Sun Java System Access Manager
7 2005Q4 Federation and SAML
Administration Guide

D Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 819-2142-11
October 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Java Coffee Cup logo, Java, Javadoc, JavaScript, JavaServer, JDK, JSP, docs.sun.com, AnswerBook, AnswerBook2, and
Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUTIs and otherwise comply with Sun’s written license
agreements.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans I'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Java Coffee Cup, Java, Javadoc, JavaScript, JavaServer, JDK, JSP, docs.sun.com, AnswerBook, AnswerBook2, et Solaris
sont des marques de fabrique ou des marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour I'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place I'interface
d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N°EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S APPLIQUERAIT PAS, DANS LA MESURE OU
ILSERAIT TENU JURIDIQUEMENT NULET NON AVENU.

060815@15490

Partl

Contents

PPEIACE ...ttt R st b s a et en st ens et enanaen 17
The Liberty Alliance Project Specifications and Access Managerccccocovveveeeeeeeeererererenenen. 23
Introduction to the Liberty Alliance Project ..o 25
Overview of the Liberty ALLIANCce PIOJECc.cvvevevevererererereteeeeeeeeeeeeeseeesese e ssesesesesenes 25

Members of the Liberty AllIance PIOJECLc.eeueueurinierireirieieireisieieireieiseieeseiesseiessesessesessesessesesseses 25

Objectives of the Liberty Alliance Project Specifications

Concept Of TAentityccevevevererererereereeeeeeeeeeeeeee e ...26

CONCEPL Of FEAETATION 1.ttt sttt a s st sas st et eassssesnensnsnsesen 27
Identity FEd@ration ..ot 27
Provider FEAEIAtiOncc.eueeiuiurieieieeeieiei ettt sttt ae ettt asse bt ss s st esseasanses 27

Liberty Alliance Project CONCEPLSccvvmeuremeuremerremerremeireseisesetsesessesessesessesessesessesessesessesessesessesessescssescssenes 28
ACCOUNT FEARTATION .ottt ettt ettt sttt sttt es 28
AFTHATION ettt s s s bbb s s s ssbsess b e s b ensssenssssnnssssnes 28
ATLIDULE PLOVIAET ettt st bbbt snss b seasssnassenaes 28
AUthentiCatioN COMTEXLc.evueuruueerieirieieieieieteaetetsetetseae ettt sebe bt seae s bt bessese s eaebsesessesesssasssaes 28
Authentication DOMAINcovueueieiierieieirieeie ettt a sttt ess st s sesanssseses 29
Circle of Trust
Client
ComMMON DOIMAIN ittt ettt sttt b ettt sttt e et sbese e ebenens 29
DEEAEIALION «.uvvveveveeeeiieieiecieieie ettt ettt s e bbb bbb s e s s s s s s s ses s s s snsessnssssnsssnsnes 30
FEAEIALION w.uvevveeeiieiiiice ettt bbb bbbttt e bbbt besansesas 30
FEAEration COOKIEcccevririerreereiieeseetessiseseesesssssssessessssssssssessssssssssessssssssssesessssssssesasssssssesesassssssesesnes 30
Federated TAENTILYc.coeueueueuricireeirceiecree ettt sttt st b et 30
Federation TErMINAtIONcceeeeueeerreeireeiseneireessesessesessesessessesss 30
TAEIEILY cevvietieieieetetetete ettt sttt bbb taee
Identity Federation

Contents

TAENTItY PTOVIAET ..eetiiececieieiriccete sttt ettt ss sttt sssansssnsenssans 31
TAENEILY SEIVICE v.vvvvireeieieieieeeeeeceerererererere et s s s s s s s b sesesene
Liberty-Enabled Client
Liberty-Enabled Proxy ...

NAME TAENTIET ..ottt sttt e st sss st e e assssesessanssses
PIINCIPAL oottt sese e sesees 32
PIOMILE oottt 32
Provider FEAErationccecveeureierinsinieinieinisisieisssssssssssssssssssssssessssessesenns 32
PSEUAONYIM ..ottt ettt ettt sttt sttt a sttt as st st tanse s st senssss et et sanansesnsesnsas 32
RECEIVET ..ttt eeas 32
RESOUICE OffETING ...ttt sttt ss st e e ssnassesesessnans 32
Sender 32
SEIVET ottt ettt b bbb 32
SEIVICE PrOVIAET ..vuviuiiiriieieieitieieeiree ettt seseseaes 33
SINGIE LOZOUL ..ttt sttt ettt ettt ss s s s s s s bt et esebebebebasessssasanasasesesane 33
SINGLE SIGN-OM ettt seasese s et ses bbbt sese s s sessesseseaen 33
TrUSTEA PLOVIAET ..ottt 33
WED SEIVICE COMSUIMIET ...uvevrieirieiriieieieieeetseaetseaetseastsessssesssseasssessssessssessssessssssesssssssssssssssssssssesassesnees 33
WED SEIVICE PTOVIAET ...ttt ettt ettt sttt nassne 33
Liberty Alliance Project SPECIICAtIONSc.vveureeireririsirieirieisieisesiseessesssssesessesessssesssessssessesessesessssssnes 34
Liberty Identity Federation FramewWOTrKcccocouvieieieieieiceeccceccee ettt snenes
Liberty Identity Web Services Framework ...
Liberty Identity Service Interface SPeCifiCationsccccceueveveueueeeiieereeeeeeete e nnnes 41
Deploying a Liberty-Dased SYStEIMccvveveiirereirinsirisirisisieiseeiseeiseeisessisesssetesessssesesessssesssssssssessssesnes 42
Assess the Qualifications of YOUT IT Staffc.coivviiiveiicceccreeceeeretee ettt senas 42
Clean Up DireCtOry DAtaccveueeeerireireiiriiisieisisisesisessiessssessesessssessesssssssssesessssesssesssssssssssssssssseses 42
Draft BUSINESS AGIEEITIENTScvouveverieeererieererieeereeseeresieeeteseeseseseesesessesesessesesessesesessesesensesesensesessnsesessnes 42

Implementation of the Liberty Alliance Project Specifications ..

OVEIVIEW ..ottt sttt eeeae

LIDEItY USE CaSES ..vuvueueieerireniieieirireiisietetseseseietetsesessaetetstseseassesessessssesessessasassesses 46
Unified Access to INtranet RESOUICESccovuruivriiireiiricinineirineiseeiseeistseiseesstsesessesesessssesesesessesesnes 46
Integrated Partner NEtWOTKScciviueiiieiiiniiinisisisisesiessiessssssssesssssssssssssessssssssessssssssesssssssssesns 46
SAMPle USE CaSE PIOCESScucvueueerrerreiriieiieeaensenessessesseaeassessessesssassssssssessessessesssssssssessessessessesesan 46

Liberty Alliance Project Architecture in ACCess MaNagerccvueureevriserersinessinisisssssssssessssssssssssseses 47

Accessing the Liberty Alliance Project FEAtUIESc.ouviureeeeeremrerriuiirieeeerenenessessesseseseessesensessessesenes 49

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Contents

Partll

Federation in ACCESS MANAZETocveueueurueeeereirisesesseetessesssessessesssssssessesssssssessessssssessessnssssesesssssnses 49
Liberty-based Web Services in ACCeSS MANAZETccoeueueururirereeieirireeeieistseeesestseseaeaesseseeasseseenes 50
Liberty-based Application Programming Interfaces53
SAML SEIVICE .uvvvvneneneeeetrtsteee ettt ettt sttt ettt b b seseaentae 55
LIDerty-Based SAMPLESccceueuriiierieieiiceieieisese ettt s st es s sss s sssssssessassansssesssnssnsnsesnen 55
Federation ManagemeENtccooiiieieieiicee ettt a s s st s st et ssaens 57
FRAEIALION ...ttt bbbt see 59
FEatures Of FEAETAtIONvcvueueieeireeieieieseeie ettt ettt es s sss et sss st s s sansssesnssssnsnsesnnn 59
Identity Federation and Single Sign-Omnc.cccceerrrincnincenincncecereecieeeieeeeeseseeseeesseaeeeeees 59
Authentication and Authentication CONEEXLccceeuvereruereirininieieirreee ettt seesseseees 61
Identifiers and Name ReZISTIAtION ...c.c.eueueiieeieieiiinieieieieeeeieieieiessssessssessssesssssssssssssssssssessssssssses 63
Global Logoutcccceevevevreeeerererrennens .63
Dynamic Identity Provider PIOXYINGccccoveurerereeieirisisssessisesesssssssesssssessssessssssssssessssssssssssssessses 63
ProCess Of FEAETATION ...vvuiuieeieiieccieieieicceie ettt a sttt ean st et seseassnsesen 64
Pre-lOZIN PIOCESS ...oveveviverieieretiieeeteiereteseretees et ese s ese s e s ess s esessasesesssesesssesessasesessasesessnsesessnseseneas 66
Federation and SINgle SIgn-Omcccvcuueinereeieieeneinenesciseieieneseisetsesseseesessessesessessessessssessesenns 66
Federation Graphical User INEITACEcceveueueineireeneuceeiereieieiseeeeeneseeesseseesessese e ssessesssessessesnens 67
Entities and Authentication Domains70
ENTITIES oottt bbbttt b et 70
Authentication DOMAINSc.ceveuereiereieieieieieieiessesseesseeesss s sssass 93
V To Create An Authentication DOMAINc.cueueeeiieeieeeieiniiieeeieineesseessesessessssessssessssesssssssssenns 94
¥V To Configure or Modify an Authentication DOMAInNccceeeeeceereirereseersisessessesesssesessennes 94
V To Delete an Authentication DOMAINccceueveeereeirerersseeieireeeeteesesesessessssessssessesesssssessssesees 95
Auto-Federation
V¥ To Enable Auto Federation
BUIK FEAETATION ..ttt bbb bbbt st bbbt sessssessssesas 97
Dynamic Identity Provider PrOXYING ... ssssssssssens 97
V¥ To Configure and Test Dynamic Identity Provider ProXyingccccocecveeneeeneeerneeenneeeneenneeenenes 98
The Pre-10Zin URLcccooiueieiiieieieiceeie ettt et sttt sttt ettt st s st se s as st esseneas 99
Federation API
Sample Federation ENVIIONMENTcocoeveiiririeieieietereeree et esesssssssssss ettt sesesessssssssssasasanssssssenes 101
COMMON DOMAIN SEIVICESc.oimiiniiicrccre sttt ettt eies 103
COoMMON DOIMAIN ettt ettt ettt ettt sttt b et be e tebenens 103

Contents

Partlll

CommOon DOMAIN COOKIEcuovvvimirieiriiieieietriesie ettt et sessss s ess st s e sasssssssesssssssssssssassssens 104
Configuring the Common Domain Services URLSccccceiererieeireeriienissisissenssssesssssssssssssssssssssssssssssnss 105
WIHLET SETVICE URL ...ttt ettt e s 105
ReAEr SEIVICE URLoovuiiiriiirieieitieieieiseie ettt bbbttt tse st esassesnees 105
Configuring the Common Domain Services PrOPErtiesccovviereerririrsininirissiessesssesssssessssssseses 105
Installing the Common Domain Services for Federation ... 106
V¥ To Test a Common Domain Services Installationcocceeeveneeenninesesnneeeeseneeeeeseseeeas 106
Supported Web Services ... 109
Authentication Web SErVICe ...t eaees 111
Authentication Web Service OVEIVIEWccoeeueeririiueieirineiieieisiseeetesstseeetesstsessssessssesesssesesseesssesesesns 111
XML SEIVICE FLE ..ottt bbb seas s essssessbensssssssssssssssassns 112
Authentication Web SErvice APIScccveeureeirineiriniinieirieieeeieisisieiesseiesssaessesesssssssssesssssssssssssssses 112
Which Authentication SEIVICe t0 USE?ovvcverriririrsiririrereeistsisessiessessssssssssssssssssssssssssssessssssssssssssenns 112
Authentication Web SErviCe PIOCESScvuvererueirereririeiririsesasiststsesssiessestsssssessssesssssesssssssssessssssssssessssnns 114
Authentication Web Service Attribute ... 115
Mechanism Handlers LiStcccvererereeireeisensinisieieisesisesiessesesssesesessssssssssssssssssssssssssssssssssssssese 115
Authentication Web Service APTc.occviviiriiiriniininiinieineeiseeisee st seeb sttt st st sessessssssessens 116
com.sun.identity.liberty.ws.authnsvc Package ... 116
com.sun.identity.liberty.ws.authnsvc.mechanism Packageoineninnennes 116
com.sun.identity.liberty.ws.authnsvc.protocol Packageieirninneerneennneenns 116
Authentication Web Service SAMPIEcoveviererriieiereiiiiceetetese et es st be st sas e s s sssassssesenes 116
Data SEIVICES ...t eene 119
Data Services Overview 119
Liberty ID-WSF Data Services Template SPecificationcocveeveeeurererrssnisinisesnsssssssssessenens 120
Data SErvICES API ...ttt bbbttt 122
Liberty Personal Profile SErviceoeinueeninerneenieneeneisesseesssiensenssssesaens 122
Liberty Personal Profile SErvice PIOCESSc.ceueueuiiriureereeierneineineineeeeaeeessensesnessesseaessessessessesseses 122
Liberty Personal Profile SErvice AtIrIDULESc.cveeurieeereeeirieirieeireeirieeiseeiseesseessessssesessesessssessssees 124
Liberty EMployee Profile SEIVICE ..ot ssessesssss s ssssessessesesssssssnas 129
Data Services TEMPIate APTccoiuriviiriieriiirieieireieieieseietseee ettt sttt bt s saces 129
com.sun.identity.liberty.ws.dst PACKAZEccccoovvicrriririeeeeieeee et ssesssneenns 129
com.sun.identity.liberty.ws.dst.service Packagecovvvvveeeeeeeerereereeenne 130

Developing A New Data Service

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Contents

DISCOVEIY SEIVICE ..ottt ettt ettt ae bttt s s et e e e s ses et eeeanassesssssanans
DiSCOVETY SEIVICE OVETVIEW ...cuiviiiniieieirieeieieertsieerte ettt et be et be st be et sbe e assesessssesessesenessesenens
Discovery Service COMCEPLSccuiimiiiiiii s
DiISCOVETY ENLTIES ..ottt
XML SEIVICE FILES ...ttt sttt snenes
DiISCOVETY SEIVICE APIS ..ttt ettt ettt et
DiSCOVETY SEIVICE ATCRITECTUTEvuuvuirircircieieieie ettt sesesse sttt scs s st ssessees
DiISCOVETY SEIVICE PIOCESS ...cvuvuvueueeiiireicieirireeeiete ettt e et sseseasaesennes
DiSCOVETY SEIVICE AITIDULES ...vuvueeieeieieirieceeteteieeciete ettt ettt es st b bbb s ss s ses s ssssssssesessnansnsans
PIOVIAET ID ..ottt ettt

Supported Authentication Mechanisms ..

SUPPOILEA DITECHIVESucuivereierciinciincirieiieiseei ettt ettt eans
Enable Policy Evaluation for DiSCOVErYLOOKUD ..ccvcriiiererririirieieesiiesessessssssessssssssssssessssssssnsens 140

Enable Policy Evaluation for DiscoveryUpdateeeeerererererenenen. 140
AULhOrizer PIUGIN Class ...t sssaees 140
Entry Handler PIUZIn Classccceeuerieieieirireieieietrcceie ettt seessie et ses st sessseseses 140
Classes For ResourceIDMapper PIUGincooveeeeeveeeerererererererereeeeeeseeens 140

Authenticate RESPONSE MESSAZEeueuucuiuiuiummceeeeiseesesese e sseasessesesse s ss s ssessesens 141

Generate SessionContextStatement for Bootstrapping 141

Encrypt Nameldentifier in Session Context for BOOtStrappingccceceuveeeeeererrereeserenressnesennes 141
Use Implied Resource; don’t generate ResourcelD for Bootstrappingccccecveereereececcuncnnees 141
Resource Offerings for BoOtStrapping RESOUICESc.evvvrurruriririiiriiinieiniienisesssessssssssssessssessssees 141

Discovery Entries and Resource Offerings

Storing Discovery Entries as User Attributes

V¥ To Access and Create a User’s Resource Offeringseeeveeeuneereerceeeernernernesnesseeseensensenns 142
Storing Discovery Entries as Dynamic AttriDULESocveveurieerieerieirineinineieeeieereiseseseesesesseseeseans 145

¥V To Store Discovery Entries as Dynamic Attributes in a Realmc.ccoevvveveiveveieveeieeerennne 145

V¥ To Store Discovery Entries as Dynamic Attributes in a Rolec..ccocoeeeuvcnenerncercnecevernennes 147
Storing Discovery Entries for BOOISIIAPPINGoveveueerereerieurieiricirieieeeiseseisseisseisesesessesessesessesns 150

WV To Store Discovery Entries for BOOSTTAPPINGcvvvvvvvrvirerereieierererereseseeesneeesseesssesesesesesesenens 150
DiSCOVETY SEIVICE APIS ...uuiiiiiiiiiiiciicc b 152
com.sun.identity.liberty.ws.interfaces.Authorizer Interfacecooovveevieeeenennns 152

V¥ To Configure POLiCYy DefINItIONScevevieruevereiieiicieseiese e ses e ses st sesssas s sesesanes 152
com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interfacecccccocvrvrenee 154
com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface 154
Client APIs in com.sun.identity.liberty.ws.disco .155
DiSCOVETY SEIVICE SAMPIEcouerereeireiriererceereeese e ieaeesessese et s esesse st sess s ssesacssesnens 156

Contents

8 SOAPBINAING SEIVICE ..ottt sttt s st s s st et ssassssssnas

PartIV

SOAP Binding Service Overview
XML SEIVICE Fle ...t ss s enns
SOAP Binding SerVICe APISc.cvueveiiiiiriireieieieineineiseiseesesessesseiseisessesseaeesesessessessessesessessesessessesecs

SOAP Binding Processc.cccu....

SOAP Binding Service Attributes
ReqQUEST HANALET LISt ...uvueireriiieiieeicieircecireietreieteiet ettt bbbttt bttt ssaens

WeDb Service AUtRENTICALOTccueviieieeieieiceceietetece ettt bbb s bt s s sassnses
Supported Authentication MEChANISIIIScccveveviirvirirererererereeeeeeeeeeeet e s eserese s seessasasasssene 160
SOAP Binding Service PACKAZEcccvevvvririririeieieeieeeteiceieeeseesssssssss st st s ssssssssssseseseseseseses 161

SAML Administration and Application Programming Interfacesccccovvevienivencniccnecnne 163

SAMLAAMINISTrAtioncocvoviiiieriieceececceee et er e enerenees 165
SAMEL OVEIVIEW ..ottt ettt et et et et e s aesat et e saesrt et e ssesstensesaesstensessesssessessesnsensesssensessessesnsessesseanes 165

Comparison of SAML and Liberty Specificationscceceeeererneuriireeneeeecmsennennenneeseeeeenensensenes 166
SAML Architecture in ACCESS MANAZETceueeeuriueurieririeeireietsiaesseaesseaessesessessssesessesssssssssssssssssssssess 166
USING SAML ..ot s s s bbb sasaes 168
ELEMENts Of SAML ..ottt ettt ses sttt eseeae 168
ASSEITION TYPES ...cevviiiiiiicc b 168
PIOFILE TYPES ..erereeeereereieieteeeee ettt saes 169
SAML SOAP RECEIVET ...ttt sssssss s sssssssses 175
SAMEL ATIIDULES ..ocvnvricecieeeieieireirci ettt sese et sesscesesesseseines 180
amSAML . XML AIIDULEScecvreeciecirccrrecrrecreecieecieeenene 181

V¥ To Modify Attributes in the amSAML . xmU Fileccceevveverererererenenee. 181
CONSOLE ALLIIDULES ..ovueeieeieeieieieeeireie ettt sttt bttt taens 181
SAMLAPT ..ottt 188
com.sun.identity.saml Package ... ssessessesessennes 188
com.sun.identity.saml.assertion Package ... 189
com.sun.identity.saml.common Package ... eeseeenes 189
com.sun.identity.saml.plugins Package ...t ieeeies 189
com.sun.identity.saml.protocol PACKAEEc.cciiincineineenenenenessessesessensennes 191

com.sun.identity.saml.xmlsig Package
SAML SAMPIES ..ececvrieiimcirencireeiree ettt bbb s seene

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Contents

10

Application Programming INtErfacescccoveuvieiiieirieinesineeses sttt ssssessssenns 195

PUDIIC INEEITACES ..uvuvvevevveverevetetetetetceeeese ettt ettt s st esesesesesebetesessasasasnsasasassasesesesesenen

Common Service Interfaces

com.sun.identity.liberty.ws.common Packagecuincnncnecrneesneenneenes 197
com.sun.identity.liberty.ws.interfaces PaCKagecommviereieseeereseisnerse oo 198
Common SECUTItY APT ..ottt 199
com.sun.identity.liberty.ws.security PaCkagecuncncnecneesneesneenes 199
com.sun.identity.liberty.ws.common.wsSe PaCKagecccccevmviveereireeereressnnessesessnsseneenes 200

INEETACTION SEIVICE ..ottt a et bebe s
Configuring the Interaction Service ...
Interaction SErvice APT ... s

PAOS BINAINE ..ottt ettt ettt et ettt b bbb bbbt ebetassssasasasesasasesesesnes
Comparison 0f PAOS and SOAP ..ottt seisessesssse e seasssessesenns
PAOS BINAING AP ...ttt s sttt sttt esasbenns
PAOS Binding SAIMIPILEccviiieieieieietcteteeetceeeeee ettt ettt et et s bbbttt sa s s s anann

Liberty-based and SAML Samples
Federation FramewWOrk SAIMPLESccccvieireriririnieinesinisieeeisee et sesss
SAMPLEL DITECLOTY oviuiriiuiiriiieirieetrie sttt sttt ettt st ekt st ae st s b et sbe et ebesebesenassene
SAMPLE2 DIIECIOTY vttt
SAMPLES DIFECLOTY .vcuiiiiiiiiiiiiciciicttc ettt ettt st sttt sse e b esesnanene
Web Services Framework Samples
WSC DIIECLOTY oottt

sis-ep Directory

PAOS DIIECTOTY ettt sttt ettt st sttt st et s b e et ebestetene

AUTNNSVC DITECLOTY vttt ettt ettt et et e teste e beeabanbaeseesaanbaessensansassnan
SAML SAIMPLES ...eerreeeiairieieineeeeierete e ssessese e et s sese s ettt seseese bbb sessees
Service SCheMA FIles ..ot ees 213
XSD Overview
SOAP Binding SChEmacueuieiiicicccreieei e ese s sesees 214
Personal Profile SCREMAc.cuouiieieieeceee ettt ses 216
Employee Profile SCREMAc.curuiiciiieieiiieicieiseisesseeieie st sss e ssss s ssss e ssessssssessesssssessens 222
Authentication Web Service SCHEIMAcvveuiueieeriririirireeiresinee ettt ssessssssssssssssssssenns 224
PAOS BiNdiNg SCHEMA ..ottt ettt bbbt b s e as b b sssanansesens 228
Metadata Description SCHEIMAc.cucveieiciniineereieieieieieiceseeseeeee ettt sessesesse st essesessessessessenne 229

Contents

INA@X ..ottt ettt s et s renean 235

10 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Figures

FIGURE 1-1
FIGURE 2-1
FIGURE 2-2
FIGURE 2-3
FIGURE 2-4
FIGURE 2-5
FIGURE 3-1
FIGURE 6-1
FIGURE 6-2
FIGURE 7-1
FIGURE 7-2
FIGURE 9-1
FIGURE 9-2

FIGURE 9-3

Subjects Involved in a Liberty ID-FF Implementationcccccevvvvveiiiiiiiiiiiiiieeeeeeeeeenen. 35
Process in a Liberty-enabled Use Case ...t 47
Liberty-based Architecture of ACCESS MANAZEToveeevveverirrererirrereisreresesseesssesessssens

Federation Intertace in Access Manager Console

Architecture of Liberty-based Web Servicesccocovvvevveeeriereceeeeicteeceeeeeeeeeveennee 52
Web Services Interface in Access Manager COnSole ..o, 52
Default Process of FEderationc.eceeeeueueueuceccineneneneneninenisseeieieieieesenesceeesesesesenens 65
Data Service lemplate as Building Block of Data Services ..., 120
Liberty Personal Profile Service Processcoocevveeninieeninieienineenenecnereeneeieeenes 124
Discovery Service ArChiteCtureooviviiieiiiiniiiiiiic e 136
Participants and Process of the Discovery Servicecccoovvevinievieveneccieseceeienn, 137
SAML Interaction in ACCess MaNagercccoeuiieieiiinietiieieeeeee e 167
Web Browser Artifact Profile INteractions ..o, 172
Web Browser POST Profile INteractions ..., 174

1

Tables

TABLE 2-1 PUDIIC INTEITACES ..o 53
TABLE 3-1 Authentication Context ClaSSEsccevererirrerererierirenerieeresereee et seenes 62
TABLE 3-2 Pre-login URL Parameters tor Federation
TABLE 3-3 Federation API Methods ..ottt
TABLE 4-1 Common Domain Services Properties in FSConfig.propertiescccevvevennnnen. 106
TABLE 5-1 Default Implementations for Authentication Mechanismccocoeeeeeiicnnnne. 115
TABLE 6-1 Data Service CLEnt APIS ..ot eeeesesenene 130
TABLE 7-1 Policy-Related DIreCtiVes ..ot 139
TABLE 7-2 Implementations of
com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler 154
TABLE 7-3 Discovery Service CHENt APISccccveceeerieieeeresieeeesesie et ssennes 155
TABLE 8-1 SOAP Binding Service CIaSSES ..ottt 161
TABLE 9-1 Benefits of the SAML and the Liberty Alliance Project Specificationscccceueuc.e 166
TABLE 10-1 Access Manager PUDIIC APLS ..o 195
TABLE 10-2 com.sun.identity.liberty.ws.common Classes 197
TABLE 10-3 com.sun.identity.liberty.ws.interfaces Intertaces .. 198
TABLE 10-4 com.sun.identity.liberty.ws.security Classesciimnninnrenennnenne 199
TABLE 10-5 com.sun.identity.liberty.ws.common.wSSe ClaSSEsccccccrrrrerrrreerrreersrneennane 200
TABLE 10-6 Interaction Service Properties in AMConfig.properties ... 201
TABLE 10-7 Interaction SErvice ClaSSesc.covrririrueueieueieieieeeeererese sttt 203
TABLE 10-8 PAOS BInding ClIaSSescoviiiririnisinisisieistetee st 204
TABLE A-1 Configuration Information for sSamplel SEIVELSccoveeevverreervervenreereerenreereevennee 210

Examples

EXAMPLE 1-1
EXAMPLE 6-1
EXAMPLE 9-1
EXAMPLE 9-2
EXAMPLE 9-3
EXAMPLE 9-4
EXAMPLE 10-1
EXAMPLE B-1
EXAMPLE B-2
EXAMPLE B-3
EXAMPLE B-4
EXAMPLE B-5

EXAMPLE B-6

XML Sample Dehining Authentication Context .

Extension Query for creditcard ...
SOAP Request tor Authentication Assertion Using Web Browser Artifact Profile 175
SOAP Response to SOAP Request tor Web Browser Artitact Profile ..177

Sample Code to Obtain an Attribute Value189
AuthorizationDecisionQuery Code Sample ...192
PAOS Client Servlet From PAOS SamPIEc.ooeveeeiereieeeiteeeeeereeeeeecveeeeevenens 205
SOAP Binding XSD File ... 214
Personal Profile Service XSD Filecooevviriiniiinincceeeereeneeeeee e 216
Employee Profile Service XSD SChema ... 222
Authentication Web Service XSD Filecccoevevviininiinniinincnccniceeceeeenns 224
Reverse H'1'I'P Binding tor SOAP XSD File ... 2238
Metadata Description and Discovery XSD Fileccccocvvivenviiniinenieninenieeneeeene, 230

Preface

The Sun™ Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide
provides information about the Federation and Security Assertions Markup Language (SAML)
components of Sun™ Java System Access Manager. The Federation and SAML Administration Guide
includes an introduction to the open-standard specifications used to develop these features and
information on how Access Manager has implemented them. It also includes information on
integrated web services, and summaries of the application programming interface (API).

Who Should Use This Book

This Federation and SAML Administration Guide is intended for use by IT professionals, network
administrators and software developers who implement a Liberty-enabled identity framework and
access platform using Sun Java System servers and software. It is recommended that administrators
understand the following technologies:

Lightweight Directory Access Protocol (LDAP)

Java o

JavaServer Pages (JSP)

HyperText Transfer Protocol (HTTP)

HyperText Markup Language (HTML)

eXtensible Markup Language (XML)

Web Services Description Language (WSDL)

Security Assertion Markup Language (SAML)

SOAP (SOAP is no longer an acronym for the messaging protocol.)

Before You Read This Book

Access Manager is a component of the Sun Java Enterprise System, a software infrastructure that
supports enterprise applications distributed across a network or Internet environment.

Because Access Manager is a component of the Sun Java Enterprise System, you should be
familiar with the Sun Java Enterprise System 2005Q4 documentation set.

Because Sun Java System Directory Server is used as the data store in a new Access Manager
deployment, you should be familiar with the Sun Java System Directory Server 5 2005Q4
documentation set..

Because Access Manager contains features based on the Liberty Alliance Project specifications,
you should be familiar with the Liberty Alliance Project specifications.

http://docs.sun.com/prod/entsys.05q1
http://docs.sun.com/coll/DirectoryServer_05q1
http://docs.sun.com/coll/DirectoryServer_05q1
http://www.projectliberty.org

Preface

How This Book Is Organized

The Federation and SAML Administration Guide contains instructional and conceptual material
regarding the Access Manager features based on the Liberty Alliance Project and SAML
specifications. The book is organized into the chapters described in the following table.

TABLE P-1 Chapters in Federation and SAML Administration Guide

Chapter

Description

Chapter 1, Introduction to the Liberty Alliance Project An overview of the specifications developed by the

Chapter 2, Implementation of the Liberty Alliance
Project Specifications

Chapter 3, Federation

Chapter 4, Common Domain Services

Chapter 5, Authentication Web Service

Chapter 6, Data Services

Chapter 7, Discovery Service

Chapter 8, SOAP Binding Service

Chapter 9, SAML Administration

Chapter 10, Application Programming Interfaces

Appendix A, Access Manager Samples

Liberty Alliance Project.

Contains conceptual material regarding the
implementation of the Liberty Alliance Project
specifications in Access Manager and its architecture.

Provides administrative information regarding setting
up entities and authentication domains as well as
information on extended federation capabilities.

Provides information regarding the installation and
deployment of the Common Domain Services.

Provides information regarding the deployment of the
Authentication Web Service.

Provides information regarding data services in
general and the Liberty Personal Profile Service and
Liberty Employee Profile Service in particular.

Provides information regarding the administration
and deployment of the Discovery Service.

Provides information regarding the administration
and deployment of the SOAP Binding Service.

Provides information regarding the implementation
of SAML in Access Manager functions.

Provides information regarding the API developed for
Access Manager that are based on the Liberty Alliance
Project specifications.

An appendix that provides information on the
samples developed for Access Manager and based on
the Liberty Alliance Project specifications.

18 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Preface

TABLE P-1 Chapters in Federation and SAML Administration Guide (Continued)

Chapter Description

Appendix B, Service Schema Files An appendix that contains the XML Schema

Definition (XSD) files developed by the Liberty
Alliance Project. The XSD files specify the
information its corresponding service can host by
defining the data and data structure.

Related Books

The Access Manager documentation consists of two sets:

“Access Manager Core Documentation” on page 19
“Sun Java System Product Documentation” on page 20

Note - For instructions on installing Access Manager, see the Sun Java Enterprise System 2005Q4
Installation Guide for UNIX.

Access Manager Core Documentation

The Access Manager documentation set contains the following titles:

The Sun Java System Access Manager 7 2005Q4 Release Notes will be available online after the
product is released. It gathers an assortment of last-minute information, including a description
of what is new in this current release, known problems and limitations, installation notes, and
how to report issues with the software or the documentation.

The Sun Java System Access Manager 7 2005Q4 Technical Overview provides an overview of how
Access Manager components work together to consolidate access control functions, and to
protect enterprise assets and web-based applications. It also explains basic Access Manager
concepts and terminology.

The Sun Java System Access Manager 7 2005Q4 Deployment Planning Guide provides
information for planning an Access Manager deployment within an existing information
technology infrastructure.

The Sun Java System Access Manager 7 2005Q4 Performance Tuning Guide provides information
on how to tune Access Manager and its related components for optimal performance.

The Sun Java System Access Manager 7 2005Q4 Administration Guide describes how to use the
Access Manager console as well as manage user and service data via the command line interface.

The Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide (this
guide) provides information about the features in Access Manager that are based on the Liberty
Alliance Project and SAML specifications. It includes information on the integrated services
based on these specifications, instructions for enabling a Liberty-based environment, and
summaries of the application programming interface (API) for extending the framework.

Preface

® The Sun Java System Access Manager 7 2005Q4 Developer’s Guide offers information on how to
customize Access Manager and integrate its functionality into an organization’s current technical
infrastructure. It also contains details about the programmatic aspects of the product and its API.

» The Sun Java System Access Manager 7 2005Q4 C API Reference provides summaries of data
types, structures, and functions that make up the public Access Manager C APIs.

® The Java API Reference are generated from Java code using the Javadoc™ tool. The pages provide
information on the implementation of the Java packages in Access Manager.

® The Sun Java System Access Manager Policy Agent 2.2 User’s Guide provides an overview of the
policy functionality and the policy agents available for Access Manager.

Updates to the Release Notes and links to modifications of the core documentation can be found on
the Access Manager page at the Sun Java System 2005Q4 documentation web site. Updated
documents will be marked with a revision date.

Sun Java System Product Documentation

Useful information can be found in the documentation for the following Sun Java System products:

Sun Java System Directory Server
Sun Java System Web Server
Sun Java System Application Server

Sun Java System Web Proxy Server

Accessing Sun Resources Online

For product downloads, professional services, patches, support, and additional developer
information, go to:

Download Center

Sun Software Services

Sun Java Systems Services Suite

Sun Enterprise Services, Solaris Patches, and Support

Developer Information

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in the product
documentation, contact Sun Support Services

20 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://docs.sun.com/app/docs/coll/1292.1
http://docs.sun.com/prod/entsys.05q4
http://docs.sun.com/coll/1316.1
http://docs.sun.com/coll/1308.1
http://docs.sun.com/coll/1310.1
http://docs.sun.com/coll/1311.1
http://wwws.sun.com/software/download/
http://www.sun.com/service/support/software/
http://www.sun.com/service/sunjavasystem/sjsservicessuite.html
http://sunsolve.sun.com/
http://developers.sun.com/prodtech/index.html
http://www.sun.com/service/contacting

Preface

Related Third-Party Web Site References

Third-party URLs are referenced in this documentation set and provide additional, related
information. Sun is not responsible for the availability of third-party Web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not be
responsible or liable for any actual or alleged damage or loss caused by or in connection with the use
of or reliance on any such content, goods, or services that are available on or through such sites or
resources.

Sun Welcomes Your Feedback

Sun Microsystems is interested in improving its documentation and welcomes your comments and
suggestions. To share your thoughts, go to http://docs. sun.comand click the Send Comments link
at the bottom of the page. In the online form provided, include the document title and part number.
The part number is a seven-digit or nine-digit number that can be found on the title page of the book
or at the top of the document. For example, the title of this book is Sun Java System Access Manager 7
2005Q4 Federation and SAML Administration Guide, and the part number is 819-2142.

Documentation, Support, and Training

Sun Function URL Description

Documentation http://www.sun.com/documentation/ Download PDF and HTML
documents, and order printed
documents

Supportand http://www.sun.com/supportraining/ Obtain technical support,

Training download patches, and learn

about Sun courses

Typographic Conventions

The following table describes the typographic changes that are used in this book.

21

http://docs.sun.com
http://www.sun.com/documentation/
http://www.sun.com/supportraining/

Preface

TABLE P-2 Typographic Conventions

Typeface or Symbol

Meaning

Example

AaBbCc123

The names of commands, files, and directories,
and onscreen computer output

Edit your . login file.
Use 1s -a to list all files.

machine_name% you have mail.

AaBbCc123

What you type, contrasted with onscreen
computer output

machine name% su

Password:

aabbccl23

Placeholder: replace with a real name or value

The command to remove a file is rm
filename.

AaBbCc123

Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s Guide.
Perform a patch analysis.
Do not save the file.

[Note that some emphasized items
appear bold online.]

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P-3 Shell Prompts

Shell

Prompt

C shell prompt

machine name%

C shell superuser prompt

machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

22 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

PART I

The Liberty Alliance Project Specifications
and Access Manager

m Chapter 1, Introduction to the Liberty Alliance Project
= Chapter 2, Implementation of the Liberty Alliance Project Specifications

23

24

L R R 4 CHAPTER 1

Introduction to the Liberty Alliance Project

Sun Java™ System Access Manager implements identity federation, single sign-on (SSO), and web
services specifications defined by the Liberty Alliance Project. This introductory chapter explains
concepts used in the specifications, and the role of the Liberty Alliance Project in creating
identity-based solutions.

This chapter covers the following topics:

“Overview of the Liberty Alliance Project” on page 25
“Concept of Identity” on page 26

“Concept of Federation” on page 27

“Liberty Alliance Project Concepts” on page 28
“Liberty Alliance Project Specifications” on page 34
“Deploying a Liberty-based System” on page 42

Overview of the Liberty Alliance Project

In 2001 Sun Microsystems joined with other major companies to form the Liberty Alliance Project.
The goals were to define standards for developing identity-based infrastructures, software, and web
services, and to promote adoption of these standards. The Liberty Alliance Project does not deliver
products or services. It defines frameworks to ensure interoperability between homogeneous
products while respecting the privacy and security of identity data.

Note - If you are already familiar with the concepts and protocols developed by the Liberty Alliance
Project, go to Chapter 2 for information on how these standards are integrated into Access Manager.

Members of the Liberty Alliance Project

The members of the Liberty Alliance Project include some of the world’s most recognized
companies, representing products, services and partnerships across a wide spectrum of consumer

25

Concept of Identity

and business service providers. Members also include government organizations and technology
vendors. For a complete listing of current members, see the Liberty Alliance Project web site.

Note - Only members of the Liberty Alliance Project are allowed to provide feedback on drafts of the
specifications although any organization may implement them.

Objectives of the Liberty Alliance Project
Specifications

The specifications developed by the Liberty Alliance Project enable individuals and organizations to
securely conduct network transactions. The main objectives include:

= Serve as open standards for federated identity management and web services.
= Supportand promote permission-based sharing of personal identity attributes.

® Provide a standard for SSO that includes decentralized authentication and authorization for
multiple providers.

= Create an open network identity infrastructure that supports all current and emerging user agents
(also referred to as browsers or wireless browsers).

= Enable consumers to protect their network identity information.

Concept of Identity

26

In one dictionary, identity is defined as ”a set of information by which one person is definitively
distinguished”. This information begins with a document that corroborates a person’s name: a birth
certificate. Over time, additional information further designates aspects of identity:

An address

A telephone number
One or more diplomas
Adriver’slicense

A passport

Financial institution accounts
Medical records
Insurance statements
Employment records
Magazine subscriptions
Utility bills

Each of these individual documents represents data that defines a person’s identity as it relates to the
enterprise for which the identity was defined. The composite of this data constitutes an overall
identity with each specific piece providing a distinguishing characteristic.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/membership/current_members.php

Concept of Federation

Because the Internet is becoming the primary vehicle for the types of interactions represented by this
identity-defining information, people are now creating online identities specific to the businesses
with which they interact. By defining a user identifier and password, an email address, personal
preferences (such as style of music, or opt-in/opt-out marketing decisions) and other information
more specific to the particular business (a bank account number or ship-to address), users
distinguish themselves from others who use the enterprise’s services. This distinguishing
information is referred to as a local identity because it is specific to the service provider for which it
has been set.

Considering the number of service providers for which you can define a local identity, accessing each
provider can be a time-consuming and frustrating experiencing. In addition, although most local
identities are configured independently (and fragmented across the Internet), it might be useful to
connect the information. For example, a user’s local identity with a bank could be securely connected
to the same user’s local identity with a retailer. Federation addresses this issue.

Concept of Federation

Federation is defined as ”an association formed by merging several groups or parties”. In the Liberty
Alliance Project specifications, federation encompasses both identity federation and provider
federation.

Identity Federation

Federation, as it has evolved with regard to the World Wide Web, begins with the notion of identity.
Sending and receiving email, checking bank balances, finalizing travel arrangements, accessing
utility accounts, and shopping are just a few online services for which a user might define an identity.
Now, in order to access the service, the user logs in to the service provider, a networked entity that
provides services to other entities.

If a user accesses these services, many user accounts have been configured separately. This virtual
phenomenon offers an opportunity to fashion a system for users to federate their disparate service
provider identities.

Identity federation allows the user to link, connect, or bind the local identities that have been created
for the multiple service providers. The linked local identities, referred to as a federated identity, allow
the user to log in to one service provider site and click through to an affiliated service provider
without having to reauthenticate or reestablish identity.

Provider Federation

The concept of federation as defined by the Liberty Alliance Project begins with a “circle of trust.” A
circle of trust is a group of service providers who contractually agree to exchange authentication
information using a Liberty-enabled architecture. Each circle must also include at least one identity
provider. An identity provider is a service provider that maintains and manages identity data, and
provides authentication services.

Chapter 1 « Introduction to the Liberty Alliance Project 27

Liberty Alliance Project Concepts

Note - The establishment of contractual agreements between providers is beyond the scope of this
guide. For information, see the Liberty Trust Model Guidelines.

After the contracts and policies defining a circle of trust are in place, the specific protocols, profiles
and security mechanisms being used in the deployment are distilled into a metadata document that
is exchanged between the members of the circle of trust. Access Manager provides the tools necessary
to integrate the metadata and enable the circle technologically as an authentication domain.
Authentication within this virtual federation is honored by all membered providers of the
authentication domain. For more information, see “Authentication Domain” on page 29.

Liberty Alliance Project Concepts

28

Many of the concepts defined in this section are derived from the specifications discussed in “Liberty
Alliance Project Specifications” on page 34.

Account Federation

See “Identity Federation” on page 31.

Affiliation

An affiliation is a group of providers formed without regard to a particular authentication domain.
An affiliation is formed and maintained by an affiliation owner. Members of an affiliation may invoke
services either as a member of the affiliation (by virtue of their Affiliation ID) or individually (by
virtue of their Provider ID). An affiliation document describes a group of providers. See Chapter 3 for
more information.

Attribute Provider

An attribute provider is a web service that hosts attribute data, for example, an instance of the Liberty
Personal Profile Service data service. For more information, see Chapter 6.

Authentication Context

Authentication context refers to information added to a SAML Authentication Assertion regarding
details of the technology used for the actual authentication action. This information might include
the method of authentication (HTTP Basic or Safeword), the process followed in the issuance of the
identity (for example, web self-registration), and any other characteristics that may be relevant to the
SAML assertion consumer. The following XML example describes a user having authenticated with a
password over an SSL-protected session:

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/resources/specifications.php#box4

Liberty Alliance Project Concepts

EXAMPLE 1-1 XML Sample Defining Authentication Context

<?xml version="1.0" encoding="UTF-8" 7>
<AuthenticationContextStatement>
<AuthenticationMethod>
<PrincipalAuthenticationMethod>
<Password>
<Length min="3"/>
</Password>
</PrincipalAuthenticationMethod>
<AuthenticatorTransportProtocol>
<SSL/>
</AuthenticatorTransportProtocol>
</AuthenticationMethod>
<AuthenticationContextStatement>

Authentication Domain

An authentication domain is a federation of service providers (with at least one identity provider)
that is configured technologically. The providers interact using the Liberty Alliance Project
specifications. The term authentication domain does not encompass the prerequisite business
agreements established between providers in a circle of trust. After the circle of trust is established, an
authentication domain can be configured and single sign-on can be enabled.

Note - An authentication domain is not a domain in the Domain Name System (DNS) sense of the
word.

Circle of Trust

See “Provider Federation” on page 27.

Client

A client is the role that any system entity assumes when making a request of another system entity. In
this scenario, the system entity to which the request is made is called a server as discussed in “Server”
on page 32.

Common Domain

If an authentication domain has more than one identity provider, the service providers need a way to
determine which identity provider is used by the principal (as discussed in “Principal” on page 32).
Because this function must work across any number of DNS domains, the Liberty approach is to

Chapter 1 « Introduction to the Liberty Alliance Project 29

Liberty Alliance Project Concepts

30

create one domain that is common to all identity and service providers in the authentication domain.
This predetermined domain is called the common domain. Within the common domain, when a
principal has been authenticated to a service provider, the identity provider writes a common domain
cookie that stores the principal’s identity provider. When the principal attempts to access another
service provider within the authentication domain, the service provider reads the common domain
cookie and the request is forwarded to the correct identity provider. See Chapter 4 for more
information.

Defederation

See “Federation Termination” on page 30.

Federation

See “Concept of Federation” on page 27.

Federation Cookie

A federation cookie called fedCookie is implemented by Access Manager. It can have a value of yes or
no, based on the principal’s federation status. For information on how a federation cookie is used, see
“Process of Federation” on page 64 in Chapter 3.

Note - The concept of a federation cookie was developed for Access Manager and is not a defined part
of the Liberty Alliance Project specifications. The definition is placed here for information only.

Federated Identity

A federated identity refers to the consolidated account information that a user has provided to service
providers. Personal data, authentication information, buying habits and history, and shopping
preferences are examples of user account information. The information is administered by the user,
and can be securely shared with other service providers.

Federation Termination

Users can terminate their federations. Federation termination, or defederation), cancels identity
federations established between the user’s identity provider and service provider accounts.

Identity

See “Concept of Identity” on page 26.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Liberty Alliance Project Concepts

Identity Federation

Identity federation occurs when a user chooses to unite distinct service provider accounts with one or
more identity provider accounts. A user retains the individual account information with each
provider while, simultaneously; establishing a link that allows the exchange of authentication
information between them. For more information, see “Concept of Federation” on page 27.

Identity Provider

An identity provider is a service provider that specializes in providing authentication services. As the
administrating service for authentication, an identity provider also maintains and manages identity
information. Authentication by an identity provider is honored by all service providers with whom
the identity provider is affiliated. This term is used when defining an entity of this sort specific to the
Liberty Identity Federation Framework as discussed in “Liberty Identity Federation Framework”
on page 34.

Identity Service

An identity service (also referred to as a data service) is a web service that acts on a resource to
retrieve, update, or perform some action on data attributes related to a principal (an identity). For
example, an identity service might be a corporate phone book or calendar service. For more
information, see Chapter 6.

Liberty-Enabled Client

A Liberty-enabled client is a client that has, or knows how to obtain, information about the identity
provider that a principal will use to authenticate to a service provider.

Liberty-Enabled Proxy

A Liberty-enabled proxy is an HT'TP proxy that emulates a Liberty-enabled client.

Name Identifier

To help preserve anonymity when identity information is exchanged between identity and service
providers, an arbitrary name identifier is used. A name identifier is a randomly generated character
string that is assigned to a principal and used to facilitate account linking at the identity provider and
service provider sites. This pseudonym allows all providers to identify a principal without knowing
the user’s actual identity. The name identifier has meaning only in the context of the relationship
between providers.

Chapter 1 « Introduction to the Liberty Alliance Project 31

Liberty Alliance Project Concepts

32

Principal

A principal is an entity that can acquire a federated identity, that is capable of making decisions, and
has authenticated actions done on its behalf. Examples of principals include an individual user, a
group of individuals, a corporation, other legal entities, or a component of the Liberty architecture.

Profile

A Liberty-based profile defines the combination of a message’s content and its transport mechanisms
for a user agent.

Provider Federation

See “Concept of Federation” on page 27.

Pseudonym

See “Name Identifier” on page 31.

Receiver

A receiver is the role of a system entity when it receives a message sent by another system entity. In
this scenario, the system entity from which the message is received is called a sender as discussed in
“Sender” on page 32.

Resource Offering

In a discovery service, a resource offering defines associations between a piece of identity data and the
service instance that provides access to it. See Chapter 7.

Sender

A sender is the role donned by a system entity when it constructs and sends a message to another
system entity. In this scenario, the system entity from which the message is received is called a
receiver as discussed in “Receiver” on page 32.

Server

A server is the role that any system entity assumes when providing a service in response to a request
from another system entity. In this scenario, the system entity from which the request is received is
called a client as discussed in “Client” on page 29.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Liberty Alliance Project Concepts

Note - In order to provide a service to clients, a server will often be both a sender and a receiver.

Service Provider

A service provider is a commercial or not-for-profit organization that offers web-based services to a
principal. This broad category can include Internet portals, retailers, transportation providers,
financial institutions, entertainment companies, libraries, universities, and governmental agencies.
This term is used when defining an entity of this sort specific to the Liberty Identity Federation
Framework as discussed in “Liberty Identity Federation Framework” on page 34.

Single Logout

A single logout occurs when a user logs out of an identity provider or a service provider. By logging
out of one provider, the user is logged out of all service providers or identity providers in that
authentication domain.

Single Sign-On

Single sign-on is established when a user with a federated identity authenticates to an identity
provider. If the user has previously opted-in for federation, access to affiliated service providers
without having to re-authenticate is available.

Trusted Provider

A trusted provider is a generic term for one of a group of service and identity providers in an
authentication domain. A user can transact and communicate with trusted providers in a secure
environment.

Web Service Consumer

A web service consumer invokes the operations that a web service provides by making a request to a
web service provider. This term is used when defining an entity of this sort specific to the Liberty
Identity Web Services Framework as discussed in “Liberty Identity Web Services Framework”

on page 39.

Web Service Provider

A web service provider implements a web service based on a request from a web service consumer.
This term is used when defining an entity of this sort specific to the Liberty Identity Web Services
Framework as discussed in “Liberty Identity Web Services Framework” on page 39.

Chapter 1 « Introduction to the Liberty Alliance Project 33

Liberty Alliance Project Specifications

Note — A web service provider may run on the same Java virtual machine as the web service consumer
that is using it.

Liberty Alliance Project Specifications

34

The Liberty Alliance Project develops and delivers specifications that enable federated network
identity management. Using web redirection and open-source technologies such as SOAP and XML,
they enable distributed, cross-domain interactions. The specifications are divided into the following
components:

® “Liberty Identity Federation Framework” on page 34
= “Liberty Identity Web Services Framework” on page 39
= “Liberty Identity Service Interface Specifications” on page 41

There are also many support documents in the specifications, including a metadata service protocol,
reverse HTTP bindings, a glossary, and schema files. For more information on all of the documents,
see the Liberty Alliance Project web site.

Liberty Identity Federation Framework

The Liberty Identity Federation Framework (Liberty ID-FF) defines a set of protocols, bindings, and
profiles that provides a solution for identity federation, cross-domain authentication, and session
management. This framework can be used to create a new identity management system or to develop
one in conjunction with legacy systems. The Liberty ID-FF is designed to work with heterogeneous
platforms, various networking devices (including personal computers, mobile phones, and personal
digital assistants), and emerging technologies. The following figure shows the subjects involved in a
Liberty ID-FF implementation.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/resources/specifications.php#box4

Liberty Alliance Project Specifications

The principal has a defined
local identity with more than
one provider, and has the

An authentication domain

is a group of providers that

have joined together to exchange
authentication information.

/

Service providers in the
authentication domain offer
complimentary services.

/

option to federate them.

The identity provider is the center

of the authentication infrastructure.

It is a trusted entity that maintains
core attributes regarding the principal.

FIGURE 1-1 Subjects Involved in a Liberty ID-FF Implementation

A principal can have a defined local identity with more than one provider, and it has the option to
federate the identities. The principal might be an individual user, a group of individuals, a
corporation, or a component of the Liberty architecture.

A service provider is a commercial or not-for-profit organization that offers a web-based service
such as a news portal, a financial repository, or retail outlet.

An identity provider is a service provider that stores identity profiles and offers incentives to other
service providers for the prerogative of federating their user identities. Identity providers might
also offer services above and beyond those related to identity profile storage.

To support identity federation, both service and identity providers must join together into an
authentication domain. An authentication domain must contain at least one identity provider
and at least two service providers. One organization may be both an identity provider and a
service provider.

Organizations in an authentication domain must first write operational agreements to define their
relationships in a circle of trust. An operational agreement is a contract between organizations that
defines how the circle will work. For more information, see “Authentication Domain” on page 29
and “Provider Federation” on page 27.

Liberty ID-FF Protocols and Schema
The Liberty ID-FF Protocols and Schema Specifications defines these abstract protocols:

“Single Sign-On and Federation Protocol” on page 36
“Name Registration Protocol” on page 37

Chapter 1 « Introduction to the Liberty Alliance Project 35

Liberty Alliance Project Specifications

= “Federation Termination Notification Protocol” on page 37
= “Single Logout Protocol” on page 37
= “Name Identifier Mapping Protocol” on page 38

Following are short explanations of each protocol. More detailed information can be found in the
Liberty ID-FF Protocols and Schema Specifications.

Single Sign-On and Federation Protocol

The Single Sign-On and Federation Protocol defines a request and response protocol by which a
principal is able to authenticate to one or more service providers and federate (or link) configured
identities. A service provider issues a request for authentication to an identity provider. The identity
provider responds with a message that contains authentication information, or an artifact that points
to authentication information. The identity provider can also federate the principal’s identity
(configured at the identity provider level) with the principal’s identity (configured at the service
provider level).

Note - Under certain conditions, an identity provider may issue an authentication response to a
service provider without having received an authentication request.

The Single Sign-On and Federation Protocol also defines controls that allow for the following
behaviors:

= Account federation. A principal can choose to federate a configured identity at the identity
provider site with a configured identity at the service provider site.

= Account handle. An identity provider can issue an anonymous, temporary identifier to refer to a
particular principal during communication with a service provider. This identifier is used to
obtain information for or about the principal during federation (with the principal’s consent).
The account handle is generated by the identity provider during federation. This account handle
is not to be confused with the handle that can be generated by the service provider after
federation using the Name Registration Protocol as discussed in “Name Registration Protocol”
on page 37.

= Affiliation federation. Federation based on group affiliation can be enabled in an authentication
request. If enabled, it indicates that the requester is acting as a member of the specified affiliation
group. Federations are then established and resolved based on the affiliation, not the requesting
provider. The process allows for a unique identifier that represents the affiliation.

= Authentication context. A service provider can choose the type and level of authentication that
should be used when a principal logs in.

= Authentication credentials. A principal can be prompted to authenticate with a user name and
password, for example, at the behest of the service provider.

= Dynamic identity provider proxying. One identity provider might be asked to authenticate a
principal that has already been authenticated by a second identity provider. In this case, the first
identity provider may request authentication information from the second identity provider on
behalf of the service provider. Proxy behavior can be controlled by indicating a list of preferred
identity providers, and a value that defines the maximum number of proxy steps that can be

36 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-errata-v1.0.pdf

Liberty Alliance Project Specifications

taken. Proxy behavior is defined locally by the proxying identity provider, although a service
provider controls whether or not to proxy. For more information, see “Dynamic Identity
Provider Proxying” on page 97.

= Identity provider introduction. When an authentication domain has more than one identity
provider, a service provider can use this feature to determine which identity provider a principal
is using.

= Message exchange profiles. The authentication request defines how messages are exchanged
between identity providers and service providers. The particular transfer and messaging protocol
used in the exchange (such as HTTP or SOAP) are specified in profiles. Two of these profiles are:

= The Liberty Artifact profile relies on Security Assertion Markup Language (SAML) artifacts
and assertions to relay authentication information.

= The Liberty Browser POST profile relies on an HTML form to communicate authentication
information between providers.

= One-time federation. The ability to federate for one session only can be enabled in an
authentication request. This feature is useful for service providers with no user accounts, for
principals who want to act anonymously, or for dynamically created user accounts. It allows for
one-time federation, rather than a one-time name identifier for a session.

Name Registration Protocol

The optional Name Registration Protocol is used by the service provider to create its own opaque
handle to identify a principal when communicating with the identity provider.

Note - The handle discussed in this section is not related to the opaque handle that is generated by the
identity provider during federation as defined in “Single Sign-On and Federation Protocol” on page
36. The Name Registration Protocol can, however, be used by the identity provider to change the
opaque handle that it registered with the service provider during initial federation.

Federation Termination Notification Protocol

The Federation Termination Notification Protocol defines how the identity provider or the service
provider notifies the other provider when a principal has terminated identity federation. The
notification is a one-way, asynchronous message which states one of the following:

= The service provider will no longer accept authentication information regarding the particular
user.

= The identity provider will no longer provide authentication information regarding the particular
user.

Single Logout Protocol

The Single Logout Protocol defines how providers notify each other of logout events. This message
exchange protocol is used to terminate all sessions when a logout occurs at the service provider or

Chapter 1 « Introduction to the Liberty Alliance Project 37

Liberty Alliance Project Specifications

38

identity provider. The particular transfer and messaging protocol used in the exchange (such as
HTTP or SOAP) are specified in profiles. Two of these profiles are:

= The SOAP/HTTP-based profile relies on asynchronous SOAP over HTTP messaging calls
between providers.

= The HTTP Redirect-based profile relies on HTTP redirects between providers.

Name Identifier Mapping Protocol

The Name Identifier Mapping Protocol defines how service providers can obtain name identifiers that
are assigned to a principal that has federated in the name space of a different service provider. When
a principal authenticated to one service provider requests access to a second service provider site, the
second service provider can use this protocol to obtain the name identifier. The protocol allows the
second service provider to communicate with the first service provider about the principal even
though no identity federation for the principal exists between them.

Liberty ID-FF Bindings and Profiles

The Liberty ID-FF Bindings and Profiles Specification defines the bindings and profiles for the Liberty
protocols and messages sent to HT'TP-based communication frameworks. This specification relies
on the core SAML framework. For example, the Name Identifier Encryption Profile permits a
principal’s name identifier to be encrypted so that only the provider possessing the decryption key
can realize the identity. The encrypted identifier is a different value when requested by different
providers. Using different values reduces the chance for correlation of the encrypted value across
multiple logical transactions. For more information about the Name Identifier Encryption Profile and
the specification in general, see the Liberty ID-FF Bindings and Profiles Specification.

Additional Liberty ID-FF Documents
For additional information about the Liberty ID-FF specifications, see the following documents.

w Liberty ID-FF 1.2 Architecture Overview

Provides an architectural description of the Liberty ID-FF framework as well as policy, security,
and technical notes.

w Liberty ID-FF 1.2 Implementation Guidelines

Provides guidance and checklists for implementing a Liberty-enabled environment using the
Liberty ID-FF specifications.

m Liberty ID-FF 1.2 Static Conformance Requirements

Defines what features are mandatory and optional for implementations conforming to this
version of the Liberty ID-FF specifications.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/specs/draft-liberty-idff-bindings-profiles-1.2-errata-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idff-arch-overview-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idff-guidelines-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idff-1.2-scr-v1.0.pdf

Liberty Alliance Project Specifications

Liberty Identity Web Services Framework

The Liberty ID-FF defines how to implement single sign-on and identity federation to solve
problems related to network identity. The Liberty Identity Web Services Framework (Liberty
ID-WSF) builds on this by providing specifications to develop web services that retrieve, update, or
perform an action on identity data in a federated network environment. The specifications outline
the technical components needed to build web services that operate with identity data, such as a
calendar service, a wallet service, or an alert service. A scenario that implements these specifications
includes the following subjects:

= Aweb service consumer (WSC) invokes the operations that a web service provides by making a
request to a web service provider.

= Aweb service provider (WSP) implements a web service based on a request from a web service
consumer.

Web services are the basis of distributed computing across the Internet. A WSC locates a web service
and invokes the operations the web service provides. The WSP is the application that implements a
web service. The web service can be on the same Java virtual machine as the WSC, or it can be
thousands of miles away. When a WSC needs to retrieve identity attributes from a WSP, the WSC
must first contact a discovery service to locate where the particular attributes are stored. When this
information is returned, the WSC then contacts the WSP (for example, a personal profile service) to
retrieve the necessary attributes.

For more information about the process between a WSC and WSP, see “Discovery Service Process”
on page 136.

Liberty ID-WSF Specifications
The Liberty ID-WSF includes these specifications:

“SOAP Binding Specification” on page 39
“Discovery Service Specification” on page 40
“Security Mechanisms Specification” on page 40
“Data Services Template Specification” on page 40
“Interaction Service Specification” on page 40
“Authentication Service Specification” on page 40
“Client Profiles Specification” on page 41

SOAP Binding Specification

The Liberty ID-WSF SOAP Binding Specification provides a transport layer for handling SOAP
messages. It defines SOAP header blocks and processing rules that enable the invocation of identity
services using SOAP requests and responses. It also specifies how to 1) configure messages for
optimum message correlation, assuring the relationship between a SOAP request and its response, 2)
consent claims (permission to perform a certain action), and 3) usage directives (data handling
policies). For more information, see the Liberty ID-WSF SOAP Binding Specification.

Chapter 1 « Introduction to the Liberty Alliance Project 39

http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.2.pdf

Liberty Alliance Project Specifications

40

Discovery Service Specification

The Liberty ID-WSF Discovery Service Specification defines a framework that enables a client to
locate the appropriate web service for retrieving, updating, or modifying a particular piece of identity
data. Typically, there are one or more services on a network that allow entities to perform an action
on identity data. To keep track of these services or to know which can be trusted, clients require a
discovery service. A discovery service is essentially a web service interface for a registry of resource
offerings. A resource offering defines an association between a piece of identity data and the service
instance that provides access to the data. A common use case is when a personal profile or calendar
data is placed within a discovery resource so that the data can be located by other entities. For more
information, see the Liberty ID-WSF Discovery Service Specification.

Security Mechanisms Specification

The Liberty ID-WSF Security Mechanisms Specification describes the requirements for securing
authorization decisions that are sent for the discovery and use of identity services. The specified
mechanisms provide for authentication, signing, and encryption operations to ensure integrity and
confidentiality of the messages. For more information, see the Liberty ID-WSF Security Mechanisms
Specification.

Data Services Template Specification

The Liberty ID-WSF Data Services Template Specification defines how to query and modify the
identity data attributes that are stored in a data service (a web service that holds data). The
specification also provides common attributes for data services. For more information, see the
Liberty ID-WSF Data Services Template Specification.

Interaction Service Specification

The Liberty ID-WSF Interaction Service Specification provides communication protocols for identity
services to obtain permission from a principal (or someone who owns a resource on behalf of that
principal) that allows the service to share the principal’s identity data with requesting services. For
more information, see the Liberty ID-WSF Interaction Service Specification.

Authentication Service Specification

The Liberty ID-WSF Authentication Service Specification defines how to authenticate parties
communicating via SOAP-based messages. It leverages widely used authentication services and
mechanisms, and facilitates selection of these services and mechanisms at deployment time. The
specification defines the following:

= Anauthentication protocol based on the Simple Authentication and Security Layer (SASL).

= Anauthentication service that Liberty-enabled clients can use to authenticate with identity
providers.

= Asingle sign-on service that Liberty-enabled providers can use to interact with each other.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/specs/liberty-idwsf-disco-svc-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.2.pdf
http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-interaction-svc-v1.1.pdf

Liberty Alliance Project Specifications

The specification also defines an identity-based authentication security token service,
complementing the more general security token service as discussed in the section, “Discovery
Service Specification” on page 40. For more information, see the Liberty ID-WSF Authentication
Service Specification.

Client Profiles Specification

The Liberty ID-WSF Client Profiles Specification describes the requirements for Liberty-enabled
clients that interact with the SOAP-based Authentication Service. Client profiles can enable browsers
to perform an active role in transactions, in addition to the functions of a standard browser. For more
information, see the Liberty ID-WSF Client Profiles Specification.

Additional Liberty ID-WSF Documents

For additional information about the Liberty ID-WSF specifications, see the following documents:

» Liberty ID-WSF Architecture Overview

Provides an architectural description of the Liberty ID-WSF framework including basic usage
scenarios. It also highlights how the Liberty ID-WSF interacts with an identity management
framework (such as the Liberty ID-FF).

m Liberty ID-WSF Security and Privacy Overview
Provides an overview of security and privacy issues in the Liberty ID-WSE.
m Liberty ID-WSF Implementation Guidelines
Provides guidelines on how the Liberty ID-WSF specifications should be implemented.

Liberty Identity Service Interface Specifications

The Liberty Identity Service Interface Specifications (Liberty ID-SIS) are for building identity-based
web services. Included in the Liberty ID-SIS are the following:

= “Liberty ID-SIS Personal Profile Service Specification” on page 41
= “Liberty ID-SIS Employee Profile Service Specification” on page 42
= “Additional Liberty ID-SIS Service Specifications” on page 42

Liberty ID-SIS Personal Profile Service Specification

The Liberty ID-SIS Personal Profile Service Specification defines an identity-based web service that
keeps, updates, and offers identity data regarding a user. This service queries and updates of attribute
data and incorporates mechanisms for access control and conveying data validation information and
usage directives from other specifications. A shopping portal that offers information such as the
principal’s account number and shopping preferences is an example of a personal profile service. For
more information, see the Liberty ID-SIS Personal Profile Service Specification.

Chapter 1 « Introduction to the Liberty Alliance Project 41

http://www.projectliberty.org/specs/liberty-idwsf-authn-svc-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-authn-svc-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-client-profiles-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-overview-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idwsf-security-privacy-overview-v1.0.pdf
http://www.projectliberty.org/specs/draft-liberty-idwsf-guidelines-v2.0-01.pdf
http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Deploying a Liberty-based System

Liberty ID-SIS Employee Profile Service Specification

The Liberty ID-SIS Employee Profile Service Specification defines an identity-based web service that
keeps, updates, and offers profile information regarding a user’s workplace. An online corporate
phone book that provides an employee name, office building location, and telephone extension
number is an example of an employee profile service. For more information, see the Liberty ID-SIS
Employee Profile Service Specification.

Additional Liberty ID-SIS Service Specifications

The Liberty Alliance Project defines several other Liberty ID-SIS that are not discussed in this
section, including a contact book, a geolocation service, and a presence service. For more
information on these services, see the documentation in the Liberty ID-SIS.

Deploying a Liberty-based System

42

To build a successful Liberty-based implementation, consider the issues described in this section. At
the minimum, a Liberty-compliant identity server is needed to process Liberty-based requests and
responses.

Assess the Qualifications of Your IT Staff

Although the specifications are aimed at large organizations, small and medium-sized companies
with an experienced IT staff can also roll out a federated identity system. The specifications are
complex and require several areas of expertise, including web services development, XML,
networking, and security.

Clean Up Directory Data

The specifications do not specify where to store identity data. Purge your data store of old identity
profiles, consolidate multiple (or delete duplicated) identity profiles, and ensure that privileges are
assigned correctly.

Tip - Identity providers must enforce strict regulations regarding passwords. A stolen identity can be
abused across multiple sites in a federated system.

Draft Business Agreements

The specifications assume existing trust relationships between members in a circle of trust. This trust
is defined through business arrangements or contracts that describe the technical, operational, and
legal responsibilities of each party and the consequences for not completing them. When defined, a

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/specs/liberty-idsis-ep-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idsis-ep-v1.0.pdf
http://www.projectliberty.org/resources/specifications.php#box3

Deploying a Liberty-based System

Liberty trust relationship means that one organization trusts another’s user authentication decisions.
That trust among members enables a user to log in at one site and access another site as well. Ensure
that these agreements are in force before going live with a Liberty-compliant system including
configured authentication domains.

Chapter 1 « Introduction to the Liberty Alliance Project 43

44

Overview

CHAPTER 2

Implementation of the Liberty Alliance Project
Specifications

Sun Java System Access Manager contains the Sun Microsystems implementation of the Liberty
Alliance Project specifications. This chapter provides an overview of how these specifications have
been implemented.

This chapter covers the following topics:

“Overview” on page 45

“Liberty Use Cases” on page 46

“Accessing the Liberty Alliance Project Features” on page 49
“Liberty-Based Samples” on page 55

Sun Java System Access Manager is a software product that helps organizations manage secure access
to the resources and web applications within their intranet and across the Internet. The initial release
of Access Manager implemented the Liberty Identity Federation Framework (Liberty ID-FF)
specifications, focusing on account federation, authentication domains, and single sign-on.

Subsequent releases of Access Manager added new features as defined in Version 1.2 of the Liberty
ID-FF specifications as well as the Version 1.0 specifications of the Liberty Identity Web Services
Framework (Liberty ID-WSF). These web services include a framework for retrieving and updating
identity data which consists of attributes stored in identity-based service providers across the
Internet. Also provided are an application programming interface (API) for communication
between identity providers and service providers.

This version of Access Manager provides additional functionality based on the Liberty Alliance
Project specifications. For example, Access Manager 7 provides the ability to bulk-federate user
accounts to applications that are outsourced to business partners. It also provides the ability to map
configured roles between the identity provider and the service provider. More specifically, Access
Manager 7 2005Q4 supports the Liberty ID-FF 1.1 and 1.2, the Liberty ID-WSF 1.0, and the Liberty
Identity Services Interface Specifications (Liberty ID-SIS) 1.0.

45

Liberty Use Cases

Liberty Use Cases

46

Identity data consists of all the information that companies maintain about individual customers,
corporate partners, and employees. Federating sources of identity data allows for accessing,
transporting, sharing, and managing the data between partnered organizations and applications
without weakening existing security safeguards. There are many ways to use Access Manager and its
Liberty-based implementations to federate sources of identity data. The following sections explain
just a few ways.

Unified Access to Intranet Resources

Many corporations provide access to outsourced human resources services, such as health benefits
and 401(k) plans. The corporate intranet offers central access to these services, but employees have to
log in and authenticate themselves every time they access each service. Employees might not want to
share the same profile and password with both their 401(k) provider and their health care provider.
Federation of identity data can provide seamless integration of web resources across multiple
security domains within the same enterprise, allowing for employee ease-of-use and control.

Integrated Partner Networks

Enterprises can construct a network of partnered services for securely exchanging customer account
information, transaction data, and credentials through a set of interoperable web services.
Federation among partner networks allows identities to share key pieces of their respective data
without sharing control. For example, logging in to one web site that represents an authentication
domain consisting of an airline, a car rental company, and a hotel chain allows an identity to make
travel plans even if one of the sites does not contain an identity data store.

Sample Use Case Process

Using a cell phone, a principal is able to access a ring-tone vendor’s site. Due to implementation of
single sign-on, the ring-tone vendor recognizes the principal from the cell-phone provider’s
authentication. This allows the principal to purchase ring tones by interacting with the user’s bank
for payment. The following figure illustrates the process of requesting a service and being
authenticated for access. It assumes the following:

= MyWireless is a cellular service provider and an identity provider in a federation framework that
contains access to the discovery service in a web services framework.

= MyRingtones is a service provider in a federation framework that also acts as a web service
consumer (WSC) in a web services framework. It sells ringtones for use with cellular phones.

® MyBank is a web service provider (WSP) in a web services framework. Linking MyBank to My
Ringtones offers the opportunity for seamless purchases.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Liberty Alliance Project Architecture in Access Manager

Note - The same web service can act as a different entity in different scenarios.

MyRingtones m— MyWireless MyBank

User Agent Service Identity Discovery Personal
Provider Provider Service Profile

(also acts as Service

Web Service (Web Service
Consumer) Provider)

1. Single sign-on authorized by Identity Proyvider

— = — —>

2. Returns assertion ihcluding Discovery Sejvice location

&
<

3. Request service

>

4. Request Personal Profile Service (WSP)|location

5. Provide Personal fProfile Service (WSP) location

&
<

6. Request user attriutes

A 4

7. Provide user attribjites

<

8. Provide service

&
<

FIGURE 2-1 Process in a Liberty-enabled Use Case

The user attempts to access MyRingtones and, after being prompted for credentials stored in
MpyBank, receives authorization through My Wireless. Single sign-on is accomplished in the back end.
The entire process is based on implementations of the Liberty ID-FF, Liberty ID-WSEF, and Liberty
ID-SIS specifications.

Liberty Alliance Project Architecture in Access Manager

The figure below shows the architecture of the Access Manager features that are based on the Liberty
Alliance Project specifications. These features leverage existing Access Manager services including
policy, service management, session management, and auditing.

Chapter2 - Implementation of the Liberty Alliance Project Specifications 47

Liberty Alliance Project Architecture in Access Manager

48

:

Web Service Administration
(User Agent) Console
(User Agent)
A A
HTTP HTTP
Federation Application/
Manager Liberty Web Service
SAML API } API
SAML

$

Administration

Liberty-based Features (Web Services, Protocols, Profiles)

Metad Federati Discovery || Interaction Pers Prof Custom
BEREE B Service Service Service Services
AuthN Web Data
Service Services
ID-FF ID-WSF ID-SIS
Base Functionality
; Session/ Policy/ XML Tools
SAML Naming AuthN SSO Access Digital signing
JAX-RPC/JAXM
Auditing/ . . JAXB/SAAJ
Logging Identity Repository API

Directory
Server

External

Data Store

D Access Manager Components |:| External to Access Manager

FIGURE 2-2 Liberty-based Architecture of Access Manager

Note - For a complete architectural overview of Access Manager, see the Sun Java System Access
Manager 7 2005Q4 Technical Overview.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Accessing the Liberty Alliance Project Features

Accessing the Liberty Alliance Project Features

Access Manager is installed with a set of default Liberty-based web services. They, the larger
Federation component, application programming interfaces, and the Security Assertion Markup
Language (SAML) are introduced in the following sections.

“Federation in Access Manager” on page 49

“Liberty-based Web Services in Access Manager” on page 50
“Liberty-based Application Programming Interfaces” on page 53
“SAML Service” on page 55

Federation in Access Manager

The Federation component of Access Manager provides an interface for creating, modifying, and
deleting authentication domains and service and identity providers (both remote and hosted types)
for a federated model. The web interface for the Liberty ID-FF in Access Manager is accessible from
the Federation tab in the Access Manager Console, as shown in the following figure.

Iiner wrdarren Darse poir st granei mm

Sun Java© System Access Manager

AuPastesban Donsms Bl | Sk
Authentication Domaims

Authentication Domaing (T Mems)

W T | e a

hooed aul Gomur

e wadh Somaen

FIGURE 2-3 Federation Interface in Access Manager Console

The following steps illustrate the process for creating a federation model using Access Manager:

1. Create an authentication domain.
2. Configure one or more hosted providers that belong to the authentication domain.

3. Configure one or more remote providers that belong to the authentication domain, and include
the metadata for the remote providers.

4. Establish the trusted partnership between the providers. A hosted provider can choose to trusta
subset of providers, either hosted or remote, that belong to the same authentication domain.

Chapter2 - Implementation of the Liberty Alliance Project Specifications 49

Accessing the Liberty Alliance Project Features

Liberty-based Web Services in Access Manager

Liberty-based web services are those based on specifications in the Liberty ID-WSF and the Liberty
ID-SIS. They are accessible from the Access Manager Console by clicking the Web Services tab. The
implemented web services include:

= “Liberty Personal Profile Service” on page 52
= “Discovery Service” on page 52

= “SOAP Binding Service” on page 53

= “Authentication Web Service” on page 53

The following diagram illustrates how the different web service specifications have been
implemented.

50 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Accessing the Liberty Alliance Project Features

User
Agent

AuthN . Other SIS
v Discovery Client Other SIS
Web X B
Service Client

Service DST Client API

| Interaction API |

SOAP Client API

SOAP/HTTP(s) I

SOAP Receiver

| Interaction AP| | i
Trusted Interaction

Authority | AuthN Discovery DST Redirect

Web : Other SIS| Handler
Service | SeMic | sis.PP | SIS-EP |Other SIS| provider

Provider | Frovider [provider | Provider | Provider

Data |¢*| Metadata
Store

[1D-WSF Components [l Access Manager Components] External to Access Manager

Chapter2 - Implementation of the Liberty Alliance Project Specifications 51

Accessing the Liberty Alliance Project Features

FIGURE 2-4 Architecture of Liberty-based Web Services

The web interface for the Liberty ID-WSF in Access Manager is accessible from the Web Services tab
in the Access Manager Console, as shown in the following figure.

fchesam Ot Sbevmy Mt ulafuiotin | Wb torin Do oot
Poniead Profls | Chocowsy Sarcn | BOAP Birdeg Sarvcs | AcPasicaion Seevaie
Liberty Personal Profile Service TR

Global ARribubes

Mt 0 Mappet (i dor sl Sty i i piope. O e w8

Lt] [onm i chimaiy Ay wh skn paaper. CFF s
Aednie Werer oo e aleeAly Mt w1 o e BT AR Eeen
PP A S e e R TR
Wama Schema: [Fed Bda Tl 5]

Rmsapts brafis: [oe

ComatyrPinme

PPLOAT ArirBte Map Liat (XY Bema)

FIGURE 2-5 Web Services Interface in Access Manager Console

Liberty Personal Profile Service

The Liberty Personal Profile Service is a data service that supports storing and modifying a
principal’s identity attributes. Identity attributes might include information such as first name, last
name, home address, and emergency contact information. The Liberty Personal Profile Service is
queried or updated by a WSC acting on behalf of the principal. For more information, see Chapter 6.

Discovery Service

The Discovery Service is a web service that allows a requesting entity, such as a service provider, to
dynamically determine a principal’s registered attribute provider. Typically, a service provider
queries the Discovery Service, which responds by providing a resource offering that describes the
requested attribute provider. (A resource offering defines associations between a piece of identity data
and the service instance that provides access to the data.) The implementation of the Discovery
Service includes Java and web-based interfaces. For more information, see Chapter 7.

52 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Accessing the Liberty Alliance Project Features

Note - By definition, a discoverable service is assigned a service type Uniform Resource Identifier
(URI), allowing the service to be registered in Discovery Service instances. The service type URI is
typically defined in the Web Service Definition Language (WSDL) file that defines the service.

SOAP Binding Service

The SOAP Binding Service is a set of Java APIs used by the developer of a Liberty-enabled identity
service. The APIs are used to send and receive identity-based messages using SOAP, an XML-based
messaging protocol. For more information, see Chapter 8.

Authentication Web Service

The Authentication Web Service provides web service-based authentication to a WSC, allowing the
WSC to obtain security tokens for further interactions with other services at the same provider.
These other services may include a discovery service or single sign-on service. The Authentication
Web Service is for service-to-service (nonuser) authentication. For more information, see Chapter 5.

Note - Do not confuse the Liberty-based Authentication Web Service with the proprietary Access
Manager Authentication Service discussed in the Sun Java System Access Manager 7 2005Q4
Administration Guide.

Liberty-based Application Programming Interfaces

A number of the Liberty-based web services specifications have also been implemented in the back
end of Access Manager as APIs. The services include the Interaction Service and PAOS binding. The
following table summarizes the public APIs. They can be used to deploy Liberty-enabled
components or extend the core services.

TABLE 2-1 Public Interfaces

Package Name Description

com.sun.identity.liberty.ws.authnsvc Provides classes to manage the Authentication Web
Service. See Chapter 5.

com.sun.identity.liberty.ws. Provides an interface to process incoming Simple

authnsvc.mechanism Authentication and Security Layer (SASL) requests
and generate SASL responses for the different SASL
mechanisms. See Chapter 5.

com.sun.identity.liberty.ws. Provides classes to manage Authentication Web
authnsvc.protocol Service protocol. See Chapter 5.

Chapter2 - Implementation of the Liberty Alliance Project Specifications 53

Accessing the Liberty Alliance Project Features

54

TABLE 2-1 Public Interfaces

(Continued)

Package Name

Description

com.sun.identity.

com.

com.

com.

com.

com.

com.

com.

com.

com.

com.

com.

sun.

sun.

sun

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

identity.

identity.

.identity.

identity.

identity.

identity.

identity.

identity.

identity.

identity.

identity.

liberty.

liberty.

liberty.

liberty.

liberty.

liberty.

liberty.

liberty.

liberty.

liberty.

liberty.

saml

ws.

ws.

ws.

ws

ws.

ws.

ws.

ws.

ws.

ws.

ws.

common

common.wsse

disco

.disco.plugins

dst

dst.service

interaction

interfaces

paos

security

soapbinding

Defines common classes that are used by many of the
Access Manager Liberty-based web service
components. See “Common Service Interfaces”

on page 197 of this chapter.

Provides an interface to parse and create a X.509
Certificate Token Profile. See “Common Service
Interfaces” on page 197 of this chapter.

Provides interfaces to manage the Discovery Service.
See Chapter 7.

Provides a plugin interface for the Discovery Service.
See Chapter 7.

Provides classes to implement an identity service. See
Chapter 6 for information about services built using
this APL

Provides a handler class that can be used by any
generic identity data service. See Chapter 6 for
information about data services.

Provides classes to support the Interaction
RequestRedirect Profile. See the section on the
“Interaction Service” on page 201 for information on
this profile.

Provides interfaces that are common to all Access
Manager Liberty-based web service components. See
Chapter 7 and Chapter 6 for information about
default implementations. See the section on
“Common Service Interfaces” on page 197 for more
general information.

Provides classes for web applications to construct and
process PAOS requests and responses. See “PAOS
Binding” on page 203 of this chapter.

Provides an interface to manage Liberty-based web
service security mechanisms. See “Common Security
API” on page 199 of this chapter.

Provides classes to construct SOAP requests and
responses and to change the contact point for the
SOAP binding. See Chapter 8.

Provides a service provider interface (SPI) in which
proprietary XML/signature implementations can be
plugged in. See Chapter 9.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Liberty-Based Samples

TABLE 2-1 Public Interfaces (Continued)

Package Name Description

com.sun.identity.saml.assertion Provides classes to manage assertions and profiles. See
Chapter 9.

com.sun.identity.saml.common Provides classes that are common to all SAML
elements. See Chapter 9.

com.sun.identity.saml.plugins Provides SPIs to integrate SAML into custom services.
See Chapter 9.

com.sun.identity.saml.protocol Provides classes that parse the XML messages used to
exchange assertions and information. See Chapter 9.

com.sun.identity.saml.xmlsig Provides an SPI in which proprietary XML/signature

com.sun.liberty

implementations can be plugged in. See Chapter 9.

Provides interfaces common to the Access Manager
Federation Management module. See Chapter 3.

For more information, see Chapter 10. For detailed API documentation, including classes, methods
and their syntax and parameters, see the Java API Reference in / AccessManager-base/SUNWam/docs

or on docs.sun.com.

SAML Service

Access Manager uses SAML as the means for exchanging security information. SAML uses an
eXtensible Markup Language (XML) framework to achieve interoperability between vendor
platforms that provide SAML assertions.

In anticipation of the next release of Access Manager and support of SAML 2.0, SAML attributes
have been moved under the Federation tab although it’s usage is independent of the functionality
discussed in this guide. The Liberty-based features in Access Manager use SAML but that usage is not
configurable. For more information on the independent SAML Service, see Chapter 9.

Liberty-Based Samples

Access Manager has included sample code and files that can be used to understand the
implementation of the Liberty Alliance Project specifications. For information about the specifics of
these samples, see the individual chapters or Appendix A.

Chapter2 - Implementation of the Liberty Alliance Project Specifications 55

56

PART 11

Federation Management

m Chapter 3, Federation
m Chapter 4, Common Domain Services

57

58

L R R 4 CHAPTER 3

Federation

Sun Java™ System Access Manager provides an interface for creating, modifying, and deleting
authentication domains, service providers, and identity providers. This chapter explains how to use
the Federation component to configure a Liberty-based provider federation.

This chapter covers the following topics:

“Features of Federation” on page 59

“Process of Federation” on page 64

“Federation Graphical User Interface” on page 67
“Entities and Authentication Domains” on page 70
“Auto-Federation” on page 96

“Bulk Federation” on page 97

“Dynamic Identity Provider Proxying” on page 97
“The Pre-login URL” on page 99

“Federation API” on page 101

“Sample Federation Environment” on page 101

Features of Federation

Access Manager provides a web interface to the Liberty Identity Federation Framework (Liberty
ID-FF) which is accessible through the Federation tab in the Access Manager Console. The
Federation component includes the features and functions described in the following sections.

Note - For more information about the Liberty ID-FF functions, see the Liberty ID-FF Protocols and
Schema Specifications.

Identity Federation and Single Sign-On

Let’s assume that a principal has separate user accounts with both a service provider and an identity
provider in the same authentication domain. In order to gain access to these individual accounts, the

59

http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-errata-v1.0.pdf
http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-errata-v1.0.pdf

Features of Federation

60

principal authenticates with each provider. After the principal has authenticated with the service
provider though, they can be given the option to federate the service provider account with an
identity provider account. Consenting to the federation of these two accounts links them for the
purpose of single sign-on.

Providers differentiate between federated users by defining a unique handle for each account. (They
are not required to use the principal’s actual provider account identifier.) Providers can also choose
to create multiple handles for a particular principal. However, identity providers must create one
handle per user for each service provider that has multiple web sites so that the handle can be
resolved across all of them.

Note - Because both the identity provider and service provider in a federation need to remember the
principal’s handle, they create entries that note the handle in their respective user repositories. In
some scenarios, only the identity provider’s handle is conveyed to a service provider. For example, if
a service provider does not maintain its own user repository, the identity provider’s handle is used.

Access Manager can accommodate the following functions:

® Providers of either type give the principal notice upon identity federation or identity
defederation.

= Providers of either type notify each other regarding a principal’s defederation.

= Identity providers notify the appropriate service providers regarding a principal’s account
termination.

= Providers of either type give the principal a list of their federated identities.

m Users can terminate federations or defederate identities.

Auto-Federation

Auto federation will automatically federate a user’s disparate provider accounts based on a common
attribute. During single sign-on, if it is deemed a user at provider A and a user at provider B have the
same value for the defined common attribute (for example, an email address), the two accounts will
be federated without consent or interaction from the principal. For more information, see
“Auto-Federation” on page 96.

Bulk Federation

Federating one user’s service provider account with their identity provider account generally
requires the principal to visit both providers and link them. In situations when an enterprise is both a
service provider and an identity provider, the organization should have the ability to federate user
accounts behind the scenes. Access Manager provides a script for federating user accounts in bulk.
The script allows the administrator to federate many (or all) of a principal’s provider accounts based
on metadata passed to the script. Bulk federation is useful when adding a new service provider to an
enterprise so you can federate a group of existing employees to the new service. For more
information, see “Bulk Federation” on page 97.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Features of Federation

Authentication and Authentication Context

Single sign-on is the means by which a provider of either type can convey to another provider that
the principal has been authenticated. Identity providers use local (to the identity provider) session
information that is mapped to a user agent as the basis for issuing SAML authentication assertions to
service providers. Thus, when the principal uses a user agent to interact with a service provider, the
service provider requests authentication information from the identity provider based on the user
agent’s session information. If this information indicates that the user agent’s session is presently
active, the identity provider will return a positive authentication response to the service provider.

Access Manager accommodates these authentication actions:

® Supports a range of authentication methods (for example, password or certificate-based SSL).

= Allows providers to exchange the following minimum set of authentication information with
regard to a principal: authentication status (active or not), instant (time authenticated), method,
and pseudonym (temporary or persistent).

= Allows an identity provider, at the discretion of the service provider, to authenticate a principal
by using an identity provider other than itself (proxy) and relay this information back to the
service provider.

SAML is used for provider interaction during authentication but not all SAML assertions are equal.
Different authorities issue SAML assertions of different quality. Therefore, the Liberty Alliance
Project defines how the consumer of a SAML assertion can determine the amount of assurance to
place in the assertion. This is referred to as the authentication context, information added to the
SAML assertion that gives the assertion consumer information they need to make an informed
entitlement decision. For example, a principal uses a simple identifier and a self-chosen password to
authenticate to an identity provider. The identity provider sends an assertion that states the principal
has been authenticated to a service provider. By sending the authentication context, the service
provider can place the appropriate level of assurance on the associated authentication assertion. For
example, if the service provider were a bank, they might require stronger authentication than that
which has been used and send a response to the identity provider with a request to authenticate the
user again. The authentication context information might include:

® The initial user identification mechanism (for example, face-to-face, online, or shared secret).

= The mechanisms for minimizing compromise of credentials (for example, private key in
hardware, credential renewal frequency; or client-side key generation).

® The mechanisms for storing and protecting credentials (for example, Smartcard, or password
rules).

® The authentication mechanisms (for example, password or Smartcard with PIN).
An XML schema has been defined by which the authority can assert the context of the SAML
assertions it issues. The Liberty Alliance Project specifications have also defined Authentication

Context classes against which an identity provider can claim conformance. The Liberty-defined
authentication contexts are listed and described in the following table.

Chapter3 - Federation 61

Features of Federation

TABLE 3-1 Authentication Context Classes

Class Description

MobileContract Identified when a mobile principal has an identity for which
the identity provider has vouched.

MobileDigitallD Identified by detailed and verified registration procedures, a
user’s consent to sign and authorize transactions, and
DigitalID-based authentication.

MobileUnregistered Identified when the real identity of a mobile principal has
not been strongly verified.

Password Identified when a principal authenticates to an identity

Password-Protected Transport

Previous-Session

Smartcard

Smartcard-PKI

Software-PKI

Time-Sync-Token

provider by using a password over an unprotected HTTP
session.

Identified when a principal authenticates to an identity
provider by using a password over an SSL-protected session.

Identified when an identity provider must authenticate a
principal for a current authentication event and the
principal has previously authenticated to the identity
provider. This affirms to the service provider a time lapse
from the principal’s current resource access request.

Note - The context for the previously authenticated session is
not included in this class because the user has not
authenticated during this session. Thus, the mechanism that
the user employed to authenticate in a previous session
should not be used as part of a decision on whether to now
allow access to a resource.

Identified when a principal uses a smart card to authenticate
to an identity provider.

Identified when a principal uses a smart card with an
enclosed private key and a PIN to authenticate to an identity
provider.

Identified when a principal uses an X.509 certificate stored
in software to authenticate to the identity provider over an
SSL-protected session.

Identified when a principal authenticates through a time
synchronization token.

Note - For more information on authentication context, see the Liberty ID-FF Authentication

Context Specification.

62 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/specs/liberty-authentication-context-v1.3.pdf
http://www.projectliberty.org/specs/liberty-authentication-context-v1.3.pdf

Features of Federation

Identifiers and Name Registration

Access Manager supports name identifiers that are unique across all providers in an authentication
domain. This identifier can be used to obtain information for or about the principal (with consent)
without requiring the user to consent to a long-term relationship with the service provider. During
federation, the identity provider generates an opaque value that serves as the initial name identifier
that both the service provider and the identity provider use to refer to the principal when
communicating with each other.

After federation though, the identity provider or the service provider may register a different opaque
value. The reasons for doing this would be implementation-specific. If a service provider registers a
different opaque value for the principal, the identity provider must use the new identifier when
communicating with the service provider about the principal.

Note - The initial name identifier defined by the identity provider is always used to refer to the
principal unless a new name identifier is registered.

Global Logout

A principal may establish authenticated sessions with both an identity provider and individual
service providers, based on authentication assertions supplied by the identity provider. When the
principal logs out of a service provider session, the service provider sends a logout message to the
identity provider that provided the authentication for that session. When this happen, or the
principal manually logs out of a session at an identity provider, the identity provider sends a logout
message to each service provider to which it provided authentication assertions under the relevant
session. The one exception is the service provider that sent the logout request to the identity provider.

Dynamic Identity Provider Proxying

An identity provider can choose to proxy an authentication request to an identity provider in
another authentication domain if it knows that the principal has been authenticated with this
identity provider. The proxy behavior is defined by the local policy of the proxying identity provider.
However, a service provider can override this behavior and choose not to proxy. This function can be
implemented as a form of authentication when, for instance, a roaming mobile user accesses a
service provider that is not part of the mobile home network. For more information see “Dynamic
Identity Provider Proxying” on page 97.

Chapter3 - Federation 63

Process of Federation

Process of Federation

The process of federation begins with authentication. A standard installation of Access Manager
provides two options for user authentication: the proprietary Authentication Service and the
Liberty-based Federation component.

With the proprietary option, users attempting to access a resource protected by Access Manager are
redirected to the Authentication Service via an Access Manager login page. After the users provide
credentials, the Authentication Service allows or denies access to the resource based on the outcome.

Note - For more information about the proprietary Authentication Service, see the Sun Java System
Access Manager 7 2005Q4 Administration Guide.

The second option for user authentication is Liberty-based federation. When a principal attempts to
access a web site that belongs to the trusted member provider of a configured authentication domain,
the process of user authentication begins with the search for a valid Access Manager session token
from the proprietary Authentication Service.

= Ifno session token is found, the principal is redirected to a location defined by the pre-login URL
to establish a valid session. See “Pre-login Process” on page 66 for details.

= Ifasession token is found, the principal is granted (or denied) access to the requested page.
Assuming access is granted, the requested page contains a link so the principal can federate the
Access Manager identity with the identity local to the requested site. If the principal clicks this
link, federation begins. See “Federation and Single Sign-On” on page 66 for details.

The following figure illustrates these divergent paths.

Note - The process shown in the figure below is the default process when no application has been
deployed. When an application is deployed and using Access Manager, the process will change based
on the application’s query parameters and preferences. For more information, see “The Pre-login
URL” on page 99.

64 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Process of Federation

D User Interaction User attempts to
access protected
. Access Manager Components web resource

. Liberty-based Components

No Yes ~

Is
Federation
cookie
present?

Pre-Login Processes

Federation
cookie
value=yes?

User presents
credentials

Send
authentication
request to IDP

Did IDP User clicks link,
send valid enables

response? Federation

Yes

i 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
: User :
1 selects 1
! IDP !
1 1
1 1
1 1
1 1
! 1
T 1
1 1
1 1
1 1
1 1
1 1

v

Send
Federation
request

FIGURE 3-1 Default Process of Federation

Chapter3 - Federation 65

Process of Federation

66

Pre-login Process

The pre-login process establishes a valid Access Manager session. When a principal attempts to
access a service provider site and no Access Manager session token is found, Access Manager
searches for a federation cookie. A federation cookie is implemented by Access Manager and is called
fedCookie. It can have a value of either yes or no, based on the principal’s federation status.

Note - A federation cookie is not defined in the Liberty Alliance Project specifications.

At this point, the pre-login process may take one of the following paths:

= Ifafederation cookie is found and its value is no, an Access Manager login page is displayed and
the principal submits credentials to the proprietary Authentication Service. When authenticated
by Access Manager, the principal is redirected to the requested page, which might contain a link
to allow for identity federation. If the principal clicks this link, federation begins. See “Federation
and Single Sign-On” on page 66 for details.

= Jfafederation cookie is found and its value is yes, the principal has already federated an identity
but has not been authenticated by an identity provider within the authentication domain for this
Access Manager session. Authentication to Access Manager is achieved on the back end by
sending a request to the principal’s identity provider. After authentication, the principal is
directed back to the requested page.

= Ifno federation cookie is found, a passive authentication request (one that does not allow identity
provider interaction with the principal) is sent to the principal’s identity provider. If an
affirmative authentication is received back from the identity provider, the principal is directed to
the Access Manager Authentication Service, where a session token is granted. The principal is
then redirected to the requested page. If the response from the identity provider is negative (for
example, if the session has timed out), the principal is sent to a common login page to complete
either a local login or Liberty-based federation. See “Federation and Single Sign-On” on page 66
for details.

Note - This pre-login process is the default behavior of Access Manager. This process might change
based on parameters passed to Access Manager from the participating application. For more details,
see the section on “The Pre-login URL” on page 99.

Federation and Single Sign-On

When a principal logs in to access a protected resource or service, Access Manager sends a request to
the appropriate identity provider for authentication confirmation. If the identity provider sends a
positive response, the principal gains access to all provider sites within the authentication domain. If
the identity provider sends a negative response, the principal is directed to authenticate again using
the Liberty-based federation process.

In the Liberty-based federation process, a principal selects an identity provider and sends credentials
for authentication. After authentication is complete and access is granted, the principal is issued a

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Federation Graphical User Interface

session token from the Access Manager Authentication Service and redirected to the requested page.
Aslong as the session token remains valid, the principal can access other service providers in the
authentication domain without having to authenticate again.

Note - Common Domain Services are used by a service provider to determine the identity provider
used by a principal in an authentication domain that contains multiple identity providers. See
Chapter 4 for details.

Federation Graphical User Interface

The Federation component uses JavaServer Pages™ (JSP™) to define its look and feel. JSP are HTML
files that contain additional code to generate dynamic content. More specifically, a JavaServer page
contains HTML code to display static text and graphics, as well as application code to generate
information. When the page is displayed in a web browser, it contains both the static HTML content
and, in the case of the Federation component, dynamic content retrieved through calls to the
Federation API. An administrator can customize the look and feel of the interface by changing the
HTML tags in the JSP but the invoked APIs must not be changed.

The JSP are located in
/AccessManager-base/SUNWam/web-src/services/config/federation/default. The files in this
directory provide a default interface to the Federation component. To customize the pages for a
specific organization, this default directory can be copied and renamed to reflect the name of the
organization (or any value). This directory would then be placed at the same level as the default
directory, and the files within this directory would be modified as needed. The following table lists
the JSP including details on what each page is used for and the invoked APIs that cannot be modified.
For more information about modifying these pages to customize the console, see the Sun Java System
Access Manager 7 2005Q4 Developer’s Guide.

Chapter3 - Federation 67

Federation Graphical User Interface

JSP Name and Implemented APIs

Purpose

® CommonLogin.jsp Invoked APIs are:

LibertyManager.
getLoginURL (request)
LibertyManager.
getInterSiteURL(request)
LibertyManager.
getIDPList(providerID)
LibertyManager.
getNewRequest (request)
LibertyManager.
getSuccintID(idpID)
LibertyManager.
cleanQueryString(request)

B Error.jsp

B Federate.jsp Invoked APIs are:

B FederationDone.jsp Invoked API is:

LibertyManager.
isLECPProfile(request)
LibertyManager.
getAuthnRequestEnvelope
(request)

LibertyManager.
getUser(request)
LibertyManager.
getProvidersTo
Federate(providerID,userDN)

LibertyManager.
isFederationCancelled
(request)

B Footer.jsp

B Header.jsp

Displays a link to the local login page as well as links to
the login pages of the trusted identity providers. This
page is displayed when a user is not logged in locally or
with an identity provider. The list of identity providers
is obtained by using the
getIDPList(hostedProviderID) method.

Displays an error page when an error has occurred. No
APIs are invoked.

Displays when a user clicks a federate link on a
provider page. Contains a drop-down of all providers
with which the user is not yet federated. This list is
constructed by using the
getProvidersToFederate(userName, providerID)
method.

Displays the status of a federation (success or
cancelled). This page checks the status by using the
isFederationCancelled(request) method.

Displays a branded footer that is included on all the
pages. No APIs are invoked.

Displays a branded header that is included on all the
pages. No APIs are invoked.

68 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Federation Graphical User Interface

JSP Name and Implemented APIs

Purpose

B | istOfCOTs.jspInvoked APIis:

B |ibertyManager.
getListOfCOTs
(providerID)

B | ogoutDone. jsp Invoked APIis:

® | ibertyManager.
isLogoutSuccess(request)

B NameRegistration.jsp Invoked APIsare:

® | ibertyManager.
getUser(request)

B |ibertyManager.
getRegisteredProviders
(userDN)

B NameRegistrationDone.jsp Invoked APIs are:

® LibertyManager.
isNameRegistration
Success(request)

® | ibertyManager.
isNameRegistration
Canceled(request)

B Termination.jsp Invoked APIsare:

® | ibertyManager.
getUser(request)

® LibertyManager.
getFederatedProviders
(userDN)

B TerminationDone.jsp Invoked APIs are:

B |ibertyManager.
isTerminationSuccess
(request)

® | ibertyManager.
isTerminationCanceled
(request)

Displays a list of circles of trust. When a user is
authenticated by an identity provider and the service
provider belongs to more than one circle of trust, the
user is shown this JSP and is prompted to select an
authentication domain as their preferred domain. In
the case that the provider belongs to only one domain,
this page will not be displayed. The list is obtained by
using the getList0OfCOTs (providerID) method.

Displays the status of the local logout operation.

Displays when the Name Registration link is clicked
on a provider page. When a federated user chooses to
register a new Name Identifier from a service provider
to an identity provider, this JSP is displayed.

Displays the status of NameRegistration. jsp. When
finished, this page is displayed.

Displays when a user clicks a defederate link on a
provider page. Contains a drop-down of all providers
to which the user has federated and from which the
user can choose to defederate. The list is constructed
by using the getFederatedProviders (userName)
method, which returns all active providers to which
the user is already federated.

Displays the status of federation termination (success
or cancelled). Status is checked using the
isTerminationCancelled(request) method.

Chapter3 - Federation

69

Entities and Authentication Domains

Entities and Authentication Domains

The Federation component in the Access Manager Console provides an interface for configuring,
modifying, and deleting authentication domains, and identity and service providers. To create and
populate an authentication domain, you first create an entity to hold the metadata for each provider
that will become a member of the authentication domain. Then, you configure and save the
authentication domain. Finally, to add an entity to the authentication domain, you edit the entity’s
properties. The following sections contain more information:

= “Entities” on page 70
= “Authentication Domains” on page 93

Note - In a federation setup, all service providers and identity providers must share a synchronized
clock. You can implement the synchronization by pointing to an external clock source or by ensuring
that, in case of delays in receiving responses, the responses are captured without fail through
adjustments of the timeouts.

Entities

In Access Manager an entity can contain configuration information for an individual identity
provider, an individual service provider, or one of each. An entity can also contain configuration
information for an affiliation, a group of providers of either type. Both provider and affiliation
entities can be configured using the Access Manager Console.

Note - For general information about entities, see the Liberty Metadata Description and Discovery
Specification.

Provider Entity A provider entity holds the metadata for individual providers of either type. All
identity providers and service providers must first be configured within a
provider entity. After they are configured in an entity, they can be associated with
an authentication domain, or chosen to be included in an affiliate entity. Using
the descriptor attributes, one individual identity provider, one individual service
provider, or one of each can be defined within a provider entity.

Affiliate Entity An affiliate entity holds the metadata that defines a group of one or more
providers that was formed without regard to the boundaries of an
authentication domain. This affiliation (referenced by an affiliationID) is
formed and maintained by an affiliation owner (referenced by the providerID of
the entity that defined it) who chooses the trusted providers from already
configured provider entities. Members of the affiliation may invoke services
either as a member of the affiliation (using the affiliationID), or individually
(using their providerID). For example, when a service provider issues an
authentication request on behalf of an affiliation, the AffiliationID will be used
to achieve single sign-on and the identity provider will resolve federations based
on the same AffiliationID. The affiliate entity itself does not contain the

70 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/specs/draft-liberty-metadata-1.0-errata-v2.0.pdf
http://www.projectliberty.org/specs/draft-liberty-metadata-1.0-errata-v2.0.pdf

Entities and Authentication Domains

configuration information for any providers, only the configuration
information for the entity.

Note - The name identifier (a single persistent randomized string) is used to achieve single sign-on
between an identity provider and a group of service providers acting as a single affiliation. If there are
several service providers and identity providers in the same circle of trust, use an affiliate entity to
avoid having to generate different name identifiers for commonly shared services.

Creating an entity is a two-step process. First, you create a provider or affiliate entity. Then, you
populate the entity with remote or hosted provider information (either service or identity) or
affiliation information. This process is described in the following sections:

= “Creating Entities” on page 71

= “Configuring Provider Entities” on page 72
= “Configuring Affiliate Entities” on page 90
m “Deleting Entities” on page 93

Creating Entities

This section describes the process for creating a provider entity or an affiliate entity.

To Create a Provider Entity or an Affiliate Entity

An entity can be created but it will not be available for assignment to an authentication domain until
it has been populated with provider(s). Once created and configured, the entity (and thus the
providers) can be added to an authentication domain.

In the Access Manager Console, select the Federation tab.

Under Federation, select the Entities tab.

Select New.
The new entity attributes are displayed.

Type a value for the Entity Name.

This field specifies the Uniform Resource Identifier (URI) of the entity and must be unique. For
example, http://shivalik.sun.comor http://provider2.com:875.

(Optional) Enter a description of the entity in the Description field.

Chapter3 - Federation 71

Entities and Authentication Domains

72

Select one of the following options to define the entity’s type.

= Select Provider and click OK.

The new entity is now displayed as a provider in the list of configured Entities. To configure the
entity, see “To Configure a Provider Entity” on page 72.

= Select Affiliate, type a value for both Affiliate Name and Affiliate Owner, and click OK.

The Affiliate Name (also referred to as the affiliation ID) specifies a URI defined by the Affiliate
Owner that uniquely represents the affiliate entity, for example, http://shivalik.sun.comor
http://provider2.com:875. The Affiliate Owner is the provider ID of the service provider
(defined in a provider entity) that is forming the affiliation. After entering these values and
clicking OK, the new entity is displayed as an affiliate in the list of configured Entities. To
configure the entity, see “To Configure an Affiliate Entity” on page 90.

Note - Defining a service provider as the Affiliate Owner does not automatically include it as a
member of the affiliate. If an owner is also a member, the provider ID must be defined in both
attributes.

Configuring Provider Entities

After you create a provider entity, you populate it with remote or hosted provider information (either
service or identity). This section contains the following procedures:

= “To Configure a Provider Entity” on page 72

= “To Configure General Attributes for a Provider Entity” on page 73

= “To Configure Hosted or Remote Identity Provider Attributes for a Provider Entity” on page 75
= “To Configure Hosted or Remote Service Provider Attributes for a Provider Entity” on page 82

To Configure a Provider Entity

When you configure a provider entity, you are populating it with remote or hosted provider
information (either service or identity). You might also be configuring values for attributes that were
not available when the entity was initially created.

In the Access Manager Console, select the Federation tab.

Under Federation, select the Entities tab.

Select the provider entity that you want to configure.

Ensure that you select an entity marked as type Provider.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

4 Define values for the General, Identity Provider or Service Provider attributes by choosing from the
View menu:

= Todefine values for General attributes, see “To Configure General Attributes for a Provider Entity”
onpage73.

= Todefine values for Identity Provider attributes, see “To Configure Hosted or Remote Identity
Provider Attributes for a Provider Entity” on page 75.

= To define values for Service Provider attributes, see “To Configure Hosted or Remote Service
Provider Attributes for a Provider Entity” on page 82.

V¥ To Configure General Attributes for a Provider Entity

Before performing this procedure, you must have completed the steps in “To Configure a Provider
Entity” on page 72.

1 Choose General from the View menu, and provide information for the Entity Common Attributes.
Entity Common Attributes contain values that define the entity itself.
Entity Name
The static value of this attribute is the name that you provided when creating the entity.
Type
The static value of this attribute is Provider.
Description

The value of this optional attribute is the description that you provided when creating the entity.
You can modify the description.

Valid Until
Type the expiration date for the entity metadata. Use Coordinated Universal Time (UTC) in the
format yyyy-mm-ddThh:mm:ss.SZ. For example, 2004-12-31T14:30:00.0Z.

Cache Duration
Type the maximum amount of time that the entity metadata can be cached. Use the format
PnYnMnDTnHnMnS, where n is an integer variable. For example, P1Y2M4DT9H8M20S defines the
cache duration as 1 year, 2 months, 4 days, 9 hours, 8 minutes, and 20 seconds.

2 Provide information for the Entity Contact Person Profile attributes.
Entity Contact Person Profile attributes contain values that define the administrator of the entity.
First Name
Type the given name of the entity’s contact person.

Last Name
Type the surname of the entity’s contact person.

Type
Choose the type of contact from the drop-down menu:

Chapter3 - Federation 73

Entities and Authentication Domains

74

= Administrative

= Billing

= Technical

= Other
Company

Type the name of the company that employs this person.

Liberty Principal ID
Type a URI that points to an online instance of the contact person’s personal information profile.

Emails
Type one or more email addresses for the contact person.

Telephone Numbers
Type one or more telephone numbers for the contact person.

(Optional) Provide information for the Organization Profiles.
The Organization Profiles attributes contain values that define the organizational name of the entity.

Names
Type the complete legal name of the entity’s organization. Use the format
locale|organization-name. For example, en | organization-name. com.

Note - If the Names attribute contains a value, it is required to add values to the Display Names
and URL attributes.

Display Names
Type a name that is suitable for display. Use the format locale|organization-display-name. For
example, en | organization-display-name . com.

URL
Type a URL that can be used to direct a principal to additional information on the entity’s
organization. Use the format locale|organization-URL. For example,
en|http://www.organization-name.com.

Click Save to complete the configuration, or define values for Identity Provider or Service Provider
attributes by choosing from the View menu:

= Todefine values for Identity Provider attributes, see “To Configure Hosted or Remote Identity
Provider Attributes for a Provider Entity” on page 75.

= Todefine values for Service Provider attributes, see “To Configure Hosted or Remote Service
Provider Attributes for a Provider Entity” on page 82.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

¥ To Configure Hosted or Remote Identity Provider Attributes for a
Provider Entity

Before performing this procedure, you must have completed the steps in “To Configure a Provider
Entity” on page 72.

1 Choose Identity Provider from the View menu.

2 Selectthe type of provider that you are configuring:

= New Hosted Provider
= New Remote Provider

A hosted provider is installed on the same server as Access Manager. A remote provider is not installed
on the same server as Access Manager.

3 Provide information for the Common Attributes.
Common Attributes contain values that generally define the identity provider.

Provider Type
The static value of this attribute is the type of provider being configured: hosted or remote. This
attribute is visible only after saving your configuration.

Description
The value of this attribute is a description of the identity provider.

Valid Until
Type the expiration date for the provider metadata. Use Coordinated Universal Time (UTC) and
the format yyyy-mm-ddThh:mm:ss.SZ, for example, 2004-12-31T14:30:00.0Z.

Cache Duration
Type the maximum amount of time that the provider metadata can be cached. Use the format
PnYnMnDTnHnMnS, where n is an integer. For example, P1Y2M4DT9H8M20S defines the cache
duration as 1 year, 2 months, 4 days, 9 hours, 8 minutes, and 20 seconds.

Protocol Support Enumeration
Choose the Liberty ID-FF release that is supported by this provider.

= urn:liberty:iff:2003-08 refers to the Liberty Identity Federation Framework Version 1.2.
= urn:liberty:iff:2002-12 refers to the Liberty Identity Federation Framework Version 1.1.

Server Name Identifier Mapping Binding
Name identifier mapping allows a service provider to obtain a name identifier for a principal that
has federated in the namespace of a different service provider. Implementing this protocol allows
the requesting service provider to communicate with the second service provider without an
identity federation having been enabled. Type a URI that identifies the communication
specifications.

Chapter3 - Federation 75

Entities and Authentication Domains

Note - Currently, the Name Identifier Mapping profile only supports SOAP. If this attribute is
used, its value must be http://projectliberty.org/
profiles/nim-sp-http.

Additional Meta Locations
Type a URL that points to other relevant metadata concerning the provider.

Signing Key: Key Alias
Type the key alias that is used to sign requests and responses.

Encryption Key: Key Alias
Type the security certificate alias. Certificates are stored in a Java keystore file. Each specific
certificate is mapped to an alias that is used to fetch the certificate.

Encryption Key: Key Size
Type the length for keys that are used by the web service consumer when interacting with another
entity.

Note - If the encryption method is DESede, the key size must be 192. If the encryption method is
AES, the key size must be 128, 192 or 256.

Encryption Key: Encryption Method
Choose the method of encryption:

= None
= AES
= DESede

Name Identifier Encryption
Select the check box to enable encryption of the name identifier.

4 Provide information for the Communication URLs.
Communication URLs attributes contain locations for redirects and sending requests.

SOAP Endpoint
Type a URI to the identity provider’s SOAP message receiver. This value communicates the
location of the SOAP receiver in non browser communications.

Single Sign-On Service URL
Type a URL to which service providers can send single sign-on and federation requests.

Single Logout Service
Type a URL to which service providers can send logout requests. Single logout synchronizes the
logout functionality across all sessions authenticated by the identity provider.

Single Logout Return
Type a URL to which the identity provider will redirect the principal after completing a logout.

Federation Termination Service
Type a URL to which a service provider will send federation termination requests.

76 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

Federation Termination Return
Type a URL to which the identity provider will redirect the principal after completing federation
termination.

Name Registration Service
Type a URL to which a service provider will send requests to specify a new name identifier to be
used when communicating with the identity provider about a principal. This service can only be
used after a federation session is established.

Name Registration Return
Type a URL to which the identity provider will redirect the principal after HTTP name
registration has been completed.

Provide information for the Communication Profiles.
Communication Profiles attributes define the transmission methods used by the identity provider.

Federation Termination
Select a profile to notify other providers of a principal’s federation termination:

= HTTP Redirect
= SOAP
Single Logout
Select a profile to notify other providers of a principal’s logout:

» HTTP Redirect
m HTTP Get
= SOAP

Name Registration
Select a profile to notify other providers of a principal’s name registration:
= HTTP Redirect
= SOAP
Single Sign-on/Federation
Select a profile for sending authentication requests:
® Browser Post (specifies a browser-based HTTP POST protocol)

® Browser Artifact (specifies a non-browser SOAP-based protocol)

m LECP (specifies a Liberty-enabled Client Proxy)

Note - Access Manager can handle requests that come from a Liberty-enabled client proxy
profile, but it requires additional configuration that is beyond the scope of this manual.

Select any of the available authentication domains to assign to the provider.

A provider can belong to one or more authentication domains. However, a provider without a
specified authentication domain can not participate in Liberty-based communications. If no
authentication domains have been created, you can define this attribute later.

Chapter3 - Federation 77

Entities and Authentication Domains

78

Note - To continue configuring a remote identity provider, skip to step 11.

(Hosted Identity Provider Only) Provide mappings for the Authentication Context classes.

This attribute maps the Liberty-defined authentication context classes to authentication methods
available at the identity provider.

Supported
Select the check box next to the authentication context class if the identity provider supports it.

Context Reference
The Liberty-defined authentication context classes are:

Password

Mobile Digital ID

Smartcard

Smartcard-PKI
MobileUnregistered
Software-PKI
Previous-Session

Mobile Contract
Time-Sync-Token
Password-ProtectedTransport

Key
Choose the Access Manager authentication type to which the context is mapped.

Value
Type the Access Manager authentication option.

Priority
Choose a priority level for cases where there are multiple contexts.

(Hosted Identity Provider Only) Select any of the available provider entities to assign as a Trusted
Provider and click Add.

This attribute tallies providers that the identity provider trusts. It is visible after the provider
configuration has been saved.

(Hosted Identity Provider Only) Provide information for the Access Manager Configuration
attributes.

Access Manager Configuration attributes define general information regarding the instance of
Access Manager being used as an identity provider.

Provider URL
Type the URL of the local identity provider.

Provider Alias
Type an alias name for the local identity provider.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

Authentication Type
Select the provider that should be used for authentication requests from a provider hosted locally:

= Remote specifies that the provider hosted locally would contact a remote identity provider
upon receiving an authentication request.

= Local specifies that the provider hosted locally should contact a local identity provider upon
receiving an authentication request (essentially, itself).

Default Authentication Context
Select the authentication context class (method of authentication) to use if the identity provider
does not receive this information as part of a service provider request. This value also specifies the
authentication context used by the service provider when an unknown user tries to access a
protected resource. The options are as follows:

Password

Mobile Digital ID

Smartcard

Smartcard-PKI
MobileUnregistered
Software-PKI
Previous-Session

Mobile Contract
Time-Sync-Token
Password-ProtectedTransport

Identity Provider Forced Authentication
Select the check box to indicate that the identity provider must reauthenticate (even during a live
session) when an authentication request is received. This attribute is enabled by default.

Request Identity Provider to be Passive
Select the check box to specify that the identity provider must not interact with the principal and
must interact with the user.

Realm
Type a value that points to the realm in which this provider is configured. For example, /sp.

Liberty Version URI
Type the URI of the version of the Liberty Alliance Project specification being used. The default
valueis http://projectliberty.org/
specs/vl.

Name Identifier Implementation
This field defines the class used by a service provider to participate in name registration. Name
registration is a profile by which service providers specify a principal’s name identifier that an
identity provider will use when communicating with the service provider. The value is
com.sun.identity.
federation.services.util.FSNameIdentifierImpl.

Home Page URL
Type the URL of the home page of the identity provider.

Chapter3 - Federation 79

Entities and Authentication Domains

10

1"

80

Single Sign-on Failure Redirect URL
Type the URL to which a principal will be redirected if single sign-on has failed.

Assertion Issuer
Type the name of the host that issues the assertion. This value might be the load balancer’s host
name if Access Manager is behind one.

Generate Discovery Bootstrapping Resource Offering
Select the check box if you want a Discovery Service Resource Offering to be generated during the
Liberty-based single sign-on process for bootstrapping purposes.

Auto Federation
Select the check box to enable auto-federation.

Auto Federation Common Attribute Name
When creating an Auto Federation Attribute Statement, the value of this attribute will be used.
The statement will contain the AutoFedAttribute element and this common attribute as its
value.

Attribute Statement Plugin
Specify a pluggable class used for adding attribute statements to an assertion that is generated
during the Liberty-based single sign-on process.

(Hosted Identity Provider Only) Provide information for the SAML Attributes.

SAML Attributes define general information regarding SAML assertions that are sent by the identity
provider.

Assertion Interval
Type the interval of time (in seconds) that an assertion issued by the identity provider will remain
valid. A principal will remain authenticated until the assertion interval expires.

Cleanup Interval
Type the interval of time (in seconds) before assertions stored in the identity provider will be
cleared.

Artifact Timeout
Type the interval of time (in seconds) to specify the timeout for assertion artifacts.

Assertion Limit
Type a number to define how many assertions an identity provider can issue, or how many
assertions that can be stored.

Note - To continue configuring a hosted identity provider, skip to step 12.

(Remote Identity Provider Only) Provide information for the Proxy Authentication Configuration
attributes.

Proxy Authentication Configuration attributes define values for dynamic identity provider proxying.

Enable Proxy Authentication
Select the check box to enable proxy authentication for a service provider.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

12

13

Proxy Identity Providers List
Add alist of identity providers that can be used for proxy authentication. The value is a URI
defined as the provider’s identifier.

Maximum Number of Proxies
Enter the maximum number of identity providers that can be used for proxy authentication.

Use Introduction Cookie for Proxying
Select the check box if you want introductions to be used to find the proxying identity provider.

Provide information for the Organization Profiles.
The optional Organization Profiles attributes contain values that define the organizational name of
the entity.

Names
Type the complete legal name of the organization. Use the format locale|organization-name, for
example, en | organization-name. com.

Note - If the Names attribute contains a value, it is required to add values to the Display Names
and URL attributes also.

Display Names
Type a name that is suitable for display to a principal. The value is defined in the format
locale|organization-display-name, for example, en | organization-display-name. com.

URL
Type a URL that can be used to direct a principal to additional information on the entity. Use the
format locale|organization-URL, for example, en|http://www.organization-name. com.

Click New Contact Person to create a contact person for the provider.

The Contact Person attributes contain information regarding a human contact for the identity
provider.

First Name
Type the given name of the identity provider’s contact person.

Last Name
Type the surname of the identity provider’s contact person.

Type
Choose the contact’s role from the drop-down menu:
Administrative
Billing
Technical
Other

Company
Type the name of the company that employs the contact person.

Chapter3 - Federation 81

Entities and Authentication Domains

82

14

15

Liberty Principal Identifier
Type the name identifier that points to an online instance of the contact person’s personal
information profile.

Emails
Type one or more email addresses for the contact person.

Telephone Numbers
Type one or more telephone numbers for the contact person.

Click Create to create the contact person.

Click Save to complete the configuration, or define values for General or Service Provider attributes
by choosing from the View menu:

= Todefine values for General attributes, see “To Configure General Attributes for a Provider Entity”
on page73.

= To define values for Service Provider attributes, see “To Configure Hosted or Remote Service
Provider Attributes for a Provider Entity” on page 82.

To Configure Hosted or Remote Service Provider Attributes fora
Provider Entity

Before performing this procedure, you must have completed the steps in “To Configure a Provider
Entity” on page 72.

Choose Service Provider from the View menu.

Select the type of provider that you are configuring:

m New Hosted Provider
= New Remote Provider

A hosted provider is installed on the same server as Access Manager. A remote provider is not installed
on the same server as Access Manager.

Provide information for the Common Attributes.
Common Attributes contain values that generally define the service provider.

Provider Type
The static value of this attribute is the type of provider being configured: hosted or remote. This
attribute is visible only after saving your configuration.

Description
The value of this attribute is a description of the service provider.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

Valid Until
Type the expiration date for the provider metadata. Use Coordinated Universal Time (UTC) and
the format yyyy-mm-ddThh:mm:ss.SZ, for example, 2004-12-31T14:30:00.0Z.

Cache Duration
Type the maximum amount of time that the provider metadata can be cached. Use the format
PnYnMnDTnHnMnS, where # is an integer. For example, P1Y2M4DT9H8M20S defines the cache
duration as 1 year, 2 months, 4 days, 9 hours, 8 minutes, and 20 seconds.

Protocol Support Enumeration
Select the Liberty ID-FF release that is supported by this provider.

= urn:liberty:iff:2003-08 refers to the Liberty Identity Federation Framework Version 1.2.
= urn:liberty:iff:2002-12 refers to the Liberty Identity Federation Framework Version 1.1.

Server Name Identifier Mapping Binding
Name identifier mapping allows a service provider to obtain a name identifier for a principal that
has federated in the namespace of a different service provider. Implementing this protocol allows
the requesting service provider to communicate with the second service provider without an
identity federation having been enabled. The value of this attribute is a URI that identifies the
communication specifications.

Note - Currently, the Name Identifier Mapping profile only supports SOAP. If this attribute is
used, its value must be http://projectliberty.org/profiles/nim-sp-http.

Additional Meta Locations
Type a URL that points to other relevant metadata concerning the provider.

Signing Key: Key Alias
Type the key alias that is used to sign requests and responses.

Encryption Key: Key Alias
Type the security certificate alias. Certificates are stored in a Java keystore file. Each specific
certificate is mapped to an alias that is used to fetch the certificate.

Encryption Key: Key Size
Type the length for keys that are used by the web service consumer when interacting with another
entity.

Encryption Key: Encryption Method
Select the method of encryption:

= None
= AES
= DESede

Name Identifier Encryption
Select the check box to enable encryption of the name identifier.

Provide information for the Communication URLs.

Communication URLs attributes contain locations for redirects and sending requests.

Chapter3 - Federation 83

Entities and Authentication Domains

84

SOAP Endpoint
Type a URI to the service provider’s SOAP message receiver. This value communicates the
location of the SOAP receiver in non browser communications.

Single Logout Service
Type a URL to which identity providers can send logout requests.

Single Logout Return
Type a URL to which the service provider will redirect the principal after completing a logout.

Federation Termination Service
Type a URL to which identity providers will send federation termination requests.

Federation Termination Return
Type a URL to which the service provider will redirect the principal after completing federation
termination.

Name Registration Service
Type a URL that will be used when communicating with the identity provider to specify a new
name identifier for the principal. (Registration can occur only after a federation session is
established.)

Name Registration Return
Type a URL to which the service provider will redirect the principal after HTTP name registration
has been completed.

Provide information for the Communication Profiles.
Communication Profiles attributes define the transmission methods used by the service provider.

Federation Termination
Select a profile to notify other providers of a principal’s federation termination:

= HTTP Redirect
= SOAP
Single Logout
Select a profile to notify other providers of a principal’s logout:

= HTTP Redirect
= HTTP Get
= SOAP

Name Registration
Select a profile to notify other providers of a principal’s name registration:

m HTTP Redirect
= SOAP

Single Sign-on/Federation
Select a profile for sending authentication requests:

® Browser Post (specifies a browser-based HTTP POST protocol)

= Browser Artifact (specifies a non-browser SOAP-based protocol)

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

= LECP (specifies a Liberty-enabled Client Proxy)

Note - Access Manager can handle requests that come from a Liberty-enabled client proxy
profile, but it requires additional configuration that is beyond the scope of this manual.

Select any of the available authentication domains to assign to the provider.

A provider can belong to one or more authentication domains. However, a provider without a
specified authentication domain cannot participate in Liberty-based communications. If no
authentication domains have been created, you can define this attribute later.

Note - To continue configuring a remote service provider, skip to step 9.

(Hosted Service Provider Only) Provide a hierarchy for the Authentication Context classes.

This attribute corresponds to the authentication level defined for an Access Manager authentication
module. It will redirect the principal to the authentication type with an authentication level equal to
the number defined.

Context Reference
The Liberty-defined authentication context classes are:

Password

Mobile Digital ID

Smartcard

Smartcard-PKI
MobileUnregistered
Software-PKI
Previous-Session

Mobile Contract
Time-Sync-Token
Password-ProtectedTransport

Level
Type a level for each authentication context class. The number can be any positive number.

(Hosted Service Provider Only) Select any of the available provider entities to assign as a Trusted
Provider and click Add.

This attribute tallies providers that the service provider trusts.

Provide information for the Service Provider attributes.
Service Provider attributes define general information regarding the service provider.
Assertion Consumer URL

Type the URL to the end point that defines where a provider will send SAML assertions.

Assertion Consumer Service URLID
If the value of the Protocol Support Enumeration common attribute is
urn:liberty:iff:2003-08, type the required ID.

Chapter3 - Federation 85

Entities and Authentication Domains

86

10

Set Assertion Consumer Service URL as Default
Select the check box to use the Assertion Consumer Service URL as the default value when no
identifier is provided in the request.

Sign Authentication Request
Select the check box to make the service provider always signs authentication requests.

Name Registration after Federation
Select the check box to enable the service provider to participate in name registration after a
principal has been federated.

Name ID Policy
Select the option permitting requester influence over name identifier policy at the identity
provider. The options are:

= None specifies that the identity provider will return the name identifier(s) for the principal
corresponding to the federation that exists between the identity provider and the requesting
service provider or affiliation group. If no such federation exists, an error will be returned.

® One-time specifies that the identity provider will issue a temporary, one-time-use identifier for
the principal after federation.

» Federation specifies that the identity provider may start a new identity federation if one does
not already exist for the principal.

Enable Affiliation Federation
Select the check box to enable affiliation federation.

Note - To continue configuring a remote identity provider, skip to step 11.

(Hosted Service Provider Only) Provide information for the Access Manager Configuration attributes.

Access Manager Configuration attributes define general information regarding the instance of
Access Manager being used as a service provider.

Provider URL
Type the URL of the local service provider.

Provider Alias
Type an alias name for the local service provider.

Authentication Type
Select the provider that should be used for authentication requests from a provider hosted locally:

m Remote specifies that the provider hosted locally would contact a remote identity provider
upon receiving an authentication request.

® Local specifies that the provider hosted locally should contact alocal identity provider upon
receiving an authentication request (essentially, itself).

Default Authentication Context
This attribute defines the service provider’s default authentication context class (method of
authentication). This method will always be called when the service provider sends an

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

authentication request. This value also specifies the authentication context used by the service
provider when an unknown user tries to access a protected resource. The options are:

Password

Mobile Digital ID

Smartcard

Smartcard-PKI
MobileUnregistered
Software-PKI
Previous-Session

Mobile Contract
Time-Sync-Token
Password-Protected Transport

Identity Provider Forced Authentication
Select the check box to indicate that the identity provider must reauthenticate (even during a live
session) when an authentication request is received. This attribute is enabled by default.

Request Identity Provider to be Passive
Select the check box to specify that the identity provider must not interact with the principal and
must interact with the user.

Realm
Type a value that points to the realm in which this provider is configured, for example, /sp.

Liberty Version URI
Type the URI of the version of the Liberty specification being used. The default value is
http://projectliberty.org/specs/vl.

Name Identifier Implementation
This field defines the class used by a service provider to participate in name registration. Name
registration is a profile by which service providers specify a principal’s name identifier that an
identity provider will use when communicating with the service provider. The value is
com.sun.identity.federation.services.util.FSNameIdentifierImpl.

Home Page URL
Type the URL of the home page of the service provider.

Single Sign-on Failure Redirect URL
Type the URL to which a principal will be redirected if single sign-on has failed.

Auto Federation
Select the check box to enable auto-federation.

Auto Federation Common Attribute Name
When creating an Auto Federation Attribute Statement, the value of this attribute will be used.
The statement will contain the AutoFedAttribute element and this common attribute as its
value.

Attribute Statement Plugin
Specify a pluggable class used for adding attribute statements to an assertion that is generated
during the Liberty-based single sign-on process.

Chapter3 - Federation 87

Entities and Authentication Domains

11 Provide information for the Proxy Authentication Configuration attributes.
Proxy Authentication Configuration attributes define values for dynamic identity provider proxying.
Enable Proxy Authentication

Select the check box to enable proxy authentication for a service provider.

Proxy Identity Providers List
Add alist of identity providers that can be used for proxy authentication. The value is a URI
defined as the provider’s identifier.

Maximum Number of Proxies
Enter the maximum number of identity providers that can be used for proxy authentication.

Use Introduction Cookie for Proxying
Select the check box if you want introductions to be used to find the proxying identity provider.

Note - To continue configuring a remote identity provider, skip to step 13.

12 (Hosted Service Provider Only) Provide information for the SAML Attributes.

SAML Attributes define general information regarding SAML assertions sent by the identity
provider.

Assertion Interval
Type the interval of time (in seconds) that an assertion issued by the identity provider will remain
valid. A principal will remain authenticated until the assertion interval expires.

Cleanup Interval
Type the interval of time (in seconds) before assertions stored in the identity provider will be
cleared.

Artifact Timeout
Type the interval of time (in seconds) to specify the timeout for assertion artifacts.

Assertion Limit
Type a number to define how many assertions an identity provider can issue, or how many
assertions can be stored.

13 Provide information for the Organization Profiles.
The optional Organization Profiles attributes contain values that define the organizational name of
the entity.
Names

Type the complete legal name of the entity’s organization. Use the format
locale|organization-name, for example, en | organization-name. com.

Note - If the Names attribute contains a value, it is required to add values to the Display Names
and URL attributes.

88 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

14

15

16

Display Names
Type a name that is suitable for display. Use the format locale|organization-display-name, for
example, en | organization-display-name. com.

URL
Type a URL that can be used to direct a principal to additional information on the entity’s
organization. Use the format locale|organization-URL, for example,
en|http://www.organization-name.com.

Click New Contact Person to create a contact person for the provider.

The Contact Person attributes contain information regarding a human contact for the identity
provider.

First Name
Type the given name of the identity provider’s contact person.

Last Name
Type the surname of the identity provider’s contact person.

Type
Choose the contact’s role from the drop-down menu:
= Administrative
= Billing
= Technical
= Other
Company
Type the name of the company that employs the contact person.

Liberty Principal Identifier
Type the name identifier that points to an online instance of the contact person’s personal
information profile.

Emails
Type one or more email addresses for the contact person.

Telephone Numbers
Type one or more telephone numbers for the contact person.

Click Create to create the contact person.

Click Save to complete the configuration, or define values for General or Identity Provider attributes
by choosing from the View menu:

= Todefine values for General attributes, see “To Configure General Attributes for a Provider Entity”
on page73.

= Todefine values for Identity Provider attributes, see “To Configure Hosted or Remote Identity
Provider Attributes for a Provider Entity” on page 75.

Chapter3 - Federation 89

Entities and Authentication Domains

90

Configuring Affiliate Entities

After you create an affiliate entity, you populate it with affiliation information. This section contains
the following procedures:

= “To Configure an Affiliate Entity” on page 90
= “To Configure General Attributes for an Affiliate Entity” on page 90
= “To Configure Affiliate Attributes for an Affiliate Entity” on page 92

To Configure an Affiliate Entity
In the Access Manager Console, select the Federation tab.
Under Federation, select the Entities tab.

Select the provider entity that you want to configure.
Ensure that you select an entity marked as type Affiliate.

Define values for the General or Affiliate attribute groupings by choosing from the View menu:

= To define values for General attributes, see “To Configure General Attributes for an Affiliate
Entity” on page 90

= Todefine values for Affiliate attributes, see “To Configure Affiliate Attributes for an Affiliate
Entity” on page 92

To Configure General Attributes for an Affiliate Entity

Before performing this procedure, you must have completed the steps in “To Configure an Affiliate
Entity” on page 90.

Choose General from the View menu, and provide information for the Entity Common Attributes.
Entity Common Attributes contain values that define the entity.
Entity Name
The static value of this attribute is the name that you provided when creating the entity.
Type
The static value of this attribute is Provider.
Description

The value of this optional attribute is the description that you provided when creating the entity.
You can modify the description.

Valid Until
Type the expiration date for the entity metadata. Use Coordinated Universal Time (UTC) in the
format yyyy-mm-ddThh:mm:ss.SZ, for example, 2004-12-31T14:30:00.0Z.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

Cache Duration
Type the maximum amount of time that the entity metadata can be cached. Use the format
PnYnMnDTnHnMnS, where n is an integer variable. For example, P1Y2M4DT9H8M20S defines the
cache duration as 1 year, 2 months, 4 days, 9 hours, 8 minutes, and 20 seconds.

Provide information for the Entity Contact Person Profile attributes.
Entity Contact Person Profile attributes contain values that define the administrator of the entity.

First Name
Type the given name of the entity’s contact person.

Last Name
Type the surname of the entity’s contact person.

Type
Choose the type of contact from the drop-down menu:
® Administrative

Billing

Technical

Other

Company
Type the name of the company that employs this person.

Liberty Principal ID
Type a URI that points to an online instance of the contact person’s personal information profile.

Emails
Type one or more email addresses for the contact person.

Telephone Numbers
Type one or more telephone numbers for the contact person.

Provide information for the Organization Profiles.
The optional Organization Profiles attributes contain values that define the organizational name of
the entity.

Names
Type the complete legal name of the organization. Use the format locale|organization-name, for
example, en | organization-name. com.

Note - If the Names attribute contains a value, it is required to add values to the Display Names
and URL attributes also.

Display Names
Type a name that is suitable for display to a principal. The value is defined in the format
locale|organization-display-name. For example, en | organization-display-name . com.

Chapter3 - Federation 91

Entities and Authentication Domains

92

URL
Type a URL that can be used to direct a principal to additional information on the entity. Use the
format locale|organization-URL, for example, en|http://www. organization-name. com.

4 Click Save to complete the configuration, or choose Affiliate from the View menu to configure the

Affiliate attributes.

To define values for Affiliate attributes, see “To Configure Affiliate Attributes for an Affiliate Entity”
on page 92.

To Configure Affiliate Attributes for an Affiliate Entity

Before performing this procedure, you must have completed the steps in “To Configure an Affiliate
Entity” on page 90.

Choose Affiliate from the View menu and provide information for the Common Attributes.
Common Attributes contain values that generally define the affiliation.

Name
The value of this attribute is the name of the affiliation.

Owner
The value of this attribute is the owner of the affiliation.

Valid Until
Type the expiration date for the affiliation metadata. Use Coordinated Universal Time (UTC) and
the format yyyy-mm-ddThh:mm:ss.SZ, for example, 2004-12-31T14:30:00.0Z.

Cache Duration
Type the maximum amount of time affiliation metadata can be cached. Use the format
PnYnMnDTnHnMnS, where n is an integer. For example, P1Y2M4DT9H8M20S defines the cache
duration as 1 year, 2 months, 4 days, 9 hours, 8 minutes, and 20 seconds.

Signing Key: Key Alias
Type the key alias that is used to sign requests and responses.
Encryption Key: Key Alias
Type the security certificate alias. Certificates are stored in a JKS keystore file. Each specific
certificate is mapped to an alias that is used to fetch the certificate.
Encryption Key: Key Size
Type the length for keys used by the web service consumer when interacting with another entity.

Encryption Key: Encryption Method
Select the method of encryption:

= None
= AES
= DESede

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domains

Select any of the available provider entities to assign as members of the affiliation.

A provider can belong to one or more affiliations. However, a provider without a specified
authentication domain cannot participate in Liberty-based communications. Also, be sure that the
service provider entity being assigned to the affiliate entity has enabled affiliation federation.

Click Save to complete the configuration.

Click OK to complete the configuration, or choose General from the View menu to configure the
General attributes.

To define values for General attributes, see “To Configure General Attributes for an Affiliate Entity”
on page 90.

Deleting Entities

If an entity is to be deleted from the console, it first needs to be manually removed from the Trusted
Providers list (if the provider is hosted) or the Available Providers list (if part of an affiliation).

To Delete a Provider or Affiliate Entity
In the Access Manager Console, click the Federation tab.
Under Federation, select the Entities tab.

Select the check box next to the entity that you want to delete.

No warning message is displayed when performing a delete.

Click Delete.

Authentication Domains

An authentication domain is a federation of any number of service providers (and at least one
identity provider) with whom principals can transact business in a secure and apparently seamless
environment. (The members of the domain must have previously established a circle of trust based
on the Liberty Alliance Project architecture and operational agreements.)

Note - An authentication domain is not a domain in the domain name system (DNS) sense of the
word.

The following procedures describe how to create, configure, and delete authentication domains
using the Access Manager Console.

= “To Create An Authentication Domain” on page 94
= “To Configure or Modify an Authentication Domain” on page 94

Chapter3 - Federation 93

Entities and Authentication Domains

94

= “To Delete an Authentication Domain” on page 95

To Create An Authentication Domain
In the Access Manager Console, click the Federation tab.
Under Federation, select the Authentication Domains tab.

Select New.

The New Authentication Domain attributes are displayed.
Type a name for the authentication domain.
(Optional) Type a description of the authentication domain in the Description field.

(Optional) Type a value for the Writer Service URL.

The Writer Service URL specifies the location of the service that writes the common domain cookie.
Use the format http://common-domain-host:port/common/writer. For more information about
the Common Domain Services, see Chapter 4.

(Optional) Type a value for the Reader Service URL.

The Reader Service URL specifies the location of the service that reads the common domain cookie.
Use the format http://common-domain-host:port/common/transfer. For more information about
the Common Domain Services, see Chapter 4.

Select Active or Inactive.

The default status is Active. Selecting Inactive disables communication within the authentication
domain.

Click OK.

The new authentication domain is now displayed in the list of configured Authentication Domains.

To Configure or Modify an Authentication Domain
In the Access Manager Console, click the Federation tab.

Under Federation, select the Authentication Domains tab.

All created Authentication Domains are displayed.

Click the name of the authentication domain that you want to modify.

The General and Providers properties for the authentication domain are displayed.

(Optional) Enter or modify a description of the authentication domain in the Description field.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Entities and Authentication Domai

ns

10

n

(Optional) Enter or modify the value for the Writer Service URL.

The Writer Service URL specifies the location of the service that writes the common domain cookie
Use the format http://common-domain-host:port/common/writer. For more information on the
Common Domain Services, see Chapter 4.

(Optional) Enter or modify the value for the Reader Service URL.

The Reader Service URL specifies the location of the service that reads the common domain cookie.

Use the format http://common-domain-host:port/common/transfer. For more information on the

Common Domain Services, see Chapter 4.

Select Active or Inactive.

The default status is Active. Selecting Inactive disables communication within the authentication
domain.

Click Add to populate the authentication domain with providers.
The Trusted Providers page is displayed.

Choose from the list of Available Providers and click Add.

Click OK to save the providers to the authentication domain.

The authentication domain’s attribute page is displayed.
Click Save to complete the configuration.

To Delete an Authentication Domain

Deleting an authentication domain does not delete the providers that belong to it although it will
impact the trusted relationship.

In the Access Manager Console, click the Federation tab.

Under Federation, select the Authentication Domains tab.

All created Authentication Domains are displayed.
Select the check box next to the authentication domain that you want to delete.

Click Delete.

Chapter3 - Federation

95

Auto-Federation

Auto-Federation

96

The auto-federation feature in Access Manager will automatically federate a user’s disparate provider
accounts based on a common attribute. This common attribute will be exchanged in a single sign-on
assertion so that the consuming service provider can identify the user and create account federations.
If auto-federation is enabled and it is deemed that a user at provider A and a user at provider B have
the same value for the defined common attribute (for example, emailaddress), the two accounts will
be federated automatically without principal interaction.

Note - Auto-federating a principal’s two distinct accounts at two different providers requires each
provider to have agreed to implement support for this functionality beforehand.

To Enable Auto Federation

Ensure that each local service and identity provider participating in auto federation is configured for
it. Remote providers would not be configured in your deployment.

In the Access Manager Console, click the Federation tab.
Under Federation, select the Entities tab.

Select the name of a hosted provider entity to edit its profile.

Whether an entity is configured to hold hosted or remote providers is not information that is
disclosed on this screen.

Select Identity Provider or Service Provider from the View menu.
Select Access Manager Configuration.
Enable Auto Federation by checking the box.

Type a value for the Auto Federation Common Attribute Name attribute.

For example, enter emailaddress or userID. You should be sure that each participating user profile
(at both providers) has a value for this attribute.

Click Save to complete the configuration.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Dynamic Identity Provider Proxying

Bulk Federation

Access Manager provides a script for federating user accounts in bulk. It is called ambulkfed and is
located in /opt/SUNWam/bin. The script assumes that the user database is LDAPv3-compliant.

Note - The ambulkfed script is the primary script for bulk federation. It uses two other Perl scripts,
amGeneratelLDIF.pl and amGenerateNI.pl, behind the scenes.

As input, the script takes a file that maps the user distinguished name (DN) of the identity provider
to the user DN of the service provider. Each line of the file must place the mappings in the following
order and separated by a pipe (’|”): uid=spuser,dc=iplanet,dc=conm |
uid=idpuser,dc=iplanet, dc=com. The script generates unique random identifiers for each
mapping and creates four files:

B spnameidentifiers.txt
® jdpnameidentifiers.txt
® spuserdata.ldif

® idpuserdata.ldif

These files contain the data for bulk federation. The LDIFs are used for instances of Access Manager.
ambulkfed generates and loads the LDIF data into Access Manager based on its given provider role.
For example, it will load spuserdata.1dif if Access Manager acts as a service provider and it will
load idpuserdata.ldif if Access Manager acts as an identity provider. The LDIFs will also be stored
locally and can be used with ldapmodify to load the data into a remote instance of Access Manager. If
the remote provider is not an instance of Access Manager, the generated text files
spnameidentifiers.txt and idpnameidentifiers.txt can be used to generate federation data
based on the input needs of the provider.

Dynamic ldentity Provider Proxying

An identity provider that is asked to authenticate a principal that has already been authenticated with
another identity provider may proxy the authentication request, on behalf of the requesting service
provider, to the authenticating identity provider. This is called dynamic identity provider proxying.
When the first identity provider receives an authentication request regarding a principal, it prepares
anew authentication assertion on its own behalf by referencing the relevant information from the
original assertion and sending the assertion to the authenticating identity provider.

Note - The service provider requesting authentication may control this proxy behavior by setting a
list of preferred identity providers or by defining the amount of times the identity provider can proxy
the request.

Chapter3 - Federation 97

Dynamic Identity Provider Proxying

98

v To Configure and Test Dynamic Identity Provider

Proxying

The following steps describe the procedure to enable three machines for identity provider proxying
and test the configuration. The procedure assumes the three machines have Access Manager installed
and are configured as follows:

Machine Authentication Function Federation Function

Machine 1 Authenticating Identity Provider Identity Provider

Machine 2 Proxying Identity Provider Identity Provider and Service Provider
Machine 3 Requesting Service Provider Service Provider

All of the WAR files and metadata used in the following procedure can be found in
/AccessManager-base/samples/liberty/samplel.

To configure machine 3, deploy the SP1 WAR files and load sp1Metadata. xml.

Ensure that the metadata defines machine 2 as an identity provider and machine 3 as a service
provider.

To configure machine 1, deploy the IDP1 WAR files and load idp1Metadata.xml.

Ensure that the metadata defines machine 1 as an identity provider and machine 2 as a service
provider.

To configure machine 2, do the following:

a. Toconfigure machine 2 as a service provider, deploy the SP1 WAR files.
Modify AMClient.properties to reflect this.

b. To configure machine 2 as an identity provider, load a second, modified idp1Metadata.xml.

Ensure that idplMetadata.xml contains only data that defines machine 1 as an identity provider.
Remove all other metadata.

Log in to machine 2 and modify the following metadata:

a. Change the value of the Authentication Type attribute to Local.

This attribute can be found in the Access Manager Configuration section of the entity describing
machine 2 as a service provider.

b. Addmachine 1and machine 3 to the list of Trusted Providers configured for machine 2.

This attribute can be found in the Trusted Provider section of the entity describing machine 2 asa
service provider.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

The Pre-login URL

¢. Savethe configuration.
5 Also on machine 2, modify the following metadata regarding machine 3.

a. Selectthe check box next to Enable Proxy Authentication.

This attribute can be found in the Proxy Authentication Configuration section of the entity that
defines machine 3 as an identity provider.

b. Add machine 1to the list of Proxy Identity Providers List.

This attribute can be found in the Proxy Authentication Configuration section of the entity that
defines machine 3 as an identity provider. The value is a URI defined as the provider’s identifier.

¢. Set Maximum Number of Proxiesto 1.
d. Save the configuration.

6 Federate a user between machine 3 (acting as a service provider) and machine 2 (acting as an
identity provider).

7 Federate a user between machine 2 (acting as a service provider) and machine 1 (acting as an
identity provider).

8 Closethe browser and attempt single sign-on.

You will be redirected to machine 1 rather than machine 2 if you enter the username and password
used to federate with machine 1.

The Pre-login URL

The pre-login process is the entry point for applications participating in Liberty-based single
sign-on. As described in “Process of Federation” on page 64, the principal would be redirected to the
location defined by the pre-login URL if no Access Manager session token is found. This default
process, though, can be modified based on the values of URL query parameters passed to Access
Manager by the service provider.

Note - A URL parameter is a name/value pair appended to the end of a URL. The parameter starts
with a question mark (?) and takes the form name=value. A number of parameters can be combined
in one URL although if more than one parameter exists, they are separated by an ampersand (&).

In order to modify the pre-login URL, edit the property in either the AMConfig.properties file or
the AMAgent . properties file, dependant on your deployment. Use the format
http://hostname:port/deploy-uri/preLogin?metaAlias=metaAlias. Query parameters can be
appended to the URL as ¶mI=valuel¶m2=value2 and so on. These parameters and their
usage and values are described in the following table.

Chapter3 - Federation 99

The Pre-login URL

100

TABLE 3-2 Pre-login URL Parameters for Federation

Parameter

Description

actionOnNoFedCookie

anonymousOnetime

authlevel

gotoOnFedCookieNo

The actionOnNoFedCookie parameter provides the flexibility to redirect a user
when the fedCookie is not present in the browser, and when there is only one
identity provider. It takes the following values:

® commonlogin will redirect to a common login page.

® locallogin will redirect to the local Access Manager login page.

® passive will issue a request to the identity provider by setting the
isPassive parameter of the AuthnRequest element to true.

® active will issue a normal single sign-on request to the identity provider.

The anonymousOnetime parameter can be used by service providers that
authenticate users with anonymous, one time federation sessions. A value of
true enables the service provider to issue a one time federation request and
generate an anonymous session after successful verification of the
authentication assertion from the identity provider. This feature is useful when
the service provider doesn’t have a user repository (for example,
http://www.weather.com) but would like to depend on an identity provider for
authentication. When the service provider receives a successful authentication
assertion from an identity provider, they would generate an anonymous,
temporary session.

The authlevel parameter takes as a value a positive number that maps to an
authentication level defined in the Access Manager Authentication Framework.
The authentication level indicates how much to trust a method of
authentication.

Note - More information on the authentication framework can be found in Sun
Java System Access Manager 7 2005Q4 Administration Guide.

In this framework, each service provider is configured with a default
authentication context (preferred method of authentication). However, the
provider might like to change the assigned authentication context to one that is
based on the defined authentication level. For example, provider B would like to
generate a local session with an authentication level of 3 so it requests the
identity provider to authenticate the user with an authentication context
assigned that level. The value of this query parameter determines the
authentication context to be used by the identity provider.

The gotoOnFedCookieNo parameter takes as a value a URL to which the
principal is redirected if a fedCookie with a value of no is found. The default
behavior is to redirect the user to the Access Manager login page.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Sample Federation Environment

Federation API

The com. sun. liberty package provides the interface that forms the basis of the Federation API. It
contains the LibertyManager class which must be instantiated by web applications that want to
access the Federation component. It also contains the methods needed for account federation,
session termination, log in, log out and other actions. Some of these methods are described in the
following table. For more detailed information, see the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

TABLE 3-3 Federation API Methods

Method

Description

getFederatedProviders(String userName)

getIDPFederationStatus(String user, String
provider)

getIDPList()

getIDPList(java.lang.String
hostedProviderID)

getProvidersToFederate
(java.lang.String providerlID,
java.lang.String userName)

getSPList()

getSPList(java.lang.String hostedProviderID)

getSPFederationStatus(java.lang.String user,
java.lang.String provider)

Returns a specific user’s federated providers.

Retrieves a user’s federation status with a specified
identity provider. This method assumes that the user
is already federated with the provider.

Returns a list of all trusted identity providers.

Returns a list of all trusted identity providers for the
specified hosted provider.

Returns a list of all trusted identity providers to which
the specified user is not already federated.

Returns a list of all trusted service providers.

Returns a list of all trusted service providers for the
specified hosted provider.

Retrieves a user’s federation status with a specified
service provider. This method assumes that the user is
already federated with the provider.

Sample Federation Environment

Access Manager provides a collection of samples based on the Liberty Alliance Project specifications.
They are located in the /AccessManager-base/SUNWam/samples/liberty/ directory. Appendix A

includes information about these samples.

Sample 1, located in / AccessManager-base/SUNWam/samples/liberty/Samplel, can be used to
configure an environment for creating and managing a federation. The sample demonstrates the
basic use of various Liberty-based federation protocols including account federation, single sign-on,
single logout, and federation termination. Completing the procedures in the sample Readme . txt or
Readme . html will help to give you a more complete understanding of how federation works.

Chapter3 - Federation

101

Sample Federation Environment

Note - The Readme file also contains instructions for configuring a common domain. For information
about common domains, see Chapter 4.

102 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

L R R 4 CHAPTER 4

Common Domain Services

Sun Java System Access Manager provides Common Domain Services that enable a service provider
to determine the identity provider used by a principal in an authentication domain that contains
multiple identity providers.

This chapter covers the following topics:

“Common Domain” on page 103

“Common Domain Cookie” on page 104

“Configuring the Common Domain Services URLs” on page 105
“Configuring the Common Domain Services Properties” on page 105
“Installing the Common Domain Services for Federation” on page 106

Common Domain

Providers need a way to find which identity provider is used by a principal requesting authentication.
Because authentication domains are configured without regard to their location, this function must
work across DNS—defined domains. Suppose an authentication domain contains more than one
identity provider, then a service provider in the authentication domain trusts more than one identity
provider. But, a principal can only issue a federation request to one identity provider, so the service
provider to which the principal is requesting access must have the means to determine the correct
one. To ascertain a principal’s identity provider, the service provider invokes a protocol exchange to
retrieve the common domain cookie, a cookie written for the purpose of introducing the identity
provider to the service provider. If no common domain cookie is found when the principal issues a
federation request, the service provider must present a list of trusted identity providers from which
the principal will choose. After successful authentication, the identity provider writes (using the
Writer Service URL as defined in “Configuring the Common Domain Services URLs” on page 105) a
common domain cookie. The next time the principal attempts to access a service, the service
provider finds and reads the common domain cookie (using the Reader Service URL as defined in
“Configuring the Common Domain Services URLs” on page 105), to determine the identity
provider.

103

Common Domain Cookie

The common domain is established for use only within the scope of the Common Domain Services.
In Access Manager deployments, the Common Domain Services are deployed in a web container
installed in a predetermined and pre-configured common domain so that the common domain
cookie is accessible to all providers in the authentication domain. If the HTTP server in the common
domain is operated by the service provider, the service provider will redirect the user agent to the
identity provider.

After a principal authenticates with a particular identity provider, the identity provider redirects the
principal’s browser to their Common Domain Service with a parameter indicating that they are the
identity provider for this principal. The Common Domain Service then writes a cookie using that
preference. Thereafter, all providers configured in this common domain will be able to tell which
identity provider is used by the principal. For example, suppose an identity provider is available at
http://www.Bank.comand a service provider is available via http://www.Store. com. If the
common domain they define is RetailGroup. com, the addresses will be Bank.RetailGroup.comand
Store.RetailGroup. com, respectively.

Note - The Common Domain Services are based on the Identity Provider Introduction Profile
detailed in the Liberty ID-FF Bindings and Profiles Specifications.

Common Domain Cookie

104

After an identity provider authenticates a principal, the identity provider sets a URL-encoded cookie
that is defined in a predetermined domain common to all identity providers and service providers
within the authentication domain. The common domain cookie isnamed liberty idp. After
successful authentication, a principal’s identity provider appends their encoded identifier to a list in
the cookie. If their identifier is already present in the list, the identity provider may remove the initial
appearance and append it again. The intent is that the service provider reads the last identifier on the
cookie’s list to find the principal’s most recently established identity provider.

The identifiers in the common domain cookie are a list of SuccinctID elements encoded in the
Base64 format. One element maps to each identity provider in the authentication domain. Service
providers then use this SuccinctID element to find the user’s preferred identity provider.

Note - When the request contains no common domain cookie, the service provider presents a list of
trusted identity providers from which the principal may choose.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/specs/draft-liberty-idff-bindings-profiles-1.2-errata-v2.0.pdf

Configuring the Common Domain Services Properties

Configuring the Common Domain Services URLs

In Access Manager, the Common Domain Services are configured using two URLs that point to
servlets developed for writing and reading the common domain cookie. They are:

= “Writer Service URL” on page 105
= “Reader Service URL” on page 105

Note - For more information on how to configure these URLs, see “To Create An Authentication
Domain” on page 94 in Chapter 3.

Writer Service URL

The Writer Service URL is used by the identity provider. After successful authentication, the
common domain cookie is appended with the query parameter
_liberty_idp=entity-ID-of-identity-provider. This parameter is used to redirect the principal to the
Writer Service URL defined for the identity provider. The URL is configured as the value for the
Writer Service URL attribute when an authentication domain is created. Use the format
http://common-domain-host:port/deployment-uri/writer where common-domain-host:port refers
to the machine on which the Common Domain Services are installed and deployment-uri tells the
web container where to look for information specific to the application (such as classes or JARs). The
default URI is amcommon.

Reader Service URL

The Reader Service URL is used by the service provider. The service provider redirects the principal
to this URL in order to find the preferred identity provider. Once found, the principal is redirected to
the identity provider for single sign-on. The URL is defined as the value for the Reader Service URL
attribute when an authentication domain is created. It is formatted as
http://common-domain-host:port/deployment-uri/ transfer where common-domain-host:port
refers to the machine on which the Common Domain Services are installed and deployment-uri tells
the web container where to look for information specific to the application (such as classes or JARs).
The default URI is amcommon.

Configuring the Common Domain Services Properties

FSIntroConfig.properties isa file that contains properties used to configure the Common
Domain Services. It is deployed as part of the web application and located in
/AccessManager-base/web-src/common/WEB-INF/classes. It contains the properties described in
the following table (which may be modified).

Chapter4 « Common Domain Services 105

Installing the Common Domain Services for Federation

TABLE 4-1 Common Domain Services Properties in FSConfig.properties

Property Description

com.sun.identity.federation. The value of this property is the name of the common
services.introduction.cookiedomain domain.

com.sun.identity.federation. This property takes a value of either PERSISTENT or
services.introduction.cookietype SESSION. PERSISTENT defines the cookie as one that

will be stored and reused after a web browser is closed
and reopened. SESSION defines the cookie as one that
will not be stored after the web browser has been
closed.

com.iplanet.am.cookie.secure This property takes a value of either false or true. It
defines whether the cookie needs to be secured or not.

com.iplanet.am.cookie.encode This property takes a value of either false or true. It
defines whether the cookie will be URL encoded or
not. This property is useful if, for example, the web
container that reads or writes the cookie decrypts or
encrypts it by default.

Installing the Common Domain Services for Federation

106

The Common Domain Services are installed as a web application within Access Manager using the
Sun Java Enterprise System installer. However, the Common Domain Services for Federation can
also be installed as a standalone web application (separate from the Access Manager product) ona
Java Enterprise Edition web container. This option allows for generating common domain cookies
on a machine on which Access Manager is not installed. Once the Common Domain Services for
Federation is installed, you must set up the writer URL attribute for any identity providers and the
reader URL for any service providers. These URLs point to the machine on which Common Domain
Services for Federation is installed. For more information, see the Sun Java Enterprise System 2005Q4
Installation Guide for UNIX.

Tip - In most real world deployments, installing the Common Domain Services on a separate
machine is the obvious choice because of the need to setup a third-level common domain between
service providers and identity providers in disparate enterprises.

To Test a Common Domain Services Installation

For troubleshooting, make sure the debug level property in FSIntroConfig.properties is set to
message.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Installing the Common Domain Services for Federation

Install the Common Domain Services for Federation as a standalone application in a web container in
the common domain.

Ensure that the common domain has been defined and the web container is installed in it.

Modify the propertiesin FSIntroConfig.properties as needed.

See “Configuring the Common Domain Services Properties” on page 105 for more information.

Configure at least two identity providers for a service provider.

Ensure that the “Writer Service URL” on page 105 is configured for each identity provider and the
“Reader Service URL” on page 105 is configured for each service provider.

Login as a user and complete federation and single sign-on between one identity provider and the
service provider.

En sure thatthe liberty idp cookie is set to the common domain.

Login as a user and complete federation and single sign-on between the second identity provider
and the service provider.

After the initial successful federation and single sign-on, all service providers in the common domain
are redirected to the first identity provider based on the information in the common domain cookie.

Note - Whether the cookie is persistent or for this browser session alone is dependent on how
FSIntroConfig.properties is configured.

Chapter4 « Common Domain Services 107

108

PART 111

Supported Web Services

Chapter 5, Authentication Web Service
Chapter 6, Data Services

Chapter 7, Discovery Service

Chapter 8, SOAP Binding Service

109

110

L R R 4 CHAPTER 5

Authentication Web Service

Sun Java™ System Access Manager contains an implementation of the Liberty ID-WSF
Authentication Service Specification developed by the Liberty Alliance Project. The implementation
of the specifications is called the Authentication Web Service which allows authentication using
SOAP messages.

This chapter covers the following topics:

m “Authentication Web Service Overview” on page 111
= “Which Authentication Service to Use?” on page 112
= “Authentication Web Service Process” on page 114

m “Authentication Web Service Attribute” on page 115
= “Authentication Web Service API” on page 116

= “Authentication Web Service Sample” on page 116

Authentication Web Service Overview

The implementation of the Access Manager Authentication Web Service is based on the Liberty
ID-WSF Authentication Service Specification. The specification defines a protocol that adds
authentication functionality to the SOAP binding discussed in the Liberty ID-WSF SOAP Binding
Specification and, Chapter 8 in this guide. The specification also contains an XML schema that
defines the authentication protocol.

Note - This XML Schema Definition (XSD) file can be found on the Liberty Alliance Project web site.
Version 1.0 is also reproduced in Appendix B.

The Authentication Web Service is for provider-to-provider authentication. The Simple
Authentication and Security Layer (SASL) is the method used to add this authentication support.

m

http://www.projectliberty.org/specs/liberty-idwsf-authn-svc-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idwsf-authn-svc-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf
http://www.projectliberty.org

Which Authentication Service to Use?

XML ServiceFile

The Authentication Web Service is configured using the XML service file amAuthnSvc. xml. This file
defines the attribute for the Authentication Web Service which can be managed through the Access
Manager console or the XML file.

Note - For information about service files, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

Authentication Web Service APIs

The Access Manager Authentication Web Service includes the following Java programming
packages:

com.sun.identity.liberty.ws.authnsvc
® com.sun.identity.liberty.ws.authnsvc.mechanism
® com.sun.identity.liberty.ws.authnsvc.protocol

The first package is a client API for external Java applications to send SASL requests and receive
SASL responses. The second package defines an interface to handle different SASL mechanisms. The
final package contains classes that represent the SASL request and response. Together, the packages
are used to initiate the authentication process and communicate authentication credentials to the
Authentication Web Service. For more information, see the “Authentication Web Service API”

on page 116.

Which Authentication Service to Use?

112

The Liberty-based Authentication Web Service is not to be confused with the proprietary
Authentication Service discussed in the Sun Java System Access Manager 7 2005Q4 Administration
Guide. Architecturally, the Authentication Web Service sits on top of the Access Manager
Authentication Service and the Liberty Alliance Project framework. You might use the
Authentication Web Service if you are a service provider and want to use a standards-based
mechanism to authenticate users.

Following are two use cases where the Authentication Web Service is preferable to the Access
Manager Authentication Service:

= Aservice provider relies on a remote identity provider (not necessarily using Access Manager) for
authentication.

= Anenterprise in a service-oriented architecture (SOA) environment wants to use nonproprietary
mechanisms to authenticate users and web services clients before accessing a protected web
service.

In addition to providing an authentication service to verify credentials (for example, user ID and
password), the Authentication Web Service provides the web services consumer (WSC) with

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Which Authentication Service to Use?

bootstrap information that contains the endpoint and credentials needed to access the Discovery
Service (as discussed in Chapter 7). The WSC can ignore the bootstrap or use it to access other web
services, such as the authenticated user’s personal profile or calendar.

Note - An authenticated enterprise might also use the bootstrap information to access a partnerina
business-to-business environment.

Following is an example that shows how the Authentication Web Service interacts with the Access
Manager Authentication Service. It assumes the following separate entities:

= Auser (principal)
® Aservice provider (acting as a WSC)

= Anidentity provider hosted by Access Manager where the Access Manager Authentication
Service is configured for Certificate and LDAP authentication and the Authentication Web
Service has mapped LDAP to its own PLAIN authentication mechanism

= The user’s personal profile (hosted by another product)

The WSC delegates all authentication to the identity provider and prefers PLAIN authentication
which accepts a user identifier and password.

1. The user attempts access to a service provider (not necessarily hosted by Access Manager).

2. When the service provider finds that the user is not authenticated, it invokes the identity
provider’s Authentication Web Service by sending it a SOAP request.

3. After inspecting its configuration, the Authentication Web Service sends back a response
indicating that it supports Certificate and PLAIN authentication.

4. The service provider decides on PLAIN authentication and prompts the user for an identifier and
password.

5. Interactions based on the standard PLAIN authentication mapping ensues between the service
provider and identity provider (hosted on Access Manager) using the Authentication Web
Service.

a. The service provider receives the user identifier and password and sends it to the identity
provider.

b. The identity provider passes the credentials to the locally hosted LDAP Authentication
module using the proprietary Access Manager Authentication Service’s Java APL

The LDAP Authentication module verifies the credentials.

d. The Authentication Web Service is notified of the verification and sends a response to the
service provider indicating successful authentication. If configured to do so, it also includes
bootstrap information formatted using XML and containing the Discovery Service endpoint
and a token to invoke it.

6. The service provider parses the response, verifies that it is a successful authentication, and
provides the service to the user.

Chapter5 - Authentication Web Service 113

Authentication Web Service Process

At some point the service provider might need to access the user’s personal profile. To do this, it will
use the bootstrap information received during this process to contact the Discovery Service and find
where the profile is stored. The Discovery Service returns a resource offering (containing the location
of an endpoint and a token), and the service provider uses that to invoke the Liberty Personal Profile
Service.

Authentication Web Service Process

The exchange of authentication information between a web service consumer (WSC) and the web
service provider (WSP) is accomplished using SOAP-bound messages. The messages are a series of
client requests and server responses specific to the defined SASL mechanism (or mode of
authentication).

The authentication exchange can involve an arbitrary number of round trips, dictated by the
particular SASL mechanism employed. The WSC might have knowledge of the supported SASL
mechanisms, or it might send the server its own list of mechanisms and allow the server to choose
one. The list of supported mechanisms can be found at
http://www.iana.org/assignments/sasl-mechanisms.

After receiving a request for authentication (or any response from the WSC), the WSP may issue
additional challenges or indicate authentication failure or success. The sequence between the WSC
and the Authentication Web Service (a WSP) is as follows.

1. The authentication exchange begins when a WSC sends an SASL authentication request to the
Authentication Web Service on behalf of a principal.

The request message contains an identifier for the principal and indicates one or more SASL
mechanisms from which the service can choose.

2. The Authentication Web Service responds by asserting the method to use and, if applicable,
initiating a challenge.

If the Authentication Web Service does not support any of the cited methods, it responds by
aborting the exchange.

The WSC responds with the necessary credentials for the chosen method of authentication.
4. The Authentication Web Service replies by approving or denying the authentication.

If approved, the response includes the credentials the WSC needs to invoke other web services,
such as the Discovery Service.

14 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.iana.org/assignments/sasl-mechanisms

Authentication Web Service Attribute

Authentication Web Service Attribute

The Authentication Web Service attribute is a global attribute. The value of this attribute is carried
across the Access Manager configuration and inherited by every organization.

Note - For information about the types of attributes used in Access Manager, see the Sun Java System
Access Manager 7 2005Q4 Technical Overview.

The attribute for the Authentication Web Service is defined in the amAuthnSvc. xm1 service file and is
called the Mechanism Handlers List.

Mechanism Handlers List

The Mechanism Handler List attribute stores information about the SASL mechanisms that are
supported by the Authentication Web Service.

key Parameter
The required key defines the SASL mechanism supported by the Authentication Web Service.

class Parameter

The required class specifies the name of the implemented class for the SASL mechanism. Two
authentication mechanisms are supported by the following default implementations:

TABLE 5-1 Default Implementations for Authentication Mechanism

Class Description
com.sun.identity.liberty.ws. This class is the default implementation for the PLAIN
authnsvc.mechanism.PlainMechanismHandler authentication mechanism. It maps user identifiers

and passwords in the PLAIN mechanism to the user
identifiers and passwords in the LDAP authentication
module under the root organization.

com.sun.identity.liberty.ws. This class is the default implementation for the
authnsvc.mechanism.CramMD5MechanismHandler CRAM-MD?5 authentication mechanism.

Note - The Authentication Web Service layer provides an interface that must be implemented for
each SASL mechanism to process the requested message and return a response. For more
information, see “com.sun.identity.liberty.ws.authnsvc.mechanism Package” on page 116.

Chapter5 - Authentication Web Service 115

Authentication Web Service API

Authentication Web Service API

The Authentication Web Service provides programmatic interfaces to allow clients to interact with it.
The following sections provide short descriptions of these packages. For more detailed information,
see the Java API Reference in / AccessManager-base/SUNWam/docs or on docs.sun.com. The
authentication-related packages include:

= “com.sun.identity.liberty.ws.authnsvc Package” on page 116
= “com.sun.identity.liberty.ws.authnsvc.mechanism Package” on page 116
= “com.sun.identity.liberty.ws.authnsvc.protocol Package” on page 116

com.sun.identity.liberty.ws.authnsvc Package

This package provides web service clients with a method to request authentication credentials from
the Authentication Web Service and receive responses back from it using the Simple Authentication
and Security Layer (SASL).

com.sun.identity.liberty.ws.authnsvc.mechanism
Package

This package provides an interface that must be implemented for each different SASL mechanism to
enable authentication using them. Each SASL mechanism will correspond to one implementation
that will process incoming SASL requests and generate outgoing SASL responses.

com.sun.identity. liberty.ws.authnsvc.protocol
Package

This package provides classes that correspond to the request and response elements defined in the
Liberty XSD schema that accompanies the Liberty ID-WSF Authentication Service Specification. This
schema is reproduced in Appendix B.

Authentication Web Service Sample

116

A sample authentication client is included with Access Manager. It is located in the
/AccessManager-base/SUNWam/samples/phase2/authnsvc directory. The client uses the PLAIN
SASL authentication mechanism. It first authenticates against the Authentication Web Service, then
extracts a resource offering to bootstrap the Discovery Service. It looks for a SAML Bearer token
credential, issues a discovery query request with SAML assertion included, and receives a response.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Authentication Web Service Sample

Note - This sample can be used by a Liberty User Agent Device WSC.

Chapter5 - Authentication Web Service 117

118

L R R 4 CHAPTER 6

Data Services

Sun Java System Access Manager contains implementations of the Liberty ID-WSF Data Services
Template Specification in addition to instructions on how you can add a custom data service to your
deployment.

This chapter covers the following topics:

= “Data Services Overview” on page 119

m “Liberty Personal Profile Service” on page 122
= “Liberty Employee Profile Service” on page 129
= “Data Services Template API” on page 129

= “Developing A New Data Service” on page 131

Data Services Overview

A data service is a web service that supports the query and modification of data regarding a principal.
An example of a data service is a web service that hosts and exposes a principal’s profile information,
such as name, address and phone number. A query is when a web service consumer (WSC) requests
and receives the data (in XML format). A modify is when a WSC sends new information to update the
data. The Liberty Alliance Project has defined the Liberty ID-WSF Data Services Template
Specification (Liberty ID-WSF-DST) as the standard protocol for the query and modification of data
profiles exposed by a data service. Using this specification, the Liberty Alliance Project has developed
additional specifications for other types of data services: personal profile service, geolocation service,
contact service, and calendar service). Of these data services, Access Manager has implemented the
Liberty Personal Profile Service and, using the included sample, the Liberty Employee Profile Service.

Note - To develop your own data service see the instructions in “Developing A New Data Service”
on page 131.

119

http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf

Data Services Overview

120

Liberty ID-WSF Data Services Template Specification

The Liberty ID-WSE-DST specifies a base layer that can be extended by any instance of a data
service. An example of a data service is an identity service, such as an online corporate directory.
When you want to contact a colleague, you conduct a search based on the individual’s name, and the
data service returns information associated with that person’s identity. The information might
include the individual’s office location and phone number, as well as job title or department name.
For proper implementation, all data services must be built on top of the Liberty ID-WSF-DST
because it provides the data model and message interfaces. The following figure illustrates how
Access Manager uses the Liberty ID-WSF-DST as the framework for data services.

Liberty ID-SIS Data Services
- - — — — —

]

Liberty Liberty Additional Custom
Personal Profile Employee Profile Data Services
Service Service (Calendar, Wallet)

Discovery SOAP
Service Binding

Liberty Web Services Framework

FIGURE 6-1 Data Service Template as Building Block of Data Services

The Web Services framework in Access Manager uses the Liberty ID-WSE-DST to develop data
services. The Access Manager Liberty Personal Profile Service and Liberty Employee Profile Service
were developed on top of the Web Services framework, using the specification. Additional data
services can also be developed by the customer.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Data Services Overview

Note - For more information on the data services specification, see the Liberty ID-WSF Data Services
Template Specification.

Liberty Personal Profile Service

The Liberty ID-SIS Personal Profile Service Specification (Liberty ID-SIS-PP) describes a data service
that provides an identity’s basic profile information, such as full name, contact details, and financial
information. This data service is intended to be the least common denominator for holding
consumer-based information about a principal. Access Manager has implemented this specification
and developed the Liberty Personal Profile Service.

For more information, see the Liberty ID-SIS Personal Profile Service Specification.

XML Service File

The Access Manager Liberty Personal Profile Service is configured using the XML service file
amLibertyPersonalProfile.xml. This file defines attributes for the Liberty Personal Profile Service
which can be managed through the Access Manager Console or the XML file itself.

Note - For information about service files, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

XSD Schema Definition

The Liberty ID-SIS-PP also defines an XML schema for use in building a personal profile service.
This XML Schema Definition (XSD) file is on the Liberty Alliance Project web site. Version 1.0 is also
reproduced in Appendix B.

Liberty Employee Profile Service

The Liberty ID-SIS Employee Profile Service Specification (Liberty ID-SIS-EP) describes a data service
that provides an identity’s profile information as it relates to employment. An example of a employee
profile service might be a corporate calendar or phone book.

Access Manager has implemented this specification by developing a sample that includes the files
needed to deploy and invoke a Liberty Employee Profile Service. The Liberty Employee Profile
Service is not available when Access Manager is installed. It must first be deployed. For information
about accessing the sample files and how to deploy them, see “Liberty Employee Profile Service”

on page 129.

Note - For more information, see the Liberty ID-SIS Employee Profile Service Specification.

Chapter6 - Data Services 121

http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idwsf-dst-v1.1.pdf
http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf
http://www.projectliberty.org/specs/liberty-idsis-ep-v1.0.pdf

Liberty Personal Profile Service

XML Service File

Among the files included with the sample is the XML service file amLibertyEmployeeProfile.xml.
This file defines the attributes for the Liberty Employee Profile Service which, once deployed, can be
managed through the Access Manager Console or the XML file itself.

Note - For information about service files, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

XSD Schema Definition

The Liberty ID-SIS-EP also defines an XML schema for use in building an employee profile service.
This XSD file is on the Liberty Alliance Project web site. Version 1.0 is also reproduced in
Appendix B.

Data Services API

Access Manager data services are built using a Java package called
com.sun.identity.liberty.ws.dst. Access Manager provides this package for developing custom
services based on the Liberty ID-WSE-DST. Additional information about these interfaces can be
found in “Data Services Template API” on page 129 and in the Java API Reference at
/AccessManager-base/SUNWam/docs or on docs.sun.com.

Liberty Personal Profile Service

122

The Liberty Personal Profile Service is a default Access Manager identity service. It can be queried for
identity data and its attributes can be updated.

For access to occur, the hosting provider of the Liberty Personal Profile Service needs to be registered
with the Discovery Service on behalf of each identity principal. To register a service with the
Discovery Service, update a resource offering for that service. For more information, see Chapter 7.

Liberty Personal Profile Service Process

The invocation of a personal profile begins when a WSC posts a query or a modify request to the
Liberty Personal Profile Service on behalf of a user. The following process is also illustrated in Figure
6-2.

1. Aweb services client uses the Data Services Template API to post a query or a modify request to
the Liberty Personal Profile Service.
All the query or modify requests to any identity service are SOAP requests.

2. Theclient’s SOAP request is received by the SOAP receiver provided by the SOAP Binding
Service.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Liberty Personal Profile Service

The SOAP receiver invokes either the Discovery Service, the Authentication Web Service, or the
Liberty Personal Profile Service, depending on the service key transmitted as part of the URL.
The SOAP Binding Service might also authenticate the client identity.

3. The Liberty Personal Profile Service implements the DSTRequestHandler to process the request.

The request is processed based on the request type (query or modify) and the query expression.
Processing might entail the authorization of a WSC using the Access Manager Policy Service, or
it might entail using the Interaction Service for interacting with the user before sending data to
the WSC.

4. The Liberty Personal Profile Service builds a service response, adds credentials (if they are
required), and sends the response back to the WSC.

= Foraresponse to a query request, the Liberty Personal Profile Service builds a personal profile
container (as defined by the specification). It is formatted in XML and based on the Query
Select expression. The Personal Profile attribute values are extracted from the data store by
making use of the attribute mapper. The attribute mapper is defined by the XML service file,
and the attribute values will be used while building the XML container. The Personal Profile
Service then applies xpath queries on the XML and provides us with the resultant XML data
node.

= Foraresponse to a modify request, the Liberty Personal Profile Service parses the Modifiable
Select expression and updates the new data from the new data node in the request.

The following diagram illustrates the Liberty Personal Profile Service process.

Chapter6 - Data Services 123

Liberty Personal Profile Service

124

Web Services
Consumer

SOAP request sent via HTTP

SOAP Request Handler

A

y

Data Services Template Request Handler

Authorizer

A

y

Attribute Mapper

Liberty Personal Profile Service

Data
Store

FIGURE 6-2 Liberty Personal Profile Service Process

Liberty Personal Profile Service Attributes

The Liberty Personal Profile Service attributes are global attributes. The values of these attributes are
carried across the Access Manager configuration and inherited by each configured organization.

Note - For information about the types of attributes used in Access Manager, see the Sun Java System

Access Manager 7 2005Q4 Technical Overview.

Attributes for the Personal Profile Service are defined in the amLibertyPersonalProfile.xml
service file. The attributes are:

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide -

October 2005

Liberty Personal Profile Service

“ResourcelD Mapper” on page 125
“Authorizer” on page 125

“Attribute Mapper” on page 126

“Provider ID” on page 126

“Name Scheme” on page 126

“Namespace Prefix” on page 126

“Supported Containers” on page 126
“PPLDAP Attribute Map List” on page 127
“Require Query PolicyEval” on page 127
“Require Modify PolicyEval” on page 127
“Extension Container Attributes” on page 128
“Extension Attributes Namespace Prefix” on page 128
“Is ServiceUpdate Enabled” on page 128
“Service Instance Update Class” on page 129
“Alternate Endpoint” on page 129

“Alternate Security Mechanisms” on page 129

ResourcelD Mapper

The value of this attribute specifies the implementation of
com.sun.identity.liberty.ws.interfaces.ResourceIDMapper.Although a new implementation
can be developed, Access Manager provides the default
com.sun.identity.liberty.ws.idpp.plugin.IDPPResourceIDMapper, which mapsa discovery
resource identifier to a user identifier.

Authorizer

Before processing a request, the Liberty Personal Profile Service verifies the authorization of the
WSC making the request. There are two levels of authorization verification:

= s the requesting entity authorized to access the requested resource profile information?

® s the requested resource published to the requestor?

Authorization occurs through a plug-in to the Liberty Personal Profile Service, an implementation of
the com.sun.identity.liberty.ws.interfaces.Authorizer interface. Although a new
implementation can be developed, Access Manager provides the default class,
com.sun.identity.liberty.ws.idpp.plugin.IDPPAuthorizer. This plug-in defines four policy
action values for the query and modify operations:

Allow

Deny

Interact For Consent
Interact For Value

The resource values for the rules are similar to x- path expressions defined by the Liberty Personal
Profile Service. For example, a rule can be defined like this:

Chapter6 - Data Services 125

Liberty Personal Profile Service

126

/PP/CommonName/AnalyzedName/FN Query Interact for consent
/PP/CommonName/* Modify Interact for value
/PP/InformalName Query Deny

Authorization can be turned off by deselecting one or both of the following attributes, which are also
defined in the Liberty Personal Profile Service:

® “Require Query PolicyEval” on page 127
= “Require Modify PolicyEval” on page 127

Attribute Mapper

The value of this attribute defines the class for mapping a Liberty Personal Profile Service attribute to
an Access Manager user attribute. By default, the class is
com.sun.identity.liberty.ws.idpp.plugin.IDPPAttributeMapper.

Note - com.sun.identity.liberty.ws.idpp.plugin.IDPPAttributeMapper isnota publicclass.

ProviderID

The value of this attribute defines the unique identifier for this instance of the Liberty Personal
Profile Service. Use the format protocol: // hostname: port/ deloy-uri/Liberty/idpp.

Name Scheme

The value of this attribute defines the naming scheme for the Liberty Personal Profile Service
common name. Choose First Last or First Middle Last.

Namespace Prefix

The value of this attribute specifies the namespace prefix that is used for Liberty Personal Profile
Service XML protocol messages. A namespace differentiates elements with the same name that come
from different XML schemas. The Namespace Prefix is prepended to the element.

Supported Containers

The values of this attribute define a list of supported containers in the Liberty Personal Profile
Service. A container, as used in this instance, is an attribute of the Liberty Personal Profile Service.

Note - The term container as described in this section is not related to the Access Manager
identity-related object that is also called container.

For example, Emergency Contact and Common Name are two default containers for the Liberty
Personal Profile Service. To add a new container, click Add, enter values in the provided fields and
click OK.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Liberty Personal Profile Service

Note - This functionality is not yet public.

PPLDAP Attribute Map List

Each identity attribute defined in the Liberty Personal Profile Service maps one-to-one with an
Access Manager LDAP attribute. For example,
JobTitle=sunIdentityServerPPEmploymentIdentityJobTitle maps the Liberty JobTitle
attribute to the Access Manager sunIdentityServerPPEmploymentIdentityJobTitle attribute.

The value of this attribute is a list that specifies the mappings. The list is used by the attribute mapper
defined in “Attribute Mapper” on page 126, by default,
com.sun.identity.liberty.ws.idpp.plugin.IDPPAttributeMapper.

Note - When adding new attributes to the Liberty Personal Profile Service or the LDAP data store,
ensure that the new attribute mappings are configured as values of this attribute.

In the following code sample, the Liberty Personal Profile Service informalName attribute mapping
to the LDAP attribute uid is added to the mappings already present in the Liberty Personal Profile
Service XML service file, amLibertyPersonalProfile.xml.

Note - Attribute mappings are defined as global attributes under the name
sunIdentityServerPPDSAttributeMapList in amLibertyPersonalProfile.xml. This attribute
corresponds to that sunIdentityServerPPDSAttributeMapList global attribute.

<AttributeSchema name="sunIdentityServerPPDSAttributeMapList"
type="1list"
syntax="string"
118nKey="p108">
<DefaultValues>
<Value>CN=sunIdentityServerPPCommonNameCN</Value>
<Value>FN=sunIdentityServerPPCommonNameFN</Value>
<Value>MN=sunIdentityServerPPCommonNameMN</Value>
<Value>SN=sunIdentityServerPPCommonNameSN</Value>
<Value>InformalName=uid</Value>
</DefaultValues>
</AttributeSchema>

Require Query PolicyEval

If selected, this option requires that a policy evaluation be performed for Liberty Personal Profile
Service queries. For more information, see “Authorizer” on page 125.

Require Modify PolicyEval

If selected, this option requires that a policy evaluation be performed for Liberty Personal Profile
Service modifications. For more information, see “Authorizer” on page 125.

Chapter6 - Data Services 127

Liberty Personal Profile Service

128

Extension Container Attributes

The Liberty Personal Profile Service allows you to specify extension attributes that are not defined in
the Liberty Alliance Project specifications. The values of this attribute specify a list of extension
container attributes. All extensions should be defined as:

/PP/Extension/PPISExtension [@name=’extensionattribute’]

The following sample illustrates an extension query expression for creditcard, an extension
attribute.

EXAMPLE 6-1 Extension Query for creditcard

/pp:PP/pp:Extension/ispp:PPISExtension[@name="creditcard’]
Note: The prefix for the PPISExtension is different,
and the schema for the PP extension is as follows:
<?xml version="1.0" encoding="UTF-8" 7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.sun.com/identity/liberty/pp"
targetNamespace="http://www.sun.com/identity/liberty/pp">
<xs:annotation>
<xs:documentation>
</xs:documentation>
</xs:annotation>

<xs:element name="PPISExtension">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string"
use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:schema>

Extension Attributes Namespace Prefix

The value of this attribute specifies the namespace prefix for the extensions defined in the “Extension
Container Attributes” on page 128. This prefix is prepended to the element and helps to distinguish
metadata from different XML schema namespaces.

Is ServiceUpdate Enabled

The SOAP Binding Service allows a service to indicate that requesters should contact it on a different
endpoint or use a different security mechanism and credentials to access the requested resource. If
selected, this attribute affirms that there is an update to the service instance.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Data Services Template API

Service Instance Update Class

The value of this attribute specifies the default implementation class
com.sun.identity.liberty.ws.idpp.plugin.IDPPServiceInstanceUpdate. This class is used to
update the information for the service instance.

Alternate Endpoint
The value of this attribute specifies an alternate SOAP endpoint to which a SOAP request can be sent.

Alternate Security Mechanisms

This attribute allows you to choose a security mechanism. For more information about this
functionality and the mechanisms, see the Liberty ID-WSF Security Mechanisms specification.

Liberty Employee Profile Service

The Liberty Employee Profile Service sample provides a collection of files that can be used to deploy
and invoke a corporate-based data service. The files are located in the
/AccessManager—base/SUNWam/samples/phaseZ/sis -ep directory.

Note - Before implementing this sample, you must have two instances of Access Manager installed,
running, and Liberty-enabled. Completing the steps in “samplel Directory” on page 209 will
accomplish this.

The Liberty Employee Profile Service is a deployment of the ID-SIS-EP specification as discussed in
“Liberty Employee Profile Service” on page 121. The Readme . html file in the sample directory
provides detailed steps on how to deploy and configure this sample for use as a data service. See also
Appendix A.

Data Services Template API

Access Manager contains two packages based on the Liberty ID-WSE-DST. They are:

® “com.sun.identity.liberty.ws.dst Package” on page 129
® “com.sun.identity.liberty.ws.dst.service Package” on page 130

For more detailed API documentation, including methods and their syntax and parameters, see the
Java API Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.dst Package

The following table summarizes the classes in the Data Services Template client API that are included
in the com.sun.identity.liberty.ws.dst package.

Chapter6 - Data Services 129

http://www.projectliberty.org/specs/draft-liberty-idwsf-security-mechanisms-v2.0-03.pdf

Data Services Template API

TABLE 6-1 Data Service Client APIs

Class Description

DSTClient Provides common functions for the Data Services
Templates query and modify options.

DSTData Provides a wrapper for any data entry.

DSTModification Represents a Data Services Template modification
operation.

DSTModify Represents a Data Services Template modify request.

DSTModifyResponse Represents a Data Services Template response to a
DST modify request.

DSTQuery Represents a Data Services Template query request.

DSTQueryItem Wrapper for one query item.

DSTQueryResponse Represents a Data Services Template query response.

DSTUtils Provides utility methods used by the DST layer.

com.sun.identity.liberty.ws.dst.service
Package

This package provides a handler class that can be used by any generic identity data service that is
built using the Liberty Alliance ID-SIS Specifications.

Note - The Liberty Personal Profile Service is built using the Liberty ID-SIS Personal Profile Service
Specification, based on the Liberty Alliance ID-SIS Specifications.

The DSTRequestHandler class is used to process query or modify requests sent to an identity data
service. It is an implementation of the interface
com.sun.identity.liberty.ws.soapbinding.RequestHandler. For more detailed API
documentation, see the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

Note - Access Manager provides a sample that makes use of the DSTRequestHandler class. The
sis-ep sample illustrates how to implement the DSTRequestHandler and deploy a new identity data
service instance. The sample is located in the
/AccessManager-base/SUNWam/samples/phase2/sis-ep directory. For more information, see
“sis-ep Directory” on page 211.

130 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Developing ANew Data Service

Developing ANew Data Service

In addition to deploying an employee profile service, the Liberty Employee Profile Service sample
can be used to deploy other custom data services that are based on the Liberty ID-WSF-DST.
Sections 2 and 3 in the Readme . html file in the
/AccessManager-base/SUNWam/samples/phase2/sis-ep directory has detailed steps on how to
deploy and configure data services. To use those instructions for a new data service, you need to write
anew data service schema. This XML Schema Definition (XSD) document (as discussed in
Appendix B) defines the service’s data and data structure. After you write a new XSD file, use it to
deploy your new data service instead of the 1ib-id-sis-ep.xsd file.

Note - Instructions on writing the XSD file are beyond the scope of this guide.

Chapter6 - Data Services 131

132

L R R 4 CHAPTER 7

Discovery Service

Sun Java System Access Manager contains a Discovery Service defined by the Liberty Alliance
Project. The Discovery Service allows a requesting entity to dynamically determine a principal’s
registered identity service. It might also function as a security token service, issuing security tokens
to the requester that can then be used in the request to the discovered identity service.

This chapter covers the following topics:

= “Discovery Service Overview” on page 133

= “Discovery Service Architecture” on page 135
“Discovery Service Process” on page 136

“Discovery Service Attributes” on page 138

“Discovery Entries and Resource Offerings” on page 142
“Discovery Service APIs” on page 152

“Discovery Service Sample” on page 156

Discovery Service Overview

The initial step in accessing identity data (as discussed in Chapter 6) is to determine where the
information is located. For example, you must determine which identity service holds the principal’s
credit card information or which server stores the principal’s calendar service. Typically, there are
one or more services on a network that allow other entities to perform an action on identity data.
Because clients are not expected to keep track of these services or to know which can be trusted, they
require a discovery service. The Liberty ID-WSF Discovery Service Specification defines the framework
that enables a client to locate the appropriate web service for retrieving, updating, or modifying a
specific piece of identity data.

Note - For more information, see the Liberty ID-WSF Discovery Service Specification.

133

http://www.projectliberty.org/specs/liberty-idwsf-disco-svc-v1.1.pdf

Discovery Service Overview

Discovery Service Concepts

A discoverable web service is assigned a service type unique resource identifier (URI) in the
specification that defines it. This URI points to the Web Services Description Language (WSDL) file
that describes the service’s data, the operations that can be performed on it, and a protocol to
perform the operations. The discoverable service specification itself adds the available ways the data
can be exchanged. A discovery service is essentially a web service interface for discovery resources. A
discovery resource is a registry of resource offerings. A resource offering defines an association between
a piece of identity data and the service instance that provides access to that data. A resource identifier
is a URI registered with the discovery service that points to a particular discovery resource.

When a client sends a request for some type of data, it includes a resource identifier that the
Discovery Service uses to locate the web services provider (WSP) for the requested attributes. The
Discovery Service returns a resource offering that contains the information necessary to locate the
data.

Note - Because a provider hosting the Discovery Service can also be fulfilling other roles for an
identity (such as a Policy Decision Point or an Authentication Authority), a query response also
functions as a security token service. It provides a requester with the means of obtaining security
tokens that can be used to invoke service instances returned.

Discovery Entries

One user account has one discovery resource. This discovery resource can include zero or more
resource offerings. Storing resource offerings within a user profile supports both entry lookups and
updates. Another option is to store discovery entries within a service, and assign that service to an
organization or a role. This scenario supports only entry lookups using the discovery protocol
although you can still update the entries using the console. For more information about discovery
entries, see “Discovery Entries and Resource Offerings” on page 142.

XML Service Files

The Discovery Service is defined using the XML service file amDisco. xml. This file defines the
attributes for the Discovery Service. All of the attributes in the Discovery Service can be managed
through either the Access Manager Console or this file.

Note - For more information about service files, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

A second XML file, amDisco_add.xml is in /AccessManager-base/SUNWam/upgrade/
services50_sunIdentityServerDiscoveryService/10_20/data. This file is used for upgrading
Identity Server 6.2 to Access Manager 6.3. It lists the changes to the amDisco.xml file since the
Identity Server release.

134 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Discovery Service Architecture

Discovery Service APIs

Access Manager contains several Java packages that are used by the Discovery Service. They include:

® “com.sun.identity.liberty.ws.disco Package” on page 135
® “com.sun.identity.liberty.ws.disco.plugins Package” on page 135
® “com.sun.identity.liberty.ws.interfaces Package” on page 135

Additional information is in “Discovery Service APIs” on page 152 and the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com. Information about the
com.sun.identity.liberty.ws.common package isin “Common Service Interfaces” on page 197 in
Chapter 10.

com.sun.identity.liberty.ws.disco Package

This package includes a client API that provides interfaces developers can use to communicate with
the Discovery Service.

com.sun.identity.liberty.ws.disco.plugins Package

This package includes an interface that can be used to develop plug-ins. The package also contains
some default plug-ins.

com.sun.identity.liberty.ws.interfaces Package

This package includes interfaces that can be used to implement functionality common to all
Liberty-enabled identity services. Several implementations of these interfaces have been developed
for the Discovery Service.

Discovery Service Architecture

The Access Manager Discovery Service includes Java and web services-based interfaces. Java
applications use the client API (discussed in “Client APIs in
com.sun.identity.liberty.ws.disco” on page 155) to form requests sent to the Discovery Service
and to parse the responses received back from it. Requests are received by the Access Manager SOAP
receiver, which constructs a SOAP message that incorporates the client request.

Note - The Access Manager SOAP Binding Service defines how to send and receive messages using
SOAP, an XML-based messaging protocol. The SOAP receiver is a servlet that constructs the message
using these definitions. For more information, see Chapter 8.

The SOAP message is then sent to the Discovery Service, which parses a discovery resource identifier
from it. This identifier is used to find a matching user DN. The necessary information is then culled
from the corresponding profile, a response is generated, and the response is sent back to the SOAP
receiver. The SOAP receiver then sends the response back to the client. The following figure
illustrates this architecture.

Chapter7 - Discovery Service 135

Discovery Service Process

Java Applications/ Form messages
Client APIs and parse responses

SOAP messages and responses

SOAP Receiver/
Discovery Service

Query and modify through SDK

Discovery

Resource
Data Store

FIGURE 7-1 Discovery Service Architecture

Discovery Service Process

The following figure provides a high-level overview of the interaction between parties in a web
services environment using the Discovery Service. In this scenario, the identity provider hosts the
Discovery Service. The process is defined in more detail after the figure.

136 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Discovery Service Process

>

2. Request access td service
N

3. Send discovery lo

kup query

&

>

4. Return discovery r

esponse

<

5. Send data query t

personal profile (iden

User Agent Service AuthN Web Personal
Provider Service/ Profile
oge Discovery Service
Consumer) Service

1. Single sign-on and introduction
€<— — — Pl — — »

6. Return response With identity data for ac

>

&
<

<

7. Render service papes

FIGURE 7-2 Participants and Process of the Discovery Service

1.

CesSs

tity) service

The user logs in to a Liberty-enabled identity provider, is authenticated, and completes the
introduction process, enabling single sign-on with other members of the authentication domain.
More specifically, this is the process:

Within a browser, the user types the URL for a Liberty-enabled service provider.

The service provider collects the user’s credentials and redirects the information to the
identity provider for authentication.

If the credentials are verified, the user is authenticated.

Assuming the identity provider is the center of an authentication domain, that provider will
notify the authenticated user of the option to federate any local identities created with
member organizations. The user would then accept or decline this invitation to federate. By
accepting the invitation, the user will be given the option of federation to a member
organization’s web site at each login. If the user accepts this option to federate, single sign-on

is enabled.

Chapter7 - Discovery Service

The service provider sends a lookup query to the Discovery Service.

After authentication, the user now requests access to services hosted by another service provider
in the authentication domain.

137

Discovery Service Attributes

Information used by a client to contact Discovery Service is culled from the authentication
statement.

The Discovery Service returns a discovery lookup response to the service provider.

The lookup response contains the resource offering (defining an association between a piece of
identity data and the service instance that provides access to it) for the user’s Personal Profile
Service.

The service provider then sends a query (using the “Data Services Template Specification”
on page 40) to the Personal Profile Service instance.

The required authentication mechanism specified in the Personal Profile Service resource
offering must be followed.

The Personal Profile Service instance returns a Data Services Template response after collecting
all required data.

The Personal Profile Service authenticates and validates authorization, or policy, or both for the
requested user and service provider. If user interaction is required for some attributes, the
Interaction Service will be invoked to query the user for consents or for attribute values.

The service provider processes the Personal Profile Service response and renders HTML pages
based on the original request and user authorization.

A users’ actual account information is not exchanged during federation. Thus, the identifier
displayed on each provider site will be based on the local identity profile.

Discovery Service Attributes

The Discovery Service attributes are global attributes whose values are applied across the Access
Manager configuration and inherited by every configured organization.

Note - For information about the types of attributes used in Access Manager, see the Sun Java System
Access Manager 7 2005Q4 Technical Overview.

The Discovery Service attributes are:

“Provider ID” on page 139

“Supported Authentication Mechanisms” on page 139

“Supported Directives” on page 139

“Enable Policy Evaluation for DiscoveryLookup” on page 140

“Enable Policy Evaluation for DiscoveryUpdate” on page 140

“Authorizer Plugin Class” on page 140

“Entry Handler Plugin Class” on page 140

“Classes For ResourceIDMapper Plugin” on page 140

“Authenticate Response Message” on page 141

“Generate SessionContextStatement for Bootstrapping” on page 141
“Encrypt Nameldentifier in Session Context for Bootstrapping” on page 141
“Use Implied Resource; don’t generate ResourcelD for Bootstrapping” on page 141

138 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Discovery Service Attributes

= “Resource Offerings for Bootstrapping Resources” on page 141

ProviderID

This attribute takes a URI that points to the Discovery Service. Use the format
protocol: //host: port/amserver/Liberty/disco. This value can be changed only if other relevant
attributes values are changed to match the new location.

Supported Authentication Mechanisms

This attribute specifies the authentication methods supported by the Discovery Service. These
security mechanisms refer to the way a web service consumer authenticates to the web service
provider or provides message-level security. By default, all available methods are selected. If an
authentication method is not selected and a web services consumer (WSC) sends a request using that
method, the request is rejected.

Supported Directives

This attribute allows you to specify a policy-related directive for a resource. If a service provider
wants to use an unsupported directive, the request will fail. The following table describes the
available options.

TABLE 7-1 Policy-Related Directives

Directive Purpose

AuthorizeRequester The Discovery Service should include a SAML assertion
(containing an AuthenticationStatement) in its
responses to enable the client to authenticate to the service
instance hosting the resource.

AuthenticateSessionContext The Discovery Service should include a SAML assertion
(containing a SessionContextStatement) in its responses
that indicate the status of the session.

AuthorizeRequestor The Discovery Service should include a SAML assertion
(containing a ResourceAccessStatement) in its responses
that indicate whether the client is allowed to access the
resource.

EncryptResourceID The Discovery Service should encrypt the resource
identifier in responses to all clients.

Chapter7 - Discovery Service 139

Discovery Service Attributes

140

TABLE 7-1 Policy-Related Directives (Continued)
Directive Purpose

GenerateBearerToken For use with Bearer Token Authentication, the Discovery
Service should generate a token that grants the bearer
permission to access the resource.

Enable Policy Evaluation for DiscoveryLookup

If enabled, the service will perform a policy evaluation for the DiscoveryLookup operation. By
default, the check box is not selected.

Enable Policy Evaluation for DiscoveryUpdate

If enabled, the service will perform a policy evaluation for the DiscoveryUpdate operation. By
default, the check box is not selected.

Authorizer Plugin Class

The value of this attribute is the name and path to the class that implements the
com.sun.identity.liberty.ws.interfaces.Authorizer interface used for policy evaluation of a
WSC. The default class is
com.sun.identity.liberty.ws.disco.plugins.DefaultDiscoAuthorizer.

Entry Handler Plugin Class

The value of this attribute is the name and path to the class that implements the
com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler interface. This interface is
used to set or retrieve a principal’s discovery entries. To handle discovery entries differently,
implement the com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler interface and
set the implementing class as the value for this attribute. The default implementation for the
Discovery Service is com.sun.identity.liberty.ws.disco.plugins.UserDiscoEntryHandler.

Classes ForResourceIDMapper Plugin

The value of this attribute is a list of classes that generate identifiers for a resource offering configured
for an organization or role. com. sun. identity.liberty.ws.interfaces.ResourceIDMapper isan
interface used to map a user identifier to the resource identifier associated with it. The Discovery
Service provides two implementations for this interface:

® com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes the
format to be providerID + "/" + the Base64 encoded userIDs

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Discovery Service Attributes

® com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes the
format to be providerID +"/" + the hex string of userIDs

Different implementations may also be developed with the interface and added as a value of this
attribute by clicking New and defining the following attributes:

® Provider ID takes as a value a URI that points to the Discovery Service. Use the format
http://host:port/amserver/Liberty/disco. See “Provider ID” on page 139.

= ID Mapper takes as a value the class name and path of the implementing class.

Authenticate Response Message

If enabled, the service authenticates the response message. By default, the function is not enabled.

Generate SessionContextStatement for
Bootstrapping

If enabled, this attribute specifies whether to generate a SessionContextStatement for
bootstrapping. A SessionContextStatement conveys the session status of an entity. By default, this
function is not enabled.

Encrypt Nameldentifier in Session Context for
Bootstrapping

If enabled, the service encrypts the name identifier in a SessionContextStatement. By default, this
function is not enabled.

Use Implied Resource; don’t generate ResourcelD for
Bootstrapping

If enabled, the service does not generate a resource identifier for bootstrapping. By default, this
function is not enabled.

Resource Offerings for Bootstrapping Resources

This attribute defines a resource offering for bootstrapping a service. After single sign-on (SSO), this
resource offering and its associated credentials will be sent to the client in the SSO assertion. Only
one resource offering is allowed for bootstrapping. By default, this offering contains information
about the Discovery Service. For more information, see “Discovery Entries and Resource Offerings”
on page 142.

Chapter7 - Discovery Service 141

Discovery Entries and Resource Offerings

The value of the Resource Offerings for Bootstrapping Resources attribute is a default value
configured during installation. If you want to define a new resource offering, you must first delete the
existing resource offering, then click New to define the attributes. If you want to edit an existing
resource offering, click the name of the existing Service Type to modify the attributes.

Discovery Entries and Resource Offerings

142

In Access Manager, a discovery entry can be stored as a user attribute or as a dynamic attribute.
When storing a discovery entry as a user attribute, one user account has one discovery resource that
can include zero or more resource offerings. Storing resource offerings within a user profile supports
both entry lookups and updates. When storing a discovery entry as a dynamic attribute, the entry can
be assigned to a realm or a role. This scenario only supports entry lookups using the discovery
protocol. More information is provided in the following sections:

= “Storing Discovery Entries as User Attributes” on page 142
= “Storing Discovery Entries as Dynamic Attributes” on page 145
= “Storing Discovery Entries for Bootstrapping” on page 150

Storing Discovery Entries as User Attributes

Discovery entries can be stored as a user attribute under a user’s distinguished name (DN) using the
Lightweight Directory Access Protocol (LDAP). Storing resource offerings within a user profile
supports both entry lookups and updates. The following procedure explains how to access and create
a user’s resource offerings.

ToAccess and Create a User’s Resource Offerings

In the Access Manager Console, click the Access Control tab.

Select the name of the realm that contains the user you want to modify.
Select Subjects to access user information.

Select the name of the user profile that you want to modify.

Select Services to access the user’s services.

Click Add to configure the Discovery Service for this user.

Select Discovery Service and click Next.

The Discovery Service is added to the user’s services.

Select General to access the user’s User Discovery Resource Offering attribute.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Discovery Entries and Resource Offerings

10

1n

12

13

14

15

Click Edit.

A User Discovery Resource Offering window opens.
Click Add in the User Discovery Resource Offering window.

(Optional) Type a value for the Resource ID Attribute.

This field defines an identifier for the resource offering.

Type the Resource ID Value.

This field defines the resource identifier. A resource identifier is a URI registered with the Discovery
Service that point to a particular discovery resource. It is generated by the profile provider. The value
of this attribute must not be a relative URI and should contain a domain name that is owned by the
provider hosting the resource. If a discovery resource is exposed in multiple Resource Offerings, the
Resource ID Value for all of those resource offerings would be the same. An example of a valid
Resource ID valueis http://profile-provider.com/profiles/14m0B82k15csaUxs.

Tip-urn:libery:isf:implied-resource canbe used asa Resource ID Value when only one
resource can be operated upon at the service instance being contacted. The URI only implicitly
identifies the resource in question. In some circumstances, the use of this resource identifier can
eliminate the need for contacting the discovery service to access the resource.

(Optional) Enter a description of the resource offering in the Description field.

Type a URI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespace URI defined in the abstract WSDL description for the service. An example of a
valid URIisurn:liberty:id-sis-pp:2003-08.

Type a URI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This information is useful for
resolving trust metadata needed to invoke the service instance. A single physical provider may have
multiple provider IDs. An example of a valid URIis http://profile-provider.com.

Note - The provider represented by the URI in the Provider ID attribute must also have a class entry
in the ResourceIDMapper attribute. For more information, see “Classes For ResourceIDMapper
Plugin” on page 140.

Chapter7 - Discovery Service 143

Discovery Entries and Resource Offerings

16 Click Add Description to define the Service Description.

For each resource offering, at least one service description must be created.

a. Selectthe values for the Security Mechanism ID attribute to define how a web service client can
authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms that you want to add and click Add. To prioritize the list, select the mechanism and
click Move Up or Move Down.

b. Typeavalue forthe End Point URL.

This value is the URL of the SOAP-over-HTTP endpoint. The URI scheme must be HTTP or
HTTPSasinhttps://soap.profile-provider.com/soap.

c. (Optional) Type a value for the SOAP Action.

This value is the equivalent of the wsdlsoap: soapAction attribute of the wsdlsoap:operation
element in the service’s concrete WSDL-based description.

d. Click OKto complete the configuration.

17 Check the Options box if there are no options or add a URI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering. The set
of possible URIs are defined by the service type, not the Discovery Service. If no option is specified,
the service instance does not display any available options. For a standard set of options, see the
Liberty ID-SIS Personal Profile Service Specification.

18 Selectadirective for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

= GenerateBearerToken specifies that a bearer token be generated.

= AuthenticateRequester must be used with any service description that use SAML for message
authentication.

= EncryptResourcelID specifies that the Discovery Service encrypt the resource ID.

® AuthenticateSessionContext is specified when a Discovery Service provider includes a SAML
assertion containing a SessionContextStatement in any future QueryResponse messages.

= AuthorizeRequester is specified when a Discovery Service provider wants to include a SAML
assertion containing a ResourceAccessStatement in any future QueryResponse messages.

If you want to associate a directive with one or more service descriptions, select the check box for that
Description ID. If no service descriptions are selected, the directive is applied to all description
elements in the resource offering.

144 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Discovery Entries and Resource Offerings

19

20

21

Click OK.
Click Close to close the User Discovery Resource Offering window.

Click Save to save the configuration.

Storing Discovery Entries as Dynamic Attributes

Due to the repetition inherent in storing discovery entries as user attributes, Access Manager has
established the option of storing a discovery entry as a dynamic attribute within a role or a realm. The
role or realm can then be assigned to an identity-related object, making the entry available to all users
within the object. Unlike storing a discovery entry as a user attribute, this scenario only supports
entry lookups, not updates.

Note - For more information about services, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

There are two ways in which you can store discovery entries as dynamic attributes. You can store
them in a realm or in a role. The following sections describe the procedures:

= “To Store Discovery Entries as Dynamic Attributes in a Realm” on page 145
= “To Store Discovery Entries as Dynamic Attributes in a Role” on page 147

To Store Discovery Entries as Dynamic Attributes in a Realm

To create a discovery entry as a dynamic attribute in a realm, the Discovery Service must first be
added and a template created.

In the Access Manager Console, click the Access Control tab.
Select the name of the realm you want to modify.
Select Services to access the realm'’s services.

Click Add to add the Discovery Service to the realm.
Alist of available services is displayed.

Select Discovery Service and click Next to add the service.
Alist of added services is displayed including the Discovery Service.

Select Subjects to access user information.
Select the name of the user you want to modify.

Select Services to add the Discovery Service to the user.

Chapter7 - Discovery Service 145

Discovery Entries and Resource Offerings

146

10

1n

12

13

14

15

16

17

18

Click Add to add the Discovery Service to the user.

Alist of available services is displayed.

Select Discovery Service and click Next to add the service.

Alist of added services is displayed including the Discovery Service.

Using the path displayed on top of the Access Manager Console, click Edit Realm.
Click Services to access the realm’s services.

Select Discovery Service to add a resource offering to the service.

Click Add.

(Optional) Enter a description of the resource offering in the Description field.

Type a URI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespace URI defined in the abstract WSDL description for the service. An example of a
valid URIisurn:liberty:id-sis-pp:2003-08.

Type a URI for the value of the Provider ID attribute.

The value of this attribute contains the URI of the provider of the service instance. This information
is useful for resolving trust metadata needed to invoke the service instance. A single physical provider
may have multiple provider IDs. An example of a valid URILis http://profile-provider. com.

Note - The provider represented by the URI in the Provider ID attribute must also have an entry in
the ResourceIDMapper attribute. For more information, see “Classes For ResourceIDMapper Plugin”
on page 140.

Click Add Description to define the Service Description.

For each resource offering, at least one service description must be created.

a. Selectthe values for the Security Mechanism ID attribute to define how a web service client can
authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms that you want to add and click Add. To prioritize the list, select the mechanism and
click Move Up or Move Down.

b. Typeavalue forthe End Point URL.

This value is the URL of the SOAP-over-HTTP endpoint. The URI scheme must be HTTP or
HTTPSasinhttps://soap.profile-provider.com/soap.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Discovery Entries and Resource Offerings

19

20

21

22

23

c. (Optional) Type a value for the SOAP Action.

This value is the equivalent of the wsd1soap: soapAction attribute of the wsdlsoap: operation
element in the service’s concrete WSDL-based description.

d. Click OKto complete the configuration.

Check the Options box if there are no options or add a URI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering. The set
of possible URIs are defined by the service type, not the Discovery Service. If no option is specified,
the service instance does not display any available options. For a standard set of options, see the
Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

® GenerateBearerToken specifies that a bearer token be generated.

® AuthenticateRequester must be used with any service description that use SAML for message
authentication.

= EncryptResourcelID specifies that the Discovery Service encrypt the resource ID.

= AuthenticateSessionContext is specified when a Discovery Service provider includes a SAML
assertion containing a SessionContextStatement in any future QueryResponse messages.

® AuthorizeRequester is specified when a Discovery Service provider wants to include a SAML
assertion containing a ResourceAccessStatement in any future QueryResponse messages.

If you want to associate a directive with one or more service descriptions, select the check box for that
Description ID. If no service descriptions are selected, the directive is applied to all description
elements in the resource offering.

Click OK.

Click Close to close the Discovery Resource Offering window.

Click Save to save the configuration.

To Store Discovery Entries as DynamicAttributes in a Role

To create a discovery entry as a dynamic attribute in a role, the Discovery Service must first be added
and a template created.

In the Access Manager Console, click the Access Control tab.

Select the name of the realm you want to modify.

Chapter7 - Discovery Service 147

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Discovery Entries and Resource Offerings

148

10

"

12

13

Select Subjects to access the realm’s identity information.
Select Role to access the realm’s role information.

Select the name of the role you want to modify.

Alternately, you can create a new role and then select the name of this new role.

Under Services, click Add to add the Discovery Service to the role.

Alist of available services is displayed.

Select Discovery Service and click Next to add the service.

Alist of added services is displayed including the Discovery Service.

Select Discovery Service to add a resource offering to the service.

Click Add.

(Optional) Enter a description of the resource offering in the Description field.

Type a URI for the value of the Service Type attribute.

This URI defines the type of service. It is recommended that the value of this attribute be the
targetNamespace URI defined in the abstract WSDL description for the service. An example of a
valid URIisurn:liberty:id-sis-pp:2003-08.

Type a URI for the value of the Provider ID attribute.

The value of this attribute contains the URI of the provider of the service instance. This information
is useful for resolving trust metadata needed to invoke the service instance. A single physical provider
may have multiple provider IDs. An example of a valid URILis http://profile-provider. com.

Note - The provider represented by the URI in the Provider ID attribute must also have an entry in
the ResourceIDMapper attribute. For more information, see “Classes For ResourceIDMapper Plugin”
on page 140.

Click Add Description to define the Service Description.

For each resource offering, at least one service description must be created.

a. Selectthe values for the Security Mechanism ID attribute to define how a web service client can
authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms that you want to add and click Add. To prioritize the list, select the mechanism and
click Move Up or Move Down.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Discovery Entries and Resource Offerings

14

15

16

17

18

b. Typeavalue forthe End Point URL.

This value is the URL of the SOAP-over-HTTP endpoint. The URI scheme must be HTTP or
HTTPSasin https://soap.profile-provider.com/soap.

¢. (Optional) Type a value for the SOAP Action.

This value is the equivalent of the wsd1soap : soapAction attribute of the wsdlsoap: operation
element in the service’s concrete WSDL-based description.

d. Click OKto complete the configuration.

Check the Options box if there are no options or add a URI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering. The set
of possible URIs are defined by the service type, not the Discovery Service. If no option is specified,
the service instance does not display any available options. For a standard set of options, see the
Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

® GenerateBearerToken specifies that a bearer token be generated.

= AuthenticateRequester must be used with any service description that use SAML for message
authentication.

= EncryptResourcelID specifies that the Discovery Service encrypt the resource ID.

® AuthenticateSessionContext is specified when a Discovery Service provider includes a SAML
assertion containing a SessionContextStatement in any future QueryResponse messages.

® AuthorizeRequester is specified when a Discovery Service provider wants to include a SAML
assertion containing a ResourceAccessStatement in any future QueryResponse messages.

If you want to associate a directive with one or more service descriptions, select the check box for that
Description ID. If no service descriptions are selected, the directive is applied to all description
elements in the resource offering.

Click OK.

Click Close to close the Discovery Resource Offering window.

Click Save to save the configuration.

Chapter7 - Discovery Service 149

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Discovery Entries and Resource Offerings

150

Storing Discovery Entries for Bootstrapping

Before a WSC can contact the Discovery Service for a resource offering, the WSC needs to find the
Discovery Service. Thus, an initial resource offering for locating the Discovery Service is sent back to
the WSC in a single sign-on assertion. The following procedure describes how to configure a global
attribute for bootstrapping the Discovery Service. Unlike storing a discovery entry as a user attribute,
this scenario only supports entry lookups, not updates.

To Store Discovery Entries for Bootstrapping
In the Access Manager Console, select the Web Services tab.
Under Web Services, click the Discovery Service tab.

Choose New under the Resource Offerings for Bootstrapping Resources attribute.

By default, the resource offering for bootstrapping the Discovery Service is already configured. In
order to create a new resource offering, you must first delete the default resource offering.

(Optional) Type a description of the resource offering.

Enter a URI for the value of the Service Type attribute.

This field defines the type of service. It is recommended that the value of this attribute be the
targetNamespace URI defined in the abstract WSDL description for the service. An example of a
valid URIisurn:liberty:disco:2003-08.

Enter a URI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This is useful for resolving
trust metadata needed to invoke the service instance. A single physical provider may have multiple
provider IDs. An example of a valid URIis http://sample_disco.com.

Note - The provider represented by the URI in the Provider ID attribute must also have an entry in
the Classes for ResourcelDMapper Plugin attribute. For more information, see “Classes For
ResourceIDMapper Plugin” on page 140.

Click Add Description to define a security mechanism ID.

For each resource offering, at least one service description must be created.

a. Selectthe values for the Security Mechanism ID attribute to define how a web service client can
authenticate to a web service provider.

This field lists the security mechanisms that the service instance supports. Select the security
mechanisms you wish to add and click the Add button. To arrange the priority of the list, select
the mechanism and use the Move Up or Move Down buttons.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Discovery Entries and Resource Offerings

10

b. Typeavalue forthe End Point URL.

This value is the URL of the SOAP-over-HTTP endpoint. The URI scheme must be HTTP or
HTTPSasin https://soap.profile-provider.com/soap.

¢. (Optional) Type a value for the SOAP action.

This field contains the equivalent of the wsd1soap: soapAction attribute of the
wsdlsoap:operation element in the service’s concrete WSDL-based description.

d. Click OKto save the configuration.

Check the Options box if there are no options or add a URI to specify options for the resource
offering.

This field lists the options that are available for the resource offering. Options provide hints to a
potential requestor about the availability of certain data or operations to a particular offering. The set
of possible URIs are defined by the service type, not the Discovery Service. If no option is specified,
the service instance does not display any available options. For a standard set of options, see the
Liberty ID-SIS Personal Profile Service Specification.

Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to enforce policy-related
decisions. You can choose from the following:

® GenerateBearerToken specifies that a bearer token be generated.

= AuthenticateRequester must be used with any service description that use SAML for message
authentication.

= EncryptResourcelID specifies that the Discovery Service encrypt the resource ID.

® AuthenticateSessionContext is specified when a Discovery Service provider includes a SAML
assertion containing a SessionContextStatement in any future QueryResponse messages.

® AuthorizeRequester is specified when a Discovery Service provider wants to include a SAML
assertion containing a ResourceAccessStatement in any future QueryResponse messages.

If you want to associate a directive with one or more service descriptions, select the check box for that
Description ID. If no service descriptions are selected, the directive is applied to all description
elements in the resource offering.

Click OK to complete the configuration.

Chapter7 - Discovery Service 151

http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf

Discovery Service APIs

Discovery Service APIs

152

By default, a discovery service is implemented as one of the identity web services in Access Manager.
The Discovery Service APIs provide the following implementations and interfaces:

“com.sun.identity.liberty.ws.interfaces.Authorizer Interface” on page 152
“com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface” on page 154
“com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface” on page 154
“Client APIsin com.sun.identity.liberty.ws.disco” on page 155

com.sun.identity.liberty.ws.interfaces.
Authorizer Interface

This interface is used to enable an identity service to check the authorization of a WSC. The
DefaultDiscoAuthorizer class is the default implementation of this interface. The class uses the
Access Manager Policy Service for creating and applying policy definitions.

Note - The Policy Service looks for an SS0Token defined for Authenticated Users or Web Service
Clients. For more information on this and the Policy Service in general, see the Sun Java System
Access Manager 7 2005Q4 Administration Guide.

Policy definitions for the Discovery Service are configured using the Access Manager Console. The
procedure is as follows.

To Configure Policy Definitions

In the Access Manager Console, click the Access Control tab.

Select the name of the realm in which the policy definitions will be configured.
Select Policies to access policy configurations.

Click New Policy to add a new policy definition.

Type a name for the policy.

(Optional) Enter a description for the policy.

(Optional) Select the check box next to Active.

Click New to add rules to the policy definition.

Select Discovery Service for the rule type and click Next.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Discovery Service APIs

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Type a name for the rule.

Type aresource on which the rule acts.

The Resource Name field uses the form ServiceType + RESOURCE_SEPARATOR + ProviderID. For
example, urn:liberty:id-sis-pp:2003-08;http://example.com.

Select an action and appropriate value for the rule.

Discovery Service policies can only look up or update data.

Click Finish to configure the rule.

The com.sun.identity.liberty.ws.interfaces.Authorizer interface can be implemented by
any web service in Access Manager. For more information, see “Common Service Interfaces”

on page 197 and the Java API Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.
Click New to add subjects to the policy definition.

Select the subject type and click Next.

Type a name for the group of subjects.

(Optional) Click the check box if this is an exclusive group.

Select the users and click to add them to the group.

Click Finish to return to the policy definition screen.

Click New to add conditions to the policy definition.

Select the condition type and click Next.

Type values for the displayed attributes.

For more information, see the Sun Java System Access Manager 7 2005Q4 Administration Guide.
Click Finish to return to the policy definition screen.

Click New to add response providers to the policy definition.

Type a name for the response provider.

(Optional) Add values for the StaticAttribute.

(Optional) Add values for the DynamicAttribute.

Click Finish to return to the policy definition screen.

Chapter7 - Discovery Service 153

Discovery Service APIs

29

154

Click Create to finish the policy configuration.

com.sun.identity.liberty.ws.interfaces.
ResourceIDMapper Interface

This interface is used to map a user ID to the resource identifier associated with it. Access Manager
provides two implementations of this interface.

® com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes the
format to be providerID +"/" + the Base64 encoded userIDs

® com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes the
format to be providerID +"/" + the hex string of userIDs

A different implementation of the interface may be developed. The implementation class should be
given to the provider that hosts the Discovery Service. The mapping between the providerID and the
implementation class can be configured through the “Classes For ResourceIDMapper Plugin”

on page 140 attribute.

Note - The com.sun.identity.liberty.ws.interfaces.ResourceIDMapper interface iscommon
to all identity services in Access Manager not only the Discovery Service. For more information, see
“Common Service Interfaces” on page 197 and the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.disco.
plugins.DiscoEntryHandler Interface

This interface is used to get and set discovery entries for a user. A number of default implementations
are provided, but if you want to handle this function differently, implement this interface and set the
implementing class as the value of the Entry Handler Plugin Class attribute as discussed in “Entry
Handler Plugin Class” on page 140. The default implementations of this interface are described in
the following table.

TABLE 7-2 Implementations of com. sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler

Class Description

UserDiscoEntryHandler Gets or modifies discovery entries stored in the user’s
entry as a value of the
sunIdentityServerDiscoEntries attribute. The
UserDiscoEntryHandler implementation is used in
business-to-consumer scenarios such as the Liberty
Personal Profile Service.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Discovery Service APIs

TABLE 7-2 Implementations of com. sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler
(Continued)

Class Description

DynamicDiscoEntryHandler Gets discovery entries stored as a value of the
sunIdentityServerDynamicDiscoEntries dynamic
attribute in the Discovery Service. Modification of
these entries is not supported and always returns
false. The resource offering is saved in an
organization or a role. The
DynamicDiscoEntryHandler implementation is used
in business-to-business scenarios such as the Liberty
Employee Profile service.

UserDynamicDiscoEntryHandler Gets a union of the discovery entries stored in the user
entry sunIdentityServerDiscoEntries attribute
and discovery entries stored in the Discovery Service
sunIdentityServerDynamicDiscoEntries attribute.
It modifies only discovery entries stored in the user
entry. The UserDynamicDiscoEntryHandler
implementation can be used in both
business-to-consumer and business-to-business
scenarios.

ClientAPIsin com.sun.identity.liberty.ws.disco

The following table summarizes the client APIs in the package
com.sun.identity.liberty.ws.disco. For more information, including methods and their syntax
and parameters, see the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

TABLE 7-3 Discovery Service Client APIs

Class Description

Description Represents a DescriptionType element of a service instance.

Directive Represents a discovery service DirectiveType element.

DiscoveryClient Provides methods to send Discovery Service queries and
modifications.

EncryptedResourceID Represents an EncryptionResourcelD element for the Discovery
Service.

InsertEntry Represents an Insert Entry for Discovery Modify request.

Modify Represents a discovery modify request.

ModifyResponse Represents a discovery response to a modify request.

Chapter7 - Discovery Service 155

Discovery Service Sample

TABLE 7-3 Discovery Service Client APIs (Continued)
Class Description
Query Represents a discovery Query object.
QueryResponse Represents a response to a discovery query request.
RemoveEntry Represents a remove entry element for the discovery modify
request.
RequestedService Enables the requester to specify that all the resource offerings

returned must be offered through a service instance that complys
with one of the specified service types.

ResourceID Represents a Discovery Service Resource ID.

ResourceOffering Associates a resource with a service instance that provides access
to that resource.

ServiceInstance Describes a web service at a distinct protocol endpoint.

Discovery Service Sample

A sample that shows the process for querying and modifying the Discovery Service is included with
Access Manager in the /AccessManager-base/SUNWam/samples/phase2/wsc directory. The sample
initially shows how to deploy and run a WSC. The final portion queries the Discovery Service and
modifies identity data in the Liberty Personal Profile Service. For more information, see Appendix A.

156 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

L R R 4 CHAPTER 8

SOAP Binding Service

Sun Java System Access Manager contains an implementation of the Liberty ID-WSF SOAP Binding
Specification from the Liberty Alliance Project. The specification defines a transport layer for sending
and receiving SOAP messages.

This chapter covers the following topics:

“SOAP Binding Service Overview” on page 157
“SOAP Binding Process” on page 158

“SOAP Binding Service Attributes” on page 159
“SOAP Binding Service Package” on page 161

SOAP Binding Service Overview

The Liberty Identity Web Services Framework (Liberty ID-WSF) and Liberty Identity Service
Interface Specifications (Liberty ID-SIS) components of the Liberty Alliance Project specifications
use messages to convey identity data between providers. Access Manager has implemented the
Liberty ID-WSF SOAP Binding Specification (Liberty ID-WSEF-SBS) as the method of transport for
this purpose. The specification defines SOAP as the binding to the Hypertext Transport Protocol
(HTTP), which is itself layered onto the TCP/IP stack.

Note - For more information, see the Liberty ID-WSF SOAP Binding Specification.

XML Service File

The Access Manager SOAP Binding Service is defined using the XML service file
amSOAPBinding. xml. This file defines the attributes for the SOAP Binding Service which can be
managed through the Access Manager Console or the XML file.

157

http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf

SOAP Binding Process

Note - For more information on service files, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

The Liberty ID-WSF-SBS also defines an XML schema for use in building the SOAP messages. This
XML Schema Definition (XSD) file is on the Liberty Alliance Project web site. Version 1.0 is also
reproduced in Appendix B.

SOAP Binding Service APIs

The Access Manager SOAP Binding Service includes a Java package named
com.sun.identity.liberty.ws.soapbinding. For more information about these interfaces, see
“SOAP Binding Service Package” on page 161.

SOAP Binding Process

In the SOAP Binding process, an identity service calls the client-side application programming
interface (API) to construct a message and send it to the SOAP endpoint URL. The URL s, in effect, a
servlet that receives and processes SOAP messages.

Note - The Discovery Service, implemented Data Services Template services (including the Liberty
Personal Profile Service and the sample Employee Profile Service), and the Authentication Web
Service use the SOAP Binding Service client API.

The SOAP Receiver servlet receives the message, verifies the signature, and constructs a second
message. The SOAP Receiver servlet then invokes the correct request handler class to send this
second message to the corresponding service for a response.

Note - com.sun.identity.liberty.ws.soapbinding.RequestHandler is an interface that must be
implemented on the server side by any Liberty-based web service using the SOAP Binding Service.
For more information, see “Request Handler List” on page 159.

The service processes the second message, generates a response, and sends that response back to the
SOAP Receiver servlet. The SOAP receiver, in turn, sends the response back to the service for
processing.

158 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SOAP Binding Service Attributes

Note - Before invoking a corresponding service, the SOAP framework might also do the following:

= Authenticate the sender identity to verify the credentials of a WSC peer, probably by verifying its
client certificate.

= Authenticate the invoking identity to verify the credentials of a WSC on behalf of a user to verify
whether the user has been authenticated. This depends on the security authentication profile.

® Granular authorization to authorize the WSC before processing a service request.

SOAP Binding Service Attributes

The SOAP Binding Service attributes are global attributes. The values of these attributes are carried
across the Access Manager configuration and inherited by every organization.

Note - For information about the types of attributes used in Access Manager, see the Sun Java System
Access Manager 7 2005Q4 Technical Overview.

Attributes for the SOAP Binding Service are defined in the anSOAPBinding.xml service file. The
SOAP Binding Service attributes are as follows:

m “Request Handler List” on page 159
= “Web Service Authenticator” on page 160
= “Supported Authentication Mechanisms” on page 160

Request Handler List

The Request Handler List stores information about the classes implemented from the
com.sun.identity.liberty.ws.soapbinding.RequestHandler interface. The SOAP Binding
Service provides the interface to process requests and return responses. It must be implemented on
the server side for each Liberty-based web service that uses the SOAP Binding Service.

Note - The Discovery Service, implemented Data Services Template (DST) services (including the
Liberty Personal Profile Service and the sample Employee Profile Service, if deployed), and the
Authentication Web Service use the SOAP Binding Service client APL

To add a new implementation, click New and define values for the following parameters.

Key Parameter

The Key parameter is the last part of the URI path to a SOAP endpoint. The SOAP endpoint in
Access Manager is the SOAP Receiver servlet. The URI to the SOAP Receiver uses the format
protocol://host: port/deloy-uri/Liberty/key. If you define disco as the Key, the URI path to the
SOAP endpoint for the corresponding Discovery Service would be

protocol: //host: port/amserver/Liberty/disco.

Chapter8 - SOAP Binding Service 159

SOAP Binding Service Attributes

160

Note - Different service clients use different keys when connecting to the SOAP Receiver.

Class Parameter

The Class parameter specifies the name of the class implemented from
com.sun.identity.liberty.ws.soapbinding.RequestHandler for the particular web service. For
example, class=com.example.identity.liberty.ws.disco.DiscoveryService.

SOAP Action Parameter

The optional SOAP Action can be used to indicate the intent of the SOAP HTTP request. The SOAP
processor on the receiving system can use this information to determine the ultimate destination for
the service. The value is a URI. No defined value indicates no intent.

Note - SOAP places no restrictions on the format or specificity of the URI or that it is resolvable.

Web Service Authenticator

This attribute takes as a value the implementation class for the Web Service Authenticator interface.
This class authenticates a request and generates a credential for a WSC.

Note - This interface is not public. The value of the attribute is configured during installation.

Supported Authentication Mechanisms

This attribute specifies the authentication mechanisms supported by the SOAP Receiver.
Authentication mechanisms offer user authentication as well as data integrity and encryption. By
default, all available authentication mechanisms are selected. If a mechanism is not selected and a
WSC sends a request using it, the request is rejected. Following is a list of the supported
authentication mechanisms:

urn:liberty:security:2003-08:null:null
urn:liberty:security:2003-08:null:X509
urn:liberty:security:2003-08:null:SAML
urn:liberty:security:2004-04:null:Bearer
urn:liberty:security:2003-08:TLS:null
urn:liberty:security:2003-08:TLS:X509
urn:liberty:security:2003-08:TLS:SAML
urn:liberty:security:2004-04:TLS:Bearer
urn:liberty:security:2003-08:ClientTLS:null
urn:liberty:security:2003-08:ClientTLS:X509

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SOAP Binding Service Package

B urn:liberty:security:2003-08:ClientTLS:SAML
B urn:liberty:security:2004-04:ClientTLS:Bearer

Note - For more complete information about authentication mechanisms and their level of security,
see the Liberty ID-WSF Security Mechanisms specification.

SOAP Binding Service Package

The Access Manager SOAP Binding Service includes a Java package named
com.sun.identity.liberty.ws.soapbinding. This package provides classes to construct SOAP
requests and responses and to change the contact point for the SOAP binding. The following table
describes some of the available classes. For more detailed information, see the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

TABLE 8-1 SOAP Binding Service Classes

Class Description

Client Provides a WSC with a method to send requests using a
SOAP connection with a WSP.

ConsentHeader Defines the SOAP element named Consent.

CorrelationHeader Defines the SOAP element named Correlation.

ProcessingContextHeader
ProviderHeader

RequestHandler

Message

ServiceInstanceUpdateHeader

ServiceInstanceUpdateHeader.Credential

SOAPBindingException

SOAPFault

Defines the SOAP element named ProcessingContext.
Defines the SOAP element named Provider.

Defines an interface that needs to be implemented by each
web service in order to receive a request from your web
service client. After implementing the handler class, the user
must register the class in the SOAP Binding Service so the
SOAP layer knows where to forward incoming WSC
requests.

Used by both the web service client and server to construct
SOAP requests and responses.

Allows a service to change the endpoint on which requesters
will contact it.

Allows a service to use a different security mechanism and
credentials to access the requested resource.

Represents an error that has occurred while processing a
SOAP request and response.

Defines the SOAP element named Fault.

Chapter8 - SOAP Binding Service

161

http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf

SOAP Binding Service Package

TABLE 8-1 SOAP Binding Service Classes (Continued)

Class Description

SOAPFaultDetail Defines the SOAP element named Consent.
SOAPFaultException Represents a SOAP fault while processing a SOAP request.
UsageDirectiveHeader Defines the SOAP element named UsageDirective.

See Appendix A for sample code and files to help you understand the implementation of the Liberty
Alliance Project specifications.

See “PAOS Binding” on page 203 for information on this reverse HT'TP binding for SOAP.

162 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

PART IV

SAMLAdministration and Application
Programming Interfaces

® Chapter 9, SAML Administration
= Chapter 10, Application Programming Interfaces

163

164

L R R 4 CHAPTER 9

SAMLAdministration

Sun Java™ System Access Manager uses the Security Assertion Markup Language (SAML) as the
means for exchanging security information. SAML uses an eXtensible Markup Language (XML)
framework to achieve interoperability between vendor platforms that provide SAML assertions. This
chapter explains SAML and defines how it is used within Access Manager.

This chapter covers the following topics:

“SAML Overview” on page 165
“Elements of SAML” on page 168
“SAML Attributes” on page 180
“SAMLAPI” on page 188
“SAML Samples” on page 193

SAML Overview

SAML is an open-standard protocol that defines user authentication, entitlements, and attribute
information in XML documents. The Organization for the Advancement of Structured Information
Standards (OASIS) drives the development of SAML 1.0 and 1.1, the versions supported in Access
Manager 7 2005Q4.

Note - For information and specifications, see the OASIS Security Services (SAML) Technical
Committee web site.

The SAML documents can be used to exchange security information between an authority and a
trusted partner site. The security information that is exchanged deals with a subject’s authentication
status, access authorization, and attribute information. A subject is an entity in a particular domain.
A person identified by an email address is a subject, as might be a printer. A SAML authority,
sometimes called the asserting party, is a platform or application that has been integrated with the
SAML AP, allowing it to relay security information. Trusted partner sites receive the security
information and rely on its authenticity.

165

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

SAML Overview

166

Note - All domains need to form a trust relationship before they can share information about a
subject’s identity. How this is accomplished is beyond the scope of this guide.

Comparison of SAML and Liberty Specifications

SAML was designed by vendors to address the issue of cross-domain single sign-on. The Liberty
Alliance Project was formed to develop technical specifications that would solve business process
problems. These issues include single sign-on, but also incorporate protocols for account linking and
consent, among others. SAML, on the other hand, does not solve issues such as privacy, single logout,
and federation termination.

The SAML 1.0 and 1.1 specifications and the Liberty Alliance Project specifications do not compete
with one another. They are complementary. In fact, the Liberty Alliance Project specifications
leverage profiles from the SAML specifications. The decision of whether to use SAML or the Liberty
specifications depends on your goal. In general, SAML should suffice for single sign-on basics. The
Liberty Alliance Project specifications can be used for more sophisticated functions and capabilities,
such as global sign-out, attribute sharing, web services. The following table lists the benefits of the
two.

TABLE 9-1 Benefits of the SAML and the Liberty Alliance Project Specifications

SAML Uses Liberty Alliance Project Uses
Cross-domain single sign-on Single sign-on only after user federation
No user federation User federation

No privacy control, best for use within one company ~ Built on top of SAML

User identifier is sent in plain text User identifier is sent as a unique handle

Note - SAML Version 2.0 has been integrated into the Liberty Alliance Project specifications. This
version is planned for implementation in an upcoming release of Access Manager.

SAML Architecture in Access Manager

SAML security information is expressed in the form of an assertion about a subject. An assertion is a
package of verified security information that supplies one or more statements concerning a subject’s
authentication status, access authorization decisions, or identity attributes. Assertions are issued by
the SAML authority, and received by partner sites defined by the authority as trusted. SAML
authorities use different sources to configure the assertion information, including external data
stores or assertions that have already been received and verified. The following figure illustrates how
SAML interacts with the other components in Access Manager.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SAML Overview

Note - Although Federation (as described in Chapter 3) integrates aspects of the SAML specifications,
its usage of SAML is independent of the SAML component as described in this chapter.

[] ® A O A
C
[0}
=[5
g2
® ® A © A ° SIE
L c ;.%. c
3 g E¢ ¢
Hos oo . 8 s %
G € G 8 gl 2 gl < €lg <
o 3 ol g g § £ 2|8
< = I I Z 5
E
\ 4 L J vV © V &6 V &6 V o
SAML SAML SAML
Post Profile Aware Servlet SOAP Receiver
Servlet
v JAXM SOAP Provider

SAML API

SSOAPI AuthNAPI Service API 19eNttY

Repo API

The lighter-shaded boxes are components of the SAML module.

FIGURE 9-1 SAML Interaction in Access Manager
SAML allows Access Manager to work in the following ways:

= Users can authenticate using Access Manager and access trusted partner sites without having to
reauthenticate.

Chapter9 « SAMLAdministration 167

Elements of SAML

Note - This single sign-on process is independent of the proprietary Access Manager process
discussed in the Sun Java System Access Manager 7 2005Q4 Administration Guide.

= Access Manager acts as a policy decision point, allowing external applications to access user
authorization information for the purpose of granting or denying access to their resources. For
example, employees of an organization can be allowed to order office supplies from suppliers if
they are authorized to do so.

= Access Manager acts as both an attribute authority (allowing trusted partner sites to query a
subject’s attributes) and an authentication authority (allowing trusted partner sites to query a
subject’s authentication information).

= Two parties in different security domains can validate each other for the purpose of performing
business transactions.

® The SAML API can be used to build Authentication, Authorization Decision, and Attribute
Assertions.

® The SAML service permits an XML-based digital signature signing and verifying functionality to
be plugged into it.

Using SAML

The SAML can be accessed using a web browser or the SAML API. An end user authenticates to
Access Manager using a web browser and, once authorized to do so, accesses URLs from trusted
partner sites. Developers integrate the API into their applications to exchange security information
with Access Manager. For example, a Java application can use the SAML API to achieve single
sign-on. After obtaining a SSOToken from Access Manager, the application can call the
doWebArtifact () method of the SAMLClient class, which will send a SOAP request for
authorization information to Access Manager and, if applicable, redirect the application to the
destination site. For more information, see “SAML API” on page 188.

Elements of SAML

168

The following sections describe the elements of the SAML component:

® “Assertion Types” on page 168
= “Profile Types” on page 169
= “SAML SOAP Receiver” on page 175

Assertion Types

SAML assertions are a declaration of facts about a principal. For example, an assertion can be made
that a particular client was granted update privileges to a specific database resource at a certain time.
Assertions are constructed in XML based on the SAML assertion schema. Assertions are built from

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.oasis-open.org/committees/security/docs/cs-sstc-schema-assertion-01.xsd

Elements of SAML

the user’s session information and optional attribute information using the siteAttributeMapper
class. For more information, see “SiteAttributeMapper and PartnerSiteAttributeMapper
Interfaces” on page 190.

Note - One assertion can contain many different statements made by the authority.

The SAML specification provides for different types of assertions:

® An authentication assertion declares that the specified subject has been authenticated by a
particular means at a particular time. This information is declared in an
AuthenticationStatement element. In Access Manager, the Authentication Service is the
authentication authority. The following code example illustrates a sample authentication
assertion.

<?xml version="1.0" encoding="UTF-8" 7>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
MajorVersion="1" MinorVersion="0" AssertionID="random-182726"
Issuer="sunserver.example.com" IssueInstant="2001-11-05T17:23:00GMT-02:00">
<saml:AuthenticationStatement
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2001-11-05T17:22:00GMT-02:00">
<saml:Subject>
<saml:NameIdentifier
NameQualifier="example.com">John Doe
</saml:NameIdentifier>
</saml:Subject>
</saml:AuthenticationStatement>
</saml:Assertion>

® An attribute assertion declares that the specified subject is associated with the specified attribute.
This information is declared in an AttributeStatement element. The identity data store that is
networked with Access Manager is the attribute authority.

® An authorization decision assertion declares that the specified subject’s request for access to a
specified resource has been granted or denied. This information is declared in an
AuthorizationDecisionStatement element. In Access Manager, the Policy Service is the
authorization authority.

Profile Types

A profile is a set of rules that defines how to embed and extract SAML assertions. The profile
describes how the assertions are combined with other objects by an authority, transported from the
authority, and subsequently processed at the trusted partner site. Access Manager supports two
profiles: the Web Browser Artifact Profile and the Web Browser POST Profile. Both profiles use
HTTP. Either can be used in single sign-on between two SAML-enabled entities, allowing an
authenticated user to access resources from a trusted partner site. Each profile has its benefits:

Chapter9 - SAMLAdministration 169

Elements of SAML

170

The Web Browser Artifact Profile requires less processing overhead because there is no assertion
signing as there is in the Web Browser POST Profile.

The Web Browser Artifact Profile works without browsers enabled with JavaScript technology. It
is considered more secure than the Web Browser POST Profile.

The Web Browser POST Profile does not require SOAP. This profile is more firewall-friendly and
involves fewer steps and less server-side processing.

The profile methods can be initiated through a web browser or the SAML API. For more information
about the API method, see “SAML API” on page 188.

Web Browser Artifact Profile

The Web Browser Artifact Profile defines interaction between three parties: a user equipped with a
web browser, an authority site, and a trusted partner site. The SOAP communication should be either
Basic Authentication or Client Certificate Authentication over SSL. Note that XML signing is a
stronger alternative.

1.

When an authenticated user attempts to access a trusted partner (generally by clicking a link), the
user is directed to a transfer service at the authority site.

In Access Manager, the transfer service is SAMLAwareServlet. The base of the transfer service
URLis http(s) ://access-manager-host.domain: port/deploy-uri/SAMLAwareServlet. The URL
is appended with the location to which the user is requesting access (?
TARGET=URL-of-destination).

SAMLAwareServlet receives the information and compares the SAML module’s list of Trusted
Partners against the user’s TARGET location.

Only targets that are configured in the Trusted Partners attribute of the SAML module are
accessible. For more information about this attribute, see “Trusted Partners” on page 183.

Assuming the TARGET location was found in the list of Trusted Partners, SAMLAwareServlet
looks for and validates the session token from the inbound request.

Without a valid session token, Access Manager will not create an assertion.

Assuming a valid session token, SAMLAwareServlet creates an artifact and a corresponding
assertion.

An artifact is carried as part of the URL and points to an assertion and its source. An artifact is
not (and does not contain) security information. The assertion contains the security
information. For more information, see “SiteAttributeMapper and
PartnerSiteAttributeMapper Interfaces” on page 190.

Note - The need to send an artifact rather than the assertion itself is dictated by the restrictions on
URL size that are imposed by many web browsers.

SAMLAwareServlet redirects the user’s browser to the Artifact Receiver URL with a query string
that contains the artifact and the original TARGET location.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Elements of SAML

Note - In Access Manager, the Artifact Receiver URL and SAMLAwareServlet are the same. Other
SAML implementations might not integrate the two functions.

6. Atthe Artifact Receiver URL, the artifact is extracted from the query string to locate the SOAP
Receiver URL at the trusted partner site.
The SAML API extracts the source ID from the artifact and uses it to locate the SOAP Receiver
URL at the trusted partner site. For more information about the use of SOAP, see “SAMLSOAP
Receiver” on page 175.

7. ASOAP query that contains the artifact is sent to the SOAP Receiver URL at the trusted partner
site that is requesting the assertion to which the artifact points.

8. The SOAP Receiver URL accepts the returned artifact query from the trusted partner site and
responds by sending the correct assertion in a SOAP response.

9. The assertion is processed, mapping the user account information from the trusted partner site
to the target site’s user account.

The user is either granted or denied access to the trusted partner site. If access is granted, a
SSOToken is generated, a cookie is set to the browser, and the user is redirected to the TARGET
location.

Chapter9 - SAMLAdministration 171

Elements of SAML

User Service
Agent Provider

Identity

Provider

@ GET <inter-site transfer service host name and path>?RelayState=<resource URL>
»|
L}

©)

Obtain
1dP

1
@ 302; Location: <IDP Single Sign-On Service >?<AuthnRequest>()
@ GET <IDP Single Sign-On Service >?<AufhnRequest>()

»
>

Process
AuthnRequest

i ®

I
302; Location: <SP Assertion Consumer URL>?RelayState=<resource URL>SAMLart=<...> |
|

GET <SP Assertion Consumer URL>?RelayState=<resource URL>SAMLart=<...>

»

SOAP POST:<samlp:Request>()

|

|

I

Jo) _—

I 200 OK SOAP:<samip:Response>()
I

Process
Assertion

@ 200 OK:<resource URL>()

|
I
|
I
|
>
>|
|
I
|
I
|
I
|
I
|
I
I

|
]
I
FIGURE 9-2 Web Browser Artifact Profile Interactions

A sample has been provided to test the Web Browser Artifact Profile function. See “SAML Samples”
on page 193 for more information.

Web Browser POST Profile

The Web Browser POST Profile allows security information to be supplied to a trusted partner site
using the HTTP POST method (without the use of an artifact). This interaction consists of two parts.
The first part is between a user with a web browser and Access Manager. The second part is between
the same user and the trusted partner site. The content of the POST should be signed to ensure
message integrity, and the method of transport should be SSL.

172 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Elements of SAML

Note - The POST profile function is provided by either of two means: an HTTP request using
SAMLPOSTProfileServlet, or an SAMLClient API call [doWebPost ()] to a Java application.

m The first interaction of the Web Browser POST Profile is as follows:

1.

6.

An authenticated user attempts to access a trusted partner site using a web browser (usually
by clicking a link), and the user is redirected to a transfer service at the authority site.

In Access Manager, the transfer service is SAMLPostProfileServlet. The base of the transfer
service URLis

http(s)://access-manager-host.domain: port/deploy-uri/SAMLPOSTProfileServlet. This
URL is appended with the location to which the user is requesting access
(?TARGET=URL-of-destination).

Note - SAMLPostProfileServlet provides functions for both Web Browser POST Profile
interactions.

Access Manager obtains the TARGET location from the request and matches it against the
trusted partners configured in the Trusted Partners attribute of the SAML module.

For more information, see “Trusted Partners” on page 183.
Access Manager generates an assertion using the AssertionManager class of the SAML APL

For information about the AssertionManager class, see “com.sun.identity.saml Package”
on page 188.

Access Manager forms, signs, and Base64 encodes a SAMLResponse that contains the
assertion.

Access Manager generates an HTML form that contains both the SAMLResponse and the
TARGET as parameters and posts the form as an HTTP response back to the user’s browser.

The user’s browser is then directed to the location based on this information.

®m The second interaction of the Web Browser POST Profile is as follows:

1.
2.

3.

The trusted partner site obtains the TARGET and SAMLResponse from the redirected request.

The trusted partner site decodes the SAMLResponse, verifies the signature on the
SAMLResponse, and obtains and verifies the SAML response.

The trusted partner site also verifies the assertion inside the SAMLResponse and enforces
single sign-on policy.

Assuming a positive authentication, the trusted partner site obtains or creates an SS0Token
and redirects the authenticated user to the TARGET location.

Chapter9 - SAMLAdministration 173

Elements of SAML

User Service
Agent Provider

Identity

Provider

@ GET <inter-site transfer service host name and path>?RelayState=<resource URL>
»l
L}

@

Obtain
IdP

1
302; Location: <IDP Single Sign-On Service >?<AuthnRequest>()

|
GET <IDP Single Sign-On Service >?<AuthnRequest>()

»
»

Process
AuthnRequest

i ®

|

| HTTP 200; FORM; METHOD=POST; ACTION=<SP assertion consumer URL.; LARES=<AuthnResponse>
I~ | |

I '

| @ POST <SP assertion consumer URL.; LARES=<AuthnResponse>

I »

SOAP POST:<samlp:Request>()

v

|
I
|
| @ 200 OK SOAP:<samlIp:Response>()
I:

|

I

|

I

|

I

|

| Process
| Assertion
I T

|

4

|

@ 200 OK:<resource URL>()

|
I
|
FIGURE 9-3 Web Browser POST Profile Interactions

A sample has been provided to test the Web Browser POST Profile function. See “SAML Samples”
on page 193.

Single-Use Policy With POST Profile

According to the SAML specifications, the trusted partner site must ensure a single-use policy for
SSO assertions that are communicated using the Web Browser POST Profile.
SAMLPOSTProfileServlet maintains a store of SSO assertion identifiers and the time that they
expire. When an assertion is received, the servlet first checks for an entry in the map. Ifan entry
exists, the servlet returns an error. If an entry does not exist, the assertion identifier and expiration
time are saved to the map. POSTCleanUpThread removes expired assertion identifiers periodically.

174 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Elements of SAML

SAML SOAP Receiver

Assertions are exchanged between Access Manager and inquiring parties using the <Request>and
<Response> XML constructs defined in the SAML specification. These SAML constructs are then
integrated into SOAP messages for transport.

Note - ASAML <Request> can contain queries for authentication status, authorization decisions,
attribute information, and one or more assertion identifier references or artifacts.

Access Manager uses SOAP, a message communications specification that integrates XML and
HTTPS, to transport the SAML constructs. The request is received by SAML SOAP Receiver, a servlet
that receives a SOAP message, extracts the SAML request, and responds with another SOAP message
that contains the requested assertion. SAML SOAP Receiver responds to queries for authentication,
attributes, or authorization decisions (including those that have an artifact) by returning assertions.
The access URL for SAML SOAP Receiver is

http(s) ://access-manager-host.domain: port/deploy-uri/SAMLSOAPReceiver.

Note - SAML SOAP Receiver only supports the POST method.

SOAP Messages

SOAP messages consist of three parts: an envelope, header data, and a message body. The SAML
<Request>and <Response> elements are enclosed in the message body. A client transmits a SAML
<Request> element within the body of a SOAP message to an entity.

Note - The SAML API and the Java API for XML Messaging (JAXM) are used to construct SOAP
messages and send them to SAML SOAP Receiver.

The following two samples illustrate a SOAP exchange for the “Web Browser Artifact Profile”
on page 170. The first is a request for an authentication assertion.

EXAMPLE 9-1 SOAP Request for Authentication Assertion Using Web Browser Artifact Profile

POST /authn HTTP/1.1

Host: idp.example.com

Content-type: text/xml

Content-length: nnnn

<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header/>

<soap-env:Body>

<samlp:Request xmlns="urn:oasis:names:tc:SAML:1.0:protocol"
xmlns:lib="http://projectliberty.org/schemas/core/2002/12"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

Chapter9 - SAMLAdministration 175

Elements of SAML

EXAMPLE 9-1 SOAP Request for Authentication Assertion Using Web Browser Artifact Profile
(Continued)

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
IssueInstant="2002-12-12T10:08:562"
MajorVersion="1"
MinorVersion="0"
RequestID="e4d71c43-c89a-426b-853e-a2b0@cl4a5ed8"
id="ericssonb6dc3636-f2ad-42d1-9427-220f2cf70ecl"
xsi:type="1ib:SignedSAMLRequestType">
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal">
</ds:SignatureMethod>
<ds:Reference URI="#ericssonb6dc3636-f2ad-42d1-9427-220f2cf70ecl">
<ds:Transforms>
<ds:Transform
Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature">
</ds:Transform>
<ds:Transform
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal">
</ds:DigestMethod>
<ds:DigestValue>+k6TnolGkIPKZ1pUQVyok8dwkuE=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>
wXJMVoPO1V1jFnWIPyOWqP5Gqm8Al+/2b5gNzF4L4LMu4yEcRtttLdPPT3bvhwkwHXjL9
NuOFumQ5YEyiVzINcjAxX0OLfgwutvEdIb748IU4L+80bXPXfqTZLiBK1RbHCRmRVj 1PIu
220GCV6EWUuiWRvVOD60Xx9svtSgFJ+iXkzQ
</ds:SignatureValue>
<ds:KeyInfo>
<ds:X509Data>
<ds:X509Certificate>
MIIDMTCCApqgAwIBAgIBHDANBgkqhkiGOw@BAQQFADCBLTELMAKGALUEBhMCVVMxCzAJB
gNVBACTAINGMRkwFwYDVQQKEXBMaWJ1cnR5IEFsbGlhbmNTMRQWEgYDVQQLEwtJIT1AgVG
VzdGVyczEiMCAGALIUEAXMZTG1iZXJ0eSBUZXNOZXJzIEN1cnRpZml1lcjEKMCIGCSQGSIb
3DQEJARYVcnJvZHIpZ3V1ekBuZW9zb2wubmVOMB4AXDTAYMTIWNDEINTgONFOXDTEYMTIw
MTEINTgONFowgasxCzAJBgNVBAYTALVTMQswCQYDVQQHEwWITRjEKMCIGALIUEChMbTGiZ
XJ0eSBBbGxpYW5jZSBlcmljc3NvbilhMSYwJAYDVQQLEX1JT1AgVGVzdGVycyBlcmljc3
NvbilhIHNpZ251cjEXMBUGALUEAXMOZXJpY3Nzb24tYS5pb3AXKDAMBgkghkiGOw@BCQE

176 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Elements of SAML

EXAMPLE 9-1 SOAP Request for Authentication Assertion Using Web Browser Artifact Profile
(Continued)

WGXJyb2RyaWd1ZXpAZXIpY3Nzb24tYS5pb3AwgZ8wDQYIKoZIhvcNAQEBBQADGYQAMIG]
AoGBAPU0GYvJIXxQc5jzDnJ14TV6TaTbB3fHI5]ju24Z0y6HQxm6gXdISAoWh7/AIes4UcVo
9DC2kKS6Vow2YoXt2LIyHIHWH2tEUt1jS/PUeBHEWCW3tFezM63jh5GG5 rCuVPZaw9eoGU
bFPSzOPFKUAwdHUXSDWufY1KZ93IxhOBeZgg6VAgMBAAG] eTB3MEoGCWCGSAGG+EIBDQQ
9FjtUaGlzIHNpZ25pbmcgY2VydCB3YXMgY3J1YXR1ZCBmb3IgdGVzdGluZy4gRG8gbm90
IHRydXN@ IGLOLjAIBgNVHRMEA;jAAMBEGCWCGSAGG+EIBAQQEAWIEMDALBgNVHQ8EBAMC
BsAwDQYJKoZIhvcNAQEEBQADgYEAR/HSgBpAp rQwQVyWDE9pCaiduKv4/W/+h rdpX1VKS
r6TI1g4ouDCQINos7tNuG9ZAbfWtHvCss51N2cfAzfns/DKgxRgcsxzL5ZUBksPpmsDob
00pUv6Xm8RFsi7yB9AGaVuqgObeY/+m70n0u@30+FIMN3U1k2E3rOKX1U1lnoCO
</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</ds:Signature>
<samlp:AssertionArtifact>
AAM1uXw6+f+jyA/4XuFHgP17QDvc/LIQL9+t7YQtG1Gwk9bph@Ad1+o+
</samlp:AssertionArtifact>
</samlp:Request>
</soap-env:Body>
</soap-env:Envelope>

In response to the request, SAML SOAP Receiver must return either a <Response> element within
the body of another SOAP message or a SOAP fault code (error message) for every request received.
The following sample is a response that contains an authentication assertion.

EXAMPLE 9-2 SOAP Response to SOAP Request for Web Browser Artifact Profile

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: nnnn
<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Header/>
<soap-env:Body>
<samlp:Response
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"
InResponseTo="RPCUk211+GVz+t11LURp510FvIXK"
IssueInstant="2002-10-31T21:42:13Z"
MajorVersion="1" MinorVersion="0"
Recipient="http://localhost:8080/sp"
ResponseID="LANWfL2xLybnc+BCwgY+pl/vIVAj">
<samlp:Status>
<samlp:StatusCode
xmlns:qgns="urn:oasis:names:tc:SAML:1.0:protocol"
Value="gns:Success">
</samlp:StatusCode>

Chapter9 - SAMLAdministration 177

Elements of SAML

EXAMPLE 9-2 SOAP Response to SOAP Request for Web Browser Artifact Profile

</samlp:Status>
<saml:Assertion
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:lib="http://projectliberty.org/schemas/core/2002/12"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
AssertionID="SqMC8Hs2v]7Z+t4UiLSmhKOSUOQU"
InResponseTo="RPCUk211+GVz+t11LURp510FvIXK"
IssueInstant="2002-10-31T21:42:13Z"
Issuer="http://host:8080/idp"
MajorVersion="1" MinorVersion="0"
xsi:type="1lib:AssertionType">
<saml:Conditions
NotBefore="2002-10-31T21:42:122"
NotOnOrAfter="2002-10-31T21:42:4372">
<saml:AudienceRestrictionCondition>
<saml:Audience>http://localhost:8080/sp</saml:Audience>
</saml:AudienceRestrictionCondition>
</saml:Conditions>
<saml:AuthenticationStatement
AuthenticationInstant="2002-10-31T21:42:13Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
xsi:type="1lib:AuthenticationStatementType">
<saml:Subject xsi:type="1lib:SubjectType">
<saml:NameIdentifier>
C9FfGouQdBJ7bpkismYgd8ygeVb3P1WK
</saml:NameIdentifier>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:artifact-01
</saml:ConfirmationMethod>
</saml:SubjectConfirmation>
<lib:IDPProvidedNameIdentifier>
C9FfGouQdBJ7bpkismYgd8ygeVb3P1WK
</1ib:IDPProvidedNameIdentifier>
</saml:Subject>
</saml:AuthenticationStatement>
<ds:Signature>
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal">
</ds:SignatureMethod>
<ds:Reference URI="">

(Continued)

178 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Elements of SAML

EXAMPLE 9-2 SOAP Response to SOAP Request for Web Browser Artifact Profile (Continued)

<ds:Transforms>
<ds:Transform
Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature">
</ds:Transform>
<ds:Transform
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal">
</ds:DigestMethod>
<ds:DigestValue>ZbscbqHTX9H8bBftRIW1G4Epv1A=</ds:DigestValue>
</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>
H+q3nC3jUaljluKUVkcC4iTFClxeZQIFFOnvHqPS50ZhtkBaDb9qI
TA79IkotaB584wXqTXwsfsulrwT5uL3r85Rj7IF6NeCeiy3K0+z3u
ewxyeZPz8wna449VNmOgNHYkgNak9ViNCp0@/ks5MAttoPo2ilL0faK
u3wWG6d1G+DM=

</ds:SignatureValue>

</ds:Signature>
</saml:Assertion>
</samlp:Response>
</soap-env:Body>
</soap-env:Envelope>

Note - The entities requesting and responding with SAML must not include more than one SAML
request or response per SOAP message. They must also not include any additional XML elements in
the SOAP body.

Protecting SAML SOAP Receiver

The Access Manager administrator has the option of protecting the SAML SOAP Receiver. The
available methods are:

= NOAUTH

= BASICAUTH

= SSL

® SSLWITHBASICAUTH

This value is configured as a subattribute of the Trusted Partners attribute in the SAML module. The
default authentication type is NOAUTH. If SSL authentication is to be specified, it is configured in the
SOAPUr1 field with the https protocol. For more information, see “Trusted Partners” on page 183.

Chapter9 - SAMLAdministration 179

SAML Attributes

10

1n

To Configure Access Manager for Basic Authentication

Basic authentication allows a provider originating a request to authenticate itself by transmitting a
username and password. The credentials are presented in response to a challenge from the provider
to which the request is being sent. You need to configure Access Manager to support basic
authentication using the following procedure.

In the Access Manager Console, click the Federation tab.

Under Federation, click the SAML tab.

Select New under the Trusted Partners attribute.

Select the Web Browser Artifact Profile (Artifact) under Source and click Next.

Type a value for the Source ID attribute.

This is a 20-byte sequence (encoded using the Base64 format) that comes from the partner site. It is
generally the same value as that used for the Site ID attribute when configuring “Site Identifiers”
on page 182.

Enter the SOAP Receiver URL for the site you are configuring as a value for the SOAP URL attribute.
General information on SOAP endpoints is in “SAML SOAP Receiver” on page 175.

Select BASICAUTH or SSLWITHBASICAUTH (if the endpointis configured with Secure Sockets Layer) as
the authentication type.

Enter a user identifier for the user on the partner side being used to protect their SOAP Receiver.

Enter and reenter the password associated with the user on the partner side being used to protect
their SOAP Receiver.

Click Finish to complete the configuration.

Click Save to save the configuration.

SAML Attributes

180

The SAML module is configured by applying values to its attributes. amSAML. xml is the XML service
file that defines the attributes. All SAML attributes are global in that the values applied to them are
carried across the Access Manager configuration and inherited by every organization defined in the
instance of Access Manager.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SAML Attributes

Note - For more information on service files, see Sun Java System Access Manager 7 2005Q4
Administration Guide.

Most attributes in the SAML module can be configured either through the Access Manager Console
or the XML service file. “amSAML . xml Attributes” on page 181 lists the attributes that can only be
configured by modifying the amSAML . xm file. “Console Attributes” on page 181 lists the attributes
that can be configured using the console or the XML service file.

amSAML . xm1 Attributes

The following attributes can only be configured through the amSAML . xm1 file using the amadmin
command-line interface.

® iplanet-am-saml-cleanup-interval isused to specify how often the internal thread is run to
clean up expired assertions from the internal data store. The default is 180 seconds.

= iplanet-am-saml-assertion-max-number is used to specify the maximum number of
assertions that the server can hold at one time. No new assertion is created if the maximum
number is reached. The default value is 0, which means no limit.

To Modify Attributes in the amSAML . xm1 File
Duplicate the amSAML . xm1 service file and make any changes to the attributes.
Delete the old amSAML . xm1 service file.

Use amadmin to reload the newly modified anSAML . xm file.

For more information on amadmin, see the Sun Java System Access Manager 7 2005Q4
Administration Guide.

Console Attributes

The following SAML attributes can be configured by using the Access Manager Console or by
modifying amSAML . xm1 as described in “amSAML . xml Attributes” on page 181. When viewed using the
Console, the SAML attributes are separated into the following groups:

“Properties Group” on page 182
“Assertion” on page 186
“Artifact” on page 187
“Signing” on page 187

Chapter9 - SAMLAdministration 181

SAML Attributes

182

Properties Group

The attributes in the Properties group are as follows:

® “Target Specifier” on page 182
= “Site Identifiers” on page 182

= “Trusted Partners” on page 183
= “Target URLs” on page 186

Target Specifier

This attribute assigns a name to the destination site URL value that is used in the redirects discussed
in “Profile Types” on page 169. The default is TARGET. Only sites configured in the Trusted Partners
attribute can be specified as a TARGET. For information, see “Trusted Partners” on page 183.

Site Identifiers

This attribute defines any site that is hosted by the server on which Access Manager is installed. A
default value is defined for the host during installation (with values retrieved from
AMConfig.properties), and a Site ID is automatically generated. Multiple entries are possible (for
example, load balancing or multiple instances of Access Manager sharing the same Directory Server)
although the default site identifier should always remain an entry.

Note - If configuring SAML for SSL (in both the source and destination site), ensure that the protocol
defined in the Instance ID attribute is HTTPS//.

To Configure a Site Identifier

You may also edit or duplicate entries already listed.

In the Access Manager Console, click the Federation tab.
Under Federation, click the SAML tab.

Select New under the Site Identifiers attribute.

Enter values for the following attributes:
Instance ID
The value of this property is protocol: / / host : port.

Site ID
This identifier is generated for each site, although the value will be the same for multiple servers
behind a load balancer. To obtain this identifier manually, type the following at the command line:

% #java -classpath AM-classpath \ com.sun.identity.saml.common.SAMLSiteID
\protocol: / /host: port

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SAML Attributes

For more information, see “com. sun.identity.saml.common Package” on page 189.

Issuer Name
The value of this property is host: port.

Click OK.

Trusted Partners

This attribute defines any trusted partner (remote to the server on which Access Manager is
installed) that will be communicating with Access Manager.

Note - The trusted partner site must have a prearranged trust relationship with one or more of the
sites configured in “Site Identifiers” on page 182.

Before configuring a trusted partner, you must determine the partner’s role in the trust relationship.
A trusted partner can be a source site (one that generates a single sign-on assertion) or a destination
site (one that receives a single sign-on assertion). Following is the procedure for configuring a trusted
partner.

To Configure a Trusted Partner

The Trusted Partners attribute can contain one or more entries. Each entry is configured based on
the site’s defined role. For example, if the partner is the source site, this attribute is configured based
on how it will send assertions. If the partner is the destination site, this attribute is configured based
on which profile it uses to receive assertions.

In the Access Manager Console, click the Federation tab.
Under Federation, click the SAML tab.
Select New under the Trusted Partners attribute.

Select the role (Destination or Source) of the partner site that you are configuring by checking the
appropriate profiles used to communicate with it and click Next.

Select Web Browser Artifact Profile or Web Browser Post Profile for either Destination, Source, or
both, or SOAP Query for Source. The choices made dictate which of the attributes in the following
steps need to be configured.

Type values for the Common Settings subattributes based on the selected roles.

Source ID
This is a 20-byte sequence (encoded using the Base64 format) that comes from the partner site. It
is generally the same value as that used for the Site ID attribute when configuring “Site Identifiers”
on page 182.

Chapter9 - SAMLAdministration 183

SAML Attributes

Target
This is the domain of the partner site (with or without a port number). If you want to contact a
web page that is hosted in this domain, the redirect URL is picked up from the values defined in
“Trusted Partners” on page 183.

Note - If there are two defined entries for the same domain (one containing a port number and
one without a port number), the entry with the port number takes precedence. For example,
assume the following two trusted partner definitions: target=sun. comand
target=sun.com:8080. If the principal is seeking http: //machine.sun.com:8080/index.html,
the second definition will be chosen.

Site Attribute Mapper
The class is used to return a list of attribute values defined as AttributeStatements elements in
an Authentication Assertion. A site attribute mapper needs to be implemented from one of the
included interfaces:

= com.sun.identity.saml.plugins.SiteAttributeMapper
= com.sun.identity.saml.plugins.PartnerSiteAttributeMapper

If no class is defined, no attributes will be included in the assertion. For more information, see
“SiteAttributeMapperand PartnerSiteAttributeMapper Interfaces” on page 190.

Version
The SAML version used (1.0 or 1.1) to send SAML requests. If this parameter is not defined, the
following default values (defined in AMConfig.properties) are used:

® com.example.identity.saml.assertion.version=1.1
® com.example.identity.saml.protocol.version=1.1

Account Mapper
The class that defines how the subject of an assertion is related to an identity at the destination
site. The default is com. sun.identity.saml.plugins.DefaultAccountMapper.Anaccount
mapper needs to be implemented from one of the included interfaces:

com.sun.identity.saml.plugins.AccountMapper
® com.sun.identity.saml.plugins.PartnerAccountMapper

If no class is defined, no attributes will be included in the assertion. For more information, see
“AccountMapper and PartnerAccountMapper Interfaces” on page 190.

Certificate
A certificate alias that is used to verify the signature in an assertion when it is signed by the partner
and the certificate cannot be found in the KeyInfo portion of the signed assertion.

Host List
Alist of the IP addresses, the DNS host name, or the Certificate name for all hosts within the
partner site that can send requests to this authority. This list helps to ensure that the requestor is
indeed the intended receiver of the artifact. If the requester is defined in this list, the interaction
will continue. If the requester’s information does not match any hosts defined in the host list, the
request will be rejected.

184 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SAML Attributes

Issuer
The creator of a generated assertion. The default syntax is hostname: port.

6 Typevalues for the Destination subattributes.

Artifact: SAML URL
The URL that points to the servlet that implements the Web Browser Artifact Profile. See “Web
Browser Artifact Profile” on page 170.

Post: Post URL
The URL that points to the servlet that implements the Web Browser POST Profile. See “Web
Browser POST Profile” on page 172.

SOAP Query: Attribute Mapper
The class that is used to obtain single sign-on information from a query. You need to implement
an attribute mapper from the included interface. If no class is specified, the
DefaultAttributeMapper will be used. For more information, see
“com.sun.identity.saml.plugins Package” on page 189.

SOAP Query: Action Mapper
The class that is used to get single sign-on information and map partner actions to Access
Manager authorization decisions. You need to implement an action mapper from the included
interface. If no class is specified, the DefaultActionMapper will be used. For more information,
see “com.sun.identity.saml.plugins Package” on page 189.

7 Typevalues for the Source subattributes.

Artifact: SOAP URL
The URL to the SAML SOAP Receiver. See “SAML SOAP Receiver” on page 175.

Authentication Type
Authentication types that can be used with SAML:
= NOAUTH
= BASICAUTH
= SSL
= SSLWITHBASICAUTH

This attribute is optional. If not specified, the default is NOAUTH. If BASICAUTH or
SSLWITHBASICAUTH is specified, the Trusted Partners attribute is required and should be HTTPS.
For more information, see “Trusted Partners” on page 183.

User
When Basic Authentication is chosen as the Authentication Type, the value of this attribute
defines the user identifier of the partner being used to protect the partner’s SOAP receiver.

User’s Password
When Basic Authentication is chosen as the Authentication Type, the value of this attribute
defines the password for the user identifier of the partner being used to protect the partner’s
SOAP receiver.

Chapter9 - SAMLAdministration 185

SAML Attributes

186

User’s Password (reenter)
Reenter the password defined previously.

Click Finish to complete the configuration.

Target URLs

If the TARGET URL received through either profile is listed as a value of this attribute, the assertions
received will be sent to the TARGET URL using an HTTP FORM POST.

Caution - Do not use test URLSs or any other additional URLs in a POST.

To configure this attribute, type values for the following subattributes:

Protocol
Choose either http or https.

Server Name
The name of the server on which the TARGET URL resides, such as www. sun. com.

Port
The port number, such as 58080.

Path
The URI, such as /amserver/console.

Assertion

The attributes in the Assertion group are as follows:

= “Assertion Timeout” on page 186
® “Assertion Skew Factor For notBefore Time” on page 186

Assertion Timeout

This attribute specifies the number of seconds before a timeout occurs on an assertion. The default is
420.

Assertion Skew Factor For notBefore Time

This attribute is used to calculate the notBefore time of an assertion. For example, if IssueInstant
is 2002-09024T21:39:49Z, and Assertion Skew Factor For notBefore Time is set to 300 seconds
(180 is the default value), the notBefore attribute of the conditions element for the assertion would
be 2002-09-24T21:34:49Z.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SAML Attributes

Note - The total valid duration of an assertion is defined by the values set in both the Assertion
Timeout and Assertion Skew Factor For notBefore Time attributes.

Artifact

The attributes in the Artifact group are as follows:

m “Artifact Timeout” on page 187
® “SAML Artifact Name” on page 187

For more information about artifacts, see “Web Browser Artifact Profile” on page 170.

Artifact Timeout

This attribute specifies the period of time an assertion that is created for an artifact will be valid. The
default is 400.

SAML Artifact Name

This attribute assigns a variable name to a SAML artifact. The artifact is bounded-size data that
identifies an assertion and a source site. It is carried as part of a URL query string and conveyed by
redirection to the destination site. The default name is SAMLart. Using the default SAMLart, the
redirect query string could be http://host:port/deploy-URI/SamlAwareServlet?
TARGET=target-URL/&SAMLart=artifact123.

Signing

The attributes in the Signing group are as follows:

= “Sign SAML Assertion” on page 187

® “Sign SAML Request” on page 187

= “Sign SAML Response” on page 187

Sign SAML Assertion

This attribute specifies whether all SAML assertions will be digitally signed (XML DSIG) before being
delivered. Selecting the check box enables this feature.

Sign SAML Request

This attribute specifies whether all SAML requests will be digitally signed (XML DSIG) before being
delivered. Selecting the check box enables this feature.

Sign SAML Response

This attribute specifies whether all SAML responses will be digitally signed (XML DSIG) before being
delivered. Selecting the check box enables this feature.

Chapter9 - SAMLAdministration 187

SAMLAPI

SAMLAPI

188

Note - All SAML responses used by the Web Browser POST Profile are digitally signed whether or not
this feature is enabled.

Access Manager contains a SAML API that consists of several Java packages. Administrators can use
these packages to integrate the SAML functionality and XML messages into their applications and
services. The API supports all types of assertions and operates with the Access Manager authorities
to process external SAML requests and generate SAML responses. The packages include the
following:

«

com.sun.identity.saml Package” on page 188
com.sun.identity.saml.assertion Package” on page 189
com.sun.identity.saml.common Package” on page 189
com.sun.identity.saml.plugins Package” on page 189
com.sun.identity.saml.protocol Package” on page 191
com.sun.identity.saml.xmlsig Package” on page 193

«

«

«

«

«

For more detailed information, including methods and their syntax and parameters, see the Java API
reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.saml Package

This package contains the AssertionManager and SAMLClient classes.

AssertionManager Class

The AssertionManager class provides interfaces and methods to create and get assertions,
authentication assertions, and assertion artifacts. This class is the connection between the SAML
specification and Access Manager. Some of the methods include the following:

® createAssertion creates an assertion with an authentication statement based on an Access
Manager SSO Token ID.

®m createAssertionArtifact creates an artifact that references an assertion based on an Access
Manager SSO Token ID.

® getAssertion returns an assertion based on the given parameter (given artifact, assertion ID, or
query).

SAMLClient Class

The SAMLClient class provides methods to execute either the Web Browser Artifact Profile or the
Web Browser POST Profile from within an application as opposed to a web browser. Its methods
include the following:

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SAMLAPI

® getAssertionByArtifact returns an assertion for a corresponding artifact.
= doWebPOST executes the Web Browser POST Profile.
= doWebArtifact executes the Web Browser Artifact Profile.

com.sun.identity.saml.assertion Package

This package contains the classes needed to create, manage, and integrate an XML assertion into an
application. The following code example illustrates how to use the Attribute class and
getAttributeValue method to retrieve the value of an attribute. From an assertion, call the
getStatement () method to retrieve a set of statements. If a statement is an attribute statement, call
the getAttribute() method to get a list of attributes. From there, call getAttributeValue() to
retrieve the attribute value.

EXAMPLE 9-3 Sample Code to Obtain an Attribute Value

// get statement in the assertion

Set set = assertion.getStatement();

//assume there is one AttributeStatement

//should check null& instanceof

AttributeStatement statement = (AttributeStatement) set.iterator().next();
List attributes = statement.getAttribute();

// assume there is at least one Attribute

Attribute attribute = (Attribute) attributes.get(0);

List values = attribute.getAttributeValue();

com.sun.identity.saml.common Package

This package defines classes common to all SAML elements, including site ID, issuer name, and
server host. The package also contains all SAML-related exceptions.

com.sun.identity.saml.plugins Package

Access Manager provides service provider interfaces (SPIs), three of which have default
implementations. The default implementations of these SPIs can be altered, or brand new ones
written, based on the specifications of a particular customized service. The implementations are then
used to integrate SAML into the custom service. Currently, the package includes the following
interfaces:

“AccountMapper and PartnerAccountMapper Interfaces” on page 190
“SiteAttributeMapper and PartnerSiteAttributeMapper Interfaces” on page 190
“AttributeMapper Interface” on page 190

“ActionMapper Interface” on page 191

Chapter9 - SAMLAdministration 189

SAMLAPI

190

AccountMapper and PartnerAccountMapper Interfaces

AccountMapper and PartnerAccountMapper are interfaces that need to be implemented by each
partner site. The implemented class maps the partner site’s user accounts to user accounts
configured in Access Manager for purposes of single sign-on. For example, if single sign-on is
configured from site A to site B, a site-specific account mapper can be developed and defined in the
Trusted Partners subattribute of site B’s Trusted Partners profile. When site B processes the assertion
received, it locates the corresponding account mapper by retrieving the source ID of the originating
site. Either SPI can be implemented although PartnerAccountMapper has one benefit over
AccountMapper: it takes the whole assertion as a parameter, enabling the partner to define user
account mapping based on attributes inside the assertion. The AccountMapper interface uses only
the subject of the assertion as a parameter. The default implementation is
com.sun.identity.saml.plugin.DefaultAccountMapper. Ifa site-specific account mapper is not
configured, this default mapper is used.

Note - Turning on the Debug Service in the AMConfig. properties filelogs additional information
about the account mapper, for example, the user name and organization to which the mapper has
been mapped. For more information about the AMConfig.properties file, see the Sun Java System
Access Manager 7 2005Q4 Developer’s Guide.

SiteAttributeMapper and PartnerSiteAttributeMapper Interfaces

SiteAttributeMapper and PartnerSiteAttributeMapper are interfaces that need to be
implemented by each partner site. The implemented class defines a list of attributes to be returned as
elements of the AttributeStatements in an authentication assertion. By default, when Access
Manager creates an assertion and no mapper is specified, the authentication assertion only contains
authentication statements. If a partner site wants to include attribute statements, it needs to
implement one of these mappers. This class would be used to obtain attributes, create the attribute
statement, and insert the statement inside the assertion. Either SPI can be implemented although
PartnerSiteAttributeMapper has one benefit over SiteAttributeMapper: there is an additional
targetURL parameter that enables the partner to include different sets of attributes to target different
applications.

Note - The default behavior is that no attribute statements are returned unless specified by the
plug-in.

AttributeMapper Interface

AttributeMapper is an interface used in conjunction with an AttributeQuery class When a site
receives an attribute query, this mapper obtains the SSOToken or an assertion (containing an
authentication statement) from the query. The retrieved information is used to convert the attributes
in the query to the corresponding Access Manager attributes. A default attribute mapper is provided
if no other implementation is defined.

For more information, see “AttributeQuery Class” on page 191.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SAMLAPI

ActionMapper Interface

ActionMapper is an interface used to obtain single sign-on information and to map partner actions
to Access Manager authorization decisions. A default action mapper is provided if no other
implementation is defined.

com.sun.identity.saml.protocol Package

This package contains classes that parse the request and response XML messages used to exchange
assertions and their authentication, attribute, or authorization information.

AuthenticationQuery Class

The AuthenticationQuery class represents a query for an authentication assertion. When an
identity attempts to access a trusted partner web site, a SAML request with an AuthenticationQuery
inside is directed to the authority site.

The Subject of the AuthenticationQuery must contain a SubjectConfirmation element. In this
element, ConfirmationMethod needs to be set to urn:com:sun:identity, and
SubjectConfirmationData needs to be set to the SSOToken ID of the Subject. If the Subject contains
aNameIdentifier, the value of the NameIdentifier should be the same as the one in the SSOToken.

AttributeQuery Class

The AttributeQuery class represents a query for an identity’s attributes. When an identity attempts
to access a trusted partner web site, a SAML request with an AttributeQuery is directed to the
authority site.

You can develop an attribute mapper to obtain an SSOToken, or an assertion that contains an
AuthenticationStatement from the query. If no attribute mapper for the querying site is defined,
the DefaultAttributeMapper will be used. To use the DefaultAttributeMapper, the query should
have either the SSOToken or an assertion that contains an AuthenticationStatement in the
SubjectConfirmationData element. If an SSOToken is used, the ConfirmationMethod must be set to
urn:com:sun:identity:.Ifan assertion is used, the assertion should be issued by the Access
Manager instance processing the query or a server that is trusted by the Access Manager instance
processing the query.

Note - In the DefaultAttributeMapper, a subject’s attributes can be queried using another subject’s
SSOToken if the SSOToken has the privilege to retrieve the attributes.

For a query using the DefaultAttributeMapper, any matching attributes found will be returned. If
no AttributeDesignator is specified in the AttributeQuery, all attributes from the services defined
under the userServiceNameList in amSAML . properties will be returned. The value of the
userServiceNameList property is user service names separated by a comma.

Chapter9 - SAMLAdministration 191

SAMLAPI

192

AuthorizationDecisionQuery Class

The AuthorizationDecisionQuery class represents a query about a principal’s authority to access
protected resources. When an identity attempts to access a trusted partner web site, a SAML request
with an AuthorizationDecisionQuery is directed to the authority site.

You can develop an ActionMapper to obtain the SSOToken ID and retrieve the authentication
decisions for the actions defined in the query. If no ActionMapper for the querying site is defined, the
DefaultActionMapper will be used. To use the DefaultActionMapper, the query should have the
SSO0Token ID in the SubjectConfirmationData element of the Subject. If the SSOToken ID is used,
the ConfirmationMethod must be settourn:com:sun:identity:.IfaNameIdentifier is present,
the information in the SS0Token must be the same as the information in the NameIdentifier.

Note - When using web agents, the DefaultActionMapper handles actions in the namespace
urn:oasis:names:tc:SAML:1.0:ghpp only. Web agents serve the policy decisions for this action
namespace.

The authentication information can also be passed through the Evidence element in the query.
Evidence can contain an AssertionIDReference, an assertion containing an
AuthenticationStatement issued by the Access Manager instance processing the query, or an
assertion issued by a server that is trusted by the Access Manager instance processing the query. The
Subject in the AuthenticationStatement of the Evidence element should be the same as the one in
the query.

Note - Policy conditions can be passed through AttributeStatements of assertion(s) inside the
Evidence of a query. If the value of an attribute contains a TEXT node only, the condition is set as
attributeName=attributeValueString. Otherwise, the condition is set as
attributename=attributeValueElement.

The following example illustrates one of many ways to form an authorization decision query that will
return a decision.

EXAMPLE 9-4 AuthorizationDecisionQuery Code Sample

// testing getAssertion(authZQuery): no SC, with ni, with

// evidence(AssertionIDRef, authN, for this ni):
String nameQualifier = "dc=iplanet,dc=com";
String pName = "uid=amadmin,ou=people,dc=iplanet,dc=com";
NameIdentifier ni = new NameIdentifier(pName, nameQualifier);
Subject subject = new Subject(ni);
String actionNamespace = "urn:test";
// policy should be added to this resource with these
// actions for the subject
Action actionl = new Action(actionNamespace, "GET");
Action action2 = new Action(actionNamespace, "POST");
List actions = new ArrayList();

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SAML Samples

EXAMPLE 9-4 AuthorizationDecisionQuery Code Sample (Continued)

actions.add(actionl);
actions.add(action2);
String resource = "http://www.sun.com:80";
eviSet = new HashSet();
// this assertion should contain authentication assertion for
// this subject and should be created by a trusted server
eviSet.add(eviAssertionIDRef3);
evidence = new Evidence(eviSet);
authzQuery = new AuthorizationDecisionQuery(eviSubjectl, actions,
evidence, resource);
try {
assertion = am.getAssertion(authzQuery, destID);
} catch (SAMLException e) {
out.println("--failed. Exception:" + e);

com.sun.identity.saml.xmlsig Package

All SAML assertions, requests, and responses can be signed using this signature package. It contains
SPI that are implemented to plug in proprietary XML signatures. This package contains classes
needed to sign and verify using XML signatures. By default, the keystore provided with the Java
Development Kit is used and the key type is DSA. The configuration properties for this functionality
are in the AMConfig. properties file. For information about these properties, see the Sun Java
System Access Manager 7 2005Q4 Developer’s Guide. For details on how to use the signature
functionality, see “SAML Samples” on page 193.

SAML Samples

You can access several SAML-based samples from the Access Manager installation in
/AccessManager-base/SUNWam/samples/saml. These samples illustrate how the SAML service can be
used in different ways, including the following:

= Asample that serves as the basis for using the SAML client APL This sample is located in
/AccessManager-base/SUNWam/samples/saml/client.

= Asample that illustrates how to form a Query, write an AttributeMapper, and send and process a
SOAP message using the SAML SDK. This sample is located in
/AccessManager-base/SUNWam/samples/saml/query.

= Asample application for achieving SSO using either the Web Browser Artifact Profile or the Web
Browser POST Profile. This sample is located in
/AccessManager-base/SUNWam/samples/saml/sso.

= Asample that illustrates how to use the XMLSIG API and explains how to configure for XML
signing. This sample is located in /AccessManager-base/SUNWam/samples/saml/xmlsig.

Chapter9 - SAMLAdministration 193

SAML Samples

Each sample includes a README file with information and instructions on how to use it.

194 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

L R IR 4 CHAPTER 10

Application Programming Interfaces

Sun Java System Access Manager provides a framework for identity federation and creating,
discovering, and consuming identity web services. This framework includes a graphical user
interface for Liberty-based web services as well as application programming interfaces (APIs). This
chapter provides information on the APIs that do not have a corresponding graphical user interface
(GUI).

This chapter covers the following topics:

® “Public Interfaces” on page 195

= “Common Service Interfaces” on page 197
= “Common Security API” on page 199

= “Interaction Service” on page 201

= “PAOS Binding” on page 203

Public Interfaces

The following list describes all of the public APIs you can use to deploy Liberty-enabled components
or extend the core services. Packages that are part of a web service that has a GUI are described in the
corresponding chapters of this book. Packages that are used solely on the back end are described in
this chapter. Links to those sections are also provided. For more information, including methods and
their syntax and parameters, see the Java API Reference in /AccessManager-base/SUNWam/docs or on
docs.sun.com.

TABLE 10-1 Access Manager Public APIs

Package Name Description

com.sun.identity.liberty.ws.authnsvc Provides classes to manage the Authentication Web
Service. See Chapter 5.

195

Public Interfaces

TABLE 10-1 Access Manager Public APIs

(Continued)

Package Name

Description

com.sun.identity.liberty.
authnsvc.mechanism

com.sun.identity.liberty.
authnsvc.protocol

com.sun.identity.liberty.

com.sun.identity.liberty.

com.sun.identity.liberty.

com.sun.identity.liberty.

com.sun.identity.liberty.

com.sun.identity.liberty.

com.sun.identity.liberty.

com.sun.identity.liberty.

com.sun.identity.liberty.

com.sun.identity.liberty.

ws.

WwSs.

ws.

ws

ws.

ws.

ws.

ws.

ws.

ws.

wSs.

common

common.wsse

.disco

disco.plugins

dst

dst.service

interaction

interfaces

paos

security

Provides an interface to process incoming Simple
Authentication and Security Layer (SASL) requests
and generate SASL responses for the different SASL
mechanisms. See Chapter 5.

Provides classes to manage the Authentication Web
Service protocol. See Chapter 5.

Defines common classes used by many of the Access
Manager Liberty-based web service components. See
“Common Service Interfaces” on page 197.

Provides an interface to parse and create an X.509
Certificate Token Profile. See “Common Service
Interfaces” on page 197.

Provides interfaces to manage the Discovery Service.
See Chapter 7.

Provides a plug-in interface for the Discovery Service.
See Chapter 7.

Provides classes to implement an identity service on
top of the Access Manager framework. See Chapter 6
for information about a service built using this API.

Provides a handler class that can be used by any
generic identity data service. See Chapter 6 for
information on data services.

Provides classes to support the Liberty-based
Interaction RequestRedirect Profile. See “Interaction
Service” on page 201.

Provides interfaces common to all Access Manager
Liberty-based web service components. See Chapter 6
and Chapter 7 for information about default
implementations. See “Common Service Interfaces”
on page 197 for more general information.

Provides classes for web applications to construct and
process PAOS requests and responses. See “PAOS
Binding” on page 203.

Provides an interface to manage Liberty-based web
service security mechanisms. See “Common Security
API” on page 199.

196

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Common Service Interfaces

TABLE 10-1 Access Manager Public APIs (Continued)

Package Name Description

com.sun.identity.liberty.ws.soapbinding Provides classes to construct SOAP requests and
responses and to change the contact point for the
SOAP binding. See Chapter 8.

com.sun.identity.saml Provides an SPI in which proprietary XML signature
implementations can be plugged in. See Chapter 9.

com.sun.identity.saml.assertion Provides classes that manage assertions and profiles.
See Chapter 9.

com.sun.identity.saml.common Provides classes common to all SAML elements. See
Chapter 9.

com.sun.identity.saml.plugins Provides SPIs to integrate SAML into custom services.
See Chapter 9.

com.sun.identity.saml.protocol Provides classes that parse the XML messages used to
exchange assertions and information. See Chapter 9.

com.sun.identity.saml.xmlsig Provides an SPIin which proprietary XML signature
implementations can be plugged in. See Chapter 9.

com.sun.liberty Provides interfaces common to the Access Manager

Federation Management module. See Chapter 3.

Common Service Interfaces

This section summarizes classes that can be used by all Liberty-based Access Manager service
components, as well as interfaces common to all Liberty-based Access Manager services. The
packages that contain the classes and interfaces are:

® “com.sun.identity.liberty.ws.common Package” on page 197
® “com.sun.identity.liberty.ws.interfaces Package” on page 198

com.sun.identity.liberty.ws.common Package

This package includes classes common to all Liberty-based Access Manager service components.

TABLE10-2 com.sun.identity.liberty.ws.common Classes

Class

Description

LogUtil

Defines methods that are used by the Liberty component of Access
Manager to write logs.

Chapter 10 - Application Programming Interfaces 197

Common Service Interfaces

198

TABLE 10-2 com. sun.identity.liberty.ws.common Classes (Continued)
Class Description
Status Represents a common status object.

For more information, including methods and their syntax and parameters, see the Java API
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.interfaces Package

This package includes interfaces that can be implemented to add their corresponding functionality
to each Liberty-based Access Manager web service.

TABLE 10-3 com.sun.identity.liberty.ws.interfaces Interfaces

Interface Description
Authorizer Interface for identity service to check authorization of a WSC.
ResourceIDMapper Interface used to map between a user ID and the Resource ID

associated with it.

ServiceInstanceUpdate Interface used to include a SOAP header
(ServiceInstanceUpdateHeader) when sending a SOAP
response.

com.sun.identity.liberty.ws.interfaces.Authorizer Interface

This interface, once implemented, can be used by each Liberty-based web service component for
access control.

Note - The com.sun.identity.liberty.ws.disco.plugins.DefaultDiscoAuthorizer classisthe
implementation of this interface for the Discovery Service. For more information, see Chapter 7. The
com.sun.identity.liberty.ws.idpp.plugin.IDPPAuthorizer class is the implementation for the
Liberty Personal Profile Service. For more information, see Chapter 6.

The Authorizer interface enables a web service to check whether a web service consumer (WSC) is
allowed to access the requested resource. When a WSC contacts a web service provider (WSP), the
WSC conveys a sender identity and an invocation identity. Note that the invocation identity is always
the subject of the SAML assertion. These conveyances enable the WSP to make an authorization
decision based on one or both identities. The Access Manager Policy Service performs the
authorization based on defined policies.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Common Security API

Note - See the Sun Java System Access Manager 7 2005Q4 Technical Overview for more information
about policy management, single sign-on, and user sessions. See the Sun Java System Access
Manager 7 2005Q4 Administration Guide for information about creating policy.

com.sun.identity.liberty.ws.interfaces.ResourceIDMapper
Interface

This interface is used to map a user DN to the resource identifier associated with it. Access Manager
provides implementations of this interface.

® com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper assumes the
Resource ID format to be: providerID + "/" + the Base64 encoded userIDs.

® com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper assumes the
Resource ID format to be: providerID +"/" + the hex string of userID.

® com.sun.identity.liberty.ws.idpp.plugin.IDPPResourceIDMapper assumes the Resource
ID format to be: providerID +"/" + the Base64 encoded userIDs.

A different implementation of the interface may be developed. The implementation class should be
given to the provider that hosts the Discovery Service. The mapping between the providerID and the
implementation class can be configured through the Classes For ResourcelDMapper Plugin
attribute.

Common Security API

The Liberty-based security APIs are included in the com.sun.identity.liberty.ws.security
package and the com.sun.identity.liberty.ws.common.wsse package.

com.sun.identity.liberty.ws.security Package

The com.sun.identity.liberty.ws.security package includes the SecurityTokenProvider
interface for managing Web Service Security (WSS) type tokens. The following table describes the
classes used to manage Liberty-based security mechanisms.

TABLE 10-4 com. sun.identity.liberty.ws.security Classes

Class Description

ProxySubject Represents the identity of a proxy, the confirmation key, and
confirmation obligation the proxy must possess and
demonstrate for authentication purposes.

Chapter 10 - Application Programming Interfaces 199

Common Security API

TABLE 10-4 com. sun.identity.liberty.ws.security Classes (Continued)

Class

Description

ResourceAccessStatement

SecurityAssertion

SecurityTokenManager

SecurityUtils

SessionContext

SessionContextStatement

SessionSubject

Conveys information regarding the accessing entities and
the resource for which access is being attempted.

Provides an extension to the Assertion class to support
ID-WSF ResourceAccessStatement and
SessionContextStatement.

An entry class for the security package
com.sun.identity.liberty.ws.security. You can call its
methods to generate X.509 and SAML tokens for message
authentication or authorization. It is designed as a provider
model, so different implementations can be plugged in if the
default implementation does not meet your requirements.

Defines methods that are used to get certificates and sign
messages.

Represents the session status of an entity to another system
entity.

Conveys the session status of an entity to another system
entity within the body of an <saml:assertion> element.

Represents a Liberty subject with its associated session
status.

For more information, including methods and their syntax and parameters, see the Java API
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

com.sun.identity.liberty.ws.common.wsse

Package

This package includes classes for creating security tokens used for authentication and authorization
in accordance with the Liberty ID-WSF Security Mechanisms. Both WSS X.509 and SAML tokens are

supported.

TABLE 10-5 com. sun.identity.liberty.ws.common.wsse Classes

Class Description

BinarySecurityToken Provides an interface to parse and create the X.509
Security Token depicted by Web Service Security: X.509

WSSEConstants Defines constants used in security packages.

200 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.1.pdf

Interaction Service

For more information, including methods and their syntax and parameters, see the Java API
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

Interaction Service

Providers of identity services often need to interact with the owner of a resource to get additional
information, or to get their consent to expose data. The Liberty Alliance Project has defined the
Liberty ID-WSF Interaction Service Specification to specify how these interactions can be carried out.
Of the options defined in the specification, Access Manager has implemented the Interaction
RequestRedirect Profile. In this profile, the WSP requests the connecting WSC to redirect the user
agent (principal) to an interaction resource (URL) at the WSP. When the user agent sends an HTTP
request to get the URL, the WSP has the opportunity to present one or more pages to the principal
with questions for other information. After the WSP obtains the information it needs to serve the
WSC, it redirects the user agent back to the WSC, which can now reissue its original request to the
WSP.

Configuring the Interaction Service

While there is no XML service file for the Interaction Service, this service does have properties. The
properties are configured upon installation in the AMConfig.properties file located in
/AccessManager-base/SUNWam/1ib and are described in the following table.

TABLE 10-6 Interaction Service Properties in AMConfig.properties

Property Description
com.sun.liberty.ws.interaction. Points to the URL where the WSPRedirectHandler
wspRedirectHandler servlet is deployed. The servlet handles the service

provider side of interactions for user redirects.

com.sun.identity.liberty.interaction. Indicates the level of interaction in which the WSC

wscSpecifiedInteractionChoice will participate if the WSC participates in user
redirects. Possible values include interactIfNeeded,
doNotInteract, and doNotInteractForData. The
affirmative interactIfNeeded is the default.

com.sun.identity.liberty.interaction. Indicates whether the WSC will include a SOAP

wscWillIncludeUserInteractionHeader header to indicate certain preferences for interaction
based on the Liberty specifications. The default value
is yes.

com.sun.identity.liberty. Indicates whether the WSC will participate in user

interaction.wscWillRedirect redirections. The default value is yes.

Chapter 10 - Application Programming Interfaces 201

http://www.projectliberty.org/specs/liberty-idwsf-interaction-svc-v1.1.pdf

Interaction Service

TABLE 10-6 Interaction Service Properties in AMConfig.properties (Continued)

Property

Description

com.sun.identity.liberty.interaction.

wscSpecifiedMaxInteractionTime

com.sun.identity.liberty.interaction.

wscWillEnforceHttpsCheck

com.sun.identity.liberty.
interaction.wspWillRedirect

com.sun.identity.liberty.
interaction.wspWillRedirectForData

com.sun.identity.liberty.
interaction.wspRedirectTime

com.sun.identity.liberty.interaction.

wspWillEnforceHttpsCheck

Indicates the maximum length of time (in seconds)
the WSC is willing to wait for the WSP to complete its
portion of the interaction. The WSP will not initiate
an interaction if the interaction is likely to take more
time than . For example, the WSP receives a request
where this property is set to a maximum 30 seconds. If
the WSP property com.sun.identity.liberty.
interaction.wspRedirectTime is set to 40 seconds,
the WSP returns a SOAP fault (timeNotSufficient),
indicating that the time is insufficient for interaction.

Indicates whether the WSC will enforce HTTPS in
redirected URLs. The Liberty Alliance Project
specifications state that, the value of this property is
always yes, which indicates that the WSP will not
redirect the user when the value of redirectURL
(specified by the WSP) is not an HTTPS URL. The
false value is primarily meant for ease of deployment
in a phased manner.

Initiates an interaction to get user consent for
something or to collect additional data. This property
indicates whether the WSP will redirect the user for
consent. The default value is yes.

Initiates an interaction to get user consent for
something or to collect additional data. This property
indicates whether the WSP will redirect the user to
collect additional data. The default value is yes.

Indicates the length of time (in seconds) that the WSP
expects to take to complete an interaction and return
control back to the WSC. For example, the WSP
receives a request indicating that the WSC will wait a
maximum 30 seconds (set in
com.sun.identity.liberty.
interaction.wscSpecifiedMaxInteractionTime)
for interaction. If the wspRedirectTime is set to 40
seconds, the WSP returns a SOAP fault
(timeNotSufficient), indicating that the time is
insufficient for interaction.

Indicates whether the WSP will enforce a HTTPS
returnToURL specified by the WSC. The Liberty
Alliance Project specifications state that the value of
this property is always yes. The false value is
primarily meant for ease of deployment in a phased
manner.

202 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

PAOS Binding

TABLE 10-6 Interaction Service Properties in AMConfig.properties (Continued)
Property Description
com.sun.identity.liberty. Indicates whether the WSP would enforce the address
interaction. values of returnToHost and requestHost if they are
wspWillEnforceReturnToHost the same. The Liberty Alliance Project specifications
EqualsRequestHost state that the value of this property is always yes. The

false value is primarily meant for ease of deployment
in a phased manner.

com.sun.identity.liberty. Points to the location of the style sheet that is used to
interaction.htmlStyleSheetLocation render the interaction page in HTML.
com.sun.identity.liberty. Points to the location of the style sheet that is used to
interaction.wmlStyleSheetLocation render the interaction page in WML.

Interaction Service API

The Access Manager Interaction Service includes a Java package named
com.sun.identity.liberty.ws.interaction. WSCsand WSPs use the classes in this package to
interact with a resource owner. The following table describes the classes.

TABLE 10-7 Interaction Service Classes

Class Description

InteractionManager Provides the interface and implementation for
resource owner interaction.

InteractionUtils Provides some utility methods related to resource
owner interaction.

JAXBObjectFactory Contains factory methods that enable you to construct
new instances of the Java representation for XML
content.

For more information, including methods and their syntax and parameters, see the Java API
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

PAOS Binding

Access Manager has implemented the optional Liberty Reverse HI'TP Binding for SOAP
Specification. This specification defines a message exchange protocol that permits an HTTP client to
be a SOAP responder. HTTP clients are no longer necessarily equipped with HTTP servers. For
example, mobile terminals and personal computers contain web browsers yet they do not operate
HTTP servers. These clients, though, can use their browsers to interact with an identity service,
possibly a personal profile service or a calendar service. These identity services could also be

Chapter 10 - Application Programming Interfaces 203

http://www.projectliberty.org/specs/liberty-paos-v1.1.pdf
http://www.projectliberty.org/specs/liberty-paos-v1.1.pdf

PAOS Binding

beneficial when the client devices interact with an HTTP server. The use of PAOS makes it possible to
exchange information between user agent-hosted services and remote servers. This is why the
reverse HTTP for SOAP binding is also known as PAOS; the spelling of SOAP is reversed.

Comparison of PAOS and SOAP

In a typical SOAP binding, an HTTP client interacts with an identity service through a client request
and a server response. For example, a cell phone user (client) can contact the phone service provider
(service) to retrieve stock quotes and weather information. The service verifies the user’s identity and
responds with the requested information.

In a reverse HTTP for SOAP binding, the phone service provider plays the client role, and the cell
phone client plays the server role. The initial SOAP request from the server is actually bound to an
HTTP response. The subsequent response from the client is bound to a request.

PAOS Binding API

The Access Manager implementation of PAOS binding includes a Java package named
com.sun.identity.liberty.ws.paos. This package provides classes to parse a PAOS header, make
a PAOS request, and receive a PAOS response.

Note - This API is used by PAOS clients on the HTTP server side. An API for PAOS servers on the
HTTP client side would be developed by the manufacturers of the HTTP client side products, for
example, cell phone manufacturers.

The following table describes the available classes in com. sun.identity.liberty.ws.paos. For
more detailed API documentation, see the Java API Reference in
/AccessManager-base/SUNWam/docs or on docs.sun.com.

TABLE 10-8 PAOS Binding Classes

Class Description

PAOSHeader Used by a web application on the HTTP server side to parse a
PAOS header in an HTTP request from the user agent side.

PAOSRequest Used by a web application on the HTTP server side to construct a
PAOS request message and send it via an HTTP response to the
user agent side.

Note - PAOSRequest is made available in PAOSResponse to
provide correlation, if needed, by API users.

204 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

PAOS Binding

TABLE 10-8 PAOS Binding Classes (Continued)

Class Description

PAOSResponse Used by a web application on the HTTP server side to receive
and parse a PAOS response using an HTTP request from the user
agent side.

PAOSException Represents an error occurring while processing a SOAP request
and response.

For more information, including methods and their syntax and parameters, see the Java API
Reference in /AccessManager-base/SUNWam/docs or on docs.sun.com.

PAOS Binding Sample

A sample that demonstrates PAOS service interaction between an HTTP client and server is provided
in the /AccessManager-base/SUNWam/samples/phase2/paos directory. The PAOS client is a servlet,
and the PAOS server is a stand-alone Java program. Instructions on how to run the sample can be
found in the Readme . html or Readme. txt file. Both files are included in the paos directory. The
following code example is the PAOS client servlet.

EXAMPLE 10-1 PAOS Client Servlet From PAOS Sample

import
import

import
import

import

import

public

java.util.*;
java.io.*;

javax.servlet.*;
javax.servlet.http.*;

com.sun.identity.liberty.ws.paos.*;
com.sun.identity.liberty.ws.idpp.jaxb.*;

class PAOSClientServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PAOSHeader paosHeader = null;
try {

paosHeader = new PAOSHeader(req);

} catch (PAOSException pel) {

pel.printStackTrace();

String msg = "No PAOS header\\n";
res.setContentType("text/plain");
res.setContentLength(1l+msg.length());

Chapter 10 - Application Programming Interfaces 205

PAOS Binding

EXAMPLE 10-1 PAOS Client Servlet From PAOS Sample (Continued)

PrintWriter out = new PrintWriter(res.getOutputStream());
out.println(msg);
out.close();

throw new ServletException(pel.getMessage());

}

HashMap servicesAndOptions = paosHeader.getServicesAndOptions();
Set services = servicesAndOptions.keySet();

String thisURL = req.getRequestURL().toString();
String[] queryItems = { "/IDPP/Demographics/Birthday" };
PAOSRequest paosReq null;
try {
paosReq = new PAOSRequest(thisURL,
(String) (services.iterator().next()),
thisURL,
queryItems);
} catch (PAOSException pe2) {
pe2.printStackTrace();
throw new ServletException(pe2.getMessage());
}
System.out.println("PAOS request to User Agent side --------------- >");
System.out.println(paosReq.toString());
paosReq.send(res, true);

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PAOSResponse paosRes = null;

try {
paosRes = new PAOSResponse(req);

} catch (PAOSException pe) {
pe.printStackTrace();
throw new ServletException(pe.getMessage());

}

System.out.println("PAOS response from User Agent side -------------- >");

System.out.println(paosRes.toString());
System.out.println("Data output after parsing -------------- >");

String dataStr = null;
try {

206 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

PAOS Binding

EXAMPLE 10-1 PAOS Client Servlet From PAOS Sample (Continued)

dataStr = paosRes.getPPResponseStr();

} catch (PAOSException paose) {
paose.printStackTrace();
throw new ServletException(paose.getMessage());

}
System.out.println(dataStr);
String msg = "Got the data: \\n" + dataStr;

res.setContentType("text/plain");
res.setContentLength(1l+msg.length());

PrintWriter out = new PrintWriter(res.getOutputStream());
out.println(msg);

out.close();

See Appendix A for information about all the sample code and files included with Access Manager.

Chapter 10 - Application Programming Interfaces 207

208

* o0 APPENDIX A

Liberty-based and SAML Samples

Sun Java System Access Manager contains a number of samples that make use of the Access Manager
implementation of the Liberty Alliance Project specifications. This appendix contains information
about the samples. The samples are located in /AccessManager-base/SUNWam/samples. This
directory includes samples for the entire Access Manager product as well as two directories specific
to the Liberty-based features: liberty and phase2.

This appendix covers the following samples:

= “Federation Framework Samples” on page 209
® “Web Services Framework Samples” on page 211
= “SAML Samples” on page 212

Federation Framework Samples

Access Manager 2005Q4 supports the Liberty Alliance Identity Federation Framework 1.2
Specifications. The Federation Framework samples are located in
/AccessManager-base/SUNWam/samples/liberty. To demonstrate the different Liberty-based
federation protocols featured in Access Manager, three sample applications are included. They are
located in the following subdirectories:

® “samplel Directory” on page 209
= “sample2 Directory” on page 210
= “sample3 Directory” on page 210

samplel Directory

The samplel directory provides a collection of files to configure a basic environment for creating and
managing a federation. The sample demonstrates the basic use of various Liberty-based federation
protocols, including account federation, SSO, single logout, and federation termination. The

209

Federation Framework Samples

210

scenario includes a service provider (SP), an identity provider (IDP), and configuration information
for the two required servers. Each server must be deployed and configured on different installations
of Access Manager.

TABLE A-1 Configuration Information for samplel Servers

Variable Placeholder Host Name Components Deployed on This Host

machinel www.spl.com ® Service Provider
Web Service Consumer

machine2 www.idpl.com = Identity Provider
Discovery Service
Liberty Alliance Project

The Readme. html file in the samplel directory provides detailed steps on how to deploy and
configure this sample. samplel also contains instructions for configuring a common domain. For
information on common domains, see Chapter 4.

sample2 Directory

The sample2 directory also provides a collection of files to configure a basic environment for creating
and managing a federation. However, in this sample, the resources of the SP are deployed on a Sun
Java System Web Server that is protected by a Sun Java System Policy Agent. As in “samplel
Directory” on page 209, the SP and IDP are deployed and configured on different Access Manager
installations. Besides demonstrating account federation, SSO, single logout, and federation
termination, this sample also shows how different authentication contexts can be configured by
associating different authentication levels with different protected pages. This association is made by
creating policies for the protected resources. The Readme. html file in the sample2 directory provides
detailed steps on how to deploy and configure this sample.

sample3 Directory

The sample3 directory provides a collection of files to configure an environment for creating and
managing a federation that includes two SPs and two IDPs. In this case, though, all hosted providers
are deployed on a single installation of Access Manager. You need to host the same IP address (the
one on which Access Manager is installed) in four different DNS domains. Thus, four virtual server
instances are created on a Sun Java System Web Server, one for each of the providers.

Note - Virtual server instances can be simulated by adding entries in the /etc/hosts file for the fully
qualified host names of the virtual servers.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Web Services Framework Samples

Because this scenario involves multiple IPs, you also need to install a common domain. You can
install the Common Domain Services on the same machine as the Access Manager software or on a
different machine. The Readme . html file in the sample3 directory provides detailed steps on how to
deploy and configure this sample. You can also find information about common domains in
Chapter 4.

Web Services Framework Samples

Access Manager 2005Q4 supports both the Liberty Alliance Identity Web Services Framework 1.0
Specifications and the Liberty Alliance Identity Services Interface Specifications 1.0. The web services
samples are located in / AccessManager-base/SUNWam/samples/phase2. To demonstrate the different
Liberty-based web services protocols featured in Access Manager, four sample applications are
included. They are located in the following sub-directories:

® “wsc Directory” on page 211

® “sis-ep Directory” on page 211

® “paos Directory” on page 212

® “authnsvc Directory” on page 212

wsc Directory

The wsc directory contains a collection of files to deploy and run a web service consumer (WSC).

Note - Before implementing this sample, you must have two instances of Access Manager installed,
and running, and Liberty-enabled. Completing the procedure in “samplel Directory” on page 209
will accomplish this.

In addition, this sample illustrates how to use the Discovery Service and Data Services Template
client APIs to allow the WSC to communicate with a web service provider (WSP). This sample
describes the flow of the Liberty-based Web Service Framework (ID-WSF) and how the security
mechanisms and interaction service are integrated. The Readme . htm1 file in the wsc directory
provides detailed steps on how to deploy and configure this sample. For more information, see also
Chapter 6 and Chapter 7.

sis-ep Directory

The sis-ep directory contains a collection of files to develop, deploy, and invoke a new Liberty-based
web service to Access Manager. The sample implements the Liberty Employee Profile Service.

AppendixA - Liberty-based and SAML Samples 211

SAML Samples

Note - Before implementing this sample, you must have two instances of Access Manager installed,
and running, and Liberty-enabled. Completing the procedure in “samplel Directory” on page 209
will accomplish this.

The Liberty Employee Profile Service is a deployment of the Liberty ID-SIS Employee Profile Service
Specification (ID-SIS-EP), which is one of the Liberty Alliance ID-SIS 1.0 Specifications. The
Readme.html file in the sample directory provides detailed steps on how to deploy and configure this
sample. For more information, see also Chapter 6

paos Directory

The paos directory contains a collection of files that demonstrate how to set up and invoke a PAOS
Service interaction between a client and server. The sample is based on the following scenario: a cell
phone user subscribes to a news service offered by the cell phone’s manufacturer. The news service
automatically provides stocks and weather information to the user’s cell phone at regular intervals.
In this scenario, the manufacturer is the news service provider, and the individual cell phone user is
the consumer. After running the sample, you will see the output from the PAOSServer program.

You can also see the output from PAOSClientServlet program in the log file of the Web Server. For
example, when using Sun Java System Web Server, look in the log subdirectory for the errors file.

The Readme . htm1 file in the sample directory provides detailed steps on how to deploy and configure
this sample. In addition, see “PAOS Binding Sample” on page 205.

Note - In an actual deployment, the server-side code would be developed by a service provider.

authnsvc Directory

The authnsvc directory contains a collection of files to illustrate the use of the Access Manager
Authentication Web Service. This sample program authenticates against the service and extracts the
resource offering of a discovery bootstrap. The Readme . html file in the sample directory provides
detailed steps on how to deploy and configure this sample. In addition, see Chapter 5

SAML Samples

212

For information on the samples related to the SAML component of Access Manager, see “SAML
Samples” on page 193.

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

* o0 APPENDIX B

Service Schema Files

This appendix contains some of the XML Schema Definition (XSD) files that are discussed in this
guide.

This appendix contains the following sections:

“XSD Overview” on page 213

“SOAP Binding Schema” on page 214

“Personal Profile Schema” on page 216

“Employee Profile Schema” on page 222
“Authentication Web Service Schema” on page 224
“PAOS Binding Schema” on page 228

“Metadata Description Schema” on page 229

XSD Overview

The purpose of an eXtensible Markup Language (XML) schema is to describe the structure of an
XML document. The XML schema language is referred to as XML Schema Definition (XSD).

Note - XSD is an XML-based alternative to the Document Type Definition (DTD). ADTD also
describes the structure of an XML document, but it is not in the XML format.

The XSD files in this appendix specify the information that its corresponding service can host by
defining the data and data structure. Typically, this structure is hierarchical and has one root node.
Individual branches of the structure can be accessed separately, and the whole structure can be
accessed by pointing to the root node. The data might be stored in implementation-specific ways,
However, the data will be exposed by the service using the XML schema (specified here) and the Web
Services Description Language (WSDL) definition of the service type (not specified in this
documentation set). The XSD files in this appendix are reproduced here for your convenience. These
files and a number of other XSD files are also available on the Liberty Alliance Project web site
(http://www.projectliberty.org/resources/specifications.php).

213

http://www.projectliberty.org/resources/specifications.php
http://www.projectliberty.org/resources/specifications.php

SOAP Binding Schema

SOAP Binding Schema

Following is a reproduction of liberty-idwsf-soap-binding-v1.1.xsd, the XSD file that
accompanies the Liberty ID-WSF SOAP Binding Specification as discussed in Chapter 8.

EXAMPLE B-1 SOAP Binding XSD File

<?xml version="1.0" encoding="UTF-8"7>

<xs:schema targetNamespace="urn:liberty:sb:2004-04"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sb-ext="urn:liberty:sb:2004-04"
xmlns:lib="urn:liberty:iff:2003-08"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="urn:liberty:sb:2004-04"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<!-- Author: John Kemp -->

<!l-- Last editor: $Author: dgreenspon $ -->
<!-- $Date: 2004/08/02 19:25:27 $ -->

<!-- $Revision: 1.1 $ -->

<xs:import
namespace="http://schemas.xmlsoap.org/soap/envelope/"
schemalLocation="http://schemas.xmlsoap.org/soap/envelope/"/>

<xs:import
namespace="urn:liberty:iff:2003-08"
schemalLocation="1liberty-idff-protocols-schema-v1l.2.xsd"/>

<xs:include schemalLocation="liberty-idwsf-utility-1.0-errata-v1.0.xsd"/>

<xs:annotation>
<xs:documentation>
Liberty ID-WSF SOAP Binding Specification Extension XSD
</xs:documentation>
<xs:documentation>
The source code in this XSD file was excerpted verbatim from:

Liberty ID-WSF SOAP Binding Specification
Version 1.1
April 2004

Copyright (c) 2004 Liberty Alliance participants, see
http://www.projectliberty.org/specs/idwsf copyrights.html
</xs:documentation>
</xs:annotation>

214 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

SOAP Binding Schema

EXAMPLE B-1 SOAP Binding XSD File (Continued)

<xs:complexType name="CredentialsContextType">
<XS:sequence>
<xs:element ref="1lib:RequestAuthnContext" minOccurs="0"/>
<xs:element name="SecurityMechID" type="xs:anyURI" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="id" type="xs:ID" use="optional"/>
<xs:attribute ref="S:mustUnderstand" use="optional"/>
<xs:attribute ref="S:actor" use="optional"/>
</xs:complexType>

<xs:element name="CredentialsContext" type="CredentialsContextType"/>

<xs:complexType name="ServiceInstanceUpdateType">
<XS:sequence>
<xs:element name="SecurityMechID" type="xs:anyURI" minOccurs="0"
max0Occurs="unbounded" />
<xs:element name="Credential" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<XS:sequence>
<xSs:any namespace="##any" processContents="lax"/>
</Xs:sequence>

<xs:attribute name="notOnOrAfter" type="xs:dateTime" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="Endpoint" type="xs:anyURI" minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="id" type="xs:ID" use="optional"/>
<xs:attribute ref="S:mustUnderstand" use="optional"/>
<xs:attribute ref="S:actor" use="optional"/>

</xs:complexType>

<xs:element name="ServiceInstanceUpdate" type="ServiceInstanceUpdateType"/>
<xs:complexType name="TimeoutType">
<xs:attribute name="maxProcessingTime" type="xs:integer" use="required"/>
<xs:attribute name="id" type="xs:ID" use="optional"/>
<xs:attribute ref="S:mustUnderstand" use="optional"/>
<xs:attribute ref="S:actor" use="optional"/>
</xs:complexType>

<xs:element name="Timeout" type="TimeoutType"/>

</xs:schema>

AppendixB - Service Schema Files

215

Personal Profile Schema

EXAMPLE B-1 SOAP Binding XSD File (Continued)

Personal Profile Schema

Following is a reproduction of liberty-idsis-pp-v1.0.xsd, the XSD file that accompanies the
Liberty ID-SIS Personal Profile Service Specification as discussed in Chapter 6.

EXAMPLE B-2 Personal Profile Service XSD File

<!l-- 2003-11-02-->
<xs:schema targetNamespace="urn:liberty:id-sis-pp:2003-08" xmlns="urn:liberty:id-sis-pp:2003-08"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
elementFormDefault="qualified" version="1.0">
<xs:import namespace="http://www.w3.0rg/2000/09/xmldsig#"
schemalLocation="http://www.w3.0rg/TR/xmldsig-core/xmldsig-core-schema.xsd"/>
<xs:annotation>
<xs:documentation>Title: Liberty ID-WSF-SIS Personal Profile Services Schema
</xs:documentation>
<xs:documentation>The source code in this XSD file was excerpted verbatim from:

Liberty Liberty ID-SIS Personal Profile Service Specification
Version 1.2
12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see
https://www.projectliberty.org/specs/idwsf copyrights.html
</xs:documentation>
</xs:annotation>
<xs:include schemalLocation="1liberty-idwsf-dst-v1.0.xsd"/>
<xs:include schemalLocation="1liberty-idwsf-dst-dt-v1.0.xsd"/>
<xs:complexType name="KeyInfoType" mixed="true">
<xs:complexContent mixed="true">
<xs:extension base="ds:KeyInfoType">
<xs:attribute ref="modificationTime"/>
<xs:attribute ref="ACC"/>
<xs:attribute ref="ACCTime"/>
<xs:attribute ref="modifier"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:simpleType name="SelectType">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:element name="PP" type="PPType"/>

216 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Personal Profile Schema

EXAMPLE B-2 Personal Profile Service XSD File (Continued)

<xs:complexType name="PPType">
<XS:sequence>
<xs:element ref="InformalName" minOccurs="0"/>
<xs:element ref="LInformalName" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="CommonName" minOccurs="0"/>
<xs:element ref="LegalIdentity" minOccurs="0"/>
<xs:element ref="EmploymentIdentity" minOccurs="0"/>
<xs:element ref="AddressCard" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="MsgContact" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Facade" minOccurs="0"/>
<xs:element ref="Demographics" minOccurs="0"/>
<xs:element ref="SignKey" minOccurs="0"/>
<xs:element ref="EncryptKey" minOccurs="0"/>
<xs:element ref="EmergencyContact" minOccurs="0"/>
<xs:element ref="LEmergencyContact" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="InformalName" type="DSTString"/>
<xs:element name="LInformalName" type="DSTLocalizedString"/>
<xs:element name="CommonName" type="CommonNameType"/>
<xs:complexType name="CommonNameType">
<XS:sequence>
<xs:element ref="CN" minOccurs="0"/>
<xs:element ref="LCN" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="ATtCN" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="LATtCN" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="AnalyzedName" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="CN" type="DSTString"/>
<xs:element name="LCN" type="DSTLocalizedString"/>
<xs:element name="ATtCN" type="DSTString"/>
<xs:element name="LALtCN" type="DSTLocalizedString"/>
<xs:element name="AnalyzedName" type="AnalyzedNameType"/>
<xs:complexType name="AnalyzedNameType">
<XS:sequence>
<xs:element ref="PersonalTitle" minOccurs="0"/>
<xs:element ref="LPersonalTitle" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="FN" minOccurs="0"/>
<xs:element ref="LFN" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="SN" minOccurs="0"/>
<xs:element ref="LSN" minOccurs="0" maxOccurs="unbounded"/>

AppendixB - Service Schema Files 217

Personal Profile Schema

EXAMPLE B-2 Personal Profile Service XSD File (Continued)

<xs:element ref="MN" minOccurs="0"/>
<xs:element ref="LMN" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="nameScheme" type="xs:anyURI" use="optional"/>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="PersonalTitle" type="DSTString"/>
<xs:element name="LPersonalTitle" type="DSTLocalizedString"/>
<xs:element name="FN" type="DSTString"/>
<xs:element name="LFN" type="DSTLocalizedString"/>
<xs:element name="SN" type="DSTString"/>
<xs:element name="LSN" type="DSTLocalizedString"/>
<xs:element name="MN" type="DSTString"/>
<xs:element name="LMN" type="DSTLocalizedString"/>
<xs:element name="Legalldentity" type="LegalldentityType"/>
<xs:complexType name="LegalIdentityType">
<XS:sequence>
<xs:element ref="LegalName" minOccurs="0"/>
<xs:element ref="LLegalName" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="AnalyzedName" minOccurs="0"/>
<xs:element ref="VAT" minOccurs="0"/>
<xs:element ref="AltID" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="DOB" minOccurs="0"/>
<xs:element ref="Gender" minOccurs="0"/>
<xs:element ref="MaritalStatus" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="LegalName" type="DSTString"/>
<xs:element name="LLegalName" type="DSTLocalizedString"/>
<xs:element name="VAT" type="VATType"/>
<xs:complexType name="VATType">
<Xs:sequence>
<xs:element ref="IDValue"/>
<xs:element ref="IDType" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="IDValue" type="DSTString"/>
<xs:element name="IDType" type="DSTURI"/>
<xs:element name="AltID" type="AltIDType"/>
<xs:complexType name="AltIDType">
<xs:sequence>

218 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Personal Profile Schema

EXAMPLE B-2 Personal Profile Service XSD File (Continued)

<xs:element ref="IDValue"/>
<xs:element ref="IDType" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="DOB" type="DSTDate"/>
<xs:element name="Gender" type="DSTURI"/>
<xs:element name="MaritalStatus" type="DSTURI"/>
<xs:element name="EmploymentIdentity" type="EmploymentIdentityType"/>
<xs:complexType name="EmploymentIdentityType">
<Xs:sequence>
<xs:element ref="JobTitle" minOccurs="0"/>
<xs:element ref="LJobTitle" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="0" minOccurs="0"/>
<xs:element ref="L0" minOccurs="0"/>
<xs:element ref="Al1t0" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Al1tLO" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="JobTitle" type="DSTString"/>
<xs:element name="LJobTitle" type="DSTLocalizedString"/>
<xs:element name="0" type="DSTString"/>
<xs:element name="LO" type="DSTLocalizedString"/>
<xs:element name="Al1t0" type="DSTString"/>
<xs:element name="AltLO" type="DSTLocalizedString"/>
<xs:element name="AddressCard" type="AddressCardType"/>
<xs:complexType name="AddressCardType">
<Xs:sequence>
<xs:element ref="AddrType" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Address" minOccurs="0"/>
<xs:element ref="Nick" minOccurs="0"/>
<xs:element ref="LNick" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="LComment" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="AddrType" type="DSTURI"/>
<xs:element name="Address" type="AddressType"/>
<xs:complexType name="AddressType">
<xs:sequence>
<xs:element ref="PostalAddress" minOccurs="0"/>
<xs:element ref="LPostalAddress" minOccurs="0" maxOccurs="unbounded"/>

AppendixB - Service Schema Files

219

Personal Profile Schema

<XS:
<XS:
<XS:
<XS:
relement
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
:complexType name="MsgContactType">

<XSs

<XS

EXAMPLE B-2 Personal Profile Service XSD File (Continued)

<xs:element ref="PostalCode" minOccurs="0"/>
<xs:element ref="L" minOccurs="0"/>
<xs:element ref="LL" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="St" minOccurs="0"/>
<xs:element ref="LSt" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="C" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>

element
element
element
element

element
element
element
element
element
element
element

name="PostalAddress" type="DSTString"/>
name="LPostalAddress" type="DSTLocalizedString"/>
name="PostalCode" type="DSTString"/>
name="L" type="DSTString"/>

name="LL" type="DSTLocalizedString"/>
name="St" type="DSTString"/>

name="LSt" type="DSTLocalizedString"/>
name="C" type="DSTString"/>

name="Nick" type="DSTString"/>
name="LNick" type="DSTLocalizedString"/>
name="LComment" type="DSTString"/>
name="MsgContact" type="MsgContactType"/>

<XS:sequence>
<xs:element ref="Nick" minOccurs="0"/>
<xs:element ref="LNick" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="LComment" minOccurs="0"/>
<xs:element ref="MsgType" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="MsgMethod" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="MsgTechnology" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="MsgProvider" minOccurs="0"/>
<xs:element ref="MsgAccount" minOccurs="0"/>
<xs:element ref="MsgSubaccount" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>

</Xs:sequence>

<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="MsgType" type="DSTURI"/>
<xs:element name="MsgMethod" type="DSTURI"/>
<xs:element name="MsgTechnology">

<xs:complexType>
<xs:complexContent>

<xs:extension base="DSTURI">

220

<XS:

attribute name="msgLimit" type="xs:integer" use="optional"/>

</xs:extension>
</xs:complexContent>

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide

« October 2005

Personal Profile Schema

EXAMPLE B-2 Personal Profile Service XSD File (Continued)

</xs:complexType>
</xs:element>

<XS:
<XS:
<XS:
<XS:

<XS

element
element
element
element

name="MsgProvider" type="DSTString"/>
name="MsgAccount" type="DSTString"/>
name="MsgSubaccount" type="DSTString"/>
name="Facade" type="FacadeType"/>

:complexType name="FacadeType">

<Xs:sequence>
<xs:element ref="MugShot" minOccurs="0"/>
<xs:element ref="WebSite" minOccurs="0"/>
<xs:element ref="NamePronounced" minOccurs="0"/>
<xs:element ref="GreetSound" minOccurs="0"/>
<xs:element ref="GreetMeSound" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>

<XS:
<XS:

<Xs

<XS:
<XS:
relement
<XS:

<XS

<XS:

<XSs

<XS:
relement

<Xs

<XS:
<XS:
<XS:
<XS:

element
element

relement

element
element

name="MugShot" type="DSTURI"/>

name="WebSite" type="DSTURI"/>
name="NamePronounced" type="DSTURI"/>
name="GreetSound" type="DSTURI"/>
name="GreetMeSound" type="DSTURI"/>
name="Demographics" type="DemographicsType"/>

complexType name="DemographicsType">
<Xxs:sequence>
<xs:element ref="DisplayLanguage" minOccurs="0"/>

<xs:element

<xs:element ref="Birthday" minOccurs="0"/>
<xs:element ref="Age" minOccurs="0"/>
<xs:element ref="TimeZone" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>

element

relement
<XS:

element
element

element
element
element
element

</xs:schema>

name="DisplaylLanguage" type="DSTString"/>
name="Language" type="DSTString"/>

name="Birthday" type="DSTMonthDay"/>

name="Age" type="DSTInteger"/>

name="TimeZone" type="DSTString"/>

name="SignKey" type="KeyInfoType"/>
name="EncryptKey" type="KeyInfoType"/>
name="EmergencyContact" type="DSTString"/>
name="LEmergencyContact" type="DSTLocalizedString"/>

AppendixB - Service Schema Files

ref="Language" minOccurs="0" maxOccurs="unbounded"/>

221

Employee Profile Schema

EXAMPLE B-2 Personal Profile Service XSD File (Continued)

Employee Profile Schema

Following is a reproduction of liberty-idsis-ep-v1.0.xsd, the XSD file that accompanies the
Liberty ID-SIS Employee Profile Service Specification as discussed in Chapter 6.

EXAMPLE B-3 Employee Profile Service XSD Schema

<!-- Generated by gen-prof.pl $Id: liberty-idsis-ep-v1.0.xsd,v 1.1 2004/08/02
19:25:27 dgreenspon Exp $from $Id: liberty-idsis-ep-v1.0.xsd,v 1.1 2004/08/02 19:25:27
dgreenspon Exp $ -->
<!-- adjust 2003-10-02 TDW: changed copyright -->
<xs:schema targetNamespace="urn:liberty:id-sis-ep:2003-08"
xmlns="urn:liberty:id-sis-ep:2003-08" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" version="1.0">
<xs:annotation>
<xs:documentation>Title: Liberty ID-SIS Employee Profile Services Schema</xs:documentation>
<xs:documentation>The source code in this XSD file was excerpted verbatim from:

Liberty Liberty ID-SIS Employee Profile Service Specification
Version 1.2
12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see
https://www.projectliberty.org/specs/idwsf copyrights.html

</xs:documentation>

</xs:annotation>

<xs:include schemalLocation="1liberty-idwsf-dst-v1.0.xsd"/>

<xs:include schemalLocation="1liberty-idwsf-dst-dt-v1.0.xsd"/>

<xs:element name="EP" type="EPType"/>

<xs:complexType name="EPType">

<Xs:sequence>

<xs:element ref="EmployeeID" minOccurs="0"/>
<xs:element ref="AltEmployeeID" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="DateOfHire" minOccurs="0"/>
<xs:element ref="JobStartDate" minOccurs="0"/>
<xs:element ref="EmployeeStatus" minOccurs="0"/>
<xs:element ref="EmployeeType" minOccurs="0"/>
<xs:element ref="InternalJobTitle" minOccurs="0"/>
<xs:element ref="LInternalJobTitle" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="0U" minOccurs="0"/>
<xs:element ref="LOU" minOccurs="0" maxOccurs="unbounded"/>

222 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Employee Profile Schema

EXAMPLE B-3 Employee Profile Service XSD Schema (Continued)

<xs:element ref="CorpCommonName" minOccurs="0"/>
<xs:element ref="CorpLegalldentity" minOccurs="0"/>
<xs:element ref="ManagerEmployeeID" minOccurs="0"/>
<xs:element ref="SubalternateEmployeeID" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="EmployeeID" type="DSTString"/>
<xs:element name="AltEmployeeID" type="DSTString"/>
<xs:element name="DateOfHire" type="DSTDate"/>
<xs:element name="JobStartDate" type="DSTDate"/>
<xs:element name="EmployeeStatus" type="DSTURI"/>
<xs:element name="EmployeeType" type="DSTURI"/>
<xs:element name="InternalJobTitle" type="DSTString"/>
<xs:element name="LInternalJobTitle" type="DSTLocalizedString"/>
<xs:element name="OU" type="DSTString"/>
<xs:element name="LOU" type="DSTLocalizedString"/>
<xs:element name="CorpCommonName" type="CorpCommonNameType"/>
<xs:complexType name="CorpCommonNameType">
<Xxs:sequence>
<xs:element ref="CN" minOccurs="0"/>
<xs:element ref="LCN" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="ATtCN" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="LALTtCN" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="CN" type="DSTString"/>
<xs:element name="LCN" type="DSTLocalizedString"/>
<xs:element name="ATtCN" type="DSTString"/>
<xs:element name="LALtCN" type="DSTLocalizedString"/>
<xs:element name="CorpLegalldentity" type="CorpLegalIdentityType"/>
<xs:complexType name="CorpLegalIldentityType">
<XS:sequence>
<xs:element ref="LegalName" minOccurs="0"/>
<xs:element ref="LLegalName" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="VAT" minOccurs="0"/>
<xs:element ref="Al1tID" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="LegalName" type="DSTString"/>
<xs:element name="LLegalName" type="DSTLocalizedString"/>

AppendixB - Service Schema Files 223

Authentication Web Service Schema

EXAMPLE B-3 Employee Profile Service XSD Schema (Continued)

<xs:element name="VAT" type="VATType"/>
<xs:complexType name="VATType">
<XS:sequence>
<xs:element ref="IDValue"/>
<xs:element ref="IDType" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="IDValue" type="DSTString"/>
<xs:element name="IDType" type="DSTURI"/>
<xs:element name="AltID" type="AltIDType"/>
<xs:complexType name="AltIDType">
<Xs:sequence>
<xs:element ref="IDValue"/>
<xs:element ref="IDType" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="commonAttributes"/>
</xs:complexType>
<xs:element name="ManagerEmployeeID" type="DSTString"/>
<xs:element name="SubalternateEmployeeID" type="DSTString"/>
<xs:simpleType name="SelectType">
<xs:restriction base="xs:string"/>
</xs:simpleType>
</Xxs:schema>

Authentication Web Service Schema

Following is a reproduction of liberty-idwsf-authn-svc-v1.0.xsd, the XSD file that accompanies
the Liberty ID-WSF Authentication Service Specification as discussed in Chapter 5.

EXAMPLE B-4 Authentication Web Service XSD File
<?xml version="1.0" encoding="UTF-8"7>

<xs:schema

targetNamespace="urn:liberty:sa:2004-04"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sa="urn:liberty:sa:2004-04"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

224 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Authentication Web Service Schema

EXAMPLE B-4 Authentication Web Service XSD File (Continued)

xmlns:lib="urn:liberty:iff:2003-08"
xmlns:disco="urn:liberty:disco:2003-08"
xmlns="urn:liberty:sa:2004-04"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="06">

<!-- Filename: lib-arch-authn-svc.xsd -->

<!-- $Id: liberty-idwsf-authn-svc-v1.0.xsd,v 1.1 2004/08/02 19:25:27 dgreenspon Exp $ -->
<!-- Author: Jeff Hodges -->

<!-- Last editor: $Author: dgreenspon $ -->

<!-- ¢$Date: 2004/08/02 19:25:27 $ -->

<!-- $Revision: 1.1 $ -->

<xs:import
namespace="urn:liberty:iff:2003-08"
schemalLocation="1liberty-idff-protocols-schema-v1l.2.xsd"/>

<xs:import
namespace="urn:liberty:disco:2003-08"
schemalLocation="1liberty-idwsf-disco-svc-1.0-errata-v1.0.xsd"/>

<xs:include schemalLocation="1liberty-idwsf-utility-1.0-errata-v1.0.xsd"/>

<xs:annotation>
<xs:documentation>
Liberty ID-WSF Authentication Service XSD
</xs:documentation>
<xs:documentation>
The source code in this XSD file was excerpted verbatim from:
Liberty ID-WSF Authentication Service Specification
Version 1.0
16 Feb 2004
Copyright (c) 2003, 2004 Liberty Alliance participants,
see http://www.projectliberty.org/specs/idwsf_copyrights.html
</xs:documentation>
</xs:annotation>

<!-- SASLRequest and SASLResponse ID-* messages -->
<xs:element name="SASLRequest">
<xs:complexType>

<Xs:sequence>

<xs:element name="Data" minOccurs="0">
<xs:complexType>

AppendixB - Service Schema Files 225

Authentication Web Service Schema

EXAMPLE B-4 Authentication Web Service XSD File (Continued)

<xs:simpleContent>
<xs:extension base="xs:base64Binary"/>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:element ref="1lib:RequestAuthnContext"
minOccurs="0"/>

</Xxs:sequence>

<xs:attribute name="mechanism"
type="xs:string"
use="required"/>

<xs:attribute name="authzID"
type="xs:string"
use="optional"/>

<xs:attribute name="advisoryAuthnID"
type="xs:string"
use="optional"/>

<xs:attribute name="id"
type="xs:ID"
use="optional"/>

</xs:complexType>
</xs:element>

<xs:element name="SASLResponse">
<xs:complexType>
<xs:sequence>

<xs:element ref="Status"/>
<xs:element ref="PasswordTransforms" minOccurs="0"/>

<xs:element name="Data" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:base64Binary"/>
</xs:simpleContent>
</xs:complexType>
</xs:element>

226 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide

« October 2005

Authentication Web Service Schema

EXAMPLE B-4 Authentication Web Service XSD File (Continued)

<xs:element ref="disco:ResourceOffering"
minOccurs="0"
max0ccurs="unbounded" />

<xs:element name="Credentials" minOccurs="0">
<xs:complexType>
<xS:sequence>
<xs:any namespace="##any"
processContents="1lax"
minOccurs="0"
max0ccurs="unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>

</Xs:sequence>

<xs:attribute name="serverMechanism"
type="xs:string"
use="optional"/>

<xs:attribute name="id"
type="xs:ID"
use="optional"/>

</xs:complexType>
</xs:element>

<!-- Password Transformations -->
<xs:element name="PasswordTransforms">

<xs:annotation>
<xs:documentation>
Contains ordered list of sequential password transformations
</xs:documentation>
</xs:annotation>

<xs:complexType>
<XSs:sequence>

<xs:element name="Transform" maxOccurs="unbounded">

<xs:complexType>
<XS:sequence>

AppendixB - Service Schema Files

227

PAOS Binding Schema

EXAMPLE B-4 Authentication Web Service XSD File (Continued)

<xs:element name="Parameter"
minOccurs="0"
max0Occurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name"
type="xs:string"
use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

</Xs:sequence>

<xs:attribute name="name"
type="xs:anyURI"
use="required"/>

<xs:attribute name="id"
type="xs:ID"
use="optional"/>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

PAOS Binding Schema

Following is a reproduction of liberty-paos-1.0-errata-v1.0.xsd, the XSD file that accompanies
the Liberty Reverse HTTP Binding for SOAP Specification. This XSD file describes the structure of
PAOS requests and responses. PAOS binding is discussed in Chapter 10.

EXAMPLE B-5 Reverse HT'TP Binding for SOAP XSD File

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema targetNamespace="urn:liberty:paos:2003-08" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

228 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Metadata Description Schema

EXAMPLE B-5 Reverse HTTP Binding for SOAP XSD File (Continued)

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/" xmlns="urn:liberty:paos:2003-08"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:annotation>
<xs:documentation>The source code in this XSD file was excerpted verbatim from:

Liberty Reverse HTTP Binding
Version 1.0
12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see
https://www.projectliberty.org/specs/idwsf copyrights.html

</xs:documentation>
</xs:annotation>
<xs:import namespace="http://schemas.xmlsoap.org/soap/envelope/"
schemalLocation="http://schemas.xmlsoap.org/soap/envelope/"/>

<xs:include schemalLocation="1liberty-utility-v1.0.xsd"/>

<xs:element name="Request" type="RequestType"/>

<xs:complexType name="RequestType">
<xs:attribute name="responseConsumerURL" type="xs:anyURI" use="required"/>
<xs:attribute name="service" type="xs:anyURI" use="required"/>
<xs:attribute name="messageID" type="IDType" use="optional"/>
<xs:attribute ref="S:mustUnderstand" use="required"/>
<xs:attribute ref="S:actor" use="required"/>

</xs:complexType>

<xs:element name="Response" type="ResponseType"/>

<xs:complexType name="ResponseType">
<xs:attribute name="refToMessageID" type="IDType" use="optional"/>
<xs:attribute ref="S:mustUnderstand" use="required"/>
<xs:attribute ref="S:actor" use="required"/>

</xs:complexType>

</xs:schema>

Metadata Description Schema

Following is a reproduction of liberty-metadata-1.0-errata-v1.0.xsd, the XSD file that
accompanies the Liberty Metadata Description and Discovery Specification. This XSD file describes
metadata, protocols for obtaining metadata, and resolution methods for discovering the location of
metadata.

AppendixB - Service Schema Files 229

Metadata Description Schema

<?xml

EXAMPLE B-6 Metadata Description and Discovery XSD File

version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:liberty:metadata:2003-08" xmlns="urn:liberty:metadata:2003-08"

xmlns:
xmlns:

ds="http://www.w3.0rg/2000/09/xmldsig#" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified" version="1.0">

<XS:

import namespace="http://www.w3.0rg/2000/09/xmldsig#"

schemalLocation="http://www.w3.0rg/TR/xmldsig-core/xmldsig-core-schema.xsd"/>

<XS:

import namespace="urn:oasis:names:tc:SAML:1.0:assertion"

schemalLocation="o0asis-sstc-saml-schema-assertion-1.1.xsd"/>

<XS:

import namespace="http://www.w3.0rg/XML/1998/namespace"

schemalLocation="http://www.w3.0rg/2001/xml.xsd"/>

<XS:
<XS:

include schemalLocation="liberty-utility-v1.0.xsd"/>
annotation>

<xs:documentation>XML Schema fom Metadata description and discovery protocols</xs:documentation>
<xs:documentation>The source code in this XSD file was excerpted verbatim from:

Liberty Metadata Description and Discovery Specification
Version 1.0
12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see

https:

//www.projectliberty.org/specs/idff_copyrights.html

</xs:documentation>
</xs:annotation>

<XS:

simpleType name="entityIDType">

<xs:restriction base="xs:anyURI">

<xs:maxLength value="1024" id="maxlengthid"/>

</xs:restriction>
</xs:simpleType>

<XS:
<XS:
<XS:
<XS:
<XS:

attribute name="libertyPrincipalldentifier" type="entityIDType"/>
attribute name="providerID" type="entityIDType"/>

attribute name="validUntil" type="xs:dateTime"/>

attribute name="cacheDuration" type="xs:duration"/>

complexType name="additionalMetadatalLocationType">

<xs:simpleContent>

<xs:extension base="xs:anyURI">
<xs:attribute name="namespace" type="xs:anyURI"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

<XS

:complexType name="organizationType">

<Xs:sequence>

230

<xs:element name="OrganizationName" type="organizationNameType" maxOccurs="unbounded"/>
<xs:element name="OrganizationDisplayName" type="organizationDisplayNameType" maxOccurs="unbounded"/>
<xs:element name="OrganizationURL" type="localizedURIType" maxOccurs="unbounded"/>

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Metadata Description Schema

EXAMPLE B-6 Metadata Description and Discovery XSD File (Continued)

<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="organizationNameType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute ref="xml:lang"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="organizationDisplayNameType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute ref="xml:lang" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="localizedURIType">
<xs:simpleContent>
<xs:extension base="xs:anyURI">
<xs:attribute ref="xml:lang" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="contactType">
<XS:sequence>
<xs:element name="Company" type="xs:string" minOccurs="0"/>
<xs:element name="GivenName" type="xs:string" minOccurs="0"/>
<xs:element name="SurName" type="xs:string" minOccurs="0"/>

<xs:element name="EmailAddress" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="TelephoneNumber" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Extension" minOccurs="0"/>
</Xs:sequence>
<xs:attribute ref="libertyPrincipalldentifier" use="optional"/>
<xs:attribute name="contactType" type="attr.contactType" use="required"/>
</xs:complexType>
<xs:simpleType name="attr.contactType">
<xs:restriction base="xs:string">
<xs:enumeration value="technical"/>
<xs:enumeration value="administrative"/>
<xs:enumeration value="billing"/>
<xs:enumeration value="other"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="keyTypes">
<xs:restriction base="xs:string">

AppendixB - Service Schema Files

231

Metadata Description Schema

<XS:
<XS:

EXAMPLE B-6 Metadata Description and Discovery XSD File (Continued)

enumeration value="encryption"/>
enumeration value="signing"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="providerDescriptorType">
<XS:sequence>

<XS:

<Xs

<XS:
<XS:

<Xs

element name="KeyDescriptor" type="keyDescriptorType" minOccurs="0" maxOccurs="unbounded"/>

:element name="SoapEndpoint" type="xs:anyURI" minOccurs="0"/>

element name="SingleLogoutServiceURL" type="xs:anyURI" minOccurs="0"/>
element name="SinglelLogoutServiceReturnURL" type="xs:anyURI" minOccurs="0"/>

:element name="FederationTerminationServiceURL" type="xs:anyURI" minOccurs="0"/>
<XS:
<XS:

element name="FederationTerminationServiceReturnURL" type="xs:anyURI" minOccurs="0"/>
element name="FederationTerminationNotificationProtocolProfile" type="xs:anyURI"

minOccurs="0" maxOccurs="unbounded"/>

<XS:

element name="SingleLogoutProtocolProfile" type="xs:anyURI" minOccurs="0"

max0ccurs="unbounded" />

<XS:

element name="RegisterNameIdentifierProtocolProfile" type="xs:anyURI" minOccurs="0"

max0ccurs="unbounded" />

<XS:
<XS:
<XS:

element name="RegisterNameIdentifierServiceURL" type="xs:anyURI" minOccurs="0"/>
element name="RegisterNameIdentifierServiceReturnURL" type="xs:anyURI" minOccurs="0"/>
element name="NameIdentifierMappingProtocolProfile" type="saml:AuthorityBindingType"

minOccurs="0" maxOccurs="unbounded"/>

<XS:

element name="NameIdentifierMappingEncryptionProfile" type="xs:anyURI" minOccurs="0"

max0ccurs="unbounded" />

<XS:
<XS:
<XS:

element name="Organization" type="organizationType" minOccurs="0"/>
element name="ContactPerson" type="contactType" minOccurs="0" maxOccurs="unbounded"/>
element name="AdditionalMetalLocation" type="additionalMetadatalLocationType"

minOccurs="0" maxOccurs="unbounded"/>

<XS:
<XS:

element ref="Extension" minOccurs="0"/>
element ref="ds:Signature" minOccurs="0"/>

</xs:sequence>
<!--xs:attribute ref="providerID" use="required"/-->
<xs:attribute name="protocolSupportEnumeration" type="xs:NMTOKENS" use="required"/>
<xs:attribute name="id" type="xs:ID" use="optional"/>
<xs:attribute ref="validUntil" use="optional"/>
<xs:attribute ref="cacheDuration" use="optional"/>
</xs:complexType>
<!--added-->
<xs:element name="KeyDescriptor" type="keyDescriptorType"/>
<xs:complexType name="keyDescriptorType">
<Xs:sequence>

<XS:

<Xs

<XS:
<XS:

element name="EncryptionMethod" type="xs:anyURI" minOccurs="0"/>

:element name="KeySize" type="xs:integer" minOccurs="0"/>

element ref="ds:KeyInfo" minOccurs="0"/>
element ref="Extension" minOccurs="0"/>

</Xxs:sequence>

232

Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Metadata Description Schema

EXAMPLE B-6 Metadata Description and Discovery XSD File (Continued)

<xs:attribute name="use" type="keyTypes" use="optional"/>
</xs:complexType>
<l-- -->
<xs:element name="EntityDescriptor" type="entityDescriptorType"/>
<xs:group name="providerGroup">
<XS:sequence>
<xs:element name="IDPDescriptor" type="IDPDescriptorType" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="SPDescriptor" type="SPDescriptorType" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
</Xs:group>
<xs:complexType name="entityDescriptorType">
<XS:sequence>
<xs:choice>
<xs:group ref="providerGroup"/>
<xs:element name="AffiliationDescriptor" type="affiliationDescriptorType"/>
</xs:choice>
<xs:element name="ContactPerson" type="contactType" minOccurs="0"/>
<xs:element name="Organization" type="organizationType" minOccurs="0"/>
<xs:element ref="Extension" minOccurs="0"/>
<xs:element ref="ds:Signature" minOccurs="0"/>
</xs:sequence>
<xs:attribute ref="providerID" use="required"/>
<xs:attribute name="id" type="xs:ID" use="optional"/>
<xs:attribute ref="validUntil" use="optional"/>
<xs:attribute ref="cacheDuration" use="optional"/>
</xs:complexType>
<xs:complexType name="SPDescriptorType">
<xs:complexContent>
<xs:extension base="providerDescriptorType">
<Xxs:sequence>
<xs:element name="AssertionConsumerServiceURL" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:anyURI">
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="isDefault" type="xs:boolean" default="false"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="AuthnRequestsSigned" type="xs:boolean"/>
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="IDPDescriptorType">

AppendixB - Service Schema Files 233

Metadata Description Schema

EXAMPLE B-6 Metadata Description and Discovery XSD File (Continued)

<xs:complexContent>
<xs:extension base="providerDescriptorType">
<Xs:sequence>
<xs:element name="SingleSignOnServiceURL" type="xs:anyURI"/>
<xs:element name="SingleSignOnProtocolProfile" type="xs:anyURI" maxOccurs="unbounded"/>
<xs:element name="AuthnServiceURL" type="xs:anyURI" minOccurs="0"/>
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="EntitiesDescriptor" type="entitiesDescriptorType"/>
<xs:complexType name="entitiesDescriptorType">
<xs:sequence>
<xs:element ref="EntityDescriptor" minOccurs="2" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="affiliationDescriptorType">
<XS:sequence>
<xs:element name="AffiliateMember" type="entityIDType" maxOccurs="unbounded"/>
<xs:element ref="Extension" minOccurs="0"/>
<xs:element name="KeyDescriptor" type="keyDescriptorType" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="ds:Signature" minOccurs="0"/>
</Xs:sequence>
<!-- <xs:attribute name="affiliationID" type="entityIDType" use="required"/> -->
<xs:attribute name="affiliationOwnerID" type="entityIDType" use="required"/>
<xs:attribute ref="validUntil" use="optional"/>
<xs:attribute ref="cacheDuration" use="optional"/>
<xs:attribute name="id" type="xs:ID" use="optional"/>
</xs:complexType>
</Xxs:schema>

234 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Index

A
Access Manager
and federation, 49
and Liberty-based web services, 50-53
implementation of Liberty Alliance Project, 45
Access Manager documentation set, 19-20
account federation, definition, 28
affiliate entity
See also entities
configuring, 90-93
affiliation, definition, 28
ambulkfed, See bulk federation
amSAML. xml, 181
API
Authentication Web Service, 116
client for Discovery Service, 155-156
common security, 199-201
common service, 197-199
Data Services Template, 120-122,129-131
Discovery Service, 152-156
federation, 101
Interaction Service, 201-203
PAOS binding, 203-207
SAML, 188-193
SOAP Binding Service, 161-162
architecture
Discovery Service, 135-136
SAML, 166-168
Artifact Timeout, 187
Assertion Skew Factor For notBefore Time, 186-187
Assertion Timeout, 186
assertion types, and SAML, 168-169
Attribute Mapper, 126
attribute provider, definition, 28

attributes

Authentication Web Service, 115-116

Discovery Service, 138-142

Liberty Personal Profile Service, 124-129

SOAP Binding Service, 159-161
authentication and authentication context, 61-63
authentication context, definition, 28-29
authentication domain, definition, 29
authentication domains, overview, 93-95
Authentication Service Specification, overview, 40-41
authentication services

Authentication Service (non-Liberty), 112-114

Authentication Web Service (Liberty), 112-114
Authentication Web Service

API, 116

attribute, 115-116

extract, 53

or Authentication Service (non-Liberty), 112-114

overview, 111-112

process, 114

sample, 116-117,212

schema file, 224-228

XML service file, 112
Authorizer, 125-126
Authorizer interface, 152-154,198-199
auto-federation, 60,96

basic authentication, 180
bootstrapping Discovery Service, 150-151
bulk federation, 60,97

235

Index

C

circle of trust, definition, 29
client, definition, 29
client API
Data Services Template, 129-130
Discovery Service, 155-156
Client Profiles Specification, overview, 41
common domain
definition, 29-30
overview, 103-104
common domain cookie, 104
common domain services
configuring properties, 105-106
configuring URLs, 105
installation, 106-107
common security API, 199-201
common service interfaces, 197-199
concepts, Liberty Alliance Project, 28-34
containers, 126-127
customize, graphical user interface, 67-70

D
data services
See also Data Services Template
API, 129-131
developing, 131
Liberty Employee Profile Service, 129

Liberty Personal Profile Service, 122-129

overview, 119-122

Data Services Template, 120-122
API, 129-131
client API, 129-130

Data Services Template Specification, overview, 40

Default64ResourcelDMapper, 154
DefaultDiscoAuthorizer class, 152-154
DefaultHexResourcelDMapper, 154
defederation, definition, 30
definitions

discovery entries, 134

federation, 27-28

identity, 26-27

identity federation, 27

Liberty Alliance Project concepts, 28-34

provider federation, 27-28

deploying Liberty-based system, 42-43
developing data services, 131
Directory Server documentation, 17
DiscoEntryHandler interface, 154-155
discovery entries, 142-151

as dynamic attributes, 145-149

as user attributes, 142-145

definition, 134

for bootstrapping, 150-151
Discovery Service

API, 152-156

architecture, 135-136

attributes, 138-142

bootstrapping, 150-151

client API, 155-156

discovery entries, 134, 142-151

extract, 52-53

overview, 133-135

process, 136-138

resource offerings, 142-151

sample, 156

XML service files, 134

Discovery Service Specification, overview, 40

documentation, Access Manager, 19-20

dynamic identity provider proxying, 63,97-99

employee profile service sample, 211-212
entities
configuring affiliate, 90-93
conﬁguring provider, 72-89
creating, 71-72
overview, 70-93
entity descriptors, See entities

F
federated identity, definition, 30
federation
affiliate entity
configuring, 90-93
and single sign-on, 66-67
API, 101

236 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Index

federation (Continued)
authentication domains, 93-95
auto-federation, 96
bulk federation, 97
definition, 30
dynamic identity provider proxying, 97-99
entities, 70-93
creating, 71-72
entities and authentication domains, 70-95
features of, 59-63
graphical user interface, 67-70
in Access Manager, 49
pre-login process, 66
pre-login URL, 99-100
process of, 64-67
provider entity
configuring, 72-89
sample environment, 101-102
samples, 209-211
federation, definition of, 27-28
federation API, 101
federation cookie, definition, 30
federation termination, definition, 30
Federation Termination Notification Protocol,
overview, 37

G

global logout, 63
graphical user interface, federation, 67-70

|

identifiers and name registration, 63

identity, definition, 30

identity, definition of, 26-27

identity federation, definition, 31

identity federation, definition of, 27

identity federation and single sign-on, 59-60
identity provider, definition, 31

identity service, definition, 31

installation, common domain services, 106-107
Interaction Service, 201-203

Interaction Service Specification, overview, 40

interfaces
Authentication Web Service, 116
Authorizer, 125-126,152-154
common service, 197-199
DiscoEntryHandler, 154-155
Discovery Service, 152-156
request handler, 161-162
ResourceIDMapper, 125,154

L

Liberty Alliance Project
concepts, 28-34
Liberty Identity Federation Framework, 34-38
Liberty Identity Service Interface Specifications, 41-42
Liberty Identity Web Services Framework, 39-41
overview, 25-26
SAML comparison, 166
service schema files, 213-234
specifications, 34-42
Liberty Alliance Project specifications, 17
Liberty-based system deployment, 42-43
Liberty-based web services, in Access Manager, 50-53
Liberty Employee Profile Service, 129
schema file, 222-224
Liberty-enabled client, definition, 31
Liberty-enabled proxy, definition, 31
Liberty ID-FF Bindings and Profiles, overview, 38
Liberty ID-FF Protocols and Schema, overview, 35-38
Liberty ID-SIS Employee Profile Service Specification,
overview, 42
Liberty ID-SIS Personal Profile Service Specification,
overview, 41
Liberty Identity Federation Framework, overview, 34-38
Liberty Identity Service Interface Specifications,
overview, 41-42
Liberty Identity Web Services Framework,
overview, 39-41
Liberty Personal Profile Service, 122-129
attributes, 124-129
extract, 52
schema file, 216-222
Liberty process sample, 46-47

237

Index

M
Metadata Description, schema file, 229-234

name identifier, definition, 31

Name Identifier Mapping Protocol, overview, 38
name registration, 63

Name Registration Protocol, overview, 37

o

overview
authentication and authentication context, 61-63
authentication domains, 93-95
Authentication Service Specification, 40-41
Authentication Web Service, 111-112
auto-federation, 60,96
bulk federation, 60,97
Client Profiles Specification, 41
common domain, 103-104
common domain cookie, 104
common domain services
installation, 106-107
properties, 105-106
URLs, 105
data services, 119-122
Data Services Template, 120-122
Data Services Template Specification, 40
Discovery Service, 133-135
Discovery Service Specification, 40
dynamic identity provider proxying, 63,97-99
entities, 70-93
federation API, 101
federation features, 59-63
federation management, 70-95
federation process, 64-67
Federation Termination Notification Protocol, 37
global logout, 63
identifiers and name registration, 63
identity federation and single sign-on, 59-60
implementation of Liberty Alliance Project, 45
Interaction Service, 201-203
Interaction Service Specification, 40

overview (Continued)

Liberty Alliance Project, 25-26

Liberty Alliance Project specifications, 34-42

Liberty Employee Profile Service, 129

Liberty ID-FF Bindings and Profiles, 38

Liberty ID-FF Protocols and Schema, 35-38

Liberty ID-SIS Employee Profile Service
Specification, 42

Liberty ID-SIS Personal Profile Service
Specification, 41

Liberty Identity Federation Framework, 34-38

Liberty Identity Service Interface Specifications, 41-42

Liberty Identity Web Services Framework, 39-41

Liberty Personal Profile Service, 122-129

Name Identifier Mapping Protocol, 38

Name Registration Protocol, 37

PAOS binding, 203-207

pre-login URL, 99-100

public interfaces, 195-197

SAML, 165-168

samples, 209-212

Security Mechanisms Specification, 40

Single Logout Protocol, 37-38

Single Sign-On and Federation Protocol, 36-37

SOAP Binding Service, 157-158

SOAP Binding Specification, 39

P
PAOS binding, 203-207
PAOS or SOAP, 204
sample, 205-207,212
PAOS Binding Service, schema file, 228-229
patches, Solaris, 20
policy creation, 152-154
pre-login process, 66
pre-login URL, 99-100
principal, definition, 32
procedures
create policy for DefaultDiscoAuthorizer, 152-154
store discovery entries, 142-145,145-149,150-151
process
Authentication Web Service, 114
Discovery Service, 136-138
federation, 64-67

238 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

Index

process (Continued)

federation and single sign-on, 66-67

pre-login, 66

SOAP Binding Service, 158-159
profile, definition, 32
profile types

and SAML, 169-174

web artifact profile, 170-172

web POST profile, 172-174
provider entity

See also entities

configuring, 72-89
provider federation, definition, 32
provider federation, definition of, 27-28
pseudonym

definition

See name identifier

public interfaces, 195-197

receiver, definition, 32

related JES product documentation, 20
request handler, 159-160
RequestHandler interface, 130
resource offering, definition, 32
resource offerings, 142-151
ResourcelD Mapper, 125
ResourceIDMapper interface, 154,199

S
SAML, 165-194
amSAML. xml, 181
API, 188-193
architecture, 166-168
Artifact Timeout, 187
Assertion Skew Factor For notBefore Time, 186-187
assertion types, 168-169
AssertionTimeout, 186
Liberty comparison, 166
overview, 165-168
profile types, 169-174
web artifact profile, 170-172

SAML, profile types (Continued)
web POST profile, 172-174
SAML Artifact Name, 187
SAML SOAP receiver, 175-180
SOAP messages, 175-179
samples, 193-194
Sign SAML Assertion, 187
Sign SAML Request, 187
Sign SAML Response, 187-188
site Identifiers, 182
Target Specifier, 182
target URLs, 186
trusted partners, 183
using, 168
SAML Artifact Name, 187
SAML SOAP receiver, 175-180
SOAP messages, 175-179
sample use case, 46-47
samples
Authentication Web Service, 116-117,212
Discovery Service, 156
employee profile service, 211-212
federation, 101-102,209-211
PAOS binding, 205-207,212
SAML, 193-194
use case process, 46-47
web service consumer, 211
samples overview, 209-212
schema files, 213-234
Authentication Web Service schema, 224-228
Employee Profile schema, 222-224
Metadata Description, 229-234
PAOS Binding Service, 228-229
Personal Profile schema, 216-222
SOAP Binding schema, 214-216
Security Mechanisms Specification, overview, 40
sender, definition, 32
server, definition, 32-33
service provider, definition, 33
service schema files, 213-234
Sign SAML Assertion, 187
Sign SAML Request, 187
Sign SAML Response, 187-188
single logout, definition, 33
Single Logout Protocol, overview, 37-38
single sign-on, definition, 33

239

Index

Single Sign-On and Federation Protocol, overview, 36-37
single sign—on, and federation, 66-67
site identifiers, 182
SOAP Binding, extract, 53
SOAP Binding Service

API, 161-162

attributes, 159-161

overview, 157-158

PAOS or SOAP, 204

process, 158-159

request handler, 159-160

schema file, 214-216

XMLservice file, 157-158
SOAP Binding Specification, overview, 39
SOAP messages, 175-179

Solaris
patches, 20
support, 20

specifications (Liberty Alliance Project), 34-42
Liberty Identity Federation Framework, 34-38
Liberty Identity Service Interface Specifications, 41-42
Liberty Identity Web Services Framework, 39-41
support, Solaris, 20

T

Target Specifier, 182

target URLs, 186

trusted partners, 183

trusted provider, definition, 33

U

use cases, 46-47
sample process, 46-47

w

web artifact profile, 170-172

web POST profile, 172-174

web service consumer, definition, 33
web service consumer sample, 211
web service provider, definition, 33-34

web services (Liberty-based), in Access Manager, 50-53

X
XML service files
amSAML.xml, 181
Authentication Web Service, 112
Discovery Service, 134
SOAP Binding Service, 157-158
XSD files, 213-234

240 Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide - October 2005

	Sun Java System Access Manager 7 2005Q4 Federation and SAML Administration Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Access Manager Core Documentation
	Sun Java System Product Documentation

	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Feedback
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction to the Liberty Alliance Project
	Overview of the Liberty Alliance Project
	Members of the Liberty Alliance Project
	Objectives of the Liberty Alliance Project Specifications

	Concept of Identity
	Concept of Federation
	Identity Federation
	Provider Federation

	Liberty Alliance Project Concepts
	Account Federation
	Affiliation
	Attribute Provider
	Authentication Context
	Authentication Domain
	Circle of Trust
	Client
	Common Domain
	Defederation
	Federation
	Federation Cookie
	Federated Identity
	Federation Termination
	Identity
	Identity Federation
	Identity Provider
	Identity Service
	Liberty-Enabled Client
	Liberty-Enabled Proxy
	Name Identifier
	Principal
	Profile
	Provider Federation
	Pseudonym
	Receiver
	Resource Offering
	Sender
	Server
	Service Provider
	Single Logout
	Single Sign-On
	Trusted Provider
	Web Service Consumer
	Web Service Provider

	Liberty Alliance Project Specifications
	Liberty Identity Federation Framework
	Liberty ID-FF Protocols and Schema
	Single Sign-On and Federation Protocol
	Name Registration Protocol
	Federation Termination Notification Protocol
	Single Logout Protocol
	Name Identifier Mapping Protocol

	Liberty ID-FF Bindings and Profiles
	Additional Liberty ID-FF Documents

	Liberty Identity Web Services Framework
	Liberty ID-WSF Specifications
	SOAP Binding Specification
	Discovery Service Specification
	Security Mechanisms Specification
	Data Services Template Specification
	Interaction Service Specification
	Authentication Service Specification
	Client Profiles Specification

	Additional Liberty ID-WSF Documents

	Liberty Identity Service Interface Specifications
	Liberty ID-SIS Personal Profile Service Specification
	Liberty ID-SIS Employee Profile Service Specification
	Additional Liberty ID-SIS Service Specifications

	Deploying a Liberty-based System
	Assess the Qualifications of Your IT Staff
	Clean Up Directory Data
	Draft Business Agreements

	Implementation of the Liberty Alliance Project Specifications
	Overview
	Liberty Use Cases
	Unified Access to Intranet Resources
	Integrated Partner Networks
	Sample Use Case Process

	Liberty Alliance Project Architecture in Access Manager
	Accessing the Liberty Alliance Project Features
	Federation in Access Manager
	Liberty-based Web Services in Access Manager
	Liberty Personal Profile Service
	Discovery Service
	SOAP Binding Service
	Authentication Web Service

	Liberty-based Application Programming Interfaces
	SAML Service

	Liberty-Based Samples

	Federation
	Features of Federation
	Identity Federation and Single Sign-On
	Auto-Federation
	Bulk Federation

	Authentication and Authentication Context
	Identifiers and Name Registration
	Global Logout
	Dynamic Identity Provider Proxying

	Process of Federation
	Pre-login Process
	Federation and Single Sign-On

	Federation Graphical User Interface
	Entities and Authentication Domains
	Entities
	Creating Entities
	To Create a Provider Entity or an Affiliate Entity

	Configuring Provider Entities
	To Configure a Provider Entity
	To Configure General Attributes for a Provider Entity
	To Configure Hosted or Remote Identity Provider Attributes for a Provider Entity
	To Configure Hosted or Remote Service Provider Attributes for a Provider Entity

	Configuring Affiliate Entities
	To Configure an Affiliate Entity
	To Configure General Attributes for an Affiliate Entity
	To Configure Affiliate Attributes for an Affiliate Entity

	Deleting Entities
	To Delete a Provider or Affiliate Entity

	Authentication Domains
	To Create An Authentication Domain
	To Configure or Modify an Authentication Domain
	To Delete an Authentication Domain

	Auto-Federation
	To Enable Auto Federation

	Bulk Federation
	Dynamic Identity Provider Proxying
	To Configure and Test Dynamic Identity Provider Proxying

	The Pre-login URL
	Federation API
	Sample Federation Environment

	Common Domain Services
	Common Domain
	Common Domain Cookie
	Configuring the Common Domain Services URLs
	Writer Service URL
	Reader Service URL

	Configuring the Common Domain Services Properties
	Installing the Common Domain Services for Federation
	To Test a Common Domain Services Installation

	Authentication Web Service
	Authentication Web Service Overview
	XML Service File
	Authentication Web Service APIs

	Which Authentication Service to Use?
	Authentication Web Service Process
	Authentication Web Service Attribute
	Mechanism Handlers List
	key Parameter
	class Parameter

	Authentication Web Service API
	com.sun.identity.liberty.ws.authnsvc Package
	com.sun.identity.liberty.ws.authnsvc.mechanism Package
	com.sun.identity.liberty.ws.authnsvc.protocol Package

	Authentication Web Service Sample

	Data Services
	Data Services Overview
	Liberty ID-WSF Data Services Template Specification
	Liberty Personal Profile Service
	XML Service File
	XSD Schema Definition

	Liberty Employee Profile Service
	XML Service File
	XSD Schema Definition

	Data Services API

	Liberty Personal Profile Service
	Liberty Personal Profile Service Process
	Liberty Personal Profile Service Attributes
	ResourceID Mapper
	Authorizer
	Attribute Mapper
	Provider ID
	Name Scheme
	Namespace Prefix
	Supported Containers
	PPLDAP Attribute Map List
	Require Query PolicyEval
	Require Modify PolicyEval
	Extension Container Attributes
	Extension Attributes Namespace Prefix
	Is ServiceUpdate Enabled
	Service Instance Update Class
	Alternate Endpoint
	Alternate Security Mechanisms

	Liberty Employee Profile Service
	Data Services Template API
	com.sun.identity.liberty.ws.dst Package
	com.sun.identity.liberty.ws.dst.service Package

	Developing A New Data Service

	Discovery Service
	Discovery Service Overview
	Discovery Service Concepts
	Discovery Entries
	XML Service Files
	Discovery Service APIs
	com.sun.identity.liberty.ws.disco Package
	com.sun.identity.liberty.ws.disco.plugins Package
	com.sun.identity.liberty.ws.interfaces Package

	Discovery Service Architecture
	Discovery Service Process
	Discovery Service Attributes
	Provider ID
	Supported Authentication Mechanisms
	Supported Directives
	Enable Policy Evaluation for DiscoveryLookup
	Enable Policy Evaluation for DiscoveryUpdate
	Authorizer Plugin Class
	Entry Handler Plugin Class
	Classes For ResourceIDMapper Plugin
	Authenticate Response Message
	Generate SessionContextStatement for Bootstrapping
	Encrypt NameIdentifier in Session Context for Bootstrapping
	Use Implied Resource; don’t generate ResourceID for Bootstrapping
	Resource Offerings for Bootstrapping Resources

	Discovery Entries and Resource Offerings
	Storing Discovery Entries as User Attributes
	To Access and Create a User's Resource Offerings

	Storing Discovery Entries as Dynamic Attributes
	To Store Discovery Entries as Dynamic Attributes in a Realm
	To Store Discovery Entries as Dynamic Attributes in a Role

	Storing Discovery Entries for Bootstrapping
	To Store Discovery Entries for Bootstrapping

	Discovery Service APIs
	com.sun.identity.liberty.ws.interfaces.Authorizer Interface
	To Configure Policy Definitions

	com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface
	com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler Interface
	Client APIs in com.sun.identity.liberty.ws.disco

	Discovery Service Sample

	SOAP Binding Service
	SOAP Binding Service Overview
	XML Service File
	SOAP Binding Service APIs

	SOAP Binding Process
	SOAP Binding Service Attributes
	Request Handler List
	Key Parameter
	Class Parameter
	SOAP Action Parameter

	Web Service Authenticator
	Supported Authentication Mechanisms

	SOAP Binding Service Package

	SAML Administration
	SAML Overview
	Comparison of SAML and Liberty Specifications
	SAML Architecture in Access Manager
	Using SAML

	Elements of SAML
	Assertion Types
	Profile Types
	Web Browser Artifact Profile
	Web Browser POST Profile
	Single-Use Policy With POST Profile

	SAML SOAP Receiver
	SOAP Messages
	Protecting SAML SOAP Receiver
	To Configure Access Manager for Basic Authentication

	SAML Attributes
	amSAML.xml Attributes
	To Modify Attributes in the amSAML.xml File

	Console Attributes
	Properties Group
	Target Specifier
	Site Identifiers
	To Configure a Site Identifier
	Trusted Partners
	To Configure a Trusted Partner
	Target URLs

	Assertion
	Assertion Timeout
	Assertion Skew Factor For notBefore Time

	Artifact
	Artifact Timeout
	SAML Artifact Name

	Signing
	Sign SAML Assertion
	Sign SAML Request
	Sign SAML Response

	SAML API
	com.sun.identity.saml Package
	AssertionManager Class
	SAMLClient Class

	com.sun.identity.saml.assertion Package
	com.sun.identity.saml.common Package
	com.sun.identity.saml.plugins Package
	AccountMapper and PartnerAccountMapper Interfaces
	SiteAttributeMapper and PartnerSiteAttributeMapper Interfaces
	AttributeMapper Interface
	ActionMapper Interface

	com.sun.identity.saml.protocol Package
	AuthenticationQuery Class
	AttributeQuery Class
	AuthorizationDecisionQuery Class

	com.sun.identity.saml.xmlsig Package

	SAML Samples

	Application Programming Interfaces
	Public Interfaces
	Common Service Interfaces
	com.sun.identity.liberty.ws.common Package
	com.sun.identity.liberty.ws.interfaces Package
	com.sun.identity.liberty.ws.interfaces.Authorizer Interface
	com.sun.identity.liberty.ws.interfaces.ResourceIDMapper Interface

	Common Security API
	com.sun.identity.liberty.ws.security Package
	com.sun.identity.liberty.ws.common.wsse Package

	Interaction Service
	Configuring the Interaction Service
	Interaction Service API

	PAOS Binding
	Comparison of PAOS and SOAP
	PAOS Binding API
	PAOS Binding Sample

	Liberty-based and SAML Samples
	Federation Framework Samples
	sample1 Directory
	sample2 Directory
	sample3 Directory

	Web Services Framework Samples
	wsc Directory
	sis-ep Directory
	paos Directory
	authnsvc Directory

	SAML Samples

	Service Schema Files
	XSD Overview
	SOAP Binding Schema
	Personal Profile Schema
	Employee Profile Schema
	Authentication Web Service Schema
	PAOS Binding Schema
	Metadata Description Schema

	Index

