property

128

The MXGet Fl oat 32Pr opert y function passes back the value of the M| oat 32
property for the specified key.

MXet Fl oat 32Pr operty

Return Value

(const MPropertiesHandl e propertiesHandl e,
Const MBt ring key,
Ml oat 32 * val ue);

MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

propertiesHandl e

key

val ue

Common Errors
MR _NOT_FQOUND

A properties handle whose property value for the specified key you
want to get.

The name of a property key.

Output parameter for the property value.

MQ | NVALI D_TYPE_CONVERS! ON

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQGetFloat64Property

MQGetFloat64Property

The MXGet Fl oat 64Pr opert y function passes back the value of the MQFloat64
property for the specified key.

MXet Fl oat 64Pr operty

Return Value

(const MPropertiesHandl e propertiesHandl e,
Const MBtring key,
M¥ oat 64 * val ue);

MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

propertiesHandl e

key

val ue

Common Errors
MR _NOT_FOUND

A properties handle whose property value for the specified key you
want to get.

The name of a property key.

Output parameter for the property value.

MQ | NVALI D_TYPE_CONVERS! ON

Chapter 4 Reference 129

MQGetint16Property

MOQGetIntl6Property

130

The MXet | nt 16Pr oper t y function passes back the value of the MJ nt 16 property
for the specified key.

MXet | nt 16Pr operty (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
MI nt16 * val ue);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

propertiesHandl e A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

val ue Output parameter for the property value.

Common Errors
MR _NOT_FQOUND

MQ | NVALI D_TYPE_CONVERS! ON

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQGetint32Property

MOQGetInt32Property

The MXet | nt 32Pr oper t y function passes back the value of the M) nt 32 property
for the specified key.

MXGet | nt 32Pr operty (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
MI nt32 * val ue);

Return Value
MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

propertiesHandl e A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

val ue Output parameter for the property value.

Common Errors
MR _NOT_FOUND

MQ | NVALI D_TYPE_CONVERS! ON

Chapter 4 Reference 131

MQGetint64Property

MOQGetInt64Property

132

The MXet | nt 64Pr oper t y function passes back the value of the MQInt64 property
for the specified key.

MXGet i nt 64Property (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
MI nt64 * val ue);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

propertiesHandl e A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

val ue Output parameter for the property value.

Common Errors
MR _NOT_FQOUND

MQ | NVALI D_TYPE_CONVERS! ON

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQGetInt8Property

MOQGetInt8Property

The MXet | nt 8Pr oper t y function passes back the value of the M) nt 8 property for
the specified key.

MXet | nt 8Property (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
MI nt8 * val ue);

Return Value
MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

propertiesHandl e A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

val ue Output parameter for the property value.

Common Errors
MR _NOT_FOUND

MQ | NVALI D_TYPE_CONVERS! ON

Chapter 4 Reference 133

MQGetMessageHeaders

MQGetMessageHeaders

134

The MXGet MessageHeader s function passes back a handle to the message headers.
MXet MessageHeader s (const MQwessageHandl e messageHandl e

MPropertiesHandl e * headersHandl e) ;

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters
messageHand! e The message handle.
header sHandl e Output parameter for the handle to the message header

properties.

The MXGet MessageHeader s function passes back a handle to the message headers.
The message header includes the fields described in Table 4-5. Note that most of
the fields are set by the send function; the client can optionally set only two of these
fields for sending messages.

Table 4-5 Message Header Properties

Key Type Set By
MQ_CCRRELATI ON_| D HEADER PRCPERTY MXBtring Client (optional)
MQ MESSAGE TYPE HEADER PRCPERTY MXEtring Client (optional)
MQ PERSI STENT HEADER PRCPERTY MXBool Send function
MQ_EXPI RATI ON_HEADER PRCPERTY MJ nt 64 Send function
MQ PRI ORI TY_HEADER PRCPERTY MJ nt 8 Send function
MQ_TI MESTAMP_HEADER PROPERTY MJ nt 64 Send function
MQ MESSACGE | D HEADER PRCPERTY MXEtring Send function
MR REDELI VERED HEADER PROPERTY MXBool Message Broker

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQGetMessageHeaders

You are responsible for freeing the header sHand| e after you are done with it. Use
the MJFr eeProperti es function to free the handle.

Use the MXet MessagePr oper ti es function to determine whether any
application-defined properties were set for this message and to find out their value.

Chapter 4 Reference 135

MQGetMessageProperties

MQGetMessageProperties

136

The MXGet MessagePr opert i es function passes back the user-defined properties for
a message.

MXet MessagePr operti es (const MQwessageHandl e messageHand! e,
MPropertiesHandl e * propsHandl e);

Return Value
MXt at us. See the M¥Et at usl sError function for more information.

Parameters
messageHand! e A handle to a message whose properties you want to get.
propertiesHandl e Output parameter for the handle to the message properties.

The MXGet MessagePr opert i es function allows you to get application-defined
properties for a message. Properties allow an application, via message selectors, to
select or filter messages on its behalf using application-specific criteria. Having
obtained the handle, you can either use one of the MXet . . . Property functions to
get a value (if you know the key name) or you can iterate through the properties
using the M)Properti esKeyl terationStart function.

You will need to call the function MJr eePr operti es to free the resources
associated with this handle after you are done using it.

Common Errors
MQ_NO MESSAGE_PRCPERTI ES

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQGetMessageReplyTo

MQGetMessageReplyTo

The MXet MessageRepl yTo function passes back the destination where replies to
this message should be sent.

MXet MessageRepl yTo (const MQWessageHandl e nessageHand! e,
MPDest i nati onHandl e * desti nati onHandl e);

Return Value
MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters

messageHand! e A handle to a message expecting a reply. This is the handle
that is passed back to you when you receive the message.

desti nati onHandl e Output parameter for the handle to the reply destination.

The sender uses the M®Bet MessageRepl yTo function to specify a destination where
replies to the message can be sent. This can be a normal destination or a temporary
destination. The receiving client can pass the message handle to the

MXGet MessageRepl yTo function and determine whether a destination for replies has
been set up for the message by the sender and what that destination is. The
consumer of the message can then use that handle as the destination to which it
sends a reply.

You might need to call the MQ%et Dest i nat i onType function to determine the type
of the destination whose handle is returned to you: queue or topic so that you can
set up your reply appropriately.

The advantage of setting up a temporary destination for replies is that Message
Queue automatically creates a physical destination for you, rather than your
having to have the administrator create one, when the broker’s

auto. create. destination property is turned off.

You are responsible for freeing the destination handle by calling the function
MJFr eeDest i nati on.

Common Errors
MQ NO REPLY_TO DESTI NATI ON

Chapter 4 Reference 137

MQGetMessageType

MQGetMessageType

The MXGet MessageType function passes back information about the type of a
message: M) TEXT_MESSAGE or M) BYTES_MESSAGE

MXet MessageType (const MQWessageHandl e nessageHand! e,

MQvessageType * nessageType);

Return Value
MXt at us. See the M¥Et at usl sError function for more information.

Parameters
messageHand! e A handle to a message whose type you want to determine.
nmessageType Output parameter that contains the message type:

MQ_TEXT_MESSAGE or MQ BYTES MESSAGE.

After you obtain the handle to a message, you can determine the type of the
message using the MJGet MessageType function. Having determined its type, you
can use the MQGet Text MessageText function or the MXet Byt esMessageByt es
function to obtain the message content.

Note that other message types might be added in the future. You should not design
your code so that it only expects two possible message types.

138 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQGetMetaData

MQGetMetaData

The MXGet Met aDat a function returns name and version information for the current
Message Queue product.

MXet Met aDat a (const MXonnecti onHandl e connect i onHandl e,
MPropertiesHandl e * propertiesHandl e)

Return Value
MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters

connect i onHandl e The handle to the connection that you want the meta information
about.

propertiesHandl e Output parameter that contains the properties handle.

The Message Queue product you are using is identified by a name and a version
number. For example: “Sun Java(tm) System Message Queue 3.5.0.1.” The version
number consists of a major, minor, micro, and service pack component. For
example, the major part of version 3.5.0.1 is 3; the minor is 5; the micro is 0; the
service pack is 1.

The name and version information of the Message Queue product are set by the
library when you call the MXr eat eConnect i on function to create the connection. You
can retrieve this information by calling the MGet Met aDat a function and passing a
properties handle. Once the function returns and passes the handle back, you can
use one of the MXGet . . . Properti es functions to determine the value of a property
(key). These properties are described at the end of Table 4-2 on page 77.

Chapter 4 Reference 139

MQGetProperty Type

MOQGetPropertyType

The MXet Pr oper t yType function returns the type of the property value for a
property key in the specified properties handle.

MXet Pr opert yType (const MPropertiesHandl e propertiesHandl e,
Const MBtring key,
MJType * propertyType);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

propertiesHandl e A properties handle that you want to access.

key The property key for which you want to get the type of the
property value.

propertyType Output parameter for the type of the property value.

Use the appropriate MGet . . . Property function to find the value of the specified
property key.

Common Errors
MR _NOT_FQUND

140 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQGetStatusCode

MQGetStatusCode

The MXet St at usCode function returns the error code associated with specified

status.

MXEr ror MXet St at usCode (const MXtatus status);

Parameters

stat us The status returned by any Message Queue function that

returns an MBt at us.

Having found that a Message Queue function has not returned successfully, you
can determine the reason by passing the return status. This function will return the
error code associated with the specified status. These codes are listed and
described in Appendix A on page 185.

Some functions might return an Mt at us that contains an NSPR or NSS library
error code instead of a Message Queue error code when they fail. For NSPR and
NSS library error codes, the MQGet St at usSt ri ng function will return the symbolic
name of the NSPR or NSS library error code. See NSPR and NSS public
documentation for NSPR and NSS error code symbols and their interpretation at
the following locations:

e For NSPR error codes, see the “NSPR Error Handling” chapter:
http: //ww: nozi | | a. or g/ proj ect s/ nspr/ref erencel ht ni/index. ht m

* For SSL and SEC error codes, see the “NSS and SSL Error Codes” chapter:
http://ww nozi | | a. or g/ proj ect s/ security/ pki/nss/ref/ssl/

To obtain an M®Bt ri ng that describes the error, use the MXet St at usSt ri ng
function. To get an error trace associated with the error, use the MGet Err or Tr ace
function.

Chapter 4 Reference 141

http://www.mozilla.org/projects/nspr/reference/html/index.html
http://www.mozilla.org/projects/security/pki/nss/ref/ssl/

MQGetStatusString

MQGetStatusString

The MXGet St at usSt ri ng function returns an M®t ri ng describing the specified
status.

MXEBtring MXet StatusString (const MXtatus status);

Parameters

stat us The status returned by any Message Queue function that
returns an MX®t at us.

Having found that a Message Queue function has not returned successfully, you
can determine the reason why by passing the return status. This function will
return an M®Bt ri ng describing the error associated with the specified status.

To obtain the error code for the specified st at us, use the M%et St at usCode
function. To get an error trace associated with the error, use the M&Get Er r or Tr ace
function.

You must call the MFr eeSt ri ng function to free the MBt ri ng returned by the
MXCet St at usStri ng function when you are done.

142 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQGetStringProperty

MOQGetStringProperty

The MXGet St ri ngPr operty function passes back the value of the specified key for
the specified Mt ri ng property.

MXet Stri ngProperty (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
Const M®Btring * val ue);

Return Value
MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

propertiesHandl e A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

val ue Output parameter that points to the value of the specified key

You should not modify or attempt to free the value returned.

Chapter 4 Reference 143

MQGetTextMessageText

MOQGetTextMessageText

144

The MXGet Text MessageText function passes back the contents of a text message.
MXet Text MessageText (const MQwessageHandl e messageHandl e,

Const MBtring * nessageText);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

messageHand! e A handle to an MQ TEXT_MESSAGE message that is passed to
you when you receive a message.

nmessageText The output parameter that points to the message text.

After you obtain the handle to a message, you can use the MGet MessageType to
determine its type and, if the type is text, you can use the MXGt Text MessageText
function to retrieve the message text.

The M®Bt ri ng passed to you by this function is not a copy. You should not modify
the bytes or attempt to free it.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQInitialize SSL

MOQInitializeSSL

The MY ni tial i zeSSL function initializes the SSL library.
MJnitializeSSL (Const MBtring certificateDatabasePath);

Return Value
Mt at us. See the MXBt at usl sError function for more information.

Parameters

certificateDat abasePath An M®Bt ri ng specifying the path to the directory that
contains the certificate data base files.

The Message Queue C-API library uses NSS to support the SSL transport protocol
between the Message Queue C client and the Message Queue broker.

Before you connect to a broker over SSL, you must initialize the SSL library by
calling the M) ni ti al i zeSSL function. If your client uses secure connections, you
must call this function once and only once before you create any connection, even if
that connection is not an SSL connection.

The certificat eDat abasePat h parameter specifies the path to the NSS certificate
database where cert 7. db or cert 8. db, key3. db, and secnod. db files are located.

The work required to configure secure communication includes initializing the SSL
library using the MJ ni ti al i zeSSL function. There may be additional work,
depending on whether the broker is trusted (the default setting) and on whether
you want to provide an additional means of verification if the broker is not trusted
and the initial attempt to create a secure connection fails. For complete information
see “Working With Secure Connections” on page 35.

You must take care if the client application using secure Message Queue
connections uses NSS (for other purposes) directly as well and does NSS
initialization. For additional information, see “Coordinating NSS Initialization” on
page 37.

Common Errors
MQ_| NCOVPATI BLE_LI BRARY
MQ SSL_ALREADY_I NI Tl ALI ZED

M SSL_I NI T_ERRCR

Chapter 4 Reference 145

MQPropertiesKeylterationGetNext

MQPropertiesKeylterationGetNext

146

The MQPropertiesKeyl terationGet Next function passes back the address of the
next property key in the referenced properties handle.

MPr operti esKeyl t erati onCet Next (const MPropertiesHandl e
propertiesHandl e,

Const MBtring * key);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters
propertiesHandl e A properties handle whose contents you want to access.
key The output parameter for the next properties key in the

iteration. You should not attempt to modify or free it.

To get message properties:
1. Start the process by calling the MProperti esKeylterationStart function.
2. Loop using the MProperti esKeylt erati onHasNext function.

3. Extract the name of each property key by calling the
MXPr operti esKeylterationGet Next function.

4. Determine the type of the property value for a given key by calling the
MXGet Pr opert yType function.

5. Use the appropriate MJGet . . . Property function to find the property value for
the specified property key.

If you know the property key, you can just use the appropriate MXt . . . Property

function to access its value.

You should not modify or free the property key that is passed back to you by this
function. Note that this function is not multi-thread-safe.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQPropertiesKeylterationHasNext

MQPropertiesKeylterationHasNext

The MProperti esKeyl t erati onHasNext function returns M) TRUE if there are
additional property keys left in the iteration.

MPr operti esKeyl t erat i onHasNext

(const MPropertiesHandl e propertiesHandl e);

Return Value

MXBool

Parameters

propertiesHandl e A properties handle that you want to access.

To get message properties:

1.

2.

3.

Start the process by calling the MProperti esKeyl terationStart function.
Loop using the MQProperti esKeyl t erati onHasNext function.

Extract the name of each property key by calling the
MPr operti esKeyl terationGet Next function.

Determine the type of the property value for a given key by calling the
MXet Pr oper t yType function.

Use the appropriate MGet . . . Property function to find the value for the
specified property key.

If you know the property key, you can just use the appropriate MXet . . . Property
function to get its value. Note that this function is not multi-thread-safe.

Chapter 4 Reference 147

MQPropertiesKeylterationStart

MQPropertiesKeylterationStart

148

The MPropertiesKeylterationStart function starts or resets the iteration process
or the specified properties handle.

MPropertiesKeylterationStart (const PropertiesHandl e
propertiesHandl e);

Return Value
MXt at us. See the M¥Et at usl sError function for more information.

Parameters

propertiesHandl e A properties handle that you want to access.

To get message properties:
1. Start the process by calling the MProperti esKeylterationStart function.
2. Loop using the MProperti esKeyl t erati onHasNext function.

3. Extract the name of each property key by calling the
MPr operti esKeyl t erati onGet Next function.

4. Determine the type of the property value for a given key by calling the
MXGet Pr opert yType function.

5. Use the appropriate MJGet . . . Property function to find the property value for
the specified property key.

If you know the property key, you can just use the appropriate MCet . . . Property
function to get its value. Note that this function is not multi-thread-safe.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQReceiveMessageNoWait

MOQReceiveMessageNoWait

The MRecei veMessageNoVdi t function passes a handle back to a message
delivered to the specified consumer if a message is available.

MX>Recei veMessageNoVi t (const MXonsuner Handl e consuner Handl e,
MJvessageHandl e * messageHandl e) ;

Return Value
MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters

consuner Handl e The handle to the message consumer. This handle is passed
back to you when you create a synchronous message
consumer.

messageHand| e Output parameter for the handle to the message to be

received. You are responsible for freeing the message handle
when you are done by calling the M¥r eeMessage function.

This function can only be called if the session is created with receive mode
MQ_SESSI ON_SYNC_RECHI VE. The MRecei veMessageNoWai t function passes a handle
back to you in the messageHandl e parameter if there is a message arrived for the
consumer specified by the consumer Handl e parameter. If there is no message for
the consumer, the function returns immediately with an error.

When you create a session, you specify one of several acknowledge modes for that
session; these are described in Table 4-3. If you specify M) CLI ENT_ACKNOALEDGE as
the acknowledge mode for the session, you must explicitly call the

MAcknow edgeMessages function to acknowledge messages that you have
received. For more information, see the description of the function

MAcknow edgeMessages.

Because distributed applications involve greater processing time, such an
application might not behave as expected if it were run locally. For example,
calling the M)Recei veMessageNoVii t function might return M) NO MESSAGE even
when there is a message available to be retrieved.

Chapter 4 Reference 149

MQReceiveMessageNoWait

If a client connects to the broker and immediately calls the

MXRecei veMessageNoVii t, it is possible that the message queued for the consuming
client is in the process of being transmitted from the broker to the client. The client
runtime has no knowledge of what is on the broker, so when it sees that there is no
message available on the client’s internal queue, it returns with M) NO_MESSAGE.

You can avoid this problem by having your client use one of the synchronous
receive methods that specifies a timeout interval.

You can use the MRecei veMessageVii t function if you want the receive function to
block while waiting for a message to arrive. You can use the

MXRecei veMessageW t hTi meout function to wait for a specified time for a message
to arrive.

Common Errors

MQ_NOT_SYNC RECHEI VE_MXE
MQ_CONCURRENT_ACCESS

M2 NO MESSAGE
MQ_CONSUMER_CLCSED

MQ SESSI ON_CLCSED

MY BROKER CONNECTI ON_CLCSED

150 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQReceiveMessageWait

MOQReceiveMessageWait

The MXRecei veMessageWi t function passes a handle back to a message delivered
to the specified consumer when the message becomes available.

MXRecei veMessageWi t (const MXonsuner Handl e consuner Handl e,
MJvessageHandl e * messageHandl e) ;

Return Value
MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters

consuner Handl e The handle to the message consumer. This handle is passed
back to you when you create a synchronous message
consumer.

messageHand| e Output parameter for the handle to the message to be

received. You are responsible for freeing the message handle
when you are done by calling the M¥r eeMessage function.

This function can only be called if the session is created with receive mode
MQ_SESSI ON_SYNC_RECHI VE. The MRecei veMessageWi t function passes a handle
back to you in the nessageHandl e parameter if there is a message arrived for the
consumer specified by the consumer Handl e parameter. If there is no message for
the consumer, the function blocks until a message is delivered.

When you create a session, you specify one of several acknowledge modes for that
session; these are described in Table 4-3. If you specify M) CLI ENT_ACKNOALEDGE as
the acknowledge mode for the session, you must explicitly call the

MAcknow edgeMessages function to acknowledge messages that you have
received. For more information, see the description of the function

MAcknow edgeMessages.

Chapter 4 Reference 151

MQReceiveMessageWait

You can use the M)Recei veMessageNoVii t function instead if you do not want to
block while waiting for a message to arrive. You can use the function
MXRecei veMessageW t hTi meout to wait for a specified time for a message to arrive.

Common Errors
MQ_NOT_SYNC_RECEI VE_MODE
MQ_OONCURRENT_ACCESS

M _CONSUMER CLOSED

MQ_SESSI ON_CLOSED

MR _BROKER_CONNECTI ON_CLCSED

152 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQReceiveMessageWithTimeout

MQReceiveMessageWithTimeout

The MXRecei veMessageWt hTi meout function passes a handle back to a message
delivered to the specified consumer if a message is available within the specified
amount of time.

MX>Recei veMessageW t hTi neout (const MXonsuner Handl e consuner Handl e,
MI nt32 timeoutMI|iseconds,
MvessageHandl e * nmessageHandl e) ;

Return Value
MXt at us. See the M¥Et at usl sError function for more information.

consuner Handl e The handle to the message consumer. This handle is passed
back to you when you create a synchronous message
consumer.

ti meout M| 1iseconds The number of milliseconds to wait for a message to arrive.

messageHand! e Output parameter for the handle to the message to be

received. You are responsible for freeing the message handle
when you are done by calling the M¥r eeMessage function.

This function can only be called if the session is created with receive mode
MQ_SESSI ON_SYNC_RECHI VE. The MRecei veMessageW t hTi neout function passes a
handle back to you in the messageHand! e parameter if a message arrives for the
consumer specified by the consurer Handl e parameter in the amount of time
specified by the ti nout M | | i seconds parameter. If no message arrives within the
specified amount of time, the function returns an error.

When you create a session, you specify one of several acknowledge modes for that
session; these are described in Table 4-3. If you specify M) CLI ENT_ACKNOALEDGE as
the acknowledge mode for the session, you must explicitly call the

MAcknow edgeMessages function to acknowledge messages that you have
received. For more information, see the description of the function

MAcknow edgeMessages.

Chapter 4 Reference 153

MQReceiveMessageWithTimeout

You can use the M)Recei veMessageWai t function to block while waiting for a
message to arrive. You can use the MQRecei veMessageNoWai t function if you do not
want to wait for the message to arrive.

Common Errors
MQ_NOT_SYNC_RECEI VE_MODE
MQ_OONCURRENT_ACCESS

MR _TI MEQUT_EXPI RED

M _CONSUMER _CLOSED

MQ _SESSI ON_CLOSED
MQ_BROKER_CONNECTI ON_CLCSED

154 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQRecoverSession

MQRecoverSession

The MCRecover Sessi on function stops message delivery and restarts message
delivery with the oldest unacknowledged message.

MJXRecover Sessi on (const MXessi onHandl e sessi onHandl e) ;

Return Value
Mt at us. See the MBt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the session that you want to recover.

You can only call this function for sessions that are not transacted. To rollback
message delivery for a transacted session, use the MRol | BackSessi on function.
This function may be most useful if you use the M CLI ENT_ACKNOAELDGE mode.

All consumers deliver messages in a serial order. Acknowledging a received
message automatically acknowledges all messages that have been delivered to the
client.

Restarting a session causes it to take the following actions:
* Stop message delivery in this session

* Mark all messages that might have been delivered but not acknowledged as
“redelivered”

* Restart the delivery sequence including all unacknowledged messages that
had been previously delivered. (Redelivered messages might not be delivered
in their original delivery order.)

Common Errors

MQ TRANSACTED SESSI ON
MQ_CONCURRENT_ACCESS

MQ SESSI ON_CLCSED

MY BROKER CONNECTI ON_CLCSED

Chapter 4 Reference 155

MQRolIBackSession

MOQRollBackSession

The MQRol | BackSessi on function rolls back a transaction associated with the
specified session.

MX>ol | BackSessi on (const MXessi onHandl e sessi onHandl e) ;

Return Value
Mt at us. See the MXBt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the transacted session that you want to roll back.

A transacted session groups messages into an atomic unit known as a transaction.
As messages are produced or consumed within a transaction, the broker tracks the
various sends and receives, completing these operations only when you call the
MYomi t Sessi on function.

If a send or receive operation fails, you must use the MRol | BackSessi on function
to roll back the entire transaction. This means that those messages that have been
sent are destroyed and those messages that have been consumed are automatically
recovered.

Common Errors
MQ_NOT_TRANSACTED_SESSI ON
MQ_CONCURRENT_ACCESS
MQ_SESSI ON_CLCSED

M2 BROKER _CONNECTI ON_CLCSED

156 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQSendMessage

MQSendMessage

The MBendMessage function sends a message using the specified producer.

MXendMessage (const MProducer Handl e producer Handl e,
const MMessageHandl e messageHandl e);

Return Value
MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters
pr oducer Handl e The handle to the producer sending this message. This handle
is passed back to you by the
MXr eat eMessagePr oducer For Dest i nat i on function.
messageHand| e A handle to the message you want to send.

The MBendMessage function sends the specified message on behalf of the specified
producer to the destination associated with the message producer. If you use this
function to send a message, the following message header fields are set to default
values when the send completes.

e MQ PERS| STENT_HEADER PRCPERTY will be set to M9 PERSI STENT_DELI VERY.

This means that the calling thread will be blocked, waiting for the broker to
acknowledge receipt of your messages, unless you set the connection property
MQ_ACK_CN_PRODUCE_PRCPERTY to MQ FALSE.

e M PR CR TY_HEADER PROPERTY will be set to 4.

e MQ EXPI RATI ON_HEADER PRCOPERTY will be set to 0, which means that the
message will never expire.

If you set those message properties, they will be ignored when a message is sent.
To send a message with these properties set to different values, you can use the
MXendMessageExt function to specify different values for these properties.

Chapter 4 Reference 157

MQSendMessage

You cannot use this function with a producer that is created without a specified
destination.

Common Errors
MQ_PRODUCER _NO DESTI NATI ON
MQ_PRODUCER CLOSED

MQ_SESSI ON_CLOSED
MQ_BROKER_CONNECTI ON_CLCSED

158 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQSendMessageExt

MQSendMessageExt

The MBendMessageExt function sends a message using the specified producer and
allows you to specify selected message header properties.

MXEendMessageExt

Return Value

(const MProducer Handl e producer Handl e,
const MMessageHandl e nessageHandl e
MXel i ver yMode nsgDlel i ver yMode,

MInt8 megPriority,
MJ nt 64 nsgTi neToLi ve) ;

Mt at us. See the MXBt at usl sError function for more information.

Parameters

pr oducer Handl e

messageHand| e

nmsgDel i ver yMode

nmsgPriority

nmsgTi meToLi ve

The handle to the producer sending this message. This handle
is passed back to you by the
MXr eat eMessagePr oducer For Dest i nat i on function.

A handle to the message you want to send.

An enum

MQ PERS| STENT _DELI VERY
MQ NONPERS| STENT DELI VERY.

A integer value of 0 through 9; 0 being the lowest priority and 9
the highest.

An integer value specifying in milliseconds how long the
message will live before it expires. When a message is sent, its
expiration time is calculated as the sum of its time-to-live value
and current GMT. A value of 0 indicates that he message wiill
never expire.

Chapter 4 Reference 159

MQSendMessageExt

The MBendMessageExt function sends the specified message on behalf of the
specified producer to the destination associated with the message producer. Use
this function if you want to change the default values for the message header
properties as shown in the next table.

Property Default value

nmsgDel i ver yMbde MQ_PERSI STENT_DELI VERY
nmsgPriority 4

nmsgTi neTolLi ve 0, meaning no expiration limit

If you set these message headers using the M®Bet MessageHeader s function before
the send, they will be ignored when the message is sent. When the send completes,
these message headers hold the values that are set by the send.

You cannot use this function with a producer that is created without a specified
destination.

You can set the broker property M) ACK_ON_PRCDUCE_PROPERTY to make sure that
the message has reached its destination on the broker:

¢ By default, the broker acknowledges receiving persistent messages only.

e If you set the property to M) TRUE, the broker acknowledges receipt of all
messages (persistent and non-persistent) from the producing client.

¢ If you set the property to M) FALSE, the broker does not acknowledge receipt of
any message (persistent or non-persistent) from the producing client.

Note that “acknowledgement” in this case is not programmatic but internally
implemented. That is, the client thread is blocked and does not return until the
broker acknowledges messages it receives from the producing client.

Common Errors
MQ_PRODUCER _NO DESTI NATI ON
MQ INVALID PRICRITY

MQ | NVALI D _DELI VERY_MODE
MQ_PRODUCER CLOSED

MQ_SESSI ON_CLOSED

MR _BROKER_CONNECTI ON_CLCSED

160 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQSendMessageToDestination

MQSendMessageToDestination

The MBendMessageToDest i nat i on function sends a message using the specified
producer to the specified destination.

MXendMessageToDest i nati on

(const MProducer Handl e producer Handl e,
const MvessageHandl e nmessageHandl e,
const MQDestinationHandl e destinati onHandl e);

Return Value
MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters

pr oducer Handl e The handle to the producer sending this message. This handle
is passed back to you by the MXr eat eMessagePr oducer
function.

messageHand! e A handle to the message you want to send.

desti nati onHandl e A handle to the destination where you want to send the
message.

The MBendMessageToDest i nat i on function sends the specified message on behalf
of the specified producer to the specified destination. If you use this function to
send a message, the following message header fields are set as follows when the
send completes.

e M) PERS| STENT_HEADER PRCPERTY will be set to M9 PERSI STENT_DELI VERY.

This means that the caller will be blocked, waiting for broker
acknowledgement for the receipt of your messages unless you set the
connection property M) ACK_ON_PRCDUCE_PRCPERTY to MQ_FALSE.

e M PR CR TY_HEADER PROPERTY will be set to 4.

e MQ EXPI RATI ON_HEADER PRCOPERTY will be set to 0, which means that the
message will never expire.

Chapter 4 Reference 161

MQSendMessageToDestination

To send a message with these properties set to different values, you must use the
MXBendMessageToDest i nati onExt function, which allows you to set these three
header properties.

If you set these message headers using the M®Bet MessageHeader s function before
the send, they will be ignored when the message is sent. When the send completes,
these message headers hold the values that are set by the send.

You cannot use this function with a producer that is created without a specified
destination.

Common Errors

MQ PRODUCER HAS DEFAULT DESTI NATI ON

MQ PRODUCER CLOSED

MD SESSI ON CLOSED

MQ BROKER_CONNECTI ON_CLOSED

162 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQSendMessageToDestinationExt

MQSendMessageToDestinationExt

The MBendMessageToDest i nat i onExt function sends a message to the specified
destination for the specified producer and allows you to set selected message

header properties.

MXendMessageToDest i nat i onExt

(const MProducer Handl e producer Handl e,
const MQvessageHandl e nessageHand! e,
const MXPestinationHandl e destinationHandl e,
MXel i ver yMode nsgDel i ver yMode,
MI nt8 megPriority,
MJ nt 64 nsgTi meToLi ve) ;

Return Value

Mt at us. See the MXBt at usl sError function for more information.

Parameters

pr oducer Handl e

messageHand| e

desti nati onHandl e

nmsgDel i ver yMode

nmsgPriority

nmsgTi neTolLi ve

The handle to the producer sending this message. This handle
is passed back to you when you call the
MXr eat eMessagePr oducer function.

A handle to the message you want to send.

A handle to the destination where you want to send the
message.

An enum of either MQ_PERS| STENT_DELI VERY or
MQ_NCNPERS| STENT_DELI VERY.

A integer value of 0 through 9; 0 being the lowest priority and 9
the highest.

An integer value specifying in milliseconds how long the
message will live before it expires. When a message is sent, its
expiration time is calculated as the sum of its time-to-live value
and current GMT. A value of 0 indicates that the message will
never expire.

Chapter 4 Reference 163

MQSendMessageToDestinationExt

The MBendMessageToDest i nat i onExt function sends the specified message on
behalf of the specified producer to the specified destination. Use this function if
you want to change the default values for the message header properties as shown

below:

Property Default value

nmsgDel i ver yMbde MQ_PERSI STENT_DELI VERY
nmsgPriority 4

nmsgTi neTolLi ve 0, meaning no expiration limit

If these default values suit you, you can use the MBendMessageToDest i nati on
function to send the message.

You cannot use this function with a producer that is created with a specified
destination.

You can set the broker property M) ACK_ ON_PRCDUCE_PROPERTY to make sure that
the message has reached its destination on the broker:

* By default, the broker acknowledges receiving persistent messages only from
the producing client.

e If you set the property to M) TRUE, the broker acknowledges receipt of all
messages (persistent and non-persistent) from the producing client.

¢ If you set the property to M) FALSE, the broker does not acknowledge receipt of
any message (persistent or non-persistent) from the producing client.

Note that “acknowledgement” in this case is not programmatic but internally
implemented. That is, the client thread is blocked and does not return until the
broker acknowledges messages it receives.

Common Errors
MQ_PRODUCER HAS DEFAULT_DESTI NATI ON
MQ INVALID PRICRITY

MQ | NVALI D _DELI VERY_MODE
MQ_PRODUCER CLOSED

MQ_SESSI ON_CLOSED

MR _BROKER_CONNECTI ON_CLCSED

164 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQSetBoolProperty

MQSetBoolProperty

The MXet Bool Property function sets an MBool property with the specified key to
the specified value.

MXet Bool Property (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
MXBool val ue);

Return Value
MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

propertiesHandl e A handle to the properties object whose property value for the
specified key you want to set.

key The name of the property key. The library makes a copy of the
property key.

val ue The MXBool property value.

Common Errors
MQ HASH VALUE ALREADY EXI STS

Chapter 4 Reference 165

MQSetBytesMessageBytes

MQSetBytesMessageBytes

166

The MXet Byt esMessageByt es function defines the body for a bytes message.

MXet Byt esMessageByt es (const MQvessageHandl e messageHandl e,
const MJnt8 * nessageByt es,
MJ nt 32 nessageSi ze) ;

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

messageHand! e A handle to an MQ BYTES_MESSAGE message whose body you
want to set.

nmessageByt es A pointer to the bytes you want to set. The library makes a copy
of the message bytes.

nmessageSi ze An integer specifying the number of bytes in messageByt es.

After you obtain the handle to a bytes message from M) eat eByt esMessage, you
can use this handle to define its body with the M®et Byt esMessageByt es function,
to set its application-defined properties with the M¥et MessagePr operti es
function, and to set certain message headers with the M¥et MessageHeader s
function.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQSetFloat32Property

MQSetFloat32Property

The MXBet Fl oat 32Pr oper t y function sets an M| oat 32 property with the specified
key to the specified value.

MXet Fl oat 32Pr operty (const MPropertiesHandl e propertiesHandl e,
Const MBt ring key,
M oat 32 val ue);

Return Value
MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

propertiesHandl e A handle to the properties object whose property value for the
specified key you want to set.

key The name of a property key. The library makes a copy of the
property key.

val ue The MXF oat 32 property value.

Common Errors
MQ HASH VALUE ALREADY EXI STS

Chapter 4 Reference 167

MQSetFloat64Property

MQSetFloat64Property

The MXet Fl oat 64Pr oper t y function sets an M| oat 64 property with the specified
key to the specified value.

MXet Fl oat 64Pr operty (const MPropertiesHandl e propertiesHandl e,
Const MEBt ri ng key,
MFI oat 64 val ue);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

propertiesHandl e A handle to the properties object whose property value for the
specified key you want to set.

key The name of a property key. The library makes a copy of the
property key.

val ue The M oat 64 property value.

Common Errors
MQ HASH VALUE ALREADY EXI STS

168 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQSetint16Property

MQSetInt16Property

The MXet | nt 16Pr operty function sets an MJ nt 16 property with the specified key
to the specified value.

MXet | nt 16Pr operty (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
MJ nt 16 val ue);

Return Value
MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

propertiesHandl e A handle to the properties object whose property value for the
specified key you want to set.

key The name of a property key. The library makes a copy of the
property key.

val ue The MJ nt 16 property value.

Common Errors
MQ HASH VALUE ALREADY EXI STS

Chapter 4 Reference 169

MQSetInt32Property

MQSetInt32Property

The MXet | nt 32Pr oper t y function sets an MJ nt 32 property with the specified key
to the specified value.

MXet | nt 32Pr operty (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
MJ nt 32 val ue);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

propertiesHandl e A handle to the properties object whose property value for the
specified key you want to set.

key The name of a property key. The library makes a copy of the
property key.

val ue The MJ nt 32 property value.

Common Errors
MQ HASH VALUE ALREADY EXI STS

170 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQSetint64Property

MQSetInt64Property

The MXet | nt 64Pr oper t y function sets an MJ nt 64 property with the specified key
to the specified value.

MXet | nt 64Pr operty (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
MJ nt 64 val ue);

Return Value
MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

propertiesHandl e A handle to the properties object whose property value for the
specified key you want to set.

key The name of a property key. The library makes a copy of the
property key.

val ue The MJ nt 64 property value.

Common Errors
MQ HASH VALUE ALREADY EXI STS

Chapter 4 Reference 171

MQSetInt8Property

MQSetInt8Property

The MXet | nt 8Pr oper t y function sets an MJ nt 8 property with the specified key to
the specified value.

MXet | nt 8Property (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
MJ nt8 val ue);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

propertiesHandl e A handle to the properties object whose property value for the
specified key you want to set

key The name of a property key. The library makes a copy of the
property key.

val ue The MJ nt 8 property value.

Common Errors
MQ HASH VALUE ALREADY EXI STS

172 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQSetMessageHeaders

MQSetMessageHeaders

The MXBet MessageHeader s function creates the header part of the message.

MXEet MessageHeader s (const MQwessageHandl e messageHandl e
MProperti esHandl e header sHandl e);

Return Value
MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters
messageHand! e A handle to a message.
header sHandl e A handle to the header properties object. This handle will be

invalid after the function returns.

After you have created a properties handle and defined values for message header
properties using one of the M¥et . . . Property functions, you can pass the handle
to the M®Bet MessageHeader s function to define the message header properties.

The message header properties are described in Table 4-6. For sending messages,
the client can only set two of these: the correlation ID property and the message
type property. The client is not required to set these; they are provided for the
client’s convenience. For example, the client can use the key

MQ _MESSAGE TYPE_HEADER PRCPERTY to sort incoming messages according to
application-defined message types.

Table 4-6 Message Header Properties

Key Type Set By
MQ_CORRELATI ON_| D HEADER PROPERTY MXEtring Client (optional)
MQ_MESSAGE TYPE_HEADER PRCPERTY MXEtring Client (optional)
MQ PERSI STENT HEADER PRCPERTY MXBool Send function
MQ_EXPI RATI ON_HEADER PRCPERTY MJ nt 64 Send function
MR PRI ORI TY_HEADER PRCPERTY MJ nt 8 Send function
MQ_TI MESTAMP_HEADER PROPERTY MJ nt 64 Send function
MQ MESSACGE_| D HEADER PRCPERTY MXEtring Send function

Chapter 4 Reference 173

MQSetMessageHeaders

Table 4-6 ~ Message Header Properties (Continued)

Key Type Set By

MQ REDELI VERED HEADER PRCPERTY MXBool Message Broker

Header properties that are not specified in the header sHandl e are not affected. You
cannot use this function to override header properties that are set by the broker or
the send function. The header properties for persistence, expiration, and priority
(Table 4-6) are set to default values if the user called the MBendMessage or
M¥endMessageToDest i nat i on function, or they are set to values the user specifies
(in parameters) if the user called the M®BendMessageExt or the
MXBendMessageToDest i nati onExt function.

Use the M®Bet Byt esMessageByt es function or the M®Bet St ri ngPr operty to set the
body of a message. Use the M%et MessagePr oper ti es function to set the
application-defined properties of a message that are not part of the header.

Common Errors
MR PROPERTY _WRONG VALUE TYPE

174 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQSetMessageProperties
MQSetMessageProperties
The MXet MessagePr opert i es function sets the specified properties for a message.
MXet MessagePr operti es (const MvessageHandl e messageHandl e,

MPr operti esHandl e propsHandl e);

Return Value
MXEt at us. See the M¥Bt at usl sError function for more information.

Parameters

messageHand! e A handle to a message whose application-defined properties
you want to set.

propertiesHandl e A handle to a properties object that you have created and set

using one of the set property functions. This handle is invalid
after the function returns.

After you obtain the handle to a message, you can use this handle to define its body
with the M®Bet St ri ngProperty function or the MBet Byt esMessageByt es function,
to set its header properties with the MQBet MessageHeader s function, and to set its
application-defined properties with the M%et MessagePr opert i es function.

Property values are set prior to sending a message. The M¥et MessagePr operti es
function allows you to set application-defined properties for a message. Properties
allow an application, via message selectors, to select or filter, messages on its behalf
using application-specific criteria.

You define the message properties and their values using the MXr eat ePr operti es
function to create a properties object, then you use one of the set property functions
to define each key and value in it. See “Working With Properties” on page 28 for
more information.

To change the properties of a message, call the M®Bet MessagePr oper ti es function,
passing a different properties handle.

Chapter 4 Reference 175

MQSetMessageReplyTo

MQSetMessageReplyTo

176

The MXBet MessageRepl yTo function specifies the destination where replies to this
message should be sent.

MXEet MessageRepl yTo

(const MQWessageHandl e nessageHand! e,
const MDestinationHandl e destinationHandl e);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters
messageHand! e A handle to a message expecting a reply.
desti nati onHandl e The destination to which the reply is sent. Usually this is a

handle to a destination that you created using the

MXr eat eDest i nat i on function or the function

MXr eat eTenpor ar yDest i nati on. The handle is still valid when
this function returns.

The sender uses the M®Bet MessageRepl y function to specify a destination where
replies to the message can be sent. This can be a normal destination or a temporary
destination. The receiver of a message can use the MXGet MessageRepl yTo function
to determine whether a sender has set up a destination where replies are to be sent.
The advantage of setting up a temporary destination for replies is that Message
Queue automatically creates a physical destination for you, rather than your
having to have the administrator create one if the broker’s

aut o_creat e_desti nati on property is turned off.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQSetStringProperty

MQSetStringProperty

The MXet St ri ngPr operty function sets an M¥®t ri ng property with the specified
key t to the specified value.

MXet Stri ngProperty (const MPropertiesHandl e propertiesHandl e,
Const MBt ri ng key,
Const M®t ring val ue);

Return Value
MXEt at us. See the M¥Et at usl sError function for more information.

Parameters

propertiesHandl e A handle to the properties object whose property value for the
specified key you want to set. You get this handle from the
MXr eat eProperti es function.

key The name of a property key. The library makes a copy of the
property key

val ue The property value to set. The library makes a copy of the value.

The library makes a copy of the property key and also makes a copy of the value.

Chapter 4 Reference 177

MQSetTextMessageText

MQSetTextMessageText

178

The MXBet Text MessageText function defines the body for a text message.

MXet Text MessageText (const MQwessageHandl e messageHandl e,
Const MBt ri ng messageText);

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters
messageHand! e A handle to a message whose text body you want to set.
nmessageText An M¥t ri ng specifying the message text. The library makes a

copy of the message text.

After you obtain the handle to a text message, you can use this handle to define its
body with the M®et St ri ngProperty function. You can set its application-defined
properties with the M®et MessagePr operti es function, and you can set certain
message headers with the M%et MessageHeader s function.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

MQStartConnection

MQStartConnection

The Mt ar t Connect i on function starts the specified connection to the broker and
starts or resumes message delivery.

MXt art Connect i on (const MXonnecti onHandl e connecti onHandl €) ;

Return Value
Mt at us. See the MBt at usl sError function for more information.

Parameters

connect i onHandl e The handle to the connection that you want to start. This handle is
the handle that is created and passed back to you by the
MY eat eConnect i on function.

When a connection is created it is in stopped mode. Until you call this function,
messages are not delivered to any consumers. Call this function to start a
connection or to restart a connection that has been stopped with the

MXt opConnect i on function. To create an asynchronous consumer, you could have
the connection in stopped mode, and start or restart the connection after you have
set up the asynchronous message consumer.

Use the M) oseConnect i on function to close a connection, and then use the
MJFr eeConnect i on function to free the memory allocated to the connection.

Common Errors
MQ BROKER _CONNECTI ON_CLOSED

Chapter 4 Reference 179

MQStatuslsError

MQStatusIsError

The M®Bt at usl sError function returns M) TRUEf the St at us parameter passed to it
represents an error.

MXBool Mt at usl sError (const MXtatus status);
Parameters
stat us The status returned by any Message Queue function that

returns an MX®t at us.

Nearly all Message Queue C library functions return an Mt at us. You can pass
this status result to the M®t at usl sError function to determine whether your call
succeeded or failed. If the Mt at usl sError function returns M) TRUE(=1) , the
function failed; if it returns M) FALSE(=0), the function returned successfully.

If the M5t at usl sError returns M) TRUE, you can get more information about the
error that occurred by passing the st at us returned to the M)Get St at usCode
function. This function will return the error code associated with the specified
status.

To obtain an M®t ri ng that describes the error, use the MGt St at usStri ng
function. To get an error trace associated with the error, use the MGet Er r or Tr ace
function.

180 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQStopConnection

MQStopConnection

The Mt opConnect i on function stops the specified connection to the broker. This
stops the broker from delivering messages.

MXEt opConnecti on (const MXonnecti onHandl e connecti onHandl €) ;

Return Value
Mt at us. See the MBt at usl sError function for more information.

Parameters

connect i onHandl e The handle to the connection that you want to stop. This handle is
passed back to you by the MYCr eat eConnect i on function.

You can restart message delivery by calling the Mt ar t Connect i on function.
When the connection has stopped, delivery to all the connection’s message
consumers is inhibited: synchronous receives block, and messages are not
delivered to message listeners. This call blocks until receives and/or message
listeners in progress have completed.

You should not call M®t opConnect i on in a message listener callback function.

Use the M) oseConnect i on function to close a connection, and then use the
MXFr eeConnect i on function to free the memory allocated to the connection.

Common Errors
MR BROKER CONNECTI ON_CLGCSED

MQ_ CONCURRENT DEADLOCK

Chapter 4 Reference 181

MQUnsubscribeDurableMessageConsumer

MQUnsubscribeDurableMessageConsumer

182

The MUnsubscr i beDur abl eMessageConsurrer function unsubscribes the specified
durable message consumer.

Mnhsubscri beDur abl eMessageConsuner

(const MXessionHandl e sessionHandl e,
Const Mt ring durabl eNane) ;

Return Value
MXt at us. See the M¥Bt at usl sError function for more information.

Parameters

sessi onHandl e The handle to the session to which this consumer belongs.
This handle is created and passed back to you by the
MXr eat eSessi on function.

dur abl eNane An Mt ri ng specifying the name of the durable subscriber.

When you call the MQUnsubscr i beDur abl eMessageConsuner function, the client
runtime instructs the broker to delete the state information that the broker
maintains for this consumer. If you try to delete a durable consumer while it has an
active topic subscriber or while a received message has not been acknowledged in
the session, you will get an error. You should only unsubscribe a durable message
consumer after closing it.

Common Errors
MQ_CANNOT_UNSUBSCRI BE_ACTI VE_CONSUMVER

MQ_CONSUMER_NOT_FCUND

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Header Files

Header Files

The Message Queue C-API is defined in the header files listed in Table 4-7. The
files are listed in alphabetical order. The file ngcrt . h includes all the Message
Queue C-API header files.

Table 4-7 Message Queue C-API Header Files

File Name Contents

ngbasi ctypes. h Defines the types MBool , M) nt 8, MJ nt 16, MJ nt 32,
M3 nt 64, MFI oat 32, M oat 64.

nmgbyt es- message. h Function prototypes for creating, getting, setting bytes
message.

ngcal | back-types. h Asynchronous receive and connection exception handling
callback types.

ngconnection. h Function prototypes for creating, managing, and closing
connections. Function prototype for creating session.

ngconnect i on-props. h Connection property constants

ngconsuner. h Function prototypes for synchronous receives and closing
the consumer.

ngert. h All Message Queue C-API public header files.

nydesti nation. h Function prototypes to free destinations and get
information about destinations.

ngerrors. h Error codes

nmgheader - props. h Message header property constants

ngnmessage. h Function prototypes for getting and setting parts of
message, freeing message, and acknowledging message.

ngpr oducer . h Function prototypes for sending messages and closing the
message producer.

ngproperties. h Function prototypes for creating, setting, and getting
properties

ngsessi on. h Function prototypes for managing and closing sessions;

for creating destinations, message producers and
message consumers.

ngssl . h Function declaration for initializing the SSL library.

ngst at us. h Function prototypes for getting error information.

Chapter 4 Reference 183

Header Files

184

Table 4-7 Message Queue C-API Header Files (Continued)

File Name

Contents

nyt ext - message. h

myt ypes. h

ngver si on. h

Function prototypes for creating, getting, setting text
message.

Enumeration of types that can be stored in a properties
object, of types of message that can be received, of
acknowledgement modes, of delivery modes, of
destination types, of session receiving modes, and of
handle types.

Version information constant definitions.

Message Queue 3 2005Q1 « Developer’s Guide for C Clients

Appendix A

Message Queue C API Error Codes

Having found that a Message Queue function has not returned successfully, you
can determine the reason by passing the return status of that function to the

Mt St at usCode function, which returns the error code associated with the
specified status. This appendix lists the error codes that can be returned and
provides a description that is associated with that code. You can retrieve the error
string (description) by calling the MQGet St at usSt ri ng function.

Some Message Queue functions, when they fail, might return an MBt at us result
that contains an NSPR or NSS library error code instead of a Message Queue error
code. For NSPR and NSS library error codes, the M&Get St at usSt ri ng function
returns the symbolic name of the NSPR or NSS library error code. Please see NSPR
and NSS public documentation for NSPR and NSS error code symbols and their
interpretation at the following locations:

¢ For NSPR error codes, see the “NSPR Error Handling” chapter:
http://ww nozi | | a. or g/ proj ect s/ nspr/ref erencel ht ni/index. ht m

* For NSS error codes, see the “NSS and SSL Error Codes” chapter:
http://ww nozi | | a. or g/ proj ect s/ security/ pki/nss/ref/ssl/

When checking a Message Queue function for return errors, you should only
reference the Message Queue common error code symbol names in order to
maintain maximum compatibility with future releases. For each function,
Chapter 4, “Reference” on page 73, lists the common error codes that can be
returned by that function.

For information on error handling, see “Error Handling” on page 53.

185

http://www.mozilla.org/projects/nspr/reference/html/index.html
http://www.mozilla.org/projects/security/pki/nss/ref/ssl/

Error Codes

Error Codes

Table A-1 lists the error codes in alphabetical order. For each code listed, it
provides a description for the error code and notes whether it is a common error

(Common).

Table A-1 Message Queue C Client Error Codes

Code Common Description

MR ACK STATUS NOT_CK Acknowledgement status is not OK

MY ADM N_KEY_AUTH M SMATCH Admin key authorization mismatch

MQ BAD VECTCR | NDEX Bad vector index

MQ BASE64 ENCCDE _FAI LURE Base 64 encode failure.

MR BASI C TYPE SI ZE M SNVATCH Message Queue basic type size
mismatch

MQ BROKER BAD REQUEST Broker: bad request

M BRCKER _BAD VERSI ON Broker: bad version

MQ BRCKER _CONFLI CT Broker: conflict

MR BRCKER CONNECTI ON_CLCSED X Broker connection is closed.

MR BRCKER ENTI TY_TQO LARGE Broker: entity too large

MR BRCKER ERRCR Broker: error

MQ BRCKER FCRBI DDEN Broker: forbidden

M BROKER_GONE Broker: gone

MQ BRCKER | NVALI D LOG N Broker: invalid login

MR BRCKER NOT_ALLOWED Broker: not allowed

MR BRCKER NOT_FOUND Broker: not found

MR BRCKER NOT | MPLEMENTED Broker: not implemented

MQ BRCKER_PRECONDI TI ON_FAI LED Broker: precondition failed

MQ BROKER _RESOURCE _FULL Broker: resource full

MQ BRCKER_TI MEQUT Broker: timeout

MR BRCKER UNAUTHCRI ZED Broker: unauthorized

MR BRCKER UNAVAI LABLE Broker: unavailable

MQ_CANNOT_UNSUBSCRI BE_ACTI VE_CONSUMER X Cannot unsubscribe an active consumer.

186 Message Queue 3 2005Q1 « Developer's Guide for C Clients

Table A-1 Message Queue C Client Error Codes (Continued)

Error Codes

Code Common Description

MQ CLI ENTI D_I N_USE X Client id already in use

MQ_CONCURRENT _ACCESS X Concurrent access

MQ_CONCURRENT _DEADLOCK X Operation may cause deadlock

MR _CONCURRENT _NOT_ OMNER Concurrent access not owner
MQ_CONNECTI ON_CREATE_SESSI ON_ERRCR Connection failed to create a session.
MR CONNECTI ON_CPEN_ERRCR Connection failed to open a connection.
MQ_CONNECTI ON_START_ERRCR Connection start failed.

MQ_CONNECTI ON_UNSUPPCORTED _TRANSPCRT The transport specified is not supported.
M _CONSUMVER_CLOSED X The consumer was closed.

MR CONSUMER EXCEPTI ON An exception occurred on the consumer.
MR CONSUMER _NO DURABLE NAME X There is no durable name specified

MR CONSUMER _NO SESSI ON The consumer has no session.
MQ_CONSUVER_NOT_FOUND Message consumer not found
MQ_CONSUMVER_NOT_I N_SESSI ON X The consumer is not part of this session.

MQ_CONSUVER NOT_I NI TI ALI ZED

MQ COULD NOT_CONNECT TO BROKER

MQ COULD NOT_CREATE THREAD

MQ_DESTI NATI ON_CONSUMER LI M T_EXCEEDED

MQ_DESTI NATI ON_NO_CLASS

MQ_DESTI NATI ON_NO_NAVE

MQ_DESTI NATI ON_NOT_TEMPORARY
MQ END OF STREAM

MQ_FI LE_NOT_FOUND

MQ_FI LE_QUTPUT_ERRCR

MQ HANDLED CBJECT | N USE

M HANDLED CBJECT | NVALI D HANDLE_ERRCR

The consumer has not been initialized.
Could not connect to Broker
Could not create thread

The number of consumers on the
destination exceeded limit.

The message does not have a destination
class

The message does not have a destination
name.

The destination is not temporary
End of stream

The property file could not be found
File output error

The object could not be deleted because
there is another reference to it.

The object is invalid (i.e. it has not been
deleted).

Appendix A Message Queue C API Error Codes 187

Error Codes

Table A-1 Message Queue C Client Error Codes (Continued)

Code Common Description

M HANDLED CBJECT _NO MORE_HANDLES

MQ HASH TABLE ALLCCATI ON_FAI LED
MQ HASH VALUE_ALREADY EXI STS

MY | NCOVPATI BLE_LI BRARY
MQ | NPUT_STREAM ERRCR

MQ | NTERNAL_ERRCR

MQ_| NVALI D_ACKNOALEDGE_MODE
MQ_| NVALI D_AUTHENTI CATE_REQUEST
MQ | NVALI D_CLI ENTI D

MQ | NVALI D_CONSUMER | D

MQ | NVALI D DELI VERY MODE

MQ_| NVALI D_DESTI NATI ON_TYPE
MQ | NVALI D_| TERATOR

MQ | NVALI D_MESSAGE_SELECTCR
MQ_| NVALI D_PACKET

MQ | NVALI D_PACKET FI ELD

MQ | NVALI D_PCRT

MQ | NVALI D PR ORI TY

MQ_| NVALI D_RECEI VE_MODE

MQ_| NVALI D_TRANSACTI ON_I D

MQ | NVALI D_TYPE_CONVERSI ON

MQ MD5_HASH FAI LURE
MQ_MESSAGE_NO DESTI NATI ON
MQ MESSAGE_NOT | N_SESSI ON

M NEGATI VE_AMOUNT
MQ NO_AUTHENTI CATI ON_HANDLER

A handle could not be allocated because
the supply of handles has been
exhausted.

The hash table could not be allocated

The hash value already exists in the hash
table.

The library is incompatible
Input stream error
Generic internal error
Invalid acknowledge mode
Invalid authenticate request
Invalid client id

Invalid consumer id

Invalid delivery mode.
Invalid destination type.
Invalid iterator

Invalid message selector.
Invalid packet

Invalid packet field

Invalid port

Invalid priority

Invalid receive mode.
Invalid transaction id

The object could not be converted invalid
input

MD5 Hash failure
The message does not have a destination

The message was not delivered to the
session.

Negative amount

No authentication handler

188 Message Queue 3 2005Q1 « Developer's Guide for C Clients

Table A-1 Message Queue C Client Error Codes (Continued)

Error Codes

Code Common Description

MQ_NO_CONNECTI ON The Session’s connection has been
closed

MR NO MESSAGE There was no message to receive.

MR NO MESSAGE PRCPERTI ES There are no message properties

MQ NO REPLY TO DESTI NATI ON The message does not have a reply to
destination.

MR NOT_ASYNC RECEI VE_ MODE Session not in async receive mode.

MR _NOT_FOUND Not found

MR NOT_| PV4_ADDRESS Not an IPv4 Address

MQ_NOT_SYNC RECEI VE_MCDE X Session not in sync receive mode.

MQ_NOT_TRANSACTED SESSI ON Session is not transacted.

MY NULL_PTR_ARG X NULL pointer passed to method

MR NULL_STRI NG The string is NULL

MR NUMBER NOT | NT16 Number not a UINT16

MR CBJECT_NOT_CLONABLE The object cannot be cloned

M QUT_CF_MEMORY X Out of memory

MQ_PACKET_QUTPUT_ERRCR Packet output error

M POLL_ERRCR Poll error

MR PCRTMAPPER ERRCR Portmapper error

MR PCRTMAPPER | NVALI D | NPUT Portmapper returned invalid.

MR PCRTMAPPER WRONG VERSI ON Portmapper is the wrong version

MQ_PRODUCER_CLOSED X Producer closed.

MQ_PRCDUCER_HAS_DESTI NATI CN The producer has a specified destination

MQ_PRODUCER_NO_DESTI NATI ON X The producer does not have a specified
destination.

MR PRODUCER NOT | N_SESSI ON X The producer is not part of this session

MQ_PROPERTY_FI LE_ERRCR There was an error reading from the
property file

MR PROPERTY _NULL Property is NULL.

MR PROPERTY WRONG VALUE TYPE X Property has the wrong value type

Appendix A Message Queue C API Error Codes 189

Error Codes

Table A-1 Message Queue C Client Error Codes (Continued)

Code Common Description

MQ_PROTOOCL_HANDLER AUTHENTI CATE_FAI LED
MQ_PROTOCCL._HANDLER DELETE DESTI NATI ON_FAI LED
MQ_PROTOOCL_HANDLER ERRCR

MQ PROTOCCL._HANDLER GOCDBYE FAI LED

MQ PROTOOCL._HANDLER HELLO FAI LED

MQ PROTOOCL. HANDLER READ ERRCR
MQ_PROTOOCL_HANDLER RESUVE_FLOW FAI LED
MQ PROTOOCL_HANDLER SET_CLI ENTI D_FAI LED
MQ_PROTOOCL._HANDLER START FAI LED

MQ PROTOCCL._ HANDLER STCP_FAI LED

MQ PROTOOCL._ HANDLER UNEXPECTED REPLY

MQ_PROTOCCL_HANDLER WR TE_ERRCR
MQ_ QUEUE_CONSUMER CANNOT_BE_DURABLE
MQ READ CHANNEL DI SPATCH ERRCR

MQ READQTABLE ERRCR

MQ RECEI VE_QUEUE_CLOSED

MQ_RECEI VE_QUEUE_ERRCR

MQ REFERENCED FREED OBJECT ERRCR
M REUSED CONSUMER | D
M SEND_NOT_FOUND

M SEND RESCURCE FULL

M SEND TOO LARGE

MD SER ALI ZE_BAD CLASS U D

MD SER ALI ZE_BAD HANDLE
MQ SER ALI ZE_BAD MAGI C_NUMBER

Authenticating to the broker failed.
Deleting destination failed

Protocol Handler error

Error in saying goodbye to broker.

Error saying hello to the broker.
Reading a packet from the broker failed.
Error resume flow from broker.

Setting client id failed.

Starting broker connection failed.
Stopping broker connection failed.

Received an unexpected reply from the
broker.

Writing a packet to the broker failed.

A queue consumer cannot be durable
Read channel couldn’t dispatch packet.
ReadQTable error

The receive queue is closed.

The Session is not associated with a
connection.

A freed object was referenced.
Reused consumer id

The destination to which this message
was sent could not be found.

The destination is full and is rejecting new
messages.

The message exceeds the single
message size limit for the server or for the
destination.

Serialize bad class UID
Serialize bad handle

Serialize bad magic number

190 Message Queue 3 2005Q1 « Developer's Guide for C Clients

Error Codes

Table A-1 Message Queue C Client Error Codes (Continued)

Code Common Description

MQ SER ALI ZE BAD SUPER CLASS Serialize bad super class

MQ SER ALI ZE BAD VERSI ON Serialize bad version

MQ SERI ALI ZE_ CANNOT_CLONE Serialize cannot clone

MR SER ALI ZE CORRUPTED HASHTABLE Serialize corrupted hashtable

MR SER ALI ZE NO CLASS DESC Serialize no class description

MQ SERI ALI ZE NOT_CLASS DEF Serialize not class definition

MQ SERI ALI ZE_NOT_CLASS HANDLE Serialize not a class object

MQ SER ALI ZE_NOT_HASHTABLE Serialize not a hashtable

MQ SER ALI ZE_NOT_OBJECT_HANDLE Serialize not a handle object

MR SER ALI ZE STRI NG CONTAI' NS _NULL Serialize string contains NULL

MR SER ALI ZE STRING TQO BI G Serialize string too big

MR SER ALI ZE TEST ERRCR Serialize testing error

MQ SERI ALI ZE_ UNEXPECTED BYTES Serialize unexpected bytes

MQ SERI ALI ZE_ UNRECOGNI ZED CLASS Serialize unrecognized class

MQ SESSI ON_CLCSED Session closed

MR SESSI ON_ NOT_CLI ENT_ACK MODE X Session is not in client acknowledge
mode

MQ_SOCKET_CLOSE_FAI LED Could not close the socket

MQ_SOCKET_CONNECT_FAI LED Could not connect socket to the host

MQ_SOCKET_ERRCR Socket error

MR SOCKET_READ FAI LED Could not read from the socket

MR SOCKET SHUTDOM FAI LED Could not shutdown socket

MR SOCKET WRI TE_FAI LED Could not write to the socket

MQ SSL_ALREADY | N TI ALI ZED X SSL has already been initialized

MQ SSL_CERT_ERRCR SSL certification error

MQ SSL_ERRCR SSL error

MR SSL INT ERRCR SSL initialization error

MQ SSL_NOT I N TI ALI ZED X SSL not initialized

MD SSL_SOCKET | NI T_ERRCR

SSL socket initialization error

Appendix A Message Queue C API Error Codes

191

Error Codes

Table A-1 Message Queue C Client Error Codes (Continued)

Code Common Description

MQ_STATUS_CONNECTI ON_NOT_CLCSED X The connection cannot be deleted
because it was not closed.

MQ STATUS | NVALI D HANDLE X The handle is invalid

MR STRI NG NOT_NUMBER String not a number

MR _SUCCESS X Success

MQ TCP_ALREADY CONNECTED TCP already connected.

MQ_TCP_CONNECTI ON_CLCSED TCP connection is closed.

MQ TCP_I NVALI D_PCRT Invalid TCP port.

MR TEMPCRARY_DESTI NATI ON_NOT | N_CONNECTI ON X The temporary destination is not in the

MQ_TI MECUT_EXPI RED

MQ TRANSACTED SESSI ON X
MQ TRANSACTI ON I D I N USE

MQ TYPE_CONVERSI ON QUT_COF_BOUNDS

MQ_UNEXPECTED ACKNOWLEDGENENT

MQ_ UNEXPECTED NULL

MQ_UNI NI TI ALI ZED STREAM
MQ_UNRECOGNI ZED PACKET_TYPE
MQ_UNSUPPORTED ARGUVENT VALUE
MQ_UNSUPPCRTED AUTH TYPE
MQ_UNSUPPORTED MESSAGE TYPE
MQ VECTCR TCO Bl G

MQ WRONG ARG BUFFER Sl ZE

connection.

Timeout expired
Session is transacted.
Transaction id in use.

The object conversion failed because the
value is out of bounds

Received an unexpected
acknowledgement

Unexpected null

Uninitialized stream

The packet type was unrecognized
Unsupported argument value
Unsupported authentication type

The JMS message type is not supported
Vector too big

Buffer is the wrong size

192 Message Queue 3 2005Q1 « Developer's Guide for C Clients

A

acknowledgements
data type for 74
periodic 81

B

broker
acknowledging consumed messages 78
acknowledging sent messages 78
certificate for 79
control messages 78,79
host port for 77
name for 77
security 77,79
broker acknowledgements
automatic 81

C

C API
header files 19
runtime library 19
checklist for client deployment 24
client acknowledgements 88
explicit 81
client identifier (ClientID) 102

Index

connection properties

iterating through 148
type of 140

connections

closing 90

creating 33, 101

creating properties for 29,113
exceptions 75, 83

freeing 54,118

freeing properties of 54, 121
handle to 74

orderly shutdown 38
properties of 75,76

secure, initializing 145
specifying 34

starting 179

stopping 181

timed out limit 77
transport protocol for 77

ConstMQString type 74
consumers

asynchronous 51

closing 91

creating asynchronous 98
creating asynchronous durable 95
creating durable 106

creating synchronous 109
handle to 74

ping interval 77

synchronous 50, 51, 149, 151, 153
type of 76

unsubscribing durable 182
working with 50

193

Section D

D

dead message queue 63
delivery modes 68
data type for 74
deployment checklist for client applications 24
destinations
creating 42, 104
creating temporary 116
freeing 119
getting type of 126
handle to 74
type of 75
directory variables
IMQ_HOME 14
distributed applications and synchronous
consumers 51, 149
durable subscriptions
performance impact of 70

E

environment variables, See directory variables
error handling

error trace 127

error type 75

getting status code 141

MQStatus type 76

status string 142
exceptions

listener for 75

F

fixed integer type support 21
FLOW_CONTROL property 62

194 Message Queue 3 2005Q1 « Developer's Guide for C Clients

H

header files 19, 183

IMQ_HOME directory variable 14

J

JMS clients
deployment checklist 24
factors impacting performance 67
programming model 19
requirements for deployment 24
setup summary 26
JMS specification 16
JMS_SUN_DMQ_BODY_TRUNCATED property 66
JMS_SUN_DMQ_PRODUCING_BROKER
property 66
JMS_SUN_DMQ_UNDELIVERED_COMMENTS
property 66
JMS_SUN_DMQ_UNDELIVERED_EXCEPTION
property 66
JMS_SUN_DMQ_UNDELIVERED_REASON
property 66
JMS_SUN_DMQ_UNDELIVERED_TIMESTAMP
property 65
JMS_SUN_LOG_DEAD_MESSAGES property 64
JMS_SUN_PRESERVE_UNDELIVERED
property 64
JMS_SUN_TRUNCATE_MSG_BODY property 65
JMSCorrelationID message header field 45
JMSDeliveryMode message header field 45
JMSDestination message header field 45
JMSExpiration message header field 45
JMSMessagelD message header field 45
JMSPriority message header field 45

Section L

JMSRedelivered message header field 45 messages

JMSReplyTo message header field 45 acknowledging 88
JMSTimestamp message header field 45 body 46

JMSType message header field 45 body type, and performance 72

composing 44
correlation id 134
creating bytes type 100
creating text type 117
expiration of 134
L filtering 52
freeing 120
listeners, message getting text of 144
data type for 75, 81 getting type of 138
logging 55 handle to 75
limit of unconsumed 79
mode of 134
ordering of 59
prioritizing 59
M priority of 134
processing 52
receiving 49
redelivered status 134
reply-to destination 137, 176
selector for 95,98, 106
selectors 58

JMSXDeliveryCount property 65

memory management 54
message acknowledgements 40

message consumption
asynchronous 81
message headers

getting .134 sending 47,157,159, 161, 163

properties 48 set text of 178

setting 173 size, and performance 71
message properties type of 75,134

default values for 48
getting 30, 136

handle to 75

iterating through 31, 148
setting 175

type of 140

messages properties

creating 113

freeing 121
mgq.sys.dmq queue 63
MQ_ACK_ON_ACKNOWLEDGE_PROPERTY 41,

78
Message Queue MQ_ACK_ON_PRODUCE_PROPERTY 78
fixed integer type support 21
header files 183 MQ_ACK_TIMEOUT_PROPERTY 34,77
meta data for 139 MQ_AUTO_ACKNOWLEDGE enum 81
name of 79 MQ_BOOL_TYPE property 76
version of 79 MQ_BROKER_NAME_PROPERTY 77
Message Queue programs, building 19 MQ_BROKER_PORT_PROPERTY 77
message selector 58 MQ_BYTES_MESSAGE message type 75

Index 195

Section M

MQ_CLIENT_ACKNOWLEDGE enum 81

MQ_CONNECTION_FLOW_COUNT_PROPERTY
35,78

MQ_CONNECTION_FLOW_LIMIT_ENABLED_PR
OPERTY 35

MQ_CONNECTION_FLOW_LIMIT_ENBABLED
_PROPERTY 79

MQ_CONNECTION_FLOW_LIMIT_PROPERTY 35
,79
MQ_CONNECTION_TYPE_PROPERTY 77

MQ_CORRELATION_ID_HEADER_PROPERTY 13
4

MQ_DUPS_OK_ACKNOWLEDGE enum 81
MQ_EXPIRATION_HEADER_PROPERTY 48, 134
MQ_FLOAT32_TYPE property 76
MQ_FLOAT64_TYPE property 76
MQ_INT16_TYPE property 76

MQ_INT32_TYPE property 76

MQ_INT64_TYPE property 76

MQ_INT8_TYPE property 76
MQ_INVALID_TYPE property 76
MQ_LOG_FILE 55

MQ_LOG_LEVEL 55
MQ_MESSAGE_ID_HEADER_PROPERTY 134
MQ_MESSAGE_TYPE_HEADER_PROPERTY 134
MQ_NAME_PROPERTY 79
MQ_PERSISTENT_HEADER_PROPERTY 48, 134
MQ_PING_INTERVAL_PROPERTY 34, 77
MQ_PRIORITY_HEADER_PROPERTY 48, 134
MQ_REDELIVERED_HEADER_PROPERTY 134
MQ_SESSION_ASYNC_RECEIVE 41

MQ_SESSION_ASYNC_RECEIVE consumer
type 76

MQ_SESSION_SYNC_RECEIVE 41
MQ_SESSION_SYNC_RECEIVE consumer type 76
MQ_SESSION_TRANSACTED enum 81
MQ_SSL_BROKER_CERT_FINGERPRINT 37
MQ_SSL_BROKER_IS_TRUSTED 77,79
MQ_SSL_CHECK_BROKER_FINGERPRINT 37, 79
MQ_STRING_TYPE property 76
MQ_TEXT_MESSAGE message type 75
MQ_TIMESTAMP_HEADER_PROPERTY 134

196 Message Queue 3 2005Q1 « Developer's Guide for C Clients

MQ_UNSUPPORTED_MESSAGE message type 75
MQ_VERSION_PROPERTY 79

MQAckMode type 74
MQAcknowledgeMessages function 88

MQBool type 74

MQChar type 74

MQCloseConnection function 90
MQCloseMessageConsumer function 91
MQCloseMessageProducer function 92
MQCloseSession function 93

MQCommitSession function 94
MQConnectionExceptionListenerFunc type 75, 83
MQConnectionHandle type 74
MQConsumerHandle type 74

MQCreateAsyncDurableMessageConsumer
function 95

MQCreateAsyncMessageConsumer function 98
MQCreateBytesMessage function 100
MQCreateConnection function 101
MQCreateDestination function 104
MQCreateDurableMessageConsumer function 106
MQCreateMessageConsumer function 109
MQCreateMessageProducer function 111

MQCreateMessageProducerForDestination
function 112

MQCreateProperties function 113
MQCreateSession function 114
MQCreateTemporaryDestination function 116
MQCreateTextMessage function 117
mgcrt library 21

mgcrt runtime library, 64-bit support 19
MQDeliveryMode type 74
MQDestinationHandle type 74
MQDestinationType type 75

MQError type 75

MQFloat64 type 75

MQFreeConnection function 118
MQFreeDestination function 119
MOQFreeMessage function 120
MQFreeProperties function 121
MQFreeString function 122
MQGetAcknowledgemode function 123

MQGetBoolProperty function 124
MQGetBytesMessageBytes function 125
MQGetDestinationType function 126
MQGetErrorTrace function 127
MOQGetFloat32Property function 128
MOQGetFloat64Property function 129
MQGetInt16Property function 130
MOQGetInt32Property function 131
MQGetint64Property function 132
MQGetInt8Property function 133
MQGetMessageHeaders function 134
MQGetMessageProperties function 136
MQGetMessageReplyTo function 137
MQGetMessageType function 138
MQGetMetaData function 139
MQGetPropertyType function 140
MQGetStatusCode function 141
MQGetStatusString function 142
MQGetStringProperty function 143
MQGetTextMessageText function 144
MQInitializeSSL function 145

MQInt32 type 75

MQInt8 type 75

MQMessageHandle type 75
MQMessageListenerFunc type 75, 81
MQMessageType type 75
MQProducerHandle type 75
MQPropertiesHandle type 75
MQPropertiesKeylterationGetNext function 146
MQPropertiesKeylterationHasNext function 147
MQPropertiesKeylterationStart function 148
MOQReceiveMessageNoWait function 149
MOQReceiveMessageWait function 151
MOQReceiveMessageWithTimeout function 153
MOQReceiveMode type 76
MQRecoverSession function 155
MQRollBackSession function 156
MQSendMessage function 157
MQSendMessageExt function 159
MQSendMessageToDestination function 161
MQSendMessageToDestinationExt function 163
MQSessionHandle type 76

Section N

MQSetBoolProperty function 165
MQSetBytesMessageBytes function 166
MQSetFloat32Property function 167
MQSetFloat64Property function 168
MQSetIntl16Property function 169
MQSetInt32Property function 170
MQSetInt64Property function 171
MQSetInt8Property function 172
MQSetMessageHeaders function 173
MQSetMessageProperties function 175
MQSetMessageReplyTo function 176
MQSetStringProperty function 177
MQSetTextMessageText function 178
MQStartConnection function 179
MQStatus type 76
MQStatuslsError function 180
MQStopConnection function 181
MQString type 76
MQType type 76
MQUnsubscribeDurableMessageConsumer
function 182

N

NSPR library 21
NSS library 21

P

performance
factors impacting, See performance impact factors
performance and reliability 67
performance impact factors
acknowledgement mode 69
delivery mode 68
durable subscriptions 70
message body type 72
message size 71
selectors 71
transactions 69

Index 197

Section R

physical destination properties 62 S

ping interval 34,77
sample programs

compiler options for 21
running 23
secure connections 35

producers
closing 92
creating 111
creating for destination 112

handle to 75 selectors 58, 71
ping interval 77 sessions
programming examples acknowledge mode of 123
build instructions 22 closing 93
running 23 committing 94

creating 40, 114
handle to 76
managing 42
recovering 155
R rolling back 156

REJECT_NEWEST property 62 transacted 40, 81
reliability and performance 67

REMOVE_LOW_PRIORITY property 62
REMOVE_OLDESTproperty 62

runtime library T
64-bit support 19 thread management 60
transactions

committing 94
performance impact of 69
working with 40

198 Message Queue 3 2005Q1 « Developer's Guide for C Clients

	Message Queue 3 Developer’s Guide for C Clients
	Contents
	List of Tables
	List of Procedures
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	Text Conventions
	Directory Variable Conventions

	Related Documentation
	The Message Queue Documentation Set
	Online Help
	Example Client Applications
	The Java Message Service (JMS) Specification

	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	1. Introduction
	Message Queue for the C Developer
	Building and Running C Clients
	Building C Clients
	Header Files and Shared Libraries
	Pre-Processor Definitions
	C++ Runtime Library Support

	Providing Runtime Support

	Working With the Sample C-Client Programs
	Building the Sample Programs
	To Compile and Link on Solaris
	To Compile and Link on Linux
	To Compile on Windows
	To Link on Windows

	Running the Sample Programs

	Client Application Deployment Considerations

	2. Using the C API
	Message Queue C Client Setup Operations
	To Set Up a Message Queue C Client to Produce Messages
	To Set Up a Message Queue C Client to Consume Messages Synchronously
	To Set Up a Message Queue C Client to Consume Messages Asynchronously

	Working With Properties
	Setting Connection and Message Properties
	To Set Properties for a Connection
	To Set Message Properties

	Getting Message Properties
	To Iterate Through a Properties Handle

	Working With Connections
	Defining Connection Properties
	Connection Handling
	Reliability
	Flow Control

	Working With Secure Connections
	Configuring the Client for Secure Communication
	Verification Using Fingerprints
	To Set Up Fingerprint Certification, Do the Following:
	Coordinating NSS Initialization
	To Coordinate NSS Initialization

	Shutting Down Connections

	Working With Sessions and Destinations
	Creating a Session
	Transacted Sessions
	Message Acknowledgement
	Receive Mode

	Managing a Session
	Creating Destinations
	Programming Domains
	Auto-Created Destinations
	Temporary Destinations
	Getting Information About Destinations

	Working With Messages
	Composing Messages
	Message Header
	Message Body Types
	Composing the Message

	Sending a Message
	Receiving Messages
	Working With Consumers
	Receiving a Message Synchronously
	Receiving a Message Asynchronously

	Processing a Message

	Error Handling
	To Handle Errors in Your Code

	Memory Management
	Logging

	3. Client Design Issues
	Producers and Consumers
	Using Selectors Efficiently
	Determining Message Order and Priority
	Managing Threads
	Message Queue C Runtime Thread Model
	Concurrent Use of Handles
	Single-Threaded Session Control
	Connection Exceptions

	Managing Physical Destination Limits
	Managing the Dead Message Queue
	Factors Affecting Performance
	Delivery Mode (Persistent/Non-persistent)
	Use of Transactions
	Acknowledgement Mode
	Durable vs. Non-Durable Subscriptions
	Use of Selectors (Message Filtering)
	Message Size
	Message Body Type

	4. Reference
	Data Types
	Connection Properties
	Acknowledge Modes
	Callback Type for Asynchronous Messaging
	Parameters

	Callback Type for Connection Exception Handling
	Parameters

	Function Reference
	MQAcknowledgeMessages
	Return Value
	Return Value
	Parameters
	Common Errors

	MQCloseConnection
	Return Value
	Parameters
	Common Errors

	MQCloseMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCloseMessageProducer
	Return Value
	Parameters
	Common Errors

	MQCloseSession
	Return Value
	Parameters
	Common Errors

	MQCommitSession
	Return Value
	Parameters
	Common Errors

	MQCreateAsyncDurableMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateAsyncMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateBytesMessage
	Return Value
	Parameters

	MQCreateConnection
	Return Value
	Parameters
	Setting a Client Identifier
	Handling Connection Exceptions
	Common Errors

	MQCreateDestination
	Return Value
	Parameters
	Common Errors

	MQCreateDurableMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateMessageProducer
	Return Value
	Parameters
	Common Errors

	MQCreateMessageProducerForDestination
	Return Value
	Parameters
	Common Errors

	MQCreateProperties
	Return Value
	Parameters

	MQCreateSession
	Return Value
	Parameters

	MQCreateTemporaryDestination
	Return Value
	Parameters
	Common Errors

	MQCreateTextMessage
	Return Value
	Parameters

	MQFreeConnection
	Return Value
	Parameters
	Common Errors

	MQFreeDestination
	Return Value
	Parameters

	MQFreeMessage
	Return Value
	Parameters

	MQFreeProperties
	Return Value
	Parameters

	MQFreeString
	Return Value
	Parameters

	MQGetAcknowledgeMode
	Return Value
	Parameters

	MQGetBoolProperty
	Return Value
	Parameters
	Common Errors

	MQGetBytesMessageBytes
	Return Value
	Parameters

	MQGetDestinationType
	Return Value
	Parameters

	MQGetErrorTrace
	MQGetFloat32Property
	Return Value
	Parameters
	Common Errors

	MQGetFloat64Property
	Return Value
	Parameters
	Common Errors

	MQGetInt16Property
	Return Value
	Parameters
	Common Errors

	MQGetInt32Property
	Return Value
	Parameters
	Common Errors

	MQGetInt64Property
	Return Value
	Parameters
	Common Errors

	MQGetInt8Property
	Return Value
	Parameters
	Common Errors

	MQGetMessageHeaders
	Return Value
	Parameters

	MQGetMessageProperties
	Return Value
	Parameters
	Common Errors

	MQGetMessageReplyTo
	Return Value
	Parameters
	Common Errors

	MQGetMessageType
	Return Value
	Parameters

	MQGetMetaData
	Return Value
	Parameters

	MQGetPropertyType
	Return Value
	Parameters
	Common Errors

	MQGetStatusCode
	Parameters

	MQGetStatusString
	Parameters

	MQGetStringProperty
	Return Value
	Parameters

	MQGetTextMessageText
	Return Value
	Parameters

	MQInitializeSSL
	Return Value
	Parameters
	Common Errors

	MQPropertiesKeyIterationGetNext
	Return Value
	Parameters

	MQPropertiesKeyIterationHasNext
	Return Value
	Parameters

	MQPropertiesKeyIterationStart
	Return Value
	Parameters

	MQReceiveMessageNoWait
	Return Value
	Parameters
	Common Errors

	MQReceiveMessageWait
	Return Value
	Parameters
	Common Errors

	MQReceiveMessageWithTimeout
	Return Value
	Common Errors

	MQRecoverSession
	Return Value
	Parameters
	Common Errors

	MQRollBackSession
	Return Value
	Parameters
	Common Errors

	MQSendMessage
	Return Value
	Parameters
	Common Errors

	MQSendMessageExt
	Return Value
	Parameters
	Common Errors

	MQSendMessageToDestination
	Return Value
	Parameters
	Common Errors

	MQSendMessageToDestinationExt
	Return Value
	Parameters
	Common Errors

	MQSetBoolProperty
	Return Value
	Parameters
	Common Errors

	MQSetBytesMessageBytes
	Return Value
	Parameters

	MQSetFloat32Property
	Return Value
	Parameters
	Common Errors

	MQSetFloat64Property
	Return Value
	Parameters
	Common Errors

	MQSetInt16Property
	Return Value
	Parameters
	Common Errors

	MQSetInt32Property
	Return Value
	Parameters
	Common Errors

	MQSetInt64Property
	Return Value
	Parameters
	Common Errors

	MQSetInt8Property
	Return Value
	Parameters
	Common Errors

	MQSetMessageHeaders
	Return Value
	Parameters
	Common Errors

	MQSetMessageProperties
	Return Value
	Parameters

	MQSetMessageReplyTo
	Return Value
	Parameters

	MQSetStringProperty
	Return Value
	Parameters

	MQSetTextMessageText
	Return Value
	Parameters

	MQStartConnection
	Return Value
	Parameters
	Common Errors

	MQStatusIsError
	Parameters

	MQStopConnection
	Return Value
	Parameters
	Common Errors

	MQUnsubscribeDurableMessageConsumer
	Return Value
	Parameters
	Common Errors

	Header Files

	A. Message Queue C API Error Codes
	Error Codes

	Index

