
Sun Java System Access Manager
7 2005Q4 Technical Overview

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–2135–10
October 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, et Solaris sont des marques de fabrique ou des marques
déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques
de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

051207@13215

Contents

Preface 7

1 Introduction to Access Manager 13
An Access Management Paradigm 13

The Problem 14
The Solution 14

What Access Manager Does 14
Authentication Service 16
Policy Service 16
User Session Management 16
SAML Service 17
Identity Federation Service 17
Logging 17

How Access Manager Works 17
Access Manager Architecture 19

Web Services 19
Core Components and Services that Power Access Manager 20
Client APIs 21
Access Manager Framework 21
Plug-ins Layer 23
Access Manager Policy Agents 23
Architectural Changes In This Release 24

2 User Session Management and Single Sign-On 31
Overview of Access Manager User Sessions 31
Cookies and Session Objects 32

3

Cookies Store User Information 32

Objects in the Session Data Structure 33

Policy Agents 34

Basic User Session 34

Initial HTTP Request 35

User Authentication 36

Session Validation 38

Policy Evaluation 40

Results Logging 42

Single Sign-On Session 43

Cross-Domain Single Sign-On Session 46

Session Termination 48

User Ends Session 48

Administrator Ends Session 49

Access Manager Enforces Timeout Rules 49

3 User Authentication 51

Authentication Overview 51

Authentication Plug-In Modules 52

Authentication Framework 54

General Authentication Service 54

Authentication Configuration Service 55

Inside the Core Authentication Component 55

Client Detection 55

Authentication Type Configurations 55

Redirection URLs 56

Account Locking 56

Authentication Chaining 57

Fully Qualified Domain Name Mapping 58

Persistent Cookie 58

Session Upgrade 58

Validation Plug-in Interface 59

JAAS Shared State 59

Presentation Layer 59

Distributed Authentication User Interface 60

Authentication Programming Interfaces 60

4 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

4 Authorization and the Policy Service 61

Policy Framework 61

Access Control Realms 62

Access Manager Information Tree 64

About Authorization Policies 65

Normal Policy 65

Referral Policy 67

Policy SPIs and Plug-Ins Layer 68

Policy Client APIs 69

5 Federation Management, SAML, and Web Services 71

The Need for Federated Identities 71

The Liberty Alliance Project 72

Liberty Alliance Frameworks 72

The Circle of Trust 73

SAML Specifications 75

Federation Management Implemented in Access Manager 75

Identity Federation Framework 77

Identity Web Services Framework 78

SAML Service 79

Federation Management Protocols Flow 80

6 Logging 83

How the Logging Feature Works 83

Logging Architecture 84

amLogging.xml 84

Log File Formats 84

Log Files Directory 86

Recorded Events 87

Error and Access Logs 88

Additional Logging Features 89

Secure Logging 89

Remote Logging 90

Log Reading 90

Index 91

5

6 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Preface

Sun Java™ System Access Manager is a component of the Sun Java Enterprise System
(Java ES), a set of software components that provide services needed to support
enterprise applications distributed across a network or Internet environment. The Sun
Java System Access Manager 7 2005Q4 Technical Overview describes Access Manager
features, explains what Access Manager does, and explains how Access Manager
works.

Before You Read This Book
This book is intended for use by IT administrators and software developers who
implement a web access platform using Sun Java System servers and software.
Readers of this guide should be familiar with the following concepts and technologies:

� Deployment platform: Solaris™ or Linux operating system

� Web container that will run Access Manager: Sun Java System Application Server,
Sun Java System Web Server, BEA WebLogic, or IBM WebSphere Application
Server

� Technical concepts: Lightweight Directory Access Protocol (LDAP), Java™
technology, JavaServer Pages™ (JSP) technology, HyperText Transfer Protocol
(HTTP), HyperText Markup Language (HTML), and eXtensible Markup Language
(XML)

7

Related Books
Related documentation is available as follows:

� “Access Manager Core Documentation” on page 8
� “Sun Java Enterprise System Product Documentation” on page 9

Access Manager Core Documentation
The Access Manager core documentation set contains the following titles:

� The Sun Java System Access Manager 7 2005Q4 Release Notes will be available online
after the product is released. It gathers an assortment of last-minute information,
including a description of what is new in this current release, known problems and
limitations, installation notes, and how to report issues with the software or the
documentation.

� The Sun Java System Access Manager 7 2005Q4 Technical Overview (this guide)
provides an overview of how Access Manager components work together to
consolidate access control functions, and to protect enterprise assets and web-based
applications. It also explains basic Access Manager concepts and terminology.

� The Sun Java System Access Manager 7 2005Q4 Deployment Planning Guide provides
planning and deployment solutions for Sun Java™ System Access Manager based
on the solution life cycle

� The Sun Java System Access Manager 7 2005Q4 Performance Tuning Guide provides
information on how to tune Access Manager and its related components for
optimal performance.

� The Sun Java System Access Manager 7 2005Q4 Administration Guide describes how to
use the Access Manager console as well as manage user and service data via the
command line interface.

� The Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration
Guide provides information about the Federation module based on the Liberty
Alliance Project specifications. It includes information on the integrated services
based on these specifications, instructions for enabling a Liberty-based
environment, and summaries of the application programming interface (API) for
extending the framework.

� The Sun Java System Access Manager 7 2005Q4 Developer’s Guide offers information
on how to customize Access Manager and integrate its functionality into an
organization’s current technical infrastructure. It also contains details about the
programmatic aspects of the product and its API.

� The Sun Java System Access Manager 7 2005Q4 C API Reference provides summaries
of data types, structures, and functions that make up the public Access Manager C
APIs.

8 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

� The Sun Java System Access Manager 7 2005Q4 Java API Reference provides
information about the implementation of Java packages in Access Manager.

� The Sun Java System Access Manager Policy Agent 2.2 User’s Guide provides an
overview of the policy functionality and the policy agents available for Access
Manager.

Updates to the Release Notes and links to modifications of the core documentation can
be found on the Access Manager page at the Sun Java Enterprise System
documentation web site. Updated documents will be marked with a revision date.

Sun Java Enterprise System Product
Documentation
Useful information can be found in the documentation for the following products:

� Directory Server
� Web Server
� Application Server
� Web Proxy Server

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related
information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in
this document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused or alleged to be caused by or in connection with use of or reliance on any
such content, goods, or services that are available on or through such sites or
resources.

9

http://docs.sun.com/app/docs/coll/1292.1
http://docs.sun.com/prod/entsys.05q4
http://docs.sun.com/prod/entsys.05q4
http://http:docs.sun.com/coll/1316.1
http://http:docs.sun.com/coll/1308.1
http://http:docs.sun.com/coll/1310.1
http://http:docs.sun.com/coll/1311.1

Documentation, Support, and Training

Sun Function URL Description

Documentation http://www.sun.com/documentation/ Download PDF and HTML
documents, and order
printed documents

Support and
Training

http://www.sun.com/training/ Obtain technical support,
download patches, and
learn about Sun courses

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or
value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized
items appear bold online.]

10 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

http://www.sun.com/documentation/
http://www.sun.com/training/

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or at
the top of the document.

For example, the title of this book is Sun Java System Access Manager 7 2005Q4 Technical
Overview, and the part number is 819-2135–10.

11

http://docs.sun.com

12 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

CHAPTER 1

Introduction to Access Manager

Sun Java™ System Access Manager 7 2005Q4 integrates authentication and
authorization services, policy agents, and identity federation to provide a
comprehensive solution for protecting your network resources. Access Manager
prevents unauthorized access to web service applications and web content. This
chapter provides an overview Access Manager features and architecture.

Topics in this chapter include:

� “An Access Management Paradigm” on page 13
� “What Access Manager Does” on page 14
� “How Access Manager Works” on page 17
� “Access Manager Architecture” on page 19

An Access Management Paradigm
Think of all the different types of information a company must store and be able to
make available through its enterprise. Now consider the various enterprise users who
must make use of that information in order for the company’s business to run
smoothly. For example, the following are routine information transactions that occur
every day in a typical company:

� An employee looks up a colleague’s phone number in the corporate phone
directory.

� A manager looks up the salary histories of her reports to help determine an
individual’s merit raise.

� An administrative assistant adds a new hire to the corporate database, which
triggers the company’s health insurance provider to add the new hire to its
enrollment.

� An engineer sends an internal URL for a specification document to another
engineer who works for a partner company.

13

� A customer logs into the company’s website and looks for a product in the
company’s online catalog.

� A vendor submits an online invoice to the company’s accounting department.

In each of these examples, the company must determine who is allowed to view its
information or use its applications. Some information such as the company’s product
descriptions and advertising can be made available to everyone, even the public at
large, in the company’s online catalog. Other information such as accounting and
human resources information must be restricted to only employee use. And some
internal information is appropriate to share with partners and suppliers, but not with
customers.

The Problem
Many enterprises grant access to information on a per-application basis. For example,
an employee might have to set up a user name and password to access the company’s
health benefits administration website. The same employee must use a different user
name and password to access the Accounting Department online forms. Within the
same enterprise, a customer sets up a user name and password to access the public
branch of the company website. For each website or service, an administrator must
convert the enterprise user’s input into a data format that the service can recognize.
Each service added to the enterprise must be provisioned and maintained separately.

The Solution
Access Manager reduces the administrative costs and eliminates the redundant user
information associated with per-application solutions. Access Manager enables an
administrator to assign specific rules or policies governing which information or
services each user can access. Policy agents are deployed on application or web
servers to process HTTP requests and to enforce active policies.

Together, a user’s information and associated access policies comprise the user’s
enterprise identity. Access Manager makes it possible for a user to access many
resources in the enterprise with just one identity.

What Access Manager Does
When an enterprise user or an external application tries to access content stored on a
company’s web server, the Access Manager policy agent intercepts the request and
directs it to the Access Manager server. Access Manager asks the user to present
credentials such as a username and password. If the credentials match those stored in
the appropriate identity repository, Access Manager determines that the user’s
credentials are authentic.

14 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Next, Access Manager evaluates the policies associated with the user’s identity.
Policies identify which users or groups of users are authorized to access a resource,
and specify conditions under which authorization is valid. Finally, based upon policy
evaluation results, Access Manager either grants or denies the user access to the
information. “What Access Manager Does” on page 14 illustrates one way Access
Manager can be configured to act as the gatekeeper to a company’s information
resources.

Internet

Customers

Business
Partners

Administrator
Employees

Content and Application Servers
with Access Manager Policy

Agents

Access Manager

Administration
Console

Core
Components

Non-administrator
Employees

Access
Manager
Information
Tree

Identity
Repository

FIGURE 1–1 Access Manager as the Gateway to a Company’s Enterprise Resources

Access Manager integrates the following features into a single product that can be
viewed in a single administration console:

� “Authentication Service” on page 16
� “Policy Service” on page 16
� “User Session Management” on page 16
� “SAML Service” on page 17
� “Identity Federation Service” on page 17
� “Logging” on page 17

Chapter 1 • Introduction to Access Manager 15

Authentication Service
Authentication is the first step in determining whether a user is allowed to access a
resource protected by Access Manager. The Access Manager Authentication service
verifies that a user really is the person he claims to be. Authentication service consists
of the following components: plug-in modules, a framework for connecting plug-in
modules, a core authentication component, a web service interface, and client APIs.
Authentication Service interacts with the Authentication database to validate user
credentials, and interacts with Identity Repository Management plug-ins to retrieve
user profile attributes. When Authentication Service determines that a user’s
credentials are genuine, a valid user session token is issued, and the user is said to be
authenticated.

Policy Service
Authorization is the process by which Access Manager evaluates policies associated
with a user’s identity, and determines whether an authenticated user has permission
to access a protected resource. Access Manager Policy service enables authorization to
take place. Policy service consists of the following components: policy plug-ins, a
framework for connecting policy plug-ins, a core policy component, a web service
interface, and client APIs. Policy service interacts with Access Manager service
configurations, delegation service, and identity repository plug-ins to verify that the
user has access privileges from a recognized authority.

User Session Management
An Access Manager user session is the interval between the moment a user logs in to a
network resource protected by Access Manager, and the moment the user logs out of
the resource. During the user session, Access Manager session service maintains
information about the user’s interaction with various applications the user accesses.
Access Manager uses this information to enforce time-dependent rules such as timeout
limits. Also during the user session, Access Manager provides continuous proof of the
user’s identity. This continued proof of identity enables the user to access multiple
enterprise resources without having to provide credentials each time.

The Access Manager Session Service enables the following types of user sessions:

� Basic user session. The user provides credentials to log in to one application, and
then logs out of the same application.

� Single sign-on (SSO) session. The user provides credentials once, and can then
access multiple applications within the same DNS domain.

� Cross-domain SSO session. The user provides credentials once, and can then
access applications among multiple DNS domains.

16 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

SAML Service
Access Manager uses the Security Assertion Markup Language (SAML), an XML
based framework for exchanging security information. While Access Manager User
Session service enables single sign-on sessions among different DNS domains within
the same intranet, SAML service enables cross-domain sign-on (CDSSO) sessions
among different business domains. Using the SAML protocol, business partners can
securely exchange authentication and authorization information over the Internet.
Access Manager SAML service consists of a web service interface, a SAML core
component, and a SAML framework that web services can connect to.

Identity Federation Service
Identity federation allows a user to consolidate the many local identities he has
configured among multiple service providers. With one federated identity, the user
can log in at one service provider’s site and move to an affiliated service provider site
without having to re-authenticate or re-establish his identity. Identity Federation
service works with SAML service to enable single sign-on sessions among business
partners over the Internet. Identity Federation services consists of a web service
interface, a core Identity Federation component, and an Identity Federation
Framework that complies with the Liberty Alliance Project specifications.

Logging
When a user logs in to a resource protected by Access Manager, the Logging
component logs information about the user’s activity. You can write custom log
operations and customize log plug-ins to generate log reports for auditing purposes.

How Access Manager Works
When Access Manager starts up, it initializes the Access Manager information tree
with configuration data. The configuration data comes from Access Manager service
plug-ins including Authorization, Policy, Identity Repository Management, and
Service Configuration plug-ins. By default, the Access Manager information tree
resides in Sun Java System Directory Server, the same data store as the identity
repository.

Chapter 1 • Introduction to Access Manager 17

Directory
Server

Web Browser

Firewall

Access Manager
Server

Firewall

Web Server Web Server Web Server

Access Manager Policy AgentAccess Manager Policy Agent Access Manager Policy Agent

Access Manager
Information Tree

FIGURE 1–2 Basic Access Manager Installation

When a browser sends a request to access content or an application on a protected
resource, Access Manager immediately binds to the appropriate Identity Repository to
obtain user information. The user information may include definitions for roles,
realms, user ids, and so forth. At the same time, a Policy Agent installed on the
protected resource intercepts the initial HTTP request and examines the request. If no
session token is found, the Policy Agent contacts the Access Manager server. Then
Access Manager invokes authentication and authorization processes.

18 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Access Manager Architecture
Access Manager uses a Java technology-based architecture for scalability, performance,
and ease of development.

Access Manager leverages industry standards including HyperText Transfer Protocol
(HTTP), eXtensible Markup Language (XML), Simple Object Access Protocol (SOAP),
and Security Assertions markup Language (SAML) specification. The Access Manager
internal architecture is multi-layered and includes a presentation layer, web services,
core components, an integrated framework, and a plug-ins layer.

Custom applications access the Access Manager web services through the Access
Manager client application programming interfaces (APIs) installed on each protected
resource. Custom plug-in modules interact with the Access Manager service provider
interfaces (SPIs) and plug-ins framework. The plug-in modules retrieve information
from the Access Manager information tree and deliver required information to other
plug-ins when necessary, and to the Access Manager framework for data processing.

Web Services
Web services follow a standardized way of integrating Web-based applications using
XML, SOAP, and other open standards over an Internet protocol backbone. Web
services enable applications from various sources to communicate with each other
because web services are not tied to any one operating system or programming
language. Businesses use web services to communicate with each other and with
clients without having to know detailed aspects of each other’s IT systems.

Access Manager provides web services that use XML and SOAP over HTTP. Access
Manager web services are designed to be centrally provided in your network for
convenient access by your client applications. The following table summarizes the web
services provided in Access Manager.

TABLE 1–1 Access Manager Web Services

Web Service Name Description

Authentication Verifies that a user really is the person he claims to be.

Policy (Authorization) Evaluates policies associated with a user’s identity, and
determines whether an authenticated user has permission to
access a protected resource.

Chapter 1 • Introduction to Access Manager 19

TABLE 1–1 Access Manager Web Services (Continued)
Web Service Name Description

SAML Enables single sign-on sessions among different business
domains. Allows business partners to securely exchange
authentication and authorization information over the Internet.

Identity Federation Enables a user to log in at one service provider’s site and move
to an affiliated service provider site without having to
re-authenticate or re-establish his identity.

Session Maintains information about the user’s interaction with various
applications the user accesses.

Access Manager uses both eXtensible Markup Language (XML) files and Java
interfaces to and manage web services and web service configuration data. An Access
Manager XML file is based on a structure defined in a corresponding DTD file. The
DTD file defines the elements and qualifying attributes needed to form a valid XML
document. Access Manager includes DTD files that define the structure for the
different types of XML files it uses. The DTDs are located in
AccessManager-base/SUNWam/dtd. The file sms.dtd defines the structure for all
XML service files. All XML service files are located in
/etc/opt/SUNWam/config/xml.

Caution – Do not modify any of the Access Manager DTD files. The Access Manager
APIs and their internal parsing functions are based on the default definitions.
Alterations to the DTD files may hinder the operation of Access Manager.

Core Components and Services that Power Access
Manager
The core components provide the logic that performs the main Access Manager
functions. The core components work with services that run within Access Manager.
These internal services process data solely for use by Access Manager. The following
table lists the core Access Manager components and internal services along with brief
descriptions of what they do.

TABLE 1–2 Access Manager Core Components and Internal Services

Core Component or Service What it Does

Authentication component Validates user’s credentials and verifies that the user is who
he claims to be.

20 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

TABLE 1–2 Access Manager Core Components and Internal Services (Continued)
Core Component or Service What it Does

Authorization (Policy)
component

Evaluates policies to determine whether the user has
permission to access the requested resource.

Security Assertion Markup
Language (SAML) component

Provides a protocol-based alternative to using cookies for
performing a single sign-on session.

Identity Federation component Enables user to access resources provided by multiple
business partners in a single sign-on session.

User Session Management
component

Maintains information about user session, and enforces
timeout limits. Provides continued proof of identity to enable
single sign-on sessions.

Logging service Tracks a user’s interactions with web applications. Creates log
messages to form an audit trail of important events within the
system.

Naming service Enables a client to locate other Access Manager services such
as User Session Management Service, Logging Service, Policy
Service, and so forth. Defines URLs used to access these
internal services.

Platform service Manages configurable attributes used in an Access Manager
deployment.

Client Detection service Detects the client type of the browser being used to access the
Access Manager application. Client types include HTML,
WML, and other protocols.

Client APIs
Enterprise resources cannot be protected by Access Manager until you install Access
Manager client APIs on the Web Server or Application Server that you want to protect.
The client APIs mirror the APIs and functionality contained in the Access Manager
core components: Authentication, Authorization (Policy), SAML, Identity Federation,
and User Session.

Access Manager Framework
The framework layer is where the Access Manager business logic is implemented.
Each core component uses its own framework to retrieve customer data from the
plug-in layer and to provide data to the core components. The Access Manager
framework integrates all of these frameworks to form one layer in the architecture that
is accessible to all core components and all Access Manager plug-ins.

Chapter 1 • Introduction to Access Manager 21

Authentication
XML/http(s)

Policy
XML/http(s)

SAML
XML/http(s)

Federated
Identity

XML/http(s)

Administration
Console

HTML/http(s)

Administration
CLI

Java
Applications

Authentication SAML
Federated

Identity Session Logging

Authentication
Policy

(Authorization)

Policy
Authorization

Plug-ins

Policy
(Authorization)

Service
Configuration Delegation

Identity
Repository

Management

Service
Configuration

Plug-ins

Delegation
Plug-ins

Identity
Repository

Plug-ins

Access Manager SPIs

Access Manager Framework

Access Manager Components

Access Manager Web Services

Servlet / J2EE Container

Protected Resource

Access Manager Client APIs

C
Applications

SAML
Applications

Liberty
Applications

Web
Browser

Authentication
Plug-ins

FIGURE 1–3 Access Manager Internal Architecture

22 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Plug-ins Layer
The Access Manager SPIs work with plug-ins to provide customer data to the
framework for back-end processing. Some customer data comes from external data
base applications such as identity repositories. Some customer data come from Access
Manager plug-ins. You can develop custom plug-ins to work with Access Manager
SPIs.

For a complete listing of Access Manager SPIs, see the Javadoc. The following table
lists the plug-ins that are installed with Access Manager and a brief description what
each plug-in does.

TABLE 1–3 Access Manager Plug-ins

Plug-in Description

Authentication Accesses user data in a specified identity repository to determine
if user’s credentials are valid.

Policy Aggregates policies and rules to determine whether a user is
authorized to access a protected resource.

Service Configuration Manages configuration data used in each core component
framework: authentication, authorization, SAML, session,
logging, and identity federation. Provides configuration data to
any Access Manager plug-in or component that needs the data.

Delegation Aggregates policies and rules to determine the scope of a
network administrator’s authority.

Identity Repository
Management

Authenticates identities and returns identity information such as
user attributes and membership status.

AM SDK Creates and modifies users and stores information in the user
branch of the identity repository. Implements user management
APIs used in previous Access Manager releases.

Access Manager Policy Agents
You install an Access Manager Policy Agent on a protected resource to enforce the
policy decisions determined by the Policy Service. The policy agent intercepts requests
from applications, and redirects the requests to Access Manager for authentication.
Once the user is authenticated, the policy agent communicates with the Policy Service.
The policy agent allows the user access or denies the user access depending upon the
result of policy evaluation.

Chapter 1 • Introduction to Access Manager 23

Architectural Changes In This Release
Access Manager includes new components that enable you to implement
authentication and authorization solutions without having to make changes in your
existing user directory information tree.

Access Control Realms
In Access Manager an access control realm is a group of authentication properties and
authorization policies you can associate with a user or group of users. Realm data is
stored in a proprietary information tree that Access Manager creates within a data
store you specify. The Access Manager framework aggregates policies and properties
contained in each realm within the Access Manager information tree.

By default, Access Manager automatically inserts the Access Manager information tree
as a special branch in Sun Java Enterprise System Directory Server, apart from the user
data.

Sun Java ES
Directory Server

Identity
Repository

Access Manager
Information Tree

Access Manager
Server

Content and
Application Server

Client APIs

FIGURE 1–4 Default Configuration for Access Manager Information Tree

24 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

You can use access control realms while using any user database. The following figure
illustrates the Access Manager information tree configured in a separate data store
from the identity repository.

Data Store 2

Access
Manager

Information
Tree

Data Store 1

Identity
Repository

Access Manager
Server

Content and
Application Server

Client APIs

FIGURE 1–5 Access Manager Information Tree Configured in Second Data Store

When a user logs into an application, Access Manager plug-ins retrieve all user
information and access information that Access Manager needs to form a temporary,
virtual user identity. Authentication service and Policy service use the virtual user
identity to authenticate the user and to enforce authorization policies. The virtual user
identity is destroyed when the user’s session ends.

Identity Repository Framework
An identity repository is a database where you can store user attributes and user
configuration data. Previous versions of Access Manager relied on Sun Java System
Directory Server as the only supported identity repository and the only supported
software for creating, managing, and storing user data.

Access Manager provides an identity repository plug-in that connects to an identity
repository framework. This new model enables you to view and retrieve Access
Manager user information without having to make changes in your existing user
database. The Access Manager framework integrates data from the identity repository
plug-in with data from other Access Manager plug-ins to form a virtual identity for
each user. Access Manager can then use the universal identity in authentication and
authorization processes among more than one identity repository. The virtual user
identity is destroyed when the user’s session ends.

Chapter 1 • Introduction to Access Manager 25

You can configure the Identity Repository Management Service per realm to use its
own list of Identity Repositories.

Using realm-based configuration, you can specify a single Identity Repository that will
store service configurations for both users and roles. The Identity Repository Service
provides a list of Identity Repositories that can provide user attributes to Policy, SAML
, and Liberty services. The Identity Repository Services pluggable interface combines
attributes obtained from different repositories. Identity Repository plug-ins provide
interfaces to create, read , edit, and delete objects such as Realm, Role, Group, User,
and Agent.

The default identity repository plug-in is designed to work with Sun Java Directory
Server which is based on LDAP. In previous Access Manager versions, the
functionality of this default plug-in was provided by the AM SDK component. In
Access Manager 7.0, the AM SDK functionality still exists, but now in plug-in form.

Realm Mode and Legacy Mode
When you install Access Manager, you are asked to choose either Realm Mode or
Legacy Mode.

Realm mode is new in Access Manager 7.0, and is based on the Access Manager
information tree and Identity Repository Management Service described in the
previous sections. Realm mode is appropriate in most new Access Manager
deployments where you want to keep identity repositories independent of access
management, or where you cannot maintain user data within the required object
classes of Sun Java System Directory Server.

If you choose Realm Mode at installation, then after installation your identity
repositories can exist in any of the following configurations:

� In the same Directory Server instance and the same suffix as the Access Manager
information tree.

� In the same Directory Server instance but in a different suffix as the Access
Manager information tree.

� In a different directory server instance from the Access Manager information tree.

26 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

FIGURE 1–6 Realm Mode User Interface

Legacy Mode is based on the Access Manager 6.3 architecture. This legacy Access
Manager architecture uses the LDAP directory information tree (DIT) that comes with
Sun Java System Directory Server. In Legacy Mode, both user information and access
control information are stored in LDAP organizations. When you choose Legacy
Mode, an LDAP organization is the equivalent of an access control realm. Realm
information is integrated within LDAP organizations.

Legacy Mode is appropriate in deployments where you want to use Access Manager
user management. Legacy Mode is typically used in deployments where Access
Manager is built upon Sun Java System Portal Server or other Sun Java System
communication products that require the use of Sun Java System Directory Server as
the central identity repository.

If you choose Legacy Mode during installation, then after installation the top-level
ream resides in the same Directory Server branch as the Access Manager information
tree, and user information is intermingled with access information.

Chapter 1 • Introduction to Access Manager 27

FIGURE 1–7 Legacy Mode User Interface

The following table compares realm mode and legacy mode.

TABLE 1–4 Comparison of Realm and Legacy Modes

Realm Mode Legacy Mode

Supports all new Access Manager 7 2005Q4 features. Yes Yes

Supports identity repositories in Sun Java System Directory
Server and in other data stores.

Yes Yes

Supports Access Manager 6 user management features. No Yes

Can coexist with Access Manager 6 2005Q1 in
multiple-server installations.

No Yes

Before installation, identity repository can exist in Sun Java
Directory Server .

Yes Yes

Before installation, identity repository can exist in an LDAP
version 3 compliant directory server.

Yes No

For more information about realm and legacy modes, see the Sun Java System Access
Manager 7 2005Q4 Release Notes.

28 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Distributed Authentication User Interface Component
The Distributed Authentication user interface enables a policy agent or an application
that is deployed in a non-secured area to communicate with the Access Manager
Authentication Service that is installed in a secured area of the deployment. Typically,
the non-secured policy agent or application is separated from Access Manager by two
firewalls. In such deployments, policy agents and applications are not usually allowed
to communicate across two firewalls.

Protected Resource

Data StoreAccess Manager Server

Authentication Service

Web Service Interface
Component Logic
Framework
SPIs
Plug-in Modules

Access Manager
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Access Manager
Client APIs

Application

Distributed
Authentication

Service Interface

J2EE Container

Web Browser

Directory
Information Tree

FIGURE 1–8 Distributed Authentication

You can install the distributed authentication user interface on a J2EE web container
within the non—secure layer of an Access Manager deployment. The web browser
communicates an HTTP request to the remote authentication user interface, which in
turn presents a login page to the user. The web browser sends user login information
through a firewall to the remote authentication user interface. The remote

Chapter 1 • Introduction to Access Manager 29

authentication user interface communicates through the second firewall to the Access
Manager Server. For detailed illustration and process flow, see “User Authentication”
on page 36. For detailed installation and configuration instructions, see the Sun Java
System Access Manager 7 2005Q4 Administration Guide.

Delegation Plug-In
The Delegation plug-in works together with the Identity Repository plug-in to
determine a network administrator’s scope of privileges. Default administrator roles
are defined in the Identity Repository plug-in. The Delegation plug-in forms rules that
describe the scope of privileges for each network administrator, and also specifies the
roles to which the rules apply. The following is a list of roles defined in the Identity
Repository, and the default rule the Delegation plug-in applies to each role.

TABLE 1–5 Access Manager Roles and Scope of Privileges

Identity Repository Role Delegation Rule

Realm Administator Can access all data in all realms of the Access Control
information tree.

Subrealm Administrator Can access all data within a specific realm of the Access
Control information tree.

Policy Administrator Can access all policies in all realms of the Access Control
information tree.

Policy Realm Administrator Can access policies only within the specific realm of the
Access Control information tree.

Authentication service and Policy service use the aggregated data to perform
authentication and authorization processes. The Delegation plug-in code is not public
in Access Manager.

Service Configuration Plug-Ins
The Service Configuration plug-in stores and manages data required by other Access
Manager plug-ins. In previous versions of Access Manager, the functionality provided
by the Service Configuration plug-in was known as the Service Management Service
(SMS).

30 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

CHAPTER 2

User Session Management and Single
Sign-On

This chapter explains how the Access Manager Session Service works with other core
Access Manager components to process HTTP requests and to manage user session
data. The chapter traces events in a basic user session, a single sign-on session (SSO),
and a cross-domain single sign-on session (CDSSO) to give you an overview of Access
Manager’s features and process flows.

This chapter contains the following sections:

� “Overview of Access Manager User Sessions” on page 31
� “Cookies and Session Objects” on page 32
� “Policy Agents” on page 34
� “Basic User Session” on page 34
� “Single Sign-On Session” on page 43
� “Cross-Domain Single Sign-On Session” on page 46
� “Session Termination” on page 48

Overview of Access Manager User
Sessions
The Session Service in Sun Java System Access Manager tracks a user’s interaction
with web applications. For example, the session service maintains information about
how long a user has been logged in to Access Manager, and enforces time-out limits
when necessary.

Session Service performs the following actions:

� Generates session identifiers.

� Maintains a master copy of session state information.

� Implements time-dependent behavior of sessions.

31

� Implements session life cycle events such as logout and session destruction.

� Generates session life cycle event notifications.

� Generates session property change notifications.

� Implements session quota constraints.

� Implements session failover.

� Enables single sign-on (SSO) and cross-domain single sign-on (CDSSO) among
applications external to Access Manager.

A user session is the interval between the moment a user logs in to Access Manager,
and the moment the user logs out of Access Manager. In a typical user session, an
employee attempts to access the corporate benefits administration application. The
application is protected by Access Manager, and Access Manager prompts the user for
a username and password. First, Access Manager authenticates, or verifies that the user
is who he says he is. Access Manager then allows the user access to the application.

In the same user session (without logging out of the health benefits application), the
same employee attempts to access the corporate expense reporting application. The
expense reporting application is also protected by Access Manager. In this second
transaction, the Access Manager session service provides continued proof of the user’s
authentication, and the employee is automatically allowed to access the expense
reporting application. The employee has accessed more than one service in a single
user session without having to re-authenticate. This functionality is called Single
Sign-On (SSO). When SSO occurs among applications in more than one DNS domain,
the functionality is called Cross-Domain Single Sign-On (CDSSO).

Cookies and Session Objects
The Session Service uses cookies and creates session objects to store information about
a user session. In an Access Manager user session, session service is most commonly
used to enforce timeout limits. For example, you can use session service to configure
the Access Manager application so that the user is automatically logged out after x
minutes of Access Manager inactivity. The session service can also be used to store
additional information to be used by other applications.

Cookies Store User Information
A cookie is an information packet generated by a web server and passed to a web
browser. The cookie maintains information about the user’s interactions with the web
server that generated the cookie. For example, a web server can generate a cookie
containing information a web browser needs to display a page according to the user’s
preferences for language or layout.

32 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

The fact that a web server generates a cookie for a user does not guarantee that the
user is allowed access to protected resources. The cookie simply stores information
about the user.

Cookies are domain-specific. For example, a cookie generated by a web server within
DomainA cannot be used by a web server in DomainB. Cookies can be passed only
between servers in the same domain in which the cookie was set. Similarly, servers can
set cookies only on servers within in their own domain.

Objects in the Session Data Structure
When a user logs in and is successfully authenticated, or verified to be who the user
says he is, the user is assigned a session. A session is a data structure that contains
maximum timeout limits and information about caching time limits. Session service
also generates a session token for the new session data structure. The session token, also
known as a sessionID, is an encrypted, unique string that identifies the specific session
instance. If the sessionID is known to a protected resource such as an application, the
application can access the session and all user information contained in it.

Minimally, an Access Manager session data structure stores the following information
about a user session:

Maximum Idle Time Maximum number of minutes without activity before the
session will expire and the user must reauthenticate.

Maximum Session Time Maximum number of minutes (activity or no activity)
before the session expires and the user must
reauthenticate.

Maximum Caching Time Maximum number of minutes before the client contacts
Access Manager to refresh cached session information.

Internally, these session attributes are used to enforce Access Manager timeout limits.

A session can also contain additional attributes and properties which can be used by
other applications. For example, a session data structure can store information about a
user’s identity, or about a user’s browser preferences. You can configure Access
Manager to include the following types of information in a session:

� Fixed session attributes
� Protected properties
� Custom properties

For a detailed summary of information that can be included in a session, see the Sun
Java System Access Manager 7 2005Q4 Developer’s Guide.

Chapter 2 • User Session Management and Single Sign-On 33

Policy Agents
Policy agents are programs that police the web server or application server that hosts
protected resources. When a user requests access to a protected resource such as a
server or an application, the policy agent intercepts the request and redirects the
request to Access Manager authentication service. The policy agent also enforces the
user’s assigned policies. Policy agents are an integral part of SSO and CDSSO sessions.

Access Manager supports two types of policy agents:

� Web agent– Enforces URL-based policy for C applications.

� J2EE/Java agent– Enforces URL-based policy and J2EE-based policy for Java
applications on J2EE containers.

Both types of agents are available for you to install as programs separate from Access
Manager. For comprehensive information about policy agents and how to install them,
see the Web Policy Agent GuideSun Java System Access Manager Policy Agent 2.2 Guide for
Sun Java System Web Server 6.1 and J2EE Policy Agent GuideSun Java System Access
Manager Policy Agent 2.2 Guide for Sun Java System Application Server 8.1.

Basic User Session
When Access Manager policy agents are implemented, by default all HTTP requests
are implicitly denied unless explicitly allowed by the presence of two things: 1) a valid
session, and 2) policy allowing access. You can modify the default configuration so
that Access Manger implicitly allows access unless explicitly denied. For detailed
information on configuring Session Service, see “The Current Sessions Interface” in
Sun Java System Access Manager 7 2005Q4 Administration Guide.

The following sections describe a basic user session by tracing what happens when a
user logs in to a resource protected by Access Manager. In these examples, the server
which hosts an application is protected by an Access Manager policy agent. The Basic
User Session includes the following phases:

� “Initial HTTP Request” on page 35
� “User Authentication” on page 36
� “Session Validation” on page 38
� “Policy Evaluation” on page 40
� “Results Logging” on page 42
� “Session Termination” on page 48

34 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Initial HTTP Request
A user initiates a user session by using a browser to log in to a web—based
application.

Distributed
Authentication

Service Interface

J2EE Container

Protected Resource

Data Store

Access Manager Server

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Access Manager
Information Tree

Directory
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Access Manager
Client APIs

Application

1

2

5
6

3

4

FIGURE 2–1 Initial HTTP Request

The following events occur:

1. The user’s browser sends an HTTP request to the protected resource.

2. The policy agent inspects the user’s request, and no session token is found.

3. The policy agent contacts the configured authentication URL.

Chapter 2 • User Session Management and Single Sign-On 35

In this example, the authentication URL it is set to the URL of the Distributed
Authentication User Interface Service.

4. The browser sends a GET request to the Distributed Authentication User Interface.

5. The Session Service creates a new session, or data structure, and generates a
session token. The session token is a randomly-generated string that represents the
user.

6. Authentication Service sets the session data structure in a cookie.

The next part of the user session is User Authentication.

User Authentication
When the browser sends a GET request to the Distributed Authentication User
Interface, the following events occur.

1. Using the parameters in the GET request, the Distributed Authentication User
Interface contacts the Authentication Service installed on the Access Manager
Server.

2. Authentication Service determines the appropriate authentication module to use
based upon Access Manager configuration and the request parameters passed by
the Distributed Authentication User Interface through the Authentication client
APIs.

For example, if Access Manager is configured to use the LDAP Authentication type
of module, the Authentication Service determines that the LDAP Authentication
login page will be used.

3. Authentication Service determines which presentation callbacks should be
presented, and sends to the Distributed Authentication User Interface all necessary
credentials, requirements, and callbacks to be in used the presentation framework
layer.

4. Client Detection Service determines which protocol, such as HTML or WML, to use
to display the login page.

5. The Distributed Authentication User Interface returns to the Web browser a
dynamic presentation extraction page along with the session cookie.

The presentation extraction page contains the appropriate credentials request and
callbacks info obtained from the Access Manager Server.

6. The user’s browser displays the login page.

The user enters information in the Username and Password fields of the login
page.

36 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Protected Resource

Data Store

Access Manager Server

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Access Manager
Information Tree

Directory
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Application

Distributed
Authentication

Service Interface

J2EE
Container

6

12

1

2 3

4

1110

8

5

13

Access Manager
Client APIs

9

7

7. The browser replies to the Distributed Authentication User Interface with a POST
that contains the required credentials.

8. The Distributed Authentication User Interface uses the Authentication client APIs
to pass credentials to the Access Manager Server.

9. The Authentication Service uses the appropriate authentication module type to
validate the user’s credentials.

For example, if the LDAP authentication module type is used, Authentication
Service verifies that the username and password provided exist in the LDAP
directory. Other authentication module types have different requirements.

Chapter 2 • User Session Management and Single Sign-On 37

10. When authentication is successful, Authentication Service activates the session by
calling the appropriate methods in the Session Service.

Authentication Service stores information such as Login time, Authentication
Scheme, and Authentication Level in the session data structure.

11. Once the session is activated, Session Service changes the state of the session token
to valid.

12. The Distributed Authentication User Interface replies to the protected resource
with an SSOToken in a set-cookie header.

13. The browser makes a request to the originally requested resource protected by an
Agent.

This time, the request includes the valid session data structure and session token that
were created during the authentication process. The next part of the user session is
Session Validation.

Session Validation
After authentication, when the user’s browser redirects the initial HTTP request to the
mail server for a second time, the following events occur.

1. The policy agent intercepts the second access request.

The request now contains a session token in the same DNS domain as Access
Manager.

2. The policy agent determines the validity of the session token.

a. The policy agent contacts the Naming Service to learn where the session token
originated.

The Naming Service allows clients to find the service URL for the internal
services used by Access Manager. This information can then be used for
communication regarding a session.

b. The Naming Service decrypts the session token and returns the corresponding
URLs . The URLs will be used by other services to obtain information about the
user session.

3. The policy agent, using the information provided by the Naming Service, makes a
POST request to the Session Service to validate the included session token.

4. The Session Service receives the request and determines whether the session token
is valid based on the following criteria:

a. Has the user been authenticated?
b. Does a session data structure and session token exist?

5. If all criteria are met, the Session Service responds that the session token is valid.

This assertion is coupled with supporting information about the user session itself.

38 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

6. The policy agent creates a Session Listener and registers the Session Listener with
the Session Service. This enables notification to the policy agent when a change in
the session token state or validity occurs.

The next part of the user session is Policy Evaluation.

Protected Resource

Data Store
Access Manager Server

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Access Manager
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Access Manager
Client APIs

Application

1

4

6

5

3
2

Web Browser

Directory
Information Tree

FIGURE 2–2 Session Validation

Chapter 2 • User Session Management and Single Sign-On 39

Policy Evaluation
Once a session token has been validated, the policy agent determines if the user can be
granted access to the mail server. The following events occur.

Protected Resource

Data Store

Access Manager Server

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Access Manager
Information Tree

Directory
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Access Manager
Client APIs

Application

2

3
4

1

Web Browser

FIGURE 2–3 Policy Evaluation

40 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

1. The policy agent sends a request to the Policy Service.

The request asks for decisions regarding resources in the policy agent’s portion of
the HTTP namespace. The request also includes additional environmental
information. For example, IP address or DNS name could be included in the
request because they might impact conditions set on a configuration policy.

2. The Policy Service checks for policies that apply to the request.

Policies are cached in Access Manager. If the policies have not been cached already,
then the policies are loaded from the Access Manager information tree in the
Identity Repository.

3. If policies that apply to the request are found, the Policy Service checks if the user
identified by the session token is a member of any of the Policy Subjects.

a. If no policies that match the resource are found, the user is denied access. Skip
to step 5.

b. If policies are found that match the resource, and the user is a valid subject,
then Policy Service evaluates conditions of each policy. For example, Is it the
right time of day? Are requests coming from the correct network?

� If conditions are met, the policy applies.
� If conditions are not met, the policy is skipped.

4. Policy service aggregates all policies that apply, and encodes a final decision to
grant or deny access.

5. Policy Services responds to the policy agent with the appropriate decision.

a. If the user is denied access, the Policy Agent displays an “access denied” page.

b. If the user is granted access, the resource displays its access page.

The next part of the user session is logging the policy evaluation results.

Chapter 2 • User Session Management and Single Sign-On 41

Results Logging
When the policy agent receives an allow decision from the Policy Service, the
following events occur.

Protected Resource

Data StoreAccess Manager Server

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Access Manager
Information Tree

Directory
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Access Manager
Client APIs

Application

3 4

1 2

5

Web Browser

FIGURE 2–4 Logging the Policy Evaluation Results

42 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

1. The allow decision is cached in the policy agent, along with the session token, so
that subsequent requests can be checked using the cache.

It is no longer necessary for the policy agent to contact Access Manager. The cache
will expire after an interval has passed or upon an explicit notification of change in
policy or session status. The interval is configurable.

2. The policy agent issues a logging request to the Logging Service.

3. The Logging Service logs the policy evaluation results to a flat file (which can be
signed) or to a JDBC store, depending upon the log configuration.

4. The Logging Service notifies the policy agent of the new log.

5. The policy agent allows the user access to the application.

The browser displays the application interface. This basic user session is valid until
it is terminated. See “Session Termination” on page 48.

While the user is still logged in, if he attempts to log into another protected
resource, then the Single Sign-On session begins.

Single Sign-On Session
SSO is always preceded by a basic user session in which a session is created and its
session token is validated, and in which the user is authenticated. For detailed
information, see “Basic User Session” on page 34.

SSO begins occurs when the authenticated user requests a protected resource on a
second server in the same DNS domain. The following example describes an SSO
session by tracing what happens when an authenticated user (from “Basic User
Session” on page 34) accesses a second application, an expense reporting application.
Session Service maintains user session information with input from all applications
participating in the single sign-on. In this example, session service maintains
information from the benefits administration and the expense reporting application.
The following events occur.

Chapter 2 • User Session Management and Single Sign-On 43

Web Browser

Access Manager
Policy Agent

Application

Access Manager Policy Agent

Application

Web Server

Access Manager
Policy Agent

Access Manager
Server

CDSSO Controller

Domain2.example.comDomain1.example.com

Access Manager
Policy Agent

Application

Access Manager
Policy Agent

Application

1

Data
Store

4

5

6 7 9 10 11

12

13

2

8

Web Browser

3

FIGURE 2–5 Single Sign-On Session

1. The user attempts to access an expense reporting application.

Both the expense reporting application and the benefits administration application
from section “Basic User Session” on page 34 are hosted by servers in the same
domain.

2. The user’s browser sends An HTTP request to the expense reporting application.
The request includes the user’s session token.

3. The policy agent intercepts and inspects the request to determine whether a session
token exists.

A session token indicates the user is already authenticated. The user was
authenticated when the user logged in to the benefits administration application,
so authentication service is not required at this time. The SSO APIs retrieve the
session data structure, which is known to SSO APIs as the SSOToken. The session

44 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

token, or session ID, is known to SSO APIs as the SSOTokenID.

4. The policy agent determines the validity of the session.

For detailed steps, see “Session Validation” on page 38.

5. The Session Service sends a reply to the policy agent indicating whether the
SSOToken is valid.

6. If the SSOToken is not valid, then the user is redirected to the Authentication page.

7. If the SSOToken is valid, Session Service creates a Session Listener.

A Session Listener allows notification to the policy agent when a change in the
SSOToken state or validity occurs.

8. The policy agent sends a request to the Policy Service.

The request asks for a decision regarding resources in the policy agent’s portion of
the HTTP namespace.

9. The Policy Service checks for policies that apply to the request.

10. If Policy Service does not find policy allowing access to the protected resource, the
user is denied access. The following events occur:

a. The Logging Service logs this denial of access.

b. The policy agent issues a Forbidden message to the user.

The user can then be redirected to an administrator-specified page indicating
the user was denied access.

11. If Policy Service finds policy allowing access to the protected resource, the user is
granted access to the protected resource.

The SSO session is valid until it is terminated. “Session Termination” on page 48.

While the user is still logged in, if the user decides to attempt to log in to another
protected resource located in a different DNS domain, then CDSSO takes place.

Chapter 2 • User Session Management and Single Sign-On 45

Cross-Domain Single Sign-On Session
CDSSO occurs when an authenticated user requests a protected resource on a different
server in a different DNS domain. The user in the previous sections, “Basic User
Session” on page 34 and “Single Sign-On Session” on page 43, for example, accessed
applications in his company’s DNS domain. In the following example, the same user
will log in to a benefits administration application supplied to his company by an
external company. The benefits administration application is hosted on the external
company’s DNS domain.

The CDSSO servlet within Access Manager transfers the user’s SSOToken into the
external DNS domain, making the SSOToken usable for applications in this second
domain. The CDSSO Controller Service uses Liberty Protocols to transfer sessions
between domains.

When the user logs in to the benefits administration application in the external DNS
domain, the following events occur.

1. The user’s browser sends an HTTP request to the benefits administration
application.

2. The policy agent intercepts the request and inspects it to determine if a session
token or SSOToken exists.

3. If a session token or SSOToken is present, the policy agent validates the session.

In this example, the SSOToken is present. See “Session Validation” on page 38, then
skip to “Cross-Domain Single Sign-On Session” on page 46.

4. If no session token or SSO token is present, the policy agent sends the HTTP
request to the CDSSO Controller Service.

The send includes the relevant Liberty parameters.

46 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Access Manager
Policy Agent

Application
Access Manager

Policy Agent

Application

Access Manager
Policy Agent

Application

Access Manager
Server

CDSSO Controller

Domain2.example.comDomain1.example.com

Access Manager
Policy Agent

Application

Data
Store

5

4

6

2 37

1Web Browser

5. The user’s browser allows the redirect.

This time the request contains the SSOToken. Recall that earlier in the user session
(see “Single Sign-On Session” on page 43), the SSOToken was set in a cookie in the
primary domain.

6. The CDC Servlet receives the SSOToken, and replies to the browser with a Liberty
Post Profile response that includes user session information.

a. The user’s browser automatically submits the form containing the Liberty
document to the policy agent.

The form is based upon the Action and the Javascript included in the Body tags
onLoad.

b. The policy agent receives the Liberty document and extracts the user session
information.

7. The policy agent validates the SSOtoken.

For detailed information, see “Session Validation” on page 38.

Chapter 2 • User Session Management and Single Sign-On 47

8. The policy service examines policies.

For detailed information, see “Policy Evaluation” on page 40.

9. The policy agent allows or denies access to the requested resource.

For detailed steps, see “Results Logging” on page 42. In this case, the session token
was determined to be valid, and the user is allowed access.

10. The policy agent responds to the user by presenting the benefits administration
application screen.

11. The policy agent sets the SSOToken in a cookie for the new DNS domain.

The cookie can now be used by all agents in the new domain.

The CDSSO session is valid until it is terminated.

Session Termination
A user session can be terminated in one of three ways:

� User ends the session.
� Administrator ends the session.
� Access Manager enforces timeout rules.

User Ends Session
When a user explicitly logs out of Access Manager the following events occur:

1. The user logs out by clicking on a link to the Logout Service.

2. The Logout Service receives the Logout request, and then performs the following
steps:

a. Marks user’s session as destroyed.
b. Destroys session.
c. Returns a successful logout page to the user.

3. The Session Service notifies applications which are configured to interact with the
session.

In this case, each of the policy agents was configured for Session Notification, and
each is sent a document instructing the agent that the session is now invalid.

4. The policy agents flush the session from cache and the user session ends.

48 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Administrator Ends Session
Access Manager Administrators with appropriate permissions can terminate a user
session at any time. When an administrator ends a session, the following events occur:

1. The administrator uses Sessions tab in the Access Manager console to end the
user’s session.

2. The Logout Service receives the Logout request, and then performs the following
steps:

a. Marks user’s session as destroyed.
b. Destroys session.

3. The Session Service notifies applications which are configured to interact with the
session.

In this case, each of the policy agents was configured for Session Notification, and
each is sent a document instructing the agent that the session is now invalid.

4. The policy agents flush the session from cache and the user session ends.

Access Manager Enforces Timeout Rules
When a session timeout limit is reached, Session Service completes the following
steps:

1. Changes session status to invalid.

2. Displays time-out message to user.

3. Starts timer for purge operation delay (default is 60 minutes).

4. When purge operation delay time is reached, purges or destroys the session.

5. If a session validation request comes in after the purge delay time is reached,
displays login page to user.

Chapter 2 • User Session Management and Single Sign-On 49

50 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

CHAPTER 3

User Authentication

Access Manager Authentication Service determines whether a user is the person he
claims to be. User authentication is the first step in controlling access to web resources
within an enterprise. This chapter explains how Authentication service works with
other Access Manager components to authenticate a user, or prove that the user’s
identity is genuine.

Topics in this chapter include:

� “Authentication Overview” on page 51
� “Authentication Plug-In Modules” on page 52
� “Authentication Framework” on page 54
� “Inside the Core Authentication Component” on page 55
� “Presentation Layer” on page 59
� “Distributed Authentication User Interface” on page 60
� “Authentication Programming Interfaces” on page 60

Authentication Overview
The following example demonstrates a user’s view of how Authentication service
works. A company employee must look up a colleague’s phone number, so he uses a
browser to access the company’s online phone book. To log in to the phone book
service, the employee must provide a user name and password. Access Manager
compares the user’s input with data stored in Directory Server. If Access Manager
finds a match for the user name, and if the given password matches the password
stored in Directory Server, Access Manager authenticates the user’s identity. After
authentication, the policy evaluation process occurs. If the policy agent allows access
to the user, and the corporate phone book is displayed.

See “Basic User Session” on page 34 for a detailed description and illustration of the
authentication process within a basic user session.

51

Authentication Service is client-type aware and supports all configured client types
such as cookieless and cookie-enabled client types.

Authentication Plug-In Modules
An authentication module is a plug-in that collects user information such as a user ID
and password, and then checks the information against entries in a database. If a user
provides information that meets the authentication criteria, then the user is granted
access to the requested resource. If the user provides information that does not meet
authentication criteria, the user is denied access to the requested resource. Access
Manager is installed with 15 types of authentication modules. The following table
provides a brief description of the 15 default authentication module types.

TABLE 3–1 Access Manage Authentication Module Types

Authentication Module Name Description

Active Directory Uses an Active Directory operation to associates a user ID
and password with a particular Active Directory entry. You
can define multiple Active Directory authentication
configurations for a realm. Allows both LDAP and Active
Directory to coexist under the same realm.

Anonymous Allows a user to log in without specifying credentials. You
can create an Anonymous user so that anyone can log in as
Anonymous without having to provide a password.
Anonymous connections are usually customized by the
Access Manager administrator so that Anonymous users
have limited access to the server.

Certificate Allows a user to log in through a personal digital certificate
(PDC). The module can require the use of the Online
Certificate Status Protocol (OCSP) to determine the state of a
certificate. Use of the OCSP is optional. The user is granted
or denied access to a resource based on whether or not the
certificate is valid.

HTTP Basic Allows authentication to occur with no data encryption.
Credentials are validated internally using the LDAP
authentication module.

Java Database Connectivity
(JDBC)

Allows authentication through any Structured Query
Language (SQL) databases that provide JDBC-enabled
drivers. The SQL database connects either directly through a
JDBC driver or through a JNDI connection pool.

52 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

TABLE 3–1 Access Manage Authentication Module Types (Continued)
Authentication Module Name Description

LDAP Allows authentication using LDAP bind, a Directory Server
operation which associates a user ID password with a
particular LDAP entry. You can define multiple LDAP
authentication configurations for a realm.

Membership Allows user to self-register. The user create an account,
personalizes it, and accesses it as a registered user without
the help of an administrator. Implemented similarly to
personalized sites such as my.site.com, or mysun.sun.com.

MSISDN The Mobile Station Integrated Services Digital Network
(MSISDN) authentication module enables authentication
using a mobile subscriber ISDN associated with a device
such as a cellular telephone. It is a non-interactive module.
The module retrieves the subscriber ISDN and validates it
against the Directory Server to find a user that matches the
number.

RADIUS Uses an external Remote Authentication Dial-In User
Service (RADIUS) server to verify identities.

Security Assertion Markup
Language (SAML)

Receives and validates SAML Assertions on a target server
by using either a web artifact or a POST response.

SafeWord® Uses Secure Computing’s SafeWord PremierAccess™ server
software and SafeWord tokens to verify identities.

SecurID™ Uses RSA ACE/Server software and RSA SecurID
authenticators to verify identities.

UNIX® Solaris and Linux modules use a user’s UNIX identification
and password to verify identities.

Windows Desktop Single
Sign-On (SSO)

Also known as Kerebos authentication, this module is
specific only to the Windows operating system. Allows a
user who has already authenticated with a key distribution
center to be authenticated with Access Manager without
having to provide the login information again.

Windows NT Uses a Microsoft Windows NT™ server to verify identities.

Chapter 3 • User Authentication 53

After granting or denying access, Access Manager checks for information about where
to redirect the user. Access Manager uses a specific order of precedence when checking
this information. The order is based on whether the user was granted or denied access
to the protected resource, and on the type of authentication specified. Five types of
authentication exist including Realm-based and Role-based authentication. See
“Authentication Type Configurations” on page 55 for more information about
authentication types.

You can use the Access Manager Console to enable and configure authentication
module types that come with Access Manager by default. You can also create and
configure multiple instances of a particular authentication module type. An instance is
a child entity that extends the schema of a parent authentication module and adds its
own subschema. See Sun Java System Access Manager 7 2005Q4 Administration Guide for
detailed information about enabling and configuring default authentication modules
types and authentication module instances.

You can also write your own custom authentication module or plug-in to connect to
the Access Manager authentication framework. For more information about writing
custom authentication modules, see the Sun Java System Access Manager 7 2005Q4
Developer’s Guide.

Authentication Framework
The Authentication framework includes two pluggable and customizable services:
General Authentication Service, and Authentication Configuration Service.

General Authentication Service
The general authentication service is used for server-related attribute configuration.
Some of the attributes described in this service are default attributes for all Access
Manager authentication modules.

You must register the general authentication service as a service to a realm before a
user can use authentication modules to log in. The general authentication service
enables the Access Manager administrator to define default values for a realm’s
authentication parameters. These values can be used if no overriding value is defined
in the specified authentication module. The default values for the General
Authentication Service are defined in the amAuth.xml file and stored in the Access
Manager information tree after installation.

54 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Authentication Configuration Service
The Authentication Configuration Service describes all the dynamic attributes for
service-based authentication. This service is used for roles. When you assign a service
to a role, you can also assign other attributes such as a success URL or an
authentication post-processing class to the role.

Inside the Core Authentication
Component
The core Authentication component is where default configurations are stored and
where authentication processes are invoked.

Client Detection
An initial step in the authenticating process is to identify the type of client making the
HTTP(S) request. This Access Manager feature is known as client detection. The URL
information in the HTTP(S) request is used to retrieve the client’s characteristics.
Based on these characteristics, the appropriate authentication pages are returned. For
example, when a Netscape browser is used to request a web page, Access Manager
displays an HTML login page. Once the user is validated, the client type Netscape
browser is added to the session token.

Authentication Type Configurations
When you install Access Manager, a number of authentication types are automatically
configured for you. The following types of authentication are available to you by
default when you install Access Manager.

Realm-based Authentication.
User authenticates to a realm or subrealm in the Access Manager information tree.

Role-based Authentication.
User authenticates to a role within a realm or subrealm of the directory information
tree. A role is a group of like items in the directory. A static role is created when an
attribute is assigned to a specific user or container in the directory. A filtered role is
dynamically generated based on an attribute contained in the a user’s or
container’s LDAP entry. For example, all users that contain a particular attribute,
for example employee, can be automatically included in a filtered role named
employees.

Chapter 3 • User Authentication 55

Service-based Authentication.
User authenticates to a specific service or application registered to a realm or
subrealm.

User-based Authentication.
User authenticates using an authentication process configured specifically for him
or her.

Authentication Level-based Authentication
Administrator specifies the security level of the modules to which identities can
authenticate.

Module-based Authentication.
User specifies the module instance to which the user will authenticate.

Redirection URLs
In the last phase of the authentication process, Access Manager either grants or denies
access to the user. If access is granted, Access Manager uses a login URL to display a
login page in the browser. If access is denied, Access Manager uses a redirection URL
to display an alternate page in the browser. A typical alternate page contains a brief
message indicating the user has been denied access.

Each authentication type uses a login URL or redirection URL depending on a specific
order of precedence. The order of precedence is based on the authentication type used
(realm-based, role-based, and so forth), and on whether authentication succeeded or
failed. For a detailed description of how Access Manager proceeds through the order
of precedence, see Chapter 7, “Managing Authentication,” in Sun Java System Access
Manager 7 2005Q4 Administration Guide.

Account Locking
The Authentication Service provides an account locking feature that “locks out” or
prevents a user from completing the authentication process after a specified number of
failures. Only modules that throw an Invalid Password Exception can leverage the
Account Locking feature. Access Manager sends email notifications to administrators
when account lockouts occur. Account locking activities are also logged. The account
locking feature is disabled by default. You can enable account locking by using the
Access Manager console.

Access Manager supports two types of account locking: Physical Locking and Memory
Locking.

Physical Locking. By default, user accounts are active or physically unlocked.
You can initiate physical locking by changing the status of an
LDAP attribute in the user’s profile to inactive. The account
remains physically locked until the attribute is changed to
active.

56 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Memory Locking. You can enable memory locking by changing the Login Failure
Lockout Duration attribute to a value greater then 0. The user’s
account is locked in memory for the number of minutes you
specified. The account is unlocked after the time period elapses.
You can configure Memory Locking so that a user account is
locked in memory after a specified number of tries. The user
account will be locked when AM server is restarted.

Authentication Chaining
You can configure one or more authentication module instances so that a user must
pass authentication credentials to all authentication modules instances before the user
is allowed access. This feature is called as authentication chaining. Determining access
is based upon control flags you specify for the chain. Access Manager uses the Java
Authentication and Authorization Service (JAAS) framework to implement
authentication chaining. The JAAS framework is integrated in the Authentication
Service.

You can configure authentication chaining by realm, user, role, or service
configuration. Authentication modules use a control flags to indicate requirements for
successful authentication.

Each registered authentication module type is assigned one of the following control
flags:

Requisite. The LoginModule is required to succeed. If it succeeds, authentication
continues down the LoginModule list. If it fails, control immediately
returns to the application (authentication does not proceed down the
LoginModule list).

Required. Authentication to this module is required to succeed. If any of the
required modules in the chain fails, the whole authentication chain will
ultimately fail. However, whether a required module succeeds or fails,
the control will continue down to the next module in the chain.

Sufficient. The LoginModule is not required to succeed. If it does succeed, control
immediately returns to the application (authentication does not proceed
down the LoginModule list). If it fails, authentication continues down
the LoginModule list.

Optional. The LoginModule is not required to succeed. Whether it succeeds or
fails, authentication still continues to proceed down the LoginModule
list.

Chapter 3 • User Authentication 57

Once authentication to all modules in the chain is successful, control is returned to the
Authentication Service from the JAAS framework. The JAAS framework validates all
user IDs used during the authentication process, and then maps them all to one user.
The mapping is based on the configuration of the User Alias List attribute in the user’s
profile.

If all the maps are correct, then a valid session token is issued to the user. If all the
maps are not correct, then the user is denied a valid session token.

Fully Qualified Domain Name Mapping
Fully Qualified Domain Name (FQDN) mapping enables the Authentication Service to
take corrective action in the case where a user may have typed in an incorrect URL.
This is necessary, for example, when a user specifies a partial host name or IP address
to access protected resources.

Persistent Cookie
A persistent cookie is an information packet that continues to exist after the web
browser is closed. The persistent cookie enables a user to log into a new browser
session without having to reauthenticate.

Session Upgrade
The Authentication Service enables for the upgrade of a valid session token based on a
second, successful authentication performed by the same user to one realm. If a user
with a valid session token attempts to authenticate to a resource secured by his current
realm, and this second authentication request is successful, Authentication Service
updates the session with the new properties based on the new authentication. If the
authentication fails, the current user session is returned without an upgrade. If the
user with a valid session attempts to authenticate to a resource secured by a different
realm, the user will receive a message asking whether the user would like to
authenticate to the new realm. The user can choose to maintain the current session, or
can attempt to authenticate to the new realm. Successful authentication will result in
the old session being destroyed and a new one being created.

58 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Validation Plug-in Interface
The Validation Plug-In Interface is supported by only the LDAP and Membership
authentication module types. An administrator can write username or password
validation logic appropriate for a particular realm, and then the plug logic into the
Authentication Service. Before authenticating a user or changing the user password,
Access Manager will invokes this plug-in. If the validation is successful, authentication
continues. If validation fails, an authentication failed page will be thrown. The plug-in
extends the com.iplanet.am.sdk.AMUserPasswordValidation class which is
part of the Service Configuration SPI.

JAAS Shared State
The JAAS shared state enable sharing of both user ID and password between
authentication module instances. Options are defined for each authentication module
type by realm, user, service and role.

If an authentication fails with the credentials from the shared state, the authentication
module restarts the authentication process by prompting for its required credentials. If
it fails again, the module is marked failed. After a commit, an abort, or a logout, the
shared state will be cleared.

Presentation Layer
The Authentication Service implements a user interface that is separate from the
Access Manager administration console. The Authentication Service user interface
provides a dynamic and customizable means for gathering authentication credentials.
When a user requests access to a protected resource, the Authentication Service
presents a web-based login page. In the following figure. the default Access Manager
login page is displayed and prompts the user for user name and password.

Once the credentials have been passed back to Access Manager and authentication is
successful, the user can gain access based on the user’s specific privileges:

� Administrators can access the administration portion of the Access Manager
console to manage their realm’s identity data.

� Users can access their own profiles to modify personal data.

� A user can access a resource defined as a redirection URL parameter appended to
the login URL.

� A user can access the resource protected by a policy agent.

Chapter 3 • User Authentication 59

Access Manager 7.0 provides customization support for the Authentication Service
user interface. You can customize Java server pages (JSPs) and the file directory level
for /org/service/locale/client_type. See the Sun Java System Access
Manager 7 2005Q4 Developer’s Guide for more information.

Distributed Authentication User
Interface
Access Manager provides a remote Authentication user interface component to enable
secure, distributed authentication across two firewalls. You can install the remote
authentication user interface component on any servlet-compliant web container
within the non—secure layer of an Access Manager deployment. The remote
component works with Authentication client APIs and authentication utility classes to
authenticate web users. The remote component is customizable and uses a JATO
presentation framework.

Authentication Programming Interfaces
Access Manager provides both Java APIs and C APIs for writing authentication clients
that remote applications can use to gain access to the Authenticate Service. Both Java
and C APIs support all Authentication types supported by Web User Interface. This
communication between the APIs and the Authentication Service occurs by sending
XML messages over HTTP(S). Clients other than Java and C clients can user the
XML/HTTP interface directly to initiate an Authentication request.

You can add Authentication modules to Access Manager by using the
com.iplanet.authentication.spi package. The SPI implements the JAAS
LoginModule, and provides additional methods to access the Authentication Service
and module configuration properties files. Because of this architecture, any custom
JAAS authentication module will work within the Authentication Service.

For more information about using Authentication programming interfaces, see the Sun
Java System Access Manager 7 2005Q4 Developer’s Guide.

60 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

CHAPTER 4

Authorization and the Policy Service

Access Manager Policy Service determines if a user has been given permission by a
recognized authority to access a protected resource. This process is known as user
authorization. This chapter describes how the various parts of the Policy Service work
together to perform authorization. Topics covered in this chapter include:

� “Policy Framework” on page 61
� “Access Control Realms” on page 62
� “About Authorization Policies” on page 65
� “Policy SPIs and Plug-Ins Layer” on page 68
� “Policy Client APIs” on page 69

Policy Framework
The policy framework in Access Manager is where policy management logic and
evaluation logic are implemented. The framework consists of a general Policy Service
and the Policy Configuration Service.

The general Policy Service performs three main functions:

� Provides a means for defining and managing access policies.
� Evaluates access policies.
� Acts as a policy decision point (PDP) to deliver the result of the policy evaluation.

Applications host resources. In Access Manager, applications are protected by policy
enforcement points (PEP) such as J2EE or web policy agents to enforce access control.
Access control is based on the policy decision provided by policy evaluation at the
PDP which is the Policy Service.

A policy is a rule that describes who is authorized to access a resource. Policies are
grouped into access control realms which together form the Access Manager
information tree.

61

When a user attempts to access a resource protected by a PEP, the PEP talks to the PDP
to get a policy decision. At the PDP, which is Access Manager, Policy Service
determines and evaluates policies that protect the resource and are applicable to the
user. This results in a policy decision indicating whether the user is allowed to access
the resource. Upon receiving the decision, the PEP allows or denies access
appropriately. This whole process is called authorization.

The general Policy Service enables an administrator to configure custom policy
plug-ins by providing names and class location of the custom plug-ins. The Policy
Configuration Service provides a means to specify how policies will be defined and
evaluated within a realm or subrealm. The Policy Configuration services enables you
to specify: which directory to use for subject lookup; which search filters to use; which
subjects, conditions, and response providers to use.

Access Control Realms
You create an access control realm when you want to apply policies to a group of
related services or servers. An Access Manager realm is a group of authentication and
authorization properties that you can associate with a user or group of users, or a
collection of protected resources. For example, you can create a realm that groups all
servers and services that are accessed regularly by your employees in one region.
Within that regional grouping or realm, you can group all servers and services
accessed regularly by employees in a specific division such as Human Resources. For
example, a policy might state that all Human Resources administrators can access the
URL http://HR.example.com/HRadmins/index.html. You might add
constraints to this policy. For example: The policy is applicable only Monday through
Friday from 9:00 a.m. through 5:00 p.m.

Realm data is stored in an Access Manager information tree. Realms facilitate the
delegation of policy management privileges within a realm hierarchy.

62 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Region 1

Access Manager Information Tree

Region 2

Region 3

Development

Operations

Sales

FIGURE 4–1 Access Manager Information Tree

Chapter 4 • Authorization and the Policy Service 63

Access Manager Information Tree
Access Manager creates a special and proprietary branch in a data store such as an
LDAP directory for storing realm configurations, authentication properties, and
authorization policies. This directory can be different from the directory hosting the
Access Manager Identity Repository. Together the realms form the Access Manager
information tree. The Access Manager information tree is separate from the user
branch in the Identity Repository.

Devices

Site 1

Site 2
Site 3

Example Corporation

Typical Directory Server

Groups

People

Customers

Employees
Vendors

User 1

User 2
User 3

Devices

Example Corporation

Directory Server with
Access Manager Installed

Groups

People

Access Manager Information

Region 1

Region 2
Region 3

Development

Operations
Sales

FIGURE 4–2 Access Manager Information Tree Within an Identity Repository

Access Manager components and plug-ins access the data stored in the Access
Manager information tree, and use data for various purposes. The following are some
examples:

� Policy runtime accesses policy data for policy evaluation.
� Identity Repository plug-in finds configuration information for data stores.

64 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

� Authentication Service finds authentication configuration information.

About Authorization Policies
The Policy Service authorizes a user based on the policies stored in the access control
information tree. You can create two types of Access Manager policies: normal policies
and referral policies. Create a normal policy when you want to define access privileges
for a resource. Create a referral policy when you want to delegate policy creation to
another entity such as a peer realm, a subrealm, or a third-party product.

Normal Policy
A normal policy specifies a protected resource and also specifies who is allowed to
access the resource. The protected resource can be anything hosted by a protected
server. Examples of protected resources are applications, content such as document
files, or the server itself. Only a Top-Level Realm or Policy Administrator can create or
manage polices that apply to any resource.

A normal policy consists of rules, subjects, conditions, and response providers.

Policy Rules
A rule defines a policy by specifying a resource, one or more sets of an action, and
values for each action.

� A resource defines the specific object that is being protected. Examples of protected
objects are an HTML page on a website, or a user’s salary information accessed
using a human resources service.

� An action is the name of an operation that can be performed on the resource.
Examples of web page actions are POST and GET. An allowable action for a human
resources service might be canChangeHomeTelephone.

� A value defines the permission for the action. Examples are allow anddeny.

Policy Subjects
A subject specifies by implication the user or collection of users that the policy affects.
You can implement custom subjects by using Policy APIs. You can assign subjects to
policies. Access Manager includes the following subjects:

Access Manger Roles The roles you create and manage under the Realms
Subject tab can be added as a value of the subject.

Chapter 4 • Authorization and the Policy Service 65

Access Manager Identity The identities you create and manage under the Realms
Subject tab can be added as a value of the subject.

Authenticated Users Any user with a valid SSOToken is a member of this
subject. All authenticated users would be member of this
Subject, even if they have authenticated to a realm that is
different from the realm in which the policy is defined.
This is useful if the resource owner would like to give
access to resources that is managed for users from other
realms.

LDAP Groups Any member of an LDAP group can be added as a value
of this subject.

LDAP Roles Any LDAP role can be added as a value of this subject.
An LDAP Role is any role definition that uses the
Directory Server role capability. These roles have object
classes mandated by Directory Server role definition. The
LDAP Role Search filter can be modified in the Policy
Configuration Service to narrow the scope and improve
performance.

LDAP Users Any LDAP user can be added as a value of this subject.

Organization Any organization can be added as a value of this subject

Web Services Clients Valid values are the DNs of trusted certificates in the
local JKS keystore, which correspond to the certificates of
trusted WSCs. This subject has dependency on the
Liberty Web Services Framework and should be used
only by Liberty Service Providers to authorize WSCs. A
web service client (WSC) identified by the SSOToken is a
member of this subject, if the DN of any principal
contained in the SSOToken matches any selected value of
this subject.

Policy Conditions
A condition specifies additional constraints that must be satisfied for a policy be
applicable. For example, you can define a condition to limit a user’s network access to
a specific time period. The condition might state that the subject can access the
network only between 7:00 in the morning and 10:00 at night. You can implement
custom conditions using the Policy APIs. Access Manager provides the following
conditions:

Authentication Level The policy applies if the user’s authentication level is
greater than or equal to the Authentication level set in the
condition. The Authentication Level attribute indicates
the level of trust for authentication.

66 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Authentication Scheme Policy is applicable based on which authentication
scheme is specified.

IP Address Policy is applicable based on a range of IP Addresses.

LE Authentication Level Policy is applicable if the user’s authentication level is less
than or equal to the Authentication level set in the
condition.

Session Policy is applicable based on user session data such as
Max Session Time.

Session Property Policy is applicable based on values of properties set in
the user’s Access Manager session.

Time Policy is applicable based on time constraints.

Policy Response Providers
Response providers are plug-ins that provide policy-based response attributes. The
response provider attributes are sent with policy decisions to the PEP. Access Manager
includes one implementation, the IDResponseProvider. Custom response
providers are not supported in this version of Access Manager. Agents, PEPs, typically
pass these response attributes as headers to applications. Applications typically use
these attributes to personalize application pages such as a portal page.

Referral Policy
A referral policy enables a Realm Administrator or a Policy Administrator to delegate
policy configuration tasks. A Realm Administrator or Policy Administrator at the root
or top level of the Access Manager information tree can create policy for any resource.
An administrator or Policy Administrator for realms below the top level have
permissions to create policies for only resources delegated to the realm. The Realm
Administrator or Policy Administrator can use referral policies to delegate policy
management privileges for a collection of resources to other realms.

You can implement custom referrals by using the Policy APIs. Access Manager
provides the following referrals:

Peer Realm Referral Administrator can delegate policy management privileges to a
peer realm.

Subrealm Referral Administrator can delegate policy management privileges to a
subrealm.

A referral policy delegates both policy creation and policy evaluation. A referral policy
consists of one or more rules and one or more referrals.

Chapter 4 • Authorization and the Policy Service 67

� A rule defines the resource whose policy creation or evaluation is being referred.

� A referral defines the identity object to which the policy creation or evaluation is
being referred.

For example, a top-level realm exists named ISP. It contains two subrealms named
company1 and company2. The Top-Level Administrator for ISP wants to delegate
policy management privileges so that a Realm Administrator in company1 can create
and manage policies only within the company1 realm, and a Realm Administrator in
company2 can create and manage policies only within the company 2 real. The
Top-Level Administrator creates two referral policies:

� Referral Policy 1

Resource Name: http://company1.com

Subrealm Referral Value: company1

� Referral Policy 2

Resource Name: http://company2.com

Subrealm Referral Value : company2

Policy SPIs and Plug-Ins Layer
Access Manager includes SPIs that work with the Policy framework to create and
manage policies. You can develop customized plug-ins for creating custom policy
subjects, referrals, conditions, and response providers. For information on creating
custom policy plug-ins, see the Sun Java System Access Manager 7 2005Q4 Developer’s
Guide.

The following table summarizes the Policy SPIs , and lists the specialized Policy
plug-ins that come bundled with Access Manager.

TABLE 4–1 Policy Service Provider Interfaces (SPIs)

Interface Description

Subject Defines a set of authenticated users for whom policy applies.

The following Subject plug-ins come bundled with Access
Manager: Access Manager Identity Subject, Access Manager
Roles, Authenticated Users, LDAP Groups, LDAP Roles, LDAP
Users, Organization Web, and Services Clients.

Referral Delegates management of policy definitions to another access
control realm.

68 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

TABLE 4–1 Policy Service Provider Interfaces (SPIs) (Continued)
Interface Description

Condition Specifies applicability of policy based on conditions such as IP
address, time of day, authentication level.

The following Condition plug-ins come bundled with Access
Manager: Authentication Level, Authentication Scheme, IP
Address, LE Authentication Level, Session, SessionProperty, and
Time.

Resource Name Allows a pluggable resource.

Response Provider Gets attributes that are sent along with policy decision to the
policy agent, and used by the policy agent to customize the client
applications. Custom implementations of this interface are not
supported in Access Manager 7.0. However, one default interface
IDResponseProvider is supported at this time.

Policy Client APIs
Access Manager provides client APIs that implement policy evaluation logic on a
remote web server or application server. For policy client API information, see the Sun
Java System Access Manager 7 2005Q4 Developer’s Guide.

Chapter 4 • Authorization and the Policy Service 69

70 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

CHAPTER 5

Federation Management, SAML, and
Web Services

This chapter explains the concept of identity federation, and describes the role of the
Federation Management feature in Access Manager. For detailed information about
enabling or managing identity federation, or using the Federation Management APIs
and SPIs, see the Sun Java System Access Manager 7 2005Q4 Federation and SAML
Administration Guide.

This chapter includes the following topics:

� “The Need for Federated Identities” on page 71
� “The Liberty Alliance Project” on page 72
� “Federation Management Implemented in Access Manager” on page 75
� “Federation Management Protocols Flow” on page 80

The Need for Federated Identities
Consider the many times an individual accesses services on the Internet in a single
day. At work, he uses the company intranet to perform a multitude of business-related
tasks such as reading and sending email, looking up information in the company
phone book and other internal databases, and submitting expense reports and other
business-related online forms. At home after work, he checks his personal email, then
logs into an online news service to check his baseball team’s standings. He may
finalize his travel plans via his travel agent’s website, and then does some online
shopping at his favorite clothing store. Each time he accesses a service on the Internet,
he must log in and identify himself to the service provider.

A local identity refers to the set of attributes or information that identify a user to a
particular service provider. These attributes typically include a name and password,
plus an email address, account number or other identifier. For example, the individual
in our scenario is known to his company’s network as an employee number, but he is
known to his travel agent as Joe Smith. He is known as an account number to the car

71

rental agency he uses frequently. He is known to his favorite airline by a different
account number. He uses one email name and address for his personal email, and a
different email name and address for his workplace. Each of these different user names
represents a different local identity.

Identity federation allows a user to consolidate the many local identities he has
configured among multiple service providers. With one federated identity, the
individual can log in at one service provider’s site and move to an affiliated service
provider site without having to re-authenticate or re-establish his identity. For
example, with a federated identity, the individual might want to access both his
personal email account and his business email account from his workplace, and move
back and forth between the two services without having to log in each time. Or at
home he might want to log in to an online travel agency, then book airline tickets
online, and make hotel reservations online. It is a convenience for the user to be able to
access all of these services without having to provide different user names and
passwords at each service site. It is a valuable benefit to the user when he can do so
safely, and knowing that his identity information is secure.

The Liberty Alliance Project was implemented to make this possible.

The Liberty Alliance Project
In 2001 Sun Microsystems joined with other major companies to form the Liberty
Alliance Project, the premier open standards organization for federated identity and
identity-based services. The members of the Liberty Alliance Project represent some of
the world’s most recognized brand names and service providers. Liberty Alliance
Project members drive products, services and partnerships across a spectrum of
consumer and industrial products, financial services, travel, retailing,
telecommunications and technology.

Access Manager implements two important sets of standards adopted by the Liberty
Alliance Project: the Liberty Alliance Project frameworks, and the Security Assertions
Markup Language (SAML) specifications. These implementations enable business
partners to form a Circle of Trust.

Liberty Alliance Frameworks
The Access Manager Federation Management feature is built upon Liberty Alliance
frameworks. The Liberty Alliance Project developed the following specifications and
guidelines for implementing complete network identity infrastructures and for
deploying identity-based web services:

� Identity Federation Framework (ID-FF)

72 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

� Identity Web Services Framework (ID-WSF)
� Data Services Template (ID-WSF DST)
� Identity Services Interface Specifications (ID-SIS)

For more information these specifications, and listings of Liberty web service
products, case studies, and white papers, see the Liberty Alliance Project website:
http://www.projectliberty.org/

The Circle of Trust
The goal of the Liberty Alliance Project is to enable individuals and organizations to
easily conduct network transactions while protecting the individual’s identity. This
goal can be achieved only when commercial and non-commercial organizations join
together into a circle of trust. In a circle of trust, service providers agree to join together
in order to exchange user authentication information using Liberty web service
technologies. This circle of trust must contain at least one identity provider, a service
that maintains and manages identity information. The circle of trust also includes
service providers that offer web-based services to users. Once a Circle Of Trust is
established, single sign-on is enabled between all the providers.

In Access Manager, the circle of trust is known as an authentication domain although it
is not a DNS domain. In Access Manger, an authentication domain describes entities
that are grouped together for the purpose of identity federation.

A travel portal is a good example of an authentication domain. Typically, a travel
portal is a website designed to help you find an access various travel service providers
from one Internet location. The travel portal service forms a partnership with each
hotel, airline, and car rental agency displayed on its website. The user logs into the
travel portal and looks for a suitable hotel. When finished making hotel reservations,
the user moves to the airline part of the travel portal to look for a suitable airline
flight. This time, because of the partner agreement with the travel portal, the airline
website shares the authentication information obtained earlier in the user’s online
session. The user moves from the hotel reservations website to the airline reservations
website without having to re-authenticate. All of this is transparent to the user. The
following figure illustrates the Circle of Trust formed among the travel portal, which
acts as the Identity Provider, and each of the related business partners.

Chapter 5 • Federation Management, SAML, and Web Services 73

http://www.projectliberty.org/

Identity
Provider

Airline 1 Airline 2

Cruise 1

Car
Rental 1

Car Rental 2Hotel 3

Hotel 2

Hotel 1

FIGURE 5–1 The Circle of Trust

Account federation occurs when a user chooses to unite distinct service accounts and
identity provider accounts. The user retains individual account information with each
provider in the circle. At the same time, the user establishes a link that allows the
exchange of authentication information between them. Users can choose to federate
any or all identities they might have with the service providers that have joined this
circle. When a user successfully authenticates with one service provider, she can access
any of the her accounts within the circle of trust in a single session without having to
reauthenticate.

74 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

SAML Specifications
Access Manager uses the Security Assertion Markup Language (SAML) for
exchanging security information. SAML resides within a system’s security
mechanisms to enable exchange of authentication and authorization information with
other services. The SAML 1.0 specification set was submitted to the Organization for
the Advancement of Structured Information Standards (OASIS) in March 2002 for
standardization by the OASIS Security Services Technical Committee. OASIS is a
not-for-profit, global consortium that drives the development, convergence and
adoption of e-business standards.

SAML security information is expressed in the form of an assertion about a subject. A
subject is an entity in a particular domain, either human or machine, with which the
security information concerns itself. (A person identified by an email address is a
subject as might be a printer.) An assertion is a package of verified security information
that supplies one or more statements concerning a subject’s authentication status,
access authorization decisions or attributes. Assertions are issued by a SAML
authority. (An authority is a platform or application that has been integrated with the
SAML SDK, allowing it to relay security information.) The assertions are received by
partner sites defined within the authority as trusted. SAML authorities use different
sources to configure the assertion information including external data stores or
assertions that have already been received and verified.

Federation Management Implemented in
Access Manager
In Access Manager, the Federation Management feature enables applications to
participate in three different frameworks:

� Identity Federation Framework
� Identity Web Services Framework
� SAML 1.0 and 1.1 Specifications

These frameworks enable service providers to securely exchange authentication and
authorization information. Client APIs are provided for web service consumers to
communicate with web service providers. The following figure illustrates the internal
architecture of a Liberty Web Services Consumer and a Web Service Provider.

Chapter 5 • Federation Management, SAML, and Web Services 75

User
Agent

Custom
Identity
Service

Custom
Data

Service

Employee
Profile
Service

Personal
Profile
ServiceDiscovery

Service

Authentication
Web

Service

Data Service Templates

Interaction Service APIs

SOAP APIs

SOAP/HTTP(S)

Trusted
Authority

Discovery
Service

Authentication
Web

Service Personal
Profile
Service

Employee
Profile
Service

Custom
Data

Service

Custom
Identity
Service

Data Service Templates

Interaction Service APIs

SOAP Receiver APIs

Interaction
Redirect
Handler

PAOS

PolicyAuthenticationSAMLSDKSSO
Services

Management

Web Service Provider
Contains Service and Service APIs

Web Service Consumer
Contains Client Components and Client APIs

Directory
Server

Metadata

FIGURE 5–2 Web Services Consumer and Web Service Provider Architecture

76 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

The Web Service Consumer components and the Web Service Provider components
are newly implemented components in Access Manager. The components in the
bottom layer of the Web Service Provider were implemented in Access Manager 6.1.
These components include Single-Sign On (SS0), the Access Manager SDK, Service
Management Services, SAML, Authentication modules, and a Policy Service. In the
Identity Web Service Framework, the Data Service and Identity Service represent
custom services that you can add to the Web Services Framework.

Identity Federation Framework
The Identity Federation Framework (ID-FF) specifies core protocols, schema and
concrete profiles that allow developers to create a standardized, multiple-vendor,
identity federation network. These include the following:

Account linking termination.
Users can choose to stop their account federation.

Authentication context.
Service providers with federated accounts communicate the type and level of
authentication that should be used when the user logs in.

Affiliation federation
Federation based on group affiliation can be enabled in an authentication request. If
enabled, it would indicate that the requester is acting as a member of the affiliation
group identified. Federations are then established and resolved based on the
affiliation, and not the requesting provider. The process allows for a unique
identifier that represents the affiliation.

Dynamic identity provider proxying
When one identity provider is asked to authenticate a principal that has already
been authenticated by a second identity provider. In this case, the first identity
provider may request authentication information from the second identity provider
on behalf of the service provider. Proxy behavior can be controlled by indicating a
list of preferred identity providers, and a value that defines the maximum number
of proxy steps that can be taken. Proxy behavior is defined locally by the proxying
identity provider, although a service provider controls whether or not to proxy.

Identity provider introduction.
This feature provides the means for service providers to discover which identity
providers a principal uses. A principal can be an organization or individual who
interacts with the system. This is important when there are multiple identity
providers in an identity federation network.

Name Identifier Mapping Protocol
Defines how service providers can obtain name identifiers assigned to a principal
that has federated in the name space of a different service provider. When a
principal that has an identity federation relationship (and therefore a name
identifier) with one service provider requests access to a second service provider
site that requires a name identifier, the second service provider can use this protocol

Chapter 5 • Federation Management, SAML, and Web Services 77

to obtain the identifier. It allows the requesting service provider to communicate
with the second service provider about the principal even though no identity
federation for the principal exists between them.

Name Registration
Enables a service provider or identity provider to register with each other a new
name identifier for a principal at any time following federation.

One-time federation
The ability to federate for one session only can be enabled in an authentication
request. This is useful for service providers with no user accounts, for principals
who wish to act anonymously, or for dynamically-created user accounts. It allows
for one-time federation, rather than a one-time name identifier for a session.

Opt-in account linking
Users can choose to federate different service provider accounts.

Single Sign-on and Federation Protocol
The protocol that defines the process that a user at a service provider goes through
to authenticate their identity with an identity provider. It also specifies the means
by which a service provider obtains an Authentication Assertion from an identity
provider to allow single sign-on to the user. Two types of Single Sign-On exist
which either the identity or service provider can implement:

� SOAP-based Single Sign On and Federation Protocol, which relies on a SOAP
call from provider to provider. This is primarily the Browser Artifact SSO
profile.

� Form POST-based Single Sign On and Federation Protocol, which rely on an
HTTP form POST to communicate between providers.

Single Sign-Out Protocol
The protocol used to synchronize the session log-out functionality across all
sessions that were authenticated and created by a particular identity provider. Two
types of protocols exist which either the identity or service provider can implement:

� SOAP-based Single Log-Out Protocol relies on asynchronous SOAP messaging
calls between providers.

� HTTP Redirect-based Single Log-Out Protocol

Identity Web Services Framework
The Web Services Framework (ID-WSF) consists of a set of schema, protocols and
profiles for providing a basic identity services, such as identity service discovery and
invocation. Three parties are required for identity federation in a basic Liberty Web
Services environment: a user agent, a web service consumer, and a web service
provider.

The Web Services Framework consists of a set of schema, protocols and profiles for
providing a basic identity services, such as identity service discovery and invocation.
This framework includes the following:

78 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Authentication Web Service
An identity service that enables a web service consumer to be authenticated using
the Simple Authentication and Security Layer (SASL) mechanism. SASL defines a
method for adding authentication support to connection-based protocols.

Discovery Service.
An identity service that allows a requester to discover resource offerings.

SOAP Binding.
A set of Java APIs for sending and receiving ID-* messages using SOAP and XML.

Security Mechanisms.
Defines a set of authentication mechanism and security properties which are
factored into authorization decisions enforced by the targeting identity-based web
services. Each mechanism contains both peer entity authentication
(null/TLS/CClientTLS) and message authentication (null/X509/SAML).

Interaction Service.
A protocol for simple interaction of Web Services Framework participants with a
Principal.

Trusted Authority.
APIs for creating security tokens used for authentication and authorization in
Liberty II-enabled services.

Metadata Service.
A library of command-line tools for loading metadata into the Access Manager data
store.

Reverse HTTP Bindings.
A protocol and set of APIs for retrieving data from Access Manager via clients such
as cell phones.

SAML Service
SAML defines an eXtensible Markup Language (XML) framework to achieve
interoperability across different vendor platforms that provide SAML assertions.
SAML is an XML framework for exchanging security information over the Internet.
Access Manager SAML Service consists of a web service interface, a SAML core
component, and a SAML framework that web services can connect to.

The Access Manager SAML Service enables the following functionality:

� Users can authenticate against Access Manager and access trusted partner sites
without having to reauthenticate. This single sign-on process independent of the
process enabled by Access Manager user session management.

� Access Manager acts as a policy decision point (PDP), allowing external
applications to access user authorization information for the purpose of granting or
denying access to their resources.

Chapter 5 • Federation Management, SAML, and Web Services 79

� Access Manager acts as both an attribute authority (allowing trusted partner sites
to query a subject’s attributes) and an authentication authority (allowing trusted
partner sites to query a subject’s authentication information.)

� Two parties in different security domains can validate each other for the purpose of
performing business transactions.

� Access Manager SAML APIs can be used to build Authentication, Authorization
Decision and Attribute Assertions.

� The Access Manager SAML Service provides pluggable XML-based digital
signature signing and verifying.

Federation Management Protocols Flow
The following figure provides a high-level view of the system flow between various
parties in a Liberty web services environment. A user agent, Service Provider, Identity
Provider, and Personal Profile Service must be present in the environment. The figure
and text illustrate the use of both Identity Federation Framework and Identity
Federation Web Services Framework.

In this example:

� The web browser represents a user agent or a device used by an enterprise user.

� A Service Provider acts as a web services consumer (WSC) to invoke the web
service on behalf of the user. The Service Provider relies on the Identity Provider
authentication for single sign-on.

� The Identity Provider acts an authentication provider by authenticating the user
and registering the user. The Identity Provider also acts a trusted authority, issuing
security tokens through the Discovery Server.

� The Web Services provider serves requests from web services clients such as a
Personal Profile Service provider.

80 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Web Services
Consumer

Access ManagerAccess Manager

Identity
Provider

Personal Profile
Provider

7

2
1

4

6

9

1211

3

5

10

8

13

Web Browser

Access Manager

FIGURE 5–3 Identity Federation Protocols Flow

When a user logs into a circle of trust, the following events occur.

1. The Service Provider initiates the AuthnRequest.

The request uses a browser artifact profile to contact the Single Sign-On service at
the Identity Provider.

2. At the Identity Provider, the Single Sign-On service presents a login page to the
user.

The user enters credentials such as username and password.

3. Upon successful authentication, at the Identity Provider the Single Sign-On service
sends an artifact to the Assertion Consumer service at the Service Provider.

4. The Identity Provider sends a SAML SOAP response to the Service Provider by
keeping an authentication SML assertion in the response.

5. The Service Provider verifies the XML assertion and completes the Single Sign-On
process.

The assertion contains an attribute statement containing the Discover Service
resource offering. The resource offering will be used as bootstrap information to
invoke the Web Services Framework.

6. The user’s browser, Service Provider and Identity Provider complete the
Federation Single-Sign-On process.

An assertion with an attribute statement containing the Discovery Service resource
offering is included in the ID-FF AuthnResponse. This information can be used
by any client to contact Discovery Service.

7. The user’s browser requests access to services hosted on the Web Service
Consumer.

Chapter 5 • Federation Management, SAML, and Web Services 81

This requires contacting user’s Personal Profile service.

8. The Web Service Consumer sends a discovery lookup query to the Discovery
Service.

The Web Service Consumer determines user’s discovery resource offering from the
bootstrap Assertion obtained earlier, then sends a discovery lookup query to the
Discovery Service to determine where the user’s Personal Profile instance is
hosted.

9. The Discovery service returns a discovery lookup response to the Web Service
Consumer.

The lookup response contains the resource offering for the user’s Personal Profile
Service instance.

10. The Web Service Consumer sends a web services query that uses the protocol
defined by the DataServiceTemplate. The web services query goes to the SOAP end
point of the Personal Profile Service instance.

The query asks for the user’s personal profile attributes, such as home phone
number. The required authentication mechanism specified in the Personal Profile
Service resource offering must be followed.

11. The Personal Profile Service instance authenticates and validates authorization or
policy, or both, for the requested user or Web Service Consumer, or for both.

If user interaction is required for some attributes, the Interaction Service will be
invoked to query the user for consents or for attribute values. The Personal Profile
Service instance returns a Data Services Template response to the Web Service
Consumer after collecting all required data.

12. The Web Service Consumer processes the Personal Profile Service response, and
then renders service pages containing the colleague’s contact information to the
user’s browser.

For detailed information about all the components that are involved in Federation
Management, see the Sun Java System Access Manager 7 2005Q4 Federation and SAML
Administration Guide.

82 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

CHAPTER 6

Logging

Access Manager provides a logging feature that records information such as user
logins and logouts, session creation, policy evaluation, and other events. You can use
Access Manager logs to audit system usage and to troubleshoot problems. Logging
APIs enable external applications to access the Logging feature.

This chapter describes how Access Manager logging works. The chapter contains the
following sections:

� “How the Logging Feature Works” on page 83
� “Error and Access Logs” on page 88
� “Additional Logging Features” on page 89

How the Logging Feature Works
The Logging Service enables Access Manager services to record information such as
access denials, access approvals, authentication events, and authorization violations.
Administrators can use the logs to track user actions, analyze traffic patterns, and
review authorization violations. The logged information from all Access Manager
services are recorded in one centralized location. The default location for all Access
Manager log files is /var/opt/SUNWam/logs.

83

Logging Architecture
When Access Manager starts up or when any logging configuration data is changed
through the console, logging configuration data is loaded into the Logging
component. This data includes the log message format, log file name, maximum log
size, and the number of history files. Applications can use the Client APIs to access the
Logging features from a local or remote server. The Client APIs use an
XML-over-HTTP layer to send logging requests to the Logging component on the
server where Access Manager is installed.

amLogging.xml
The Logging service stores the attributes and values for the logging function. A global
service configuration file named amLogging.xml defines the Logging attributes.
Examples of Logging Service attributes are maximum log size, log location, and log
format (flat file or relational database). The attribute values are applied across the
Access Manager deployment and inherited by every configured realm. By default,
amLogging.xml is located in the directory /etc/opt/SUNWam/config/xml. The
structure of amLogging.xml is defined by file sms.dtd.

Log File Formats
Access Manager can record events in flat text files or in a relational database.

Flat File Format
The default flat file format is the W3C Extended Log Format (ELF). Access Manager
uses this format to record the default fields in each log record. See “Recorded Events”
on page 87 for a list of default fields and their descriptions. The following code
example illustrates an authentication log record formatted for a flat file.

EXAMPLE 6–1 Flat File Record From amAuthentication.access

"2005-08-01 16:20:28" "Login Success" LDAP AUTHENTICATION-100
dc=example,dc=com e7aac4e717dda1bd01 INFO

uid=amAdmin,ou=People,dc=example,dc=com 192.18.187.152

"cn=exampleuser,ou=Example Users,dc=example,dc=com" exampleHost

In the example, the fields are in this order: Time, Data, ModuleName, MessageID,
Domain, ContextID, LogLevel, LoginID, IPAddr, LoggedBy, and HostName.

84 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Relational Database Format
When Access Manager uses a relational database to log messages, the messages are
stored in a database table. Access Manager uses Java Database Connectivity (JDBC) to
access the database table. JDBC provides connectivity to a wide range of SQL
databases. JDBC also provides access to other tabular data sources such as
spreadsheets or flat files. Oracle® and MySQL databases are currently supported.

For log records generated by Access Manager 7.0, the Data and MessageID fields are
used slightly differently than in previous Access manager versions. Starting with
Access Manager 7.0, the MessageID field is introduced as a kind of template for types
of log messages. For example, in previous versions, Access Manager would generate
the following message in the Data field:

Data: "Created group
cn=agroupSubscription1,ou=Groups,dc=iplanet,dc=com"

In Access Manager 7.0, two log records are recorded for the one event:

Data: agroupSubscription1|group|/
MessageID: CONSOLE-1

and

Data: agroupSubscription1|group|/
MessageID: CONSOLE-2

The log records reflect the use of identities and realms, new in Access Manager 7.0. In
this example, CONSOLE-1 indicates an attempt to create an identity, and CONSOLE-2
indicates the attempt to create an identity was successful. The root organization
notation (dc=iplanet,dc=com) is replaced with a forward slash (/). The variable
parts of the messages (agroupSubscription1, group, and /) are separated by a pipe
character (|), and continue to go into the Data field of each log record. The MessagID
string is not internationalized in order to facilitate machine-readable analysis of the
log records in any locale.

The following table summarizes the schema for a relational database.

TABLE 6–1 Relational Database Log Format

Column Name Data Type Description

TIME
VARCHAR(30) Date of the log in the format YYYY-MM-DD

HH:MM:SS.

DATA
VARCHAR(1024) The variable data part of the log record pertaining

to the MESSAGE ID. For MySQL, the Data Type is
VARCHAR(255).

Chapter 6 • Logging 85

TABLE 6–1 Relational Database Log Format (Continued)
Column Name Data Type Description

MODULENAME
VARCHAR(255) Name of the Access Manager component invoking

the log record.

DOMAIN
VARCHAR(255) Access Manager domain of the user.

LOGLEVEL
VARCHAR(255) JDK 1.4 log level of the log record.

LOGINID
VARCHAR(255) Login ID of the user who performed the logged

operation.

IPADDR
VARCHAR(255) IP Address of the machine from which the logged

operation was performed.

LOGGEDBY
VARCHAR(255) Login ID of the user who writes the log record.

HOSTNAME
VARCHAR(255) Host name of machine from which the logged

operation was performed.

MESSAGE ID
VARCHAR(255) Non-internationalized message identifier for this

log record’s message.

CONTEXT ID
VARCHAR(255) Identifier associated with a particular login

session.

Log Files Directory
The log files record a number of events for each of the Access Manager components
using the Logging Service. Administrators typically review these log files on a regular
basis. The default location for all Access Manager log files is
/var/opt/SUNWam/logs. The following table describes the files in the log files
directory.

The period (.) separator in a log filename is converted to an underscore (_) in database
formats. Also in databases, table names may be converted to all upper case. For
example, amConsole.access may be converted to AMCONSOLE_ACCESS, or it may
be converted to amConsole_access.

TABLE 6–2 Files in the Log Files Directory

File or Table Information Logged

amAuthLog Policy denies

amPolicy.access Policy allows

amPolicy.error Policy error events

86 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

TABLE 6–2 Files in the Log Files Directory (Continued)
File or Table Information Logged

amConsole.access Successful console events

amConsole.error Console error events

amAuthentication.access Authentication successes

amAuthentication.error authentication failures

amPasswordReset.access Password reset events

amSSO.access SSO creates/destroys

amSAML.access SAML successful events

amSAML.error SAML error events

amLiberty.access Liberty successful events

amLiberty.error Liberty error events

amFederation.access Federation successful events

amFederation.error Federation error events

amAdmin.access amadmin CLI successful events

amAdmin.error amadmin CLI error events

Recorded Events
The client passes the Logging Service logs information to the
com.sun.identity.log.LogRecord class. The following table summarizes the
items logged by default in the LogRecord.

TABLE 6–3 Events Recorded in LogRecord

Event Description

Time The date (YYYY-MM-DD) and time (HH:MM:SS) at which the log
message was recorded. This field is not configurable.

Data Variable data pertaining to the log records’s MESSAGE ID. This
field is not configurable.

Module Name Name of the Access Manager service or application being logged.
Additional information on the value of this field can be found in
“Adding Log Data” on page 88.

Domain Access Manager domain to which the user belongs.

Chapter 6 • Logging 87

TABLE 6–3 Events Recorded in LogRecord (Continued)
Event Description

Log Level The Java 2 Platform, Standard Edition (J2SE) version 1.4 log level
of the log record.

Login ID ID of the user as the subject of the log record. The user ID is
taken from the session token.

IP Address IP address from which the operation was performed.

Logged By User who writes the log record. The information is taken from
the session token passed during logger.log(logRecord,
ssoToken).

Host Name Host name associated with the IP Address above.

MessageID Non—internationalized message identifier for this log record’s
message.

ContextID Identifier associated with a particular login session.

Error and Access Logs
Two types of Access Manager log files exist: access log files and error log files.

Access log files record general auditing information concerning the Access Manager
deployment. A log may contain a single record for an event such as a successful
authentication. A log may contain multiple records for the same event. For example,
when an administrator uses the console to change an attribute value, the Logging
Service logs the attempt to change in one record. Logging Service also logs the results
of the execution of the change in a second record.

Error log files record errors that occur within the application. While an operation error
is recorded in the error log, the operation attempt is recorded in the access log file.

Flat log files are appended with the .error or .access extension. Database column
names end with _ERROR or _ACCESS. For example, a flat file logging console events is
named amConsole.access while a database column logging the same events is
named AMCONSOLE_ACCESS or amConsole_access.

For detailed reference information about events recorded in each type of Access
Manager, log see the Sun Java System Access Manager 7 2005Q4 Administration Guide.
The following table provides a brief description of the log file produced by each
Access Manager component.

88 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

TABLE 6–4 Access Manager Component Logs

Component Log Filename Prefix Information Logged

Session amSSO Session management attributes values such as login
time, logout time, timeout limits.

Administration
Console

amConsole User actions performed through the administration
console such as creation, deletion and modification
of identity-related objects, realms, and policies.

Authentication amAuthentication User logins and logouts.

Identity
Federation

amFederation Federation-related events such as the creation of an
Authentication Domain and the creation of a
Hosted Provider. The federation logs are prefixed
with amFederation.

Authorization
(Policy)

amPolicy Policy-related events such as policy creation,
deletion, or modification, and policy evaluation.

Policy Agent amAgent Exceptions regarding resources that were either
accessed by a user or denied access to a user.
amAgent logs reside on the server where the policy
agent is installed. Agent events are logged on the
Access Manager machine in the Authentication
logs.

SAML amSAML SAML-related events such as assertion and artifact
creation or removal, response and request details,
and SOAP errors.

Command-line amAdmin Event errors that occur during operations using the
command line tools. Examples are: loading a
service schema, creating policy, and deleting users.

Additional Logging Features
You can enable a number of logging features for added functionality. The additional
features include secure logging, command-line logging, and remote logging.

Secure Logging
This feature adds an extra measure of security to the logging feature. When secure
logging is enabled, the Logging component can detect unauthorized changes to the
security logs. No special coding is required to leverage this feature. However, secure
logging uses a certificate that you must create and install in the container that runs

Chapter 6 • Logging 89

Access Manager. When secure logging is enabled, a Manifest Analysis and
Certification (MAC) is generated and stored for every log record, and a special
signature record is periodically inserted in the log. The signature record represents the
signature for the contents of the log written up to that point. The combination of the
certificate and the signature record ensures that the logs have not been tampered. For
detailed information about enabling secure logging, see the Sun Java System Access
Manager 7 2005Q4 Administration Guide.

Remote Logging
Remote logging allows a client using the Client APIs to create log records on an
instance of Access Manager deployed on a remote machine. Remote logging is useful
in the following situations:

� When the login URL in the Naming Service of an Access Manager instance points
to a remote Access Manager instance, and a trust relationship between the two
instances has been configured.

� When the Access Manager APIs are installed in a remote Access Manager instance,
and a client application or a simple Java class running on the Access Manager
server uses the logging APIs.

� When logging APIs are used by Access Manager agents.

Log Reading
Access Manager provides Logging APIs for writing your own custom log reading
program. You can set up queries to retrieve specific records from the log file or
database. This is useful for auditing purposes. For more information, see the Sun Java
System Access Manager 7 2005Q4 Developer’s Guide.

90 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

Index

A
access control realm

definition of, 24-25
realm mode, 26-28
when to use, 62-65

access logs, 88
Access Manager information tree

access control realm, 24-25
and identity repository, 64-65
how realm data is stored, 62
what it does, 17-18

account federation, 74
account linking termination, 77
account locking, 56-57

memory locking, 56
physical locking, 56

Active Directory authentication module
type, 52

affiliation federation, 77
agent, See policy agent
amLogging.xml, 84
amSDK

identity repository plug-in, 23, 26
Anonymous authentication module type, 52
architecture

access control realms, 24-25
changes in this release, 24-30
framework layer, 21-23
overview, 19-30
plug-ins layer, 23

assertion, in SAML, 75
auditing, See logging
authentication, See Authentication Service

authentication chaining, 57-58
authentication context, 77
authentication domain, 73
authentication module types, 53

Active Directory, 52
Anonymous, 52
Certificate, 52
HTTP Basic, 52
JDBC, 52
Membership, 53
MSISDN, 53
RADIUS, 53
SecurID, 53
UNIX, 53
Windows Desktop Single Sign-On, 53
Windows NT, 53

Authentication Service
account locking, 56-57
authentication chaining, 57-58
authentication framework, 54-55
authentication level-based authentication, 56
authentication plug-in, 23
client detection, 55
configuration service, 55
core component, 55-59
core component descriptions, 20-21
definition of, 16
distributed authentication user

interface, 29-30, 60
FQDN name mapping, 58
general authentication service, 54
JAAS shared state, 59
module-based authentication, 56

91

Authentication Service (Continued)
organization-based authentication, 55
plug-in modules, 52-54
presentation layer, 59-60
process flow illustrated, 36-38
redirection URLs, 56
role-based authentication, 55
service-based authentication, 55
session upgrade, 58
user-based authentication, 56
user’s view of, 51-52
validation plug-in, 59
web service, brief description, 19

Authentication Web Service, 79
authorization, See Policy Service

B
basic user session, as a type of user session, 16

C
CDSSO, See cross-domain single sign-on
Certificate authentication module type, 52
circle of trust, 73-74
client APIs, brief description, 21
Client Detection Service

core component descriptions, 20-21
in authentication, 55
in authentication process flow, 36-38

components, See core components
condition, in policy, 66-67
cookies, used in sessions, 32-33
core components

Authentication Service, 55-59
in Access Manager, brief descriptions, 20-21

cross-domain single sign-on
as a type of user session, 16
definition of, 16
process flow illustrated, 46-48
user session, 32

D
data structure, 33

delegation plug-in
brief description, 23
defining privileges, 30

Discovery Service, 79
distributed authentication

definition of, 29-30, 60
process flow illustrated, 36-38

documentation
related Access Manager books, 8-9
related Sun JES books, 9

DTD
caution, modifying DTD files, 19-20
files used in Access Manager, 19-20

dynamic identity provider proxying, 77

E
error logs, 88

F
federated identity, 72
federation, See identity federation
flat file format, logging, 84
FQDN name mapping, definition of, 58
framework layer

Access Manager architecture, 21-23
authentication, 54-55
identity repository management, 25-26
policy framework, 61-62

G
general policy service, 61

H
HTTP Basic authentication module type, 52

I
identity federation, 77-78

See also Liberty Alliance Project

92 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

identity federation (Continued)
Access Manager frameworks, 75-80
account federation, 74
authentication domain, 73
brief description of, 17
circle of trust, 73-74
core component descriptions, 20-21
definition of, 72
protocols flow, 80-82
SAML specifications, 75
web service, brief description, 20
web service consumer, 77
web service provider, 77
web services framework (ID-WSF), 78-79

identity federation framework (ID-FF), 77-78
identity provider introduction, 77
identity repository management

framework, 25-26
identity repository management plug-in, 23

information tree, See Access Manager
information tree

Interaction Service, 79

J
JAAS shared state, in authentication, 59
JDBC, 85
JDBC authentication module type, 52

L
LDAP authentication module type, 53
legacy mode, 26-28
Liberty Alliance Project

See also identity federation
circle of trust, 73-74
definition of, 72-74
Liberty Alliance frameworks, 72-73

local identity, 71
log reading, 90
logging

access logs, 88
amLogging.xmll, 84
brief description of, 17
component log filenames, 88
core component descriptions, 20-21

logging (Continued)
error logs, 88
flat file format, 84, 88
log files directory, 86-87
log reading, 90
overview of, 83-90
process flow illustrated, 42-43
recorded events, 87-88
relation database format, 85-86
remote logging, 90
secure logging, 89-90

M
Membership authentication module type, 53
Metadata Service, 79
MSISDN authentication module type, 53

N
name identifier mapping protocol, 77
name registration, 78
Naming Service

core component descriptions, 20-21
in session validation process flow, 38-39

normal policy, 65-67

O
OASIS, 75
one-time federation, 78
opt-in account linking, 78

P
PDP

See policy decision point
in SAML, 79

PEP, See policy enforcement point (PEP)
persistent cookie, definition of, 58
Platform Service, core component

descriptions, 20-21
plug-ins

amSDK, 23, 26

93

plug-ins (Continued)
Authentication Service, 23
delegation, 23, 30
identity repository management, 23
plug-ins architecture, 23
policy response providers, 67
Policy Service, 23
service configuration, 23, 30

policy
condition, 66-67
definition of, 61
normal policy, 65-67
policy rule, 65
referral policy, 67-68
subject, 65-66
types of policies, 65-68

policy administrator, 30
policy agent

brief description, 23
definition of, 34
PEPs and PDPs, 61

policy configuration service, 62
policy decision point (PDP), definition of, 61
policy enforcement point, definition of, 61
policy organization administrator, 30
Policy Service

access control realm and policies, 61
authorization, definition of, 61-69
core component descriptions, 20-21
definition of, 16
general Policy Service, 61
normal policy, 65-67
policy, definition of, 61
Policy Configuration Service, 62
policy evaluation, 40-41
policy plug-in, 23
policy response provider plug-in, 67
referral policy, 67-68
types of policies, 65-68
web service, brief description, 19

privileges, and delegation plug-in, 30

R
RADIUS authentication module type, 53
realm, See access control realm
realm administrator, 30

redirection URLs, 56
relational database format, logging, 85-86
remote logging, 90
reverse HTTP bindings, 79
roles, and delegation plug-in, 30
rule, in policy, 65

S
SafeWord authentication module type, 53
SAML, 17

about SAML specifications, 75
assertion, 75
definition of, 17
SAML Service, 17
web service, brief description, 20

SAML authentication module type,
authentication module, 53

SAML Service
core component descriptions, 20-21
overview of, 79-80

secure logging, 89-90
SecurID, authentication module, 53
security mechanisms, in identity federation, 79
service configuration plug-ins, 23, 30
Service Management Service, 30
services, 17

Access Manager web services, 19-20
authentication, 16
identity federation, 17
Identity Repository Management

Service, 25-26
logging, 17
policy, 16
services that power Access Manager, 20-21

session, See user session
session data structure, 33
session ID, See session token
session management, See User Session

Management
Session Service, See User Session Management
session token, 33
session upgrade, definition of, 58
single sign-on

as a type of user session, 16
definition of, 16
process flow illustrated, 43-45

94 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

single sign-on (Continued)
user session, 32

single sign-on and federation protocol, 78
single sign-out protocol, 78
SOAP Binding, 79
SSO, See single sign-on (SSO)
subject, in policy, 65-66
subrealm administrator, 30
Sun Java System Directory Server

as an identity repository, 25-26
legacy mode, 27

T
trusted authority, 79

U
UNIX authentication module type, 53
user authentication, See Authentication Service
user session

basic user session, 34-43
cookies, 32-33
definition of, 32
initial HTTP request, 35-36
session data structure, 33
session token, 33

User Session Management
basic user session, brief description, 16
core component descriptions, 20-21
cross-domain SSO, brief description, 16
definition of, 16
overview of, 31-32
session termination, 48-49
session validation, 38-39
single-sign on, brief description, 16
user sessions, types of, 16
web service, brief description, 20

V
validation plug-in, in authentication, 59

W
web service consume, 77
web service provider, 77
web services, definition of, 19-20
Windows Desktop Single Sign-On

authentication module type, 53
Windows NT authentication module type, 53

X
XML, files used in Access Manager, 19-20

95

96 Sun Java System Access Manager 7 2005Q4 Technical Overview • October 2005

	Sun Java System Access Manager 7 2005Q4 Technical Overview
	Preface
	Before You Read This Book
	Related Books
	Access Manager Core Documentation
	Sun Java Enterprise System Product Documentation

	Related Third-Party Web Site References
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples
	Sun Welcomes Your Comments

	Introduction to Access Manager
	An Access Management Paradigm
	The Problem
	The Solution

	What Access Manager Does
	Authentication Service
	Policy Service
	User Session Management
	SAML Service
	Identity Federation Service
	Logging

	How Access Manager Works
	Access Manager Architecture
	Web Services
	Core Components and Services that Power Access Manager
	Client APIs
	Access Manager Framework
	Plug-ins Layer
	Access Manager Policy Agents
	Architectural Changes In This Release
	Access Control Realms
	Identity Repository Framework
	Realm Mode and Legacy Mode
	Distributed Authentication User Interface Component
	Delegation Plug-In
	Service Configuration Plug-Ins

	User Session Management and Single Sign-On
	Overview of Access Manager User Sessions
	Cookies and Session Objects
	Cookies Store User Information
	Objects in the Session Data Structure

	Policy Agents
	Basic User Session
	Initial HTTP Request
	User Authentication
	Session Validation
	Policy Evaluation
	Results Logging

	Single Sign-On Session
	Cross-Domain Single Sign-On Session
	Session Termination
	User Ends Session
	Administrator Ends Session
	Access Manager Enforces Timeout Rules

	User Authentication
	Authentication Overview
	Authentication Plug-In Modules
	Authentication Framework
	General Authentication Service
	Authentication Configuration Service

	Inside the Core Authentication Component
	Client Detection
	Authentication Type Configurations
	Redirection URLs
	Account Locking
	Authentication Chaining
	Fully Qualified Domain Name Mapping
	Persistent Cookie
	Session Upgrade
	Validation Plug-in Interface
	JAAS Shared State

	Presentation Layer
	Distributed Authentication User Interface
	Authentication Programming Interfaces

	Authorization and the Policy Service
	Policy Framework
	Access Control Realms
	Access Manager Information Tree

	About Authorization Policies
	Normal Policy
	Policy Rules
	Policy Subjects
	Policy Conditions
	Policy Response Providers

	Referral Policy

	Policy SPIs and Plug-Ins Layer
	Policy Client APIs

	Federation Management, SAML, and Web Services
	The Need for Federated Identities
	The Liberty Alliance Project
	Liberty Alliance Frameworks
	The Circle of Trust

	SAML Specifications
	Federation Management Implemented in Access Manager
	Identity Federation Framework
	Identity Web Services Framework
	SAML Service

	Federation Management Protocols Flow

	Logging
	How the Logging Feature Works
	Logging Architecture
	amLogging.xml
	Log File Formats
	Flat File Format
	Relational Database Format

	Log Files Directory
	Recorded Events

	Error and Access Logs
	Additional Logging Features
	Secure Logging
	Remote Logging
	Log Reading

	Index

