
Sun N1 Service Provisioning
System 5.1 Plug-in Development

Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–1662–10
September 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, Javadoc, N1, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, Javadoc, N1 et Solaris sont des marques de fabrique ou des
marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

050829@12762

Contents

Preface 7

1 Overview of N1 Service Provisioning System Plug-Ins 11
Overview of Sun N1 Service Provisioning System 11
Overview of the Solution Development Environment 12
Introduction to Plug-Ins 13

XML Schemas 13
Parts of a Plug-In 14
Plug-In Packaging 14

Recommended Naming 15
Installation Considerations 15
Certificates 16
Security Considerations 16
Plug-In readme.txt File 16

2 Creating a Plug-In 17
Installing the Plug-In Development Environment 17
Creating a Plug-In: Process Overview 18
Plug-In Directory Structure 19
Developing a Model 21
Creating Components and Plans 22

Building Components 22
Defining Component Types 25

� How to Create a Component Type 25
Creating Plans 26

� How to Generate a Plan 30

3

Using Native Commands in Plans and Components (<execNative> Step) 31

Calling Java-based Objects in Plans and Components (<execJava>) 32

Conditional Elements 33

Error Handling 34

Limiting Hosts for a Plug-In 35

Enabling Users to Browse and Export Files 36

Browsing and Exporting: Process Overview 37

Browse Function 38

Export Function 38

Defining the Plug-In 38

Defining an Interface to the Plug-In 39

Packaging the Solution 40

Testing the Solution 42

3 Using the Application Programming Interface 43

Component APIs 43

Browsing Function 46

Exporting Function 48

execJava API 50

ExecutorFactory Interface 51

AgentContext Method 51

Executor Interface 51

execJava Examples 52

A Example Plug-In 55

Description of the Sample Plug-In 55

Plug-In Descriptor File 56

Components 57

Index 59

4 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

Examples

EXAMPLE 2–1 XML for a Simple Component 22

EXAMPLE 2–2 Variable Definitions in XML 24

EXAMPLE 2–3 XML for a Simple Plan 27

EXAMPLE 2–4 XML for a Composite Plan 27

EXAMPLE 2–5 XML for a More Sophisticated Plan 27

EXAMPLE 2–6 Using <execNative> to Invoke a Simple Command 31

EXAMPLE 2–7 Using <execNative> to Start an Application 31

EXAMPLE 2–8 Using <execJava> in Component XML 32

EXAMPLE 2–9 Using <execJava> in Plan XML 33

EXAMPLE 2–10 XML for <if> Element 33

EXAMPLE 2–11 XML for <try> Element 34

EXAMPLE 2–12 Host Type Definition in plugin-descriptor.xml File 35

EXAMPLE 2–13 Host Set Definition in plugin-descriptor.xml File 35

EXAMPLE 2–14 Host Search Definition in plugin-descriptor.xml File 36

EXAMPLE 2–15 Sample Plug-In Descriptor File 38

EXAMPLE 2–16 Sample Plug-In Interface File 40

EXAMPLE 2–17 Creating a JAR File That Contains Subdirectories 41

EXAMPLE 3–1 Browser Filter 47

EXAMPLE 3–2 ComponentExporter 49

EXAMPLE 3–3 execJava in Java Code 52

EXAMPLE 3–4 Another execJava Code Sample 52

5

6 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

Preface

The Sun N1™ Service Provisioning System 5.1 Plug-In Development Guide explains how
to create plug-in solutions.

Who Should Use This Book
The audience for this book includes Sun™ internal developers, partners, and ISVs
who need to develop solutions for applications to be provisioned through the Sun N1
Service Provisioning System (N1 SPS) software. These readers should be familiar with
the following items:

� Networking and data center environments

� TheN1 SPS product

� Standard Unix® and Microsoft Windows commands and utilities, as appropriate
for the plug-in being developed

� Java™ programming and standards

� XML and standard XML editors and parsers

Before You Read This Book
To become familiar with theN1 SPS product, read the following documentation:

� Sun N1 Service Provisioning System 5.1 Installation Guide

� Sun N1 Service Provisioning System 5.1 System Administration Guide

� Sun N1 Service Provisioning System 5.1 Plan and Component Developer’s Guide

7

How This Book Is Organized
Chapter 1 introduces you to the concept of plug-ins for the N1 SPS product.

Chapter 2 describes the process and procedures that you use to create a plug-in.

Chapter 3 explains the Java-based APIs that you can use for your plug-in.

Appendix A provides sample XML and Java examples for a plug-in.

Documentation, Support, and Training

Sun Function URL Description

Documentation http://www.sun.com/documentation/ Download PDF and HTML
documents, and order
printed documents

Support and
Training

http://www.sun.com/supportraining/ Obtain technical support,
download patches, and
learn about Sun courses

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

8 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

http://www.sun.com/documentation/
http://www.sun.com/supportraining/

TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or
value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized
items appear bold online.]

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

9

10 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

CHAPTER 1

Overview of N1 Service Provisioning
System Plug-Ins

This chapter provides a brief introduction to the Sun N1 Service Provisioning System
(N1 SPS) environment and explains how plug-ins fit into that environment. The
chapter contains the following information:

� “Overview of Sun N1 Service Provisioning System” on page 11
� “Overview of the Solution Development Environment” on page 12
� “Introduction to Plug-Ins” on page 13
� “Parts of a Plug-In” on page 14
� “Plug-In Packaging” on page 14

Overview of Sun N1 Service
Provisioning System
The N1 SPS product is an object oriented, XML-based, distributed environment to
solve enterprise system configuration, service provisioning, and application
deployment needs. The provisioning system provides an extensible framework and
environment that at a minimum provides the following functionality:

� Common framework to build service provisioning automation
� Maintains an audit log of changes over time
� Compares the current state of target hosts with their expected state
� Simulates a change to identify configuration problems
� Implements a set of rules to govern automation execution
� Notifies system administrators of problems and actions
� Automatically manages version control

11

The N1 SPS software implements a distributed environment in which object-oriented
components are authored in XML scripts and orchestrated to follow execution plans
for distribution, provisioning, and installation needs. For more information about N1
SPS basic concepts and terminology, see Chapter 1, “N1 Service Provisioning
System 5.1 Overview,” in Sun N1 Service Provisioning System 5.1 Installation Guide.

Overview of the Solution Development
Environment
You can use the provisioning system to build system configuration, service
provisioning, and application deployment solutions. At a very high level, you follow
this simple process:

1. Build a set of components. This step might involve any of the following sub-tasks:

a. Defining application-specific component types
b. Naming each component
c. Assigning a component type to each component
d. Identifying any source files and directories that a component needs
e. Defining specific tasks for that component

2. Create a plan to direct the deployment of the components. Each plan includes the
following information:

a. A list of components
b. A sequence in which the components are to run
c. A list of any variables that the components need
d. A set of target hosts to which the components should be deployed

3. Create a plug-in that enables others to use the components and plans that you
developed for a given platform or application. This task involves four main
sub-tasks:

a. Installing the core plug-in development files

b. Using the XML plug-in definition schema to provide an interface for the users

c. Using the Java-based APIs to provide component browsers and exporters, and
to define custom execJava steps.

Note – If you need to use Java to develop your plug-in, use the NetBeans
product. For more information, see http://www.netbeans.org/.

d. Packaging the components, plans, resources, plug-in definition files, and APIs
for delivery to other N1 SPS users

12 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

http://www.netbeans.org/

Introduction to Plug-Ins
In general usage, plug-in applications are programs that can easily be installed and
used as part of your web browser. A plug-in application is recognized automatically
by the browser and its function is integrated into the main HTML file that is being
presented. Web browser plug-in applications generally play sound or motion video or
perform some other functions.

In the N1 SPS environment, a plug-in differs only slightly in concept from the general
usage. A plug-in for the N1 SPS product is a packaged solution that extends the
provisioning capability of the product for a specific platform, application, or
environment. For example, you might create a plug-in solution for a specific
application, such as Oracle 8i, or for some feature of an operating system, such as
Solaris Zones.

A plug–in includes all the relevant data needed to support a new custom application.
The contents of the plug–in are described in the plug–in descriptor file. This file is
located in a standard place within the plug–in packaging structure.

The plug-in descriptor contains meta-data about the plug-in including name,
description, vendor, version number, previous version, and dependencies. In addition,
the descriptor may contain a pointer to a readme.txt file. The descriptor also
contains instructions for creating components, plans, folders, host types, host sets, host
searches, resources, component types, and system services. The descriptor may
optionally define a library of server-side plug-in code and a set of GUI extensions for
the plug-in.

Objects defined in the plug-in are loaded in the order in which they are defined within
the descriptor file. Objects defined in the plug-in may only reference objects defined
earlier in the plug-in, or in a plug-in on which this plug-in directly depends. This
dependency must be declared in the plug-in descriptor.

XML Schemas
In the N1 SPS environment, plans, components, and other parts of the solution are
defined through XML. You can use several XML schemas to define your plug-in
solution. The following schemas are provided in the docs/xml directory of the
product media:

� plugin.xsd – Plug-in schema used to describe the parts of the plug-in through
the plug-in descriptor file

� pluginUI.xsd – Plug-in user interface schema used to define an interface to the
plug-in within the N1 SPS browser interface

� component.xsd – Component schema used to define components and
component types

Chapter 1 • Overview of N1 Service Provisioning System Plug-Ins 13

� plan.xsd – Plan schema used to define execution plans

� planCompShared.xsd – Schema that contains elements that are common to plans
and components

This document includes examples that illustrate the XML schemas. For complete
reference information about the elements and attributes used in the XML schemas, see
Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide.

Parts of a Plug-In
A plug-in solution includes all the relevant data needed to support a new custom
application. This data includes first-class provisioning system objects:

� Components
� Component types
� Folders
� Host searches
� Host sets
� Host types
� Plans
� System services

In addition, the plug-in can also include auxiliary objects for use by the system, such
as the following objects:

� Resources
� Server-side plug-in code (using Java-based APIs)
� Browser interface extensions

Plug-In Packaging
A plug-in is packaged as a Java Archive (JAR) file. The contents and instructions for
interpreting the contents of the JAR file are contained in an optionally signed
plugin-descriptor.xml file located in the top-level directory of the JAR file. The
syntax of the plug-in descriptor is specified using XML Schema as per the May 2, 2001
W3C Recommendation
(http://www.w3.org/TR/2001/xmlschema-0-20010502/). The schema can be
used in conjunction with a validating parser to determine the syntactical validity of a
plug-in descriptor file.

14 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

http://www.w3.org/TR/2001/xmlschema-0-20010502/

Recommended Naming
To avoid potential conflicts, you should use a Java package naming convention for
plug-ins (com.companyname.productname, for example, com.sun.solaris). Any
objects that can be in a folder should be placed in a folder directory structure that
mirrors the plug-in name, such as /com/sun/solaris. The plug-in JAR file name
should use the convention pluginname_version.jar, for example
com.sun.solaris_1.1.jar.

Installation Considerations
To install a plug-in, service provisioning administrators load the plug-in JAR file.

Plug-In Upgrade Considerations
To upgrade from an existing version of a plug-in to a newer version of a plug-in, you
provide a patch JAR file that contains only the contents needed for the patch . For
example, if you only changed two component types between version 1.2 and version
1.3, then your upgrade patch would contain only those new component type XML
files. Define your patch so that it can be applied in series to upgrade multiple versions
. For example, to upgrade from version 1.0 to version 1.2, a user would first apply the
upgrade from 1.0 to 1.1, then apply the upgrade from version 1.1 to version 1.2.
Update patches are strictly additive with respect to the previously loaded version of
the plug-in. You can also create a patch that would upgrade from a specific existing
version (for example, 1.0) to a specific newer version (for example, 1.3). However, you
cannot create a patch to upgrade from any arbitrary version to a higher version.

Uninstalling Plug-In Versions
You cannot uninstall an individual patch of a plug-in, and you cannot delete objects
created by previous versions of a plug-in. To remove this content, you would need to
uninstall the current version of the plug-in and reinstall the older version of the
plug-in. Alternatively, you could create an anti-patch that would install the old plug-in
version’s code while creating new versions of the plug-in defined objects.

Component Versions and Dependencies
Objects that are defined by a plug-in are loaded at installation time in the order in
which they are defined in the plug-in descriptor file. These objects may only reference
other objects that were defined either earlier in the plug-in or in a plug-in on which
the defining plug-in directly depends. Any dependencies must be declared in the
plug-in descriptor file. If a plug-in attempts to create a versioned object that matches a

Chapter 1 • Overview of N1 Service Provisioning System Plug-Ins 15

same typed and named object existing in the system, a new version of the object is
created. The minor version of this object is incremented unless the plug-in definition
explicitly defines the object as requiring a major version increment. If a plug-in
attempts to create a non-versioned object that matches a same typed and named
existing object, the plug-in object replaces the previous definition of the object. In both
the versioned and unversioned cases, the existing object must have been created by a
prior version of the same plug-in that is attempting to create the new version of the
object.

Certificates
If the plug-in descriptor file is signed for one version of a plug-in, then the file must be
signed for any subsequent versions of that plug-in. Use the standard jarsigner tool
to sign the plug-in descriptor file. If the file is signed, the signature will be verified
against the public certificate when the plug-in is installed. When upgrading a plug-in,
the certificate used to sign the newer version is matched against the certificate used to
sign the existing version in the system. The upgrade will not succeed if certificates
have expired between plug-in versions.

You should sign all entries in the plug-in JAR (not just the plug-in descriptor file) with
the same certificate. Only a single certificate may be attached to each entry.

Security Considerations
A plug-in does not include facilities for defining groups or permissions. This is
because permission management depends highly on the environment into which the
plug-in is loaded, and cannot be effectively modeled for all environments.

The administrator who adds the plug-in must decide what permissions are
appropriate. The general expectation is that plug-ins are designed to be used by
everyone. However, certain clients may wish to limit the use of a plug-in to a certain
group. Plug-ins may also have certain folders that are meant to have different
execution permissions.

Plug-In readme.txt File
You can provide a readme.txt file with your plug-in, if needed. The plug-in
readme.txt file is intended as the holding place for instructions on configuring the
system for a plug-in. In general, the readme.txt file should document the
permissions, session variables, and other instance-specific settings required for the
plug-in to function. Specifically, the readme.txt should contain instructions for
setting permissions on plug-in created folders, as well as enumerating expected
session variables, their descriptions and encryption methods.

16 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

CHAPTER 2

Creating a Plug-In

This chapter explains how to use the plug-in framework to create a provisioning
solution for a specific application or platform. The chapter includes the following
information:

� “Installing the Plug-In Development Environment” on page 17
� “Creating a Plug-In: Process Overview” on page 18
� “Plug-In Directory Structure” on page 19
� “Developing a Model” on page 21
� “Creating Components and Plans” on page 22
� “Limiting Hosts for a Plug-In” on page 35
� “Enabling Users to Browse and Export Files” on page 36
� “Defining the Plug-In” on page 38
� “Defining an Interface to the Plug-In” on page 39
� “Packaging the Solution” on page 40
� “Testing the Solution” on page 42

Installing the Plug-In Development
Environment
Most of the pieces that you need to create a plug-in solution are part of the standard
Sun N1 Service Provisioning System software. However, you must install a few
additional software ingredients to provide you with a complete development solution.
These key pieces are contained in the plugin-core.jar file on the Sun N1 Service
Provisioning System 5.1 Supplement CD.

17

Note – Once you place the plugin-core.jar file where you want, be sure to modify
the classpath for your Java tools to find the file.

The plugin-core.jar contains three packages that provide file system-based
component browse and export classes:

com.sun.n1.sps.pluginimpl.system
Includes several constants that identify supported platforms

com.sun.n1.sps.pluginimpl.system.browse
Includes five classes that you can use to support file system-based browsing
functionality:

� FileDisplay – A display appropriate for file system files
� FilesystemBrowser – A hierarchy browser for files ystems
� FilesystemBrowserFactory – Factory to return types sufficient for browsing

a file system as a hierarchy
� FilesystemExtensionFilter – A FilesystemFilter that filters based on

the file extension suffix
� FilesystemFilter – Base class for all file system filters

com.sun.n1.sps.pluginimpl.system.export
Provides one class FilesystemExporter that you can use to export a simple
filesystem object

Creating a Plug-In: Process Overview
Developing a plug-in solution can be simple or complex, depending on the needs of
your environment and the application or platform to which the solution applies. A
plug-in solution can involve any of the following segments of the Sun N1 Service
Provisioning System environment:

� Working with variables and configuration templates

� Enabling users to browse through files and export those files to the master server

� Executing Java applications through the execJava feature

� Creating and modifying components and plans

� Packaging the plug-in and defining an interface for it through the plug-in XML

The general process that you follow includes the following steps:

1. Develop a general model for the platform or application.

2. Create plans and components to implement the model.

18 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

3. Define specific host types, host sets, and host searches to easily constrain the
plug-in.

4. Define an interface for the application within Sun N1 Service Provisioning System.

5. Package the plans, components, resources, and interface definition into a Java
Archive (JAR) file.

6. Test the plug-in.

Plug-In Directory Structure
As you develop your solution using the plug-in framework, you need to pay attention
to where files are placed. Having an accurate record of the files is essential when you
package your solution into a JAR file. The following list illustrates a recommended
directory structure for plug-ins:

META-INF
components
plans
resources
gui
plugin-descriptor.xml

readme.txt

META-INF directory Contains the mainfest of pieces of the plug-in.

components directory Contains a series of subdirectories that contain
component and component type XML definition
files. Subdirectories follow the structure of the
plug-in name. For example, if the plug-in name is
com.sun.solaris, the components
subdirectories would be com, then sun then
solaris. For example, the actual component
XML files would live inside the
components/com/sun/solaris directory.

Chapter 2 • Creating a Plug-In 19

Note – You might want to wrap the components,
plans, and resources directories into a larger
directory structure for a given plug-in version. For
example, to differentiate between versions 1.0 and
1.1 of a given plug-in, you might use directory
structures such as
1.0/components/com/sun/solaris/Project.xml
and
1.1/components/com/sun/solaris/Project.xml

plans directory Contains a series of subdirectories that contain
execution plan XML definition files.
Subdirectories follow the structure of the plug-in
name. For example, if the plug-in name is
com.sun.solaris, the plans subdirectories
would be com, then sun then solaris. For
example, the actual execution plan XML files
would live inside the plans/com/sun/solaris
directory.

resources directory Contains a series of subdirectories that contain
resource files. Subdirectories follow the structure
of the plug-in name. For example, if the plug-in
name is com.sun.solaris, the resource
subdirectories would be com, then sun then
solaris. For example, the actual resource files
would live inside the
resources/com/sun/solaris directory.

gui directory Contains the user interface descriptor file
(pluginUI.xml) and files for any icons that need
to be displayed in the user interface. See Chapter
7, “Plug-In User Interface Schema,” in Sun N1
Service Provisioning System 5.1 XML Schema
Reference Guide for more information about the
elements in the user interface descriptor file.

plugin-descriptor.xml file XML file that describes the plug-in. See Chapter 6,
“Plug-In Description Schema,” in Sun N1 Service
Provisioning System 5.1 XML Schema Reference
Guidefor more information about the elements in
the plug-in descriptor file.

readme.txt file Text file that contains any instructions on
configuring the system for the plug-in.

20 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

Developing a Model
Before you build your plug-in solution, you need to do some planning and modeling
work. The following questions indicate some common areas to consider:

� What is the expected environment in which you want this solution to be used? For
example, operating system requirements, application version requirements, and so
on.

� Do you need to account for any variable values, such as path names, when
provisioning this platform or application?

� What files need to be deployed to the provisionable hosts to enable this platform or
application to function? For example, configuration files.

� Do you need to define any new component types for this solution, or can you use
the existing component types? Many simple solutions can use existing component
types, such as system#file and system#directory. If necessary, however, you
can define your own component types that extend the existing component types.

� Will a user need to browse for and create instances of a component from a remote
system?

� What is the flow of tasks you need your users to be able to perform?

The following illustrates one possible modelling flow, based on the flow for deploying
Java™ 2 Platform, Enterprise Edition (J2EE) :

1. Deploy infrastructure.

� Execute installer binaries to install infrastructure
� Install targetable components

2. Capture all application objects as components, such as the following objects:

� Java Archive (JAR) files, Enterprise Archive (EAR) files, Web Archive (WAR)
files, Enterprise Java Beans (EJB) files

� JDBC connection and data sources

3. Create an “environment” component that contains environment settings, such as
the following:

� Java Virtual Machine (JVM) settings
� Session management settings

4. Configure application and environment components

5. Deploy components into targetable components

Chapter 2 • Creating a Plug-In 21

Creating Components and Plans
To be able to effectively reproduce a given solution across an enterprise, you need to
define components, resources, and plans that identify common parts of the solution. In
addition, you need to define a process for deploying them. For more information
about plans, components, and how to manage them, see Sun N1 Service Provisioning
System 5.1 Plan and Component Developer’s Guide.

Building Components
A key piece in developing your solution is creating components. In the Sun N1 Service
Provisioning System environment, components are deployable objects. Some examples
of the objects you might have in components include the following:

� A collection of files and directories
� Archive files, such as JAR files or EAR files
� Complete applications, including all needed resources
� Specific application resources, such as configuration files or documentation

For information about creating components by using the Sun N1 Service Provisioning
System browser interface, see “How to Create a Component” in Sun N1 Service
Provisioning System 5.1 Plan and Component Developer’s Guide.

Simple and Composite Components
Simple components contain a single physical resource, such as a file, directory, archive
file, or application. Simple components do not reference other components.

Composite components only reference other simple or composite components.
Composite components do not directly contain any physical resources.

EXAMPLE 2–1 XML for a Simple Component

The following XML example shows a simple component that extends the system
component type system#CR Simple Base to contain a JAR file. For more
information about the specific elements and attributes used to define a component, see
Chapter 3, “Component Schema,” in Sun N1 Service Provisioning System 5.1 XML
Schema Reference Guide.

<?xml version="1.0" encoding="UTF-8"?>
<component xmlns=’http://www.sun.com/schema/SPS’ name=’plugin-core.jar’

version=’5.1’ description=’Jar file implementation of core plugin services’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’ author=’system’

22 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

EXAMPLE 2–1 XML for a Simple Component (Continued)

softwareVendor=’Sun Microsystems’ path=’/system’
xsi:schemaLocation=’http://www.sun.com/schema/SPS component.xsd’>

<extends>
<type name=’system#CR Simple Base’>
</type>

</extends>
<resourceRef>
<resource name=’/system/plugin-core.jar’ version=’1.1’>
</resource>

</resourceRef>

</component>

Variables
When you create a component or plan, you can define variables to use when that
component is deployed or the plan is executed. Many component types include
common variables, such as installPath, which defines where to install the component.
The value of the installPath variable is determined for a given host when the
component is installed on that host.

Some common variables that you might see include the following:

� installPath – Path to where the component, plug-in, or other resource file is installed

� installName – Name of item being installed

� installUser – Login name of the user who installed the component, plug-in, or other
resource file

� pluginClasspath – Path to where the classes that apply to a specific plug-in are
installed

A variable can refer to another variable, such as the variable of a container component.
For example, the value of the installPath variable for a simple component could be the
value of the installPath variable for its parent container component.

When defined, each variable must have a name and a default value attribute. The
default value can be obtained from several places:

� A literal string
� The host, using the target keyword
� Another component, using the component keyword
� The user’s session, using the session keyword

For detailed information about using these attributes, see “Types of Variables
Available for Substitution” in Sun N1 Service Provisioning System 5.1 Plan and
Component Developer’s Guide.

Chapter 2 • Creating a Plug-In 23

You can define a variable through the browser interface or directly in the XML file.
Within the XML file, variables are defined using the <var> element and contained
within a <varList> element.

EXAMPLE 2–2 Variable Definitions in XML

The following XML fragment shows several variable definitions.

<varList>
<var name=’installPath’

default=’:[target:sys.raDataDir]:[/]systemcomps’>
</var>
<var name=’pluginClasspath’

default=’:[installPath]:[/]plugin-core.jar’>
</var>
<var name=’fileBrowser’

default=’com.sun.n1.sps.pluginimpl.system.browse.FilesystemBrowserFactory’>
</var>
<var name=’directoryBrowser’

default=’com.sun.n1.sps.pluginimpl.system.browse.FilesystemBrowserFactory’>
</var>
<var name=’symlinkBrowser’

default=’com.sun.n1.sps.pluginimpl.system.browse.FilesystemBrowserFactory’>
</var>

</varList>

Configuration Templates
A configuration template is a special type of file component. The configuration template
enables you to do token substitution in a file that you are deploying. An example of
this usage would be deploying the DNS /etc/resolv.conf file. The goal for
deployment might be to have the file use a variable substitution and use a host type
attribute to define the closest DNS server. The configuration template might look like
the following example:

search :[search_path]
nameserver :[primary_dns]

nameserver :[secondary_dns]

In this case, the configuration template would automatically create component
variables called search_path, primary_dns, secondary_dns. Then you could use variable
substitutions in plans or component controls to provide appropriate values.

� How to Define a Configuration Template

� To designate a file component as a configuration template, select “configuration
template” in the Options section of the Component Details page.

Step

24 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

Defining Component Types
Many basic component types are included with the Sun N1 Service Provisioning
System product. Some of these basic component types include such items as files and
directories. You can also define specific component types for use with a specific
application or platform. For example, perhaps your application has some specific file
types that would always exist for this application. You could then define a new
component type for your application that is based on the system#CR Simple Base
component type but extends that component type for your specific application.

The component type definition is stored in an XML file like any other component XML
file. When you define your plug-in, you provide a path to the file for the backing
component in the <component> element in the descriptor file. You use the
<componentType> child element of the <component> element to provide additional
information, such as its name, description, and so on. For more information, see
Example 2–15.

� How to Create a Component Type

1. Determine what component types you need to create.

2. From the Administrative section of the browser interface, click Component
Types.

3. From the Component Types page, click Create in the Action column.

Note – You can type a name for the component type before you choose the Create
action or you can type or change the name in the Edit window. Once you check in
the component type, you cannot change its name.

4. Accept the name or change it.

A component type name has a maximum of 64 characters. The name must start
with a letter or underscore, followed by any number of letters, digits, or special
characters, such as underscore (_), period (.), plus (+), minus (-), and space ().
Unicode letters and digits are permitted.

5. (Optional) Type a menu group name.

Group names follow the same requirements as the component type name . In
addition, a group can be declared as hidden, which prevents the type from
showing up in the component type drop-down list on the component list page.

6. Type an alpha-numeric string for the menu order.

Steps

Chapter 2 • Creating a Plug-In 25

The menu order is a maximum of 18 characters. In addition to Unicode letters and
digits, any character that you can type on an ASCII keyboard is permitted. The
order should be sufficient to sequence all of the types that are defined within a
particular plug-in.

7. Type a numeric value between 0 and 10 for the indent level.

The indent level specifies how types should appear within the component type
drop-down list on the component list page. Indents are used in conjunction with
ordering to imply relationships between component types. For example, a wep
app type might have related types web app configuration and web app
archive that are indented more to highlight the relationship.

8. (Optional) Type a description.

The description must be less than 1024 characters in length. In addition to Unicode
letters and digits, any character that you can type on an ASCII keyboard is
permitted.

9. Select a backing component.

A backing component provides a template for the component type.

10. Click Save.

Creating Plans
A plan is a sequence of instructions that is used to manage one or more components
on the specified hosts. For example, a plan might install three components and initiate
the startup control of another component. To create most plans, you have to edit the
XML. The one exception to this rule is an auto-generated plan. The Sun N1 Service
Provisioning System software can automatically generate a plan consisting of direct
run procedures. For example, you could auto-generate a plan that consists of installing
a single component. You could then run this plan directly or save it for use as a
template for authoring more complex plans.

Simple and Composite Plans
Simple plans contain a series of deployment instructions, or steps. Simple plans are
executed on a single host or host set. Simple plans can call common procedures, such
as install or uninstall, and can also use conditional programming constructs.

Composite plans contain calls to simple plans. Composite plans can apply some
procedures to one host, while applying other procedures to a different host or host set.

26 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

EXAMPLE 2–3 XML for a Simple Plan

A simple plan might look like the following example. This plan provides an install
block and an uninstall block. For more information about the specific elements and
attributes used to define a plan, see Chapter 4, “Plan Schema,” in Sun N1 Service
Provisioning System 5.1 XML Schema Reference Guide.

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated by N1 SPS -->
<executionPlan xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’

name=’plugin-core.jar-1096573592002’ version=’5.1’
xsi:schemaLocation=’http://www.sun.com/schema/SPS plan.xsd’
xmlns=’http://www.sun.com/schema/SPS’ path=’/system/autogen’>
<simpleSteps>

<install blockName=’default’>
<component name=’plugin-core.jar’ path=’/system’ version=’1.1’>
</component>

</install>
<uninstall blockName=’default’>

<installedComponent name=’plugin-core.jar’ versionOp=’=’
version=’1.1’ path=’/system’>

</installedComponent>
</uninstall>

</simpleSteps>

</executionPlan>

EXAMPLE 2–4 XML for a Composite Plan

A composite plan might look like the following example. This example calls three
sub-plans.

<executionPlan
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
name="apache-tomcat-uninstall" version="4.0"
xsi:schemaLocation="http://www.centerrun.com/schema/CR plan.xsd"
xmlns="http://www.centerrun.com/schema/CR">
<compositeSteps>

<execSubplan planName="mod-jk-uninstall" />
<execSubplan planName="apache-uninstall" />
<execSubplan planName="tomcat-uninstall" />

</compositeSteps>

</executionPlan>

EXAMPLE 2–5 XML for a More Sophisticated Plan

The following example shows a more complicated plan that determines what to
execute based on some conditions.

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated by CR -->
<executionPlan xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

name="BAM_backout_new_version_NODE-A" version="4.0"
xsi:schemaLocation="http://www.centerrun.com/schema/CR plan.xsd"

Chapter 2 • Creating a Plug-In 27

EXAMPLE 2–5 XML for a More Sophisticated Plan (Continued)

xmlns="http://www.centerrun.com/schema/CR" path="/plans/uat">
<paramList>

<param name="backout_type" prompt="Enter type of backout (all,ear,prop)"></param>
</paramList>
<varList>

<var name="admin_server" default="wusx119"></var>
<var name="node" default="wust3022"></var>
<var name="wl_server_name" default="bamC"></var>
<var name="apphome" default="/opt/uat/ceodomain"></var>
<var name="prop_args" default="-s wust3022"></var>
<var name="application_name" default="bam"></var>
<var name="staging_base" default="/usr/local"></var>
<var name="user" default="weblogic"></var>

</varList>
<simpleSteps limitToHostSet="uat-bam">

<if>
<condition>

<or>
<equals value2="all" value1=":[backout_type]"></equals>
<equals value2="prop" value1=":[backout_type]"></equals>
<equals value2="ear" value1=":[backout_type]"></equals>

</or>
</condition>

<then>
<call blockName="backout_application">

<argList application_name=":[application_name]"
staging_base=":[staging_base]"
backout_type=":[backout_type]"
user=":[user]">

</argList>
<installedComponent name="deploy_tools"

path="/components/function_library">
</installedComponent>

</call>
<call blockName="wl_stop">

<argList wl_server_name=":[wl_server_name]"
node=":[node]" apphome=":[apphome]" user=":[user]">

</argList>
<installedComponent name="deploy_tools"

path="/components/function_library">
</installedComponent>

</call>
<if>

<condition>
<equals value2="all" value1=":[backout_type]"></equals>

</condition>
<then>

<call blockName="clusterdeploy">
<argList application_name=":[application_name]"

staging_base=":[staging_base]" node=":[node]" user=":[user]">
</argList>
<installedComponent name="deploy_tools"

28 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

EXAMPLE 2–5 XML for a More Sophisticated Plan (Continued)

path="/components/function_library">
</installedComponent>

</call>
<call blockName="deploy_prop">

<argList application_name=":[application_name]"
prop_args=":[prop_args]" staging_base=":[staging_base]"
user=":[user]">

</argList>
<installedComponent name="deploy_tools"

path="/components/function_library">
</installedComponent>

</call>
<call blockName="wl_startjsp">

<argList application_name=":[application_name]"
wl_server_name=":[wl_server_name]"
node=":[node]" apphome=":[apphome]" user=":[user]">

</argList>
<installedComponent name="deploy_tools"

path="/components/function_library">
</installedComponent>

</call>
</then>

</if>
<if>

<condition>
<equals value2="ear" value1=":[backout_type]"></equals>

</condition>
<then>

<call blockName="clusterdeploy">
<argList application_name=":[application_name]"

staging_base=":[staging_base]" node=":[node]" user=":[user]">
</argList>
<installedComponent name="deploy_tools"

path="/components/function_library">
</installedComponent>

</call>
<call blockName="wl_startjsp">

<argList application_name=":[application_name]"
wl_server_name=":[wl_server_name]"
node=":[node]" apphome=":[apphome]" user=":[user]">

</argList>
<installedComponent name="deploy_tools"

path="/components/function_library">
</installedComponent>

</call>
</then>

</if>
<if>

<condition>
<equals value2="prop" value1=":[backout_type]"></equals>

</condition>
<then>

Chapter 2 • Creating a Plug-In 29

EXAMPLE 2–5 XML for a More Sophisticated Plan (Continued)

<call blockName="deploy_prop">
<argList application_name=":[application_name]"

prop_args=":[prop_args]"
staging_base=":[staging_base]" user=":[user]">

</argList>
<installedComponent name="deploy_tools"

path="/components/function_library">
</installedComponent>

</call>
<call blockName="wl_start">

<argList application_name=":[application_name]"
wl_server_name=":[wl_server_name]"
node=":[node]"
apphome=":[apphome]"
user=":[user]">

</argList>
<installedComponent name="deploy_tools"

path="/components/function_library">
</installedComponent>

</call>
</then>

</if>
</then>
<else>

<raise message="Please enter a valid deployment type (all/ear/prop)"></raise>
</else>

</if>
</simpleSteps>

</executionPlan>

� How to Generate a Plan

1. Go to the Components page.

2. Select the component for which you want to generate the plan.

3. View the component’s details.

4. If needed, scroll down the page until you see Component Procedures.

5. Select the procedures that you want to use in the plan.

6. Click Generate Plan with Checked Procedures.

The Plans editing page appears. From this page, you can modify the XML to
include more complex steps, like those shown in Example 2–5.

Steps

30 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

Using Native Commands in Plans and
Components (<execNative> Step)
The <execNative> XML step enables you to run native commands from within your
plans and components. For example, if you need to verify that a process has started,
you might use <execNative> to call the UNIX ps command. For more information
about the <execNative> schema, attributes, and child elements, see “<execNative>
Step” in Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide.

Before <execNative> executes the specified command, the Sun N1 Service
Provisioning System software verifies that the command exists and that the specified
user has permission to run the command. If either of these checks fail, <execNative>
exits with an error.

EXAMPLE 2–6 Using <execNative> to Invoke a Simple Command

The following <execNative> example performs the equivalent of the UNIX ps -ef
command.

<execNative>
<exec cmd="ps">

<arg value="-ef" />
</exec>

</execNative>

EXAMPLE 2–7 Using <execNative> to Start an Application

The following <execNative> example starts a web server instance.

<execNative
dir="/opt/ns/https-admserv" Set working directory
userToRunAs="webadmin" Equates to "su -webadmin"
timeout="5">
<inputText>

start.sh Input parameters to command
</inputText>
<exec cmd="sh /> Command to run
<successCriteria status="0" /> execNative succeeds only if exit code is

"0"
</execNative>

Chapter 2 • Creating a Plug-In 31

Calling Java-based Objects in Plans and
Components (<execJava>)
The <execJava> mechanism enables agent-side, in-process execution of
client-provided Java code within a plan or component definition. <execJava> is
similar to <execNative>, but is specifically intended to enable execution of Java
code.

The <execJava> feature is provided as an XML step and as a Java-based API. For
information about the XML schema, attributes, and child elements, see “<execJava>
Step” in Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide. For more
information about the execJava API, including examples, see “execJava API”
on page 50.

The <execJava> XML step has one required and two optional attributes:

� className – A required attribute that provides the Java class to be executed on the
target host.

� classPath – An optional attribute that provides the path to the class identified by the
className attribute; If this attribute is not used, the system class path of the remote
agent is used

� timeout – An optional attribute that specifies the number of seconds to wait for the
Java class to execute before timing out

The <execJava> mechanism can pass arguments to the Java Executor using the
<argList> child element.

EXAMPLE 2–8 Using <execJava> in Component XML

<varList>
<var name="installPath" default="/opt/util"/>

</varList>
<resourceList defaultInstallPath=":[installPath]">

<resource resourceName="util/propPrint.jar" installName="propPrint.jar"/>
</resourceList>

...
<controlList>

<control name="showProp"/>
<paramList>

<param name="propName">
</paramList>
<execJava

className="com.raplix.util.PropertyPrinterFactory"
classPath="$[installPath]/propPrint.jar">
<argList>

<arg name="propertyName" value=":[propName]"/>
</argList>
<successCriteria outputMatches="<undefined>" inverse="true"/>

</execJava>

32 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

EXAMPLE 2–9 Using <execJava> in Plan XML

<executionPlan xmlns="http://www.sun.com/schema/SPS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.sun.com/schema/SPSplan.xsd"
name="execJavaExample" version="5.1">
<paramList>

<param name="name"></param>
<param name="value"></param>

</paramList>
<varList>

<var name="classpath"
default=":[target:sys.raDataDir]:[/]systemcomps:[/]plugin-com.sun.sample.jar"/>

</varList>
<simpleSteps>

<execJava className="com.sun.n1.sps.pluginimpl.sample.executor.SampleExecutorFactory"
classPath=":[classpath]">
<argList nameParam=":[name]" valueParam=":[value]" />

</execJava>
</simpleSteps>

</executionPlan>

Conditional Elements
Within a plan or a component, you can use the <if> element to conditionally perform
a block of steps. Similar to traditional programming if-then-else constructs, the
statement within the <if> element is evaluated. If that statement is true, then the
steps of the <then> element are performed. Otherwise, the steps of the <else>
element are performed. If no <else> element exists, then no action is taken.

EXAMPLE 2–10 XML for <if> Element

The following example uses the <if> element to allow users to decide at deployment
time whether to take a snapshot.

<if>
<condition>

<istrue value=:[createSnapshot]"></istrue>
</condition>
<then>

<createSnapshot blockName="default"></createSnapshot>
</then>

</if>

Chapter 2 • Creating a Plug-In 33

Error Handling
The XML schemas provides a set of elements for handling possible errors . The parent
of this set of elements is the <try> element. You might use these elements for
situations similar to the following examples:

� To suppress errors during deployment. For example, if installation of a component
consists of deploying some files or other resources followed by a restart and the
restart fails, then the installation itself does not fail.

� To control whether a step that depends on another step should be performed. For
example, if you need to perform both useradd and groupadd functions, the
groupadd should only be performed if the useradd is successful.

� To determine which install path to take. For example, if you are installing version
1.1 of an application, the install path might be different depending on whether
version 1.0 of that application is on the target host.

The <try> element includes a block of steps that are executed in order until either all
complete successfully or a step fails. If a step fails and a <catch> element exists, then
the steps in the <catch> element are executed in order until they succeed or a step
fails. If a <finally> element is defined, the steps in the <finally> element are
executed in order until all steps complete or a step fails regardless of whether the
<try> and <catch> elements succeeded. Typically, the <finally> element is used
to perform clean-up functions or release resources.

The <raise> element is used to indicate a failure condition without having to create a
step to do so. The <raise> step always fails. Although the <raise> element can be
used by itself, it is often contained within a <catch> element block.

EXAMPLE 2–11 XML for <try> Element

The following XML example uses the <try> element to determine whether a fresh
install or an upgrade install should be performed.

<installSteps blockName="default">
<try>

<block>
<checkDependency>

<installedComponent name="foo" version="1.0" />
</checkDependency>

</block>
<catch>
</catch>

</try>

</installSteps>

34 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

Limiting Hosts for a Plug-In
The Sun N1 Service Provisioning System enables you to limit plug-in behavior to hosts
that match certain criteria. There are three mechanisms that you can use to limit your
hosts:

� Define a specific host type. The host type defines a base class of servers that is
bound by a set of common attributes. For example, you might define a host type
that identifies servers that are considered to be Solaris 10 global zones.

� Define a host set. The host set is a logical grouping of hosts that share one or more
common attributes, such as physical location or functional group. Use a host set to
quickly and easily update all hosts in the set. You can also use host sets to perform
install-to-install comparisons.

� Define a host search. A host search queries the host database to provide a list of
hosts whose attributes match those that the query specifies. You might use the host
search to find all hosts that match a given host type or that run a certain
application.

You define all three host limiters in the plug-in descriptor file, as shown in the
following examples.

EXAMPLE 2–12 Host Type Definition in plugin-descriptor.xml File

The following example defines two host types for use with Solaris containers: one for
a global zone and one for a local zone. The plug-in name is appended to the actual
hostType name. When a user creates a host of type
com.sun.solaris#global_zone, four attributes are provided, each attribute of
which has a default value. The com.sun.solaris#local_zone host type, on the
other hand, has no user-defined attributes associated with it.

<hostType name="global_zone"
description="a physical host from which partitioned local zones can be created">

<varList>
<var name="local_zone_base_path" default="/export/zones"/>
<var name="local_zone_connection_type" default="RAW"/>
<var name="local_zone_port" default="1131"/>
<var name="local_zone_advanced_params" default=" "/>

</varList>
</hostType>
<hostType name="local_zone"

description="a physical host that is created out of the larger global_zone"/>

EXAMPLE 2–13 Host Set Definition in plugin-descriptor.xml File

The following example defines a host set that contains global zones. The actual
contents of the host set are provided when the referenced host search is performed.

Chapter 2 • Creating a Plug-In 35

EXAMPLE 2–13 Host Set Definition in plugin-descriptor.xml File (Continued)

<hostSet name="global_zones"
description="Solaris global zones">

<hostSearchRef name="global_zones"/>

EXAMPLE 2–14 Host Search Definition in plugin-descriptor.xml File

The following example defines a host search to find all global zones. The search
returns a result for any host that matches the following criteria:

� Is running the Solaris 10 operating system
� Has a host type of com.sun.solaris#global_zone
� Is running a remote agent
� Is a physical host, rather than a virtual host

<hostSearch name="global_zones" description="Solaris global zones">
<criteriaList>
<criteria name="sys.OS" pattern="SunOS"/>
<criteria name="sys.OSVersion" pattern="5.10"/>
<criteria name="sys.hostType" pattern="com.sun.solaris#global_zone"/>

</criteriaList>
<appTypeCriteria ra="true"/>
<physicalCriteria physical="true"/>

</hostSearch>

Enabling Users to Browse and Export
Files
The Sun N1 Service Provisioning System provides capabilities for you to enable users
to include specific resources in their components. The browsing feature consists of two
primary functions:

� Browse – Enables the user to traverse arbitrary, tree-like, filtered object hierarchies
on the remote agent machines and to select an object in that tree.

� Export – Enables the user to check into the master server the selected object or
collection of objects, possibly in a modified form.

For example, you could enable a user to traverse a file system, select a file, and check
in the file through a component.

Browsing and exporting functionality are provided through the
com.sun.n1.sps.plugin.browse and com.sun.n1.sps.plugin.export
packages, as described in “Component APIs” on page 43.

36 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

Browsing and Exporting: Process Overview
From an external view, the browsing and exporting process is similar to the following
sequence:

1. The user selects a component type to create a component. If the backing
component of the selected type has exporterClassName defined, the browse and
export user interface is launched.

2. The provisioning software obtains all the browser information in the
BrowserInfo class. To obtain this information, the software calls the
getAvailableBrowsers method of the ComponentExporter interface.

3. The provisioning software obtains the information about the BrowserFactory
from BrowserInfo and instantiates it. From there, the provisioning software gets
the Browser object.

4. From the Browser object, the software finds the root node by calling the
getNode() method of Browser.

5. When the user selects a node and continues with the check-in process, the
provisioning software calls into the constructComponent method of the
ComponentExporter class which finally exports and checks-in the resource.

From the plug-in development perspective, a more detailed view of this process is
similar to the following sequence:

1. The backing component of a component type defines a component variable named
exporterClassName. The value of exporterClassName is the class that implements
com.sun.n1.sps.plugin.export.ComponentExporter.

2. The ComponentExporter class method getAvailableBrowsers returns an
array of BrowserInfo objects. These BrowserInfo objects have the following
information about the browser:

� Name of the system service

� Variable name in the above system service. This variable will have the
BrowserFactory class as its value

� Variable name in the above system service. This variable will have the class path
for the browser as its value.

� The actual class path, if system service is not used for class path.

3. The BrowserFactory class has a method to get the browser which implements
the Browser interface.

4. The Browser method getNode(...) finds the nodes of a tree. When used with a
null argument, getNode(...) should give the root node.

5. The ComponentExporter class has another method to construct the component.
This method is used once the actual browsing is done. The constructComponent
method is passed a ComponentMonitor which is used to finally export and check-in
the selected resource into the master server as part of the component.

Chapter 2 • Creating a Plug-In 37

Browse Function
BrowserNode is the class which implements the entire hierarchy tree functionality.
This functionality is segmented into four key areas:

� Providing all the children of the node
� Providing the parent if the node
� Describing whether the node is a leaf node
� Providing other descriptions and properties related to the node

For more information about the classes and methods that you use to implement a
browser for your plug-in, see “Browsing Function” on page 46.

Export Function
ComponentExporter is the class which enables a user to export a file to the master
server, once he has browsed to it. For more information about the classes and methods
that you use to implement the export feature for your plug-in, see “Exporting
Function” on page 48.

Defining the Plug-In
To make the solution available for others to use, you wrap the plans, components, and
component type definitions into a plug-in. To define the plug–in, you create an XML
file that uses the <plugin> element and its children. For information about the
<plugin> element, see Chapter 6, “Plug-In Description Schema,” in Sun N1 Service
Provisioning System 5.1 XML Schema Reference Guide.

EXAMPLE 2–15 Sample Plug-In Descriptor File

The following sample descriptor file is for the Solaris Zones plug-in.

<?xml version="1.0" encoding="UTF-8"?>
<plugin name="com.sun.solaris"

description="Solaris plugin" version="1.0"
vendor="Sun Microsystems Inc"
xmlns="http://www.sun.com/schema/SPS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.sun.com/schema/SPS plugin.xsd"
schemaVersion="5.1">
<gui jarPath="gui/pluginUI.xml"/>
<memberList>

<folder name="/com/sun/solaris" description="Solaris plugin folder"/>
<hostType name="global_zone"

38 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

EXAMPLE 2–15 Sample Plug-In Descriptor File (Continued)

description="a physical host from which partitioned local zones can be created">
<varList>
<var name="local_zone_base_path" default="/export/zones"/>
<var name="local_zone_connection_type" default="RAW"/>
<var name="local_zone_port" default="1131"/>
<var name="local_zone_advanced_params" default=" "/>

</varList> </hostType>
<hostType name="local_zone"

description="a physical host that is created out of the larger global_zone"/>
<hostSearch name="global_zones" description="Solaris global zones">
<criteriaList>

<criteria name="sys.OS" pattern="SunOS"/>
<criteria name="sys.OSVersion" pattern="5.10"/>
<criteria name="sys.hostType" pattern="com.sun.solaris#global_zone"/>

</criteriaList>
<appTypeCriteria ra="true"/>
<physicalCriteria physical="true"/>

</hostSearch>
<hostSet name="global_zones" description="Solaris global zones">
<hostSearchRef name="global_zones"/>

</hostSet>
<component jarPath="fiji/components/com/sun/solaris/zone_util.tar.xml">
<resource jarPath="fiji/resources/com/sun/solaris/zone_util.tar"

name="/com/sun/solaris/zone_util.tar"/>
</component>
<component jarPath="fiji/components/com/sun/solaris/N1GridContainer.xml"
majorVersion="true">

</component>
<component jarPath="fiji/components/com/sun/solaris/ZoneSS.xml">
<systemService name="zoneSS"
description="the Solaris zone system service"/>

</component> </memberList>

</plugin>

Defining an Interface to the Plug-In
One of the key activities in creating a solution that you can provide to others or
distribute across your environment is defining an interface to your solution within the
Sun N1 Service Provisioning System browser interface. To define the interface, you
create an XML file that uses the <plguinUI> element and its children. For
information about the <pluginUI> element, see Chapter 7, “Plug-In User Interface
Schema,” in Sun N1 Service Provisioning System 5.1 XML Schema Reference Guide.

Chapter 2 • Creating a Plug-In 39

EXAMPLE 2–16 Sample Plug-In Interface File

The following sample plug-in interface file pluginUI.xml is for the Solaris Zones
plug-in.

<?xml version="1.0" encoding="UTF-8"?>
<pluginUI menuItem="Solaris" xmlns="http://www.sun.com/schema/SPS"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.sun.com/schema/SPS pluginUI.xsd"
schemaVersion="5.1">
<icon jarPath="gui/solaris.gif"/>
<customPage name="Solaris">
<section title="Solaris specific tasks"

description="create and manage Solaris specific components...">
<entry title="Solaris Zones" description="create and manage zones">
<action text="list" toolTip="list of installed zones">
<compWhereInstalled path="/com/sun/solaris" name="N1GridContainer"/>

</action>
<action text="create and manage" toolTip="create and manage zones">
<compDetails path="/com/sun/solaris" name="N1GridContainer" />

</action>
</entry>

</section>
</customPage>

</pluginUI>

Packaging the Solution
To enable others to use your solution or to make it available for easy distribution
within your own environment, you package your solution in a Java Archive (JAR) file.
The contents and instructions for interpreting the contents of the JAR file are
contained in an optionally signed plugin-descriptor.xml file located in the top
level directory of the JAR. The syntax of the plug-in descriptor is specified using XML
Schema as per the May 2, 2001 W3C Recommendation
(http://www.w3.org/TR/2001/xmlschema-0-20010502/). The schema can be
used in conjunction with a validating parser to determine the syntactical validity of a
plug-in. For information about the plug-in descriptor file, see “Defining the Plug-In”
on page 38.

To create the JAR file, you use the JAR utility. The JAR utility uses similar options to
the standard UNIX tar utility.

To create a JAR file, use the following command from the root directory that contains
all the plug-in files: jar cf jarfile inputfiles

where:

40 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

http://www.w3.org/TR/2001/xmlschema-0-20010502/

� The c option creates a new archive named jarfile that contains the files and
directories specified by inputfiles.

� The f jarfile option specifies the name of the file to be created.

� inputfiles identifies the files or directories to be included in the JAR file. You can
provide a list of file and directory names separated by spaces, or you can use the
asterisk (*) character to include all the files in the current directory. All directories
are processed recursively.

EXAMPLE 2–17 Creating a JAR File That Contains Subdirectories

If you have subdirectories, you can combine them into a single JAR file, as shown in
the following example command:

% jar cvf myplugin.jar *
added manifest
ignoring entry META-INF/
ignoring entry META-INF/MANIFEST.MF
adding: components/(in = 0) (out= 0)(stored 0%)
adding: components/com/(in = 0) (out= 0)(stored 0%)
adding: components/com/sun/(in = 0) (out= 0)(stored 0%)
adding: components/com/sun/myplugin/(in = 0) (out= 0)(stored 0%)
adding: components/com/sun/myplugin/mycomponent.xml(in = 6224) (out= 1182)(deflated 81%)
adding: components/com/sun/myplugin/myothercomponent.xml(in = 1291) (out= 507)(deflated 60%)
adding: components/com/sun/myplugin/mycomponenttype.xml(in = 940) (out= 470)(deflated 50%)
adding: resources/(in = 0) (out= 0)(stored 0%)
adding: resources/com/(in = 0) (out= 0)(stored 0%)
adding: resources/com/sun/(in = 0) (out= 0)(stored 0%)
adding: resources/com/sun/solaris/(in = 0) (out= 0)(stored 0%)
adding: resources/com/sun/solaris/zone_util.tar(in = 20480) (out= 4232)(deflated 79%)
adding: gui/(in = 0) (out= 0)(stored 0%)
adding: gui/pluginUI.xml(in = 861) (out= 407)(deflated 52%)
adding: gui/solaris.gif(in = 1622) (out= 1627)(deflated 0%)
adding: plugin-descriptor.xml(in = 1990) (out= 707)(deflated 64%)

%

To verify the files in the JAR file, use the following command:

% jar tf mypluin.jar
META-INF/MANIFEST.MF
fiji/
fiji/components/
fiji/components/com/
fiji/components/com/sun/
fiji/components/com/sun/solaris/
fiji/components/com/sun/solaris/N1GridContainer.xml
fiji/components/com/sun/solaris/ZoneSS.xml
fiji/components/com/sun/solaris/zone_util.tar.xml
fiji/resources/
fiji/resources/com/
fiji/resources/com/sun/
fiji/resources/com/sun/solaris/
fiji/resources/com/sun/solaris/zone_util.tar

Chapter 2 • Creating a Plug-In 41

EXAMPLE 2–17 Creating a JAR File That Contains Subdirectories (Continued)

gui/
gui/pluginUI.xml
gui/solaris.gif

plugin-descriptor.xml

Testing the Solution
Before you make your solution available across your environment or for others to use,
you should test the solution. The following ideas might help you decide what to test:

� Use an XML parser to validate the plugin-descriptor.xml file against the
plugin.xsd schema.

� Use an XML parser to validate the pluginUI.xml file against the pluginUI.xsd
schema.

� Make sure that any Java code that you use builds cleanly and works as expected.

� Import your finished plug-in to the Sun N1 Service Provisioning System product.
Check for errors and make sure that the customized user interface, if it exists,
renders as expected, and that all links on the customized page work as expected.

� Verify that you can delete your plug-in after a successful import.

42 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

CHAPTER 3

Using the Application Programming
Interface

The Sun N1 Service Provisioning System includes a Java-based application
programming interface (API) that you can use to further extend the functionality of
the system. This chapter explains how you can use the classes and methods of the API.
Detailed syntax for each class and method is provided in the Javadoc™ information
included with the provisioning system. The API provides several types of additional
functionality:

� Ability to create component-specific features, such as browseability, as described in
“Component APIs” on page 43

� Ability to execute Java code, as described in “execJava API” on page 50

Component APIs
The Java-based component APIs enable you to provide export and browse
functionality for your plug-ins. You can enable users to be able to browse through
directory structures and export files from within the Sun N1 Service Provisioning
System browser interface.

com.sun.n1.sps.componentdb
This package provides two interfaces for working with the component database:

� InstallMode – A strongly typed enumeration of component install modes
� InstallMode.Factory – A factory interface for InstallMode enums

com.sun.n1.sps.plugin
This package contains one interface and three classes to support general plug-in
related functionality:

� AgentContext – This interface publishes services available to the plug-in code
on a remote agent.

� Logger – Use this high level wrapper class for logging in service provisioning
projects.

43

� PluginMessage – Instances of this class are used to internationalize messages
within the plug-in implementations.

� PluginException – Class representing any exception that uses a
PluginMessage for its message resolution.

com.sun.n1.sps.plugin.browse
This package contains five interfaces and four classes that specify browse
functionality:

� Browser – This interface defines the set of functionality that any resource
handler that wants to support browsing must export.

� BrowserDisplay – This interface is used by the UI Browsing portion of the
hierarchy manager to make the display more informative and correct.

� BrowserFactory – This interface provides the interface for the loader to use to
obtain an actual instance of the appropriate browser.

� BrowserFilter – This interface describes how nodes can be filtered according
to certain criteria.

� BrowserNode – This interface defines the functionality for a browsable
hierarchy node.

� BrowserContext – This class provides a container for the client to set initial
parameters for a browsing session.

� BrowserInfo – This class describes the browser that is appropriate for display
in the user interface and retrieval of actual instance from within the system.

� BrowserNodeBase – This class provides a default implementation for the
BrowserNode interface.

� BrowserException – This class identifies typed exceptions to be thrown from
within browsing sessions.

More information and examples for the browsing functionality are provided in
“Browsing Function” on page 46.

com.sun.n1.sps.plugin.export
This package contains seven interfaces and one exception class for specifying
component definition and creation functionality:

� ComponentExporter – All plug-ins must implement this base interface to
construct a component from a browse process.

� ComponentMonitor – Monitor created by the system that manages the
component creation process for a given component.

� ComponentToken – The token to represent a component for purposes of
adding a contained component to a CompositeComponentMonitor.

� CompositeComponentMonitor – The monitor for a component that contains
other components.

� ResourceProcessor – Allows for introspection of a resource.
� SimpleComponentMonitor – Component monitor for components that

contain a resource.
� SystemData – Gives access to variables defined by various persistent system

objects related to the current export and browse operations.
� ComponentExportException – Strongly typed exception for use with errors

related to component export.

44 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

More information and examples for the export functionality are provided in
“Exporting Function” on page 48.

com.sun.n1.sps.resource
This package contains seven interfaces and one exception class for managing
resources:

� CheckInMode – A strongly typed enumeration for representing check in modes
� CheckInMode.Factory – A factory interface for CheckInMode enumerations
� ResourceEntry – Represents an entry within a resource
� ResourceEntryIterator – An iterator for ResourceEntry objects
� ResourceManifest – A manifest that describes the resource
� ResourceType – A strongly typed enumeration for representing resource types
� ResourceType.Factory – A factory interface for ResourceType

enumerations
� ResourceException – Typed exceptions thrown from error conditions related

to resources

com.sun.n1.util
This package provides one interface and three additional packages for managing
utilities:

� RPCSerializable – This interface marks objects that can be serialized by
RPC.

� com.sun.n1.util.enum – This package contains two interfaces and one
exception class:

� Enum – An interface for strongly typed enumerations
� Enum.Factory – Enables a client to look up all values defined for a

particular Enum subclass, and also to look up a particular value by its integer
or string value

� NoSuchEnumException – Exception class indicating that an enumeration
lookup failed

� com.sun.n1.util.message – This package contains two interfaces:

� Severity – A strongly typed enumeration for representing severities
associated with messages

� Severity.Factory – A factory interface for Severity enumerations

� com.sun.n1.util.vars – This package contains three interfaces and three
classes:

� DisplayMode – A strongly-typed enumeration of display modes
� DisplayMode.Factory – A factory interface for DisplayMode

enumerations
� VariableSettingsSource – Defines the interface for objects that can be

used as a source of variable settings
� PromptParam – A parameter that includes information about the structure

of a prompt, including a textual prompt and a display mode
� PromptParamList – A list of PromptParam objects

Chapter 3 • Using the Application Programming Interface 45

� VariableSettingsHolder – An implementation of the
VariableSettingsSource interface that can be used to specify variable
name-value pairs

Browsing Function
The com.sun.n1.sps.plugin.browse package contains five interfaces and four
classes that specify browse functionality:

� Browser – Any resource handler must use this base interface to support browsing
functionality.

� BrowserDisplay – This interface is used by the Browsing portion of the
hierarchy manager to make the display more informative and correct.

� BrowserFactory – This interface provides the interface for the loader to use to
obtain an actual instance of the appropriate browser.

� BrowserFilter – This interface describes how nodes can be filtered according to
certain criteria.

� BrowserNode – This interface defines the functionality for a browsable hierarchy
node.

� BrowserContext – This class provides a container for the client to set initial
parameters for a browsing session.

� BrowserInfo – This class describes the browser that is appropriate for display in
the user interface and retrieval of actual instance from within the system.

� BrowserNodeBase – This class provides a default implementation for the
BrowserNode interface.

� BrowserException – This class identifies typed exceptions to be thrown from
within browsing sessions.

Browser API Implementation
The Browser implementation includes the following key API segments:

BrowserFilter[] getAvailableFilters()
Returns the different filters this browser supports. Use the BrowserFilter
interface to filter BrowserNodes based on particular criteria, for example, filter all
files to show just *.tmp files.

BrowserDisplay getDisplay()
Gets the display properties object to be used with this browser.

BrowserNode getNode(java.lang.String location)
Returns a node in the hierarchy this browser represents.

void setFilterName(java.lang.String name)
Specifies the filter to be used while browsing.

46 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

BrowserNode Class
The BrowserNode class implements the entire hierarchy tree functionality. This
functionality is segmented into four key areas:

� Providing all the children of the node
� Providing the parent if the node
� Describing whether the node is a leaf node
� Providing other descriptions and properties related to the node

BrowserFactory Interface
The BrowserFactory interface provides the interface for the
HierarchyBrowserLoader to obtain an actual instance of the appropriate
HierarchyBrowser.

To define a class which implements the BrowserFactory interface, use an API call
similar to the following example:

Browser getBrowser(BrowserContext bContext,AgentContext aContext)

where:

� bContext is the context retrieved from the component exporter that specified this
browser.

� aContext is the context supplied for the agent in case native libraries must be
loaded

The BrowserFactory implementation defines a getBrowser method with the
system-supplied BrowserContext object and AgentContext objects as parameters.

In the backing component of the component type, declare the fully qualified class
name of the browser factory in the browserClass variable. The following code
fragment defines two browser factories for a backing component:

<var
access="PRIVATE"
name="EJBFileSystemBrowser"
default="com.raplix.rolloutexpress.plugins.weblogic.hierarchies.ejb.EJBFileBrowserFactory"
/>
<var
access="PRIVATE"
name="EJBDomainBrowser"
default="com.raplix.rolloutexpress.plugins.weblogic.hierarchies.ejb.EJBDomainBrowserFactory"

/>

Sample Code for Browsing Function
EXAMPLE 3–1 Browser Filter

The following example filters all files of the name *.tmp:

Chapter 3 • Using the Application Programming Interface 47

EXAMPLE 3–1 Browser Filter (Continued)

public class TmpFilter implements BrowserFilter, ExampleFilter {

public String getName() {
return "tmpFilter";

}
public String getDescription() {

return "show only *.tmp files";
}
public boolean filter(ExampleBrowserNode node) {

return node.getLocalName().endsWith(".tmp");
}

}

Exporting Function
The com.sun.n1.sps.plugin.export package contains seven interfaces and one
exception class for specifying component definition and creation functionality:

� ComponentExporter – All plug-ins must implement this base interface to
construct a component from a browse process.

� ComponentMonitor – Monitor created by the system that manages the
component creation process for a given component.

� ComponentToken – The token to represent a component for purposes of adding a
contained component to a CompositeComponentMonitor interface.

� CompositeComponentMonitor – The monitor for a component that contains
other components.

� ResourceProcessor – Allows for introspection of a resource.

� SimpleComponentMonitor – Component monitor for components that contain a
resource.

� SystemData – Gives access to variables defined by various persistent system
objects related to the current export and browse operations.

� ComponentExportException – Strongly typed exception for use with errors
related to component export.

ComponentExporter Process
To enable an export function, use a process similar to the following sequence:

1. In the backing component of the component type, declare the fully qualified class
name of the componentExporter in the exporterClass variable.

<varList>
<var name="exporterClassName"
default="com.sun.n1.sps.pluginimpl.sample.export.StaticCompExporter"/>

48 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

</varList>

2. Define a class which implements the ComponentExporter interface.

ComponentExporter calls the various methods on the ComponentMonitor
input argument to build the component. These methods might include
addComponentVar, addSourceInfoParam, setComponentDescription, and
setComponentLabel.

ComponentExporter can also call get routines to obtain information from the
ComponentMonitor. These get routines might include
getPluginComponentVars, getPluginHostVars, getActiveBrowser,
getSourceInfoParam, and getLocation.

ComponentExporter can also call exportResource to call into control blocks to
execute component type-specific functionality for exporting the component.

3. After constructing the component, the ComponentExporter can call
setResource to set a physical resource to be bundled in the component,
completing the export process.

ComponentExporter Example
EXAMPLE 3–2 ComponentExporter

public class implements ComponentExporter {

public ExampleExporter() {

}

public BrowserContext getBrowserContext() {
return new BrowserContext();

}

public BrowserInfo[] getAvailableBrowsers() {
return new BrowserInfo[] {

new BrowserInfo("example", //relevant comp type
"Example Browser", //browser ui display name
"example ss", //relevant ss
null, //valid for all platforms
null, //no host set restriction
new PromptParamList()) //no checkin params

};
}

public String getBrowserClassPath(BrowserInfo browser) {
return null;

}
public void constructComponent(ComponentMonitor mon)

throws ComponentExportException {

//It’s the responsibility of the infrastructure to identify the type
//of component and construct the component with the appropriate monitor

Chapter 3 • Using the Application Programming Interface 49

EXAMPLE 3–2 ComponentExporter (Continued)

SimpleComponentMonitor sMon = (SimpleComponentMonitor)mon;

sMon.setComponentDescription("This is an example component");
sMon.setComponentLabel("What the hell is a label for?");

sMon.setResource(ResourceType.FILE, //our sample type is a file
sMon.getLocation(), //get the location specified
false, //do not use differential checkin
false, //not a config template
false, //file->symlinks meaningless
true, //capture permissions
null, //file->checkinmode meaningless
null); //no special processing of rsrc

}

}

execJava API
execJava functionality is provided through the XML schema for plans and
components. Through the XML, you can execute a piece of Java code as needed. In
addition, execJava also exists as an API.

Both preflight and actual behavior may be specified. The classes are typically
deployed using a JAR resource of a component. For more information about the
execJava classes, methods, and interfaces, see the JavaDoc software.

<execJava
className= classname of the executor factory class
class Path=...

>

The execJava API is contained in the com.sun.n1.sps.plugin.execJava
package. The execJava API consists of five interfaces and two exception classes:

ActualExecJavaContext
This interface publishes the services available to the execJava implementations
when they are invoked during the deployment or actual phase of the execution.

ExecJavaContext
This interface provides an execution context to an execJava implementation that
is common to both the preflight and actual run levels.

Executor
This interface is implemented by classes that need to execute code on the agent
through execJava

50 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

ExecutorFactory
This interface is part of the infrastructure to execute arbitrary code on the remote
agent using execJava steps.

PreflightExecJavaContext
This interface publishes the services available to the execJava implementations
when they are invoked during the preflight phase of the execution.

ExecutionException
Instances of ExecutionException are used to flag failure or warnings from
execJava invocations.

ExecutionTimeoutException
Instances of this exception are thrown when execJava execution is timed out.

ExecutorFactory Interface
The ExecutorFactory interface is used to obtain the preflight and actual executor
instances for a particular step:

Executor getActualExecutor(AgentContext callContext)

Executor getPreflightExecutor(AgentContext callContext)

The call context passed between preflight and actual execution steps need not be the
same.

AgentContext Method
The AgentContext method provides an invocation context on a particular remote
agent.

VariableSettingsHolder getVariables()
// Returns the variables passed to the execJava step using <argList>

PrintStream getStandardOutput()
PrintStream getStandardError()
InputStream getStandardInput()

File getWorkingDir()

Executor Interface
The Executor interface provides an entry point that is used to execute the step body:

void execute() throw ExecutionException

Execution output and error output are written into the stdout and stderr streams of
the associated agent context. Input is read from the input stream of the associated
agent context. Errors are reported by calling an instance of the
ExecutionException class.

Chapter 3 • Using the Application Programming Interface 51

execJava Examples
EXAMPLE 3–3 execJava in Java Code

public class StopServerFactory extends WLFactoryBase {

public static final String TARGET = "serverName";

public Executor
getActualExecutor(AgentContext inAgentContext, ActualExecJavaContext inContext)
{

VariableSettingsSource variableSettings = inContext.getVariableSettings();
String target = variableSettings.getVarValue(TARGET);
return new StopServerExecutor(getConnect(variableSettings), target);

}

public VariableSettingsSource getParams() {
VariableSettingsHolder list = getWLParams();
list.setVarValue(TARGET, null);
return list;

}

}
public class StopServerExecutor implements Executor {

private WLConnect mConnect;
private String mTarget;

/**
*
**/
public StopServerExecutor(WLConnect connect, String target) {

mConnect = connect;
mTarget = target;

}

/**
*
**/
public void execute() throws ExecutionException {

try {
WLAdminServer server = new WLAdminServer(mConnect);
server.stopServer(server.getServer(mTarget));
}

catch (Exception e) {
throw new ExecutionException
(new PluginMessage(WLPluginHierarchyException.MSG_WEBLOGIC_ERROR), e);
}

}

}

EXAMPLE 3–4 Another execJava Code Sample

public class SampleExecutorFactory implements ExecutorFactory
{

public Executor getActualExecutor(AgentContext inAgentContext,

52 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

EXAMPLE 3–4 Another execJava Code Sample (Continued)

ActualExecJavaContext inActualExecJavaContext)
{

return new EnvParamSettingActualExecutor(inActualExecJavaContext);
}

public Executor getPreflightExecutor(AgentContext inAgentContext,
PreflightExecJavaContext inPreflightExecJavaContext)

{
return new EnvParamSettingPreflightExecutor(inPreflightExecJavaContext);

}

public VariableSettingsSource getParams()
{

VariableSettingsHolder params = new VariableSettingsHolder();
params.setVarValue(PARAM_NAME, "");
params.setVarValue(PARAM_VALUE, "");
return params;

}

public static final String PARAM_NAME = "nameParam";
public static final String PARAM_VALUE = "valueParam";

}
public class EnvParamSettingPreflightExecutor implements Executor
{

VariableSettingsSource mVars;
public EnvParamSettingPreflightExecutor

(PreflightExecJavaContext inPreflightExecJavaContext)
{

mVars = inPreflightExecJavaContext.getVariableSettings();
}

public void execute() throws ExecutionException
{

String propName = mVars.getVarValue(SampleExecutorFactory.PARAM_NAME);
if("".equals(propName)) {

throw new ExecutionException(new PluginMessage("sample.noNameParam"));
}

String propValue=System.getProperty(propName);
if(!(propValue == null || "".equals(propValue))) {

// property already set, error out
throw new ExecutionException(new PluginMessage("sample.propAlreadySet",

new String[]{propName, propValue}));
}

}
}

public class EnvParamSettingActualExecutor implements Executor
{

VariableSettingsSource mVars;
public EnvParamSettingActualExecutor(ActualExecJavaContext inCtx)
{

mVars = inCtx.getVariableSettings();

Chapter 3 • Using the Application Programming Interface 53

EXAMPLE 3–4 Another execJava Code Sample (Continued)

}

public void execute() throws ExecutionException
{

String propName = mVars.getVarValue(SampleExecutorFactory.PARAM_NAME);
String propValue = mVars.getVarValue(SampleExecutorFactory.PARAM_VALUE);
System.setProperty(propName, propValue);
if(Logger.isDebugEnabled(this)) {

Logger.debug("Setting prop "+propName + " to " + propValue, this);
}
System.out.println("Setting prop "+propName + " to " + propValue);

}

}

54 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

APPENDIX A

Example Plug-In

This appendix contains example code for a simple plug-in. This sample is based on the
Linux plug-in, which is provided with the Sun N1 Service Provisioning System 5.1
software.

Description of the Sample Plug-In
The sample plug-in includes the following files and directories in the
com.sun.linux_1.1.jar file:

META-INF/
META-INF/MANIFEST.MF
plugin-descriptor.xml
1.1/
1.1/components/
1.1/components/com/
1.1/components/com/sun/
1.1/components/com/sun/linux/
1.1/components/com/sun/linux/RPM CT.xml
1.1/resources/
1.1/resources/com/
1.1/resources/com/sun/
1.1/resources/com/sun/linux/
1.1/resources/com/sun/linux/plugin-linux.jar

1.1/plans/

The sample plug-in does not include a pluginUI.xml because the Linux plug-in
does not provide a customized interface page. For an example of a plug-in interface
file, see Example 2–16.

55

Plug-In Descriptor File
The plugin-descriptor.xml defines the sample plug-in. Look at the following
items in the example below:

� Most attributes to the <plugin> element use standard values. The two exceptions
are the name and version attributes.

� The <dependencyList> element tells you that the system plug-in, version 1.0 is
required for the sample plug-in to work correctly. The system plug-in is a core
part of the Sun N1 Service Provisioning System software and should always exist.

� The <folder> element creates a folder in which Linux objects can be stored.

� The <component> element defines a component type whose backing component
is 1.0/components/com/sun/linux/RPM CT.xml.

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://www.sun.com/schema/SPS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.sun.com/schema/SPS ../plugin.xsd"
name="com.sun.linux"
vendor="Sun Microsystems"
version="1.1"
schemaVersion="5.1">

<dependencyList>
<pluginRef name="system" version="1.0"/>

</dependencyList>

<memberList>
<!-- Folders -->

<folder name="/com/sun/linux"
description="contains linux plugin objects"/>

<!-- Components -->

<component jarPath="1.0/components/com/sun/linux/RPM CT.xml">
<componentType name="rpm file"

description="the active component type for rpm files"
group="any UNIX"
order="000700-000100-000200"
indentLevel="1"/>

</component>

</memberList>

</plugin>

56 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

Components
The sample plug-in contains the RPM CT.xml file in the components directory. This
file defines the backing component for the rpm component type, and is not expected to
be used directly as a component itself. Look at the following items in the example
below:

� The path, name, description, and platform attributes to the <component> element
provide specific information about the component type.

� The <extends> element tells you that the RPM component type extends the
features available in the system#CR Simple Base component type.

� The <varlist> element defines several variables that enable the user to
customize components based on this component type.

� The <installList> element calls the <exceNative> step to run the Linux
command to install the RPM files.

� The <uninstallList> element calls the <exceNative> step to run the Linux
command to uninstall the RPM files.

<?xml version="1.0" encoding="UTF-8"?>
<component xmlns="http://www.sun.com/schema/SPS"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.1"
xsi:schemaLocation="http://www.sun.com/schema/SPS

component.xsd"
modifier="ABSTRACT"
path="/com/sun/linux"
name="RPM CT"
description="RPM Installer"
platform="system#Red Hat Linux - any version">

<extends>
<type name="system#CR Simple Base"/>

</extends>

<varList>
<var name="filterName" default="rpmOnly" access="PRIVATE"/>
<var name="filterDescription"

default="show RPM file types only (.rpm)"
access="PRIVATE"/>

<var name="filterExtensions" default=".rpm" access="PRIVATE"/>
<var name="rpmCmd" default="rpm"/>
<var modifier="FINAL" name="installDeployMode" default="REPLACE"/>
<var name="installDiffDeploy" default="TRUE"/>
<var access="PRIVATE" name="exporterClassName"

default="com.sun.n1.sps.pluginimpl.system.export.FilesystemExporter"/>
<var access="PRIVATE" name="canBeConfigTemplate" default="FALSE"/>

</varList>

<installList>

Appendix A • Example Plug-In 57

<installSteps name="default">
<deployResource/>
<execNative userToRunAs="root">

<exec cmd=":[rpmCmd]">
<arg value="-i"></arg>
<arg value=":[sys.rsrcInstallPath]"></arg>

</exec>
</execNative>

</installSteps>
</installList>

<uninstallList>
<uninstallSteps name="default">

<execNative userToRunAs="root">
<shell cmd="sh -c">

<![CDATA[:[rpmCmd] -e ‘:[rpmCmd]
-qp :[sys.rsrcInstallPath]
-qf ’%{NAME}’ 2> /dev/null‘]]>

</shell>
</execNative>
<call blockName="deleteFile">

<argList absPath=":[sys.rsrcInstallPath]"/>
<systemService name="system#core services"/>

</call>
</uninstallSteps>

</uninstallList>

</component>

58 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

Index

A
API classes

BrowserContext, 44
BrowserException, 44
BrowserInfo, 44
BrowserNodeBase, 44
ComponentExportException, 44
ExecutionException, 51
ExecutionTimeoutException, 51
Logger, 43
NoSuchEnumException, 45
PluginException, 44
PluginMessage, 44
PromptParam, 45
PromptParamList, 45
ResourceException, 45
VariableSettingsHolder, 46

API interfaces
ActualExecJavaContext, 50
AgentContext, 43
Browser, 44
BrowserDisplay, 44
BrowserFactory, 44
BrowserFilter, 44
BrowserNode, 44
CheckInMode, 45
CheckInMode.Factory, 45
ComponentExporter, 44
ComponentMonitor, 44
ComponentToken, 44
CompositeComponentMonitor, 44
DisplayMode, 45
DisplayMode.Factory, 45

API interfaces (Continued)
Enum, 45
Enum.Factory, 45
ExecJavaContext, 50
Executor, 50
ExecutorFactory, 50
InstallMode, 43
InstallMode.Factory, 43
PreflightExecJavaContext, 51
ResourceEntry, 45
ResourceEntryIterator, 45
ResourceManifest, 45
ResourceProcessor, 44
ResourceType, 45
ResourceType.Factory, 45
RPCSerializable, 45
Severity, 45
Severity.Factory, 45
SimpleComponentMonitor, 44
SystemData, 44
VariableSettingsSource, 45

B
browsing for files, 36-38

C
calling Java code, 32-33
certificates for plug-ins, 16
com.sun.n1.sps.componentdb package, 43

59

com.sun.n1.sps.plugin.browse
package, 44

com.sun.n1.sps.plugin.execJava
package, 50-54

com.sun.n1.sps.plugin.export
package, 44

com.sun.n1.sps.plugin package, 43
com.sun.n1.sps.resource package, 45
com.sun.n1.util.enum package, 45
com.sun.n1.util.message package, 45
com.sun.n1.util package, 45
com.sun.n1.util.vars package, 45
component

composite, 22-23
configuration template, 24
defining types for, 25-26
simple, 22-23
using conditions for, 33
XML error handling, 34
XML example, 22-23

component types
defining, 25-26

components
calling Java from, 32-33
native commands in, 31

components directory, 19
configuration templates, 24
creating a JAR file, 40
creating plug-ins, 18-19

D
defining component types, 25-26
defining host searches, 35-36
defining host sets, 35-36
defining host types, 35-36
defining plans, 26-30
dependencies for plug-ins, 15-16
descriptor file, 38-39
directories

components, 19
gui, 20
META-INF, 19
plans, 20
resources, 20

directory structure for plug-ins, 19-20

E
<execJava>, 32-33

component XML example, 32
plan XML example, 33

execJava API, 50-54
<execNative>, 31

simple command example, 31
start application example, 31

exporting files, 36-38

F
files

plugin-descriptor.xml, 20, 38-39
pluginUI.xml, 20, 39-40
readme.txt, 20

G
gui directory, 20

H
handling errors in XML schemas, 34
host search

creating, 35-36
XML example for creating, 36

host set
creating, 35-36
XML example for creating, 35-36

host type
creating, 35-36
XML example for creating, 35

I
<if> element, 33
importing files into provisioning system, 36-38
installing plug-ins, 15-16

60 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

J
JAR file

creating for plug-ins, 40
creating for plug-ins example, 41-42

M
META-INF directory, 19

N
N1 SPS, See provisioning system

P
packages

creating for plug-ins, 14-16, 40-42
for plug-in development, 43-50
Java package naming, 15
needed for developing plug-ins, 17-18

plan, XML error handling, 34
plans

calling Java from, 32-33
complex, XML example, 27-30
composite, XML example, 27
compsite, 26-30
defining, 26-30
generating from existing component, 30
native commands in, 31
simple, 26-30
simple, XML example, 27

plans directory, 20
plug-in

component versions, 15-16
definition, 13-14
dependencies, 15-16
descriptor file, 38-39
development process, 12, 18-19
directory structure, 19-20
installing, 15-16
package naming, 15
packaging, 14-16, 40-42
parts, 14
README file, 16
required pacakges, 17-18

plug-in (Continued)
security, 16
signed certificates, 16
testing, 42
uninstalling, 15
upgrading, 15
user interface file, 39-40
XML schemas, 13-14

plugin-core.jar file, 17-18
plugin-descriptor.xml file, 20, 38-39

XML example, 38-39
pluginUI.xml file, 20, 39-40

XML example, 40
provisioning system

and XML, 13-14
development environment, 12
introduction, 11-12

R
README file, 16
readme.txt file, 16, 20
resources directory, 20

S
security for plug-ins, 16
setting conditions for executing steps, 33
Sun N1 Service Provisioning System, See

provisioning system

T
testing the plug-in, 42
<catch> element, 34
<finally> element, 34
<raise> element, 34
<try> element, 34

U
uninstalling plug-ins, 15
upgrading plug-ins, 15
user interface file, 39-40

61

using native commands, 31

V
variable substitutions in a file, 24
variables

common, 23
default values, 23
installName, 23
installPath, 23
installUser, 23
pluginClasspath, 23
reference to another component, 23
XML example, 24

X
XML for plug-in descriptor file, 38-39
XML for plug-in interface file, 40
XML for provisioning system, 13-14
XML schema for components, 13
XML schema for plans, 14
XML schema for plug-in, 13
XML schema for plug-in interface, 13
XML schema for shared elements, 14

62 Sun N1 Service Provisioning System 5.1 Plug-in Development Guide • September 2005

	Sun N1 Service Provisioning System 5.1 Plug-in Development Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Overview of N1 Service Provisioning System Plug-Ins
	Overview of Sun N1 Service Provisioning System
	Overview of the Solution Development Environment
	Introduction to Plug-Ins
	XML Schemas

	Parts of a Plug-In
	Plug-In Packaging
	Recommended Naming
	Installation Considerations
	Plug-In Upgrade Considerations
	Uninstalling Plug-In Versions
	Component Versions and Dependencies

	Certificates
	Security Considerations
	Plug-In readme.txt File

	Creating a Plug-In
	Installing the Plug-In Development Environment
	Creating a Plug-In: Process Overview
	Plug-In Directory Structure
	Developing a Model
	Creating Components and Plans
	Building Components
	Simple and Composite Components
	Variables
	Configuration Templates
	How to Define a Configuration Template

	Defining Component Types
	How to Create a Component Type

	Creating Plans
	Simple and Composite Plans
	How to Generate a Plan

	Using Native Commands in Plans and Components (<execNative> Step)
	Calling Java-based Objects in Plans and Components (<execJava>)
	Conditional Elements
	Error Handling

	Limiting Hosts for a Plug-In
	Enabling Users to Browse and Export Files
	Browsing and Exporting: Process Overview
	Browse Function
	Export Function

	Defining the Plug-In
	Defining an Interface to the Plug-In
	Packaging the Solution
	Testing the Solution

	Using the Application Programming Interface
	Component APIs
	Browsing Function
	Browser API Implementation
	BrowserNode Class
	BrowserFactory Interface
	Sample Code for Browsing Function

	Exporting Function
	ComponentExporter Process
	ComponentExporter Example

	execJava API
	ExecutorFactory Interface
	AgentContext Method
	Executor Interface
	execJava Examples

	Example Plug-In
	Description of the Sample Plug-In
	Plug-In Descriptor File
	Components

	Index

