»
2 Sun

microsystems

Sun N1 Service Provisioning
System 5.1 XML Schema
Reference Guide

Sun Microsystems, Inc.

4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-1661-10
September 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, N1, Java, N1, and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights — Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 1'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systeme Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, N1, Java, N1, et Solaris sont des marques de fabrique ou des marques
déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques
de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l'industrie
de I'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

a &

Adobe PostScript

©

050829 @ 12762

Contents

Preface 11

XML Schema Overview 15
Service Provisioning Languages and Schemas 15
Requirements for Locales and Character Sets 16
Pattern Matching 16
Variables and Parameter Passing 17
Component Compatibility 17
Call Compatibility 18
Install Compatibility 19
Targetable Components 20
Common Attribute Types 20
entityName Attribute Type 20
systemName Attribute Type 21
identifier Attribute Type 21
pathName Attribute Type 21
pathReference Attribute Type 21
modifierEnum Attribute Type 22
accessEnum Attribute Type 22
version Attribute Type 22
schemaVersion Attribute Type 22
HostEntityName Attribute Type 22
pluginName Attribute Type 23
pluginHostEntityName Attribute Type 23

2 Shared Schema Used by Components and Simple Plans 25
Shared Steps 25
<calls>Step 26
<checkDependency> Step 27
<execJava> Step 27
<execNatives Step 28
<if>Step 34
<pauses> Step 35
<processTest> Step 35
<raise>Step 36
MS Windows: <reboot> Step 37
<retarget> Step 37
<sendCustomEvents> Step 39
<transform> Step 39
<try>Step 43
<urlTests> Step 46
Installed Component Targeters 46
<installedComponent> Installed Component Targeter 47
<systemServices Installed Component Targeter 48
<systemType> Installed Component Targeter 48
<thisComponent> Installed Component Targeter 49
<superComponent > Installed Component Targeter 49
<nestedRef > Installed Component Targeter 49
<allNestedRefss> Installed Component Targeter 50
<toplevelRef > Installed Component Targeter 50
<dependee> Installed Component Targeter 51
<allDependantss> Installed Component Targeter 51
<targetableComponent> Installed Component Targeter 52
Universal Install Path Format 52
Repository Component Targeters 52
<component > Repository Component Targeter 53
<thisComponent > Repository Component Targeter 53
<superComponent > Repository Component Targeter 53
<nestedRef > Repository Component Targeter 54
<allNestedRefs> Repository Component Targeter 54
<toplevelRef > Repository Component Targeter 54
Boolean Operators 55

<istrue> Boolean Operator 55

4 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<equals> Boolean Operator 56
<matches> Boolean Operator 57
<not> Boolean Operator 58
<and> Boolean Operator 58
<or> Boolean Operator 59

Component Schema 61
<component > Element Overview 61
Attributes for the <component > Element 62
Child Elements of the <component > Element 64
<extends> Element 65
<type> Element 65
<varList> Element 65
<var> Element 66
<targetRef> Element 67
Attributes for the <targetRef > Element 67
<agent > Element 68
<resourceRef > Element 69
Attributes for the <resourceRef > Element 69
<installSpec> Element 70
<resource> Element 71
<componentRefList> Element 71
Attributes for the <componentRefList> Element
<componentRef > Element 72
<installList> Element 75
<installSteps> Element 76
<uninstallList> Element 80
<uninstallStepss> Element 80
<snapshotList> Element 82
<snapshot> Element 83
<controlList> Element 88
<controls> Element 88
<diff> Element 89
<ignore> Element 90
Install-Only Steps for Components 90
<createDependency> Step 90
<createSnapshot> Step 92
<install>Step 93

72

6

<deployResources> Step 93
Uninstall-Only Steps for Components 94

<uninstalls Step 94

<undeployResources> Step 94

Plan Schema 97
<executionPlan> Element Overview 97
Attributes for the <executionPlan> Element 97
Child Elements of the <executionPlan> Element 98
<paramList> Element 98
<param> Element 99
<varList> Element 99
<var> Element 100
<simpleSteps> Element 100
Attributes for the <simpleSteps> Element 101
<compositeSteps> Element 101
Plan-Only Steps for Composite Plans 102
<execSubplan> Step 102
<inlineSubplan> Step 102
Plan-Only Steps for Simple Plans 104
<installs>Step 104
<uninstalls Step 104

Resource Descriptor Schema 107
Using a Resource Descriptor File 107
<resourceDescriptors> Element Overview 108
Attributes for the <resourceDescriptor> Element 109
Child Elements of the <resourceDescriptors> Element 109
<entryList> Element 109
<defaultEntrys> Element 110
<entry> Element 110

Sample XML for the <resourceDescriptor> Element 111

Plug-In Descriptor Schema 113

<plugin> Element Overview 113
Attributes for the <plugin> Element 113
Child Elements of the <plugin> Element 114

Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<readme> Element 114

<serverPluginJAR> Element 115

<gui> Element 115

<dependencyList> Element 115
<pluginRef> Element 116

<memberList> Element 116
<folder> Element 116
<hostType> Element 117
<hostSet> Element 118
<hostSearchs> Element 119
<component > Element 121
<plan> Element 124

Sample XML for the <plugin> Element 124

Plug-In User Interface Schema 127
<pluginUI> Element Overview 127
Attributes for the <pluginUI> Element 128
Child Elements of the <pluginUI> Element 128
<icon> Element 128
Attributes for the <icon> Element 129
<customPage> Element 129
Attributes for the <customPage> Element 129
<section> Element 129
Sample XML for the <pluginUI> Element 133

Component Change Compatibility 137
Changes That Can Be Made To Components 138
<component > Element Changes 138
platform Attribute Changes 139
limitToHostSet Attribute Changes 139
<extends> Element Changes 139
Changes to Variables 140
<targetRef > Element Changes 141
<componentRefList> Element Changes 141
<componentRef > Element Changes 142
Changes to Resources 143

<installs, <controls, and <uninstall> Block Changes

143

Changes to <snapshot> Blocks 144
Changes to <ignore> Child of <diff> Element 145

Index 147

8 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Examples

EXAMPLE 2-1
EXAMPLE 2-2
EXAMPLE 2-3
EXAMPLE 2-4
EXAMPLE 2-5
EXAMPLE 2-6
EXAMPLE 2-7
EXAMPLE 2-8
EXAMPLE 2-9
EXAMPLE 2-10
EXAMPLE 2-11
EXAMPLE 2-12
EXAMPLE 6-1
EXAMPLE 7-1

Using the <if>Step 35

Using the <raise>5Step 36

Using the <retarget>Step 39

Using the <stylesheet> Element 41
Using the <subst> Element 41

Using the <try>5Step 44

Using the <istrues> Boolean Operator 56
Using the <equals> Boolean Operator 56
Using the <matches> Boolean Operator 57
Using the <not > Boolean Operator 58
Using the <and> Boolean Operator 58
Using the <or> Boolean Uperator 5Y
Sample Plug-in Descriptor File 124
Sample <pluginUI> Descriptor File 133

10 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Preface

The Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide provides
detailed information about the XML schemas used to define components, component
types, plans, plug-ins, and plug-in user interfaces.

Who Should Use This Book

Anyone who develops components, plans, or plug-ins for the Sun N1™ Service
Provisioning System environment might need to use this book.

Before You Read This Book

You should already be familiar with the general concepts and tasks in the Sun N1
Service Provisioning System environment, as explained in these documents:

m N1 Grid Service Provisioning System 5.1 System Administration Guide
m N1 Grid Service Provisioning System 5.1 Operation and Provisioning Guide
® N1 Grid Service Provisioning System 5.1 Plan and Component Developer’s Guide

m N1 Grid Service Provisioning System 5.1 Plug-In Developer’s Guide

1

How This Book Is Organized

Chapter 1 provides an overview of the XML schemas in the Sun N1 Service
Provisioning System product.

Chapter 2 provides detailed information about common elements.

Chapter 3 provides detailed information about the elements and attributes that are
used to define components and component types.

Chapter 5 provides detailed information about the elements and attributes that are
used to define resource descriptor files.

Chapter 4 provides detailed information about the elements and attributes that are
used to define execution plans.

Chapter 6 provides detailed information about the elements and attributes that are
used to describe a plug-in.

Chapter 7 provides detailed information about the elements and attributes that are
used to define an interface to a plug-in.

Appendix A provides detailed information about the compatibility of changes among
components.

Related Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related
information.

Note — Sun is not responsible for the availability of third-party web sites mentioned in
this document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused or alleged to be caused by or in connection with use of or reliance on any
such content, goods, or services that are available on or through such sites or
resources.

12 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Accessing Sun Documentation Online

The docs.sun.com® web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation

Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLE P-1 Typographic Conventions

Typeface or Symbol | Meaning Example
AaBbCc123 The names of commands, files, and Edit your . login file.
directories, and onscreen computer . .
P Use 1s -a to list all files.
output
machine name% you have
mail.
AaBbCcl23 What you type, contrasted with onscreen |machine_name$% su
computer output
Password:
AaBbCc123 Command-line placeholder: replace with | The command to remove a file
a real name or value is rm filename.

13

http://docs.sun.com
http://docs.sun.com

TABLE P-1 Typographic Conventions (Continued)

Typeface or Symbol | Meaning Example
AaBbCc123 Book titles, new terms, and terms to be Read Chapter 6 in the User’s
emphasized Guide.

Perform a patch analysis.
Do not save the file.

[Note that some emphasized
items appear bold online.]

14

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the

C shell, Bourne shell, and Korn shell.

TABLE P-2 Shell Prompts

Shell

Prompt

C shell prompt

machine name%

C shell superuser prompt

machine name#

Bourne shell and Korn shell prompt

$

Bourne shell and Korn shell superuser prompt

#

Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

CHAPTER 1

XML Schema Overview

This chapter provides an overview of the XML schemas that are used by the Sun N1
Service Provisioning System (N1 SPS).

The following topics are covered in this chapter:

“Service Provisioning Languages and Schemas” on page 15
“Requirements for Locales and Character Sets” on page 16
“Pattern Matching” on page 16

“Variables and Parameter Passing” on page 17
“Component Compatibility” on page 17

“Targetable Components” on page 20

“Common Attribute Types” on page 20

" ou

Note — In this book, the terms “derived component,” “child component,” and “parent
component” refer to component inheritance relationships, not to component
composition relationships.

Service Provisioning Languages and
Schemas

The N1 SPS software uses XML to implement plans, components, resource descriptors,
and plug-in definitions. Each of these N1 SPS constructs use a specific kind of XML
schema.

The N1 SPS product includes these XML schemas:

®m component .xsd - Schema used to define components and component types. See
Chapter 3.

15

® plan.xsd - Schema used to define execution plans. See Chapter 4.

® planCompShared.xsd — Schema that contains elements common to plans and
components. See Chapter 2.

®m resourceDescriptor.xsd — Schema used to define resource descriptors. See
Chapter 5.

® plugin.xsd - Schema used to define a plug-in in a plug-in descriptor file. See
Chapter 6.

® pluginUI.xsd - Schema used to define a user interface to a plug-in in the N1
SPS browser interface. See Chapter 7.

Each schema is described in detail in the referenced chapter of this book. General
information that relates to all of the schemas is contained in the remainder of this
chapter.

Requirements for Locales and Character
Sets

Plans and components can include multibyte data. If a plan or component is authored
in XML, the input files must be in UTF-8 format or use a byte order mark at the start
of the file to signify their Unicode encoding. When plans and components are
downloaded, they are always written in UTF-8 format. If a simple component refers to
a configurable resource, that resource should be encoded in the native encoding of the
master server or should use a byte order mark to note its encoding.

16

Pattern Matching

A number of element attributes can contain regular expression patterns. Unless
otherwise specified, these patterns are glob-style patterns rather than fully generic
regular expressions. Thus, an asterisk (*) is used to match zero or more characters, and
a question mark (?) is used to match exactly one character. Characters listed inside of
square brackets ([1) match any one of the enclosed characters. Characters that are
separated by a hyphen (-) match any character that is lexically between the range of
characters and includes the characters specified.

For example, [ab] matches either a or b. [a-z] matches any lowercase character. In
this case, only the strict ASCII characters are matched, but not extended variants of the
characters such as those with accents.

Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

To match all Unicode letters, the pattern would have to include a POSIX character
class like the Perl 5 regex [[:1lower]]. You can also include non-ASCII characters
directly, for example, [e&] matches either e or &.

Variables and Parameter Passing

Both plans and components can declare variables that are used by their steps.

Component variables are evaluated and bound when the component is installed.
Thus, if a step in a component control block refers to a component-scoped variable, the
value used is the same as when the component was installed.

Plan variables, however, are evaluated and bound each time the plan is run. If a step
in a plan refers to a plan variable, the value used is the value defined at the time the
plan was run. Thus, the value might vary from one run to another.

A plan can declare both parameters and variables. The value of a variable is defined at
the point of declaration based on the values of other variables and constants. A
parameter is a special kind of variable whose value is defined by the caller. In the case
of a top-level plan, the caller is the user who initiates the plan run. For each parameter
that is declared by the plan, the user specifies the value for that parameter before
running the plan. When a plan is invoked as the result of an <execSubplans call, the
plan that contains the call must explicitly pass values for each parameter that is
declared by the called plan.

The <installs, <uninstall>, <snapshot>, and <control> blocks can declare
parameters and local variables. As with plans, local variable values are locally defined,
while parameter values are defined based on the values passed by the caller of the
block. Both types of values can vary each time a plan is run.

You cannot reassign the value of a variable or parameter.

Component Compatibility

Compatibility is a concern when you modify or create new versions of a component
that has already been deployed. Each time you modify a component and check it in,
you create a new version of that component. When you modify a component, you
must ensure that other objects that use or reference that component are not broken as a
result of the changes. The ways in which you can use or reference components are by
using dependencies, component targeters, component containment, and inheritance.

Chapter 1 « XML Schema Overview 17

The N1 SPS product supports the following types of component compatibility:

m Call compatibility describes the set of changes that you can make to a component
and still ensure that relationships that exist through dependencies and component
targeters are not violated.

m [nstall compatibility describes the set of changes that you can make to a component
and still ensure that relationships that exist through inheritance and component
containment relationships are not violated.

Different versions of components can be deployed to different parts of the data center
at different points in time. Thus, you should be aware of compatibility requirements
and understand the way in which changes to one component might affect other
existing components. In certain cases, the N1 SPS product enforces compatibility
requirements, while in other cases you must ensure that the new component is
compatible.

For a list of the types of changes that can be made to a component, see Appendix A.

Call Compatibility

A component is call compatible with another component if uses of the first component
can be safely replaced with uses of the other in these cases:

® When making a call to a <controls, <uninstalls, or <snapshot > block of the
first component

® When checking for dependencies of the first component by using
<checkDependency> or <createDependency>

® When referring to a variable of the first component, by using configuration
generation : [component :AB:var]

Call compatibility is also known as API compatibility or interface compatiblity.

Note — Usually, two call-compatible components are different versions of a component
that are in the same version tree. However, the second component can also be in a
distinct version tree if it is an instance of the first component.

The N1 SPS product enforces call compatibility for components that provide system
services. When a system service is updated to refer to a new component, the new
component must be call compatible with the original component. This policy ensures
that clients of the system service can continue to function properly when the system
service is upgraded.

The N1 SPS product also optionally verifies call compatibility when it resolves
components that are referenced by certain installed component targeters. See
“Installed Component Targeters” on page 46.

18 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Though not required, ensure that a component is call compatible with earlier versions
of itself.

Install Compatibility

A component can be install compatible with another component. The first component
must be call compatible with the other component. Uses of the other component must
also be able to be replaced safely with uses of the first component in these cases:

® When making a call to an install block of the other component
= When a component extends from the other component
® When a component contains a reference to the other component

Install compatibility is also known as structural compatibility.

Any existing installed component can be safely replaced by another install-compatible
component. You do not have to modify the data structures that describe how the
original was installed. Call compatibility is a much weaker statement, because the
call-compatible component might need to be reinstalled to properly update the data
structures.

Note — For install compatibility to hold, both components must belong to the same
version tree. They cannot be components from two distinct version trees.

The N1 SPS product only enforces install compatibility for components that serve as
types, which are called component types. When a component type is updated to refer to
a new version of a component, the new version is install compatible with the original
version. Thus, you can make install-compatible updates to component types without
rebuilding and reinstalling all of the existing components that have been derived from
that type.

If you make a change to a component type that is not install compatible, you must
create a new component type in a new version tree with a new name. In such cases,
the new component type can maintain call compatibility with the original by
extending from the original component type. To easily identify the relationship
between types, use a versioning system to encode component type names. For
example, the component names EJB-1.0 and EJB-1.1 are an easy way to indicate
that EJB-1.1 is a later version of the EJB-1 .0 component type.

Install compatible implies call compatible, but the reverse is not true. Also, if a
component is not call compatible, it cannot be install compatible.

Chapter 1 « XML Schema Overview 19

Targetable Components

The presence of a <targetRef > element indicates that the component, once installed,
can be used as a deployment target for other components. This targetability is
achieved by associating a unique virtual host or physical host with each installed
instance of the component.

By using targetable components, plans can logically target an installed component by
targeting its associated host. Usually, a targetable component creates a virtual host.
However, you can have the targetable component create a physical host, as well. A
physical host is useful for models in which the associated host has its own remote
agent. Such is the case for a component that models a Solaris™ Zone.

A component that defines a <targetRef > element is called a targetable component.
When a targetable component is installed, it creates a host that serves as a deployment
target for other components. When a targetable component is uninstalled, the host it
created is automatically deleted. Such hosts still appear in the list of hosts on the Hosts
page, but cannot be deleted and are restricted in the types of edits that can be made to
them.

Common Attribute Types

An attribute type serves as a constraint on the value of a plan or component attribute.
If an attribute does not list a specific type, its value is unconstrained.

The following sections describe the format of the attribute types that are used by the
schema. \p{N} represents all Unicode numbers, while \p{L} represents all Unicode
letters.

entityName Attribute Type

Attributes of type entityName have a maximum length of 512 characters and match
the following pattern:

N\p{N}\p{L}

1+

As a special case, dot (.) and dot-dot (. .) are not permitted to be entity names.

20 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

systemName Attribute Type

Attributes of type systemName consist of a simpleSystemName that has a maximum
length of 64 characters, and optionally, a pluginName that also has a maximum length
of 64 characters, as follows:

simpleSystemName
pluginNametsimpleSystemName

Where simpleSystemName matches the following pattern:

N\p{L}_1 \p{N}\p{L}

.o+l *

identifier Attribute Type

Attributes of type identifier have a maximum length of 512 characters and match
the following pattern:

N\p{L}_1 N\p{N}\p{L}_1*

pathName Attribute Type

Attributes of type pathName have a maximum length of 512 characters and match one
of the following patterns:

/
/pathPart

where pathPart is [\p{N}\p{L}- . 1+

You can use the / separator to string together pathParts, such as
/pathPart /pathPart / pathPart.

As a special case, dot (.) and dot-dot (. .) are not permitted to be included in pathPart.

pathReference Attribute Type

Attributes of type pathReference have the following syntax:

pathReference:
absolutePath
relativePath

absolutePath :

/
/relativePath

Chapter 1 « XML Schema Overview 21

relativePath :
relativePathStart
relativePathStart / relativePath

relativePathStart :

pathPart

modifierEnum Attribute Type

Attributes of type modifierEnum have either ABSTRACT or FINAL as their value. In
general, a value of ABSTRACT indicates that the associated entity must be overridden
by a derived component. A value of FINAL indicates that the associated entity cannot
be overridden.

accessEnum Attribute Type

Attributes of type accessEnum have one of these values:

® PUBLIC - Indicates that the associated entity can be accessed by any object

®m PROTECTED - Indicates that the associated entity can be accessed by derived
components and other entities that are in the same path

®m PATH - Indicates that the associated entity can be accessed by other entities that are
in the same path

®m PRIVATE - Indicates that the associated entity can be accessed by the declaring
component

version Attribute Type

Attributes of type version match the following pattern:

[0-9]+\.[0-9]+

schemaVersion Attribute Type

Attributes of type schemaVersion can have only one of these values, 5.0 or 5.1.

HostEntityName Attribute Type

Attributes of type Host Ent ityName have a maximum length of 64, and can include
any combination of Unicode letters and numbers.

22 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

pluginName Attribute Type

Attributes of type pluginName have a maximum length of 64, and can include any
combination of Unicode letters and numbers.

pluginHostEntityName Attribute Type

Attributes of type pluginHostEntityName have a maximum length of 64, and can
include any combination of Unicode letters and numbers.

Chapter 1 « XML Schema Overview 23

24 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

CHAPTER 2

Shared Schema Used by Components
and Simple Plans

This chapter describes the steps, targeters, and operators that can be used by both
simple plans and components:

“Shared Steps” on page 25

“Installed Component Targeters” on page 46
“Repository Component Targeters” on page 52
“Boolean Operators” on page 55

Unless indicated, the attributes that are described in this chapter cannot reference
component-scoped substitution variables.

Shared Steps

This section lists the steps that can be used in a component or a simple plan.

“<call> Step” on page 26
“<checkDependency> Step” on page 27
“<execJava> Step” on page 27
“<execNatives> Step” on page 28
“<if> Step” on page 34

“<pause> Step” on page 35
“<processTest> Step” on page 35
“<raise> Step” on page 36

“MS Windows: <reboot > Step” on page 37
“<retarget> Step” on page 37
“<sendCustomEvent> Step” on page 39
“<transforms> Step” on page 39
“<try> Step” on page 43

“<urlTest> Step” on page 46

25

<calls> Step

Use the <calls step to execute a control block that is associated with a component
that is already installed on the target host.

The <calls> step has the following child elements:

® <argList> — An optional element that is a list of arguments to pass to the control
block. If you specify this element, it can only appear one time.

® Installed component targeter — An optional element that identifies the component
that contains the control block to execute. This element is optional if the <call>
step appears in a component, but not if the step appears in a plan. If this element is
omitted, the <thisComponent > targeter is used. If you specify this element, it can
only appear one time. See “Installed Component Targeters” on page 46.

Attributes for the <calls> Step

The <call> element has one required attribute of type entityName, blockName,
which is the name of the control block to execute on the installed component.

<argList> Element

The <argList> element is a child of the <call>, <installs, <uninstalls,
<execSubplan>, and <addSnapshot > steps. This element specifies a list of
variables to be passed as arguments to the called service.

The called service declares the variables that it expects by using a <paramList>
element. The collection of variables listed in the <argList > and in the called
<paramList> need not be the same.

For each variable declared in the <paramList > that does not have a default value, a
corresponding variable of the same name must be included in the <argList>. If this
condition is not met, a preflight error is raised at plan runtime. The provisioning
system runs through each variable in the called <paramList> for which there is a
corresponding variable in the <argList >. The value of the variable in <paramList>
obtains the value of the corresponding variable in <argList> for the duration of the
execution of the called service.

Variables in <argList> that do not correspond to a variable in the called
<paramList> are silently ignored. Thus, you can redefine a service by adding
parameters while still ensuring backward compatibility. So, one plan could call both
the old and new versions of the same service.

The arguments of the <argList> element are expressed as attributes. The order in
which the attributes appear is not significant. The following <argList> declares two
arguments, password and path:

<argList password=": [password]" path="/tmp"/>

26 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Attributes for the <argList > Element

The <argList> element must have at least one attribute. Each attribute is treated as a
named variable to be passed to the called service. The name of each attribute must be
an identifier without substitution variable references. The attribute name should
correspond to the name of a parameter in the called service. The value of each
attribute is an arbitrary string that can include references to variables in the enclosing
scope, but not other arguments within the <argList>.

<checkDependency> Step

Use the <checkDependency > step to verify that a particular component has been
installed on a target host. If an appropriate component has not been installed, the step
fails and execution stops.

The dependency is checked by using the contained component targeter. If the targeter
successfully resolves a component, the dependency is satisfied. Otherwise, the
dependency failed.

The <checkDependency> step has one required child element, an installed
component targeter, which identifies the component to check for dependency. See
“Installed Component Targeters” on page 46.

<execJava> Step

This step executes a Java™ executor instance on the target host. If the executor
instance raises an exception, the step fails and execution stops.

The <execJavasx step has one optional child element, <argList>, which is a list of
arguments to pass to the executor instance. If you specify this element, it can only
appear one time.

Attributes for the <execJava> Step
The <execJavas> element has the following attributes:

m className — A required attribute that is the full name of a public class with a public
no-arg constructor that implements the ExecutorFactory interface. For more
information, see “execJava API” in Sun N1 Service Provisioning System 5.1 Plug-in
Development Guide. This attribute can reference simple substitution variables.

® classPath — An optional attribute that is the class path that contains the class named
by the className attribute. If this attribute is omitted, the system class path of the
remote agent is used. The class path format is a semicolon-separated list of
absolute paths to Java Archive (JAR) files on the agent. This attribute can reference

Chapter 2 » Shared Schema Used by Components and Simple Plans 27

simple substitution variables.

timeout — An optional attribute of type positiveInteger, which specifies the
number of seconds to wait for the command to complete before timing out. If this
attribute is omitted, the plan’s <execNative> timeout period applies. The value
should be greater than 0.

When an <execJava> step is contained within a component, the step typically calls
classes that are contained within one or more resources that are deployed by that
component. When the step is contained within a plan, the classes called are already
resident on the agent. The classes can be a system class of the agent itself or a resource
that was deployed with an existing component.

<execNative> Step

The <execNative> step executes a command that is native to the operating system
on the target host. If the command produces an unexpected result, the step fails and
execution stops.

The <execNatives> step has the following child elements:

<env> — An optional element that specifies environment variables for the child
process. For each environment variable, specify one <env> element.

<background> — An optional element that specifies that the command is to run as
a background process. If you specify this element, it can only appear one time. If
you specify the <background> element, you must also specify the
<outputFile> and <errorFile> elements.

<outputFile> — An optional element that is the name of the file in which to store
standard output from the command. If you specify this element, it can only appear
one time. This element is required if the <background> element is specified.

<errorFile> — An optional element that is the name of the file in which to store
standard error output from the command. If you specify this element, it can only
appear one time. This element is required if the <background> element is
specified.

<inputText> — An optional element that specifies the text to be used as standard
input to the command. If you specify this element, it can only appear one time.
This element is mutually exclusive with the <inputFile> element.

<inputFile> — An optional element that is the name of the file to be used as
standard input to the command. If you specify this element, it can only appear one
time. This element is mutually exclusive with the <inputText > element.

<exec> — Arequired element that specifies the name of the executable to run. This
element is mutually exclusive with the <shell> element.

<shell> — Arequired element that specifies a shell command to run. This element
can only appear one time. This element is mutually exclusive with the <exec>
element.

28 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

® <successCriteria>— An optional element that specifies the criteria used to
determine whether this step succeeded or failed. If you specify this element, it can
only appear one time.

Attributes for the <execNative> Step
The <execNatives step has the following attributes:

m yserToRunAs — An optional attribute that is the name of the user as which to run
this command. If this attribute is omitted, the command is run as the value of
defaultUserToRunAs in the configuration file. The value can be either a string
user name or a numeric user ID. The value should be a nonempty string. This
attribute can reference simple substitution variables.

® Jir — An optional attribute that is the absolute path to the working directory for the
command. If this attribute is omitted, the value defaults to the agent-specific
configurable directory. This value should be a nonempty string. This attribute can
reference simple substitution variables.

® timeout — An optional attribute of type positiveInteger, which specifies the
number of seconds to wait for the command to complete before timing out. If this
attribute is omitted, the plan’s <execNatives timeout period applies. The value
should be greater than 0.

<env> Element

The <execNative> element can optionally have <env> elements to specify
environment variables for the command. You can use <env> to supply new variables
for the command’s environment or to override existing variables.

The set of the command’s environment variables is a union of the set of the remote
agent’s environment variables and the variables supplied by using the <env>
elements.

Attributes for the <env> Element

The <env> element has the following attributes. They can reference simple
substitution variables.

® name — A required attribute that is the name of the environment variable. The value
should be a nonempty string.

® oglue — A required attribute that is the value of an environment variable. If the
value is a $ {var-name} string it refers to the value of the remote agent’s
environment variable. If var-name refers to a variable that is overridden by an
<env> element, the substituted value is the one that is defined in the remote
agent’s environment, not the overridden one. If the string $ { must appear in the
value, escape this string by using $ { {. All instances of ${ { are replaced by ${.

Chapter 2 » Shared Schema Used by Components and Simple Plans 29

<background> Element

The <backgrounds> element is a child of the <execNative> element. When present,
this element specifies that the command should be executed as a background process.
This element has no attributes or child elements.

An <execNative> with a <background> element has the following constraints:

®m <successCriteria> need not be specified. The step succeeds if no issues arise
when starting the background process. If specified, the <successCriterias is
tested against the script that is used to run the command as a background process.

® No standard output or standard error output is captured for the executed
command.

By viewing the details in the browser interface, you see an exit status of 0 and the
empty standard output and standard error output. However, if problems occurred
when starting the native command in the background, a different exit status is
shown. The value depends on the nature of the error and diagnostic output.

® The <outputFile> and <errorFile> elements must be specified. If the
specified files already exist, they are overwritten.

<outputFile> Element

The <outputFile> element is a child of the <execNative> element. The
<outputFile> element specifies the path to a local file on the agent in which to store
the standard output of the command that is being executed. Specify the path to the
local file by using the <outputFile> name attribute. Relative paths are interpreted as
being relative to the command’s working directory.

You must specify the <outputFile> element if you specify the <background>
element.

If <outputFiles is not specified and the <successCriteriax> element does not
specify outputMatches, the command output is not stored and will be lost. If
outputMatches is specified, the standard output is stored in a temporary file that is
deleted after the command finishes executing.

Attributes for the <outputFile> Element

The <outputFile> element has one required attribute, name, which is the name of
the file to which the standard output of the command is written. This value should be
a nonempty string. This attribute can reference simple substitution variables.

30 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<errorFile> Element

The <errorFile> element is a child of the <execNative> element. The
<errorFiles> element specifies the path to a local file on the agent in which to store
the error output of the command that is being executed. Specify the path to the local
file by using the <errorFile> name attribute. Relative paths are interpreted as being
relative to the command’s working directory.

You must specify the <errorFiles> element if you specify the <background>
element.

If <errorFiles is not specified and the <successCriteria> element does not
specify errorMatches, the command output is not stored and will be lost. If errorMatches
is specified, the error output is stored in a temporary file that is deleted after the
command finishes executing.

Attributes for the <errorFile> Element

The <errorFile> element has one required attribute, name, which is the name of the
file to which the standard error output of the command is written. This value should
be a nonempty string. This attribute can reference simple substitution variables.

<inputText> Element

The <inputText> element is a child element of the <execNatives> element. This
child element specifies the arbitrary text that should be used as standard input to the
command. The text is specified as the contents of this element.

<execNatives
<inputText>
1s -1 | fgrep ‘*test*’ | sort -u > file.out
</inputText>
<command exec="sh”/>
</execNative>

The body of the <inputText > element can be enclosed in a CDATA section to
preserve the formatting of the input and to avoid parsing errors that might be caused
by input that contains the & and < characters.

If the <inputText> is specified, it is always enclosed within a CDATA section when
generating XML for the <execNatives> step. All of the characters within
<inputText> are passed as standard input to the command that is being executed. If
<inputText> contains only white spaces, those white spaces are passed, exactly as
specified, to the command that is being executed.

The contents of <inputText > are config-generated.

The <inputText> element has no attributes.

Chapter 2 » Shared Schema Used by Components and Simple Plans 31

<inputFile> Element

The <inputFiles> element is a child element of <execNatives. This child element
specifies the path to a local file on the remote agent whose contents are used as
standard input to the command being executed. The path to the local file is specified
by using the <inputFile> name attribute.

Note — The <inputFile> element cannot be used with the <inputText > element in
an <execNative> command.

Attributes for the <inputFile> Element

The <inputFile> element as one required attribute, name, which is the file to act as
standard input to the command. This value should be a nonempty string. If a relative
path is specified, it is relative to the command’s working directory. This attribute can
reference simple substitution variables.

<exec> Element

An <execNative> step can contain only one <exec> element. The <exec> element
specifies the details of the native command to be executed.

The <exec> element contains the following attributes:

® A cmd attribute that specifies the name of the command to execute
m A set of nested <arg> elements for each of the arguments of the cmd command

<execNative> executes the command specified by cmd with the arguments in the
order in which they are specified.

For example, the following <execNative> step executes the ps -fu sps command:

<execNative>
<exec cmd="ps”>
<arg value="-fu”/>
<arg value="sps”/>
</exec>
</execNatives>

The <exec> element has an optional child element, <arg>. Specify one <arg>
element for each argument that you want to pass to the command.

The <arg> element has one required attribute, value, which is the argument value.
This argument is supplied as the nth argument to the command, where <args> is the
nth child of the command element.This attribute can reference simple substitution
variables.

32 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Attributes for the <exec> Element

The <exec> element has one required attribute, cmd, which is the path of the
command to execute. If the specified path is not absolute, the command is found by
using the platform-specified PATH environment variable set for the remote agent. This
value should be a nonempty string. This attribute can reference simple substitution
variables.

<shells Element

The <shell> element is a child element of <execNatives>. The contents of the
<shell> element specifies the command to be executed. The command to be
executed is interpreted using an interpreter, which is specified by the cmd attribute.
The command is executed by using sh -c¢ “command” syntax for the platform. In this
form, the cmd attribute must be specified to indicate the shell command to use to
execute the command.

The following <execNatives> example executes the /usr/bin/bash -c¢ ‘1s -1 |

fgrep ‘*test*’ | sort -u > file.out’ command.
<execNative>
<shell cmd="/usr/bin/bash -c”>
ls -1 | fgrep ‘*test*’ | sort -u > file.out
</shell>
</execNatives>

To preserve formatting and to avoid XML parsing problems, the text contents of the
command is always enclosed within a CDATA element when the XML representation
is generated from the <execNative> step.

A command string cannot be empty or contain only white space characters. The
command string is supplied exactly as it is specified, including surrounding white
space, to the shell.

The contents of the <shell> element are config-generated.

Attributes for the <shell> Element

The <shell> element has one required attribute, cmd, which is the shell command in
the sh -c syntax. The string should not contain any embedded quote characters. The
string is parsed to retrieve the shell name and the arguments by using white space as
delimiters. For example, /usr/bin/bash -c. This value should be a nonempty
string. This attribute can reference simple substitution variables.

<successCriteria> Element

The <successCriterias element is a child element of <execNatives. This
element specifies the criteria to be used to evaluate whether an <execNatives step
executed successfully. If this element is not specified, the default value is
<successCriteria status="0"/>.

Chapter 2 » Shared Schema Used by Components and Simple Plans 33

If the specified <successCriterias is empty, it is ignored.

If you specify <successCriteria/>, the step always succeeds no matter what
output or exit code the command generated.

Attributes for the <successCriteria> Element

The <successCriterias> element has the following optional attributes. If more than
one of the status, outputMatches, and errorMatches attributes are specified, they are
ANDed together.

® status — An optional attribute of type integer, which is the desired exit status of
the command. This value should be a positive integer.

® outputMatches — An optional attribute that is a regular expression to match the
standard output that is generated by the command. This value should be a
nonempty string. This attribute can reference simple substitution variables.

m errorMatches — An optional attribute that is a regular expression to match the
standard error output that is generated by the command. This value should be a
nonempty string. This attribute can reference simple substitution variables.

® inverse — An optional attribute of type Boolean, which, if set to true, negates each
of the conditionals specified in <successCriteriax>. The default value is false.
The step succeeds only if the conditions that are specified through each attribute of
<successCriteria> are not met.

For example, an <execNatives step with the following <successCriteria>
succeeds if status is not 1, the standard output does not match bin, and standard
error does not match none.

<successCriteria status="1" outputMatches="bin”
errorMatches="none” inverse="true”/>

A <successCriteria> element that contains only the inverse attribute is saved
without the inverse attribute. So, if you specify the following statement, the element
is stored as <successCriteria/>, and the <successCriterias elementis

ignored.

<successCriteria inverse="true”/>

<if> Step

This step is used to conditionally execute a block of steps. This step has no attributes.
Its child elements are <conditions, <thens, and <elses>. The <condition> and
<then> elements must appear one time. If you specify the <else> element, it can
only appear one time.

If the contents of the <condition> element evaluate to true, the steps of the <then>
block are executed. Otherwise, the steps of the <else> block are executed, if present.

34 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

EXAMPLE 2-1 Using the <if> Step

The following example shows an <if > step that is used to conditionally restart.

<if>
<condition><istrue value=": [restart]"/></condition>
<then>
<call blockName="restart"/>
</then>
</if>

<condition> Element

The <condition> element is a child of the <if> step and specifies a Boolean
expression. This element has no attributes and must contain exactly one Boolean
operator child element. See “Boolean Operators” on page 55.

<then> Element

The <then> element is a child element of the <if> step. This element specifies the
steps to execute if the associated condition is true. The <thens> element can contain
any number of steps that are permitted within the scope of the block that contains the
<if> step.

<else> Element

The <else> element is a child element of the <if> step. This element specifies the
steps to execute if the associated condition is not true. The <else> element can
contain any number of steps that are permitted within the scope of the block that
contains the <if> step.

<pauses> Step

The <pause> step pauses the execution of a plan for a specified amount of time. For
example, you might use <pause> to make a plan wait for required services to come
online after being started.

The <pause> element has one required attribute of type positiveInteger,
delaySecs, which is the number of seconds to wait.

<processTest> Step

The <processTest > step is used to verify that a particular process is running on the
target host. If the specified process does not exist, the step fails and execution stops.

Chapter 2 » Shared Schema Used by Components and Simple Plans 35

Note — The <processTest > step only applies to UNIX® systems.

Attributes for the <processTest> Step
The <processTest > step has the following attributes:

® delaySecs — A required attribute of type positiveInteger, which is the number
of seconds to wait before testing to see whether the process exists.

® timeoutSecs — A required attribute of type positiveInteger, which is the number
of seconds to wait for the process to come online before failing. Time starts after the
delay has completed.

m processNamePattern — A required attribute, which is a glob-style pattern to use to
match the specified process name. This attribute can reference simple substitution
variables.

® yser — An optional attribute that is a glob-style pattern to use to match the name of
the process owner. If this attribute is omitted, the process owner is not considered
as part of the test. This attribute can reference simple substitution variables.

<raise> Step

The <raises step is a step that always fails, though it can be caught and handled by
a <try> step. See “<try> Step” on page 43.

The <raises step is used to indicate a failure condition without having to construct
an artificial step to do so. This step most often appears within a <catch> block to
propagate an error condition after cleaning up. See “<catch> Element” on page 44.

Attributes for the <raise> Step

The <raise> element has one optional attribute, message, which is a message that
describes the error condition. By default, the message is a generic system-specified
message. This attribute can reference simple substitution variables.

EXAMPLE 2-2 Using the <raise> Step

The following example shows how the <raisex step is used to repropagate an error
condition from within a <catchs> block, after noting the error in a log.

<control blockName="default"s>
<try>
<block>
<!-- some arbitrary processing here -->

36 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

EXAMPLE 2-2 Using the <raise> Step (Continued)

</block>
<catch>
<!-- note error in log -->
<execNative>
<exec cmd="appendLog">
<arg value="an error occurred"/>

</exec>
</execNatives>
<!-- rethrow error -->
<raise/>
</catch>
</try>
</control>

MS Windows: <reboot > Step

This step causes the agent to reboot before running the rest of the plan. You can only
use this step on Microsoft Windows (MS Windows) based systems. If encountered on a
system other than MS Windows, an error is issued. If you reboot an agent that resides
on the same host as the master server, an error is issued. These errors are preflight
errors.

The <reboot > step has one optional attribute of type positiveInteger, timeout,
which is the maximum number of seconds to wait for the server to reboot. If this
attribute is omitted, the timeout period specified by the plan’s <execNatives>
applies.

<retarget> Step
This step changes the execution target for a set of steps. Retarget steps can be nested.

The <retarget > step has the following child elements:

®m <varList> —An optional element that lists the local variables available to the
steps in the <retarget> block. The variables are evaluated within the scope of the
new target host. If you specify this element, it can only appear one time.

® steps — Any number of steps to execute on the new target host. The steps can be
any that are permitted within the scope of the block that contains the <retarget >
step. You can specify more than one step. For an example, see Example 2-3.

Attributes for the <retarget> Step

The <retarget> step has a required attribute, host, which is the target host on which
the contained steps should be executed. This attribute can reference simple
substitution variables.

Chapter 2 « Shared Schema Used by Components and Simple Plans 37

38

This attribute is used by the <retarget > step, as well as by various component
targeter elements. Its value is the name of a host, which can include substitution
variable references. The value can also include the symbolic name / to reference the
root physical host of the current execution target, or . . (/. .) * to reference a parent
host of the current execution target.

Note — When a component targeter specifies a host attribute, it is semantically
equivalent to enclosing the containing step in a <retarget> step.

<retarget > Step Execution Semantics

When a <retarget> step is encountered, the host attribute is first evaluated in the
context of the current host of the caller.

If the value of the host attribute is different from the name of the current host, the
provisioning system takes the following steps:

1. Resolves the host name to an actual host. If no such host exists, an error is issued.

2. Verifies that the current user has “execute” permission on the given host for the
plan’s folder or for the component that contains this step. If not, an error is issued.

3. Verifies that the following conditions are met for the root physical host of the host:

® [t contains a remote agent.
® You can connect to it.
m]t is updated and prepared.

If these conditions are not met, an error is issued.

4. Obtains a lock on the host, while retaining locks on all previously visited hosts. If
the current execution thread already locks the host, this operation is effectively a
no-op. If the host is already locked by another execution thread, this operation
blocks until the host is unlocked. If the request for a lock would result in a
deadlock, an error is issued.

5. Resets the host to become the new “current” host. The “physical” host is reset
based on the new “current” host. The “initial” host does not change.

After the previous steps complete, variables specified in the <varList > element are
evaluated in the context of the new current host. Local variables can hide variables of
enclosing scopes. After the variables are evaluated, each of the steps is executed in the
context of the new current host.

Finally, if the retarget operation changed the current host, it is unlocked, as
appropriate, and the current host is reset to the current host of the caller. If the host
was locked previously in the current execution thread, it remains locked until the
block that first acquired the lock completes.

You can use an empty <retarget> block to verify that the current user has the
appropriate permissions and that the host is properly prepared.

Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

EXAMPLE 2-3 Using the <retarget> Step

This example shows a “restart” control service that you might find on a WebLogic
managed server. This control service is implemented by calling a control on the
administrative server to stop the managed server. Then it makes a call on the local
server to start the server.

The adminHostName variable is evaluated on the current host of the caller, which is
assumed to be the virtual host that contains the managed server. The domainName
variable is evaluated on the retargeted host, which is assumed to be the virtual host
that contains the administrative server. The ADMIN_SERVER component is also
resolved on the retargeted host.

<control name="restart"s>

<varList>
<var name="adminHostName" default=":[target:adminHostName]"/>
</varList>
<retarget host=":[adminHostName] ">
<varList>
<var name="domainName" default=": [target:domainName]"/>

</varList>
<call blockName="stopServer">

<argList serverName=": [serverName]"
domainName=": [domainName] " />
<installedComponent name="ADMIN_ SERVER"/>
</call>
</retarget>
<call blockName="start"/>

</controls>

<sendCustomEvent > Step

The <sendCustomEvent > step is used to generate a custom event with a particular
message. This step can be used in conjunction with the notification rules module to
send an email any time this step is encountered on a particular host.

The <sendCustomEvent > step has one required attribute, message, which is the
message to include as the event text. This attribute can reference simple substitution
variables.

<transform> Step

The <transforms> step is used to perform a text-based transformation to a file on the
target host. Currently, the provisioning system supports Perl-type and XSLT-based
transformations.

If the output file exists on the target host before the transformation, the permissions
and ownership of the file are preserved. However, if the output file is new, it inherits
the default RA permissions.

Chapter 2 » Shared Schema Used by Components and Simple Plans 39

The <transforms> child elements specify the transformation to be applied to the
input file. The child elements can be any one of the following elements:

®m Asingle <stylesheet> element that defines the XSLT transformation to apply to
the input source

® One or more <subst > elements that define Perl-like substitution patterns to apply
sequentially to the input source

®m Asingle <source> element that names the external file that contains the
transformation

® Empty, which means that the contents of the input file are copied directly to the
output file

You might use an empty element to extract from or write to zip archive files.

Attributes for the <t ransform> Step
The <transform> step has the following attributes:

® jnput — An optional attribute that is the generalized path of the file on the target
host on which to apply the transformation. If this attribute is omitted, input is read
from the output file. This attribute can reference simple substitution variables.

® output — A required attribute that is the generalized path of the file on the target
host to which to write the result of the transformation. This attribute can reference
simple substitution variables.

The input and output attributes can reference the same or distinct files. The value of
these attributes is a generalized path that can include zip archives or zip derivatives,
such as JAR, as directory elements. For example, a path might be
webapp/myapp.jar/config.xml.

<stylesheet> Element

The <stylesheet > element is a child of the <t ransform> step. This element
specifies an XSLT transformation to apply to the input source. At most one
<stylesheet > element can appear as a child of a particular <transform> element.
You cannot use the <stylesheet> element in conjunction with other child elements.

The <stylesheet> element is an XSLT Version 1.0 element as defined by the
http://www.w3.0rg/1999/XSL/Transformname space. For more information,
see Version 1.0 of the XSL Transformations (XSLT) specification at
http://www.w3.org/TR/xslt.html. Only the XSLT <stylesheet > element is
accepted as a child of the <t ransform> element. In particular, neither the XSLT
synonym <transform> nor the simplified XSLT transform syntax described in
Section 2.3 of the XSLT specification is supported as a child of the <transform>
element.

The <stylesheet > element body can include substitution variable references if the
body is still a valid XSLT without first undergoing variable substitution.

40 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

http://www.w3.org/TR/xslt.html

When a <stylesheet> element is used as a transformation, the input file must be
written in XML. For more information, see Version 1.0 of the XSL Transformations
(XSLT) specification.

EXAMPLE 2-4 Using the <stylesheet> Element

This transformation changes each a to a b in the /etc/hosts file. The hosts file is
overwritten with these changes.

<transform output="/etc/hosts">
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >
<xsl:template match="/">
<xsl:for-each select="a">
<xsl:value-of select="b"/>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>
</transform>

<subst> Element

The <subst> element is a child of the <transforms> step. This element specifies a
Perl-like substitution pattern to apply as a transformation. One or more <subst >
elements can appear as children of the <transform> element, but they cannot be
used in conjunction with other child elements. When more than one <subst> element
appears, they are applied sequentially.

All occurrences of the pattern in the input file are replaced, including multiple
occurrences on a line.

For information about the supported syntax, see Java documentation (class
java.util.regex.Pattern).

Attributes for the <subst > Element

The <subst> element has the following attributes:

® match — A required attribute that is a case-sensitive Perl-like regular expression that
is sought after in the input. This attribute can reference simple substitution
variables.

m replace — A required attribute that is a Perl-like replacement value that is substituted
for each occurrence of the pattern given by match. This value is not interpreted
verbatim: the $n construct is interpreted as the nth parenthetical expression inside
the matching expression. This attribute can reference simple substitution variables.

EXAMPLE 2-5 Using the <subst > Element

The following transformation converts all occurrences of the string 127.0.0.xxx to
10.10.0.xxx in the /etc/hosts file:

Chapter 2 » Shared Schema Used by Components and Simple Plans 41

EXAMPLE 2-5 Using the <subst> Element (Continued)

<transform output="/etc/hosts” >
<subst match="127\.0\.0\. (\d+)"
replace="10.10.0.31"/>
</transform>

<source> Element

The <source> element is a child of the <transform> step. This element specifies an
external file on the target host that contains the transformation to be applied to the
input file. At most one <source> element can appear as a child of a particular
<transforms> element. You cannot use the <source> element in conjunction with
other child elements.

Configuration generation is not performed on the specified source file as part of the
<transform> step. However, the specified source file can be a config-type resource
file that is deployed as part of a component installation. In such as case, substitution
variables that are contained in the source file would have been substituted when the
file was deployed.

Attributes for the <source> Element
The <sources> element has the following attributes:

m fype — A required element that is the type of transformation that is contained in the
specified file. The following values are permitted:

® PERL — A Perl-like transformation that is similar to that of the <subst>
element. In this case, the format of the specified file should be similar to the
following format:

<?xml version='1.0'7?>
<transform>
<subst match="127\.0\.0\. (\d+)"
replace="10.10.0.3$1"/>
</transform>

Perl-type external transformation files can contain any number of <subst>
elements.

®m XSLT — An XSLT transformation. In this case, the specified file contains a
standard XSLT Version 1.0 transformation as defined by the name space
http://www.w3.0rg/1999/XSL/Transform. Unlike inline transformations,
which only permit the XSLT <stylesheet > element, XSLT transformations
that are contained in external source files can include any valid top-level XSLT
transformation element. Such elements are <stylesheet>, <transform>,
and simplified XSLT syntax. The simplified XSLT syntax is described in Section
2.3 of the XSLT specification.

42 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

® name — A required attribute that is the name of the file on the target host that
contains the transformation. The contents of the file must correspond to the type
defined by the type attribute. The name cannot include zip archives as directory
elements. This attribute can reference simple substitution variables.

<try> Step

The <trys> step is used to specify typical error handling and cleanup logic for a block
of steps. This step has no attributes. This step has a required <block> element, and
two optional elements: <catch> and <finallys.

The <trys> step has the following child elements:

® <block> - Arequired element that consists of the steps initially executed.

® <catch> - An optional element that contains the steps to execute in case of a
typical error. You must specify this element if the <finally> element is not
specified. If you specify this element, it can only appear one time.

®m <finally> - An optional element that contains the steps to execute regardless of
typical errors. You must specify this element if the <catch> element is not
specified. If you specify this element, it can only appear one time.

The <trys> step is executed as follows:

® The steps in the <block> element are executed in order until all have completed
or until a step fails.

m Ifand only if a <catch> element is defined and the execution of the block element
terminated with a step failure other than plan abort or plan timeout, the steps in
the <catch> element are executed in order until all have completed or a step fails.

m Jfa<finally> element is defined, its steps are executed in order until all have
completed or a step fails. These steps are executed regardless of the success of the
previous two elements unless either of them failed due to plan abort or plan
timeout.

® If any step within the <try> block fails with a plan abort or plan timeout,
execution fails. No other steps in the <t ry> block are executed and the execution
of the <try> step ends with a failure.

The <catch> element is used to suppress and recover from errors that are
encountered in the <block> element. The <finally> element is used to
unconditionally perform some cleanup, regardless of whether typical errors were
encountered.

The <trys> step either succeeds or fails as follows:

m If the <try> step contains only a <finally> element, it fails if the execution of
either the <block> or the <finally> element fails.

m If the <try> step contains only a <catchs> element, it fails only if the <catch>
element executes and fails, or the <block> element fails due to plan abort or plan
timeout.

Chapter 2 « Shared Schema Used by Components and Simple Plans 43

m If the <try> step contains both a <catch> and a <finally> element, it fails only
if one of the following situations occurs:

m The <catch> or the <finally> element executes and fails.
m The <finally> element executes and fails.
® The <block> element fails due to plan abort or plan timeout.

Failures in the <block> element are suppressed by the presence of a <catch>
element.

<block> Element

The <block> element is a child element of the <try> step. This element specifies the
primary steps that are executed by the <try> step. The <block> element contains
one or more steps that are permitted within the scope of the block that contains the
<try> step.

<catch> Element

The <catch> element is a child element of the <try> step. This element specifies the
steps to execute if a typical error occurs while executing the steps of the <block>
element. The <catch> element can contain any number of steps that are permitted
within the scope of the block that contains the <try> step.

The <catch> element suppresses typical errors of the <block> element and defines
typical error-recovery actions. When the <catch> element is empty, it only suppresses
typical errors.

<finally> Element

A child element of the <try> step. <finally> specifies the steps to execute
regardless of whether a typical error occurred earlier within the <try> or <catch>
steps. An atypical error can be a plan abort or a plan timeout, in which case the steps of
the <finally> element are skipped. <finally=> can contain any number of steps
that are permitted within the scope of the block that contains the <try> step.

The <finally> element is used primarily to specify cleanup steps that should always
be run, regardless of an error. To run cleanup steps in response to an error, use the
<catch> element instead.

EXAMPLE 2-6 Using the <try> Step
In this example, the component installation consists of resource deployment followed
by a restart. In this case, the component is considered to be installed after its resources

are deployed, and a failure during restart should not affect its installed state. Typical
errors can be suppressed during the restart as follows:

44 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

EXAMPLE 2-6 Using the <try> Step (Continued)

<installSteps blockName="default">
<deployResource/ >
<try>
<block>
<call blockName="restart"><thisComponent/></call>
</block>
<catch/><!-- suppress all typical errors -->
</try>
</installSteps>

You can use <try> blocks to model intelligent auto-upgrades. Version 1.1 of a

component has two different installation routines. One performs a fresh installation of

the component. The other performs an upgrade installation if Version 1.0 of that
component was previously installed. You can model this situation in a single
installation block, as follows:

<installSteps blockName="default">
<try>
<block>
<checkDependency>
<installedComponent name="foo" version="1.0"/>
</checkDependency>
<!-- 1.0 installation exists, do upgrade -->
</blocks>
<catch>
<!-- 1.0 installation doesn’t exist, do fresh installation -->
</catch>
</try>
</installSteps>

The <finally> block is most often used to clean up temporary resources. The
following example creates a temporary file, processes it, and then removes it.

<control blockName="default"s>
<varList>
<var name="file" default="/tmp/file.txt"/>
</varList>
<execNative outputFile=":[file]">
<exec cmd="ls"><arg value="-1"/></exec>
</execNative>
<try>
<block>
<!-- process file in some way -->
</block>
<finally>
<execNatives>
<exec cmd="rm"><arg value=":[file]"/></exec>
</execNatives>
</finally>
</try>
</controls>

Chapter 2 » Shared Schema Used by Components and Simple Plans

45

<urlTest> Step

This step is used to verify that the contents of a particular URL match an expected
pattern. If the desired pattern is not matched, the step fails and execution stops.

Attributes for the <urlTest> Step

The <urlTest> step has the following attributes:

® delaySecs — A required attribute of type positiveInteger, which is the number
of seconds to wait before testing the URL contents.

m timeoutSecs — A required attribute of type positiveInteger, which is the number
of seconds to wait to receive the URL contents before failing. Time starts after the
delay has completed.

® URL - A required attribute that is the URL whose contents should be tested.
Currently, only the HTTP protocol is supported. This attribute can reference simple
substitution variables.

® pattern — A required attribute that is a glob-style pattern that is expected to match
the contents of the URL that is being tested. This value supports multibyte
encoding. This attribute can reference simple substitution variables.

Installed Component Targeters

This section describes the elements that specify an installed component as the target of
a step, such as a control service call. All targeters cannot be used with all targeted
steps. Each targeter specifies the steps with which it can be used.

“<installedComponent > Installed Component Targeter” on page 47
“<systemServices> Installed Component Targeter” on page 48
“<systemType> Installed Component Targeter” on page 48
“<thisComponent > Installed Component Targeter” on page 49
“<superComponent > Installed Component Targeter” on page 49
“<nestedRef > Installed Component Targeter” on page 49
“<allNestedRefs> Installed Component Targeter” on page 50
“<toplevelRef> Installed Component Targeter” on page 50
“<dependee> Installed Component Targeter” on page 51
“<allDependants> Installed Component Targeter” on page 51
“<targetableComponent > Installed Component Targeter” on page 52

46 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<installedComponent> Installed Component
Targeter

The <installedComponent> element identifies a particular installed component
that is assumed to be installed on the target host.

This element can be used as a targeter for the <checkDependency>,
<createDependency>, <calls, <uninstall>, and <addSnapshot> steps.

This targeter matches the specified component directly and cannot be used to match
derived instances of that component. To target components that are derived from a
particular type, use the <systemType> targeter.

Attributes for the <installedComponent > Targeter
This targeter has the following attributes:

® name — A required attribute of type entityName, which is the name of the
installed component.

® path — An optional attribute of type pathReference, which is the path of the
component. If this attribute is omitted, the path of the containing entity is assumed.

® opersion — An optional attribute of type version, which is the version of the
installed component. If this attribute is omitted, the most recently installed
component, regardless of the version, is used.

® versionOp — An optional attribute that specifies the operator to use when comparing
the version attribute with versions of components that are installed on the target
host. If more than one installed component applies, the most recently installed
component is used. These values are permitted: =, >=, and >. The >= operator is
used by default. If version is not specified, versionOp is ignored.

m onlyCompat — An optional attribute that specifies the components that should
match.

If the value is true, only components that are call compatible with the component
of version version should be matched. A component of version version must exist.
By default, the value is false. If version is omitted, this element is ignored.

® installPath — An optional attribute that is the install path of the installed component.
If this attribute is omitted, the most recently installed component in any path is
used. The value is converted to universal format prior to component resolution.
See “Universal Install Path Format” on page 52. This attribute can reference
simple substitution variables.

® jost — An optional attribute that is the host on which the component is installed. By
default, host is the current host. See the description of the host attribute in
“Attributes for the <retarget> Step” on page 37. This attribute can reference
simple substitution variables.

Chapter 2 » Shared Schema Used by Components and Simple Plans 47

<systemServices> Installed Component Targeter

The <systemServicex> element identifies a particular system service component that
is assumed to be installed on the current physical host.

This element can be used as a targeter for the <checkDependency>,
<createDependency>, <calls>, <uninstall>, and <addSnapshot > steps.

Use of the <systemServices targeter implicitly retargets to the root physical host of
the current host. If you need to target a system service on a different host, a
<retarget> step must be used. You cannot otherwise specify a new host within the
<systemService> targeter.

Attributes for the <systemService> Targeter

The <systemServices targeter has one required attribute of type systemName,
name, which is the name of the system service component. If the system service is

defined by a plug-in, the system service name should be prefixed with the plug-in
name, such as pluginName#serviceName.

<systemType> Installed Component Targeter

The <systemType> element identifies a component that is an instance of a particular
type that is assumed to be installed on the target host. If more than one installed
component matches the specified criteria, the component that was most recently
installed is used.

This element can be used as a targeter for the <checkDependency>,
<createDependency>, <call>, <uninstalls, and <addSnapshot > steps.

Attributes for the <systemType> Targeter
The <systemType> targeter has the following attributes:

® name — A required attribute of type systemName, which is the name of the system
type component. If the system type is defined by a plug-in, the system type name
should be prefixed with the plug-in name, such as pluginName#typeName.

m installPath — An optional attribute that is the install path of the desired component.
The value is converted to universal format prior to component resolution. See
“Universal Install Path Format” on page 52. This attribute can reference simple
substitution variables.

® host — An optional attribute that is the host on which the component is installed. By
default, host is the current host. See the description of the host attribute in
“Attributes for the <retarget> Step” on page 37. This attribute can reference
simple substitution variables.

48 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<thisComponent > Installed Component Targeter

The <thisComponent > element specifies that the component that contains the step
should be used as the target of the step. Only steps that are contained in a component
can use this targeter. This element has no attributes.

This element can be used as a targeter for the <call>, <uninstalls, and
<addSnapshot > steps.

If the steps listed do not contain a component targeter element, <thisComponents is
assumed by default.

<superComponent > Installed Component
Targeter

<superComponent > specifies that the base component of the component that
contains the step should be used as target of the step. Only steps that are contained in
a derived component can use this targeter. This element has no attributes.

This element can be used as a targeter for the <call>, <uninstalls>, and
<addSnapshot > steps.

This targeter always binds to the base component’s definition of the step in question,
even if the derived component overrides it.

<nestedRef > Installed Component Targeter

The <nestedRef> element identifies a nested component reference that is declared or
inherited by the current composite component. Only steps that are in a composite
component can use this targeter.

This element can be used as a targeter for the <checkDependency>, <calls,
<uninstalls, and <addSnapshot > steps.

The specified component reference must already be installed by the calling
component. If the referenced component is not installed, an error is issued. If the
nested component reference was installed on a host other than the current target host,
use of the <nestedRef > targeter implicitly retargets the associated step to that host.

Attributes for the <nestedRef > Targeter

The <nestedRef > targeter has one required attribute of type identifier, name,
which is the name of a nested component reference in this component.

Chapter 2 « Shared Schema Used by Components and Simple Plans 49

<allNestedRefs> Installed Component Targeter

The <allNestedRefs> element identifies the set of all nested component references
that are declared or inherited by the current composite component. Only steps within
composite components can use this targeter.

This element can be used as a targeter for the <call>, <uninstalls, and
<addSnapshot > steps.

This targeter can identify any number of components. If it identifies no components,
the step is a no-op. If it identifies more than one component, the step is semantically
expanded as if a separate occurrence of the step that uses the <nestedRef > targeter
exists for each of the identified components. The steps are executed serially rather than
in parallel. The ordering of the steps varies based on the step type. If the execution of
the step on one of the components causes an error, the step is not executed on the
remaining matching components.

When used as a targeter for a <call> or <addSnapshot > step, this targeter matches
all of the nested component references that are currently installed by this component.
The component matches are in the order of installation.

When used as a targeter for an <uninstalls step, this targeter matches all of the
nested component references that are currently installed by this component. The
component matches are in the reverse order of installation.

<toplevelRef> Installed Component Targeter

The <toplevelRef > element identifies a top-level component reference that is
declared or inherited by the current composite component. Only steps that are in
composite components can use this targeter.

This element can be used as a targeter for the <checkDependency>,
<createDependency>, <call>, <uninstalls, and <addSnapshot > steps.

This targeter is semantically equivalent to the <installedComponent > targeter,
except that the name, path, and version attribute values are predefined based on the
referenced component. See “<installedComponent> Installed Component
Targeter” on page 47.

Attributes for the <toplevelRef> Targeter

The <toplevelRef > targeter has the following attributes:

® name — A required attribute of type identifier, which is the name of a top-level
component reference in this component.

m versionOp — An optional attribute that specifies the operator to use when comparing
the version of the referenced component with versions of components that are
installed on the target host. If more than one installed component applies, the most
recently installed component is used.

50 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

These values are permitted: =, >=, and >. If this attribute is omitted, >= is used.

m onlyCompat — An optional attribute that specifies the components that are matched.
If true, this attribute specifies that only components that are call compatible with
the referenced component should be matched. The default value is false.

m installPath — An optional attribute that is the install path of the referenced
component. If this attribute is omitted, the most recent installation of the referenced
component in any path is used. The value is converted to universal format prior to
component resolution. This attribute can reference simple substitution variables.

® Jiost — An optional attribute that is the host on which the referenced component is
installed. By default, host is the current host. See the description of the host attribute
in “Attributes for the <retarget > Step” on page 37. This attribute can reference
simple substitution variables.

<dependee> Installed Component Targeter

The <dependee> element identifies an installed component on which the calling
component has a declared dependency that was created by <createDependency>.
Only steps that are in components can use this targeter.

This element can be used as a targeter for the <call>, <uninstalls, and
<addSnapshot > steps.

The <dependees> targeter has one required attribute of type identifier, name,
which is the name of a dependency that is created by this component.

<allDependants> Installed Component Targeter

The <allDependants> element identifies the set of installed components that have a
declared dependency on the calling component. These dependencies were created by
<createDependency>. Only steps in components can use this targeter.

This element can be used as a targeter for the <call>, <uninstalls, and
<addSnapshot > steps.

This targeter functions similarly to the <allNestedRefs> targeter in that it causes
the containing step to be mapped over all of the matching components. The order of
the mapping over the dependant components is unspecified.

The <allDependants> targeter has one required attribute of type identifier,
name, which is the name of a dependency that is created on this component by other
components.

Chapter 2 » Shared Schema Used by Components and Simple Plans 51

<targetableComponent > Installed Component
Targeter

The <targetableComponent> element identifies a targetable component that is
associated with a particular component targeting host.

This element can be used as a targeter for the <calls, <uninstalls,
<checkDependency>, <createDependency>, and <addSnapshot > steps.

The <targetableComponent > targeter has one optional attribute, name, which is the
name of a component targeting host. If this attribute is omitted, the value is the
current target host. This attribute can reference simple substitution variables.

Universal Install Path Format

You can specify an install path within an installed component reference. In these cases,
the installPath attribute value is converted to universal format before the installed
component reference is resolved. This conversion occurs because the install path of the
installed component is also stored in universal format.

In universal format, all occurrences of the path separator in the install path are
replaced by a slash (/). The path separator is specific to the operating system that is
running on the master server. Trailing slashes are dropped. The root install path (/) is
not converted to the empty path.

When the Master Server application is running on UNIX based systems, trailing
slashes are ignored. Thus, both /opt/apache/ and /opt/apache can be used to
refer to the component that is installed in the /opt /apache directory.

Repository Component Targeters

This section describes the elements that specify a particular component that resides in
the master server repository as the target of a step, such as install. All targeters cannot
be used with all targeted steps. Each targeter specifies the steps with which it can be
used.

“<component > Repository Component Targeter” on page 53
“<thisComponent > Repository Component Targeter” on page 53
“<superComponent > Repository Component Targeter” on page 53
“<nestedRef > Repository Component Targeter” on page 54
“<allNestedRefs> Repository Component Targeter” on page 54
“<toplevelRef> Repository Component Targeter” on page 54

52 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<component > Repository Component Targeter

<component > specifies a particular component that is assumed to exist in the
component repository. Only steps that are contained in a simple plan can use this
targeter.

This element can be used as a targeter for the <installs step.

Attributes for the <component > Targeter

The <component > targeter has the following attributes:

® name — A required attribute of type entityName, which is the name of the
component.

® path — An optional attribute of type pathReference, which is the path of the
component. If this attribute is omitted, the path of the containing entity is assumed.

® version — An optional attribute of type version, which is the version of the
component. If this attribute is omitted, the latest version of the component is used.

® Ji0st — An optional attribute that is the host on which the component should be
installed. By default, host is the current host. See the description of the host attribute
in “Attributes for the <retarget > Step” on page 37. This attribute can reference
simple substitution variables.

<thisComponent> Repository Component
Targeter

<thisComponent > specifies that the component that contains the step should be
used as the target of the step. Only steps in a component can use this targeter. This
element has no attributes.

This element can be used as a targeter for the <installs> step.

If the steps listed do not contain a component targeter element, <thisComponent > is
assumed by default.

<superComponent > Repository Component
Targeter

<superComponent > specifies that the base component of the component that
contains the step is the target of the step. Only steps that are contained in a derived
component can use this targeter. This element has no attributes.

This element can be used as a targeter for the <installs> step.

Chapter 2 » Shared Schema Used by Components and Simple Plans 53

54

This targeter always binds to the base component’s definition of the step in question,
even if the derived component overrides it.

<nestedRef> Repository Component Targeter

<nestedRef > specifies a nested component reference that is declared or is inherited
by the current composite component. Only steps in a composite component can use
this targeter.

This element can be used as a targeter for the <installs step.

The specified component reference should not have been previously installed by the
calling component. Otherwise, an error is issued. If a nested referenced component is
to be installed on a different host, use a <retarget > step instead. You cannot
otherwise specify a new host within the <nestedRef > targeter. You cannot install a
nested component reference on more than one host for a given containing component.

The <nestedRef > targeter has one required attribute of type identifier, name,
which is the name of a nested component reference that is in this component.

<allNestedRefs> Repository Component
Targeter

<allNestedRefs> specifies the set of all nested component references that are
declared or inherited by the current composite component. Only steps in a composite
component can use this targeter.

This element can be used as a targeter for the <installsx step.

This targeter can specify more than one component. If it specifies no components, the
step is a no-op. If it specifies more than one component, the step is semantically
expanded as if a separate occurrence of the step that uses the <nestedRef > targeter
exists for each of the specified components. The steps are executed serially rather than
in parallel. The ordering of the steps varies based on the step type. If the execution of
the step on one of the components causes an error, the step is not executed on the
remaining matching components.

When used as a targeter for an <installsx step, this targeter matches all of the nested
component references that are declared in this component. The component matches
are in the order of declaration.

<toplevelRef> Repository Component Targeter

<toplevelRef> specifies a top-level component reference that is declared or
inherited by the current composite component. Only steps in a composite component
can use this targeter.

Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

This element can be used as a targeter for the <installs> step.

This targeter is semantically equivalent to the <component > targeter, except that the
name, path, and version attribute values are predefined based on the referenced
component. A top-level component reference can be installed one or more times on
one or more hosts.

Attributes for the <toplevelRef > Targeter

The <toplevelRef > targeter has the following attributes:

® name — A required attribute of type identifier, which is the name of a top-level
component reference in this component.

® Ji0st — An optional attribute that is the host on which the referenced component is
to be installed. By default, host is the current host. See the description of the host
attribute in “Attributes for the <retarget> Step” on page 37. This attribute can
reference simple substitution variables.

Boolean Operators

This section describes elements that serve as Boolean operators. These elements
appear in the <condition> element of an <if> step. See “<if> Step” on page 34.
Boolean operators can evaluate only to true or false.

“<istrue> Boolean Operator” on page 55
“<equals> Boolean Operator” on page 56
“<matches> Boolean Operator” on page 57
“<not> Boolean Operator” on page 58
“<and> Boolean Operator” on page 58
“<or> Boolean Operator” on page 59

<istrue> Boolean Operator

This Boolean operator is used to determine whether a particular value is true.
<istrues has no child elements. <istrue> evaluates to true only if value equals
true. The comparison is case-insensitive.

Attributes for the <istrue> Boolean Operator

The <istrue> operator has one required attribute, value, which is the value to
compare to the string true. This attribute can reference simple substitution variables.

Chapter 2 » Shared Schema Used by Components and Simple Plans 55

EXAMPLE 2-7 Using the <istrue> Boolean Operator
The following examples show how <istrues> is used and the results:
m The following statement evaluates to true.

<istrue value="True"/>

m The following statement evaluates to false.

<istrue value="yes"/>

m The following statement evaluates to true if var is true.

<istrue value=":[var]"/>

<equals> Boolean Operator

This Boolean operator is used to determine whether a particular value is equal to
another value. This operator has the valuel, value2, and exact attributes. This operator
has no child elements, and evaluates to true only if valuel and value2 are equal. If exact
is true, the values must be exactly the same, including case. If exact is false, the
comparison is case-insensitive.

<istrue value="..."/> is a syntactic shorthand for the following statement:

<equals valuel="..." value2="true"/>

Attributes for the <equals> Boolean Operator
The <equals> operator has the following attributes:

® ogluel — A required attribute that is a value to be compared. This attribute can
reference simple substitution variables.

® oglue? — A required attribute that is the value to be compared. This attribute can
reference simple substitution variables.

® exact — An optional attribute of type boolean, which is true if a case-sensitive
match should be performed, false otherwise. Defaults to false.

EXAMPLE 2-8 Using the <equals> Boolean Operator
The following examples show how <equals> is used and the results:
® The following statement evaluates to true.

<equals valuel="True" value2="true"/>

m The following statement evaluates to false.

<equals valuel="True" value2="true" exact="true"/>

® The following statement evaluates to true.

56 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

EXAMPLE 2-8 Using the <equals> Boolean Operator (Continued)

<equals valuel="apple" value2="apple" exact="true"/>

m The following statement evaluates to false.

<equals valuel="apple" value2="orange"/>

m The following statement evaluates to true if varl is equal to var2.

<equals valuel=":[varl]" value2=":[var2]"/>

<matches> Boolean Operator

This Boolean operator is used to determine whether a particular value matches a
pattern. This operator has the value, pattern, and exact attributes. This operator has no
child elements and evaluates to true only if the value of value matches the glob-style
pattern contained in pattern. If exact is true, the values must be a case-sensitive match.
Otherwise, the values can be a case-insensitive match.

Attributes for the <matches> Boolean Operator
The <matches> operator has the following attributes:

® ovalue — A required attribute that is the value to be matched against the pattern. This
attribute can reference simple substitution variables.

® pattern — A required attribute that is the pattern to be matched. This attribute can
reference simple substitution variables.

® exact — An optional attribute that is true if a case-sensitive match should be
performed, false otherwise. Defaults to false.

EXAMPLE 2-9 Using the <matches> Boolean Operator
The following examples show how <matches> is used and the results:
® The following statement evaluates to true.

<matches value="True" pattern="true"/>

m The following statement evaluates to true.

<matches value="True" pattern="t*"/>

m The following statement evaluates to false.

<matches value="blue" pattern="*u"/>

® The following statement evaluates to true.

<matches value="True" pattern="t?ue"/>

m The following statement evaluates to false.

Chapter 2 « Shared Schema Used by Components and Simple Plans 57

EXAMPLE 2-9 Using the <matches> Boolean Operator (Continued)

<matches value="Tue" pattern="t?ue"/>

® The following statement evaluates to false.

<matches value="True" pattern="t*" exact="true"/>

m The following statement evaluates to true if var]l matches the pattern of var2.

<matches value=":[varl]" pattern=":[var2]"/>

<not > Boolean Operator

This Boolean operator negates the result of another Boolean operator. This operator
has no attributes and has a single child element, which is one of the other Boolean
operators. This operator evaluates to true only if the value of its contained operator is
not true.

EXAMPLE 2-10 Using the <not > Boolean Operator
The following examples show how <not > is used and the results:
® The following statement evaluates to false.

<not><istrue value="True"/></not>

® The following statement evaluates to true.

<not><equals valuel="apple" value2="orange"/></not>

<and> Boolean Operator

This Boolean operator logically ANDs the results of other Boolean operators. This
operator has no attributes and can contain any number of child elements, which are
the other Boolean operators. The <and> operator evaluates to true only if all of its
child elements evaluate to true.

EXAMPLE 2-11 Using the <and> Boolean Operator
The following examples show how <and> is used and the results:
® The following statement evaluates to true.

<and/>

® The following statement evaluates to true.

<and><istrue value="True"/></and>

® The following statement evaluates to false.

<and><equals valuel="apple" value2="orange"/></and>

58 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

EXAMPLE 2-11 Using the <and> Boolean Operator (Continued)

® The following statement evaluates to true.

<and>

<matches value="apple" value2="ap*e"/>

<istrue value="TRUE"/>

<not><equals valuel="apple" value2="orange"/></not>
</and>

m The following statement evaluates to false.

<and>
<matches value="apple" value2="ap*e"/>
<istrue value="TRUE"/>
<equals valuel="apple" value2="orange"/>
</and>

<or> Boolean Operator

This Boolean operator logically ORs the results of other Boolean operators. This

operator has no attributes and can contain any number of child elements, which are

the other Boolean operators. The <or> operator evaluates to true only if it contains at

least one child element that evaluates to true.

EXAMPLE 2-12 Using the <or> Boolean Operator
The following examples show how <or> is used and the results:
m The following statement evaluates to false.

<or/>

® The following statement evaluates to true.

<or><istrue value="True"/></or>

® The following statement evaluates to false.

<or><equals valuel="apple" value2="orange"/></or>

m The following statement evaluates to false.

<or>
<matches value="apple" value2="p*e"/>
<istrue value="FALSE"/>
<equals valuel="apple" value2="orange"/>
</or>

® The following statement evaluates to true.

<or>
<matches value="apple" value2="p*e"/>
<not><istrue value="FALSE"/></not>
<equals valuel="apple" value2="orange"/>

Chapter 2 » Shared Schema Used by Components and Simple Plans

59

EXAMPLE 2-12 Using the <or> Boolean Operator (Continued)

</or>

60 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

CHAPTER 3

Component Schema

This chapter describes the XML schema used by components, and covers these topics:

“<component > Element Overview” on page 61
“<extends> Element” on page 65

“<varList> Element” on page 65
“<targetRef > Element” on page 67
“<resourceRef> Element” on page 69
“<componentRefList> Element” on page 71
“<installList> Element” on page 75
“<uninstallList> Element” on page 80
“<snapshotList> Element” on page 82
“<controlList> Element” on page 88
“<diff> Element” on page 89

“Install-Only Steps for Components” on page 90
“Uninstall-Only Steps for Components” on page 94

Unless indicated, attributes described in this chapter cannot reference
component-scoped substitution variables.

For an overview of the XML schema architecture, see Chapter 1.

<component > Element Overview

A component is enclosed within the <component > element. All versions of a
component must have the same name and path. This element’s attributes can reference
component-scoped substitution variables.

61

Attributes for the <component > Element

The <component > element has the following attributes:

® xmins — A required string that has a value of
http://www.sun.com/schema/SPS.

® xmins:xsi — A required string that has a value of
http://www.w3.0rg/2001/XMLSchema-instance.

m xsi:schemalLocation — An optional string. The recommended value is
http://www.sun.com/schema/SPS component .xsd.

® gccess — An optional attribute that specifies the accessibility of the component,
which is how the component can be referenced by other components. These are the
legal values:

®m PATH - The component can only be referenced by other components in the
same path as this component. When access="PATH", you cannot directly
install the component, and it can only be included in other components by
using a nested reference.

® PUBLIC — The component can be referenced by any component and is not
bound by the restrictions imposed by PATH access. This is the default value.

® modifier — An optional value of type modifierEnum, which specifies the following
override requirements for the component:

® ABSTRACT - Identifies the component as an abstract component. An abstract
component serves only as a base component for other components to extend
and cannot be installed. Only an abstract component is permitted to declare
abstract child elements.

® FINAL - Identifies the component as a final component, which means that the
component cannot be extended by another component.

If this attribute is omitted, the component can be extended and installed, which is

the default.

= name — A required value of type ent ityName, which is the name of the
component.

® path — An optional value of type pathName, which is the absolute path of the
component. If this attribute is omitted, the root path (/) is the default value. The
value must name a folder that exists at the time that the component is saved.

m description — An optional string that is a description of the component.
® Jabel — An optional string that is a brief description of the component.

® softwareVendor — An optional string that is the vendor name of the software
application that is modeled by the component.

® guthor — An optional string that is the name of the component’s author.

m persion — A required value of type schemaVersion, which is the version of the
component schema. Currently, the only permitted values are 5.0 and 5. 1.

The 5.1 version of the schema is backward compatible with the 5.0 version.

62 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

® platform — An optional string that specifies the name of the host set that includes the
hosts that are valid physical targets on which this component can be installed.

If this attribute is omitted, any host that contains the Remote Agent application and
that is a supported platform is a valid physical target. Otherwise, the physical
targets for any plan that installs this component must be a subset of the hosts that
are contained in the specified host set. If the physical targets include a host that is
not part of the specified host set, the plan issues a runtime error. These plan
runtime errors are reported as preflight errors. A component save time error is
issued if you specify a name that does not correspond to a supported platform host
set. Platform host sets are all prefixed with the system# plug-in name. If a
component platform host set is unsupported, a new version of the component
cannot be checked in until the platform is changed. Any operation on the existing
component version that refers to the unsupported platform host set will fail.

m [imitToHostSet — An optional string that specifies the name of the host set that
contains the hosts that are valid targets for this plan.

If this element is omitted, all hosts are valid targets. Otherwise, the specified
targets must be a subset of the hosts that are included in the named host set. If the
targets include a host that is not part of the specified host set, the plan issues a
runtime error. These plan runtime errors are reported as preflight errors. A
component save time error occurs when you specify a name that does not
correspond to an existing, supported host set. If the specified host set is one that is
defined by a plug-in, pluginName must be a prefix to the host set name, such as
pluginNamethostSetName.

These are the two main differences between the platform and the limitToHostSet
attributes:

® platform names one of the predefined platform host sets, whereas limitToHostSet
names a user-defined host set. Therefore, if you want to limit installation based
on a custom host set, use limitToHostSet.

® When a component is targeted at a virtual host, limitToHostSet is tested against
the virtual host, whereas platform is tested against the root physical host of that
virtual host.

Therefore, if you set limitToHostSet but not platform, a component can be installed
on a particular set of virtual hosts that might reside on different physical platforms
(as is the case with WebLogic applications). However, if you set platform but not
limitToHostSet, a component can be installed on any host that is rooted by a
physical host with the given platform. If you set both, you can constrain both
degrees.

® installPath — A required string that is only for nonderived components. This path is
used when the component is installed. For simple components, this value also
serves as the root directory in which to install the component’s resources. The path
is stored in universal format when an instance of this component is installed. See
“Universal Install Path Format” on page 52.

Except for installPath and limitToHostSet, component attributes are not inherited.

Chapter 3 « Component Schema 63

The installPath attribute is inherited and cannot be overridden by derived components.
However, the base component can use component variables when specifying its value,
and the value of these variables can be overridden.

The limitToHostSet attribute is inherited and can be overridden by derived components
only if the base component did not specify limitToHostSet.

Because the limitToHostSet value names a mutable, user-managed entity, the relation of
host set cannot be reasoned about in the same way as platforms.

The platform attribute is not inherited. However, the platform attribute value of a
derived component can be no more general than that of the base component. If platform
is not specified in a derived component, platform cannot be specified (or must be
specified as any) in the base component.

Child Elements of the <component > Element

The <component > element has the following child elements, which must appear in
the order shown. These child elements might have their own child elements,
attributes, or both.

® cextends> — Declares the base component from which the component is derived

®m <varList> — Lists the component-scoped variables that are used by the
component and its resources

®m <targetRef> — Declares that the component is “targetable”
®m <resourceRef> - Specifies the resource managed by the component

®m <componentRefList> — Lists the components that are referenced by this
component

® <installList> - Contains one or more named blocks of <installs> steps
® <uninstallList> - Contains one or more named blocks of <uninstalls steps
® <snapshotList> — Contains one or more named <snapshot > blocks

B <controlLists> — Lists the <controls blocks that are available for the
component

®m <diff> - Lists the directives that are used by the comparison engine to perform
comparisons on this component

64 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<extends> Element

The <extends> element is an optional child of the <component > element. This
element is used to declare the base component from which this component is derived.
The base component cannot be final. If used, this element can only appear one time.

This component automatically inherits the attributes and elements of the base
component. The component can selectively override certain aspects of the inherited
data. Inheritance and override allowances are described by the description of the
attribute or element.

A component is an instance of the component that it extends. A component is also an
instance of the components that the base component is an instance of.

The <extends> element has one required child element, <type>, which specifies the
base component. The <type> element must be used exactly one time per
<component > element.

<type> Element

The <type> element names the base component type of this component. This element
is a child of the <extends>, <componentRefList>, and <componentRef>
elements.

The <type> element has one required attribute of type systemName, name, which is
the name of the system type component that serves as the base type. If the specified
type is one that is defined by a plug-in, pluginName must be prefixed to the type name,
such as pluginName#typeName.

<varList> Element

The <varList> element is an optional child of the <component > element. This
element declares the list of component-scoped substitution variables that are used by
this component and by its configuration resources. If used, this element can only
appear one time.

The <varList> element has one required child element, <var>, which declares a
component substitution variable.

Chapter 3 « Component Schema 65

By default, a derived component inherits the accessible <varList > element contents
of its base component. When a derived component declares a <varList>, its contents
are effectively merged with those of the base component. The derived component can
declare new <vars> elements to override inherited ones, but a derived component
cannot remove elements that are declared by the base component.

<var> Element

The <var> element is a child of the <varlist> element, which is a child of the
<component > element. The <var> element declares a component substitution
variable. For each substitution variable that you want to declare, you must specify the
name of the variable and its default value.

By default, a derived component inherits all of the accessible variables from its base
component, including access mode, modifier, default value, and prompt. The <var>
element can appear one or more times in the <varList > element.

A derived component can define additional variables by using names that are not
among those variables that have been inherited from the base component. A derived
component can override the prompt, default value, modifier, and access mode of a
nonfinal inherited variable by re-declaring a variable with the same name. When a
variable is overridden, the entire contents of the variable must be re-declared,
including the prompt, default value, access mode, and modifier. Only specify the
default value if the overriding variable is nonabstract. The access mode can be no
more restrictive than that of the base component.

When a variable is overridden, all references to the variable evaluate to the overridden
value, even those that appear in the base component.

If the derived component is declared as nonabstract, any abstract variables declared by
the base component must be overridden by the derived component.

Attributes for the <var> Element
The <var> element has the following attributes:

® gccess — An optional value of type accessEnum, which specifies the accessibility of
the variable. This attribute can have one of the following values:

B PUBLIC — Access is not restricted in any way, which is the default.

B PROTECTED — Access is limited to derived components and entities that are in
the same path.

® PATH — Access is limited to entities that are in the same path.
®m PRIVATE — Access is limited to this component.

® modifier — An optional value of type modifierEnum, which specifies the override
requirements for the variable. This attribute can have the following values:

66 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

®m ABSTRACT — The variable’s default attribute is omitted and must be specified by
a variable in nonabstract derived components. Variables can only be declared as
abstract if the component is also declared as abstract. Abstract variables cannot
be private. Nonabstract variables must declare a default value.

® FINAL - The variable cannot be overridden by derived components.

If the attribute is omitted, derived components can choose whether to override the
variable.

® name — A required value of type identifier, which is the name of the
substitution variable. Each variable name declared by a <var> element in the
<varList> element must be unique.

® default — A required string for nonabstract variables, which is the default value of
the substitution variable. This value can include references to other substitution
variables, session variables, target host attributes, and installed component
variables. However, an abstract variable cannot define a default value, so this
attribute cannot be used for abstract variables.

® prompt — An optional string that is a user-readable description of the variable.

<targetRef > Element

The <targetRef > element is an optional child of the <component > element. This
element declares that the component is targetable. A targetable component is one that
automatically creates a physical host or a virtual host that is associated with the
component. This host is created when the component is installed. If used, this element
can appear only one time, and it must appear immediately after the <varList>
element. This element can be used by both simple and composite components.
However, the <varList> element can only be used in components that are being
installed as top-level components.

The <targetRef > element has one optional child element, <agent >, which indicates
whether the associated host is a physical host or a virtual host. If the <agent >
element is present, the host is a physical host. The <agent > element body defines the
configuration of the remote agent. If the element is not present, the host is a virtual
host, which is the default.

Attributes for the <targetRef > Element

The <targetRef > element has the following attributes:

® JiostName — A required value, which is the name of the host to create when you
install this component. The name must be unique at the time of installation and
must be a valid host name. This value can include component-scoped substitution

Chapter 3 « Component Schema 67

variable references.

® typeName — An optional value of type systemName, which is the name of the host
type to use for the associated host. The specified host type must exist at the time
that the component is saved. If this host type is defined by a plug-in, the name
should include pluginName as a prefix, such as pluginName#typeName.

If this attribute is omitted, the value is system#tcrhost.

<agent > Element

The <agent > element is a child of the <targetRef > element. This element indicates
that the associated host is a physical host. This element is optional and can be used
only one time.

If this element is omitted, the associated host is created as a virtual host. If this
element is used, the associated host is created as a physical host, and the <agent >
element specifies the configuration of the associated remote agent.

This element is inherited by derived components. A derived component can declare a
local <targetRef> element only if the base component did not. This means that a
derived component cannot override an inherited <targetRef > element.

Attributes for the <agent > Element

The <agent> element has the following attributes. These attributes can reference
component-scoped substitution variables.

m connection — A required value that specifies the connection type that is used to
connect to the remote agent. This attribute can have one of the following values:

® RAW
B SSL
B SSH

® ipAddr — A required value that is the IP address of the physical host. This value can
be either a server name or an IP address. Server names must be resolvable to an IP
address by the master server.

® port — An optional value that is the port on which the remote agent is listening. If
connection is RAW or SSL, the default value of port is 113 1. If connection is SSH, this
attribute is ignored.

® params — An optional value that is at least one parameter that is used to connect to
the remote agent.

68 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<resourceRef > Element

The <resourceRef > element is an optional child of the <component > element. This
element specifies the resource that is managed by the component. This element can
only be used by a simple component. This element cannot be used in conjunction with
the <componentRefList> element, which can only be used by a composite
component. The configurable attributes of this element and its children can reference
component substitution variables. Resources have implicit PUBLIC access mode. If
used, this element can only appear one time.

A component is a simple component if it is derived from a simple component or if it is
a nonderived component that contains a <resourceRef> element. A derived
component can only contain a <resourceRef > element if it is derived from a simple
component.

The <resourceRef > element has child elements, which must appear in the following
order:

® <installSpec> — Arequired element for nonderived components that specifies
how to install the resource. This element cannot be included in derived
components.

®m <resources> - Arequired element for nonabstract components that identifies the
associated resource. This element cannot be included in abstract components.

By default, a derived component inherits the <resourceRef > element of its base
component.

A derived component can override the modifier and the <resource> element of a
nonfinal inherited <resourceRef> element by re-declaring the <resourceRef>
element. When a <resourceRef > element is overridden, the <installSpec>
element is omitted, as its contents cannot be overridden. The <resource> element is
specified only if the overriding <resourceRef > is nonabstract.

When a <resourceRef > is overridden, all uses of the resource (including
<deployResource> and <addResource>) resolve to the overridden value, even
uses in the base component.

If the derived component is declared as nonabstract and the <resourceRef > element
of the base component is abstract, the derived component must override the
<resourceRef > element.

Attributes for the <resourceRef > Element

The <resourceRef > element has one optional attribute, modifier, which has a value
of type modifierEnum. The modifier attribute specifies the following override
requirements for the resource:

Chapter 3 « Component Schema 69

® ABSTRACT — The <resource> element of <resourceRef > is omitted and must
be specified by a nonabstract derived component. A <resourceRef > can only be
declared abstract if the component is also declared abstract. A nonabstract
<resourceRef> must declare a <resource> element.

®m FINAL - <resourceRef> cannot be overridden by derived components.

If this attribute is omitted, derived components can choose whether to override the
<resourceRef>.

<installSpec> Element

The <installSpec> element is a child of the <resourceRef > element. This
element specifies the way in which the associated resource is to be installed. This
element is inherited by derived components and cannot be overridden. However, the
base component can use component variables to specify values for <installSpec>
attributes. The values of these variables can also be overridden.

Attributes for the <installSpec> Element

The <installSpec> element has the following attributes. These attributes can
reference component-scoped substitution variables.

® name — A required string that is the name to use for the resource when it is
installed.

® path — An optional string that is the path in which to install the resource. Relative
directories are considered relative to the installPath attribute of the containing
component. If this argument is omitted, the component’s installPath attribute is
used by default.

® permissions — An optional string that indicates the permissions to assign to the
resource when installed.

The string is in the format of an octal triplet, as defined by the UNIX chmod
command. See the chmod(1M) man page. If this attribute is omitted, the resource is
installed with default permissions.

® yser — An optional string that is the owner of this resource when it is installed. If
this attribute is omitted, the user is determined by the plan executor.

® group — An optional string that is the group to assign to this resource when it is
installed. If this attribute is omitted, the group is determined by the plan executor.

m deployMode — An optional attribute that specifies the way in which the associated
directory resource is deployed. This attribute is ignored if the resource is not a
directory.

®m ADD_TO — The directory contents are added to any existing files in the target
directory.

®m REPLACE - The directory contents replace all existing files in the target
directory.

70 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

If this argument is omitted, the default value, REPLACE, is used.

m diffDeploy — An optional value of type boolean, which specifies whether the
resource should be deployed in differential deploy mode. If this attribute is
omitted, differential deploy mode is disabled. If differential deploy mode is
enabled, only resources that have not previously been deployed are deployed.

<resource> Element

The <resources> element is a child of the <resourceRef > element. This element
identifies the resource to be deployed by the component.

If the referenced resource is a configurable resource, it can contain substitution
variable references to any component-scoped variable that is accessible to the
containing component.

Attributes for the <resource> Element
The <resources> element has the following attributes:

® name — A required string that is the full path name of a resource contained in a
checked-in component.

m version — A required value of type version, which is the version of the resource
that has been created by an earlier component check-in.

<componentRefList> Element

The <componentRefList> element is an optional child of the <component >
element. This element specifies the list of components that are referenced by the
component. This element cannot be used in conjunction with the <resourceRef>
element. Configurable attributes of this element and its children can reference
component substitution variables. If used, this element can only appear one time.

A component is a composite component if it is derived from a composite component or if
it is a nonderived component that does not contain a <resourceRef > element. A
derived component can only contain a <componentRefList> element if it is derived
from a composite component.

The <componentRefList> element has the following optional child elements:

® <type> — Specifies the type that all referenced components must be instances of. If
this element is omitted, referenced components can be of any type.

Chapter 3 « Component Schema 71

This element is optional. If used, this element can appear only one time per
<componentRefList> element.

®m <componentRef> — A reference to a component. This element is optional. If used,
this element can appear more than once.

By default, a derived component inherits the contents of the <componentRefList >
element from its base component. When a derived component declares a
<componentRefList >, its contents are effectively merged with those of the base
component. The derived component can declare new <componentRef> elements and
override inherited ones. However, the derived component cannot remove elements
that are declared by the base component.

A derived component can override the <type> element that is declared by the
<componentRefList> element of the parent component. This override is achieved
by re-declaring the <type> in its <componentRefList>. In this case, the overridden
type must be an instance of the original type or the original must not be specified.
Furthermore, all referenced components must be instances of the overridden type,
including those that are inherited from the base component.

Attributes for the <componentRefList> Element

The <componentRefList> element has one optional attribute, modifier, which
specifies the override requirements of the resource. If this attribute is specified, the
value must be FINAL, which means that derived components cannot declare new
<componentRef > elements.

If this attribute is omitted, derived components can add new <componentRef>
elements. In either case, derived components can override the <type> element and
nonfinal inherited <componentRef> elements. If the base component’s
<componentRefList> modifier attribute is FINAL, the modifier attribute of the
derived component must also be FINAL.

When modifier is FINAL for the <componentRefList> element, the modifier attribute
of each contained <componentRef > is not necessarily FINAL.

<componentRef > Element

The <componentRef > element is a child of the <componentRefList > element. This
element specifies a component that is referenced by this component. This element
implies PUBLIC access.

The <componentRef > element has child elements, which must appear in the
following order:

® <type> — Specifies the component type of which the referenced component must
be an instance. It must be an instance of the component type that is specified by the
enclosing <componentRefLists>.

72 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

This element is optional. If used, this element can appear only one time per
<componentRef > element.

If this element is omitted, the component type specified by the enclosing
<componentRefList> is used.

® <argList> - An optional element that is a list of values to be used as component
variable settings for the referenced component when it is installed.

If used, this element can appear only one time as a child of the <componentRef >
element.

B <component > — A required element that specifies the referenced component. You
cannot use this element in abstract <componentRef > elements.

By default, a derived component inherits all the component references of its base
component.

If the <componentRefList > element of the base component is nonfinal, a derived
component can define additional component references by using names that are not
among those of the component references that are inherited from the base component.

A derived component can override a component reference of a nonfinal inherited
component reference by re-declaring a component reference that has the same name.
When a component reference is overridden, the entire contents of the component
reference must be re-declared. The overriding installMode must be the same as that of
the original reference. The overriding <type> element must be an instance of the
original type. The overriding <argList> element is merged with the original. See
“<argList> Element” on page 74. The <component > element is specified only if
the overriding reference is nonabstract.

When a component reference is overridden, all uses of the component reference
evaluate to the overridden value, including those in the base component.

If the derived component is declared as nonabstract, any abstract component
references that are declared by the base component must be overridden by the derived
component.

Attributes for the <componentRef > Element
The <componentRef > element has the following attributes:

® modifier — An optional attribute of type modifierEnum that specifies the override
requirements of the component reference. This attribute has the following values:

m ABSTRACT - The <component > child element of the <componentRef >
element is omitted and must be specified by nonabstract derived components.
A <componentRef> can only be declared abstract if the component is also
declared abstract. A nonabstract <componentRef > must declare a
<component > element.

®m FINAL - The <componentRef> cannot be overridden by derived components.

Chapter 3 « Component Schema 73

If this attribute is omitted, derived components can choose whether to override the
component reference.

= name — A required attribute of type identifier that specifies a local name for the
referenced component. This name must be unique among all sibling
<componentRef > elements.

m jnstallMode — An optional attribute that specifies the way in which the referenced
component should be installed and targeted thereafter. If this attribute is omitted,
the value is NESTED.

This attribute has the following values:

® TOPLEVEL - If the referenced component is installed in this way, it can be used
by any other component just as if it had been directly installed by a plan.

® NESTED - If the referenced component is installed in this way, its installation is
implicitly scoped to that of the referencing component. Its services are only
available to the referencing component.

A nested referenced component logically defines a finer-grained unit of
functionality that is required by the referencing component. This functionality is
not otherwise useful to other components. A top-level referenced component
defines services that are used by the referencing component, but can also be used
by other components.

The lifetime of a nested referenced component is implicitly scoped to that of the
referencing component. The nested referenced component can only be installed
during the installation of the referencing component, and is implicitly uninstalled
when the referencing component is uninstalled. In contrast, the lifetime of a
top-level referenced component is not tied to that of the referencing component.
The referencing component can install a top-level referenced component when it is
installed, or by other means if the top-level referenced component is already
installed. When the referencing component is uninstalled, a top-level referenced
component remains installed unless it is explicitly uninstalled by the referencing
component. Other components are also permitted to uninstall the referencing
component.

To refer to a component that defines a <targetRef> element, a TOPLEVEL
<componentRef > must be used. A NESTED <componentRef > cannot be used.

<argList> Element

This <argList> element is a child of the <componentRef > element. This element
specifies a list of values to be used as component variable settings for the referenced
component when it is installed. The format of this <argList> is the same as that of
the <argLists> child element of the <calls step. See “<call> Step” on page 26.

If the reference is ABSTRACT, each attribute of the <argList> element names a
component variable in the referenced component or the declared type. The value of
the attribute for the <argList> element is the override value that should be used for
the named component variable when the referenced component is installed.

74 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

When a component reference is overridden by a derived component, the <argList>
element of the base and derived components are effectively merged. This merge is
accomplished by applying the contents of the <argList> of the base component to
the referenced component, then applying the <argList> of the derived component.
When processing the <argList> of the base component reference, only variables that
are defined in the declared type of the base component reference are considered.

Component variables that are not named in the <argList > use their default value
when installed. If no <argList > is specified, the referenced component is installed
and uses default values for all its variables. The variables of the referenced component
named in the <argList> must be accessible to the referencing component.
Furthermore, the variables must be declared with the PUBLIC or PROTECTED access
mode, and cannot be FINAL.

For top-level referenced components, the <argList> element is only used if the
referenced component is installed by the referencing component. The referenced
component could have been installed by other means, in which case the <argList>
has no bearing.

<component > Element

This <component > element is child of the <componentRef > element. This element
identifies the referenced component. This element has the same structure as the
<component > repository component targeter, except that the host attribute is not
permitted. The referenced component version must exist in the repository at the time
that the containing component is saved.

If the version attribute is not specified, the version is resolved to be the latest version of
the referenced component that exists at the time that the containing component is
saved. A save-time error occurs if no versions of the referenced component exist. After
the containing component is saved, the versions of all the components it references are
locked. The referenced components cannot be modified without creating a new
version of the container component.

<installList> Element

The <installList> element is a child of the <component > element. This element
contains one or more named blocks of install steps. Each block provides a different
way to install the component. Many components have only one install block as a child
of the <installSteps> element, described later in this section.

This element is required for nonderived components and optional for derived
components. If used, this element can only appear one time.

Chapter 3 « Component Schema 75

You can use more than one install block when different steps are required for different
installation environments. For example, you might create one install block to deploy
an EJB application to a server cluster, another to deploy to a single managed server,
another for initial install, and one to upgrade the application.

By default, a derived component inherits the accessible <installList> element
contents of its base component. When a derived component declares an
<installList>, its contents are effectively merged with those of the base
component. The derived component can declare new <installSteps> elements and
override inherited ones, but it cannot remove elements that are declared by the base
component.

The <installList> element has one child element, <installSteps>, which lists
the sequence of steps to be executed to install the component. The <installSteps>
element can appear one or more times.

<installSteps> Element

The <installList> element has one child element, <installSteps>, which lists
the sequence of steps to be executed to install the component. When an <installs
step causes this component to be installed, the steps listed here are executed in order.
Typically, the install steps of a simple component include a <deployResources step.
The install steps of a composite component include one or more <installx steps to
install referenced components.

The <installSteps> element children consist of an optional <paramList> element
followed by the body, which consists of an optional local <varList > element. The
local <varList> element is followed by zero or more “shared” or “component
install-only” steps. The body is not included if the install block is declared abstract.

By default, a derived component inherits all accessible install blocks of its base
component.

A derived component is permitted to define additional install blocks by using names
that are not among those of the install blocks inherited from the base component. A
derived component can override a nonfinal inherited install block by re-declaring a
block with the same name. Blocks are overridden by using name alone, and they
cannot be overloaded based on parameters. When a block is overridden, the entire
contents of the block must be re-declared, including the access mode, modifier, and
parameters. The body is specified only if the overriding block is nonabstract. The
access mode can be no more restrictive than that of the base component.

The signature of the overriding block in the derived component must be compatible
with that of the base component. That is, any arguments that are acceptable to the base
block must also be acceptable to the derived block.

A derived block is compatible with a base block when it does not declare a new
required parameter and does not redefine a parameter to be required if that parameter
is optional in the parent block.

76 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

The following signature changes are compatible:

®m Removing a required or optional parameter
®m Making a required parameter optional
® Adding an optional parameter

When a block is overridden, all references to the block evaluate to the overridden
value, including those in the base component.

If the derived component is declared as nonabstract, any abstract blocks declared by
the base component must be overridden by the derived component.

Ablock in a derived component is permitted to explicitly call into a block that is
defined by the base component even if the derived component overrides the block that
uses the <superComponent > targeter.

Attributes for the <installSteps> Element
The <installSteps> element has the following attributes:

® gccess — An optional attribute of type accessEnum, which specifies the accessibility
of the install block. The following values are permitted:

m PUBLIC — Access is unrestricted and is the default access mode.

®m PROTECTED — Access is limited to derived components and entities that are in
the same path.

®m PATH - Access is limited to entities that are in the same path.

® PRIVATE — Access is limited to this component.

Only PUBLIC blocks can be run directly from the component.

® modifier — An optional attribute of type Modi f ierEnum, which specifies the
override requirements for the install block. The following values are permitted:

®m ABSTRACT — The block cannot include a body. The body must be specified by
nonabstract derived components. Install blocks can only be declared abstract if
the component is also declared abstract. Abstract blocks cannot be private.
Nonabstract blocks must declare a body.

® FINAL - The install block cannot be overridden by derived components.
If the modifier attribute is omitted, derived components can choose whether to
override the block.

® name — A required attribute of type entityName, which is the name of the install
block. The name must be unique among all install blocks in the containing
<installLists>.

® description — An optional attribute that is a string that describes the install block.
This attribute is useful for documentation purposes.

Chapter 3 « Component Schema 77

<paramList> Element

The <paramList> element is a child of the <installSteps>, <uninstallSteps>,
<snapshot>, and <control> elements. This element declares a list of parameters
that can be used by the steps of the enclosing element. The value of the parameters are
defined by the caller based on the contents of the caller’s <argList> element. For
example, in the case of a <paramList> within an <installSteps> block,
parameter values are defined based on the <argList> of the <installs> step that
invoked the <installSteps> block.

The steps of the enclosing element can use the following variables and parameters:

m Locally scoped variables that are declared in the local <varList> element
m Parameters that are declared in the <paramList> element

m Component-scoped variables that are declared in the component <varList>
element of the enclosing component

If a <paramList > parameter has the same name as a component <varList>
variable, the value of the parameter is used. In this case, the parameter is said to
“hide” the component variable. Hiding is not permitted between local variables and
parameters because their names must be distinct.

The <paramList> element has one child, <param>, which is required. This child
element is a parameter declaration, which includes a name and a default value.
Specify one <param> element for each parameter that you want to define.

<param> Element

The <param> element is a child of the <paramList > element. This element declares a
parameter, which includes a name and a default value. The default value is only used
if the caller does not explicitly pass a value for this parameter. If the default value is
unspecified and the caller does not explicitly pass a value for this parameter, a
preflight error occurs at plan runtime.

The <param> element includes the following attributes. Use the prompt and
displayMode attributes when the containing install, uninstall, or control block is
invoked directly by the user rather than from a plan or another component.

® name — A required attribute of type identifier thatis the name of the parameter.
The name must be unique among every other local variable and parameter that is
declared by the enclosing element.

® prompt — An optional attribute that is a string that specifies the text to display in the
user interface when prompting for the parameter value. If this attribute is omitted,
the value of name is used.

® default — An optional attribute that is a string that specifies the default value of the
parameter. The parameter can include references to component variables, target
host attributes, session variables, and installed component variables, but not to
other parameters.

78 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

m displayMode — An optional attribute that specifies the display mode of the
parameter. The legal values are as follows:

m PASSWORD — The user-specified value is hidden, which means that the
password is not shown or is replaced by asterisks.

® BOOLEAN — The parameter is specified by means of a check box.
® CLEAR - The value is displayed as entered.

If the value is CLEAR or BOOLEAN, it can be safely displayed as entered. If the
attribute is omitted, the value is CLEAR.

Local <varList> Element

The local <varList> element is a child of the <installSteps>,
<uninstallSteps>, <snapshot>, and <control> elements. This element declares
a list of variables that can be used by the steps of the enclosing element. The values of
the variables are defined at the point of declaration. They cannot be redefined.

The steps of the enclosing element can use the following variables and parameters:

® Locally scoped variables that are declared in the local <varList> element

m Parameters that are declared in the <paramList> element

®m Component-scoped variables that are declared in the component <varList>
element of the enclosing component

If a local <varList> variable has the same name as a component <varList>
variable, the value of the local variable is used. In this case, the local variable is said to
“hide” the component variable. Hiding is not permitted between local variables and
parameters because their names must be distinct.

The local <varList> element has one required child element, <var>, which is a local
variable declaration that includes a name and a default value. You can specify more
than one <var> element.

Local <var> Element

The local <vars> element is a required child of the local <varList> element and is
used to declare a local variable name and its value.

The local <vars> element has the following attributes:

® name — A required attribute of type identifier, which specifies the name of the
local variable. The name must be unique among every other local variable and
parameter declared by the enclosing element.

m default — A required attribute of type String, which is the default value of the local
variable. This local variable can include the following references:

m Other local variables that were declared earlier

Chapter 3 « Component Schema 79

Parameters

Component variables

Target host attributes

Session variables

Installed component variables

<uninstallList> Element

The <uninstallList> element is a child of the <component > element. This
element contains one or more named <uninstall> step blocks, each of which
provides a different way to uninstall the component. Many components have only one
uninstall block as a child of this element. You can use more than one uninstall block
when different steps are required for different installation environments.

For example, you might create one uninstall block to undeploy an EJB application to a
server cluster and another to undeploy to a single managed server. Uninstall blocks
often correspond one-to-one with install blocks, and in such cases, by convention use
the same name to indicate the correspondence.

This element is required for nonderived components and optional for derived
components. If used, this element can only appear one time.

The <uninstallList> element has a required child element, <uninstallSteps>.
This child element is a named uninstall block that contains steps that can be executed
to uninstall the component. Specify one <uninstallSteps> element for each way
that you want to uninstall the component.

By default, a derived component inherits the accessible <uninstallList> element
contents of its base component. When a derived component declares an
<uninstallList>, its contents are effectively merged with those of the base
component. The derived component can declare new <uninstallSteps> elements
and override inherited ones, but it cannot remove elements that are declared by the
base component.

<uninstallSteps> Element

The <uninstallSteps> element is a child of the <uninstallList> element. This
element lists the sequence of steps to be executed to uninstall the component. When an
<uninstalls step causes this component to be uninstalled, the steps listed in this
element are executed in order. The <uninstallSteps> element of a simple
component is permitted to include an <undeployResources step, though it is not
required. The <uninstallSteps> element of a composite component is permitted
include one or more <uninstall> steps to uninstall the referenced components,
though these steps are not required.

80 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

The <uninstallSteps> element children consist of an optional <paramList >
element followed by a body. The body consists of an optional local <varList>
element that is followed by an optional <dependantCleanup> block, which is
followed by zero or more “shared” or “component uninstall-only” steps. The body is
not included if the uninstall block is declared abstract.

The following example shows the contents of a sample <uninstallSteps> element.
Everything after </paramList> defines the body.

<uninstallSteps name="default">
<paramList>
<param name="paraml"/>
</paramList>
<varLists>
<var name="varl" default="my var 1"/>
</varList>
<dependantCleanup>
<uninstall blockName="default">
<allDependants name="child2parent"/>
</unisntalls>
</dependantCleanup>
<undeployResource/ >
</uninstallSteps>

By default, a derived component inherits all of the accessible uninstall blocks of its
base component. Semantics for overriding an uninstall block are the same as those for
overriding an install block.

Attributes for the <uninstallSteps> Element
The <uninstallSteps> element has the following attributes:

® gccess — An optional attribute of type accessEnum, which specifies the accessibility
of the uninstall block. The following values are permitted:

® PUBLIC — Access is unrestricted, which is the default.

®m PROTECTED — Access is limited to derived components and entities that are in
the same path.

®m PATH — Access is limited to entities that are in the same path.

®m PRIVATE — Access is limited to this component.

Only PUBLIC blocks can be run directly from the component.

® modifier — An optional attribute of type modifierEnum, which specifies the
override requirements for the uninstall block. The following values are permitted:

®m ABSTRACT — The block cannot include a body because it must be specified by
nonabstract derived components. Uninstall blocks can only be declared abstract
if the component is also declared abstract. Abstract blocks cannot be private.
Nonabstract blocks must declare a body.

® FINAL - The uninstall block cannot be overridden by derived components.

Chapter 3 « Component Schema 81

If this attribute is omitted, derived components can choose whether to override the
block.

® name — A required attribute of type entityName, which is the name of the
uninstall block. The name must be unique among all uninstall blocks in the
containing <uninstallList>.

m description — An optional attribute, which is a string that describes the uninstall
block. This attribute is useful for documentation purposes.

<dependantCleanup> Element

The <dependantCleanup> element is a child of the <uninstallSteps> element.
The <dependantCleanup> element specifies a set of steps to be executed to remove
components that currently depend on the calling component. This element has no
attributes and can include any number of steps that are permitted within the scope of
the containing uninstall block.

When included, this element causes the check for dependant components to be
deferred until after the contents of the block have been executed. If dependant
components still remain after the block has been executed, the uninstall fails and the
component remains installed. If no dependant components remain, the uninstall
proceeds with the remaining steps.

If the containing component is targetable, the block can be used to remove
components that are installed on its associated component targeting host. If installed
components remain on the associated host after this block completes, the uninstall
fails.

If a <dependantCleanups> block is not included in an uninstall block, the block fails
immediately if dependant components exist.

The <dependantCleanup> block is often used in conjunction with the
<allDependants> targeter to uninstall all dependant components at one time.

<snapshotList> Element

The <snapshotList> element is an optional child of the <component > element.
This element contains one or more named snapshot blocks. Each snapshot block
provides a different way to capture the installed state of this component on the target
host. One or more snapshot blocks can be used to capture different aspects of the
installed state. This results in a fine-grained comparison of the captured installed state
and the current state of the component. If used, this element can only appear one time.

This element has one required child element, <snapshot >, which is a named
snapshot block that can be executed to capture the installed state of this component.
You can use more than one <snapshot > element.

82 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

By default, a derived component inherits the accessible <snapshotList> element
contents of its base component. When a derived component declares a
<snapshotList>, its contents are effectively merged with those of the base
component. The derived component can declare new <snapshot> elements and
override inherited ones, but it cannot remove elements declared by the base
component.

<snapshot > Element

The <snapshot > element is a child of the <snapshotList> element. This element
defines a sequence of steps to be executed to capture the installed state this
component. When a <createSnapshot > or <addSnapshot > step names this
snapshot block, the steps within the prepare block are executed in order. Then, files
named with the capture block are captured within the capture area of the target server.
Finally, steps within the cleanup block are executed in order.

A snapshot block is also used to compare the current state of a component against its
state at the time of installation. In particular, the prepare steps are re-executed on the
target server. Then, files captured at install time are compared to the current state of
the files, and the cleanup steps are re-executed.

The <snapshot > element has the following child elements:

B <paramList>—An optional element that is a list of parameters to be used by the
prepare, capture, and cleanup blocks of this snapshot. This element can only
appear one time.

® <varList> —An optional element that is a list of local variables to be used by the
prepare, capture, and cleanup blocks of this snapshot. This element can only
appear one time.

®m <prepares> — An optional element that contains steps to be executed in
preparation for the file capture or comparison. This element can only appear one
time.

® <capture> — An optional element that contains a list of files and directories to be
captured as part of this snapshot. This element can only appear one time.

® <cleanup> —An optional element that contains steps to be executed after the
capture or comparison has completed. This element can only appear one time.

If this snapshot is to be called from a <createSnapshot > step, it cannot declare any
required parameters in its <paramList> element.

The <varList>, <prepares, <captures, and <cleanup> elements collectively
define the body of the snapshot. The body is not included if the snapshot block is
declared abstract.

By default, a derived component inherits all of the accessible snapshot blocks of its
base component. Semantics for overriding a snapshot block are the same as those for
overriding an install block.

Chapter 3 « Component Schema 83

You cannot call the base component snapshot block’s prepare block from a derived
component snapshot block’s prepare block. This restriction applies to cleanup, as well.
To make this sort of call, the base component must factor its <prepare> and
<cleanup> steps into a control block that can be called by the derived component.

Attributes for the <snapshot> Element
This element has the following attributes:

® gccess — An optional attribute of type accessEnum, which specifies the accessibility
of the snapshot block. The following values are permitted:

B PUBLIC - Access is unrestricted, which is the default.

®m PROTECTED — Access is limited to derived components and entities that are in
the same path.

B PATH — Access is limited to entities that are in the same path.
®m PRIVATE — Access is limited to this component.

® modifier — An optional attribute of type modif ierEnum, which specifies the
override requirements for the snapshot block. The following values are permitted:

m ABSTRACT - The block cannot include a body because it must be specified by
nonabstract derived components. Snapshot blocks can only be declared abstract
if the component is also declared abstract. Abstract blocks cannot be private.
Nonabstract blocks must declare a body.

® FINAL - The snapshot block cannot be overridden by derived components.

If this attribute is omitted, derived components can choose whether to override the
block.

® name — A required attribute of type entityName, which is the name of the
snapshot block. The name must be unique among all snapshot blocks in the
containing <snapshotList>.

® description — An optional attribute that is a string that describes the snapshot block.
This attribute is useful for documentation purposes.

<prepare> Element

The <prepare> element is a child of the <snapshot > element. This element defines
a sequence of steps to prepare to capture or compare files. These steps are executed
both as a result of a <createSnapshot > or <addSnapshot > step that targets this
snapshot and a comparison run that targets this snapshot. In all cases, these steps are
executed prior to capturing any files or performing any comparisons.

The <prepare> element children consist of one or more <call>, <execNatives,
and <transforms> steps. No other steps are permitted. The contained steps can
reference local parameters and variables that are declared by the snapshot block, as
well as unhidden component substitution variables.

84 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<capture> Element

The <captures> element defines the files and resources that are to be captured as part
of this snapshot. The capture occurs only after the steps in the <prepare> block have
executed. When the capture is complete, the steps in the <cleanup> block will
execute.

The <capture> element children consist of one or more <addFile>,
<addSnapshot >, and <addResource> elements. The files and directories that are
listed in this block are captured in the order specified. The contained children can
reference local parameters and variables that are declared by the snapshot block, as
well as unhidden component substitution variables.

<addFile> Element

The <addFile> element is a child of the <capture> element and specifies a file that
is to be captured as part of the containing snapshot.

ATTRIBUTES FOR THE <addFile> ELEMENT
The <addFiles> element includes the following attributes:

® path — A required attribute that specifies the path name of a file or directory on
the file system of the target host. This attribute can reference simple substitution
variables.

m ownership — An optional attribute that specifies the ownership option for the
captured file.

One aspect of the installed state that is captured by the snapshot is file and
directory ownership. This ownership is not the same as UNIX permissions. The
ownership is more closely tied to the concept of reference counts. Specifically, a
file or directory can be captured as being owned by one or more snapshots.

If the file owner later changes as a result of another component installation, this
change can be recognized and reported when the file is compared against its
initial state. This feature helps to track down differences that result from one
component unintentionally overwriting files associated with another
component. Snapshot ownership information is captured in a repository on the
target host, which is known as the owners table.

The values of the ownership attribute have the following semantics:

®m SET SELF — When the ownership is set in this way, the owners table is
updated to contain a single entry for the associated file or directory. That
entry lists the executing installed component and snapshot as owners. The
entry also lists the capture area ID of the captured contents of the file or
directory.

® ADD SELF — When the ownership is set in this way, the installed component
and snapshot are added as additional owners and share the existing capture
area ID as the previous owners.

Chapter 3 « Component Schema 85

= ADD TEMP — This value is like ADD_SELF except that a new capture is
always created and its ID is always used for the new entry rather than
sharing the ID of the other owners.

If this attribute is omitted, the default value is SET SELF.
m filter — An optional attribute of type boolean that describes whether to capture

files, directories, or both.

If the value of path is a directory, this attribute is used to indicate whether the
directory itself, the files it contains, or both should be captured. If the value of
path is not a directory, this attribute is ignored and the file is captured directly. If
this attribute is omitted, the default BOTH is used.

The values for this attribute are as follows:

® DIRECTORIES
m FTLES
B BOTH

® recursive — An optional attribute that indicates whether subdirectories should be
recursively captured by using the current filter settings.

If the value of path is a directory, this attribute indicates whether subdirectories
should be recursively captured by using the current filter settings. If the value of
path is not a directory, this attribute is ignored and the file is captured directly.
The default value is true.

m displayName — An optional attribute that is a string to be included in the display
when this snapshot entry is compared against another.

This attribute can reference simple substitution variables.

<addSnapshot > Element

The <addSnapshot > element denotes that an external snapshot block should be
executed and that its contents should be added to this snapshot.

Using an <addSnapshot > step is semantically equivalent to all of the following
scenarios:

® Adding the <prepare> steps of the called snapshot to the end of the calling
snapshot’s prepare block

® Adding the <cleanups> steps of the called snapshot to the start of the calling
snapshot’s cleanup block

® Adding the <captures steps of the called snapshot to the calling snapshot’s
capture block in place of the <addSnapshot > step

Make sure that the files that are referenced by the called and calling snapshot blocks
do not conflict.

86 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Any number of <addSnapshot > steps can appear within a <capture> element. The
called snapshot itself can contain any number of <addSnapshot > steps within its
<capture> element.

When files are added to a snapshot indirectly by using <addSnapshot > callouts, the
topmost component that initiated the snapshot capture is considered to be the owner
of the files, as opposed to the component that contained the <addFile> directive.
Similarly, when a comparison is performed on a snapshot, only <diff> element
<ignorex> directives of the topmost component that initiated the snapshot are
considered. The <diff> element <ignore> directives that are contained on
components visited as a result of <addSnapshot > callouts are not considered.

The <addSnapshot > element has one required attribute of type ent ityName,
blockName, which is the name of the external snapshot block to execute.

The <addSnapshot > element has the following child elements:
® <cargLists> - An optional element that is a list of arguments to pass to the
snapshot block. This element can only appear one time.

®m <Installed component targeter> — An optional element that identifies the
component that contains the snapshot block. If this element is omitted,
<thisComponents is used.

<addResource> Element

The <addResource> element denotes a resource that is associated with the
component that is to be captured as part of the containing snapshot. This element can
only be included in simple components.

This element serves as a syntactic shorthand for an equivalent <addFile> element, as
follows:

m If the associated resource is a directory resource with deployMode=ADD_TO,
<addResources is equivalent to the following statement:

<addFile path="path-of-deployed-directory" filter="FILES"
displayName="resourceSourcePath" />

m If the associated resource is a directory resource with deployMode=REPLACE,
<addResources is equivalent to the following statement:

<addFile path="path-of-deployed-directory"
displayName="resourceSourcePath" / >

m Otherwise, the associated resource is a file-based resource, and <addResources is
equivalent to the following statement:

<addFile path="path-of-deployed-file"
displayName="resourceSourcePath" />

Chapter 3 « Component Schema 87

<cleanup> Element

The <cleanup> element is a child of the <snapshot> element and defines a
sequence of steps to be executed after a file capture or comparison has completed.
These steps are executed both as a result of a <createSnapshot > or

<addSnapshot > step that targets this snapshot and a comparison run that targets this
snapshot. In all cases, these steps are executed after capturing all files or performing
comparisons. Use cleanup blocks to remove any temporary files that are created by the
prepare block.

The <cleanup> element children consist of one or more <calls, <execNative>,
and <transform> steps. No other steps are permitted. The contained steps can
reference local parameters and variables that are declared by the snapshot block, as
well as unhidden component substitution variables.

<controlList> Element

The <controlList> element is an optional child of the <component > element. This
element lists the control blocks that are available for the component. If used, this
element can only appear one time.

This element has a required child element, <controls, which is a control block. You
can specify more than one <control> element.

By default, a derived component inherits the accessible <controlList > element
contents of its base component. When a derived component declares a
<controlList>, its contents are effectively merged with those of the base
component. The derived component can declare new <control> elements and
override inherited ones, but it cannot remove elements that are declared by the base
component.

<control> Element

The <controls> element defines a control block that is available for this component. A
control block is a sequence of steps that can be performed after the component has
been installed. For example, a component for a database application might include
control blocks to start or shut down the database. A <calls> step can invoke a control
block by name, which causes the control block steps to be executed in order.

The <controls element children consist of an optional <paramList> element
followed by a body, which consists of an optional local <varList> element followed
by zero or more “shared” steps. See “Shared Steps” on page 25. The body is not
included if the control block is declared abstract.

88 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

By default, a derived component inherits all accessible control blocks of its base
component. Semantics for overriding a control block are the same as those for
overriding an install block.

Attributes for the <control> Element
The <controls> element has the following attributes:

® gccess — An optional attribute of type accessEnum, which specifies the accessibility
of the control block. These are the possible values:

m PUBLIC — Access is unrestricted, which is the default value.

®m PROTECTED — Access is limited to derived components and entities that are in
the same path.

® PATH — Access is limited to entities that are in the same path.

®m PRIVATE — Access is limited to this component.

Only PUBLIC blocks can be run directly from the component.

® modifier — An optional attribute of type modifierEnum, which specifies the
override requirements for the control block. These are the possible values:

® ABSTRACT — The block cannot include a body. Instead, the body must be
specified by nonabstract derived components. A control block can only be
declared abstract if the component is also declared abstract. An abstract block
cannot be private. Nonabstract blocks must declare a body.

®m FINAL - The control block cannot be overridden by derived components.
If this attribute is omitted, derived components can choose whether to override the
block.

B name — A required attribute of type entityName, which is the name of the control
block. This is referenced from a <calls> step to execute the control.

m description — An optional attribute that is a string that describes the control block.

<diff> Element

The <diff> element is an optional child of the <component> element. This element
contains a list of directives that are used by the comparison engine to run comparisons
on this component. If used, this element can only appear one time.

The <diff> element has one child element, <ignores, which is required. This
element specifies a directory path to ignore during comparison. You can use the
<ignore> element one or more times.

Chapter 3 « Component Schema 89

A derived component automatically inherits all of the ignore directives declared by its
base component. The component can also declare additional ignore directives in its
own <diff> element. Inherited directives cannot be removed.

<ignore> Element

The <ignore> element is a child of the <diff> element and specifies a file name
path pattern to ignore when using this component in a comparison. This element is
typically for files and directories that are created by the installed application, such as
log files. The configurable attributes of this element can reference component
substitution variables.

The <ignore> element has one required attribute, path, which is a glob-style pattern
that matches the file name paths to ignore, for example, /1ogs/* . log. This attribute
can reference component-scoped substitution variables.

Install-Only Steps for Components

This section describes steps that can only be used within an install block of a
component.

®m “<createDependency> Step” on page 90
®m “<createSnapshot> Step” on page 92
m “c<installs Step” on page 93

®m “<deployResource> Step” on page 93

All steps except the <deployResources step can be used by both simple and
composite components. The <deployResources step can only be used by simple
components.

<createDependency> Step

This step creates a persistent dependency of the current component on another
component. When executed, this step first checks for an installed component that
matches the given criteria. The step fails if no such component exists (just as with the
<checkDependency> step). If a match is found, a persistent dependency is created
between the matching component, the “dependee,” and the calling component, the
“dependant.”

If more than one installed component matches the criteria, which is possible if no
install path is specified, the latest match is used as the dependee. The persistent
component is created with the name that is specified in the step. The name must be
unique among all dependencies created in the install block.

90 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

After the persistent dependency is created, it remains until the dependant component
is uninstalled. If the installation of the dependant component fails in a subsequent step
after having created a persistent dependency, the dependency is removed immediately
at the time of failure.

A given component might depend on any number of other components by executing a
<createDependency> step for each. The <createDependency> steps should
appear as the first steps within an install block so that the installation will fail prior to
performing any real work if the dependencies are not satisfied.

The <createDependency> step has one required child element, which identifies the
dependee component. The child element is an installed component targeter. See
“Installed Component Targeters” on page 46.

Attributes for the <createDependency> Step

The <createDependency> step has one required attribute of type identifier,
name, which is the name of the dependency to create. The name must be unique
among all dependencies created by the current component.

Uninstallation Implications for the
<createDependency> Step

A component cannot be uninstalled if installed components depend on it. When an
uninstall block of a component is encountered, if one or more persistent dependencies
exist for which the component is the dependee, the uninstallation fails immediately.

However, if component B is being uninstalled by another component A, dependencies
created by A on B will not prevent B from being uninstalled, and will be implicitly
removed when B is successfully uninstalled.

The dependee component can specify actions to uninstall its dependants by using a
<dependantCleanup> block.

Reinstallation Implications for the <createDependency>

Step

A component installation is considered to be a reinstallation if a preexisting
component in the same version tree is installed on the same host and install path. A
component can be reinstalled only if the new component also satisfies all the
dependants of the original component. A component can always be reinstalled with
the same version component. However, a component can only be reinstalled with a
different version if the new version also matches the constraints specified in the
<createDependency> step that created the persistent dependency.

Chapter 3 « Component Schema 91

When a simple install block of a component is encountered, the N1 SPS determines if
the installation will overwrite an existing installation. If so, the N1 SPS finds all
persistent dependencies for which the existing component is the dependee, and
reverifies that the constraints of the dependency are still satisfied with the new
component being installed. If any constraints are not satisfied, the installation of the
new component fails, and the original component remains installed.

Otherwise, if and when the new component successfully completes its installation, the
component becomes the new dependee on all persistent dependencies. The original
component is considered to be uninstalled and all of the persistent dependencies for
which it was the dependant are removed. This implies that the new component is
responsible for recreating dependencies, as needed.

Naming Conventions for the <createDependency> Step

Dependency names follow this format: xxx2yyy. The xxx indicates the name of the
dependant component, and yyy indicates the name of the dependee component.

For example, a WebLogic managed server might have a dependency called
server2domain on its admin server and a server2cluster dependency on its
containing cluster. This convention facilitates self-documentation of the nature of the
dependency relationship and makes it readable for both the dependee and dependant
relationships of a particular component.

<createSnapshot> Step

This step creates a snapshot of the current installed state of the component being
installed. You can specify any number of <createSnapshot > steps within an install
block.

The named snapshot block cannot declare any required parameters because the
<createSnapshot > step does not support argument passing. Argument passing is
not supported because it would also require support for argument collection and
passing during a later comparison on the resulting snapshot.

A comparison performed on a composite component includes all snapshots that are
created directly by that component. The comparison also includes the complete tree of
snapshots that are created by the recursive installation of all nested component
references. However, snapshots that are associated with top-level component
references are not considered. Thus, such snapshots must be explicitly included in the
snapshot of the composite component by using the <addSnapshot > capture
directive.

In addition, nested components might have some interdependencies that make it
necessary to defer snapshot capture until all such components are installed. One
example is a nested component that deploys a directory and a nested component that
deploys a file into that directory. In such interdependant cases, the containing

92 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

component should install the nested components by using parameter passing or
special install blocks that tell the nested component not to take the snapshot during
their install. Then, have the snapshot block of the containing component include
appropriate snapshots of the nested components by using the <addSnapshot >
directive.

Attributes for the <createSnapshot > Step

The <createSnapshot> step has one required attribute of type ent ityName,
blockName, which is the name of the snapshot block to execute within the component.

<installs> Step

This step installs a component onto a target host, and causes the steps of the named
install block of the targeted component to be executed.

The syntax of this step is as specified for the simple plan <installsx step (see
“<installs> Step” on page 104), except that the component targeter can be omitted,
in which case <thisComponent > is assumed.

When used within a component, this step is often used to call into another install
block in the same component. In this case, the component is not considered to be
installed until the outermost install block has completed its execution. Furthermore,
the component is only considered to be installed on the host on which the install step
was initially targeted, even if calls to other local install blocks were retargeted to other
hosts.

This step can also be used within a composite component to install referenced
components. The referenced components can be installed on hosts other than that on
which the containing component is being installed. If the installation of the containing
component fails, any nested referenced components that were successfully installed
prior to the failure are implicitly uninstalled without executing an uninstall block.
However, any top-level referenced components that were successfully installed prior
to the failure remain installed.

<deployResources Step

This step deploys the resource of the containing component and can only be used in
an install block of a simple component. This step has no attributes or child elements.

A directory type resource where deployMode=ADD_TO has each of its contained files
copied while preserving the directory structure. New directories are created, as
needed. The existing directory structure and contents is unchanged, other than
copying of resource contents. Individual file permissions and ownership are updated,
as appropriate.

Chapter 3 « Component Schema 93

A directory type resource where deployMode=REPLACE is treated the same as
deployMode=ADD_TO, except that any preexisting directory is recursively removed
prior to deployment.

All other resources are copied, then have their permissions and ownership updated, as
appropriate. Resources that are checked in as configurable undergo variable
substitution prior to being copied. Configurable resources can reference any variable
that is accessible to the component in which the resource was declared.

Uninstall-Only Steps for Components

This section describes the <uninstall> and <undeployResource> steps, which
can only be used within an uninstall block of a component.

<uninstalls> Step

This step is used to uninstall a component from a target host, and can be used in an
uninstall block of any component. This step causes the steps of the named uninstall
block of the targeted component to be executed.

The syntax of this step is as specified for the simple plan <uninstalls> step, except
that the component targeter can be omitted, in which case <thisComponent> is
assumed.

When used within a component, this step is often used to call into another existing
uninstall block in the same component. In this case, the component is not uninstalled
until the outermost uninstall block has completed its execution. Furthermore, the
component is only uninstalled on the host on which the uninstall step was initially
targeted, even if calls to other local uninstall blocks were retargeted to other hosts.

This step can also be used within composite components to uninstall referenced
components. When a composite component is uninstalled, all of its nested referenced
components that were not explicitly uninstalled are implicitly uninstalled by the
system without running an uninstall block. However, top-level referenced components
that were not explicitly uninstalled remain installed.

<undeployResources Step

This step is used to remove a resource from the containing component. The step can
only be used in an uninstall block of a simple component and has no attributes or
child elements.

94 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

A directory type resource where deployMode=ADD_TO will have its files removed,
but its subdirectories will remain.

A directory type resource where deployMode=REPLACE will have the entire directory
and its contents removed.

All other resources are treated as simple files and are removed.

The resource is removed regardless of whether it was originally deployed during the
installation of the component. Even if the component was installed using an install
block that did not contain a <deployResources step, the <undeployResources>
step removes the resource as if it had been originally installed by the component.

Chapter 3 « Component Schema 95

96 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

CHAPTER 4

Plan Schema

This chapter describes the XML schema for the N1 SPS plans. The chapter covers these
topics:

“<executionPlans> Element Overview” on page 97
“<paramList> Element” on page 98

“<varList> Element” on page 99
“<simpleSteps> Element” on page 100
“<compositeSteps> Element” on page 101
“Plan-Only Steps for Composite Plans” on page 102
“Plan-Only Steps for Simple Plans” on page 104

Unless indicated, attributes described in this chapter cannot reference
component-scoped substitution variables.

For an overview of the XML schema architecture, see Chapter 1.

<executionPlan> Element Overview

An entire plan is enclosed by the <executionPlan> element.

Plans are either simple or composite. A simple plan is a sequential list of steps that are
executed on a particular set of target servers. A simple plan does not contain or call
other plans. A composite plan is composed solely of other subplans. A composite plan is
not directly targeted because each simple subplan can run on a different set of targets.

Attributes for the <executionPlan> Element

The <executionPlan> element has the following attributes:

® xmins — A required string that has the following value:

97

http://www.sun.com/schema/SPS

® xmins:xsi — A required string that has the following value:

http://www.w3.org/ 2001/XMLSchema-instance

® xsi:schemalocation — An optional string that has the following recommended value:

http://www.sun.com/schema/SPS plan.xsd

® name — A required attribute of type entityName, which is the name of the
execution plan.

= path — An optional attribute of type pathName, which is the absolute path of the
execution plan. If this attribute is omitted, the root path (/) is used. The value must
name a folder that exists at the time that the plan is saved.

® description — An optional attribute that is a string that describes the execution plan.

m gpersion — A required attribute of type schemaVersion, which is the version of the
plan schema that is being used. The only permitted values are 5.0 and 5.1.

The only permitted values are 5.0 and 5. 1.

Child Elements of the <executionPlan> Element

The <executionPlan> element has the following optional child elements, which
must appear in the order shown. These child elements might have their own child
elements, attributes, or both.

®m <paramList> — Declares a list of parameters for use by steps contained in the plan
and any components that they reference

®m <varList> — Declares a list of variables for use by the steps contained in the plan
and any components they reference

®m <simpleSteps> - Contains one or more “shared” or “simple plan only” steps

®m <compositeSteps> - Contains one or more “composite plan-only” steps

<paramList> Element

The <paramList> element is an optional child of the <executionPlan> element.
This element is used to declare a list of parameters for use by the steps contained in
the plan and any components that the steps reference. If specified, this element can
only appear one time.

When this plan is run as a top-level plan, the caller is prompted to enter values for all
parameters declared in this list. When this plan is invoked as the result of an
<execSubplans> step in another plan, the calling plan must explicitly pass values for
all parameters that are declared by <paramList> that do not have default values.

98 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

The <paramList> element has one required child element, <param>, which is a plan
parameter declaration. The declaration includes a name, a prompt, and a default
value. You can specify one <param> element for each parameter that you want to
declare.

<param> Element

The <param> element is a child of the plan <paramList > element and is used to
declare a parameter for use within the plan.

Attributes for the <param> Element
The <param> element has the following attributes:

® name — A required attribute of type identifier, which is the name of the plan
parameter. The name must be unique among all top-level plan parameters and
variables.

® prompt — An optional attribute that is a string that is displayed in the user interface
when prompting for the value of the parameter. If this attribute is omitted, the
value of name is used.

® default — An optional attribute that is a string that is the default value of the
parameter. The default value can include references to session variables.

m displayMode — An optional attribute that specifies the display mode of the
parameter. The following legal values are permitted:

®m PASSWORD — The user-specified value is hidden, which means that the
password is not shown or is replaced by asterisks.

® BOOLEAN — The parameter is specified by means of a check box.
B CLEAR - The value is displayed as entered.

If the value is CLEAR or BOOLEAN, the value can be safely displayed as entered. If
the attribute is omitted, the value is CLEAR.

<varList> Element

The <varList> element is an optional child of the <executionPlan> element and
the <inlineSubplan> step. For information about the latter element, see
“<inlineSubplan> Step” on page 102. The <varList> element is used to declare a
list of variables for use by the steps contained in the plan and any components they
reference. The values of the variables are defined at the point of declaration, and
cannot be redefined. If specified, this element can only appear one time.

Chapter 4 « Plan Schema 99

The <varList> element has one required child element, <var>, which is a plan
variable declaration. A declaration includes a name and a value. Specify a <var>
element for each variable that you want to declare.

<var> Element

The <vars> element is a child of the plan <varList> element and is used to declare a
plan variable including name and value.

Attributes for the <var> Element

This element has the following attributes:

® name — A required attribute of type identifier, which is the name of the local
variable. The name must be unique among every variable in the containing
<varLists>. Variables associated with the top-level <executionPlan> must also
be unique among the plan parameters.

® default — A required attribute that is a string that is the default value of the plan
variable. This value can include references to other plan variables that have been
declared earlier, to session variables, and to plan parameters. If this plan is a simple
plan, you can include references to target host attributes and to installed
component variables.

<simpleSteps> Element

The <simpleSteps> element is an optional child of the <executionPlan> element
and the <inlineSubplans> step. For information about the latter element, see
“<inlineSubplan> Step” on page 102. The <simpleSteps> element contains one
or more “shared” or “simple plan only” steps. The presence of a <simpleSteps>
element indicates that the plan is a simple, not composite, plan. If specified, this
element can only appear one time.

When run, the steps within this element are sequentially executed on a set of logical
target hosts that are chosen by the caller. These hosts are called the initial target hosts.
While this plan executes, its steps can be redirected to execute on a host other than the
initial host. The host on which the plan actually executes is known as the current target
host. If a step is not redirected, the current host and the initial host are the same. The
initial host can be either virtual or physical, as can the current host. The physical host is
the root parent host of the current host, which is the same as the current host if the
current host is physical.

The <simpleSteps> element children consist of one or more “shared” or “simple
plan only” steps. These steps can include references to plan parameters and variables.
See “Plan-Only Steps for Simple Plans” on page 104.

100 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Attributes for the <simpleSteps> Element

The <simpleSteps> element has the following attributes:

m executionMode — An optional attribute that indicates whether the contained steps
should be executed in a series or in parallel over the target hosts. The legal values
are as follows:

B PARALLEL
®m SERIES

If this attribute is omitted, the value is PARALLEL.

m [imitToHostSet — An optional attribute that specifies the name of the host set that
contains the hosts that can be valid targets for this plan.

If this attribute is omitted, all hosts can be valid targets. Otherwise, the targets that
you specify must be a subset of the hosts that are contained in the named host set.
If the targets include a host that is not contained in the named host set, the plan
issues a runtime error. The plan also issues a runtime error if you specify a name
that does not correspond to an existing, supported host set. If the specified host set
is defined by a plug-in, pluginName must be prefixed to the host set name, such as
pluginName#hostSetName. These plan runtime errors are reported during validation
before the preflight starts.

<compositeSteps> Element

The <compositeStepss> element is an optional child of the <executionPlan>
element and the <inlineSubplans> step. For information about the latter element,
see “<inlineSubplan> Step” on page 102. The <compositeSteps> element
contains one or more “composite plan-only” steps. The presence of a
<compositeSteps> element indicates that the plan is a composite plan. The
<compositeSteps> element does not have any attributes. If specified, this element
can only appear one time.

The <compositeStepss> element children consist of one or more “composite
plan-only” steps. These steps can include references to plan parameters and variables.
See “Plan-Only Steps for Composite Plans” on page 102.

Chapter 4 « Plan Schema 101

Plan-Only Steps for Composite Plans

This section describes the steps that can only be used within a composite plan. The
attributes of some of the steps that are contained within a composite plan can include
references to plan variables and parameters.

<execSubplans> Step

The <execSubplans> step executes another plan. The <execSubplans> step can only
appear as the child of the <compositeSteps> element.

The <execSubplan> step has an optional child element, <argList>, which is a list
of arguments to pass to the called plan. For each parameter in the <paramList>
section of the called plan for which no default value is declared, a corresponding
argument must be declared by this <argList>. See “<argList> Element” on page
26. If specified, this element can only appear one time.

Attributes for the <execSubplan> Step
The <execSubplan> step has the following attributes:

® planName — A required attribute of type ent i tyName, which is the name of the
plan to execute. When this step is run, a corresponding top-level
<executionPlan> with this name must be specified. This name cannot reference
an inline subplan.

® planPath — An optional attribute of type pathReference, which is the path of the
plan to execute. If this attribute is omitted, the path of the containing plan is
assumed.

® planVersion — An optional attribute of type Version, which is the version of the
plan to execute. If this attribute is omitted, the latest version of the named plan is
executed.

<inlineSubplans> Step

The <inlineSubplan> step executes a sequential series of steps. This step can only
appear as the child of the <compositeSteps> element.

An <inlineSubplans> step is similar to an <execSubplans> step. However, while
the <execSubplans> steps names an external plan to execute, the <inlineSubplan>
step directly contains the plan to execute as a child element.

102 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

The primary difference between an inline subplan and a top-level plan is that inline
subplans are not saved as distinctly named entities. Thus, inline subplans cannot be
externally referenced by <execSubplan> steps. Top-level plans are distinctly named
entities and can be referenced from <execSubplan> steps.

Inline subplans are useful when the content is concise, directly tied to the context and
logic of the calling plan, and does not otherwise make sense as a stand-alone plan. In
these cases, having all steps in one self-contained unit can facilitate plan maintenance
and readability.

Unlike top-level plans, inline subplans cannot declare parameters. They implicitly
inherit the parameters and variables of all enclosing plans. They can declare additional
variables that are local to the inline subplan, which can hide variables and parameters
of the enclosing plans. A subplan variable hides the variable of an enclosing plan if
both have the same name. In this case, only the value of the variable that is declared
by the innermost subplan is available for use by its steps.

The <inlineSubplan> step consists of an optional <varList > followed by one
additional child element, either <simpleSteps> or <compositeSteps> depending
on the type of inline subplan: simple or composite.

The <inlineSubplans> step has the following child elements:

® <varList>— An optional element that is a list of plan variables for use within the
inline subplan. If specified, this element can only appear one time.

®m <simpleSteps> - An optional element that contains a list of simple steps. Only
one <simpleSteps> or <compositeSteps> element can be present. If specified,
this element can only appear one time.

B <compositeSteps>— An optional element that contains a list of composite steps.
Only one <compositeSteps> or <simpleSteps> element can be present. If
specified, this element can only appear one time.

Attributes for the <inlineSubplan> Step
The <inlineSubplan> step has the following attributes:

® planName — A required attribute of type ent i tyName, which is a name used to
identify the inline subplan. This name is used primarily for display purposes, and
need not be distinct from names of other plans (inline or top-level).

m description — An optional attribute that is a string description of the inline subplan.
This attribute is useful for documentation purposes.

Chapter 4 * Plan Schema 103

Plan-Only Steps for Simple Plans

This section describes steps that can only be used within a simple plan. Steps that are
contained within a plan can reference any of the variables that are declared by that
plan. The steps can also reference any of the unhidden variables and parameters of all
of the enclosing plans.

<installs> Step

The <installs step installs a component onto the target host. This causes the steps
of the named <installSteps> element of the associated component to be executed.
This step can only appear as the child of the <simpleSteps> element.

The <installs step has the following child elements:

® <argList> - An optional element that is a list of arguments to pass to the
<installSteps> block. If specified, this element can only appear one time. See
“<argList> Element” on page 26.

®m <Repository component targeters> — A required element that identifies the
component to install. See “Repository Component Targeters” on page 52.

Attributes for the <installsx> Step

The <installs step has one required attribute of type entityName, blockName,
which is the name of the install block to execute within the target component.

<uninstalls> Step

The <uninstalls> step uninstalls the resources of a component that is currently
installed on the target host. This causes the steps of the named <uninstallSteps>
element of the associated component to be executed. This step can only appear as the
child of the <simpleSteps> element.

The <uninstalls step has the following child elements:

® <argList> — An optional element that is a list of arguments to pass to the
<uninstallSteps> block. If specified, this element can only appear one time. See
“<argList> Element” on page 26.

®m <Installed component targeters> — A required element that identifies the
component to uninstall. See “Installed Component Targeters” on page 46.

104 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Attributes for the <uninstalls> Step

The <uninstalls> step has one required attribute of type entityName, blockName,
which is the name of the uninstall block to execute within the target component.

Chapter 4 * Plan Schema 105

106 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

CHAPTER 5

Resource Descriptor Schema

This chapter describes the XML schema for the resource descriptor files, and covers
these topics:

“Using a Resource Descriptor File” on page 107
“<resourceDescriptor> Element Overview” on page 108
“<entryList> Element” on page 109

“Sample XML for the <resourceDescriptor> Element” on page 111

Using a Resource Descriptor File

A resource descriptor file specifies the owner, group, and permission settings to use for
the files and directories that comprise the resource of a simple component. This
resource descriptor is an XML file. By using a resource descriptor file, you can
override the permissions that are determined at component check-in time.

When a resource descriptor file is not used, a resource uses the owner, group, and
permission settings it has at check-in time. This situation is the default case when you
perform the check-in on a UNIX system. When you check in a component on a
Windows system, the default settings are as if you used the :NONE: value for each of
the settings in a resource descriptor file.

When you use a resource descriptor file, a resource uses the owner, group, and
permission settings specified by the resource descriptor. If an <entry> element is
specified for a resource, the settings are taken from that entry. If the entry does not
specify all of the settings, the missing setting values are taken from the
<defaultEntrys>, if present. If those setting values are not specified in a
<defaultEntry>, the resource uses the setting values it had at check-in time.

If no <entry> element is specified for a resource, the resource uses the settings
specified in <defaultEntrys>, if present. If no <defaultEntrys> is present, the
resource uses the settings it had at check-in time.

107

Use the :NONE: value to tell N1 SPS to use the default settings from the file system on
which the component will be deployed. You can specify the :NONE: value for any
setting specified in a <defaultEntry> block or in an <entry> for a resource.

A resource descriptor file is only used when deploying a component to a UNIX
system. If a component is deployed to a Windows system, the resource descriptor file
is ignored. So, if your component only applies to Windows systems, do not create a
resource descriptor file.

A resource descriptor file can be used by simple components that extend the
system#file and system#directory component types. A resource descriptor file
can also be used by a component that extends the com. sun. linux#rpm component
type, which is part of the Linux plug-in.

You check in the resource descriptor file at the same time that you check in your
component. When you attempt a checkin-current for a component that used a resource
descriptor file for its last checkin, N1 SPS expects to find the resource descriptor in the
original check-in location. Thus, if you move the file to a different location and attempt
a checkin-current for the component, the check-in operation fails.

You can download the resource descriptor for a simple component that has been
checked in to see the settings for every file that is part of the component’s resource.

You might use this download feature to update the file and check in an updated
version of the component. First, you download the resource descriptor file and then
check out the associated component’s resource. Then, you modify the resource
descriptor file and use it to check in a new version of the component.

The resource descriptor you download might differ from the resource descriptor you
used to check in the component. Differences might appear because the descriptor you
use to check in a component is not required to have information about every file in the
resource, or to have full information for every entry. Notice that no <defaultEntry>
block appears in the downloaded resource descriptor file. Instead, every file is
described in its own <entry>.

<resourceDescriptor> Element
Overview

An entire resource descriptor is enclosed by the <resourceDescriptors> element.

The resource descriptor file is encoded in UTF-8 format unless a byte order mark
(BOM) is present. If present, the BOM is used to determine the encoding of the file.

108 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Attributes for the <resourceDescriptors>
Element

The <resourceDescriptors> element has the following attributes:

m xmlins — A required string that has the following value:
http://www.sun.com/schema/SPS

m xmins:xsi — A required string that has the following value:
http://www.w3.org/2001/XMLSchema-instance

m xsi:schemaLocation — An optional string that has the following recommended value:

http://www.sun.com/schema/SPS resourceDescriptor.xsd

® schemaVersion — A required attribute of type schemaVersion, which is the version
of the resource descriptor schema that is being used. The only permitted values are
5.0and 5.1.

Child Elements of the <resourceDescriptor>
Element

The <resourceDescriptor> element has one required child element,
<entryList>, which is the list of files and directories contained by this resource. The
entry for each file or directory includes the associated owner, group, and permission
settings.

<entryList> Element

The <entryList> element is a required child of the <resourceDescriptor>
element. This element is used to list the files and directories included in this resource
and describes the settings that are associated with the files and directories.

The <entryList> element has two optional child elements that, if present, must
appear in this order:

B <defaultEntry>
B <entry>

If specified, the <defaultEntry> element can only appear one time. The <entry>
element describes the settings for a single file or directory. Thus, you can specify more
than one <entry> element in the resource descriptor file.

Chapter 5 » Resource Descriptor Schema 109

<defaultEntry> Element

The <defaultEntry> element is an optional child of the <entryList> element.
This element specifies the default owner, group, and permission settings for resource
files that are not listed in <entry> elements in the resource descriptor file.

If this element is omitted, the file and directories listed in this <entryList> block use
the setting values determined at check-in time. If specified, this element can only
appear one time.

<settings> Element

The <settingss> element is a required child element of the <defaultEntry>
element and of the <entry> element.

The <settings> element behaves differently when used as a child of these elements:

® <defaultEntry> element — Specifies the setting values to be used as defaults for
any file that is not associated with its own <entry> element

® <entry> element — Specifies the setting values to be used by the file associated
with this <entry> element

If any attributes are omitted, the corresponding attribute value in the
<defaultEntrys> element for this <entryLists> is used. If no
<defaultEntry> element is specified, the check-in time settings are used.

Attributes for the <settings> Element
The <settings> element has these optional attributes:

® group — An optional string that is the group of this entry. The group must be a
group name, not a group ID.

® owner — An optional string that is the owner of this entry. The owner must be a user
name, not a user ID.

® permissions — An optional string that is the permissions settings for a file or
directory. The string is in the format of an octal triplet, as defined by the UNIX
chmod command. See the chmod(1M) man page.

You can specify a value of :NONE: for any of these attributes. Use the :NONE: value
to tell N1 SPS to use the default settings from the file system on which the component
will be deployed.

<entry> Element

The <entry> element is an optional child element of the <entryList> element. This
element specifies the owner, group, and permission settings for one entry in the
resource. The <entry> element has one required element, <settingss. See
“<settings> Element” on page 110.

110 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Files and directories that do not appear as <entry> elements in the <entryList>
block use the following:

m Setting values specified in the <defaultEntry> block
m Setting values determined at check-in time

Attributes for the <entry> Element

The <entry> element has one required attribute, name. The name value is a string that
defines the name of this entry, relative to the root of the resource. The name of the
top-level resource should always be root.

For example, if the resource created a directory hierarchy starting with topDir, the
name attribute for the top level directory is root. The name attribute for a nested
directory subDir would be root /subDir. For a file resource named file. txt, the
name attribute would be root.

Note — Trailing slash (/) characters are not permitted.

See “Sample XML for the <resourceDescriptor> Element” on page 111.

Sample XML for the

<resourceDescriptor> Element

The following example shows an <resourceDescriptors> element for a directory
resource.

<?xml version ="1.0" encoding="UTF-8"?>
<resourceDescriptor
xmlns="http://www.sun.com/schema/SPS"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.sun.com/schema/SPS
resourceDescriptor.xsd"
schemavVersion="5.1">
<entryList>
<defaultEntry>
<settings
owner="root"
group="wheel"
permissions="664"/>
</defaultEntry>

Chapter 5 Resource Descriptor Schema 111

<!-- This directory overrides all of the default settings -->
<entry
name="root">
<settings
owner="gprabhu"
group="bin"
permissions="777"/>

</entry>
<!-- This directory overrides the owner and group, but will have
perms of "664" from the defaultEntry -->
<entry
name="root/nestedDirectory" >
<settings

owner="gprabhu"
group="wheel" />

</entry>
<!-- This file overrides the group and perms, but will have owner
of "root" from the defaultEntry -->
<entry
name="root/nestedDirectory/fileThatWillUseSomeDefaults.txt" >
<settings

group="bin"
permissions="777"/>

</entry>
<!-- This file overrides none of the settings in the defaultEntry,
so it will inherit all of them.
In practice, this entry would probably be omitted entirely. -->
<entry

name="root/nesteddirectory/fileThatWillUseAllDefaults.txt" >
<settings/>
</entry>
</entryLists>
</resourceDescriptor>

The following example shows an <resourceDescriptor> element for a file
resource.

<?xml version ="1.0" encoding="UTF-8"7?>

<resourceDescriptor xmlns="http://www.sun.com/schema/SPS"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.sun.com/schema/SPS resourceDescriptor.xsd"
schemaVersion="5.1">

<entryList>
<!-- There is no <defaultEntry> in this <entryLists>, so anything not
specified in the <settings> element for this entry uses the
settings determined at check-in time. -->

<entry name="root">
<settings owner="terry" group="bin" permissions="777"/>
</entry>
</entrylList>
</resourceDescriptor>

112 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

CHAPTER 6

Plug-In Descriptor Schema

This chapter describes the XML schema that you use to define a plug-in. The chapter
contains the following topics:

® “<plugin> Element Overview” on page 113

®m “<readme> Element” on page 114

®m “cserverPluginJAR> Element” on page 115

® “<gui> Element” on page 115

®m “<dependencyList> Element” on page 115

® “<memberList> Element” on page 116

m “Sample XML for the <plugin> Element” on page 124
I

<plugin> Element Overview

The <plugin> element is the top-level element in the plug-in schema. The <plugin>
element identifies the parts of the plug-in.

Attributes for the <plugin> Element

The <plugin> element has the following attributes:

® name — The name of the plug-in. The name attribute has a maximum length of 64.
Plug-in names follow a structure similar to com. sun.solaris.

m description — An optional description of the plug-in.
m vendor — The provider of the plug-in.

® version — The version of the plug-in. Version numbers follow the standard x.y
(major.minor) format.

113

® schemaVersion — A required attribute of type schemaVersion, which is the version
of the plug-in XML schema being used. The only permitted values are 5. 0 and
5.1.

The 5.1 version of the schema is backward compatible with the 5.0 version.

m previousVersion — An optional attribute that is the version of this plug-in expected to
be on the system. If not specified, an initial install is assumed. If specified, the
value represents the version from which the plug-in is to be upgraded.

® xmins — A required string that has the following value:

http://www.sun.com/schema/SPS

m xmins:xsi — A required string that has the following value:

http://www.w3.0org/2001/XMLSchema-instance

m xsi:schemaLocation — An optional string that has the following recommended value:

http://www.sun.com/schema/SPS plugin.xsd

Child Elements of the <plugin> Element

The <plugin> element may include the following child elements:

® <readme> — Optional path to the readme file written by the plug-in author

® <serverPluginJAR> — Optional path to the JAR file that contains server-side
plug-in code to run on the master server

® <gui> - Optional GUI extensions for the plug-in

® <dependencyList>— Optional list of external plug-ins on which this plug-in
depends

® <memberList> — Optional list of member objects to create as part of the plug-in

These member objects can include any number of folder, host type, host set, host
search, component, and plan objects. These member objects can appear in any
order.

<readme> Element

The <readme> element is a child of the <plugin> element and is used to declare the
location of a readme . txt file in the plug-in JAR. This readme . txt file is expected to
be a Unicode-encoded text file. The byte order mark (BOM) is used to specify the
Unicode encoding. If no BOM is present, UTF-8 encoding will be used by default.

The <readme> element has one attribute, jarPath, that contains the path name to the
readme file. The path name of the readme file is relative to the root of the plug-in JAR
file. Leading slash (/) or period (.) characters are not permitted in the jarPath.

114 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<serverPluginJAR> Element

The <serverPluginJAR> element is a child of the <plugin> element and is used to
declare the location of a server side plug-in JAR file that contains code to run on the
Master Server. The location of this JAR file is relative to the root of the plug-in JAR file.
This JAR file will typically contain component exporter implementations for the
component types defined by the plug-in. Externally written code that is to run in the
Master Server (for example, exporter classes) need not be in the same JAR file as the
code that runs on the agent for the plug-in, though it is permissible.

The <serverPluginJAR> element has one attribute, jarPath, that contains the path
name to the server-side plug-in JAR file. The path name is relative to the root of the
plug-in JAR file. Leading slash (/) or period (.) characters are not permitted in the
jarPath.

<gui> Element

The <gui> element is an optional child of the <plugin> element and is used to
declare the location of a separate plug-in Ul descriptor file for a set of GUI extensions
in support of this plug-in. The syntax of this plug-in UI descriptor file is described in
Chapter 7.

The <gui> element has one attribute, jarPath, that contains the path name to the
plug-in UI descriptor file. The path name is relative to the root of the plug-in JAR file.
Leading slash (/) or period (.) characters are not permitted in the jarPath.

<dependencyList> Element

The <dependencyList> element is a child of the <plugin> element and is used to
declare a list of other plug-ins on which this plug-in depends. It has no attributes and
contains one or more <pluginRef> elements that identify a dependency for this
plug-in. When the plug-in is deployed, the N1 SPS software checks against these
dependencies.

Chapter 6 ¢ Plug-In Descriptor Schema 115

<pluginRef > Element

The <pluginRef> element is a child of the <dependencyList> element and is used
to declare a reference to another plug-in. The <pluginRef > element has two required
attributes:

m name — The name of the referenced plug-in. The name attribute has a maximum
length of 64. Plug-in names follow a structure similar to com. sun.solaris.

® version — The minimum version of the referenced plug-in. The referenced plug-in
must be installed on the system with this version or higher.

The <pluginRef > element contains no child elements.

<memberList> Element

The <memberList > element is a child of the <plugin> element and is used to
declare a list of system objects that are part of this plug-in. These objects can appear in
any order.

The <memberList> element has no attributes and contains at least one of the
following child elements:

<folder> — A folder declaration
<hostType> — A host type declaration
<hostSet> — A host set declaration
<hostSearchs> — A host search declaration
<component > — A component declaration
<plan> — A plan declaration

<folder> Element

The <folder> element is a child of the <memberList > element and is used to
declare a folder to be referenced by the plug-in.

A plug-in can specify a folder to be created in the form of a full path name. For
example, /a/b/c. In this example, a and b are interior folders, and c is a leaf folder.
The plug-in owns the leaf folder. The admin group is listed as the folder owner group,
and the folder is identified as being owned by the plug-in. A plug-in may only create
components and plans in a folder that it owns. Users cannot create components, plans
or subfolders in a plug-in owned folder.

If an interior folder does not exist when a plug-in is loaded, it is implicitly created.
Interior folders may not be owned by a plug-in. The owner group for a plug-in created
interior folder is the admin group, but the folder is not identified as belonging to any

116 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

plug-in. If a plug-in author intends for interior folders to be explicitly owned by a
plug-in, the folders should be created individually. In the above example, folder /a
would be created first, followed by folder /a/b, then folder /a/b/c.

Unowned interior folders may not be created under an owned interior folder. This
requirement prevents plug-in authors from creating components and plans in a folder
between owned folders in the folder hierarchy, which would complicate the deletion
semantics.

If an interior folder exists and is unowned when a plug-in is loaded, the interior folder
is used directly. If an interior folder exists and is owned by a plug-in, the interior
folder must be owned either by the current plug-in or by a plug-in on which the
current plug-in has a direct dependency. This requirement enables multiple
cooperative plug-ins to be distributed separately by a plug-in vendor. By obeying Java
package style naming conventions when creating folders, vendors can avoid folder
name space collisions.

Attributes for the <folder> Element

The <folders> element has two attributes:

® name — The path name of the folder
m description — An optional description of the folder

<hostType> Element

The <hostType> element is a child of the <memberList> element and is used to
declare a host type to be referenced by the plug-in. The name of the host type will be
implicitly prefixed with the plug-in name when the host type is created in the system.

Attributes for the <hostType> Element

The <hostType> element has two attributes:

® name — The name of the host type. The name attribute has a maximum length of 32.
The name must begin with either a Unicode letter or an underscore character (),
followed by either Unicode letters, number, or an underscore character (_), dot (.),
or dash (-).

m description — An optional description of the host type

<varlist> Element

The <hostType> element contains an optional <varlist> child element. The
<varlist> element specifies a list of variables to be added to the <hostType>
element and later used by hosts in configuration.

Chapter 6 ¢ Plug-In Descriptor Schema 117

118

The <varlists> child element contains one or more <var> child elements. The
<var> element provides <hostType> element variable declaration through two
required attributes:

® name — The name of the variable
m default — The default value of the variable

<hostSet> Element

The <hostSet> element is a child of the <memberList > element and is used to
declare a host set to be referenced by the plug-in. The <hostSet > element cannot
contain hosts, since plug-ins cannot define hosts. Platform host sets cannot be defined
by any plug-in other than the system plug-in. The name of the host set will be
implicitly prefixed with the plug-in name when the host set is created in the system.

The <hostSet > element contains two optional child elements:

B <hostSetRefs>
B <hostSearchRef>

Attributes for the <hostSet> Element

The <hostSet> element has three attributes:

® name — The name of the host set. The name attribute has a maximum length of 32.
The name must begin with either a Unicode letter or an underscore character (_),
followed by either Unicode letters, number, or an underscore character (_), dot (.),
or dash (-).

® description — An optional description of the host set

® unsupported — An optional attribute that, when true, means that the host set is not
supported. The default is false.

<hostSetRef > Element

The <hostSetRef> element is a child of the <hostSet > element. It specifies a
sub-host set. This host set must have been previously defined either in this plug-in or
in a plug-in on which this plug-in directly depends. References to host sets defined in
another plug-in must include the plug-in name, for example,

com. foo.other#hostSetName. Unqualified references are assumed to be objects
created by this plug-in.

Attributes for the <hostSetRef> Element

The <hostSetRef > element has one attribute, name. This attribute provides the name
of the host set reference. The name attribute has an optional pluginName that has a
maximum length of 64, followed by a # separator, followed by a hostEntityName that
has a maximum length of 32.

Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<hostSearchRef > Element

The <hostSearchRef > element is a child of the <hostSet > element. It specifies a
sub-host search. This host search must have been previously defined either in this
plug-in or in a plug-in on which this plug-in directly depends. References to host
searches defined in another plug-in must include the plug-in name, for example,
com. foo.other#hostSearchName. Unqualified references are assumed to be
objects created by this plug-in.

Attributes for the <hostSearchRef> Element

The <hostSearchRef > element has one attribute, name. This attribute provides the
name of the host search reference. The name attribute has an optional pluginName that
has a maximum length of 64, followed by a # separator, followed by a hostEntityName
that has a maximum length of 32.

<hostSearch> Element

The plug-in <hostSearchs> element is a child of the <memberList> element and is
used to declare a host search to be referenced by the plug-in. The name of the host
search will be implicitly prefixed with the plug-in name when the host search is
created in the system.

The <hostSearch> element contains at least one of the following child elements:

B ccriterialists
B <appTypeCriterias
B <physicalCriterias

Note — Although the <criterialist>, <appTypeCriterias, and
<physicalCriteriax> elements are each optional, one of the three must be
provided.

Attributes for the <hostSearchs> Element
The <hostSearchs element has two attributes:

® name — The name of the host search. The name attribute has a maximum length of
32. The name must begin with either a Unicode letter or an underscore character
(), followed by either Unicode letters, numbers, or an underscore character (_),
dot (.), or dash (-).

® description — An optional description of the host search

Chapter 6 ¢ Plug-In Descriptor Schema 119

120

<criterialList> Element

The <criterialist> element is a child of the <hostSearch> element. It specifies a
list of criteria to be added to the <hostSearchs> element. The <criterialList>
element must be specified if <appTypeCriteria> and <physicalCriterias> are
not specified.

The <criterialist> element contains one or more <criteriax> elements. The
<criteria> element specifies a search criteria, including name, match type, and
pattern.

Attributes for the <criteriaList > Element
The <criterialList> element has three attributes:

m name — The name of the host variable to match.
m pattern — The pattern to match.

® match — The match type of the criteria. Valid values are EQUALS or CONTAINS. The
default is EQUALS.

<appTypeCriteria> Element

The <appTypeCriteria> elementis a child of the <hostSearchs> element. It
specifies a list of application type criteria to be added to the <hostSearchs> element.
The arguments of the <appTypeCriteriax> element are expressed as attributes, and
order is not important. If all values are false or the element is empty or unspecified,
the search disregards this criteria when performing the search. The
<appTypeCriteria> element must be specified if <criteriaList> and
<physicalCriterias> are not.

Attributes for the <appTypeCriteria> Element
The <appTypeCriteriax> element has three optional attributes:

® s —If true, match MasterServer application type in host search. The default is
false.

® [d - If true, match LocalDistributor application type in host search. The
default is false.

® g —If true, match RemoteAgent application type in host search. The default is
false.

<physicalCriteria> Element

The <physicalCriterias> element is a child of the <hostSearch> element. It
specifies a list of physical type criteria to be added to the <hostSearch> element.
The arguments of the <physicalCriteria> element are expressed as attributes, and

Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

order is not important. If all values are false or the element is empty or unspecified,
the search disregards this criteria when performing the search. The
<physicalCriteria> element must be specified if <criteriaList> and
<appTypeCriterias> are not.

Attributes for the <physicalCriteria> Element
The <physicalCriterias> element has two optional attributes:

m physical - If true, match physical host types in host search. The default is false.

® virtual - If true, match virtual host types in host search. The default is false.

<component > Element

The <component > element is a child of the <memberList> element and is used to
declare a component in the plug-in JAR file. All objects referenced by this component
must have been previously defined either in this plug-in or in a plug-in on which this
plug-in directly depends.

The <component > element contains three optional child elements:

B <systemServices>
B <componentType>
B <resource>

Attributes for the <component > Element
The <component > element has two attributes:

m jarPath — The location of the component XML file, relative to the root of the plug-in
JAR (leading / or . characters are not permitted). The format of the component
XML is specified by the Plan and Component Language specification. See
Chapter 3 for more information.

m majorVersion — An optional attribute that determines whether to check in the
component as a new major version. The default is false.

<systemService> Element

The <systemServices element is a child of the <component > element and is used
to declare a system service backed by the containing component. This element may
not be used with the <component Type> element. When the <systemServices
element is used in a <component > element, a component is loaded and a
<systemServiceRef > that references that component is created. The name of the
system service is prefixed with the plug-in name when the system service is created in
the system.

Chapter 6 ¢ Plug-In Descriptor Schema 121

Attributes for the <systemService> Element
The <systemServices element has two attributes:

® name — The name of the system service

A name has a maximum of 64 characters. The name must start with a letter or
underscore, followed by any number of letters, digits, or special characters, such as
underscore (_), period (.), plus (+), minus (-), and space (). Unicode letters and
digits are permitted.

m description — An optional description of the system service

<componentType> Element

The <componentType> element is a child of the <component > element and is used
to declare a component type backed by the containing component. The
<componentType > element may not be used with the <systemServices> element.
When the <component Type> element used in a <component > element, a
component is loaded and a component type that is backed by that component is
created. The name of the component type is prefixed with the plug-in name when the
component type is created in the system.

Component types are grouped by plug-in, and ordered by the component type order
within these groupings. Groupings are ordered according to the plug-in order. Within
a particular plug-in, the component types are indented under distinct group names as
defined by the component types.

Attributes for the <component Type> Element
The <componentType> element has five attributes:

® name — The name of the component type.

A name has a maximum of 64 characters. The name must start with a letter or
underscore, followed by any number of letters, digits, or special characters, such as
underscore (_), period (.), plus (+), minus (-), and space (). Unicode letters and
digits are permitted.

® description — An optional description of the component type.

m group — The group name of the component type, if this component type is part of a
hierarchy of component types.

Group names follow the same requirements as the component type name. In
addition, a group can be declared as hidden, which prevents the type from
displaying in the component type drop down list on the component list page.

® order — A number that identifies where to put this component type in the
drop-down list of component types in the browser interface.

The order is a maximum of 18 characters. In addition to Unicode letters and digits,
any character that you can type on an ASCII keyboard is permitted. The order
should be sufficient to sequence all of the types that are defined within a particular

122 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

plug-in.
® indentLevel — A number between 0 and 10 that identifies the level to which to indent
this component type in a hierarchy of component types in the browser interface.

<resource> Element

The <resource> element is a child of the <component > element. It specifies a
resource file name and location in the JAR file. A resource is always checked in as a
simple file-typed resource. The component that contains the <resource> element
must be a simple component whose <resourceRef > element refers to the resource
created by the <resource> element.

Attributes for the <resource> Element
The <resources> element has three attributes:

® jarPath — The location of the resource file, relative to the root of the plug-in JAR file.
Leading / or . characters are not permitted. For directory-type resources, this path
is assumed to be a directory, and is expected to end with a /. Everything in this
directory defines the contents of this resource.

m majorVersion — An optional attribute that determines whether to check in the
resource as a new major version. The default is false.

® name — An optional attribute that is the name of the resource. If not specified, the
name will default to the absolute jarPath, which is converted to absolute if specified
as relative.

® config — An optional attribute that specifies whether this resource is a configuration
template. The default is false.

® type — An optional attribute that specifies whether the resource is a file or a
directory. Use FILE for a file resource. Use DIRECTORY for a directory resource.
The default is FTLE.

® checkInMode — An optional attribute that specifies whether a directory-type resource
should be replaced or appended. Use REPLACE if the check in of this resource
should replace an existing version. Use ADD_TO if the check in should add to the
resource. The default is REPLACE. This attribute only applies to a resource that has
a type of DIRECTORY.

® descriptorPath — An optional attribute that specifies the path to a resource descriptor
file, relative to the root of the plug-in JAR file. Leading / or . characters are not
permitted. The format of the resource descriptor file follows the Resource
Descriptor schema, as described in Chapter 5.

If no resource descriptor file is specified, permissions information is used from the
default file system settings of the N1 SPS master server. In this case, owner and
group are not stored. This is also the case for settings that are omitted from a
descriptor (either no entry or a partial entry for a file within the resource).

Chapter 6 * Plug-In Descriptor Schema 123

<plan> Element

The <plan> element is a child of the <memberList> element and is used to declare a
plan in the plug-in JAR. All objects referenced by this plan must have been previously
defined either in this plug-in or in a plug-in on which this plug-in directly depends.

Attributes for the <plan> Element
The <plan> element has two attributes:

m jarPath — The location of the plan XML, relative to the root of the plug-in JAR file.
Leading / or . characters are not permitted. The format of the plan XML is
specified by the Plan and Component Language specification. See Chapter 4 for
more information.

® majorVersion — An optional attribute that determines whether to check in the plan
as a new major version. The default is false.

Sample XML for the <plugin> Element

EXAMPLE 6-1 Sample Plug-in Descriptor File

<?xml version="1.0" encoding="UTF-8"?>
<plugin name="com.bigCo.logic.pluginName"

description="imitation WL plugin"

vendor="bigCo"

version="1.3"

previousVersion="1.2"

xmlns="http://www.sun.com/schema/SPS"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.sun.com/schema/SPS

plugin.xsd"
schemaVersion="5.1">
<readme jarPath="docs/readme.txt"/>

<serverPluginJAR jarPath="lib/appserver/serverCode.jar"/>
<gui jarPath="custom/weblogic/gui/pluginUI.xml"/>
<dependencyList>
<pluginRef name="webLogicUtils" version="1.0"/>
<pluginRef name="otherPlugin" version="1.3"/>
</dependencyList>
<memberList>
<folder name="/com/bea/weblogic/6.0" description="Weblogic 6.0 plugin folder"/>
<folder name="/folder2" description="second place sees dust"/>
<hostType name="WL Admin Server" description="Host Type for Weblogic Admin Servers"s>
<varLists>
<var name="adminPort" default="7001"/>
<var name="adminUser" default="weblogic"/>

124 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

EXAMPLE 6-1 Sample Plug-in Descriptor File (Continued)

<var name="secureConnect" default="false"/>

</varList>

</hostType>

<hostSet name="Weblogic Admin Servers" description="The Weblogic Admin Servers"s>
<hostSetRef name="WL boxes"/>

<hostSearchRef name="WL Admin Search"/>

</hostSet>

<hostSearch name="WL box search" description="matches Weblogic boxes">
<criterialList>

<criteria name="sys.OS" match="CONTAINS" pattern="SunOS"/>

<criteria name="sys.OSVersion" pattern="5.9"/>

</criterialist>

<appTypeCriteria ms="false" ld="false" ra="true"/>

<physicalCriteria physical="true" virtual="true"/>

</hostSearch>

<hostSet name="Weblogic Servers" description="All Weblogic Servers"s>
<hostSetRef name="Weblogic Admin Servers"/>

<hostSetRef name="com.bigCo.logic.cluster#Weblogic Clusters"/>
</hostSet>

<component jarPath="comps/system/weblogic/foo.xml" majorVersion="true"s>
<componentType name="contained EJB CT"
description="contained ejb comp type ref"
group="hidden"
order="001-003-002"

indentLevel="2"/>

</component >

<component jarPath="weblogic/system/comps/bar.xml">

<systemService name="WebLogic SS" description="WL service ref"/>
</component >

<component jarPath="weblogic/system/comps/baz.xml"/>

<plan jarPath="weblogic/system/plans/bar.xml" majorVersion="false"/>
<component jarPath="weblogic/system/comps/dee.xml">

<resource jarPath="weblogic/system/plugin-core.jar" majorVersion="true"/>
</component >

<component jarPath="weblogic/system/comps/boo.xml">

<resource jarPath="weblogic/system/bigDir/" majorVersion="true"

name="com/sun/boo" type="DIRECTORY" checkInMode="ADD TO"
descriptorPath="resources/bigDir.manifest" />
</component >
</memberList>

</plugin>

Chapter 6 * Plug-In Descriptor Schema 125

126 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

CHAPTER 7

Plug-In User Interface Schema

This chapter describes the XML schema that you use to define the user interface for a
plug-in. The chapter contains the following topics:

B “<pluginUI> Element Overview” on page 127

® “<icon> Element” on page 128

®m “<customPage> Element” on page 129

m “Sample XML for the <pluginUI> Element” on page 133

<pluginUI> Element Overview

The <pluginUI> element enables a plug-in author to describe a limited set of
functionality to appear on a custom shortcuts page. The set of functionality exposed
via the shortcuts is divided into the following categories:

= Component type shortcuts:

m List all components that extend this component type
m Create a component that extends this component type

= Component shortcuts:

® Manage the specified component (link to component details page)
m List virtual and physical hosts where this component is installed

m Plan shortcuts:

® Manage the specified plan (link to plan details page)

127

Attributes for the <pluginUI> Element

The <pluginUI> element has the following attributes:

m menultem — The text to display in the menu of the browser interface. The name
should be 20 characters or less in length, although the actual character limit is
defined by the attribute type.

m fooltip — An optional tooltip to display for the menu item in the browser interface.
The menultem includes the icon, if you choose to provide an icon.

® xmins — A required string that has the following value:
http://www.sun.com/schema/SPS

® xmins:xsi — A required string that has the following value:
http://www.w3.0rg/2001/XMLSchema-instance

® xsi:schemalocation — An optional string that has the following recommended value:
http://www.sun.com/schema/SPS pluginUI.xsd

® schemaVersion — A required attribute of type schemaVersion, which is the version
of the plug-in XML schema being used. The only permitted values are 5.0 and
5.1.

The 5.1 version of the schema is backward compatible with the 5.0 version.

Child Elements of the <pluginUI> Element

The <pluginUI> element contains the following elements:

® <icon> - Provides the path to a graphic (icon) that you want displayed within the
interface for this plug-in

® <customPage> — Defines the contents of the custom page linked to by the menu
item in the browser interface

<icon> Element

The <icon> element is a child of the <pluginUI> element. The <icon> element
declares the location of the plug-in icon. The icon is expected to be in GIF or JPEG file
format. The icon should have dimensions of 32 pixels wide by 26 pixels high.

128 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Attributes for the <icon> Element

The <icon> element has one required attribute jarPath. The jarPath attribute specifies
the location of the plug-in icon, relative to the root of the plug-in JAR file. Leading
slash (/) or dot (.) characters are not permitted.

<customPage> Element

The <customPage> element is a child of the <pluginUI> element and defines the
contents of the custom page linked to by the menu item in the browser interface. . The
<customPage> element contains one or more <sections> elements and has a name
attribute.

Attributes for the <customPage > Element

The <customPage > element has one required attribute, name. The name attribute is
used in the breadcrumb and title sections of the custom page.

<gection> Element

The <section> element is a child of the <customPage> element and defines a
section for the custom page. The <section> element contains one or more <entry>
or <sections elements and has two attributes:

® title — Section title
® description — An optional section description, secondary text

Note — To create a nested custom page structure, put a <section> element within
another <section> element. Any nested <section> elements must appear after all
<entry> elements within the <sections.

<entry> Element

The <entry> element is a child of the <section> element and defines an entry point
for user actions. An <entry> element contains zero or more <actions elements and
has the following attributes:

m title — Entry title

Chapter 7 Plug-In User Interface Schema 129

® description — An optional entry description

<action> Element

The <action> element is a child of the <entry> element and defines a user action.
Each <actions> element must contain exactly one child element.

The <actions> element has two attributes:

m text — Text to be rendered for the link of the user action
® fooltip — An optional tooltip to be used for the link of the user action

Each <action> element must contain one of the following child elements:

<compCreate> The <compCreate> element is a child of the
<actions> element and defines a link to the
component create page for the named component type.

The <compCreate> element has one required
attribute:

m typeName — The name of the component type. The
component type must be contained in the plug-in or
in a plug-in on which this plug-in directly depends.
The component type cannot be defined as hidden.
The pluginName must be prefixed to the
component type name, for example,
fullPluginName#componentTypeName.

<compDetails> The <compDetails> element is a child of the
<actions> element and defines a link to the
component details page for the latest version of the
named component.

The <compDetails> element has two required
attributes:

® path — The absolute path of the component.

m name — The name of the component. The component
must be contained in the plug-in or in a plug-in on
which this plug-in directly depends.

<compList> The <compList> element is a child of the <action>
element and defines a link to the component list page
filtered by the named component type. If the optional
path or flatView attributes are omitted, their values will
be picked up from the user’s session when the users
clicks on the link. If not omitted, the user’s session
values will be changed to reflect them after clicking on
the link.

130 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<compWhereInstalled>

<hostList>

The <compList> element has three attributes:

m fypeName — The required name of the component
type. The component type must be contained in the
plug-in or in a plug-in on which this plug-in
directly depends. The component type cannot be
defined as hidden. The pluginName must be
prefixed to the component type name, for example,
fullPluginName#componentTypeName.

® path — An optional full path by which to filter the
components list page. The path must start with a
slash (/), and should not end with a slash (/). The
folder that the path represents must be a folder
either owned by this plug-in or owned by a plug-in
on which this plug-in directly depends.
Alternatively, the folder can contain a folder owned
by this plug-in or by a plug-in on which this
plug-in directly depends.

m flatView — An optional statement as to whether the
list page should enable the flat view filter.

The <compWhereInstalleds> element is a child of
the <action> element and defines a link to the
Component Where Installed page for the latest version
of the named component.

The <compWhereInstalled> element has two
required attributes:

® path — The absolute path of the component.

® name — The name of the component. The component
must be contained in the plug-in or in a plug-in on
which this plug-in directly depends.

The <hostList> element is a child of the <action>
element and defines a link to the host list page filtered
by the named host type.

The <hostList> element has one required attribute:

m typeName — The name of the host type. The host
type must be contained in the plug-in or in a
plug-in on which this plug-in directly depends. The
host type cannot be defined as hidden. The
pluginName must be prefixed to the host type
name, for example,
fullPluginName#hostTypeName.

Chapter 7 ¢ Plug-In User Interface Schema 131

<planDetails> The <planDetails> element is a child of the
<actions> element and defines a link to the plan
details page for the latest version of the named plan.

The <planDetails> element has two required
attributes:

® path — The absolute path of the plan.

® name — The name of the plan. The plan must be
contained in the plug-in or in a plug-in on which
this plug-in directly depends.

<compProcedureRun> The <compProcedureRun> element is a child of the
<actions> element and enables you to run a
component procedure directly.

The <compProcedureRun> element has four required
attributes:

® name — The name of the component that contains
the procedure to run. The component must be
contained in this plug-in or in a plug-in on which
this plug-in directly depends.

® path — The absolute path to the component.

m procedureName — The name of the component
procedure.

m procedureType — The type of the component
procedure. Valid values include INSTALL,
UNINSTALL or CONTROL.

<externals> The <externals> element is a child of the <action>
element and defines a link to an arbitrary URL that is
outside of the N1 SPS product. For example, you might
use this element to provide a link to a corporate web
page that contains additional information about a
specific plug-in or feature.

The <external> element has one attribute, url, which

supplies a well-formed URL. The URL must conform

to the Internet standard for Uniform Resource

Identifiers (URIs) as specified in RFC3986 Uniform

Resource Identifier (URI): Generic Syntax
(http://www.gbiv.com/protocols/uri/rfc/rfc3986.html).

To ensure that the XML for the plug-in user interface
descriptor is well-formed, the url attribute may include
escaped special characters. Use the following escape
sequences for the specified characters:

132 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

http://www.gbiv.com/protocols/uri/rfc/rfc3986.html
http://www.gbiv.com/protocols/uri/rfc/rfc3986.html
http://www.gbiv.com/protocols/uri/rfc/rfc3986.html

Character Escape Sequence

> > ;

< <

" " ;
& & ;

Sample XML for the <pluginUI>
Element

The following sample XML takes fragments from various custom pages to illustrate
each element in the <pluginUI> schema.

EXAMPLE 7-1 Sample <pluginUI> Descriptor File

<?xml version="1.0" encoding="UTF-8"?>
<pluginUI menultem="pluginName"
toolTip="view wl server pages"
xmlns="http://www.sun.com/schema/SPS"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.sun.com/schema/SPS
pluginUI.xsd"
schemaVersion="5.1">
<icon jarPath="custom/gui/img/WLicon-small.gif"/>
<customPage name="WebLogic">
<section title="WebLogic application tasks"
description="capture and edit your WebLogic applications...">
<entry title="enterprise applications (EARs)"
description="capture, edit and deploy your enterprise applications"s>
<action text="view all" toolTip="view all EARs">
<compList typeName="com.bigCo.logic.pluginName#WebLogic enterprise application"
path="/com/bigCo/logic" flatView="true"/>
</action>
<action text="create new" toolTip="create new enterprise application">
<compCreate typeName="com.bigCo.logic.pluginName#WebLogic enterprise application"/>
</action>
</entry>
<entry title="web applications (WARs)"
description="capture, edit and deploy web applications"s>
<action text="view all" toolTip="view all WARs">
<compList typeName="com.bigCo.logic.pluginName#WebLogic web application"/>
</action>
<action text="create new" toolTip="create new webapp">
<compCreate typeName="com.bigCo.logic.pluginName#WebLogic web application"/>
</action>
</entry>

Chapter 7 Plug-In User Interface Schema 133

EXAMPLE 7-1 Sample <pluginUI> Descriptor File (Continued)

<entry title="java archives containing EJBs (JARs)"
description="capture, edit and deploy your JARS containing EJBs">
<action text="view all" toolTip="view all JARs">
<compList typeName="com.bigCo.logic.pluginName#WebLogic EJB"/>
</action>
<action text="create new" toolTip="create new java archive containing EJBs">
<compCreate typeName="com.bigCo.logic.pluginName#WebLogic EJB"/>
</action>
</entry>
<section>
<entry title="entry in a nested section"
description="this is a an entry in a nested section">
<action text="view all" toolTip="view all aType comps">
<compList
typeName="com.bigCo.logic.pluginName#aType"
path="/com/bigCo/logic" />
</action>
</entry>
</section>
</section>
<section title="WebLogic infrastructure"
description="create and edit your WebLogic infrastructure...">
<entry title="admin servers"
description="WebLogic domains / administration servers"s>
<action text="manage admin servers" toolTip="manage WebLogic admin servers'"s>
<compDetails path="/com/bea/weblogic" name="WL Admin Server 7.0"/>
</action>
<action text="view admin servers" toolTip="list of WebLogic admin servers'"s>
<compWhereInstalled path="/com/bea/weblogic" name="WL Admin Server 7.0"/>
</action>
</entry>
<entry title="clusters"
description="WebLogic clusters">
<action text="manage clusters" toolTip="manage WebLogic clusters"s>
<compDetails path="/com/bea/weblogic" name="WL Cluster"/>
</action>
<action text="view clusters" toolTip="list of WebLogic clusters">
<compWhereInstalled path="/com/bea/weblogic" name="WL Cluster"/>
</action>
</entry>
<entry title="managed servers"
description="WebLogic server instances">
<action text="manage server instances" toolTip="WebLogic managed servers"s>
<compDetails path="/com/bea/weblogic" name="WL Managed Server"/>
</action>
<action text="view managed servers" toolTip="list of WebLogic managed servers'"s>
<compWhereInstalled path="/com/bea/weblogic" name="WL Managed Server"/>
</action>
<action text="update managed servers" toolTip="run a plan on managed servers"s>
<planDetails path="/com/bea/weblogic/updates" name="updatePlan"/>
</action>
<action text="list servers" toolTip="list the apache servers"s>
<hostList searchName="com.bigCo.logic.pluginName.WebLogic#apacheHosts"/>

134 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

EXAMPLE 7-1 Sample <pluginUI> Descriptor File (Continued)

</action>
<action text="custom reports" toolTip="view the custom reports"s>
<external url="http://reportserver/reports/dec"/>
</action>
<action text="start a Managed Server"
toolTip="run the start control of a ManagedServer component's
<compProcedureRun path="/com/sun/weblogic" name="WL Managed Server"
procedureName="start" procedureType="CONTROL"/>
</action>
</entry>
</section>
</customPage>
</pluginUI>

Chapter 7 Plug-In User Interface Schema 135

136 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

APPENDIX A

Component Change Compatibility

This appendix enumerates the kinds of changes that can be made to a component and
indicates whether each change is install compatible or call compatible.

The following changes can be made to components:

“<component > Element Changes” on page 138

“platform Attribute Changes” on page 139

“limitToHostSet Attribute Changes” on page 139

“<extends> Element Changes” on page 139

“Changes to Variables” on page 140

“<targetRef> Element Changes” on page 141
“<componentRefList > Element Changes” on page 141
“<componentRef> Element Changes” on page 142

“Changes to Resources” on page 143

“<installs, <controls, and <uninstall> Block Changes” on page 143
“Changes to <snapshot > Blocks” on page 144

“Changes to <ignore> Child of <diff> Element” on page 145

137

Changes That Can Be Made To
Components

<component > Element Changes

The following table shows the changes that can be made to the <component> element
and indicates whether each change is install compatible or call compatible.

Type of Change Install Compatible Call Compatible
Nonfinal to final No Yes
Final to nonfinal Yes Yes
Nonabstract to abstract No Yes
Abstract to nonabstract Yes Yes
More restrictive access No No
Less restrictive access Yes Yes
Change the value of the description, label, No' Yes
softwareVendor, or author attributes

Change the value of the name or path attributes? No Yes
Change from a simple component to a composite No No
component

Change from a composite component to a simple No No
component

! The attribute values are stored in the installed variable settings record.

2 This change effectively constitutes a change of the version tree and is only possible in situations where a system
service is being updated. In this case, the new component must be an instance of the original component.

138 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

platform Attribute Changes

The following table shows the changes that can be made to the platform attribute and
indicates whether each change is install compatible or call compatible.

Type of Change Install Compatible Call Compatible
More general platform Yes Yes
More specific platform No Yes
Unrelated platform No Yes

A platform is more specific than another if the first platform is a descendant of the
second. A platform is more general if the first platform is an ancestor of the second
platform.

limitToHostSet Attribute Changes

The following table shows the changes that can be made to the limitToHostSet attribute
and indicates whether each change is install compatible or call compatible.

Type of Change Install Compatible Call Compatible

Any change to the limitToHostSet attribute No Yes

Unlike the platform attribute, limitToHostSet names a generic, user-specified host set
over which there is no explicit control. A host set’s membership can change at any
time, so you cannot specify more-specific or less-specific host sets.

<extends> Element Changes

The following table shows the changes that can be made to the <extends> element
and indicates whether each change is install compatible or call compatible.

Type of Change Install Compatible Call Compatible
New base component instance of the original No Yes
component

Original base component instance of a new component No No

Appendix A e Component Change Compatibility 139

Type of Change

Install Compatible

Call Compatible

New base component that is unrelated to the original
component

New base component is install compatible with the
original component

New base component is call compatible with the
original component

No

No

Yes

Yes

Changes to Variables

The following table shows the changes that can be made to a variable and indicates
whether each change is install compatible or call compatible.

Type of Change

Install Compatible

Call Compatible

Add a new variable

Remove or rename a nonprivate variable
Remove or rename a private variable
Change the default value of a final variable
Change the default value of a nonfinal variable
Change the prompt attribute

Nonfinal to final

Final to nonfinal

Nonabstract to abstract

Abstract to nonabstract

More restrictive access

Less restrictive access

Yes!
No
Yes

Yes?

Yes

Yes!

Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes

! A derived component might exist that already defines the variable with a more restrictive access mode. In such a
case, a change would make the derived component invalid. A new nonabstract variable can be added to a
component type if no derived component has already defined a variable that has the same name, and the default
value of the variable can be recomputed for all installed instances of the component.

2 No reinstall is required because the installed value can be considered an override of the new default value.

140 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<targetRef> Element Changes

The following table shows the changes that can be made to the <targetRef> element
and indicates whether each change is install compatible or call compatible.

Type of Change Install Compatible Call Compatible
Remove <targetRef > element No No
Add <targetRef> element No Yes
Modify the hostName attribute Yes' Yes
Modify the typeName attribute No No
Add or remove an <agent > child element No No
Modify the connection attribute of the <agent> child ~ Yes' Yes
element

Modify the ipAddr attribute of the <agent > child Yes' Yes
element

Modify the port attribute of the <agent > child element Yes! Yes
Modify the params attribute of the <agent > child Yes' Yes
element

! The attributes of hosts that are associated with existing installed components are not updated as a result of such a

change.

<componentRefList> Element Changes

The following table shows the changes that can be made to the

<componentRefList> element and indicates whether each change is install

compatible or call compatible.

Type of Change Install Compatible Call Compatible
Nonfinal to final No Yes
Final to nonfinal Yes Yes
New type instance of the original No Yes
Original type instance of the new No No
New type that is unrelated to the original No No
New type is install compatible with the original Yes Yes
New type is call compatible with the original No Yes

Appendix A ¢ Component Change Compatibility

141

<componentRef > Element Changes

The following table shows the changes that can be made to the <componentRef >
element and indicates whether each change is install compatible or call compatible.

Type of Change Install Compatible Call Compatible
Nonfinal to final Yes' Yes
Final to nonfinal Yes Yes
Nonabstract to abstract No Yes
Abstract to nonabstract Yes Yes
Change the installMode attribute No No
Add a new component reference Yes'? Yes
Remove or rename a nested <componentRef > No No
Remove or rename a top-level <componentRef > No No
Add, modify, or remove arguments from a nested No Yes

component’s <argList>

Add, modify, or remove arguments from a top-level Yes® Yes
component’s <argList>

New type instance of the original No Yes
Original type instance of the new No No
New type that is unrelated to the original No No
New type that is install compatible with the original Yes Yes
New type that is call compatible with the original No Yes
New nested component instance of the original No Yes
Original nested component instance of the new No No
New nested component that is unrelated to the original No No

! A derived component might exist that already defines the component reference with a more restrictive access mode
or otherwise incompatible difference. In such a case, a change would make the derived component invalid. A new
nonabstract component reference can be added to a component type if no derived component has already defined a
component reference that has the same name.

N

Adding a nested component is technically possible. An existing installation would be treated as if it had been
installed without the nested component. Because any functionality that might depend on the installation could
break, this change should only be made if the component can function safely without the nested component.
Otherwise, it should be treated as being a change that is not install compatible.

@

You cannot determine whether this component was the component that actually installed the top-level component.
Therefore, this component cannot rely on the top-level component having variables that correspond to the
<argLists> values.

142 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Type of Change Install Compatible Call Compatible

New nested component that is install compatible with ~ Yes Yes
the original

New nested component that is call compatible with the No Yes
original

Changes to Resources

The following table shows the changes that can be made to a resource and indicates
whether each change is install compatible or call compatible.

Type of Change Install Compatible Call Compatible
Nonfinal to final No Yes
Final to nonfinal Yes Yes
Nonabstract to abstract No Yes
Abstract to nonabstract Yes Yes
Modify the installPath, name, group, or user attributes No Yes
Modify the rsrcName or rsrcVersion attributes No Yes

<installs, <controls>, and <uninstalls>

Block Changes

The following table shows the changes that can be made to an <installs,
<controls, or <uninstalls> block and indicates whether each change is install
compatible or call compatible.

Type of Change Install Compatible Call Compatible
Nonfinal to final Yes? Yes
Final to nonfinal Yes Yes
Nonabstract to abstract No Yes
Abstract to nonabstract Yes Yes

! A derived component might exist that already defines the block with a more restrictive access mode or otherwise
incompatible difference. In such a case, a change would make the derived component invalid. A new nonabstract
block can be added to a component type if no derived component has already defined a block that has the same
name.

Appendix A e Component Change Compatibility 143

Type of Change Install Compatible Call Compatible

More restrictive access No No
Less restrictive access Yes' Yes
Add a new nonprivate block Yes' Yes
Add a new private block Yes Yes
Remove or rename a nonprivate block No No
Remove or rename a private block Yes Yes
Change the body of a block Yes? Yes
Add, modify, or remove local block variables Yes? Yes
Add, modify, or remove private block parameters Yes Yes
Add a required parameter to a nonprivate block No No
Add an optional parameter Yes Yes
Remove an optional or a required parameter Yes® Yes®
Rename an optional parameter Yes* Yes*
Rename a required parameter from a nonprivate block No No
Change a parameter from being optional to being No No

required in a nonprivate block

Change a parameter from being required to being Yes Yes
optional

Change the displayMode attribute of a parameter Yes? Yes
Change the prompt attribute of a parameter Yes Yes

! A derived component might exist that already defines the block with a more restrictive access mode or otherwise
incompatible difference. In such a case, a change would make the derived component invalid. A new nonabstract
block can be added to a component type if no derived component has already defined a block that has the same
name.

2 The plan run history of prior runs of this block are not updated. Therefore, they might not directly coincide with
the new block contents.

3 Extra arguments that are passed from the caller are ignored, making this change possible.

* This change is equivalent to removing and adding an optional parameter. However, the callers might see
unexpected results as the originally passed parameter value is now ignored and replaced with the default value.

Changes to <snapshot > Blocks

The following table shows the changes that can be made to the <prepares,
<cleanups>, or <captures child elements of the <snapshot > element and indicates
whether each change is call compatible or install compatible. <snapshot> blocks
generally have the same compatibility matrix as the other blocks, except when dealing
with their <prepare>, <captures>, and <cleanup> blocks.

144 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Type of Change Install Compatible Call Compatible

Add, modify, or remove a <prepare> or <cleanup> Yes Yes
block
Add, modify, or remove a <capture> step Yes' Yes

The contents of the snapshot <capture> block are evaluated only one time. The evaluation takes place when the
snapshot is taken during initial installation. At comparison time, the stored capture contents are used to drive the
comparison, ignoring any changes that might have occurred to the <capture> block. Thus, the existing snapshot is
not affected by such a change. If the intent of the change was to affect the contents of the existing snapshot, this
change must be modeled as a change that is not install compatible.

Changes to <ignores> Child of <diff> Element

The following table shows the changes that can be made to the <ignore> child
element of the <diff> element and indicates whether each change is call compatible
or install compatible.

Type of Change Install Compatible Call Compatible

Add, modify, or remove an <ignore> element Yes Yes

The <ignore> element is only considered when you run the comparison and does
not affect the state of existing snapshots.

Appendix A e Component Change Compatibility 145

146 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

Index

A

access attribute
for <component > element, 62
for <controls> element, 89
for <installSteps> element, 77
for <snapshot> element, 84
for <uninstallSteps> element, 81
for component <var> element, 66
accessEnum attribute type, 22
<actions> element, 130-133
<addFile> element, 85
attributes, 85
<addResource> element, 87
<addSnapshot > element, 86
<agent> element, 68
attributes, 68
<allDependants> installed component
targeter, 51
name attribute, 51
<allNestedRefs> installed component
targeter, 50
<allNestedRefs> repository component
targeter, 54
<and> Boolean operator, 58-59
<appTypeCriterias> element, 120
<argLists> element, 26-27
attributes, 27
child of <componentRef>, 74-75
attribute types
accessEnum, 22
entityName, 20
HostEntityName, 22
identifier, 21

attribute types (Continued)
modifierEnum, 22
pathName, 21
pathReference, 21-22
pluginHostEntityName, 23
pluginName, 23
schemaVersion, 22
systemName, 21
version, 22

attributes, pattern matching, 16-17

author attribute, for <component > element, 62

<backgrounds> element, 30
<blocks> element, 44
blockName attribute
<addSnapshot > element, 87
for <calls> step, 26
for <createSnapshot> element, 93
for plan <installs step, 104
for plan <uninstalls> step, 105
Boolean operators, 55-60
<ands>, 58-59
<equals>, 56-57
<istrues>, 55-56
<matches>, 57-58
<not>, 58
<or>, 59-60

147

C
<calls> step, 26-27
blockName attribute, 26
call compatibility, 18
<captures> element, 85-87
<catch> element, 44
change compatibility, 137-145
character sets, requirements, 16
<checkDependencys> step, 27
className attribute, for <execJavax> step, 27
classPath attribute, for <execJavas step, 27
<cleanup> element, 88
cmd attribute
for <exec> element, 33
for <shells element, 33
<component > element, 61-64, 121-123
<componentType> child element, 122-123
<resources> child element, 123
<systemServices child element, 121-122
attributes, 62-64
child elements, 64, 121
child of <componentRef>, 75
component compatibility, 17-19
call, 18
install, 18,19
component install-only steps
<createDependency>, 90-92
<createSnapshot>, 92-93
<deployResource>, 93-94
<install>, 93
<component > repository component
targeter, 53
attributes, 53
component targeters
installed, 46-52
repository, 52-55
component uninstall-only steps
<undeployResourceStep>, 94-95
<uninstalls>
for components, 94
<componentRef > element, 72-75
attributes, 73-74
<componentRefList> element, 71-75
modifier attribute, 72
components
change compatibility, 137-145
targetable, 20
<componentType> element, 122-123

composite plan-only steps
<execSubplans>, 102
<inlineSubplan>, 102-103
<compositeSteps> element, 101
<conditions> element, 35
connection attribute, for <agent > element, 68
<controls element, 88-89
attributes, 89
<controllLists> element, 88-89
<createDependency> step, 90-92
name attribute, 91
naming conventions, 92
reinstallation implications, 91-92
uninstallation implications, 91
<createSnapshot> step, 92-93
blockName attribute, 93
<criterialist> element, 120
<customPage> element, 129-133

D
default attribute

for <params> element, 99

for <varlists> element, 118

for component <param> element, 78

for component <var> element, 67

for local <var> element, 79

for plan <vars> element, 100
<defaultEntry> element, 110
delaySecs attribute

for <pause> step, 35

for <processTest> step, 36

for <urlTest> step, 46
<dependantCleanup> element, 82
<dependee> installed component targeter, 51

name attribute, 51
<dependencyList> element, 115-116

<pluginRef > child element, 116
deployMode attribute, for <installSpec>

element, 70
description attribute

for <component > element, 62

for <controls> element, 89

for <executionPlans> element, 98

for <folder> element, 117

for <hostSearchs> element, 119

for <hostSet> element, 118

148 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

description attribute (Continued)
for <hostType> element, 117
for <inlineSubplan> element, 103
for <installSteps> element, 77
for <plugin> element, 113
for <snapshot> element, 84
for <systemServices> element, 122
for <uninstallSteps> element, 82
<diff> element, 89-90
diffDeploy attribute, for <installSpec>
element, 71
dir attribute, for <execNativex> step, 29
displayMode attribute
for <params> element, 99
for component <param> element, 79
displayName attribute, for <addFile>
element, 86

E

<else> element, 35
entityName attribute type, 20
<entry> element
for plug-in UI, 129-133
for resource descriptors, 110-111
attributes, 111
<entryList> element, 109-111
<env> element, 29
attributes, 29
<equals> Boolean operator, 56-57
attributes, 56-57
<errorFiles element, 31
name attribute, 31
errorMatches attribute, for
<successCriteria> element, 34
exact attribute
for <equals> Boolean operator, 56
for <matches> Boolean operator, 57
<exec> element, 32-33
cmd attribute, 33
<execJavas> step, 27-28
attributes, 27-28
<execNatives step, 28-34
attributes, 29
<execSubplans> step, 102
attributes, 102

executionMode attribute, for <simpleSteps>
element, 101

<executionPlans element, 97-98
attributes, 97-98
child elements, 98

<extends> element, 65

F

filter attribute, for <addFile> element, 86
<finally> element, 44-45

<folders element, 116-117

G

group attribute
for <installSpec> element, 70
for <settings> element, 110
<gui> element, 115

H
host attribute
for <component > targeter, 53
for <installedComponent > targeter, 47
for <retarget> step, 37
for <systemType> targeter, 48
for <toplevelRef > targeter
installed component, 51
repository component, 55
HostEntityName attribute type, 22
hostName attribute, for <targetRef>
element, 67
<hostSearchs> element, 119-121
<appTypeCriterias child element, 120
<criterialists> child element, 120
<physicalCriterias> child
element, 120-121
child elements, 119
<hostSearchRef > element, 119
<hostSet> element, 118-119
<hostSearchRef> child element, 119
<hostSetRef > child element, 118
<hostSetRef> element, 118
<hostType> element, 117-118

149

<hostType> element (Continued)
<varlists child element, 117-118

<icon> element, 128-129
identifier attribute type, 21
<if> step, 34-35
<ignore> element, 90
<inlineSubplans> step, 102-103
attributes, 103
input attribute, for <transforms> step, 40
<inputFile> element, 32
name attribute, 32
<inputText> element, 31
<installs step
for components, 93
for plans, 104
blockName attribute, 104
install compatibility, 18, 19
install-only steps, for components, 90-94
install path, universal format, 52
installed component targeters, 46-52
<allDependants>, 51
<allNestedRefs>, 50
<dependee>, 51
<installedComponent>, 47
<nestedRef>, 49
<superComponent>, 49
<systemService>, 48
<systemType>, 48
<targetableComponent>, 52
<thisComponent>, 49
<toplevelRef>, 50-51

<installedComponent> installed component

targeter, 47
attributes, 47
<installlList> element, 75-80
installMode attribute, for <componentRef >
element, 74
installPath attribute
for <component > element, 63
for <installedComponent > targeter, 47
for <systemType> targeter, 48
for <toplevelRef > targeter, 51
<installSpecs> element, 70-71
attributes, 70-71

<installSteps> element, 76-80
attributes, 77

inverse attribute, for <successCriterias>
element, 34

ipAddr attribute, for <agent > element, 68

<istrue> Boolean operator, 55-56
value attribute, 55

J
jarPath attribute
for <component > element, 121
for <guis> element, 115
for <icons element, 129
for <readme> element, 114
for <serverPluginJAR> element, 115

L

label attribute, for <component > element, 62
Id attribute, for <appTypeCriterias>
element, 120
limitToHostSet attribute
for <component > element, 63
for <simpleSteps> element, 101
local <var> element, 79
attributes, 79
local <varList> element, 79-80
locales, requirements, 16

M

majorVersion attribute, for <component >
element, 121

match attribute
for <criterialist> element, 120
for <subst> element, 41

<matches> Boolean operator, 57-58
attributes, 57-58

<memberList> element, 116-124
<component > child element, 121-123
<folders child element, 116-117
<hostSearchs child element, 119-121
<hostSet> child element, 118-119
<hostType> child element, 117-118

150 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<memberList> element (Continued) name attribute (Continued)

<plans> child element, 124 for <nestedRef > targeter
menultem attribute, for <pluginUI> installed component, 49
element, 128 repository component, 54
message attribute for <outputFile> element, 30
for <raises> step, 36 for <params> element, 99
for <sendCustomEvent > step, 39 for <plugin> element, 113
modifier attribute for <pluginRef> element, 116
for <component > element, 62 for <resource> element, 71
for <componentRef > element, 73 for <snapshot > element, 84
for <componentRefList> element, 72 for <sources element, 43
for <control> element, 89 for <systemServices element, 122
for <installSteps> element, 77 for <systemServices targeter, 48
for <resourceRef > element, 69 for <systemType> targeter, 48
for <snapshot > element, 84 for <targetableComponent> targeter, 52
for <uninstallSteps> element, 81 for <toplevelRef > targeter
for component <var> element, 66 installed component, 50
modifierEnum attribute type, 22 repository component, 55
ms attribute, for <appTypeCriterias> for <type> element, 65
element, 120 for <uninstallSteps> element, 82

for <varlist> element, 118
for component <param> element, 78
for component <var> element, 67
N for local <var> element, 79
name attribute for plan <var> element, 100
for <allDependants> targeter, 51 <nestedRef > installed component targeter, 49
for <component > element, 62 name attribute, 49
for <component > targeter, 53 <nestedRef > repository component
for <componentRef > element, 74 targeter, 54
for <controls> element, 89 name attribute, 54
for <createDependency> step, 91 <not > Boolean operator, 58
for <criterialList> element, 120
for <customPage> element, 129
for <dependee> targeter, 51
for <entry> element (o)
for resource descriptors, 111
for <env> element, 29
for <errorFiles element, 31
for <executionPlans> element, 98
for <folders element, 117
for <hostDSearch> element, 119
for <hostSet> element, 118
for <hostSetRef> element, 118, 119
for <hostType> element, 117
for <inputFile> element, 32
for <installedComponent > targeter, 47
for <installSpec> element, 70
for <installSteps> element, 77

onlyCompat attribute
for <installedComponent> targeter, 47
for <toplevelRef > targeter, 51
<or> Boolean operator, 59-60
output attribute, for <transforms step, 40
<outputFile> element, 30
name attribute, 30
outputMatches attribute, for
<successCriteria> element, 34
owner attribute, for <settings> element, 110
ownership attribute, for <addFile> element, 85

151

P

<param> element
for components, 78
attributes, 78
for plans, 99
attributes, 99
<paramList> element
for components, 78-79
for plans, 98-99
params attribute, for <agent > element, 68
passing parameters, 17
path attribute
for <addFile> element, 85
for <component > element, 62
for <component > targeter, 53
for <executionPlans> element, 98
for <installedComponent > targeter, 47
for <installSpec> element, 70
pathName attribute type, 21
pathReference attribute type, 21-22
pattern attribute
for <criterialist> element, 120
for <matches> Boolean operator, 57
for <urlTest> step, 46
pattern matching, in attribute values, 16-17
<pause> step, 35
positivelnteger attribute, 35
permissions attribute
for <installSpec> element, 70
for <settingss> element, 110
physical attribute, for <physicalCriteria>
element, 121
<physicalCriterias> element, 120-121
<plan>, 124
planName attribute
for <execSubplan> element, 102
for <inlineSubplans> element, 103
planPath attribute, for <execSubplan>
element, 102
planVersion attribute, for <execSubplans>
element, 102
platform attribute, for <component >
element, 63
<plugin> element, 113-114
<dependencyList> child element, 115-116
<gui> child element, 115
<memberLists> child element, 116-124
<readme> child element, 114

<plugin> element (Continued)
<serverPluginJAR> child element, 115
attributes, 113-114
child elements, 114
pluginHostEntityName attribute type, 23
pluginName attribute type, 23
<pluginRef> element, 116
<pluginUI> element, 127-128
<customPage> child element, 129-133
<icon> child element, 128-129
<sections> child element, 129-133
child elements, 128
port attribute, for <agent > element, 68
<prepare> element, 84
previousVersion attribute, for <plugins>
element, 114
processNamePattern attribute, for
<processTest> step, 36
<processTest> step, 35-36
attributes, 36
prompt attribute
for <params> element, 99
for component <param> element, 78
for component <var> element, 67

R

ra attribute, for <appTypeCriteria>
element, 120
<raise> step, 36-37
message attribute, 36-37
<readme> element, 114
readme. txt file, See <readme> element
<reboot > step, 37
positivelnteger attribute, 37
recursive attribute, for <addFile> element, 86
replace attribute, for <subst> element, 41
repository component targeters, 52-55
<allNestedRefs>, 54
<component>, 53
<nestedRef>, 54
<superComponent>, 53-54
<thisComponent>, 53
<toplevelRef>, 54-55
<resources> element, 71,123
attributes, 71
<resourceDescriptors> element, 108-109

152 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

<resourceDescriptor> element (Continued)
attributes, 109
child element, 109
<resourceRef> element, 69-71
modifier attribute, 69-70
<retargets step, 37-39
execution semantics, 38-39
host attribute, 37-38

S

schemaVersion attribute
for <plugin> element, 114
for <pluginUI> element, 128
for <resourceDescriptors> element, 109
schemaVersion attribute type, 22
<sections> element, 129-133
<entry> child element
for plug-in UI, 129-133
<sendCustomEvent> step, 39
message attribute, 39
<serverPluginJARs> element, 115
<settings> element, 110
attributes, 110
<shells element, 33
cmd attribute, 33
simple plan-only steps
<installs, 104
<uninstalls, 104-105
<simpleSteps> element, 100-101
attributes, 101
<snapshot > element, attributes, 84
<snapshotList> element, 82-88
softwareVendor attribute, for <component >
element, 62
<source> element, 42-43
attributes, 42-43
status attribute, for <successCriterias>
element, 34
steps
<calls>, 26-27
<checkDependency>, 27
<createDependency>, 90-92
<createSnapshot>, 92-93
<deployResource>, 93-94
<execJava>, 27-28
<execNatives, 28-34

steps (Continued)
<execSubplans>, 102
<if>, 34-35
<inlineSubplan>, 102-103
<install>
for components, 93
for plans, 104
<pause>, 35
<processTest>, 35-36
<raise>, 36-37
<reboots, 37
<retarget>, 37-39
<sendCustomEvent>, 39
<transforms, 39-43
<trys>, 43-45
<undeployResourceStep>, 94-95
<uninstalls>
for components, 94
for plans, 104-105
<urlTest>, 46
for composite plans only, 102-103
for plans and components, 25-46
for simple plans only, 104-105
<stylesheet> element, 40-41
<subst> element, 41
attributes, 41-42
<successCriterias> element, 33-34
attributes, 34
<superComponent > installed component
targeter, 49
<superComponent > repository component
targeter, 53-54
systemName attribute type, 21
<systemServices element, 121-122
<systemServices installed component
targeter, 48
name attribute, 48
<systemType> installed component
targeter, 48
attributes, 48

T

targetable components, 20
<targetableComponent > installed
component targeter, 52
name attribute, 52

153

targeters
installed component, 46-52
repository component, 52-55
<targetRef > element, 67-68
attributes, 67-68
<thens> element, 35
<thisComponent > installed component
targeter, 49
<thisComponent > repository component
targeter, 53
timeout attribute
for <execJavas> step, 28
for <execNatives> step, 29
for <reboot > step, 37
timeoutSecs attribute
for <processTest> step, 36
for <urlTest> step, 46
tooltip attribute, for <pluginUI> element, 128
<toplevelRef > installed component
targeter, 50-51
attributes, 50-51
<toplevelRef> repository component
targeter, 54-55
attributes, 55
<transforms> step, 39-43
attributes, 40
<try> step, 43-45
<type> element, 65
name attribute, 65
type attribute, for <sources> element, 42
typeName attribute, for <targetRef>
element, 68

U

<uninstall> step

for components, 94

for plans, 104-105

blockName attribute, 105

uninstall-only steps, for components, 94-95
<uninstallList> element, 80-82
<uninstallSteps> element, 80-82

attributes, 81-82
universal install path format, 52
unsupported attribute, for <hostSet>

element, 118
URL attribute, for <urlTest> step, 46

<urlTest> step, 46
attributes, 46
user attribute
for <installSpec> element, 70
for <processTest > step, 36
userToRunAs attribute, for <execNatives>
step, 29

\'}

value attribute
for <envs> element, 29
for <istrues> Boolean operator, 55
for <matches> Boolean operator, 57
valuel attribute, for <equals> Boolean
operator, 56
value2 attribute, for <equals> Boolean
operator, 56
<var> element
for components, 66-67
attributes, 66-67
for plans, 100
attributes, 100
variables, and parameter passing, 17
<varlist> element, 117-118
<varList> element, 99-100
child of <component>, 65-67
vendor attribute, for <plugin> element, 113
version attribute
for <component > element, 62
for <component > targeter, 53
for <executionPlans> element, 98
for <installedComponent > targeter, 47
for <plugin> element, 113
for <pluginRef> element, 116
for <resources element, 71
version attribute type, 22
versionOp attribute
for <installedComponent > targeter, 47
for <toplevelRef> targeter, 50
virtual attribute, for <physicalCriteria>
element, 121

154 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

X

xmlns attribute

for <component > element, 62

for <executionPlans> element, 97

for <plugin> element, 114

for <pluginUI> element, 128

for <resourceDescriptors> element, 109
xmlns:xsi attribute

for <component> element, 62

for <executionPlans> element, 98

for <plugin> element, 114

for <pluginUI> element, 128

for <resourceDescriptors> element, 109
xsi:schemaLocation attribute

for <component > element, 62

for <executionPlans> element, 98

for <plugin> element, 114

for <pluginUI> element, 128

for <resourceDescriptor> element, 109

155

156 Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide * September 2005

	Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Third-Party Web Site References
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	XML Schema Overview
	Service Provisioning Languages and Schemas
	Requirements for Locales and Character Sets
	Pattern Matching
	Variables and Parameter Passing
	Component Compatibility
	Call Compatibility
	Install Compatibility

	Targetable Components
	Common Attribute Types
	entityName Attribute Type
	systemName Attribute Type
	identifier Attribute Type
	pathName Attribute Type
	pathReference Attribute Type
	modifierEnum Attribute Type
	accessEnum Attribute Type
	version Attribute Type
	schemaVersion Attribute Type
	HostEntityName Attribute Type
	pluginName Attribute Type
	pluginHostEntityName Attribute Type

	Shared Schema Used by Components and Simple Plans
	Shared Steps
	<call> Step
	Attributes for the <call> Step
	<argList> Element
	Attributes for the <argList> Element

	<checkDependency> Step
	<execJava> Step
	Attributes for the <execJava> Step

	<execNative> Step
	Attributes for the <execNative> Step
	<env> Element
	Attributes for the <env> Element

	<background> Element
	<outputFile> Element
	Attributes for the <outputFile> Element

	<errorFile> Element
	Attributes for the <errorFile> Element

	<inputText> Element
	<inputFile> Element
	Attributes for the <inputFile> Element

	<exec> Element
	Attributes for the <exec> Element

	<shell> Element
	Attributes for the <shell> Element

	<successCriteria> Element
	Attributes for the <successCriteria> Element

	<if> Step
	<condition> Element
	<then> Element
	<else> Element

	<pause> Step
	<processTest> Step
	Attributes for the <processTest> Step

	<raise> Step
	Attributes for the <raise> Step

	MS Windows: <reboot> Step
	<retarget> Step
	Attributes for the <retarget> Step
	<retarget> Step Execution Semantics

	<sendCustomEvent> Step
	<transform> Step
	Attributes for the <transform> Step
	<stylesheet> Element
	<subst> Element
	Attributes for the <subst> Element
	<source> Element
	Attributes for the <source> Element

	<try> Step
	<block> Element
	<catch> Element
	<finally> Element

	<urlTest> Step
	Attributes for the <urlTest> Step

	Installed Component Targeters
	<installedComponent> Installed Component Targeter
	Attributes for the <installedComponent> Targeter

	<systemService> Installed Component Targeter
	Attributes for the <systemService> Targeter

	<systemType> Installed Component Targeter
	Attributes for the <systemType> Targeter

	<thisComponent> Installed Component Targeter
	<superComponent> Installed Component Targeter
	<nestedRef> Installed Component Targeter
	Attributes for the <nestedRef> Targeter

	<allNestedRefs> Installed Component Targeter
	<toplevelRef> Installed Component Targeter
	Attributes for the <toplevelRef> Targeter

	<dependee> Installed Component Targeter
	<allDependants> Installed Component Targeter
	<targetableComponent> Installed Component Targeter
	Universal Install Path Format

	Repository Component Targeters
	<component> Repository Component Targeter
	Attributes for the <component> Targeter

	<thisComponent> Repository Component Targeter
	<superComponent> Repository Component Targeter
	<nestedRef> Repository Component Targeter
	<allNestedRefs> Repository Component Targeter
	<toplevelRef> Repository Component Targeter
	Attributes for the <toplevelRef> Targeter

	Boolean Operators
	<istrue> Boolean Operator
	Attributes for the <istrue> Boolean Operator

	<equals> Boolean Operator
	Attributes for the <equals> Boolean Operator

	<matches> Boolean Operator
	Attributes for the <matches> Boolean Operator

	<not> Boolean Operator
	<and> Boolean Operator
	<or> Boolean Operator

	Component Schema
	<component> Element Overview
	Attributes for the <component> Element
	Child Elements of the <component> Element

	<extends> Element
	<type> Element

	<varList> Element
	<var> Element
	Attributes for the <var> Element

	<targetRef> Element
	Attributes for the <targetRef> Element
	<agent> Element
	Attributes for the <agent> Element

	<resourceRef> Element
	Attributes for the <resourceRef> Element
	<installSpec> Element
	Attributes for the <installSpec> Element

	<resource> Element
	Attributes for the <resource> Element

	<componentRefList> Element
	Attributes for the <componentRefList> Element
	<componentRef> Element
	Attributes for the <componentRef> Element
	<argList> Element
	<component> Element

	<installList> Element
	<installSteps> Element
	Attributes for the <installSteps> Element
	<paramList> Element
	<param> Element

	Local <varList> Element
	Local <var> Element

	<uninstallList> Element
	<uninstallSteps> Element
	Attributes for the <uninstallSteps> Element
	<dependantCleanup> Element

	<snapshotList> Element
	<snapshot> Element
	Attributes for the <snapshot> Element
	<prepare> Element
	<capture> Element
	<addFile> Element
	<addSnapshot> Element
	<addResource> Element

	<cleanup> Element

	<controlList> Element
	<control> Element
	Attributes for the <control> Element

	<diff> Element
	<ignore> Element

	Install-Only Steps for Components
	<createDependency> Step
	Attributes for the <createDependency> Step
	Uninstallation Implications for the <createDependency> Step
	Reinstallation Implications for the <createDependency> Step
	Naming Conventions for the <createDependency> Step

	<createSnapshot> Step
	Attributes for the <createSnapshot> Step

	<install> Step
	<deployResource> Step

	Uninstall-Only Steps for Components
	<uninstall> Step
	<undeployResource> Step

	Plan Schema
	<executionPlan> Element Overview
	Attributes for the <executionPlan> Element
	Child Elements of the <executionPlan> Element

	<paramList> Element
	<param> Element
	Attributes for the <param> Element

	<varList> Element
	<var> Element
	Attributes for the <var> Element

	<simpleSteps> Element
	Attributes for the <simpleSteps> Element

	<compositeSteps> Element
	Plan-Only Steps for Composite Plans
	<execSubplan> Step
	Attributes for the <execSubplan> Step

	<inlineSubplan> Step
	Attributes for the <inlineSubplan> Step

	Plan-Only Steps for Simple Plans
	<install> Step
	Attributes for the <install> Step

	<uninstall> Step
	Attributes for the <uninstall> Step

	Resource Descriptor Schema
	Using a Resource Descriptor File
	<resourceDescriptor> Element Overview
	Attributes for the <resourceDescriptor> Element
	Child Elements of the <resourceDescriptor> Element

	<entryList> Element
	<defaultEntry> Element
	<settings> Element
	Attributes for the <settings> Element

	<entry> Element
	Attributes for the <entry> Element

	Sample XML for the <resourceDescriptor> Element

	Plug-In Descriptor Schema
	<plugin> Element Overview
	Attributes for the <plugin> Element
	Child Elements of the <plugin> Element

	<readme> Element
	<serverPluginJAR> Element
	<gui> Element
	<dependencyList> Element
	<pluginRef> Element

	<memberList> Element
	<folder> Element
	Attributes for the <folder> Element

	<hostType> Element
	Attributes for the <hostType> Element
	<varlist> Element

	<hostSet> Element
	Attributes for the <hostSet> Element
	<hostSetRef> Element
	Attributes for the <hostSetRef> Element

	<hostSearchRef> Element
	Attributes for the <hostSearchRef> Element

	<hostSearch> Element
	Attributes for the <hostSearch> Element
	<criteriaList> Element
	Attributes for the <criteriaList> Element

	<appTypeCriteria> Element
	Attributes for the <appTypeCriteria> Element

	<physicalCriteria> Element
	Attributes for the <physicalCriteria> Element

	<component> Element
	Attributes for the <component> Element
	<systemService> Element
	Attributes for the <systemService> Element

	<componentType> Element
	Attributes for the <componentType> Element

	<resource> Element
	Attributes for the <resource> Element

	<plan> Element
	Attributes for the <plan> Element

	Sample XML for the <plugin> Element

	Plug-In User Interface Schema
	<pluginUI> Element Overview
	Attributes for the <pluginUI> Element
	Child Elements of the <pluginUI> Element

	<icon> Element
	Attributes for the <icon> Element

	<customPage> Element
	Attributes for the <customPage> Element
	<section> Element
	<entry> Element
	<action> Element

	Sample XML for the <pluginUI> Element

	Component Change Compatibility
	Changes That Can Be Made To Components
	<component> Element Changes
	platform Attribute Changes
	limitToHostSet Attribute Changes
	<extends> Element Changes
	Changes to Variables
	<targetRef> Element Changes
	<componentRefList> Element Changes
	<componentRef> Element Changes
	Changes to Resources
	<install>, <control>, and <uninstall> Block Changes
	Changes to <snapshot> Blocks
	Changes to <ignore> Child of <diff> Element

	Index

