
Sun Java Enterprise System
Deployment Planning Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–2326–12
March 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070402@17039

Contents

Preface ...11

1 Introduction to Deployment Planning ..17
About Java Enterprise System .. 17

System Services ... 17
Built-In Services and Custom-Developed Services .. 19
Migrating to Java Enterprise System .. 19

About Deployment Planning ... 20
Solution Life Cycle ... 20
Business Analysis Phase .. 22
Technical Requirements Phase .. 22
Logical Design Phase ... 23
Deployment Design Phase .. 23
Implementation Phase .. 24
Operations Phase ... 24

2 Business Analysis ...25
About Business Analysis ... 25
Defining Business Requirements ... 26

Setting Business Goals ... 26
Understanding User Needs ... 27
Understanding Corporate Culture .. 28
Using an Incremental Approach .. 29
Understanding Service Level Agreements .. 30

Defining Business Constraints ... 30
Migration Issues ... 30
Schedule Mandates .. 30

3

Budget Limitations .. 31
Cost of Ownership ... 31

3 Technical Requirements ...33
About Technical Requirements ... 33
Usage Analysis ... 34
Use Cases .. 35
Quality of Service Requirements ... 36

Performance ... 37
Availability .. 37
Scalability .. 39
Security Requirements .. 40
Latent Capacity .. 42
Serviceability Requirements ... 42

Service Level Requirements ... 43

4 Logical Design ..45
About Logical Architectures .. 45
Designing a Logical Architecture .. 46
Java Enterprise System Components .. 47

Component Dependencies ... 48
Web Container Support .. 49
Logically Distinct Services Provided by Messaging Server ... 51
Access Components ... 51
Multitiered Architecture Design .. 52

Example Logical Architectures .. 53
Messaging Server Example ... 54
Identity-Based Communications Example .. 58

Access Zones .. 61
Deployment Scenario .. 63

5 Deployment Design ..65
About Deployment Design ... 65

Project Approval .. 66

Contents

Sun Java Enterprise System Deployment Planning Guide • March 20074

Deployment Design Outputs .. 66
Factors Affecting Deployment Design .. 67

Deployment Design Methodology .. 68
Estimating Processor Requirements ... 69

Example Estimating Processor Requirements ... 70
Estimating Processor Requirements for Secure Transactions ... 74

CPU Estimates for Secure Transactions .. 75
Specialized Hardware to Handle SSL Transactions ... 76

Determining Availability Strategies .. 76
Availability Strategies .. 77
Availability Design Examples ... 80

Determining Strategies for Scalability .. 84
Latent Capacity .. 84
Scalability Example .. 85

Identifying Performance Bottlenecks ... 85
Optimizing Disk Access .. 87

Designing for Optimum Resource Usage ... 88
Managing Risks .. 89
Example Deployment Architecture .. 90

6 Implementation of a Deployment Design .. 93
About Implementing Deployment Designs ... 93
Installing and Configuring Software ... 94
Developing Pilots and Prototypes ... 94
Testing Pilot and Prototype Deployments ... 95
Rolling Out a Production Deployment ... 96

Index ..97

Contents

5

6

Tables

TABLE 1–1 Java Enterprise System Service Categories ... 18
TABLE 3–1 Usage Analysis Factors .. 34
TABLE 3–2 System Qualities Affecting QoS Requirements .. 36
TABLE 3–3 Unscheduled Downtime for a System Running Year-Round (8,760 hours) 38
TABLE 3–4 Availability of Services by Priority ... 39
TABLE 3–5 Scalability Factors .. 40
TABLE 3–6 Topics for Serviceability Requirements .. 42
TABLE 4–1 Java Enterprise System Component Dependencies .. 49
TABLE 4–2 Messaging Server Configurations .. 51
TABLE 4–3 Java Enterprise System Components Providing Remote Access 52
TABLE 4–4 Logical Tiers in a Multitiered Architecture .. 53
TABLE 4–5 Components in Messaging Server Logical Architecture 54
TABLE 4–6 Secure Access Zones and Components Placed Within Them 62
TABLE 5–1 CPU Estimates for Components Containing Access User Entry Points 71
TABLE 5–2 CPU Estimates for Supporting Components ... 72
TABLE 5–3 CPU Estimate Adjustments for Peak Load ... 72
TABLE 5–4 CPU Estimate Adjustments for Supporting Components 73
TABLE 5–5 Modifying CPU Estimates for Secure Transactions .. 75
TABLE 5–6 CPU Estimate Adjustments for Supporting Components 80
TABLE 5–7 Data Access Points ... 86
TABLE 5–8 Resource Management Considerations .. 88

7

8

Figures

FIGURE 1–1 Solution Life Cycle ... 21
FIGURE 4–1 Java Enterprise System Components .. 48
FIGURE 4–2 Java Enterprise System Component Dependencies .. 50
FIGURE 4–3 Multitiered Architecture Model .. 52
FIGURE 4–4 Logical Architecture for Messaging Server Deployment 54
FIGURE 4–5 Logical Components Placed in Access Zones .. 62
FIGURE 5–1 Logical Architecture for Identity-Based Communications Scenario 71
FIGURE 5–2 Single Server System .. 78
FIGURE 5–3 N+1 Failover System With Two Servers ... 78
FIGURE 5–4 Load Balancing Plus Failover Between Two Servers ... 79
FIGURE 5–5 Distribution of Load Between n Servers ... 79
FIGURE 5–6 Failover Design Using Sun Cluster Software ... 82
FIGURE 5–7 Single Master Replication Example ... 83
FIGURE 5–8 Multi-master Replication Example ... 84
FIGURE 5–9 Horizontal and Vertical Scaling Examples ... 86
FIGURE 5–10 Example Deployment Architecture .. 91

9

10

Preface

The Sun Java Enterprise System Deployment Planning Guide provides an introduction to
planning and designing enterprise deployment solutions based on Sun JavaTM Enterprise
System. This guide presents basic concepts and principles of deployment planning and design,
discusses the solution life cycle, which encapsulates the phases and tasks of a deployment design
project, and provides high-level examples and strategies that you can when planning
enterprise-wide deployment solutions with Java Enterprise System (Java ES).

Who Should Use This Book
This guide is primarily intended for deployment architects and business planners responsible
for the analysis and design of enterprise deployments. This guide is also useful for system
integrators and others responsible for the design and implementation of various aspects of an
enterprise application.

Before You Read This Book
This guide assumes you are familiar with the design and installation of enterprise-level
applications, and that you have read the Sun Java Enterprise System 5 Technical Overview.

How This Book Is Organized
This guide is based on a solution life cycle which describes the various phases of deployment
planning. Chapter 1 provides a description of the solution life cycle.

11

Java ES Documentation Set
The Java ES documentation set describes deployment planning and system installation. The
URL for system documentation is http://docs.sun.com/coll/1286.2. For an introduction to
Java ES, refer to the books in the order in which they are listed in the following table.

TABLE P–1 Java Enterprise System Documentation

Document Title Contents

Sun Java Enterprise System 5 Release
Notes for UNIX

Sun Java Enterprise System 5 Release
Notes for Microsoft Windows

Contains the latest information about Java ES, including known
problems. In addition, components have their own release notes listed
in the Release Notes Collection
(http://docs.sun.com/coll/1315.2).

Sun Java Enterprise System 5
Technical Overview

Introduces the technical and conceptual foundations of Java ES.
Describes components, the architecture, processes, and features.

Sun Java Enterprise System
Deployment Planning Guide

Provides an introduction to planning and designing enterprise
deployment solutions based on Java ES. Presents basic concepts and
principles of deployment planning and design, discusses the solution
life cycle, and provides high-level examples and strategies to use when
planning solutions based on Java ES.

Sun Java Enterprise System 5
Installation Planning Guide

Helps you develop the implementation specifications for the hardware,
operating system, and network aspects of your Java ES deployment.
Describes issues such as component dependencies to address in your
installation and configuration plan.

Sun Java Enterprise System 5
Installation Guide for UNIX

Sun Java Enterprise System 5
Installation Guide for Microsoft
Windows

Guides you through the process of installing Java ES. Also shows how
to configure components after installation, and verify that they
function properly.

Sun Java Enterprise System 5
Installation Reference for UNIX

Gives additional information about configuration parameters,
provides worksheets to use in your configuration planning, and lists
reference material such as default directories and port numbers on the
Solaris Operating System and Linux operating environment.

Sun Java Enterprise System 5 Upgrade
Guide for UNIX

Sun Java Enterprise System 5 Upgrade
Guide for Microsoft Windows

Provides instructions for upgrading to Java ES 5 from previously
installed versions.

Sun Java Enterprise System 5
Monitoring Guide

Gives instructions for setting up the Monitoring Framework for each
product component and using the Monitoring Console to view
real-time data and create monitoring rules.

Preface

Sun Java Enterprise System Deployment Planning Guide • March 200712

http://docs.sun.com/coll/1286.2
http://docs.sun.com/coll/1315.2

TABLE P–1 Java Enterprise System Documentation (Continued)
Document Title Contents

Sun Java Enterprise System Glossary Defines terms that are used in Java ES documentation.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real name or
value

The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized items
appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Shell Prompts in Command Examples
The following table shows default system prompts and superuser prompts.

TABLE P–3 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_name%

C shell superuser on UNIX and Linux systems machine_name#

Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Preface

13

TABLE P–3 Shell Prompts (Continued)
Shell Prompt

Microsoft Windows command line C:\

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable reference. ${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item selection
in a graphical user interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Accessing Sun Resources Online
The docs.sun.comSM web site enables you to access Sun technical documentation online. You
can browse the docs.sun.com archive or search for a specific book title or subject. Books are
available as online files in PDF and HTML formats. Both formats are readable by assistive
technologies for users with disabilities.

To access the following Sun resources, go to http://www.sun.com:

■ Downloads of Sun products
■ Services and solutions
■ Support (including patches and updates)
■ Training
■ Research

Preface

Sun Java Enterprise System Deployment Planning Guide • March 200714

http://www.sun.com

■ Communities (for example, Sun Developer Network)

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-2326.

Preface

15

http://docs.sun.com

16

Introduction to Deployment Planning

This chapter provides a brief overview of Sun JavaTM Enterprise System (Java ES), discusses
deployment planning concepts, and introduces the solution life cycle, which outlines the
various steps for planning and designing enterprise software systems. This chapter contains the
following sections:
■ “About Java Enterprise System” on page 17
■ “About Deployment Planning” on page 20

About Java Enterprise System
Java Enterprise System is a software infrastructure that provides a complete set of middleware
services to support enterprise applications distributed across a network or Internet
environment. The Java Enterprise System components that provide the services are installed
using a common installer, synchronized on a common set of shared libraries, and share an
integrated user identity and security management system.

System Services
The main infrastructure services provided by Java Enterprise System components can be
categorized as follows:
■ Portal services. These services enable mobile employees, telecommuters, knowledge

workers, business partners, suppliers, and customers to securely access their personalized
corporate portal from anywhere outside the corporate network through the Internet. These
services provide anytime, anywhere access capabilities to user communities, delivering
integration, aggregation, personalization, security, mobile access, and search.

■ Communications and collaboration services. These services enable the secure interchange
of information among diverse user communities. Specific capabilities include messaging,
real-time collaboration, and calendar scheduling in the context of the user\qs business
environment.

1C H A P T E R 1

17

■ Network identity and security services. These services improve security and protection of
key corporate information assets by ensuring that appropriate access control policies are
enforced across all communities, applications, and services on a global basis. These services
work with a repository for storing and managing identity profiles, access privileges, and
application and network resource information.

■ Web and application services. These services enable distributed components to
communicate with one another and support the development, deployment, and
management of applications for a broad range of servers, clients, and devices. These services
are based on Java 2 Platform, Enterprise Edition (J2EETM) technology.

■ Availability services. These services provide near-continuous availability and scalability for
applications and web services.

The following table lists the preceding service categories and specifies the Java Enterprise
System components that provide services for each category.

TABLE 1–1 Java Enterprise System Service Categories

Service Category Java Enterprise System Components

Portal services Portal Server,
Portal Server Secure Remote Access,
Access Manager,
Directory Server,
Application Server or Web Server

Communication and collaboration services Messaging Server,
Calendar Server,
Instant Messaging,
Access Manager,
Directory Server,
Application Server or Web Server

Network identity services Access Manager,
Directory Server,
Web Server

Web and application services Application Server,
Message Queue,
Web Server

Availability services Sun Cluster,
Sun Cluster Agents

For more information about Java Enterprise System services, components, and Java Enterprise
System architectural concepts, refer to the Sun Java Enterprise System 5 Technical Overview.

About Java Enterprise System

Sun Java Enterprise System Deployment Planning Guide • March 200718

Built-In Services and Custom-Developed Services
Deployment solutions based on Java Enterprise System typically fall into two general categories:

■ 80:20 deployments. These solutions consist primarily of services provided by Java
Enterprise System. Java Enterprise System provides about 80% or more of the services.

■ 20:80 deployments. These solutions consist of a significant number of custom-developed
services and third-party applications.

The 80:20 and 20:80 categories are broad generalizations. The exact percentage of the type of
services offered is not important. However, the percentage indicates the amount of
customization a solution contains.

Java Enterprise System is well suited for 80:20 deployments because of the rich set of services
provided by Java ES. For example, it is relatively easy to deploy an enterprise-wide
communications system or an enterprise-wide portal system using services provided by Java
Enterprise System.

For deployments that require custom development, Java Enterprise System supports the
creation and integration of custom-developed services and applications.

Most of the service categories listed in “System Services” on page 17 can be used to deliver 80:20
deployments. For example, communications and collaboration services provide email,
calendar, and instant messaging services to end users, allowing them to aggregate and
personalize the content. Similarly, the network identity and enterprise portal categories of
services allow you to install and configure enterprise-wide applications without developing or
integrating custom services.

Enterprise solutions that require custom development of J2EE platform services can leverage
Application Server, Message Queue, or Web Server which are provided with Java Enterprise
System web and application services.

Enterprise deployments can vary greatly in the number of custom-developed services they
require. Because of the interoperability between Java Enterprise System services, you can create
your own suite of services tailored to your particular enterprise needs.

Migrating to Java Enterprise System
The planning, designing, and implementing of an enterprise solution that uses Java Enterprise
System depends largely on your current deployment strategy. For enterprises that are planning
a first-time deployment solution, the planning, design, and implementation is driven largely by
the specific needs of your enterprise. However, first-time deployments solutions are not typical.
More likely are solutions that use Java Enterprise System to enhance existing enterprise
solutions or to upgrade from earlier versions of Java Enterprise System components.

About Java Enterprise System

Chapter 1 • Introduction to Deployment Planning 19

When replacing or upgrading existing solutions, you must take additional planning, design,
and implementation steps to ensure that existing data is preserved and that software is properly
upgraded to current versions. As you proceed through the analysis and design outlined in this
guide, keep in mind the preparation and planning required to replace and upgrade existing
software systems.

For more information about upgrading to the current version of Java Enterprise System and
strategies for migration from other applications, refer to the Java Enterprise System Upgrade
and Migration Guide.

About Deployment Planning
Deployment planning is a critical step in the successful implementation of a Java Enterprise
System solution. Each enterprise has its own set of goals, requirements, and priorities to
consider. Successful planning starts with analyzing the goals of an enterprise and determining
the business requirements to meet those goals. The business requirements must then be
converted into technical requirements that can be used as a basis for designing and
implementing a system that can meet the goals of the enterprise.

Successful deployment planning is the result of careful preparation, analysis, and design. Errors
and missteps that occur anywhere during the planning process can result in a system that can
misfire in many ways. Significant problems can arise from a poorly planned system. For
example, the system could under-perform, be difficult to maintain, be too expensive to operate,
could waste resources, or could be unable to scale to meet increasing needs.

Solution Life Cycle
The solution life cycle shown in the following figure depicts the steps in the planning, design,
and implementation of an enterprise software solution based on Java Enterprise System. The
life cycle is a useful tool for keeping a deployment project on track.

About Deployment Planning

Sun Java Enterprise System Deployment Planning Guide • March 200720

The life cycle consists of ordered phases. Each phase consists of related tasks that result in
outputs that are carried forward as inputs to subsequent phases. The tasks within each phase are
iterative, requiring thorough analysis and design before generating the outputs for that phase.
The early phases can be iterative also. For example, during the deployment design phase, you
might discover that the analysis in earlier phases is insufficient and requires more work.

PHASES

Business Ana ysisl
Business requirements
Business constraints

Technical Requirements
Use-case analysis
Usage analysis
Quality of service requirements

Logical Design
Logical architecture
Deployment scenario

Deployment Design
Deployment architecture
Implementation specifications
Implementation plans

Deplo nyment Implementatio
Hardware setup
Installation, upgrade, and migration
Configuration and customization
Development and integration
Prototypes and pilots
Production rollout

Operations
Monitoring
Maintenance
Performance tuning
System enhancements and upgrades

FIGURE 1–1 Solution Life Cycle

About Deployment Planning

Chapter 1 • Introduction to Deployment Planning 21

The following sections in this chapter briefly describe each life cycle phase.

Business Analysis Phase
During business analysis, you define the business goals of a deployment project and state the
business requirements that must be met to achieve those goals. When stating the business
requirements, consider any business constraints that might affect the ability to achieve the
business goal. Throughout the life cycle, you measure the success of your deployment planning,
and ultimately your deployment solution, according to the analysis performed in the business
analysis phase.

During the business analysis phase you create business requirements documents that you later
use as inputs to the technical requirements phase.

For more information on the business analysis phase, refer to Chapter 2

Technical Requirements Phase
The technical requirements phase starts with the business requirements and business
constraints defined during the business analysis phase and translates them into technical
specifications that can be used to subsequently design the deployment architecture. The
technical requirements specify quality of service (QoS) features, such as performance,
availability, security, and others.

During the technical requirements phase, you create documents that contain the following
information:

■ Analysis of user tasks and usage patterns
■ Use cases that model user interaction with the planned system
■ Quality of service requirements derived from the business requirements, possibly taking

into consideration the analysis of user tasks and usage patterns

The resulting usage analysis, use cases, and QoS requirements documents are inputs to the
logical design phase of the solution life cycle. The usage analysis also plays a significant role in
the deployment design phase.

During the technical requirements phase, you might also specify service level requirements that
are the basis for subsequently creating service level agreements (SLA). Service level agreements
specify the terms under which customer support must be provided to maintain the system and
are generally signed as part of project approval in the deployment design phase.

For more information on technical requirements, refer to Chapter 3

About Deployment Planning

Sun Java Enterprise System Deployment Planning Guide • March 200722

Logical Design Phase
During logical design, using use cases from the technical requirements phase as inputs, you
identify the Java Enterprise System components necessary to implement a solution. You
identify components that provide support to those Java ES components, and also identify any
additional custom-developed components necessary to meet the business requirements. You
then map the components within a logical architecture that shows the interrelationships among
the components. The logical architecture does not specify any hardware required to implement
the solution.

The output of the logical design phase is the logical architecture. The logical architecture by
itself is not sufficient to begin deployment design. You also need the QoS requirements from the
technical requirements phase. The logical architecture and the QoS requirements from the
technical requirements phase form a deployment scenario. This deployment scenario is the
input to the deployment design phase.

For more information on logical design, refer to Chapter 4

Deployment Design Phase
During deployment design, you map the components specified in the logical architecture to a
physical environment, producing a high-level deployment architecture. You also create an
implementation specification, which provides low-level details specifying how to build the
deployment architecture. Additionally, you create a series of plans and specifications that detail
different aspects of implementing the software solution.

Project approval occurs during the deployment design phase. During project approval, the cost
of the deployment is assessed. If approved, contracts for implementation of the deployment are
signed, and resources to build the project are acquired. Often, project approval occurs after the
implementation specification has been detailed. However, approval can also occur upon
completion of the deployment architecture.

The outputs of the deployment design phase include the following:

■ Deployment architecture. A high-level design document that represents the mapping of
components to network hardware and software.

■ Implementation specifications. Detailed specifications used as blueprints for building the
deployment.

■ Implementation plans. A group of plans and specifications that cover various aspects of
implementing an enterprise software solution. Implementation plans include a migration
plan, installation plan, user management plan, test plan, and others.

For more information about deployment design, refer to Chapter 5

About Deployment Planning

Chapter 1 • Introduction to Deployment Planning 23

Implementation Phase
During the implementation phase, you work from specifications and plans created during
deployment design to build the deployment architecture and implement the solution.
Depending on the nature of your deployment project, this phase includes some or all of the
following tasks:

■ Installing and configuring the hardware infrastructure
■ Installing and configuring the software
■ Modeling users and resources within an LDAP directory design
■ Migrating data from existing directories and databases according to a user management

plan
■ Creating and deploying pilot and prototype deployments in a test environment
■ Designing and running functional tests to measure compliance with system requirements
■ Designing and running stress tests to measure performance under peak loads
■ Developing and integrating any custom enterprise applications
■ Creating a production deployment, which might be phased into production in stages

Once a deployment is in production, you proceed to the operations phase of the solution life
cycle.

For more information on the implementation phase, refer to Chapter 6

Operations Phase
The operations phase covers tasks necessary to keep the implementation of the deployment
running smoothly. This phase includes the following:

■ Monitoring the deployment to ensure that the system is running according to plans
■ Performance tuning to ensure that the deployed software runs at optimal levels
■ Providing scheduled maintenance for smooth operations and unscheduled maintenance as

the need arises
■ Upgrading software and hardware as the need arises

Details about the operations phase are out of scope for this guide.

About Deployment Planning

Sun Java Enterprise System Deployment Planning Guide • March 200724

Business Analysis

During the business analysis phase of the solution life cycle you define business goals by
analyzing a business problem and identifying the business requirements and business
constraints to meet that goal.

This chapter contains the following sections:

■ “About Business Analysis” on page 25
■ “Defining Business Requirements” on page 26
■ “Defining Business Constraints” on page 30

About Business Analysis
Business analysis starts with stating the business goals. You then analyze the business problems
you must solve and identify the business requirements that must be met to achieve the business
goals. Consider also any business constraints that limit your ability to achieve the goals. The
analysis of business requirements and constraints results in a set of business requirements
documents.

You use the resulting set of business requirements documents as a basis for deriving technical
requirements in the technical requirements phase. Throughout the solution life cycle, you
measure the success of your deployment planning and ultimately the success of your solution
according to the analysis performed in the business analysis phase.

2C H A P T E R 2

25

Defining Business Requirements
No simple formula exists that can identify all business requirements. You determine the
requirements based on collaboration with the stakeholders requiring a software solution, your
own knowledge about the business domain, and applied creative thinking.

This section provides some factors to consider when defining business requirements.

Setting Business Goals
Business analysis should articulate the goals of a deployment project. Clear goals help focus
design decisions and prevent the project from going astray. Contrasting the business goals with
current operations also helps determine design decisions.

Scope
Business requirements should state the scope of the deployment project. Make sure you identify
areas that can be solved and avoid open-ended requirements that make the goal either unclear
or unreachable. A poorly defined scope can lead to a deployment design that insufficiently
addresses business needs or that is extravagant with resources.

Priorities
Prioritize your goals to ensure that the most important aspects of the deployment can be
achieved first. Limited resources might require postponement or modification of some goals.
For example, large and complex deployments generally require phased implementation of the
solution. By stating the priorities, you provide guidance on decisions that might need to be
made for your deployment design to be accepted by the stakeholders.

Critical Qualities
Identify areas that are critical to success to allow stakeholders and designers to concentrate on
the most important criteria.

Growth Factors
As you set business goals, consider not only the current needs of the organization, but anticipate
how these needs might change and grow over extended periods. You do not want a solution that
is outdated prematurely.

Safety Margin
The design of your solution is based on assumptions made during this business analysis phase.
These assumptions might not be accurate for various reasons, such as insufficient data, errors in

Defining Business Requirements

Sun Java Enterprise System Deployment Planning Guide • March 200726

judgement, or unanticipated external events. Make sure you plan for a safety margin not only in
your business goals but throughout your planning so the solution that you design can handle
unexpected events.

Understanding User Needs
Do the research necessary to understand the types of users that the solution targets, their needs,
and the expected benefits to them. For example, the following list provides one way to
categorize users:
■ Current employees only
■ Current and previous employees
■ Administrators
■ Active customers
■ All customers
■ Membership site
■ General public
■ Restricted access

Clearly stating the expected benefits to users helps drive design decisions. For example, here are
some benefits that a solution can provide to users:
■ Remote access to company resources
■ Enterprise collaboration
■ Simplification of daily tasks
■ Sharing of resources by remote teams
■ Increased productivity
■ Self-administration by end-users

Developing Operational Requirements
Express operational requirements as a set of functional requirements with straightforward
goals. Typically, you create operational specifications for areas such as:
■ End-user functionality
■ Reduced response time
■ Availability and uptime
■ Reduced error rate
■ Information archival and retention

Express operational requirements in measurable terms that all stakeholders can understand.
Avoid ambiguous language, such as “adequate end-user response time.” Examples of
operational requirements could be the following:
■ Ability to restore services within 10 minutes of an outage
■ Ability to replay the last 48 hours of inbound message delivery

Defining Business Requirements

Chapter 2 • Business Analysis 27

■ Online transactions completed within 60 seconds during peak periods
■ End-user authentication completed within four seconds during peak periods

Supporting Existing Usage Patterns
Express existing usage patterns as clearly measurable goals. The following questions can help
determine such goals.

■ How are current services utilized?
■ What are the usage patterns (for example, sporadic, frequent, or heavy usage)?
■ To which sites do your users typically connect?
■ What size messages do users commonly send?
■ How many transactions do users typically complete per day or per hour?

Study the users who access your services. Factors such as when users access existing services and
for how long are keys to identifying your goals. If your organization’s experience cannot provide
these patterns, study the experience of similar organizations.

Understanding Corporate Culture
Requirements analysis should take into account various aspects of corporate culture and
politics. Lack of attention to corporate culture can result in a solution that is not well received or
is difficult to implement.

Stakeholders
Identify individuals and organizations that have a vested interest in the success of the proposed
solution. All stakeholders should actively participate in defining the business goals and
requirements. If a stakeholder does not participate or is uninformed of planned changes, the
plans could have significant shortcomings. Such a stakeholder could even block the
implementation of the deployment.

Standards and Policies
Make sure you understand the standards and policies of the organization requesting the
solution. These standards and policies might affect technical aspects of the design, product
selection, and methodology of deployment.

One example is the confidentiality of personnel data that might be owned and controlled by the
human resources organization or unit managers. Another example would be company
procedures for change management. Change management policies could dramatically affect
acceptance of a solution and influence the implementation methodology and time table.

Defining Business Requirements

Sun Java Enterprise System Deployment Planning Guide • March 200728

Regulatory Requirements
Regulatory requirements vary greatly, depending on the nature of the business. Research and
understand any regulatory requirements that might affect the deployment. Many companies
and government agencies require compliance with accessibility standards. When deploying
global solutions, consider foreign laws and regulations. For example, many European countries
have strict controls on storing personal information.

Security
Some goals that you identify might have implicit security issues that should be emphasized. Call
out specific security goals essential to the solution. For example:

■ Authorized access to proprietary information
■ Role-based access to confidential information
■ Secure communication between remote locations
■ Invocation of remote applications on local systems
■ Secure transactions with third-party businesses and organizations
■ Enforcement of security policies

Site Distribution
The geographic distribution of sites and the bandwidth between the sites can affect design
decisions. Additionally, some sites might require local management.

Such geographic considerations can raise the project’s training costs, complexity, and so forth.
Clearly state requirements resulting from geographic distribution of sites. Highlight which sites
are critical to the design’s success.

Using an Incremental Approach
Often, you view a software solution as a whole, comprehensive system. However, you often
achieve deployment of the complete system incrementally by taking measured steps.

When adopting an incremental approach, you typically design a road map that provides
milestones leading to the ultimate, comprehensive solution. Additionally, you might have to
consider short-term plans for aspects of the comprehensive solution that are deferred for later
implementation.

The incremental approach provides these advantages:

■ You can adapt to requirement changes due to business growth.
■ You can leverage the existing infrastructure as you transition to your ultimate deployment

implementation.
■ You can accommodate capital expenditure requirements.

Defining Business Requirements

Chapter 2 • Business Analysis 29

■ You can leverage a small supply of human resources.
■ You can allow for partnership possibilities.

Understanding Service Level Agreements
A service level agreement (SLA) specifies minimum performance requirements and, upon
failure to meet those requirements, the level and extent of customer support that must be
provided. A service level agreement is based on business requirements defined during business
analysis, which are later specified as service level requirements during the technical
requirements phase. The SLA is signed during project approval, which occurs in the
deployment design phase.

You should develop an SLA around areas such as uptime, response time, message delivery time,
and disaster recovery. An SLA should account for items such as an overview of the system, the
roles and responsibilities of support organizations, how to measure service levels, change
requests, and so forth. Identifying your organization’s expectations around system availability is
key in determining the scope of an SLA.

Defining Business Constraints
Business constraints play a significant role in determining the nature of a deployment project.
One key to successful deployment design is finding the optimal way to meet business
requirements within known business constraints. The business constraints can be fiscal
limitations, physical limitations (for example, network capacity), time limitations (for example,
completion before significant events such as the next annual meeting), or any other limitation
you anticipate as a factor that affects the achievement of the business goal.

This section describes several factors to consider when defining business constraints.

Migration Issues
Typically, a deployment project replaces or supplements existing software infrastructure and
data. Any new solution must be able to migrate data and procedures from the existing
infrastructure to the new solution, often retaining interoperability with existing applications.
An analysis of the current infrastructure is necessary to determine the extent migration issues
play into the proposed solution.

Schedule Mandates
The schedule for implementation of a solution can affect design decisions. Aggressive schedules
might result in scaling back of goals, changing priorities, or adopting an incremental solution

Defining Business Constraints

Sun Java Enterprise System Deployment Planning Guide • March 200730

approach. Within a schedule, significant milestones might exist that deserve consideration as
well. Milestones can be set by internal events such as scheduled service rollouts or external
events such as the opening date of a school semester.

Budget Limitations
Most deployment projects must adhere to a budget. Considering the cost of building the
proposed solution and the resources required to maintain the solution over a specific lifetime
including the following:

■ Existing hardware and network infrastructure. Reliance on existing infrastructure can
affect the design of a system.

■ Development resources needed to implement the solution. Limited development
resources, including hardware, software, and human resources, might suggest incremental
deployment. You might have to reuse the same resources or development teams for each
incremental phase you implement.

■ Maintenance, administration, and support. Analyze the resources available to administer,
maintain, and support users on the system. Limited resources might impact design
decisions.

Cost of Ownership
In addition to maintenance, administration, and support, analyze other factors that affect the
cost of ownership. Hardware and software upgrades might be necessary, the impact of the
solution on the power grid, telecommunications cost, and other factors influence out-of-pocket
expenses. Service level agreements specifying availability levels for the solution also affect the
cost of ownership by requiring increased redundancy.

The implementation of a solution should provide a return on the investment into the solution.
Analysis of return on investment typically involves measuring the financial benefits gained
from the expenditure of capital.

Estimating the financial benefits of a solution involves a careful analysis of the goals to be
achieved in comparison with alternate ways of achieving those goals and with the cost of doing
nothing at all.

Defining Business Constraints

Chapter 2 • Business Analysis 31

32

Technical Requirements

During the technical requirements phase of the solution life cycle you perform a usage analysis,
identify use cases, and determine quality of service requirements for the proposed deployment
solution.

This chapter contains the following sections:

■ “About Technical Requirements” on page 33
■ “Usage Analysis” on page 34
■ “Use Cases” on page 35
■ “Quality of Service Requirements” on page 36
■ “Service Level Requirements” on page 43

About Technical Requirements
Technical requirements analysis begins with the business requirements documents created
during the business analysis phase of the solution life cycle. Using the business analysis as a
basis, you do the following:

■ Perform a usage analysis to aid in determining expected load conditions.
■ Create use cases that model typical user interaction with the system.
■ Create a set of quality of service requirements (QoS) that define how a deployed solution

must perform in areas such as response time, availability, security, and others.

The quality of service requirements are derived from the usage analysis and the use cases,
keeping in mind business requirements and constraints previously identified.

The quality of service requirements are later paired with logical architectures in the logical
design phase to form a deployment scenario. The deployment scenario is the main input to
the deployment design phase of the solution life cycle.

3C H A P T E R 3

33

As with business analysis, no simple formula for technical requirements analysis exists that
generates the usage analysis, use cases, and system requirements. Technical requirements
analysis requires an understanding of the business domain, business objectives, and the
underlying system technology.

Usage Analysis
Usage analysis involves identifying the various users of the solution you are designing and
determining the usage patterns for those users. The information you gather provides a basis for
estimating the load conditions on the system. Usage analysis information is also useful when
assigning weights to use cases, as described in “Use Cases” on page 35.

During usage analysis, you should interview users whenever possible, research existing data on
usage patterns, and interview builders and administrators of previous systems. The following
table lists factors to consider when performing a usage analysis.

TABLE 3–1 Usage Analysis Factors

Topic Description

Number and type of users Identify how many users your solution must support, and categorize those
users, if necessary.

For example:
■ A Business to Customer (B2C) solution might have a large number of

visitors, but only a small number of users who register and engage in
business transactions.

■ A Business to Employee (B2E) solution typically accommodates each
employee, although some employees might need access from outside
the corporate network. In a B2E solution, managers might need
authorization to areas that regular employees cannot access.

Active and inactive users Identify the usage patterns and ratios of active and inactive users.

Active users are those users logged into the system and interact with the
system’s services. Inactive users can be users who are not logged in, users
who log in but do not interact with the system’s components, or users who
are in the database but never log in.

Administrative users Identify users that access the deployed system to monitor, update, and
support the deployment.

Determine any specific administrative usage patterns that might affect
technical requirements (for example, administration of the deployment
from outside the firewall).

Usage Analysis

Sun Java Enterprise System Deployment Planning Guide • March 200734

TABLE 3–1 Usage Analysis Factors (Continued)
Topic Description

Usage patterns Identify how various types of users access the system and provide targets for
expected usage.

For example:
■ Are there peak times when usage spikes?
■ What are normal business hours?
■ Are users distributed globally?
■ What is the expected duration of user connectivity?

User growth Determine if the size of the user base is fixed or if the deployment expects
growth in the number of users.

If the user base is expected to grow, try to create reasonable projections of
the growth.

User transactions Identify the type of user transactions that must be supported. These user
transactions can be translated into use cases.

For example:
■ What tasks do users perform?

■ When users log in, do they remain logged in? Do they typically perform
a few tasks and log out?

■ Will significant collaboration between users require common calendars,
web-conferences, and deployment of internal web pages?

User studies and statistical data Use pre-existing user studies and other sources to determine patterns of
user behavior.

Often, enterprises or industry organizations have user research studies from
which you can extract useful information about users. Log files for existing
applications might contain statistical data useful in making estimates for a
system.

Use Cases
Use cases model typical user interaction with the solution that you are designing, and describe
the complete flow of an operation from the perspective of an end user. Prioritizing the design
around a complete set of use cases ensures a continual focus on the delivery of expected
functionality. Use cases are the principal input to logical design.

Assign relative weights to use cases, with the highest weighted use cases representing the most
common user tasks. The weighting of use cases allows you to focus your design decisions on the
system services that are used the most.

Use cases can be described at two levels.

Use Cases

Chapter 3 • Technical Requirements 35

■ Use-case reports. Descriptions of individual use cases, including primary and alternative
flows of events.

■ Use-case diagrams. Diagrams depicting the relationships among actors and the use cases,
presenting a more formal organization of the flow of events. Use-case diagrams are useful to
model long or complex use cases. Typically, you use Unified Modeling Language (UML)
standards to draw use case diagrams.

Quality of Service Requirements
Quality of service (QoS) requirements are technical specifications that specify the system
quality of features such as performance, availability, scalability, and serviceability. QoS
requirements are driven by business needs specified in the business requirements. For example,
if services must be available 24 hours a day throughout the year, the availability requirement
must address this business requirement.

The following table lists the system qualities that typically form a basis for QoS requirements.

TABLE 3–2 System Qualities Affecting QoS Requirements

System Quality Description

Performance The measurement of response time and throughput with respect to user load
conditions.

Availability A measure of how often a system’s resources and services are accessible to end
users, often expressed as the uptime of a system.

Scalability The ability to add capacity (and users) to a deployed system over time. Scalability
typically involves adding resources to the system but should not require changes
to the deployment architecture.

Security A complex combination of factors that describe the integrity of a system and its
users. Security includes authentication and authorization of users, security of
data, and secure access to a deployed system.

Latent capacity The ability of a system to handle unusual peak loads without additional resources.
Latent capacity is a factor in availability, performance, and scalability qualities.

Serviceability The ease by which a deployed system can be maintained, including monitoring
the system, repairing problems that arise, and upgrading hardware and software
components.

System qualities are closely interrelated. Requirements for one system quality might affect the
requirements and design for other system qualities. For example, higher levels of security might
affect performance, which in turn might affect availability. Adding additional servers to address
availability issues affect serviceability (maintenance costs).

Quality of Service Requirements

Sun Java Enterprise System Deployment Planning Guide • March 200736

Understanding how system qualities are interrelated and the trade-offs that must be made is the
key to designing a system that successfully satisfies both business requirements and business
constraints.

The following sections describe further the system qualities that impact deployment design,
providing guidance on factors to consider when formulating QoS requirements. A section on
service level requirements, which form the basis of service level agreements, is also included.

Performance
Business requirements typically express performance in nontechnical terms that specify
response time. For example, a business requirement for web-based access might state the
following:

Users expect a reasonable response time upon login, typically no greater than four seconds.

Starting with this business requirement, examine all use cases to determine how to express this
requirement at a system level. In some cases, you might want to include user load conditions
determined during usage analysis. Express the performance requirement for each use case in
terms of response time under specified load conditions or response time plus throughput. You
might also specify the allowable number of errors.

Here are two examples of how to specify system requirements for performance:

■ Response for web page refresh must be no greater than four seconds throughout the day,
sampled at 15-minute intervals, with fewer than 3.4 errors per million transactions.

■ During defined peak periods, the system must allow 25 secure logins per second with
response time no greater than 12 seconds for any user and with fewer than 3.4 errors per
million transactions.

Performance requirements are closely related to availability requirements (how failover impacts
performance) and latent capacity (how much capacity is available to handle unusual peak
loads).

Availability
Availability is a way to specify the uptime of a system and is typically measured as the
percentage of time that the system is accessible to users. The time that the system is not
accessible (downtime) can be due to the failure of hardware, software, the network, or any other
factor (such as loss of power) that causes the system to be down. Scheduled downtime for
service (maintenance and upgrades) is not considered downtime. A basic equation to calculate
system availability in terms of percentage of uptime is:

Availability = uptime / (uptime + downtime) * 100%

Quality of Service Requirements

Chapter 3 • Technical Requirements 37

Typically you measure availability by the number of “nines” you can achieve. For example, 99%
availability is two nines. Specifying additional nines significantly affects the deployment design.
The following table quantifies the unscheduled downtime for additional nines of availability to
a system that is running 24x7 year-round (a total of 8,760 hours).

TABLE 3–3 Unscheduled Downtime for a System Running Year-Round (8,760 hours)

Number of Nines Percentage Available Unscheduled Downtime

2 99% 88 hours

3 99.9% 9 hours

4 99.99% 45 minutes

5 99.999% 5 minutes

Fault-Tolerant Systems
Availability requirements of four or five nines typically require a system that is fault-tolerant. A
fault-tolerant system must be able to continue service even during a hardware or software
failure. Typically, fault tolerance is achieved by redundancy in both hardware (such as CPUs,
memory, and network devices) and in software providing key services.

A single point of failure is a hardware or software component that is part of a critical path but is
not backed up by redundant components. The failure of this component results in the loss of
service for the system. When designing a fault-tolerant system, you must identify and eliminate
potential single points of failure.

Fault-tolerant systems can be expensive to implement and maintain. Make sure you understand
the nature of the business requirements for availability and consider the strategies and costs of
availability solutions that meet those requirements.

Prioritizing Service Availability
From a user perspective, availability often applies more on a service-by-service basis rather than
on the availability of the entire system. For example, the unavailability of instant messaging
services usually has little or no impact on the availability of other services. However, the
unavailability of services upon which many other services depend (such as Directory Server)
has a much wider impact. Higher availability specifications should clearly reference specific use
cases and usage analysis that require the increased availability.

It is helpful to list availability needs according to an ordered set of priorities. The following table
prioritizes the availability of different types of services.

Quality of Service Requirements

Sun Java Enterprise System Deployment Planning Guide • March 200738

TABLE 3–4 Availability of Services by Priority

Priority Service Type Description

1 Mission critical Services that must be available at all times. For example, database services
(such as LDAP directories) to applications.

2 Must be available Services that must be available, but can be available at reduced
performance. For example, messaging service availability might not be
critical in some business environments.

3 Can be postponed Services that must be available within a given time period. For example,
calendar services availability might not be essential in some business
environments.

4 Optional Services that can be postponed indefinitely. For example, in some
environments instant messaging services can be considered useful but not
necessary.

Loss of Services
Availability design includes consideration for what happens when availability is compromised
or when a component is lost. This includes considering whether users connected must restart
sessions and how a failure in one area affects other areas of a system. QoS requirements should
consider these scenarios and specify how the deployment reacts to these situations.

Scalability
Scalability is the ability to add capacity to a system so the system can support additional load
from existing users or from an increased user-base. Scalability usually requires the addition of
resources, but should not require changes in the design of the deployment architecture or loss
of service due to the time required to add additional resources.

As with availability, scalability applies more to individual services provided by a system rather
than to the entire system. However, for services upon which other services depend, such as
Directory Server, scalability can have system-wide impact.

You do not necessarily specify scalability requirements with QoS requirements unless projected
growth of the deployment is clearly stated in the business requirements. However, during the
deployment design phase of the solution life cycle, the deployment architecture should always
add some tolerance for scaling the system even if no QoS requirements for scalability have been
specified.

Estimating Growth
Estimating the growth of a system to determine scalability requirements involves working with
projections, estimates, and guesses that might not be fulfilled. Three keys to developing
requirements for a scalable system are the following.

Quality of Service Requirements

Chapter 3 • Technical Requirements 39

■ High performance design strategy. During the specification of performance requirements,
include latent capacity to handle loads that might increase over time. Also, maximize
availability within budget constraints. This strategy allows you to absorb growth and better
schedule milestones for scaling the system.

■ Incremental deployment. Incremental deployment helps with scheduling the addition of
resources. Specify clear milestones for scaling the system. Milestones are typically
load-based requirements coordinated with specific dates for assessing scalability.

■ Extensive performance monitoring. Monitoring performance helps determine when to
add resources to the system. Requirements for monitoring performance can provide
guidance to operators and administrators responsible for maintenance and upgrades.

The following table lists factors to consider for determining scalability requirements.

TABLE 3–5 Scalability Factors

Topic Description

Analyze usage patterns Understand the usage patterns of the current (or projected) user base by
studying existing data. In the absence of current data, analyze industry data
or market estimates.

Design for reasonable
maximum scale

Design with a goal towards the maximum required scale for both known
demand and possible demand.

Often, this is a 24-month estimate based on performance evaluation of the
existing user load and reasonable expectations of future load. The time
period for the estimate depends largely on the reliability of projections.

Set appropriate milestones Implement the deployment design in increments to meet short-term
requirements with a buffer to allow for unexpected growth. Set milestones
for adding system resources.

For example:
■ Capital acquisition (such as quarterly or yearly)
■ Lead time to purchase hardware and software (such as one to six weeks)
■ Buffer (10% to 100%, depending on growth expectations)

Incorporate emerging
technology

Understand emerging technology, such as faster processors and Web
servers, and how this technology can affect the performance of the
underlying architecture.

Security Requirements
Security is a complex topic that involves all levels of a deployed system. Developing security
requirements revolves around identifying the security threats and developing a strategy to
combat them. This security analysis includes the following steps:

1. Identifying critical assets

Quality of Service Requirements

Sun Java Enterprise System Deployment Planning Guide • March 200740

2. Identifying threats to those assets

3. Identifying vulnerabilities that expose the threats that create risk to the organization

4. Developing a security plan that mitigates the risk to the organization

The analysis of security requirements should involve a cross-section of stakeholders from your
organization, including managers, business analysts, and information technology personnel.
Often, an organization appoints a security architect to take the lead in the design and
implementation of security measures.

The following section describes some of the areas that are covered in security planning.

Elements of a Security Plan
Planning for security of a system is part of deployment design that is essential to successful
implementation. Consider the following when planning for security:

■ Physical security. Physical security is the physical access to routers, servers, server rooms,
data centers, and other parts of your infrastructure. Other security measures become
compromised if an unauthorized person can walk into a server room and unplug routers.

■ Network security. Network security is access to your network through firewalls, secure
access zones, access control lists, and port access. For network security you develop
strategies for unauthorized access, tampering, and denial of service (DoS) attacks.

■ Application and application data security. Application and application data security
covers access to user accounts, corporate data, and enterprise applications through
authentication and authorization procedures and policies. This area includes defining the
following policies:
■ Password policies
■ Access rights, such as delegated administration to users as opposed to administrator

access
■ Account inactivation
■ Access control
■ Encryption policies, including secure transport of data and using certificates to sign data

■ Personal security practices. An organization-wide security policy defines the working
environment and practices with which all users must comply to ensure other security
measures perform as designed. Typically, you develop a handbook or manual on security
and also offer training to users on security practices. For an effective overall security policy,
sound security practices must become part of the organization culture.

Quality of Service Requirements

Chapter 3 • Technical Requirements 41

Latent Capacity
Latent capacity is the ability of a deployment to handle unusual peak load usage without the
addition of resources. Typically, you do not specify QoS requirements directly around latent
capacity, but this system quality is a factor in the availability, performance, and scalability of the
system.

Serviceability Requirements
Serviceability is the ease with which a deployed system can be maintained, including tasks such
as monitoring the system, repairing problems that arise, adding and removing users from the
system, and upgrading hardware and software components.

When planning requirements for serviceability, consider the topics listed in the following table.

TABLE 3–6 Topics for Serviceability Requirements

Topic Description

Downtime planning Identify maintenance tasks that require specific services to be unavailable or
partially unavailable.

Some maintenance and upgrades can occur seamlessly to users, while others
require interruption of service. When possible, schedule with users those
maintenance activities that require downtime, allowing the users to plan for
the downtime.

Usage patterns Identify the usage patterns to determine the best time to schedule
maintenance.

For example, on systems where peak usage is during normal business hours,
schedule maintenance in the evening or weekends. For geographically
distributed systems, identifying these times can be more challenging.

Availability Serviceability is often a reflection of your availability design. Strategies for
minimizing downtime for maintenance and upgrades revolve around your
availability strategy. Systems that require a high degree of availability have
limited opportunities for maintenance, upgrades, and repair.

Strategies for handling availability requirements affect how you handle
maintenance and upgrades. For example, on systems that are distributed
geographically, servicing can depend on the ability to route workloads to
remote servers during maintenance periods.

Also, systems requiring a high degree of availability might require more
sophisticated solutions that automate restarting of systems with little
human intervention.

Quality of Service Requirements

Sun Java Enterprise System Deployment Planning Guide • March 200742

TABLE 3–6 Topics for Serviceability Requirements (Continued)
Topic Description

Diagnostics and monitoring You can improve the stability of a system by regularly running diagnostic
and monitoring tools to identify problem areas.

Regular monitoring of a system can avoid problems before they occur, help
balance workloads according to availability strategies, and improve
planning for maintenance and downtime.

Service Level Requirements
A service level agreement (SLA) specifies minimum performance requirements and, upon
failure to meet those requirements, the level and extent of customer support that must be
provided. Service level requirements are system requirements that specify the conditions upon
which the SLA is based.

As with QoS requirements, service level requirements derive from business requirements and
represent a guarantee about the overall system quality that the deployed system must meet.
Because the service level agreement is considered to be a contract, specification of service level
requirements should be unambiguous. The service level requirements define exactly under
what conditions the requirements are tested and precisely what constitutes failure to meet the
requirements.

Service Level Requirements

Chapter 3 • Technical Requirements 43

44

Logical Design

During the logical design phase of the solution life cycle, you design a logical architecture
showing the interrelationships of the logical components of the solution. The logical
architecture and the usage analysis from the technical requirements phase form a deployment
scenario, which is the input to the deployment design phase.

This chapter contains the following sections:

■ “About Logical Architectures” on page 45
■ “Designing a Logical Architecture” on page 46
■ “Java Enterprise System Components” on page 47
■ “Example Logical Architectures” on page 53
■ “Access Zones” on page 61
■ “Deployment Scenario” on page 63

About Logical Architectures
A logical architecture identifies the software components needed to implement a solution,
showing the interrelationships among the components. The logical architecture and the quality
of service requirements determined during the technical requirements phase form a
deployment scenario. The deployment scenario is the basis for designing the deployment
architecture, which occurs in the next phase, deployment design.

When developing a logical architecture you need to identify not only the components that
provide services to users, but also other components that provide necessary middleware and
platform services. Infrastructure service dependencies and logical tiers provide two
complementary ways of performing this analysis.

Infrastructure service dependencies and logical tiers are two of the three dimensions of the
solution architecture upon which Sun JavaTM Enterprise System is based. The three dimensions
are listed below and are also represented in “About Logical Architectures” on page 45.

4C H A P T E R 4

45

■ Infrastructure service dependencies. Interacting software components that provide
enterprise services. The software components require an underlying set of infrastructure
services that allows the distributed components to communicate with each other and to
interoperate.

■ Logical tiers. A logical organization of software components into tiers that represent the
logical and physical independence of software components, based on the nature of the
services they provide.

■ Quality of service. System service qualities, such as performance, availability, scalability,
and others that represent particular aspects of a software solution’s design and operation.

Note – For more information on Java Enterprise System architecture concepts, refer to the “Java
Enterprise System Architecture” chapter in the Sun Java Enterprise System 5 Technical
Overview.

A logical architecture depicts infrastructure service levels by showing the necessary
components and their dependencies. A logical architecture also distributes the components
among logical tiers that represent presentation, business, and data services that can be
ultimately accessed by a client tier. Quality of service requirements are not modeled in the
logical architecture but are paired with the logical architecture in a deployment scenario.

Designing a Logical Architecture
When you design a logical architecture, use the use cases identified during the technical
requirements phase to determine the Java Enterprise System components that provide the
services necessary for the solution. You must also identify any components providing services
to the components you initially identify.

Logical Tiers

Quality
 of S

ervice

Infrastructure
 Service
 Dependencies

P
erform

ance
A

vailability
S

ecurity
S

calability
S

erviceability

Busin
ess

 Servi
ce

Clie
nt

Data
Prese

ntatio
n

Platform Services

Middleware Services

Application Services

Designing a Logical Architecture

Sun Java Enterprise System Deployment Planning Guide • March 200746

You place the Java Enterprise System components within the context of a multitiered
architecture according to the type of services that they provide. Understanding the components
as part of a multitiered architecture helps you later determine how to distribute the services
provided by the components and also helps determine a strategy for implementing quality of
service (such as scalability, availability, and others.)

Additionally, you can provide another view of the logical components that places them within
secure access zones. The section “Access Zones” on page 61 provides an example of secure
access zones.

Java Enterprise System Components
Java Enterprise System consists of interacting software components providing enterprise
services that you can use to build your enterprise solution. The following figure shows the key
software components provided with Java Enterprise System. The Sun Java Enterprise System 5
Technical Overview provides additional information on Java Enterprise System components
and the services they provide.

Java Enterprise System Components

Chapter 4 • Logical Design 47

Component Dependencies
When identifying Java Enterprise System components for a logical architecture, you need to
also identify supporting components. For example, if you identify Messaging Server as a
necessary component to a logical architecture, then your logical architecture must also include
Directory Server and possibly Access Manager. Messaging Server depends on Directory Server
for directory services and Access Manager for solutions requiring single sign-on.

The following table lists dependencies of Java Enterprise System components. Refer to
“Component Dependencies” on page 48 for a visual representation of dependencies among key
components. When designing a logical architecture, use this table and accompanying figure to
determine dependent components in your design.

Persistence

Messaging

Runtime

Application
Server

Web
Server

Message
Queue

Middleware
Services

Directory
Server

Security and Policy
Access

Manager

User Collaboration

Integration

Instant
Messaging

Calendar
Server

Messaging
Server

Application
Services

Portal
Server

Operating System Platform

Network Transport

Platform
Services

HP-UXWindowsLinuxSolaris

FIGURE 4–1 Java Enterprise System Components

Java Enterprise System Components

Sun Java Enterprise System Deployment Planning Guide • March 200748

TABLE 4–1 Java Enterprise System Component Dependencies

Java Enterprise System Component Depends On

Application Server Message QueueDirectory Server (optional)

Calendar Server Messaging Server (for email notification service)Access
Manager (for single sign-on)Web Server (for web
interface)Directory Server

Communications Express Access Manager (for single sign-on)Calendar ServerMessaging
ServerInstant MessagingWeb Server (for web
interface)Directory Server

Directory Proxy Server Directory Server

Directory Server None

Access Manager Application Server or Web ServerDirectory Server

Instant Messaging Access Manager (for single sign-on)Directory Server

Message Queue Directory Server (optional)

Messaging Server Access Manager (for single sign-on)Web Server (for web
interface)Directory Server

Portal Server If configured to use Portal Server Channels:

Calendar ServerMessaging ServerInstant Messaging

Access Manager (for single sign-on)Application Server or Web
ServerDirectory Server

Portal Server Secure Remote Access Portal Server

Web Server Access Manager (optional, for access control

Note – The dependencies among Java Enterprise System components listed in “Component
Dependencies” on page 48 does not list all component dependencies. “Component
Dependencies” on page 48 does not list dependencies that you must consider when planning for
installation. For a complete list of Java Enterprise System dependencies, refer to the Sun Java
Enterprise System 5 Installation Guide for UNIX.

Web Container Support

Java Enterprise System Components

Chapter 4 • Logical Design 49

The previous section, “Component Dependencies” on page 48 does not account for the web
container in which Portal Server and Access Manager run. This web container can be provided

Messaging Server Dependencies

Messaging
Server

Directory
Server

Access
Manager

For single sign-on

Calendar Server Dependencies

Calendar
Server

Access
Manager

Messaging
Server

Directory
Server

For single sign-on

For email
notification

Portal Server Dependencies*

Instant
Messaging

Portal
Server

Messaging
Server

Access
Manager

Calendar
Server

*Configured to use Portal Server channels for
Calendar, Messaging, and Instant Messaging

Directory
Server

For single sign-on

Access Manager Dependencies

Access
Manager

Directory
Server

Instant Messaging Dependencies

Instant
Messaging

Directory
Server

Directory
Server

Access
Manager

For single sign-on

Communications Express Dependencies

Directory
Server

Communications
Express

Instant
Messaging

Messaging
Server

Calendar
Server

Access
Manager

For single sign-on

FIGURE 4–2 Java Enterprise System Component Dependencies

Java Enterprise System Components

Sun Java Enterprise System Deployment Planning Guide • March 200750

by Application Server, Web Server, or a third-party product. When designing a logical
architecture that includes Portal Server or Access Manager be sure to account for the web
container required for these components.

Logically Distinct Services Provided by Messaging
Server
The Java Enterprise System Messaging Server can be configured to provide separate instances
that provide the following logically distinct services:

■ Message Transfer Agent
■ Message Multiplexor
■ Message Express Multiplexor
■ Message Store

These various configurations of Messaging Server provide functionality that can be deployed on
separate physical servers and can be represented in different tiers of a logical architecture.
Because these configurations for Messaging Server represent logically distinct services in
separate tiers, consider them as logically distinct components when designing a logical
architecture. The section “Example Logical Architectures” on page 53 provides an example of
logically distinct components.

The following table describes the logically distinct configurations of Messaging Server.

TABLE 4–2 Messaging Server Configurations

Subcomponent Description

Message Transfer Agent (MTA) Supports the sending of email by handling SMTP connections, routing
emails, and delivering messages to the proper message stores. The MTA
components can be configured to support email sent from outside the
enterprise (inbound) or sent from within the enterprise (outbound).

Message Store (STR) Provides for the retrieval and storage of email messages.

Message Multiplexor (MMP) Supports the retrieval of email by accessing the message store for email
clients, using either IMAP or POP protocols.

Messenger Express Multiplexor
(MEM)

Supports the retrieval of email by accessing the message store on behalf of
web- based (HTTP) clients.

Access Components
Java Enterprise System also contains components that provide access to system services, often
from outside an enterprise firewall. Some configurations of Messaging Server can also provide

Java Enterprise System Components

Chapter 4 • Logical Design 51

network access, such as Messaging Server configured for message multiplexor. The following
table describes Java Enterprise System components that provide remote access to system
services.

TABLE 4–3 Java Enterprise System Components Providing Remote Access

Component Description

Directory Proxy Server Provides enhanced directory access, schema compatibility, routing, and
load balancing for multiple Directory Server instances.

Portal Server, Portal Server
Secure Remote Access

Provides secure Internet access from outside a corporate firewall to Portal
Server content and services, including internal portals and Internet
applications.

Portal Server, Portal Server
Mobile Access

Provides wireless access from mobile devices and voice access to Portal
Server.

Messaging Server Message
Multiplexor (MMP)

Supports the retrieval of email by accessing the message store on behalf of
web-based (HTTP) clients.

Components providing remote access are generally deployed in secures access zones, as
illustrated by the example in the section “Access Zones” on page 61.

Multitiered Architecture Design
Java Enterprise System is well-suited for multitiered architecture design, where services are
placed in tiers according to the functionality they provide. Each service is logically independent
and can be accessed by services in either the same tier or a different tier. The following figure
depicts a multitiered architecture model for enterprise applications, illustrating the client,
presentation, business service, and data tiers.

Presentation TierClient Tier Business Service Tier Data Tier

Service

Service

Service

DB
ServicesService

Service
Directory
Services

FIGURE 4–3 Multitiered Architecture Model

Java Enterprise System Components

Sun Java Enterprise System Deployment Planning Guide • March 200752

The following table describes the logical tiers depicted in “Multitiered Architecture Design” on
page 52.

TABLE 4–4 Logical Tiers in a Multitiered Architecture

Tier Description

Client tier Contains client applications that present information to end users. For Java
Enterprise System, these applications are typically mail clients, web
browsers, or mobile access clients.

Presentation tier Provides services that display data to end users, allowing users to process
and manipulate the presentation. For example, a web mail client or Portal
Server component allows users to modify the presentation of information
they receive.

Business service tier Provides back-end services that typically retrieve data from the data tier to
provide to other services within the presentation or business service tiers or
directly to clients in the client tier. For example, Access Manager provides
identity services to other Java Enterprise System components.

Data tier Provides database services accessed by services within the presentation tier
or business service tier. For example, Directory Server provides LDAP
directory access to other services.

Multitiered architecture design provides several advantages. During the deployment design
phase, the placement of services according to functionality in a multitiered architecture helps
you determine how to distribute services in your network. You also can see how components
within the architecture access services of other components. This visualization helps you plan
for availability, scalability, security, and other quality of service solutions.

Example Logical Architectures
This section provides some examples of logical architectures for Java Enterprise System
solutions. These examples show how you place logical components within the appropriate tiers
of a multitiered architecture and then analyze the relationships between the components by
studying the use cases. Use the logical architectures examples in this section as a basis for
understanding logical architecture design in Java Enterprise System solutions.

The first example is a basic Messaging Server solution that illustrates how the logically distinct
components of Messaging Server interact with other components. The second example shows a
logical architecture for an identity-based deployment solution that might be appropriate for a
medium-sized enterprise of about 1,000 to 5,000 employees.

Example Logical Architectures

Chapter 4 • Logical Design 53

Messaging Server Example
The following figure shows a basic logical architecture for a deployment of Messaging Server.
This logical architecture shows only the logically distinct components required for Messaging
Server. Later figures illustrate the relationships among these components.

Note – Typically, a deployment of Messaging Server is part of an enterprise solution that
includes other Java Enterprise System components, as illustrated in “Identity-Based
Communications Example” on page 58.

The following table describes the components depicted in “Messaging Server Example” on

page 54.

TABLE 4–5 Components in Messaging Server Logical Architecture

Component Description

Email clients Client applications for reading and sending email.

Messaging Server MTA Messaging Server configured as a message transfer agent (MTA) to receive,
route, transport, and deliver email messages.

Messaging Server MMP Messaging Server configured as a message multiplexor (MMP) to route
connections to appropriate message stores for retrieval and storage. MMP
accesses Directory Server to look up directory information to determine the
proper message store.

Presentation TierClient Tier Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Data Tier

Comms
Express

Messaging
Server
STR

DBMS

Directory
Server

Browser-
Based
Clients

E-mail
Clients

LDAP

FIGURE 4–4 Logical Architecture for Messaging Server Deployment

Example Logical Architectures

Sun Java Enterprise System Deployment Planning Guide • March 200754

TABLE 4–5 Components in Messaging Server Logical Architecture (Continued)
Component Description

Messaging Server STR Messaging Server configured as a message store for retrieval and storage of
email messages.

Directory Server Provides access to LDAP directory data.

The logical architecture does not specify replication of services for the Messaging Server
components. For example, enterprise deployments typically create separate inbound and
outbound MTA instances but “Messaging Server Example” on page 54 shows only one MTA
component. The replication of logical components into multiple instances is a design decision
that you make during the deployment design phase.

Messaging Server Use Cases
Use cases help identify the relationships among the logical components in an architecture. By
mapping the interactions between the components according to the use cases, you get a visual
picture of component interaction that is helpful in deployment design.

Typically, you analyze each use case to determine the interaction of components prior to
deployment design. The following three use cases are typical for Messaging Server and show
interactions among the logical components.

▼ Use Case 1: User Logs in Successfully to Messaging Server

Email client sends login information to Messaging Server Multiplexor (MMP)

MMP requests verification of user ID and password from Directory Server.

Directory Server returns verification to MMP.

MMP requests message list from Messaging Server Message Store (STR).

STR requests user’s LDAP record from Directory Server.

Directory Server returns user’s LDAP record to STR.

STR returns message list to MMP.

MMP forwards message list to email client.

1

2

3

4

5

6

7

8

Example Logical Architectures

Chapter 4 • Logical Design 55

▼ Use Case 2: Logged-In User Reads and Deletes Mail

Email client requests message to read from Messaging Server Multiplexor (MMP).

MMP requests message from Messaging Server Message Store (STR).

STR returns message to MMP.

MMP forward message to email client.

Email client sends deletes message action to MMP.

MMP forwards delete message action to STR.

STR deletes message from database and sends confirmation to MMP.

MMP forwards delete confirmation to email client.

8

Data Tier

6

5

4

Business Services Tier

3

1

Presentation TierClient Tier

Messaging
Server
MTA

Messging
Server
MMP

Comms
Express

Messaging
Server
STR

DBMS

Directory
Server

Browser-
Based
Clients

E-mail
Clients

LDAP

2

7

1

2

3

4

5

6

7

8

Example Logical Architectures

Sun Java Enterprise System Deployment Planning Guide • March 200756

▼ Use Case 3: Logged-In User Sends Email Message

Email client sends message composed in client to Messaging Server Message Transfer Agent
(MTA).

MTA requests verification of user ID and password from Directory Server.

Directory Server returns verification to MTA.

MTA checks Directory Server for the destination domain for each recipient.

Directory Server returns to MTA the destination domain for each recipient.

MTA forwards message to each recipient.

MTA forwards message to Messaging Server Message Store (STR) to store message in outbox.

MTA sends confirmation to email client.

8 7

65

4

21

Presentation TierClient Tier Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Data Tier

Comms
Express

Messaging
Server
STR

DBMS

Directory
Server

Browser-
Based
Clients

E-mail
Clients

LDAP

3

1

2

3

4

5

6

7

8

Example Logical Architectures

Chapter 4 • Logical Design 57

Identity-Based Communications Example
This example illustrates an identity-based communications solution for a medium-sized
enterprise of about 1,000 to 5,000 employees. Typically, an exhaustive business analysis
followed by detailed technical requirements analysis is needed to design the logical architecture.
However, because this is a theoretical example, assume that the following business
requirements have been determined:

■ Employees of the enterprise require personalized access to internal web sites,
communications services, calendar services, and other resources.

■ Enterprise-wide authentication and authorization provide access to the internal web sites
and other services.

■ Single identity is tracked across all enterprise services, enabling a single sign-on (SSO) that
provides access to the internal websites and other services.

Use cases for this example would detail login procedures, reading email, sending email,
personalizing the portal, synchronizing calendars, and other similar user activities.

The following figure shows a logical architecture for this type of identity-based
communications solution.

8

7

6

5

Data Tier

4
2

Presentation TierClient Tier Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Comms
Express

Messaging
Server
STR

DBMS

Directory
Server

Browser-
Based
Clients

E-mail
Clients

LDAP

3

1

Example Logical Architectures

Sun Java Enterprise System Deployment Planning Guide • March 200758

Use Cases for Identity-Based Communications Example
For a deployment solution of this nature, there typically are numerous detailed use cases
outlining the user interaction with the services provided by the solution. This example focuses
on the interaction among components when a user logs into a portal from a web browser client.
The example splits this login scenario into two use cases:
■ User logs in, becomes authenticated, and Portal Server retrieves the user’s portal

configuration.
■ Portal Server retrieves email and calendar information to display in the web client.

The two use cases can be considered one extended use case. However, for this example, the use
cases are separated for simplicity.

▼ Use Case 1: User Logs in Successfully and Portal Retrieves User’s
Configuration

Web browser client sends user ID and password to Portal Server.

Portal Server requests authentication from Access Manager.

Access Manager requests verification of user ID and password from Directory Server.

Directory Server verifies user ID and password.

Access Manager requests user profile from Directory Server.

Client Tier

Web
Browser
Clients

E-mail
Clients

Presentation Tier

Portal
Server

Comms
Express

Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Access
Manager

Data Tier

Messaging
Server
(STR)

Directory
Server

Calendar
Server

(Back-end)

DBMS

LDAP

DBMS

1

2

3

4

5

Example Logical Architectures

Chapter 4 • Logical Design 59

Directory Server returns user profile.

Portal Server requests user display profile from Access Manager.

Access Manager returns portal configuration.

Portal configuration is displayed in web browser client.

▼ Use Case 2: Portal Server Displays Email and Calendar Information

After successful log in, authentication, and retrieval of portal configuration, Portal Server
requests email messages from Messaging Server MMP.

MMP requests message list from Messaging Server STR.

STR returns message list to MMP.

MMP forwards message headers to Portal Server.

Portal Server requests calender information from Communications Express.

Communications Express requests calendar information from Calendar Server backend.

Calendar Server backend returns calendar information to Communications Express.

Communications Express forwards calendar information to Portal Server.

Client Tier

Web
Browser
Clients

E-mail
Clients

Presentation Tier

Portal
Server

Comms
Express

Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Access
Manager

Data Tier

Messaging
Server
(STR)

Directory
Server

Calendar
Server

(Back-end)

DBMS

LDAP

DBMS

1

2

3
4 5

6

7

8

9

6

7

8

9

1

2

3

4

5

6

7

8

Example Logical Architectures

Sun Java Enterprise System Deployment Planning Guide • March 200760

Portal Server sends all channel information to web browser client.

Access Zones
Another way to represent the components of a logical architecture is to place them in access
zones that show how the architecture provides secure access. The following figure illustrates
access zones for deploying Java Enterprise System components. Each access zone shows how
components provide secure remote access to and from the Internet and intranet.

Client Tier

Web
Browser
Clients

E-mail
Clients

Presentation Tier

Portal
Server

Comms
Express

Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Access
Manager

Data Tier

Messaging
Server
(STR)

Directory
Server

Calendar
Server

(Back-end)

DBMS

LDAP

DBMS

1

2

3

4

5

6

7

8

9

9

Access Zones

Chapter 4 • Logical Design 61

The following table describes the access zones depicted in “Access Zones” on page 61.

TABLE 4–6 Secure Access Zones and Components Placed Within Them

Access Zone Description

Internal access zone(Intranet) Access to the Internet through policies enforced by a firewall between the
intranet and the Internet. The Internal access zone is typically used by end
users for web browsing and for sending email.

In some cases, direct access to the Internet for web-browsing is allowed.
However, typically secure access to and from the Internet is provided
through the external access zone.

Firewall (Policy Enforced)

Firewall (Policy Enforced)

Internet

Internal Access Zone (Intranet)

Mail Client Web Client

Access
Manager

Directory
Server

Secure Access Zone (Back-end)

Portal
Server

Messaging
Server
(STR)

Application
Server

Firewall (Policy Enforced)

Portal
Server SRA

Messaging
Server
(MMP)

Portal Server
Mobile
Access

External Access Zone (DMZ)

Application
Server

Messaging
Server
(MTA)

Directory
Proxy
Server

Load Balancer

FIGURE 4–5 Logical Components Placed in Access Zones

Access Zones

Sun Java Enterprise System Deployment Planning Guide • March 200762

TABLE 4–6 Secure Access Zones and Components Placed Within Them (Continued)
Access Zone Description

External access zone(DMZ) Provides secure access to and from the Internet, acting as a security buffer to
critical back-end services.

Secure access zone(Back-end) Provides restricted access to critical back-end services, which can only be
accessed from the external access zone.

“Access Zones” on page 61 does not illustrate the logical tiers depicted in the previous examples,
but instead focuses on which components provide remote and internal access, the relationship
of these components to security measures such as firewalls, and a visual depiction of access rules
that must be enforced. Use the multi-tier architecture design in combination with the design
showing access zones to provide a logical model of your planned deployment.

Deployment Scenario
The completed logical architecture design by itself is not sufficient to move forward to the
deployment design phase of the solution life cycle. You need to pair the logical architecture with
the quality of service (QoS) requirements determined during the technical requirements phase.
The pairing of the logical architecture with the QoS requirements constitutes a deployment
scenario. The deployment scenario is the starting point for designing the deployment
architecture, as explained in Chapter 5.

Deployment Scenario

Chapter 4 • Logical Design 63

64

Deployment Design

During the deployment design phase of the solution life cycle, you design a high-level
deployment architecture and a low-level implementation specification, and prepare a series of
plans and specifications necessary to implement the solution. Project approval occurs in the
deployment design phase.

This chapter contains the following sections:

■ “About Deployment Design” on page 65
■ “Deployment Design Methodology” on page 68
■ “Estimating Processor Requirements” on page 69
■ “Estimating Processor Requirements for Secure Transactions” on page 74
■ “Determining Availability Strategies” on page 76
■ “Determining Strategies for Scalability” on page 84
■ “Identifying Performance Bottlenecks” on page 85
■ “Designing for Optimum Resource Usage” on page 88
■ “Managing Risks” on page 89
■ “Example Deployment Architecture” on page 90

About Deployment Design
Deployment design begins with the deployment scenario created during the logical design and
technical requirements phases of the solution life cycle. The deployment scenario contains a
logical architecture and the quality of service (QoS) requirements for the solution. You map the
components identified in the logical architecture across physical servers and other network
devices to create a deployment architecture. The QoS requirements provide guidance on
hardware configurations for performance, availability, scalability, and other related QoS
specifications.

Designing the deployment architecture is an iterative process. You typically revisit the QoS
requirements and reexamine your preliminary designs. You take into account the

5C H A P T E R 5

65

interrelationship of the QoS requirements, balancing the trade-offs and cost of ownership issues
to arrive at an optimal solution that ultimately satisfies the business goals of the project.

Project Approval
Project approval occurs during the deployment design phase, generally after you have created
the deployment architecture. Using the deployment architecture and possibly also
implementation specifications described below, the actual cost of the deployment is estimated
and submitted to the stakeholders for approval. Once the project is approved, contracts for
completion of the deployment are signed and resources to implement the project are acquired
and allocated.

Deployment Design Outputs
During the deployment design phase, you might prepare any of the following specifications and
plans:

■ Deployment architecture. A high-level architecture that depicts the mapping of a logical
architecture to a physical environment. The physical environment includes the computing
nodes in an intranet or Internet environment, processors, memory, storage devices, and
other hardware and network devices.

■ Implementation specifications. Detailed specifications used as a blueprint for building the
deployment. These specifications provide specifics on the computer and network hardware
to acquire and describe the network layout for the deployment. Implementation
specifications also include specifications for directory services, including details on a
directory information tree (DIT) and the groups and roles defined for directory access.

■ Implementation plans. A group of plans that cover various aspects of implementing an
enterprise software solution. Implementation plans include the following:
■ Migration plan. Describes the strategies and processes for migrating enterprise data and

upgrading enterprise software. The migrated data must conform to the formats and
standards of the newly installed enterprise applications. All enterprise software must be
at correct release version levels to interoperate.

■ Installation plan. Derived from the deployment architecture, specifies hardware server
names, installation directories, installation sequence, types of installation for each node,
and the configuration information necessary to install and configure a distributed
deployment.

■ User management plan. Includes migration strategies for data in existing directories and
databases, directory design specifications that takes into account replication design
specified in the deployment architecture, and procedures for provisioning directories
with new content.

About Deployment Design

Sun Java Enterprise System Deployment Planning Guide • March 200766

■ Test plan. Describes the procedures for testing the deployed software, including specific
plans for developing prototype and pilot implementations, stress tests that determine the
ability to handle projected loads, and functional tests that determine if planned
functionality operates as expected.

■ Roll-out plan. Describes the procedures and schedule for moving the implementation
from a planning and test environment to a production environment. Moving an
implementation into production usually occurs in various phases. For example, the first
phase might be deploying the software for a limited group of users and increasing the
user base with each phase until the entire deployment is complete. Phased
implementation can also include scheduled implementation of specific software
packages until the entire deployment is complete.

■ Disaster recovery plan. Describes procedures on how to restore the system from
unexpected system-wide failures. The recovery plan includes procedures for both large
scale and small scale failures.

■ Operations plan (Run Book). A manual of operations that describes monitoring,
maintenance, installation, and upgrade procedures.

■ Training plan. Contains processes and procedures for training operators,
administrators, and end users on the newly installed enterprise software.

Factors Affecting Deployment Design
Several factors influence the decisions you make during deployment design. Consider the
following key factors:

■ Logical Architecture. The logical architecture details the functional services in a proposed
solution and the interrelationships of the components providing those services. Use the
logical architecture as a key to determining the best way to distribute services. A deployment
scenario contains the logical architecture paired with quality of service requirements
(described below).

■ Quality of service requirements. The quality of service (QoS) requirements specify various
aspects of a solution’s operation. Use the QoS requirements to help develop strategies to
achieve performance, availability, scalability, serviceability, and other quality of service
goals. A deployment scenario contains the logical architecture (described previously) paired
with quality of service requirements.

■ Usage analysis. Usage analysis, developed during the technical requirements phase of the
solution life cycle, provides information on usage patterns that can help estimate load and
stress on a deployed system. Use the usage analysis to help isolate performance bottlenecks
and develop strategies to satisfy QoS requirements.

About Deployment Design

Chapter 5 • Deployment Design 67

■ Use cases. Use cases, developed during the technical requirements phase of the solution life
cycle, lists distinct user interactions identified for a deployment, often identifying the most
common use cases. Although the use cases are embodied in the usage analysis, when
assessing a deployment design you should refer to the use cases to make sure that they are
properly addressed.

■ Service level agreements. A service level agreement (SLA) specifies minimum performance
requirements, and when those requirements are not met, the level and extent of customer
support that must be provided. A deployment design should easily meet the performance
requirements specified in a service level agreement.

■ Total cost of ownership. During deployment design you analyze potential solutions that
address the QoS requirements for availability, performance, scalability, and others.
However, for each solution you consider, you must also consider the cost of that solution
and how that cost impacts the total cost of ownership. Make sure that you consider the
trade-offs embodied by your decisions and that you have optimized your resources to
achieve business requirements within business constraints.

■ Business goals. Business goals are stated during the business analysis phase of the solution
life cycle and include the business requirements and business constraints to meet those
goals. Deployment design is ultimately judged by its ability to satisfy the business goals.

Deployment Design Methodology
As with other aspects of deployment planning, deployment design is as much an art as it is a
science and cannot be detailed with specific procedures and processes. Factors that contribute
to successful deployment design are past design experience, knowledge of systems architecture,
domain knowledge, and applied creative thinking.

Deployment design typically revolves around achieving performance requirements while
meeting other QoS requirements. The strategies you use must balance the trade-offs of your
design decisions to optimize the solution. The methodology you use typically involves the
following tasks:
■ Estimating processor requirements. Deployment design often begins with estimating the

number of CPUs needed for each component in the logical architecture. Start with the use
cases representing the heaviest load and continue through each use case. Consider the load
on all components providing support to the use cases, and modify your estimates
accordingly. Also consider any previous experience you have with designing enterprise
systems.

■ Estimating processor requirements for secure transport. Study the use cases that require
secure transport and modify CPU estimates accordingly.

■ Replicating services for availability and scalability. Once you are satisfied with the
processor estimates, make modifications to the design to account for QoS requirements for
availability and scalability. Consider load balancing solutions that address availability and
failover considerations.

Deployment Design Methodology

Sun Java Enterprise System Deployment Planning Guide • March 200768

During your analysis, consider the trade-offs of your design decisions. For example, what
affect does the availability and scalability strategy have on serviceability (maintenance) of
the system? What are the others costs of the strategies?

■ Identifying bottlenecks. As you continue with your analysis, examine the deployment
design to identify any bottlenecks that cause the transmission of data to fall beneath
requirements, and make adjustments.

■ Optimizing resources. Review your deployment design for resource management and
consider options that minimizes costs while fulfilling requirements.

■ Managing risks. Revisit your business and technical analyses with respect to your design,
making modifications to account for events or situations that might not have been foreseen
in the earlier planning.

Estimating Processor Requirements
This section discusses a process for estimating the number of CPU processors and
corresponding memory that are necessary to support the services in a deployment design. The
section includes a walkthrough of an estimation process for an example communications
deployment scenario.

The estimation of CPU computing power is an iterative process that considers the following:
■ Logical components and their interactions (as indicated by component dependencies in the

logical architecture)
■ Usage analysis for the identified use cases
■ Quality of service requirements
■ Past experience with deployment design and with Java Enterprise System
■ Consultation with Sun professional services who have experience with designing and

implementing various types of deployment scenarios

The estimation process includes the following steps. The ordering of these steps is not critical,
but provides one way to consider the factors that affect the final result.

1. Determine a baseline CPU estimate for components identified as user entry points to the
system.
One design decision is whether to fully load or partially load CPUs. Fully loaded CPUs
maximize the capacity of a system. To increase the capacity, you incur the maintenance cost
and possible downtime of adding additional CPUs. In some cases, you can choose to add
additional machines to meet growing performance requirements.
Partially loaded CPUs allow room to handle excess performance requirements without
immediately incurring maintenance costs. However, there is an additional up front expense
of the under-utilized system.

2. Make adjustments to the CPU estimates to account for interactions between components.

Estimating Processor Requirements

Chapter 5 • Deployment Design 69

Study the interactions among components in the logical architecture to determine the extra
load required because of dependent components.

3. Study the usage analysis for specific use cases to determine peak loads for the system, and
then make adjustments to components that handle the peak loads.
Start with the most heavily weighted use cases (those requiring the most load), and continue
with each use case to make sure you account for all projected usage scenarios.

4. Make adjustments to the CPU estimates to reflect security, availability, and scalability
requirements.

This estimation process provides starting points for determining the actual processing power
you need. Typically, you create prototype deployments based on these estimates and then
perform rigorous testing against expected use cases. Only after iterative testing can you
determine the actual processing requirements for a deployment design.

Example Estimating Processor Requirements
This section illustrates one methodology to estimate processing power required for an example
deployment. The example deployment is based on the logical architecture for the identity-based
communications solution for a medium-sized enterprise of about 1,000 to 5,000 employees, as
described in the section “Identity-Based Communications Example” on page 58.

The CPU and memory figures used in the example are arbitrary estimates for illustration only.
These figures are based on arbitrary data upon which the theoretical example is based. An
exhaustive analysis of various factors is necessary to estimate processor requirements. This
analysis would include, but not be limited to, the following information:

■ Detailed use cases and usage analysis based on an exhaustive business analysis
■ Quality of service requirements determined by analysis of business requirements
■ Specific costs and specifications of processing and networking hardware
■ Past experience implementing similar deployments

Caution – The information presented in these examples do not represent any specific
implementation advice, other than to illustrate a process you might use when designing a
system.

Determine Baseline CPU Estimate for User Entry Points
Begin by estimating the number of CPUs required to handle the expected load on each
component that is a user entry point. The following figure shows the logical architecture for an
identity-based communications scenario described previously in “Identity-Based
Communications Example” on page 58.

Estimating Processor Requirements

Sun Java Enterprise System Deployment Planning Guide • March 200770

The following table lists the components in the presentation tier of the logical architecture that
interface directly with end users of the deployment. The table includes baseline CPU estimates
derived from analysis of technical requirements, use cases, specific usage analysis, and past
experience with this type of deployment.

TABLE 5–1 CPU Estimates for Components Containing Access User Entry Points

Component Number of CPUs Description

Portal Server 4 Component that is a user entry point.

Communications
Express

2 Routes data to Portal Server messaging and calendar
channels.

Include CPU Estimates for Service Dependencies
The components providing user entry points require support from other Java Enterprise
System components. As you continue to specify performance requirements, add the
performance estimates required for supporting components. The type of interactions among
components should be detailed when designing the logical architecture, as described in the
logical architecture examples in the section “Example Logical Architectures” on page 53.

Client Tier

Web
Browser
Clients

E-mail
Clients

Presentation Tier

Portal
Server

Comms
Express

Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Access
Manager

Data Tier

Messaging
Server
(STR)

Directory
Server

Calendar
Server

(Back-end)

DBMS

LDAP

DBMS

FIGURE 5–1 Logical Architecture for Identity-Based Communications Scenario

Estimating Processor Requirements

Chapter 5 • Deployment Design 71

TABLE 5–2 CPU Estimates for Supporting Components

Component CPUs Description

Messaging Server MTA(inbound) 1 Routes incoming mail messages from Communications
Express and e-mail clients.

Messaging Server MTA(outbound) 1 Routes outgoing mail messages to recipients.

Messaging Server MMP 1 Access Messaging Server message store for email clients.

Messaging Server STR(Message
Store)

1 Retrieves and stores email messages.

Access Manager 2 Provides authorization and authentication services.

Calendar Server(back-end) 2 Retrieves and stores calendar data for Communications
Express, a Calendar Server front-end.

Directory Server 2 Provides LDAP directory services.

Web Server 0 Provides web container support for Portal Serverand Access
Manager.

(No additional CPU cycles required.)

Study Use Cases for Peak Load Usage
Return to the use cases and usage analysis to identify areas of peak load usage and make
adjustments to your CPU estimates.

For example, suppose for this example you identify the following peak load conditions:

■ Initial ramp up of users as they log on simultaneously
■ Email exchanges during specified time frames

To account for this peak load usage, make adjustment to the components providing these
services. The following table outlines adjustments you might make to account for this peak load
usage.

TABLE 5–3 CPU Estimate Adjustments for Peak Load

Component CPUs (Adjusted) Description

Messaging Server MTAinbound 2 Add 1 CPU for peak incoming email

Messaging Server MTAoutbound 2 Add 1 CPU for peak outgoing email

Messaging ServerMMP 2 Add 1 CPU for additional load

Messaging Server STR(Message
Store)

2 Add 1 CPU for additional load

Estimating Processor Requirements

Sun Java Enterprise System Deployment Planning Guide • March 200772

TABLE 5–3 CPU Estimate Adjustments for Peak Load (Continued)
Component CPUs (Adjusted) Description

Directory Server 3 Add 1 CPU for additional LDAP lookups

Modify Estimates for Other Load Conditions
Continue with your CPU estimates to take into account other quality of service requirements
that can impact load:

■ Security. From the technical requirements phase, determine how secure transport of data
might affect the load requirements and make corresponding modifications to your
estimates. The following section, “Estimating Processor Requirements for Secure
Transactions” on page 74 describes a process for making adjustments.

■ Replication of services. Adjust CPU estimates to account for replication of services for
availability, load balancing, and scalability considerations. The following section,
“Determining Availability Strategies” on page 76, discusses sizing for availability solutions.
The section “Determining Strategies for Scalability” on page 84 discusses solutions
involving available access to directory services.

■ Latent capacity and scalability. Modify CPU estimates as necessary to allow latent capacity
for unexpected large loads on the deployment. Look at the anticipated milestones for scaling
and projected load increase over time to make sure you can reach any projected milestones
to scale the system, either horizontally or vertically.

Update the CPU Estimates
Typically, you round up CPUs to an even number. Rounding up to an even number allows you
to evenly split the CPU estimates between two physical servers and also adds a small factor for
latent capacity. However, round up according to your specific needs for replication of services.

As a general rule, allow 2 gigabytes of memory for each CPU. The actual memory required
depends on your specific usage and can be determined in testing.

The following table lists the final estimates for the identity-based communications example.
These estimates do not include any additional computing power that could have been added for
security and availability. Totals for security and availability will be added in following sections.

TABLE 5–4 CPU Estimate Adjustments for Supporting Components

Component CPUs Memory

Portal Server 4 8 GB

Communications Express 2 4 GB

Messaging Server(MTA, inbound) 2 4 GB

Estimating Processor Requirements

Chapter 5 • Deployment Design 73

TABLE 5–4 CPU Estimate Adjustments for Supporting Components (Continued)
Component CPUs Memory

Messaging Server(MTA,
outbound)

2 4 GB

Messaging Server(MMP) 2 4 GB

Messaging Server(Message Store) 2 4 GB

Access Manager 2 4 GB

Calendar Server 2 4 GB

Directory Server 4 8 GB (Rounded up from 3 CPUs/6 GB memory)

Web Server 0 0

Estimating Processor Requirements for Secure Transactions
Secure transport of data involves handling transactions over a secure transport protocol such as
Secure Sockets Layer (SSL) or Transport Layer Security (TLS). Transactions handled over a
secure transport typically require additional computing power to first, establish a secure session
(known as the handshake) and then to encrypt and decrypt transported data. Depending on the
encryption algorithm used (for example, 40-bit or 128-bit encryption algorithms), the
additional computing power can be substantial.

For secure transactions to perform at the same level as nonsecure transactions, you must plan
for additional computing power. Depending on the nature of the transaction and the Sun JavaTM

Enterprise System services that handle it, secure transactions might require up to four times
more computing power than nonsecure transactions.

When estimating the processing power to handle secure transactions, analyze use cases to
determine the percentage of transactions that require secure transport. If the performance
requirements for secure transactions are the same as for non-secure transactions, modify the
CPU estimates to account for the additional computing power needed for the secure
transactions.

In some usage scenarios, secure transport might only be required for authentication. Once a
user is authenticated to the system, no additional security measures for transport of data is
required. In other scenarios, secure transport might be required for all transactions.

For example, when browsing a product catalog for an online e-commerce site, all transactions
can be nonsecure until the customer has finished making selections and is ready to “check out”
to make a purchase. However, some usage scenarios, such as deployments for banks or
brokerage houses, require most or all, transactions to be secure and apply the same
performance standard for both secure and nonsecure transactions.

Estimating Processor Requirements for Secure Transactions

Sun Java Enterprise System Deployment Planning Guide • March 200774

CPU Estimates for Secure Transactions
This section continues the example deployment to illustrate how to calculate CPU
requirements for a theoretical use case that includes both secure and nonsecure transactions.

To estimate the CPU requirements for secure transactions, make the following calculations:

1. Start with a baseline figure for the CPU estimates (as illustrated in the previous section,
“Example Estimating Processor Requirements” on page 70).

2. Calculate the percentage of transactions that require secure transport, and calculate the
CPU estimates for the secure transactions.

3. Calculate reduced CPU estimates for non-secure transactions.
4. Tally the secure estimate and nonsecure estimate to calculate the total CPU estimates.
5. Round up the total CPU estimate to an even number.

“CPU Estimates for Secure Transactions” on page 75 shows an example calculation based on
use cases and usage analysis for the Portal Server that assume the following:

■ All logins require secure authentication.
■ All logins account for 10% of the total Portal Server load.
■ The performance requirement for secure transactions is the same as the performance

requirement for non-secure transactions.
To account for the extra computing power to handle secure transactions, the number of
CPUs to handle these transactions will be increased by a factor of four. As with other CPU
figures in the example, this factor is arbitrary and is for illustration purposes only.

TABLE 5–5 Modifying CPU Estimates for Secure Transactions

Step Description Calculation Result

1 Start with baseline estimate for
all Portal Server transactions.

Baseline estimate from “Study Use Cases for Peak
Load Usage” on page 72 is 4 CPUs.

- - - - -

2 Calculate additional CPU
estimates for secure
transactions. Assume secure
transactions require four times
the CPU power as nonsecure
transactions.

Ten percent of the baseline estimate require
secure transport:

0.10 x 4 CPUs = 0.4 CPUs

Increase CPU power for secure transactions by a
factor of four:

4 x 0.4 = 1.6 CPUs

1.6 CPUs

3 Calculate reduced CPU
estimates for nonsecure
transactions.

Ninety percent of the baseline estimate are
non-secure:

0.9 x 4 CPUs = 3.6 CPUs

3.6 CPUs

Estimating Processor Requirements for Secure Transactions

Chapter 5 • Deployment Design 75

TABLE 5–5 Modifying CPU Estimates for Secure Transactions (Continued)
Step Description Calculation Result

4 Calculate adjusted total CPU
estimates for secure and
nonsecure transactions.

Secure estimate + non-secure estimate = total:

1.6 CPUs + 3.6 CPUs = 5.2 CPUs

5.2 CPUs

5 Round up to even number. 5.2 CPUs ==> 6 CPUs 6 CPUs

From the calculations for secure transactions in this example, you would modify the total CPU
estimates in “CPU Estimates for Secure Transactions” on page 75 by adding an additional two
CPUs and four gigabytes of memory to get the following total for Portal Server.

Component CPUs Memory

Portal Server 6 12 GB

Specialized Hardware to Handle SSL Transactions
Specialized hardware devices, such as SSL accelerator cards and other appliances, are available
to provide computing power to handle establishment of secure sessions and the encryption and
decryption of data. When using specialized hardware for SSL operations, computational power
is dedicated to some part of the SSL computations, typically the “handshake” operation that
establishes a secure session.

This hardware might be of benefit to your final deployment architecture. However, because of
the specialized nature of the hardware, estimate secure transaction performance requirements
first in terms of CPU power, and then consider the benefits of using specialized hardware to
handle the additional load.

Some factors to consider when using specialized hardware are whether the use cases support
using the hardware (for example, use cases that require a large number of SSL handshake
operations) and the added layer of complexity this type of hardware brings to the design. This
complexity includes the installation, configuration, testing, and administration of these devices.

Determining Availability Strategies
When developing a strategy for availability requirements, study the component interactions
and usage analysis to determine which availability solutions to consider. Do your analysis on a
component-by-component basis, determining a best-fit solution for availability and failover
requirements.

The following items are examples of the type of information you gather to help determine
availability strategies:

Determining Availability Strategies

Sun Java Enterprise System Deployment Planning Guide • March 200776

■ How many nines of availability are specified?
■ What are the performance specifications with respect to failover situations (for example, at

least 50% of performance during failover)?
■ Does the usage analysis identify times of peak and non-peak usage?
■ What are the geographical considerations?

The availability strategy you choose must also take into consideration serviceability
requirements, as discussed in “Designing for Optimum Resource Usage” on page 88. Avoid
complex solutions that require considerable administration and maintenance.

Availability Strategies
Availability strategies for Java Enterprise System deployments include the following:

■ Load balancing. Uses redundant hardware and software components to share a processing
load. A load balancer directs any requests for a service to one of multiple symmetric
instances of the service. If any one instance should fail, other instances are available to
assume a heavier load.

■ Failover. Involves managing redundant hardware and software to provide continuous access
of services and security for critical data if any component fails.

Sun Cluster software provides a failover solution for critical data managed by back-end
components such as the message storage for Messaging Server and calendar data for
Calendar Server.

■ Replication of services. Replication of services provides multiple sources for access to the
same data. Directory Server provides numerous replication and synchronization strategies
for LDAP directory access.

The following sections provide some examples of availability solutions that provide various
levels of load balancing, failover, and replication of services.

Single Server System
Place all computing resources for a service on a single server. If the server fails, the entire service
fails.

Determining Availability Strategies

Chapter 5 • Deployment Design 77

Sun provides high-end servers that provide the following benefits:

■ Replacement and reconfiguration of hardware components while the system is running
■ Ability to run multiple applications in fault-isolated domains on the server
■ Ability to upgrade capacity, performance speed, and I/O configuration without rebooting

the system

A high-end server typically costs more than a comparable multi-server system. However, a
single server provides savings on administration, monitoring, and hosting costs for servers in a
data center. Load balancing, failover, and removal of single points of failure is more flexible
with multi-server systems.

Horizontally Redundant Systems
There are several ways to increase availability with parallel redundant servers that provide both
load balancing and failover. The following figure illustrates two replicate servers providing an
N+1 failover system. An N+1 system has an additional server to provide 100% capacity should
one server fail.

The computing power of each server in “Horizontally Redundant Systems” on page 78 above is
identical. One server alone handles the performance requirements. The other server provides
100% of the performance when called into service as a backup.

The advantage of an N+1 failover design is 100% performance during a failover situation.
Disadvantages include increased hardware costs with no corresponding gain in overall
performance (because one server is a standby for use in failover situations only).

10 CPUs

Required performance: 10 CPUs

Place all CPUs that satisfy the performance
requirement on a single server.

The server is a single point of failure.

FIGURE 5–2 Single Server System

10 CPUs 10 CPUs

Required performance: 10 CPUs
Place all CPUs that satisfy the performance
requirement on two identical servers.

If one server fails, the other server provides
100% of performance requirement.

FIGURE 5–3 N+1 Failover System With Two Servers

Determining Availability Strategies

Sun Java Enterprise System Deployment Planning Guide • March 200778

The following figure illustrates a system that implements load balancing plus failover that
distributes the performance between two servers.

In the system depicted in “Horizontally Redundant Systems” on page 78 above, if one server
fails, all services are available, although at a percentage of the full capacity. The remaining server
provides 6 CPUs of computing power, which is 60% of the 10 CPU requirement.

An advantage of this design is the additional 2 CPU latent capacity when both servers are
available.

The following figure illustrates a distribution between a number of servers for performance and
load balancing.

Because there are five servers in the design depicted in “Horizontally Redundant Systems” on
page 78, if one server fails the remaining servers provide a total of 8 CPUs of computing power,
which is 80% of the 10 CPU performance requirement. If you add an additional server with a
2-CPU capacity to the design, you effectively have an N+1 design. If one server fails, 100% of the
performance requirement is met by the remaining servers.

This design includes the following advantages:

■ Added performance if a single server fails
■ Availability even when more than one server is down
■ Servers can be rotated out of service for maintenance and upgrades
■ Multiple low-end servers typically cost less than a single high-end server

6 CPUs 6 CPUs

Required performance: 10 CPUs Distribute load between 2 servers for
failover and load balancing.

If one server fails, the available CPUs
are reduced to 60% of those needed
to meet the performance requirement.

FIGURE 5–4 Load Balancing Plus Failover Between Two Servers

2 CPUs 2 CPUs 2 CPUs 2 CPUs 2 CPUs

Required performance: 10 CPUs Distribute the required load among
5 servers for failover and load balancing.

If one server fails, the available CPUs
are reduced to 80% of those needed to
meet the performance requirement.

FIGURE 5–5 Distribution of Load Between n Servers

Determining Availability Strategies

Chapter 5 • Deployment Design 79

However, administration and maintenance costs can increase significantly with additional
servers. You also have to consider costs for hosting the servers in a data center. At some point
you run into diminishing returns by adding additional servers.

Sun Cluster Software
For situations that require a high degree of availability (such as four or five nines), you might
consider Sun Cluster software as part of your availability design. A cluster system is the
coupling of redundant servers with storage and other network resources. The servers in a
cluster continually communicate with each other. If one of the servers goes offline, the
remainder of the devices in the cluster isolate the server and fail over any application or data
from the failing node to another node. This failover process is achieved relatively quickly with
little interruption of service to the users of the system.

Sun Cluster software requires additional dedicated hardware and specialized skills to configure,
administer, and maintain.

Availability Design Examples
This section contains two examples of availability strategies based on the identity-based
communications solution for a medium-sized enterprise of about 1,000 to 5,000 employees, as
described previously in “Identity-Based Communications Example” on page 58. The first
availability strategy illustrates load balancing for Messaging Server. The second illustrates a
failover solution that uses Sun Cluster software.

Load Balancing Example for Messaging Server
The following table lists the estimates for CPU power for each logical Messaging Server
component in the logical architecture. This table repeats the final estimation calculated in the
section “Update the CPU Estimates” on page 73 .

TABLE 5–6 CPU Estimate Adjustments for Supporting Components

Component CPUs Memory

Messaging Server(MTA, inbound) 2 4 GB

Messaging Server(MTA,
outbound)

2 4 GB

Messaging Server(MMP) 2 4 GB

Messaging Server(Message Store) 2 4 GB

For this example, assume that during technical requirements phase, the following quality of
service requirements were specified:

Determining Availability Strategies

Sun Java Enterprise System Deployment Planning Guide • March 200780

■ Availability. Overall system availability should be 99.99% (does not include scheduled
downtime). Failure of an individual computer system should not result in service failure.

■ Scalability. No server should be more than 80% utilized under daily peak load and the
system must accommodate long-term growth of 10% per year.

To fulfill the availability requirement, for each Messaging Server component provide two
instances, one of each on separate hardware servers. If a server for one component fails, the
other provides the service. The following figure illustrates the network diagram for this
availability strategy.

In the preceding figure the number of CPUs has doubled from the original estimate. The CPUs
are doubled for the following reasons:

■ In the event one server fails, the remaining server provides the CPU power to handle the
load.

■ For the scalability requirement that no single server is more than 80% utilized under peak
load, the added CPU power provides this safety margin.

■ For the scalability requirement to accommodate 10% increased load per year, the added
CPU power adds latent capacity that can handle increasing loads until additional scaling
would be needed.

Failover Example Using Sun Cluster Software
The following figure shows an example of failover strategy for Calendar Server back-end and
Messaging Server messaging store. The Calendar Server back-end and messaging store are
replicated on separate hardware servers and configured for failover with Sun Cluster software.
The number of CPUs and corresponding memory are replicated on each server in the Sun
Cluster.

MMP2
(2x4)

Messaging Server
MMP

Load Balancer

MMP1
(2x4)

Messaging Server
MMP

MTA2
(2x4)

Messaging Server
MMP

Load Balancer

MTA1
(2x4)

Messaging Server
Inbound MTA

MTA4
(2x4)

Messaging Server
MMP

Load Balancer

MTA3
(2x4)

Messaging Server
Outbound MTA

Load balancer

Hardware system

System component

Legend

(2x4)

Network connection

2-CPU, 4-GB RAM

Determining Availability Strategies

Chapter 5 • Deployment Design 81

Replication of Directory Services Example
Directory services can be replicated to distribute transactions across different servers, providing
high availability. Directory Server provides various strategies for replication of services,
including the following:

■ Multiple databases. Stores different portions of a directory tree in separate databases.
■ Chaining and referrals. Links distributed data into a single directory tree.
■ Single master replication. Provides a central source for the master database, which is then

distributed to consumer replicas.
■ Multi-master replication. Distributes the master database among several servers. Each of

these masters then distributes their database among consumer replicas.

Availability strategies for Directory Server is a complex topic that is beyond the scope of this
guide. The following sections, “Single Master Replication” on page 82 and “Multi-Master
Replication” on page 83 provide a high-level view of basic replication strategies. For detailed
information see Chapter 12, “Designing a Highly Available Deployment,” in Sun Java System
Directory Server Enterprise Edition 6.0 Deployment Planning Guide.

Single Master Replication
The following figure shows a single master replication strategy that illustrates basic replication
concepts.

Calendar Store
Message Store

Sun Cluster Software

Failover

System: STR2
(2x8)

Calendar Server
(Store)

Messaging Server
(Store)

System: STR1
(2x8)

Calendar Server
(Back-end)

Messaging Server
(Store)

Load balancer

Hardware system

System component

External storage

Legend
Network connection

Sun Cluster software

2-CPU, 8-GB RAM(2x8)

FIGURE 5–6 Failover Design Using Sun Cluster Software

Determining Availability Strategies

Sun Java Enterprise System Deployment Planning Guide • March 200782

In single master replication, one instance of Directory Server manages the master directory
database, logging all changes. The master database is replicated to any number of consumer
databases. The consumer instances of Directory Server are optimized for read and search
operations. Any write operation received by a consumer is referred back to the master. The
master periodically updates the consumer databases.

Advantages of single master replication include:

■ Single instance of Directory Server optimized for database read and write operations
■ Any number of consumer instances of Directory Server optimized for read and search

operations
■ Horizontal scalability for consumer instances of Directory Server

Multi-Master Replication
The following figure shows a multi-master replication strategy that might be used to distribute
directory access globally.

In multi-master replication, one or more instances of Directory Server manages the master
directory database. Each master has a replication agreement that specifies procedures for
synchronizing the master databases. Each master replicates to any number of consumer
databases. As with single master replication, the consumer instances of Directory Server are
optimized for read and search access. Any write operation received by a consumer is referred
back to the master. The master periodically updates the consumer databases.

 Change
Log

Clients

 Write

Read
Write

Replication

Write
Referrals

Master
DB

Directory
Server

(Master)

Consumer
DB

Directory
Server

(Consumer)

Consumer
DB

Directory
Server

(Consumer)

Consumer
DB

Directory
Server

(Consumer)

FIGURE 5–7 Single Master Replication Example

Determining Availability Strategies

Chapter 5 • Deployment Design 83

Multi-master replication strategy provides all the advantages of single master replication, plus
an availability strategy that can provide load balancing for updates to the masters. You can also
implement an availability strategy that provides local control of directory operations, which is
an important consideration for enterprises with globally distributed data centers.

Determining Strategies for Scalability
Scalability is the ability to add capacity to your system, usually by the addition of system
resources, but without changes to the deployment architecture. During requirements analysis,
you typically make projections of expected growth to a system based on the business
requirements and subsequent usage analysis. These projections of the number of users of a
system and the capacity of the system to meet their needs are often estimates that can vary
significantly from the actual numbers for the deployed system. Your design should be flexible
enough to allow for variance in your projections.

A design that is scalable includes sufficient latent capacity to handle increased loads until a
system can be upgraded with additional resources. Scalable designs can be readily scaled to
handle increasing loads without redesign of the system.

Latent Capacity
Latent capacity is one aspect of scalability where you include additional performance and
availability resources into your system so the system can easily handle unusual peak loads. You
can also monitor how latent capacity is used in a deployed system to help determine when to
scale the system by adding resources. Latent capacity is one way to build safety into your design.

 Write

Replication

Clients

Replication
Agreement 1

Replication
Agreement 2

Master
DB

Directory
Server

(Master 1)

Master
DB

Directory
Server

(Master 2)

Clients
Directory
Server

(Consumer)

Directory
Server

(Consumer)

Consumer
DB

Directory
Server

(Consumer)

Directory
Server

(Consumer)

Directory
Server

(Consumer)

Consumer
DB

Directory
Server

(Consumer)

Replication

 Write

Write
Referrals

Read
Write

Read
Write

Write
Referrals

FIGURE 5–8 Multi-master Replication Example

Determining Strategies for Scalability

Sun Java Enterprise System Deployment Planning Guide • March 200784

Analysis of use cases can help identify the scenarios that can create unusual peak loads. Use this
analysis of unusual peak loads plus a factor to cover unexpected growth to design latent capacity
that builds safety into your system.

Your system design should be able to handle projected capacity for a reasonable time, generally
the first 6 to 12 months of operation. Maintenance cycles can be used to add resources or
increase capacity as needed. Ideally, you should be able to schedule upgrades to the system on a
regular basis, but predicting needed increases in capacity is often difficult. Rely on careful
monitoring of your resources as well as business projections to determine when to upgrade a
system.

If you plan to implement your solution in incremental phases, you might schedule increasing
the capacity of the system to coincide with other improvements scheduled for each incremental
phase.

Scalability Example
The example in this section illustrates horizontal and vertical scaling for a solution that
implements Messaging Server. For vertical scaling, you add additional CPUs to a server to
handle increasing loads. For horizontal scaling, you handle increasing loads by adding
additional servers for distribution of the load.

The baseline for the example assumes a 50,000 user base supported by two message store
instances that are distributed for load balancing. Each server has two CPUs for a total of four
CPUs. The following figure shows how this system can be scaled to handle increasing loads for
250,000 users and 2,000,000 users.

Note – “Scalability Example” on page 85 shows the differences between vertical scaling and
horizontal scaling. This figure does not show other factors to consider when scaling, such as
load balancing, failover, and changes in usage patterns.

Identifying Performance Bottlenecks

Identifying Performance Bottlenecks

Chapter 5 • Deployment Design 85

One of the keys to successful deployment design is identifying potential performance
bottlenecks and developing a strategy to avoid them. A performance bottleneck occurs when
the rate at which data is accessed cannot meet specified system requirements.

Bottlenecks can be categorized according to various classes of hardware, as listed in the
following table of data access points within a system. This table also suggests potential remedies
for bottlenecks in each hardware class.

TABLE 5–7 Data Access Points

Hardware Class Relative Access Speed Remedies for Performance Improvement

Processor Nanoseconds Vertical scaling: Add more processing power, improve
processor cache

Horizontal scaling: Add parallel processing power for
load balancing

STR1
(8x16)

Messaging Server
Message Store

STR2
(8x16)

Messaging Server
Message Store

STR1
(2x4)

Messaging Server
Message Store

STR2
(2x4)

Messaging Server
Message Store

Horizontal Scaling

2M Users
Total of 64 CPUs

8 each on eight physical servers

Baseline

50K Users
Total of 4 CPUs

2 each on two physical servers

Vertical Scaling

250K Users
Total of 16 CPUs

8 each on two physical servers

STR1
(8x4)

Messaging Server
Message Store

STR1
(8x4)

Messaging Server
Message Store

STR1
(8x4)

Messaging Server
Message Store

STR1
(8x16)

Messaging Server
Message Store

STR1
(8x4)

Messaging Server
Message Store

STR1
(8x4)

Messaging Server
Message Store

STR1
(8x4)

Messaging Server
Message Store

STR5
(8x16)

Messaging Server
Message Store

FIGURE 5–9 Horizontal and Vertical Scaling Examples

Identifying Performance Bottlenecks

Sun Java Enterprise System Deployment Planning Guide • March 200786

TABLE 5–7 Data Access Points (Continued)
Hardware Class Relative Access Speed Remedies for Performance Improvement

System memory
(RAM)

Microseconds Dedicate system memory to specific tasks

Vertical scaling: Add additional memory

Horizontal scaling: Create additional instances for
parallel processing and load balancing

Disk read and write Milliseconds Optimize disk access with disk arrays (RAID)

Dedicate disk access to specific functions, such as read
only or write only

Cache frequently accessed data in system memory

Network interface Varies depending on
bandwidth and access speed
of nodes on the network

Increase bandwidth

Add accelerator hardware when transporting secure data

Improve performance on nodes within the network so
the data is more readily available

Note – “Identifying Performance Bottlenecks” on page 85 lists hardware classes according to
relative access speed, implying that slow access points, such as disks, are more likely to be the
source of bottlenecks. However, processors that are underpowered to handle large loads are also
likely sources of bottlenecks.

You typically begin deployment design with baseline processing power estimates for each
component in the deployment and their dependencies. You then determine how to avoid
bottlenecks related to system memory and disk access. Finally, you examine the network
interface to determine potential bottlenecks and focus on strategies to overcome them.

Optimizing Disk Access
A critical component of deployment design is the speed of disk access to frequently accessed
datasets, such as LDAP directories. Disk access provides the slowest access to data and is a likely
source of a performance bottleneck.

One way to optimize disk access is to separate write operations from read operations. Not only
are write operations more expensive than read operations, read operations (lookup operations
for LDAP directories) typically occur with considerably more frequency than write operations
(updates to data in LDAP directories).

Another way to optimize disk access is by dedicating disks to different types of I/O operations.
For example, provide separate disk access for Directory Server logging operations, such as
transaction logs and event logs, and LDAP read and write operations.

Identifying Performance Bottlenecks

Chapter 5 • Deployment Design 87

Also, consider implementing one or more instances of Directory Server dedicated to read and
write operations and using replicated instances distributed to local servers for red and search
access. Chaining and linking options are also available to optimize access to directory services.

Chapter 6, “Tuning System Characteristics and Hardware Sizing,” in Sun Java System Directory
Server Enterprise Edition 6.0 Deployment Planning Guide discusses various factors in planning
for disk access. Topics in this chapter include:

■ Minimum memory and disk space requirements. Provides estimates for disk and memory
needed for various sizes of directories.

■ Sizing physical memory for cache access. Provides guidance on estimating cache size
according to planned usage of Directory Server and on planning total memory usage.

■ Sizing disk subsystems. Provides information on planning disk space requirements
according to directory suffixes and Directory Server factors that affect disk use. and
distributing files across disks, including various disk array alternatives.

Designing for Optimum Resource Usage
Deployment design is not just estimating the resources required to meet the QoS requirements.
During deployment design you also analyze all available options and select the best solution
that minimizes cost but still fulfills QoS requirements. You must analyze the trade-off for each
design decision to make sure a benefit in one area is not offset by a cost in another.

For example, horizontal scaling for availability might increase overall availability, but at the cost
of increased maintenance and service. Vertical scaling for performance might increase
computing power inexpensively, but the additional power might be used inefficiently by some
services.

Before completing your design strategy, examine your decisions to make sure that you have
balanced the use of resources with the overall benefit to the proposed solution. This analysis
typically involves examining how system qualities in one area affect other system qualities. The
following table lists some system qualities and corresponding considerations for resource
management.

TABLE 5–8 Resource Management Considerations

System Quality Description

Performance For performance solutions that concentrate CPUs on individual servers,
will the services be able to efficiently use the computing power? (For
example, some services have a ceiling on the number of CPUs that can be
efficiently used.)

Designing for Optimum Resource Usage

Sun Java Enterprise System Deployment Planning Guide • March 200788

TABLE 5–8 Resource Management Considerations (Continued)
System Quality Description

Latent capacity Does your strategy handle loads that exceed performance estimates?

Are excessive loads handled with vertical scaling on servers, load balancing
to other servers, or both?

Is the latent capacity sufficient to handle unusual peak loads until you reach
the next milestone for scaling the deployment?

Security Have you sufficiently accounted for the performance overhead required to
handle secure transactions?

Availability For horizontally redundant solutions, have you sufficiently estimated
long-term maintenance expenses?

Have you accounted for the scheduled downtime necessary to maintain the
system?

Have you balanced the costs between high-end servers and low-end servers?

Scalability Have you estimated milestones for scaling the deployment?

Do you have a strategy to provide enough latent capacity to handle
projected increases in load until you reach the milestones for scaling the
deployment?

Serviceability Have you taken into account administration, monitoring, and maintenance
costs into your availability design?

Have you considered delegated administration solutions (allowing
end-users to perform some administration tasks) to reduce administration
costs?

Managing Risks
Much of the information on which deployment design is based, such as quality of service
requirements and usage analysis, is not empirical data but data based on estimates and
projections ultimately derived from business analyses. These projections could be inaccurate
for may reasons, including unforeseen circumstances in the business climate, faulty methods of
gathering data, or simply human error. Before completing a deployment design, revisit the
analyses upon which your design is based and make sure your design accounts for any
reasonable deviations from the estimates or projections.

For example, if the usage analysis underestimates the actual usage of the system, you run the
risk of building a system that cannot cope with the amount of traffic it encounters. A design that
under performs will surely be considered a failure.

Managing Risks

Chapter 5 • Deployment Design 89

On the other hand, if you build a system that is several orders more powerful than required, you
divert resources that could be used elsewhere. The key is to include a margin of safety above the
requirements, but to avoid extravagant use of resources.

Extravagant use of resources results in a failure of the design because underutilized resources
could have been applied to other areas. Additionally, extravagant solutions might be perceived
by stakeholders as not fulfilling contracts in good faith.

Example Deployment Architecture
The following figure represents a completed deployment architecture for the example
deployment introduced earlier in this white paper. This figure provides an idea of how to
present a deployment architecture.

Caution – The deployment architecture in the following figure is for illustration purposes only. It
does not represent a deployment that has been actually designed, built, or tested and should not
be considered as deployment planning advice.

Example Deployment Architecture

Sun Java Enterprise System Deployment Planning Guide • March 200790

System: MTA2
(2x4)

Messaging Server
Inbound MTA

System: MTA1
(2x4)

Messaging Server
Inbound MTA

System: PS2
(4x16)

Identity Server
(SDK)

Web Server

Portal ServerPortal Server

System: PS1
(4x16)

Access Manager
(SDK)

Web Server

Portal ServerPortal Server

System: MTA4
(2x4)

Messaging Server
Outbound MTA

System: MTA3
(2x4)

Messaging Server
Outbound MTA

System: MMP2
(2x4)

Messaging Server
(MMP)

System: MMP1
(2x4)

Messaging Server
(MMP)

System: AM2
(2x8)

Access Manager

Web Server

System: AM1
(2x8)

Access Manager

Web Server

System: CX2
(2x4)

Messaging Server
(MEM)

Identity Server
(SDK)

Communications
Express

Web Server

System: CX1
(2x4)

Messaging Server
(MEM)

Access Manager
(SDK)

Communications
Express

Web Server

Load balancer

Hardware system

System component

External storage

Legend
Network connection

2-CPU, 4-GB RAM

2-CPU, 8-GB RAM

4-CPU, 16-GB RAM

(2x4)

(2x8)

(4x16)

Calendar Store
Message Store

Sun Cluster Software

Failover

System: STR2
(2x8)

Calendar Server
(Store)

Messaging Server
(Store)

System: STR1
(2x8)

Calendar Server
(Back-end)

Messaging Server
(Store)

Load BalancerLoad Balancer

Load Balancer

Load BalancerLoad Balancer

LDAP
Store

Load Balancer

System: DS2
(2x4)

Directory Server
Master

System: DS1
(2x4)

Directory Server
Master

FIGURE 5–10 Example Deployment Architecture

Example Deployment Architecture

Chapter 5 • Deployment Design 91

92

Implementation of a Deployment Design

During the implementation phase of the solution life cycle you work from specifications and
plans created during deployment design to build and test the deployment architecture,
ultimately rolling out the deployment into production. Implementation is beyond the scope of
this guide, however this chapter provides a high-level view of this phase.

This chapter contains the following sections:
■ “About Implementing Deployment Designs” on page 93
■ “Installing and Configuring Software” on page 94
■ “Developing Pilots and Prototypes” on page 94
■ “Testing Pilot and Prototype Deployments” on page 95
■ “Rolling Out a Production Deployment” on page 96

About Implementing Deployment Designs
After the deployment architecture has been approved and implementation specifications and
plans have been completed, you enter the implementation phase of the solution life cycle.
Implementation is a complex set of processes and procedures that requires careful planning to
ensure success. Implementation includes the following tasks:
■ Building the network and hardware infrastructure
■ Installing and configuring software according to an installation plan
■ Migrating data from existing applications to the current solution
■ Implementing a user management plan
■ Designing and deploying pilots or prototypes in a test environment according to a test plan
■ Designing and running functional tests and stress tests according to a test plan
■ Rolling out the solution from a test environment to a production environment according to

a rollout plan
■ Training administrators and users of the deployment according to a training plan

6C H A P T E R 6

93

Details of implementation are beyond the scope of this guide. However, the following sections
provide overview information for some of these tasks.

Installing and Configuring Software
The installation and configuration of Sun JavaTM Enterprise System for a distributed enterprise
application requires the planning and coordination of many tasks and procedures. During the
deployment design phase, you create an installation plan based on the high-level deployment
architecture that provides installation and configuration information needed to install Java
Enterprise System software.

Highlights of this installation plan include:

■ Determining the sequence and type of installation
■ Surveying hosts for previously installed software and installation readiness
■ Gathering configuration information for each Java Enterprise System component you are

installing

The Sun Java Enterprise System 5 Installation Planning Guide provides details on how to gather
information for an installation plan. The Sun Java Enterprise System 5 Installation Reference for
UNIX provides detailed configuration information and worksheets you can use to document
this information. The Sun Java Enterprise System 5 Installation Guide for UNIX provides
guidance on common installation scenarios that involve multiple Java Enterprise System
components. For more information, refer to Chapter 1, “Preparing for Installation,” in Sun Java
Enterprise System 5 Installation Guide for UNIX.

Developing Pilots and Prototypes
Java Enterprise System deployments typically fall into two categories, those based primarily on
services provided with Java Enterprise System and those that require a significant number of
custom services that are integrated with Java Enterprise System services. You can think of the
former type of deployment as an 80:20 deployment (80% of the services are provided by Java
Enterprise System) and similarly, the former as a 20:80 deployment.

For 80:20 deployments, during the implementation phase, you typically develop a pilot
deployment for testing purposes. Because 80:20 deployments use mature Java Enterprise
System services that provide “out-of-the-box” functionality, pilot deployments move relatively
quickly from development, testing, and modification steps, to production deployments. A pilot
deployment verifies the functionality of a solution, but also provides information on how well
the system performs.

20:80 deployments, on the other hand, introduce new, custom services that do not have the
history of interoperability that comes with 80:20 deployments. For this reason, you create a
prototype, which is a proof-of-concept deployment that typically requires a more rigorous

Installing and Configuring Software

Sun Java Enterprise System Deployment Planning Guide • March 200794

development, testing, and modification cycle before going into production. A prototype lets
you determine how well a proposed solution solves the problem in a test environment. Once the
prototype demonstrates the functionality is sufficient, you can move on to more rigorous
testing and then to a pilot deployment.

Note – Actual enterprise deployments can vary greatly in the amount of custom development of
services they require. How you use pilot and prototype deployments for testing purposes
depends on the complexity and nature of your deployment.

Testing Pilot and Prototype Deployments
The purpose of testing pilot and prototype deployments is to determine as best as possible
under test conditions whether the deployment satisfies the system requirements and also meets
the business goals.

Ideally, functional tests should model scenarios based on all identified use cases and a set of
metrics should be developed to measure compliance. Functional testing can also involve a
limited deployment to a select group of beta users to determine if business requirements are
being satisfied.

Stress tests measure performance under peak loads. These tests typically use a series of
simulated environments and load generators to measure throughput of data and performance.
System requirements for the deployment are typically the basis for designing and passing stress
tests.

Note – Functional and stress tests are particularly important for large deployments where system
requirements might not be well-defined, there is no previous implementation on which to base
estimates, and the deployment requires a significant amount of new development.

Testing can indicate problems with the deployment design specification and might involve
several design, build, and test iterations before you can roll out the deployment to a production
environment. When testing prototype deployments, you might discover problems with the
deployment design, in which case you can iterate back to earlier phases in the solution life cycle
to address the problems.

Make sure you have thoroughly tested your deployment design before proceeding to a pilot
deployment. A pilot deployment indicates you have already verified the deployment design
with earlier series of tests. Problems you uncover during the testing of a pilot deployment must
generally be addressed within the parameters of the deployment design.

Because testing never completely simulates a production environment, and also because the
nature of a deployed solution can evolve and change, you should continue to monitor deployed
systems to identify any areas that require tuning, maintenance, or service.

Testing Pilot and Prototype Deployments

Chapter 6 • Implementation of a Deployment Design 95

Rolling Out a Production Deployment
Once the pilot or proof-of-concept deployment passes the test criteria, you are ready to roll out
the deployment to a production environment. Typically, you roll out to a production
environment in stages. A staged rollout is especially important for large deployments that affect
a significant number of users.

The staged deployment can start with a small set of users and eventually expand the user base
until the deployment is available to all users. A staged deployment can also start with a limited
set of services and eventually phase in the remaining services. Staging services in phases can
help isolate, identify, and resolve problems a service might encounter in a production
environment.

Rolling Out a Production Deployment

Sun Java Enterprise System Deployment Planning Guide • March 200796

Index

Numbers and Symbols
20\\

80 deployments, 19
implementation phase, 94

3-dimensional architecture, 45
80\\

20 deployments, 19, 94

A
Access Manager, 49, 72
access zones, 61-63
Application Server, 49
availability

examples, 80-84
failover, 77
horizontally redundant systems, 78-80
load balancing, 77
N+1 failover system, 78-80
optimizing resources, 89
prioritizing, 38-39
quality of service requirement, 37-39
replication of services, 77

availability strategies, determining, 76-84

B
budget limitations, 31
business analysis phase, 22

about, 25

business constraints, 30-31
budget limitations, 31
cost of ownership, 31
migration issues, 30
schedule mandates, 30-31

business goals
affecting deployment design, 68
defining, 26-27

business requirements
business goals, 26-27
corporate culture, 28-29
defining, 26-30
operational requirements, 27-28
regulatory requirements, 29
security goals, 29
service level agreements, 30
understanding users, 27-28
usage patterns, 28

business service tier, multitiered architecture
model, 53

C
Calendar Server, 49, 72
client tier, multitiered architecture model, 53
Communications Express, 49
component dependencies, 48-49

web container support, 49-51
corporate culture, 28-29
cost of ownership, 31

affecting deployment design, 68

97

D
data tier, multitiered architecture model, 53
deployment architecture, 66-67

example, 90
deployment design

about, 65-68
factors, 67-68
methodology, 68-69
outputs, 66-67
project approval, 66

deployment design phase, 23
deployment planning

about, 20-24
incremental approach, 29-30
solution life cycle, 20-22

deployment scenario, 45, 63, 65
Directory Proxy Server, 49, 52
Directory Server, 49, 55, 72

multi-master replication, 82, 83-84
single master replication, 82

disaster recovery plan, 67
DMZ, external access zone, 63
documentation

Installation Guide, 49, 94
Technical Overview, 18, 46, 47

E
estimating processor requirements, 68, 69-74

example, 70-74
secure transactions, 74-76
use cases, 72-73

examples
access zones, 61
availability design, 80-84
deployment architecture, 90
Directory Server, 82
estimating processor requirements, 70-74
estimating processor requirements for secure

transactions, 75-76
failover, 81
identity-based communications, 58-61
load balancing, 79, 80-81
logical architecture, 53-61

examples (Continued)
Messaging Server logical architecture, 54-57
multi-master replication, 83-84
replication of services, 82
scalability, 85
single master replication, 82-83

external access zone (DMZ), 63

F
failover, 77

example, 81
Sun Cluster software, 80

fault-tolerant systems, 38
functional tests, 95

G
Glossary, link to, 13

H
horizontally redundant systems, 78-80

I
identifying bottlenecks, deployment design, 69
identity-based communications example, 58-61

estimating processor requirements, 70
use cases, 59-61

implementation phase, 24, 94
about, 93-94
developing pilots and prototypes, 94-95

implementation plans, 66-67
implementation specifications, 66-67
installation plan, 66
installing Java Enterprise System, 94
Instant Messaging, 49
internal access zone (intranet), 62

Index

Sun Java Enterprise System Deployment Planning Guide • March 200798

J
Java Enterprise System

20\\
80 deployments, 19

80\\
20 deployments, 19

about, 17
access components, 51-52
component dependencies, 48-49
components, 47-53
custom services, 19
installing, 94
migration issues, 19-20
rolling out a production deployment, 96
services, 19
system services, 17-18
three dimensional architecture, 45

L
latent capacity, 42

scalability considerations, 84-85
load balancing, 77

example, 79
logical architecture

affecting deployment design, 67-68
designing, 46-47
examples, 53-61
identity-based communications example, 58

logical architectures, 45-46
logical design, about, 45-46
logical design phase, 23
logical tiers, multitiered architecture model, 53

M
managing risks, 89-90

deployment design, 69
Message Queue, 49
Messaging Server, 49

example logical architecture, 54-57
load balancing example, 80-81
logically distinct services, 51

Messaging Server (Continued)
Message Multiplexor (MMP), 51, 52, 54, 72
Message Store (STR), 51, 55, 72
Message Transfer Agent (MTA), 51, 54
Messenger Express Multiplexor (MEM), 51
use cases, 55-57

migration issues, 19-20
as business constraint, 30

migration plan, 66
multi-master replication, 82

example, 83-84
multitiered architecture design, 52-53

N
N+1 failover system, 78-80

O
operational requirements, 27-28
operations phase, 24
operations plan (Run Book), 67
optimizing

disk access, 87-88
resource usage, 88-89

optimizing resources, deployment design, 69

P
performance

identifying bottlenecks, 85-88
optimizing resources, 88
quality of service requirement, 37

pilots, 94-95
testing, 95

Portal Server, 49, 52
Mobile Access, 52
Secure Remote Access, 49, 52

presentation tier, multitiered architecture model, 53
processor requirements, estimating, 69-74
project approval, 66
prototypes, 94-95

Index

99

prototypes (Continued)
testing, 95

Q
QoS (quality of service requirements), 36-43
quality of service requirements, 36-43

affecting deployment design, 67
role in deployment design, 65

R
regulatory requirements, 29
replicating services, 68
replication of services

availability strategy, 77
Directory Server example, 82

risk management, 89-90
roll-out plan, 67
Run Book, 67

S
scalability

estimating growth, 39-40
example, 85
optimizing resources, 89
quality of service requirement, 39-40
strategies, 84-85

schedule mandates, 30-31
secure access zone, 63
security

estimating processor requirements, 68
optimizing resources, 89
quality of service requirement, 40-41

service level agreements, 30
affecting deployment design, 68
requirements, 43

service level requirements, 43
serviceability

optimizing resources, 89
quality of service requirement, 42-43

single master replication, 82
example, 82-83

SLA, 30
solution life cycle, 20-22

business analysis phase, 22, 25
deployment design phase, 23, 65-68
implementation phase, 24, 93-94
logical design phase, 23, 45-46
operations phase, 24
technical requirements phase, 22, 33-34

stress tests, 95
Sun Cluster software, 80

failover example, 81

T
technical requirements

availability, 37-39
latent capacity, 42
performance, 37
scalability, 39-40
security, 40-41
service level requirements, 43
serviceability, 42-43

technical requirements phase, 22
about, 33-34
quality of service requirements, 36-43
usage analysis, 34-35
use cases, 35-36

test plan, 67
testing

functional tests, 95
pilots and prototypes, 95
stress tests, 95

three dimensional architecture, 45
training plan, 67

U
usage analysis, 34-35

affecting deployment design, 67
usage patterns, 28
use cases, 35-36

Index

Sun Java Enterprise System Deployment Planning Guide • March 2007100

use cases (Continued)
affecting deployment design, 68
estimating processor requirements, 72-73
identity-based communications example, 59-61
Messaging Server example, 55-57

user management plan, 66

W
Web Server, 49, 72

Index

101

102

	Sun Java Enterprise System Deployment Planning Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Java ES Documentation Set
	Typographic Conventions
	Shell Prompts in Command Examples
	Symbol Conventions
	Accessing Sun Resources Online
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Introduction to Deployment Planning
	About Java Enterprise System
	System Services
	Built-In Services and Custom-Developed Services
	Migrating to Java Enterprise System

	About Deployment Planning
	Solution Life Cycle
	Business Analysis Phase
	Technical Requirements Phase
	Logical Design Phase
	Deployment Design Phase
	Implementation Phase
	Operations Phase

	Business Analysis
	About Business Analysis
	Defining Business Requirements
	Setting Business Goals
	Scope
	Priorities
	Critical Qualities
	Growth Factors
	Safety Margin

	Understanding User Needs
	Developing Operational Requirements
	Supporting Existing Usage Patterns

	Understanding Corporate Culture
	Stakeholders
	Standards and Policies
	Regulatory Requirements
	Security
	Site Distribution

	Using an Incremental Approach
	Understanding Service Level Agreements

	Defining Business Constraints
	Migration Issues
	Schedule Mandates
	Budget Limitations
	Cost of Ownership

	Technical Requirements
	About Technical Requirements
	Usage Analysis
	Use Cases
	Quality of Service Requirements
	Performance
	Availability
	Fault-Tolerant Systems
	Prioritizing Service Availability
	Loss of Services

	Scalability
	Estimating Growth

	Security Requirements
	Elements of a Security Plan

	Latent Capacity
	Serviceability Requirements

	Service Level Requirements

	Logical Design
	About Logical Architectures
	Designing a Logical Architecture
	Java Enterprise System Components
	Component Dependencies
	Web Container Support
	Logically Distinct Services Provided by Messaging Server
	Access Components
	Multitiered Architecture Design

	Example Logical Architectures
	Messaging Server Example
	Messaging Server Use Cases
	Use Case 1: User Logs in Successfully to Messaging Server
	Use Case 2: Logged-In User Reads and Deletes Mail
	Use Case 3: Logged-In User Sends Email Message

	Identity-Based Communications Example
	Use Cases for Identity-Based Communications Example
	Use Case 1: User Logs in Successfully and Portal Retrieves User’s Configuration
	Use Case 2: Portal Server Displays Email and Calendar Information

	Access Zones
	Deployment Scenario

	Deployment Design
	About Deployment Design
	Project Approval
	Deployment Design Outputs
	Factors Affecting Deployment Design

	Deployment Design Methodology
	Estimating Processor Requirements
	Example Estimating Processor Requirements
	Determine Baseline CPU Estimate for User Entry Points
	Include CPU Estimates for Service Dependencies
	Study Use Cases for Peak Load Usage
	Modify Estimates for Other Load Conditions
	Update the CPU Estimates

	Estimating Processor Requirements for Secure Transactions
	CPU Estimates for Secure Transactions
	Specialized Hardware to Handle SSL Transactions

	Determining Availability Strategies
	Availability Strategies
	Single Server System
	Horizontally Redundant Systems
	Sun Cluster Software

	Availability Design Examples
	Load Balancing Example for Messaging Server
	Failover Example Using Sun Cluster Software
	Replication of Directory Services Example
	Single Master Replication
	Multi-Master Replication

	Determining Strategies for Scalability
	Latent Capacity
	Scalability Example

	Identifying Performance Bottlenecks
	Optimizing Disk Access

	Designing for Optimum Resource Usage
	Managing Risks
	Example Deployment Architecture

	Implementation of a Deployment Design
	About Implementing Deployment Designs
	Installing and Configuring Software
	Developing Pilots and Prototypes
	Testing Pilot and Prototype Deployments
	Rolling Out a Production Deployment

	Index

