
Sun Java SystemAccessManager
7 2005Q4Federation andSAML
AdministrationGuide

SunMicrosystems, Inc.
4150Network Circle
Santa Clara, CA95054
U.S.A.

Part No: 819–2142–11
October 2005

Copyright 2005 SunMicrosystems, Inc. 4150Network Circle, Santa Clara, CA95054U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or documentmay be reproduced in any form by anymeans without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived fromBerkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, SunMicrosystems, the Sun logo, the Java Coffee Cup logo, Java, Javadoc, JavaScript, JavaServer, JDK, JSP, docs.sun.com,AnswerBook,AnswerBook2, and
Solaris are trademarks or registered trademarks of SunMicrosystems, Inc. in the U.S. and other countries.All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by SunMicrosystems, Inc.

TheOPEN LOOK and SunTMGraphical User Interface was developed by SunMicrosystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license fromXerox to
the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOKGUIs and otherwise comply with Sun’s written license
agreements.

U.S. Government Rights – Commercial software. Government users are subject to the SunMicrosystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS”ANDALLEXPRESSOR IMPLIEDCONDITIONS, REPRESENTATIONSANDWARRANTIES, INCLUDINGANY
IMPLIEDWARRANTYOFMERCHANTABILITY, FITNESS FORAPARTICULAR PURPOSEORNON-INFRINGEMENT,AREDISCLAIMED, EXCEPTTO
THE EXTENTTHAT SUCHDISCLAIMERSAREHELDTOBE LEGALLY INVALID.

Copyright 2005 SunMicrosystems, Inc. 4150Network Circle, Santa Clara, CA95054U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelquemoyen que ce soit, sans l’autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est unemarque déposée aux Etats-Unis et
dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, SunMicrosystems, le logo Sun, le logo Java Coffee Cup, Java, Javadoc, JavaScript, JavaServer, JDK, JSP, docs.sun.com,AnswerBook,AnswerBook2, et Solaris
sont desmarques de fabrique ou desmarques déposées, de SunMicrosystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont desmarques de fabrique ou desmarques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par SunMicrosystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par SunMicrosystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient
une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun quimettent en place l’interface
d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATIONEST FOURNIE “EN L’ETAT” ETAUCUNEGARANTIE, EXPRESSEOU IMPLICITE, N’ESTACCORDEE, YCOMPRISDES
GARANTIES CONCERNANT LAVALEURMARCHANDE, L’APTITUDEDE LAPUBLICATIONAREPONDREAUNEUTILISATIONPARTICULIERE, OU
LE FAITQU’ELLENE SOIT PASCONTREFAISANTEDE PRODUITDETIERS. CEDENIDEGARANTIENE S’APPLIQUERAIT PAS, DANS LAMESUREOU
ILSERAIT TENU JURIDIQUEMENTNULETNONAVENU.

060815@15490

Contents

Preface ...17

Part I The LibertyAlliance Project Specifications andAccess Manager ...23

1 Introduction to the LibertyAlliance Project ...25
Overview of the LibertyAlliance Project ...25

Members of the LibertyAlliance Project ..25
Objectives of the LibertyAlliance Project Specifications ...26

Concept of Identity ...26
Concept of Federation ..27

Identity Federation ...27
Provider Federation ..27

LibertyAlliance Project Concepts ..28
Account Federation ..28
Affiliation ...28
Attribute Provider ..28
Authentication Context ...28
AuthenticationDomain ...29
Circle of Trust ..29
Client ..29
CommonDomain ..29
Defederation ..30
Federation ..30
Federation Cookie ..30
Federated Identity ...30
Federation Termination ...30
Identity ...30
Identity Federation ...31

3

Identity Provider ...31
Identity Service ..31
Liberty-Enabled Client ...31
Liberty-Enabled Proxy ...31
Name Identifier ...31
Principal ...32
Profile ...32
Provider Federation ..32
Pseudonym ..32
Receiver ..32
Resource Offering ...32
Sender ...32
Server ..32
Service Provider ..33
Single Logout ...33
Single Sign-On ..33
Trusted Provider ...33
Web Service Consumer ..33
Web Service Provider ..33

LibertyAlliance Project Specifications ...34
Liberty Identity Federation Framework ..34
Liberty IdentityWeb Services Framework ...39
Liberty Identity Service Interface Specifications ...41

Deploying a Liberty-based System ...42
Assess the Qualifications of Your IT Staff ..42
CleanUpDirectory Data ...42
Draft BusinessAgreements ..42

2 Implementation of the LibertyAlliance Project Specifications ...45
Overview ..45
Liberty Use Cases ..46

UnifiedAccess to Intranet Resources ...46
Integrated Partner Networks ...46
Sample Use Case Process ...46

LibertyAlliance ProjectArchitecture inAccessManager ..47
Accessing the LibertyAlliance Project Features ..49

Contents

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 20054

Federation inAccessManager ..49
Liberty-basedWeb Services inAccessManager ..50
Liberty-basedApplication Programming Interfaces ..53
SAMLService ..55

Liberty-Based Samples ...55

Part II FederationManagement ...57

3 Federation ...59
Features of Federation ..59

Identity Federation and Single Sign-On ..59
Authentication andAuthentication Context ..61
Identifiers andName Registration ..63
Global Logout ..63
Dynamic Identity Provider Proxying ...63

Process of Federation ...64
Pre-login Process ..66
Federation and Single Sign-On ...66

Federation Graphical User Interface ..67
Entities andAuthenticationDomains ...70

Entities ...70
AuthenticationDomains ...93

� ToCreateAnAuthenticationDomain ...94
� ToConfigure orModify anAuthenticationDomain ..94
� ToDelete anAuthenticationDomain ..95

Auto-Federation ...96
� To EnableAuto Federation ..96

Bulk Federation ...97
Dynamic Identity Provider Proxying ...97

� ToConfigure and Test Dynamic Identity Provider Proxying ..98
The Pre-login URL ...99
FederationAPI ..101
Sample Federation Environment ..101

4 CommonDomain Services ...103
CommonDomain ..103

Contents

5

CommonDomain Cookie ...104
Configuring the CommonDomain Services URLs ..105

Writer Service URL ...105
Reader Service URL ..105

Configuring the CommonDomain Services Properties ..105
Installing the CommonDomain Services for Federation ..106

� To Test a CommonDomain Services Installation ...106

Part III SupportedWeb Services ..109

5 AuthenticationWeb Service .. 111
AuthenticationWeb Service Overview .. 111

XMLService File ... 112
AuthenticationWeb ServiceAPIs ... 112

WhichAuthentication Service to Use? .. 112
AuthenticationWeb Service Process .. 114
AuthenticationWeb ServiceAttribute ... 115

MechanismHandlers List .. 115
AuthenticationWeb ServiceAPI .. 116

com.sun.identity.liberty.ws.authnsvc Package .. 116
com.sun.identity.liberty.ws.authnsvc.mechanism Package ... 116
com.sun.identity.liberty.ws.authnsvc.protocol Package ... 116

AuthenticationWeb Service Sample .. 116

6 Data Services .. 119
Data Services Overview .. 119

Liberty ID-WSFData Services Template Specification ..120
Data ServicesAPI ..122

Liberty Personal Profile Service ..122
Liberty Personal Profile Service Process ...122
Liberty Personal Profile ServiceAttributes ..124

Liberty Employee Profile Service ..129
Data Services TemplateAPI ...129

com.sun.identity.liberty.ws.dst Package ..129
com.sun.identity.liberty.ws.dst.service Package ...130

DevelopingANewData Service ..131

Contents

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 20056

7 Discovery Service ...133
Discovery Service Overview ..133

Discovery Service Concepts ...134
Discovery Entries ..134
XMLService Files ..134
Discovery ServiceAPIs ...135

Discovery ServiceArchitecture ...135
Discovery Service Process ..136
Discovery ServiceAttributes ...138

Provider ID ..139
SupportedAuthenticationMechanisms ..139
Supported Directives ..139
Enable Policy Evaluation for DiscoveryLookup ...140
Enable Policy Evaluation for DiscoveryUpdate ...140
Authorizer Plugin Class ...140
Entry Handler Plugin Class ...140
Classes For ResourceIDMapper Plugin ..140
Authenticate ResponseMessage ...141
Generate SessionContextStatement for Bootstrapping ..141
Encrypt NameIdentifier in Session Context for Bootstrapping ..141
Use Implied Resource; don’t generate ResourceID for Bootstrapping ..141
Resource Offerings for Bootstrapping Resources ...141

Discovery Entries and Resource Offerings ..142
Storing Discovery Entries as UserAttributes ..142

� ToAccess and Create a User’s Resource Offerings ..142
Storing Discovery Entries as DynamicAttributes ..145

� To Store Discovery Entries as DynamicAttributes in a Realm ..145
� To Store Discovery Entries as DynamicAttributes in a Role ...147

Storing Discovery Entries for Bootstrapping ..150
� To Store Discovery Entries for Bootstrapping ...150

Discovery ServiceAPIs ..152
com.sun.identity.liberty.ws.interfaces.Authorizer Interface152

� ToConfigure Policy Definitions ..152
com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface154
com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface154
ClientAPIs in com.sun.identity.liberty.ws.disco ..155

Discovery Service Sample ..156

Contents

7

8 SOAPBinding Service ..157
SOAPBinding Service Overview ..157

XMLService File ...157
SOAPBinding ServiceAPIs ...158

SOAPBinding Process ...158
SOAPBinding ServiceAttributes ...159

Request Handler List ..159
Web ServiceAuthenticator ..160
SupportedAuthenticationMechanisms ..160

SOAPBinding Service Package ...161

Part IV SAMLAdministration andApplication Programming Interfaces ...163

9 SAMLAdministration ..165
SAMLOverview ..165

Comparison of SAMLand Liberty Specifications ...166
SAMLArchitecture inAccessManager ..166
Using SAML ..168

Elements of SAML ..168
Assertion Types ...168
Profile Types ..169
SAMLSOAPReceiver ..175

SAMLAttributes ...180
amSAML.xmlAttributes ...181

� ToModifyAttributes in the amSAML.xml File ..181
ConsoleAttributes ..181

SAMLAPI ..188
com.sun.identity.saml Package ...188
com.sun.identity.saml.assertion Package ..189
com.sun.identity.saml.common Package ...189
com.sun.identity.saml.plugins Package ...189
com.sun.identity.saml.protocol Package ..191
com.sun.identity.saml.xmlsig Package ...193

SAMLSamples ..193

Contents

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 20058

10 Application Programming Interfaces ..195
Public Interfaces ...195
Common Service Interfaces ..197

com.sun.identity.liberty.ws.common Package ..197
com.sun.identity.liberty.ws.interfaces Package ..198

Common SecurityAPI ...199
com.sun.identity.liberty.ws.security Package ..199
com.sun.identity.liberty.ws.common.wsse Package ...200

Interaction Service ..201
Configuring the Interaction Service ...201
Interaction ServiceAPI ..203

PAOS Binding ...203
Comparison of PAOS and SOAP ..204
PAOS BindingAPI ..204
PAOS Binding Sample ..205

A Liberty-based and SAML Samples ..209
Federation Framework Samples ...209

sample1Directory ..209
sample2Directory ..210
sample3Directory ..210

Web Services Framework Samples ... 211
wscDirectory ... 211
sis-epDirectory .. 211
paosDirectory ...212
authnsvcDirectory ..212

SAMLSamples ..212

B Service Schema Files ...213
XSDOverview ...213
SOAPBinding Schema ...214
Personal Profile Schema ...216
Employee Profile Schema ..222
AuthenticationWeb Service Schema ...224
PAOS Binding Schema ...228
Metadata Description Schema ..229

Contents

9

Index ..235

Contents

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200510

Figures

FIGURE 1–1 Subjects Involved in a Liberty ID-FF Implementation ..35
FIGURE 2–1 Process in a Liberty-enabled Use Case ...47
FIGURE 2–2 Liberty-basedArchitecture ofAccessManager ..48
FIGURE 2–3 Federation Interface inAccessManager Console ..49
FIGURE 2–4 Architecture of Liberty-basedWeb Services ...52
FIGURE 2–5 Web Services Interface inAccessManager Console ...52
FIGURE 3–1 Default Process of Federation ...65
FIGURE 6–1 Data Service Template as Building Block of Data Services ..120
FIGURE 6–2 Liberty Personal Profile Service Process ..124
FIGURE 7–1 Discovery ServiceArchitecture ...136
FIGURE 7–2 Participants and Process of the Discovery Service ...137
FIGURE 9–1 SAMLInteraction inAccessManager ...167
FIGURE 9–2 Web BrowserArtifact Profile Interactions ..172
FIGURE 9–3 Web Browser POST Profile Interactions ...174

11

12

Tables

TABLE 2–1 Public Interfaces ...53
TABLE 3–1 Authentication Context Classes ...62
TABLE 3–2 Pre-login URLParameters for Federation ...100
TABLE 3–3 FederationAPIMethods ...101
TABLE 4–1 CommonDomain Services Properties in FSConfig.properties106
TABLE 5–1 Default Implementations forAuthenticationMechanism 115
TABLE 6–1 Data Service ClientAPIs ..130
TABLE 7–1 Policy-Related Directives ..139
TABLE 7–2 Implementationsof

com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler154
TABLE 7–3 Discovery Service ClientAPIs ...155
TABLE 8–1 SOAPBinding Service Classes ..161
TABLE 9–1 Benefits of the SAMLand the LibertyAlliance Project Specifications166
TABLE 10–1 AccessManager PublicAPIs ...195
TABLE 10–2 com.sun.identity.liberty.ws.commonClasses ...197
TABLE 10–3 com.sun.identity.liberty.ws.interfaces Interfaces ..198
TABLE 10–4 com.sun.identity.liberty.ws.securityClasses ...199
TABLE 10–5 com.sun.identity.liberty.ws.common.wsse Classes ...200
TABLE 10–6 Interaction Service Properties in AMConfig.properties ...201
TABLE 10–7 Interaction Service Classes ..203
TABLE 10–8 PAOS Binding Classes ..204
TABLE A–1 Configuration Information for sample1 Servers ..210

13

14

Examples

EXAMPLE 1–1 XMLSample DefiningAuthentication Context ...29
EXAMPLE 6–1 ExtensionQuery for creditcard ...128
EXAMPLE 9–1 SOAPRequest forAuthenticationAssertionUsingWeb BrowserArtifact Profile 175
EXAMPLE 9–2 SOAPResponse to SOAPRequest forWeb BrowserArtifact Profile177
EXAMPLE 9–3 Sample Code to Obtain anAttribute Value ...189
EXAMPLE 9–4 AuthorizationDecisionQuery Code Sample ...192
EXAMPLE 10–1 PAOSClient Servlet From PAOS Sample ..205
EXAMPLE B–1 SOAPBinding XSD File ..214
EXAMPLE B–2 Personal Profile Service XSD File ...216
EXAMPLE B–3 Employee Profile Service XSD Schema ..222
EXAMPLE B–4 AuthenticationWeb Service XSD File ...224
EXAMPLE B–5 Reverse HTTPBinding for SOAPXSD File ..228
EXAMPLE B–6 Metadata Description andDiscovery XSD File ..230

15

16

Preface

The SunTM Java System Access Manager 7 2005Q4 Federation and SAMLAdministration Guide
provides information about the Federation and SecurityAssertionsMarkup Language (SAML)
components of SunTM Java SystemAccessManager. The Federation and SAMLAdministration Guide
includes an introduction to the open-standard specifications used to develop these features and
information on howAccessManager has implemented them. It also includes information on
integrated web services, and summaries of the application programming interface (API).

WhoShouldUse This Book
This Federation and SAMLAdministration Guide is intended for use by IT professionals, network
administrators and software developers who implement a Liberty-enabled identity framework and
access platform using Sun Java System servers and software. It is recommended that administrators
understand the following technologies:

� Lightweight DirectoryAccess Protocol (LDAP)
� Java

TM

� JavaServer Pages
TM

(JSP)
� HyperText Transfer Protocol (HTTP)
� HyperTextMarkup Language (HTML)
� eXtensibleMarkup Language (XML)
� Web Services Description Language (WSDL)
� SecurityAssertionMarkup Language (SAML)
� SOAP (SOAP is no longer an acronym for themessaging protocol.)

BeforeYouReadThis Book
AccessManager is a component of the Sun Java Enterprise System, a software infrastructure that
supports enterprise applications distributed across a network or Internet environment.

� BecauseAccessManager is a component of the Sun Java Enterprise System, you should be
familiar with the Sun Java Enterprise System 2005Q4 documentation set.

� Because Sun Java SystemDirectory Server is used as the data store in a newAccessManager
deployment, you should be familiar with the Sun Java SystemDirectory Server 5 2005Q4
documentation set..

� BecauseAccessManager contains features based on the LibertyAlliance Project specifications,
you should be familiar with the LibertyAlliance Project specifications.

17

http://docs.sun.com/prod/entsys.05q1
http://docs.sun.com/coll/DirectoryServer_05q1
http://docs.sun.com/coll/DirectoryServer_05q1
http://www.projectliberty.org

HowThis Book IsOrganized
The Federation and SAMLAdministration Guide contains instructional and conceptual material
regarding theAccessManager features based on the LibertyAlliance Project and SAML
specifications. The book is organized into the chapters described in the following table.

TABLE P–1Chapters in Federation and SAMLAdministrationGuide

Chapter Description

Chapter 1, Introduction to the LibertyAlliance Project An overview of the specifications developed by the
LibertyAlliance Project.

Chapter 2, Implementation of the LibertyAlliance
Project Specifications

Contains conceptual material regarding the
implementation of the LibertyAlliance Project
specifications inAccessManager and its architecture.

Chapter 3, Federation Provides administrative information regarding setting
up entities and authentication domains as well as
information on extended federation capabilities.

Chapter 4, CommonDomain Services Provides information regarding the installation and
deployment of the CommonDomain Services.

Chapter 5,AuthenticationWeb Service Provides information regarding the deployment of the
AuthenticationWeb Service.

Chapter 6, Data Services Provides information regarding data services in
general and the Liberty Personal Profile Service and
Liberty Employee Profile Service in particular.

Chapter 7, Discovery Service Provides information regarding the administration
and deployment of the Discovery Service.

Chapter 8, SOAPBinding Service Provides information regarding the administration
and deployment of the SOAPBinding Service.

Chapter 9, SAMLAdministration Provides information regarding the implementation
of SAML inAccessManager functions.

Chapter 10,Application Programming Interfaces Provides information regarding theAPI developed for
AccessManager that are based on the LibertyAlliance
Project specifications.

AppendixA,AccessManager Samples An appendix that provides information on the
samples developed forAccessManager and based on
the LibertyAlliance Project specifications.

Preface

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200518

TABLE P–1Chapters in Federation and SAMLAdministrationGuide (Continued)
Chapter Description

Appendix B, Service Schema Files An appendix that contains the XMLSchema
Definition (XSD) files developed by the Liberty
Alliance Project. The XSD files specify the
information its corresponding service can host by
defining the data and data structure.

RelatedBooks
TheAccessManager documentation consists of two sets:

� “AccessManager Core Documentation” on page 19
� “Sun Java System Product Documentation” on page 20

Note – For instructions on installingAccessManager, see the Sun Java Enterprise System 2005Q4
Installation Guide for UNIX.

AccessManager CoreDocumentation
TheAccessManager documentation set contains the following titles:

� The Sun Java System Access Manager 7 2005Q4 Release Noteswill be available online after the
product is released. It gathers an assortment of last-minute information, including a description
of what is new in this current release, known problems and limitations, installation notes, and
how to report issues with the software or the documentation.

� The Sun Java System Access Manager 7 2005Q4 Technical Overview provides an overview of how
AccessManager components work together to consolidate access control functions, and to
protect enterprise assets and web-based applications. It also explains basicAccessManager
concepts and terminology.

� The Sun Java System Access Manager 7 2005Q4 Deployment Planning Guide provides
information for planning anAccessManager deployment within an existing information
technology infrastructure.

� The Sun Java System Access Manager 7 2005Q4 Performance Tuning Guide provides information
on how to tuneAccessManager and its related components for optimal performance.

� The Sun Java System Access Manager 7 2005Q4 Administration Guide describes how to use the
AccessManager console as well as manage user and service data via the command line interface.

� The Sun Java System Access Manager 7 2005Q4 Federation and SAMLAdministration Guide (this
guide) provides information about the features inAccessManager that are based on the Liberty
Alliance Project and SAMLspecifications. It includes information on the integrated services
based on these specifications, instructions for enabling a Liberty-based environment, and
summaries of the application programming interface (API) for extending the framework.

Preface

19

� The Sun Java System Access Manager 7 2005Q4 Developer’s Guide offers information on how to
customizeAccessManager and integrate its functionality into an organization’s current technical
infrastructure. It also contains details about the programmatic aspects of the product and itsAPI.

� The Sun Java System Access Manager 7 2005Q4 C API Reference provides summaries of data
types, structures, and functions that make up the publicAccessManager CAPIs.

� The Java API Reference are generated from Java code using the JavadocTM tool. The pages provide
information on the implementation of the Java packages inAccessManager.

� The Sun Java System Access Manager Policy Agent 2.2 User’s Guide provides an overview of the
policy functionality and the policy agents available forAccessManager.

Updates to the Release Notes and links tomodifications of the core documentation can be found on
the AccessManager page at the Sun Java System 2005Q4 documentation web site. Updated
documents will bemarked with a revision date.

Sun Java SystemProductDocumentation
Useful information can be found in the documentation for the following Sun Java System products:

� Sun Java SystemDirectory Server
� Sun Java SystemWeb Server
� Sun Java SystemApplication Server
� Sun Java SystemWeb Proxy Server

Accessing SunResourcesOnline
For product downloads, professional services, patches, support, and additional developer
information, go to:

� Download Center
� Sun Software Services
� Sun Java Systems Services Suite
� Sun Enterprise Services, Solaris Patches, and Support
� Developer Information

Contacting SunTechnical Support
If you have technical questions about this product that are not answered in the product
documentation, contact Sun Support Services.

Preface

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200520

http://docs.sun.com/app/docs/coll/1292.1
http://docs.sun.com/prod/entsys.05q4
http://docs.sun.com/coll/1316.1
http://docs.sun.com/coll/1308.1
http://docs.sun.com/coll/1310.1
http://docs.sun.com/coll/1311.1
http://wwws.sun.com/software/download/
http://www.sun.com/service/support/software/
http://www.sun.com/service/sunjavasystem/sjsservicessuite.html
http://sunsolve.sun.com/
http://developers.sun.com/prodtech/index.html
http://www.sun.com/service/contacting

Related Third-PartyWebSite References
Third-party URLs are referenced in this documentation set and provide additional, related
information. Sun is not responsible for the availability of third-partyWeb sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or othermaterials that are available on or through such sites or resources. Sun will not be
responsible or liable for any actual or alleged damage or loss caused by or in connection with the use
of or reliance on any such content, goods, or services that are available on or through such sites or
resources.

SunWelcomesYour Feedback
SunMicrosystems is interested in improving its documentation and welcomes your comments and
suggestions. To share your thoughts, go to http://docs.sun.com and click the Send Comments link
at the bottom of the page. In the online form provided, include the document title and part number.
The part number is a seven-digit or nine-digit number that can be found on the title page of the book
or at the top of the document. For example, the title of this book is Sun Java System Access Manager 7
2005Q4 Federation and SAMLAdministration Guide, and the part number is 819-2142.

Documentation, Support, andTraining

Sun Function URL Description

Documentation http://www.sun.com/documentation/ Download PDF andHTML
documents, and order printed
documents

Support and
Training

http://www.sun.com/supportraining/ Obtain technical support,
download patches, and learn
about Sun courses

Typographic Conventions
The following table describes the typographic changes that are used in this book.

Preface

21

http://docs.sun.com
http://www.sun.com/documentation/
http://www.sun.com/supportraining/

TABLE P–2TypographicConventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in theUser’s Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized items
appear bold online.]

Shell Prompts in CommandExamples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–3Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200522

The LibertyAlliance Project Specifications
andAccessManager
� Chapter 1, Introduction to the LibertyAlliance Project
� Chapter 2, Implementation of the LibertyAlliance Project Specifications

P A R T I

23

24

Introduction to the LibertyAlliance Project

Sun JavaTM SystemAccessManager implements identity federation, single sign-on (SSO), and web
services specifications defined by the LibertyAlliance Project. This introductory chapter explains
concepts used in the specifications, and the role of the LibertyAlliance Project in creating
identity-based solutions.

This chapter covers the following topics:

� “Overview of the LibertyAlliance Project” on page 25
� “Concept of Identity” on page 26
� “Concept of Federation” on page 27
� “LibertyAlliance Project Concepts” on page 28
� “LibertyAlliance Project Specifications” on page 34
� “Deploying a Liberty-based System” on page 42

Overviewof the LibertyAllianceProject
In 2001 SunMicrosystems joined with othermajor companies to form the Liberty Alliance Project.
The goals were to define standards for developing identity-based infrastructures, software, and web
services, and to promote adoption of these standards. The LibertyAlliance Project does not deliver
products or services. It defines frameworks to ensure interoperability between homogeneous
products while respecting the privacy and security of identity data.

Note – If you are already familiar with the concepts and protocols developed by the LibertyAlliance
Project, go to Chapter 2 for information on how these standards are integrated intoAccessManager.

Members of the LibertyAllianceProject
Themembers of the LibertyAlliance Project include some of the world’s most recognized
companies, representing products, services and partnerships across a wide spectrum of consumer

1C H A P T E R 1

25

and business service providers. Members also include government organizations and technology
vendors. For a complete listing of currentmembers, see the LibertyAlliance Project web site.

Note –Onlymembers of the LibertyAlliance Project are allowed to provide feedback on drafts of the
specifications although any organizationmay implement them.

Objectives of the LibertyAllianceProject
Specifications
The specifications developed by the LibertyAlliance Project enable individuals and organizations to
securely conduct network transactions. Themain objectives include:

� Serve as open standards for federated identity management and web services.
� Support and promote permission-based sharing of personal identity attributes.
� Provide a standard for SSO that includes decentralized authentication and authorization for

multiple providers.
� Create an open network identity infrastructure that supports all current and emerging user agents

(also referred to as browsers or wireless browsers).
� Enable consumers to protect their network identity information.

Concept of Identity
In one dictionary, identity is defined as ”a set of information by which one person is definitively
distinguished”. This information begins with a document that corroborates a person’s name: a birth
certificate. Over time, additional information further designates aspects of identity:

� An address
� Atelephone number
� One ormore diplomas
� Adriver’s license
� Apassport
� Financial institution accounts
� Medical records
� Insurance statements
� Employment records
� Magazine subscriptions
� Utility bills

Each of these individual documents represents data that defines a person’s identity as it relates to the
enterprise for which the identity was defined. The composite of this data constitutes an overall
identity with each specific piece providing a distinguishing characteristic.

Concept of Identity

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200526

http://www.projectliberty.org/membership/current_members.php

Because the Internet is becoming the primary vehicle for the types of interactions represented by this
identity-defining information, people are now creating online identities specific to the businesses
with which they interact. By defining a user identifier and password, an email address, personal
preferences (such as style of music, or opt-in/opt-outmarketing decisions) and other information
more specific to the particular business (a bank account number or ship-to address), users
distinguish themselves from others who use the enterprise’s services. This distinguishing
information is referred to as a local identity because it is specific to the service provider for which it
has been set.

Considering the number of service providers for which you can define a local identity, accessing each
provider can be a time-consuming and frustrating experiencing. In addition, althoughmost local
identities are configured independently (and fragmented across the Internet), it might be useful to
connect the information. For example, a user’s local identity with a bank could be securely connected
to the same user’s local identity with a retailer. Federation addresses this issue.

Concept of Federation
Federation is defined as ”an association formed bymerging several groups or parties”. In the Liberty
Alliance Project specifications, federation encompasses both identity federation and provider
federation.

Identity Federation
Federation, as it has evolved with regard to theWorldWideWeb, begins with the notion of identity.
Sending and receiving email, checking bank balances, finalizing travel arrangements, accessing
utility accounts, and shopping are just a few online services for which a usermight define an identity.
Now, in order to access the service, the user logs in to the service provider, a networked entity that
provides services to other entities.

If a user accesses these services, many user accounts have been configured separately. This virtual
phenomenon offers an opportunity to fashion a system for users to federate their disparate service
provider identities.

Identity federation allows the user to link, connect, or bind the local identities that have been created
for themultiple service providers. The linked local identities, referred to as a federated identity, allow
the user to log in to one service provider site and click through to an affiliated service provider
without having to reauthenticate or reestablish identity.

Provider Federation
The concept of federation as defined by the LibertyAlliance Project begins with a ”circle of trust.”A
circle of trust is a group of service providers who contractually agree to exchange authentication
information using a Liberty-enabled architecture. Each circle must also include at least one identity
provider.An identity provider is a service provider that maintains andmanages identity data, and
provides authentication services.

Concept of Federation

Chapter 1 • Introduction to the LibertyAlliance Project 27

Note –The establishment of contractual agreements between providers is beyond the scope of this
guide. For information, see the Liberty TrustModel Guidelines.

After the contracts and policies defining a circle of trust are in place, the specific protocols, profiles
and securitymechanisms being used in the deployment are distilled into ametadata document that
is exchanged between themembers of the circle of trust.AccessManager provides the tools necessary
to integrate themetadata and enable the circle technologically as an authentication domain.
Authentication within this virtual federation is honored by all membered providers of the
authentication domain. Formore information, see “AuthenticationDomain” on page 29.

LibertyAllianceProject Concepts
Many of the concepts defined in this section are derived from the specifications discussed in “Liberty
Alliance Project Specifications” on page 34.

Account Federation
See “Identity Federation” on page 31.

Affiliation
An affiliation is a group of providers formed without regard to a particular authentication domain.
An affiliation is formed andmaintained by an affiliation owner. Members of an affiliationmay invoke
services either as amember of the affiliation (by virtue of theirAffiliation ID) or individually (by
virtue of their Provider ID).An affiliation document describes a group of providers. See Chapter 3 for
more information.

Attribute Provider
An attribute provider is a web service that hosts attribute data, for example, an instance of the Liberty
Personal Profile Service data service. Formore information, see Chapter 6.

AuthenticationContext
Authentication context refers to information added to a SAMLAuthenticationAssertion regarding
details of the technology used for the actual authentication action. This informationmight include
themethod of authentication (HTTPBasic or Safeword), the process followed in the issuance of the
identity (for example, web self-registration), and any other characteristics that may be relevant to the
SAMLassertion consumer. The following XMLexample describes a user having authenticated with a
password over an SSL-protected session:

LibertyAlliance Project Concepts

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200528

http://www.projectliberty.org/resources/specifications.php#box4

EXAMPLE 1–1XMLSampleDefiningAuthenticationContext

<?xml version="1.0" encoding="UTF-8" ?>

<AuthenticationContextStatement>

<AuthenticationMethod>

<PrincipalAuthenticationMethod>

<Password>

<Length min="3"/>

</Password>

</PrincipalAuthenticationMethod>

<AuthenticatorTransportProtocol>

<SSL/>

</AuthenticatorTransportProtocol>

</AuthenticationMethod>

<AuthenticationContextStatement>

AuthenticationDomain
An authentication domain is a federation of service providers (with at least one identity provider)
that is configured technologically. The providers interact using the LibertyAlliance Project
specifications. The term authentication domain does not encompass the prerequisite business
agreements established between providers in a circle of trust.After the circle of trust is established, an
authentication domain can be configured and single sign-on can be enabled.

Note –An authentication domain is not a domain in theDomainName System (DNS) sense of the
word.

Circle of Trust
See “Provider Federation” on page 27.

Client
A client is the role that any system entity assumes whenmaking a request of another system entity. In
this scenario, the system entity to which the request is made is called a server as discussed in “Server”
on page 32.

CommonDomain
If an authentication domain hasmore than one identity provider, the service providers need a way to
determine which identity provider is used by the principal (as discussed in “Principal” on page 32).
Because this functionmust work across any number of DNS domains, the Liberty approach is to

LibertyAlliance Project Concepts

Chapter 1 • Introduction to the LibertyAlliance Project 29

create one domain that is common to all identity and service providers in the authentication domain.
This predetermined domain is called the common domain. Within the common domain, when a
principal has been authenticated to a service provider, the identity provider writes a common domain
cookie that stores the principal’s identity provider.When the principal attempts to access another
service provider within the authentication domain, the service provider reads the common domain
cookie and the request is forwarded to the correct identity provider. See Chapter 4 formore
information.

Defederation
See “Federation Termination” on page 30.

Federation
See “Concept of Federation” on page 27.

FederationCookie
A federation cookie called fedCookie is implemented byAccessManager. It can have a value of yes or
no, based on the principal’s federation status. For information on how a federation cookie is used, see
“Process of Federation” on page 64 in Chapter 3.

Note –The concept of a federation cookiewas developed forAccessManager and is not a defined part
of the LibertyAlliance Project specifications. The definition is placed here for information only.

Federated Identity
A federated identity refers to the consolidated account information that a user has provided to service
providers. Personal data, authentication information, buying habits and history, and shopping
preferences are examples of user account information. The information is administered by the user,
and can be securely shared with other service providers.

Federation Termination
Users can terminate their federations. Federation termination, or defederation), cancels identity
federations established between the user’s identity provider and service provider accounts.

Identity
See “Concept of Identity” on page 26.

LibertyAlliance Project Concepts

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200530

Identity Federation
Identity federation occurs when a user chooses to unite distinct service provider accounts with one or
more identity provider accounts.Auser retains the individual account information with each
provider while, simultaneously, establishing a link that allows the exchange of authentication
information between them. Formore information, see “Concept of Federation” on page 27.

Identity Provider
An identity provider is a service provider that specializes in providing authentication services.As the
administrating service for authentication, an identity provider alsomaintains andmanages identity
information.Authentication by an identity provider is honored by all service providers with whom
the identity provider is affiliated. This term is used when defining an entity of this sort specific to the
Liberty Identity Federation Framework as discussed in “Liberty Identity Federation Framework”
on page 34.

Identity Service
An identity service (also referred to as a data service) is a web service that acts on a resource to
retrieve, update, or perform some action on data attributes related to a principal (an identity). For
example, an identity servicemight be a corporate phone book or calendar service. Formore
information, see Chapter 6.

Liberty-EnabledClient
ALiberty-enabled client is a client that has, or knows how to obtain, information about the identity
provider that a principal will use to authenticate to a service provider.

Liberty-EnabledProxy
ALiberty-enabled proxy is anHTTPproxy that emulates a Liberty-enabled client.

Name Identifier
To help preserve anonymity when identity information is exchanged between identity and service
providers, an arbitrary name identifier is used.Aname identifier is a randomly generated character
string that is assigned to a principal and used to facilitate account linking at the identity provider and
service provider sites. This pseudonym allows all providers to identify a principal without knowing
the user’s actual identity. The name identifier hasmeaning only in the context of the relationship
between providers.

LibertyAlliance Project Concepts

Chapter 1 • Introduction to the LibertyAlliance Project 31

Principal
Aprincipal is an entity that can acquire a federated identity, that is capable of making decisions, and
has authenticated actions done on its behalf. Examples of principals include an individual user, a
group of individuals, a corporation, other legal entities, or a component of the Liberty architecture.

Profile
ALiberty-based profile defines the combination of amessage’s content and its transport mechanisms
for a user agent.

Provider Federation
See “Concept of Federation” on page 27.

Pseudonym
See “Name Identifier” on page 31.

Receiver
A receiver is the role of a system entity when it receives amessage sent by another system entity. In
this scenario, the system entity fromwhich themessage is received is called a sender as discussed in
“Sender” on page 32.

ResourceOffering
In a discovery service, a resource offering defines associations between a piece of identity data and the
service instance that provides access to it. See Chapter 7.

Sender
A sender is the role donned by a system entity when it constructs and sends amessage to another
system entity. In this scenario, the system entity fromwhich themessage is received is called a
receiver as discussed in “Receiver” on page 32.

Server
A server is the role that any system entity assumes when providing a service in response to a request
from another system entity. In this scenario, the system entity fromwhich the request is received is
called a client as discussed in “Client” on page 29.

LibertyAlliance Project Concepts

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200532

Note – In order to provide a service to clients, a server will often be both a sender and a receiver.

Service Provider
A service provider is a commercial or not-for-profit organization that offers web-based services to a
principal. This broad category can include Internet portals, retailers, transportation providers,
financial institutions, entertainment companies, libraries, universities, and governmental agencies.
This term is used when defining an entity of this sort specific to the Liberty Identity Federation
Framework as discussed in “Liberty Identity Federation Framework” on page 34.

Single Logout
A single logout occurs when a user logs out of an identity provider or a service provider. By logging
out of one provider, the user is logged out of all service providers or identity providers in that
authentication domain.

Single Sign-On
Single sign-on is established when a user with a federated identity authenticates to an identity
provider. If the user has previously opted-in for federation, access to affiliated service providers
without having to re-authenticate is available.

TrustedProvider
A trusted provider is a generic term for one of a group of service and identity providers in an
authentication domain.Auser can transact and communicate with trusted providers in a secure
environment.

WebService Consumer
Aweb service consumer invokes the operations that a web service provides bymaking a request to a
web service provider. This term is used when defining an entity of this sort specific to the Liberty
IdentityWeb Services Framework as discussed in “Liberty IdentityWeb Services Framework”
on page 39.

WebService Provider
Aweb service provider implements a web service based on a request from aweb service consumer.
This term is used when defining an entity of this sort specific to the Liberty IdentityWeb Services
Framework as discussed in “Liberty IdentityWeb Services Framework” on page 39.

LibertyAlliance Project Concepts

Chapter 1 • Introduction to the LibertyAlliance Project 33

Note –Aweb service providermay run on the same Java virtual machine as the web service consumer
that is using it.

LibertyAllianceProject Specifications
The LibertyAlliance Project develops and delivers specifications that enable federated network
identity management. Using web redirection and open-source technologies such as SOAP and XML,
they enable distributed, cross-domain interactions. The specifications are divided into the following
components:

� “Liberty Identity Federation Framework” on page 34
� “Liberty IdentityWeb Services Framework” on page 39
� “Liberty Identity Service Interface Specifications” on page 41

There are alsomany support documents in the specifications, including ametadata service protocol,
reverse HTTPbindings, a glossary, and schema files. Formore information on all of the documents,
see the LibertyAlliance Project web site.

Liberty Identity Federation Framework
The Liberty Identity Federation Framework (Liberty ID-FF) defines a set of protocols, bindings, and
profiles that provides a solution for identity federation, cross-domain authentication, and session
management. This framework can be used to create a new identity management system or to develop
one in conjunction with legacy systems. The Liberty ID-FF is designed to work with heterogeneous
platforms, various networking devices (including personal computers, mobile phones, and personal
digital assistants), and emerging technologies. The following figure shows the subjects involved in a
Liberty ID-FF implementation.

LibertyAlliance Project Specifications

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200534

http://www.projectliberty.org/resources/specifications.php#box4

Principal
• Customer
• Employee
• Company
• ...

Service Providers
• Web content
• Portal
• Merchant
• ...

Identity Provider
• Authentication
• Federation
• Profile
• ...

The identity provider is the center
of the authentication infrastructure.
It is a trusted entity that maintains
core attributes regarding the principal.

Service providers in the
authentication domain offer
complimentary services.

An authentication domain
is a group of providers that
have joined together to exchange
authentication information.

The principal has a defined
local identity with more than

one provider, and has the
option to federate them.

FIGURE 1–1 Subjects Involved in a Liberty ID-FF Implementation
� Aprincipal can have a defined local identity withmore than one provider, and it has the option to

federate the identities. The principal might be an individual user, a group of individuals, a
corporation, or a component of the Liberty architecture.

� A service provider is a commercial or not-for-profit organization that offers a web-based service
such as a news portal, a financial repository, or retail outlet.

� An identity provider is a service provider that stores identity profiles and offers incentives to other
service providers for the prerogative of federating their user identities. Identity providers might
also offer services above and beyond those related to identity profile storage.

� To support identity federation, both service and identity providers must join together into an
authentication domain. An authentication domainmust contain at least one identity provider
and at least two service providers. One organizationmay be both an identity provider and a
service provider.

Organizations in an authentication domainmust first write operational agreements to define their
relationships in a circle of trust.An operational agreement is a contract between organizations that
defines how the circle will work. Formore information, see “AuthenticationDomain” on page 29
and “Provider Federation” on page 27.

Liberty ID-FFProtocols andSchema
The Liberty ID-FF Protocols and Schema Specifications defines these abstract protocols:

� “Single Sign-On and Federation Protocol” on page 36
� “Name Registration Protocol” on page 37

LibertyAlliance Project Specifications

Chapter 1 • Introduction to the LibertyAlliance Project 35

� “Federation TerminationNotification Protocol” on page 37
� “Single Logout Protocol” on page 37
� “Name IdentifierMapping Protocol” on page 38

Following are short explanations of each protocol. More detailed information can be found in the
Liberty ID-FF Protocols and Schema Specifications.

Single Sign-On and Federation Protocol
The Single Sign-On and Federation Protocol defines a request and response protocol by which a
principal is able to authenticate to one ormore service providers and federate (or link) configured
identities.Aservice provider issues a request for authentication to an identity provider. The identity
provider responds with amessage that contains authentication information, or an artifact that points
to authentication information. The identity provider can also federate the principal’s identity
(configured at the identity provider level) with the principal’s identity (configured at the service
provider level).

Note –Under certain conditions, an identity providermay issue an authentication response to a
service provider without having received an authentication request.

The Single Sign-On and Federation Protocol also defines controls that allow for the following
behaviors:

� Account federation.Aprincipal can choose to federate a configured identity at the identity
provider site with a configured identity at the service provider site.

� Account handle.An identity provider can issue an anonymous, temporary identifier to refer to a
particular principal during communication with a service provider. This identifier is used to
obtain information for or about the principal during federation (with the principal’s consent).
The account handle is generated by the identity provider during federation. This account handle
is not to be confused with the handle that can be generated by the service provider after
federation using theName Registration Protocol as discussed in “Name Registration Protocol”
on page 37.

� Affiliation federation. Federation based on group affiliation can be enabled in an authentication
request. If enabled, it indicates that the requester is acting as amember of the specified affiliation
group. Federations are then established and resolved based on the affiliation, not the requesting
provider. The process allows for a unique identifier that represents the affiliation.

� Authentication context.Aservice provider can choose the type and level of authentication that
should be used when a principal logs in.

� Authentication credentials.Aprincipal can be prompted to authenticate with a user name and
password, for example, at the behest of the service provider.

� Dynamic identity provider proxying.One identity providermight be asked to authenticate a
principal that has already been authenticated by a second identity provider. In this case, the first
identity providermay request authentication information from the second identity provider on
behalf of the service provider. Proxy behavior can be controlled by indicating a list of preferred
identity providers, and a value that defines themaximumnumber of proxy steps that can be

LibertyAlliance Project Specifications

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200536

http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-errata-v1.0.pdf

taken. Proxy behavior is defined locally by the proxying identity provider, although a service
provider controls whether or not to proxy. Formore information, see “Dynamic Identity
Provider Proxying” on page 97.

� Identity provider introduction.When an authentication domain hasmore than one identity
provider, a service provider can use this feature to determine which identity provider a principal
is using.

� Message exchange profiles.The authentication request defines howmessages are exchanged
between identity providers and service providers. The particular transfer andmessaging protocol
used in the exchange (such as HTTPor SOAP) are specified in profiles. Two of these profiles are:
� The LibertyArtifact profile relies on SecurityAssertionMarkup Language (SAML) artifacts

and assertions to relay authentication information.
� The Liberty Browser POST profile relies on anHTML form to communicate authentication

information between providers.
� One-time federation.The ability to federate for one session only can be enabled in an

authentication request. This feature is useful for service providers with no user accounts, for
principals who want to act anonymously, or for dynamically created user accounts. It allows for
one-time federation, rather than a one-time name identifier for a session.

NameRegistration Protocol

The optionalName Registration Protocol is used by the service provider to create its own opaque
handle to identify a principal when communicating with the identity provider.

Note –The handle discussed in this section is not related to the opaque handle that is generated by the
identity provider during federation as defined in “Single Sign-On and Federation Protocol” on page
36. The Name Registration Protocol can, however, be used by the identity provider to change the
opaque handle that it registered with the service provider during initial federation.

Federation TerminationNotification Protocol

The Federation Termination Notification Protocol defines how the identity provider or the service
provider notifies the other provider when a principal has terminated identity federation. The
notification is a one-way, asynchronousmessage which states one of the following:

� The service provider will no longer accept authentication information regarding the particular
user.

� The identity provider will no longer provide authentication information regarding the particular
user.

Single Logout Protocol

The Single Logout Protocol defines how providers notify each other of logout events. This message
exchange protocol is used to terminate all sessions when a logout occurs at the service provider or

LibertyAlliance Project Specifications

Chapter 1 • Introduction to the LibertyAlliance Project 37

identity provider. The particular transfer andmessaging protocol used in the exchange (such as
HTTPor SOAP) are specified in profiles. Two of these profiles are:

� The SOAP/HTTP-based profile relies on asynchronous SOAPover HTTPmessaging calls
between providers.

� TheHTTPRedirect-based profile relies onHTTP redirects between providers.

Name IdentifierMapping Protocol

TheName Identifier Mapping Protocol defines how service providers can obtain name identifiers that
are assigned to a principal that has federated in the name space of a different service provider.When
a principal authenticated to one service provider requests access to a second service provider site, the
second service provider can use this protocol to obtain the name identifier. The protocol allows the
second service provider to communicate with the first service provider about the principal even
though no identity federation for the principal exists between them.

Liberty ID-FFBindings andProfiles
The Liberty ID-FF Bindings and Profiles Specification defines the bindings and profiles for the Liberty
protocols andmessages sent to HTTP-based communication frameworks. This specification relies
on the core SAML framework. For example, theName Identifier Encryption Profile permits a
principal’s name identifier to be encrypted so that only the provider possessing the decryption key
can realize the identity. The encrypted identifier is a different value when requested by different
providers. Using different values reduces the chance for correlation of the encrypted value across
multiple logical transactions. Formore information about theName Identifier Encryption Profile and
the specification in general, see the Liberty ID-FF Bindings and Profiles Specification.

Additional Liberty ID-FFDocuments
For additional information about the Liberty ID-FF specifications, see the following documents.

� Liberty ID-FF 1.2 Architecture Overview

Provides an architectural description of the Liberty ID-FF framework as well as policy, security,
and technical notes.

� Liberty ID-FF 1.2 Implementation Guidelines

Provides guidance and checklists for implementing a Liberty-enabled environment using the
Liberty ID-FF specifications.

� Liberty ID-FF 1.2 Static Conformance Requirements

Defines what features aremandatory and optional for implementations conforming to this
version of the Liberty ID-FF specifications.

LibertyAlliance Project Specifications

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200538

http://www.projectliberty.org/specs/draft-liberty-idff-bindings-profiles-1.2-errata-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idff-arch-overview-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idff-guidelines-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idff-1.2-scr-v1.0.pdf

Liberty IdentityWebServices Framework
The Liberty ID-FF defines how to implement single sign-on and identity federation to solve
problems related to network identity. The Liberty Identity Web Services Framework (Liberty
ID-WSF) builds on this by providing specifications to develop web services that retrieve, update, or
perform an action on identity data in a federated network environment. The specifications outline
the technical components needed to build web services that operate with identity data, such as a
calendar service, a wallet service, or an alert service.Ascenario that implements these specifications
includes the following subjects:

� Aweb service consumer (WSC) invokes the operations that a web service provides bymaking a
request to a web service provider.

� Aweb service provider (WSP) implements a web service based on a request from aweb service
consumer.

Web services are the basis of distributed computing across the Internet.AWSC locates a web service
and invokes the operations the web service provides. TheWSP is the application that implements a
web service. The web service can be on the same Java virtual machine as theWSC, or it can be
thousands of miles away.When aWSC needs to retrieve identity attributes from aWSP, theWSC
must first contact a discovery service to locate where the particular attributes are stored.When this
information is returned, theWSC then contacts theWSP (for example, a personal profile service) to
retrieve the necessary attributes.

Formore information about the process between aWSC andWSP, see “Discovery Service Process”
on page 136.

Liberty ID-WSFSpecifications
The Liberty ID-WSF includes these specifications:

� “SOAPBinding Specification” on page 39
� “Discovery Service Specification” on page 40
� “SecurityMechanisms Specification” on page 40
� “Data Services Template Specification” on page 40
� “Interaction Service Specification” on page 40
� “Authentication Service Specification” on page 40
� “Client Profiles Specification” on page 41

SOAPBinding Specification

The Liberty ID-WSF SOAP Binding Specification provides a transport layer for handling SOAP
messages. It defines SOAPheader blocks and processing rules that enable the invocation of identity
services using SOAP requests and responses. It also specifies how to 1) configuremessages for
optimummessage correlation, assuring the relationship between a SOAP request and its response, 2)
consent claims (permission to perform a certain action), and 3) usage directives (data handling
policies). Formore information, see the Liberty ID-WSF SOAP Binding Specification.

LibertyAlliance Project Specifications

Chapter 1 • Introduction to the LibertyAlliance Project 39

http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.2.pdf

Discovery Service Specification

The Liberty ID-WSF Discovery Service Specification defines a framework that enables a client to
locate the appropriate web service for retrieving, updating, ormodifying a particular piece of identity
data. Typically, there are one ormore services on a network that allow entities to perform an action
on identity data. To keep track of these services or to knowwhich can be trusted, clients require a
discovery service.Adiscovery service is essentially a web service interface for a registry of resource
offerings.A resource offering defines an association between a piece of identity data and the service
instance that provides access to the data.Acommon use case is when a personal profile or calendar
data is placed within a discovery resource so that the data can be located by other entities. Formore
information, see the Liberty ID-WSF Discovery Service Specification.

SecurityMechanisms Specification

The Liberty ID-WSF Security Mechanisms Specification describes the requirements for securing
authorization decisions that are sent for the discovery and use of identity services. The specified
mechanisms provide for authentication, signing, and encryption operations to ensure integrity and
confidentiality of themessages. Formore information, see the Liberty ID-WSF Security Mechanisms
Specification.

Data Services Template Specification

The Liberty ID-WSF Data Services Template Specification defines how to query andmodify the
identity data attributes that are stored in a data service (a web service that holds data). The
specification also provides common attributes for data services. Formore information, see the
Liberty ID-WSF Data Services Template Specification.

Interaction Service Specification

The Liberty ID-WSF Interaction Service Specification provides communication protocols for identity
services to obtain permission from a principal (or someone who owns a resource on behalf of that
principal) that allows the service to share the principal’s identity data with requesting services. For
more information, see the Liberty ID-WSF Interaction Service Specification.

Authentication Service Specification

The Liberty ID-WSF Authentication Service Specification defines how to authenticate parties
communicating via SOAP-basedmessages. It leverages widely used authentication services and
mechanisms, and facilitates selection of these services andmechanisms at deployment time. The
specification defines the following:

� An authentication protocol based on the SimpleAuthentication and Security Layer (SASL).
� An authentication service that Liberty-enabled clients can use to authenticate with identity

providers.
� Asingle sign-on service that Liberty-enabled providers can use to interact with each other.

LibertyAlliance Project Specifications

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200540

http://www.projectliberty.org/specs/liberty-idwsf-disco-svc-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-interaction-svc-v1.1.pdf

The specification also defines an identity-based authentication security token service,
complementing themore general security token service as discussed in the section, “Discovery
Service Specification” on page 40. Formore information, see the Liberty ID-WSF Authentication
Service Specification.

Client Profiles Specification

The Liberty ID-WSF Client Profiles Specification describes the requirements for Liberty-enabled
clients that interact with the SOAP-basedAuthentication Service. Client profiles can enable browsers
to perform an active role in transactions, in addition to the functions of a standard browser. Formore
information, see the Liberty ID-WSF Client Profiles Specification.

Additional Liberty ID-WSFDocuments
For additional information about the Liberty ID-WSF specifications, see the following documents:

� Liberty ID-WSF Architecture Overview
Provides an architectural description of the Liberty ID-WSF framework including basic usage
scenarios. It also highlights how the Liberty ID-WSF interacts with an identity management
framework (such as the Liberty ID-FF).

� Liberty ID-WSF Security and Privacy Overview
Provides an overview of security and privacy issues in the Liberty ID-WSF.

� Liberty ID-WSF Implementation Guidelines
Provides guidelines on how the Liberty ID-WSF specifications should be implemented.

Liberty Identity Service Interface Specifications
The Liberty Identity Service Interface Specifications (Liberty ID-SIS) are for building identity-based
web services. Included in the Liberty ID-SIS are the following:

� “Liberty ID-SIS Personal Profile Service Specification” on page 41
� “Liberty ID-SIS Employee Profile Service Specification” on page 42
� “Additional Liberty ID-SIS Service Specifications” on page 42

Liberty ID-SIS Personal Profile Service Specification
The Liberty ID-SIS Personal Profile Service Specification defines an identity-based web service that
keeps, updates, and offers identity data regarding a user. This service queries and updates of attribute
data and incorporates mechanisms for access control and conveying data validation information and
usage directives from other specifications.Ashopping portal that offers information such as the
principal’s account number and shopping preferences is an example of a personal profile service. For
more information, see the Liberty ID-SIS Personal Profile Service Specification.

LibertyAlliance Project Specifications

Chapter 1 • Introduction to the LibertyAlliance Project 41

http://www.projectliberty.org/specs/liberty-idwsf-authn-svc-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-authn-svc-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-client-profiles-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-overview-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idwsf-security-privacy-overview-v1.0.pdf
http://www.projectliberty.org/specs/draft-liberty-idwsf-guidelines-v2.0-01.pdf
http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Liberty ID-SIS EmployeeProfile Service Specification
The Liberty ID-SIS Employee Profile Service Specification defines an identity-based web service that
keeps, updates, and offers profile information regarding a user’s workplace.An online corporate
phone book that provides an employee name, office building location, and telephone extension
number is an example of an employee profile service. Formore information, see the Liberty ID-SIS
Employee Profile Service Specification.

Additional Liberty ID-SIS Service Specifications
The LibertyAlliance Project defines several other Liberty ID-SIS that are not discussed in this
section, including a contact book, a geolocation service, and a presence service. Formore
information on these services, see the documentation in the Liberty ID-SIS.

Deploying a Liberty-based System
To build a successful Liberty-based implementation, consider the issues described in this section.At
theminimum, a Liberty-compliant identity server is needed to process Liberty-based requests and
responses.

Assess theQualifications ofYour IT Staff
Although the specifications are aimed at large organizations, small andmedium-sized companies
with an experienced IT staff can also roll out a federated identity system. The specifications are
complex and require several areas of expertise, including web services development, XML,
networking, and security.

CleanUpDirectoryData
The specifications do not specify where to store identity data. Purge your data store of old identity
profiles, consolidatemultiple (or delete duplicated) identity profiles, and ensure that privileges are
assigned correctly.

Tip – Identity providersmust enforce strict regulations regarding passwords.Astolen identity can be
abused across multiple sites in a federated system.

Draft BusinessAgreements
The specifications assume existing trust relationships betweenmembers in a circle of trust. This trust
is defined through business arrangements or contracts that describe the technical, operational, and
legal responsibilities of each party and the consequences for not completing them.When defined, a

Deploying a Liberty-based System

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200542

http://www.projectliberty.org/specs/liberty-idsis-ep-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idsis-ep-v1.0.pdf
http://www.projectliberty.org/resources/specifications.php#box3

Liberty trust relationshipmeans that one organization trusts another’s user authentication decisions.
That trust amongmembers enables a user to log in at one site and access another site as well. Ensure
that these agreements are in force before going live with a Liberty-compliant system including
configured authentication domains.

Deploying a Liberty-based System

Chapter 1 • Introduction to the LibertyAlliance Project 43

44

Implementation of the LibertyAlliance Project
Specifications

Sun Java SystemAccessManager contains the SunMicrosystems implementation of the Liberty
Alliance Project specifications. This chapter provides an overview of how these specifications have
been implemented.

This chapter covers the following topics:

� “Overview” on page 45
� “Liberty Use Cases” on page 46
� “Accessing the LibertyAlliance Project Features” on page 49
� “Liberty-Based Samples” on page 55

Overview
Sun Java SystemAccessManager is a software product that helps organizationsmanage secure access
to the resources and web applications within their intranet and across the Internet. The initial release
ofAccessManager implemented the Liberty Identity Federation Framework (Liberty ID-FF)
specifications, focusing on account federation, authentication domains, and single sign-on.

Subsequent releases ofAccessManager added new features as defined in Version 1.2 of the Liberty
ID-FF specifications as well as the Version 1.0 specifications of the Liberty Identity Web Services
Framework (Liberty ID-WSF). These web services include a framework for retrieving and updating
identity datawhich consists of attributes stored in identity-based service providers across the
Internet.Also provided are an application programming interface (API) for communication
between identity providers and service providers.

This version ofAccessManager provides additional functionality based on the LibertyAlliance
Project specifications. For example,AccessManager 7 provides the ability to bulk-federate user
accounts to applications that are outsourced to business partners. It also provides the ability tomap
configured roles between the identity provider and the service provider. More specifically,Access
Manager 7 2005Q4 supports the Liberty ID-FF 1.1 and 1.2, the Liberty ID-WSF 1.0, and the Liberty
Identity Services Interface Specifications (Liberty ID-SIS) 1.0.

2C H A P T E R 2

45

LibertyUseCases
Identity data consists of all the information that companies maintain about individual customers,
corporate partners, and employees. Federating sources of identity data allows for accessing,
transporting, sharing, andmanaging the data between partnered organizations and applications
without weakening existing security safeguards. There aremany ways to useAccessManager and its
Liberty-based implementations to federate sources of identity data. The following sections explain
just a fewways.

UnifiedAccess to Intranet Resources
Many corporations provide access to outsourced human resources services, such as health benefits
and 401(k) plans. The corporate intranet offers central access to these services, but employees have to
log in and authenticate themselves every time they access each service. Employeesmight not want to
share the same profile and password with both their 401(k) provider and their health care provider.
Federation of identity data can provide seamless integration of web resources across multiple
security domains within the same enterprise, allowing for employee ease-of-use and control.

IntegratedPartnerNetworks
Enterprises can construct a network of partnered services for securely exchanging customer account
information, transaction data, and credentials through a set of interoperable web services.
Federation among partner networks allows identities to share key pieces of their respective data
without sharing control. For example, logging in to one web site that represents an authentication
domain consisting of an airline, a car rental company, and a hotel chain allows an identity tomake
travel plans even if one of the sites does not contain an identity data store.

SampleUseCaseProcess
Using a cell phone, a principal is able to access a ring-tone vendor’s site. Due to implementation of
single sign-on, the ring-tone vendor recognizes the principal from the cell-phone provider’s
authentication. This allows the principal to purchase ring tones by interacting with the user’s bank
for payment. The following figure illustrates the process of requesting a service and being
authenticated for access. It assumes the following:

� MyWireless is a cellular service provider and an identity provider in a federation framework that
contains access to the discovery service in a web services framework.

� MyRingtones is a service provider in a federation framework that also acts as a web service
consumer (WSC) in a web services framework. It sells ringtones for use with cellular phones.

� MyBank is a web service provider (WSP) in a web services framework. LinkingMyBank toMy
Ringtones offers the opportunity for seamless purchases.

Liberty Use Cases

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200546

Note –The sameweb service can act as a different entity in different scenarios.

User Agent

MyRingtones MyWireless MyBank

Service
Provider
(also acts as
Web Service
Consumer)

Identity
Provider

Discovery
Service

Personal
Profile
Service

(Web Service
Provider)

1. Single sign-on authorized by Identity Provider

2. Returns assertion including Discovery Service location

3. Request service

4. Request Personal Profile Service (WSP) location

8. Provide service

5. Provide Personal Profile Service (WSP) location

6. Request user attributes

7. Provide user attributes

FIGURE 2–1Process in a Liberty-enabledUseCase

The user attempts to accessMyRingtones and, after being prompted for credentials stored in
MyBank, receives authorization throughMyWireless. Single sign-on is accomplished in the back end.
The entire process is based on implementations of the Liberty ID-FF, Liberty ID-WSF, and Liberty
ID-SIS specifications.

LibertyAllianceProjectArchitecture inAccessManager
The figure below shows the architecture of theAccessManager features that are based on the Liberty
Alliance Project specifications. These features leverage existingAccessManager services including
policy, servicemanagement, sessionmanagement, and auditing.

LibertyAlliance ProjectArchitecture inAccessManager

Chapter 2 • Implementation of the LibertyAlliance Project Specifications 47

Directory
Server

External
Data Store

Federation
Manager

SAML API

Metadata Federation
Discovery
Service

Interaction
Service

AuthN Web
Service

Data
Services

Pers Prof
Service

Custom
Services

A
d

m
in

is
tr

at
io

n

Base Functionality

Liberty-based Features (Web Services, Protocols, Profiles)

Administration
Console

(User Agent)

Web Service
(User Agent)

Application/
Web Service

API

HTTPHTTP

ID-WSF ID-SISID-FF

SAML Naming AuthN Session/
SSO

Policy/
Access

Access Manager Components External to Access Manager

Identity Repository API
Auditing/
Logging

XML Tools
Digital signing

JAX-RPC/JAXM
JAXB/SAAJ

SAML

Liberty

FIGURE 2–2 Liberty-basedArchitecture ofAccessManager

Note – For a complete architectural overview ofAccessManager, see the Sun Java System Access
Manager 7 2005Q4 Technical Overview.

LibertyAlliance ProjectArchitecture inAccessManager

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200548

Accessing the LibertyAllianceProject Features
AccessManager is installed with a set of default Liberty-based web services. They, the larger
Federation component, application programming interfaces, and the SecurityAssertionMarkup
Language (SAML) are introduced in the following sections.

� “Federation inAccessManager” on page 49
� “Liberty-basedWeb Services inAccessManager” on page 50
� “Liberty-basedApplication Programming Interfaces” on page 53
� “SAMLService” on page 55

Federation inAccessManager
The Federation component ofAccessManager provides an interface for creating, modifying, and
deleting authentication domains and service and identity providers (both remote and hosted types)
for a federatedmodel. The web interface for the Liberty ID-FF inAccessManager is accessible from
the Federation tab in theAccessManager Console, as shown in the following figure.

FIGURE 2–3 Federation Interface inAccessManager Console

The following steps illustrate the process for creating a federationmodel usingAccessManager:

1. Create an authentication domain.

2. Configure one ormore hosted providers that belong to the authentication domain.

3. Configure one ormore remote providers that belong to the authentication domain, and include
themetadata for the remote providers.

4. Establish the trusted partnership between the providers.Ahosted provider can choose to trust a
subset of providers, either hosted or remote, that belong to the same authentication domain.

Accessing the LibertyAlliance Project Features

Chapter 2 • Implementation of the LibertyAlliance Project Specifications 49

Liberty-basedWebServices inAccessManager
Liberty-based web services are those based on specifications in the Liberty ID-WSF and the Liberty
ID-SIS. They are accessible from theAccessManager Console by clicking theWeb Services tab. The
implemented web services include:

� “Liberty Personal Profile Service” on page 52
� “Discovery Service” on page 52
� “SOAPBinding Service” on page 53
� “AuthenticationWeb Service” on page 53

The following diagram illustrates how the different web service specifications have been
implemented.

Accessing the LibertyAlliance Project Features

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200550

ID-WSF Components External to Access ManagerAccess Manager Components

Data
Store

AuthN
Web

Service

Discovery
Service

SIS-PP
Client

SIS-EP
Client

Other SIS
Client Other SIS

Client

User
Agent

Metadata

DST Client API

Interaction API

SOAP Client API

Discovery
Service
Provider

AuthN
Web

Service
Provider

Trusted
Authority

Interaction
Redirect
Handler

PAOS

SIS-PP
Provider

SIS-EP
Provider

SOAP Receiver

WSC

Interaction API

SSO SDK SM SAML Authentication Policy

DST
Other SIS
ProviderOther SIS

Provider

SOAP/HTTP(s)

WSP

Accessing the LibertyAlliance Project Features

Chapter 2 • Implementation of the LibertyAlliance Project Specifications 51

FIGURE 2–4Architecture of Liberty-basedWeb Services

The web interface for the Liberty ID-WSF inAccessManager is accessible from theWeb Services tab
in theAccessManager Console, as shown in the following figure.

FIGURE 2–5Web Services Interface inAccessManager Console

Liberty Personal Profile Service
The Liberty Personal Profile Service is a data service that supports storing andmodifying a
principal’s identity attributes. Identity attributes might include information such as first name, last
name, home address, and emergency contact information. The Liberty Personal Profile Service is
queried or updated by aWSC acting on behalf of the principal. Formore information, see Chapter 6.

Discovery Service
TheDiscovery Service is a web service that allows a requesting entity, such as a service provider, to
dynamically determine a principal’s registered attribute provider. Typically, a service provider
queries the Discovery Service, which responds by providing a resource offering that describes the
requested attribute provider. (A resource offering defines associations between a piece of identity data
and the service instance that provides access to the data.) The implementation of the Discovery
Service includes Java and web-based interfaces. Formore information, see Chapter 7.

Accessing the LibertyAlliance Project Features

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200552

Note –By definition, a discoverable service is assigned a service typeUniformResource Identifier
(URI), allowing the service to be registered in Discovery Service instances. The service type URI is
typically defined in theWeb Service Definition Language (WSDL) file that defines the service.

SOAPBinding Service
The SOAPBinding Service is a set of JavaAPIs used by the developer of a Liberty-enabled identity
service. TheAPIs are used to send and receive identity-basedmessages using SOAP, an XML-based
messaging protocol. Formore information, see Chapter 8.

AuthenticationWebService
TheAuthenticationWeb Service provides web service-based authentication to aWSC, allowing the
WSC to obtain security tokens for further interactions with other services at the same provider.
These other services may include a discovery service or single sign-on service. TheAuthentication
Web Service is for service-to-service (nonuser) authentication. Formore information, see Chapter 5.

Note –Donot confuse the Liberty-basedAuthenticationWeb Service with the proprietaryAccess
ManagerAuthentication Service discussed in the Sun Java System Access Manager 7 2005Q4
Administration Guide.

Liberty-basedApplicationProgramming Interfaces
Anumber of the Liberty-based web services specifications have also been implemented in the back
end ofAccessManager asAPIs. The services include the Interaction Service and PAOS binding. The
following table summarizes the publicAPIs. They can be used to deploy Liberty-enabled
components or extend the core services.

TABLE 2–1Public Interfaces

PackageName Description

com.sun.identity.liberty.ws.authnsvc Provides classes tomanage theAuthenticationWeb
Service. See Chapter 5.

com.sun.identity.liberty.ws.

authnsvc.mechanism

Provides an interface to process incoming Simple
Authentication and Security Layer (SASL) requests
and generate SASL responses for the different SASL
mechanisms. See Chapter 5.

com.sun.identity.liberty.ws.

authnsvc.protocol

Provides classes tomanageAuthenticationWeb
Service protocol. See Chapter 5.

Accessing the LibertyAlliance Project Features

Chapter 2 • Implementation of the LibertyAlliance Project Specifications 53

TABLE 2–1Public Interfaces (Continued)
PackageName Description

com.sun.identity.liberty.ws.common Defines common classes that are used bymany of the
AccessManager Liberty-based web service
components. See “Common Service Interfaces”
on page 197 of this chapter.

com.sun.identity.liberty.ws.common.wsse Provides an interface to parse and create a X.509
Certificate Token Profile. See “Common Service
Interfaces” on page 197 of this chapter.

com.sun.identity.liberty.ws.disco Provides interfaces tomanage the Discovery Service.
See Chapter 7.

com.sun.identity.liberty.ws.disco.plugins Provides a plugin interface for the Discovery Service.
See Chapter 7.

com.sun.identity.liberty.ws.dst Provides classes to implement an identity service. See
Chapter 6 for information about services built using
thisAPI.

com.sun.identity.liberty.ws.dst.service Provides a handler class that can be used by any
generic identity data service. See Chapter 6 for
information about data services.

com.sun.identity.liberty.ws.interaction Provides classes to support the Interaction
RequestRedirect Profile. See the section on the
“Interaction Service” on page 201 for information on
this profile.

com.sun.identity.liberty.ws.interfaces Provides interfaces that are common to allAccess
Manager Liberty-based web service components. See
Chapter 7 and Chapter 6 for information about
default implementations. See the section on
“Common Service Interfaces” on page 197 formore
general information.

com.sun.identity.liberty.ws.paos Provides classes for web applications to construct and
process PAOS requests and responses. See “PAOS
Binding” on page 203 of this chapter.

com.sun.identity.liberty.ws.security Provides an interface tomanage Liberty-based web
service securitymechanisms. See “Common Security
API” on page 199 of this chapter.

com.sun.identity.liberty.ws.soapbinding Provides classes to construct SOAP requests and
responses and to change the contact point for the
SOAPbinding. See Chapter 8.

com.sun.identity.saml Provides a service provider interface (SPI) in which
proprietary XML/signature implementations can be
plugged in. See Chapter 9.

Accessing the LibertyAlliance Project Features

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200554

TABLE 2–1Public Interfaces (Continued)
PackageName Description

com.sun.identity.saml.assertion Provides classes tomanage assertions and profiles. See
Chapter 9.

com.sun.identity.saml.common Provides classes that are common to all SAML
elements. See Chapter 9.

com.sun.identity.saml.plugins Provides SPIs to integrate SAML into custom services.
See Chapter 9.

com.sun.identity.saml.protocol Provides classes that parse the XMLmessages used to
exchange assertions and information. See Chapter 9.

com.sun.identity.saml.xmlsig Provides an SPI in which proprietary XML/signature
implementations can be plugged in. See Chapter 9.

com.sun.liberty Provides interfaces common to theAccessManager
FederationManagementmodule. See Chapter 3.

Formore information, see Chapter 10. For detailedAPI documentation, including classes, methods
and their syntax and parameters, see the JavaAPI Reference in /AccessManager-base/SUNWam/docs
or on docs.sun.com.

SAMLService
AccessManager uses SAMLas themeans for exchanging security information. SAMLuses an
eXtensibleMarkup Language (XML) framework to achieve interoperability between vendor
platforms that provide SAMLassertions.

In anticipation of the next release ofAccessManager and support of SAML2.0, SAMLattributes
have beenmoved under the Federation tab although it’s usage is independent of the functionality
discussed in this guide. The Liberty-based features inAccessManager use SAMLbut that usage is not
configurable. Formore information on the independent SAMLService, see Chapter 9.

Liberty-Based Samples
AccessManager has included sample code and files that can be used to understand the
implementation of the LibertyAlliance Project specifications. For information about the specifics of
these samples, see the individual chapters or AppendixA.

Liberty-Based Samples

Chapter 2 • Implementation of the LibertyAlliance Project Specifications 55

56

FederationManagement
� Chapter 3, Federation
� Chapter 4, CommonDomain Services

P A R T I I

57

58

Federation

Sun JavaTM SystemAccessManager provides an interface for creating, modifying, and deleting
authentication domains, service providers, and identity providers. This chapter explains how to use
the Federation component to configure a Liberty-based provider federation.

This chapter covers the following topics:

� “Features of Federation” on page 59
� “Process of Federation” on page 64
� “Federation Graphical User Interface” on page 67
� “Entities andAuthenticationDomains” on page 70
� “Auto-Federation” on page 96
� “Bulk Federation” on page 97
� “Dynamic Identity Provider Proxying” on page 97
� “The Pre-login URL” on page 99
� “FederationAPI” on page 101
� “Sample Federation Environment” on page 101

Features of Federation
AccessManager provides a web interface to the Liberty Identity Federation Framework (Liberty
ID-FF) which is accessible through the Federation tab in theAccessManager Console. The
Federation component includes the features and functions described in the following sections.

Note – Formore information about the Liberty ID-FF functions, see the Liberty ID-FF Protocols and
Schema Specifications.

Identity Federation andSingle Sign-On
Let’s assume that a principal has separate user accounts with both a service provider and an identity
provider in the same authentication domain. In order to gain access to these individual accounts, the

3C H A P T E R 3

59

http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-errata-v1.0.pdf
http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-errata-v1.0.pdf

principal authenticates with each provider.After the principal has authenticated with the service
provider though, they can be given the option to federate the service provider account with an
identity provider account. Consenting to the federation of these two accounts links them for the
purpose of single sign-on.

Providers differentiate between federated users by defining a unique handle for each account. (They
are not required to use the principal’s actual provider account identifier.) Providers can also choose
to createmultiple handles for a particular principal. However, identity providers must create one
handle per user for each service provider that hasmultiple web sites so that the handle can be
resolved across all of them.

Note –Because both the identity provider and service provider in a federation need to remember the
principal’s handle, they create entries that note the handle in their respective user repositories. In
some scenarios, only the identity provider’s handle is conveyed to a service provider. For example, if
a service provider does notmaintain its own user repository, the identity provider’s handle is used.

AccessManager can accommodate the following functions:

� Providers of either type give the principal notice upon identity federation or identity
defederation.

� Providers of either type notify each other regarding a principal’s defederation.
� Identity providers notify the appropriate service providers regarding a principal’s account

termination.
� Providers of either type give the principal a list of their federated identities.
� Users can terminate federations or defederate identities.

Auto-Federation
Auto federation will automatically federate a user’s disparate provider accounts based on a common
attribute. During single sign-on, if it is deemed a user at providerAand a user at provider B have the
same value for the defined common attribute (for example, an email address), the two accounts will
be federated without consent or interaction from the principal. Formore information, see
“Auto-Federation” on page 96.

Bulk Federation
Federating one user’s service provider account with their identity provider account generally
requires the principal to visit both providers and link them. In situations when an enterprise is both a
service provider and an identity provider, the organization should have the ability to federate user
accounts behind the scenes.AccessManager provides a script for federating user accounts in bulk.
The script allows the administrator to federatemany (or all) of a principal’s provider accounts based
onmetadata passed to the script. Bulk federation is useful when adding a new service provider to an
enterprise so you can federate a group of existing employees to the new service. Formore
information, see “Bulk Federation” on page 97.

Features of Federation

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200560

Authentication andAuthenticationContext
Single sign-on is themeans by which a provider of either type can convey to another provider that
the principal has been authenticated. Identity providers use local (to the identity provider) session
information that is mapped to a user agent as the basis for issuing SAMLauthentication assertions to
service providers. Thus, when the principal uses a user agent to interact with a service provider, the
service provider requests authentication information from the identity provider based on the user
agent’s session information. If this information indicates that the user agent’s session is presently
active, the identity provider will return a positive authentication response to the service provider.

AccessManager accommodates these authentication actions:

� Supports a range of authenticationmethods (for example, password or certificate-based SSL).
� Allows providers to exchange the followingminimum set of authentication information with

regard to a principal: authentication status (active or not), instant (time authenticated), method,
and pseudonym (temporary or persistent).

� Allows an identity provider, at the discretion of the service provider, to authenticate a principal
by using an identity provider other than itself (proxy) and relay this information back to the
service provider.

SAML is used for provider interaction during authentication but not all SAMLassertions are equal.
Different authorities issue SAMLassertions of different quality. Therefore, the LibertyAlliance
Project defines how the consumer of a SAMLassertion can determine the amount of assurance to
place in the assertion. This is referred to as the authentication context, information added to the
SAMLassertion that gives the assertion consumer information they need tomake an informed
entitlement decision. For example, a principal uses a simple identifier and a self-chosen password to
authenticate to an identity provider. The identity provider sends an assertion that states the principal
has been authenticated to a service provider. By sending the authentication context, the service
provider can place the appropriate level of assurance on the associated authentication assertion. For
example, if the service provider were a bank, theymight require stronger authentication than that
which has been used and send a response to the identity provider with a request to authenticate the
user again. The authentication context informationmight include:

� The initial user identificationmechanism (for example, face-to-face, online, or shared secret).
� Themechanisms forminimizing compromise of credentials (for example, private key in

hardware, credential renewal frequency, or client-side key generation).
� Themechanisms for storing and protecting credentials (for example, Smartcard, or password

rules).
� The authenticationmechanisms (for example, password or Smartcard with PIN).

An XMLschema has been defined by which the authority can assert the context of the SAML
assertions it issues. The LibertyAlliance Project specifications have also definedAuthentication
Context classes against which an identity provider can claim conformance. The Liberty-defined
authentication contexts are listed and described in the following table.

Features of Federation

Chapter 3 • Federation 61

TABLE 3–1AuthenticationContextClasses

Class Description

MobileContract Identified when amobile principal has an identity for which
the identity provider has vouched.

MobileDigitalID Identified by detailed and verified registration procedures, a
user’s consent to sign and authorize transactions, and
DigitalID-based authentication.

MobileUnregistered Identified when the real identity of amobile principal has
not been strongly verified.

Password Identified when a principal authenticates to an identity
provider by using a password over an unprotectedHTTP
session.

Password-ProtectedTransport Identified when a principal authenticates to an identity
provider by using a password over an SSL-protected session.

Previous-Session Identified when an identity providermust authenticate a
principal for a current authentication event and the
principal has previously authenticated to the identity
provider. This affirms to the service provider a time lapse
from the principal’s current resource access request.

Note –The context for the previously authenticated session is
not included in this class because the user has not
authenticated during this session. Thus, themechanism that
the user employed to authenticate in a previous session
should not be used as part of a decision on whether to now
allow access to a resource.

Smartcard Identified when a principal uses a smart card to authenticate
to an identity provider.

Smartcard-PKI Identified when a principal uses a smart card with an
enclosed private key and a PIN to authenticate to an identity
provider.

Software-PKI Identified when a principal uses an X.509 certificate stored
in software to authenticate to the identity provider over an
SSL-protected session.

Time-Sync-Token Identified when a principal authenticates through a time
synchronization token.

Note – Formore information on authentication context, see the Liberty ID-FF Authentication
Context Specification.

Features of Federation

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200562

http://www.projectliberty.org/specs/liberty-authentication-context-v1.3.pdf
http://www.projectliberty.org/specs/liberty-authentication-context-v1.3.pdf

Identifiers andNameRegistration
AccessManager supports name identifiers that are unique across all providers in an authentication
domain. This identifier can be used to obtain information for or about the principal (with consent)
without requiring the user to consent to a long-term relationship with the service provider. During
federation, the identity provider generates an opaque value that serves as the initial name identifier
that both the service provider and the identity provider use to refer to the principal when
communicating with each other.

After federation though, the identity provider or the service providermay register a different opaque
value. The reasons for doing this would be implementation-specific. If a service provider registers a
different opaque value for the principal, the identity providermust use the new identifier when
communicating with the service provider about the principal.

Note –The initial name identifier defined by the identity provider is always used to refer to the
principal unless a new name identifier is registered.

Global Logout
Aprincipal may establish authenticated sessions with both an identity provider and individual
service providers, based on authentication assertions supplied by the identity provider.When the
principal logs out of a service provider session, the service provider sends a logoutmessage to the
identity provider that provided the authentication for that session.When this happen, or the
principal manually logs out of a session at an identity provider, the identity provider sends a logout
message to each service provider to which it provided authentication assertions under the relevant
session. The one exception is the service provider that sent the logout request to the identity provider.

Dynamic Identity Provider Proxying
An identity provider can choose to proxy an authentication request to an identity provider in
another authentication domain if it knows that the principal has been authenticated with this
identity provider. The proxy behavior is defined by the local policy of the proxying identity provider.
However, a service provider can override this behavior and choose not to proxy. This function can be
implemented as a form of authentication when, for instance, a roamingmobile user accesses a
service provider that is not part of themobile home network. Formore information see “Dynamic
Identity Provider Proxying” on page 97.

Features of Federation

Chapter 3 • Federation 63

Process of Federation
The process of federation begins with authentication.Astandard installation ofAccessManager
provides two options for user authentication: the proprietaryAuthentication Service and the
Liberty-based Federation component.

With the proprietary option, users attempting to access a resource protected byAccessManager are
redirected to theAuthentication Service via anAccessManager login page.After the users provide
credentials, theAuthentication Service allows or denies access to the resource based on the outcome.

Note – Formore information about the proprietaryAuthentication Service, see the Sun Java System
Access Manager 7 2005Q4 Administration Guide.

The second option for user authentication is Liberty-based federation.When a principal attempts to
access a web site that belongs to the trustedmember provider of a configured authentication domain,
the process of user authentication begins with the search for a validAccessManager session token
from the proprietaryAuthentication Service.

� If no session token is found, the principal is redirected to a location defined by the pre-login URL
to establish a valid session. See “Pre-login Process” on page 66 for details.

� If a session token is found, the principal is granted (or denied) access to the requested page.
Assuming access is granted, the requested page contains a link so the principal can federate the
AccessManager identity with the identity local to the requested site. If the principal clicks this
link, federation begins. See “Federation and Single Sign-On” on page 66 for details.

The following figure illustrates these divergent paths.

Note –The process shown in the figure below is the default process when no application has been
deployed.When an application is deployed and usingAccessManager, the process will change based
on the application’s query parameters and preferences. Formore information, see “The Pre-login
URL” on page 99.

Process of Federation

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200564

User Interaction

Liberty-based Components

Access Manager Components

User attempts to
access protected

web resource

Is
SSO token

valid?

Is
Federation

cookie
present?

Federation
cookie

value=yes?

Send
authentication
request to IDP

Show local
login page

Approve
credentials?

User presents
credentials

Did IDP
send valid
response?

Show requested
page with

Federated link

User clicks link,
enables

Federation

Show
IDP
List

User
selects

IDP

Send
Federation

request

Generate SSO
token and create

a session

No Yes

Yes

Yes

Yes

No

No

Pre-Login Processes

No

No

Yes

Federation Processes

FIGURE 3–1Default Process of Federation

Process of Federation

Chapter 3 • Federation 65

Pre-login Process
The pre-login process establishes a validAccessManager session.When a principal attempts to
access a service provider site and noAccessManager session token is found,AccessManager
searches for a federation cookie.A federation cookie is implemented byAccessManager and is called
fedCookie. It can have a value of either yes or no, based on the principal’s federation status.

Note –Afederation cookie is not defined in the LibertyAlliance Project specifications.

At this point, the pre-login process may take one of the following paths:

� If a federation cookie is found and its value is no, anAccessManager login page is displayed and
the principal submits credentials to the proprietaryAuthentication Service.When authenticated
byAccessManager, the principal is redirected to the requested page, whichmight contain a link
to allow for identity federation. If the principal clicks this link, federation begins. See “Federation
and Single Sign-On” on page 66 for details.

� If a federation cookie is found and its value is yes, the principal has already federated an identity
but has not been authenticated by an identity provider within the authentication domain for this
AccessManager session.Authentication toAccessManager is achieved on the back end by
sending a request to the principal’s identity provider.After authentication, the principal is
directed back to the requested page.

� If no federation cookie is found, a passive authentication request (one that does not allow identity
provider interaction with the principal) is sent to the principal’s identity provider. If an
affirmative authentication is received back from the identity provider, the principal is directed to
theAccessManagerAuthentication Service, where a session token is granted. The principal is
then redirected to the requested page. If the response from the identity provider is negative (for
example, if the session has timed out), the principal is sent to a common login page to complete
either a local login or Liberty-based federation. See “Federation and Single Sign-On” on page 66
for details.

Note –This pre-login process is the default behavior ofAccessManager. This processmight change
based on parameters passed toAccessManager from the participating application. Formore details,
see the section on “The Pre-login URL” on page 99.

Federation andSingle Sign-On
When a principal logs in to access a protected resource or service,AccessManager sends a request to
the appropriate identity provider for authentication confirmation. If the identity provider sends a
positive response, the principal gains access to all provider sites within the authentication domain. If
the identity provider sends a negative response, the principal is directed to authenticate again using
the Liberty-based federation process.

In the Liberty-based federation process, a principal selects an identity provider and sends credentials
for authentication.After authentication is complete and access is granted, the principal is issued a

Process of Federation

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200566

session token from theAccessManagerAuthentication Service and redirected to the requested page.
As long as the session token remains valid, the principal can access other service providers in the
authentication domain without having to authenticate again.

Note –CommonDomain Services are used by a service provider to determine the identity provider
used by a principal in an authentication domain that containsmultiple identity providers. See
Chapter 4 for details.

FederationGraphical User Interface
The Federation component uses JavaServer PagesTM (JSPTM) to define its look and feel. JSP are HTML
files that contain additional code to generate dynamic content. More specifically, a JavaServer page
contains HTMLcode to display static text and graphics, as well as application code to generate
information.When the page is displayed in a web browser, it contains both the static HTMLcontent
and, in the case of the Federation component, dynamic content retrieved through calls to the
FederationAPI.An administrator can customize the look and feel of the interface by changing the
HTML tags in the JSP but the invokedAPIsmust not be changed.

The JSP are located in
/AccessManager-base/SUNWam/web-src/services/config/federation/default. The files in this
directory provide a default interface to the Federation component. To customize the pages for a
specific organization, this default directory can be copied and renamed to reflect the name of the
organization (or any value). This directory would then be placed at the same level as the default
directory, and the files within this directory would bemodified as needed. The following table lists
the JSP including details on what each page is used for and the invokedAPIs that cannot bemodified.
Formore information aboutmodifying these pages to customize the console, see the Sun Java System
Access Manager 7 2005Q4 Developer’s Guide.

Federation Graphical User Interface

Chapter 3 • Federation 67

JSPNameand ImplementedAPIs Purpose

� CommonLogin.jsp InvokedAPIs are:

� LibertyManager.

getLoginURL(request)

� LibertyManager.

getInterSiteURL(request)

� LibertyManager.

getIDPList(providerID)

� LibertyManager.

getNewRequest(request)

� LibertyManager.

getSuccintID(idpID)

� LibertyManager.

cleanQueryString(request)

Displays a link to the local login page as well as links to
the login pages of the trusted identity providers. This
page is displayed when a user is not logged in locally or
with an identity provider. The list of identity providers
is obtained by using the
getIDPList(hostedProviderID)method.

� Error.jsp Displays an error page when an error has occurred. No
APIs are invoked.

� Federate.jsp InvokedAPIs are:

� LibertyManager.

isLECPProfile(request)

� LibertyManager.

getAuthnRequestEnvelope

(request)

� LibertyManager.

getUser(request)

� LibertyManager.

getProvidersTo

Federate(providerID,userDN)

Displays when a user clicks a federate link on a
provider page. Contains a drop-down of all providers
with which the user is not yet federated. This list is
constructed by using the
getProvidersToFederate(userName,providerID)

method.

� FederationDone.jsp InvokedAPI is:

� LibertyManager.

isFederationCancelled

(request)

Displays the status of a federation (success or
cancelled). This page checks the status by using the
isFederationCancelled(request)method.

� Footer.jsp Displays a branded footer that is included on all the
pages. NoAPIs are invoked.

� Header.jsp Displays a branded header that is included on all the
pages. NoAPIs are invoked.

Federation Graphical User Interface

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200568

JSPNameand ImplementedAPIs Purpose

� ListOfCOTs.jsp InvokedAPI is:

� LibertyManager.

getListOfCOTs

(providerID)

Displays a list of circles of trust.When a user is
authenticated by an identity provider and the service
provider belongs tomore than one circle of trust, the
user is shown this JSP and is prompted to select an
authentication domain as their preferred domain. In
the case that the provider belongs to only one domain,
this page will not be displayed. The list is obtained by
using the getListOfCOTs(providerID)method.

� LogoutDone.jsp InvokedAPI is:

� LibertyManager.

isLogoutSuccess(request)

Displays the status of the local logout operation.

� NameRegistration.jsp InvokedAPIs are:

� LibertyManager.

getUser(request)

� LibertyManager.

getRegisteredProviders

(userDN)

Displays when the Name Registration link is clicked
on a provider page.When a federated user chooses to
register a newName Identifier from a service provider
to an identity provider, this JSP is displayed.

� NameRegistrationDone.jsp InvokedAPIs are:

� LibertyManager.

isNameRegistration

Success(request)

� LibertyManager.

isNameRegistration

Canceled(request)

Displays the status of NameRegistration.jsp. When
finished, this page is displayed.

� Termination.jsp InvokedAPIs are:

� LibertyManager.

getUser(request)

� LibertyManager.

getFederatedProviders

(userDN)

Displays when a user clicks a defederate link on a
provider page. Contains a drop-down of all providers
to which the user has federated and fromwhich the
user can choose to defederate. The list is constructed
by using the getFederatedProviders(userName)
method, which returns all active providers to which
the user is already federated.

� TerminationDone.jsp InvokedAPIs are:

� LibertyManager.

isTerminationSuccess

(request)

� LibertyManager.

isTerminationCanceled

(request)

Displays the status of federation termination (success
or cancelled). Status is checked using the
isTerminationCancelled(request)method.

Federation Graphical User Interface

Chapter 3 • Federation 69

Entities andAuthenticationDomains
The Federation component in theAccessManager Console provides an interface for configuring,
modifying, and deleting authentication domains, and identity and service providers. To create and
populate an authentication domain, you first create an entity to hold themetadata for each provider
that will become amember of the authentication domain. Then, you configure and save the
authentication domain. Finally, to add an entity to the authentication domain, you edit the entity’s
properties. The following sections containmore information:

� “Entities” on page 70
� “AuthenticationDomains” on page 93

Note – In a federation setup, all service providers and identity providersmust share a synchronized
clock. You can implement the synchronization by pointing to an external clock source or by ensuring
that, in case of delays in receiving responses, the responses are captured without fail through
adjustments of the timeouts.

Entities
InAccessManager an entity can contain configuration information for an individual identity
provider, an individual service provider, or one of each.An entity can also contain configuration
information for an affiliation, a group of providers of either type. Both provider and affiliation
entities can be configured using theAccessManager Console.

Note – For general information about entities, see the Liberty Metadata Description and Discovery
Specification.

Provider Entity Aprovider entity holds themetadata for individual providers of either type.All
identity providers and service providers must first be configured within a
provider entity.After they are configured in an entity, they can be associated with
an authentication domain, or chosen to be included in an affiliate entity. Using
the descriptor attributes, one individual identity provider, one individual service
provider, or one of each can be defined within a provider entity.

Affiliate Entity An affiliate entity holds themetadata that defines a group of one ormore
providers that was formed without regard to the boundaries of an
authentication domain. This affiliation (referenced by an affiliationID) is
formed andmaintained by an affiliation owner (referenced by the providerID of
the entity that defined it) who chooses the trusted providers from already
configured provider entities. Members of the affiliationmay invoke services
either as amember of the affiliation (using the affiliationID), or individually
(using their providerID). For example, when a service provider issues an
authentication request on behalf of an affiliation, theAffiliationIDwill be used
to achieve single sign-on and the identity provider will resolve federations based
on the sameAffiliationID. The affiliate entity itself does not contain the

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200570

http://www.projectliberty.org/specs/draft-liberty-metadata-1.0-errata-v2.0.pdf
http://www.projectliberty.org/specs/draft-liberty-metadata-1.0-errata-v2.0.pdf

configuration information for any providers, only the configuration
information for the entity.

Note –The name identifier (a single persistent randomized string) is used to achieve single sign-on
between an identity provider and a group of service providers acting as a single affiliation. If there are
several service providers and identity providers in the same circle of trust, use an affiliate entity to
avoid having to generate different name identifiers for commonly shared services.

Creating an entity is a two-step process. First, you create a provider or affiliate entity. Then, you
populate the entity with remote or hosted provider information (either service or identity) or
affiliation information. This process is described in the following sections:

� “Creating Entities” on page 71
� “Configuring Provider Entities” on page 72
� “ConfiguringAffiliate Entities” on page 90
� “Deleting Entities” on page 93

Creating Entities
This section describes the process for creating a provider entity or an affiliate entity.

� ToCreate aProvider Entity or anAffiliate Entity
An entity can be created but it will not be available for assignment to an authentication domain until
it has been populated with provider(s). Once created and configured, the entity (and thus the
providers) can be added to an authentication domain.

In theAccessManager Console, select the Federation tab.

Under Federation, select the Entities tab.

Select New.

The new entity attributes are displayed.

Type a value for the Entity Name.

This field specifies the UniformResource Identifier (URI) of the entity andmust be unique. For
example, http://shivalik.sun.com or http://provider2.com:875.

(Optional) Enter a description of the entity in theDescription field.

1

2

3

4

5

Entities andAuthenticationDomains

Chapter 3 • Federation 71

Select one of the following options to define the entity’s type.

� Select Provider and clickOK.

The new entity is now displayed as a provider in the list of configured Entities. To configure the
entity, see “To Configure a Provider Entity” on page 72.

� Select Affiliate, type a value for bothAffiliateNameandAffiliateOwner, and clickOK.

TheAffiliate Name (also referred to as the affiliation ID) specifies a URI defined by theAffiliate
Owner that uniquely represents the affiliate entity, for example, http://shivalik.sun.com or
http://provider2.com:875. TheAffiliate Owner is the provider ID of the service provider
(defined in a provider entity) that is forming the affiliation.After entering these values and
clicking OK, the new entity is displayed as an affiliate in the list of configured Entities. To
configure the entity, see “To Configure anAffiliate Entity” on page 90.

Note –Defining a service provider as theAffiliate Owner does not automatically include it as a
member of the affiliate. If an owner is also amember, the provider IDmust be defined in both
attributes.

ConfiguringProvider Entities
After you create a provider entity, you populate it with remote or hosted provider information (either
service or identity). This section contains the following procedures:

� “To Configure a Provider Entity” on page 72
� “To Configure GeneralAttributes for a Provider Entity” on page 73
� “To Configure Hosted or Remote Identity ProviderAttributes for a Provider Entity” on page 75
� “To Configure Hosted or Remote Service ProviderAttributes for a Provider Entity” on page 82

� ToConfigure aProvider Entity
When you configure a provider entity, you are populating it with remote or hosted provider
information (either service or identity). Youmight also be configuring values for attributes that were
not available when the entity was initially created.

In theAccessManager Console, select the Federation tab.

Under Federation, select the Entities tab.

Select the provider entity that youwant to configure.

Ensure that you select an entity marked as type Provider.

6

1

2

3

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200572

Define values for theGeneral, Identity Provider or Service Provider attributes by choosing from the
Viewmenu:

� Todefine values for General attributes, see “To ConfigureGeneral Attributes for a Provider Entity”
onpage 73.

� Todefine values for Identity Provider attributes, see “To ConfigureHosted or Remote Identity
Provider Attributes for a Provider Entity” onpage 75.

� Todefine values for Service Provider attributes, see “To ConfigureHosted or Remote Service
Provider Attributes for a Provider Entity” onpage 82.

� ToConfigureGeneralAttributes for a Provider Entity
Before performing this procedure, youmust have completed the steps in “To Configure a Provider
Entity” on page 72.

ChooseGeneral from theViewmenu, andprovide information for the Entity CommonAttributes.

Entity CommonAttributes contain values that define the entity itself.
Entity Name

The static value of this attribute is the name that you provided when creating the entity.

Type
The static value of this attribute is Provider.

Description
The value of this optional attribute is the description that you provided when creating the entity.
You canmodify the description.

Valid Until
Type the expiration date for the entity metadata. Use Coordinated Universal Time (UTC) in the
format yyyy-mm-ddThh:mm:ss.SZ. For example, 2004-12-31T14:30:00.0Z.

Cache Duration
Type themaximum amount of time that the entity metadata can be cached. Use the format
PnYnMnDTnHnMnS, where n is an integer variable. For example, P1Y2M4DT9H8M20S defines the
cache duration as 1 year, 2months, 4 days, 9 hours, 8minutes, and 20 seconds.

Provide information for the Entity Contact Person Profile attributes.
Entity Contact Person Profile attributes contain values that define the administrator of the entity.
First Name

Type the given name of the entity’s contact person.

Last Name
Type the surname of the entity’s contact person.

Type
Choose the type of contact from the drop-downmenu:

4

1

2

Entities andAuthenticationDomains

Chapter 3 • Federation 73

� Administrative
� Billing
� Technical
� Other

Company
Type the name of the company that employs this person.

Liberty Principal ID
Type a URI that points to an online instance of the contact person’s personal information profile.

Emails
Type one ormore email addresses for the contact person.

TelephoneNumbers
Type one ormore telephone numbers for the contact person.

(Optional) Provide information for theOrganization Profiles.

TheOrganization Profiles attributes contain values that define the organizational name of the entity.
Names

Type the complete legal name of the entity’s organization. Use the format
locale|organization-name. For example, en|organization-name.com.

Note – If the Names attribute contains a value, it is required to add values to the Display Names
andURLattributes.

Display Names
Type a name that is suitable for display. Use the format locale|organization-display-name. For
example, en|organization-display-name.com.

URL
Type a URL that can be used to direct a principal to additional information on the entity’s
organization. Use the format locale|organization-URL. For example,
en|http://www.organization-name.com.

Click Save to complete the configuration, or define values for Identity Provider or Service Provider
attributes by choosing from theViewmenu:

� Todefine values for Identity Provider attributes, see “To ConfigureHosted or Remote Identity
Provider Attributes for a Provider Entity” onpage 75.

� Todefine values for Service Provider attributes, see “To ConfigureHosted or Remote Service
Provider Attributes for a Provider Entity” onpage 82.

3

4

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200574

� ToConfigureHostedor Remote Identity ProviderAttributes for a
Provider Entity
Before performing this procedure, youmust have completed the steps in “To Configure a Provider
Entity” on page 72.

Choose Identity Provider from theViewmenu.

Select the type of provider that you are configuring:

� NewHosted Provider
� NewRemote Provider

Ahosted provider is installed on the same server asAccessManager.A remote provider is not installed
on the same server asAccessManager.

Provide information for the CommonAttributes.

CommonAttributes contain values that generally define the identity provider.
Provider Type

The static value of this attribute is the type of provider being configured: hosted or remote. This
attribute is visible only after saving your configuration.

Description
The value of this attribute is a description of the identity provider.

Valid Until
Type the expiration date for the providermetadata. Use Coordinated Universal Time (UTC) and
the format yyyy-mm-ddThh:mm:ss.SZ, for example, 2004-12-31T14:30:00.0Z.

Cache Duration
Type themaximum amount of time that the providermetadata can be cached. Use the format
PnYnMnDTnHnMnS, where n is an integer. For example, P1Y2M4DT9H8M20S defines the cache
duration as 1 year, 2months, 4 days, 9 hours, 8minutes, and 20 seconds.

Protocol Support Enumeration
Choose the Liberty ID-FF release that is supported by this provider.
� urn:liberty:iff:2003-08 refers to the Liberty Identity Federation Framework Version 1.2.
� urn:liberty:iff:2002-12 refers to the Liberty Identity Federation Framework Version 1.1.

Server Name IdentifierMapping Binding
Name identifiermapping allows a service provider to obtain a name identifier for a principal that
has federated in the namespace of a different service provider. Implementing this protocol allows
the requesting service provider to communicate with the second service provider without an
identity federation having been enabled. Type a URI that identifies the communication
specifications.

1

2

3

Entities andAuthenticationDomains

Chapter 3 • Federation 75

Note –Currently, the Name IdentifierMapping profile only supports SOAP. If this attribute is
used, its valuemust be http://projectliberty.org/
profiles/nim-sp-http.

AdditionalMeta Locations
Type a URL that points to other relevantmetadata concerning the provider.

Signing Key: KeyAlias
Type the key alias that is used to sign requests and responses.

Encryption Key: KeyAlias
Type the security certificate alias. Certificates are stored in a Java keystore file. Each specific
certificate is mapped to an alias that is used to fetch the certificate.

Encryption Key: Key Size
Type the length for keys that are used by the web service consumer when interacting with another
entity.

Note – If the encryptionmethod is DESede, the key sizemust be 192. If the encryptionmethod is
AES, the key sizemust be 128, 192 or 256.

Encryption Key: EncryptionMethod
Choose themethod of encryption:
� None
� AES
� DESede

Name Identifier Encryption
Select the check box to enable encryption of the name identifier.

Provide information for the CommunicationURLs.
CommunicationURLs attributes contain locations for redirects and sending requests.
SOAPEndpoint

Type a URI to the identity provider’s SOAPmessage receiver. This value communicates the
location of the SOAP receiver in non browser communications.

Single Sign-On Service URL
Type a URL to which service providers can send single sign-on and federation requests.

Single Logout Service
Type a URL to which service providers can send logout requests. Single logout synchronizes the
logout functionality across all sessions authenticated by the identity provider.

Single Logout Return
Type a URL to which the identity provider will redirect the principal after completing a logout.

Federation Termination Service
Type a URL to which a service provider will send federation termination requests.

4

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200576

Federation Termination Return
Type a URL to which the identity provider will redirect the principal after completing federation
termination.

Name Registration Service
Type a URL to which a service provider will send requests to specify a new name identifier to be
used when communicating with the identity provider about a principal. This service can only be
used after a federation session is established.

Name Registration Return
Type a URL to which the identity provider will redirect the principal after HTTPname
registration has been completed.

Provide information for the Communication Profiles.

Communication Profiles attributes define the transmissionmethods used by the identity provider.
Federation Termination

Select a profile to notify other providers of a principal’s federation termination:
� HTTPRedirect
� SOAP

Single Logout
Select a profile to notify other providers of a principal’s logout:
� HTTPRedirect
� HTTPGet
� SOAP

Name Registration
Select a profile to notify other providers of a principal’s name registration:
� HTTPRedirect
� SOAP

Single Sign-on/Federation
Select a profile for sending authentication requests:
� Browser Post (specifies a browser-basedHTTPPOST protocol)
� BrowserArtifact (specifies a non-browser SOAP-based protocol)
� LECP (specifies a Liberty-enabled Client Proxy)

Note –AccessManager can handle requests that come from a Liberty-enabled client proxy
profile, but it requires additional configuration that is beyond the scope of this manual.

Select any of the available authentication domains to assign to the provider.

Aprovider can belong to one ormore authentication domains. However, a provider without a
specified authentication domain can not participate in Liberty-based communications. If no
authentication domains have been created, you can define this attribute later.

5

6

Entities andAuthenticationDomains

Chapter 3 • Federation 77

Note –To continue configuring a remote identity provider, skip to step 11.

(Hosted Identity ProviderOnly) Providemappings for theAuthentication Context classes.

This attributemaps the Liberty-defined authentication context classes to authenticationmethods
available at the identity provider.
Supported

Select the check box next to the authentication context class if the identity provider supports it.

Context Reference
The Liberty-defined authentication context classes are:
� Password
� Mobile Digital ID
� Smartcard
� Smartcard-PKI
� MobileUnregistered
� Software-PKI
� Previous-Session
� Mobile Contract
� Time-Sync-Token
� Password-ProtectedTransport

Key
Choose theAccessManager authentication type to which the context is mapped.

Value
Type theAccessManager authentication option.

Priority
Choose a priority level for cases where there aremultiple contexts.

(Hosted Identity ProviderOnly) Select any of the available provider entities to assign as a Trusted
Provider and click Add.

This attribute tallies providers that the identity provider trusts. It is visible after the provider
configuration has been saved.

(Hosted Identity ProviderOnly) Provide information for theAccessManager Configuration
attributes.

AccessManager Configuration attributes define general information regarding the instance of
AccessManager being used as an identity provider.
Provider URL

Type the URLof the local identity provider.

ProviderAlias
Type an alias name for the local identity provider.

7

8

9

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200578

Authentication Type
Select the provider that should be used for authentication requests from a provider hosted locally:
� Remote specifies that the provider hosted locally would contact a remote identity provider

upon receiving an authentication request.
� Local specifies that the provider hosted locally should contact a local identity provider upon

receiving an authentication request (essentially, itself).

DefaultAuthentication Context
Select the authentication context class (method of authentication) to use if the identity provider
does not receive this information as part of a service provider request. This value also specifies the
authentication context used by the service provider when an unknown user tries to access a
protected resource. The options are as follows:
� Password
� Mobile Digital ID
� Smartcard
� Smartcard-PKI
� MobileUnregistered
� Software-PKI
� Previous-Session
� Mobile Contract
� Time-Sync-Token
� Password-ProtectedTransport

Identity Provider ForcedAuthentication
Select the check box to indicate that the identity providermust reauthenticate (even during a live
session) when an authentication request is received. This attribute is enabled by default.

Request Identity Provider to be Passive
Select the check box to specify that the identity providermust not interact with the principal and
must interact with the user.

Realm
Type a value that points to the realm in which this provider is configured. For example, /sp.

Liberty VersionURI
Type the URI of the version of the LibertyAlliance Project specification being used. The default
value is http://projectliberty.org/
specs/v1.

Name Identifier Implementation
This field defines the class used by a service provider to participate in name registration. Name
registration is a profile by which service providers specify a principal’s name identifier that an
identity provider will use when communicating with the service provider. The value is
com.sun.identity.

federation.services.util.FSNameIdentifierImpl.

Home Page URL
Type the URLof the home page of the identity provider.

Entities andAuthenticationDomains

Chapter 3 • Federation 79

Single Sign-on Failure Redirect URL
Type the URL to which a principal will be redirected if single sign-on has failed.

Assertion Issuer
Type the name of the host that issues the assertion. This valuemight be the load balancer’s host
name ifAccessManager is behind one.

Generate Discovery Bootstrapping Resource Offering
Select the check box if you want a Discovery Service Resource Offering to be generated during the
Liberty-based single sign-on process for bootstrapping purposes.

Auto Federation
Select the check box to enable auto-federation.

Auto Federation CommonAttribute Name
When creating anAuto FederationAttribute Statement, the value of this attribute will be used.
The statement will contain the AutoFedAttribute element and this common attribute as its
value.

Attribute Statement Plugin
Specify a pluggable class used for adding attribute statements to an assertion that is generated
during the Liberty-based single sign-on process.

(Hosted Identity ProviderOnly) Provide information for the SAMLAttributes.
SAMLAttributes define general information regarding SAMLassertions that are sent by the identity
provider.
Assertion Interval

Type the interval of time (in seconds) that an assertion issued by the identity provider will remain
valid.Aprincipal will remain authenticated until the assertion interval expires.

Cleanup Interval
Type the interval of time (in seconds) before assertions stored in the identity provider will be
cleared.

Artifact Timeout
Type the interval of time (in seconds) to specify the timeout for assertion artifacts.

Assertion Limit
Type a number to define howmany assertions an identity provider can issue, or howmany
assertions that can be stored.

Note –To continue configuring a hosted identity provider, skip to step 12.

(Remote Identity ProviderOnly) Provide information for the ProxyAuthentication Configuration
attributes.

ProxyAuthentication Configuration attributes define values for dynamic identity provider proxying.
Enable ProxyAuthentication

Select the check box to enable proxy authentication for a service provider.

10

11

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200580

Proxy Identity Providers List
Add a list of identity providers that can be used for proxy authentication. The value is a URI
defined as the provider’s identifier.

MaximumNumber of Proxies
Enter themaximumnumber of identity providers that can be used for proxy authentication.

Use Introduction Cookie for Proxying
Select the check box if you want introductions to be used to find the proxying identity provider.

Provide information for theOrganization Profiles.

The optional Organization Profiles attributes contain values that define the organizational name of
the entity.
Names

Type the complete legal name of the organization. Use the format locale|organization-name, for
example, en|organization-name.com.

Note – If the Names attribute contains a value, it is required to add values to the Display Names
andURLattributes also.

Display Names
Type a name that is suitable for display to a principal. The value is defined in the format
locale|organization-display-name, for example, en|organization-display-name.com.

URL
Type a URL that can be used to direct a principal to additional information on the entity. Use the
format locale|organization-URL, for example, en|http://www.organization-name.com.

ClickNewContact Person to create a contact person for the provider.

The Contact Person attributes contain information regarding a human contact for the identity
provider.
First Name

Type the given name of the identity provider’s contact person.

Last Name
Type the surname of the identity provider’s contact person.

Type
Choose the contact’s role from the drop-downmenu:
� Administrative
� Billing
� Technical
� Other

Company
Type the name of the company that employs the contact person.

12

13

Entities andAuthenticationDomains

Chapter 3 • Federation 81

Liberty Principal Identifier
Type the name identifier that points to an online instance of the contact person’s personal
information profile.

Emails
Type one ormore email addresses for the contact person.

TelephoneNumbers
Type one ormore telephone numbers for the contact person.

Click Create to create the contact person.

Click Save to complete the configuration, or define values for General or Service Provider attributes
by choosing from theViewmenu:

� Todefine values for General attributes, see “To ConfigureGeneral Attributes for a Provider Entity”
onpage 73.

� Todefine values for Service Provider attributes, see “To ConfigureHosted or Remote Service
Provider Attributes for a Provider Entity” onpage 82.

� ToConfigureHostedor Remote Service ProviderAttributes for a
Provider Entity
Before performing this procedure, youmust have completed the steps in “To Configure a Provider
Entity” on page 72.

Choose Service Provider from theViewmenu.

Select the type of provider that you are configuring:

� NewHosted Provider
� NewRemote Provider

Ahosted provider is installed on the same server asAccessManager.A remote provider is not installed
on the same server asAccessManager.

Provide information for the CommonAttributes.

CommonAttributes contain values that generally define the service provider.
Provider Type

The static value of this attribute is the type of provider being configured: hosted or remote. This
attribute is visible only after saving your configuration.

Description
The value of this attribute is a description of the service provider.

14

15

1

2

3

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200582

Valid Until
Type the expiration date for the providermetadata. Use Coordinated Universal Time (UTC) and
the format yyyy-mm-ddThh:mm:ss.SZ, for example, 2004-12-31T14:30:00.0Z.

Cache Duration
Type themaximum amount of time that the providermetadata can be cached. Use the format
PnYnMnDTnHnMnS, where n is an integer. For example, P1Y2M4DT9H8M20S defines the cache
duration as 1 year, 2months, 4 days, 9 hours, 8minutes, and 20 seconds.

Protocol Support Enumeration
Select the Liberty ID-FF release that is supported by this provider.
� urn:liberty:iff:2003-08 refers to the Liberty Identity Federation Framework Version 1.2.
� urn:liberty:iff:2002-12 refers to the Liberty Identity Federation Framework Version 1.1.

Server Name IdentifierMapping Binding
Name identifiermapping allows a service provider to obtain a name identifier for a principal that
has federated in the namespace of a different service provider. Implementing this protocol allows
the requesting service provider to communicate with the second service provider without an
identity federation having been enabled. The value of this attribute is a URI that identifies the
communication specifications.

Note –Currently, the Name IdentifierMapping profile only supports SOAP. If this attribute is
used, its valuemust be http://projectliberty.org/profiles/nim-sp-http.

AdditionalMeta Locations
Type a URL that points to other relevantmetadata concerning the provider.

Signing Key: KeyAlias
Type the key alias that is used to sign requests and responses.

Encryption Key: KeyAlias
Type the security certificate alias. Certificates are stored in a Java keystore file. Each specific
certificate is mapped to an alias that is used to fetch the certificate.

Encryption Key: Key Size
Type the length for keys that are used by the web service consumer when interacting with another
entity.

Encryption Key: EncryptionMethod
Select themethod of encryption:
� None
� AES
� DESede

Name Identifier Encryption
Select the check box to enable encryption of the name identifier.

Provide information for the CommunicationURLs.
CommunicationURLs attributes contain locations for redirects and sending requests.

4

Entities andAuthenticationDomains

Chapter 3 • Federation 83

SOAPEndpoint
Type a URI to the service provider’s SOAPmessage receiver. This value communicates the
location of the SOAP receiver in non browser communications.

Single Logout Service
Type a URL to which identity providers can send logout requests.

Single Logout Return
Type a URL to which the service provider will redirect the principal after completing a logout.

Federation Termination Service
Type a URL to which identity providers will send federation termination requests.

Federation Termination Return
Type a URL to which the service provider will redirect the principal after completing federation
termination.

Name Registration Service
Type a URL that will be used when communicating with the identity provider to specify a new
name identifier for the principal. (Registration can occur only after a federation session is
established.)

Name Registration Return
Type a URL to which the service provider will redirect the principal after HTTPname registration
has been completed.

Provide information for the Communication Profiles.

Communication Profiles attributes define the transmissionmethods used by the service provider.
Federation Termination

Select a profile to notify other providers of a principal’s federation termination:
� HTTPRedirect
� SOAP

Single Logout
Select a profile to notify other providers of a principal’s logout:
� HTTPRedirect
� HTTPGet
� SOAP

Name Registration
Select a profile to notify other providers of a principal’s name registration:
� HTTPRedirect
� SOAP

Single Sign-on/Federation
Select a profile for sending authentication requests:
� Browser Post (specifies a browser-basedHTTPPOST protocol)
� BrowserArtifact (specifies a non-browser SOAP-based protocol)

5

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200584

� LECP (specifies a Liberty-enabled Client Proxy)

Note –AccessManager can handle requests that come from a Liberty-enabled client proxy
profile, but it requires additional configuration that is beyond the scope of this manual.

Select any of the available authentication domains to assign to the provider.
Aprovider can belong to one ormore authentication domains. However, a provider without a
specified authentication domain cannot participate in Liberty-based communications. If no
authentication domains have been created, you can define this attribute later.

Note –To continue configuring a remote service provider, skip to step 9.

(Hosted Service ProviderOnly) Provide a hierarchy for theAuthentication Context classes.
This attribute corresponds to the authentication level defined for anAccessManager authentication
module. It will redirect the principal to the authentication type with an authentication level equal to
the number defined.
Context Reference

The Liberty-defined authentication context classes are:
� Password
� Mobile Digital ID
� Smartcard
� Smartcard-PKI
� MobileUnregistered
� Software-PKI
� Previous-Session
� Mobile Contract
� Time-Sync-Token
� Password-ProtectedTransport

Level
Type a level for each authentication context class. The number can be any positive number.

(Hosted Service ProviderOnly) Select any of the available provider entities to assign as a Trusted
Provider and click Add.
This attribute tallies providers that the service provider trusts.

Provide information for the Service Provider attributes.
Service Provider attributes define general information regarding the service provider.
Assertion Consumer URL

Type the URL to the end point that defines where a provider will send SAMLassertions.

Assertion Consumer Service URL ID
If the value of the Protocol Support Enumeration common attribute is
urn:liberty:iff:2003-08, type the required ID.

6

7

8

9

Entities andAuthenticationDomains

Chapter 3 • Federation 85

SetAssertion Consumer Service URLas Default
Select the check box to use theAssertion Consumer Service URLas the default value when no
identifier is provided in the request.

SignAuthentication Request
Select the check box tomake the service provider always signs authentication requests.

Name Registration after Federation
Select the check box to enable the service provider to participate in name registration after a
principal has been federated.

Name ID Policy
Select the option permitting requester influence over name identifier policy at the identity
provider. The options are:
� None specifies that the identity provider will return the name identifier(s) for the principal

corresponding to the federation that exists between the identity provider and the requesting
service provider or affiliation group. If no such federation exists, an error will be returned.

� One-time specifies that the identity provider will issue a temporary, one-time-use identifier for
the principal after federation.

� Federation specifies that the identity providermay start a new identity federation if one does
not already exist for the principal.

EnableAffiliation Federation
Select the check box to enable affiliation federation.

Note –To continue configuring a remote identity provider, skip to step 11.

(Hosted Service ProviderOnly) Provide information for theAccessManager Configuration attributes.

AccessManager Configuration attributes define general information regarding the instance of
AccessManager being used as a service provider.
Provider URL

Type the URLof the local service provider.

ProviderAlias
Type an alias name for the local service provider.

Authentication Type
Select the provider that should be used for authentication requests from a provider hosted locally:
� Remote specifies that the provider hosted locally would contact a remote identity provider

upon receiving an authentication request.
� Local specifies that the provider hosted locally should contact a local identity provider upon

receiving an authentication request (essentially, itself).

DefaultAuthentication Context
This attribute defines the service provider’s default authentication context class (method of
authentication). This method will always be called when the service provider sends an

10

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200586

authentication request. This value also specifies the authentication context used by the service
provider when an unknown user tries to access a protected resource. The options are:
� Password
� Mobile Digital ID
� Smartcard
� Smartcard-PKI
� MobileUnregistered
� Software-PKI
� Previous-Session
� Mobile Contract
� Time-Sync-Token
� Password-ProtectedTransport

Identity Provider ForcedAuthentication
Select the check box to indicate that the identity providermust reauthenticate (even during a live
session) when an authentication request is received. This attribute is enabled by default.

Request Identity Provider to be Passive
Select the check box to specify that the identity providermust not interact with the principal and
must interact with the user.

Realm
Type a value that points to the realm in which this provider is configured, for example, /sp.

Liberty VersionURI
Type the URI of the version of the Liberty specification being used. The default value is
http://projectliberty.org/specs/v1.

Name Identifier Implementation
This field defines the class used by a service provider to participate in name registration. Name
registration is a profile by which service providers specify a principal’s name identifier that an
identity provider will use when communicating with the service provider. The value is
com.sun.identity.federation.services.util.FSNameIdentifierImpl.

Home Page URL
Type the URLof the home page of the service provider.

Single Sign-on Failure Redirect URL
Type the URL to which a principal will be redirected if single sign-on has failed.

Auto Federation
Select the check box to enable auto-federation.

Auto Federation CommonAttribute Name
When creating anAuto FederationAttribute Statement, the value of this attribute will be used.
The statement will contain the AutoFedAttribute element and this common attribute as its
value.

Attribute Statement Plugin
Specify a pluggable class used for adding attribute statements to an assertion that is generated
during the Liberty-based single sign-on process.

Entities andAuthenticationDomains

Chapter 3 • Federation 87

Provide information for the ProxyAuthentication Configuration attributes.

ProxyAuthentication Configuration attributes define values for dynamic identity provider proxying.
Enable ProxyAuthentication

Select the check box to enable proxy authentication for a service provider.

Proxy Identity Providers List
Add a list of identity providers that can be used for proxy authentication. The value is a URI
defined as the provider’s identifier.

MaximumNumber of Proxies
Enter themaximumnumber of identity providers that can be used for proxy authentication.

Use Introduction Cookie for Proxying
Select the check box if you want introductions to be used to find the proxying identity provider.

Note –To continue configuring a remote identity provider, skip to step 13.

(Hosted Service ProviderOnly) Provide information for the SAMLAttributes.

SAMLAttributes define general information regarding SAMLassertions sent by the identity
provider.
Assertion Interval

Type the interval of time (in seconds) that an assertion issued by the identity provider will remain
valid.Aprincipal will remain authenticated until the assertion interval expires.

Cleanup Interval
Type the interval of time (in seconds) before assertions stored in the identity provider will be
cleared.

Artifact Timeout
Type the interval of time (in seconds) to specify the timeout for assertion artifacts.

Assertion Limit
Type a number to define howmany assertions an identity provider can issue, or howmany
assertions can be stored.

Provide information for theOrganization Profiles.

The optional Organization Profiles attributes contain values that define the organizational name of
the entity.
Names

Type the complete legal name of the entity’s organization. Use the format
locale|organization-name, for example, en|organization-name.com.

Note – If the Names attribute contains a value, it is required to add values to the Display Names
andURLattributes.

11

12

13

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200588

Display Names
Type a name that is suitable for display. Use the format locale|organization-display-name, for
example, en|organization-display-name.com.

URL
Type a URL that can be used to direct a principal to additional information on the entity’s
organization. Use the format locale|organization-URL, for example,
en|http://www.organization-name.com.

ClickNewContact Person to create a contact person for the provider.

The Contact Person attributes contain information regarding a human contact for the identity
provider.
First Name

Type the given name of the identity provider’s contact person.

Last Name
Type the surname of the identity provider’s contact person.

Type
Choose the contact’s role from the drop-downmenu:
� Administrative
� Billing
� Technical
� Other

Company
Type the name of the company that employs the contact person.

Liberty Principal Identifier
Type the name identifier that points to an online instance of the contact person’s personal
information profile.

Emails
Type one ormore email addresses for the contact person.

TelephoneNumbers
Type one ormore telephone numbers for the contact person.

Click Create to create the contact person.

Click Save to complete the configuration, or define values for General or Identity Provider attributes
by choosing from theViewmenu:

� Todefine values for General attributes, see “To ConfigureGeneral Attributes for a Provider Entity”
onpage 73.

� Todefine values for Identity Provider attributes, see “To ConfigureHosted or Remote Identity
Provider Attributes for a Provider Entity” onpage 75.

14

15

16

Entities andAuthenticationDomains

Chapter 3 • Federation 89

ConfiguringAffiliate Entities
After you create an affiliate entity, you populate it with affiliation information. This section contains
the following procedures:

� “To Configure anAffiliate Entity” on page 90
� “To Configure GeneralAttributes for anAffiliate Entity” on page 90
� “To ConfigureAffiliateAttributes for anAffiliate Entity” on page 92

� ToConfigure anAffiliate Entity

In theAccessManager Console, select the Federation tab.

Under Federation, select the Entities tab.

Select the provider entity that youwant to configure.

Ensure that you select an entity marked as typeAffiliate.

Define values for theGeneral or Affiliate attribute groupings by choosing from theViewmenu:

� Todefine values for General attributes, see “To ConfigureGeneral Attributes for anAffiliate
Entity” onpage 90

� Todefine values for Affiliate attributes, see “To ConfigureAffiliate Attributes for anAffiliate
Entity” onpage 92

� ToConfigureGeneralAttributes for anAffiliate Entity
Before performing this procedure, youmust have completed the steps in “To Configure anAffiliate
Entity” on page 90.

ChooseGeneral from theViewmenu, andprovide information for the Entity CommonAttributes.

Entity CommonAttributes contain values that define the entity.
Entity Name

The static value of this attribute is the name that you provided when creating the entity.

Type
The static value of this attribute is Provider.

Description
The value of this optional attribute is the description that you provided when creating the entity.
You canmodify the description.

Valid Until
Type the expiration date for the entity metadata. Use Coordinated Universal Time (UTC) in the
format yyyy-mm-ddThh:mm:ss.SZ, for example, 2004-12-31T14:30:00.0Z.

1

2

3

4

1

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200590

Cache Duration
Type themaximum amount of time that the entity metadata can be cached. Use the format
PnYnMnDTnHnMnS, where n is an integer variable. For example, P1Y2M4DT9H8M20S defines the
cache duration as 1 year, 2months, 4 days, 9 hours, 8minutes, and 20 seconds.

Provide information for the Entity Contact Person Profile attributes.

Entity Contact Person Profile attributes contain values that define the administrator of the entity.
First Name

Type the given name of the entity’s contact person.

Last Name
Type the surname of the entity’s contact person.

Type
Choose the type of contact from the drop-downmenu:
� Administrative
� Billing
� Technical
� Other

Company
Type the name of the company that employs this person.

Liberty Principal ID
Type a URI that points to an online instance of the contact person’s personal information profile.

Emails
Type one ormore email addresses for the contact person.

TelephoneNumbers
Type one ormore telephone numbers for the contact person.

Provide information for theOrganization Profiles.

The optional Organization Profiles attributes contain values that define the organizational name of
the entity.
Names

Type the complete legal name of the organization. Use the format locale|organization-name, for
example, en|organization-name.com.

Note – If the Names attribute contains a value, it is required to add values to the Display Names
andURLattributes also.

Display Names
Type a name that is suitable for display to a principal. The value is defined in the format
locale|organization-display-name. For example, en|organization-display-name.com.

2

3

Entities andAuthenticationDomains

Chapter 3 • Federation 91

URL
Type a URL that can be used to direct a principal to additional information on the entity. Use the
format locale|organization-URL, for example, en|http://www.organization-name.com.

Click Save to complete the configuration, or chooseAffiliate from theViewmenu to configure the
Affiliate attributes.

To define values forAffiliate attributes, see “To ConfigureAffiliateAttributes for anAffiliate Entity”
on page 92.

� ToConfigureAffiliateAttributes for anAffiliate Entity
Before performing this procedure, youmust have completed the steps in “To Configure anAffiliate
Entity” on page 90.

ChooseAffiliate from theViewmenu andprovide information for the CommonAttributes.

CommonAttributes contain values that generally define the affiliation.
Name

The value of this attribute is the name of the affiliation.

Owner
The value of this attribute is the owner of the affiliation.

Valid Until
Type the expiration date for the affiliationmetadata. Use Coordinated Universal Time (UTC) and
the format yyyy-mm-ddThh:mm:ss.SZ, for example, 2004-12-31T14:30:00.0Z.

Cache Duration
Type themaximum amount of time affiliationmetadata can be cached. Use the format
PnYnMnDTnHnMnS, where n is an integer. For example, P1Y2M4DT9H8M20S defines the cache
duration as 1 year, 2months, 4 days, 9 hours, 8minutes, and 20 seconds.

Signing Key: KeyAlias
Type the key alias that is used to sign requests and responses.

Encryption Key: KeyAlias
Type the security certificate alias. Certificates are stored in a JKS keystore file. Each specific
certificate is mapped to an alias that is used to fetch the certificate.

Encryption Key: Key Size
Type the length for keys used by the web service consumer when interacting with another entity.

Encryption Key: EncryptionMethod
Select themethod of encryption:
� None
� AES
� DESede

4

1

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200592

Select any of the available provider entities to assign asmembers of the affiliation.
Aprovider can belong to one ormore affiliations. However, a provider without a specified
authentication domain cannot participate in Liberty-based communications.Also, be sure that the
service provider entity being assigned to the affiliate entity has enabled affiliation federation.

Click Save to complete the configuration.

ClickOK to complete the configuration, or chooseGeneral from theViewmenu to configure the
General attributes.
To define values for General attributes, see “To Configure GeneralAttributes for anAffiliate Entity”
on page 90.

Deleting Entities
If an entity is to be deleted from the console, it first needs to bemanually removed from the Trusted
Providers list (if the provider is hosted) or theAvailable Providers list (if part of an affiliation).

� ToDelete aProvider orAffiliate Entity

In theAccessManager Console, click the Federation tab.

Under Federation, select the Entities tab.

Select the check box next to the entity that youwant to delete.
Nowarningmessage is displayed when performing a delete.

ClickDelete.

AuthenticationDomains
An authentication domain is a federation of any number of service providers (and at least one
identity provider) with whom principals can transact business in a secure and apparently seamless
environment. (Themembers of the domainmust have previously established a circle of trust based
on the LibertyAlliance Project architecture and operational agreements.)

Note –An authentication domain is not a domain in the domain name system (DNS) sense of the
word.

The following procedures describe how to create, configure, and delete authentication domains
using theAccessManager Console.

� “To CreateAnAuthenticationDomain” on page 94
� “To Configure orModify anAuthenticationDomain” on page 94

2

3

4

1

2

3

4

Entities andAuthenticationDomains

Chapter 3 • Federation 93

� “ToDelete anAuthenticationDomain” on page 95

� ToCreateAnAuthenticationDomain

In theAccessManager Console, click the Federation tab.

Under Federation, select theAuthenticationDomains tab.

Select New.
TheNewAuthenticationDomain attributes are displayed.

Type a name for the authentication domain.

(Optional) Type a description of the authentication domain in theDescription field.

(Optional) Type a value for theWriter ServiceURL.
TheWriter Service URL specifies the location of the service that writes the common domain cookie.
Use the format http://common-domain-host:port/common/writer. Formore information about
the CommonDomain Services, see Chapter 4.

(Optional) Type a value for the Reader ServiceURL.
The Reader Service URL specifies the location of the service that reads the common domain cookie.
Use the format http://common-domain-host:port/common/transfer. Formore information about
the CommonDomain Services, see Chapter 4.

Select Active or Inactive.
The default status isActive. Selecting Inactive disables communication within the authentication
domain.

ClickOK.
The new authentication domain is now displayed in the list of configuredAuthenticationDomains.

� ToConfigure orModify anAuthenticationDomain

In theAccessManager Console, click the Federation tab.

Under Federation, select theAuthenticationDomains tab.
All createdAuthenticationDomains are displayed.

Click the nameof the authentication domain that youwant tomodify.
TheGeneral and Providers properties for the authentication domain are displayed.

(Optional) Enter ormodify a description of the authentication domain in theDescription field.

1

2

3

4

5

6

7

8

9

1

2

3

4

Entities andAuthenticationDomains

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200594

(Optional) Enter ormodify the value for theWriter ServiceURL.

TheWriter Service URL specifies the location of the service that writes the common domain cookie.
Use the format http://common-domain-host:port/common/writer. Formore information on the
CommonDomain Services, see Chapter 4.

(Optional) Enter ormodify the value for the Reader ServiceURL.

The Reader Service URL specifies the location of the service that reads the common domain cookie.
Use the format http://common-domain-host:port/common/transfer. Formore information on the
CommonDomain Services, see Chapter 4.

Select Active or Inactive.

The default status isActive. Selecting Inactive disables communication within the authentication
domain.

Click Add to populate the authentication domainwith providers.

The Trusted Providers page is displayed.

Choose from the list of Available Providers and click Add.

ClickOK to save the providers to the authentication domain.

The authentication domain’s attribute page is displayed.

Click Save to complete the configuration.

� ToDelete anAuthenticationDomain
Deleting an authentication domain does not delete the providers that belong to it although it will
impact the trusted relationship.

In theAccessManager Console, click the Federation tab.

Under Federation, select theAuthenticationDomains tab.

All createdAuthenticationDomains are displayed.

Select the check box next to the authentication domain that youwant to delete.

ClickDelete.

5

6

7

8

9

10

11

1

2

3

4

Entities andAuthenticationDomains

Chapter 3 • Federation 95

Auto-Federation
The auto-federation feature inAccessManager will automatically federate a user’s disparate provider
accounts based on a common attribute. This common attribute will be exchanged in a single sign-on
assertion so that the consuming service provider can identify the user and create account federations.
If auto-federation is enabled and it is deemed that a user at providerAand a user at provider B have
the same value for the defined common attribute (for example, emailaddress), the two accounts will
be federated automatically without principal interaction.

Note –Auto-federating a principal’s two distinct accounts at two different providers requires each
provider to have agreed to implement support for this functionality beforehand.

� ToEnableAuto Federation
Ensure that each local service and identity provider participating in auto federation is configured for
it. Remote providers would not be configured in your deployment.

In theAccessManager Console, click the Federation tab.

Under Federation, select the Entities tab.

Select the nameof a hostedprovider entity to edit its profile.

Whether an entity is configured to hold hosted or remote providers is not information that is
disclosed on this screen.

Select Identity Provider or Service Provider from theViewmenu.

Select AccessManager Configuration.

Enable Auto Federation by checking the box.

Type a value for theAuto Federation CommonAttributeNameattribute.

For example, enter emailaddress or userID. You should be sure that each participating user profile
(at both providers) has a value for this attribute.

Click Save to complete the configuration.

1

2

3

4

5

6

7

8

Auto-Federation

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200596

Bulk Federation
AccessManager provides a script for federating user accounts in bulk. It is called ambulkfed and is
located in /opt/SUNWam/bin. The script assumes that the user database is LDAPv3–compliant.

Note –The ambulkfed script is the primary script for bulk federation. It uses two other Perl scripts,
amGenerateLDIF.pl and amGenerateNI.pl, behind the scenes.

As input, the script takes a file that maps the user distinguished name (DN) of the identity provider
to the user DN of the service provider. Each line of the filemust place themappings in the following
order and separated by a pipe (”|”): uid=spuser,dc=iplanet,dc=com |
uid=idpuser,dc=iplanet,dc=com. The script generates unique random identifiers for each
mapping and creates four files:

� spnameidentifiers.txt

� idpnameidentifiers.txt

� spuserdata.ldif

� idpuserdata.ldif

These files contain the data for bulk federation. The LDIFs are used for instances ofAccessManager.
ambulkfed generates and loads the LDIF data intoAccessManager based on its given provider role.
For example, it will load spuserdata.ldif ifAccessManager acts as a service provider and it will
load idpuserdata.ldif ifAccessManager acts as an identity provider. The LDIFs will also be stored
locally and can be used with ldapmodify to load the data into a remote instance ofAccessManager. If
the remote provider is not an instance ofAccessManager, the generated text files
spnameidentifiers.txt and idpnameidentifiers.txt can be used to generate federation data
based on the input needs of the provider.

Dynamic Identity Provider Proxying
An identity provider that is asked to authenticate a principal that has already been authenticated with
another identity providermay proxy the authentication request, on behalf of the requesting service
provider, to the authenticating identity provider. This is called dynamic identity provider proxying.
When the first identity provider receives an authentication request regarding a principal, it prepares
a new authentication assertion on its own behalf by referencing the relevant information from the
original assertion and sending the assertion to the authenticating identity provider.

Note –The service provider requesting authenticationmay control this proxy behavior by setting a
list of preferred identity providers or by defining the amount of times the identity provider can proxy
the request.

Dynamic Identity Provider Proxying

Chapter 3 • Federation 97

� ToConfigure andTestDynamic Identity Provider
Proxying
The following steps describe the procedure to enable threemachines for identity provider proxying
and test the configuration. The procedure assumes the threemachines haveAccessManager installed
and are configured as follows:

Machine Authentication Function Federation Function

Machine 1 Authenticating Identity Provider Identity Provider

Machine 2 Proxying Identity Provider Identity Provider and Service Provider

Machine 3 Requesting Service Provider Service Provider

All of theWAR files andmetadata used in the following procedure can be found in
/AccessManager-base/samples/liberty/sample1.

To configuremachine 3, deploy the SP1WARfiles and load sp1Metadata.xml.
Ensure that themetadata definesmachine 2 as an identity provider andmachine 3 as a service
provider.

To configuremachine 1, deploy the IDP1WARfiles and load idp1Metadata.xml.
Ensure that themetadata definesmachine 1 as an identity provider andmachine 2 as a service
provider.

To configuremachine 2, do the following:

a. To configuremachine 2 as a service provider, deploy the SP1WARfiles.
Modify AMClient.properties to reflect this.

b. To configuremachine 2 as an identity provider, load a second,modified idp1Metadata.xml.
Ensure that idp1Metadata.xml contains only data that definesmachine 1 as an identity provider.
Remove all othermetadata.

Log in tomachine 2 andmodify the followingmetadata:

a. Change the value of theAuthentication Type attribute to Local.
This attribute can be found in theAccessManager Configuration section of the entity describing
machine 2 as a service provider.

b. Addmachine 1 andmachine 3 to the list of Trusted Providers configured formachine 2.
This attribute can be found in the Trusted Provider section of the entity describingmachine 2 as a
service provider.

1

2

3

4

Dynamic Identity Provider Proxying

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 200598

c. Save the configuration.

Also onmachine 2,modify the followingmetadata regardingmachine 3.

a. Select the check box next to Enable ProxyAuthentication.

This attribute can be found in the ProxyAuthentication Configuration section of the entity that
definesmachine 3 as an identity provider.

b. Addmachine 1 to the list of Proxy Identity Providers List.

This attribute can be found in the ProxyAuthentication Configuration section of the entity that
definesmachine 3 as an identity provider. The value is a URI defined as the provider’s identifier.

c. SetMaximumNumber of Proxies to 1.

d. Save the configuration.

Federate a user betweenmachine 3 (acting as a service provider) andmachine 2 (acting as an
identity provider).

Federate a user betweenmachine 2 (acting as a service provider) andmachine 1 (acting as an
identity provider).

Close the browser and attempt single sign-on.

Youwill be redirected tomachine 1 rather thanmachine 2 if you enter the username and password
used to federate withmachine 1.

ThePre-loginURL
The pre-login process is the entry point for applications participating in Liberty-based single
sign-on.As described in “Process of Federation” on page 64, the principal would be redirected to the
location defined by the pre-login URL if noAccessManager session token is found. This default
process, though, can bemodified based on the values of URLquery parameters passed toAccess
Manager by the service provider.

Note –AURLparameter is a name/value pair appended to the end of a URL. The parameter starts
with a questionmark (?) and takes the form name=value. Anumber of parameters can be combined
in one URLalthough if more than one parameter exists, they are separated by an ampersand (&).

In order tomodify the pre-login URL, edit the property in either the AMConfig.properties file or
the AMAgent.properties file, dependant on your deployment. Use the format
http://hostname:port/deploy-uri/preLogin?metaAlias=metaAlias. Query parameters can be
appended to the URLas ¶m1=value1¶m2=value2 and so on. These parameters and their
usage and values are described in the following table.

5

6

7

8

The Pre-login URL

Chapter 3 • Federation 99

TABLE 3–2Pre-loginURLParameters for Federation

Parameter Description

actionOnNoFedCookie The actionOnNoFedCookie parameter provides the flexibility to redirect a user
when the fedCookie is not present in the browser, and when there is only one
identity provider. It takes the following values:
� commonloginwill redirect to a common login page.

� localloginwill redirect to the localAccessManager login page.

� passivewill issue a request to the identity provider by setting the
isPassive parameter of the AuthnRequest element to true.

� activewill issue a normal single sign-on request to the identity provider.

anonymousOnetime The anonymousOnetime parameter can be used by service providers that
authenticate users with anonymous, one time federation sessions.Avalue of
true enables the service provider to issue a one time federation request and
generate an anonymous session after successful verification of the
authentication assertion from the identity provider. This feature is useful when
the service provider doesn’t have a user repository (for example,
http://www.weather.com) but would like to depend on an identity provider for
authentication.When the service provider receives a successful authentication
assertion from an identity provider, they would generate an anonymous,
temporary session.

authlevel The authlevel parameter takes as a value a positive number that maps to an
authentication level defined in theAccessManagerAuthentication Framework.
The authentication level indicates howmuch to trust amethod of
authentication.

Note –More information on the authentication framework can be found in Sun
Java System Access Manager 7 2005Q4 Administration Guide.

In this framework, each service provider is configured with a default
authentication context (preferredmethod of authentication). However, the
providermight like to change the assigned authentication context to one that is
based on the defined authentication level. For example, provider B would like to
generate a local session with an authentication level of 3 so it requests the
identity provider to authenticate the user with an authentication context
assigned that level. The value of this query parameter determines the
authentication context to be used by the identity provider.

gotoOnFedCookieNo The gotoOnFedCookieNo parameter takes as a value a URL to which the
principal is redirected if a fedCookiewith a value of no is found. The default
behavior is to redirect the user to theAccessManager login page.

The Pre-login URL

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005100

FederationAPI
The com.sun.liberty package provides the interface that forms the basis of the FederationAPI. It
contains the LibertyManager class whichmust be instantiated by web applications that want to
access the Federation component. It also contains themethods needed for account federation,
session termination, log in, log out and other actions. Some of thesemethods are described in the
following table. Formore detailed information, see the JavaAPI Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

TABLE 3–3FederationAPIMethods

Method Description

getFederatedProviders(String userName) Returns a specific user’s federated providers.

getIDPFederationStatus(String user, String

provider)

Retrieves a user’s federation status with a specified
identity provider. This method assumes that the user
is already federated with the provider.

getIDPList() Returns a list of all trusted identity providers.

getIDPList(java.lang.String

hostedProviderID)

Returns a list of all trusted identity providers for the
specified hosted provider.

getProvidersToFederate

(java.lang.String providerID,

java.lang.String userName)

Returns a list of all trusted identity providers to which
the specified user is not already federated.

getSPList() Returns a list of all trusted service providers.

getSPList(java.lang.String hostedProviderID) Returns a list of all trusted service providers for the
specified hosted provider.

getSPFederationStatus(java.lang.String user,

java.lang.String provider)

Retrieves a user’s federation status with a specified
service provider. This method assumes that the user is
already federated with the provider.

Sample Federation Environment
AccessManager provides a collection of samples based on the LibertyAlliance Project specifications.
They are located in the /AccessManager-base/SUNWam/samples/liberty/ directory. AppendixA
includes information about these samples.

Sample 1, located in /AccessManager-base/SUNWam/samples/liberty/Sample1, can be used to
configure an environment for creating andmanaging a federation. The sample demonstrates the
basic use of various Liberty-based federation protocols including account federation, single sign-on,
single logout, and federation termination. Completing the procedures in the sample Readme.txt or
Readme.htmlwill help to give you amore complete understanding of how federation works.

Sample Federation Environment

Chapter 3 • Federation 101

Note –The Readme file also contains instructions for configuring a common domain. For information
about common domains, see Chapter 4.

Sample Federation Environment

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005102

CommonDomain Services

Sun Java SystemAccessManager provides CommonDomain Services that enable a service provider
to determine the identity provider used by a principal in an authentication domain that contains
multiple identity providers.

This chapter covers the following topics:

� “CommonDomain” on page 103
� “CommonDomain Cookie” on page 104
� “Configuring the CommonDomain Services URLs” on page 105
� “Configuring the CommonDomain Services Properties” on page 105
� “Installing the CommonDomain Services for Federation” on page 106

CommonDomain
Providers need a way to find which identity provider is used by a principal requesting authentication.
Because authentication domains are configured without regard to their location, this functionmust
work across DNS—defined domains. Suppose an authentication domain containsmore than one
identity provider, then a service provider in the authentication domain trusts more than one identity
provider. But, a principal can only issue a federation request to one identity provider, so the service
provider to which the principal is requesting access must have themeans to determine the correct
one. To ascertain a principal’s identity provider, the service provider invokes a protocol exchange to
retrieve the common domain cookie, a cookie written for the purpose of introducing the identity
provider to the service provider. If no common domain cookie is found when the principal issues a
federation request, the service providermust present a list of trusted identity providers fromwhich
the principal will choose.After successful authentication, the identity provider writes (using the
Writer Service URLas defined in “Configuring the CommonDomain Services URLs” on page 105) a
common domain cookie. The next time the principal attempts to access a service, the service
provider finds and reads the common domain cookie (using the Reader Service URLas defined in
“Configuring the CommonDomain Services URLs” on page 105), to determine the identity
provider.

4C H A P T E R 4

103

The common domain is established for use only within the scope of the CommonDomain Services.
InAccessManager deployments, the CommonDomain Services are deployed in a web container
installed in a predetermined and pre-configured common domain so that the common domain
cookie is accessible to all providers in the authentication domain. If the HTTP server in the common
domain is operated by the service provider, the service provider will redirect the user agent to the
identity provider.

After a principal authenticates with a particular identity provider, the identity provider redirects the
principal’s browser to their CommonDomain Service with a parameter indicating that they are the
identity provider for this principal. The CommonDomain Service then writes a cookie using that
preference. Thereafter, all providers configured in this common domain will be able to tell which
identity provider is used by the principal. For example, suppose an identity provider is available at
http://www.Bank.com and a service provider is available via http://www.Store.com. If the
common domain they define is RetailGroup.com, the addresses will be Bank.RetailGroup.com and
Store.RetailGroup.com, respectively.

Note –TheCommonDomain Services are based on the Identity Provider Introduction Profile
detailed in the Liberty ID-FF Bindings and Profiles Specifications.

CommonDomainCookie
After an identity provider authenticates a principal, the identity provider sets a URL-encoded cookie
that is defined in a predetermined domain common to all identity providers and service providers
within the authentication domain. The common domain cookie is named _liberty_idp. After
successful authentication, a principal’s identity provider appends their encoded identifier to a list in
the cookie. If their identifier is already present in the list, the identity providermay remove the initial
appearance and append it again. The intent is that the service provider reads the last identifier on the
cookie’s list to find the principal’s most recently established identity provider.

The identifiers in the common domain cookie are a list of SuccinctID elements encoded in the
Base64 format. One elementmaps to each identity provider in the authentication domain. Service
providers then use this SuccinctID element to find the user’s preferred identity provider.

Note –When the request contains no common domain cookie, the service provider presents a list of
trusted identity providers fromwhich the principal may choose.

CommonDomain Cookie

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005104

http://www.projectliberty.org/specs/draft-liberty-idff-bindings-profiles-1.2-errata-v2.0.pdf

Configuring theCommonDomain ServicesURLs
InAccessManager, the CommonDomain Services are configured using twoURLs that point to
servlets developed for writing and reading the common domain cookie. They are:

� “Writer Service URL” on page 105
� “Reader Service URL” on page 105

Note – Formore information on how to configure these URLs, see “ToCreateAnAuthentication
Domain” on page 94 in Chapter 3.

Writer ServiceURL
TheWriter Service URL is used by the identity provider.After successful authentication, the
common domain cookie is appended with the query parameter
_liberty_idp=entity-ID-of-identity-provider. This parameter is used to redirect the principal to the
Writer Service URLdefined for the identity provider. The URL is configured as the value for the
Writer Service URLattribute when an authentication domain is created. Use the format
http://common-domain-host:port/deployment-uri/writerwhere common-domain-host:port refers
to themachine on which the CommonDomain Services are installed and deployment-uri tells the
web container where to look for information specific to the application (such as classes or JARs). The
default URI is amcommon.

Reader ServiceURL
The Reader Service URL is used by the service provider. The service provider redirects the principal
to this URL in order to find the preferred identity provider. Once found, the principal is redirected to
the identity provider for single sign-on. The URL is defined as the value for the Reader Service URL
attribute when an authentication domain is created. It is formatted as
http://common-domain-host:port/deployment-uri/transferwhere common-domain-host:port
refers to themachine on which the CommonDomain Services are installed and deployment-uri tells
the web container where to look for information specific to the application (such as classes or JARs).
The default URI is amcommon.

Configuring theCommonDomain Services Properties
FSIntroConfig.properties is a file that contains properties used to configure the Common
Domain Services. It is deployed as part of the web application and located in
/AccessManager-base/web-src/common/WEB-INF/classes. It contains the properties described in
the following table (whichmay bemodified).

Configuring the CommonDomain Services Properties

Chapter 4 • CommonDomain Services 105

TABLE 4–1CommonDomain Services Properties in FSConfig.properties

Property Description

com.sun.identity.federation.

services.introduction.cookiedomain

The value of this property is the name of the common
domain.

com.sun.identity.federation.

services.introduction.cookietype

This property takes a value of either PERSISTENT or
SESSION. PERSISTENT defines the cookie as one that
will be stored and reused after a web browser is closed
and reopened. SESSION defines the cookie as one that
will not be stored after the web browser has been
closed.

com.iplanet.am.cookie.secure This property takes a value of either false or true. It
defines whether the cookie needs to be secured or not.

com.iplanet.am.cookie.encode This property takes a value of either false or true. It
defines whether the cookie will be URLencoded or
not. This property is useful if, for example, the web
container that reads or writes the cookie decrypts or
encrypts it by default.

Installing theCommonDomain Services for Federation
The CommonDomain Services are installed as a web application withinAccessManager using the
Sun Java Enterprise System installer. However, the CommonDomain Services for Federation can
also be installed as a standalone web application (separate from theAccessManager product) on a
Java Enterprise Edition web container. This option allows for generating common domain cookies
on amachine on whichAccessManager is not installed. Once the CommonDomain Services for
Federation is installed, youmust set up the writer URLattribute for any identity providers and the
reader URL for any service providers. These URLs point to themachine on which CommonDomain
Services for Federation is installed. Formore information, see the Sun Java Enterprise System 2005Q4
Installation Guide for UNIX.

Tip – Inmost real world deployments, installing the CommonDomain Services on a separate
machine is the obvious choice because of the need to setup a third-level common domain between
service providers and identity providers in disparate enterprises.

� ToTest a CommonDomain Services Installation
For troubleshooting, make sure the debug level property in FSIntroConfig.properties is set to
message.

Installing the CommonDomain Services for Federation

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005106

Install the CommonDomain Services for Federation as a standalone application in aweb container in
the commondomain.

Ensure that the common domain has been defined and the web container is installed in it.

Modify the properties in FSIntroConfig.properties as needed.

See “Configuring the CommonDomain Services Properties” on page 105 formore information.

Configure at least two identity providers for a service provider.

Ensure that the “Writer Service URL” on page 105 is configured for each identity provider and the
“Reader Service URL” on page 105 is configured for each service provider.

Login as a user and complete federation and single sign-onbetweenone identity provider and the
service provider.

En sure that the _liberty_idp cookie is set to the common domain.

Login as a user and complete federation and single sign-onbetween the second identity provider
and the service provider.

After the initial successful federation and single sign-on, all service providers in the common domain
are redirected to the first identity provider based on the information in the common domain cookie.

Note –Whether the cookie is persistent or for this browser session alone is dependent on how
FSIntroConfig.properties is configured.

1

2

3

4

5

Installing the CommonDomain Services for Federation

Chapter 4 • CommonDomain Services 107

108

SupportedWeb Services
� Chapter 5,AuthenticationWeb Service
� Chapter 6, Data Services
� Chapter 7, Discovery Service
� Chapter 8, SOAPBinding Service

P A R T I I I

109

110

AuthenticationWeb Service

Sun JavaTM SystemAccessManager contains an implementation of the Liberty ID-WSF
Authentication Service Specification developed by the LibertyAlliance Project. The implementation
of the specifications is called theAuthenticationWeb Service which allows authentication using
SOAPmessages.

This chapter covers the following topics:

� “AuthenticationWeb Service Overview” on page 111
� “WhichAuthentication Service to Use?” on page 112
� “AuthenticationWeb Service Process” on page 114
� “AuthenticationWeb ServiceAttribute” on page 115
� “AuthenticationWeb ServiceAPI” on page 116
� “AuthenticationWeb Service Sample” on page 116

AuthenticationWebServiceOverview
The implementation of theAccessManagerAuthenticationWeb Service is based on the Liberty
ID-WSF Authentication Service Specification. The specification defines a protocol that adds
authentication functionality to the SOAPbinding discussed in the Liberty ID-WSF SOAP Binding
Specification and, Chapter 8 in this guide. The specification also contains an XMLschema that
defines the authentication protocol.

Note –This XMLSchemaDefinition (XSD) file can be found on the LibertyAlliance Project web site.
Version 1.0 is also reproduced in Appendix B.

TheAuthenticationWeb Service is for provider-to-provider authentication. The Simple
Authentication and Security Layer (SASL) is themethod used to add this authentication support.

5C H A P T E R 5

111

http://www.projectliberty.org/specs/liberty-idwsf-authn-svc-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idwsf-authn-svc-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf
http://www.projectliberty.org

XMLService File
TheAuthenticationWeb Service is configured using the XMLservice file amAuthnSvc.xml. This file
defines the attribute for theAuthenticationWeb Service which can bemanaged through theAccess
Manager console or the XMLfile.

Note – For information about service files, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

AuthenticationWebServiceAPIs
TheAccessManagerAuthenticationWeb Service includes the following Java programming
packages:

� com.sun.identity.liberty.ws.authnsvc

� com.sun.identity.liberty.ws.authnsvc.mechanism

� com.sun.identity.liberty.ws.authnsvc.protocol

The first package is a clientAPI for external Java applications to send SASL requests and receive
SASL responses. The second package defines an interface to handle different SASLmechanisms. The
final package contains classes that represent the SASL request and response. Together, the packages
are used to initiate the authentication process and communicate authentication credentials to the
AuthenticationWeb Service. Formore information, see the “AuthenticationWeb ServiceAPI”
on page 116.

WhichAuthentication Service toUse?
The Liberty-basedAuthenticationWeb Service is not to be confused with the proprietary
Authentication Service discussed in the Sun Java System Access Manager 7 2005Q4 Administration
Guide. Architecturally, theAuthenticationWeb Service sits on top of theAccessManager
Authentication Service and the LibertyAlliance Project framework. Youmight use the
AuthenticationWeb Service if you are a service provider and want to use a standards-based
mechanism to authenticate users.

Following are two use cases where theAuthenticationWeb Service is preferable to theAccess
ManagerAuthentication Service:

� Aservice provider relies on a remote identity provider (not necessarily usingAccessManager) for
authentication.

� An enterprise in a service-oriented architecture (SOA) environment wants to use nonproprietary
mechanisms to authenticate users and web services clients before accessing a protected web
service.

In addition to providing an authentication service to verify credentials (for example, user ID and
password), theAuthenticationWeb Service provides the web services consumer (WSC) with

WhichAuthentication Service to Use?

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005112

bootstrap information that contains the endpoint and credentials needed to access the Discovery
Service (as discussed in Chapter 7). TheWSC can ignore the bootstrap or use it to access other web
services, such as the authenticated user’s personal profile or calendar.

Note –An authenticated enterprisemight also use the bootstrap information to access a partner in a
business-to-business environment.

Following is an example that shows how theAuthenticationWeb Service interacts with theAccess
ManagerAuthentication Service. It assumes the following separate entities:

� Auser (principal)
� Aservice provider (acting as aWSC)
� An identity provider hosted byAccessManager where theAccessManagerAuthentication

Service is configured for Certificate and LDAP authentication and theAuthenticationWeb
Service hasmapped LDAP to its own PLAIN authenticationmechanism

� The user’s personal profile (hosted by another product)

TheWSC delegates all authentication to the identity provider and prefers PLAIN authentication
which accepts a user identifier and password.

1. The user attempts access to a service provider (not necessarily hosted byAccessManager).

2. When the service provider finds that the user is not authenticated, it invokes the identity
provider’sAuthenticationWeb Service by sending it a SOAP request.

3. After inspecting its configuration, theAuthenticationWeb Service sends back a response
indicating that it supports Certificate and PLAIN authentication.

4. The service provider decides on PLAIN authentication and prompts the user for an identifier and
password.

5. Interactions based on the standard PLAIN authenticationmapping ensues between the service
provider and identity provider (hosted onAccessManager) using theAuthenticationWeb
Service.

a. The service provider receives the user identifier and password and sends it to the identity
provider.

b. The identity provider passes the credentials to the locally hosted LDAPAuthentication
module using the proprietaryAccessManagerAuthentication Service’s JavaAPI.

c. The LDAPAuthenticationmodule verifies the credentials.

d. TheAuthenticationWeb Service is notified of the verification and sends a response to the
service provider indicating successful authentication. If configured to do so, it also includes
bootstrap information formatted using XMLand containing the Discovery Service endpoint
and a token to invoke it.

6. The service provider parses the response, verifies that it is a successful authentication, and
provides the service to the user.

WhichAuthentication Service to Use?

Chapter 5 • AuthenticationWeb Service 113

At some point the service providermight need to access the user’s personal profile. To do this, it will
use the bootstrap information received during this process to contact the Discovery Service and find
where the profile is stored. The Discovery Service returns a resource offering (containing the location
of an endpoint and a token), and the service provider uses that to invoke the Liberty Personal Profile
Service.

AuthenticationWebService Process
The exchange of authentication information between a web service consumer (WSC) and the web
service provider (WSP) is accomplished using SOAP-boundmessages. Themessages are a series of
client requests and server responses specific to the defined SASLmechanism (ormode of
authentication).

The authentication exchange can involve an arbitrary number of round trips, dictated by the
particular SASLmechanism employed. TheWSCmight have knowledge of the supported SASL
mechanisms, or it might send the server its own list of mechanisms and allow the server to choose
one. The list of supportedmechanisms can be found at
http://www.iana.org/assignments/sasl-mechanisms.

After receiving a request for authentication (or any response from theWSC), theWSPmay issue
additional challenges or indicate authentication failure or success. The sequence between theWSC
and theAuthenticationWeb Service (aWSP) is as follows.

1. The authentication exchange begins when aWSC sends an SASLauthentication request to the
AuthenticationWeb Service on behalf of a principal.
The request message contains an identifier for the principal and indicates one ormore SASL
mechanisms fromwhich the service can choose.

2. TheAuthenticationWeb Service responds by asserting themethod to use and, if applicable,
initiating a challenge.
If theAuthenticationWeb Service does not support any of the citedmethods, it responds by
aborting the exchange.

3. TheWSC responds with the necessary credentials for the chosenmethod of authentication.
4. TheAuthenticationWeb Service replies by approving or denying the authentication.

If approved, the response includes the credentials theWSC needs to invoke other web services,
such as the Discovery Service.

AuthenticationWeb Service Process

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005114

http://www.iana.org/assignments/sasl-mechanisms

AuthenticationWebServiceAttribute
TheAuthenticationWeb Service attribute is a global attribute. The value of this attribute is carried
across theAccessManager configuration and inherited by every organization.

Note – For information about the types of attributes used inAccessManager, see the Sun Java System
Access Manager 7 2005Q4 Technical Overview.

The attribute for theAuthenticationWeb Service is defined in the amAuthnSvc.xml service file and is
called theMechanismHandlers List.

MechanismHandlers List
TheMechanismHandler List attribute stores information about the SASLmechanisms that are
supported by theAuthenticationWeb Service.

keyParameter
The required key defines the SASLmechanism supported by theAuthenticationWeb Service.

classParameter
The required class specifies the name of the implemented class for the SASLmechanism. Two
authenticationmechanisms are supported by the following default implementations:

TABLE 5–1Default Implementations forAuthenticationMechanism

Class Description

com.sun.identity.liberty.ws.

authnsvc.mechanism.PlainMechanismHandler

This class is the default implementation for the PLAIN
authenticationmechanism. It maps user identifiers
and passwords in the PLAINmechanism to the user
identifiers and passwords in the LDAP authentication
module under the root organization.

com.sun.identity.liberty.ws.

authnsvc.mechanism.CramMD5MechanismHandler

This class is the default implementation for the
CRAM-MD5 authenticationmechanism.

Note –TheAuthenticationWeb Service layer provides an interface thatmust be implemented for
each SASLmechanism to process the requestedmessage and return a response. Formore
information, see “com.sun.identity.liberty.ws.authnsvc.mechanism Package” on page 116.

AuthenticationWeb ServiceAttribute

Chapter 5 • AuthenticationWeb Service 115

AuthenticationWebServiceAPI
TheAuthenticationWeb Service provides programmatic interfaces to allow clients to interact with it.
The following sections provide short descriptions of these packages. Formore detailed information,
see the JavaAPI Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com. The
authentication-related packages include:

� “com.sun.identity.liberty.ws.authnsvc Package” on page 116
� “com.sun.identity.liberty.ws.authnsvc.mechanism Package” on page 116
� “com.sun.identity.liberty.ws.authnsvc.protocol Package” on page 116

com.sun.identity.liberty.ws.authnsvc Package
This package provides web service clients with amethod to request authentication credentials from
theAuthenticationWeb Service and receive responses back from it using the SimpleAuthentication
and Security Layer (SASL).

com.sun.identity.liberty.ws.authnsvc.mechanism

Package
This package provides an interface that must be implemented for each different SASLmechanism to
enable authentication using them. Each SASLmechanismwill correspond to one implementation
that will process incoming SASL requests and generate outgoing SASL responses.

com.sun.identity.liberty.ws.authnsvc.protocol

Package
This package provides classes that correspond to the request and response elements defined in the
Liberty XSD schema that accompanies the Liberty ID-WSF Authentication Service Specification. This
schema is reproduced in Appendix B.

AuthenticationWebService Sample
Asample authentication client is included withAccessManager. It is located in the
/AccessManager-base/SUNWam/samples/phase2/authnsvc directory. The client uses the PLAIN
SASLauthenticationmechanism. It first authenticates against theAuthenticationWeb Service, then
extracts a resource offering to bootstrap the Discovery Service. It looks for a SAML Bearer token
credential, issues a discovery query request with SAMLassertion included, and receives a response.

AuthenticationWeb ServiceAPI

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005116

Note –This sample can be used by a Liberty UserAgent DeviceWSC.

AuthenticationWeb Service Sample

Chapter 5 • AuthenticationWeb Service 117

118

Data Services

Sun Java SystemAccessManager contains implementations of the Liberty ID-WSF Data Services
Template Specification in addition to instructions on how you can add a custom data service to your
deployment.

This chapter covers the following topics:

� “Data Services Overview” on page 119
� “Liberty Personal Profile Service” on page 122
� “Liberty Employee Profile Service” on page 129
� “Data Services TemplateAPI” on page 129
� “DevelopingANewData Service” on page 131

Data ServicesOverview
Adata service is a web service that supports the query andmodification of data regarding a principal.
An example of a data service is a web service that hosts and exposes a principal’s profile information,
such as name, address and phone number.Aquery is when a web service consumer (WSC) requests
and receives the data (in XML format).Amodify is when aWSC sends new information to update the
data. The LibertyAlliance Project has defined the Liberty ID-WSF Data Services Template
Specification (Liberty ID-WSF-DST) as the standard protocol for the query andmodification of data
profiles exposed by a data service. Using this specification, the LibertyAlliance Project has developed
additional specifications for other types of data services: personal profile service, geolocation service,
contact service, and calendar service). Of these data services,AccessManager has implemented the
Liberty Personal Profile Service and, using the included sample, the Liberty Employee Profile Service.

Note –To develop your own data service see the instructions in “DevelopingANewData Service”
on page 131.

6C H A P T E R 6

119

http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf

Liberty ID-WSFData Services Template Specification
The Liberty ID-WSF-DST specifies a base layer that can be extended by any instance of a data
service.An example of a data service is an identity service, such as an online corporate directory.
When you want to contact a colleague, you conduct a search based on the individual’s name, and the
data service returns information associated with that person’s identity. The informationmight
include the individual’s office location and phone number, as well as job title or department name.
For proper implementation, all data services must be built on top of the Liberty ID-WSF-DST
because it provides the datamodel andmessage interfaces. The following figure illustrates how
AccessManager uses the Liberty ID-WSF-DST as the framework for data services.

SOAP
Binding

Liberty
Personal Profile

Service

Liberty
Employee Profile

Service

Additional Custom
Data Services

(Calendar, Wallet)

Liberty ID-WSF Data Services Template Specification

Liberty ID-SIS Data Services

Liberty Web Services Framework

Discovery
Service

FIGURE 6–1Data Service Template as Building Block ofData Services

TheWeb Services framework inAccessManager uses the Liberty ID-WSF-DST to develop data
services. TheAccessManager Liberty Personal Profile Service and Liberty Employee Profile Service
were developed on top of theWeb Services framework, using the specification.Additional data
services can also be developed by the customer.

Data Services Overview

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005120

Note – Formore information on the data services specification, see the Liberty ID-WSF Data Services
Template Specification.

Liberty Personal Profile Service
The Liberty ID-SIS Personal Profile Service Specification (Liberty ID-SIS-PP) describes a data service
that provides an identity’s basic profile information, such as full name, contact details, and financial
information. This data service is intended to be the least common denominator for holding
consumer-based information about a principal.AccessManager has implemented this specification
and developed the Liberty Personal Profile Service.

Formore information, see the Liberty ID-SIS Personal Profile Service Specification.

XMLService File

TheAccessManager Liberty Personal Profile Service is configured using the XMLservice file
amLibertyPersonalProfile.xml. This file defines attributes for the Liberty Personal Profile Service
which can bemanaged through theAccessManager Console or the XMLfile itself.

Note – For information about service files, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

XSDSchemaDefinition

The Liberty ID-SIS-PP also defines an XMLschema for use in building a personal profile service.
This XMLSchemaDefinition (XSD) file is on the LibertyAlliance Project web site. Version 1.0 is also
reproduced in Appendix B.

Liberty EmployeeProfile Service
The Liberty ID-SIS Employee Profile Service Specification (Liberty ID-SIS-EP) describes a data service
that provides an identity’s profile information as it relates to employment.An example of a employee
profile servicemight be a corporate calendar or phone book.

AccessManager has implemented this specification by developing a sample that includes the files
needed to deploy and invoke a Liberty Employee Profile Service. The Liberty Employee Profile
Service is not available whenAccessManager is installed. It must first be deployed. For information
about accessing the sample files and how to deploy them, see “Liberty Employee Profile Service”
on page 129.

Note – Formore information, see the Liberty ID-SIS Employee Profile Service Specification.

Data Services Overview

Chapter 6 • Data Services 121

http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idsis-ep-v1.0.pdf

XMLService File
Among the files included with the sample is the XMLservice file amLibertyEmployeeProfile.xml.
This file defines the attributes for the Liberty Employee Profile Service which, once deployed, can be
managed through theAccessManager Console or the XMLfile itself.

Note – For information about service files, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

XSDSchemaDefinition
The Liberty ID-SIS-EP also defines an XMLschema for use in building an employee profile service.
This XSD file is on the LibertyAlliance Project web site. Version 1.0 is also reproduced in
Appendix B.

Data ServicesAPI
AccessManager data services are built using a Java package called
com.sun.identity.liberty.ws.dst. AccessManager provides this package for developing custom
services based on the Liberty ID-WSF-DST.Additional information about these interfaces can be
found in “Data Services TemplateAPI” on page 129 and in the JavaAPI Reference at
/AccessManager-base/SUNWam/docs or on docs.sun.com.

Liberty Personal Profile Service
The Liberty Personal Profile Service is a defaultAccessManager identity service. It can be queried for
identity data and its attributes can be updated.

For access to occur, the hosting provider of the Liberty Personal Profile Service needs to be registered
with the Discovery Service on behalf of each identity principal. To register a service with the
Discovery Service, update a resource offering for that service. Formore information, see Chapter 7.

Liberty Personal Profile Service Process
The invocation of a personal profile begins when aWSC posts a query or amodify request to the
Liberty Personal Profile Service on behalf of a user. The following process is also illustrated in Figure
6–2.

1. Aweb services client uses the Data Services TemplateAPI to post a query or amodify request to
the Liberty Personal Profile Service.
All the query ormodify requests to any identity service are SOAP requests.

2. The client’s SOAP request is received by the SOAP receiver provided by the SOAPBinding
Service.

Liberty Personal Profile Service

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005122

The SOAP receiver invokes either the Discovery Service, theAuthenticationWeb Service, or the
Liberty Personal Profile Service, depending on the service key transmitted as part of the URL.
The SOAPBinding Servicemight also authenticate the client identity.

3. The Liberty Personal Profile Service implements the DSTRequestHandler to process the request.
The request is processed based on the request type (query ormodify) and the query expression.
Processingmight entail the authorization of aWSC using theAccessManager Policy Service, or
it might entail using the Interaction Service for interacting with the user before sending data to
theWSC.

4. The Liberty Personal Profile Service builds a service response, adds credentials (if they are
required), and sends the response back to theWSC.
� For a response to a query request, the Liberty Personal Profile Service builds a personal profile

container (as defined by the specification). It is formatted in XMLand based on the Query
Select expression. The Personal Profile attribute values are extracted from the data store by
making use of the attributemapper. The attributemapper is defined by the XMLservice file,
and the attribute values will be used while building the XMLcontainer. The Personal Profile
Service then applies xpath queries on the XMLand provides us with the resultant XMLdata
node.

� For a response to amodify request, the Liberty Personal Profile Service parses theModifiable
Select expression and updates the new data from the new data node in the request.

The following diagram illustrates the Liberty Personal Profile Service process.

Liberty Personal Profile Service

Chapter 6 • Data Services 123

Data
Store

Web Services
Consumer

SOAP request sent via HTTP

Liberty Personal Profile Service

Data Services Template Request Handler

SOAP Request Handler

Authorizer

Attribute Mapper

FIGURE 6–2 Liberty Personal Profile Service Process

Liberty Personal Profile ServiceAttributes
The Liberty Personal Profile Service attributes are global attributes. The values of these attributes are
carried across theAccessManager configuration and inherited by each configured organization.

Note – For information about the types of attributes used inAccessManager, see the Sun Java System
Access Manager 7 2005Q4 Technical Overview.

Attributes for the Personal Profile Service are defined in the amLibertyPersonalProfile.xml
service file. The attributes are:

Liberty Personal Profile Service

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005124

� “ResourceIDMapper” on page 125
� “Authorizer” on page 125
� “AttributeMapper” on page 126
� “Provider ID” on page 126
� “Name Scheme” on page 126
� “Namespace Prefix” on page 126
� “Supported Containers” on page 126
� “PPLDAPAttributeMap List” on page 127
� “Require Query PolicyEval” on page 127
� “RequireModify PolicyEval” on page 127
� “Extension ContainerAttributes” on page 128
� “ExtensionAttributes Namespace Prefix” on page 128
� “Is ServiceUpdate Enabled” on page 128
� “Service Instance Update Class” on page 129
� “Alternate Endpoint” on page 129
� “Alternate SecurityMechanisms” on page 129

ResourceIDMapper
The value of this attribute specifies the implementation of
com.sun.identity.liberty.ws.interfaces.ResourceIDMapper. Although a new implementation
can be developed,AccessManager provides the default
com.sun.identity.liberty.ws.idpp.plugin.IDPPResourceIDMapper, whichmaps a discovery
resource identifier to a user identifier.

Authorizer
Before processing a request, the Liberty Personal Profile Service verifies the authorization of the
WSCmaking the request. There are two levels of authorization verification:

� Is the requesting entity authorized to access the requested resource profile information?
� Is the requested resource published to the requestor?

Authorization occurs through a plug-in to the Liberty Personal Profile Service, an implementation of
the com.sun.identity.liberty.ws.interfaces.Authorizer interface.Although a new
implementation can be developed,AccessManager provides the default class,
com.sun.identity.liberty.ws.idpp.plugin.IDPPAuthorizer. This plug-in defines four policy
action values for the query and modify operations:

� Allow

� Deny

� Interact For Consent

� Interact For Value

The resource values for the rules are similar to x-path expressions defined by the Liberty Personal
Profile Service. For example, a rule can be defined like this:

Liberty Personal Profile Service

Chapter 6 • Data Services 125

/PP/CommonName/AnalyzedName/FN Query Interact for consent

/PP/CommonName/* Modify Interact for value

/PP/InformalName Query Deny

Authorization can be turned off by deselecting one or both of the following attributes, which are also
defined in the Liberty Personal Profile Service:

� “Require Query PolicyEval” on page 127
� “RequireModify PolicyEval” on page 127

AttributeMapper
The value of this attribute defines the class formapping a Liberty Personal Profile Service attribute to
anAccessManager user attribute. By default, the class is
com.sun.identity.liberty.ws.idpp.plugin.IDPPAttributeMapper.

Note – com.sun.identity.liberty.ws.idpp.plugin.IDPPAttributeMapper is not a public class.

Provider ID
The value of this attribute defines the unique identifier for this instance of the Liberty Personal
Profile Service. Use the format protocol://hostname:port/deloy-uri/Liberty/idpp.

NameScheme
The value of this attribute defines the naming scheme for the Liberty Personal Profile Service
common name. Choose First Last or FirstMiddle Last.

NamespacePrefix
The value of this attribute specifies the namespace prefix that is used for Liberty Personal Profile
Service XMLprotocol messages.Anamespace differentiates elements with the same name that come
from different XMLschemas. The Namespace Prefix is prepended to the element.

SupportedContainers
The values of this attribute define a list of supported containers in the Liberty Personal Profile
Service.A container, as used in this instance, is an attribute of the Liberty Personal Profile Service.

Note –The term container as described in this section is not related to theAccessManager
identity-related object that is also called container.

For example, Emergency Contact and CommonName are two default containers for the Liberty
Personal Profile Service. To add a new container, clickAdd, enter values in the provided fields and
click OK.

Liberty Personal Profile Service

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005126

Note –This functionality is not yet public.

PPLDAPAttributeMapList
Each identity attribute defined in the Liberty Personal Profile Servicemaps one-to-one with an
AccessManager LDAP attribute. For example,
JobTitle=sunIdentityServerPPEmploymentIdentityJobTitlemaps the Liberty JobTitle
attribute to theAccessManager sunIdentityServerPPEmploymentIdentityJobTitle attribute.

The value of this attribute is a list that specifies themappings. The list is used by the attributemapper
defined in “AttributeMapper” on page 126, by default,
com.sun.identity.liberty.ws.idpp.plugin.IDPPAttributeMapper.

Note –When adding new attributes to the Liberty Personal Profile Service or the LDAPdata store,
ensure that the new attributemappings are configured as values of this attribute.

In the following code sample, the Liberty Personal Profile Service informalName attributemapping
to the LDAP attribute uid is added to themappings already present in the Liberty Personal Profile
Service XMLservice file, amLibertyPersonalProfile.xml.

Note –Attributemappings are defined as global attributes under the name
sunIdentityServerPPDSAttributeMapList in amLibertyPersonalProfile.xml. This attribute
corresponds to that sunIdentityServerPPDSAttributeMapList global attribute.

<AttributeSchema name="sunIdentityServerPPDSAttributeMapList"

type="list"

syntax="string"

i18nKey="p108">

<DefaultValues>

<Value>CN=sunIdentityServerPPCommonNameCN</Value>

<Value>FN=sunIdentityServerPPCommonNameFN</Value>

<Value>MN=sunIdentityServerPPCommonNameMN</Value>

<Value>SN=sunIdentityServerPPCommonNameSN</Value>

<Value>InformalName=uid</Value>

</DefaultValues>

</AttributeSchema>

RequireQuery PolicyEval
If selected, this option requires that a policy evaluation be performed for Liberty Personal Profile
Service queries. Formore information, see “Authorizer” on page 125.

RequireModify PolicyEval
If selected, this option requires that a policy evaluation be performed for Liberty Personal Profile
Servicemodifications. Formore information, see “Authorizer” on page 125.

Liberty Personal Profile Service

Chapter 6 • Data Services 127

ExtensionContainerAttributes
The Liberty Personal Profile Service allows you to specify extension attributes that are not defined in
the LibertyAlliance Project specifications. The values of this attribute specify a list of extension
container attributes.All extensions should be defined as:

/PP/Extension/PPISExtension [@name=’extensionattribute’]

The following sample illustrates an extension query expression for creditcard, an extension
attribute.

EXAMPLE 6–1ExtensionQuery for creditcard

/pp:PP/pp:Extension/ispp:PPISExtension[@name=’creditcard’]

Note: The prefix for the PPISExtension is different,

and the schema for the PP extension is as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.sun.com/identity/liberty/pp"

targetNamespace="http://www.sun.com/identity/liberty/pp">

<xs:annotation>

<xs:documentation>

</xs:documentation>

</xs:annotation>

<xs:element name="PPISExtension">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="name" type="xs:string"

use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:schema>

ExtensionAttributesNamespacePrefix
The value of this attribute specifies the namespace prefix for the extensions defined in the “Extension
ContainerAttributes” on page 128. This prefix is prepended to the element and helps to distinguish
metadata from different XMLschema namespaces.

Is ServiceUpdate Enabled
The SOAPBinding Service allows a service to indicate that requesters should contact it on a different
endpoint or use a different securitymechanism and credentials to access the requested resource. If
selected, this attribute affirms that there is an update to the service instance.

Liberty Personal Profile Service

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005128

Service InstanceUpdate Class
The value of this attribute specifies the default implementation class
com.sun.identity.liberty.ws.idpp.plugin.IDPPServiceInstanceUpdate. This class is used to
update the information for the service instance.

Alternate Endpoint
The value of this attribute specifies an alternate SOAP endpoint to which a SOAP request can be sent.

Alternate SecurityMechanisms
This attribute allows you to choose a securitymechanism. Formore information about this
functionality and themechanisms, see the Liberty ID-WSF Security Mechanisms specification.

Liberty EmployeeProfile Service
The Liberty Employee Profile Service sample provides a collection of files that can be used to deploy
and invoke a corporate-based data service. The files are located in the
/AccessManager-base/SUNWam/samples/phase2/sis-ep directory.

Note –Before implementing this sample, youmust have two instances ofAccessManager installed,
running, and Liberty-enabled. Completing the steps in “sample1Directory” on page 209 will
accomplish this.

The Liberty Employee Profile Service is a deployment of the ID-SIS-EP specification as discussed in
“Liberty Employee Profile Service” on page 121. The Readme.html file in the sample directory
provides detailed steps on how to deploy and configure this sample for use as a data service. See also
AppendixA.

Data Services TemplateAPI
AccessManager contains two packages based on the Liberty ID-WSF-DST. They are:

� “com.sun.identity.liberty.ws.dst Package” on page 129
� “com.sun.identity.liberty.ws.dst.service Package” on page 130

Formore detailedAPI documentation, includingmethods and their syntax and parameters, see the
JavaAPI Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.dst Package
The following table summarizes the classes in the Data Services Template clientAPI that are included
in the com.sun.identity.liberty.ws.dst package.

Data Services TemplateAPI

Chapter 6 • Data Services 129

http://www.projectliberty.org/specs/draft-liberty-idwsf-security-mechanisms-v2.0-03.pdf

TABLE 6–1Data ServiceClientAPIs

Class Description

DSTClient Provides common functions for the Data Services
Templates query andmodify options.

DSTData Provides a wrapper for any data entry.

DSTModification Represents a Data Services Templatemodification
operation.

DSTModify Represents a Data Services Templatemodify request.

DSTModifyResponse Represents a Data Services Template response to a
DSTmodify request.

DSTQuery Represents a Data Services Template query request.

DSTQueryItem Wrapper for one query item.

DSTQueryResponse Represents a Data Services Template query response.

DSTUtils Provides utility methods used by the DST layer.

com.sun.identity.liberty.ws.dst.service

Package
This package provides a handler class that can be used by any generic identity data service that is
built using the Liberty Alliance ID-SIS Specifications.

Note –The Liberty Personal Profile Service is built using the Liberty ID-SIS Personal Profile Service
Specification, based on the Liberty Alliance ID-SIS Specifications.

The DSTRequestHandler class is used to process query ormodify requests sent to an identity data
service. It is an implementation of the interface
com.sun.identity.liberty.ws.soapbinding.RequestHandler. Formore detailedAPI
documentation, see the JavaAPI Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

Note –AccessManager provides a sample thatmakes use of the DSTRequestHandler class. The
sis-ep sample illustrates how to implement the DSTRequestHandler and deploy a new identity data
service instance. The sample is located in the
/AccessManager-base/SUNWam/samples/phase2/sis-ep directory. Formore information, see
“sis-epDirectory” on page 211.

Data Services TemplateAPI

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005130

DevelopingANewData Service
In addition to deploying an employee profile service, the Liberty Employee Profile Service sample
can be used to deploy other custom data services that are based on the Liberty ID-WSF-DST.
Sections 2 and 3 in the Readme.html file in the
/AccessManager-base/SUNWam/samples/phase2/sis-ep directory has detailed steps on how to
deploy and configure data services. To use those instructions for a new data service, you need to write
a new data service schema. This XMLSchemaDefinition (XSD) document (as discussed in
Appendix B) defines the service’s data and data structure.After you write a newXSD file, use it to
deploy your new data service instead of the lib-id-sis-ep.xsd file.

Note – Instructions onwriting the XSD file are beyond the scope of this guide.

DevelopingANewData Service

Chapter 6 • Data Services 131

132

Discovery Service

Sun Java SystemAccessManager contains a Discovery Service defined by the LibertyAlliance
Project. The Discovery Service allows a requesting entity to dynamically determine a principal’s
registered identity service. It might also function as a security token service, issuing security tokens
to the requester that can then be used in the request to the discovered identity service.

This chapter covers the following topics:

� “Discovery Service Overview” on page 133
� “Discovery ServiceArchitecture” on page 135
� “Discovery Service Process” on page 136
� “Discovery ServiceAttributes” on page 138
� “Discovery Entries and Resource Offerings” on page 142
� “Discovery ServiceAPIs” on page 152
� “Discovery Service Sample” on page 156

Discovery ServiceOverview
The initial step in accessing identity data (as discussed in Chapter 6) is to determine where the
information is located. For example, youmust determine which identity service holds the principal’s
credit card information or which server stores the principal’s calendar service. Typically, there are
one ormore services on a network that allow other entities to perform an action on identity data.
Because clients are not expected to keep track of these services or to knowwhich can be trusted, they
require a discovery service. The Liberty ID-WSF Discovery Service Specification defines the framework
that enables a client to locate the appropriate web service for retrieving, updating, ormodifying a
specific piece of identity data.

Note – Formore information, see the Liberty ID-WSF Discovery Service Specification.

7C H A P T E R 7

133

http://www.projectliberty.org/specs/liberty-idwsf-disco-svc-v1.1.pdf

Discovery Service Concepts
Adiscoverable web service is assigned a service type unique resource identifier (URI) in the
specification that defines it. This URI points to theWeb Services Description Language (WSDL) file
that describes the service’s data, the operations that can be performed on it, and a protocol to
perform the operations. The discoverable service specification itself adds the available ways the data
can be exchanged.Adiscovery service is essentially a web service interface for discovery resources.A
discovery resource is a registry of resource offerings.A resource offering defines an association between
a piece of identity data and the service instance that provides access to that data.A resource identifier
is a URI registered with the discovery service that points to a particular discovery resource.

When a client sends a request for some type of data, it includes a resource identifier that the
Discovery Service uses to locate the web services provider (WSP) for the requested attributes. The
Discovery Service returns a resource offering that contains the information necessary to locate the
data.

Note –Because a provider hosting theDiscovery Service can also be fulfilling other roles for an
identity (such as a Policy Decision Point or anAuthenticationAuthority), a query response also
functions as a security token service. It provides a requester with themeans of obtaining security
tokens that can be used to invoke service instances returned.

Discovery Entries
One user account has one discovery resource. This discovery resource can include zero ormore
resource offerings. Storing resource offerings within a user profile supports both entry lookups and
updates.Another option is to store discovery entries within a service, and assign that service to an
organization or a role. This scenario supports only entry lookups using the discovery protocol
although you can still update the entries using the console. Formore information about discovery
entries, see “Discovery Entries and Resource Offerings” on page 142.

XMLService Files
TheDiscovery Service is defined using the XMLservice file amDisco.xml. This file defines the
attributes for the Discovery Service.All of the attributes in the Discovery Service can bemanaged
through either theAccessManager Console or this file.

Note – Formore information about service files, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

A second XMLfile, amDisco_add.xml is in /AccessManager-base/SUNWam/upgrade/

services50_sunIdentityServerDiscoveryService/10_20/data. This file is used for upgrading
Identity Server 6.2 toAccessManager 6.3. It lists the changes to the amDisco.xml file since the
Identity Server release.

Discovery Service Overview

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005134

Discovery ServiceAPIs
AccessManager contains several Java packages that are used by the Discovery Service. They include:

� “com.sun.identity.liberty.ws.disco Package” on page 135
� “com.sun.identity.liberty.ws.disco.plugins Package” on page 135
� “com.sun.identity.liberty.ws.interfaces Package” on page 135

Additional information is in “Discovery ServiceAPIs” on page 152 and the JavaAPI Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com. Information about the
com.sun.identity.liberty.ws.common package is in “Common Service Interfaces” on page 197 in
Chapter 10.

com.sun.identity.liberty.ws.disco Package
This package includes a clientAPI that provides interfaces developers can use to communicate with
the Discovery Service.

com.sun.identity.liberty.ws.disco.plugins Package
This package includes an interface that can be used to develop plug-ins. The package also contains
some default plug-ins.

com.sun.identity.liberty.ws.interfaces Package
This package includes interfaces that can be used to implement functionality common to all
Liberty-enabled identity services. Several implementations of these interfaces have been developed
for the Discovery Service.

Discovery ServiceArchitecture
TheAccessManager Discovery Service includes Java and web services-based interfaces. Java
applications use the clientAPI (discussed in “ClientAPIs in
com.sun.identity.liberty.ws.disco” on page 155) to form requests sent to the Discovery Service
and to parse the responses received back from it. Requests are received by theAccessManager SOAP
receiver, which constructs a SOAPmessage that incorporates the client request.

Note –TheAccessManager SOAPBinding Service defines how to send and receivemessages using
SOAP, an XML-basedmessaging protocol. The SOAP receiver is a servlet that constructs themessage
using these definitions. Formore information, see Chapter 8.

The SOAPmessage is then sent to the Discovery Service, which parses a discovery resource identifier
from it. This identifier is used to find amatching user DN. The necessary information is then culled
from the corresponding profile, a response is generated, and the response is sent back to the SOAP
receiver. The SOAP receiver then sends the response back to the client. The following figure
illustrates this architecture.

Discovery ServiceArchitecture

Chapter 7 • Discovery Service 135

XML

Discovery
Resource
Data Store

Java Applications/
Client APIs

SOAP messages and responses

Query and modify through SDK

SOAP Receiver/
Discovery Service

Form messages
and parse responses

FIGURE 7–1Discovery ServiceArchitecture

Discovery Service Process
The following figure provides a high-level overview of the interaction between parties in a web
services environment using the Discovery Service. In this scenario, the identity provider hosts the
Discovery Service. The process is defined inmore detail after the figure.

Discovery Service Process

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005136

User Agent Service
Provider
(also acts as
Web Service
Consumer)

AuthN Web
Service/

Discovery
Service

Personal
Profile
Service

1. Single sign-on and introduction

3. Send discovery lookup query

2. Request access to service

4. Return discovery response

7. Render service pages

5. Send data query to personal profile (identity) service

6. Return response with identity data for access

FIGURE 7–2Participants and Process of theDiscovery Service

1. The user logs in to a Liberty-enabled identity provider, is authenticated, and completes the
introduction process, enabling single sign-on with othermembers of the authentication domain.
More specifically, this is the process:

a. Within a browser, the user types the URL for a Liberty-enabled service provider.

b. The service provider collects the user’s credentials and redirects the information to the
identity provider for authentication.

c. If the credentials are verified, the user is authenticated.

d. Assuming the identity provider is the center of an authentication domain, that provider will
notify the authenticated user of the option to federate any local identities created with
member organizations. The user would then accept or decline this invitation to federate. By
accepting the invitation, the user will be given the option of federation to amember
organization’s web site at each login. If the user accepts this option to federate, single sign-on
is enabled.

2. After authentication, the user now requests access to services hosted by another service provider
in the authentication domain.

3. The service provider sends a lookup query to the Discovery Service.

Discovery Service Process

Chapter 7 • Discovery Service 137

Information used by a client to contact Discovery Service is culled from the authentication
statement.

4. The Discovery Service returns a discovery lookup response to the service provider.
The lookup response contains the resource offering (defining an association between a piece of
identity data and the service instance that provides access to it) for the user’s Personal Profile
Service.

5. The service provider then sends a query (using the “Data Services Template Specification”
on page 40) to the Personal Profile Service instance.
The required authenticationmechanism specified in the Personal Profile Service resource
offeringmust be followed.

6. The Personal Profile Service instance returns a Data Services Template response after collecting
all required data.
The Personal Profile Service authenticates and validates authorization, or policy, or both for the
requested user and service provider. If user interaction is required for some attributes, the
Interaction Service will be invoked to query the user for consents or for attribute values.

7. The service provider processes the Personal Profile Service response and renders HTMLpages
based on the original request and user authorization.
Ausers’ actual account information is not exchanged during federation. Thus, the identifier
displayed on each provider site will be based on the local identity profile.

Discovery ServiceAttributes
TheDiscovery Service attributes are global attributes whose values are applied across theAccess
Manager configuration and inherited by every configured organization.

Note – For information about the types of attributes used inAccessManager, see the Sun Java System
Access Manager 7 2005Q4 Technical Overview.

The Discovery Service attributes are:

� “Provider ID” on page 139
� “SupportedAuthenticationMechanisms” on page 139
� “Supported Directives” on page 139
� “Enable Policy Evaluation for DiscoveryLookup” on page 140
� “Enable Policy Evaluation for DiscoveryUpdate” on page 140
� “Authorizer Plugin Class” on page 140
� “Entry Handler Plugin Class” on page 140
� “Classes For ResourceIDMapper Plugin” on page 140
� “Authenticate ResponseMessage” on page 141
� “Generate SessionContextStatement for Bootstrapping” on page 141
� “Encrypt NameIdentifier in Session Context for Bootstrapping” on page 141
� “Use Implied Resource; don’t generate ResourceID for Bootstrapping” on page 141

Discovery ServiceAttributes

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005138

� “Resource Offerings for Bootstrapping Resources” on page 141

Provider ID
This attribute takes a URI that points to the Discovery Service. Use the format
protocol://host:port/amserver/Liberty/disco. This value can be changed only if other relevant
attributes values are changed tomatch the new location.

SupportedAuthenticationMechanisms
This attribute specifies the authenticationmethods supported by the Discovery Service. These
securitymechanisms refer to the way a web service consumer authenticates to the web service
provider or providesmessage-level security. By default, all available methods are selected. If an
authenticationmethod is not selected and a web services consumer (WSC) sends a request using that
method, the request is rejected.

SupportedDirectives
This attribute allows you to specify a policy-related directive for a resource. If a service provider
wants to use an unsupported directive, the request will fail. The following table describes the
available options.

TABLE 7–1Policy-RelatedDirectives

Directive Purpose

AuthorizeRequester TheDiscovery Service should include a SAMLassertion
(containing an AuthenticationStatement) in its
responses to enable the client to authenticate to the service
instance hosting the resource.

AuthenticateSessionContext TheDiscovery Service should include a SAMLassertion
(containing a SessionContextStatement) in its responses
that indicate the status of the session.

AuthorizeRequestor TheDiscovery Service should include a SAMLassertion
(containing a ResourceAccessStatement) in its responses
that indicate whether the client is allowed to access the
resource.

EncryptResourceID TheDiscovery Service should encrypt the resource
identifier in responses to all clients.

Discovery ServiceAttributes

Chapter 7 • Discovery Service 139

TABLE 7–1Policy-RelatedDirectives (Continued)
Directive Purpose

GenerateBearerToken For use with Bearer TokenAuthentication, the Discovery
Service should generate a token that grants the bearer
permission to access the resource.

Enable Policy Evaluation for DiscoveryLookup
If enabled, the service will perform a policy evaluation for the DiscoveryLookup operation. By
default, the check box is not selected.

Enable Policy Evaluation for DiscoveryUpdate
If enabled, the service will perform a policy evaluation for the DiscoveryUpdate operation. By
default, the check box is not selected.

AuthorizerPlugin Class
The value of this attribute is the name and path to the class that implements the
com.sun.identity.liberty.ws.interfaces.Authorizer interface used for policy evaluation of a
WSC. The default class is
com.sun.identity.liberty.ws.disco.plugins.DefaultDiscoAuthorizer.

EntryHandler Plugin Class
The value of this attribute is the name and path to the class that implements the
com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler interface. This interface is
used to set or retrieve a principal’s discovery entries. To handle discovery entries differently,
implement the com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler interface and
set the implementing class as the value for this attribute. The default implementation for the
Discovery Service is com.sun.identity.liberty.ws.disco.plugins.UserDiscoEntryHandler.

Classes For ResourceIDMapperPlugin
The value of this attribute is a list of classes that generate identifiers for a resource offering configured
for an organization or role. com.sun.identity.liberty.ws.interfaces.ResourceIDMapper is an
interface used tomap a user identifier to the resource identifier associated with it. The Discovery
Service provides two implementations for this interface:

� com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes the
format to be providerID + "/" + the Base64 encoded userIDs

Discovery ServiceAttributes

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005140

� com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes the
format to be providerID + "/" + the hex string of userIDs

Different implementationsmay also be developed with the interface and added as a value of this
attribute by clicking New and defining the following attributes:

� Provider ID takes as a value a URI that points to the Discovery Service. Use the format
http://host:port/amserver/Liberty/disco. See “Provider ID” on page 139.

� ID Mapper takes as a value the class name and path of the implementing class.

Authenticate ResponseMessage
If enabled, the service authenticates the responsemessage. By default, the function is not enabled.

Generate SessionContextStatement for
Bootstrapping
If enabled, this attribute specifies whether to generate a SessionContextStatement for
bootstrapping.ASessionContextStatement conveys the session status of an entity. By default, this
function is not enabled.

EncryptNameIdentifier in SessionContext for
Bootstrapping
If enabled, the service encrypts the name identifier in a SessionContextStatement. By default, this
function is not enabled.

Use ImpliedResource; don’t generate ResourceID for
Bootstrapping
If enabled, the service does not generate a resource identifier for bootstrapping. By default, this
function is not enabled.

ResourceOfferings for BootstrappingResources
This attribute defines a resource offering for bootstrapping a service.After single sign-on (SSO), this
resource offering and its associated credentials will be sent to the client in the SSO assertion. Only
one resource offering is allowed for bootstrapping. By default, this offering contains information
about the Discovery Service. Formore information, see “Discovery Entries and Resource Offerings”
on page 142.

Discovery ServiceAttributes

Chapter 7 • Discovery Service 141

The value of the Resource Offerings for Bootstrapping Resources attribute is a default value
configured during installation. If you want to define a new resource offering, youmust first delete the
existing resource offering, then click New to define the attributes. If you want to edit an existing
resource offering, click the name of the existing Service Type tomodify the attributes.

Discovery Entries andResourceOfferings
InAccessManager, a discovery entry can be stored as a user attribute or as a dynamic attribute.
When storing a discovery entry as a user attribute, one user account has one discovery resource that
can include zero ormore resource offerings. Storing resource offerings within a user profile supports
both entry lookups and updates.When storing a discovery entry as a dynamic attribute, the entry can
be assigned to a realm or a role. This scenario only supports entry lookups using the discovery
protocol. More information is provided in the following sections:

� “Storing Discovery Entries as UserAttributes” on page 142
� “Storing Discovery Entries as DynamicAttributes” on page 145
� “Storing Discovery Entries for Bootstrapping” on page 150

StoringDiscovery Entries asUserAttributes
Discovery entries can be stored as a user attribute under a user’s distinguished name (DN) using the
Lightweight DirectoryAccess Protocol (LDAP). Storing resource offerings within a user profile
supports both entry lookups and updates. The following procedure explains how to access and create
a user’s resource offerings.

� ToAccess andCreate aUser’s ResourceOfferings

In theAccessManager Console, click theAccess Control tab.

Select the nameof the realm that contains the user youwant tomodify.

Select Subjects to access user information.

Select the nameof the user profile that youwant tomodify.

Select Services to access the user’s services.

Click Add to configure theDiscovery Service for this user.

Select Discovery Service and clickNext.
TheDiscovery Service is added to the user’s services.

Select General to access the user’s User Discovery ResourceOffering attribute.

1

2

3

4

5

6

7

8

Discovery Entries and ResourceOfferings

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005142

Click Edit.

AUser Discovery Resource Offering window opens.

Click Add in theUser Discovery ResourceOfferingwindow.

(Optional) Type a value for the Resource IDAttribute.

This field defines an identifier for the resource offering.

Type the Resource IDValue.

This field defines the resource identifier.A resource identifier is a URI registered with the Discovery
Service that point to a particular discovery resource. It is generated by the profile provider. The value
of this attributemust not be a relative URI and should contain a domain name that is owned by the
provider hosting the resource. If a discovery resource is exposed inmultiple Resource Offerings, the
Resource IDValue for all of those resource offerings would be the same.An example of a valid
Resource ID value is http://profile-provider.com/profiles/14m0B82k15csaUxs.

Tip – urn:libery:isf:implied-resource can be used as a Resource IDValue when only one
resource can be operated upon at the service instance being contacted. The URI only implicitly
identifies the resource in question. In some circumstances, the use of this resource identifier can
eliminate the need for contacting the discovery service to access the resource.

(Optional) Enter a description of the resource offering in theDescription field.

Type aURI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespaceURI defined in the abstractWSDLdescription for the service.An example of a
valid URI is urn:liberty:id-sis-pp:2003-08.

Type aURI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This information is useful for
resolving trust metadata needed to invoke the service instance.Asingle physical providermay have
multiple provider IDs.An example of a valid URI is http://profile-provider.com.

Note –The provider represented by theURI in the Provider ID attributemust also have a class entry
in the ResourceIDMapper attribute. Formore information, see “Classes For ResourceIDMapper
Plugin” on page 140.

9

10

11

12

13

14

15

Discovery Entries and ResourceOfferings

Chapter 7 • Discovery Service 143

Click AddDescription to define the ServiceDescription.

For each resource offering, at least one service descriptionmust be created.

a. Select the values for the SecurityMechanism ID attribute to definehowaweb service client can
authenticate to aweb service provider.

This field lists the securitymechanisms that the service instance supports. Select the security
mechanisms that you want to add and clickAdd. To prioritize the list, select themechanism and
clickMoveUp orMoveDown.

b. Type a value for the EndPoint URL.

This value is the URLof the SOAP-over-HTTP endpoint. The URI schememust be HTTPor
HTTPS as in https://soap.profile-provider.com/soap.

c. (Optional) Type a value for the SOAPAction.

This value is the equivalent of the wsdlsoap:soapAction attribute of the wsdlsoap:operation
element in the service’s concreteWSDL-based description.

d. ClickOK to complete the configuration.

Check theOptions box if there are no options or add aURI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering. The set
of possible URIs are defined by the service type, not the Discovery Service. If no option is specified,
the service instance does not display any available options. For a standard set of options, see the
Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAPheaders that can be used to enforce policy-related
decisions. You can choose from the following:

� GenerateBearerToken specifies that a bearer token be generated.
� AuthenticateRequestermust be used with any service description that use SAML formessage

authentication.
� EncryptResourceID specifies that the Discovery Service encrypt the resource ID.
� AuthenticateSessionContext is specified when aDiscovery Service provider includes a SAML

assertion containing a SessionContextStatement in any future QueryResponsemessages.
� AuthorizeRequester is specified when aDiscovery Service provider wants to include a SAML

assertion containing a ResourceAccessStatement in any future QueryResponsemessages.

If you want to associate a directive with one ormore service descriptions, select the check box for that
Description ID. If no service descriptions are selected, the directive is applied to all description
elements in the resource offering.

16

17

18

Discovery Entries and ResourceOfferings

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005144

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

ClickOK.

Click Close to close theUser Discovery ResourceOfferingwindow.

Click Save to save the configuration.

StoringDiscovery Entries asDynamicAttributes
Due to the repetition inherent in storing discovery entries as user attributes,AccessManager has
established the option of storing a discovery entry as a dynamic attribute within a role or a realm. The
role or realm can then be assigned to an identity-related object, making the entry available to all users
within the object. Unlike storing a discovery entry as a user attribute, this scenario only supports
entry lookups, not updates.

Note – Formore information about services, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

There are two ways in which you can store discovery entries as dynamic attributes. You can store
them in a realm or in a role. The following sections describe the procedures:

� “To Store Discovery Entries as DynamicAttributes in a Realm” on page 145
� “To Store Discovery Entries as DynamicAttributes in a Role” on page 147

� ToStoreDiscovery Entries asDynamicAttributes in aRealm
To create a discovery entry as a dynamic attribute in a realm, the Discovery Servicemust first be
added and a template created.

In theAccessManager Console, click theAccess Control tab.

Select the nameof the realmyouwant tomodify.

Select Services to access the realm’s services.

Click Add to add theDiscovery Service to the realm.
Alist of available services is displayed.

Select Discovery Service and clickNext to add the service.
Alist of added services is displayed including the Discovery Service.

Select Subjects to access user information.

Select the nameof the user youwant tomodify.

Select Services to add theDiscovery Service to the user.

19

20

21

1

2

3

4

5

6

7

8

Discovery Entries and ResourceOfferings

Chapter 7 • Discovery Service 145

Click Add to add theDiscovery Service to the user.

Alist of available services is displayed.

Select Discovery Service and clickNext to add the service.

Alist of added services is displayed including the Discovery Service.

Using the path displayed on topof theAccessManager Console, click Edit Realm.

Click Services to access the realm’s services.

Select Discovery Service to add a resource offering to the service.

Click Add.

(Optional) Enter a description of the resource offering in theDescription field.

Type aURI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespaceURI defined in the abstractWSDLdescription for the service.An example of a
valid URI is urn:liberty:id-sis-pp:2003-08.

Type aURI for the value of the Provider ID attribute.

The value of this attribute contains the URI of the provider of the service instance. This information
is useful for resolving trust metadata needed to invoke the service instance.Asingle physical provider
may havemultiple provider IDs.An example of a valid URI is http://profile-provider.com.

Note –The provider represented by theURI in the Provider ID attributemust also have an entry in
the ResourceIDMapper attribute. Formore information, see “Classes For ResourceIDMapper Plugin”
on page 140.

Click AddDescription to define the ServiceDescription.

For each resource offering, at least one service descriptionmust be created.

a. Select the values for the SecurityMechanism ID attribute to definehowaweb service client can
authenticate to aweb service provider.

This field lists the securitymechanisms that the service instance supports. Select the security
mechanisms that you want to add and clickAdd. To prioritize the list, select themechanism and
clickMoveUp orMoveDown.

b. Type a value for the EndPoint URL.

This value is the URLof the SOAP-over-HTTP endpoint. The URI schememust be HTTPor
HTTPS as in https://soap.profile-provider.com/soap.

9

10

11

12

13

14

15

16

17

18

Discovery Entries and ResourceOfferings

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005146

c. (Optional) Type a value for the SOAPAction.
This value is the equivalent of the wsdlsoap:soapAction attribute of the wsdlsoap:operation
element in the service’s concreteWSDL-based description.

d. ClickOK to complete the configuration.

Check theOptions box if there are no options or add aURI to specify options for the resource
offering.
This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering. The set
of possible URIs are defined by the service type, not the Discovery Service. If no option is specified,
the service instance does not display any available options. For a standard set of options, see the
Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.
Directives are special entries defined in SOAPheaders that can be used to enforce policy-related
decisions. You can choose from the following:

� GenerateBearerToken specifies that a bearer token be generated.
� AuthenticateRequestermust be used with any service description that use SAML formessage

authentication.
� EncryptResourceID specifies that the Discovery Service encrypt the resource ID.
� AuthenticateSessionContext is specified when aDiscovery Service provider includes a SAML

assertion containing a SessionContextStatement in any future QueryResponsemessages.
� AuthorizeRequester is specified when aDiscovery Service provider wants to include a SAML

assertion containing a ResourceAccessStatement in any future QueryResponsemessages.

If you want to associate a directive with one ormore service descriptions, select the check box for that
Description ID. If no service descriptions are selected, the directive is applied to all description
elements in the resource offering.

ClickOK.

Click Close to close theDiscovery ResourceOfferingwindow.

Click Save to save the configuration.

� ToStoreDiscovery Entries asDynamicAttributes in aRole
To create a discovery entry as a dynamic attribute in a role, the Discovery Servicemust first be added
and a template created.

In theAccessManager Console, click theAccess Control tab.

Select the nameof the realmyouwant tomodify.

19

20

21

22

23

1

2

Discovery Entries and ResourceOfferings

Chapter 7 • Discovery Service 147

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Select Subjects to access the realm’s identity information.

Select Role to access the realm’s role information.

Select the nameof the role youwant tomodify.

Alternately, you can create a new role and then select the name of this new role.

Under Services, click Add to add theDiscovery Service to the role.

Alist of available services is displayed.

Select Discovery Service and clickNext to add the service.

Alist of added services is displayed including the Discovery Service.

Select Discovery Service to add a resource offering to the service.

Click Add.

(Optional) Enter a description of the resource offering in theDescription field.

Type aURI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespaceURI defined in the abstractWSDLdescription for the service.An example of a
valid URI is urn:liberty:id-sis-pp:2003-08.

Type aURI for the value of the Provider ID attribute.

The value of this attribute contains the URI of the provider of the service instance. This information
is useful for resolving trust metadata needed to invoke the service instance.Asingle physical provider
may havemultiple provider IDs.An example of a valid URI is http://profile-provider.com.

Note –The provider represented by theURI in the Provider ID attributemust also have an entry in
the ResourceIDMapper attribute. Formore information, see “Classes For ResourceIDMapper Plugin”
on page 140.

Click AddDescription to define the ServiceDescription.

For each resource offering, at least one service descriptionmust be created.

a. Select the values for the SecurityMechanism ID attribute to definehowaweb service client can
authenticate to aweb service provider.

This field lists the securitymechanisms that the service instance supports. Select the security
mechanisms that you want to add and clickAdd. To prioritize the list, select themechanism and
clickMoveUp orMoveDown.

3

4

5

6

7

8

9

10

11

12

13

Discovery Entries and ResourceOfferings

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005148

b. Type a value for the EndPoint URL.

This value is the URLof the SOAP-over-HTTP endpoint. The URI schememust be HTTPor
HTTPS as in https://soap.profile-provider.com/soap.

c. (Optional) Type a value for the SOAPAction.

This value is the equivalent of the wsdlsoap:soapAction attribute of the wsdlsoap:operation
element in the service’s concreteWSDL-based description.

d. ClickOK to complete the configuration.

Check theOptions box if there are no options or add aURI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering. The set
of possible URIs are defined by the service type, not the Discovery Service. If no option is specified,
the service instance does not display any available options. For a standard set of options, see the
Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAPheaders that can be used to enforce policy-related
decisions. You can choose from the following:

� GenerateBearerToken specifies that a bearer token be generated.
� AuthenticateRequestermust be used with any service description that use SAML formessage

authentication.
� EncryptResourceID specifies that the Discovery Service encrypt the resource ID.
� AuthenticateSessionContext is specified when aDiscovery Service provider includes a SAML

assertion containing a SessionContextStatement in any future QueryResponsemessages.
� AuthorizeRequester is specified when aDiscovery Service provider wants to include a SAML

assertion containing a ResourceAccessStatement in any future QueryResponsemessages.

If you want to associate a directive with one ormore service descriptions, select the check box for that
Description ID. If no service descriptions are selected, the directive is applied to all description
elements in the resource offering.

ClickOK.

Click Close to close theDiscovery ResourceOfferingwindow.

Click Save to save the configuration.

14

15

16

17

18

Discovery Entries and ResourceOfferings

Chapter 7 • Discovery Service 149

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

StoringDiscovery Entries for Bootstrapping
Before aWSC can contact the Discovery Service for a resource offering, theWSC needs to find the
Discovery Service. Thus, an initial resource offering for locating the Discovery Service is sent back to
theWSC in a single sign-on assertion. The following procedure describes how to configure a global
attribute for bootstrapping the Discovery Service. Unlike storing a discovery entry as a user attribute,
this scenario only supports entry lookups, not updates.

� ToStoreDiscovery Entries for Bootstrapping

In theAccessManager Console, select theWebServices tab.

UnderWeb Services, click theDiscovery Service tab.

ChooseNewunder the ResourceOfferings for BootstrappingResources attribute.

By default, the resource offering for bootstrapping the Discovery Service is already configured. In
order to create a new resource offering, youmust first delete the default resource offering.

(Optional) Type a description of the resource offering.

Enter aURI for the value of the Service Type attribute.

This field defines the type of service. It is recommended that the value of this attribute be the
targetNamespaceURI defined in the abstractWSDLdescription for the service.An example of a
valid URI is urn:liberty:disco:2003-08.

Enter aURI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This is useful for resolving
trust metadata needed to invoke the service instance.Asingle physical providermay havemultiple
provider IDs.An example of a valid URI is http://sample_disco.com.

Note –The provider represented by theURI in the Provider ID attributemust also have an entry in
the Classes for ResourceIDMapper Plugin attribute. Formore information, see “Classes For
ResourceIDMapper Plugin” on page 140.

Click AddDescription to define a securitymechanism ID.

For each resource offering, at least one service descriptionmust be created.

a. Select the values for the SecurityMechanism ID attribute to definehowaweb service client can
authenticate to aweb service provider.

This field lists the securitymechanisms that the service instance supports. Select the security
mechanisms you wish to add and click theAdd button. To arrange the priority of the list, select
themechanism and use theMoveUp orMoveDown buttons.

1

2

3

4

5

6

7

Discovery Entries and ResourceOfferings

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005150

b. Type a value for the EndPoint URL.

This value is the URLof the SOAP-over-HTTP endpoint. The URI schememust be HTTPor
HTTPS as in https://soap.profile-provider.com/soap.

c. (Optional) Type a value for the SOAP action.

This field contains the equivalent of the wsdlsoap:soapAction attribute of the
wsdlsoap:operation element in the service’s concreteWSDL-based description.

d. ClickOK to save the configuration.

Check theOptions box if there are no options or add aURI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering. The set
of possible URIs are defined by the service type, not the Discovery Service. If no option is specified,
the service instance does not display any available options. For a standard set of options, see the
Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAPheaders that can be used to enforce policy-related
decisions. You can choose from the following:

� GenerateBearerToken specifies that a bearer token be generated.
� AuthenticateRequestermust be used with any service description that use SAML formessage

authentication.
� EncryptResourceID specifies that the Discovery Service encrypt the resource ID.
� AuthenticateSessionContext is specified when aDiscovery Service provider includes a SAML

assertion containing a SessionContextStatement in any future QueryResponsemessages.
� AuthorizeRequester is specified when aDiscovery Service provider wants to include a SAML

assertion containing a ResourceAccessStatement in any future QueryResponsemessages.

If you want to associate a directive with one ormore service descriptions, select the check box for that
Description ID. If no service descriptions are selected, the directive is applied to all description
elements in the resource offering.

ClickOK to complete the configuration.

8

9

10

Discovery Entries and ResourceOfferings

Chapter 7 • Discovery Service 151

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Discovery ServiceAPIs
By default, a discovery service is implemented as one of the identity web services inAccessManager.
The Discovery ServiceAPIs provide the following implementations and interfaces:

� “com.sun.identity.liberty.ws.interfaces.Authorizer Interface” on page 152
� “com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface” on page 154
� “com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface” on page 154
� “ClientAPIs in com.sun.identity.liberty.ws.disco” on page 155

com.sun.identity.liberty.ws.interfaces.

Authorizer Interface
This interface is used to enable an identity service to check the authorization of aWSC. The
DefaultDiscoAuthorizer class is the default implementation of this interface. The class uses the
AccessManager Policy Service for creating and applying policy definitions.

Note –The Policy Service looks for an SSOToken defined forAuthenticatedUsers orWeb Service
Clients. Formore information on this and the Policy Service in general, see the Sun Java System
Access Manager 7 2005Q4 Administration Guide.

Policy definitions for the Discovery Service are configured using theAccessManager Console. The
procedure is as follows.

� ToConfigurePolicyDefinitions

In theAccessManager Console, click theAccess Control tab.

Select the nameof the realm inwhich the policy definitionswill be configured.

Select Policies to access policy configurations.

ClickNewPolicy to add anewpolicy definition.

Type a name for the policy.

(Optional) Enter a description for the policy.

(Optional) Select the check box next toActive.

ClickNew to add rules to the policy definition.

Select Discovery Service for the rule type and clickNext.

1

2

3

4

5

6

7

8

9

Discovery ServiceAPIs

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005152

Type a name for the rule.

Type a resource onwhich the rule acts.

The Resource Name field uses the form ServiceType + RESOURCE_SEPARATOR + ProviderID. For
example, urn:liberty:id-sis-pp:2003-08;http://example.com.

Select an action and appropriate value for the rule.

Discovery Service policies can only look up or update data.

Click Finish to configure the rule.

The com.sun.identity.liberty.ws.interfaces.Authorizer interface can be implemented by
any web service inAccessManager. Formore information, see “Common Service Interfaces”
on page 197 and the JavaAPI Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

ClickNew to add subjects to the policy definition.

Select the subject type and clickNext.

Type a name for the groupof subjects.

(Optional) Click the check box if this is an exclusive group.

Select the users and click to add them to the group.

Click Finish to return to the policy definition screen.

ClickNew to add conditions to the policy definition.

Select the condition type and clickNext.

Type values for the displayed attributes.

Formore information, see the Sun Java System Access Manager 7 2005Q4 Administration Guide.

Click Finish to return to the policy definition screen.

ClickNew to add response providers to the policy definition.

Type a name for the response provider.

(Optional) Add values for the StaticAttribute.

(Optional) Add values for theDynamicAttribute.

Click Finish to return to the policy definition screen.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Discovery ServiceAPIs

Chapter 7 • Discovery Service 153

Click Create to finish the policy configuration.

com.sun.identity.liberty.ws.interfaces.

ResourceIDMapper Interface
This interface is used tomap a user ID to the resource identifier associated with it.AccessManager
provides two implementations of this interface.

� com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes the
format to be providerID + "/" + the Base64 encoded userIDs

� com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes the
format to be providerID + "/" + the hex string of userIDs

Adifferent implementation of the interfacemay be developed. The implementation class should be
given to the provider that hosts the Discovery Service. Themapping between the providerID and the
implementation class can be configured through the “Classes For ResourceIDMapper Plugin”
on page 140 attribute.

Note –The com.sun.identity.liberty.ws.interfaces.ResourceIDMapper interface is common
to all identity services inAccessManager not only the Discovery Service. Formore information, see
“Common Service Interfaces” on page 197 and the JavaAPI Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.disco.

plugins.DiscoEntryHandler Interface
This interface is used to get and set discovery entries for a user.Anumber of default implementations
are provided, but if you want to handle this function differently, implement this interface and set the
implementing class as the value of the Entry Handler Plugin Class attribute as discussed in “Entry
Handler Plugin Class” on page 140. The default implementations of this interface are described in
the following table.

TABLE 7–2 Implementations of com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler

Class Description

UserDiscoEntryHandler Gets ormodifies discovery entries stored in the user’s
entry as a value of the
sunIdentityServerDiscoEntries attribute. The
UserDiscoEntryHandler implementation is used in
business-to-consumer scenarios such as the Liberty
Personal Profile Service.

29

Discovery ServiceAPIs

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005154

TABLE 7–2 Implementations of com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler
(Continued)
Class Description

DynamicDiscoEntryHandler Gets discovery entries stored as a value of the
sunIdentityServerDynamicDiscoEntries dynamic
attribute in the Discovery Service. Modification of
these entries is not supported and always returns
false. The resource offering is saved in an
organization or a role. The
DynamicDiscoEntryHandler implementation is used
in business-to-business scenarios such as the Liberty
Employee Profile service.

UserDynamicDiscoEntryHandler Gets a union of the discovery entries stored in the user
entry sunIdentityServerDiscoEntries attribute
and discovery entries stored in the Discovery Service
sunIdentityServerDynamicDiscoEntries attribute.
It modifies only discovery entries stored in the user
entry. The UserDynamicDiscoEntryHandler
implementation can be used in both
business-to-consumer and business-to-business
scenarios.

ClientAPIs in com.sun.identity.liberty.ws.disco
The following table summarizes the clientAPIs in the package
com.sun.identity.liberty.ws.disco. Formore information, includingmethods and their syntax
and parameters, see the JavaAPI Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

TABLE 7–3Discovery ServiceClientAPIs

Class Description

Description Represents a DescriptionType element of a service instance.

Directive Represents a discovery service DirectiveType element.

DiscoveryClient Providesmethods to sendDiscovery Service queries and
modifications.

EncryptedResourceID Represents an EncryptionResourceID element for the Discovery
Service.

InsertEntry Represents an Insert Entry for DiscoveryModify request.

Modify Represents a discoverymodify request.

ModifyResponse Represents a discovery response to amodify request.

Discovery ServiceAPIs

Chapter 7 • Discovery Service 155

TABLE 7–3Discovery Service ClientAPIs (Continued)
Class Description

Query Represents a discovery Query object.

QueryResponse Represents a response to a discovery query request.

RemoveEntry Represents a remove entry element for the discoverymodify
request.

RequestedService Enables the requester to specify that all the resource offerings
returnedmust be offered through a service instance that complys
with one of the specified service types.

ResourceID Represents a Discovery Service Resource ID.

ResourceOffering Associates a resource with a service instance that provides access
to that resource.

ServiceInstance Describes a web service at a distinct protocol endpoint.

Discovery Service Sample
Asample that shows the process for querying andmodifying the Discovery Service is included with
AccessManager in the /AccessManager-base/SUNWam/samples/phase2/wsc directory. The sample
initially shows how to deploy and run aWSC. The final portion queries the Discovery Service and
modifies identity data in the Liberty Personal Profile Service. Formore information, see AppendixA.

Discovery Service Sample

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005156

SOAPBinding Service

Sun Java SystemAccessManager contains an implementation of the Liberty ID-WSF SOAP Binding
Specification from the LibertyAlliance Project. The specification defines a transport layer for sending
and receiving SOAPmessages.

This chapter covers the following topics:

� “SOAPBinding Service Overview” on page 157
� “SOAPBinding Process” on page 158
� “SOAPBinding ServiceAttributes” on page 159
� “SOAPBinding Service Package” on page 161

SOAPBinding ServiceOverview
The Liberty IdentityWeb Services Framework (Liberty ID-WSF) and Liberty Identity Service
Interface Specifications (Liberty ID-SIS) components of the LibertyAlliance Project specifications
usemessages to convey identity data between providers.AccessManager has implemented the
Liberty ID-WSF SOAP Binding Specification (Liberty ID-WSF-SBS) as themethod of transport for
this purpose. The specification defines SOAP as the binding to the Hypertext Transport Protocol
(HTTP), which is itself layered onto the TCP/IP stack.

Note – Formore information, see the Liberty ID-WSF SOAP Binding Specification.

XMLService File
TheAccessManager SOAPBinding Service is defined using the XMLservice file
amSOAPBinding.xml. This file defines the attributes for the SOAPBinding Service which can be
managed through theAccessManager Console or the XMLfile.

8C H A P T E R 8

157

http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf

Note – Formore information on service files, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

The Liberty ID-WSF-SBS also defines an XMLschema for use in building the SOAPmessages. This
XMLSchemaDefinition (XSD) file is on the LibertyAlliance Project web site. Version 1.0 is also
reproduced in Appendix B.

SOAPBinding ServiceAPIs
TheAccessManager SOAPBinding Service includes a Java package named
com.sun.identity.liberty.ws.soapbinding. Formore information about these interfaces, see
“SOAPBinding Service Package” on page 161.

SOAPBindingProcess
In the SOAPBinding process, an identity service calls the client-side application programming
interface (API) to construct amessage and send it to the SOAP endpoint URL. The URL is, in effect, a
servlet that receives and processes SOAPmessages.

Note –TheDiscovery Service, implementedData Services Template services (including the Liberty
Personal Profile Service and the sample Employee Profile Service), and theAuthenticationWeb
Service use the SOAPBinding Service clientAPI.

The SOAPReceiver servlet receives themessage, verifies the signature, and constructs a second
message. The SOAPReceiver servlet then invokes the correct request handler class to send this
secondmessage to the corresponding service for a response.

Note – com.sun.identity.liberty.ws.soapbinding.RequestHandler is an interface thatmust be
implemented on the server side by any Liberty-based web service using the SOAPBinding Service.
Formore information, see “Request Handler List” on page 159.

The service processes the secondmessage, generates a response, and sends that response back to the
SOAPReceiver servlet. The SOAP receiver, in turn, sends the response back to the service for
processing.

SOAPBinding Process

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005158

Note –Before invoking a corresponding service, the SOAP frameworkmight also do the following:

� Authenticate the sender identity to verify the credentials of aWSC peer, probably by verifying its
client certificate.

� Authenticate the invoking identity to verify the credentials of aWSC on behalf of a user to verify
whether the user has been authenticated. This depends on the security authentication profile.

� Granular authorization to authorize theWSC before processing a service request.

SOAPBinding ServiceAttributes
The SOAPBinding Service attributes are global attributes. The values of these attributes are carried
across theAccessManager configuration and inherited by every organization.

Note – For information about the types of attributes used inAccessManager, see the Sun Java System
Access Manager 7 2005Q4 Technical Overview.

Attributes for the SOAPBinding Service are defined in the amSOAPBinding.xml service file. The
SOAPBinding Service attributes are as follows:

� “Request Handler List” on page 159
� “Web ServiceAuthenticator” on page 160
� “SupportedAuthenticationMechanisms” on page 160

RequestHandler List
The Request Handler List stores information about the classes implemented from the
com.sun.identity.liberty.ws.soapbinding.RequestHandler interface. The SOAPBinding
Service provides the interface to process requests and return responses. It must be implemented on
the server side for each Liberty-based web service that uses the SOAPBinding Service.

Note –TheDiscovery Service, implementedData Services Template (DST) services (including the
Liberty Personal Profile Service and the sample Employee Profile Service, if deployed), and the
AuthenticationWeb Service use the SOAPBinding Service clientAPI.

To add a new implementation, click New and define values for the following parameters.

KeyParameter
The Key parameter is the last part of the URI path to a SOAP endpoint. The SOAP endpoint in
AccessManager is the SOAPReceiver servlet. The URI to the SOAPReceiver uses the format
protocol://host:port/deloy-uri/Liberty/key. If you define disco as the Key, the URI path to the
SOAP endpoint for the corresponding Discovery Service would be
protocol://host:port/amserver/Liberty/disco.

SOAPBinding ServiceAttributes

Chapter 8 • SOAPBinding Service 159

Note –Different service clients use different keys when connecting to the SOAPReceiver.

ClassParameter
The Class parameter specifies the name of the class implemented from
com.sun.identity.liberty.ws.soapbinding.RequestHandler for the particular web service. For
example, class=com.example.identity.liberty.ws.disco.DiscoveryService.

SOAP Action Parameter
The optional SOAP Action can be used to indicate the intent of the SOAPHTTP request. The SOAP
processor on the receiving system can use this information to determine the ultimate destination for
the service. The value is a URI. No defined value indicates no intent.

Note – SOAPplaces no restrictions on the format or specificity of the URI or that it is resolvable.

WebServiceAuthenticator
This attribute takes as a value the implementation class for theWeb ServiceAuthenticator interface.
This class authenticates a request and generates a credential for aWSC.

Note –This interface is not public. The value of the attribute is configured during installation.

SupportedAuthenticationMechanisms
This attribute specifies the authenticationmechanisms supported by the SOAPReceiver.
Authenticationmechanisms offer user authentication as well as data integrity and encryption. By
default, all available authenticationmechanisms are selected. If a mechanism is not selected and a
WSC sends a request using it, the request is rejected. Following is a list of the supported
authenticationmechanisms:

� urn:liberty:security:2003-08:null:null

� urn:liberty:security:2003-08:null:X509

� urn:liberty:security:2003-08:null:SAML

� urn:liberty:security:2004-04:null:Bearer

� urn:liberty:security:2003-08:TLS:null

� urn:liberty:security:2003-08:TLS:X509

� urn:liberty:security:2003-08:TLS:SAML

� urn:liberty:security:2004-04:TLS:Bearer

� urn:liberty:security:2003-08:ClientTLS:null

� urn:liberty:security:2003-08:ClientTLS:X509

SOAPBinding ServiceAttributes

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005160

� urn:liberty:security:2003-08:ClientTLS:SAML

� urn:liberty:security:2004-04:ClientTLS:Bearer

Note – Formore complete information about authenticationmechanisms and their level of security,
see the Liberty ID-WSF Security Mechanisms specification.

SOAPBinding Service Package
TheAccessManager SOAPBinding Service includes a Java package named
com.sun.identity.liberty.ws.soapbinding. This package provides classes to construct SOAP
requests and responses and to change the contact point for the SOAPbinding. The following table
describes some of the available classes. Formore detailed information, see the JavaAPI Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

TABLE 8–1 SOAPBinding ServiceClasses

Class Description

Client Provides aWSCwith amethod to send requests using a
SOAP connection with aWSP.

ConsentHeader Defines the SOAP element named Consent.

CorrelationHeader Defines the SOAP element named Correlation.

ProcessingContextHeader Defines the SOAP element named ProcessingContext.

ProviderHeader Defines the SOAP element named Provider.

RequestHandler Defines an interface that needs to be implemented by each
web service in order to receive a request from your web
service client.After implementing the handler class, the user
must register the class in the SOAPBinding Service so the
SOAP layer knows where to forward incomingWSC
requests.

Message Used by both the web service client and server to construct
SOAP requests and responses.

ServiceInstanceUpdateHeader Allows a service to change the endpoint on which requesters
will contact it.

ServiceInstanceUpdateHeader.Credential Allows a service to use a different securitymechanism and
credentials to access the requested resource.

SOAPBindingException Represents an error that has occurred while processing a
SOAP request and response.

SOAPFault Defines the SOAP element named Fault.

SOAPBinding Service Package

Chapter 8 • SOAPBinding Service 161

http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf

TABLE 8–1 SOAPBinding Service Classes (Continued)
Class Description

SOAPFaultDetail Defines the SOAP element named Consent.

SOAPFaultException Represents a SOAP fault while processing a SOAP request.

UsageDirectiveHeader Defines the SOAP element named UsageDirective.

See AppendixAfor sample code and files to help you understand the implementation of the Liberty
Alliance Project specifications.

See “PAOS Binding” on page 203 for information on this reverse HTTPbinding for SOAP.

SOAPBinding Service Package

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005162

SAMLAdministration andApplication
Programming Interfaces
� Chapter 9, SAMLAdministration
� Chapter 10,Application Programming Interfaces

P A R T I V

163

164

SAMLAdministration

Sun JavaTM SystemAccessManager uses the SecurityAssertionMarkup Language (SAML) as the
means for exchanging security information. SAMLuses an eXtensibleMarkup Language (XML)
framework to achieve interoperability between vendor platforms that provide SAMLassertions. This
chapter explains SAMLand defines how it is used withinAccessManager.

This chapter covers the following topics:

� “SAMLOverview” on page 165
� “Elements of SAML” on page 168
� “SAMLAttributes” on page 180
� “SAMLAPI” on page 188
� “SAMLSamples” on page 193

SAMLOverview
SAML is an open-standard protocol that defines user authentication, entitlements, and attribute
information in XMLdocuments. The Organization for theAdvancement of Structured Information
Standards (OASIS) drives the development of SAML1.0 and 1.1, the versions supported inAccess
Manager 7 2005Q4.

Note – For information and specifications, see theOASIS Security Services (SAML) Technical
Committee web site.

The SAMLdocuments can be used to exchange security information between an authority and a
trusted partner site. The security information that is exchanged deals with a subject’s authentication
status, access authorization, and attribute information.A subject is an entity in a particular domain.
Aperson identified by an email address is a subject, as might be a printer.ASAMLauthority,
sometimes called the asserting party, is a platform or application that has been integrated with the
SAMLAPI, allowing it to relay security information. Trusted partner sites receive the security
information and rely on its authenticity.

9C H A P T E R 9

165

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

Note –All domains need to form a trust relationship before they can share information about a
subject’s identity. How this is accomplished is beyond the scope of this guide.

Comparisonof SAMLandLiberty Specifications
SAMLwas designed by vendors to address the issue of cross-domain single sign-on. The Liberty
Alliance Project was formed to develop technical specifications that would solve business process
problems. These issues include single sign-on, but also incorporate protocols for account linking and
consent, among others. SAML, on the other hand, does not solve issues such as privacy, single logout,
and federation termination.

The SAML1.0 and 1.1 specifications and the LibertyAlliance Project specifications do not compete
with one another. They are complementary. In fact, the LibertyAlliance Project specifications
leverage profiles from the SAMLspecifications. The decision of whether to use SAMLor the Liberty
specifications depends on your goal. In general, SAMLshould suffice for single sign-on basics. The
LibertyAlliance Project specifications can be used formore sophisticated functions and capabilities,
such as global sign-out, attribute sharing, web services. The following table lists the benefits of the
two.

TABLE 9–1Benefits of the SAMLand the LibertyAlliance Project Specifications

SAMLUses Liberty Alliance Project Uses

Cross-domain single sign-on Single sign-on only after user federation

No user federation User federation

No privacy control, best for use within one company Built on top of SAML

User identifier is sent in plain text User identifier is sent as a unique handle

Note – SAMLVersion 2.0 has been integrated into the LibertyAlliance Project specifications. This
version is planned for implementation in an upcoming release ofAccessManager.

SAMLArchitecture inAccessManager
SAMLsecurity information is expressed in the form of an assertion about a subject.An assertion is a
package of verified security information that supplies one ormore statements concerning a subject’s
authentication status, access authorization decisions, or identity attributes.Assertions are issued by
the SAMLauthority, and received by partner sites defined by the authority as trusted. SAML
authorities use different sources to configure the assertion information, including external data
stores or assertions that have already been received and verified. The following figure illustrates how
SAML interacts with the other components inAccessManager.

SAMLOverview

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005166

Note –Although Federation (as described in Chapter 3) integrates aspects of the SAMLspecifications,
its usage of SAML is independent of the SAMLcomponent as described in this chapter.

SAML
Aware Servlet

SAML
SOAP Receiver

SAML API

Policy
API

SSO API AuthN API Service API
Identity

Repo API

SAML
Post Profile

Servlet
JAXM SOAP Provider

Browser

Authority

TA
R

G
E

T

TA
R

G
E

T

A
ss

er
tio

n

A
ss

er
tio

n

A
ss

er
tio

n

A
rt

ifa
ct

A
rt

ifa
ct

A
rt

ifa
ct

 A
ss

er
tio

n
ID

A
ut

he
nt

ic
at

io
nQ

ue
ry

A

ut
ho

riz
at

io
nQ

ue
ry

 •
 A

ttr
ib

ut
eQ

ue
ry

S
S

O

Applications

The lighter-shaded boxes are components of the SAML module.

FIGURE 9–1 SAMLInteraction inAccessManager

SAMLallowsAccessManager to work in the following ways:

� Users can authenticate usingAccessManager and access trusted partner sites without having to
reauthenticate.

SAMLOverview

Chapter 9 • SAMLAdministration 167

Note –This single sign-on process is independent of the proprietaryAccessManager process
discussed in the Sun Java System Access Manager 7 2005Q4 Administration Guide.

� AccessManager acts as a policy decision point, allowing external applications to access user
authorization information for the purpose of granting or denying access to their resources. For
example, employees of an organization can be allowed to order office supplies from suppliers if
they are authorized to do so.

� AccessManager acts as both an attribute authority (allowing trusted partner sites to query a
subject’s attributes) and an authentication authority (allowing trusted partner sites to query a
subject’s authentication information).

� Two parties in different security domains can validate each other for the purpose of performing
business transactions.

� The SAMLAPI can be used to buildAuthentication,AuthorizationDecision, andAttribute
Assertions.

� The SAMLservice permits an XML-based digital signature signing and verifying functionality to
be plugged into it.

Using SAML
The SAMLcan be accessed using a web browser or the SAMLAPI.An end user authenticates to
AccessManager using a web browser and, once authorized to do so, accesses URLs from trusted
partner sites. Developers integrate theAPI into their applications to exchange security information
withAccessManager. For example, a Java application can use the SAMLAPI to achieve single
sign-on.After obtaining a SSOToken fromAccessManager, the application can call the
doWebArtifact()method of the SAMLClient class, which will send a SOAP request for
authorization information toAccessManager and, if applicable, redirect the application to the
destination site. Formore information, see “SAMLAPI” on page 188.

Elements of SAML
The following sections describe the elements of the SAMLcomponent:

� “Assertion Types” on page 168
� “Profile Types” on page 169
� “SAMLSOAPReceiver” on page 175

Assertion Types
SAMLassertions are a declaration of facts about a principal. For example, an assertion can bemade
that a particular client was granted update privileges to a specific database resource at a certain time.
Assertions are constructed in XMLbased on the SAMLassertion schema.Assertions are built from

Elements of SAML

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005168

http://www.oasis-open.org/committees/security/docs/cs-sstc-schema-assertion-01.xsd

the user’s session information and optional attribute information using the siteAttributeMapper
class. Formore information, see “SiteAttributeMapper and PartnerSiteAttributeMapper
Interfaces” on page 190.

Note –One assertion can containmany different statementsmade by the authority.

The SAMLspecification provides for different types of assertions:

� An authentication assertion declares that the specified subject has been authenticated by a
particular means at a particular time. This information is declared in an
AuthenticationStatement element. InAccessManager, theAuthentication Service is the
authentication authority. The following code example illustrates a sample authentication
assertion.

<?xml version="1.0" encoding="UTF-8" ?>

<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

MajorVersion="1" MinorVersion="0" AssertionID="random-182726"

Issuer="sunserver.example.com" IssueInstant="2001-11-05T17:23:00GMT-02:00">

<saml:AuthenticationStatement

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"

AuthenticationInstant="2001-11-05T17:22:00GMT-02:00">

<saml:Subject>

<saml:NameIdentifier

NameQualifier="example.com">John Doe

</saml:NameIdentifier>

</saml:Subject>

</saml:AuthenticationStatement>

</saml:Assertion>

� An attribute assertion declares that the specified subject is associated with the specified attribute.
This information is declared in an AttributeStatement element. The identity data store that is
networked withAccessManager is the attribute authority.

� An authorization decision assertion declares that the specified subject’s request for access to a
specified resource has been granted or denied. This information is declared in an
AuthorizationDecisionStatement element. InAccessManager, the Policy Service is the
authorization authority.

Profile Types
Aprofile is a set of rules that defines how to embed and extract SAMLassertions. The profile
describes how the assertions are combined with other objects by an authority, transported from the
authority, and subsequently processed at the trusted partner site.AccessManager supports two
profiles: theWeb BrowserArtifact Profile and theWeb Browser POST Profile. Both profiles use
HTTP. Either can be used in single sign-on between two SAML-enabled entities, allowing an
authenticated user to access resources from a trusted partner site. Each profile has its benefits:

Elements of SAML

Chapter 9 • SAMLAdministration 169

� TheWeb BrowserArtifact Profile requires less processing overhead because there is no assertion
signing as there is in theWeb Browser POST Profile.

� TheWeb BrowserArtifact Profile works without browsers enabled with JavaScript technology. It
is consideredmore secure than theWeb Browser POST Profile.

� TheWeb Browser POST Profile does not require SOAP. This profile is more firewall-friendly and
involves fewer steps and less server-side processing.

The profilemethods can be initiated through a web browser or the SAMLAPI. Formore information
about theAPImethod, see “SAMLAPI” on page 188.

WebBrowserArtifact Profile
TheWeb BrowserArtifact Profile defines interaction between three parties: a user equipped with a
web browser, an authority site, and a trusted partner site. The SOAP communication should be either
BasicAuthentication or Client CertificateAuthentication over SSL. Note that XMLsigning is a
stronger alternative.

1. When an authenticated user attempts to access a trusted partner (generally by clicking a link), the
user is directed to a transfer service at the authority site.

InAccessManager, the transfer service is SAMLAwareServlet. The base of the transfer service
URL is http(s)://access-manager-host.domain:port/deploy-uri/SAMLAwareServlet. The URL
is appended with the location to which the user is requesting access (?
TARGET=URL-of-destination).

2. SAMLAwareServlet receives the information and compares the SAMLmodule’s list of Trusted
Partners against the user’s TARGET location.

Only targets that are configured in the Trusted Partners attribute of the SAMLmodule are
accessible. Formore information about this attribute, see “Trusted Partners” on page 183.

3. Assuming the TARGET location was found in the list of Trusted Partners, SAMLAwareServlet
looks for and validates the session token from the inbound request.

Without a valid session token,AccessManager will not create an assertion.

4. Assuming a valid session token, SAMLAwareServlet creates an artifact and a corresponding
assertion.

An artifact is carried as part of the URLand points to an assertion and its source.An artifact is
not (and does not contain) security information. The assertion contains the security
information. Formore information, see “SiteAttributeMapper and
PartnerSiteAttributeMapper Interfaces” on page 190.

Note –The need to send an artifact rather than the assertion itself is dictated by the restrictions on
URL size that are imposed bymany web browsers.

5. SAMLAwareServlet redirects the user’s browser to theArtifact Receiver URLwith a query string
that contains the artifact and the original TARGET location.

Elements of SAML

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005170

Note – InAccessManager, theArtifact Receiver URLand SAMLAwareServlet are the same. Other
SAML implementationsmight not integrate the two functions.

6. At theArtifact Receiver URL, the artifact is extracted from the query string to locate the SOAP
Receiver URLat the trusted partner site.
The SAMLAPI extracts the source ID from the artifact and uses it to locate the SOAPReceiver
URLat the trusted partner site. Formore information about the use of SOAP, see “SAMLSOAP
Receiver” on page 175.

7. ASOAPquery that contains the artifact is sent to the SOAPReceiver URLat the trusted partner
site that is requesting the assertion to which the artifact points.

8. The SOAPReceiver URLaccepts the returned artifact query from the trusted partner site and
responds by sending the correct assertion in a SOAP response.

9. The assertion is processed, mapping the user account information from the trusted partner site
to the target site’s user account.
The user is either granted or denied access to the trusted partner site. If access is granted, a
SSOToken is generated, a cookie is set to the browser, and the user is redirected to the TARGET
location.

Elements of SAML

Chapter 9 • SAMLAdministration 171

Identity
Provider

Service
Provider

User
Agent

6 302; Location: <SP Assertion Consumer URL>?RelayState=<resource URL>SAMLart=<...>

3 302; Location: <IDP Single Sign-On Service >?<AuthnRequest>()

1 GET <inter-site transfer service host name and path>?RelayState=<resource URL>

4 GET <IDP Single Sign-On Service >?<AuthnRequest>()

7 GET <SP Assertion Consumer URL>?RelayState=<resource URL>SAMLart=<...>

8 SOAP POST:<samlp:Request>()

9 200 OK SOAP:<samlp:Response>()

11 200 OK:<resource URL>()

Obtain
IdP

2

Process
AuthnRequest

5

Process
Assertion

10

FIGURE 9–2WebBrowserArtifact Profile Interactions

Asample has been provided to test theWeb BrowserArtifact Profile function. See “SAMLSamples”
on page 193 formore information.

WebBrowser POSTProfile
TheWeb Browser POST Profile allows security information to be supplied to a trusted partner site
using the HTTPPOSTmethod (without the use of an artifact). This interaction consists of two parts.
The first part is between a user with a web browser andAccessManager. The second part is between
the same user and the trusted partner site. The content of the POST should be signed to ensure
message integrity, and themethod of transport should be SSL.

Elements of SAML

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005172

Note –The POST profile function is provided by either of twomeans: anHTTP request using
SAMLPOSTProfileServlet, or an SAMLClientAPI call [doWebPost()] to a Java application.

� The first interaction of theWeb Browser POST Profile is as follows:
1. An authenticated user attempts to access a trusted partner site using a web browser (usually

by clicking a link), and the user is redirected to a transfer service at the authority site.
InAccessManager, the transfer service is SAMLPostProfileServlet. The base of the transfer
service URL is
http(s)://access-manager-host.domain:port/deploy-uri/SAMLPOSTProfileServlet. This
URL is appended with the location to which the user is requesting access
(?TARGET=URL-of-destination).

Note – SAMLPostProfileServlet provides functions for bothWeb Browser POST Profile
interactions.

2. AccessManager obtains the TARGET location from the request andmatches it against the
trusted partners configured in the Trusted Partners attribute of the SAMLmodule.
Formore information, see “Trusted Partners” on page 183.

3. AccessManager generates an assertion using the AssertionManager class of the SAMLAPI.
For information about the AssertionManager class, see “com.sun.identity.saml Package”
on page 188.

4. AccessManager forms, signs, and Base64 encodes a SAMLResponse that contains the
assertion.

5. AccessManager generates anHTML form that contains both the SAMLResponse and the
TARGET as parameters and posts the form as anHTTP response back to the user’s browser.

6. The user’s browser is then directed to the location based on this information.
� The second interaction of theWeb Browser POST Profile is as follows:

1. The trusted partner site obtains the TARGET and SAMLResponse from the redirected request.
2. The trusted partner site decodes the SAMLResponse, verifies the signature on the

SAMLResponse, and obtains and verifies the SAMLresponse.
The trusted partner site also verifies the assertion inside the SAMLResponse and enforces
single sign-on policy.

3. Assuming a positive authentication, the trusted partner site obtains or creates an SSOToken

and redirects the authenticated user to the TARGET location.

Elements of SAML

Chapter 9 • SAMLAdministration 173

Identity
Provider

Service
Provider

User
Agent

6 HTTP 200; FORM; METHOD=POST; ACTION=<SP assertion consumer URL.; LARES=<AuthnResponse>

3 302; Location: <IDP Single Sign-On Service >?<AuthnRequest>()

1 GET <inter-site transfer service host name and path>?RelayState=<resource URL>

4 GET <IDP Single Sign-On Service >?<AuthnRequest>()

7 POST <SP assertion consumer URL.; LARES=<AuthnResponse>

8 SOAP POST:<samlp:Request>()

9 200 OK SOAP:<samlp:Response>()

11 200 OK:<resource URL>()

Obtain
IdP

2

Process
AuthnRequest

5

Process
Assertion

10

FIGURE 9–3WebBrowser POSTProfile Interactions

Asample has been provided to test theWeb Browser POST Profile function. See “SAMLSamples”
on page 193.

Single-Use PolicyWith POST Profile

According to the SAMLspecifications, the trusted partner sitemust ensure a single-use policy for
SSO assertions that are communicated using theWeb Browser POST Profile.
SAMLPOSTProfileServlet maintains a store of SSO assertion identifiers and the time that they
expire.When an assertion is received, the servlet first checks for an entry in themap. If an entry
exists, the servlet returns an error. If an entry does not exist, the assertion identifier and expiration
time are saved to themap. POSTCleanUpThread removes expired assertion identifiers periodically.

Elements of SAML

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005174

SAMLSOAPReceiver
Assertions are exchanged betweenAccessManager and inquiring parties using the <Request> and
<Response>XMLconstructs defined in the SAMLspecification. These SAMLconstructs are then
integrated into SOAPmessages for transport.

Note –ASAML<Request> can contain queries for authentication status, authorization decisions,
attribute information, and one ormore assertion identifier references or artifacts.

AccessManager uses SOAP, amessage communications specification that integrates XMLand
HTTPS, to transport the SAMLconstructs. The request is received by SAMLSOAPReceiver, a servlet
that receives a SOAPmessage, extracts the SAMLrequest, and responds with another SOAPmessage
that contains the requested assertion. SAMLSOAPReceiver responds to queries for authentication,
attributes, or authorization decisions (including those that have an artifact) by returning assertions.
The access URL for SAMLSOAPReceiver is
http(s)://access-manager-host.domain:port/deploy-uri/SAMLSOAPReceiver.

Note – SAMLSOAPReceiver only supports the POSTmethod.

SOAPMessages
SOAPmessages consist of three parts: an envelope, header data, and amessage body. The SAML
<Request> and <Response> elements are enclosed in themessage body.Aclient transmits a SAML
<Request> element within the body of a SOAPmessage to an entity.

Note –The SAMLAPI and the JavaAPI for XMLMessaging (JAXM) are used to construct SOAP
messages and send them to SAMLSOAPReceiver.

The following two samples illustrate a SOAP exchange for the “Web BrowserArtifact Profile”
on page 170. The first is a request for an authentication assertion.

EXAMPLE 9–1 SOAPRequest forAuthenticationAssertionUsingWeb BrowserArtifact Profile

POST /authn HTTP/1.1

Host: idp.example.com

Content-type: text/xml

Content-length: nnnn

<soap-env:Envelope

xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">

<soap-env:Header/>

<soap-env:Body>

<samlp:Request xmlns="urn:oasis:names:tc:SAML:1.0:protocol"

xmlns:lib="http://projectliberty.org/schemas/core/2002/12"

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

Elements of SAML

Chapter 9 • SAMLAdministration 175

EXAMPLE 9–1 SOAPRequest forAuthenticationAssertionUsingWeb BrowserArtifact Profile
(Continued)

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

IssueInstant="2002-12-12T10:08:56Z"

MajorVersion="1"

MinorVersion="0"

RequestID="e4d71c43-c89a-426b-853e-a2b0c14a5ed8"

id="ericssonb6dc3636-f2ad-42d1-9427-220f2cf70ec1"

xsi:type="lib:SignedSAMLRequestType">

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

</ds:CanonicalizationMethod>

<ds:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1">

</ds:SignatureMethod>

<ds:Reference URI="#ericssonb6dc3636-f2ad-42d1-9427-220f2cf70ec1">

<ds:Transforms>

<ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature">

</ds:Transform>

<ds:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

</ds:Transform>

</ds:Transforms>

<ds:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1">

</ds:DigestMethod>

<ds:DigestValue>+k6TnolGkIPKZlpUQVyok8dwkuE=</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>

wXJMVoPO1V1jFnWJPyOWqP5Gqm8A1+/2b5gNzF4L4LMu4yEcRtttLdPPT3bvhwkwHXjL9

NuOFumQ5YEyiVzlNcjAxX0LfgwutvEdJb748IU4L+8obXPXfqTZLiBK1RbHCRmRvjlPIu

22oGCV6EwuiWRvOD6Ox9svtSgFJ+iXkZQ

</ds:SignatureValue>

<ds:KeyInfo>

<ds:X509Data>

<ds:X509Certificate>

MIIDMTCCApqgAwIBAgIBHDANBgkqhkiG9w0BAQQFADCBlTELMAkGA1UEBhMCVVMxCzAJB

gNVBAcTAlNGMRkwFwYDVQQKExBMaWJlcnR5IEFsbGlhbmNlMRQwEgYDVQQLEwtJT1AgVG

VzdGVyczEiMCAGA1UEAxMZTGliZXJ0eSBUZXN0ZXJzIENlcnRpZmllcjEkMCIGCSqGSIb

3DQEJARYVcnJvZHJpZ3VlekBuZW9zb2wubmV0MB4XDTAyMTIwNDE1NTg0NFoXDTEyMTIw

MTE1NTg0NFowgasxCzAJBgNVBAYTAlVTMQswCQYDVQQHEwJTRjEkMCIGA1UEChMbTGliZ

XJ0eSBBbGxpYW5jZSBlcmljc3Nvbi1hMSYwJAYDVQQLEx1JT1AgVGVzdGVycyBlcmljc3

Nvbi1hIHNpZ25lcjEXMBUGA1UEAxMOZXJpY3Nzb24tYS5pb3AxKDAmBgkqhkiG9w0BCQE

Elements of SAML

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005176

EXAMPLE 9–1 SOAPRequest forAuthenticationAssertionUsingWeb BrowserArtifact Profile
(Continued)

WGXJyb2RyaWd1ZXpAZXJpY3Nzb24tYS5pb3AwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJ

AoGBAPUoGYvJxQc5jzDnJ14TV6TaTbB3fH95ju24Z0y6HQxm6gXdJSAoWh7/AIes4UcV0

9DC2kKS6Vow2YoXt2LIyH9HWH2tEUt1jS/PUeBHEWcW3tFezM6jh5GG5rCuVPZaW9eoGU

bFPSzOPFKUAwdHUXSDWufY1KZ93IxhOBeZgg6VAgMBAAGjeTB3MEoGCWCGSAGG+EIBDQQ

9FjtUaGlzIHNpZ25pbmcgY2VydCB3YXMgY3JlYXRlZCBmb3IgdGVzdGluZy4gRG8gbm90

IHRydXN0 IGl0LjAJBgNVHRMEAjAAMBEGCWCGSAGG+EIBAQQEAwIEMDALBgNVHQ8EBAMC

BsAwDQYJKoZIhvcNAQEEBQADgYEAR/HSgBpAprQwQVyWDE9pCaiduKv4/W/+hrdpXlVKS

r6TIlg4ouDCQJNos7tNuG9ZAbfWtHvCss51N2cfAzfns/DKqxRqcsxzL5ZUBksPpmsDob

oopUv6Xm8RFsi7yB9AGaVuqObeY/+m70nOu03O+FlMN3U1k2E3rOKXlU1noC0

</ds:X509Certificate>

</ds:X509Data>

</ds:KeyInfo>

</ds:Signature>

<samlp:AssertionArtifact>

AAM1uXw6+f+jyA/4XuFHqPl7QDvc/LIQL9+t7YQtG1Gwk9bph0Adl+o+

</samlp:AssertionArtifact>

</samlp:Request>

</soap-env:Body>

</soap-env:Envelope>

In response to the request, SAMLSOAPReceivermust return either a <Response> element within
the body of another SOAPmessage or a SOAP fault code (errormessage) for every request received.
The following sample is a response that contains an authentication assertion.

EXAMPLE 9–2 SOAPResponse to SOAPRequest forWeb BrowserArtifact Profile

HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: nnnn

<soap-env:Envelope

xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">

<soap-env:Header/>

<soap-env:Body>

<samlp:Response

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

InResponseTo="RPCUk2ll+GVz+t1lLURp51oFvJXk"

IssueInstant="2002-10-31T21:42:13Z"

MajorVersion="1" MinorVersion="0"

Recipient="http://localhost:8080/sp"

ResponseID="LANWfL2xLybnc+BCwgY+p1/vIVAj">

<samlp:Status>

<samlp:StatusCode

xmlns:qns="urn:oasis:names:tc:SAML:1.0:protocol"

Value="qns:Success">

</samlp:StatusCode>

Elements of SAML

Chapter 9 • SAMLAdministration 177

EXAMPLE 9–2 SOAPResponse to SOAPRequest forWeb BrowserArtifact Profile (Continued)

</samlp:Status>

<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:lib="http://projectliberty.org/schemas/core/2002/12"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

AssertionID="SqMC8Hs2vJ7Z+t4UiLSmhKOSUO0U"

InResponseTo="RPCUk2ll+GVz+t1lLURp51oFvJXk"

IssueInstant="2002-10-31T21:42:13Z"

Issuer="http://host:8080/idp"

MajorVersion="1" MinorVersion="0"

xsi:type="lib:AssertionType">

<saml:Conditions

NotBefore="2002-10-31T21:42:12Z"

NotOnOrAfter="2002-10-31T21:42:43Z">

<saml:AudienceRestrictionCondition>

<saml:Audience>http://localhost:8080/sp</saml:Audience>

</saml:AudienceRestrictionCondition>

</saml:Conditions>

<saml:AuthenticationStatement

AuthenticationInstant="2002-10-31T21:42:13Z"

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"

xsi:type="lib:AuthenticationStatementType">

<saml:Subject xsi:type="lib:SubjectType">

<saml:NameIdentifier>

C9FfGouQdBJ7bpkismYgd8ygeVb3PlWK

</saml:NameIdentifier>

<saml:SubjectConfirmation>

<saml:ConfirmationMethod>

urn:oasis:names:tc:SAML:1.0:cm:artifact-01

</saml:ConfirmationMethod>

</saml:SubjectConfirmation>

<lib:IDPProvidedNameIdentifier>

C9FfGouQdBJ7bpkismYgd8ygeVb3PlWK

</lib:IDPProvidedNameIdentifier>

</saml:Subject>

</saml:AuthenticationStatement>

<ds:Signature>

<ds:SignedInfo>

<ds:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

</ds:CanonicalizationMethod>

<ds:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1">

</ds:SignatureMethod>

<ds:Reference URI="">

Elements of SAML

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005178

EXAMPLE 9–2 SOAPResponse to SOAPRequest forWeb BrowserArtifact Profile (Continued)

<ds:Transforms>

<ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature">

</ds:Transform>

<ds:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

</ds:Transform>

</ds:Transforms>

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1">

</ds:DigestMethod>

<ds:DigestValue>ZbscbqHTX9H8bBftRIWlG4Epv1A=</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>

H+q3nC3jUalj1uKUVkcC4iTFClxeZQIFF0nvHqPS5oZhtkBaDb9qI

TA7gIkotaB584wXqTXwsfsuIrwT5uL3r85Rj7IF6NeCeiy3K0+z3u

ewxyeZPz8wna449VNm0qNHYkgNak9ViNCp0/ks5MAttoPo2iLOfaK

u3wWG6d1G+DM=

</ds:SignatureValue>

</ds:Signature>

</saml:Assertion>

</samlp:Response>

</soap-env:Body>

</soap-env:Envelope>

Note –The entities requesting and responding with SAMLmust not includemore than one SAML
request or response per SOAPmessage. Theymust also not include any additional XMLelements in
the SOAPbody.

Protecting SAMLSOAPReceiver
TheAccessManager administrator has the option of protecting the SAMLSOAPReceiver. The
available methods are:

� NOAUTH

� BASICAUTH

� SSL

� SSLWITHBASICAUTH

This value is configured as a subattribute of the Trusted Partners attribute in the SAMLmodule. The
default authentication type is NOAUTH. If SSL authentication is to be specified, it is configured in the
SOAPUrl field with the https protocol. Formore information, see “Trusted Partners” on page 183.

Elements of SAML

Chapter 9 • SAMLAdministration 179

� ToConfigureAccessManager for BasicAuthentication
Basic authentication allows a provider originating a request to authenticate itself by transmitting a
username and password. The credentials are presented in response to a challenge from the provider
to which the request is being sent. You need to configureAccessManager to support basic
authentication using the following procedure.

In theAccessManager Console, click the Federation tab.

Under Federation, click the SAML tab.

Select Newunder the Trusted Partners attribute.

Select theWebBrowser Artifact Profile (Artifact) under Source and clickNext.

Type a value for the Source ID attribute.

This is a 20–byte sequence (encoded using the Base64 format) that comes from the partner site. It is
generally the same value as that used for the Site ID attribute when configuring “Site Identifiers”
on page 182.

Enter the SOAPReceiver URL for the site you are configuring as a value for the SOAPURLattribute.

General information on SOAP endpoints is in “SAMLSOAPReceiver” on page 175.

Select BASICAUTH or SSLWITHBASICAUTH (if the endpoint is configuredwith Secure Sockets Layer) as
the authentication type.

Enter a user identifier for the user on the partner side being used to protect their SOAPReceiver.

Enter and reenter the password associatedwith the user on the partner side being used to protect
their SOAPReceiver.

Click Finish to complete the configuration.

Click Save to save the configuration.

SAMLAttributes
The SAMLmodule is configured by applying values to its attributes. amSAML.xml is the XMLservice
file that defines the attributes.All SAMLattributes are global in that the values applied to them are
carried across theAccessManager configuration and inherited by every organization defined in the
instance ofAccessManager.

1

2

3

4

5

6

7

8

9

10

11

SAMLAttributes

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005180

Note – Formore information on service files, see Sun Java System Access Manager 7 2005Q4
Administration Guide.

Most attributes in the SAMLmodule can be configured either through theAccessManager Console
or the XMLservice file. “amSAML.xmlAttributes” on page 181 lists the attributes that can only be
configured bymodifying the amSAML.xml file. “ConsoleAttributes” on page 181 lists the attributes
that can be configured using the console or the XMLservice file.

amSAML.xmlAttributes
The following attributes can only be configured through the amSAML.xml file using the amadmin
command-line interface.

� iplanet-am-saml-cleanup-interval is used to specify how often the internal thread is run to
clean up expired assertions from the internal data store. The default is 180 seconds.

� iplanet-am-saml-assertion-max-number is used to specify themaximumnumber of
assertions that the server can hold at one time. No new assertion is created if themaximum
number is reached. The default value is 0, whichmeans no limit.

� ToModifyAttributes in the amSAML.xml File

Duplicate the amSAML.xml service file andmake any changes to the attributes.

Delete the old amSAML.xml service file.

Use amadmin to reload the newlymodified amSAML.xmlfile.

Formore information on amadmin, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

ConsoleAttributes
The following SAMLattributes can be configured by using theAccessManager Console or by
modifying amSAML.xml as described in “amSAML.xmlAttributes” on page 181.When viewed using the
Console, the SAMLattributes are separated into the following groups:

� “Properties Group” on page 182
� “Assertion” on page 186
� “Artifact” on page 187
� “Signing” on page 187

1

2

3

SAMLAttributes

Chapter 9 • SAMLAdministration 181

PropertiesGroup
The attributes in the Properties group are as follows:

� “Target Specifier” on page 182
� “Site Identifiers” on page 182
� “Trusted Partners” on page 183
� “Target URLs” on page 186

Target Specifier

This attribute assigns a name to the destination site URLvalue that is used in the redirects discussed
in “Profile Types” on page 169. The default is TARGET. Only sites configured in the Trusted Partners
attribute can be specified as a TARGET. For information, see “Trusted Partners” on page 183.

Site Identifiers

This attribute defines any site that is hosted by the server on whichAccessManager is installed.A
default value is defined for the host during installation (with values retrieved from
AMConfig.properties), and a Site ID is automatically generated.Multiple entries are possible (for
example, load balancing ormultiple instances ofAccessManager sharing the sameDirectory Server)
although the default site identifier should always remain an entry.

Note – If configuring SAMLfor SSL (in both the source and destination site), ensure that the protocol
defined in the Instance ID attribute is HTTPS//.

� ToConfigure a Site Identifier
Youmay also edit or duplicate entries already listed.

In theAccessManager Console, click the Federation tab.

Under Federation, click the SAML tab.

Select Newunder the Site Identifiers attribute.

Enter values for the following attributes:

Instance ID
The value of this property is protocol://host:port.

Site ID
This identifier is generated for each site, although the value will be the same formultiple servers
behind a load balancer. To obtain this identifiermanually, type the following at the command line:

% #java -classpath AM-classpath \ com.sun.identity.saml.common.SAMLSiteID

\protocol://host:port

1

2

3

4

SAMLAttributes

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005182

Formore information, see “com.sun.identity.saml.common Package” on page 189.

Issuer Name
The value of this property is host:port.

ClickOK.

Trusted Partners

This attribute defines any trusted partner (remote to the server on whichAccessManager is
installed) that will be communicating withAccessManager.

Note –The trusted partner sitemust have a prearranged trust relationship with one ormore of the
sites configured in “Site Identifiers” on page 182.

Before configuring a trusted partner, youmust determine the partner’s role in the trust relationship.
A trusted partner can be a source site (one that generates a single sign-on assertion) or a destination
site (one that receives a single sign-on assertion). Following is the procedure for configuring a trusted
partner.

� ToConfigure a TrustedPartner
The Trusted Partners attribute can contain one ormore entries. Each entry is configured based on
the site’s defined role. For example, if the partner is the source site, this attribute is configured based
on how it will send assertions. If the partner is the destination site, this attribute is configured based
on which profile it uses to receive assertions.

In theAccessManager Console, click the Federation tab.

Under Federation, click the SAML tab.

Select Newunder the Trusted Partners attribute.

Select the role (Destination or Source) of the partner site that you are configuring by checking the
appropriate profiles used to communicatewith it and clickNext.

SelectWeb BrowserArtifact Profile orWeb Browser Post Profile for either Destination, Source, or
both, or SOAPQuery for Source. The choices made dictate which of the attributes in the following
steps need to be configured.

Type values for the CommonSettings subattributes based on the selected roles.

Source ID
This is a 20–byte sequence (encoded using the Base64 format) that comes from the partner site. It
is generally the same value as that used for the Site ID attribute when configuring “Site Identifiers”
on page 182.

5

1

2

3

4

5

SAMLAttributes

Chapter 9 • SAMLAdministration 183

Target
This is the domain of the partner site (with or without a port number). If you want to contact a
web page that is hosted in this domain, the redirect URL is picked up from the values defined in
“Trusted Partners” on page 183.

Note – If there are two defined entries for the same domain (one containing a port number and
one without a port number), the entry with the port number takes precedence. For example,
assume the following two trusted partner definitions: target=sun.com and
target=sun.com:8080. If the principal is seeking http://machine.sun.com:8080/index.html,
the second definition will be chosen.

SiteAttributeMapper
The class is used to return a list of attribute values defined as AttributeStatements elements in
anAuthenticationAssertion.Asite attributemapper needs to be implemented from one of the
included interfaces:
� com.sun.identity.saml.plugins.SiteAttributeMapper
� com.sun.identity.saml.plugins.PartnerSiteAttributeMapper

If no class is defined, no attributes will be included in the assertion. Formore information, see
“SiteAttributeMapper and PartnerSiteAttributeMapper Interfaces” on page 190.

Version
The SAMLversion used (1.0 or 1.1) to send SAMLrequests. If this parameter is not defined, the
following default values (defined in AMConfig.properties) are used:
� com.example.identity.saml.assertion.version=1.1

� com.example.identity.saml.protocol.version=1.1

AccountMapper
The class that defines how the subject of an assertion is related to an identity at the destination
site. The default is com.sun.identity.saml.plugins.DefaultAccountMapper. An account
mapper needs to be implemented from one of the included interfaces:
� com.sun.identity.saml.plugins.AccountMapper

� com.sun.identity.saml.plugins.PartnerAccountMapper

If no class is defined, no attributes will be included in the assertion. Formore information, see
“AccountMapper and PartnerAccountMapper Interfaces” on page 190.

Certificate
Acertificate alias that is used to verify the signature in an assertion when it is signed by the partner
and the certificate cannot be found in the KeyInfo portion of the signed assertion.

Host List
A list of the IP addresses, the DNS host name, or the Certificate name for all hosts within the
partner site that can send requests to this authority. This list helps to ensure that the requestor is
indeed the intended receiver of the artifact. If the requester is defined in this list, the interaction
will continue. If the requester’s information does notmatch any hosts defined in the host list, the
request will be rejected.

SAMLAttributes

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005184

Issuer
The creator of a generated assertion. The default syntax is hostname:port.

Type values for theDestination subattributes.

Artifact: SAMLURL
TheURL that points to the servlet that implements theWeb BrowserArtifact Profile. See “Web
BrowserArtifact Profile” on page 170.

Post: Post URL
TheURL that points to the servlet that implements theWeb Browser POST Profile. See “Web
Browser POST Profile” on page 172.

SOAPQuery:AttributeMapper
The class that is used to obtain single sign-on information from a query. You need to implement
an attributemapper from the included interface. If no class is specified, the
DefaultAttributeMapperwill be used. Formore information, see
“com.sun.identity.saml.plugins Package” on page 189.

SOAPQuery:ActionMapper
The class that is used to get single sign-on information andmap partner actions toAccess
Manager authorization decisions. You need to implement an actionmapper from the included
interface. If no class is specified, the DefaultActionMapperwill be used. Formore information,
see “com.sun.identity.saml.plugins Package” on page 189.

Type values for the Source subattributes.

Artifact: SOAPURL
TheURL to the SAMLSOAPReceiver. See “SAMLSOAPReceiver” on page 175.

Authentication Type
Authentication types that can be used with SAML:
� NOAUTH

� BASICAUTH

� SSL

� SSLWITHBASICAUTH

This attribute is optional. If not specified, the default is NOAUTH. If BASICAUTH or
SSLWITHBASICAUTH is specified, the Trusted Partners attribute is required and should be HTTPS.
Formore information, see “Trusted Partners” on page 183.

User
When BasicAuthentication is chosen as theAuthentication Type, the value of this attribute
defines the user identifier of the partner being used to protect the partner’s SOAP receiver.

User’s Password
When BasicAuthentication is chosen as theAuthentication Type, the value of this attribute
defines the password for the user identifier of the partner being used to protect the partner’s
SOAP receiver.

6

7

SAMLAttributes

Chapter 9 • SAMLAdministration 185

User’s Password (reenter)
Reenter the password defined previously.

Click Finish to complete the configuration.

Target URLs

If the TARGETURLreceived through either profile is listed as a value of this attribute, the assertions
received will be sent to the TARGETURLusing anHTTPFORMPOST.

Caution –Donot use test URLs or any other additional URLs in a POST.

To configure this attribute, type values for the following subattributes:

Protocol
Choose either http or https.

Server Name
The name of the server on which the TARGETURL resides, such as www.sun.com.

Port
The port number, such as 58080.

Path
TheURI, such as /amserver/console.

Assertion
The attributes in theAssertion group are as follows:

� “Assertion Timeout” on page 186
� “Assertion Skew Factor For notBefore Time” on page 186

Assertion Timeout

This attribute specifies the number of seconds before a timeout occurs on an assertion. The default is
420.

Assertion SkewFactor For notBefore Time

This attribute is used to calculate the notBefore time of an assertion. For example, if IssueInstant
is 2002-09024T21:39:49Z, and Assertion Skew Factor For notBefore Time is set to 300 seconds
(180 is the default value), the notBefore attribute of the conditions element for the assertion would
be 2002-09-24T21:34:49Z.

8

SAMLAttributes

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005186

Note –The total valid duration of an assertion is defined by the values set in both the Assertion
Timeout and Assertion Skew Factor For notBefore Time attributes.

Artifact
The attributes in theArtifact group are as follows:

� “Artifact Timeout” on page 187
� “SAMLArtifact Name” on page 187

Formore information about artifacts, see “Web BrowserArtifact Profile” on page 170.

Artifact Timeout

This attribute specifies the period of time an assertion that is created for an artifact will be valid. The
default is 400.

SAMLArtifact Name

This attribute assigns a variable name to a SAMLartifact. The artifact is bounded-size data that
identifies an assertion and a source site. It is carried as part of a URLquery string and conveyed by
redirection to the destination site. The default name is SAMLart. Using the default SAMLart, the
redirect query string could be http://host:port/deploy-URI/SamlAwareServlet?
TARGET=target-URL/&SAMLart=artifact123.

Signing
The attributes in the Signing group are as follows:

� “Sign SAMLAssertion” on page 187
� “Sign SAMLRequest” on page 187
� “Sign SAMLResponse” on page 187

Sign SAMLAssertion

This attribute specifies whether all SAMLassertions will be digitally signed (XML DSIG) before being
delivered. Selecting the check box enables this feature.

Sign SAMLRequest

This attribute specifies whether all SAML requests will be digitally signed (XML DSIG) before being
delivered. Selecting the check box enables this feature.

Sign SAMLResponse

This attribute specifies whether all SAML responses will be digitally signed (XML DSIG) before being
delivered. Selecting the check box enables this feature.

SAMLAttributes

Chapter 9 • SAMLAdministration 187

Note –All SAMLresponses used by theWeb Browser POST Profile are digitally signed whether or not
this feature is enabled.

SAMLAPI
AccessManager contains a SAMLAPI that consists of several Java packages.Administrators can use
these packages to integrate the SAML functionality and XMLmessages into their applications and
services. TheAPI supports all types of assertions and operates with theAccessManager authorities
to process external SAMLrequests and generate SAMLresponses. The packages include the
following:

� “com.sun.identity.saml Package” on page 188
� “com.sun.identity.saml.assertion Package” on page 189
� “com.sun.identity.saml.common Package” on page 189
� “com.sun.identity.saml.plugins Package” on page 189
� “com.sun.identity.saml.protocol Package” on page 191
� “com.sun.identity.saml.xmlsig Package” on page 193

Formore detailed information, includingmethods and their syntax and parameters, see the JavaAPI
reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.samlPackage
This package contains the AssertionManager and SAMLClient classes.

AssertionManagerClass
The AssertionManager class provides interfaces andmethods to create and get assertions,
authentication assertions, and assertion artifacts. This class is the connection between the SAML
specification andAccessManager. Some of themethods include the following:

� createAssertion creates an assertion with an authentication statement based on anAccess
Manager SSOToken ID.

� createAssertionArtifact creates an artifact that references an assertion based on anAccess
Manager SSOToken ID.

� getAssertion returns an assertion based on the given parameter (given artifact, assertion ID, or
query).

SAMLClientClass
The SAMLClient class providesmethods to execute either theWeb BrowserArtifact Profile or the
Web Browser POST Profile fromwithin an application as opposed to a web browser. Its methods
include the following:

SAMLAPI

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005188

� getAssertionByArtifact returns an assertion for a corresponding artifact.
� doWebPOST executes theWeb Browser POST Profile.
� doWebArtifact executes theWeb BrowserArtifact Profile.

com.sun.identity.saml.assertion Package
This package contains the classes needed to create, manage, and integrate an XMLassertion into an
application. The following code example illustrates how to use the Attribute class and
getAttributeValuemethod to retrieve the value of an attribute. From an assertion, call the
getStatement()method to retrieve a set of statements. If a statement is an attribute statement, call
the getAttribute()method to get a list of attributes. From there, call getAttributeValue() to
retrieve the attribute value.

EXAMPLE 9–3 Sample Code toObtain anAttributeValue

// get statement in the assertion

Set set = assertion.getStatement();

//assume there is one AttributeStatement

//should check null& instanceof

AttributeStatement statement = (AttributeStatement) set.iterator().next();

List attributes = statement.getAttribute();

// assume there is at least one Attribute

Attribute attribute = (Attribute) attributes.get(0);

List values = attribute.getAttributeValue();

com.sun.identity.saml.common Package
This package defines classes common to all SAMLelements, including site ID, issuer name, and
server host. The package also contains all SAML-related exceptions.

com.sun.identity.saml.plugins Package
AccessManager provides service provider interfaces (SPIs), three of which have default
implementations. The default implementations of these SPIs can be altered, or brand new ones
written, based on the specifications of a particular customized service. The implementations are then
used to integrate SAML into the custom service. Currently, the package includes the following
interfaces:

� “AccountMapper and PartnerAccountMapper Interfaces” on page 190
� “SiteAttributeMapper and PartnerSiteAttributeMapper Interfaces” on page 190
� “AttributeMapper Interface” on page 190
� “ActionMapper Interface” on page 191

SAMLAPI

Chapter 9 • SAMLAdministration 189

AccountMapper and PartnerAccountMapper Interfaces
AccountMapper and PartnerAccountMapper are interfaces that need to be implemented by each
partner site. The implemented class maps the partner site’s user accounts to user accounts
configured inAccessManager for purposes of single sign-on. For example, if single sign-on is
configured from siteA to site B, a site-specific accountmapper can be developed and defined in the
Trusted Partners subattribute of site B’s Trusted Partners profile.When site B processes the assertion
received, it locates the corresponding accountmapper by retrieving the source ID of the originating
site. Either SPI can be implemented although PartnerAccountMapper has one benefit over
AccountMapper: it takes the whole assertion as a parameter, enabling the partner to define user
accountmapping based on attributes inside the assertion. The AccountMapper interface uses only
the subject of the assertion as a parameter. The default implementation is
com.sun.identity.saml.plugin.DefaultAccountMapper. If a site-specific accountmapper is not
configured, this default mapper is used.

Note –Turning on theDebug Service in the AMConfig.properties file logs additional information
about the accountmapper, for example, the user name and organization to which themapper has
beenmapped. Formore information about the AMConfig.properties file, see the Sun Java System
Access Manager 7 2005Q4 Developer’s Guide.

SiteAttributeMapper and PartnerSiteAttributeMapper Interfaces
SiteAttributeMapper and PartnerSiteAttributeMapper are interfaces that need to be
implemented by each partner site. The implemented class defines a list of attributes to be returned as
elements of the AttributeStatements in an authentication assertion. By default, whenAccess
Manager creates an assertion and nomapper is specified, the authentication assertion only contains
authentication statements. If a partner site wants to include attribute statements, it needs to
implement one of thesemappers. This class would be used to obtain attributes, create the attribute
statement, and insert the statement inside the assertion. Either SPI can be implemented although
PartnerSiteAttributeMapper has one benefit over SiteAttributeMapper: there is an additional
targetURL parameter that enables the partner to include different sets of attributes to target different
applications.

Note –The default behavior is that no attribute statements are returned unless specified by the
plug-in.

AttributeMapper Interface
AttributeMapper is an interface used in conjunction with an AttributeQuery classWhen a site
receives an attribute query, this mapper obtains the SSOToken or an assertion (containing an
authentication statement) from the query. The retrieved information is used to convert the attributes
in the query to the correspondingAccessManager attributes.Adefault attributemapper is provided
if no other implementation is defined.

Formore information, see “AttributeQueryClass” on page 191.

SAMLAPI

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005190

ActionMapper Interface
ActionMapper is an interface used to obtain single sign-on information and tomap partner actions
toAccessManager authorization decisions.Adefault actionmapper is provided if no other
implementation is defined.

com.sun.identity.saml.protocol Package
This package contains classes that parse the request and response XMLmessages used to exchange
assertions and their authentication, attribute, or authorization information.

AuthenticationQueryClass
The AuthenticationQuery class represents a query for an authentication assertion.When an
identity attempts to access a trusted partner web site, a SAMLrequest with an AuthenticationQuery

inside is directed to the authority site.

The Subject of the AuthenticationQuerymust contain a SubjectConfirmation element. In this
element, ConfirmationMethod needs to be set to urn:com:sun:identity, and
SubjectConfirmationData needs to be set to the SSOToken ID of the Subject. If the Subject contains
a NameIdentifier, the value of the NameIdentifier should be the same as the one in the SSOToken.

AttributeQueryClass
The AttributeQuery class represents a query for an identity’s attributes.When an identity attempts
to access a trusted partner web site, a SAMLrequest with an AttributeQuery is directed to the
authority site.

You can develop an attributemapper to obtain an SSOToken, or an assertion that contains an
AuthenticationStatement from the query. If no attributemapper for the querying site is defined,
the DefaultAttributeMapperwill be used. To use the DefaultAttributeMapper, the query should
have either the SSOToken or an assertion that contains an AuthenticationStatement in the
SubjectConfirmationData element. If an SSOToken is used, the ConfirmationMethodmust be set to
urn:com:sun:identity:. If an assertion is used, the assertion should be issued by theAccess
Manager instance processing the query or a server that is trusted by theAccessManager instance
processing the query.

Note – In the DefaultAttributeMapper, a subject’s attributes can be queried using another subject’s
SSOToken if the SSOToken has the privilege to retrieve the attributes.

For a query using the DefaultAttributeMapper, anymatching attributes found will be returned. If
no AttributeDesignator is specified in the AttributeQuery, all attributes from the services defined
under the userServiceNameList in amSAML.propertieswill be returned. The value of the
userServiceNameList property is user service names separated by a comma.

SAMLAPI

Chapter 9 • SAMLAdministration 191

AuthorizationDecisionQuery Class
The AuthorizationDecisionQuery class represents a query about a principal’s authority to access
protected resources.When an identity attempts to access a trusted partner web site, a SAMLrequest
with an AuthorizationDecisionQuery is directed to the authority site.

You can develop an ActionMapper to obtain the SSOToken ID and retrieve the authentication
decisions for the actions defined in the query. If no ActionMapper for the querying site is defined, the
DefaultActionMapperwill be used. To use the DefaultActionMapper, the query should have the
SSOToken ID in the SubjectConfirmationData element of the Subject. If the SSOToken ID is used,
the ConfirmationMethodmust be set to urn:com:sun:identity:. If a NameIdentifier is present,
the information in the SSOTokenmust be the same as the information in the NameIdentifier.

Note –When using web agents, the DefaultActionMapper handles actions in the namespace
urn:oasis:names:tc:SAML:1.0:ghpp only.Web agents serve the policy decisions for this action
namespace.

The authentication information can also be passed through the Evidence element in the query.
Evidence can contain an AssertionIDReference, an assertion containing an
AuthenticationStatement issued by theAccessManager instance processing the query, or an
assertion issued by a server that is trusted by theAccessManager instance processing the query. The
Subject in the AuthenticationStatement of the Evidence element should be the same as the one in
the query.

Note – Policy conditions can be passed through AttributeStatements of assertion(s) inside the
Evidence of a query. If the value of an attribute contains a TEXT node only, the condition is set as
attributeName=attributeValueString. Otherwise, the condition is set as
attributename=attributeValueElement.

The following example illustrates one of many ways to form an authorization decision query that will
return a decision.

EXAMPLE 9–4AuthorizationDecisionQueryCode Sample

// testing getAssertion(authZQuery): no SC, with ni, with

// evidence(AssertionIDRef, authN, for this ni):

String nameQualifier = "dc=iplanet,dc=com";

String pName = "uid=amadmin,ou=people,dc=iplanet,dc=com";

NameIdentifier ni = new NameIdentifier(pName, nameQualifier);

Subject subject = new Subject(ni);

String actionNamespace = "urn:test";

// policy should be added to this resource with these

// actions for the subject

Action action1 = new Action(actionNamespace, "GET");

Action action2 = new Action(actionNamespace, "POST");

List actions = new ArrayList();

SAMLAPI

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005192

EXAMPLE 9–4AuthorizationDecisionQueryCode Sample (Continued)

actions.add(action1);

actions.add(action2);

String resource = "http://www.sun.com:80";

eviSet = new HashSet();

// this assertion should contain authentication assertion for

// this subject and should be created by a trusted server

eviSet.add(eviAssertionIDRef3);

evidence = new Evidence(eviSet);

authzQuery = new AuthorizationDecisionQuery(eviSubject1, actions,

evidence, resource);

try {

assertion = am.getAssertion(authzQuery, destID);

} catch (SAMLException e) {

out.println("--failed. Exception:" + e);

}

com.sun.identity.saml.xmlsig Package
All SAMLassertions, requests, and responses can be signed using this signature package. It contains
SPI that are implemented to plug in proprietary XMLsignatures. This package contains classes
needed to sign and verify using XMLsignatures. By default, the keystore provided with the Java
Development Kit is used and the key type is DSA. The configuration properties for this functionality
are in the AMConfig.properties file. For information about these properties, see the Sun Java
System Access Manager 7 2005Q4 Developer’s Guide. For details on how to use the signature
functionality, see “SAMLSamples” on page 193.

SAMLSamples
You can access several SAML-based samples from theAccessManager installation in
/AccessManager-base/SUNWam/samples/saml. These samples illustrate how the SAMLservice can be
used in different ways, including the following:

� Asample that serves as the basis for using the SAMLclientAPI. This sample is located in
/AccessManager-base/SUNWam/samples/saml/client.

� Asample that illustrates how to form aQuery, write an AttributeMapper, and send and process a
SOAPmessage using the SAMLSDK. This sample is located in
/AccessManager-base/SUNWam/samples/saml/query.

� Asample application for achieving SSO using either theWeb BrowserArtifact Profile or theWeb
Browser POST Profile. This sample is located in
/AccessManager-base/SUNWam/samples/saml/sso.

� Asample that illustrates how to use the XMLSIGAPI and explains how to configure for XML
signing. This sample is located in /AccessManager-base/SUNWam/samples/saml/xmlsig.

SAMLSamples

Chapter 9 • SAMLAdministration 193

Each sample includes a READMEfile with information and instructions on how to use it.

SAMLSamples

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005194

Application Programming Interfaces

Sun Java SystemAccessManager provides a framework for identity federation and creating,
discovering, and consuming identity web services. This framework includes a graphical user
interface for Liberty-based web services as well as application programming interfaces (APIs). This
chapter provides information on theAPIs that do not have a corresponding graphical user interface
(GUI).

This chapter covers the following topics:

� “Public Interfaces” on page 195
� “Common Service Interfaces” on page 197
� “Common SecurityAPI” on page 199
� “Interaction Service” on page 201
� “PAOS Binding” on page 203

Public Interfaces
The following list describes all of the publicAPIs you can use to deploy Liberty-enabled components
or extend the core services. Packages that are part of a web service that has a GUI are described in the
corresponding chapters of this book. Packages that are used solely on the back end are described in
this chapter. Links to those sections are also provided. Formore information, includingmethods and
their syntax and parameters, see the JavaAPI Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

TABLE 10–1AccessManager PublicAPIs

PackageName Description

com.sun.identity.liberty.ws.authnsvc Provides classes tomanage theAuthenticationWeb
Service. See Chapter 5.

10C H A P T E R 1 0

195

TABLE 10–1AccessManager PublicAPIs (Continued)
PackageName Description

com.sun.identity.liberty.ws.

authnsvc.mechanism

Provides an interface to process incoming Simple
Authentication and Security Layer (SASL) requests
and generate SASL responses for the different SASL
mechanisms. See Chapter 5.

com.sun.identity.liberty.ws.

authnsvc.protocol

Provides classes tomanage theAuthenticationWeb
Service protocol. See Chapter 5.

com.sun.identity.liberty.ws.common Defines common classes used bymany of theAccess
Manager Liberty-based web service components. See
“Common Service Interfaces” on page 197.

com.sun.identity.liberty.ws.common.wsse Provides an interface to parse and create an X.509
Certificate Token Profile. See “Common Service
Interfaces” on page 197.

com.sun.identity.liberty.ws.disco Provides interfaces tomanage the Discovery Service.
See Chapter 7.

com.sun.identity.liberty.ws.disco.plugins Provides a plug-in interface for the Discovery Service.
See Chapter 7.

com.sun.identity.liberty.ws.dst Provides classes to implement an identity service on
top of theAccessManager framework. See Chapter 6
for information about a service built using thisAPI.

com.sun.identity.liberty.ws.dst.service Provides a handler class that can be used by any
generic identity data service. See Chapter 6 for
information on data services.

com.sun.identity.liberty.ws.interaction Provides classes to support the Liberty-based
Interaction RequestRedirect Profile. See “Interaction
Service” on page 201.

com.sun.identity.liberty.ws.interfaces Provides interfaces common to allAccessManager
Liberty-based web service components. See Chapter 6
and Chapter 7 for information about default
implementations. See “Common Service Interfaces”
on page 197 formore general information.

com.sun.identity.liberty.ws.paos Provides classes for web applications to construct and
process PAOS requests and responses. See “PAOS
Binding” on page 203.

com.sun.identity.liberty.ws.security Provides an interface tomanage Liberty-based web
service securitymechanisms. See “Common Security
API” on page 199.

Public Interfaces

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005196

TABLE 10–1AccessManager PublicAPIs (Continued)
PackageName Description

com.sun.identity.liberty.ws.soapbinding Provides classes to construct SOAP requests and
responses and to change the contact point for the
SOAPbinding. See Chapter 8.

com.sun.identity.saml Provides an SPI in which proprietary XMLsignature
implementations can be plugged in. See Chapter 9.

com.sun.identity.saml.assertion Provides classes that manage assertions and profiles.
See Chapter 9.

com.sun.identity.saml.common Provides classes common to all SAMLelements. See
Chapter 9.

com.sun.identity.saml.plugins Provides SPIs to integrate SAML into custom services.
See Chapter 9.

com.sun.identity.saml.protocol Provides classes that parse the XMLmessages used to
exchange assertions and information. See Chapter 9.

com.sun.identity.saml.xmlsig Provides an SPI in which proprietary XMLsignature
implementations can be plugged in. See Chapter 9.

com.sun.liberty Provides interfaces common to theAccessManager
FederationManagementmodule. See Chapter 3.

CommonService Interfaces
This section summarizes classes that can be used by all Liberty-basedAccessManager service
components, as well as interfaces common to all Liberty-basedAccessManager services. The
packages that contain the classes and interfaces are:

� “com.sun.identity.liberty.ws.common Package” on page 197
� “com.sun.identity.liberty.ws.interfaces Package” on page 198

com.sun.identity.liberty.ws.common Package
This package includes classes common to all Liberty-basedAccessManager service components.

TABLE 10–2com.sun.identity.liberty.ws.commonClasses

Class Description

LogUtil Definesmethods that are used by the Liberty component ofAccess
Manager to write logs.

Common Service Interfaces

Chapter 10 • Application Programming Interfaces 197

TABLE 10–2 com.sun.identity.liberty.ws.commonClasses (Continued)
Class Description

Status Represents a common status object.

Formore information, includingmethods and their syntax and parameters, see the JavaAPI
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.interfaces Package
This package includes interfaces that can be implemented to add their corresponding functionality
to each Liberty-basedAccessManager web service.

TABLE 10–3com.sun.identity.liberty.ws.interfaces Interfaces

Interface Description

Authorizer Interface for identity service to check authorization of aWSC.

ResourceIDMapper Interface used tomap between a user ID and the Resource ID
associated with it.

ServiceInstanceUpdate Interface used to include a SOAPheader
(ServiceInstanceUpdateHeader) when sending a SOAP
response.

com.sun.identity.liberty.ws.interfaces.Authorizer Interface
This interface, once implemented, can be used by each Liberty-based web service component for
access control.

Note –The com.sun.identity.liberty.ws.disco.plugins.DefaultDiscoAuthorizer class is the
implementation of this interface for the Discovery Service. Formore information, see Chapter 7. The
com.sun.identity.liberty.ws.idpp.plugin.IDPPAuthorizer class is the implementation for the
Liberty Personal Profile Service. Formore information, see Chapter 6.

The Authorizer interface enables a web service to check whether a web service consumer (WSC) is
allowed to access the requested resource.When aWSC contacts a web service provider (WSP), the
WSC conveys a sender identity and an invocation identity. Note that the invocation identity is always
the subject of the SAMLassertion. These conveyances enable theWSP tomake an authorization
decision based on one or both identities. TheAccessManager Policy Service performs the
authorization based on defined policies.

Common Service Interfaces

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005198

Note – See the Sun Java System Access Manager 7 2005Q4 Technical Overview formore information
about policymanagement, single sign-on, and user sessions. See the Sun Java System Access
Manager 7 2005Q4 Administration Guide for information about creating policy.

com.sun.identity.liberty.ws.interfaces.ResourceIDMapper

Interface
This interface is used tomap a user DN to the resource identifier associated with it.AccessManager
provides implementations of this interface.

� com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes the
Resource ID format to be: providerID + "/" + the Base64 encoded userIDs.

� com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes the
Resource ID format to be: providerID + "/" + the hex string of userID.

� com.sun.identity.liberty.ws.idpp.plugin.IDPPResourceIDMapper assumes the Resource
ID format to be: providerID + "/" + the Base64 encoded userIDs.

Adifferent implementation of the interfacemay be developed. The implementation class should be
given to the provider that hosts the Discovery Service. Themapping between the providerID and the
implementation class can be configured through the Classes For ResourceIDMapper Plugin
attribute.

CommonSecurityAPI
The Liberty-based securityAPIs are included in the com.sun.identity.liberty.ws.security
package and the com.sun.identity.liberty.ws.common.wsse package.

com.sun.identity.liberty.ws.security Package
The com.sun.identity.liberty.ws.security package includes the SecurityTokenProvider
interface formanagingWeb Service Security (WSS) type tokens. The following table describes the
classes used tomanage Liberty-based securitymechanisms.

TABLE 10–4com.sun.identity.liberty.ws.securityClasses

Class Description

ProxySubject Represents the identity of a proxy, the confirmation key, and
confirmation obligation the proxymust possess and
demonstrate for authentication purposes.

Common SecurityAPI

Chapter 10 • Application Programming Interfaces 199

TABLE 10–4 com.sun.identity.liberty.ws.securityClasses (Continued)
Class Description

ResourceAccessStatement Conveys information regarding the accessing entities and
the resource for which access is being attempted.

SecurityAssertion Provides an extension to theAssertion class to support
ID-WSF ResourceAccessStatement and
SessionContextStatement.

SecurityTokenManager An entry class for the security package
com.sun.identity.liberty.ws.security. You can call its
methods to generate X.509 and SAML tokens formessage
authentication or authorization. It is designed as a provider
model, so different implementations can be plugged in if the
default implementation does notmeet your requirements.

SecurityUtils Definesmethods that are used to get certificates and sign
messages.

SessionContext Represents the session status of an entity to another system
entity.

SessionContextStatement Conveys the session status of an entity to another system
entity within the body of an <saml:assertion> element.

SessionSubject Represents a Liberty subject with its associated session
status.

Formore information, includingmethods and their syntax and parameters, see the JavaAPI
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.common.wsse

Package
This package includes classes for creating security tokens used for authentication and authorization
in accordance with the Liberty ID-WSF Security Mechanisms. BothWSS X.509 and SAML tokens are
supported.

TABLE 10–5com.sun.identity.liberty.ws.common.wsseClasses

Class Description

BinarySecurityToken Provides an interface to parse and create the X.509
Security Token depicted byWeb Service Security: X.509

WSSEConstants Defines constants used in security packages.

Common SecurityAPI

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005200

http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.1.pdf

Formore information, includingmethods and their syntax and parameters, see the JavaAPI
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

Interaction Service
Providers of identity services often need to interact with the owner of a resource to get additional
information, or to get their consent to expose data. The LibertyAlliance Project has defined the
Liberty ID-WSF Interaction Service Specification to specify how these interactions can be carried out.
Of the options defined in the specification,AccessManager has implemented the Interaction
RequestRedirect Profile. In this profile, theWSP requests the connectingWSC to redirect the user
agent (principal) to an interaction resource (URL) at theWSP.When the user agent sends anHTTP
request to get the URL, theWSPhas the opportunity to present one ormore pages to the principal
with questions for other information.After theWSP obtains the information it needs to serve the
WSC, it redirects the user agent back to theWSC, which can now reissue its original request to the
WSP.

Configuring the Interaction Service
While there is no XMLservice file for the Interaction Service, this service does have properties. The
properties are configured upon installation in the AMConfig.properties file located in
/AccessManager-base/SUNWam/lib and are described in the following table.

TABLE 10–6 Interaction Service Properties in AMConfig.properties

Property Description

com.sun.liberty.ws.interaction.

wspRedirectHandler

Points to the URLwhere the WSPRedirectHandler
servlet is deployed. The servlet handles the service
provider side of interactions for user redirects.

com.sun.identity.liberty.interaction.

wscSpecifiedInteractionChoice

Indicates the level of interaction in which theWSC
will participate if theWSC participates in user
redirects. Possible values include interactIfNeeded,
doNotInteract, and doNotInteractForData. The
affirmative interactIfNeeded is the default.

com.sun.identity.liberty.interaction.

wscWillIncludeUserInteractionHeader

Indicates whether theWSCwill include a SOAP
header to indicate certain preferences for interaction
based on the Liberty specifications. The default value
is yes.

com.sun.identity.liberty.

interaction.wscWillRedirect

Indicates whether theWSCwill participate in user
redirections. The default value is yes.

Interaction Service

Chapter 10 • Application Programming Interfaces 201

http://www.projectliberty.org/specs/liberty-idwsf-interaction-svc-v1.1.pdf

TABLE 10–6 Interaction Service Properties in AMConfig.properties (Continued)
Property Description

com.sun.identity.liberty.interaction.

wscSpecifiedMaxInteractionTime

Indicates themaximum length of time (in seconds)
theWSC is willing to wait for theWSP to complete its
portion of the interaction. TheWSPwill not initiate
an interaction if the interaction is likely to takemore
time than . For example, theWSP receives a request
where this property is set to amaximum 30 seconds. If
theWSPproperty com.sun.identity.liberty.
interaction.wspRedirectTime is set to 40 seconds,
theWSP returns a SOAP fault (timeNotSufficient),
indicating that the time is insufficient for interaction.

com.sun.identity.liberty.interaction.

wscWillEnforceHttpsCheck

Indicates whether theWSCwill enforce HTTPS in
redirected URLs. The LibertyAlliance Project
specifications state that, the value of this property is
always yes, which indicates that theWSPwill not
redirect the user when the value of redirectURL
(specified by theWSP) is not anHTTPSURL. The
false value is primarily meant for ease of deployment
in a phasedmanner.

com.sun.identity.liberty.

interaction.wspWillRedirect

Initiates an interaction to get user consent for
something or to collect additional data. This property
indicates whether theWSPwill redirect the user for
consent. The default value is yes.

com.sun.identity.liberty.

interaction.wspWillRedirectForData

Initiates an interaction to get user consent for
something or to collect additional data. This property
indicates whether theWSPwill redirect the user to
collect additional data. The default value is yes.

com.sun.identity.liberty.

interaction.wspRedirectTime

Indicates the length of time (in seconds) that theWSP
expects to take to complete an interaction and return
control back to theWSC. For example, theWSP
receives a request indicating that theWSCwill wait a
maximum 30 seconds (set in
com.sun.identity.liberty.

interaction.wscSpecifiedMaxInteractionTime)
for interaction. If the wspRedirectTime is set to 40
seconds, theWSP returns a SOAP fault
(timeNotSufficient), indicating that the time is
insufficient for interaction.

com.sun.identity.liberty.interaction.

wspWillEnforceHttpsCheck

Indicates whether theWSPwill enforce a HTTPS
returnToURL specified by theWSC. The Liberty
Alliance Project specifications state that the value of
this property is always yes. The false value is
primarily meant for ease of deployment in a phased
manner.

Interaction Service

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005202

TABLE 10–6 Interaction Service Properties in AMConfig.properties (Continued)
Property Description

com.sun.identity.liberty.

interaction.

wspWillEnforceReturnToHost

EqualsRequestHost

Indicates whether theWSPwould enforce the address
values of returnToHost and requestHost if they are
the same. The LibertyAlliance Project specifications
state that the value of this property is always yes. The
false value is primarily meant for ease of deployment
in a phasedmanner.

com.sun.identity.liberty.

interaction.htmlStyleSheetLocation

Points to the location of the style sheet that is used to
render the interaction page inHTML.

com.sun.identity.liberty.

interaction.wmlStyleSheetLocation

Points to the location of the style sheet that is used to
render the interaction page inWML.

Interaction ServiceAPI
TheAccessManager Interaction Service includes a Java package named
com.sun.identity.liberty.ws.interaction. WSCs andWSPs use the classes in this package to
interact with a resource owner. The following table describes the classes.

TABLE 10–7 Interaction ServiceClasses

Class Description

InteractionManager Provides the interface and implementation for
resource owner interaction.

InteractionUtils Provides some utility methods related to resource
owner interaction.

JAXBObjectFactory Contains factorymethods that enable you to construct
new instances of the Java representation for XML
content.

Formore information, includingmethods and their syntax and parameters, see the JavaAPI
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

PAOSBinding
AccessManager has implemented the optional Liberty Reverse HTTP Binding for SOAP
Specification. This specification defines amessage exchange protocol that permits anHTTP client to
be a SOAP responder. HTTP clients are no longer necessarily equipped withHTTP servers. For
example, mobile terminals and personal computers contain web browsers yet they do not operate
HTTP servers. These clients, though, can use their browsers to interact with an identity service,
possibly a personal profile service or a calendar service. These identity services could also be

PAOS Binding

Chapter 10 • Application Programming Interfaces 203

http://www.projectliberty.org/specs/liberty-paos-v1.1.pdf
http://www.projectliberty.org/specs/liberty-paos-v1.1.pdf

beneficial when the client devices interact with anHTTP server. The use of PAOSmakes it possible to
exchange information between user agent-hosted services and remote servers. This is why the
reverse HTTP for SOAPbinding is also known as PAOS; the spelling of SOAP is reversed.

Comparisonof PAOSandSOAP
In a typical SOAPbinding, anHTTP client interacts with an identity service through a client request
and a server response. For example, a cell phone user (client) can contact the phone service provider
(service) to retrieve stock quotes and weather information. The service verifies the user’s identity and
responds with the requested information.

In a reverse HTTP for SOAPbinding, the phone service provider plays the client role, and the cell
phone client plays the server role. The initial SOAP request from the server is actually bound to an
HTTP response. The subsequent response from the client is bound to a request.

PAOSBindingAPI
TheAccessManager implementation of PAOS binding includes a Java package named
com.sun.identity.liberty.ws.paos. This package provides classes to parse a PAOS header, make
a PAOS request, and receive a PAOS response.

Note –ThisAPI is used by PAOS clients on theHTTP server side.AnAPI for PAOS servers on the
HTTP client side would be developed by themanufacturers of the HTTP client side products, for
example, cell phonemanufacturers.

The following table describes the available classes in com.sun.identity.liberty.ws.paos. For
more detailedAPI documentation, see the JavaAPI Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

TABLE 10–8PAOSBindingClasses

Class Description

PAOSHeader Used by a web application on theHTTP server side to parse a
PAOS header in anHTTP request from the user agent side.

PAOSRequest Used by a web application on theHTTP server side to construct a
PAOS request message and send it via anHTTP response to the
user agent side.

Note – PAOSRequest ismade available in PAOSResponse to
provide correlation, if needed, byAPI users.

PAOS Binding

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005204

TABLE 10–8PAOSBindingClasses (Continued)
Class Description

PAOSResponse Used by a web application on theHTTP server side to receive
and parse a PAOS response using anHTTP request from the user
agent side.

PAOSException Represents an error occurring while processing a SOAP request
and response.

Formore information, includingmethods and their syntax and parameters, see the JavaAPI
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

PAOSBinding Sample
Asample that demonstrates PAOS service interaction between anHTTP client and server is provided
in the /AccessManager-base/SUNWam/samples/phase2/paos directory. The PAOS client is a servlet,
and the PAOS server is a stand-alone Java program. Instructions on how to run the sample can be
found in the Readme.html or Readme.txt file. Both files are included in the paos directory. The
following code example is the PAOS client servlet.

EXAMPLE 10–1PAOSClient Servlet FromPAOS Sample

import java.util.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.sun.identity.liberty.ws.paos.*;

import com.sun.identity.liberty.ws.idpp.jaxb.*;

public class PAOSClientServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

PAOSHeader paosHeader = null;

try {

paosHeader = new PAOSHeader(req);

} catch (PAOSException pe1) {

pe1.printStackTrace();

String msg = "No PAOS header\\n";

res.setContentType("text/plain");

res.setContentLength(1+msg.length());

PAOS Binding

Chapter 10 • Application Programming Interfaces 205

EXAMPLE 10–1PAOSClient Servlet FromPAOS Sample (Continued)

PrintWriter out = new PrintWriter(res.getOutputStream());

out.println(msg);

out.close();

throw new ServletException(pe1.getMessage());

}

HashMap servicesAndOptions = paosHeader.getServicesAndOptions();

Set services = servicesAndOptions.keySet();

String thisURL = req.getRequestURL().toString();

String[] queryItems = { "/IDPP/Demographics/Birthday" };

PAOSRequest paosReq = null;

try {

paosReq = new PAOSRequest(thisURL,

(String)(services.iterator().next()),

thisURL,

queryItems);

} catch (PAOSException pe2) {

pe2.printStackTrace();

throw new ServletException(pe2.getMessage());

}

System.out.println("PAOS request to User Agent side --------------->");

System.out.println(paosReq.toString());

paosReq.send(res, true);

}

public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

PAOSResponse paosRes = null;

try {

paosRes = new PAOSResponse(req);

} catch (PAOSException pe) {

pe.printStackTrace();

throw new ServletException(pe.getMessage());

}

System.out.println("PAOS response from User Agent side -------------->");

System.out.println(paosRes.toString());

System.out.println("Data output after parsing -------------->");

String dataStr = null;

try {

PAOS Binding

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005206

EXAMPLE 10–1PAOSClient Servlet FromPAOS Sample (Continued)

dataStr = paosRes.getPPResponseStr();

} catch (PAOSException paose) {

paose.printStackTrace();

throw new ServletException(paose.getMessage());

}

System.out.println(dataStr);

String msg = "Got the data: \\n" + dataStr;

res.setContentType("text/plain");

res.setContentLength(1+msg.length());

PrintWriter out = new PrintWriter(res.getOutputStream());

out.println(msg);

out.close();

}

}

See AppendixAfor information about all the sample code and files included withAccessManager.

PAOS Binding

Chapter 10 • Application Programming Interfaces 207

208

Liberty-based and SAMLSamples

Sun Java SystemAccessManager contains a number of samples that make use of theAccessManager
implementation of the LibertyAlliance Project specifications. This appendix contains information
about the samples. The samples are located in /AccessManager-base/SUNWam/samples. This
directory includes samples for the entireAccessManager product as well as two directories specific
to the Liberty-based features: liberty and phase2.

This appendix covers the following samples:

� “Federation Framework Samples” on page 209
� “Web Services Framework Samples” on page 211
� “SAMLSamples” on page 212

Federation Framework Samples
AccessManager 2005Q4 supports the Liberty Alliance Identity Federation Framework 1.2
Specifications. The Federation Framework samples are located in
/AccessManager-base/SUNWam/samples/liberty. To demonstrate the different Liberty-based
federation protocols featured inAccessManager, three sample applications are included. They are
located in the following subdirectories:

� “sample1Directory” on page 209
� “sample2Directory” on page 210
� “sample3Directory” on page 210

sample1Directory
The sample1 directory provides a collection of files to configure a basic environment for creating and
managing a federation. The sample demonstrates the basic use of various Liberty-based federation
protocols, including account federation, SSO, single logout, and federation termination. The

AA P P E N D I X A

209

scenario includes a service provider (SP), an identity provider (IDP), and configuration information
for the two required servers. Each servermust be deployed and configured on different installations
ofAccessManager.

TABLE A–1Configuration Information for sample1 Servers

Variable Placeholder Host Name ComponentsDeployed on This Host

machine1 www.sp1.com � Service Provider
� Web Service Consumer

machine2 www.idp1.com � Identity Provider
� Discovery Service
� LibertyAlliance Project

The Readme.html file in the sample1 directory provides detailed steps on how to deploy and
configure this sample. sample1 also contains instructions for configuring a common domain. For
information on common domains, see Chapter 4.

sample2Directory
The sample2 directory also provides a collection of files to configure a basic environment for creating
andmanaging a federation. However, in this sample, the resources of the SP are deployed on a Sun
Java SystemWeb Server that is protected by a Sun Java System PolicyAgent.As in “sample1
Directory” on page 209, the SP and IDP are deployed and configured on differentAccessManager
installations. Besides demonstrating account federation, SSO, single logout, and federation
termination, this sample also shows how different authentication contexts can be configured by
associating different authentication levels with different protected pages. This association is made by
creating policies for the protected resources. The Readme.html file in the sample2 directory provides
detailed steps on how to deploy and configure this sample.

sample3Directory
The sample3 directory provides a collection of files to configure an environment for creating and
managing a federation that includes two SPs and two IDPs. In this case, though, all hosted providers
are deployed on a single installation ofAccessManager. You need to host the same IP address (the
one on whichAccessManager is installed) in four different DNS domains. Thus, four virtual server
instances are created on a Sun Java SystemWeb Server, one for each of the providers.

Note –Virtual server instances can be simulated by adding entries in the /etc/hosts file for the fully
qualified host names of the virtual servers.

Federation Framework Samples

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005210

Because this scenario involvesmultiple IPs, you also need to install a common domain. You can
install the CommonDomain Services on the samemachine as theAccessManager software or on a
different machine. The Readme.html file in the sample3 directory provides detailed steps on how to
deploy and configure this sample. You can also find information about common domains in
Chapter 4.

WebServices Framework Samples
AccessManager 2005Q4 supports both the Liberty Alliance Identity Web Services Framework 1.0
Specifications and the Liberty Alliance Identity Services Interface Specifications 1.0. The web services
samples are located in /AccessManager-base/SUNWam/samples/phase2. To demonstrate the different
Liberty-based web services protocols featured inAccessManager, four sample applications are
included. They are located in the following sub-directories:

� “wscDirectory” on page 211
� “sis-epDirectory” on page 211
� “paosDirectory” on page 212
� “authnsvcDirectory” on page 212

wscDirectory
The wsc directory contains a collection of files to deploy and run a web service consumer (WSC).

Note –Before implementing this sample, youmust have two instances ofAccessManager installed,
and running, and Liberty-enabled. Completing the procedure in “sample1Directory” on page 209
will accomplish this.

In addition, this sample illustrates how to use the Discovery Service andData Services Template
clientAPIs to allow theWSC to communicate with a web service provider (WSP). This sample
describes the flow of the Liberty-basedWeb Service Framework (ID-WSF) and how the security
mechanisms and interaction service are integrated. The Readme.html file in the wsc directory
provides detailed steps on how to deploy and configure this sample. Formore information, see also
Chapter 6 and Chapter 7.

sis-epDirectory
The sis-ep directory contains a collection of files to develop, deploy, and invoke a new Liberty-based
web service toAccessManager. The sample implements the Liberty Employee Profile Service.

Web Services Framework Samples

AppendixA • Liberty-based and SAMLSamples 211

Note –Before implementing this sample, youmust have two instances ofAccessManager installed,
and running, and Liberty-enabled. Completing the procedure in “sample1Directory” on page 209
will accomplish this.

The Liberty Employee Profile Service is a deployment of the Liberty ID-SIS Employee Profile Service
Specification (ID-SIS-EP), which is one of the Liberty Alliance ID-SIS 1.0 Specifications. The
Readme.html file in the sample directory provides detailed steps on how to deploy and configure this
sample. Formore information, see also Chapter 6

paosDirectory
The paos directory contains a collection of files that demonstrate how to set up and invoke a PAOS
Service interaction between a client and server. The sample is based on the following scenario: a cell
phone user subscribes to a news service offered by the cell phone’s manufacturer. The news service
automatically provides stocks and weather information to the user’s cell phone at regular intervals.
In this scenario, themanufacturer is the news service provider, and the individual cell phone user is
the consumer.After running the sample, you will see the output from the PAOSServer program.

You can also see the output from PAOSClientServlet program in the log file of theWeb Server. For
example, when using Sun Java SystemWeb Server, look in the log subdirectory for the errors file.

The Readme.html file in the sample directory provides detailed steps on how to deploy and configure
this sample. In addition, see “PAOS Binding Sample” on page 205.

Note – In an actual deployment, the server-side code would be developed by a service provider.

authnsvcDirectory
The authnsvc directory contains a collection of files to illustrate the use of theAccessManager
AuthenticationWeb Service. This sample program authenticates against the service and extracts the
resource offering of a discovery bootstrap. The Readme.html file in the sample directory provides
detailed steps on how to deploy and configure this sample. In addition, see Chapter 5

SAMLSamples
For information on the samples related to the SAMLcomponent ofAccessManager, see “SAML
Samples” on page 193.

SAMLSamples

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005212

Service Schema Files

This appendix contains some of the XMLSchemaDefinition (XSD) files that are discussed in this
guide.

This appendix contains the following sections:

� “XSDOverview” on page 213
� “SOAPBinding Schema” on page 214
� “Personal Profile Schema” on page 216
� “Employee Profile Schema” on page 222
� “AuthenticationWeb Service Schema” on page 224
� “PAOS Binding Schema” on page 228
� “Metadata Description Schema” on page 229

XSDOverview
The purpose of an eXtensibleMarkup Language (XML) schema is to describe the structure of an
XMLdocument. The XMLschema language is referred to as XMLSchemaDefinition (XSD).

Note –XSD is an XML-based alternative to theDocument TypeDefinition (DTD).ADTD also
describes the structure of an XMLdocument, but it is not in the XML format.

The XSD files in this appendix specify the information that its corresponding service can host by
defining the data and data structure. Typically, this structure is hierarchical and has one root node.
Individual branches of the structure can be accessed separately, and the whole structure can be
accessed by pointing to the root node. The datamight be stored in implementation-specific ways,
However, the data will be exposed by the service using the XMLschema (specified here) and theWeb
Services Description Language (WSDL) definition of the service type (not specified in this
documentation set). The XSD files in this appendix are reproduced here for your convenience. These
files and a number of other XSD files are also available on the LibertyAlliance Project web site
(http://www.projectliberty.org/resources/specifications.php).

BA P P E N D I X B

213

http://www.projectliberty.org/resources/specifications.php
http://www.projectliberty.org/resources/specifications.php

SOAPBinding Schema
Following is a reproduction of liberty-idwsf-soap-binding-v1.1.xsd, the XSD file that
accompanies the Liberty ID-WSF SOAP Binding Specification as discussed in Chapter 8.

EXAMPLE B–1 SOAPBindingXSDFile

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:liberty:sb:2004-04"

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:sb-ext="urn:liberty:sb:2004-04"

xmlns:lib="urn:liberty:iff:2003-08"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="urn:liberty:sb:2004-04"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<!-- Author: John Kemp -->

<!-- Last editor: $Author: dgreenspon $ -->

<!-- $Date: 2004/08/02 19:25:27 $ -->

<!-- $Revision: 1.1 $ -->

<xs:import

namespace="http://schemas.xmlsoap.org/soap/envelope/"

schemaLocation="http://schemas.xmlsoap.org/soap/envelope/"/>

<xs:import

namespace="urn:liberty:iff:2003-08"

schemaLocation="liberty-idff-protocols-schema-v1.2.xsd"/>

<xs:include schemaLocation="liberty-idwsf-utility-1.0-errata-v1.0.xsd"/>

<xs:annotation>

<xs:documentation>

Liberty ID-WSF SOAP Binding Specification Extension XSD

</xs:documentation>

<xs:documentation>

The source code in this XSD file was excerpted verbatim from:

Liberty ID-WSF SOAP Binding Specification

Version 1.1

April 2004

Copyright (c) 2004 Liberty Alliance participants, see

http://www.projectliberty.org/specs/idwsf_copyrights.html

</xs:documentation>

</xs:annotation>

SOAPBinding Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005214

EXAMPLE B–1 SOAPBindingXSDFile (Continued)

<xs:complexType name="CredentialsContextType">

<xs:sequence>

<xs:element ref="lib:RequestAuthnContext" minOccurs="0"/>

<xs:element name="SecurityMechID" type="xs:anyURI" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="id" type="xs:ID" use="optional"/>

<xs:attribute ref="S:mustUnderstand" use="optional"/>

<xs:attribute ref="S:actor" use="optional"/>

</xs:complexType>

<xs:element name="CredentialsContext" type="CredentialsContextType"/>

<xs:complexType name="ServiceInstanceUpdateType">

<xs:sequence>

<xs:element name="SecurityMechID" type="xs:anyURI" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="Credential" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:any namespace="##any" processContents="lax"/>

</xs:sequence>

<xs:attribute name="notOnOrAfter" type="xs:dateTime" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="Endpoint" type="xs:anyURI" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="id" type="xs:ID" use="optional"/>

<xs:attribute ref="S:mustUnderstand" use="optional"/>

<xs:attribute ref="S:actor" use="optional"/>

</xs:complexType>

<xs:element name="ServiceInstanceUpdate" type="ServiceInstanceUpdateType"/>

<xs:complexType name="TimeoutType">

<xs:attribute name="maxProcessingTime" type="xs:integer" use="required"/>

<xs:attribute name="id" type="xs:ID" use="optional"/>

<xs:attribute ref="S:mustUnderstand" use="optional"/>

<xs:attribute ref="S:actor" use="optional"/>

</xs:complexType>

<xs:element name="Timeout" type="TimeoutType"/>

</xs:schema>

SOAPBinding Schema

Appendix B • Service Schema Files 215

EXAMPLE B–1 SOAPBindingXSDFile (Continued)

Personal Profile Schema
Following is a reproduction of liberty-idsis-pp-v1.0.xsd, the XSD file that accompanies the
Liberty ID-SIS Personal Profile Service Specification as discussed in Chapter 6.

EXAMPLE B–2Personal Profile Service XSDFile

<!-- 2003-11-02-->

<xs:schema targetNamespace="urn:liberty:id-sis-pp:2003-08" xmlns="urn:liberty:id-sis-pp:2003-08"

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

elementFormDefault="qualified" version="1.0">

<xs:import namespace="http://www.w3.org/2000/09/xmldsig#"

schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/>

<xs:annotation>

<xs:documentation>Title: Liberty ID-WSF-SIS Personal Profile Services Schema

</xs:documentation>

<xs:documentation>The source code in this XSD file was excerpted verbatim from:

Liberty Liberty ID-SIS Personal Profile Service Specification

Version 1.2

12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see

https://www.projectliberty.org/specs/idwsf_copyrights.html

</xs:documentation>

</xs:annotation>

<xs:include schemaLocation="liberty-idwsf-dst-v1.0.xsd"/>

<xs:include schemaLocation="liberty-idwsf-dst-dt-v1.0.xsd"/>

<xs:complexType name="KeyInfoType" mixed="true">

<xs:complexContent mixed="true">

<xs:extension base="ds:KeyInfoType">

<xs:attribute ref="modificationTime"/>

<xs:attribute ref="ACC"/>

<xs:attribute ref="ACCTime"/>

<xs:attribute ref="modifier"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:simpleType name="SelectType">

<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:element name="PP" type="PPType"/>

Personal Profile Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005216

EXAMPLE B–2Personal Profile Service XSDFile (Continued)

<xs:complexType name="PPType">

<xs:sequence>

<xs:element ref="InformalName" minOccurs="0"/>

<xs:element ref="LInformalName" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="CommonName" minOccurs="0"/>

<xs:element ref="LegalIdentity" minOccurs="0"/>

<xs:element ref="EmploymentIdentity" minOccurs="0"/>

<xs:element ref="AddressCard" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="MsgContact" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Facade" minOccurs="0"/>

<xs:element ref="Demographics" minOccurs="0"/>

<xs:element ref="SignKey" minOccurs="0"/>

<xs:element ref="EncryptKey" minOccurs="0"/>

<xs:element ref="EmergencyContact" minOccurs="0"/>

<xs:element ref="LEmergencyContact" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="InformalName" type="DSTString"/>

<xs:element name="LInformalName" type="DSTLocalizedString"/>

<xs:element name="CommonName" type="CommonNameType"/>

<xs:complexType name="CommonNameType">

<xs:sequence>

<xs:element ref="CN" minOccurs="0"/>

<xs:element ref="LCN" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="AltCN" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="LAltCN" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="AnalyzedName" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="CN" type="DSTString"/>

<xs:element name="LCN" type="DSTLocalizedString"/>

<xs:element name="AltCN" type="DSTString"/>

<xs:element name="LAltCN" type="DSTLocalizedString"/>

<xs:element name="AnalyzedName" type="AnalyzedNameType"/>

<xs:complexType name="AnalyzedNameType">

<xs:sequence>

<xs:element ref="PersonalTitle" minOccurs="0"/>

<xs:element ref="LPersonalTitle" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="FN" minOccurs="0"/>

<xs:element ref="LFN" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="SN" minOccurs="0"/>

<xs:element ref="LSN" minOccurs="0" maxOccurs="unbounded"/>

Personal Profile Schema

Appendix B • Service Schema Files 217

EXAMPLE B–2Personal Profile Service XSDFile (Continued)

<xs:element ref="MN" minOccurs="0"/>

<xs:element ref="LMN" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="nameScheme" type="xs:anyURI" use="optional"/>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="PersonalTitle" type="DSTString"/>

<xs:element name="LPersonalTitle" type="DSTLocalizedString"/>

<xs:element name="FN" type="DSTString"/>

<xs:element name="LFN" type="DSTLocalizedString"/>

<xs:element name="SN" type="DSTString"/>

<xs:element name="LSN" type="DSTLocalizedString"/>

<xs:element name="MN" type="DSTString"/>

<xs:element name="LMN" type="DSTLocalizedString"/>

<xs:element name="LegalIdentity" type="LegalIdentityType"/>

<xs:complexType name="LegalIdentityType">

<xs:sequence>

<xs:element ref="LegalName" minOccurs="0"/>

<xs:element ref="LLegalName" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="AnalyzedName" minOccurs="0"/>

<xs:element ref="VAT" minOccurs="0"/>

<xs:element ref="AltID" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="DOB" minOccurs="0"/>

<xs:element ref="Gender" minOccurs="0"/>

<xs:element ref="MaritalStatus" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="LegalName" type="DSTString"/>

<xs:element name="LLegalName" type="DSTLocalizedString"/>

<xs:element name="VAT" type="VATType"/>

<xs:complexType name="VATType">

<xs:sequence>

<xs:element ref="IDValue"/>

<xs:element ref="IDType" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="IDValue" type="DSTString"/>

<xs:element name="IDType" type="DSTURI"/>

<xs:element name="AltID" type="AltIDType"/>

<xs:complexType name="AltIDType">

<xs:sequence>

Personal Profile Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005218

EXAMPLE B–2Personal Profile Service XSDFile (Continued)

<xs:element ref="IDValue"/>

<xs:element ref="IDType" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="DOB" type="DSTDate"/>

<xs:element name="Gender" type="DSTURI"/>

<xs:element name="MaritalStatus" type="DSTURI"/>

<xs:element name="EmploymentIdentity" type="EmploymentIdentityType"/>

<xs:complexType name="EmploymentIdentityType">

<xs:sequence>

<xs:element ref="JobTitle" minOccurs="0"/>

<xs:element ref="LJobTitle" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="O" minOccurs="0"/>

<xs:element ref="LO" minOccurs="0"/>

<xs:element ref="AltO" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="AltLO" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="JobTitle" type="DSTString"/>

<xs:element name="LJobTitle" type="DSTLocalizedString"/>

<xs:element name="O" type="DSTString"/>

<xs:element name="LO" type="DSTLocalizedString"/>

<xs:element name="AltO" type="DSTString"/>

<xs:element name="AltLO" type="DSTLocalizedString"/>

<xs:element name="AddressCard" type="AddressCardType"/>

<xs:complexType name="AddressCardType">

<xs:sequence>

<xs:element ref="AddrType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Address" minOccurs="0"/>

<xs:element ref="Nick" minOccurs="0"/>

<xs:element ref="LNick" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="LComment" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="AddrType" type="DSTURI"/>

<xs:element name="Address" type="AddressType"/>

<xs:complexType name="AddressType">

<xs:sequence>

<xs:element ref="PostalAddress" minOccurs="0"/>

<xs:element ref="LPostalAddress" minOccurs="0" maxOccurs="unbounded"/>

Personal Profile Schema

Appendix B • Service Schema Files 219

EXAMPLE B–2Personal Profile Service XSDFile (Continued)

<xs:element ref="PostalCode" minOccurs="0"/>

<xs:element ref="L" minOccurs="0"/>

<xs:element ref="LL" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="St" minOccurs="0"/>

<xs:element ref="LSt" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="C" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="PostalAddress" type="DSTString"/>

<xs:element name="LPostalAddress" type="DSTLocalizedString"/>

<xs:element name="PostalCode" type="DSTString"/>

<xs:element name="L" type="DSTString"/>

<xs:element name="LL" type="DSTLocalizedString"/>

<xs:element name="St" type="DSTString"/>

<xs:element name="LSt" type="DSTLocalizedString"/>

<xs:element name="C" type="DSTString"/>

<xs:element name="Nick" type="DSTString"/>

<xs:element name="LNick" type="DSTLocalizedString"/>

<xs:element name="LComment" type="DSTString"/>

<xs:element name="MsgContact" type="MsgContactType"/>

<xs:complexType name="MsgContactType">

<xs:sequence>

<xs:element ref="Nick" minOccurs="0"/>

<xs:element ref="LNick" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="LComment" minOccurs="0"/>

<xs:element ref="MsgType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="MsgMethod" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="MsgTechnology" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="MsgProvider" minOccurs="0"/>

<xs:element ref="MsgAccount" minOccurs="0"/>

<xs:element ref="MsgSubaccount" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="MsgType" type="DSTURI"/>

<xs:element name="MsgMethod" type="DSTURI"/>

<xs:element name="MsgTechnology">

<xs:complexType>

<xs:complexContent>

<xs:extension base="DSTURI">

<xs:attribute name="msgLimit" type="xs:integer" use="optional"/>

</xs:extension>

</xs:complexContent>

Personal Profile Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005220

EXAMPLE B–2Personal Profile Service XSDFile (Continued)

</xs:complexType>

</xs:element>

<xs:element name="MsgProvider" type="DSTString"/>

<xs:element name="MsgAccount" type="DSTString"/>

<xs:element name="MsgSubaccount" type="DSTString"/>

<xs:element name="Facade" type="FacadeType"/>

<xs:complexType name="FacadeType">

<xs:sequence>

<xs:element ref="MugShot" minOccurs="0"/>

<xs:element ref="WebSite" minOccurs="0"/>

<xs:element ref="NamePronounced" minOccurs="0"/>

<xs:element ref="GreetSound" minOccurs="0"/>

<xs:element ref="GreetMeSound" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="MugShot" type="DSTURI"/>

<xs:element name="WebSite" type="DSTURI"/>

<xs:element name="NamePronounced" type="DSTURI"/>

<xs:element name="GreetSound" type="DSTURI"/>

<xs:element name="GreetMeSound" type="DSTURI"/>

<xs:element name="Demographics" type="DemographicsType"/>

<xs:complexType name="DemographicsType">

<xs:sequence>

<xs:element ref="DisplayLanguage" minOccurs="0"/>

<xs:element ref="Language" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Birthday" minOccurs="0"/>

<xs:element ref="Age" minOccurs="0"/>

<xs:element ref="TimeZone" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="DisplayLanguage" type="DSTString"/>

<xs:element name="Language" type="DSTString"/>

<xs:element name="Birthday" type="DSTMonthDay"/>

<xs:element name="Age" type="DSTInteger"/>

<xs:element name="TimeZone" type="DSTString"/>

<xs:element name="SignKey" type="KeyInfoType"/>

<xs:element name="EncryptKey" type="KeyInfoType"/>

<xs:element name="EmergencyContact" type="DSTString"/>

<xs:element name="LEmergencyContact" type="DSTLocalizedString"/>

</xs:schema>

Personal Profile Schema

Appendix B • Service Schema Files 221

EXAMPLE B–2Personal Profile Service XSDFile (Continued)

EmployeeProfile Schema
Following is a reproduction of liberty-idsis-ep-v1.0.xsd, the XSD file that accompanies the
Liberty ID-SIS Employee Profile Service Specification as discussed in Chapter 6.

EXAMPLE B–3Employee Profile Service XSDSchema

<!-- Generated by gen-prof.pl $Id: liberty-idsis-ep-v1.0.xsd,v 1.1 2004/08/02

19:25:27 dgreenspon Exp $from $Id: liberty-idsis-ep-v1.0.xsd,v 1.1 2004/08/02 19:25:27

dgreenspon Exp $ -->

<!-- adjust 2003-10-02 TDW: changed copyright -->

<xs:schema targetNamespace="urn:liberty:id-sis-ep:2003-08"

xmlns="urn:liberty:id-sis-ep:2003-08" xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" version="1.0">

<xs:annotation>

<xs:documentation>Title: Liberty ID-SIS Employee Profile Services Schema</xs:documentation>

<xs:documentation>The source code in this XSD file was excerpted verbatim from:

Liberty Liberty ID-SIS Employee Profile Service Specification

Version 1.2

12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see

https://www.projectliberty.org/specs/idwsf_copyrights.html

</xs:documentation>

</xs:annotation>

<xs:include schemaLocation="liberty-idwsf-dst-v1.0.xsd"/>

<xs:include schemaLocation="liberty-idwsf-dst-dt-v1.0.xsd"/>

<xs:element name="EP" type="EPType"/>

<xs:complexType name="EPType">

<xs:sequence>

<xs:element ref="EmployeeID" minOccurs="0"/>

<xs:element ref="AltEmployeeID" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="DateOfHire" minOccurs="0"/>

<xs:element ref="JobStartDate" minOccurs="0"/>

<xs:element ref="EmployeeStatus" minOccurs="0"/>

<xs:element ref="EmployeeType" minOccurs="0"/>

<xs:element ref="InternalJobTitle" minOccurs="0"/>

<xs:element ref="LInternalJobTitle" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="OU" minOccurs="0"/>

<xs:element ref="LOU" minOccurs="0" maxOccurs="unbounded"/>

Employee Profile Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005222

EXAMPLE B–3Employee Profile Service XSDSchema (Continued)

<xs:element ref="CorpCommonName" minOccurs="0"/>

<xs:element ref="CorpLegalIdentity" minOccurs="0"/>

<xs:element ref="ManagerEmployeeID" minOccurs="0"/>

<xs:element ref="SubalternateEmployeeID" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="EmployeeID" type="DSTString"/>

<xs:element name="AltEmployeeID" type="DSTString"/>

<xs:element name="DateOfHire" type="DSTDate"/>

<xs:element name="JobStartDate" type="DSTDate"/>

<xs:element name="EmployeeStatus" type="DSTURI"/>

<xs:element name="EmployeeType" type="DSTURI"/>

<xs:element name="InternalJobTitle" type="DSTString"/>

<xs:element name="LInternalJobTitle" type="DSTLocalizedString"/>

<xs:element name="OU" type="DSTString"/>

<xs:element name="LOU" type="DSTLocalizedString"/>

<xs:element name="CorpCommonName" type="CorpCommonNameType"/>

<xs:complexType name="CorpCommonNameType">

<xs:sequence>

<xs:element ref="CN" minOccurs="0"/>

<xs:element ref="LCN" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="AltCN" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="LAltCN" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="CN" type="DSTString"/>

<xs:element name="LCN" type="DSTLocalizedString"/>

<xs:element name="AltCN" type="DSTString"/>

<xs:element name="LAltCN" type="DSTLocalizedString"/>

<xs:element name="CorpLegalIdentity" type="CorpLegalIdentityType"/>

<xs:complexType name="CorpLegalIdentityType">

<xs:sequence>

<xs:element ref="LegalName" minOccurs="0"/>

<xs:element ref="LLegalName" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="VAT" minOccurs="0"/>

<xs:element ref="AltID" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="LegalName" type="DSTString"/>

<xs:element name="LLegalName" type="DSTLocalizedString"/>

Employee Profile Schema

Appendix B • Service Schema Files 223

EXAMPLE B–3Employee Profile Service XSDSchema (Continued)

<xs:element name="VAT" type="VATType"/>

<xs:complexType name="VATType">

<xs:sequence>

<xs:element ref="IDValue"/>

<xs:element ref="IDType" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="IDValue" type="DSTString"/>

<xs:element name="IDType" type="DSTURI"/>

<xs:element name="AltID" type="AltIDType"/>

<xs:complexType name="AltIDType">

<xs:sequence>

<xs:element ref="IDValue"/>

<xs:element ref="IDType" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>

</xs:complexType>

<xs:element name="ManagerEmployeeID" type="DSTString"/>

<xs:element name="SubalternateEmployeeID" type="DSTString"/>

<xs:simpleType name="SelectType">

<xs:restriction base="xs:string"/>

</xs:simpleType>

</xs:schema>

AuthenticationWebService Schema
Following is a reproduction of liberty-idwsf-authn-svc-v1.0.xsd, the XSD file that accompanies
the Liberty ID-WSF Authentication Service Specification as discussed in Chapter 5.

EXAMPLE B–4AuthenticationWeb Service XSDFile

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="urn:liberty:sa:2004-04"

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:sa="urn:liberty:sa:2004-04"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

AuthenticationWeb Service Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005224

EXAMPLE B–4AuthenticationWeb Service XSDFile (Continued)

xmlns:lib="urn:liberty:iff:2003-08"

xmlns:disco="urn:liberty:disco:2003-08"

xmlns="urn:liberty:sa:2004-04"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

version="06">

<!-- Filename: lib-arch-authn-svc.xsd -->

<!-- $Id: liberty-idwsf-authn-svc-v1.0.xsd,v 1.1 2004/08/02 19:25:27 dgreenspon Exp $ -->

<!-- Author: Jeff Hodges -->

<!-- Last editor: $Author: dgreenspon $ -->

<!-- $Date: 2004/08/02 19:25:27 $ -->

<!-- $Revision: 1.1 $ -->

<xs:import

namespace="urn:liberty:iff:2003-08"

schemaLocation="liberty-idff-protocols-schema-v1.2.xsd"/>

<xs:import

namespace="urn:liberty:disco:2003-08"

schemaLocation="liberty-idwsf-disco-svc-1.0-errata-v1.0.xsd"/>

<xs:include schemaLocation="liberty-idwsf-utility-1.0-errata-v1.0.xsd"/>

<xs:annotation>

<xs:documentation>

Liberty ID-WSF Authentication Service XSD

</xs:documentation>

<xs:documentation>

The source code in this XSD file was excerpted verbatim from:

Liberty ID-WSF Authentication Service Specification

Version 1.0

16 Feb 2004

Copyright (c) 2003, 2004 Liberty Alliance participants,

see http://www.projectliberty.org/specs/idwsf_copyrights.html

</xs:documentation>

</xs:annotation>

<!-- SASLRequest and SASLResponse ID-* messages -->

<xs:element name="SASLRequest">

<xs:complexType>

<xs:sequence>

<xs:element name="Data" minOccurs="0">

<xs:complexType>

AuthenticationWeb Service Schema

Appendix B • Service Schema Files 225

EXAMPLE B–4AuthenticationWeb Service XSDFile (Continued)

<xs:simpleContent>

<xs:extension base="xs:base64Binary"/>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element ref="lib:RequestAuthnContext"

minOccurs="0"/>

</xs:sequence>

<xs:attribute name="mechanism"

type="xs:string"

use="required"/>

<xs:attribute name="authzID"

type="xs:string"

use="optional"/>

<xs:attribute name="advisoryAuthnID"

type="xs:string"

use="optional"/>

<xs:attribute name="id"

type="xs:ID"

use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="SASLResponse">

<xs:complexType>

<xs:sequence>

<xs:element ref="Status"/>

<xs:element ref="PasswordTransforms" minOccurs="0"/>

<xs:element name="Data" minOccurs="0">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:base64Binary"/>

</xs:simpleContent>

</xs:complexType>

</xs:element>

AuthenticationWeb Service Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005226

EXAMPLE B–4AuthenticationWeb Service XSDFile (Continued)

<xs:element ref="disco:ResourceOffering"

minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="Credentials" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:any namespace="##any"

processContents="lax"

minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="serverMechanism"

type="xs:string"

use="optional"/>

<xs:attribute name="id"

type="xs:ID"

use="optional"/>

</xs:complexType>

</xs:element>

<!-- Password Transformations -->

<xs:element name="PasswordTransforms">

<xs:annotation>

<xs:documentation>

Contains ordered list of sequential password transformations

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="Transform" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

AuthenticationWeb Service Schema

Appendix B • Service Schema Files 227

EXAMPLE B–4AuthenticationWeb Service XSDFile (Continued)

<xs:element name="Parameter"

minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="name"

type="xs:string"

use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="name"

type="xs:anyURI"

use="required"/>

<xs:attribute name="id"

type="xs:ID"

use="optional"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

PAOSBinding Schema
Following is a reproduction of liberty-paos-1.0-errata-v1.0.xsd, the XSD file that accompanies
the Liberty Reverse HTTP Binding for SOAP Specification. This XSD file describes the structure of
PAOS requests and responses. PAOS binding is discussed in Chapter 10.

EXAMPLE B–5ReverseHTTPBinding for SOAPXSDFile

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:liberty:paos:2003-08" xmlns:xs="http://www.w3.org/2001/XMLSchema"

PAOS Binding Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005228

EXAMPLE B–5ReverseHTTPBinding for SOAPXSDFile (Continued)

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/" xmlns="urn:liberty:paos:2003-08"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:annotation>

<xs:documentation>The source code in this XSD file was excerpted verbatim from:

Liberty Reverse HTTP Binding

Version 1.0

12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see

https://www.projectliberty.org/specs/idwsf_copyrights.html

</xs:documentation>

</xs:annotation>

<xs:import namespace="http://schemas.xmlsoap.org/soap/envelope/"

schemaLocation="http://schemas.xmlsoap.org/soap/envelope/"/>

<xs:include schemaLocation="liberty-utility-v1.0.xsd"/>

<xs:element name="Request" type="RequestType"/>

<xs:complexType name="RequestType">

<xs:attribute name="responseConsumerURL" type="xs:anyURI" use="required"/>

<xs:attribute name="service" type="xs:anyURI" use="required"/>

<xs:attribute name="messageID" type="IDType" use="optional"/>

<xs:attribute ref="S:mustUnderstand" use="required"/>

<xs:attribute ref="S:actor" use="required"/>

</xs:complexType>

<xs:element name="Response" type="ResponseType"/>

<xs:complexType name="ResponseType">

<xs:attribute name="refToMessageID" type="IDType" use="optional"/>

<xs:attribute ref="S:mustUnderstand" use="required"/>

<xs:attribute ref="S:actor" use="required"/>

</xs:complexType>

</xs:schema>

MetadataDescription Schema
Following is a reproduction of liberty-metadata-1.0-errata-v1.0.xsd, the XSD file that
accompanies the Liberty Metadata Description and Discovery Specification. This XSD file describes
metadata, protocols for obtainingmetadata, and resolutionmethods for discovering the location of
metadata.

Metadata Description Schema

Appendix B • Service Schema Files 229

EXAMPLE B–6MetadataDescription andDiscovery XSDFile

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:liberty:metadata:2003-08" xmlns="urn:liberty:metadata:2003-08"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified" version="1.0">

<xs:import namespace="http://www.w3.org/2000/09/xmldsig#"

schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/>

<xs:import namespace="urn:oasis:names:tc:SAML:1.0:assertion"

schemaLocation="oasis-sstc-saml-schema-assertion-1.1.xsd"/>

<xs:import namespace="http://www.w3.org/XML/1998/namespace"

schemaLocation="http://www.w3.org/2001/xml.xsd"/>

<xs:include schemaLocation="liberty-utility-v1.0.xsd"/>

<xs:annotation>

<xs:documentation>XML Schema fom Metadata description and discovery protocols</xs:documentation>

<xs:documentation>The source code in this XSD file was excerpted verbatim from:

Liberty Metadata Description and Discovery Specification

Version 1.0

12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see

https://www.projectliberty.org/specs/idff_copyrights.html

</xs:documentation>

</xs:annotation>

<xs:simpleType name="entityIDType">

<xs:restriction base="xs:anyURI">

<xs:maxLength value="1024" id="maxlengthid"/>

</xs:restriction>

</xs:simpleType>

<xs:attribute name="libertyPrincipalIdentifier" type="entityIDType"/>

<xs:attribute name="providerID" type="entityIDType"/>

<xs:attribute name="validUntil" type="xs:dateTime"/>

<xs:attribute name="cacheDuration" type="xs:duration"/>

<xs:complexType name="additionalMetadataLocationType">

<xs:simpleContent>

<xs:extension base="xs:anyURI">

<xs:attribute name="namespace" type="xs:anyURI"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="organizationType">

<xs:sequence>

<xs:element name="OrganizationName" type="organizationNameType" maxOccurs="unbounded"/>

<xs:element name="OrganizationDisplayName" type="organizationDisplayNameType" maxOccurs="unbounded"/>

<xs:element name="OrganizationURL" type="localizedURIType" maxOccurs="unbounded"/>

Metadata Description Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005230

EXAMPLE B–6MetadataDescription andDiscovery XSDFile (Continued)

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="organizationNameType">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute ref="xml:lang"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="organizationDisplayNameType">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute ref="xml:lang" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="localizedURIType">

<xs:simpleContent>

<xs:extension base="xs:anyURI">

<xs:attribute ref="xml:lang" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="contactType">

<xs:sequence>

<xs:element name="Company" type="xs:string" minOccurs="0"/>

<xs:element name="GivenName" type="xs:string" minOccurs="0"/>

<xs:element name="SurName" type="xs:string" minOccurs="0"/>

<xs:element name="EmailAddress" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="TelephoneNumber" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

<xs:attribute ref="libertyPrincipalIdentifier" use="optional"/>

<xs:attribute name="contactType" type="attr.contactType" use="required"/>

</xs:complexType>

<xs:simpleType name="attr.contactType">

<xs:restriction base="xs:string">

<xs:enumeration value="technical"/>

<xs:enumeration value="administrative"/>

<xs:enumeration value="billing"/>

<xs:enumeration value="other"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="keyTypes">

<xs:restriction base="xs:string">

Metadata Description Schema

Appendix B • Service Schema Files 231

EXAMPLE B–6MetadataDescription andDiscovery XSDFile (Continued)

<xs:enumeration value="encryption"/>

<xs:enumeration value="signing"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="providerDescriptorType">

<xs:sequence>

<xs:element name="KeyDescriptor" type="keyDescriptorType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SoapEndpoint" type="xs:anyURI" minOccurs="0"/>

<xs:element name="SingleLogoutServiceURL" type="xs:anyURI" minOccurs="0"/>

<xs:element name="SingleLogoutServiceReturnURL" type="xs:anyURI" minOccurs="0"/>

<xs:element name="FederationTerminationServiceURL" type="xs:anyURI" minOccurs="0"/>

<xs:element name="FederationTerminationServiceReturnURL" type="xs:anyURI" minOccurs="0"/>

<xs:element name="FederationTerminationNotificationProtocolProfile" type="xs:anyURI"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SingleLogoutProtocolProfile" type="xs:anyURI" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="RegisterNameIdentifierProtocolProfile" type="xs:anyURI" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="RegisterNameIdentifierServiceURL" type="xs:anyURI" minOccurs="0"/>

<xs:element name="RegisterNameIdentifierServiceReturnURL" type="xs:anyURI" minOccurs="0"/>

<xs:element name="NameIdentifierMappingProtocolProfile" type="saml:AuthorityBindingType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="NameIdentifierMappingEncryptionProfile" type="xs:anyURI" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="Organization" type="organizationType" minOccurs="0"/>

<xs:element name="ContactPerson" type="contactType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="AdditionalMetaLocation" type="additionalMetadataLocationType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Extension" minOccurs="0"/>

<xs:element ref="ds:Signature" minOccurs="0"/>

</xs:sequence>

<!--xs:attribute ref="providerID" use="required"/-->

<xs:attribute name="protocolSupportEnumeration" type="xs:NMTOKENS" use="required"/>

<xs:attribute name="id" type="xs:ID" use="optional"/>

<xs:attribute ref="validUntil" use="optional"/>

<xs:attribute ref="cacheDuration" use="optional"/>

</xs:complexType>

<!--added-->

<xs:element name="KeyDescriptor" type="keyDescriptorType"/>

<xs:complexType name="keyDescriptorType">

<xs:sequence>

<xs:element name="EncryptionMethod" type="xs:anyURI" minOccurs="0"/>

<xs:element name="KeySize" type="xs:integer" minOccurs="0"/>

<xs:element ref="ds:KeyInfo" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

</xs:sequence>

Metadata Description Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005232

EXAMPLE B–6MetadataDescription andDiscovery XSDFile (Continued)

<xs:attribute name="use" type="keyTypes" use="optional"/>

</xs:complexType>

<!-- -->

<xs:element name="EntityDescriptor" type="entityDescriptorType"/>

<xs:group name="providerGroup">

<xs:sequence>

<xs:element name="IDPDescriptor" type="IDPDescriptorType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SPDescriptor" type="SPDescriptorType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:group>

<xs:complexType name="entityDescriptorType">

<xs:sequence>

<xs:choice>

<xs:group ref="providerGroup"/>

<xs:element name="AffiliationDescriptor" type="affiliationDescriptorType"/>

</xs:choice>

<xs:element name="ContactPerson" type="contactType" minOccurs="0"/>

<xs:element name="Organization" type="organizationType" minOccurs="0"/>

<xs:element ref="Extension" minOccurs="0"/>

<xs:element ref="ds:Signature" minOccurs="0"/>

</xs:sequence>

<xs:attribute ref="providerID" use="required"/>

<xs:attribute name="id" type="xs:ID" use="optional"/>

<xs:attribute ref="validUntil" use="optional"/>

<xs:attribute ref="cacheDuration" use="optional"/>

</xs:complexType>

<xs:complexType name="SPDescriptorType">

<xs:complexContent>

<xs:extension base="providerDescriptorType">

<xs:sequence>

<xs:element name="AssertionConsumerServiceURL" maxOccurs="unbounded">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:anyURI">

<xs:attribute name="id" type="xs:ID" use="required"/>

<xs:attribute name="isDefault" type="xs:boolean" default="false"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="AuthnRequestsSigned" type="xs:boolean"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="IDPDescriptorType">

Metadata Description Schema

Appendix B • Service Schema Files 233

EXAMPLE B–6MetadataDescription andDiscovery XSDFile (Continued)

<xs:complexContent>

<xs:extension base="providerDescriptorType">

<xs:sequence>

<xs:element name="SingleSignOnServiceURL" type="xs:anyURI"/>

<xs:element name="SingleSignOnProtocolProfile" type="xs:anyURI" maxOccurs="unbounded"/>

<xs:element name="AuthnServiceURL" type="xs:anyURI" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="EntitiesDescriptor" type="entitiesDescriptorType"/>

<xs:complexType name="entitiesDescriptorType">

<xs:sequence>

<xs:element ref="EntityDescriptor" minOccurs="2" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="affiliationDescriptorType">

<xs:sequence>

<xs:element name="AffiliateMember" type="entityIDType" maxOccurs="unbounded"/>

<xs:element ref="Extension" minOccurs="0"/>

<xs:element name="KeyDescriptor" type="keyDescriptorType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="ds:Signature" minOccurs="0"/>

</xs:sequence>

<!-- <xs:attribute name="affiliationID" type="entityIDType" use="required"/> -->

<xs:attribute name="affiliationOwnerID" type="entityIDType" use="required"/>

<xs:attribute ref="validUntil" use="optional"/>

<xs:attribute ref="cacheDuration" use="optional"/>

<xs:attribute name="id" type="xs:ID" use="optional"/>

</xs:complexType>

</xs:schema>

Metadata Description Schema

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005234

Index

A
AccessManager

and federation, 49
and Liberty-based web services, 50-53
implementation of LibertyAlliance Project, 45

AccessManager documentation set, 19-20
account federation, definition, 28
affiliate entity

See also entities
configuring, 90-93

affiliation, definition, 28
ambulkfed, See bulk federation
amSAML.xml, 181
API

AuthenticationWeb Service, 116
client for Discovery Service, 155-156
common security, 199-201
common service, 197-199
Data Services Template, 120-122, 129-131
Discovery Service, 152-156
federation, 101
Interaction Service, 201-203
PAOS binding, 203-207
SAML, 188-193
SOAPBinding Service, 161-162

architecture
Discovery Service, 135-136
SAML, 166-168

Artifact Timeout, 187
Assertion Skew Factor For notBefore Time, 186-187
Assertion Timeout, 186
assertion types, and SAML, 168-169
AttributeMapper, 126
attribute provider, definition, 28

attributes
AuthenticationWeb Service, 115-116
Discovery Service, 138-142
Liberty Personal Profile Service, 124-129
SOAPBinding Service, 159-161

authentication and authentication context, 61-63
authentication context, definition, 28-29
authentication domain, definition, 29
authentication domains, overview, 93-95
Authentication Service Specification, overview, 40-41
authentication services

Authentication Service (non-Liberty), 112-114
AuthenticationWeb Service (Liberty), 112-114

AuthenticationWeb Service
API, 116
attribute, 115-116
extract, 53
orAuthentication Service (non-Liberty), 112-114
overview, 111-112
process, 114
sample, 116-117, 212
schema file, 224-228
XMLservice file, 112

Authorizer, 125-126
Authorizer interface, 152-154, 198-199
auto-federation, 60, 96

B
basic authentication, 180
bootstrapping Discovery Service, 150-151
bulk federation, 60, 97

235

C
circle of trust, definition, 29
client, definition, 29
clientAPI

Data Services Template, 129-130
Discovery Service, 155-156

Client Profiles Specification, overview, 41
common domain

definition, 29-30
overview, 103-104

common domain cookie, 104
common domain services

configuring properties, 105-106
configuring URLs, 105
installation, 106-107

common securityAPI, 199-201
common service interfaces, 197-199
concepts, LibertyAlliance Project, 28-34
containers, 126-127
customize, graphical user interface, 67-70

D
data services

See alsoData Services Template
API, 129-131
developing, 131
Liberty Employee Profile Service, 129
Liberty Personal Profile Service, 122-129
overview, 119-122

Data Services Template, 120-122
API, 129-131
clientAPI, 129-130

Data Services Template Specification, overview, 40
Default64ResourceIDMapper, 154
DefaultDiscoAuthorizer class, 152-154
DefaultHexResourceIDMapper, 154
defederation, definition, 30
definitions

discovery entries, 134
federation, 27-28
identity, 26-27
identity federation, 27
LibertyAlliance Project concepts, 28-34
provider federation, 27-28

deploying Liberty-based system, 42-43
developing data services, 131
Directory Server documentation, 17
DiscoEntryHandler interface, 154-155
discovery entries, 142-151

as dynamic attributes, 145-149
as user attributes, 142-145
definition, 134
for bootstrapping, 150-151

Discovery Service
API, 152-156
architecture, 135-136
attributes, 138-142
bootstrapping, 150-151
clientAPI, 155-156
discovery entries, 134, 142-151
extract, 52-53
overview, 133-135
process, 136-138
resource offerings, 142-151
sample, 156
XMLservice files, 134

Discovery Service Specification, overview, 40
documentation,AccessManager, 19-20
dynamic identity provider proxying, 63, 97-99

E
employee profile service sample, 211-212
entities

configuring affiliate, 90-93
configuring provider, 72-89
creating, 71-72
overview, 70-93

entity descriptors, See entities

F
federated identity, definition, 30
federation

affiliate entity
configuring, 90-93

and single sign-on, 66-67
API, 101

Index

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005236

federation (Continued)
authentication domains, 93-95
auto-federation, 96
bulk federation, 97
definition, 30
dynamic identity provider proxying, 97-99
entities, 70-93

creating, 71-72
entities and authentication domains, 70-95
features of, 59-63
graphical user interface, 67-70
inAccessManager, 49
pre-login process, 66
pre-login URL, 99-100
process of, 64-67
provider entity

configuring, 72-89
sample environment, 101-102
samples, 209-211

federation, definition of, 27-28
federationAPI, 101
federation cookie, definition, 30
federation termination, definition, 30
Federation TerminationNotification Protocol,

overview, 37

G
global logout, 63
graphical user interface, federation, 67-70

I
identifiers and name registration, 63
identity, definition, 30
identity, definition of, 26-27
identity federation, definition, 31
identity federation, definition of, 27
identity federation and single sign-on, 59-60
identity provider, definition, 31
identity service, definition, 31
installation, common domain services, 106-107
Interaction Service, 201-203
Interaction Service Specification, overview, 40

interfaces
AuthenticationWeb Service, 116
Authorizer, 125-126, 152-154
common service, 197-199
DiscoEntryHandler, 154-155
Discovery Service, 152-156
request handler, 161-162
ResourceIDMapper, 125, 154

L
LibertyAlliance Project

concepts, 28-34
Liberty Identity Federation Framework, 34-38
Liberty Identity Service Interface Specifications, 41-42
Liberty IdentityWeb Services Framework, 39-41
overview, 25-26
SAMLcomparison, 166
service schema files, 213-234
specifications, 34-42

LibertyAlliance Project specifications, 17
Liberty-based system deployment, 42-43
Liberty-based web services, inAccessManager, 50-53
Liberty Employee Profile Service, 129

schema file, 222-224
Liberty-enabled client, definition, 31
Liberty-enabled proxy, definition, 31
Liberty ID-FF Bindings and Profiles, overview, 38
Liberty ID-FF Protocols and Schema, overview, 35-38
Liberty ID-SIS Employee Profile Service Specification,

overview, 42
Liberty ID-SIS Personal Profile Service Specification,

overview, 41
Liberty Identity Federation Framework, overview, 34-38
Liberty Identity Service Interface Specifications,

overview, 41-42
Liberty IdentityWeb Services Framework,

overview, 39-41
Liberty Personal Profile Service, 122-129

attributes, 124-129
extract, 52
schema file, 216-222

Liberty process sample, 46-47

Index

237

M
Metadata Description, schema file, 229-234

N
name identifier, definition, 31
Name IdentifierMapping Protocol, overview, 38
name registration, 63
Name Registration Protocol, overview, 37

O
overview

authentication and authentication context, 61-63
authentication domains, 93-95
Authentication Service Specification, 40-41
AuthenticationWeb Service, 111-112
auto-federation, 60, 96
bulk federation, 60, 97
Client Profiles Specification, 41
common domain, 103-104
common domain cookie, 104
common domain services

installation, 106-107
properties, 105-106
URLs, 105

data services, 119-122
Data Services Template, 120-122
Data Services Template Specification, 40
Discovery Service, 133-135
Discovery Service Specification, 40
dynamic identity provider proxying, 63, 97-99
entities, 70-93
federationAPI, 101
federation features, 59-63
federationmanagement, 70-95
federation process, 64-67
Federation TerminationNotification Protocol, 37
global logout, 63
identifiers and name registration, 63
identity federation and single sign-on, 59-60
implementation of LibertyAlliance Project, 45
Interaction Service, 201-203
Interaction Service Specification, 40

overview (Continued)
LibertyAlliance Project, 25-26
LibertyAlliance Project specifications, 34-42
Liberty Employee Profile Service, 129
Liberty ID-FF Bindings and Profiles, 38
Liberty ID-FF Protocols and Schema, 35-38
Liberty ID-SIS Employee Profile Service

Specification, 42
Liberty ID-SIS Personal Profile Service

Specification, 41
Liberty Identity Federation Framework, 34-38
Liberty Identity Service Interface Specifications, 41-42
Liberty IdentityWeb Services Framework, 39-41
Liberty Personal Profile Service, 122-129
Name IdentifierMapping Protocol, 38
Name Registration Protocol, 37
PAOS binding, 203-207
pre-login URL, 99-100
public interfaces, 195-197
SAML, 165-168
samples, 209-212
SecurityMechanisms Specification, 40
Single Logout Protocol, 37-38
Single Sign-On and Federation Protocol, 36-37
SOAPBinding Service, 157-158
SOAPBinding Specification, 39

P
PAOS binding, 203-207

PAOS or SOAP, 204
sample, 205-207, 212

PAOS Binding Service, schema file, 228-229
patches, Solaris, 20
policy creation, 152-154
pre-login process, 66
pre-login URL, 99-100
principal, definition, 32
procedures

create policy for DefaultDiscoAuthorizer, 152-154
store discovery entries, 142-145, 145-149, 150-151

process
AuthenticationWeb Service, 114
Discovery Service, 136-138
federation, 64-67

Index

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005238

process (Continued)
federation and single sign-on, 66-67
pre-login, 66
SOAPBinding Service, 158-159

profile, definition, 32
profile types

and SAML, 169-174
web artifact profile, 170-172
web POST profile, 172-174

provider entity
See also entities
configuring, 72-89

provider federation, definition, 32
provider federation, definition of, 27-28
pseudonym

definition
See name identifier

public interfaces, 195-197

R
receiver, definition, 32
related JES product documentation, 20
request handler, 159-160
RequestHandler interface, 130
resource offering, definition, 32
resource offerings, 142-151
ResourceIDMapper, 125
ResourceIDMapper interface, 154, 199

S
SAML, 165-194

amSAML.xml, 181
API, 188-193
architecture, 166-168
Artifact Timeout, 187
Assertion Skew Factor For notBefore Time, 186-187
assertion types, 168-169
AssertionTimeout, 186
Liberty comparison, 166
overview, 165-168
profile types, 169-174

web artifact profile, 170-172

SAML, profile types (Continued)
web POST profile, 172-174

SAMLArtifact Name, 187
SAMLSOAP receiver, 175-180

SOAPmessages, 175-179
samples, 193-194
Sign SAMLAssertion, 187
Sign SAMLRequest, 187
Sign SAMLResponse, 187-188
site Identifiers, 182
Target Specifier, 182
target URLs, 186
trusted partners, 183
using, 168

SAMLArtifact Name, 187
SAMLSOAP receiver, 175-180

SOAPmessages, 175-179
sample use case, 46-47
samples

AuthenticationWeb Service, 116-117, 212
Discovery Service, 156
employee profile service, 211-212
federation, 101-102, 209-211
PAOS binding, 205-207, 212
SAML, 193-194
use case process, 46-47
web service consumer, 211

samples overview, 209-212
schema files, 213-234

AuthenticationWeb Service schema, 224-228
Employee Profile schema, 222-224
Metadata Description, 229-234
PAOS Binding Service, 228-229
Personal Profile schema, 216-222
SOAPBinding schema, 214-216

SecurityMechanisms Specification, overview, 40
sender, definition, 32
server, definition, 32-33
service provider, definition, 33
service schema files, 213-234
Sign SAMLAssertion, 187
Sign SAMLRequest, 187
Sign SAMLResponse, 187-188
single logout, definition, 33
Single Logout Protocol, overview, 37-38
single sign-on, definition, 33

Index

239

Single Sign-On and Federation Protocol, overview, 36-37
single sign—on, and federation, 66-67
site identifiers, 182
SOAPBinding, extract, 53
SOAPBinding Service

API, 161-162
attributes, 159-161
overview, 157-158
PAOS or SOAP, 204
process, 158-159
request handler, 159-160
schema file, 214-216
XMLservice file, 157-158

SOAPBinding Specification, overview, 39
SOAPmessages, 175-179
Solaris

patches, 20
support, 20

specifications (LibertyAlliance Project), 34-42
Liberty Identity Federation Framework, 34-38
Liberty Identity Service Interface Specifications, 41-42
Liberty IdentityWeb Services Framework, 39-41

support, Solaris, 20

T
Target Specifier, 182
target URLs, 186
trusted partners, 183
trusted provider, definition, 33

U
use cases, 46-47

sample process, 46-47

W
web artifact profile, 170-172
web POST profile, 172-174
web service consumer, definition, 33
web service consumer sample, 211
web service provider, definition, 33-34

web services (Liberty-based), inAccessManager, 50-53

X
XMLservice files

amSAML.xml, 181
AuthenticationWeb Service, 112
Discovery Service, 134
SOAPBinding Service, 157-158

XSD files, 213-234

Index

Sun Java SystemAccessManager 7 2005Q4 Federation and SAMLAdministration Guide • October 2005240

	Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Access Manager Core Documentation
	Sun Java System Product Documentation

	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Feedback
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction to the Liberty Alliance Project
	Overview of the Liberty Alliance Project
	Members of the Liberty Alliance Project
	Objectives of the Liberty Alliance Project Specifications

	Concept of Identity
	Concept of Federation
	Identity Federation
	Provider Federation

	Liberty Alliance Project Concepts
	Account Federation
	Affiliation
	Attribute Provider
	Authentication Context
	Authentication Domain
	Circle of Trust
	Client
	Common Domain
	Defederation
	Federation
	Federation Cookie
	Federated Identity
	Federation Termination
	Identity
	Identity Federation
	Identity Provider
	Identity Service
	Liberty-Enabled Client
	Liberty-Enabled Proxy
	Name Identifier
	Principal
	Profile
	Provider Federation
	Pseudonym
	Receiver
	Resource Offering
	Sender
	Server
	Service Provider
	Single Logout
	Single Sign-On
	Trusted Provider
	Web Service Consumer
	Web Service Provider

	Liberty Alliance Project Specifications
	Liberty Identity Federation Framework
	Liberty ID-FF Protocols and Schema
	Single Sign-On and Federation Protocol
	Name Registration Protocol
	Federation Termination Notification Protocol
	Single Logout Protocol
	Name Identifier Mapping Protocol

	Liberty ID-FF Bindings and Profiles
	Additional Liberty ID-FF Documents

	Liberty Identity Web Services Framework
	Liberty ID-WSF Specifications
	SOAP Binding Specification
	Discovery Service Specification
	Security Mechanisms Specification
	Data Services Template Specification
	Interaction Service Specification
	Authentication Service Specification
	Client Profiles Specification

	Additional Liberty ID-WSF Documents

	Liberty Identity Service Interface Specifications
	Liberty ID-SIS Personal Profile Service Specification
	Liberty ID-SIS Employee Profile Service Specification
	Additional Liberty ID-SIS Service Specifications

	Deploying a Liberty-based System
	Assess the Qualifications of Your IT Staff
	Clean Up Directory Data
	Draft Business Agreements

	Implementation of the Liberty Alliance Project Specifications
	Overview
	Liberty Use Cases
	Unified Access to Intranet Resources
	Integrated Partner Networks
	Sample Use Case Process

	Liberty Alliance Project Architecture in Access Manager
	Accessing the Liberty Alliance Project Features
	Federation in Access Manager
	Liberty-based Web Services in Access Manager
	Liberty Personal Profile Service
	Discovery Service
	SOAP Binding Service
	Authentication Web Service

	Liberty-based Application Programming Interfaces
	SAML Service

	Liberty-Based Samples

	Federation
	Features of Federation
	Identity Federation and Single Sign-On
	Auto-Federation
	Bulk Federation

	Authentication and Authentication Context
	Identifiers and Name Registration
	Global Logout
	Dynamic Identity Provider Proxying

	Process of Federation
	Pre-login Process
	Federation and Single Sign-On

	Federation Graphical User Interface
	Entities and Authentication Domains
	Entities
	Creating Entities
	To Create a Provider Entity or an Affiliate Entity

	Configuring Provider Entities
	To Configure a Provider Entity
	To Configure General Attributes for a Provider Entity
	To Configure Hosted or Remote Identity Provider Attributes for a Provider Entity
	To Configure Hosted or Remote Service Provider Attributes for a Provider Entity

	Configuring Affiliate Entities
	To Configure an Affiliate Entity
	To Configure General Attributes for an Affiliate Entity
	To Configure Affiliate Attributes for an Affiliate Entity

	Deleting Entities
	To Delete a Provider or Affiliate Entity

	Authentication Domains
	To Create An Authentication Domain
	To Configure or Modify an Authentication Domain
	To Delete an Authentication Domain

	Auto-Federation
	To Enable Auto Federation

	Bulk Federation
	Dynamic Identity Provider Proxying
	To Configure and Test Dynamic Identity Provider Proxying

	The Pre-login URL
	Federation API
	Sample Federation Environment

	Common Domain Services
	Common Domain
	Common Domain Cookie
	Configuring the Common Domain Services URLs
	Writer Service URL
	Reader Service URL

	Configuring the Common Domain Services Properties
	Installing the Common Domain Services for Federation
	To Test a Common Domain Services Installation

	Authentication Web Service
	Authentication Web Service Overview
	XML Service File
	Authentication Web Service APIs

	Which Authentication Service to Use?
	Authentication Web Service Process
	Authentication Web Service Attribute
	Mechanism Handlers List
	key Parameter
	class Parameter

	Authentication Web Service API
	com.sun.identity.liberty.ws.authnsvc Package
	com.sun.identity.liberty.ws.authnsvc.mechanism Package
	com.sun.identity.liberty.ws.authnsvc.protocol Package

	Authentication Web Service Sample

	Data Services
	Data Services Overview
	Liberty ID-WSF Data Services Template Specification
	Liberty Personal Profile Service
	XML Service File
	XSD Schema Definition

	Liberty Employee Profile Service
	XML Service File
	XSD Schema Definition

	Data Services API

	Liberty Personal Profile Service
	Liberty Personal Profile Service Process
	Liberty Personal Profile Service Attributes
	ResourceID Mapper
	Authorizer
	Attribute Mapper
	Provider ID
	Name Scheme
	Namespace Prefix
	Supported Containers
	PPLDAP Attribute Map List
	Require Query PolicyEval
	Require Modify PolicyEval
	Extension Container Attributes
	Extension Attributes Namespace Prefix
	Is ServiceUpdate Enabled
	Service Instance Update Class
	Alternate Endpoint
	Alternate Security Mechanisms

	Liberty Employee Profile Service
	Data Services Template API
	com.sun.identity.liberty.ws.dst Package
	com.sun.identity.liberty.ws.dst.service Package

	Developing A New Data Service

	Discovery Service
	Discovery Service Overview
	Discovery Service Concepts
	Discovery Entries
	XML Service Files
	Discovery Service APIs
	com.sun.identity.liberty.ws.disco Package
	com.sun.identity.liberty.ws.disco.plugins Package
	com.sun.identity.liberty.ws.interfaces Package

	Discovery Service Architecture
	Discovery Service Process
	Discovery Service Attributes
	Provider ID
	Supported Authentication Mechanisms
	Supported Directives
	Enable Policy Evaluation for DiscoveryLookup
	Enable Policy Evaluation for DiscoveryUpdate
	Authorizer Plugin Class
	Entry Handler Plugin Class
	Classes For ResourceIDMapper Plugin
	Authenticate Response Message
	Generate SessionContextStatement for Bootstrapping
	Encrypt NameIdentifier in Session Context for Bootstrapping
	Use Implied Resource; don’t generate ResourceID for Bootstrapping
	Resource Offerings for Bootstrapping Resources

	Discovery Entries and Resource Offerings
	Storing Discovery Entries as User Attributes
	To Access and Create a User's Resource Offerings

	Storing Discovery Entries as Dynamic Attributes
	To Store Discovery Entries as Dynamic Attributes in a Realm
	To Store Discovery Entries as Dynamic Attributes in a Role

	Storing Discovery Entries for Bootstrapping
	To Store Discovery Entries for Bootstrapping

	Discovery Service APIs
	com.sun.identity.liberty.ws.interfaces.Authorizer Interface
	To Configure Policy Definitions

	com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface
	com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface
	Client APIs in com.sun.identity.liberty.ws.disco

	Discovery Service Sample

	SOAP Binding Service
	SOAP Binding Service Overview
	XML Service File
	SOAP Binding Service APIs

	SOAP Binding Process
	SOAP Binding Service Attributes
	Request Handler List
	Key Parameter
	Class Parameter
	SOAP Action Parameter

	Web Service Authenticator
	Supported Authentication Mechanisms

	SOAP Binding Service Package

	SAML Administration
	SAML Overview
	Comparison of SAML and Liberty Specifications
	SAML Architecture in Access Manager
	Using SAML

	Elements of SAML
	Assertion Types
	Profile Types
	Web Browser Artifact Profile
	Web Browser POST Profile
	Single-Use Policy With POST Profile

	SAML SOAP Receiver
	SOAP Messages
	Protecting SAML SOAP Receiver
	To Configure Access Manager for Basic Authentication

	SAML Attributes
	amSAML.xml Attributes
	To Modify Attributes in the amSAML.xml File

	Console Attributes
	Properties Group
	Target Specifier
	Site Identifiers
	To Configure a Site Identifier
	Trusted Partners
	To Configure a Trusted Partner
	Target URLs

	Assertion
	Assertion Timeout
	Assertion Skew Factor For notBefore Time

	Artifact
	Artifact Timeout
	SAML Artifact Name

	Signing
	Sign SAML Assertion
	Sign SAML Request
	Sign SAML Response

	SAML API
	com.sun.identity.saml Package
	AssertionManager Class
	SAMLClient Class

	com.sun.identity.saml.assertion Package
	com.sun.identity.saml.common Package
	com.sun.identity.saml.plugins Package
	AccountMapper and PartnerAccountMapper Interfaces
	SiteAttributeMapper and PartnerSiteAttributeMapper Interfaces
	AttributeMapper Interface
	ActionMapper Interface

	com.sun.identity.saml.protocol Package
	AuthenticationQuery Class
	AttributeQuery Class
	AuthorizationDecisionQuery Class

	com.sun.identity.saml.xmlsig Package

	SAML Samples

	Application Programming Interfaces
	Public Interfaces
	Common Service Interfaces
	com.sun.identity.liberty.ws.common Package
	com.sun.identity.liberty.ws.interfaces Package
	com.sun.identity.liberty.ws.interfaces.Authorizer Interface
	com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface

	Common Security API
	com.sun.identity.liberty.ws.security Package
	com.sun.identity.liberty.ws.common.wsse Package

	Interaction Service
	Configuring the Interaction Service
	Interaction Service API

	PAOS Binding
	Comparison of PAOS and SOAP
	PAOS Binding API
	PAOS Binding Sample

	Liberty-based and SAML Samples
	Federation Framework Samples
	sample1 Directory
	sample2 Directory
	sample3 Directory

	Web Services Framework Samples
	wsc Directory
	sis-ep Directory
	paos Directory
	authnsvc Directory

	SAML Samples

	Service Schema Files
	XSD Overview
	SOAP Binding Schema
	Personal Profile Schema
	Employee Profile Schema
	Authentication Web Service Schema
	PAOS Binding Schema
	Metadata Description Schema

	Index

