
Sun Java System Access Manager
7 2005Q4 Developer's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–2139–12
June 2006

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, et Solaris sont des marques de fabrique ou des marques déposées, de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU
IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

070222@16599

Contents

Preface ...11

1 Using the Client SDK ...15
How the Client SDK Works ... 15
JDK and CLASSPATH Requirements ... 16
Installing the Client SDK .. 16

▼ To Install the Client SDK .. 16
▼ To Configure the Client SDK ... 17
▼ To Deploy amclientwebapps.war ... 18

Initializing the Client SDK ... 20
Using a Properties File ... 20

▼ To Set ClientSDK Properties in a Properties File .. 20
Using the Java API ... 20
Setting Individual Properties .. 21

Setting Up a Client Identity .. 22
To Set Username and Password Properties .. 23
To Set an SSO Token Provider ... 23

Building Custom Web Applications ... 23
Building Stand-Alone Applications ... 23

▼ To Build a Stand-Alone Application .. 23
Targets Defined in clientsdk ... 24
About the Client SDK Samples ... 24

2 Customizing the Administration Console ...25
About the Administration Console ... 25

Generating The Console Interface ... 26
Plug-In Modules ... 27

3

Accessing the Console ... 27
Customizing The Console .. 27

The Default Console Files ... 27
Creating Custom Organization Files ... 28

▼ To Create Custom Organization Files .. 28
Alternate Customization Procedure .. 30
Miscellaneous Customizations ... 30

Console APIs .. 34
▼ To Create a Console Event Listener ... 35

Precompiling the Console JSP ... 35
Console Samples .. 35

Modify User Profile Page ... 35
Create A Tabbed Identity Management Display .. 36
ConsoleEventListener ... 36
Add Administrative Function .. 36
Add A New Module Tab .. 36
Create A Custom User Profile View .. 36

3 Using Session Service APIs ...37
About the Single Sign-On Java APIs .. 37
Using the SSO Code Samples ... 38

Running SSO Code Samples on Solaris ... 39
▼ To Run a Sample Program from the Access Manager Server .. 39
▼ To Run a Sample Program on a Remote Client .. 40
▼ To Run the Sample Code ... 41
▼ To Run a Sample Program on the Remote Client Command Line 43
▼ To Test the Command Line .. 43

Developing Non-Web Based Applications .. 44

4 Customizing the Authentication User Interface .. 45
User Interface Files You Can Modify .. 45

Staging Area for Files to be Customized .. 46
Java Server Pages .. 47
XML Files .. 49
JavaScript Files .. 52

Contents

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 20064

Cascading Style Sheets ... 53
Images .. 53
Localization Files .. 54

Customizing Branding and Functionality .. 55
▼ To Modify Branding and Functionality .. 56

Customizing the Self-Registration Page ... 57
▼ To Modify the Self-Registration Page .. 57

Updating and Redeploying services.war .. 59
▼ To Update services.war ... 59

To Redeploy services.war .. 60
Customizing the Distributed Authentication User Interface ... 61

▼ To Customize the Distributed Authentication User Interface ... 61

5 Using Authentication APIs and SPIs ... 65
Overview of Authentication APIs and SPIs .. 65

How the Authentication Java APIs Work ... 66
XML/HTTP Interface for Other Applications ... 67
How the Authentication SPIs Work .. 71

Using Authentication APIs .. 74
Running the Sample Authentication Programs ... 74
LDAPLogin Example ... 77
CertLogin Example .. 77

▼ To Run the CertLogin Program .. 77
JCDI Module Example .. 78

Using Authentication SPIs ... 78
Implementing a Custom Authentication Module .. 78
Implementing Authentication PostProcessing SPI .. 88

▼ To Compile the ISAuthPostProcessSample Program on Solaris Sparc/x86 or Linux .. 88
▼ To Deploy the ISAuthPostProcess Sample Program .. 89

Generating an Authentication User ID ... 92
▼ To Compile the UserIDGeneratorSample on Solaris Sparc/x86, Linux 93
▼ To Deploy the UserIDGeneratorSample Program ... 93

Implementing A Pure JAAS Module ... 95
▼ To Run the Sample on Solaris Sparc x86 or Linux: ... 96
▼ To Enable SSL ... 97

Contents

5

▼ To Run the Sample on Windows 2000 ... 98
▼ To Enable SSL ... 99

6 Using the Policy APIs ...101
About the Policy APIs ... 101

Policy Java Packages ... 102
Policy Management Classes .. 102
Policy Evaluation Classes .. 103
Policy Plug-In APIs .. 106

Using the Policy Code Samples .. 107
Use Cases Illustrated by Policy Code Samples .. 107

▼ To Run a Policy Evaluation Program for the URL Policy Agent Service 107
▼ To Run a Policy Evaluation Program for the URL Policy Agent Service and More 108
▼ To Run a Policy Evaluation Program for the Sample Service ... 108
▼ To Run a Policy Evaluation Program for the Sample Service and More 109

To Use amadmin to Create Policies for the URL Policy Agent Service 109
▼ To Use amadmin to Create Policies for the Sample Service .. 109
▼ To Programmatically Construct Policies .. 110

Compiling the Policy Code Samples ... 110
▼ To Compile the Policy Code Samples .. 110

Adding a Policy-Enabled Service to Access Manager .. 110
▼ To Add a New Service to Access Manager ... 112

Developing Custom Subjects, Conditions, and Referrals ... 114
▼ To Add Sample Implementation to the Policy Framework .. 114

Creating Policies for a New Service ... 116
▼ To Load a Policy XML File .. 116

Developing and Running a Policy Evaluation Program ... 117
▼ To Set Policy Evaluation Properties ... 117
▼ To Run a Policy Evaluation Program ... 118

Programmatically Constructing Policies .. 118
▼ To Run the Sample Program PolicyCreator.java .. 122

7 Using the JAAS Authorization Framework .. 125
Overview of JAAS Authorization .. 125

How Policy Enforcement Works .. 127

Contents

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 20066

How the JS2E Access Controller Works .. 129
JAAS Authorization in Access Manager ... 129

Custom APIs ... 130
User Interface ... 130

Enabling the JAAS Authorization Framework .. 130

8 Writing Log Operations ..133
About the Logging Samples .. 133
Writing LogRecords To A Log File or Table .. 134
Reading LogRecords From A Log File or Table ... 135
Compiling Logging Programs ... 141

Executing Logging Programs ... 141
Implementing a Remote Logging Application in a Container ... 142

Setting Environment Variables .. 142
Logging to a Second Access Manager Server .. 144
Using the Logging Sample Files ... 145

▼ To Run the Sample Programs on Solaris ... 145
▼ To Run the Sample Programs on Windows 2000 .. 146

Using the Logging SPIs ... 147
Log Verifier Plug-In ... 147

▼ To Customize Actions to be Taken in Secure Logging ... 148
Log Authorization Plug-In .. 148

▼ To Implement a Log Authorization Plug-In ... 148
▼ To Instantiate a PolicyEvaluator ... 148

9 Using the C APIs ...149
About the C Library for Authentication ... 149

C Sample Code for Authentication .. 150
About the C Library For Policy .. 151

Policy Implementation .. 151
Policy Evaluation .. 152

About the C Library for Single Sign-On ... 152
C SSO Include Files .. 152
C SSO Properties .. 153
C SSO Interfaces ... 154

Contents

7

Non-Web-Based Applications ... 161
Using the C API Code Samples .. 161

▼ To Build a Sample Program on UNIX platforms ... 162
▼ To Build a Sample Program on the Windows Platform .. 162

Executing the Sample Programs .. 163

10 Client Detection Service ...167
Overview ... 167

Client Detection Process ... 167
▼ Enabling Client Detection ... 168

Client Data ... 170
HTML .. 170
genericHTML ... 171

Client Detection APIs ... 171

11 Access Manager Utilities ..173
Utility APIs ... 173

AdminUtils ... 173
AMClientDetector ... 173
AMPasswordUtil .. 173
Debug .. 174
Locale ... 174
SystemProperties ... 174
ThreadPool ... 174

Password API Plug-Ins ... 175
Notify Password Sample .. 175
Password Generator Sample ... 175

12 Updating and Redeploying Access Manager WAR Files .. 177
WAR Files in J2EE Software Development .. 177

Web Components .. 178
How Web Components are Packaged ... 178

About Access Manager WARs ... 178
console.war ... 179

Contents

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 20068

password.war .. 180
services.war ... 180

Updating Modified WARs ... 181
▼ To Update a Modified .war File .. 181

Redeploying Modified Access Manager WARs ... 182
▼ To Redeploy a WAR On Sun Java System Web Server 6.1 .. 182

To Redeploy a WAR On BEA WebLogic Server 6.1 .. 183
To Redeploy a WAR on Sun Java System Application Server 7.0 ... 184
Redeploying an Access Manager WAR on IBM WebSphere Application Server 184

13 Notification Service ...185
Overview ... 185
Enabling The Notification Service ... 186

▼ To Receive Session Notifications .. 186

Index ... 189

Contents

9

10

Preface

Sun JavaTM System Access Manager is a component of the Sun Java Enterprise System (Java ES),
a set of software components that provide services needed to support enterprise applications
distributed across a network or Internet environment. The Sun Java System Access Manager 7
2005Q4 Developer's Guide provides information about using the Access Manager application
programming interfaces (APIs) and service preprogramming interfaces (SPIs).

Before You Read This Book
This book is intended for use by IT administrators and software developers who implement a
web access platform using Sun Java System servers and software. Readers of this guide should be
familiar with the following concepts and technologies:
■ Deployment platform: SolarisTM or Linux operating system
■ Web container that will run Access Manager: Sun Java System Application Server, Sun Java

System Web Server, BEA WebLogic, or IBM WebSphere Application Server
■ Technical concepts: Lightweight Directory Access Protocol (LDAP), Java technology,

JavaServer PagesTM (JSP) technology, HyperText Transfer Protocol (HTTP), HyperText
Markup Language (HTML), and eXtensible Markup Language (XML)

Related Books
Related documentation is available as follows:
■ “Access Manager Core Documentation” on page 11
■ “Sun Java Enterprise System Product Documentation” on page 12

Access Manager Core Documentation
The Access Manager core documentation set contains the following titles:
■ The Sun Java System Access Manager 7 2005Q4 Release Notes will be available online after

the product is released. It gathers an assortment of last-minute information, including a
description of what is new in this current release, known problems and limitations,
installation notes, and how to report issues with the software or the documentation.

11

■ The Sun Java System Access Manager 7 2005Q4 Technical Overview provides an overview of
how Access Manager components work together to consolidate access control functions,
and to protect enterprise assets and web-based applications. It also explains basic Access
Manager concepts and terminology.

■ The Sun Java System Access Manager 7 2005Q4 Deployment Planning Guide provides
planning and deployment solutions for Sun Java System Access Manager based on the
solution life cycle.

■ The Sun Java System Access Manager 7 2005Q4 Performance Tuning Guide provides
information on how to tune Access Manager and its related components for optimal
performance.

■ The Sun Java System Access Manager 7 2005Q4 Administration Guide describes how to use
the Access Manager console as well as manage user and service data via the command line
interface.

■ The Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration
Guideprovides information about the Federation module based on the Liberty Alliance
Project specifications. It includes information on the integrated services based on these
specifications, instructions for enabling a Liberty-based environment, and summaries of the
application programming interface (API) for extending the framework.

■ The Sun Java System Access Manager 7 2005Q4 Developer’s Guide (this guide) offers
information on how to customize Access Manager and integrate its functionality into an
organization’s current technical infrastructure. It also contains details about the
programmatic aspects of the product and its API.

■ The Sun Java System Access Manager 7 2005Q4 C API Reference provides summaries of data
types, structures, and functions that make up the public Access Manager C APIs.

■ The Sun Java System Access Manager 7 2005Q4 Java API Reference (part number 819-2141)
provides information about the implementation of Java packages in Access Manager.

■ The Sun Java System Access Manager Policy Agent 2.2 User’s Guide provides an overview of
the policy functionality and the policy agents available for Access Manager.

Updates to the Release Notes and links to modifications of the core documentation can be found
on the Access Manager page at the Sun Java Enterprise System documentation web site.
Updated documents will be marked with a revision date.

Sun Java Enterprise System Product Documentation
Useful information can be found in the documentation for the following products:

■ Directory Server
■ Web Server
■ Application Server
■ Web Proxy Server

Preface

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200612

http://docs.sun.com/app/docs/coll/1292.1
http://docs.sun.com/prod/entsys.05q4
http://http:docs.sun.com/coll/1316.1
http://http:docs.sun.com/coll/1308.1
http://http:docs.sun.com/coll/1310.1
http://http:docs.sun.com/coll/1311.1

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Documentation, Support, and Training

Sun Function URL Description

Documentation http://www.sun.com/documentation/ Download PDF and HTML
documents, and order printed
documents

Support and
Training

http://www.sun.com/supportraining/ Obtain technical support,
download patches, and learn
about Sun courses

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

Preface

13

http://www.sun.com/documentation/
http://www.sun.com/supportraining/

TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized items
appear bold online.]

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In the online
form, provide the document title and part number. The part number is a seven-digit or
nine-digit number that can be found on the title page of the book or at the top of the document.

For example, the title of this book is Sun Java System Access Manager 7 2005Q4 Developer's
Guide, and the part number is 819-2139–10.

Preface

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200614

http://docs.sun.com

Using the Client SDK

The Sun JavaTM System Access Manager 7 2005Q4 Client SDK package provides Access
Management Java libraries for implementing stand-alone applications and web applications.
You can use the Client SDK interfaces in your applications to take advantage of Access Manger
services such as authentication, Single Sign-On (SSO), authorization, auditing and logging, user
management, and Security Assertion Markup Language (SAML). The client SDK libraries
communicate with Access Manager using XML (SOAP) over HTTP or HTTPS.

How the Client SDK Works
The Client SDK is different from the SDK packages provided in pre-6.3 versions of Access
Manager. The Access Manager 6.3 Client SDK was streamlined to include only the client-side
classes and configuration properties you need to connect to Access Manager services. These
changes resulted in a smaller jar file, and eliminate the dependency on connections to Directory
Server when developing and deploying client applications. In the Access Manager 6.3 and 7.0
architecture, the Client SDK and client applications communicate with the Access Manager
server. Only the Access Manager server communicates directly with the Directory Server.

When you install the Access Manager server, the Client SDK is contained in the following file:

AccessManager-base/SUNWam/lib/amclientsdk.jar

The following table summarizes items included in the Client SDK.

TABLE 1–1 Contents ofAccessManager-base/SUNWam/amclientsdk.jar

File Description

README.clientsdk ASCII version of this chapter. Contains information on
installing and using Access Manager client SDK.

1C H A P T E R 1

15

TABLE 1–1 Contents ofAccessManager-base/SUNWam/amclientsdk.jar (Continued)
File Description

lib/amclientsdk.jar Client SDK for stand-alone applications.

amclient.war Archive of Access Manager samples, web applications, and
Javadoc.

Makefile.clientsdk Defines objects and parameters for building sample properties,
stand-alone samples and web applications.

JDK and CLASSPATH Requirements
The Client SDK can be used with JDK version 1.4.2. Both amclientsdk.jar and servlet.jar

are required in the CLASSPATH.

Installing the Client SDK
You can obtain the Client SDK from the Access Manager compact disc, and then complete the
following steps:
■ “To Install the Client SDK” on page 16
■ “To Configure the Client SDK” on page 17
■ “To Deploy amclientwebapps.war” on page 18

▼ To Install the Client SDK
■ The Access Manager server which will be used by the client SDK must be up and running,

and you must know the URL for accessing this server.
■ The machine where the client SDK will be installed must have an Access Manager supported

web container installed. Examples of Access Manager supported web containers are Sun
Java System Web Server 6.1 sp5, Sun Java System Application Server 8.1, BEA WebLogic
Server 8.1 sp4, and IBM Websphere Application Server 5.1.1.5.

■ The web container instance on which the client SDK will be deployed must be up and
running.

■ The client SDK machine must have access to the Access Manager client SDK package
SUNWamclnt through the Java Enterprise System 4 bits or through some other means.

Create a package administration file. .
Using a text editor, add the following contents to this file.
mail=

instance=unique

partial=nocheck

Before You Begin

1

JDK and CLASSPATH Requirements

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200616

runlevel=nocheck

idepend=nocheck

rdepend=nocheck

space=nocheck

setuid=nocheck

conflict=nocheck

action=nocheck

basedir=ClientSDK-base-directory

In this example, the package administration file is named /usr/tmp/pkgadmin.

The value for basediris the directory in which you want to install the Access Manager client
SDK.

Create a package response file named /usr/tmp/pkgresp.
Using a text editor, place the following three lines (a single y on each line) in this file.
y

y

y

In the Access Manager package directory, use the pkgaddutility to install the SUNWamclnt
package:
cd JES2005Q4-Image-root/OperatingSystem-Architecture/Product/identity_svr/Packages

pkgadd -n -a /usr/tmp/pkgadmin -d . -r /usr/tmp/pkgresp -R / SUNWamclnt

In the directory in which you installed the Access Manager client SDK package, make a copy of
the file Makefile.clientsdk.
The directory in which you installed the Access Manager client SDK package should be the
same as the value you used for basedir in the package administration file in step 1a.
On Solaris: cd ClientSDK-base-directory/SUNWam

cp Makefile.clientsdk Makefile.clientsdk.orig

On Linux: cd ClientSDK-base-directory/identity

cp Makefile.clientsdk Makefile.clientsdk.orig

▼ To Configure the Client SDK
In Makefile.clientsdk, edit the following parameters:
JAVA_HOME Use the following path: /usr/jdk/entsys-j2se

SERVER_HOSTNAME The fully-qualified domain name of the Access Manager server.

2

3

4

1

Installing the Client SDK

Chapter 1 • Using the Client SDK 17

SERVER_PROTOCOL If the Access Manager server is SSL-enabled, change this value to
HTTPS.

SERVER_PORT The port number on which the Access Manager server is running.

ENCRYPTION_KEY This value must be the same value used for the Access Manager
server. You can obtain the value by running one of the following
commands on the Access Manager server:

On Solaris grep pwd

/etc/opt/SUNWam/config/AMConfig.properties

On Linux grep pwd

/etc/opt/sun/identity/config/AMConfig.properties

DEBUG_DIR (Optional) If you don't want the debug logs stored in the tmp
directory, then change this value to the directory where you want
debug logs to be created.

Run the make or gmake command:
make -f Makefile.clientsdk

This step generates a sample properties file in the directory temp, standalone samples in the
directory clientsdk-samples and a deployable war file, amclientwebapps.war.The following
table summarizes the items included in the WAR file.

File Description

index.html Instructions for installing and using the Client SDK packages

WEB-INF/web.xml Client SDK for stand-alone applications

WEB-INF/classes/AMClient.properties Archive of Access Manager samples, web applications, and Javadoc

WEB-INF/classes/*.classes File for building stand-alone samples and web applications

WEB-INF/docs Javadoc (Public Client SDK APIs)

WEB-INF/samples Sample stand-alone programs

WEB-INF/webapps Sample web applications

▼ To Deploy amclientwebapps.war
Create a deployment directory for amclientwebapps.war.
On Solaris mkdir -p ClientSDK-base-directory/SUNWam/web-src/clientsdk

On Linux mkdir -p ClientSDK-base-directory/identity/web-src/clientsdK

2

1

Installing the Client SDK

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200618

On the web container instance where you want to use the Access Manager client SDK, deploy
the amclientwebapps.war file. See the following examples:
Sun Java Enterprise Web Server on Solaris or Linux

Use the wdeploy command to deploy amclientwebapps.war with a URI of
/amcilentwebapps on the Web Server instance https-clientSDKinstance. Example:

WebServer-base-directory/bin/https/httpadmin/bin/wdeploy deploy -u

/amclientwebapps -i https-clientSDKinstance -v https-clientsdkinstance -d

ClientSDK-base-directory/SUNWam/web-src/clientsdk
clientSDK-base-directory/SUNWam/amclientwebapps.war

Sun Java Enterprise Application Server on Solaris
Using the asadmin command to deploy amclientwebapps.war with a URI of
/amclientwebapps on the application server instance clientsSDKinstance. Example:

ApplicationServer-base-directory/appserver/bin/asadmin deploy -user Admin-User-ID
--host ApplicationServer-instanceHost --port ApplicationServer-Admin-Port
--contextroot amclientwebapps -name amcilentwebapps -target clientSDKinstance
ClientSDK-base-directory/SUNWam/amclientwebapps.war

Be sure to use the fully qualified host name for ApplicationServer-instanceHost.

Enter the Application Server administration password when prompted.

Sun Java Enterprise Application Server on Linux
Using the asadmin command to deploy amclientwebapps.war with a URI of
/amclientwebapps on the application server instance clientsSDKinstance. Example:

ApplicationServer-base-directory/bin/asadmin deploy -user Admin-User-ID --host

ApplicationServer-instanceHost --port ApplicationServer-Admin-Port --contextroot

amclientwebapps -name amcilentwebapps -target clientSDKinstance
ClientSDK-base-directory/SUNWam/amclientwebapps.war

Be sure to use the fully qualified host name for ApplicationServer-instanceHost.

Enter the Application Server administration password when prompted.

If you are deploying the client SDK on a third-party web container such as BEA WebLogic
Server or IBM WebSphere Application Server, then see the documentation that comes with that
product.

Restart the web container instance on which the Access Manager client SDK was deployed.
If the full server instance being accessed by the client SDK is SSL-enabled, then you must install
the root CA certificate of the server's certificate in the web container's JVM-wide cacerts
keystore. Alternatively, you can create a keystore on the client SDK machine to contain the
server's root CA certificate. Then add the necessary JVM options to the client SDK's web
container instance to locate the newly created keystore.

2

3

Installing the Client SDK

Chapter 1 • Using the Client SDK 19

Initializing the Client SDK
Before Access Manager Client SDK can communicate with Access Manager Server, you must
initialize some properties in the client SDK. You can set these properties in one of three ways:

■ “Using a Properties File” on page 20
■ “Using the Java API” on page 20
■ “Setting Individual Properties” on page 21

Using a Properties File
You can set properties in a properties file and then provide a path to it at runtime. The
properties files must be in the CLASSPATH. The default properties file name is
AMConfig.properties and is always read at start-up.

▼ To Set ClientSDK Properties in a Properties File

Generate a sample AMConfig.properties by running the following command:
make -f Makefile.clientsdk properties

The AMConfig.properties will be present in the temp directory.

Edit properties to suit your environment.

At runtime if the file name is different from AMConfig, provide the edited properties filename
(without the .properties extension, and also with the path. The path should be in the
CLASSPATH) by declaring the JVM option:
-Damconfig=filname

Using the Java API
The ClientSDK properties can also be set programmatically using the class:
com.iplanet.am.util.SystemProperties. See “Using the Java API” on page 20.

EXAMPLE 1–1 Setting ClientSDK Properties

import com.iplanet.am.util.SystemProperties;

import java.util.Properties;

public static void main(String[] args) {

// To initialize a set of properties

Properties props = new Properties();

props.setProperty(”com.iplanet.am.naming.url’,

”http://sample.com/amserver/namingservice’);

1

2

3

Initializing the Client SDK

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200620

EXAMPLE 1–1 Setting ClientSDK Properties (Continued)

props.setProperty(”com.sun.identity.agents.app.username’, ”amAdmin’);

props.setProperty(”com.iplanet.am.service.password’, ”11111111’);

SystemProperties.initializeProperties(props) ;

// To initialize a single property

SystemProperties.initializeProperties(“com.iplanet.am.naming.url’,

”http://sample.com/amserver/namingservice’);

// Application specific code ...

}

Setting Individual Properties
You can set properties one at a time. For example, you can declare the following JVM option at
run time to assign a value to a particular property:

-DpropertyName=propertyValue

The following sections describe the properties expected by Access Manager Client SDK. A
client application deployed within a servlet container can register for changes to session, user
attributes and policy decisions. These properties must be set to receive such notifications.

Naming URL Properties
com.iplanet.am.naming.url. This is a required property. The value of this property represents
the URL where the Client SDK would retrieve the URLs of Access Manager internal services.
This is the URI for the Naming Service. Example:

com.iplanet.am.naming.url=http://AcceessManager-HostName.domain_name:
port/ amserver/namingservice

com.iplanet.am.naming.failover.url. This property can be used by any remote SDK
application that wants failover in, for example, session validation or getting the service URLs.
Example:

com.iplanet.am.naming.failover.url= http://

AcceessManager-HostName.domain_name:port/ amserver/failover

Debug Properties
com.iplanet.services.debug.level Specifies the debug level. Possible values are

levels are: off, error , warning, or message.

Initializing the Client SDK

Chapter 1 • Using the Client SDK 21

com.iplanet.services.debug.directory The value of this property is the output
directory for the debug information. This
directory should be writable by the server
process. Example:

com.iplanet.services.debug.directory=/var/opt/SUNWam/debug

.

Notification URL Properties
com.iplanet.am.notification.url.

The value of this property is the URI of the Notification Service running on the host machine
where you installed the Client SDK. Example:

com.iplanet.am.notification.url= http://clientSDK_host.domain_name:
port/amserver/notificationservice

com.sun.identity.agents.notification.enabled

This property enables or disables notifications for remote policy API. Example:

com.sun.identity.agents.notification.enabled=false

com.sun.identity.agents.notification.url

This property defines the notification URL for remote policy API.

Setting Up a Client Identity
Some of the Access Manager components such as SAML, User Management, Policy, require an
identity for the client. The client application reads configuration data to identify the client. You
can set up the identity for the client in one of two ways:

■ Set username and password properties can be authenticated
■ Set an SSO Token Provider

Note – Some of the configuration attributes (such as password) are encrypted and stored in the
data store as an Encryption/Decryption Key. If such attributes have to be decrypted by the
client, the property must be set, and must be the same as that of the Access Manager Server.

This value is generated at installation time and stored in
/AccessManager-base/SUNWam/lib/AMConfig.properties .

Setting Up a Client Identity

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200622

To Set Username and Password Properties
The following properties can be used to set the username and password that can be used by
client SDK to obtain the configuration parameters. The authenticated username should have
permissions to read the configuration data for SAML and User Management.

■ The property to provide the user name is: com.sun.identity.agents.app.username
■ The property to provide the plain text password is: com.iplanet.am.service.password

For scenarios where plain text password would be security concern, an encrypted password can
be provided using the property: com.iplanet.am.service.secret.

If an encrypted password is provided, the encryption key must also be provided using the
property: am.encryption.pwd.

To Set an SSO Token Provider
Set the following property: com.sun.identity.security.AdminToken

This provides an implementation for the interface, which returns the following single-sign-on
(SSO) token: com.sun.identity.security.AppSSOTokenProvider.

Building Custom Web Applications
The Client SDK package contains Makefile.clientsdk that you can use to generate and build
samples and web applications. The makefile defines targets to build configuration properties,
samples and web applications.

Building Stand-Alone Applications
Use these steps a template for building their identity-enabled web applications.

▼ To Build a Stand-Alone Application

Install the Client SDK.
See “Installing the Client SDK” on page 16.

Copy servlet.jar to libdirectory.

If using JDK 1.3, follow these steps:

a. copy the following jars to the libdirectory:

1

2

3

Building Custom Web Applications

Chapter 1 • Using the Client SDK 23

■ jaas.jar

■ jsse.jar jce1_2_1.jar

■ jdk_logging.jar

b. Add the jar files the CLASSPATH definition in the file clientsdk-samples/defines.mk.

Run the stand-alone application.
Change directory to respective components within clientsdk-samples. Each has a
Readme.html file explaining the changes to done and a Makefile to rebuild and run the program.

Targets Defined in clientsdk
For web deployment, amclientwebapps.war is ready to be deployed. However, you can make
changes in clientsdk-webapps directory and the war file can be recreated.

Custom web applications can use the following as a template to build their identity enabled web
application.

properties: Generates AMConfig.properties in the temp directory that can used as a template
for setting AM SDK’s properties

samples: Copies standalone samples and corresponding Makefiles to samples directory.

webapp: Generates amclientwebapps.war that can be deployed on any Servlet 2.3 compliant
web container.

About the Client SDK Samples
Sample files are included in the Client SDK. These demonstrate how to write stand-alone
programs and how to write web applications. The samples are located under the directory
where you generated the Makefile.clientsdk, and in the following subdirectories:

.../clientsdk-samples/

.../clientsdk-webapps/

Clientsdk-samples includes samples for authentication, logging, policy and SAML
stand-alone programs.Clientsdk-webapps includes samples for user management, service
management, and policy programs. Each sample has a Readme.html file with instructions on
compiling and running the sample program.

4

Building Custom Web Applications

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200624

Customizing the Administration Console

The Sun JavaTM System Access Manager 7 2005Q4 console is a web-based interface for creating,
managing, and monitoring the identities, web services, and enforcement policies configured
throughout an Access Manager deployment. It is built with Sun Java System Application
Framework, a Java 2 Enterprise Edition (J2EE) framework used to help developers build
functional web applications. XML files, JavaServer PagesTM (JSP) and Cascading Style Sheets
(CSS) define the look of the Access Manager HTML pages.

This chapter describes the Access Manager administration console, its pluggable architecture,
and how to customize the Legacy mode user interface. The chapter contains the following
sections:
■ “About the Administration Console” on page 25
■ “Customizing The Console” on page 27
■ “Console APIs” on page 34
■ “Precompiling the Console JSP” on page 35
■ “Console Samples” on page 35

Note – At this time, no documentation or code samples exist for modifying the Realm mode user
interface. For customized information on modifying the Realm mode user interface in your
environment, contact your Sun Sales Representative.

About the Administration Console
The console is divided into three frames: Header, Navigation and Data. The Header frame
displays corporate branding information as well as the first and last name of the currently
logged-in user as defined in their profile. It also contains a set of tabs to allow the user to switch
between the management modules, a hyperlink to the Access Manager Help system, a Search
function and a Logout link. The Navigation frame on the left displays the object hierarchy of the
chosen management module, and the Data frame on the right displays the attributes of the
object selected in the Navigation frame.

2C H A P T E R 2

25

For information about what the Console does and about the differences between the Realm
mode and Legacy mode console interfaces, see Chapter 4, “The Access Manager Console,” in
Sun Java System Access Manager 7 2005Q4 Administration Guide.

Generating The Console Interface
When the Access Manager console receives an HTTP(S) request, it first determines whether the
requesting user has been authenticated. If not, the user is redirected to the Access Manager
login page supplied by the Authentication Service. After successful authentication, the user is
redirected back to the console which reads all of the user’s available roles, and extracts the
applicable permissions and behaviors. The console is then dynamically constructed for the user
based on this information. For example, users with one or more administrative roles will see the
administration console view while those without any administrative roles will see the end user
console view. Roles also control the actions a user can perform and the identity objects that a
user sees. Pertaining to the former, the organization administrator role allows the user read and
write access to all objects within that organization while a help desk administrator role only
permits write access to the users’ passwords. With regards to the latter, a person with a people
container administrator role will only see users in the relevant people container while the
organization administrator will see all identity objects. Roles also control read and write
permissions for service attributes as well as the services the user can access.

FIGURE 2–1 Legacy Mode Administration Console

About the Administration Console

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200626

Plug-In Modules
An external application can be plugged-in to the console as a module, gaining complete control
of the Navigation and Data frames for its specific functionality. In this case, a tab with the name
of the custom application needs to be added to the Header frame. The application developer
would create the JSPs for both left and right frames, and all view beans, and models associated
with them.

Accessing the Console
The Naming Service defines URLs used to access the internal services of Access Manager. The
URL used to access the Administration Console web application is:

http://AcceessManager-HostName.domain_name:port/
amconsole

The first time Administration Console (amconsole) is accessed, it brings the user to the
Authentication web application (amserver) for authentication and authorization purposes.
After login, amserver redirects the user to the configured success login URL. The default
successful login URL is:

http(s)://AcceessManager-HostName.domain_name:port/
amconsole/base/AMAdminFrame

Customizing The Console
The Access Manager Legacy mode console uses JSP and CSS to define the look and feel of the
pages used to generate its frames. A majority of the content is generated dynamically—based on
where, and at what, the user is looking. In that regard, the modification of the content is
somewhat restricted. Within the Navigation frame, the layout of the controls (the view menu),
the action buttons, and the table with current objects in each JSP can be changed. In the Data
frame, the content displayed is dynamically generated based on the XML service file being
accessed but the layout, colors, and fonts are controlled by the adminstyle.css style sheet.

The Default Console Files
An administrator can modify the console by changing tags in the JSPs and CSS's. All of these
files can be found in the AccessManager-base/SUNWam/web-src/applications/console
directory. The files in this directory provide the default Sun Java System interface. Out of the
box, it contains the following subdirectories:

■ base contains JSP that are not service-specific.

Customizing The Console

Chapter 2 • Customizing the Administration Console 27

■ css contains the adminstyle.css which defines styles for the console.
■ federation contains JSP related to the Federation Management module.
■ html contains miscellaneous HTML files.
■ images contains images referenced by the JSP.
■ js contains JavaScriptTM files.
■ policy contains JSP related to the Policy Service.
■ service contains JSP related to the Service Management module.
■ session contains JSP related to the Current Sessions (session management) module.
■ user contains JSP related to the Identity Management module.

Note – Console-related JSP contain HTML and custom library tags. The tags are defined in tag
library descriptor files (.tld) found in the AccessManager-base/SUNWam/web-src/WEB-INF
directory. Each custom tag corresponds to a view component in its view bean. While the tags in
the JSP can be removed, new tags can not be added. For more information, see the Sun Java
System Application Framework documentation
(http://docs.sun.com/db/coll/S1_appframe20_en).

Creating Custom Organization Files
To customize the console for use by a specific organization, the
AccessManager-base/SUNWam/web-src/applications/console directory should first be
copied, renamed and placed on the same level as the default directory. The files in this new
directory can then be modified as needed.

Note – There is no standard to follow when naming the new directory. The new name can be any
arbitrarily chosen value.

For example, customized console files for the organization dc=new_org, dc=com might be
found in the AccessManager-base/SUNWam/web-src/applications/custom_directory
directory.

▼ To Create Custom Organization Files

Change to the directory where the default templates are stored:

cd AccessManager-base/SUNWam/web-src/applications
1

Customizing The Console

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200628

http://docs.sun.com/db/coll/S1_appframe20_en
http://docs.sun.com/db/coll/S1_appframe20_en

Make a new directory at that level.
The directory name can be any arbitrary value. For this example, it is named
AccessManager-base/SUNWam/web-src/applications/custom_directory/.

Copy all the JSP files from the consoledirectory into the new directory.
AccessManager-base/SUNWam/web-src/applications/console contains the default JSP for
Access Manager. Ensure that any image files are also copied into the new directory.

Customize the files in the new directory.
Modify any of the files in the new directory to reflect the needs of the specific organization.

Modify the AMBase.jspfile.
In our example, this file is found in
AccessManager-base/SUNWam/web-src/applications/custom_directory/base. The line
String console = "../console"; needs to be changed to String console =

"../new_directory_name ";. The String consoleImages tag also needs to be changed to
reflect a new image directory, if applicable. The contents of this file are copied in “Creating
Custom Organization Files” on page 28.
<!--

Copyright © 2002 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

-->

<% String console = "../console";

String consoleUrl = console + "/";

String consoleImages = consoleUrl + "images";

%>

Change the value of the JSP Directory Name attribute in the Administration Service to match
that of the directory created in “Creating Custom Organization Files”on page 28.
The JSP Directory Name attribute points the Authentication Service to the directory which
contains an organization’s customized console interface. Using the console itself, display the
services registered to the organization for which the console changes will be displayed. If the
Administration Service is not visible, it will need to be registered. For information on
registering services, see the Administration Guide.

Once the new set of console files have been modified, the user would need to log into the
organization where they were made in order to see any changes. Elaborating on our example, if
changes are made to the JSP located in the
AccessManager-base/SUNWam/web-src/applications/custom_directory directory, the user
would need to login to that organization using the URL:

2

3

4

5

6

Customizing The Console

Chapter 2 • Customizing the Administration Console 29

http:// server_name.domain_name:port//
service_deploy_uri/UI/Login?org=

custom_directory_organization.

Alternate Customization Procedure
The console can also be modified by simply replacing the default images in
AccessManager-base/SUNWam/web-src/applications/console/images , with new, similarly
named images.

Miscellaneous Customizations
Included in this section are procedures for several specific customizations available to
administrators of the Access Manager console.

To Modify The Service Configuration Display
A service is a group of attributes that are managed together by the Access Manager console.
Out-of-the-box, Access Manager loads a number of services it uses to manage its own features.
For example, the configuration parameters of the Logging Service are displayed and managed in
the Access Manager console, while code implementations within Access Manager use the
attribute values to run the service.

To Modify The User Profile View
The Access Manager console creates a default User Service view based on information defined
in the amUser.xml service file.

A modified user profile view with functionality more appropriate to the organization’s
environment can be defined by creating a new ViewBean and/or a new JSP. For example, an
organization might want User attributes to be formatted differently than the default vertical
listing provided. Another customization option might be to break up complex attributes into
smaller ones. Currently, the server names are listed in one text field as:

protocol://Access Manager_host. domain:port

Instead, the display can be customized with three text fields:

protocol_chooser_field://server_host_field :port_number_field

A third customization option might be to add JavaScript to the ViewBean to dynamically
update attribute values based on other defined input. The custom JSP would be placed in the
following directory: AccessManager-base/SUNWam/web-src/applications/console/user.
The ViewBean is placed in the classpath com.iplanet.am.console.user. The value of the

Customizing The Console

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200630

attribute User Profile Display Class in the Administration Service
(iplanet-am-admin-console-user- profile-class in the amAdminConsole.xml service file)
would then be changed to the name of the newly created ViewBean. The default value of this
attribute is com.iplanet.am.console.user.UMUserProfileViewBean.

Display Options For The User Profile Page
There are a number of attributes in the Administration Service that can be selected to display
certain objects on the User Profile page. Display User’s Roles, Display User’s Groups and User
Profile Display Options specify whether to display the roles assigned to a user, the groups to
which a user is a member and the schema attributes, respectively. More information on these
service attributes can be found in the Administration Guide.

To Localize The Console
All textual resource strings used in the console interface can be found in the
amAdminModuleMsgs.properties file, located in AccessManager-base/SUNWam/locale/. The
default language is English (en_US). Modifying this file with messages in a foreign language will
localize the console.

To Display Service Attributes
Service attributes are defined in XML service files based on the sms.dtd . In order for a
particular service attribute to be displayed in the console, it must be configured with the any
XML attribute. The any attribute specifies whether the service attribute for which it is defined
will display in the Access Manager console.

To Customize Interface Colors
All the colors of the console are configurable using the Access Manager style sheet
adminstyle.css located in the
AccessManager-base/SUNWam/web-src/applications/console/css directory. For instance, to
change the background color for the navigation frame, modify the BODY.navFrame tag; or to
change the background color for the data frame, modify the BODY.dataFrame. The tags take
either a text value for standard colors (blue, green, red, yellow, etc.) or a hexadecimal value
(#ff0000, #aadd22, etc.). Replacing the default with another value will change the background
color of the respective frame after the page is reloaded in the browser. “Miscellaneous
Customizations” on page 30 details the tag in adminstyle.css.

EXAMPLE 2–1 BODY.navFramePortion of adminstyle.css

BODY.navFrame {

color: black;

background: #ffffff;

}

Customizing The Console

Chapter 2 • Customizing the Administration Console 31

EXAMPLE 2–1 BODY.navFramePortion of adminstyle.css (Continued)

To Change The Default Attribute Display Elements
The console auto-generates Data frame pages based on the definition of a service’s attributes in
an XML service definition file. Each service attribute is defined with the XML attributes type,
uitype and syntax. Type specifies the kind of value the attribute will take. uitype specifies the
HTML element displayed by the console. syntax defines the format of the value. The values of
these attributes can be mixed and matched to alter the HTML element used by the console to
display the values of the attributes. For example, by default, an attribute of the single_choice
type displays its choices as a drop down list in which only one choice can be selected. This list
can also be presented as a set of radio buttons if the value of the uitype attribute is changed to
radio. “Miscellaneous Customizations” on page 30 illustrates this concept.

EXAMPLE 2–2 uitypeXML Attribute Sample

<AttributeSchema name="test-attribute"

type="single_choice"

syntax="string"

any="display"

uitype="radio"

i18nKey="d105">

<ChoiceValues>

<ChoiceValue i18nKey="u200">Daily</ChoiceValue>

<ChoiceValue i18nKey="u201">Weekly</ChoiceValue>

<ChoiceValue i18nKey="u202">Monthly</ChoiceValue>

</ChoiceValues>

<DefaultValues>

<Value>Daily</Value>

</DefaultValues>

</AttributeSchema>

“Miscellaneous Customizations” on page 30 is a listing of the possible values for each attribute,
and the corresponding HTML element that each will display based on the different groupings.

Customizing The Console

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200632

TABLE 2–1 Service Attribute Values and Corresponding Display Elements

type Value syntax Value uitype Value Element Displayed In Console

single_choice string No value defined pull-down menu choices

radio radio button choices

Single boolean No value defined checkbox

radio radio button

string No value defined text field

link hyperlink

button clickable button

password No value defined text field

paragraph No value defined scrolling text field

list string No value defined Add/Delete name list

name_value_list Add/Edit/Delete name list

multiple_choice string No value defined choice list

To Add A Module Tab
The section “Plug-In Modules” mentions the capability to plug-in external applications as
modules. Once this is accomplished, the module needs to be accessible via the console by
adding a new module tab. Label information for module tabs are found in the
amAdminModuleMsgs.properties console properties file located in
AccessManager-base/SUNWam/locale/. To add label information for a new module, add a key
and value pair similar to module105_NewTab=My New Tab. “Miscellaneous Customizations”
on page 30 illustrates the default pairs in the file.

EXAMPLE 2–3 Module Tab Key And Value Pairs

module101_identity=Identity Management

module102_service=Service Configuration

module103_session=Current Sessions

module104_federation=Federation Management

The module name and a URL for the external application also need to be added to the View
Menu Entries attribute in the Administration Service (or
iplanet-am-admin-console-view-menu in the amAdminConsole.xml service file). When a

Customizing The Console

Chapter 2 • Customizing the Administration Console 33

module tab in the Header frame is clicked, this defined URL is displayed in the Navigation
frame. For example, to define the display information for the tab sample, an entry similar to
module105_NewTab|/amconsole/custom_directory /custom_NavPage would be added to the
View Menu Entries attribute in the Administration Service.

Note – The console retrieves all the entries from this attribute and sorts them by i18n key. This
determines the tab display order in the Header frame.

After making these changes and restarting Access Manager, a new tab will be displayed with the
name My New Tab.

To Display Container Objects
In order to create and manage LDAP organizational units (referred to as containers in the
console), the following attributes need to be enabled (separately or together) in the
Administration Service.
■ Display Containers In Menu—Containers are organizational units as viewed using the

Access Manager console. If this option is selected, the menu choice Containers will be
displayed in the View menu for top-level Organizations, Sub-Organizations and other
containers.

■ Show People Containers—People containers are organizational units containing user
profiles. If this option is selected, the menu choice People Containers will be displayed in the
View menu for Organizations, Containers and Sub-Organizations.

■ Show Group Containers—Group containers are organizational units containing groups. If
this option is selected, the menu choice Group Containers will be displayed in the View
menu for Organizations, Containers and Group Containers.

Viewing any of these display options is also dependent on whether the Enable User
Management attribute is selected in the Administration Service. (This attribute is enabled by
default after a new installation.) More information on these attributes can be found in the
Administration Guide.

Console APIs
The public console API package is named com.iplanet.am.console.base.model . It contains
interfaces that can be used to monitor and react to events that occur in the console. This listener
can be called when the user executes an action on the console that causes an event. An event can
have multiple listeners registered on it. Conversely, a listener can register with multiple events.
Events that might be used to trigger a listener include:
■ Displaying a tab in the Header frame.
■ Creating or deleting identity-related objects.

Console APIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200634

■ Modifying the properties of an identity-related object.
■ Sending attribute values to the console ViewBean for display purposes.

When a listener is created all the methods of that interface must be implemented thus, the
methods in the AMConsoleListener interface must be implemented. The
AMConsoleListenerAdapter class provides default implementations of those methods and can
be used instead. Creating a console event listener includes the following:

▼ To Create a Console Event Listener
Write a console event listener class or implement the default methods in the
AMConsoleListenerAdapter class.

Compile the code.

Register the listener in the Administration Service.
Access Manager includes a sample implementation of the ConsoleEventListener. The Sun
Java System Access Manager 7 2005Q4 Java API Reference also contains more detailed
information on the listener interfaces and class.

Precompiling the Console JSP
Each JSP is compiled when it is first accessed. Because of this, there is a delay when displaying
the HTML page on the browser. To avoid this delay, the system administrator can precompile
the JSP by running the following command:

WebServer_install_directory/servers/bin/https/bin/jspc -webapp

AccessManager-base/SUNWam/web-src/applications

where, by default, WebServer_install_directory is /opt/SUNWwbsvr.

Console Samples
Sample files have been included to help understand how the Access Manager console can be
customized. The samples include instructions on how to:

Modify User Profile Page
This sample modifies the user interface by adding a hyperlink that allows an existing user to
change their configured password. It is in the ChangeUserPassword directory.

1

2

3

Console Samples

Chapter 2 • Customizing the Administration Console 35

Create A Tabbed Identity Management Display
This sample creates a custom user profile which displays the profile with three tabs. The sample
is in the UserProfile directory.

ConsoleEventListener
This sample displays the parameters passed to AMConsoleListener class in the amConsole
debug file. It is in the ConsoleEventListener directory.

Add Administrative Function
This sample adds functionality to the Identity Management module that allows an
administrator to move a user from one organization to other. It is in the MoveUser directory.

Add A New Module Tab
This sample adds a new tab into the Header frame. This tab will connect to an external
application and can be configured using the console. It is in the NewTab directory.

Create A Custom User Profile View
This sample creates a custom user profile view to replace the default user profile view. A
different user profile view can be created for each configured organization. A custom class
would need to be written that extends the default user profile view bean. This class would then
be registered in the User Profile Display Class attribute of the Administration Service. There is
an example of how to do this in the samples directory. This sample is in the UserProfile
directory.

These samples are located in AccessManager-base/SUNWam/samples/console. Open the README
file in this directory for general instructions. Each specific sample directory also contains a
README file with instructions relevant to that sample.

Note – The console samples are only available when Access Manager is installed on the SolarisTM

operating system.

Console Samples

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200636

Using Session Service APIs

The Session Service component of the Sun JavaTM System Access Manager 7 2005Q4 enables
single sign-on (SSO) functionality. In a single sign-on session, a user authenticates or logs in to
a protected resource once. Until the user logs out, the user can access a number of other
protected resources without having to present credentials again. For detailed information about
how the Session Service and SSO work, see Chapter 2, “User Session Management and Single
Sign-On,” in Sun Java System Access Manager 7 2005Q4 Technical Overview.

This chapter describes the Session Service Java APIs, and related sample code that comes with
Access Manager. Topics included in this chapter are:

■ “About the Single Sign-On Java APIs” on page 37
■ “Using the SSO Code Samples” on page 38
■ “Developing Non-Web Based Applications” on page 44

For information about using the Session Service C APIs, see “About the C Library for Single
Sign-On” on page 152

About the Single Sign-On Java APIs
Once a user has successfully authenticated to Access Manager, the user object uses browser
cookies or URL query parameters to carry a Session ID from one application to the next. Each
time the user requests access to a protected application, the new application must verify the
user's identity. For example, a user successfully authenticates to the application at
http://orgA.company.com/Store, and then later tries to access
http://orgA.company.com/UpdateInfo, a service that is SSO-enabled. The UpdateInfo
application does not ask for the user to present credentials. Instead, the application uses the
Session APIs and the user session to determine if the user is already authenticated. If the Session
methods determine that the user has already been authenticated and that the session is still
valid, then the UpdateInfo application allows the user access to its data and operations. If the
user is not already authenticated, or if the session is no longer valid, then the UpdateInfo

3C H A P T E R 3

37

application prompts the user to present credentials a second time. The SSO APIs can also be
used to create or destroy a SSOToken, or to listen for SSOToken events.

Using the SSO Code Samples
Access Manager provides the following code samples that demonstrate how you can use the
Single Sign-On APIs. These samples are in the form of either standalone Java application or Java
servlets.

SDKCommandLineSSO.java Standalone Java program.

Creates a new SSO token given a valid SSO token
id.

Input: Token id.

Output: Basic SSO token information.

CommandLineSSO.java Standalone Java program.

Demonstrates the usage of retrieving the user
profile given the correct user credentials.

Input: Organization name (in DN format).

Output: User profile attributes.

SSOTokenSample.java Standalone Java program.

Serves as a basis for using SSO API. It
demonstrates creating an SSO token and calling
various methods from the token including
getting/setting the session properties.

Input: Token id.

Output: Basic SSO token information and session
properties.

SDKSampleServlet.java Java Servlet.

Demonstrates the usage of retrieving the user
profile given the valid cookie set in the browser.

Input: None, but require AM session cookie set in
the browser.

Using the SSO Code Samples

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200638

Output: SSO token information and user profile
attributes.

SSOTokenSampleServlet.java

SampleTokenListener.java

Java Servlet.

Given the valid cookie sent in the browser, these
serve as the basis for using the SSO API.
Demonstrates use of the of Session Notification
Service as well as getting and setting session
properties.

Input: None. Requires Access Manager session
cookie set in the browser.

Output: Basic SSO token information and session
properties.

Running SSO Code Samples on Solaris
On the Solaris platform, you can run the sample programs in one of the following ways:

■ Run a sample program from the Access Manager Server.
■ Run a sample program on a remote client.
■ “To Run a Sample Program on the Remote Client Command Line” on page 43

▼ To Run a Sample Program from the Access Manager Server

Set the environment variables.
The following environment variables are used to run the make command. You can also set these
variables in the Makefile which is in the same directory as the sample files.
BASE Specify the directory where the Access Manager Server is installed.

CLASSPATH Specify the directory where all the .JAR files are installed. Example:
AccessManager-base/SUNWam/lib

JAVA_HOME Specify the JDK version your are using. The version must be JDK 1.3.1 or
higher.

BASE_CLASS_DIR Specify the directory where you will keep the sample compiled classes.

JAR_DIR Specify the directory where the .JAR of the sample classes will be created.
The default is the current directory.

In the directory AccessManager-base/SUNWam/samples/sso, run the gmake command.

1

2

Using the SSO Code Samples

Chapter 3 • Using Session Service APIs 39

From the directory JAR_DIR, copy the file SSOSample.jar to the directory
AccessManager-base/SUNWam/lib.

Add AccessManager-base/SUNWam/lib/SSOSample.jar to web container classpath.
Example: WebContainer-base/https-machine.domain.name/config/server.xml

Register the Sample servlet.

a. In the file
WebContainer-base/https-host.domain/web-app/SERVICES_DEPLOY_URI/WEB-INF/web.xml,
insert the following lines immediately after the last </servlet> tag:
<servlet>

<servlet-name>SSOTokenSampleServlet</servlet-name>

<description>SSOTokenSampleServlet</description>

<servlet-class>SSOTokenSampleServlet</servlet-class>

</servlet>

b. Insert the following lines immediately after the last </servlet-mapping> tag.
<servlet-mapping>

<servlet-name>SSOTokenSampleServlet</servlet-name>

<url-pattern>/SSOTokenSampleServlet</url-pattern>

</servlet-mapping>

Restart the Access Manager server.

Log in to the Access Manager console.
To execute SSOTokenSampleServlet, you must be authorized to access that resource. If you do
not have authorization, the request will be denied. See the instructions for setting policy in the
Administration Guide.

Use a browser to access the following URL:
protocol://host:port/ deploy-uri/SSOTokenSampleServlet

The host name must be a fully qualified name. Your sample program should display the output
in the browser.

▼ To Run a Sample Program on a Remote Client
Install the Access Manager Client APIs in a web container and perform the following steps. The
Sun Java System Web Server must be installed in a directory named iws, and the Access
Manager client APIs must be installed in a directory named opt. For information on installing
the Client APIs, see Chapter 1.

3

4

5

6

7

8

Before You Begin

Using the SSO Code Samples

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200640

In the directory AccessManager-base/SUNWam/samples/sso, run the gmake command.

Be sure that the following are included in the Web Server class path in the server.xmlfile:

■ /opt/SUNWam/samples/sso/SSOSample.jar

■ /opt/SUNWam/lib/am_sdk.jar

■ /usr/share/lib/mps/secv1/jss4.jar

■ /opt/SUNWam/lib/jaxp.jar

■ /opt/SUNWam/lib/dom.jar

■ /opt/SUNWam/lib/xercesImpl.jar

■ /opt/SUNWam/lib/jaas.jar (Add this only if you are using a JDK version lower than
JDK1.4)

■ All /opt/SUNWam/locale and /opt/SUNWam/lib directories

Be sure that java.protocol.handler.pkgs=com.iplanet.services.comm is included as an
argument to be passed into the Web Server virtual machine (VM).
In the server.xml file, the following JVM option should be specified:

-Djava.protocol.handler.pkgs=com.iplanet.services.comm

Restart Sun Java System Web Server.
If the Access Manager server is running with the Secure Socket Layer (SSL) protocol enabled,
you may need to add the following line to the AMConfig.properties file for testing purposes:

com.iplanet.am.jssproxy.trustAllServerCerts=true

This property tells the SSL client in the Client APIs to trust all certificates presented by the
servers. Adding this property enables you test the SSL connection without having the root CA
for your test certificate installed on the this client. Without this property configured, you must
install the SSL server rootCA certificate in client trust database, and then make sure that the
following properties in AMConfig.properties are set to the same values:

■ com.iplanet.am.admin.cli.certdb.dir

■ com.iplanet.am.admin.cli.certdb.prefix

■ com.iplanet.am.admin.cli.certdb.passfile

▼ To Run the Sample Code

In the /opt/SUNWam/samples/sso directory, run the gmake command.
This compiles the samples and creates the necessary JAR files.

1

2

3

4

1

Using the SSO Code Samples

Chapter 3 • Using Session Service APIs 41

Register the sample servlet.

a. In the file WebServer-base/https-hostName.domainName.
com/is-web-apps/services/WEB-INF/web.xml,insert the following lines immediately
after the last </servlet> tag.

<servlet>

<servlet-name>SSOTokenSampleServlet</servlet-name>

<description>SSOTokenSampleServlet</description>

<servlet-class>SSOTokenSampleServlet</servlet-class>

</servlet>

b. Insert the following lines immediately after the last </servlet-mapping> tag.

<servlet-mapping>

<servlet-name>SSOTokenSampleServlet</servlet-name>

<url-pattern>/SSOTokenSampleServlet</url-pattern>

</servlet-mapping>

Restart the web container where the Access Manager Client APIs are installed.

Log in to the Access Manager server.

To Invoke the servlet, use a browser to go to the following URL:
http://amsdk-server.sub.domain/servlet/SSOTokenSampleServlet

The SSOTokenSampleServlet servlet validates the session and prints out all relevant session
information. You may have to reload the URL (Shift + Reload Button) to see updated
information.

Log out of the Access Manager server.
Because no log out link exists in the sample servlet, you must use a browser to access the Access
Manager server log out URL. Example:
https://hostName.domainName.com/amserver/UI/Logout

To verify that the client SSOtoken is no longer valid, invoke the servlet a second time.
Use a browser to go to the following URL:

http://amsdk-server.sub.domain/servlet/SSOTokenSampleServlet

This time, a session exception occurs. Reload the URL to see the updated information.

2

3

4

5

6

7

Using the SSO Code Samples

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200642

▼ To Run a Sample Program on the Remote Client Command Line
You must install the Access Manager Client APIs before you can run a sample program on the
remote client command line. For more information on using the Client APIs, see Chapter 1.

When you run a single sign-on (SSO) program from the command line, your application is not
running in a web container, but your application must have access to the cookies from the web
container HTTP requests. Your application must extract the Access Manager cookie from the
request, and then pass the string value of the cookie into the createSSOToken method. Because
notifications are only supported in a web container, and because your application is not
running in a web container, notifications are not supported in this sample.

In the directory AccessManager-base/SUNWam/samples/sso, run the gmake command.

Modify the script AccessManager-base/SUNWam/samples/sso/run to specify the sample
program that you want to test.
For example, to run SDKCommandLineSSO.java, in the last line in the script, replace
CommandLineSSO with SDKCommandLineSSO. The result looks like this:

${JAVA_EXEC} -Xbootclasspath ...SDKCommandLineSSO $@

If you are using a JDK version lower than JDK1.4, add the following to the classpath:
/opt/SUNWam/lib/jaas.jar

If SSL is enabled, in the script AccessManager-base/SUNWam/samples/sso/run , add the
following VM argument when executing your Java code:
java.protocol.handler.pkgs=com.iplanet.services.comm

▼ To Test the Command Line
To test the command line you can run the servlet test above, cut and paste the cookie value and
pass it in as the token value.

Use a browser to access the following URL:
http://test-server.red.iplanet.com:58080/amserver/SSOTokenSampleServlet

The following output is displayed:
SSOToken host name: 123.123.123.123 (Your server’s ip address)

SSOToken Principal name: uid=amAdmin,ou=People,dc=example,dc=com

Authentication type used: LDAP

IPAddress of the host: 123.123.123.123 (Your server’s ip address)

The token id is AQIC5wM2LY4Sfcwbdp3gWuB38NA26klnTJlLPknN8t0fPVY=

Before You Begin

1

2

3

4

1

Using the SSO Code Samples

Chapter 3 • Using Session Service APIs 43

Property: Company is - Sun Microsystems

Property: Country is - USA

SSO Token Validation test Succeeded

In the AccessManager-base/SUNWam/samples/sso directory, execute the run command:
run AQIC5wM2LY4Sfcwbdp3gWuB38NA26klnTJlLPknN8t0fPVY=

The following result is displayed:
SSO "AQIC5wM2LY4Sfcwbdp3gWuB38NA26klnTJlLPknN8t0fPVY="

SSOToken host name: 123.123.123.123 (Your server’s ip address)

SSOToken Principal name: uid=amAdmin,ou=People,dc=example,dc=com

Authentication type used: LDAP

IPAddress of the host: 123.123.123.123 (Your server’s ip address)

Developing Non-Web Based Applications
Access Manager provides the SSO APIs primarily for web-based applications although the APIs
can be extended to any non-web-based applications with limitations. When developing
non-web-based applications, you can use the SSO APIs in one of two ways:

■ The application must obtain the Access Manager cookie value and pass it into the SSO client
methods to get to the session token. The method used for this process is application-specific.

■ You can use command-line applications such as amadmin. In this case, session tokens can be
created to access the Directory Server directly. There is no session created, making the
Access Manager access valid only within that process or VM.

2

Developing Non-Web Based Applications

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200644

Customizing the Authentication User Interface

The Authentication Service provides the web-based Graphical User Interface (GUI) for all
default and custom authentication modules installed in the Sun JavaTM System Access Manager
7 2005Q4 deployment. This interface provides a dynamic and customizable means for
gathering authentication credentials by presenting the web-based login requirement pages to a
user requesting access.

The Authentication Service GUI is built on top of JATO (J2EE Assisted Take-Off), a Java 2
Enterprise Edition (J2EE) presentation application framework. This framework is used to help
developers build complete functional Web applications. You can customize this user interface
per client type, realm, locale, or service.

For more information about what the Authentication Service does and how it works, see
Chapter 3, “User Authentication,” in Sun Java System Access Manager 7 2005Q4 Technical
Overview and “User Authentication” in Sun Java System Access Manager 7 2005Q4 Technical
Overview .

The following topics are covered in this chapter:

■ “User Interface Files You Can Modify” on page 45
■ “Customizing Branding and Functionality” on page 55
■ “Customizing the Self-Registration Page” on page 57
■ “Updating and Redeploying services.war” on page 59
■ “Customizing the Distributed Authentication User Interface” on page 61

User Interface Files You Can Modify
The authentication GUI dynamically displays the required credentials information depending
upon the authentication module invoked at run time. The “User Interface Files You Can
Modify” on page 45 lists the types of files you can modify to convey custom representations of
Login pages, Logout pages, and error messages. Detailed information is provided in following
sections.

4C H A P T E R 4

45

TABLE 4–1 Authentication User Interface Files and Their Locations at Installation

File Type Default Location

“Staging Area for Files to be
Customized” on page 46

AccessManager-base/SUNWam/web-src/services

“Java Server Pages” on page 47 AccessManager-base/SUNWam/web-src/services/config/auth/default

“XML Files” on page 49 AccessManager-base/SUNWam/web-src/services/config/auth/default

“JavaScript Files” on page 52 AccessManager-base/SUNWam/web-src/services/js

“Cascading Style Sheets” on page 53 <AccessManager-base /SUNWam/web-src/services/css

“Images” on page 53 AccessManager-base/SUNWam/web-src/services/login_images

“Localization Files” on page 54 AccessManager-base/SUNWam/locale

To access the default Login page, use the following URL:

<server_protocol>://<server_host>.<server_domain>:<server_port>/

<service_deploy_uri>/UI/Login

To access the default Logout page, use the following URL:

<server_protocol>://<server_host>.<server_domain>:<server_port>/

<service_deploy_uri>/UI/Logout

Staging Area for Files to be Customized
When Access Manager is installed, a staging area exists in the following location:

AccessManager-base/SUNWam/web-src/services

This directory content is identical to the content of the services.war.

This directory contains all the files you need to modify the authentication GUI. When you
install Access Manager on Sun Java System Application Server, on Sun Java System Web Server,
or on BEA WebLogic Web Server, services.war (the services web application) is automatically
installed and deployed.

If you install Access Manager on other web containers, you may have to manually deploy
services.war. See the documentation that comes with the web container.

Once you’ve modified the authentication GUI files in the staging area, in order to see the
changes in the actual GUI, you must update and then redeploy services.war. See “Updating
and Redeploying services.war” on page 59.

User Interface Files You Can Modify

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200646

Java Server Pages
All authentication GUI pages are .jsp files with embedded JATO tags. You do not need to
understand JATO to customize Access Manager GUI pages. Java server pages handle both the
UI elements and the disciplines displayed through peer ViewBeans. By default, JSP pages are
installed in the following directory:
AccessManager-base/SUNWam/web-src/services/config/auth/default

Java server pages are looked up from the deployed location. In previous Access Manager
versions, the Java server pages were looked up from the installed location.

Customizing the Login Page
The Login page is a common Login page used by most authentication modules except for the
Membership module. For all other modules, at run time the Login page dynamically displays all
necessary GUI elements for the required credentials. For example, the LDAP authentication
module Login page dynamically displays the LDAP module header, LDAP User name, and
Password fields.

You can customize the following Login page UI elements:

■ Module Header text
■ User Name label and field
■ Password label and field
■ Choice value label and field.

The field is a radio button by default, but can be change to a check box.
■ Image (at the module level)
■ Login button

Customizing JSP Templates
Use the JSP templates to customize the look and feel presented in the graphical user interface
(GUI). “Customizing JSP Templates” on page 47 provides descriptions of templates you can
customize. The templates are located in the following directory:

AccessManager-base/SUNWam/web-src/services/config/auth/default

TABLE 4–2 Customizable JSP Templates

File Name Purpose

account_expired.jsp Informs the user that their account has expired and should contact the
system administrator.

User Interface Files You Can Modify

Chapter 4 • Customizing the Authentication User Interface 47

TABLE 4–2 Customizable JSP Templates (Continued)
File Name Purpose

auth_error_template.jsp Informs the user when an internal authentication error has occurred.
This usually indicates an authentication service configuration issue.

authException.jsp Informs the user that an error has occurred during authentication.

configuration.jsp Configuration error page that displays during the Self-Registration
process.

disclaimer.jsp This is a customizable disclaimer page used in the Self-registration
authentication module.

Exception.jsp Informs the user that an error has occurred.

invalidAuthlevel.jsp Informs the user that the authentication level invoked was invalid.

invalid_domain.jsp Informs the user that no such domain exists.

invalidPassword.jsp Informs the user that the password entered does not contain enough
characters.

invalidPCookieUserid.jsp Informs the user that a persistent cookie user name does not exist in the
persistent cookie domain.

Login.jsp This is a Login/Password template.

login_denied.jsp Informs the user that no profile has been found in this domain.

login_failed_template.jsp Informs the user that authentication has failed.

Logout.jsp Informs the user that they have logged out.

maxSessions.jsp Informs the user that the maximum sessions have been reached.

membership.jsp A login page for the Self-registration module.

Message.jsp A generic message template for a general error not defined in one of the
other error message pages.

missingReqField.jsp Informs the user that a required field has not been completed.

module_denied.jsp Informs the user that the user does not have access to the module.

module_template.jsp A customizable module page.

new_org.jsp This page is displayed when a user with a valid session in one
organization wants to login to another organization.

noConfig.jsp Informs the user that no module configuration has been defined.

noConfirmation.jsp Informs the user that the password confirmation field has not been
entered.

noPassword.jsp Informs the user that no password has been entered.

User Interface Files You Can Modify

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200648

TABLE 4–2 Customizable JSP Templates (Continued)
File Name Purpose

noUserName.jsp Informs the user that no user name has been entered. It links back to the
login page.

noUserProfile.jsp Informs the user that no profile has been found. It gives them the option
to try again or select New User and links back to the login page.

org_inactive.jsp Informs the user that the organization they are attempting to
authenticate to is no longer active.

passwordMismatch.jsp This page is called when the password and confirming password do not
match.

profileException.jsp Informs the user that an error has occurred while storing the user
profile.

Redirect.jsp This page carries a link to a page that has been moved.

register.jsp A user self-registration page.

session_timeout.jsp Informs the user that their current login session has timed out.

userDenied.jsp Informs the user that they do not possess the necessary role (for
role-based authentication.)

userExists.jsp This page is called if a new user is registering with a user name that
already exists.

user_inactive.jsp Informs the user that they are not active.

userPasswordSame.jsp Called if a new user is registering with a user name field and password
field have the same value.

wrongPassword.jsp Informs the user that the password entered is invalid.

XML Files
XML files describe the authentication module-specific properties based on the Authentication
Module Properties DTD file: AccessManager-base/SUNWam/Auth_Module_Properties.dtd.
Access Manager defines required credentials and callback information for each of the default
authentication modules. By default, Authentication XML files are installed in the following
directory:

AccessManager-base/SUNWam/web-src/services/config/auth/default The table “XML
Files” on page 49 provides descriptions of the authentication module configuration files.

XML files are looked up from the deployed location. In previous Access Manager versions, the
XML files were looked up from the installed location.

User Interface Files You Can Modify

Chapter 4 • Customizing the Authentication User Interface 49

TABLE 4–3 List of Authentication Module Configuration Files

File Name Purpose

AD.xml Defines a Login screen for use with Active Directory
authentication.

Anonymous.xml For anonymous authentication, although there are no
specific credentials required to authenticate.

Application.xml Needed for application authentication.

Cert.xml For certificate-based authentication although there are no
specific credentials required to authenticate.

HTTPBasic.xml Defines one screen with a header only as credentials are
requested via the user’s web browser.

JDBC.xml Defines a Login screen for use with Java Database
Connectivity (JDBC) authentication.

LDAP.xml Defines a Login screen, a Change Password screen and two
error message screens (Reset Password and User Inactive).

Membership.xml Default data interface which can be used to customize for
any domain.

MSISDN.xml Defines a Login screen for use with Mobile Subscriber
ISDN (MSISDN).

NT.xml Defines a Login screen.

RADIUS.xml Defines a Login screen and a RADIUS Password Challenge
screen.

SafeWord.xml Defines two Login screens: one for User Name and the next
for Password.

SAML.xml Defines a Logins screen for Security Assertion Markup
Language (SAML) authentication.

SecurID.xml Defines five Login screens including UserID and Passcode,
PIN mode, and Token Passcode.

Unix.xml Defines a Login screen and an Expired Password screen.

Callbacks Element
The Callbacks element is used to define the information a module needs to gather from the
client requesting authentication. Each Callbacks element signifies a separate screen that can be
called during the authentication process.

User Interface Files You Can Modify

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200650

Nested Elements

The following table describes nested elements for the Callbacks element.

Element Required Description

NameCallback * Requests data from the user; for
example, a user identification.

PasswordCallback * Requests password data to be
entered by the user.

ChoiceCallback * Used when the application user
must choose from multiple values.

ConfirmationCallback * Sends button information such as
text which needs to be rendered on
the module’s screen to the
authentication interface.

HttpCallback * Used by the authentication module
with HTTP-based handshaking
negotiation.

SAMLCallback Used for passing either Web
artifact or SAML POST response
from SAML service to the SAML
authentication module when this
module requests for the respective
credentials. This authentication
module behaves as SAML recipient
for both (Web artifact or SAML
POST response) and retrieves and
validates SAML assertions.

Attributes

The following table describes attributes for the Callbacks element.

length The number or length of callbacks.

order Is the sequence of the group of callbacks.

timeout Number of seconds the user has to enter credentials before the page times out.
Default is 60.

template Defines the UI .jsp template name to be displayed.

image Defines the UI or page-level image attributes for the UI customization

header Text header information to be displayed on the UI. Default is Authentication.

User Interface Files You Can Modify

Chapter 4 • Customizing the Authentication User Interface 51

error Indicates whether authentication framework/module needs to terminate the
authentication process. If yes, then the value is true. Default is false .

ConfirmationCallback Element
The ConfirmtationCallback element is used by the authentication module to send button
information for multiple buttons. An example is the button text which must be rendered on the
UI page. The ConfirmationCallback element also receives the selected button information
from the UI.

Nested Element

ConfirmationCallback has one nested element named OptionValues. The OptionValues
element provides a list or an array of button text information to be rendered on the UI
page.OptionValues takes no attributes.

If there is only one button on the UI page, then the module is not required to send this callback.
If ConfirmationCallback is not provided through the Authentication Module properties XML
file, then anAuthUI.properties will be used to pick and display the button text or label for the
Login button. anAuthUI.properties is the global UI i18n properties file for all modules.

Callbacks length value should be adjusted accordingly after addition of the new callback.

Example:

<ConfirmationCallback>

<OptionValues>

<OptionValue>

<Value> <required button text> </Value>

</OptionValue>

</OptionValues>

</ConfirmationCallback>

JavaScript Files
JavaScript files are parsed within the Login.jsp file. You can add custom functions to the
JavaScript files in the following directory: AccessManager-base/SUNWam/web-src/services/js
.

The Authentication Service uses the following JavaScript files:

auth.js Used by Login.jsp for parsing all module files to display login
requirement screens.

browserVersion.js Used by Login.jsp to detect the client type.

User Interface Files You Can Modify

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200652

Cascading Style Sheets
To define the look and feel of the UI, modify the cascading style sheets (CSS) files.
Characteristics such as fonts and font weights, background colors, and link colors are specified
in the CSS files. You must choose the appropriate .css file for your browser in order to
customize the look and feel on the User Interface.

In the appropriate .css file, change the background-color attribute. Examples:

.button-content-enabled { background-color:red; }

button-link:link, a.button-link:visited { color: #000;

background-color: red;

text-decoration: none; }

A number of browser-based CSS files are installed with Access Manager in the following
directory:

AccessManager-base/SUNWam/web-src/services/css.

The following table provides a brief description of each CSS file.

TABLE 4–4 Cascading Style Sheets

File Name Purpose

css_generic.css Configured for generic web browsers.

css_ie5win.css Configured specifically for Microsoft® Internet Explorer v.5 for
Windows®.

css_ns4sol.css Configured specifically for NetscapeTM Communicator v. 4 for
SolarisTM.

css_ns4win.css Configured specifically for Netscape Communicator v.4 for
Windows.

styles.css Used in JSP pages as a default style sheet.

Images
The default authentication GUI is branded with Sun Microsystems, Inc. logos and images. By
default, the GIF files are installed in the following directory:

SUNWam/web-src/services/login_images

These images can be replaced with images relevant to your company. The following table
provides a brief description for each GIF image used for the default GUI.

User Interface Files You Can Modify

Chapter 4 • Customizing the Authentication User Interface 53

TABLE 4–5 Sun Microsystems Branded GIF Images

File Name Purpose

Identity_LogIn.gif Sun Java System Access Manager banner across the top.

Registry_Login.gif No longer used.

bannerTxt_registryServer.gif No longer used.

logo_sun.gif Sun Microsystems logo in the upper right corner.

spacer.gif A one pixel clear image used for layout purposes.

sunOne.gif Sun Java System logo in the lower right corner.

Localization Files
Localization files are located in the following directory: AccessManager-base/SUNWam/locale

These are i18n properties files global to the Access Manager instance. A localization properties
file, also referred to as an i18n (internationalization) properties file specifies the screen text and
error messages that an administrator or user will see when directed to an authentication
module’s attribute configuration page. Each authentication module has its own properties file
that follows the naming format amAuthmodulename.properties ; for example,
amAuthLDAP.properties. They are located in AccessManager-base/SUNWam/locale/. The
default character set is ISO-8859-1 so all values are in English, but Java applications can be
adapted to various languages without code changes by translating the values in the localization
properties file.

The following table summarizes the localization properties files configured for each module.
These files can be found in AccessManager-base/SUNWam/locale.

TABLE 4–6 List of Localization Properties Files

File Name Purpose

amAuth.properties Defines the parent Core Authentication Service.

amAuthAD.properties Defines the Active Directory Authentication Module.

amAuthAnonymous.properties Defines the Anonymous Authentication Module.

amAuthApplication.properties For Access Manager internal use only. Do not remove or
modify this file.

amAuthCert.properties Defines the Certificate Authentication Module.

amAuthConfig.properties Defines the Authentication Configuration Module.

User Interface Files You Can Modify

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200654

TABLE 4–6 List of Localization Properties Files (Continued)
File Name Purpose

amAuthContext.properties Defines the localized error messages for the AuthContext
Java class.

amAuthContextLocal.properties For Access Manager internal use only. Do not remove or
modify this file.

amAuthHTTPBasic.properties Defines the HTTP Basic Authentication Module.

amAuthJDBC.properties Defines the Java Database Connectivity (JDBC)
Authentication Module.

amAuthLDAP.properties Defines the LDAP Authentication Module.

amAuthMembership.properties Defines the Membership Authentication Module.

amAuthMSISDN.properties Defines the Mobile Subscriber ISDN Authentication
Module.

amAuthNT.properties Defines the Windows NT Authentication Module.

amAuthRadius.properties Defines the RADIUS Authentication Module.

amAuthSafeWord.properties Defines the Safeword Authentication Module.

amAuthSAML.properties Defines the Security Assertion Markup Language (SAML)
Authentication Module.

amAuthSecurID.properties Defines the SecurID Authentication Module.

amAuthUI.properties Defines labels used in the authentication user interface.

amAuthUnix.properties Defines the UNIX Authentication Module.

Customizing Branding and Functionality
You can modify JSP templates and module configuration properties files to reflect branding or
functionality specified for any of the following:

■ Organization of the request
■ SubOrganization of the request.
■ Locale of the request
■ Client Path
■ Client Type information of the request
■ Service Name (serviceName)

Customizing Branding and Functionality

Chapter 4 • Customizing the Authentication User Interface 55

▼ To Modify Branding and Functionality
Go to the directory where default JSP templates are stored.

cd AccessManager-base/SUNWam/web-src/services/config/auth

Create a new directory.

Use the appropriate customized directory path based on the level of customization. Use the
following forms:
org_locale/orgPath/filePath

org/orgPath/filePath

default_locale/orgPath/filePath

default/orgPath/filePath

In these examples,

orgPath represents subOrg1/subOrg2

filePath represents clientPath + serviceName

clientPath represents clientType/sub-clientType

In these paths, SubOrg, Locale, Client Path, Service Name (which represents orgPath and
filePath) are optional. The organization name you specify may match the organization
attribute set in the Directory Server. For example, if the organization attribute value is
SunMicrosystems, then the organization customized directory should also be
SunMicrosystems. If no organization attribute exists, then use the lowercase value of the
organization name (sunmicrosystems).

For example, for the following attributes:

org = SunMicrosystems

locale = en

subOrg = solaris

clientPath = html/ customerName/

serviceName = paycheck

customized directory paths would be:

SunMicrosystems_en/solaris/html/ customerName /paycheck

SunMicrosystems/solaris/html/ customerName /paycheck

default_en/solaris/html/ customerName/paycheck

default/solaris/html/ customerName /paycheck

1

2

Customizing Branding and Functionality

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200656

Copy the default templates.
Copy all the JSP templates (*.jsp) and authentication module configuration properties XML
files (*.xml) from the default directory:

AccessManager-base /SUNWam/web-src/services/config/auth/default

to the new directory:

AccessManager-base /SUNWam/web-src/services/config/ auth/CustomizedDirectoryPath

Customize the files in the new directory.
The files in the new directory can be customized if necessary, but not this is not required. See
“Customizing the Login Page” on page 47 and “Customizing JSP Templates” on page 47 for
information on what you can modify.

Update and redeploy services.war.
Once you’ve modified the authentication GUI files, in order to see the changes in the actual
GUI, you must update and then redeploy services.war. See “Updating and Redeploying
services.war” on page 59 in this chapter for instructions. See Chapter 12 for general
information on updating and redeploying Access Manager .war files.

Restart both Access Manager and the web container server.

Customizing the Self-Registration Page
You can customize the Self-registration page which is part of Membership authentication
module. The default data and interface provided with the Membership authentication module
is generic and can work with any domain. You can configure it to reflect custom data and
information. You can add custom user profile data or fields to register or to create a new user.

▼ To Modify the Self-Registration Page
Customize the Membership.xml file.
By default, the first three data fields are required in the default Membership Module
configuration:

■ User name
■ User Password
■ Confirm User Password

You can specify which data is requested, which is required, and which is optional. The
sample below illustrates how to add a telephone number as requested data.

3

4

5

6

1

Customizing the Self-Registration Page

Chapter 4 • Customizing the Authentication User Interface 57

You can specify or add data which should be requested from a user as part of the User
Profile. By default you can specify or add any attributes from the following objectClasses:

■ top

■ person

■ organizationalPerson

■ inetOrgPerson

■ iplanet-am-user-service

■ inetuser

Administrators can add their own user attributes to the User Profile.

Update and redeploy services.war.
Once you’ve modified the authentication GUI files, in order to see the changes in the actual
GUI, you must update and then redeploy services.war. See “Updating and Redeploying
services.war” on page 59 in this chapter for instructions. See Chapter 12 for general
information on updating and redeploying Access Manager .war files.

Restart both Access Manager and the web container server.
<Callbacks length="9" order="16" timeout="300"

header="Self Registration" template="register.jsp" >

<NameCallback isRequired="true" attribute="uid" >

<Prompt> User Name: </Prompt>

</NameCallback>

<PasswordCallback echoPassword="false" isRequired="true"

attribute="userPassword" >

<Prompt> Password: </Prompt>

</PasswordCallback>

<PasswordCallback echoPassword="false" isRequired="true" >

<Prompt> Confirm Password: </Prompt>

</PasswordCallback>

<NameCallback isRequired="true" attribute="givenname" >

<Prompt> First Name: </Prompt>

</NameCallback>

<NameCallback isRequired="true" attribute="sn" >

<Prompt> Last Name: </Prompt>

</NameCallback>

<NameCallback isRequired="true" attribute="cn" >

<Prompt> Full Name: </Prompt>

</NameCallback>

2

3

Customizing the Self-Registration Page

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200658

<NameCallback attribute="mail" >

<Prompt> Email Address: </Prompt>

</NameCallback>

<NameCallback isRequired="true"attribute="telphonenumber">

<Prompt> Tel:</Prompt>

</NameCallback>

<ConfirmationCallback>

<OptionValues>

<OptionValue>

<Value> Register </Value>

</OptionValue>

<OptionValue>

<Value> Cancel </Value>

</OptionValue>

</OptionValues>

</ConfirmationCallback>

</Callbacks>

Updating and Redeploying services.war
If Access Manager is installed on BEA WebLogic, IBM WebSphere, or Sun ONE Application
Server, you must update and redeploy services.war before you can see any changes in the user
interface. Once you’ve made changes to the authentication GUI files, regardless of the brand of
web container you’re using, it is a good practice to update and redeploy the services.war file.
When you update and redeploy services.war, you overwrite the default GUI files with your
changes, and the changed files are placed in their proper locations. The section “Staging Area
for Files to be Customized” on page 46 provides background information on this file.

▼ To Update services.war
cd AccessManager-base/SUNWam
This is the directory in which the WARs are kept.

1

Updating and Redeploying services.war

Chapter 4 • Customizing the Authentication User Interface 59

jar -uvf WARfilename.war < path_to_modified_file>
The -uvf option replaces the old file with the newly modified file. For example:

jar -uvf services.war newfile/index.html

replaces the index.html file in console.war with the index.html file located in
AccessManager-base/SUNWam/newfile.

rm newfile/index.html

Deletes the modified file.

To Redeploy services.war
The services.war will be in the following directory:

AccessManager-base/SUNWam

Depending upon the brand of web container you are using, execute one of the following
commands.

On BEA WebLogic
java weblogic.deploy -url ServerURL -component

{ServerDeployURI}: { WL61 Server}
deploy WL61AdminPassword {ServerDeployURI }

{AccessManager-base}/{SUNWam}/services.war

In this example,

ServerURL uses the form protocol:// host:port
Example: http://abc.com:58080

ServerDeployURI represents the server Universal Resource Identifier
Example: amserver

WL61 Server represents the Weblogic Server nam.e
Example: name.com

On Sun ONE Application Server
asadmin deploy -u IAS7Admin -w IAS7AdminPassword -H

HostName -p IAS7AdminPort
--type web SECURE_FLAG --contextroot

ServerDeployURI --name amserver --instance IAS7Instance

{AccessManager-base}/{SUNWam}/services.war

2

3

Updating and Redeploying services.war

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200660

On IBM WebSphere
See the deployment documentation that comes with the IBM WebSphere product:

http://www-3.ibm.com/software/webservers/studio/doc/v40/studioguide/
en/html/sdsscenario1.html (http://www-3.ibm.com/
software/webservers/studio/doc/v40/studioguide/ en/html/sdsscenario1.html)

Customizing the Distributed Authentication User Interface
Access Manager provides a remote Authentication user interface component to enable secure,
distributed authentication across two firewalls. You can install the remote authentication user
interface component on any servlet-compliant web container within the non-secure layer of an
Access Manager deployment. The remote component works with Authentication client APIs
and authentication utility classes to authenticate web users. The remote component is
customizable and uses a JATO presentation framework.

For detailed information on how Distributed Authentication works, see “Distributed
Authentication User Interface Component” in Sun Java System Access Manager 7 2005Q4
Technical Overview and “User Authentication” in Sun Java System Access Manager 7 2005Q4
Technical Overview.

Once the Distributed Authentication component is installed and deployed, you can modify the
JSP templates and module configuration properties files to reflect branding and specific
functionality for any of the following:

Organization/SubOrganization This is the organization or sub-organization of the request.

Locale Locale of the request.

Client Path Client Type information of the request.

Service Name (serviceName) Service name for service-based authentication.

▼ To Customize the Distributed Authentication User
Interface
The Distributed Authentication User Interface package must already be installed. For detailed
installation instructions, see “Installing and Customizing the Distributed Authentication
Interface” in Technical Note: Using Access Manager Distributed Authentication.

Explode the Distributed Authentication User Interface WAR.

At the command line, go to the directory where the default JSP templates are stored.
Example:

Before You Begin

1

2

Customizing the Distributed Authentication User Interface

Chapter 4 • Customizing the Authentication User Interface 61

http://www-3.ibm.com/software/webservers/studio/doc/v40/studioguide/ en/html/sdsscenario1.html
http://www-3.ibm.com/software/webservers/studio/doc/v40/studioguide/ en/html/sdsscenario1.html
http://www-3.ibm.com/software/webservers/studio/doc/v40/studioguide/ en/html/sdsscenario1.html

cd DistributedAuth-base/config/auth

where DistributedAuth-base is the directory where the Distributed Authentication User
Interface package is exploded.

Create a new directory using the appropriate directory path based on the level of
customization.
Use the following form:
org_locale/orgPath/filePath

org/orgPath/filePath

default_locale/orgPath/filePath

default/orgPath/filePath

where:

orgPath = subOrg1/subOrg2

filePath = clientPath + serviceName

clientPath = clientType/sub-clientType

The following are optional: Sub-org, Locale , Client Path , and Service Name . In the following
example, orgPath and filePath are optional.

For example, given the following:

org = iplanet

locale = en

subOrg = solaris

clientPath = html/nokia/

serviceName = paycheck

the appropriate directory paths for the above are:

iplanet_en/solaris/html/nokia/paycheck

iplanet/solaris/html/nokia/paycheck

default_en/solaris/html/nokia/paycheck

default/solaris/html/nokia/paycheck

Copy all the JSP templates and authentication module configuration properties XML files from
the default directory to the new directory.
cp DistributedAuth-base/config/auth/default/*.jsp

DistributedAuth-base/config/auth/new_directory_path

cp DistributedAuth-base/config/auth/default/*.xml
DistributedAuth-base/config/auth/new_directory_path

3

4

Customizing the Distributed Authentication User Interface

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200662

(Optional) Modify the files in the new directory to suit your needs.

■ For information about customizing the .jsp files, see “Java Server Pages” on page 47.
■ For information about customizing the .xml files, “XML Files” on page 49.

Create a new .WARfile named amauthdistui_deploy.war from DistributedAuth-base.

Deploy amauthdistui_deploy.war.
The web container administrator deploys the file in the remote web container.

5

6

7

Customizing the Distributed Authentication User Interface

Chapter 4 • Customizing the Authentication User Interface 63

64

Using Authentication APIs and SPIs

This chapter provides information on using Sun JavaTM System Access Manager 7 2005Q4
authentication programming interfaces to use and to extend the Authentication Service.

This chapter contains the following sections:

■ “Overview of Authentication APIs and SPIs” on page 65
■ “Using Authentication APIs” on page 74
■ “Using Authentication SPIs” on page 78

Overview of Authentication APIs and SPIs
Access Manager provides both Java APIs and C APIs for writing authentication clients that
remote applications can use to gain access to the Authenticate Service. This communication
between the APIs and the Authentication Service occurs by sending XML messages over
HTTP(S). The remote-auth.dtd is the template used in formatting the XML request messages
sent to Access Manager and for parsing the XML return messages received by the external
application. You can access remote-auth.dtd in the directory AccessManager-base
/SUNWam/dtd.

New authentication modules are added to Access Manager by using the
com.iplanet.authentication.spi package. The SPI implements the JAAS LoginModule, and
provides additional methods to access the Authentication Service and module configuration
properties files. Because of this architecture, any custom JAAS authentication module will work
within the Authentication Service.

5C H A P T E R 5

65

Note – If contacting the Authentication Service directly through its URL
http://AcceessManager-HostName.domain_name:port /service_deploy_uri/authservice
without the API, a detailed understanding of remote-auth.dtd will be needed for generating
and interpreting the messages passed between the client and server.

How the Authentication Java APIs Work
External Java applications can authenticate users with the Access Manager Authentication
Service by using the Authentication Java APIs. The APIs are organized in a package called
com.sun.identity.authentication and can be executed locally or remotely. The classes and
methods defined in this package are used to initiate the authentication process and
communicate authentication credentials to the specific modules within the Authentication
Service. The classes and methods can be incorporated into a Java application to allow
communication with the Authentication Service.

The first step necessary for an external Java application to authenticate to Access Manager is to
create a new AuthContext object (com.sun.identity.authentication.AuthContext). The
AuthContext class is defined for each authentication request as it initiates the authentication
process. Since Access Manager can handle multiple organizations, AuthContext is initialized, at
the least, with the name of the organization to which the requestor is authenticating. Once an
AuthContext object has been created, the login() method is called indicating to the server
what method of authentication is desired.

IndexName is the value of the authentication type. The following table summarizes IndexName
values and their corresponding authentication types.

TABLE 5–1 IndexName Values

IndexNameValue Authentication Type

AuthContext.IndexType.ROLE Role-based

AuthContext.IndexType.SERVICE Service-based

AuthContext.IndexType.USER User-based

AuthContext.IndexType.LEVEL Authentication Level-based

AuthContext.IndexType.MODULE_INSTANCE Module-based

The getRequirements() method then calls the objects that will be populated by the user.
Depending on the parameters passed with the instantiated AuthContext object and the two
method calls, Access Manager responds to the client request with the correct login requirement
screens. For example, if the requested user is authenticating to an organization configured for
LDAP authentication only, the server will respond with the LDAP login requirement screen to

Overview of Authentication APIs and SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200666

supply a user name and a password. The client must then loop by calling the
hasMoreRequirements() method until the required credentials have been entered. Once
entered, the credentials are submitted back to the server with the method call
submitRequirements() . The final step is for the client to make a getStatus() method call to
determine if the authentication was successful. If successful, the caller obtains a session token
for the user; if not, a LoginException is thrown.

Because the Authentication Service is built on the JAAS framework, the Authentication API can
also invoke any authentication modules written purely with the JAAS API.

For detailed information about Java APIs for authentication, see the Javadoc in the following
directory:

AccessManager-base/SUNWam/docs

XML/HTTP Interface for Other Applications
Applications written in a programming language other than Java or C can exchange
authentication information with Access Manager using the XML/HTTP(s) interface. Using the
URL http://server_name.domain_name :port/service_deploy_uri /authservice, an
application can open a connection using the HTTP POST method and exchange XML messages
with the Authentication Service. The structure of the XML messages is defined in
remote-auth.dtd. In order to access the Authentication Service in this manner, the client
application must contain the following:
■ A means of producing valid XML compliant with the remote-auth.dtd .
■ HTTP 1.1 compliant client implementation to send XML-configured information to Access

Manager.
■ HTTP 1.1 compliant server implementation to receive XML-configured information from

Access Manager.
■ An XML parser to interpret the data received from Access Manager.

Examples of XML Messages
The following code examples illustrate how customers might configure the XML messages
posted to the Authentication Service.

Note – Although the client application need only write XML based on the remote-auth.dtd,
when these messages are sent they include additional XML code produced by the
Authentication API. This additional XML code is not illustrated in the following examples.

The following example illustrates the initial XML message sent to the Access Manager. It opens
a connection and asks for authentication requirements regarding the exampleorg organization
to which the user will login.

Overview of Authentication APIs and SPIs

Chapter 5 • Using Authentication APIs and SPIs 67

EXAMPLE 5–1 Initial AuthContext XML Message

<?xml version="1.0" encoding="UTF-8"?>

<AuthContext version="1.0">

<Request authIdentifier="0">

<NewAuthContext orgName="dc=exampleorg,dc=com">

</NewAuthContext>

</Request>

</AuthContext>

The following example illustrates the successful response from Access Manager that contains
the authIdentifier, the session identifier for the initial request.

EXAMPLE 5–2 AuthIdentifier XML Message Response

<?xml version="1.0" encoding="UTF-8"?>

<AuthContext version="1.0">

<Response authIdentifier="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY=">

<LoginStatus status="in_progress">

</LoginStatus>

</Response>

</AuthContext>

The following example illustrates the client response message back to Access Manager. It
specifies the type of authentication module needed by the user to log in.

EXAMPLE 5–3 Second Request Message With Authentication Module Specified

<?xml version="1.0" encoding="UTF-8"?>

<AuthContext version="1.0">

<Request authIdentifier="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY=">

<Login>

<IndexTypeNamePair indexType="moduleInstance">

<IndexName>LDAP</IndexName>

</IndexTypeNamePair>

</Login>

</Request>

</AuthContext>

Overview of Authentication APIs and SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200668

The following example illustrates the return message from Access Manager which specifies the
authentication module’s login requirements. In this case, the LDAP requirements include a user
name and password. Note the page time out value of 120 seconds.

EXAMPLE 5–4 Return XML Message With Login Callbacks

<?xml version="1.0" encoding="UTF-8"?>

<AuthContext version="1.0">

<Response authIdentifier="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY=">

<GetRequirements>

<Callbacks length="3">

<PagePropertiesCallback isErrorState="false">

<ModuleName>LDAP</ModuleName>

<HeaderValue>This server uses LDAP Authentication</HeaderValue>

<ImageName></ImageName>

<PageTimeOut>120</PageTimeOut>

<TemplateName></TemplateName>

<PageState>1</PageState>

</PagePropertiesCallback>

<NameCallback>

<Prompt>User Name: </Prompt>

</NameCallback>

<PasswordCallback echoPassword="false">

<Prompt> Password: </Prompt>

</PasswordCallback>

</Callbacks>

</GetRequirements>

</Response>

</AuthContext>

The following example illustrates the client responses to the call for login requirements. They
specify amadmin as the user and 11111111 for the password.

EXAMPLE 5–5 Response Message With Callback Values

<?xml version="1.0" encoding="UTF-8"?>

<AuthContext version="1.0">

<Request authIdentifier="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY=">

<SubmitRequirements>

<Callbacks length="3">

Overview of Authentication APIs and SPIs

Chapter 5 • Using Authentication APIs and SPIs 69

EXAMPLE 5–5 Response Message With Callback Values (Continued)

<NameCallback>

<Prompt>User Name:</Prompt>

<Value>amadmin</Value>

</NameCallback>

<PasswordCallback echoPassword="false">

<Prompt>Password:</Prompt>

<Value>11111111</Value>

</PasswordCallback>

</Callbacks>

</SubmitRequirements>

</Request>

</AuthContext>

The following example illustrates that a successful authentication has occurred. As the value of
<Subject> uses the Java serialization, it can not be used by non-Java client applications. It’s
value is retrieved by all applications from the session token.

EXAMPLE 5–6 Successful Authentication XML Message

<?xml version="1.0" encoding="UTF-8"?>

<AuthContext version="1.0">

<Response authIdentifier="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1oVb5esqDlkaY=">

<LoginStatus status="success" ssoToken="AQIC5wM2LY4SfcwmVdbgTX+9WzyWSPlWjb1o

Vb5esqDlkaY=" successURL="http://torpedo.red.iplanet.com:/amconsole">

<Subject>AQICweczOhuelZ5TqD9kKOtiAepxqGP23q4oTnNMuJY//lI2S4KD1/gEN84uLwDGHll

lyFSthxoKLM7NDHh2vwAvrDmpsomJvUnbqnJJ90DS+28njGiDv+lv8FqIVhhbxrctbiIUEOHYK0F

zXnXjPYizdCmiWXJ+9DJ8T2HbYIDxn9U6eVNAMPq3uVb/RFuErEm5MuPu7PnWeCic12SZre4ZEcw

8TI45NKNjd/NZZD97bcqL5gEV7SVHspFldZKmo9vA86aEkvMs9P53RiJtrusHN1FKt9+4JqSrdcV

LKMzJVAr3z5EohwHh9/hzd7hgucO661gz7IqkT7WEpve/E8R4em0mg3HgHg7Bg7i3AkyX6YSkoAn

cdVXMdmWnb7OV5cBgUjO8zs8Pp5/3dA1XlwACmOqjxshk6Y6Ld6TAQ90qRFwymC1RdLGGCRnrt33

kmYVyB1lJyJxT8utPKyDOEKFRHh57NlKTbFhBKc1IGcdQ2crHifpXawx6YouQgQSWGdsqW9IahY4

+lqbBTPnGDyZkKz9yy2ZKVjDR05Hwku8elvEwBE40XTJ3gF/mbwCGbh3cyprahLqRXboy8eoEQf3

ubQmR2My+bh+NrsRfzfFV5oCcpJE6DtvYE/4zO+uKk3FbG+/NUJzAAor920V/0prtYeS58ZPW8C7

qwXINaW0xdMQV+pgE3NZvMlp5GeZlSIMmSCtXD49n4tqopSlsoK+eiwPODKxp992+6/uJhhVHH5I

0Ozuy6CDM dCJDGvnMENVCUZvki3+tb92fqQbVWixM4Ca6Nnz3jTIKk2uhm559jq9hra8gHHOfnn

u4e5jZjzfRdkO3GodiTMOHDnQATHtvT1PBXgorTfUwUa4ZjptvzFulHSi4eQaqs4Z8FAX2OAr8XG

HRkhBwoxrhjYiCDBpkNmpEiFNhWnTT3bwkAUFhtoDg6836kwHfxeLXKAz3T6qyNQzT+larSXUxrt

/TIjwDPR3vg4GF4RzbHlWA1WQtUS/9Qe/N3aegEEEvxPvo9fWq

</Subject>

</LoginStatus>

</Response>

Overview of Authentication APIs and SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200670

EXAMPLE 5–6 Successful Authentication XML Message (Continued)

</AuthContext>

How the Authentication SPIs Work
■ “Extending the AMLoginModule Class” on page 71
■ “Pluggable JAAS Module” on page 71
■ “Authentication Post Processing” on page 72

Access Manager provides the capability to plug new, Java-based authentication modules into its
framework allowing proprietary authentication providers to be managed using the Access
Manager console. A custom authentication module must first be created using Java. Once
created, the custom module can be added to the list of available authentication modules.

Note – This guide does not document the JAAS. For more information on these APIs, see the
Java Authentication And Authorization Service Developer’s Guide. Additional information can
be found at http://java.sun.com/products/jaas/.

Extending the AMLoginModule Class
Custom authentication modules extend the
com.sun.identity.authentication.spi.AMLoginModule class. The class must also
implement the init(), process() and getPrincipal() methods in order to communicate
with the authentication module configuration files. The callbacks are then dynamically
generated based on this file. Other methods that can be defined include setLoginFailureURL
and setLoginSuccessURL which defines URLs to send the user to based on a failed or successful
authentication, respectively.

Note – To make use of the account locking feature with custom authentication modules, the
InvalidPasswordException exception should be thrown when the password is invalid.

Pluggable JAAS Module
The Java Authentication and Authorization Service (JAAS) is a set of APIs that enable services
to authenticate and enforce access controls upon users. It implements a Java technology version
of the standard Pluggable Authentication Module (PAM) framework, and supports user-based
authorization. Access Manager supports pure JAAS pluggable authentication modules. In
Access Manager, pure JAAS modules extend the JAAS LoginModule rather than
AMLoginModule. A pure JAAS module is plugged in to the Authentication framework using the
Authentication API.

Overview of Authentication APIs and SPIs

Chapter 5 • Using Authentication APIs and SPIs 71

Authentication Post Processing
The Authentication SPI includes the AMPostAuthProcessInterface which can be
implemented for post-processing tasks. The following are examples of post-processing tasks:
■ Adding attributes to a user’s session after successful authentication
■ Sending notification to an administrator after failed authentication
■ General clean-up such as clearing cookies after logout or logging out of other system

components.

The Core Authentication Service contains the Authentication PostProcessing Class attribute
which contains the authentication post-processing class name as its value. Custom post
processing interfaces can also be implemented.

AMPostAuthProcessInterface can be implemented for post authentication processing on
authentication success, failure and logout. The SPI is configurable at the organization , service
and role levels. The Authentication Service invokes the post processing SPI methods on
successful, failed authentication and logout.

The AMPostProcessInterface class has 3 methods:
■ “onLoginSuccess” on page 72
■ “onLoginFailure” on page 73
■ “onLogout” on page 73

Some supporting information on these methods is provided in the following sections. For a
comprehensive listing and detailed information on all Access Manager methods, see the
Javadoc installed in the following directory:

AccessManager-base/SUNWam/docs

onLoginSuccess

This method should be implemented for post-processing after a successful authentication.
Authentication Service will invoke this method on successful authentication.

Method signature is:

public void onLoginSuccess(Map requestParamsMap,

HttpServletRequest request,

HttpServletResponse response,

SSOToken ssoToken)

throws AuthenticationException;

where
■ requestParamaMap is a map containing HttpServletRequest parameters
■ request HttpServletRequest object

Overview of Authentication APIs and SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200672

■ response HttpServletResponse object

com.sun.identity.authentication.spi.AuthenticationException is thrown on error.

onLoginFailure

This method should be implemented for post processing after a failed authentication.
Authentication Service will invoke this method on failed authentication.

Method signature is:

public void onLoginFailure(Map requestParamsMap,

HttpServletRequest request,

HttpServletResponse response)

throws AuthenticationException;

where

■ requestMap is a map containing HttpServletRequest parameters
■ request HttpServletRequest object
■ response HttpServletRequest object

com.sun.identity.authentication.spi.AuthenticationException is thrown on error.

onLogout

This method should be implemented for post-processing on a logout request. Authentication
Service will invoke this method on logout.

Method signature is:

public void onLogout(HttpServletRequest request,

HttpServletResponse response,

SSOToken ssoToken)

throws AuthenticationException;

where

■ request HttpServletRequest object is a map containing HttpServletRequest parameters
■ response HttpServletResponse object
■ ssoToken authenticated user’s single sign on token

com.sun.identity.authentication.spi AuthenticationException is thrown on error.

Overview of Authentication APIs and SPIs

Chapter 5 • Using Authentication APIs and SPIs 73

Using Authentication APIs
Access Manager comes with a number of sample programs that demonstrate how you can use
the Authentication APIs to extend the functionality of the authentication service and
authentication modules.

■ “Running the Sample Authentication Programs” on page 74
■ “LDAPLogin Example” on page 77
■ “CertLogin Example” on page 77
■ “JCDI Module Example” on page 78
■ C-API Sample

Running the Sample Authentication Programs
The source code and Makefile are provided for all sample programs. For some sample
programs, additional supporting files are also included. The instructions for compiling and
executing the sample programs are the same for all samples described in this section.

Java API Code Samples and Their Locations
The following tables describe the locations of all the files you need to implement the sample
programs on various platforms, and the variable names used for default directories in the
source code and Makefiles. Table 5–2 summarizes file locations and variable names used for
Solaris Sparc/x86.l Table 5–3 summarizes default directories for Linux. Table 5–4 summarizes
default directories for Windows 2000.

TABLE 5–2 Default directories for Solaris Sparc/x86

Variable Description Location

Api_sample_dir Directory that contains
authentication API
sample files

<install_root>/SUNWam/

samples/authenitcation/api

Config_directory Directory that contains
configuration files

/etc/opt/SUNWam/config

Product_Directory Directory where Access
Manager is installed.

install_root>/SUNWam

Using Authentication APIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200674

TABLE 5–3 Default directories for Linux

Variable Description Location

Api_Sample_Dir Directory that contains
authentication API sample
files

<install_root>/sun/

identity/samples/authentication/api

Config_Directory Directory that contains
configuration files

/etc/opt/sun/identity/config

Product_Directory Directory where Access
Manager is installed.

<install_root>/sun/identity

TABLE 5–4 Default directories for Windows 2000

Variable Description Location

Api_Sample_Dir Directory that contains
authentication API sample
files

<install_root>\samples\

authentication\api

Config_Directory Directory that contains
configuration files

<install_root>\lib

Product_Directory Directory where Access
Manager is installed.

<install_root>

These steps are for all platforms.

▼ To Compile and Execute the Java API Samples

In the Makefile, modify the following variables as necessary to suit your Access Manager
installation:
BASE_DIR: Enter the path to the directory where Access Manager is installed.

JAVA_HOME: Enter the path to the directory where the Java compiler is installed.

DOMAIN: Enter the name of the organization to login to.

SHARE_LIB: Enter the path to the directory where Access Manager jar files are stored.

JSS_JAR_PATH: Enter the path to the directory where JSS jar files are stored.

JSSPATH: Enter the path to the directory where JSS libraries are located.

In the Certificate Sample Makefile only, modify the following as necessary:
CERTNICKNAME: Enter the Certificate nickname.

URL: Enter the Access Manger Server URL.

1

2

Using Authentication APIs

Chapter 5 • Using Authentication APIs and SPIs 75

PASSWORD: Enter the Certificate DB Password.

Copy AMConfig.properties from Config_Directory in the Access Manager server installation to
the client machine.
(Note: For SSL check SSL Configuration Setup, step 2).

In the Makefile, update the classpath to include the location of the newly created
AMConfig.properties.

In the client machine, create a directory named locale.
C opy all the property files from the locale directory in the Access Manager server installation
machine to the client machine. The locale directory on the server machine can be found under
the Product_Directory.

Update the classpath in the Makefile to include the location of newly created localefiles.

Include jaas.jar in your classpath if you are using a JDK version less than JDK1.4

Compile the program.

■ On Solaris Sparc/x86, Linux, run the gmake command.
■ On Windows 2000, run the make command.

Run the sample program.

■ On Solaris Sparc/x86 or Linux, run the following command: gmake run
■ On Windows 2000, run the following command: make run

▼ To Configure SSL for Java API Samples

In the Makefile, add this JVM property in the run target:
-D "java.protocol.handler.pkgs=com.iplanet.services.comm"

Copy AMConfig.properties from Config_Directory in the Access Manager server installation to
the client machine.

Edit the following properties in AMConfig.properties.
com.iplanet.am.admin.cli.certdb.dir: Enter the path to the certificate database directory.

com.iplanet.am.admin.cli.certdb.prefix: Enter the certificate database prefix.

In the LDAP and JCDI Samples only:
com.iplanet.am.server.protocol: Change the value to HTTPS.

3

4

5

6

7

8

9

1

2

3

4

Using Authentication APIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200676

com.iplanet.am.server.port: Enter the appropriate port number from the server machine.

Create or copy the certificate database file to the certificate db directory. Use the directory name
in com.iplanet.am.admin.cli.certdb.dir.

Rename the file to use the prefix specified in the property
com.iplanet.am.admin.cli.certdb.prefix.
For the details, see the Javadoc for the Remote Client API.

LDAPLogin Example
The LDAPLogin sample is an example of a custom Java application that uses the authentication
remote APIs to authenticate to the LDAP module. You can modify the sample source code to
authenticate to other existing or customized authentication modules. The sample source code,
Makefile, and Readme.html are located in the following directory:

AccessManager-base/ SUNWam/samples/authentication/LDAP

To compile and run the sample program, follow the steps in “To Compile and Execute the Java
API Samples” on page 75.

CertLogin Example
The CertLogin sample is an example of a custom Java application that uses digital certificates
for authentication. You can modify the sample source code to authenticate to other existing or
customized authentication modules. The sample source code, Makefile, and Readme.html are
located in the following file:

AccessManager-base/ SUNWam/samples/authentication/Cert

▼ To Run the CertLogin Program

Enable SSL.
Follow the instructions in “To Configure SSL for Java API Samples” on page 76.

Compile and execute the sample code.
See “To Compile and Execute the Java API Samples” on page 75

Using certutil for Client Certificate Management
Certutil is a command-line utility that can create and modify cert7.db and key3.db database
files. It can also list, generate, modify, or delete certificates within the cert7.db file and create or

5

6

1

2

Using Authentication APIs

Chapter 5 • Using Authentication APIs and SPIs 77

change the password, generate new public and private key pairs, display the contents of the key
database, or delete key pairs within the key3.db file. The key and certificate management
process usually begins with creating keys in the key database, then generating and managing
certificates in the certificate database.

JCDI Module Example
The JCDI Module Example demonstrates the use of Java Card Digital ID (JCDI) authentication
with Access Manager. The sample has two components:

■ Remote client
■ Server JCDI authentication module

The remote client component is located in the following directory:

AccessManager-base/samples/authentication/api/jcdi

The server JCDI authentication module is located in the following directory:

AccessManager-basesamples/authentication/spi/jcdi

The sample illustrates JCDI authentication using the Remote Authentication API. You can
modify the sample source code to authenticate to other existing or customized authentication
modules. The source code, Makefile, and Readme.html are located in the following directory:

AccessManager-basesamples/authentication/api/jcdi

To compile and run the sample program, follow the steps in “Running the Sample
Authentication Programs” on page 74.

Using Authentication SPIs
Access Manager provides the following sample programs to demonstrate how you can use the
Authentication service programming interfaces (SPIs) to extend authentication functionality:

■ “Implementing a Custom Authentication Module” on page 78
■ “Implementing Authentication PostProcessing SPI” on page 88
■ “Generating an Authentication User ID” on page 92
■ “Implementing A Pure JAAS Module” on page 95

Implementing a Custom Authentication Module
Access Manager contains a sample exercise for integrating a custom authentication module
with files that have already been created. This sample illustrates the steps for integrating an
authentication module into the Access Manager deployment. All the files needed to compile,
deploy and run the sample authentication module can be found in the following directory:

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200678

AccessManager-base/SUNWam/samples/authentication/providers

The following sections will use files from this sample as example code:
■ “Writing a Sample Login Module” on page 79
■ “Compiling and Deploying the LoginModule program” on page 82
■ “To Deploy the Login Module Sample Program” on page 83
■ “Loading the Login Module Sample into Access Manager” on page 85
■ “Running the LoginModule Sample Program” on page 86

About the Login Module Sample
<PRODUCT_DIR> setting on different Platforms:

Solaris Sparc/x86: <PRODUCT_DIR> = base-directory/SUNWam

Linux: <PRODUCT_DIR> = base-directory/sun/identity

Windows 2000: <PRODUCT_DIR> = base-directory

Writing a Sample Login Module
Use the AMLoginModule SPI to write your own sample login module.

▼ To Write a Sample Login Module

“Creating a Module Properties File”on page 79.

“Writing the Principal Class”on page 81.

“Implementing the LoginModule Interface”on page 81.
The following are the default directories used in the sample exercise for the various platforms:

Solaris Sparc/x86: <PRODUCT_DIR> = base-directory/SUNWam

Linux: <PRODUCT_DIR> = base-directory/sun/identity

W2K: <PRODUCT_DIR> = base-directory

Creating a Module Properties File

Create a Module properties XML file with the same name of the class (no package name) and
use the extension .xml. You must create an XML file with this naming convention even if no
states required

Based on this configuration file, the Authentication user interface will dynamically generate a
login page.

1

2

3

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 79

You can define page states in the module properties file as shown in “Creating a Module
Properties File” on page 79. Each callback element corresponds to one login page state. When
an authentication process is invoked, Callback[] values will be generated from the user’s Login
Module for each state. All login state definitions start with 1. The module controls the login
process, and then determines what the next state is.

Auth_Module_Properties.dtd defines the data structure that will be used by each
authentication module to specify its properties. Auth_Module_Properties.dtd provides
definitions to initiate, construct and send required callbacks information to the Authentication
graphical user interface. Auth_Module_Properties.dtd is stored in the
<PRODUCT_DIR>/dtd directory.

EXAMPLE 5–7 Module Configuration Sample

<ModuleProperties moduleName="LoginModuleSample" version="1.0" >

<Callbacks length="2" order="1" timeout="60"

header="This is a sample login page">

<NameCallback>

<Prompt> User Name </Prompt>

</NameCallback>

<NameCallback>

<Prompt> Last Name </Prompt>

</NameCallback>

</Callbacks>

<Callbacks length="1" order="2" timeout="60"

header="You made it to page 2" >

<PasswordCallback echoPassword="false" >

<Prompt> Just enter any password </Prompt>

</PasswordCallback>

</Callbacks>

</ModuleProperties>

Module Configuration Sample

In this module configuration sample, page state one has two callbacks. The first callback is for
user ID, and second is for Last Name. When the user fills in the callbacks, the following events
occur:

■ The Callback[] values are sent to the module.
■ The process() routine validates the callback values.
■ The module writer sets the next page state to 2.

Page state 2 has one callback to request the user to enter a password. The process() routine
is again called after the user submits the Callback[] values. If the module writer throws a
LoginException, then an Authentication Failed page will be sent to the user. If no exception
is thrown, the user is redirected to his or her default page.

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200680

Writing the Principal Class

After creating module configuration XML file, the next step is to write a Sample Principal class
which implements java.security.Principal. The constructor takes the user’s username as an
argument. If authentication is successful, the module will return this principal to
Authentication framework. The Authentication framework populates a Subject with a
SamplePrincipal representing the user.

Implementing the LoginModule Interface

AMLoginModule is an abstract class which implements JAAS LoginModule. AMLoginModule
provides methods for accessing Access Manager services and the module XML configuration.
Login Module writers must subclass AMLoginModule class and implement the following
methods:
■ init()

■ process()

■ getPrincipal()

For detailed descriptions, syntax, and parameters, see the Sun Java System Access
Manager 7 2005Q4 Java API Reference. The following sections provide some supporting
information about these methods.

init() This is an abstract method, Module writer should implement to initialize this
LoginModule with the relevant information. If this LoginModule does not understand any of
the data stored in sharedState or options parameters, the data can be ignored. This method is
called by a AMLoginModule after thisSampleLoginModule has been instantiated, and prior to any
calls to its other public methods. The method implementation should store away the provided
arguments for future use. The init method may additionally peruse the provided sharedState

to determine what additional authentication state it was provided by other LoginModules, and
may also traverse through the provided options to determine what configuration options were
specified to affect the LoginModule’s behavior. It may save option values in variables for future
use.

process() The process method is called to authenticate a Subject. This method implementation
should perform the actual authentication. For example, it may cause prompting for a user name
and password, and then attempt to verify the password against a password database. If your
LoginModule requires some form of user interaction (retrieving a user name and password, for
example), it should not do so directly. That is because there are various ways of communicating
with a user, and it is desirable for LoginModules to remain independent of the different types of
user interaction. Rather, the LoginModule’s process method should invoke the handle method
of the CallbackHandler passed to this method to perform the user interaction and set
appropriate results, such as the user name and password and the AMLoginModule internally
passes the GUI an array of appropriate Callbacks, for example a NameCallback for the user
name and a PasswordCallback for the password, and the GUI performs the requested user
interaction and sets appropriate values in the Callbacks.

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 81

Consider the following points while writing the process() method:

■ Perform the authentication. If Authentication succeeded, save the principal who has
successfully authenticated.

■ Return -1 if authentication succeeds, or throw a LoginException such as
AuthLoginException if authentication fails or return relevant state specified in module
configuration XML file

■ If multiple states are available to the user, the Callback array from a previous state may be
retrieved by using the getCallbak(int state) methods. The underlying login module
keeps the Callback[] from the previous states until the login process is completed.

■ If a module writer needs to substitute dynamic text in next state, the writer could use the
getCallback() method to get the Callback[] for the next state, modify the output text or
prompt, then call replaceCallback() to update the Callback array. This allows a module
writer to dynamically generate challenges, passwords or user IDs. Each authentication
session will create a new instance of your Login Module Java class. The reference to the class
will be released once the authentication session has either succeeded or failed. It is
important to note that any static data or reference to any static data in your Login module
must be thread-safe.

getPrincipal() This method should be called once at the end of a successful authentication
session. A login session is deemed successful when all pages in the Module properties XML file
have been sent and the module has not thrown an exception. The method retrieves the
authenticated token string that the authenticated user will be known by in the Access Manager
environment.

Note – If the custom authentication module requires or already uses a service configuration
XML file:

■ The XML file should contain attribute schema for one of the following attributes:
iplanet-am-auth-authModuleName-auth-level or
lsunAMAuthauthModuleNameAuthLevel

■ The module Java file should invoke the following method in the init method
implementation: public boolean setAuthLevel(int auth_level)

Compiling and Deploying the LoginModule program
If you are writing your own Custom Authentication module based on the AMLoginModule SPI
or a pure JAAS module, then you can skip this step. Otherwise, after writing the sample Login
Module, compile and deploy the sample found under
AccessManager-base/samples/authentication/spi/providers.

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200682

▼ To compile the Login Module

Set the following environment variables.
These variables will be used to run the gmake command. You can also set these variables in the
Makefile. This Makefile is in the following directory: AccessManager-base
/samples/authentication/spi/providers.

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be version 1.3.1_06
or higher.

CLASSPATH: Set this variable to refer to am_services.jar which can be found in the
Idetnity_base/lib directory. Include jaas.jar in your classpath if you are using JDK version
less than JDK1.4

BASE_DIR: Set this variable to the directory where the Access Manager is installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample compiled classes are
located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample compiled classes
will be created.

In the AccessManager-base/samples/authentication/spi/providers directory, run gmake.

▼ To Deploy the Login Module Sample Program

Copy LoginModuleSample.jar from JAR_DIR to
AccessManager-base/web-src/services/WEB-INF/lib .

Copy LoginModuleSample.xml from AccessManager-base
/samples/authentication/spi/providers to AccessManager-base
/web-src/services/config/auth/default .

Redeploy the amserver.war file.

▼ To Redeploy the amserver.war File

In AccessManager-base/bin/amsamplesilent, set Deploy Level variable as follows:
DEPLOY_LEVEL=21

In AccessManager-base/bin/amsamplesilent, set container-related environment variables.

■ On Sun Java System Web Server 6.1, where /amserver is the default DEPLOY_URI:

SERVER_HOST=WebServer-hostName
SERVER_PORT=WebServer-portNumber

1

2

1

2

3

1

2

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 83

SERVER_PROTOCOL=[http | https]

SERVER_DEPLOY_URI=/amserver

WEB_CONTAINER=WS6

WS61_INSTANCE=https-$SERVER_HOST

WS61_HOME= WebServer-base-directory
WS61_PROTOCOL=$SERVER_PROTOCOL

WS61_HOST=$SERVER_HOST

WS61_PORT=$SERVER_PORT

WS61_ADMINPORT=WebServer-adminPortWS61_ADMIN=WebServer-adminUserName
■ On Sun Java System Application Server 7.0, where /amserver is the default DEPLOY_URI:

SERVER_HOST=ApplicationServer-hostName
SERVER_PORT=ApplicationServer-portNumber
SERVER_PROTOCOL=[http | https]

SERVER_DEPLOY_URI=/amserver

WEB_CONTAINER=AS7

AS70_HOME=/opt/SUNWappserver7

AS70_PROTOCOL=$SERVER_PROTOCOL

AS70_HOST=$SERVER_HOST

AS70_PORT=$SERVER_PORT

AS70_ADMINPORT=4848

AS70_ADMIN=admin

AS70_ADMINPASSWD=ApplicationServer-adminPassword
AS70_INSTANCE=server1

AS70_DOMAIN=domain1

AS70_INSTANCE_DIR=/var/opt/SUNWappserver7/domains/

${AS70_DOMAIN:-domain1}/${AS70_INSTANCE:-server1}

AS70_DOCS_DIR=/var/opt/SUNWappserver7/domains/${AS70_DOMAIN:-domain1}/

${AS70_INSTANCE:-server1}/docroot

#If Application Server is SSL Enabled then set the following:

#AS70_IS_SECURE=true

#SSL_PASSWORD=SSLpassword
■ On other supported platforms:

Set platform-specific variables as is appropriate for the container.

Redeploy the services web application by running the following command:

AccessManager-base/bin/amconfig -s

AccessManager-base/bin/amsamplesilent

Restart the container instance.

■ Web Server example:

3

4

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200684

/WebServer-base-directory/
https-WebServer-instanceName/restart

■ Application Server example:

/var/opt/SUNWappserver7/domains/${AS70_DOMAIN:-domain1}/

${AS70_INSTANCE:-server1}/bin/restartserv

Loading the Login Module Sample into Access Manager
Once you’ve compiled and deployed the login module, you must load the login module into
Access Manager. You can load the login module by using either the Access Manager
administration console, or by using the amadmin command.

▼ To Load the Login Module Using the Administration Console

Login to Access Manager Console as amadmin, using the URL:
http://host.domain:port/Console-Deploy-URL

Click Configuration.

In the Configuration tab, under Authentication, click Core.

Add class file name com.iplanet.am.samples.authentication.spi.providers.
LoginModuleSample to the Pluggable Authentication Modules Classes list.

Click Save.

▼ To Load the Login Module Using the Command Line

Write a sample XML file as shown in “To Load the Login Module Using the Command Line”
on page 85, which will add the LoginModuleSample authentication module entry into the
allowed modules and an authenticators list.

<!--

Copyright (c) 2003 Sun Microsystems, Inc.

All rights reserved

Use is subject to license terms.

-->

<!DOCTYPE Requests

PUBLIC "-//iPlanet//iDSAME 5.0 Admin CLI DTD//EN"

"jar://com/iplanet/am/admin/cli/amAdmin.dtd"

>

<Requests>

1

2

3

4

5

1

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 85

<SchemaRequests serviceName="iPlanetAMAuthService"

SchemaType="Global">

<AddDefaultValues>

<AttributeValuePair>

<Attribute name="iplanet-am-auth-authenticators"/>

<Value>com.iplanet.am.samples.authentication.spi.providers.

LoginModuleSample</Value>

</AttributeValuePair>

</AddDefaultValues>

</SchemaRequests>

</Requests>

Use amadmin to load sample.xml:
<AMADMIN> --runasdn uid=amAdmin,ou=People,<root_suffix> --password <password>

--data sample.xml

Solaris Sparc/x86: AMADMIN = <PRODUCT_DIR>/bin/amadmin

On W2K: AMADMIN = <PRODUCT_DIR>\\bin\\amadmin

Running the LoginModule Sample Program
This sections provides instructions for running the login module on Solaris and on Windows
platforms.

▼ To Run the LoginModule on Solaris

Use the following URL to log in to Access Manager console as amAdmin:
http://host.domain:port/Console-Deploy-URI

Click Identity Management, and in the Identity Management view select your organization.

From the View menu, select Services.

In the navigation frame, under Authentication, click Core.

SelectLoginModuleSample to add it to the list of highlighted modules in Organization
Authentication Modules.
Make sure LDAP module is also selected. If not selected, you will not be able to login to Access
Manager Console. You can use Control + mouse click to add additional modules.

2

1

2

3

4

5

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200686

Click Save.

Log out.

Enter the following URL:
http://host.domain:port/Service-Deploy-URI/UI/Login?module=LoginModuleSample

If you choose to use an organization other than the default, be sure to specify that in the URL
using the org parameter.

▼ To Run the Login Module on Windows 2000

Set the following environment variables. These variables will be used to run the make
command. You can also set these variables in the Makefile.
This Makefile is in the same directory as the Login Module Sample program files:
AccessManager-base\samples\authentication\spi\providers

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be version 1.3.1_06
or higher.

BASE: Set this variable to base-directory

CLASSPATH: Set this variable to refer to am_services.jar which can be found in the
base-directory\lib directory. Include jaas.jar in your classpath if you are using JDK version
less than JDK1.4

BASE_CLASS_DIR: Set this variable to the directory where all the Sample compiled classes are
located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample compiled classes
will be created.

In the base-directory\samples\authentication\spi\providers directory, run the make
command.

▼ To Deploy the Login Module

Copy LoginModuleSample.jar from JAR_DIR to
AccessManager-base\web-src\services\WEB-INF\lib

In the Web Container from which this sample has to run, update the classpath with
LoginModuleSample.jar.

Update server.xmlwith the new classpath and server.xml locations:

6

7

8

1

2

1

2

3

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 87

■ Sun Java System Web Server :
<WS-install-dir>\https-<WS-instance-name>\config\server.xml

■ Sun Java System Application Server: <AS-install-dir>\domain<appserver
domain><appserver_instance>\config\server.xml

Example:<AS-install-dir>\domain\domain1\server1\config\server.xml

Copy LoginModuleSample.xml from base-directory \samples\authentication\spi\providers
to base-directory\web-src\services\config\auth\default.

Restart the web container
Web Server: <WS-home-dir>\https-<WS-instance-name>\restart

Application Server: AppServer-home-dir>\domains\<domain
name><server_instance>\bin\restartserv

Implementing Authentication PostProcessing SPI
The Authentication SPI includes the AMPostAuthProcessInterface which can be
implemented for post-processing tasks. The AMPostProcessInterface Javadoc are available at:

AccessManager-base/SUNWam/docs/com/sun/identity/authentication/spi/
AMPostAuthProcessInterface.html

The SPI is configurable at the organization, service and role levels. The Authentication Service
invokes the post processing SPI methods on successful or failed authentication and on logout.

About the PostProcessing SPI Sample
<PRODUCT_DIR> or AccessManager-base directory on different Platforms:

■ Solaris Sparc/x86: AccessManager-base/SUNWam
■ Linux: AccessManager-base/sun/identity

▼ To Compile the ISAuthPostProcessSample Program on Solaris
Sparc/x86 or Linux
Follow these steps given below to compile the sample found under
AccessManager-base/samples/authentication/spi/postprocess.

Set the following environment variables.
JAVA_HOME: Set this variable to your installation of JDK. The JDK should be version 1.3.1_06
or higher.

4

5

1

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200688

CLASSPATH: Set this variable to refer to am_services.jar which can be found in the
AccessManager-base/lib directory. Include jaas.jar in your classpath if you are using JDK
version lower than JDK1.4

BASE_DIR: Set this variable to the directory where Access Manager is installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample compiled classes are
located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample compiled classes
will be created.

These variables will be used to run the gmake command. You can also set these variables in the
Makefile. This Makefile is in the following directory:
AccessManager-base/samples/authentication/spi/postprocess.

In the directory AccessManager-base /samples/authentication/spi/postprocess, run the
gmake command.

▼ To Deploy the ISAuthPostProcess Sample Program

Copy ISAuthPostProcess.jar from JAR_DIR to AccessManager-base/lib.

Update the Web Container configuration file server.xml.

Add ISAuthPostProcessSample.jar to the classpath. The server.xml file for different web
containers can be found at the following locations:

Web Server: <WS-home-dir>/https-<WS-instance-name>/config/

Application Server:<AS-home-dir>/domain/domain1/server1/config/

For all other web containers consult, the manufacturer’s documentation.

Restart the web container.
Web Server: <WS-home-dir>/https-<WS-instance-name>/restart

Application Server: <AS-install-dir>/<domains>/<domain name>/<server

instance>/bin/restartserv Example:
/<AS-home-dir>/domains/domain1/server1/bin/restartserv

For all other web containers consult their documentation.

Configuring the Authentication Post Processing SPI
The Authentication PostProcessing Sample can be configured at the Organization, Service or
Role level.

2

1

2

3

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 89

▼ To Configure ISAuthPostProcess Sample for an Organization

Log in to Access Manager console as amAdmin. Use the following URL:
http://host.domain:port/Console-Deploy-URI

Click Identity Management, and select your organization.

From the View menu, click Services.

In the navigation frame, under Authentication, click Core.

Add the following to the Authentication PostProcessing Class attribute:
com.iplanet.am.samples.authentication.spi.postprocess

Add the following to the Authentication PostProcessing Class attribute:
ISAuthPostProcessSample

Click Save.

Log out.

Go to the following URL
If you choose to use an organization other than the default, be sure to specify that in the URL
using the org parameter.

The postprocessing SPI will be executed on successful authentication, on failed authentication,
and on Logout.

▼ To Configure the ISAuthPostProcess Sample for a Service

Log in to Access Manager console as amAdmin. Use the following URL:
http://<host>.<domain>:<port>/<Console-Deploy-URI>

Click Identity Management, and select your organization.

From the View menu, select Services.

Select Authentication Configuration

From the Service Instance frame, select New Instance.

Enter a name for the service.

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200690

Add the following to the Authentication PostProcessing Class attribute:
com.iplanet.am.samples.authentication.spi.postprocess. ISAuthPostProcessSampl

Click Submit to save the changes.

Click Service Name and define the Authentication Configuration for the new service.

Log out.

Go to the following URL: http://host.domain:port/Service-Deploy-URI/UI/Login?
service=servicename
If you choose to use an organization other than the default, be sure to specify that in the URL
using the org parameter.

The postprocessing SPI will get executed on successful authentication, failed authentication and
on Logout for the service accessed.

▼ To Configure ISAuthPostProcess Sample for a Role

Log in to Access Manager console as amAdmin. Use the following URL:

http://host.domain:port/Console-Deploy-URI

Click the Identity Management tab, and select your organization.

From the View menu, select Roles to view the role properties.

From the View menu, select Services.

Click Edit to edit the authentication configuration.

Add the following to the Authentication post Processing Class attribute:

com.iplanet.am.samples.authentication.spi.postprocess. ISAuthPostProcessSample

Click Submit to save the changes.

Log out.

Go to the following URL:

http://host.domain:port/Service-Deploy-URI/UI/Login?role=roleName

If you choose to use an organization other than the default, be sure to specify that in the URL
using the org parameter. Example: org=orgName

7

8

9

10

11

1

2

3

4

5

6

7

8

9

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 91

The postprocessing SPI will be executed for the service accessed on successful authentication,
on failed authentication, and on Logout.

Compiling On Windows 2000
Go to the base-directory\samples\authentication\spi\postprocess directory and run the
make command.

▼ To Deploy the ISAuthPostProcessSample Program

Copy ISAuthPostProcess.jar from JAR_DIR to base-directory\lib

In the Web Container from which this sample has to run, update the classpath with
ISAuthPostProcess.jar.

Restart Access Manager.

base-directory\bin\amserver start

To Configure Authentication Post Processing SPI

This sample can be can be set in the Core Authentication Service for Organization and
Authentication Configuration Service for Role OR Service.

See the section “Configuring the Authentication Post Processing SPI” on page 89.

Generating an Authentication User ID
This file explains how to compile, deploy and configure the Authentication User ID Generation
SPI Sample.

■ “To Compile the UserIDGeneratorSample on Solaris Sparc/x86, Linux” on page 93
■ “To Deploy the UserIDGeneratorSample Program” on page 93
■ “Configuring the UserIDGeneratorSample Program” on page 94
■ “Compiling the UserIDGeneratorSample Program on Windows 2000” on page 95

In the following sections, the PRODUCT_DIR setting depends on which platform you’re using:

Solaris Sparc/x86: PRODUCT_DIR = <install_root>/SUNWam

Linux: PRODUCT_DIR = <install_root>/sun/identity

1

2

3

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200692

▼ To Compile the UserIDGeneratorSample on Solaris Sparc/x86, Linux
The sample is located in the following directory:

AccessManager-base/samples/authentication/spi/genuid

Set the following environment variables.
These variables will be used to run the gmake command. You can also set these variables in the
Makefile which is located in the following directory:

AccessManager-base/samples/authentication/spi/genuid

JAVA_HOME: Set this variable to your installation of JDK. The JDK should be version 1.3.1_06
or higher.

CLASSPATH: Set this variable to refer to am_services.jar which can be found in the
<PRODUCT_DIR>/lib directory. Include jaas.jar in your classpath if you are using JDK
version less than JDK1.4.

BASE_DIR: Set this variable to the directory where the Access Manager is installed.

BASE_CLASS_DIR: Set this variable to the directory where all the Sample compiled classes are
located.

JAR_DIR: Set this variable to the directory where the JAR files of the Sample compiled classes
will be created.

In the directory AccessManager-base /samples/authentication/spi/genuid, run the gmake
command:

▼ To Deploy the UserIDGeneratorSample Program

Copy UserIDGeneratorSample.jar from JAR_DIR to AccessManager-base/lib.

in the Web Container from which this sample has to run, update the classpath with
UserIDGeneratorSample.jar.

■ On Sun ONE Web Server, go to server instance configurationdirectory:
<WS-home-dir>/https-<WS-instance-name>/config/

■ On Sun ONE Application Server, in the directory
<AS-home-dir>/domain/domain1/server1/config/ update server.xml with the new
classpath.

■ For all other containers, consult the documentation that came with the product.

Restart web container.<WS-home-dir>/https-<WS-instance-name>/start
<AS-home-dir>/domains/domain1/server1/bin/start

1

2

1

2

3

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 93

Configuring the UserIDGeneratorSample Program
The Authentication User ID Generation Sample can be configured at the Organization level,
and then used or invoked by the out-of-box Membership/Self- registration authentication
module.

▼ To Configure UserIDGeneratorSample for an Organization

Log in to Access Manager console as amAdmin. Use the following URL:
http://host.domain:port/Console-Deploy-URI

Click the Identity Management tab, and select your organization.

From the View menu, select Services.

In the navigation frame, under Authentication, click Core.

Add the following to the Pluggable User Name Generator Class attribute:
com.iplanet.am.samples.authentication.spi.genuid. UserIDGeneratorSample

Click Save to save the changes.

Log out.

▼ To Access an Authentication Module for an Organization
This module is the one which invokes the UserIDGenerator SPI implementation class. By
default, only the Membership/Self-registration authentication module calls this SPI
implementation.

Make sure that you have registered and enabled the Membership authentication module, and
that you have created a template for the organization.

Enter the following URL:
http://host.domain:port/Service-Deploy-URI/UI/Login?module=Membership

If you choose to use an organization other than the default, be sure to specify that in the URL
using the org parameter. Example: org=orgName

Click New User.
You should be able to register any existing username or user ID.

The UserIDGeneratorSample will be executed. You will be presented with the generated User
IDs choice menu to choose any one username or user ID.

1

2

3

4

5

6

7

1

2

3

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200694

Compiling the UserIDGeneratorSample Program on Windows 2000
In the <install-root>\samples\authentication\spi\genuid directory, run the make
command.

▼ To deploy the UserIDGeneratorSample Program

Copy UserIDGeneratorSample.jar from JAR_DIR to <install-root>\\lib

In the Web Container from which this sample has to run, update the classpath with
UserIDGeneratorSample.jar.

Restart Access Manager.

<install-root>\bin\amserver start

To Configure the UserIDGeneratorSample Program

Configuring the program on Windows 2000 is similar to configuring the program on Solaris.
See “Configuring the Authentication Post Processing SPI” on page 89.

Implementing A Pure JAAS Module
A sample program demonstrates how to write pure a JAAS module to replay callbacks by
authenticating using Access Manager Authentication Client API. It will authenticate a user by
replaying the callbacks required by Access Manager the Authentication Module. You can
modify this program to use other existing or customized Access Manager Authentication
modules. This sample module can be plugged in into any standard JAAS framework using the
JAAS API.

Note – For detailed information on JAAS, see the Sun Developer Documentation at the
following URL:http://java.sun.com/products/jaas/. For detailed information on how to
write a JAAS module, see the JAAS LoginModule Developer’s Guide at the following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/security/

jaas/JAASLMDevGuide.html

1

2

3

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 95

Conventions Used in the Samples

TABLE 5–5 Default directories for Solaris Sparc/x86

Variable Description Location

Config_directory Directory that contains
configuration files

/CONFIG_DIR = /etc/opt/SUNWam/config

Product_Directory Directory where Access
Manager is installed.

PRODUCT_DIR = <install_root>/SUNWam

TABLE 5–6 Default directories for Linux

Variable Description Location

Config_Directory Directory that contains
configuration files

CONFIG_DIR = /etc/opt/sun/identity/config

Product_Directory Directory where Access
Manager is installed.

PRODUCT_DIR = <install_root>/sun/identity

TABLE 5–7 Default directories for Windows 2000

Variable Description Location

Config_Directory Directory that contains
configuration files

CONFIG_DIR = <install_root>\lib

Product_Directory Directory where Access
Manager is installed.

▼ To Run the Sample on Solaris Sparc x86 or Linux:

In the Makefile, set the following variables:
BASE: Enter the path to the directory where Access manager is installed.

JAVA_HOME: Enter the path to the directory where Java compiler is installed

CONFIG: Enter the entry specified in the login configuration file. This entry will be used to do
the user authentication

Copy AMConfig.properties from Access Manager server installation machine location
<CONFIG_DIR> to the client machine where the sample will be run.

On the client machine, be sure the following are in your classpath:

■ am_services.jar

■ jaas.jar

1

2

3

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200696

■ jss3.jar

■ AMConfig.properties

Include jaas.jar in your classpath if you are using a JDK version less than JDK1.4

A sample configuration file purejaassample.config is provided for testing this sample.
The file contains only one entry named Sample. Sample is the name to be entered for CONFIG in
the Makefile:
Sample {

PureJAASSampleLoginModule required ORG_NAME="dc=iplanet,dc=com"

INDEX_NAME="LDAP" debug=true;

};

The entry specifies that the LoginModule to be used to do the user authentication is the
PureJAASSampleLoginModule and that this SampleLoginModule must succeed in order for
authentication to be considered successful. It passes options with ORG_NAME as the organization
name and INDEX_NAME as the Access Manager authentication module to which this sample must
authenticate.

If you must use a different login configuration, modify the Makefile. For example, change the
following:

-Djava.security.auth.login.config=purejaassample.config

to this:

-Djava.security.auth.login.config=your_jaas_config_file .config

To compile, run the gmake command.

To run the sample program run the gmake run command.

▼ To Enable SSL

In the sample client program, add this JVM property:
-D "java.protocol.handler.pkgs=com.iplanet.services.comm"

In the AMConfig.properties file, edit the following properties:
com.iplanet.am.admin.cli.certdb.dir: <PRODUCT_DIR>/servers/alias

com.iplanet.am.admin.cli.certdb.prefix: https-machine1.com-machine1-

com.iplanet.am.server.protocol: https

com.iplanet.am.server.port: Enter the appropriate port on the server machine where
machine1 is the host name of the server

4

5

6

1

2

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 97

▼ To Run the Sample on Windows 2000

In make.bat, set the following properties:

BASE: Enter the path to the directory where Access manager is installed

JAVA_HOME: Enter the path to the directory where the Java compiler is installed.

CONFIG: Enter the entry which will be used for user authentication. This entry is specified in
the login configuration file.

Copy AMConfig.properties from Access Manager server installation machine location
<CONFIG_DIR> to the client machine where this sample will be run.

On the client machine, make sure the following are in your classpath:

■ am_services.jar

■ jaas.jar

■ jss3.jar

■ AMConfig.properties

Include jaas.jar in your classpath if you are using JDK version less than JDK1.4.

A sample configuration file purejaassample.config is provided for testing this sample.

The file contains only one entry named.Sample. Sample is the name to be entered for CONFIG in
the Makefile.
Sample {

PureJAASSampleLoginModule required ORG_NAME="dc=iplanet,dc=com"

INDEX_NAME="LDAP" debug=true;

};

The entry specifies that the LoginModule to be used to do the user authentication is the
PureJAASSampleLoginModule. SampleLoginModule is must succeed in order for
authentication to be considered successful. It passes options with ORG_NAME as the organization
name and INDEX_NAME as the Access Manager authentication module to which this sample has
to authenticate.

If you must use a different login configuration, modify the Makefile. For example, change the
following:

-Djava.security.auth.login.config=purejaassample.config

to this:

-Djava.security.auth.login.config=your_jaas_config_file.config

To compile, run the make command.

1

2

3

4

5

Using Authentication SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 200698

To run the sample program, run the make run command.

▼ To Enable SSL

In the sample client program, add this JVM property:
-D "java.protocol.handler.pkgs=com.iplanet.services.comm"

Edit the following properties in the AMConfig.properties file:
com.iplanet.am.admin.cli.certdb.dir:
<install-dir>\SUN\IdentityServer6\Servers\alias

com.iplanet.am.admin.cli.certdb.prefix:https-machine1.red.iplanet.com-machine1-

com.iplanet.am.server.protocol: https

com.iplanet.am.server.port: Enter the appropriate port on the server machine where
machine1 is the host name of the server

For the detailed information, see the Javadoc for Remote Client APIs. By default, Access
Manager Javadoc is installed in the following directory:

AccessManager-base/SUNWam/docs

For the detailed information on how to plug the Login Module into the standard JAAS Context,
see the JAAS Reference Guide at the following URL:

http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASRefGuide.html

6

1

2

Using Authentication SPIs

Chapter 5 • Using Authentication APIs and SPIs 99

100

Using the Policy APIs

The Sun JavaTM System Access Manager 7 2005Q4 Policy Service enables you to define, manage,
and enforce policies that control access to protected resources. Administrators use the Policy
Service to configure and manage conditions for applications, resources, and identities managed
within the Access Manager deployment. For detailed information about what the Policy Service
does and how it works, see Chapter 4, “Authorization and the Policy Service,” in Sun Java System
Access Manager 7 2005Q4 Technical Overview.

This chapter provides information about the Policy APIs and how to use them to enable your
service to use Access Manager policies. The chapter includes the following topics:

■ “About the Policy APIs” on page 101
■ “Using the Policy Code Samples” on page 107
■ “Compiling the Policy Code Samples” on page 110
■ “Adding a Policy-Enabled Service to Access Manager” on page 110
■ “Developing Custom Subjects, Conditions, and Referrals” on page 114
■ “Creating Policies for a New Service” on page 116
■ “Developing and Running a Policy Evaluation Program” on page 117
■ “Programmatically Constructing Policies” on page 118

About the Policy APIs
The Policy Java APIs enable you to do the following:

■ Develop and add custom subjects, referrals, and conditions to Access Manager.
■ Develop and run policy evaluation programs
■ Programmatically construct policies and add them to the policy store.

This chapter describes Java Policy Service packages and classes, and provides instructions for
using the Policy APIs and code samples. For a comprehensive listing of Policy Java methods and
their usage, see the Sun Java System Access Manager 7 2005Q4 Java API Reference.

6C H A P T E R 6

101

Access Manager also provides C APIs to enable external applications to connect to the Policy
Service framework. For information about using the Policy C APIs, see Chapter 6, “Policy
Functions,” in Sun Java System Access Manager 7 2005Q4 C API Reference Chapter 6, “Policy
Functions,” in Sun Java System Access Manager 7 2005Q4 C API Reference.

Policy Java Packages
The following Java packages comprise the Policy APIs:

com.sun.identity.policy Contains policy evaluation classes for policy
administration and evaluation. Policy evaluation
classes from this package require a direct
connection to the policy data store. These classes
should be used with caution, and only when
classes from com.sun.identity.policy.client

cannot handle your use case.

com.sun.identity.policy.client Contains classes used by remote Java applications
to evaluate policies and to get policy decisions.

com.sun.identity.policy.interfaces Contains interfaces for writing custom Policy
plug-ins for conditions, subjects, referrals and
resources.

Policy Management Classes
Policy Management classes are used by system administrators to manage policies in Access
Manager. The interfaces for this functionality are contained in the com.sun.identity.policy
package and including the following:

■ “PolicyManager” on page 102
■ “Policy” on page 103

PolicyManager
com.sun.identity.policy.PolicyManager is the top-level administrator class for policy
management. com.sun.identity.policy.PolicyManager provides methods that enable an
administrator to create, modify, or delete realm policies. The PolicyManager can be obtained
by passing a privileged user’s session token or by passing a privileged user’s session token with a
realm name. Some of the more widely used methods of this class include the following:

getPolicyNames Retrieves all named policies created for the realm for which the policy
manager was instantiated. This method can also take a pattern (filter) as
an argument.

About the Policy APIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006102

getPolicy Retrieves a policy when given the policy name.

addPolicy Adds a policy to the specified realm. If a policy with the same name
already exists, it will be overwritten.

removePolicy Removes a policy from the specified realm.

replacePolicy Replaces policy with a new policy.

Policy
com.sun.identity.policy.Policy represents a policy definition with all its intended parts
(rules, subjects, referrals, conditions, and response providers). The policy object is saved in the
data store if the addPolicy or replacePolicy methods from the PolicyManager class are
invoked. This class contains methods for adding, removing, replacing or getting any of the parts
of a policy definition.

Policy Evaluation Classes
Policy evaluation classes compute policy decisions which allow or deny access to a protected
resource. Policy evaluation classes are contained com.sun.identity.policy package and
include the following:

■ PolicyEvaluator
■ ProxyPolicyEvaluator
■ ClientPolicyEvaluator
■ PolicyEvent

PolicyEvaluator Class
com.sun.identity.policy.PolicyEvaluator can be integrated into Java applications to
evaluate policy privileges and provide policy decisions. This class provides support for both
boolean and non-boolean type policies. Create a PolicyEvaluator by calling the constructor
with a service name. Public methods of this class include the following:

isAllowed Evaluates the policy associated with the given resource and returns a
boolean value indicating whether the policy evaluation resulted in an
allow or deny.

getPolicyDecision Evaluates policies and returns decisions. Returns a decision that gives
a user permission to perform specified actions on a specified resource.

getResourceResult Obtains the policy and decisions for a hierarchy of resources. Possible
values for the scope of this method are self, subtree, and
strict-subtree. Use the self value to get the policy decision for the
specified resource only. Use the subtree value to include the policy

About the Policy APIs

Chapter 6 • Using the Policy APIs 103

decisions for all resources defined in the policies which are
sub-resources of the specified resource.

For example, the PolicyEvaluator class can be used to display the links for a list of resources to
which an authenticated user has access. The getResourceResult method is used to get the list
of resources. The resourceName parameter would be http://host.domain:port which returns
all the resources to which the user has access on that server. These resources are returned as a
PolicyDecision based on the user’s defined policies. If the user is allowed to access resources
on different servers, this method needs to be called for each server.

Note – Not all resources that have policy decisions are accessible to the user. Access depends on
ActionDecision(s) contained in policy decisions.

ProxyPolicyEvaluator Class
com.sun.identity.policy.ProxyPolicyEvaluator allows a privileged user (top-level
administrator, organization administrator, policy administrator, or organization policy
administrator) to get policy privileges and evaluate policy decisions for any user in their
respective scope of administration.
com.sun.identity.policy.ProxyPolicyEvaluatorFactory is the singleton class used to get
ProxyPolicyEvaluator instances.

EXAMPLE 6–1 Public Methods For ProxyPolicyEvaluator

/**

* Evaluates a simple privilege of boolean type. The privilege

* indicates if the user identified by the principalName

* can perform specified action on the specified resource.

*

* @param principalName principal name for whom to

* compute the privilege.

* @param resourceName name of the resource

* for which to compute policy result.

* @param actionName name of the action the user is trying to

* perform on the resource

* @param env run time environment parameters

*

* @return the result of the evaluation as a boolean value

*

* @throws PolicyException exception form policy framework

* @throws SSOException if sso token is invalid

*

*/

public boolean isAllowed(String principalName, String resourceName,

String actionName, Map env) throws PolicyException, SSOException;

About the Policy APIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006104

EXAMPLE 6–1 Public Methods For ProxyPolicyEvaluator (Continued)

/**

* Gets policy decision for the user identified by the

* principalName for the given resource

*

* @param principalName principal name for whom to compute the

* policy decision

* @param resourceName name of the resource for which to

* compute policy decision

* @param env run time environment parameters

*

* @return the policy decision for the principal for the given

* resource

* @throws PolicyException exception form policy framework

* @throws SSOException if sso token is invalid

*

*/

public PolicyDecision getPolicyDecision(String principalName,

String resourceName, Map env)

throws PolicyException, SSOException;

/**

* Gets protected resources for a user identified by the

* principalName. Conditions defined in the policies

* are ignored while computing protected resources.

* Only resources that are subresources of the given

* rootResource or equal to the given rootResource would

* be returned.

* If all policies applicable to a resource are

* only referral policies, no ProtectedResource would be

* returned for such a resource.

* @param principalName principal name for whom

* to compute the privilege.

* @param rootResource only resources that are subresources

* of the given rootResource or equal to the given

* rootResource would be returned. If

* <code>PolicyEvaluator.ALL_RESOURCES</code>

* is passed as rootResource, resources under

* all root resources of the service

* type are considered while computing protected

* resources.

*

* @return set of protected resources. The set contains

* ProtectedResource objects.

*

About the Policy APIs

Chapter 6 • Using the Policy APIs 105

EXAMPLE 6–1 Public Methods For ProxyPolicyEvaluator (Continued)

* @throws PolicyException exception form policy framework

* @throws SSOException if sso token is invalid

* @see ProtectedResource

*

*/

public Set getProtectedResourcesIgnoreConditions(String principalName,

String rootResource) throws PolicyException, SSOException

Client PolicyEvaluator Class
com.sun.identity.policy.client.PolicyEvaluator evaluates policies and provides policy
decisions for remote applications. This does not require direct access to a policy stores such as
Directory Server (for example, if there is a firewall).
com.sun.identity.policy.client.PolicyEvaluator get policy decision from Access
Manager using XML over HTTP(s). It stores a cache of policy decisions for faster responses and
maintains the cache in sync with the Policy Service on the instance of Access Manager using the
notification and polling mechanism.

PolicyEvent Class
com.sun.identity.policy.PolicyEvent represents a policy event that could potentially
change the current access status. For example, a policy event is created and passed to the
registered policy listeners whenever there is a change in a policy rule. This class works with the
PolicyListener class in the com.sun.identity.policy.interface package.

Policy Plug-In APIs
The Policy plug-in classes are contained in the com.sun.identity.policy.interfaces
package. The following classes are used by service developers and policy administrators who
need to provide additional policy features as well as support for legacy policies.

ResourceName Provides methods to determine the hierarchy of the resource names for a
determined service type. For example, these methods can check to see if
two resources names are the same or if one is a sub-resource of the other.

Subject Defines methods that can determine if an authenticated user (possessing
an SSOToken) is a member of the given subject.

Referral Defines methods used to delegate the policy definition or evaluation of a
selected resource (and its sub-resources) to another realm or policy
server.

About the Policy APIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006106

Condition Provides methods used to constrain a policy to , for example, time-of-day
or IP address. This interface allows the pluggable implementation of the
conditions.

PolicyListener Defines an interface for registering policy events when a policy is added,
removed or changed. PolicyListener is used by the Policy Service to
send notifications and by listeners to review policy change events.

Using the Policy Code Samples
Access Manager provide Policy code samples to perform the following tasks:

■ Add a new service which has a policy schema to Access Manager
■ Develop and add custom developed subjects, referrals, and conditions to Access Manager
■ Develop and run Policy evaluation programs
■ Construct policies programmatically and add them to the policy store
■ Create policies using amadmin command

All the files you need to run the policy code samples are located in the following directories:

Solaris Platform AccessManager-base/samples/policy

Linux Platform AccessManager-base/identity

Use Cases Illustrated by Policy Code Samples
Each of the following sections describes a sequence of steps you must take when using various
means to run a policy evaluation program or to create policies. Each step in a sequence is linked
to detailed instructions further down in this chapter.

▼ To Run a Policy Evaluation Program for the URL Policy
Agent Service
Use this sequence to runs a policy evaluation program for the iPlanetAMWebAgentService
service.

Compile the Policy code samples.
See Compiling the Policy Code Samples.

1

Using the Policy Code Samples

Chapter 6 • Using the Policy APIs 107

Develop and run a Policy evaluation program.
See “Developing and Running a Policy Evaluation Program” on page 117.

▼ To Run a Policy Evaluation Program for the URL Policy
Agent Service and More
This sequence runs the evaluation program for iPlanetAMWebAgentService and the sample
subject, condition, and referral implementations.

Compile the Policy code samples.
See “Compiling the Policy Code Samples” on page 110.

Develop custom subjects, conditions, and referrals.
See “Developing Custom Subjects, Conditions, and Referrals” on page 114.

Develop and run a Policy evaluation program.
See “Developing and Running a Policy Evaluation Program” on page 117.

▼ To Run a Policy Evaluation Program for the Sample
Service
This sequence runs the evaluation program for the SampleWebService.

Compile the Policy code samples.
See “Compiling the Policy Code Samples” on page 110.

Add a Policy-enabled service to Access Manager.
See “Adding a Policy-Enabled Service to Access Manager” on page 110.

Create policies for the new service.
See “Creating Policies for a New Service” on page 116.

Develop and run a Policy evaluation program.
“Developing and Running a Policy Evaluation Program” on page 117.

2

1

2

3

1

2

3

4

Using the Policy Code Samples

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006108

▼ To Run a Policy Evaluation Program for the Sample
Service and More
This sequence runs the evaluation program forSampleWebService and the sample subject,
condition, and referral implementations.

Compile the Policy code samples.
See “Compiling the Policy Code Samples” on page 110.

Add a Policy-enabled service to Access Manager.
See “Adding a Policy-Enabled Service to Access Manager” on page 110.

Develop custom subjects, conditions, and referrals.
See “Developing Custom Subjects, Conditions, and Referrals” on page 114.

Create policies for the new service.
See “Creating Policies for a New Service” on page 116.

Develop and run a Policy evaluation program.
See “Developing and Running a Policy Evaluation Program” on page 117.

To Use amadmin to Create Policies for the URL Policy
Agent Service
Use amadmin to create policies for the service. See “Creating Policies” in Sun Java System Access
Manager 7 2005Q4 Administration Guide for detailed instructions.

▼ To Use amadmin to Create Policies for the Sample
Service
This sequences creates policies for SampleWebService.

Compile the Policy code samples.
See “Compiling the Policy Code Samples” on page 110.

Develop and run a Policy evaluation program.
See “Developing and Running a Policy Evaluation Program” on page 117.

1

2

3

4

5

1

2

Using the Policy Code Samples

Chapter 6 • Using the Policy APIs 109

▼ To Programmatically Construct Policies
This sequence constructs policies and adds them to the policy store.

Compile the Policy code samples.
See “Compiling the Policy Code Samples” on page 110.

Programmatically construct policies.
See “Programmatically Constructing Policies” on page 118.

Compiling the Policy Code Samples
Samples can be run both on Solaris and Linux platforms. In the sample files, root suffix DNs are
specified as dc=example,dc=com. Substitute the root suffix with the actual root suffix of your
Access Manager installation.

▼ To Compile the Policy Code Samples
Set the following variables in the Makefile:
BASE Set this to refer the directory where Access Manager is installed.

JAVA_HOME Set this variable to your installation of JDK. The JDK version should be higher
than JDK 1.4

To compile the sample program, run the gmake all command.

In the sample files, replace the root suffix DNswith values appropriate for your environment.

Adding a Policy-Enabled Service to Access Manager
You can load into Access Manager a service that already contains policy schema. Access
Manager provides a sample XML file for a new service that contains policy schema. You can
modify AccessManager-base/SUNWam/samples/policy/SampleWebService.xml to fit your
needs, and then add your service to Access Manager.

The Policy element contains AttributeSchema elements to define applicable actions and values
for actions. While defining policies, you can define access rules for those actions.

1

2

1

2

3

Compiling the Policy Code Samples

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006110

Examples include canForwardEmailAddress and canChangeSalaryInformation . The actions
specified by these attributes can be associated with a resource if the IsResourceNameAllowed
element is specified in the attribute definition. For example, in the web agent XML service file,
amWebAgent.xml , GET and POST are defined as policy attributes with an associated URL
resource as IsResourceNameAllowed is specified.

EXAMPLE 6–2 SampleWebService.xml

<!DOCTYPE ServicesConfiguration

PUBLIC "=//iPlanet//Service Management Services (SMS) 1.0 DTD//EN"

"jar://com/sun/identity/sm/sms.dtd">

<ServicesConfiguration>

<Service name="SampleWebService" version="5.0">

<Schema

serviceHierarchy="/DSAMEConfig/SampleWebService"

i18nFileName="SampleWebService"

i18nKey="SampleWebService">*

<Global>

<AttributeSchema name="serviceObjectClasses" type="list" syntax="string"

i18nKey="SampleWebService"/>

</Global>

<Policy>

<AttributeSchema name="GET"

type="single"

syntax="boolean"

uitype="radio"

i18nKey="get">

<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>

<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

<AttributeSchema name="POST"

type="single"

syntax="boolean"

uitype="radio"

i18nKey="post">

<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>

<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

Adding a Policy-Enabled Service to Access Manager

Chapter 6 • Using the Policy APIs 111

EXAMPLE 6–2 SampleWebService.xml (Continued)

<AttributeSchema name="PUT"

type="single"

syntax="boolean"

uitype="radio"

i18nKey="put">

<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>

<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

<AttributeSchema name="DELETE"

type="single"

syntax="boolean"

uitype="radio"

i18nKey="delete">

<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>

<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

</Policy>

</Schema>

</Service>

</ServicesConfiguration>

▼ To Add a New Service to Access Manager
Run the amadmin command to load that service.
AccessManager-base/bin/amadmin

--runasdn "uid=amAdmin,ou=People,<default_org>,<
root_suffix>"

--password <password>
--schema AccessManager-base/samples/policy/SampleWebService.xml

Copy the properties file to the localedirectory of the Access Manager installation.
cp SampleWebService.properties AccessManager-base/locale

1

2

Adding a Policy-Enabled Service to Access Manager

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006112

Create a service XML files that conforms to AccessManager-base/dtd/sms.dtd, and contains the
<Policy> element. See example below.

Create and copy locale properties file to AccessManager-base/locale.

Use amadmin to load the service into Access Manager.
Once the new service is added, you can define rules for the new service in policy definitions.

XML for Policy-Enabled Service

/etc/opt/SUNWam/config/xml/amWebAgent.xml (Solaris)
/etc/opt/sun/identity/config/xml/amWebAgent.xml on (Linux)

<!DOCTYPE ServicesConfiguration

PUBLIC "=//iPlanet//Service Management Services (SMS) 1.0 DTD//EN"

"jar://com/sun/identity/sm/sms.dtd">

<ServicesConfiguration>

<Service name="iPlanetAMWebAgentService" version="1.0">

<Schema

i18nFileName="amWebAgent"

i18nKey="iplanet-am-web-agent-service-description">

<Global>

<AttributeSchema name="serviceObjectClasses"

type="list"

syntax="string"

i18nKey="">

<DefaultValues>

<Value>iplanet-am-web-agent-service</Value>

</DefaultValues>

</AttributeSchema>

</Global>

<Policy>

<AttributeSchema name="GET"

type="single"

syntax="boolean"

uitype="radio"

i18nKey="GET">

<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>

<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

<AttributeSchema name="POST"

3

4

5

Example 6–3

Adding a Policy-Enabled Service to Access Manager

Chapter 6 • Using the Policy APIs 113

type="single"

syntax="boolean"

uitype="radio"

i18nKey="POST">

<IsResourceNameAllowed/>

<BooleanValues>

<BooleanTrueValue i18nKey="allow">allow</BooleanTrueValue>

<BooleanFalseValue i18nKey="deny">deny</BooleanFalseValue>

</BooleanValues>

</AttributeSchema>

</Policy>

</Schema>

</Service>

</ServicesConfiguration>

Developing Custom Subjects, Conditions, and Referrals
Access Manager provides subject, condition and referral interfaces that enable you to develop
your own custom subjects, conditions and referrals. A sample implementation is provided for
the three interfaces. SampleSubject.java implements the Subject interface. This subject
applies to all the authenticated users who have valid SSOTokens. SampleCondition.java
implements the Condition interface. This condition makes the policy applicable to those users
whose user name length is greater than or equal to the length specified in the condition.

SampleReferral.java implements the Referral interface. SampleReferral.java gets the
referral policy decision from a text file SampleReferral.properties located in the /samples
directory.

You must add the subject, condition and, referral implementations to
iPlanetAMPolicyService and iPlanetAMPolicyConfigService in order to make them
available for policy definitions. These services are loaded into Access Manager during
installation. To add the sample implementations to the Policy framework, modify the
iPlanetAMPolicy service and iPlanetAMPolicyConfig service.

▼ To Add Sample Implementation to the Policy
Framework

Use db2ldif to back up iPlanetAMPolicy and iPlanetAMPolicyConfig services.

cd DirectoryServer-base/slapd-hostname
db2ldif -n userRoot

-s "ou=iPlanetAMPolicyService,ou=services,root_suffix"

1

Developing Custom Subjects, Conditions, and Referrals

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006114

db2ldif -n userRoot

-s "ou=iPlanetAMPolicyConfigService,ou=services,root_suffix

"

Set the environment variable LD_LIBRARY_PATH.
On Solaris, add /usr/lib/mps/secv1 to LD_LIBRARY_PATH.

On Linux, add /opt/sun/private/lib to LD_LIBRARY_PATH.

Run the following commands:
cd AccessManager-base/samples/policy

AccessManager-base/bin/amadmin
--runasdn "uid=amAdmin,ou=People,default_org,

root_suffix
--password password
--schema amPolicy_mod.xml

AccessManager-base/bin/amadmin
--runasdn "uid=amAdmin,ou=People,default_org,

root_suffix
--password password
--data amPolicyConfig_mod.xml

Change the properties files of the iPlanetAMPolicy and iPlanetAMPolicyConfig services.
cd AccessManager-base/locale

mv amPolicy.properties amPolicy.properties.bak

mv amPolicy_en.properties amPolicy_en.properties.bak

mv amPolicyConfig.properties amPolicyConfig.properties.bak

mv amPolicyConfig_en.properties amPolicyConfig_en.properties.bak

cp AccessManager-base/samples/policy/amPolicy.properties .

cp AccessManager-base/samples/policy/amPolicy_en.properties .

cp AccessManager-base/samples/policy/amPolicyConfig.properties .

cp AccessManager-base/samples/policy/amPolicyConfig_en.properties .

Deploy the sample plug-ins.
Copy SampleSubject.class , SampleCondition.class and SampleReferral.class from the
/sample directory to AccessManager-base/lib .

Restart the Access Manager server.
The sample subject, condition and referral implementations are now available for policy
definitions through the administration console or amadmin tool.

2

3

4

5

6

Developing Custom Subjects, Conditions, and Referrals

Chapter 6 • Using the Policy APIs 115

Creating Policies for a New Service
Access Manager policies are managed through the Administration console or through the
amadmin command. However, policies cannot be modified using amadmin command. You must
delete the policy and then add the modified policy using amadmin. To add policies using
amadmin, policy XML file must be developed following AccessManager-base/dtd/policy.dtd.
Once the Policy XML file is developed, you can load the Policy XML file.

In the Policy /samples directory, there are two sample Policy XML files. They define policies for
theSampleWebService service. SamplePolicy.xml defines a normal policy for
SampleWebService with a SampleSubject and a SampleCondition.
SamplereferralPolicy.xml defines a referral policy for SampleWebService with a
SampleReferral.

▼ To Load a Policy XML File
You must compile the Policy code samples and develop custom subjects, conditions, and
referrals before you can load policies present in the Policy XML files. See “Compiling the Policy
Code Samples” on page 110 and “Developing Custom Subjects, Conditions, and Referrals”
on page 114 for detailed instructions.

Run the following command:
AccessManager-base/bin/amadmin

--runasdn "uid=amAdmin,ou=People,<default_org>,<
root_suffix>"

--password <password>
--data <policy.xml>

Run the following command:
AccessManager-base/bin/amadmin

--runasdn "uid=amAdmin,ou=People,default_org,
root_suffix"

--password password
--data AccessManager-base/samples/policy/SamplePolicy.xml
AccessManager-base/bin/amadmin
--runasdn "uid=amAdmin,ou=People,default_org,

root_suffix"
--password password
--data AccessManager-base/samples/policy/

SampleReferralPolicy.xml

You can verify the newly added policies in Administration Console.

Before You Begin

1

2

Creating Policies for a New Service

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006116

Developing and Running a Policy Evaluation Program
Access Manager provides a Policy Evaluation API. This API has one Java class,
PolicyEvaluator. The package for this class is com.sun.identity.policy.PolicyEvaluator .
Access Manager provides a sample policy evaluator program, PolicyEvaluation.java . You
can use this program to run policy evaluations for different services. The policy evaluation is
always based on a service such as iPlanetAMWebAgentService or SampleWebService. The
sample policy evaluation program uses the PolicyEvaluation.properties file. Specify the
input for the evaluation program in this file. Examples are service name, action names,
condition environment parameters, user name, and user password.

▼ To Set Policy Evaluation Properties
Set the value of pe.servicename to the service name.
Examples: iPlanetAMWebAgentService or SampleWebService .

Set the pe.resoucename to the name of the resource that you want to evaluate the policy
against.

Specify the action names in the pe.actionnames.
Separate the action names with a colon (:) If you want to get all the action values, leave the
pe.actionnamesblank.

Set other required properties such as pe.username and pe.password.

(Optional) Set the following properties pe.authlevel, pe.authscheme, pe.requestip,
pe.dnsname , pe.time if you use the corresponding conditions in your policy definitions.
If you don't want to set these environment parameters, just leave their values as blank.
pe.authlevel Used to evaluate AuthLevel Condition. pe.authlevel takes a positive

integer.

pe.authscheme Used to evaluate AuthScheme Condition. pe.authschemet takes a set of
colon— separated AuthScheme names.

pe.requestip Used to evaluate the IP Condition. pe.requestip takes an IP address
string.

pe.dnsname Used to evaluate the IP Condition. pe.dnsname takes a set of colon—
separated DNS names.

property pe.time Used to evaluate the Simple Time Condition. property pe.time
specifies the request time in milliseconds. If its value is set to the current
time, then it takes the current time in milliseconds.

1

2

3

4

5

Developing and Running a Policy Evaluation Program

Chapter 6 • Using the Policy APIs 117

▼ To Run a Policy Evaluation Program
You must set up policies before running a policy evaluation program.

Set the environment variable LD_LIBRARY_PATH.
On Solaris add /usr/lib/mps/secv1 to LD_LIBRARY_PATH .

On Linux add /opt/sun/private/lib to LD_LIBRARY_PATH.

Run the gmake run command.

Programmatically Constructing Policies
Access Manager provides Policy Management APIs that enable you to programmatically create,
add, update and remove policies. The sample program PolicyCreator.java demonstrates how
to programmatically construct policies and add them to policy store. The program creates one
normal policy named policy1 and one referral policy named refpolicy1 and adds both
policies to the policy store. The normal policy has one subject of each subject type and one
condition of each condition type comes with Access Manager at installation.

EXAMPLE 6–4 Sample Program PolicyCreator.java

/**

* $Id: PolicyCreator.java,v 1.5 2005/06/24 16:53:50 vs125812 Exp $

* Copyright © 2005 Sun Microsystems, Inc. All rights reserved.

*

import com.sun.identity.policy.PolicyManager;

import com.sun.identity.policy.ReferralTypeManager;

import com.sun.identity.policy.SubjectTypeManager;

import com.sun.identity.policy.ConditionTypeManager;

import com.sun.identity.policy.Policy;

import com.sun.identity.policy.Rule;

import com.sun.identity.policy.interfaces.Referral;

import com.sun.identity.policy.interfaces.Subject;

import com.sun.identity.policy.interfaces.Condition;

import com.sun.identity.policy.PolicyException;

import com.iplanet.sso.SSOToken;

import com.iplanet.sso.SSOException;

import java.util.Set;

import java.util.HashSet;

Before You Begin

1

2

Programmatically Constructing Policies

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006118

EXAMPLE 6–4 Sample Program PolicyCreator.java (Continued)

import java.util.Map;

import java.util.HashMap;

public class PolicyCreator {

public static final String DNS_NAME="DnsName";

public static final String DNS_VALUE="*.red.iplanet.com";

public static final String START_TIME="StartTime";

public static final String START_TIME_VALUE="08:00";

public static final String END_TIME="EndTime";

public static final String END_TIME_VALUE="21:00";

public static final String AUTH_LEVEL="AuthLevel";

public static final String AUTH_LEVEL_VALUE="0";

public static final String AUTH_SCHEME="AuthScheme";

public static final String AUTH_SCHEME_VALUE="LDAP";

private String orgDN;

private SSOToken ssoToken;

private PolicyManager pm;

private PolicyCreator() throws PolicyException, SSOException {

BaseUtils.loadProperties();

orgDN = BaseUtils.getProperty("pe.realmname");

System.out.println("realmDN = " + orgDN);

ssoToken = BaseUtils.getToken();

pm = new PolicyManager(ssoToken, orgDN);

}

public static void main(String[] args) {

try {

PolicyCreator pc = new PolicyCreator();

pc.addReferralPolicy();

pc.addNormalPolicy();

System.exit(0);

} catch(Exception e) {

e.printStackTrace();

}

}

private void addNormalPolicy() throws PolicyException, SSOException {

System.out.println("Creating normal policy in realm:" + orgDN);

PolicyManager pm = new PolicyManager(ssoToken, orgDN);

SubjectTypeManager stm = pm.getSubjectTypeManager();

ConditionTypeManager ctm = pm.getConditionTypeManager();

Programmatically Constructing Policies

Chapter 6 • Using the Policy APIs 119

EXAMPLE 6–4 Sample Program PolicyCreator.java (Continued)

Policy policy = new Policy("policy1", "policy1 description");

Map actions = new HashMap(1);

Set values = new HashSet(1);

values.add("allow");

actions.put("GET", values);

String resourceName = "http://myhost.com:80/hello.html";

Rule rule = new Rule("rule1", "iPlanetAMWebAgentService",

resourceName, actions);

policy.addRule(rule);

Subject subject = stm.getSubject("Organization");

Set subjectValues = new HashSet(1);

subjectValues.add(orgDN);

subject.setValues(subjectValues);

policy.addSubject("organization", subject);

subject = stm.getSubject("LDAPUsers");

subjectValues = new HashSet(1);

String userDN = "uid=user1,ou=people" + "," + orgDN;

subjectValues.add(userDN);

subject.setValues(subjectValues);

policy.addSubject("ldapusers", subject);

subject = stm.getSubject("LDAPGroups");

subjectValues = new HashSet(1);

String groupDN = "cn=group1,ou=groups" + "," + orgDN;

subjectValues.add(groupDN);

subject.setValues(subjectValues);

policy.addSubject("ldapgroups", subject);

subject = stm.getSubject("LDAPRoles");

subjectValues = new HashSet(1);

String roleDN = "cn=role1" + "," + orgDN;

subjectValues.add(roleDN);

subject.setValues(subjectValues);

policy.addSubject("ldaproles", subject);

subject = stm.getSubject("IdentityServerRoles");

subjectValues = new HashSet(1);

roleDN = "cn=role1" + "," + orgDN;

subjectValues.add(roleDN);

subject.setValues(subjectValues);

policy.addSubject("is-roles", subject);

Programmatically Constructing Policies

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006120

EXAMPLE 6–4 Sample Program PolicyCreator.java (Continued)

Condition condition = ctm.getCondition("IPCondition");

Map conditionProperties = new HashMap(1);

Set propertyValues = new HashSet(1);

propertyValues.add(DNS_VALUE);

conditionProperties.put(DNS_NAME, propertyValues);

condition.setProperties(conditionProperties);

policy.addCondition("ip_condition", condition);

condition = ctm.getCondition("SimpleTimeCondition");

conditionProperties = new HashMap(1);

propertyValues = new HashSet(1);

propertyValues.add(START_TIME_VALUE);

conditionProperties.put(START_TIME, propertyValues);

propertyValues = new HashSet(1);

propertyValues.add(END_TIME_VALUE);

conditionProperties.put(END_TIME, propertyValues);

condition.setProperties(conditionProperties);

policy.addCondition("time_condition", condition);

condition = ctm.getCondition("AuthLevelCondition");

conditionProperties = new HashMap(1);

propertyValues = new HashSet(1);

propertyValues.add(AUTH_LEVEL_VALUE);

conditionProperties.put(AUTH_LEVEL, propertyValues);

condition.setProperties(conditionProperties);

policy.addCondition("auth_level_condition", condition);

condition = ctm.getCondition("AuthSchemeCondition");

conditionProperties = new HashMap(1);

propertyValues = new HashSet(1);

propertyValues.add(AUTH_SCHEME_VALUE);

conditionProperties.put(AUTH_SCHEME, propertyValues);

condition.setProperties(conditionProperties);

policy.addCondition("auth_scheme_condition", condition);

pm.addPolicy(policy);

System.out.println("Created normal policy");

}

private void addReferralPolicy()

throws PolicyException, SSOException {

System.out.println("Creating referral policy for realm1");

Programmatically Constructing Policies

Chapter 6 • Using the Policy APIs 121

EXAMPLE 6–4 Sample Program PolicyCreator.java (Continued)

ReferralTypeManager rtm = pm.getReferralTypeManager();

String subOrgDN = "o=realm1" + ",ou=services," + orgDN;

Policy policy = new Policy("refpolicy1", "ref to realm1",

true);

Map actions = new HashMap(1);

Rule rule = new Rule("rule1", "iPlanetAMWebAgentService",

"http://myhost.com:80/realm1", actions);

policy.addRule(rule);

Referral referral = rtm.getReferral("SubOrgReferral");

Set referralValues = new HashSet(1);

referralValues.add(subOrgDN);

referral.setValues(referralValues);

policy.addReferral("ref to realm1" , referral);

pm.addPolicy(policy);

System.out.println("Created referral policy for realm1");

}

}

▼ To Run the Sample Program PolicyCreator.java

Compile the sample code.
See “Compiling the Policy Code Samples” on page 110 above.

Set the environment variable LD_LIBRARY_PATH.
On Solaris add /usr/lib/mps/secv1 to LD_LIBRARY_PATH.

On Linux add /opt/sun/private/lib to LD_LIBRARY_PATH .

Use the administration console to create the following objects in your root realm:

■ A subrealm named realm1

■ A user nameduser1
■ A group named group1

■ A role named role1

See “Managing Directory Objects” in Sun Java System Access Manager 7 2005Q4 Administration
Guide for information about creating directory objects.

Set the following properties in the PolicyEvaluation.properties file:
pe.realmname DN of the root realm.

pe.username UserId to authenticate as.

1

2

3

4

Programmatically Constructing Policies

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006122

pe.password Password to use to authenticate.

Run the gmake command.
gmake createPolicies .

Use the administration console to verify that the policies policy1 and refpolicy1 are added to
Access Manager.

5

Programmatically Constructing Policies

Chapter 6 • Using the Policy APIs 123

124

Using the JAAS Authorization Framework

Previous versions of Access Manager (Identity Server 6.0 and 6.1) provided custom policy APIs
to define and evaluate access policies. This model provided centralized management of policies
in its own policy store, the Sun ONE or Java Enterprise System (JES) Directory Server. In Sun
JavaTM System Access Manager 6.2 and beyond, the authorization segment of the Java
Authentication and Authorization Service (JAAS) framework is added to the original model.
This model is based on JAAS 1.0 and Java 2 Platform, Standard Edition (J2SE) 1.3.1.

Access Manager now bridges the gap between J2SE and Access Manager APIs. In this
framework, Access Manager maps its private APIs to JAAS interfaces. This makes it possible for
you to use the JAAS interface to access the Access Manager policy framework.

The topics covered in this chapter are:

■ “Overview of JAAS Authorization” on page 125
■ “JAAS Authorization in Access Manager” on page 129
■ “Enabling the JAAS Authorization Framework” on page 130

Overview of JAAS Authorization
JAAS is a set of APIs that enable services to authenticate and enforce access controls upon users.
It implements a Java technology version of the standard Pluggable Authentication Module
(PAM) framework, and supports user-based authorization. JAAS authorization extends the Java
security architecture which uses a security policy to specify what access rights are granted to
executing code. That architecture, introduced in the Java 2 platform, is code-based. The
permissions are granted based on code characteristics such as where the code is coming from,
whether it is digitally signed, and if so, the identity of the signer.

“Overview of JAAS Authorization” on page 125 illustrates a Java security policy. This grants the
code in the am_services.jar file, located in the current directory, the specified permission. No
signer is specified, so it doesn’t matter whether the code is signed or not.

7C H A P T E R 7

125

EXAMPLE 7–1 Example of a Java Security Policy

grant codebase Cfile:./am_services.jar" {

permission javax.security.auth.AuthPermission

"createLoginContext.AMLoginContext";

};

JAAS authorization adds user centric access control that applies control based on what code is
running as well as on who is running it.

By default, JAAS comes with a reference implementation of Policy
(com.sun.security.auth.PolicyFile) which is file-based. This implementation parses the
Java.policy file ${java.home}/lib/security directory and uses that to direct the associations
of permissions to code. You can change the pointer to some other PolicyFile implementation
or use a combination of files. By default, two files are consulted to evaluate policy. One is
com.sun.security.auth.PolicyFile, mentioned above, and the other is .java.policy as
defined in user’s home directory.

To make JAAS authorization take place, include a Principal field in the grant statement or
statements in your policy file. A Principal field indicates which user executing the code is
allowed the designated permissions. The Policy file grant statements can now optionally include
one or more Principal fields. Including Principal field in the grant statement indicates that the
user represented by the specified Principal, who is executing the specified code, has the
designated permissions. See the Principal field example in “Overview of JAAS Authorization”
on page 125.

EXAMPLE 7–2 A Policy File Grant Statement

grant codebase "file:./am_services.jar",

Principal javax.security.auth.XXXprincipal

"your_user_name@your_domain" {

permission java.util.PropertyPermission "java.home", "read";

permission java.util.PropertyPermission "user.home", "read";

permission java.io.FilePermission "foo.txt", "read";

};

Overview of JAAS Authorization

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006126

How Policy Enforcement Works
The Java 2 runtime enforces access controls via the java.lang.SecurityManager , which is
consulted any time untrusted code attempts to perform a sensitive operation (accesses to the
local file system, for example). To determine whether the code has sufficient permissions, the
SecurityManager implementation delegates responsibility to the
java.security.AccessController, which first obtains an image of the current
AccessControlContext, and then ensures that the retrieved AccessControlContext contains
sufficient permissions for the operation to be permitted.

JAAS supplements this architecture by providing the method Subject.doAs to dynamically
associate an authenticated subject with the current AccessControlContext. As subsequent
access control checks are made, the AccessController can base its decisions upon both the
executing code itself, and upon the principals associated with the subject. Access Manager
provides support for JAAS authentication, which results in the population of the subject with
Principals that represents the user.

EXAMPLE 7–3 The Subject.doAsMethod

public final class Subject {

...

// associate the subject with the current

// AccessControlContext and execute the action

public static Object doAs(Subject s,

java.security.PrivilegedAction action) { }

}

To illustrate a usage scenario for the doAs method, consider a service that authenticates a
remote subject, and then performs some work on behalf of that subject. For security reasons,
the server should run in an AccessControlContext bound by the subject’s permissions. Using
JAAS, the server can ensure this by preparing the work to be performed as a
java.security.PrivilegedAction . Then, by invoking the doAs method, the server provides
both the authenticated subject and the prepared PrivilegedAction. The doAs implementation
associates the subject with the current AccessControlContext and then executes the action.
When security checks occur during execution, the Java 2 SecurityManager queries the JAAS
policy, updates the current AccessControlContext with the permissions granted to the subject
and the executing codesource, and then performs its regular permission checks. When the
action is completed, the doAs method removes the subject from the current
AccessControlContext, and returns the result back to the caller. “How Policy Enforcement
Works” on page 127 illustrates this flow.

Overview of JAAS Authorization

Chapter 7 • Using the JAAS Authorization Framework 127

EXAMPLE 7–4 Sample Code for Subject.doAS

public static void main(String[] args) {

try {

// Create an SSOToken

AuthContext ac = new AuthContext("dc=iplanet,dc=com");

ac.login();

Callback[] callbacks = null;

if (ac.hasMoreRequirements()) {

callbacks = ac.getRequirements();

if (callbacks != null) {

try {

addLoginCallbackMessage(callbacks);

// this method sets appropriate responses in the callbacks.

ac.submitRequirements(callbacks);

} catch (Exception e) { }

}

}

if (ac.getStatus() == AuthContext.Status.SUCCESS) {

Subject subject = ac.getSubject();

// get the authenticated subject

FilePermission perm = new FilePermission("/tmp/test","read");

Subject.doAs(subject, new PrivilegedExceptionAction() {

/* above statement means execute run() method of the

/* Class PrivilegedExceptionAction()

as the specified subject */

public Object run() throws IOException {

// if the above run() was not throwing Exception

/* could have created an instance of PrivilegedAction

// instead of PrivilegedExceptionAction here

AccessController.checkPermission(perm);

File = new File("/tmp/test");

return null;

}

});

}

}

In this example, the AccessController is checking the application’s current policy
implementation. If any permission defined in the policy file implies the requested permission,
the method will simply return; otherwise an AccessControlException will be thrown. The
check is actually redundant in this example, because the constructor for the default File
implementation performs the same check. The sample is meant to illustrate the flow.

Overview of JAAS Authorization

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006128

How the JS2E Access Controller Works
AccessController works with the java.security.Policy implementation to securely process
application requests. In JS2E, a typical checkPermission(Permission p) method call on the
AccessController class might result in the following sequence:

1. The AccessController invokes the getPermisisons() method of the
javax.security.auth policy passing in the subject and the code source.

2. The getPermissions() method returns a PermissionCollection class instance, which
represents a collection of same types of permissions.

3. The elements() method of the returned PermissionCollection gets called, which returns
an enumeration of the permissions held in this PermissionCollection.

4. For each of the permissions returned in the enumeration (in step 3), the
perm.newPermissionCollection() method gets called to obtain the
PermissionCollection used to store the permission.

5. PermissionCollection.add(perm) gets called by the J2SE internal code to store the
permission in its PermissionCollection.

6. The AccessController calls the implies(Permission p) method of the
PermissionCollection returned in step 2.

7. Once the implies() of PermissionCollection is called, it in turn triggers the calling of
implies(Permission p) of the individual permission objects contained in the
PermissionCollection . These methods return true if the current permission object in the
collection implies the specified permission; the methods return false the current
permission object in the collection does not imply the specified permission. This outcome is
implementation dependent and can be changed.

JAAS Authorization in Access Manager
Access Manager provides a custom implementation of the JAAS
javax.security.auth.Policy . The customized implementation leverages the J2SE access
controller and security manager to provide policy evaluation for all Access Manager related
permissions. The customized implementation also falls back on the J2SE default Policy
implementation com.sun.security.auth.PolicyFile for access to system level resources.
Access Manager policy does not control access to com.sun.security.auth.PolicyFile.

Access Manager uses both JAAS and J2SE’s file-based policy for all the resources for which
Access Manager does not provide access control. For Access Manager resources such as URLs
and so forth, new policy and permissions are defined. This model leverages the best of JAAS and
the best of J2SE in one solution. It uses the JAAS framework for its default access control where
needed, and then enhances the framework to incorporate the Access Manager policy
evaluation. In this way, you can use the Access Manager policy implementation to make policy
evaluations pertaining to Access Manager policies, but revert back to the default method of
controlling access to resources not under Access Manager control.

JAAS Authorization in Access Manager

Chapter 7 • Using the JAAS Authorization Framework 129

Custom APIs
Access Manager provides the following custom APIs:.

■ Package com.sun.identity.policy.jaas

This package includes classes for performing policy evaluation against Access Manager
using JAAS (Java Authentication and Authorization) framework.

■ ISPermission

This class provides the support for JAAS Authorization service. It is a new JAAS Permission
which extends the Permission class and is defined to evaluate permission against the Access
Manager policy framework.

■ ISPolicy

This is an implementation of abstract class javax.security.auth.Policy for representing
the system security policy for a Java application environment. It performs policy evaluation
against the Access manager policy service instead of against the default file-based
PolicyFile.

For a comprehensive listing of related APIs, see the Javadoc in the following directory:
AccessManager-base/SUNWam/docs.

User Interface
The user interface for entering permissions and policy is the Access Manager administration
console which works with the policy administration API. Once the policy is defined, the
evaluation is done using the J2SE architecture and enhanced policy implementation.

ISPermission covers the case when additional policy services are defined and imported,
provided they only have boolean action values. In fact boolean evaluation is all that can be done
using JAAS since JAAS permissions have a boolean result.

Enabling the JAAS Authorization Framework
You enable the JAAS authorization framework by resetting policy. Use the
Policy.setPolicy(Policy) API to reset policy during run time. In “Enabling the JAAS
Authorization Framework” on page 130,
Policy.setPolicy(com.sun.identity.policy.jaas.ISPolicy) resets the policy. In this
example, the client application wants to use JAAS authorization API to communicate with the
Access Manger and to perform policy evaluation. Access Manager provides the support needed
to use Access Manager policy so that policy can be defined through the new ISPermission.

Enabling the JAAS Authorization Framework

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006130

EXAMPLE 7–5 Sample JAAS Authorization Code

public static void main(String[] args) {

try {

// Create an SSOToken

AuthContext ac = new AuthContext("dc=iplanet,dc=com");

ac.login();

Callback[] callbacks = null;

if (ac.hasMoreRequirements()) {

callbacks = ac.getRequirements();

if (callbacks != null) {

try {

addLoginCallbackMessage(callbacks);

// this method sets appropriate responses in the callbacks.

ac.submitRequirements(callbacks);

} catch (Exception e) { }

}

}

if (ac.getStatus() == AuthContext.Status.SUCCESS) {

Subject subject = ac.getSubject();

// get the authenticated subject

Policy.setPolicy(new ISPolicy()); // change the policy to our own Policy

ISPermission perm = new ("iPlanetAMWebAgentService",

"http://www.sun.com:80", "GET");

Subject.doAs(subject, new PrivilegedExceptionAction() {

/* above statement means execute run() method of the

/* Class PrivilegedExceptionAction()

as the specified subject */

public Object run() throws Exception {

AccessController.checkPermission(perm);

// the above will return quietly if the Permission

// has been granted

// else will throw access denied

// Exception, so if the above highlighed ISPermission

// had not been granted, this return null;

}

});

}

}

Enabling the JAAS Authorization Framework

Chapter 7 • Using the JAAS Authorization Framework 131

EXAMPLE 7–5 Sample JAAS Authorization Code (Continued)

Enabling the JAAS Authorization Framework

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006132

Writing Log Operations

Sun JavaTM System Access Manager7 2005Q4 provides a Logging Service for recording
information such as user activity, traffic patterns, and authorization violations. The Access
Manager Logging APIs enable external applications to take advantage of the Logging Service.

For information about how the Logging Service works and what it logs, see Chapter 6,
“Logging,” in Sun Java System Access Manager 7 2005Q4 Technical Overview. This chapter
describes how to use the Logging APIs to write log operations and customize logging plug-ins.
Topics in this chapter include:

■ “About the Logging Samples” on page 133
■ “Writing LogRecords To A Log File or Table” on page 134
■ “Reading LogRecords From A Log File or Table” on page 135
■ “Compiling Logging Programs” on page 141
■ “Implementing a Remote Logging Application in a Container” on page 142
■ “Logging to a Second Access Manager Server” on page 144
■ “Using the Logging Sample Files” on page 145
■ “Using the Logging SPIs” on page 147

About the Logging Samples
Access Manager provides two comprehensive Logging example programs in the
AccessManager-base /SUNWam/samples/logging directory. LogSample.java is a log-writing
program, and LogReaderSample.java is a log-reading program. The logging directory also
includes the Makefile for compiling and scripts to facilitate running the programs.

8C H A P T E R 8

133

Writing LogRecords To A Log File or Table
LogSample.java takes several command-line arguments, authenticates with the Access
Manager server, creates a LogRecord, then logs the log record to the specified log file or table.
The Access Manager Logging Service determines whether the log records go to a flat file or to a
relational database management system (RDBMS), according to the service configuration. The
following example command line uses the LogSample script:

./RunSample -o dc=iplanet,dc=com -u amadmin -p mypassword -n mylog \

-m "my message to log in mylog" -l user1 -w user1password

In LogSample.java, the command-line arguments are read. The following arguments are used
to acquire the SSOToken that is specified in invoking the LogRecord(loglevel, message,
token) method:

-o organization name

-u userID

-p userID password

The Logging Service extracts other pieces of information from this userID SSOToken when
processing the LogRecord request. Ideally, the userID specified is the user who is the subject of
the record being logged. The -m (message) argument is also used in the LogRecord call.

userToken =getSessionToken(orgname, args[userSID], args[userPWD]);

logRecord = new LogRecord(java.util.logging.Level.INFO, args[message], userToken);

logRecord.addLogInfo("ModuleName", "MyModule");

MyModule is added as the ModuleName property is added to the LogRecord using the
addLogInfo() call. The -n (log name) argument is used in the Logger.getLogger(logname)
call. The -l (logged by userID) and -w (logged by userID's password) are used to get the
SSOToken specified in the logger.log(logRecord, loggedByToken) call. Where the userID
associated with the LogRecord SSOToken is usually the subject of the log record, the userID
associated with the log() SSOToken is the user doing the logging. In the actual log file, the
values for the log record fields come from the following parameters:

time added by the Logging Service, and is taken from the Access Manager system
clock when the LogRecord is instantiated.

Data The message as specified in the LogRecord() call. In LogSample.java, the
value after the -m option: my message to log in mylog.

ModuleName The value specified for the ModuleName property (or
LogConstants.MODULE_NAME property in the addLogInfo() call. If no value is
specified, this field will read:Not Available .

Writing LogRecords To A Log File or Table

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006134

MessageID The value specified for theMessageID property (or
LogConstants.MESSAGE_ID property in an addLogInfo() call. If no value is
specified, this field will read: Not Available. LogSample.java does not add a
value for this property.

Domain The value for this field is extracted from the SSOToken specified in the
LogRecord() call. This corresponds to the subject, userID's domain, or
organization.

ContextID The value for this field is extracted from the SSOToken specified in the
LogRecord() call.

LogLevel The value specified in the LogRecord() call. In LogSample.java, the value is
java.util.logging.Level.INFO (INFO in the log file).

LoginID The value for this field is extracted from the SSOToken specified in the
LogRecord()call. For example, the value can be the DN for the userID
specified in the -u command-line option.

IPAddr The value for this field is extracted from the SSOToken specified in the
LogRecord() call.

LoggedBy The value for this field is extracted from the SSOToken specified in the
logger.log() call. For example, the value can be the DN for the userID
specified in the -l command-line option.

HostName The value for this field is extracted from the SSOToken specified in the
LogRecord() call. The value is the host name that corresponds to the address
in the IPAddr field, if it can be resolved.

Reading LogRecords From A Log File or Table
The log writing sample program LogSample.java is fairly straightforward in the way the
program writes a single record to a file or table as determined by the Logging Service's
configuration. In contrast, the log reading sample program is more complex because you can
specify that queries are applied to multiple files or tables.

Caution – Log files and tables in particular can become very large. If you specify multiple logs in a
single query, create queries that are very specific, or limited in the number of records to return,
or both specific and limited. If a large number of records are returned, the Access Manager
resource limits (including those of the hosting system) may be exceeded.

LogReaderSample.java requires three command-line arguments which are used to
authenticate with the Access Manager server. If you specify a log name, then the sample

Reading LogRecords From A Log File or Table

Chapter 8 • Writing Log Operations 135

becomes a single-log reading application. If you don't specify a log name, reading from multiple
logs is allowed. Reading from multiple logs does not preclude reading from a single log. Reading
from multiple logs is useful when the exact log names available are unknown. The log reading
sample is also very interactive. The following command-line example uses the
LogReaderSample script:

./RunLogReader -o dc=iplanet,dc=com -u amadmin -p mypassword

In LogReaderSample.java, the command-line arguments are read. The following arguments
are used to obtain the SSOToken that is specified in invoking the various LogReader.read()
methods:

-o organization name

-u userID

-p userID password

The LDAP login utility ldapLogin() is provided in a separate file, LogSampleUtils.java.

Next, the Logging Service configuration is read to determine, for example, whether file or
database logging is specified and which log fields are logged.

manager.readConfiguration();

String logStorageType = manager.getProperty(LogConstants.BACKEND);

Depending on whether Access Manager Logging Service is logging to a file or to a database,
when the LogReader.getSize() method is invoked on a particular log name,
LogReader.getSizeUnits() will return either LogConstants.NUM_BYTES or
LogConstants.NUM_RECORDS. For example:

i3 = LogReader.getSizeUnits();

The LogConstants.LOG_FIELDS property specifies which log fields have been specified for
inclusion in the log record. For example:

String selFldsStr = manager.getProperty(LogConstants.LOG_FIELDS);

The time and Data fields are mandatory, thus they do not appear in the Logging Service list.
They must be explicitly added to the Set of Fields to Retrieve.

StringTokenizer stoken = new StringTokenizer(selFldsStr, ", ");

String [] sFields = new String[stoken.countTokens() + 3];

Set allFields = new HashSet();

allFields.add("time");

allFields.add("data");

Reading LogRecords From A Log File or Table

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006136

To get the Set of Log Names Available to read and their sizes:

Set filesThereAre = LogReader.getLogNames();

for (Iterator it=filesThereAre.iterator(); it.hasNext();) {

String fileName = (String)it.next();

long li = 0;

try {

li = LogReader.getSize(fileName);

} catch (Exception ex) {

System.out.println("got exception on file " +

fileName + ". " + ex.getMessage());

}

System.out.println (fileOrTable + " " + (i2++) +

" = " + fileName + " contains " + li + " " +

sizeUnit + ".");

}

LogReaderSample.java allows you to select reads on a single or multiple logs. If a log name was
specified on the command line with the -n option, then you can select from among the
following types of reads:

1. read all records

2. specify logType

3. specify logType and timeStamp

4. specify logType and logQuery

5. specify logType, timeStamp, and logQuery

6. specify logQuery

If no log name was specified on the command line, and you select single log to read, you may
select from only a list of pre—configured reports:

Single (s) or multiple (m) file/table read: [s]

What type of audit report to generate:

1. all records from file/table

2. authentication successes

3. authentication failures

4. login/logout activity

5. policy allows

6. policy denies

7. amAdmin CLI activity

8. amAdmin console activity

9. Federation access

10. Federation errors

11. Liberty access

12. Liberty errors

13. SAML access

Reading LogRecords From A Log File or Table

Chapter 8 • Writing Log Operations 137

14. SAML error

enter type [1..14]:

If you want to read from a selected single log, but specify the logQuery settings, do not use the
-n command-line option. Select multiple log read, and then select the single log from which to
read:

Available files:

file 0 = amAuthentication.access contains 1595 bytes.

file 1 = amPolicy.access contains 2515 bytes.

...

file 13 = amAuthentication.error contains 795 bytes.

Single (s) or multiple (m) file/table read: [s] m

Available files:

0: amAuthentication.access

1: amPolicy.access

...

12: amConsole.access-1

13: amAuthentication.error

Enter selections (space-separated): 0

What type of read to use:

1. read all records

2. specify logQuery

enter type [1 or 2]:

The following table provides brief descriptions of the LogReader.read() methods.

TABLE 8–1 LogReader.read() Methods

read(String fileName,

Object userCrdential)

Returns all of the records from the specified log,
ignoring the maximum number of records specified in
the Logging Service configuration.

read(String logName,

String logType,

Object userCrdential)

Specifies the log name and its suffix (type) separately,
where the suffix can be access or error. All records
are retrieved from the specified log.

read(String logName,

String logType,

String timeStamp,

Object userCrdential)

Used when reading secure log files. The timeStamp is
the suffix that appears after the file logType (access or
error). All records are retrieved from the specified
log.

Reading LogRecords From A Log File or Table

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006138

TABLE 8–1 LogReader.read() Methods (Continued)
read(String logName,

String logType,

LogQuery logQuery,

Object userCrdential)

Performs a query, as specified by the logQuery
parameter. The log name and type (access or error)
are also specified.

read(String logName,

String logType,

String timeStamp,

LogQuery logQuery,

Object userCrdential)

Corresponds to the method described above. Used in
the secure logging case.

read(String logName,

LogQuery logQuery,

Object userCrdential)

Performs a query on the specified log.

read(String logName,

Set fileNames,

LogQuery logQuery,

Object userCrdential)

Performs a query on the specified Set of Logs.

The LogQuery, along with the QueryElements that may be specified, are constructed in the
getLogQuery() routine in LogReaderSample.java.

The following are brief descriptions of the LogQuery constructors.

LogQuery()

Creates a new LogQuery object with the following default values:

maxRecord =

LogQuery.MOST_RECENT_MAX_RECORDS

globalOperand =

LogQuery.MATCH_ANY_CONDITION

queries = null (QueryElement)

columns = null (columns to return)

sortBy = null (field to sort on)

LogQuery(int max_record)

Creates a new LogQuery object with the following values:

maxRecord = max_record

globalOperand = LogQuery.MATCH_ANY_CONDITION

queries = null (QueryElement)

columns = null (columns to return)

sortBy = null (field to sort on)

LogQuery(int max_Record, int matchCriteria, java.lang.String sortingBy)

Creates a new LogQuery object with the following values:

Reading LogRecords From A Log File or Table

Chapter 8 • Writing Log Operations 139

maxRecord = max_Record

globalOperand = matchCriteria

queries = null (QueryElement)

columns = null (columns to return)

sortBy = sortingBy (field to sort on)

The LogQuery object created with the constructors may be subsequently modified with the
following set* methods:

■ setColumns(java.util.ArrayList columns)

■ setGlobalOperand(int no)

■ setMaxRecord(int value)

■ setSortingField(java.lang.String fieldName)

A LogQuery may specify a List of QueryElements, each containing a value for a field (column)
and a relationship. The following sample code queries for all successful authentications in
domain dc=iplanet,dc=com, and returns the time, Data, MessageID, ContextID, LoginID, and
Domain fields, sorted on the LoginID field:

ArrayList al = new ArrayList();

al.add (LogConstants.TIME);

al.add (LogConstants.Data);

al.add (LogConstants.MESSAGE_ID);

al.add (LogConstants.CONTEXT_ID);

al.add (LogConstants.LOGIN_ID);

al.add (LogConstants.DOMAIN);

LogQuery lq = new LogQuery(LogQuery.ALL_RECORDS,

LogQuery.MATCH_ALL_CONDITIONS,

LogConstants.LOGIN_ID);

QueryElement qe1 = new QueryElement(LogConstants.MESSAGE_ID,

"AUTHENTICATION-105",

QueryElement.EQ);

lq.addQuery(qe1);

QueryElement qe2 = new QueryElement(LogConstants.DOMAIN,

"dc=iplanet,dc=com",

QueryElement.EQ);

lq.addQuery(qe2);

QueryElement supports the following relationships:

QueryElement.GT Greater than

QueryElement.LT Less than

QueryElement.EQ Equal to

QueryElement.NE Not equal to

Reading LogRecords From A Log File or Table

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006140

QueryElement.GE Greater than or equal to

QueryElement.LE Less than or equal to

QueryElement.CN Contains

QueryElement.SW Starts with

QueryElement.EW Ends with

In the example, assuming that dc=iplanet,dc=com is the root domain, changing the
qe2relationship field to QueryElement.EW (Ends with) or QueryElement.CN (Contains) changes
the query to include all successful authentications in all domains. To read the example query
from the amAuthentication.access log, assuming the SSOToken is in ssoToken:

String[][] result = new String[1][1];

result = read("amAuthentication.access", lq, ssoToken);

The first record (row 0) contains the field and column names. See the printResults() method
in LogReaderSample.java for a sample display routine.

Compiling Logging Programs
Included with the sample log programs is a gmake Makefile which compiles both
LogSample.java and LogReaderSample.java, as well as the utilities module
LogSampleUtils.java. The item of most interest is the CLASSPATH setting.

Executing Logging Programs
The sample standalone log programs include ksh scripts. There are considerations for running
on Solaris or Linux handled by the scripts, but a few less obvious settings concern whether there
is local or remote logging, if database logging is configured, and if Access Manager is configured
for SSL. The LOCAL_LOGGING shell variable is set to true by default. If the logging program is
executing on a remote system, using the Access Manager client APIs, then the LOCAL_LOGGING
shell variable this must be set to false. The LOCAL_LOGGING setting later determines the setting
of the CONFIGOPTION variable. When the logging program is running on the same system as the
Access Manager server, and logging to a database is configured, then the database JDBC driver
must also be included in the CLASSPATH. If the Access Manager server is configured for SSL, and
the logging program is executing on a remote system using the Access Manager client APIs, be
sure that the following parameter is set in the script:

-D"java.protocol.handler.pkgs=com.iplanet.services.comm"

Compiling Logging Programs

Chapter 8 • Writing Log Operations 141

The certificate database conforming to the Access Manager server container must be provided,
and the com.iplanet.am.admin.cli.certdb.dir property in the AMConfig.properties file
must point to the Access Manager server container. For example, for non-production testing to
an Access Manager server running in a Application Server 8.1 container, you can copy
(assuming default installation of AS 8.1) /var/opt/SUNWappserver/domains/domain1/config
to the remote system, and set com.iplanet.am.admin.cli.certdb.dir to that location. You
must also set the following:

com.iplanet.am.admin.cli.certdb.prefix=

com.iplanet.am.admin.cli.certdb.passfile=/etc/opt/SUNWam/config/.wtpass

The .wtpass file needs to be created. More detailed information about certificates, see the file
AccessManager-base/SUNWam/samples/authentication/api/Readme_setup.html .

Implementing a Remote Logging Application in a Container
If your remote logging application is running in a container such as Sun Java System
Application Server or Web Server, at the command line, set the following properties:

-Ds1is.java.util.logging.config.class=

com.sun.identity.log.s1is.LogConfigReader

-DLOG_COMPATMODE=Off

-Djava.util.logging.manager=

com.iplanet.ias.server.logging.ServerLogManager

The -Djava.util.logging.manager property occurs in the Java System Web Server
server.xml file. JVM options are typically added to the server.xml file in Java System Web
Server, or to the domain.xml file in Java System Application Server.

Setting Environment Variables
You must set the following shared library environment variables in the executable for an
application that is using the Logging Service. You can determine how to set the variables
depending upon three things:

■ Whether the application can execute in the local Access Manager server, or executes only a
in remote server

■ Whether or not you want the Access Manager LogManager class to override the native
LogManager class

■ Whether or not SSL is enabled in your deployment

Implementing a Remote Logging Application in a Container

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006142

If Client Can Execute in the Local Access Manager Server
When the client application can execute in either the local Access Manager server JVM or in a
remote server JVM, choose one of the following two configurations:

■ If it is acceptable for the native LogManager class to be overridden by the Access Manager
LogManager class in the JDK1.4 environment, then set the following variables:

-D"java.util.logging.manager=com.sun.identity.log.LogManager"

-D"java.util.logging.config.class=com.sun.identity.log.

s1is.LogConfigReader"

■ If it is not acceptable for the native LogManager class to be overridden by the Access Manager
LogManager class in the JDK1.4 environment, then set the following variables:

-DLOG_COMPATMODE=Off

-Ds1is.java.util.logging.config.class=com.sun.identity.log.

s1is.LogConfigReader

If Client Executes Only in a Remote Server
When the client application can execute only in a remote server JVM, choose one of the
following two configurations:

■ If it is acceptable for the native LogManager class to be overridden by the Access Manager
LogManager class in the JDK1.4 environment, then follow these steps:
1. Set the following variables:

-Djava.util.logging.manager=com.sun.identity.log.LogManager

-Djava.util.logging.config.file=/AccessManager_base/SUNwam/

lib/LogConfig.properties

2. In LogConfig.properties, or in the logging.properties file supplied by JDK, set the
following properties:

iplanet-am-logging-remote-handler=com.sun.identity.log.handlers.

RemoteHandler

iplanet-am-logging-remote-formatter=com.sun.identity.log.

handlers.RemoteFormatter

iplanet-am-logging-remote-buffer-size=1

iplanet-am-logging-buffer-time-in-seconds=3600

iplanet-am-logging-time-buffering-status=OFF

Implementing a Remote Logging Application in a Container

Chapter 8 • Writing Log Operations 143

■ If it is not acceptable for the native LogManager class to be overridden by the Access Manager
LogManager class in the JDK1.4 environment, then follow these steps:
1. Set the following variables:

-DLOG_COMPATMODE=Off

-Ds1is.java.util.logging.config.file=/AccessManager-base/SUNwam/lib/LogConfig.properties

2. In LogConfig.properties, or in the logging.properties file supplied by JDK, set the
following properties:

iplanet-am-logging-remote-handler=com.sun.identity.log.

handlers.RemoteHandler

iplanet-am-logging-remote-formatter=com.sun.identity.log.

handlers.RemoteFormatter

iplanet-am-logging-remote-buffer-size=1

iplanet-am-logging-buffer-time-in-seconds=3600

iplanet-am-logging-time-buffering-status=OFF

The Client APIs use this logging configuration by default. In this case, the Logging API will
configure a remote handler for all logs. Access to the Directory Server is not required in this
case.

If SSL is Enabled
If SSL is enable and uses JSS for Access Manager, set the following parameter:

-D"java.protocol.handler.pkgs=com.iplanet.services.comm"

Logging to a Second Access Manager Server
For a remote Access Manager server to use another Access Manager server's logging service, set
the Logging Service URL in the remote Access Manager server Naming Service to specify the
Access Manager server that will be performing the actual logging. User the following form:

http://host:port/amserver/loggingservice

Logging to a Second Access Manager Server

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006144

Using the Logging Sample Files
The sample files demonstrate how you can use the Access Manager Logging APIs for to log
operations. You can execute the samples through the command line. You must have super user
privileges to run the RunSample and RunLogReader programs and to access
AMConfig.properties.

▼ To Run the Sample Programs on Solaris
In the Makefile, RunSample, and RunLogReader files, set the following variables. The variables
may already have been set during installation.
AM_HOME Set this to refer to the where Access Manager server is installed.

JAVA_HOME Set this variable to your installation of the JDK. The JDK version should be
greater than or equal to 1.3.1_06.

JDK14 Set this variable to true if your JAVA_HOME points to JDK 1.4 or newer
version else set it to false

LOCAL_LOGGING Set this variable to true if you are executing this sample at complete Access
Manager installation which will perform local logging. If you are executing
this sample from a SUNWamsdk only install then set it to false which will
perform remote logging (logging at server side).

Set the LD_LIBRARY_PATH as is appropriate for your installation.

Run the gmake command to compile the sample program.

Run the following chmod command:
chmod +x RunSample RunLogReader

Run the following command to run the logging sample program:
./RunSample [-o organizationName] [-u userName -p userPassword]

-n logName -m message -l loggedByUser -w loggedByUserPassword
orgName Name of the organization. This is an optional parameter. If a value is

not provided, Access Manager assumes the value to be the root
organization.

userName Name of the user on whose behalf the logging is performed. This is
an optional parameter.

userPassword Password for authenticating the user. This value must be provided if
userName is provided.

1

2

3

4

5

Using the Logging Sample Files

Chapter 8 • Writing Log Operations 145

logName Name of the log file.

message Message to be logged to the log file.

loggedByUser Name of the administrator user who is logging the message.

loggedByUserPassword Password to authenticate the administrator user.

Example:

$./RunSample -u amadmin -p 11111111 -n testLog.access -m "trying test logging"

-l amadmin -w 11111111

Run the log reader program by running the following command:
./RunLogReader -o organizationName -u userName

-p userPassword [-n logName]

organizationName Name of the organization. This is a required parameter.

username Name of the user who is accessing the log file or table. This is a required
parameter.

userpassword Password to authenticate the user. This is a required parameter.

logName Name of the log file or table. This parameter is optional. You can select
the log file or table when running the program.

Example :

$./RunLogReader -u amadmin -p 11111111 -o dc=example,dc=com

-n testLog.access

▼ To Run the Sample Programs on Windows 2000
In the make.batfile, set the following variables:
BASE Set this to refer to the where Access Manager server is installed.

JAVA_HOME Set this variable to your installation of the JDK. The JDK version should be
greater than or equal to 1.3.1_06.

JDK14 Set this variable to true if your JAVA_HOME points to JDK 1.4 or newer
version. Otherwise, set it to false.

LOCAL_LOGGING Set this variable to true if you are executing this sample at complete Access
Manager installation which will perform local logging. If you are executing
this sample from an SUNWamsdk only install then set it to false which will
perform remote logging (logging at server side).

6

1

Using the Logging Sample Files

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006146

Set the LD_LIBRARY_PATH as is appropriate for your installation.

Compile the program by running the make command.

Run the sample program by running the make run command:
make run [-o organizationName]

[-u userName -p userPassword] -n logName
-m message -l loggedByUser

-wloggedByUserPassword

orgName Name of the organization. This is an optional parameter. If a value is
not provided, Access Manager assumes the value to be the root
organization.

userName Name of the user on whose behalf the logging is performed. This is
an optional parameter.

userPassword Password for authenticating the user. This value must be provided if
userName is provided.

logName Name of the log file.

message Message to be logged to the log file.

loggedByUser Name of the administrator user who is logging the message.

loggedByUserPassword Password to authenticate the administrator user.

Example:

c> make run -u amadmin -p 11111111 -n testLog.access

-m "trying test logging" -l amadmin -w 11111111

Using the Logging SPIs
The Logging SPI are Java packages that can be used to develop plug-ins for customized features.
The SPI are organized in the com.sun.identity.log.spi package. For more information, see
the Sun Java System Access Manager 7 2005Q4 Java API Reference.

Log Verifier Plug-In
If secure logging is enabled, the log files are verified periodically to detect any attempt of
tampering. If tampering is detected, the action taken can be customized by following the steps.

2

3

4

Using the Logging SPIs

Chapter 8 • Writing Log Operations 147

▼ To Customize Actions to be Taken in Secure Logging

Implement the com.sun.identity.log.spi.IVerifierOutput interface with the desired
functionality.

Add the implementing class in the classpath of Access Manager.

Modify the property iplanet-am-logging-verifier-action-class in the
/etc/opt/SUNWam/config/xml/amLogging.xml file with the name of the new class.

Log Authorization Plug-In
The Logging Service enables you to plug in a class that will determine whether a LogRecord is
logged or discarded. The determination is based on the authorization of the owner of the
session token performing the event.

Note – The IAuthorizer interface accepts an SSOToken and the log record being written.

There are several ways to accomplish this. The following procedure is one example.

▼ To Implement a Log Authorization Plug-In

Get the applicable role or DN of the user from the SSOToken and check it against a
pre-configured (or hardcoded) list of roles or users that are allowed access.
The administrator must configure a role and assign all policy agents and entities such as
applications that can possibly log into Access Manager and into this role.

Instantiate a PolicyEvaluator and call PolicyEvaluator.isAllowed(ssotoken, logname);.

▼ To Instantiate a PolicyEvaluator
This entails defining a policy XML to model log access and registering it with Access Manager.

Implement the com.sun.identity.log.spi.IAuthorizer interface with the desired
functionality.

Add the implementing class in the classpath of Access Manager.

Modify the property iplanet-am-logging-authz-class in the
/etc/opt/SUNWam/config/xml/amLogging.xml file with the name of the new class.

1

2

3

1

2

1

2

3

Using the Logging SPIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006148

Using the C APIs

Sun JavaTM System Access Manager 7 2005Q4 provides C APIs that enable external applications
to participate in Access Manager authentication, authorization, single sign-on (SSO), and
logging operations. To quickly lookup C API functions and syntax contained in the C header
files, see Sun Java System Access Manager 7 2005Q4 C API Reference.

This chapter provides information on how the C APIs work, and includes instructions for using
the C sample code that comes with Access Manager. The chapter includes the following topics:
■ “About the C Library for Authentication” on page 149
■ “About the C Library For Policy” on page 151
■ “About the C Library for Single Sign-On” on page 152
■ “Using the C API Code Samples” on page 161

About the C Library for Authentication
C applications can authenticate users with the Access Manager Authentication Service by using
the Authentication C API. The C application contacts the Authentication Service to initiate the
authentication process, and the Authentication Service responds with a set of requirements.
The client application submits authentication credentials back to the Authentication Service
and receives further authentication requirements back until there are no more to fulfill. After all
requirements have been sent, the client makes one final call to determine if authentication has
been successful or has failed.

The sequence of calls necessary to authenticate to Access Manager begins with the function call
am_auth_create_auth_context. This call will return an AuthContext structure used for the
rest of the authentication calls. Once an AuthContext structure has been initialized, the
am_auth_login function is called. This indicates to the Authentication Service that an
authentication is desired. Depending on the parameters passed when creating the AuthContext
structure and making the am_auth_login function call, the Authentication Service will
determine the login requirements with which to respond. For example, if the requested
authentication is to an organization configured for LDAP authentication, and no

9C H A P T E R 9

149

authentication module chaining is involved, the server will respond with the requirements to
supply a user name and a password. These attributes correspond to elements in the
remote-auth.dtd structure. The user name corresponds to the NameCallback element; the
password which corresponds to the PasswordCallback element. The client loops on function
call am_auth_has_more_requirements (in this specific case there will be two). The client then
fills in the needed information and submits this back to the server with function call
am_auth_submit_requirements. The final step is to make function call am_auth_get_status
to determine if the authentication was successful or not.

C Sample Code for Authentication
By default, the C Authentication sample checks the directory where Access Manager is installed
for a properties file named AMAgent.properties. At installation, the file does not exist. If the file
does not exist, you must create an AMAgent.properties file, and add the appropriate
properties.

Code Example 6-7 lists the properties that are needed by the C Authentication API. Some of
these are defined in AMAgent.properties and some are not. Those that are not defined in
AMAgent.properties can be added to the file so they do not have to be identified for each
function call. For example, com.sun.am.auth.orgName, which identifies the organization from
which you want to authenticate, can be added to AMAgent.properties.

C Header File. The C Authentication API header file, am_auth.h, can be found in
AccessManager-base/SUNWam/agents/include. It contains the function prototypes for the
function calls available in the C Authentication API.

EXAMPLE 9–1 AMAgent.properties File

SOME PROPERTIES LISTED ARE NOT PRE-EXISTING IN THE PROPERTIES FILE

the identity server naming service url

com.sun.am.namingURL=http://serverexample.domain.com:58080/amserver/namingservice

the directory to use for logging

com.sun.am.logFile=/home/uid/logs/auth-log

the logging level, all:5 being the highest and all:3 being medium

com.sun.am.logLevels=all:5

the directory containing the certificate and key databases

com.sun.am.sslCertDir=/home/level/certdir

the prefix of the cert7.db and key3.db files, if any

com.sun.am.certDbPrefix=

the password to the key3.db file

com.sun.am.certDBPassword=11111111

true to trust SSL certificates not in the client cert7.db

com.sun.am.trustServerCerts=true

the nick name of the client certificate in the cert7.db

About the C Library for Authentication

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006150

EXAMPLE 9–1 AMAgent.properties File (Continued)

com.sun.am.auth.certificateAlias=Cert-Nickname

the identity server organization desired for authentication

com.sun.am.auth.orgName=dc=sun,dc=com

About the C Library For Policy
Access Manager provides C APIs to allow external applications to determine access privileges
and manage policies. Access Manager also provides a library of policy evaluation APIs to enable
integration of the policy functionality into for C applications.

The C library provides a comprehensive set of interfaces that query policy results of an
authenticated user for a given action on a given resource. The result of the policy evaluation is
called an action value and may not always be binary (allow/deny or yes/no). Action values can
also be non-boolean. For example, John Smith has a mailbox quota of 100MB. The value 100 is
defined by a policy. As policy evaluation results in string values only, the policy evaluation
returned is 100 numeric and not 100MB. It is up to the application developer to define metrics
for the values obtained appropriately.

Note – The policy management system is generic and makes no assumptions about any
particular policy definition requirement.

Policy Implementation
As the first step of policy implementation, the API abstracts how a resource is represented by
mandating that any resource be represented in a string format. For example, on a web server,
resources may be represented as URLs. The policy evaluation engine cares only about the
relative relevance of one resource to other. Five relative relevances are defined between two
resources:

■ exact match

■ no match

■ subordinate match

■ superior match

■ exact pattern match

Having represented the resources in string format, the service developer must provide
interfaces that establish the relevant relationship between resources.

About the C Library For Policy

Chapter 9 • Using the C APIs 151

Note – Exact pattern match is a special case where resources may be represented collectively as
patterns. The information is abstracted from the policy service and the comparison operation
must take a boolean parameter to trigger a pattern matched comparison. During the caching of
policy information, the policy engine does not care about patterns, whereas during policy
evaluation, the comparisons are pattern sensitive.

The service developer must also provide a method to extract the root of the given resource. For
example, in a URL, the protocol:// AcceessManager-HostName.domain_name:port portion
represents the root. The three functions (has_patterns , get_resource_root and
compare_urls) are specializations of resource representations. The set of characteristics needed
to define a resource is called a resource trait. Resource traits are taken as a parameter during
service initialization in the am_resource_traits_t structure. Using the resource traits, the
policy service constructs a resource graph for policy evaluation. In a web server policy sense, the
relation between all the resources in the system spans out like a tree with the following being
part of the root tree:

protocol:// AcceessManager-HostName.domain_name : port/

Policy Evaluation
Two opaque data structures are defined: am_map_t and am_properties_t. am_map_t provides a
key to multiple value mapping and am_properties_t provides a key to single value mapping.
am_properties_t provides the additional functionality of loading a configuration file and
getting values of specific data types. These are simple data structures that are only used for
information exchange to and from the policy evaluation interfaces.

About the C Library for Single Sign-On
The C API are provided in the SUNWamcom package which comes with Access Manager or any of
its downloadable agents. The package includes header files, libraries and samples.

C SSO Include Files
Include files for the C SSO API are am_sso.h and am_notify.h. am_sso.h must be included for
any SSO routines. am_notify.h must be included for parsing notification messages from the
server and calling SSO listeners.

About the C Library for Single Sign-On

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006152

C SSO Properties
Certain properties must be read in and passed to am_sso_init(), the routine which initializes
C API. Because of this, am_sso_init() must be called before any other SSO interface. The
default properties file used is AMAgent.properties, located in
AccessManager-base/SUNWam/config/. The following properties must be set:

■ The com.sun.am.namingURL property specifies the URL for the Naming Service. This
service is used to find the URL of the Session Service for the given SSOToken ID. This
property must be set as:
com.sun.am.namingURL =

https://myhost.mydomain.com:58080/amserver/namingservice

■ The com.sun.am.notificationEnabled and com.sun.am.notificationURL properties
specify whether notification is enabled, and if enabled, a URL where the application can
listen for messages from Access Manager. These properties must be set as:
com.sun.am.notificationEnabled=true

Note – If com.sun.am.notificationEnabled is not found in the properties file, the default is
false.

com.sun.am.notificationURL=https://myhost.mydomain.com:8000/myURL

■ The com.sun.am.sso.cacheEntryLifeTime property specifies how long, in minutes, a
session token can live in cache before it should be removed. This property must be set as:
com.sun.am.sso.cacheEntryLifeTime=5

If not set, the default is 3 minutes.
■ The com.sun.am.sso.checkCacheInterval property specifies how often, in minutes, the

cache should be checked for entries that have reached the cache entry life time. This
property must be set as:
com.sun.am.sso.checkCacheInterval=5

■ The com.sun.am.sso.maxThreads specify the maximum number threads the SSO API
should invoke for handling notifications. The API maintains a thread pool and invokes a
thread for each notification. If the maximum number of threads has been reached, the
notification will wait until a thread is available. If not specified the default maximum
number of threads is 10. This property must be set as:
com.sun.am.sso.maxThreads = 5

■ The com.sun.am.cookieEnabled property specifies whether the session ID found in the
cookie is URL encoded. If true, it will be URL decoded before sent to Access Manager for
any session operation. This property must be set as:
com.sun.am.cookieEncoded = true|false

About the C Library for Single Sign-On

Chapter 9 • Using the C APIs 153

More information on properties in the AMAgent.properties file can be found in the J2EE
Policy Agent Guide.

C SSO Interfaces
The C SSO interfaces consist of the following routines. A detailed description of the input and
output parameters for each interface is in the header files.
■ Initialization and Cleanup
■ Get, Validate, Refresh And Destroy SSO Token
■ Get Session Information Interfaces
■ Get And Set Property Interfaces
■ Listener And Notify Interfaces

Initialization and Cleanup
To use the C SSO API, the am_sso_init() routine needs to be called before any other routines.
This interface initializes the internal SSO module. At the end of all SSO routines, am_cleanup()
should be called to cleanup the internal SSO module. Code Example 4-5 on page 90 is a code
sample for these interfaces.

am_sso_init() initializes internal data structures for talking to the Session Service. It takes a
properties input parameter that contains name value pairs from a configuration or properties
file, and returns a status on the success or failure of the initialization.

am_cleanup() cleans up all internal data structures created by am_sso_init, am_auth_init, or
am_policy_init. am_cleanup() needs to be called only once when using any of the Access
Manager C API interfaces (authentication, SSO or policy).

EXAMPLE 9–2 Code Sample For am_sso_init and am_cleanup

#include <am_sso.h>

int main() {

am_properties_t *properties;

am_status_t status;

/* create a properties handle */

status = am_properties_create(&properties);

if (status != AM_SUCCESS) {

printf("am_properties_create failed.\\n");

exit(1);

}

/* load properties from a properties file */

status = am_properties_load(properties, "./myPropertiesFile");

About the C Library for Single Sign-On

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006154

EXAMPLE 9–2 Code Sample For am_sso_init and am_cleanup (Continued)

if (status != AM_SUCCESS) {

printf("am_properties_load failed.\\n");

exit(1);

}

/* initialize SSO module */

status = am_sso_init(properties);

if (status != AM_SUCCESS) {

printf("am_sso_init failed.\\n");

return 1;

}

/* login through auth module, and do auth functions.

* ...

*/

/* do sso functions

* ...

*/

/* done - cleanup. */

status = am_cleanup();

if (status != AM_SUCCESS) {

printf("am_cleanup failed!\\n");

return 1;

}

/* free memory for properties */

status = am_properties_destroy(properties);

if (status != AM_SUCCESS) {

printf("Failed to free properties.\\n");

return 1;

}

/* exit program successfully. */

return 0;

}

Get, Validate, Refresh And Destroy SSO Token
A user needs to be authenticated to get the token ID for the user login session. A token can be
obtained with the token ID and the am_sso_create_sso_token_handle interface. This
interface checks to see if the token is in its local cache and, if not, goes to the server to get the
session information associated with the token ID and caches it. If the reset flag is set to true, this
interface will refresh the idle time of the token on the server. Here is the interface of
am_sso_create_sso_token_handle:

About the C Library for Single Sign-On

Chapter 9 • Using the C APIs 155

■ am_status_t am_sso_create_sso_token_handle(am_sso_token_handle_t *

sso_token_handle_ptr, const char *sso_token_id, boolean_t refresh_token);

Once a token handle is obtained, the caller can check if the session is valid with the
am_sso_is_valid_token interface. The am_sso_token_validate interface will flush the token
handle in the local cache (if any) and go to the server to fetch the latest session information. The
am_sso_refresh_token will also flush the token handle in the local cache (if any) and go to the
server to fetch the session information. In addition, it will reset the idle time of the session on
the server. Here are the token-related interfaces:
■ boolean_t am_sso_is_valid_token(am_sso_token_handle_t sso_token_handle);

■ am_status_t am_sso_validate_token(am_sso_token_handle_t sso_token_handle);

■ am_status_t am_sso_refresh_token(am_sso_token_handle_t sso_token_handle);

When caller is done with a token handle, it must be freed by calling
am_sso_destroy_sso_token_handle to prevent memory leak. The following is that interface:
■ am_status_t am_sso_destroy_sso_token_handle(am_sso_token_handle_t

sso_token_handle);

The session associated with the token can be invalidated or ended with
am_sso_invalidate_token. Although this ends the session for the user, the proper way to log
out is through am_auth_logout. Using the former interface to end a session will result in
authentication resources associated with the session to remain on the server unnecessarily until
the session has timed out. The following is the interface for am_sso_invalidate_token:

■ am_status_t am_sso_invalidate_token(am_sso_token_handle_t sso_token_handle);

Get Session Information Interfaces
The following interfaces make it convenient to get server-defined information (or properties)
about the session associated with a token. This can include the session idle time, maximum
session time, and so forth.

■ const char * am_sso_get_sso_token_id(const am_sso_token_handle_t

sso_token_handle);

■ const char * am_sso_get_auth_type(const am_sso_token_handle_t

sso_token_handle);

■ unsigned long am_sso_get_auth_level(const am_sso_token_handle_t

sso_token_handle);

■ time_t am_sso_get_idle_time(const am_sso_token_handle_t sso_token_handle);

■ time_t am_sso_get_max_idle_time(const am_sso_token_handle_t

sso_token_handle);

■ time_t am_sso_get_time_left(const am_sso_token_handle_t sso_token_handle);

■ time_t am_sso_get_max_session_time(const am_sso_token_handle_t

sso_token_handle);

About the C Library for Single Sign-On

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006156

■ const char * am_sso_get_principal(const am_sso_token_handle_t

sso_token_handle);

■ am_string_set_t am_sso_get_principal_set(const am_sso_token_handle_t

sso_token_handle);

■ const char * am_sso_get_host(const am_sso_token_handle_t sso_token_handle);

Get And Set Property Interfaces
The get and set property interfaces allows an application to get any property (server or
application defined) and to set any property in a session. Note that am_sso_set_property will
update the sso_token_handle with the latest session properties from Access Manager,
including the new property that was set. In addition, if the property that is given in prop_name is
a protected property, am_sso_set_property will return success, however the value given will
not be set as it is a property protected by Access Manager. These interfaces are:

■ const char * am_sso_get_property(const am_sso_token_handle_t

sso_token_handle, const char *prop_name);

■ am_status_t am_sso_set_property(am_sso_token_handle_t sso_token_handle,

const char *prop_name, const char *prop_value);

Code Example 4-6 is a sample of the SSO get, set, create, refresh, validate, invalidate, and
destroy interfaces.

EXAMPLE 9–3 Sample Code For Get, Set, Create, Refresh, Validate, Invalidate, and Destroy Interfaces

/* initialize sso as in previous sample */

am_status_t status = NULL;

am_sso_token_handle_t sso_handle = NULL;

char *session_status = NULL;

am_string_set_t principal_set = NULL;

/* create sso token handle */

status = am_sso_create_sso_token_handle(&sso_handle, sso_token_id, false);

if (status != AM_SUCCESS) {

printf("Failed getting sso token handle for sso token id %s.

\\n", sso_token_id);

return 1;

}

/* check if session is valid */

session_status = am_sso_is_valid_token(sso_handle) ? "Valid" : "Invalid";

printf("Session state is %s\\n", session_status);

/* check if session is valid using validate. This also updates the handle with

/*info from the server */

About the C Library for Single Sign-On

Chapter 9 • Using the C APIs 157

EXAMPLE 9–3 Sample Code For Get, Set, Create, Refresh, Validate, Invalidate, and Destroy Interfaces
(Continued)

status = am_sso_validate_token(sso_handle);

if (status == AM_SUCCESS) {

printf("Session state is valid.\\n");

} else if (status == AM_INVALID_SESSION) {

printf("Session status is invalid.\\n");

} else {

printf("Error validating sso token.\\n");

return 1;

}

/* get info on the session */

printf("SSO Token ID is %s.\\n", am_sso_get_sso_token_id(sso_handle));

printf("Auth type is %s.\\n", am_sso_get_auth_type(sso_handle));

printf("Auth level is %d.\\n", am_sso_get_auth_level(sso_handle));

printf("Idle time is %d.\\n", am_sso_get_idle_time(sso_handle));

printf("Max Idle time is %d.\\n", am_sso_get_max_idle_time(sso_handle));

printf("Time left is %d.\\n", am_sso_get_time_left(sso_handle));

printf("Max session time is %d.\\n", am_sso_get_max_session_time(sso_handle));

printf("Principal is %s.\\n", am_sso_get_principal(sso_handle));

printf("Host is %s.\\n", am_sso_get_host(sso_handle));

principal_set = am_sso_get_principal_set(sso_handle);

if (principal_set == NULL) {

printf("ERROR: Principal set is NULL!\\n");

}else {

printf("Principal set size %d.\\n", principal_set->size);

for (i = 0; i < principal_set->size; i++) {

printf("Principal[%d] = %s.\\n", i, principal_set->strings[i]);

}

am_string_set_destroy(principal_set);

}

/* get "HOST" property on the session. Same as am_sso_get_host(). */

printf("Host is %s.\\n", am_sso_get_property(sso_handle, "HOST"));

/* set a application defined property and get it back */

status = am_sso_set_property(sso_handle, "AppPropName", "AppPropValue");

if (status != AM_SUCCESS) {

printf("Error setting property.\\n");

return 1;

}

printf("AppPropName value is %s.\\n", am_sso_get_property

(sso_handle, "AppPropName");

/* refresh token, idle time should be 0 after refresh */

status = am_sso_refresh_token(sso_handle);

About the C Library for Single Sign-On

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006158

EXAMPLE 9–3 Sample Code For Get, Set, Create, Refresh, Validate, Invalidate, and Destroy Interfaces
(Continued)

if (status != AM_SUCCESS) {

printf("Error refreshing token !\\n");

return 1;

}

printf("After refresh, idle time is %d.\\n", am_sso_get_idle_time(sso_handle));

/* end this session abruptly. am_auth_logout() is the right way

/* to end session */

status = am_sso_invalidate_token(sso_handle);

if (status != AM_SUCCESS) {

printf("Error invalidating token.\\n");

return 1;

}

/* we’re done with sso token handle. free memory for sso handle. */

status = am_sso_destroy_sso_token_handle(sso_handle);

if (status != AM_SUCCESS) {

printf("Failed to free sso token handle.\\n");

return 1;

}

/* call am_cleanup, and other cleanup routines as in previous sample */

Listener And Notify Interfaces
Applications can be notified when a session has become invalid, possibly because it has been
idle over a time limit, or it has reached the maximum session time. This is done by
implementing a listener function of type am_sso_token_listener_func_t , which takes a SSO
token handle, event type, event time, application-defined arguments handle, and a boolean
argument to indicate whether the listener function should be called in the calling thread or
dispatched to a thread from the internal thread pool managed by the C SDK. This listener
function must be registered to be invoked when the session has ended and notification must be
enabled for an application to receive notifications. Notification is enabled by setting the
property com.sun.am.notificationEnabled to true, and by providing a URL where the
application is receiving HTTP messages from Access Manager. The URL where the application
is receiving messages from the Access Manager is expected to take any message from the server
(as an XML string) and pass it to am_notify(). am_notify() will parse the message and invoke
session listeners or policy listeners depending on whether the message is a session or policy
notification. Code Example 4-7 is a sample implementation of SSOToken listener and how to
register it.

About the C Library for Single Sign-On

Chapter 9 • Using the C APIs 159

EXAMPLE 9–4 Sample Implementation Of SSOToken Listener

void sample_listener_func(

am_sso_token_handle_t sso_token_handle,

const am_sso_token_event_type_t event_type,

const time_t event_time,

void *opaque)

{

if (sso_token_handle != NULL) {

const char *sso_token_id = am_sso_get_sso_token_id(sso_token_handle);

boolean_t is_valid = am_sso_is_valid_token(sso_token_handle);

printf("sso token id is %s.\\n",

sso_token_id==NULL?"NULL":sso_token_id);

printf("session state is %s.\\n",

is_valid == B_TRUE ? "valid":"invalid");

printf("event type %d.\\n", event_type);

printf("event time %d.\\n", event_time);

}

else {

printf("Error: sso token handle is null!");

}

if (opaque)

*(int *)opaque = 1;

return;

}

int main(int argc, char *argv[]) {

am_status_t status;

char *sso_token_id = argv[1];

int listener_func_done = 0;

/* initialize sso as in previous samples */

/* get sso token handle */

status = am_sso_create_sso_token_handle(&sso_handle, sso_token_id, false);

/* register listener function. notification must be enabled, if not,

/* status AM_NOTIF_NOT_ENABLED will be returned. */

status = am_sso_add_sso_token_listener(sso_handle, sample_listener_func,

&listener_func_done, B_TRUE);

if (status != AM_SUCCESS) {

printf("Failed to register sample listener function.\\n");

return 1;

}

About the C Library for Single Sign-On

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006160

Non-Web-Based Applications
Access Manager provides the SSO API primarily for web-based applications, although it can be
extended to any non-web-based applications with limitations. With non-web-based
applications, you can use the API in one of two ways:

■ The application has to obtain the Access Manager cookie value and pass it into the SSO
client methods to get to the session token. The method used for this process is
application-specific.

■ Command line applications, such as amadmin, can be used. In this case, session tokens can be
created to access the Directory Server directly. There is no session created, making the
Access Manager access valid only within that process or VM.

Using the C API Code Samples
Access Manager provides sample code you can use to connect your C application to the Access
Manager framework. Access Manager also provides the following resources:

■ At installation, C header files are placed in the following directory:
AccessManager-base/SUNWam/include

■ For your convenience, the methods in the header files are documented in one volume Sun
Java System Access Manager 7 2005Q4 C API Reference.

■ At installation, sample C code is placed in the following directory:
AccessManager-base/SUNWam/samples/csdk

The following provides descriptions of the C code sample files located in the /csdk directory.

am_policy_test.c Demonstrates how to use the Policy APIs to evaluate policy for
specified resources.

am_auth_test.c Demonstrates how to use the Authentication APIs to log in to an Access
Manager server.

am_sso_test.c Demonstrates how to use the Single Sign-On (SSO) APIs to perform
session operations.

am_log_test.c Demonstrates how to use the Logging APIs to log a message to Access
Manager logs.

apache_agent.c Demonstrates how to use the Policy APIs to build a Web Agent for the
Apache Web Server. This is a sample Web Agent and is not intended to
serve as a real Web Agent. When you build the sample code,
apache_agent.c is not compiled. The apache_agent.c is provided for
reference purposes only.

Using the C API Code Samples

Chapter 9 • Using the C APIs 161

▼ To Build a Sample Program on UNIX platforms
Be sure you have gmake or other compliant make program available. When possible, use the
GNU gmakeprogram, version 3.76 or higher. Be sure you have gccor other compliant C compiler
program available.

In the /samplesdirectory, run the make program:
gmake

This produces executables of the samples am_*_test in the same directory.

On Red Hat Linux Advanced Server release 2.1AS/i686 platform:

On the Red Hat Linux AS 2.1/i686 platform, due to a bug in the default gcc and glibc that
comes with RedHat Linux AS 2.1, you must use the following versions (or later) of gcc and
glibc:

■ glibc-2.2.4-32.11
■ gcc-2.96-124.7.2

The rpms are available at the following locations:

ftp://rpmfind.net/linux/redhat/updates/enterprise/2.1AS/en/os/SRPMS/gcc-2.96-124.7.2.src.rpm
(ftp://rpmfind.net/
linux/redhat/updates/enterprise/2.1AS/en/os/SRPMS/gcc-2.96-124.7.2.src.rpm)

ftp://rpmfind.net/linux/redhat/updates/enterprise/2.1AS/en/os/SRPMS/glibc-2.2.4-32.11.src.rpm
(ftp://rpmfind.net/
linux/redhat/updates/enterprise/2.1AS/en/os/SRPMS/glibc-2.2.4-32.11.src.rpm)

▼ To Build a Sample Program on the Windows Platform
On the Windows platform, you can build sample programs using Microsoft Visual Studio 6.0.

Define WINNT in the compile flags.

Add ../lib as an additional lib path.

Add ../include as an additional include path.

Link with all libraries in the ../libdirectory.

Be sure that gmake and MKS Tooolkit are installed on the system.

1

2

More Information

1

2

3

4

5

Using the C API Code Samples

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006162

ftp://rpmfind.net/linux/redhat/updates/enterprise/2.1AS/en/os/SRPMS/gcc-2.96-124.7.2.src.rpm
ftp://rpmfind.net/linux/redhat/updates/enterprise/2.1AS/en/os/SRPMS/gcc-2.96-124.7.2.src.rpm
ftp://rpmfind.net/linux/redhat/updates/enterprise/2.1AS/en/os/SRPMS/gcc-2.96-124.7.2.src.rpm
ftp://rpmfind.net/linux/redhat/updates/enterprise/2.1AS/en/os/SRPMS/glibc-2.2.4-32.11.src.rpm
ftp://rpmfind.net/linux/redhat/updates/enterprise/2.1AS/en/os/SRPMS/glibc-2.2.4-32.11.src.rpm
ftp://rpmfind.net/linux/redhat/updates/enterprise/2.1AS/en/os/SRPMS/glibc-2.2.4-32.11.src.rpm

Run the gmake command:
C:\samples>gmake

The Makefile can be used to make all samples.

Executing the Sample Programs
The sample programs operate in command-line mode and demonstrate the use of C APIs for
authorization, authentication, single sign-on (SSO), and logging.

Platform Information

To Execute a Sample Program on the Solaris Platform

On the Solaris platform you can run the sample programs by launching the generated
executables on the command line. Set the LD_LIBRARY_PATH environment variable to include
the following /lib directories:

■ /usr/lib/mps

■ /opt/SUNWam/lib

■ /usr/lib

■ /usr/ucblib

These directories contain libamsdk.so, libxml2.so , libssl3.so, libnss3.so, libplc4.so,
libplds4.so, libnspr4.so, and libucb.so. Include the directory /usr/lib before
/usr/ucblib so that common programs such as editors will continue to function.

To Execute a Sample Program on the Linux Platform

On the Linux platform you can run the sample programs by launching the generated
executables on the command line. Be sure to set the LD_LIBRARY_PATH environment variable to
include the directory AccessManager-base/agent/lib, which contains the following:
libamsdk.so, libxml2.so, libssl3.so, libnss3.so, libplc4.so, libplds4.so and
libnspr4.so.

To Execute a Sample Program on the Windows Platform

On the Windows platform you can run the sample programs by launching the generated
executables on the command line You must have the ../sample/lib directory in your path
before launching the sample programs. Alternatively, you can use the run.bat script to launch
the sample programs. The run.bat script sets your path appropriately.

6

Using the C API Code Samples

Chapter 9 • Using the C APIs 163

To Execute am_policy_test
The sample program am_policy_test evaluates the policy for the given ssoToken, resource
name, and action. Before you can run this program, you must have a policy defined for the
specified resource in an Access Manager server.

To execute am_policy_test, use the following command:

am_policy_test initPropertyFile ssoToken resourceName action

initPropertyFile The path to the AMAgent.properties file.

Example: ../config/AMAgent.properties

ssoToken Valid SSO Token issued by Access Manager. You can get this value from
your browser after logging into the Access Manager server. See the
documentation for your browser for information about how to determine
the cookie values. Once you have that information, you can use the cookie
value for iPlanetDirectoryPro as the value for this argument.

If the browser you are using does not provide URL decoded cookie values,
you may have to decode the value yourself before using it in this sample
program. Alternatively, for test purposes, you can also use the SSO value
displayed in the Access Manager debugging logs.

resourceName Name of a resource for which you want to evaluate a policy. Example:

http://myServer.myDomain .com:80/myResource.html

action The action name. For example GET or POST .

To Execute am_auth_test
The sample program am_auth_test authenticates to the specified organization using the
specified authentication module. You must have an Access Manager server with a user profile
set up with the corresponding authentication module before running this program.

To execute am_auth_test, run the following command:

am_auth_test [-u user] [-p password] [-f properties_file] [-r url] [-n cert_nick_name]
[-o org_name] [-m auth_module]

The following variables are used:

user Specify the Access Manager user name.

password Specify the Access Manager user's password.

properties_file Specify the complete path of the AMAgent.properties file.

Using the C API Code Samples

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006164

url (Optional) Specify the authentication login URL.

cert_nick_name (Optional) Specify the certificate nickname.

org_name Specify the default organization name.

auth_module Specify the authentication module type. The default is LDAP.

If no options are supplied on the command line, login uses the org_name specified in the
properties file and auth_module LDAP. The user can specify the org_name on the command line
to override the value specified in the properties file. Example: dc=iplanet,dc=com . In either
case, the user is prompted for User Name and Password.

For certificate—based login, the user specifies auth_module Cert on the command line. The
user can specify the cert_nick_name on the command line to override the value specified in the
properties files. Other values affecting certificate-based login are taken from the properties file.
The default properties file is ../../config/AMAgent.properties. Check to be sure the
appropriate properties and values are set in the properties file before calling this program. The
following properties are specific to authentication:

■ com.sun.am.auth.orgName

■ com.sun.am.auth.certificateAlias

To Execute the am_sso_testProgram
The sample program am_sso_test logs into an Access Manager server using the specified user
and password and the LDAP authentication module, and performs SSO Token operations on
the session. Before running this program, you must have an Access Manager with a user profile
set up with the LDAP authentication module.

To execute am_sso_test, run the following command:

am_sso_test -u user -p password
[-f properties_file] [-s session_url]

user User to log in to the Access Manager server using the LDAP authentication
module.

password Password to log in to the Access Manager server using the LDAP
authentication module.

properties_file The path to the properties file. If not set, the default properties file
../../config/AMAgent.properties is used. Check to be sure the
appropriate values are set in the properties file before calling this program.
See Sun Java System Access Manager Policy Agent 2.2 User’s Guidefor more
information on the properties file.

session_url The session URL of the Access Manager server if known. Example:
https://myhost/amserver/sessionservice. If not set (the default is not

Using the C API Code Samples

Chapter 9 • Using the C APIs 165

set), the Naming Service specified in the properties file is used to obtain the
session URL for the Token ID of the login session.

am_log_test
The sample program am_log_test logs a message to the specified log file on the Access
Manager server, using the specified SSO Token.

To execute the am_log_test sample program, run this command:

am_log_test -n log_name -u logged_by_token_id -u user_token_id -m message [-d
log_module] [-f properties_file]

log_name Name of Log file on the Access Manager server.

logged_by_token_id SSO token ID with access to the Logging Service on the Access
Manager server.

user_token_id SSO token ID of a user for the log. Can be the logged_by_token_id or
something else.

message The log message.

log_module The module name, if not specified, the default TestModule is used.

properties_file path to the properties file. If not set, the default properties file
../../config/AMAgent.properties is used. Check to make sure
appropriate values are set in the properties file before calling this
program. See the Agents documentation for more information on the
properties file.

apache_agent.c
The apache_agent.c sample demonstrates how to implement a web agent plugin for the
apache HTTP server. This is a sample only and should not be used as an actual web agent.

Using the C API Code Samples

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006166

Client Detection Service

The Sun JavaTM System Access Manager 7 2005Q4 Authentication Service has the capability of
being accessed from many client types, whether HTML-based, WML-based or other protocols.
In order for this function to work, Access Manager must be able to identify the client type. The
Client Detection Service is used for this purpose. This chapter offers information on the service,
and how it can be used to recognize the client type. It contains the following sections:
■ “Overview” on page 167
■ “Client Data” on page 170
■ “Client Detection APIs” on page 171

Overview
The Access Manager Authentication Service has the capability to process requests from
multiple browser type clients. Thus, the service can be used to authenticate users attempting to
access applications based in HTML, WML or other protocols.

Caution – The Access Manager console though cannot be accessed from any client type except
HTML.

The client detection API can be used to determine the protocol of the requesting client browser
and retrieve the correctly formatted pages for the particular client type.

Client Detection Process
Since any user requesting access to Access Manager must first be successfully authenticated,
browser type client detection is accomplished within the Authentication Service. When a
client’s request is passed to Access Manager, it is directed to the Authentication Service. Within
this service, the first step in user validation is to identify the browser type using the User-Agent
field stored in the HTTP request.

10C H A P T E R 1 0

167

Note – The User-Agent field contains product tokens which contains information about the
browser type client originating the HTTP request. The tokens are a standard used to allow
communicating applications to identify themselves. The format is software/version
library/version.

The User-Agent information is then matched to browser type data defined and stored in the
amClientData.xml file.

Caution – User-Agent information is defined in amClientData.xml but this information is
stored in Directory Server under Client Detection Service.

Based on this client data, correctly formatted browser pages are sent back to the client for
authentication (for example, HTML or WML pages). Once the user is validated, the client type
is added to the session token (as the key clientType) where it can be retrieved and used by
other Access Manager services. (If there is no matching client data, the default type is returned.)

Note – The userAgent must be a part of the client data configured for all browser type clients. It
can be a partial string or the exact product token.

▼ Enabling Client Detection
By default, the client detection capability is disabled; this then assumes the client to be of the
genericHTML type (For example Access Manager will be accessed from a HTML browser). The
preferred way to enable the Client Detection Service is to use the Access Manager console and
select the option in the Client Detection Service itself. For more information, see the
Administration Guide. To enable client detection using the amClientDetection.xml, the
iplanet-am-client-detection-enabled attribute must be set to true.
amClientDetection.xml must then be deleted from Directory Server and reloaded using
amAdmin. The following procedure illustrates the complete enabling process.

Import client data XML file using the amadmin command /AccessManager-base amadmin_DN -w
amadmin_password -tname_of_XML_file
This step is only necessary if the client data is not already defined in amClientData.xml.

Restart Access Manager.

Login to Access Manager console.

Go to Service Configuration and click ClientDetectionproperties.

Enable Client Detection.

1

2

3

4

5

Overview

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006168

Make sure the imported data can be viewed with Access Manager console.
Click on the Edit button next to the Client Data attribute.

Create a directory for new client type and add customized JSPs.
Create a new directory in
/AccessManager-base/SUNWam/web-src/services/config/auth/default/ and add JSPs for
the new client type. Client Detection Process is a login page written for a WML browser.
<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN">

<"http://www.wapforum.org/DTD/wml_1.1.xml">

<!-- Copyright Sun Microsystems, Inc. All Rights Reserved -->

<wml>

<head>

<meta http-equiv="Cache-Control" content="max-age=0"/>

</head>

<card id="authmenu" title="Username">

<do type="accept" label="Enter">

<go method="get" href="/wireless">

<postfield name="TOKEN0" value="$username"/>

<postfield name="TOKEN1" value="$password"/>

</go>

</do>

<p>

Enter username:

<input type="text" name="password"/>

</p>

<p>

Enter password:

<input type="text" name="username"/>

</p>

</card>

</wml>

6

7

Overview

Chapter 10 • Client Detection Service 169

Client Data
In order to detect client types, Access Manager needs to recognize their identifying
characteristics. These characteristics identify the features of all supported types and are defined
in the amClientData.xml service file. The full scope of client data available is defined as a
schema in amClientData.xml . The configured Access Manager client data available for
HTML-based browsers is defined as sub-configurations of the overall schema: genericHTML
and its parent HTML.

Note – Parent profiles (or styles, as they are referred to in the Access Manager console) are
defined with properties that are common to its configured child devices. This allows for the
dynamic inheritance of the parent properties to the child devices making the device profiles
easier to mange.

HTML
HTML is a base style containing properties common to HTML-based browsers. It might have
several branches including web-based HTML (or genericHTML), cHTML (Compact HTML) and
others. All configured devices for this style could inherit these properties which include:

parentId Identifies the base profile. The default value is HTML.

clientType Arbitrary string which uniquely identifies the client. The default
value is HTML.

filePath Used to locate the client type files (templates and JSP files). The
default value is html.

contentType Defines the content type of the HTTP request. The default value is
text/html.

genericHTML—defines Client that will be treated as HTML. The default value is true. This
attribute does not refer to the similarly named generic HTML style.

cookieSupport Defines whether cookies are supported by the client browser. The
default value is true which sets a cookie in the response header. The
other two values could be False which sets the cookie in the URL
and Null which allows for dynamic cookie detection. In the first
request, the cookie is set in both the response header and the URL;
the actual mode is then detected and set from the subsequent
request.

Although the Client Detection Service supports a cookieless mode,
Access Manager console does not. Therefore, enabling this function
will not allow login to the console. This feature is provided for
wireless applications and others that will support it.

Client Data

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006170

CcppAccept-Charset Defines the character encoding used by Access Manager to send a
response to the browser. The default value is UTF-8.

genericHTML
genericHTMLrefers to an HTML browser such as Netscape NavigatorTM, MicrosoftTM Internet
Explorer, or MozillaTM. As a configured device, inherits properties from the HTML style as well as
defining its own properties. genericHTML properties include the following:

parentId Identifies the base profile for the configured device. The default value
is HTML.

clientType An arbitrary string which uniquely identifies the client. The default
value is genericHTML.

userAgent Ssearch filter used to compare/match the user agent defined in the
HTTP header. The default value is Mozilla/4.0 .

CcppAccept-Charset

Defines the character encoding set supported by the browser.
The default values are :
UTF-8;ISO-8859-1;ISO-8859-2;

ISO-8859-3;ISO-8859-4;ISO-8859-5;

ISO-8859-6;ISO-8859-7;ISO-8859-8;

ISO-8859-9;ISO-8859-10;ISO-8859-14;

ISO-8859-15;Shift_JIS;EUC-JP;

ISO-2022-JP;GB18030;GB2312;BIG5;

EUC-KR;ISO-2022-KR;TIS-620;KOI8-R

The character set can be configured for any given locale by adding
charset_locale=codeset where the code set name is based on the
Internet Assigned Numbers Authority (IANA) standard.

Client Detection APIs
Access Manager is packaged with Java APIs which can implement the client detection
functionality. The client detection APIs are contained in a package named
com.iplanet.services.cdm . This package provides the interfaces and classes you need to
retrieve client properties. The client detection procedure entails defining the client type
characteristics and implementing the client detection API within the external application.

The client detection capability is provided by ClientDetectionInterface, a pluggable
interface (not an API invoked by a regular application). ClientDetectionInterface provides a

Client Detection APIs

Chapter 10 • Client Detection Service 171

getClientType method. The getClientType method extracts the client data from the
browser’s incoming HttpRequest, matches the user agent information and returns the
ClientType as a string. Upon successful authentication, the client type is added to the user’s
session token. The ClientDetectionException handles any error conditions.

Client Detection APIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006172

Access Manager Utilities

Sun JavaTM System Access Manager 7 2005Q4 provides scripts to backup and restore data as well
as APIs that are used by the server itself or by external applications. This chapter describes the
scripts and the APIs. The chapter contains the following sections:

■ “Utility APIs” on page 173
■ “Password API Plug-Ins” on page 175

Utility APIs
The utilities package is called com.iplanet.am.util. It contains utility programs that can be
used by external applications accessing Access Manager. Following is a summary of the utility
API and their functions.

AdminUtils
This class contains the methods used to retrieve the TopLevelAdmin DN and password. The
information comes from the server configuration file, serverconfig.xml, located in
AccessManager-base/SUNWam/config/ums.

AMClientDetector
The AMClientDetector interface executes the Client Detection Class configured in the Client
Detection Service to get the client type.

AMPasswordUtil
The AMPasswordUtil interface has two purposes:

■ Encrypting and decrypting any string.

11C H A P T E R 1 1

173

■ Encrypting and decrypting special user passwords such as the password for dsameuser or
proxy user.
Any remote application using this utility should have the value of the AMConfig property
am.encryption.pwd copied to a properties file on the client side. This value is generated at
installation time and stored in /AccessManager-base/ SUNWam/lib/AMConfig.properties

Debug
The Debug utility allows an interface to file debug and exception information in a uniform
format. It supports different levels of information (in the ascending order): OFF, ERROR,
WARNING, MESSAGE and ON. A given debug level is enabled if it is set to at least that level. For
example, if the debug state is ERROR, only errors will be filed. If the debug state is WARNING, only
errors and warnings will be filed. If the debug state is MESSAGE, everything will be filed. MESSAGE
and ON are the same level except MESSAGE writes to a file, whereas ON writes to System.out.

Note – Debugging is an intensive operation and can hurt performance. Java evaluates the
arguments to message() and warning() even when debugging is turned off. It is recommended
that the debug state be checked before invoking any message() or warning() methods to avoid
unnecessary argument evaluation and maximize application performance.

Locale
This class is a utility that provides the functionality for applications and services to
internationalize their messages.

SystemProperties
This class provides functionality that allows single-point-of-access to all related system
properties. First, the class tries to find AMConfig.class, and then a file, AMConfig.properties,
in the CLASSPATH accessible to this code. The class takes precedence over the flat file. If
multiple servers are running, each may have their own configuration file. The naming
convention for such scenarios is AMConfig_serverName.

ThreadPool
ThreadPool is a generic thread pool that manages and recycles threads instead of creating them
when a task needs to be run on a different thread. Thread pooling saves the virtual machine the
work of creating new threads for every short-lived task. In addition, it minimizes the overhead
associated with getting a thread started and cleaning it up after it dies. By creating a pool of

Utility APIs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006174

threads, a single thread from the pool can be reused any number of times for different tasks.
This reduces response time because a thread is already constructed and started and is simply
waiting for its next task.

Another characteristic of this thread pool is that it is fixed in size at the time of construction. All
the threads are started, and then each goes into a wait state until a task is assigned to it. If all the
threads in the pool are currently assigned a task, the pool is empty and new requests (tasks) will
have to wait before being scheduled to run. This is a way to put an upper bound on the amount
of resources any pool can use up. In the future, this class may be enhanced to provide support
growing the size of the pool at runtime to facilitate dynamic tuning.

Password API Plug-Ins
The Password API plug-ins can be used to integrate password functions into applications. They
can be used to generate new passwords as well as notify users when their password has been
changed. These interfaces are PasswordGenerator and NotifyPassword, respectively. They can
be found in the com.sun.identity.password.plugins package.

Note – The Access Manager Javadocs can be accessed from any browser by copying the complete
AccessManager-base/SUNWam/docs/ directory into the AccessManager-base
/SUNWam/public_html directory and pointing the browser to http://

AcceessManager-HostName.domain_name :port/docs/ index.html.

There are samples (which include sample code) for these API that can be accessed from the
Access Manager installation. They are located in AccessManager-base
/SUNWam/samples/console. They include:

Notify Password Sample
This sample details how to build a plug-in which an administrator can define their own method
of notification when a user has reset a password. Instructions for this sample are in the
Readme.txt or Readme.html file located in
AccessManager-base/SUNWam/samples/console/NotifyPassword .

Password Generator Sample
This sample details how to build a plug-in which an administrator can define their own method
of random password generation when a user’s password is reset using the Password Reset
Service. Instructions for this sample are in the Readme.txt or Readme.html file located in
AccessManager-base/SUNWam/samples/console/PasswordGenerator .

Password API Plug-Ins

Chapter 11 • Access Manager Utilities 175

176

Updating and Redeploying Access Manager
WAR Files

Access Manager 7.0 2005Q4 contains a number of web application archive (WAR) files. These
packages contain Java servlets and JavaServer PagesTM (JSP) pages you can modify to customize
Access Manager to meet your needs. This chapter provides a general overview of WAR files, and
describes the WAR files that come with Access Manager. The chapter contains the following
sections:

■ “WAR Files in J2EE Software Development” on page 177
■ “About Access Manager WARs” on page 178
■ “Updating Modified WARs” on page 181
■ “Redeploying Modified Access Manager WARs” on page 182

WAR Files in J2EE Software Development
Access Manager is built upon the Java 2 Platform, Enterprise Edition (J2EE) platform which
uses a component model to create full-scale applications. A component is self-contained
functional software code assembled with other components into a J2EE application. The J2EE
application components can be deployed separately on different servers. J2EE application
components include the following:

■ Client components such as including dynamic web pages, applets, and a Web browser that
run on the client machine.

■ Web components such as servlets and Java Server Pages (JSPs) that run within a web
container.

■ Business components, which can be code that meets the needs of a particular enterprise
domain such as banking, retail, or finance. Such business components also run within the
web container.

■ Enterprise infrastructure software that runs on legacy machines.

12C H A P T E R 1 2

177

Web Components
When a web browser executes a J2EE application, it deploys server-side objects known as web
components. Java Server Pages (JSPs) and corresponding servlets are two such web
components.

Servlets Small Java programs that dynamically process requests and
construct responses from a web browser. Servlets run within web
containers.

Java Server Pages (JSPs) Text-based documents that contain static template data such as
HTML, Scalable Vector Graphics (SVG), Wireless Markup
Language (WML), or eXtensible Markup Language (XML). JSPs
also contain elements such as servlets that construct dynamic
content.

How Web Components are Packaged
J2EE components are usually packaged separately, and then bundled together into an
Enterprise Archive (EAR) file for application deployment. Web components are packaged in
web application archives, also known as WAR files. Each WAR file contains servlets, JSPs, a
deployment descriptor, and related resource files.

Static HTML files and JSP are stored at the top level of the WAR directory. The top-level
directory contains the WEB-INF subdirectory which contains tag library descriptor files in
addition to the following:

Server-side classes Servlets, JavaBean components and related Java class files. These must be
stored in the WEB-INF/classes directory.

Auxiliary JARs Tag libraries and any utility libraries called by server-side classes. These
must be stored in the WEB-INF/lib directory.

web.xml The web component deployment descriptor is stored in the WEB-INF
directory

About Access Manager WARs
When you customize Access Manager, you must modify the files included in Access Manager
WARs, which results in changes to the web components. Remember that when you apply a
patch or an upgrade to Access Manager, any customization you have implemented may be
overwritten.

The Access Manager WARs are located in the following directory:

About Access Manager WARs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006178

AccessManager-base/SUNWam and include:

■ console.war

■ password.war

■ services.war

console.war
The console.war contains files used by the Access Manager administration console.

Files You Can Modify
You can modify the following console.war files:

■ web.xml and related XML files used for constructructing it are located in
AccessManager-base /SUNWam/web-src/applications/WEB-INF/.

■ Modifiable JavaScript files are located in AccessManager-base
/SUNWam/web-src/applications/console/js/.

■ Modifiable JSP are located in the following directories dependant upon the service that
deploys them:
■ AccessManager-base /SUNWam/web-src/applications/console/auth/
■ AccessManager-base /SUNWam/web-src/applications/console/federation/
■ AccessManager-base /SUNWam/web-src/applications/console/policy/
■ AccessManager-base /SUNWam/web-src/applications/console/service/
■ AccessManager-base /SUNWam/web-src/applications/console/session/
■ AccessManager-base /SUNWam/web-src/applications/console/user/

Modifiable image files are located in AccessManager-base
/SUNWam/web-src/applications/console/images/.

■ Modifiable stylesheets are located in
AccessManager-base/SUNWam/web-src/applications/console/css/.

Files You Must Not Modify
Do not modify the following console.war files. Modifying these files may cause unintended
Access Manager behaviors.

■ JARs are located in AccessManager-base/SUNWam/web-src/applications/WEB-INF/lib/.
■ Tag Library Descriptor (.tld) files are located in

AccessManager-base/SUNWam/web-src/applications/WEB-INF/.

About Access Manager WARs

Chapter 12 • Updating and Redeploying Access Manager WAR Files 179

password.war
The password.war contains files used by the Access Manager password reset service.

Files You Can Modify
You can modify the following password.war files:

■ web.xml and related XML files used for constructing it are located in
AccessManager-base/SUNWam/web-src/password/WEB-INF/.

■ JSPs located in /SUNWam/web-src/password/password/ui/ .
■ Image files located in SUNWam/web-src/password/password/images/ .
■ Stylesheets located in AccessManager-base/SUNWam/web-src/password/password/css/.

Files You Must Not Modify
Do not modify the following password.war files. Modifying the following files may cause
unintended Access Manager behaviors.

■ JARs located in AccessManager-base/SUNWam/web-src/password/WEB-INF/lib/.
■ Tag library descriptor (.tld) files located in

AccessManager-base/web-src/password/WEB-INF/.

services.war
The services.war contains files used by various Access Manager services.

Files You Can Modify
You can modify the following services.war files:

■ web.xml and related XML files used for constructing it are located in
AccessManager-base/SUNWam/web-src/services/WEB-INF/.

■ JavaScript files are located in AccessManager-base/SUNWam/web-src/services/js/.
■ JSP are located in the following directories dependant upon the service that requires the

customization:
■ AccessManager-base/SUNWam/web-src/services/config/auth/default/
■ AccessManager-base/SUNWam/web-src/services/config/federation/default/

Image files are located in the following directories dependant upon the service to which the
images apply:
■ AccessManager-base/SUNWam/web-src/services/images/

About Access Manager WARs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006180

■ AccessManager-base/SUNWam/web-src/services/fed_images/
■ AccessManager-base/SUNWam/web-src/services/login_images/

Stylesheets are located in the following directories dependant upon the service to which they
apply:
■ AccessManager-base/SUNWam/web-src/services/css/.
■ AccessManager-base/SUNWam/web-src/services/fed_css/.

Files You Must Not Modify
Do not modify the following services.war files. Modifying the following files may cause Access
Manager to fail:

■ Non-modifiable JARs are located in
AccessManager-base/SUNWam/web-src/services/WEB-INF/lib/.

■ Non-modifiable Tag Library Descriptor (.tld) files are located in
AccessManager-base/SUNWam/web-src/services/WEB-INF/ .

Updating Modified WARs
Once a file within a WAR is modified, the WAR itself needs to be updated with the newly modified
file. Following is the procedure to update a WAR.

▼ To Update a Modified .war File
cd AccessManager-base/ SUNWam
This is the directory in which the WARs are kept.

jar -uvf WARfilename.war < path_to_modified_file>
The -uvf option replaces the old file with the newly modified file. For example:

jar -uvf console.war newfile/index.html

replaces the index.html file in console.war with the index.html file located in
AccessManager-base/SUNWam/newfile .

rm newfile/index.html

Delete the modified file.

1

2

3

Updating Modified WARs

Chapter 12 • Updating and Redeploying Access Manager WAR Files 181

Redeploying Modified Access Manager WARs
Once updated, the WARs must be redeployed to their web container. The web container provides
services such as request dispatching, security, concurrency, and life cycle management. The
web container also gives the web components access to the J2EE APIs.

The BEA WebLogic Server 6.1 and Sun Java System Application Server web containers do not
require WARs to be exploded. They are deployed as WARs. After redeploying the war files, you
must restart all related servers.

▼ To Redeploy a WAR On Sun Java System Web Server 6.1
Delete the existing Access Manager web applications using the following form:
server_root/bin/https/bin/wdeploy delete -u uri_path -i instance -v vs_id
hard|softwhere the following variables are used:
uri_path The URI prefix for the web application (requires a leading \x{201C}/\x{201D}).

instance The server instance name.

vs_id The virtual server ID.

directory (Optional) The directory to which the application is deployed, or from which the
application is deleted. If not specified for deployment, the application is deployed
to instance_directory/webapps/vs_id/webappname. In this example, this
directory is

/opt/SUNWwbsvr/https-test/webapps/ https-test/testapp

hard|soft Specifies whether both the directory and the server.xml entry are deleted (hard),
or only the server.xml entry is deleted (soft).

war_file The WAR file name.

In the following example, the Sun Java System Web Server is installed in the directory
/opt/SUNWwbsvr. To remove the amserver web application, use the following command:
/opt/SUNWwbsvr/https/bin/wdeploy delete -u /amserver -i system.example.com -v

https-system.example.com hard

Repeat this step for all Access Manager applications such as /amserver , /amconsole , and
/ampassword.

Deploy the web application using the following form:
wdeploy deploy -u uri_path -i instance -v vs_id [-d directory] war_file

In this example, to deploy the amserver.war file, use the following command:

1

2

Redeploying Modified Access Manager WARs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006182

/opt/SUNWwbsvr/https/bin/wdeploy deploy -u /amserver -i system.example.com -v

https-system.example.com -d /opt/SUNWwbsvr/web-apps/services

/opt/SUNWam/services.war

Sun Java System Web Server 6.1 SP4

For more information on deploying web applications, see the chapter “Deploying Web
Applications,”http://docs.sun.com/source/817-6251/pwadeply.html#wp21505, in the Sun Java
System Web Server 6.1 SP4 Programmer's Guide to Web Applications.

To Redeploy a WAR On BEA WebLogic Server 6.1
Run the Java command on the BEA WebLogic 6.1 Server using the following form:

java weblogic.deploy -url protocol://server_host:server_port
-component amconsole:WL61 _server_name
deploy WL61_admin_password deployment_URI AccessManager-base/SUNWam/WARname.war

where the following variables are used:

protocol://server_host:server_port The protocol [http | https] and fully-qualified name
of the Access Manager server.

WL61 _server_name The name of the WebLogic server.

WL61_admin_password The WebLogic administrator password.

deployment_URI For console.war, the deployment URI is amconsole.

For server.war, the deployment URI is amserver.

For password.war, the deployment UIR is ampassword.

AccessManager-base The directory where the Access Manager server is
installed.

WARname.war The name of the WAR file to deploy.

[console.war | server.war | password.war]

For more complete information on the Java utility weblogic.deploy and its options, see the
BEA WebLogic Server 6.1 documentation
(http://edocs.bea.com/wls/docs61/index.html).

More Information

Redeploying Modified Access Manager WARs

Chapter 12 • Updating and Redeploying Access Manager WAR Files 183

http://edocs.bea.com/wls/docs61/index.html
http://edocs.bea.com/wls/docs61/index.html

To Redeploy a WAR on Sun Java System Application
Server 7.0
On the Application Server, run the asadmin command using the following form:

asadmin deploy -u S1AS_administrator
-w S1AS_administrator_password -H console_server_host
-p S1AS_server_port --type web secure_flag
--contextroot deploy_uri --name deploy_uri
--instance S1AS_instanceAccessManager-base/SUNWam/WARname

where the following variables are used:

S1AS_administrator Application Server administrator

S1AS_administrator_password Application Server administrator password

console_server_host Access Manager server host name

S1AS_server_port Application Server port number

deploy_uri For console.war, the deployment URI is amconsole.

For password.war, the deployment URI is
ampassword.

For service.war, the deployment URI is amservices.

S1AS_instance/AccessManager-base Application Server directory where Access Manager
server is installed

WARname.war The name of the WAR file to deploy.

[console.war | server.war | password.war]

For more information on the asadmin deploy command and its options, see the Sun Java System
Application Server 7.0 Developer’s Guide.

Redeploying an Access Manager WAR on IBM
WebSphere Application Server
For detailed instructions on how to deploy WARs in an IBM WebSphere Application Server
container, see the documentation that comes with the product:
http://www-3.ibm.com/software/webservers/studio/doc/v40/studioguide/en/html/sdsscenario1.html
(http://www-3.ibm.com/
software/webservers/studio/doc/v40/studioguide/en/html/sdsscenario1.html).

Redeploying Modified Access Manager WARs

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006184

http://www-3.ibm.com/software/webservers/studio/doc/v40/studioguide/en/html/sdsscenario1.html
http://www-3.ibm.com/software/webservers/studio/doc/v40/studioguide/en/html/sdsscenario1.html
http://www-3.ibm.com/software/webservers/studio/doc/v40/studioguide/en/html/sdsscenario1.html

Notification Service

Sun JavaTM System Access Manager 7 2005Q4 Notification Service allows for session
notifications to be sent to remote web containers. It is necessary to enable this service for use by
SDK applications running remotely from the Access Manager server itself. This chapter
explains how to enable a remote web container to receive the notifications. It contains the
following sections:

■ “Overview” on page 185
■ “Enabling The Notification Service” on page 186

Overview
The Notification Service allows for session notifications to be sent to web containers that are
running the Access Manager SDK remotely. The notifications apply to the Session, Policy and
Naming Services only. In addition, the remote application must be running in a web container.
The purpose of the notifications would be:

■ To sync up the client side cache of the respective services.
■ To enable more real time updates on the clients. (Polling is used in absence of notifications.)
■ No client application changes are required to support notifications.

Note that the notifications can be received only if the remote SDK is installed on a web
container.

13C H A P T E R 1 3

185

Enabling The Notification Service
Following are the steps to configure the remote SSO SDK to receive session notifications.
Setting up clients to receive notifications

▼ To Receive Session Notifications
Install Access Manager on Machine 1.

Install Sun Java System Web Server on Machine 2.

Install the SUNWamsdk on the same machine as the Web Server.
For instructions on installing the Access Manager SDK remotely, see the Sun Java Enterprise
System 2005Q1 Installation Guide.

Ensure that the following are true concerning the machine where the SDK is installed.

a. Ensure that the right access permissions are set for the / remote_SDK_server/ SUNWam/lib and
/ remote_SDK_server / SUNWam/localedirectories on the server where the SDK is installed.
These directories contains the files and jars on the remote server.

b. Ensure that the following permissions are set in the Grant section of the server.policy file
of the Web Server.
server.policy is in the config directory of the Web Server installation. These permissions
can be copied and pasted, if necessary:

permission java.security.SecurityPermission

"putProviderProperty.Mozilla-JSS"

permission java.security.SecurityPermission "insertProvider.Mozilla-JSS";

c. Ensure that the correct classpath is set in server.xml.
server.xml is also in the config directory of the Web Server installation. A typical
classpath would be:
<JAVA javahome="/export/home/ws61/bin/https/jdk"

serverclasspath="/export/home/ws61/bin/https/jar/webserv-rt.jar:

${java.home}/lib/tools.jar:/export/home/ws61/bin/https/jar/webserv-ext.jar:

/export/home/ws61/bin/https/jar/webserv-jstl.jar:/export/home/ws61/

bin/https/jar/nova.jar"

classpathsuffix="::/IS_CLASSPATH_BEGIN_DELIM:

//usr/share/lib/xalan.jar:

//export/SUNWam/lib/xmlsec.jar:

1

2

3

4

Enabling The Notification Service

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006186

//usr/share/lib/xercesImpl.jar:

//usr/share/lib/sax.jar:

//usr/share/lib/dom.jar:

//export/SUNWam/lib/dom4j.jar:

//export/SUNWam/lib/jakarta-log4j-1.2.6.jar:

//usr/share/lib/jaxm-api.jar:

//usr/share/lib/saaj-api.jar:

//usr/share/lib/jaxrpc-api.jar:

//usr/share/lib/jaxrpc-impl.jar:

//export/SUNWam/lib/jaxm-runtime.jar:

//usr/share/lib/saaj-impl.jar:/export/SUNWam

//lib:/export/SUNWam/locale:

//usr/share/lib/mps/jss3.jar:

//export/SUNWam/lib/ am_sdk.jar:

//export/SUNWam/lib/am_services.jar:

//export/SUNWam/lib/am_sso_provider.jar:

//export/SUNWam/lib/swec.jar:

//export/SUNWam/lib/acmecrypt.jar:

//export/SUNWam/lib/iaik_ssl.jar:

//usr/share/lib/jaxp-api.jar:

//usr/share/lib/mail.jar:

//usr/share/lib/activation.jar:

//export/SUNWam/lib/servlet.jar:

//export/SUNWam/lib/am_logging.jar:

//usr/share/lib/commons-logging.jar:

//IS_CLASSPATH_END_DELIM:"

envclasspathignored="true" debug="false"

debugoptions="-Xdebug -Xrunjdwp:

transport=dt_socket,

server=y,suspend=n"

javacoptions="-g"

dynamicreloadinterval="2">

Use the SSO samples installed on the remote SDK server for configuration purposes.

a. Change to the / remote_SDK_server /SUNWam/samples/sso directory.

b. Run gmake.

c. Copy the generated class files from / remote_SDK_server /SUNWam/samples/sso to /
remote_SDK_server /SUNWam/lib/.

5

Enabling The Notification Service

Chapter 13 • Notification Service 187

Copy the encryption value of am.encryption.pwd from the AMConfig.properties file installed
with Access Manager to the AMConfig.properties file on the remote server to which the SDK
was installed.
The value of am.encryption.pwd is used for encrypting and decrypting passwords.

Login into Access Manager as amadmin.
http://AcceessManager-HostName:3000/amconsole

Execute the servlet by entering http://

remote_SDK_host:58080/servlet/SSOTokenSampleServlet into the browser location field
and validating the SSOToken.
SSOTokenSampleServlet is used for validating a session token and adding a listener. Executing
the servlet will print out the following message:

SSOToken host name: 192.18.149.33 SSOToken Principal name:

uid=amAdmin,ou=People,dc=red,dc=iplanet,dc=com Authentication type used: LDAP

IPAddress of the host: 192.18.149.33 The token id is

AQIC5wM2LY4SfcyURnObg7vEgdkb+32T43+RZN30Req/BGE= Property: Company is - Sun

Microsystems Property: Country is - USA SSO Token Validation test Succeeded

Set the property com.iplanet.am.notification.url= in AMConfig.properties of the
machine where the Client SDK is installed:
com.iplanet.am.notification.url=http://clientSDK_host.domain:port
/servlet

com.iplanet.services.comm.client.PLLNotificationServlet

Restart the Web Server.

Login into Access Manager as amadmin.
http://AcceessManager-HostName:3000/amconsole

Execute the servlet by entering http://

remote_SDK_host:58080/servlet/SSOTokenSampleServlet into the browser location field
and validating the SSOToken again.
When the machine on which the remote SDK is running receives the notification, it will call the
respective listener when the session state is changed. Note that the notifications can be received
only if the remote SDK is installed on a web container.

6

7

8

9

10

11

12

Enabling The Notification Service

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006188

Index

A
administration console

accessing the console, 27
APIs, 34-35
code samples, list of, 35-36
customizing, 27-34
event listener, 35
legacy mode, 25-27
plug-in modules, 27

AdminUtils, 173
AMClientDetector, 173
AMLoginModule, extending, 71
AMPasswordUtil, 173-174
Authentication Service

AMLoginModule, 71
APIs and SPIs, 65-73
C APIs, 149-151
cascading style sheets, 53
CertLogin example, 77-78
custom authentication module, 78-88
customizing branding and functionality, 55-57
customizing the user interface, 45-63
distributed authentication user interface, 61-63
files you can modify, 45-55
image files, 53-54
IndexName, 66-67
JAAS module, 95-99
Java Server Pages, 47-49
JavaScript files, 52
JCDI module example, 78
JSP templates, 47-49
LDAPLogin example, 77

Authentication Service (Continued)
localization files, 54-55
login page, customizing, 47
pluggable JAAS Module, 71
post processing SPI, 88-92
self-registration page, customizing, 57-59
user ID, generating, 92-95
XML files, 49-52

authorization, See Policy Service

C
C APIs

authentication, 149-151
code samples, list of, 161-166
policy, 151-152
single sign-on (SSO), 152-161

CertLogin, 77-78
classpath requirements, 16
client APIs, See client SDK
client detection

APIs, 171-172
data types, 170-171
defined, 167-169
enabling, 167-169

client identity, 22-23
client SDK, 15-24, 20-22

sample files, 24
setting up a client identity, 22-23
targets, 24

console, See administration console

189

custom authentication module, 78-88

D
Debug utility, 174
distributed authentication user interface, See

Authentication Service
documentation

related Access Manager books, 11-12
related Sun JES books, 12

I
IndexName values, 66-67
initializing, 20-22
installing, 16-19

J
JAAS

authentication module, 95-99
authorization framework, 125-132
enabling authorization framework, 130-132
JS2E access controller, 129
pluggable authentication module, 71

JCDI module, 78

L
LDAPLogin, 77
legacy mode, administration console, 25-27
Locale utility, 174
log verifier plug-in, 147-148
logging

log authorization plug-in, 148
log verifier plug-in, 147-148
reading log records, 135-141
remote logging application, 142-144
sample programs, 133
secure logging, 148
to second Access Manager server, 144

logging (Continued)
writing log records, 134-135

N
notification

defined, 185-188
enabling, 186-188

P
password API plug-ins, 175
password.war, 180
plug-in, Policy APIs, 106-107
policy evaluation program, 117-118
Policy Service

adding policy-enabled service, 110-114
APIs, overview, 101-107
C APIs, 151-152
code samples, 107-110
conditions, customizing, 114-115
evaluation classes, 103-106
Java packages, 102
management classes, 102-103
plug-in APIs, 106-107
policy evaluation program, 117-118
referrals, customizing, 114-115
subjects, customizing, 114-115

post processing SPI, authentication, 88-92

R
redeploying WARs, 182-184

S
self-registration page, customizing, 57-59
services.war, 180-181
services.war

content and staging area, 46
updating and redeploying, 59-61

Index

Sun Java System Access Manager 7 2005Q4 Developer's Guide • June 2006190

Session Service, C APIs, 152-161
Session Service APIs, See Single Sign-On
Single Sign-On

APIs, 37-44
code samples, list of, 38-44
non-web based applications, 44

SSO, See Single Sign-On
SystemProperties, 174

T
ThreadPool, 174-175

U
updating WARs, 181
utilities

AdminUtils, 173
AMClientDetector, 173
AMPasswordUtil, 173-174
APIs, 173-175
Debug, 174
Locale, 174
password API plug-ins, 175
SystemProperties, 174
ThreadPool, 174-175

W
WARs

redeploying, 182-184
updating, 181

WARs in Access Manager, 178-181

Index

191

192

	Sun Java System Access Manager 7 2005Q4 Developer's Guide
	Preface
	Before You Read This Book
	Related Books
	Access Manager Core Documentation
	Sun Java Enterprise System Product Documentation

	Related Third-Party Web Site References
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples
	Sun Welcomes Your Comments

	Using the Client SDK
	How the Client SDK Works
	JDK and CLASSPATH Requirements
	Installing the Client SDK
	To Install the Client SDK
	To Configure the Client SDK
	To Deploy amclientwebapps.war

	Initializing the Client SDK
	Using a Properties File
	To Set ClientSDK Properties in a Properties File

	Using the Java API
	Setting Individual Properties
	Naming URL Properties
	Debug Properties
	Notification URL Properties

	Setting Up a Client Identity
	To Set Username and Password Properties
	To Set an SSO Token Provider

	Building Custom Web Applications
	Building Stand-Alone Applications
	To Build a Stand-Alone Application

	Targets Defined in clientsdk
	About the Client SDK Samples

	Customizing the Administration Console
	About the Administration Console
	Generating The Console Interface
	Plug-In Modules
	Accessing the Console

	Customizing The Console
	The Default Console Files
	Creating Custom Organization Files
	To Create Custom Organization Files

	Alternate Customization Procedure
	Miscellaneous Customizations
	To Modify The Service Configuration Display
	To Modify The User Profile View
	Display Options For The User Profile Page
	To Localize The Console
	To Display Service Attributes
	To Customize Interface Colors
	To Change The Default Attribute Display Elements
	To Add A Module Tab
	To Display Container Objects

	Console APIs
	To Create a Console Event Listener

	Precompiling the Console JSP
	Console Samples
	Modify User Profile Page
	Create A Tabbed Identity Management Display
	ConsoleEventListener
	Add Administrative Function
	Add A New Module Tab
	Create A Custom User Profile View

	Using Session Service APIs
	About the Single Sign-On Java APIs
	Using the SSO Code Samples
	Running SSO Code Samples on Solaris
	To Run a Sample Program from the Access Manager Server
	To Run a Sample Program on a Remote Client
	To Run the Sample Code
	To Run a Sample Program on the Remote Client Command Line
	To Test the Command Line

	Developing Non-Web Based Applications

	Customizing the Authentication User Interface
	User Interface Files You Can Modify
	Staging Area for Files to be Customized
	Java Server Pages
	Customizing the Login Page
	Customizing JSP Templates

	XML Files
	Callbacks Element
	Nested Elements
	Attributes

	ConfirmationCallback Element
	Nested Element

	JavaScript Files
	Cascading Style Sheets
	Images
	Localization Files

	Customizing Branding and Functionality
	To Modify Branding and Functionality

	Customizing the Self-Registration Page
	To Modify the Self-Registration Page

	Updating and Redeploying services.war
	To Update services.war
	To Redeploy services.war
	On BEA WebLogic
	On Sun ONE Application Server
	On IBM WebSphere

	Customizing the Distributed Authentication User Interface
	To Customize the Distributed Authentication User Interface

	Using Authentication APIs and SPIs
	Overview of Authentication APIs and SPIs
	How the Authentication Java APIs Work
	XML/HTTP Interface for Other Applications
	Examples of XML Messages

	How the Authentication SPIs Work
	Extending the AMLoginModule Class
	Pluggable JAAS Module
	Authentication Post Processing
	onLoginSuccess
	onLoginFailure
	onLogout

	Using Authentication APIs
	Running the Sample Authentication Programs
	Java API Code Samples and Their Locations
	To Compile and Execute the Java API Samples
	To Configure SSL for Java API Samples

	LDAPLogin Example
	CertLogin Example
	To Run the CertLogin Program
	Using certutil for Client Certificate Management

	JCDI Module Example

	Using Authentication SPIs
	Implementing a Custom Authentication Module
	About the Login Module Sample
	Writing a Sample Login Module
	To Write a Sample Login Module
	Creating a Module Properties File
	Writing the Principal Class
	Implementing the LoginModule Interface

	Compiling and Deploying the LoginModule program
	To compile the Login Module
	To Deploy the Login Module Sample Program
	To Redeploy the amserver.war File

	Loading the Login Module Sample into Access Manager
	To Load the Login Module Using the Administration Console
	To Load the Login Module Using the Command Line

	Running the LoginModule Sample Program
	To Run the LoginModule on Solaris
	To Run the Login Module on Windows 2000
	To Deploy the Login Module

	Implementing Authentication PostProcessing SPI
	About the PostProcessing SPI Sample
	To Compile the ISAuthPostProcessSample Program on Solaris Sparc/x86 or Linux
	To Deploy the ISAuthPostProcess Sample Program
	Configuring the Authentication Post Processing SPI
	To Configure ISAuthPostProcess Sample for an Organization
	To Configure the ISAuthPostProcess Sample for a Service
	To Configure ISAuthPostProcess Sample for a Role

	Compiling On Windows 2000
	To Deploy the ISAuthPostProcessSample Program
	To Configure Authentication Post Processing SPI

	Generating an Authentication User ID
	To Compile the UserIDGeneratorSample on Solaris Sparc/x86, Linux
	To Deploy the UserIDGeneratorSample Program
	Configuring the UserIDGeneratorSample Program
	To Configure UserIDGeneratorSample for an Organization
	To Access an Authentication Module for an Organization

	Compiling the UserIDGeneratorSample Program on Windows 2000
	To deploy the UserIDGeneratorSample Program
	To Configure the UserIDGeneratorSample Program

	Implementing A Pure JAAS Module
	Conventions Used in the Samples
	To Run the Sample on Solaris Sparc x86 or Linux:
	To Enable SSL
	To Run the Sample on Windows 2000
	To Enable SSL

	Using the Policy APIs
	About the Policy APIs
	Policy Java Packages
	Policy Management Classes
	PolicyManager
	Policy

	Policy Evaluation Classes
	PolicyEvaluator Class
	ProxyPolicyEvaluator Class
	Client PolicyEvaluator Class
	PolicyEvent Class

	Policy Plug-In APIs

	Using the Policy Code Samples
	Use Cases Illustrated by Policy Code Samples
	To Run a Policy Evaluation Program for the URL Policy Agent Service
	To Run a Policy Evaluation Program for the URL Policy Agent Service and More
	To Run a Policy Evaluation Program for the Sample Service
	To Run a Policy Evaluation Program for the Sample Service and More
	To Use amadmin to Create Policies for the URL Policy Agent Service
	To Use amadmin to Create Policies for the Sample Service
	To Programmatically Construct Policies

	Compiling the Policy Code Samples
	To Compile the Policy Code Samples

	Adding a Policy-Enabled Service to Access Manager
	To Add a New Service to Access Manager

	Developing Custom Subjects, Conditions, and Referrals
	To Add Sample Implementation to the Policy Framework

	Creating Policies for a New Service
	To Load a Policy XML File

	Developing and Running a Policy Evaluation Program
	To Set Policy Evaluation Properties
	To Run a Policy Evaluation Program

	Programmatically Constructing Policies
	To Run the Sample Program PolicyCreator.java

	Using the JAAS Authorization Framework
	Overview of JAAS Authorization
	How Policy Enforcement Works
	How the JS2E Access Controller Works

	JAAS Authorization in Access Manager
	Custom APIs
	User Interface

	Enabling the JAAS Authorization Framework

	Writing Log Operations
	About the Logging Samples
	Writing LogRecords To A Log File or Table
	Reading LogRecords From A Log File or Table
	Compiling Logging Programs
	Executing Logging Programs

	Implementing a Remote Logging Application in a Container
	Setting Environment Variables
	If Client Can Execute in the Local Access Manager Server
	If Client Executes Only in a Remote Server
	If SSL is Enabled

	Logging to a Second Access Manager Server
	Using the Logging Sample Files
	To Run the Sample Programs on Solaris
	To Run the Sample Programs on Windows 2000

	Using the Logging SPIs
	Log Verifier Plug-In
	To Customize Actions to be Taken in Secure Logging

	Log Authorization Plug-In
	To Implement a Log Authorization Plug-In
	To Instantiate a PolicyEvaluator

	Using the C APIs
	About the C Library for Authentication
	C Sample Code for Authentication

	About the C Library For Policy
	Policy Implementation
	Policy Evaluation

	About the C Library for Single Sign-On
	C SSO Include Files
	C SSO Properties
	C SSO Interfaces
	Initialization and Cleanup
	Get, Validate, Refresh And Destroy SSO Token
	Get Session Information Interfaces
	Get And Set Property Interfaces
	Listener And Notify Interfaces

	Non-Web-Based Applications

	Using the C API Code Samples
	To Build a Sample Program on UNIX platforms
	To Build a Sample Program on the Windows Platform
	Executing the Sample Programs
	Platform Information
	To Execute a Sample Program on the Solaris Platform
	To Execute a Sample Program on the Linux Platform
	To Execute a Sample Program on the Windows Platform

	To Execute am_policy_test
	To Execute am_auth_test
	To Execute the am_sso_test Program
	am_log_test
	apache_agent.c

	Client Detection Service
	Overview
	Client Detection Process
	Enabling Client Detection

	Client Data
	HTML
	genericHTML

	Client Detection APIs

	Access Manager Utilities
	Utility APIs
	AdminUtils
	AMClientDetector
	AMPasswordUtil
	Debug
	Locale
	SystemProperties
	ThreadPool

	Password API Plug-Ins
	Notify Password Sample
	Password Generator Sample

	Updating and Redeploying Access Manager WAR Files
	WAR Files in J2EE Software Development
	Web Components
	How Web Components are Packaged

	About Access Manager WARs
	console.war
	Files You Can Modify
	Files You Must Not Modify

	password.war
	Files You Can Modify
	Files You Must Not Modify

	services.war
	Files You Can Modify
	Files You Must Not Modify

	Updating Modified WARs
	To Update a Modified .war File

	Redeploying Modified Access Manager WARs
	To Redeploy a WAR On Sun Java System Web Server 6.1
	To Redeploy a WAR On BEA WebLogic Server 6.1
	To Redeploy a WAR on Sun Java System Application Server 7.0
	Redeploying an Access Manager WAR on IBM WebSphere Application Server

	Notification Service
	Overview
	Enabling The Notification Service
	To Receive Session Notifications

	Index

