Sun Java System Application
Server Enterprise Edition 8.1
2005Q2 Upgrade and Migration
Guide

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 819-2559-11
July 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caracteres, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU
IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

070802@18135

Contents

=Y - L3OO 9

Application Server Compatibility ISSUEScccooririririiicce e 17

Web Server Features

Security Realms
Sun Deployment Descriptor: SUn-web.Xmlc.coceieirieninencecenceieieie sttt 19
eNCOAECOOKIES PrOPEILY ...cvuivrieiiiiieieireteieireteieiet ettt sttt sttt 19
CORBA Performance OPtiONcc.evceeurerceeurieueineaeirinesetsiesesseseestsesessesesessesessssesessesssessesesessesesssenes 19
FILE FOTTIIALS ..ottt et ettt et 19
TOOIS INLELOPETADILILYcvvieciiieeieicieir ettt eaas 20
CIUSEET SCIIPLS 1uvevevueerincueiiecieieicte ettt sttt bttt bttt sasebeseeacaesneacs
Primary Key Attribute Values
Command Line Interface: hadbm ..ottt 22
Command Line Interface: start-appserv and StOP-aPPSEIVc.eueueurerueereeerireeetreeeeesesiseseaesseneens 23
Command Line Interface: aSadminc.eceueureerieineirieineiniieieneieeeret ettt ses e seeseens 23
SUDCOMMANS ..o 23
Error Codes for Start and Stop Subcommandscceveeueirecrrineeinencinineeecereeeeieineeaee 24
OPLIONS ettt bttt bbbttt bbbttt

Dotted Names

TOKENS iN ALTIDULE VAIUES ..ottt ettt ettt sa e snan

NUILS N AtFIDULE VALUES ...ttt et s et s s 27
J2EE 1.4 Compatibility ISSUESc.ooimiiiieieee ettt 29

Binary Compatibility

SOUrce COMPAIDILILY ..vvovrvieieeieicieieirieeee ettt sesnnnen
Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)ccoccovveeenenceernccnencnee 30
JAXP and SAX INCOMPAIDIITIESeucuviueeeiiieiricieieeie ettt 32

Contents

Application Server 8.1 Options Incompatible with J2EE 1.4 Specification Requirements 33
Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations 33
Upgrading an Application Server Installation .
UPZLAAE OVEIVIEW ...ttt sttt ettt et s s ssesessaesesesesesssseseasassasesesessnnnens
Before You Start the Upgrade PrOCESSocuerirurinieeirecieiieie ettt seessaesseans
Upgrading Through the Upgrade UtIILYcccccvvieiniiienieirineerecieiceirciesescieesee s sseseieesenes 37
Upgrading Through the Wizardcccevvreiieeeeerrceee ettt sesssssssnens 40
VW To Use the Upgrade WiIZardccoeveeenierieiiiniinieintisie e sssssssesssssssenns 40
Upgrading a CIUStercoceveveurireeeirencieereeieireeineeens
V¥ To Upgrade a Cluster
Correcting Potential PE and EE Upgrade Problemscooceeeeeieniniesneeeeeeeeeeeeeeenenenes 43
V¥ To Migrate Additional HTTP Listeners Defined on the Source Server to the Target PE
SEIVEL ettt ettt ettt s e 43

V¥ To Migrate Additional HTTP and IIOP Listeners Defined on the Source Server to the
TAr@et EE SEIVET ..ttt ettt sttt

Eliminating Port Conflict Problems

Eliminating Problems Encountered When A Single Domain has Multiple Certificate

Database PASSWOIEScccueueueriiieiricieiiciretietrecteieie ettt seaesseaeaeaneacs 45
Understanding Migration ..ottt ssssseees 47
J2EE Component Standardsc.coueceeeerinirininieceeieisissssse e esssssessssssss et sessssesssssssesesesssssnees 47
J2EE Application COMPOMNENTSovvueereririririiriseeesietetstsaessssssesesessssssssssssssesesessssssesssssssesesessssssnens 48
Migration and DePlOYMENTcevvvierueiririririreeeeieieists ettt se s asese st sesesenenens 49

Why is Migration NECESSATY?c.ovvieueueeueiriririeeeeeeteieteesieessssesesesssseesesssssesessssssssssssssssssssssnes 49

What Needs to De MIGIatedceviureeuierieeieiiieieiseisieieiseeie et sessesessessssessenns 49

Deployment of Migrated APPICAIONSovvueuirurireeiririeieeisieieiseeieissee s sssssessssssesenns 50
Migrating from EJB 1.TTtOEJB 2.0c.cooeiviiieiiciicieeee ettt ssss s st nsssenanens 53
EJB Query Language
LOCAL INTETTACES ..uvuvuiriieircieieieiet ettt bbbttt b et 54
EJB 2.0 Container-Managed Persistence (CIMP)cccoouvieeueuriririririiesieieeieieeseeeeeseseseeseseenens 54

Defining Persistent FIElAScoivvivieiririeiieirieieses ettt sseseaes 55

Defining Entity Bean Relationships

Message-DrIiven BEAnS ...ttt 55

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Contents

Migrating EJB Client APPLICAtIONS ...c.eueuevriiueiriueieieieinieieineeeteeeieisee et sessese e ssssesseaesssseaesseasans 56
Declaring EJBs in the JNDT CONEEXL ...c.cueuriururiiieirieieieeeirieieesesieeseetsesees e seeesessesssessessssessans 56
Recap on Using EJB JNDI REfETENCESc.ovururemrurerirririienirieirisieieieiessesessseasseessaessesssesssssssesens 57

Migrating CMP Entity EJBSc.cccooiiiiiiiiiiccceier et ses s sessseseane 58

VW To Verify if a Bean Can be Migratedcoovoverrriririnieeeeininisieeeeeseieesesssesesesssessssssssssssssees 58

Migrating the Bean Class
V To Migrate the Bean Class

Migration Of €JD-JArXIMIcc.cuiiiueiieiricieice ettt 60
V¥ To Migrate the EJB Deployment DeSCIIPLOTc.cuveuruiecurenrieeieieireeeisesieeseeieeeiessesseeeens 60
Custom FINder MEthOds ...ttt ssaees 61
Migrating from Application Server 6.x/7.x to Application Server8.1ccccoceeevnevnecnnn. 63
Migrating Deployment DESCIIPLOTScceuiueurieueiniucirieieiseeeieirtieiseeietesessesese st seesesseasseeeans 64
Migrating Web APPIICATIONScucuriiueirieieicieteicieisceieieie ettt bbb eseaas 65
Migrating Java Server Pages and JSP Custom Tag Librariesc.ccccoeeeveveeurereeeerensereneennennns 66
Migrating SErvIetscccvveeveurerrereererresereineeeeeesenneneene
Migrating Web Application Modules
Migrating Enterprise EJB MOAUIESccceuiiucuriiuriniciriiieieeciesce ettt eessaeeeans
EJB MIGIAtION c.ovuiiiiiiiiiicicciiit ettt 70
EJB Changes Specific to Application Server Platform Edition 8.1c.ccccevvveevernevvcrnerrenens 70

Migrating Enterprise Applications

V¥V To Build an EAR File
Application Root Context and Access URLccceveurinieeunieeninieinieeeneeieeseeiseeesseeeeeseaeses 74
Applications With Form-based Authenticationcocceeeeeeereeireneeeirensieeseeeeeeeeseseesseeeees 75
Migrating Proprietary EXtENSIONSccovueeririerinieinieicirictieetreeesteeries ettt es 76
MIGIatiNg ULF ..ottt sttt sttt ettt 77
Checking in the Registry Files
Migrating JDBC Code
Establishing Connections Through the DriverManager Interfacecccoceeeneeereneeeenennne 79
Using JDBC 2.0 Data SOUICESc.cvovvieieiuiieieiiieiiccieieieieseeeeeeeseseseeseeseseesesesessssesssesesesesenes 79
Migrating RiCh CHENESc.occueiiicirieieiicisicctrecieeeseeie ettt ettt 80
Authenticating a Client in AppliCation SEIVET 6.Xcveueurererereeurereeeereseeeseeeeesiessessesseassees 81
Authenticating a Client in Sun Java System Application Server 8.1cococeuvervveerereuerreenes 81
Using ACC in Application Server 6.x and Sun Java System Application Server 8.1 81
Migrating Applications to Support HTTP Failover (Enterprise Edition)c.cocccoeveverireeureneee 83

Contents

V¥ To Migrate and Enable Load-Balancingccocoeereeuriniencneininceneceneeeecieseeiseseaeeeneeees 83
Migrating Applications from Application Server 7 to Application Server 8.1ccccocvvveurerreunnee 86
Migrating Rich Clients From 7 PE/SE t0 8.1 EEccooveririniniieeeieeecceeeeeeieeseseessseseeeens 86

VW T0 Migrate Rich CHENTScucueeeieirierieireirieneiseieee ettt et esseseens 86
Migrating EJB Applications to Support SFSB FailOVercccevieurnieinceieneeneercceeenee 88
Migrating a Sample Application-an Overview ... 91
Preparing for Migrating the iBank APpliCationc..ccuereeurireeeinecieinieirecierceeeeeiseeiesseeieeeaes 92
ChOOSING the TATZEtucucvieeeiriecieiieiricie ettt ettt 92
Identifying the Components of the iBank Applicationccccevveerrireeiseninnnesisisssssninnnens 92
Manual Steps in the iBank Application Migration ..93
Configuring Database CONNECHIVILY ...cucureiueirieiriiieireeieisee ettt sessee s ssesssesseans 93
Assembling Application for DeplOymentcccocueurceurinecinineieineerireie et sseseeeeeaes 94
Using the asadmin Utility to Deploy the iBank Application on Application Server 95

Migration Tools and Resources

Migration Tool for Sun Java System Application Server 8.1cococvueeeeerrrereeeeeeeseeseeeees 97
Redeploying Migrated APPLICAtIONSc.cureurureieireeeeirisieereesieeeie et eeseee et essaessessaseenas 98
J2EE Application Verification Kitcoccvcureueeecinerreeineineiecineieeneieeenenseseesessesseeesessesensessesensenne 98

iBank Application Specification

Database SChEMA ..ottt bbbt b s
iBank Database Schema TabIesccccovviiieeriririiiereeese st sssssssnsenes
Application Navigation and LOZICccceerurrreeeirireniririeieieeisieessstesssssessessssssesssssssssssessssssesssnes
IBANK LOGIN PTOCESS -..uvuiueinciicecieitieisicieice sttt bttt
VIEW/EIt DELailsooeucuieiieiiciricicirecieirctccrectreee ettt eeaeaen

Account Summary and Transaction History

FUNA TTANSTET vttt ettt ettt
Interest CalCulationc.occceeicurciriciiri et e
APPLIcation COMPONENLEScucurueurriuieeiriaeteireuetstseieeseaese s setsesesseae et sessesese s s besaesesstaesesseaesesasaes
Data COMPONENLSucuriiiiieiieieieieieititee ettt s e s s sasassesenen
Business COMPONEIILScveveueuiiririrtiieieieititteteteresesesetttste ettt bbbt eseesebesesesenes
Application Logic Components (Servlets)

Presentation Logic Components (JSP Pages)

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Contents

Potential Migration Issues

SEIVIEES ettt ettt ettt sttt et e et st e s et ese st s e e st et ese st eae st et ene s ere st eae st s ene st ene e saenstenen

Enterprise Java Beans

Application Assembly

Preface

This Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration
Guide describes how Java ™ 2 Platform, Enterprise Edition (J2EE™platform) applications are
migrated from the Sun ONE Application Server 6.x/7 (also known as iPlanet Application
Server), J2EE Reference Implementation (RI) 1.3 Application Server, Sun Java System
Application Server 7 to the Sun Java SystemApplication Server8.1 product line.

This guide also describes differences between adjacent product releases and configuration
options that can result in incompatibility with the product specifications. Specifically, this Sun
Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide
details Sun Java System Application Server 8.1 August 22, 2005 incompatibility with Sun Java
System Application Server 8 2004Q2, Sun Java System Application Server 7 2004Q2, and the
J2EE platform version 1.4 specification.

This preface contains information about the following topics:

“Who Should Use This Book” on page 9
“Before You Read This Book” on page 10
“How This Book Is Organized” on page 10
“Application Server Documentation Set” on page 11
“Related Books” on page 12

“Default Paths and File Names” on page 12
“Typographic Conventions” on page 14
“Symbol Conventions” on page 14

“Accessing Sun Resources Online” on page 15
“Third-Party Web Site References” on page 15
“Sun Welcomes Your Comments” on page 15

Who Should Use This Book

The intended audience for this guide is the system administrator, network administrator,
application server administrator, and web developer who has an interest in migration issues.
This guide assumes you are familiar with the following topics:

= HTML
= Application Servers

Preface

Client/Server programming model

Internet and World Wide Web

Windows 2000 and/or Solaris ™ operating systems

Java programming

Java APIs as defined in specifications for EJBs, JavaServer Pages (JSP)

Java Database Connectivity (JDBC)

Structured database query languages such as SQL

Relational database concepts

Software development processes, including debugging and source code control

Before You Read This Book

Application Server can be purchased by itself or as a component of Sun Java™ Enterprise
System (Java ES), a software infrastructure that supports enterprise applications distributed
across a network or Internet environment. If you purchased Application Server as a component
of Java ES, you should be familiar with the system documentation at
http://docs.sun.com/coll/1286.1.

How This Book Is Organized

10

This guide is organized as follows:

Chapter Chapter 1, “Application Server Compatibility Issues” , discusses the incompatibilities
between Application Server 8.1 and Application Server 7/8.

Chapter Chapter 2, “J2EE 1.4 Compatibility Issues,” discusses the J2EE incompatibilities
between Application Server 8.1 and Application Server 7/8.

Chapter Chapter 3, “Upgrading an Application Server Installation,” describes the process to
upgrade an earlier installation of Application Server to Application Server 8.1.

Chapter Chapter 4, “Understanding Migration,” discusses the need to migrate applications.

Chapter Chapter 5, “Migrating from EJB 1.1 to EJB 2.0, discribes the process to migrate EJB 1.1
to EJB 2.0 specification.

Chapter Chapter 6, “Migrating from Application Server 6.x/7.x to Application Server 8.1,
describes the considerations and strategies to migrate applications from earlier releases of Sun’s
application servers to Sun Java System Application Server 8.1 2005Q2.

Chapter Chapter 7, “Migrating a Sample Application - an Overview,” describes the process for
migrating the main components of a typical J2EE application from Sun ONE Application
Server 6.x to Sun Java System Application Server 8.1.

Chapter Chapter 8, “Migration Tools and Resources,” lists the tools and resources that aid in
automatic migration of applications.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

http://docs.sun.com/coll/1286.1

Preface

Chapter Chapter 9, “iBank Application Specification,” Describes the specification of the sample

application- iBank.

Application Server Documentation Set

The Application Server documentation set describes deployment planning and system
installation. The URL for stand-aloneApplication Server documentation is
http://docs.sun.com/app/coll/1310.1. For an introduction to Application Server, refer to
the books in the order in which they are listed in the following table.

TABLEP-1 Books in the Application Server Documentation Set

BookTitle Description

Release Notes Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating system,
JDK, and JDBC/RDBMS.

Quick Start Guide How to get started with the Application Server product.

Installation Guide

Installing the software and its components.

Deployment Planning

Guide

Evaluating your system needs and enterprise to ensure that you deploy the Application
Server in a manner that best suits your site. General issues and concerns that you must
be aware of when deploying the server are also discussed.

Developer’s Guide

Creating and implementing Java 2 Platform, Enterprise Edition (J2EE platform)
applications intended to run on the Application Server that follow the open Java
standards model for J2EE components and APIs. Includes general information about
developer tools, security, assembly, deployment, debugging, and creating lifecycle
modules.

J2EE 1.4 Tutorial

Using J2EE 1.4 platform technologies and APIs to develop J2EE applications.

Administration
Guide

Configuring, managing, and deploying Application Server subsystems and
components from the Administration Console.

High Availability
Administration
Guide

Post-installation configuration and administration instructions for the
high-availability database.

Administration Editing the Application Server configuration file, domain. xml.

Reference

Upgrade and Migrating your applications to the new Application Server programming model,
Migration Guide specifically from Application Server 6.x and 7. This guide also describes differences

between adjacent product releases and configuration options that can result in
incompatibility with the product specifications.

http://docs.sun.com/app/coll/1310.1

Preface

TABLEP-1 Books in the Application Server Documentation Set (Continued)
BookTitle Description
Performance Tuning | Tuning the Application Server to improve performance.
Guide
Troubleshooting Solving Application Server problems.
Guide
Error Message Solving Application Server error messages.
Reference
Sun Java System Utility commands available with the Application Server; written in man page style.
Application Server Includes the asadmin command line interface.
Enterprise
Edition 8.12005Q2
Reference Manual

Related Books

The http://docs.sun.com (http://docs. sun.com)>™ web site enables you to access Sun
technical documentation online. You can browse the archive or search for a specific book title
or subject.

)SM

For other Sun Java System server documentation, go to the following:

= Message Queue documentation
= Directory Server documentation
= Web Server documentation

The URL for all documentation aboutJava ES and its components is
http://docs.sun.com/prod/entsys.05q4.

Default Paths and File Names

The following table describes the default paths and file names that are used in this book.

12 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

http://docs.sun.com
http://docs.sun.com/prod/entsys.05q4

Preface

TABLEP-2 Default Paths and File Names

Placeholder Description Default Value
install-dir Represents the base installation Sun Java Enterprise System installations on the
directory for Application Server. Solaris platform:

/opt/SUNWappserver/appserver

Sun Java Enterprise System installations on the
Linux platform:

/opt/sun/appserver/

Other Solaris and Linux installations, non-root
user:

user’s home directory/SUNWappserver

Other Solaris and Linux installations, root user:
/opt/SUNWappserver

Windows, all installations:

SystemDrive:\Sun\AppServer

domain-root-dir | Represents the directory containing all | Sun Java Enterprise System installations on the
domains. Solaris platform:

/var/opt/SUNWappserver/domains/

Sun Java Enterprise System installations on the
Linux platform:

/var/opt/sun/appserver/domains/
All other installations:

install-dir/domains/

domain-dir Represents the directory for a domain. | domain-root-dir/domain-dir

In configuration files, you might see
domain-dir represented as follows:

${com.sun.aas.instanceRoot}

instance-dir Represents the directory for a server domain-dir/instance-dir
instance.

Preface

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLEP-3 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and directories, | Edit your . login file.
and onscreen computer output
P P Use 1s -a to list all files.
machine name% you have mail.
AaBbCc123 What you type, contrasted with onscreen machine_name% su
computer output
Password:
AaBbCc123 A placeholder to be replaced with a real name or | The command to remove a file is rm
value filename.
AaBbCcl123 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.
emphasized (note that some emphasized items . .
. A cacheis a copy that is stored
appear bold online)
locally.
Do not save the file.

Symbol Conventions

The following table explains symbols that might be used in this book.

TABLEP-4 Symbol Conventions

Symbol Description Example Meaning
[1] Contains optional arguments | 1s [-1] The -1 option is not required.
and command options.
{1} Contains a set of choices fora | -d {y|n} The -d option requires that you use
required command option. either the y argument or the n
argument.
${ } Indicates a variable reference. | ${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.
- Joins simultaneous multiple | Control-A Press the Control key while you press
keystrokes. the A key.
+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it, and
keystrokes. then press the subsequent keys.

14 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Preface

TABLEP-4 Symbol Conventions (Continued)
Symbol Description Example Meaning
- Indicates menu item selection | File — New — Templates From the File menu, choose New.
in a graphical user interface. From the New submenu, choose
Templates.

Accessing Sun Resources Online

The docs.sun.com web site enables you to access Sun technical documentation online. You can
browse the docs.sun.com archive or search for a specific book title or subject. Books are
available as online files in PDF and HTML formats. Both formats are readable by assistive
technologies for users with disabilities.

To access the following Sun resources, go to http: //www.sun. com:

Downloads of Sun products

Services and solutions

Support (including patches and updates)

Training

Research

Communities (for example, Sun Developer Network)

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.comand click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-0083.

http://docs.sun.com
http://www.sun.com
http://docs.sun.com

16

L K R 4 CHAPTER 1

Application Server Compatibility Issues

The Sun Java System Application Server 8.12005Q2 (Application Server 8.1) is upward
binary-compatible with Sun Java System Application Server 8 2004Q2 (Application Server 8)
and with Sun Java System Application Server 7 2004Q2 (Application Server 7) except for the
incompatibilities noted below. J2EE applications that run on versions 7 and 8 also work on
version 8.1 except for the incompatibilities noted below.

The topics discussed in this chapter include incompatibilities in the following areas:

“Web Server Features” on page 17

“Security Realms” on page 18

“Sun Deployment Descriptor: sun-web.xml” on page 19
“encodeCookies Property” on page 19

“CORBA Performance Option” on page 19

“File Formats” on page 19

“Tools Interoperability” on page 20

“Cluster Scripts” on page 20

“Primary Key Attribute Values” on page 20

“Command Line Interface: hadbm” on page 22
“Command Line Interface: start-appserv and stop-appserv” on page 23
“Command Line Interface: asadmin” on page 23

Web Server Features

Application Server 8.1 replaces the Web server shipped with Application Server 7 with a faster
native web server component. As a result, the following web server-specific features are no
longer supported in version 8.1:

cgi-bin, shtml

SNMP support

NSAPI plugin APIs

Native content handling features

Security Realms

= Web server tools (flexanlg, htpasswd)

= HTTP QoS

= Web server configuration files (*. conf, *.acl, mime. types)
= Web server-specific log rotation facility

= Watch dog process (appserv-wdog)

Security Realms

18

The package names of the security realm implementations have been renamed from
com.iplanet.ias.security.auth.realmin Application Server 7 to
com.sun.enterprise.security.auth.realmin Application Server 8.1. Custom realms written
using the com. iplanet.* classes must be modified.

The com.sun.enterprise.security.AuthenticationStatus class has been removed.

The com.sun.enterprise.security.auth.login.PasswordLoginModule authenticate
method implementation has changed as follows.

/**

*

Perform authentication decision.

<P> Note: AuthenticationStatus and AuthenticationStatusImpl
classes have been removed.

Method returns silently on success and returns a LoginException
on failure.

* %

*

* @return void authenticate returns silently on successful authentication.
* @throws LoginException on authentication failure.

*/
abstract protected void authenticate()
throws LoginException;

For more information:

http://developers.sun.com/prodtech/appserver/reference/techart/as8_authentication/index.html
(http://developers.sun.com/
prodtech/appserver/reference/techart/as8 authentication/index.html)

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

http://developers.sun.com/prodtech/appserver/reference/techart/as8_authentication/index.html
http://developers.sun.com/prodtech/appserver/reference/techart/as8_authentication/index.html
http://developers.sun.com/prodtech/appserver/reference/techart/as8_authentication/index.html

File Formats

Sun Deployment Descriptor: sun-web.xml

In Application Server 7, the default value for the optional attribute delegate was false. In
Application Server 8.1, this attribute defaults to true. This change means that by default the
Web application classloader first delegates to the parent classloader before attempting to load a
class by itself. For details, see “Application Server 8.1 Options Contrary to J2EE 1.4 Specification
Recommendations” on page 33.

encodeCookies Property

The encodeCookies property of the sun-web-app element in the sun-web. xml file performs
URL encoding of cookies if set to true. If set to false, no encoding of cookies is performed. In
Application Server 7, the default value of the encodeCookies property was true. This property
was not present in Application Server 8. In Application Server 8.1, the default value is false.

In general, URL encoding of cookies is unnecessary. Setting this property to true is strongly
discouraged. This property is provided only for those rare applications that depended on this
behavior in Application Server 7. This property might be removed in a future release.

CORBA Performance Option

In Application Server 7, users were able to specify the following system property to optionally
turn on some ORB performance optimization:

-Djavax.rmi.CORBA.UtilClass=com.iplanet.ias.util.orbutil.IasUtilDelegate

The ORB performance optimization is turned on by default in Application Server 8.1. If you are
using the system property reference above, you must remove it to avoid interfering with the
default optimization.

File Formats

In Application Server 8.1, domain . xml is the main server configuration file. In Application
Server 7, the main server configuration file was server.xml. The DTD file of domain.xml is
found in lib/dtds/sun-domain_1_1.dtd. The upgrade toolincluded in Application Server 8.1
can be used to migrate the server.xml from Application Server 7 to domain.xml for
Application Server 8.1.

The lib/dtds/sun-domain_1_1.dtd file for Application Server 8.1 is fully backward
compatible with the corresponding file for Application Server 8, sun-domain_1_0.dtd.

In general, the configuration file formats are not backward compatible. The following
configuration files are not supported:

Chapter 1 « Application Server Compatibility Issues 19

Tools Interoperability

= *, conf

= *,acl

= mime.types

m server.xml (replaced with domain.xml)

Tools Interoperability

As a general rule, tools are not interoperable between Application Server 7 and 8.1. Users must
upgrade their Application Server 7 tools to work with Application Server 8.1.

Cluster Scripts

The clsetup and cladmin scripts in Application Server 7 are not supported in Application
Server 8.1. In Application Server 8.1, the asadmin configure-ha-cluster command replaces
the clsetup script, and asadmin commands that operate on clusters replace the commands
supported by the cladmin script. For more information about the asadmin commands, see the
Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Reference Manual.

Primary Key Attribute Values

20

In Application Server 7, it was possible to change any field (in the Administration Console) or
attribute (in the command line interface). In Application Server 8.1, a field or attribute that is
the primary key of an item cannot be changed. However, an item can be deleted and then
recreated with a new primary key value. In most cases, the primary key is a name, ID, reference,
or JNDI name. The following table lists the primary keys that cannot be changed.

Note - In the domain. xml file, a field or attribute is called an attribute, and an item is called an
element. For more information about domain.xmt, see the Sun Java System Application Server
Enterprise Edition 8.1 2005Q2 Administration Reference.

TABLE1-1 Primary Key Attributes

Item Primary Key Field or Attribute
admin-object-resource jndi-name
alert-subscription name
appclient-module name

application-ref ref

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Primary Key Attribute Values

TABLE1-1 Primary Key Attributes (Continued)

Item Primary Key Field or Attribute
audit-module name
auth-realm name
cluster-ref ref
cluster name
config name
connector-connection-pool name
connector-module name
connector-resource jndi-name
custom-resource jndi-name
ejb-module name
external-jndi-resource jndi-name
http-listener id
iiop-listener id
j2ee-application name
jacc-provider name
jdbc-connection-pool name
jdbc-resource jndi-name
jms-host name
jmx-connector name
1b-config name
lifecycle-module name
mail-resource jndi-name
message-security-config auth-layer
node-agent name
profiler name
element-property name

provider-config

provider-id

resource-adapter-config

resource-adapter-name

Chapter 1 « Application Server Compatibility Issues

21

Command Line Interface: hadbm

TABLE 1-1 Primary Key Attributes (Continued)

Item Primary Key Field or Attribute
resource-ref ref

security-map name

server name

server-ref ref

system-property name

thread-pool

thread-pool-id

virtual-server id
web-module name
persistence-manager-factory-resource jndi-name

Command Line Interface: hadbm

The following table lists options for the command line utility hadbm that are no longer
supported. For more information about the hadbm commands, see the Sun Java System
Application Server Enterprise Edition 8.1 2005Q2 Reference Manual.

TABLE1-2 Unsupported hadbm Options

Option Unsupported in Subcommands

--inetdsetup Not supported for the addnodes subcommand.
--inetd Not supported for the create subcommand.
--inetdsetupdir Not supported for the create subcommand.
--configpath Not supported for the create subcommand.

--set managementProtocol

Not supported for the create subcommand.

--set DataDeviceSize

--set TotalDatadeviceSizePerNode

Not supported for the create or set subcommand.

22 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Command Line Interface: asadmin

Command Line Interface: start-appserv and stop-appserv

The start-appserv and stop-appserv commands are deprecated. Use of these commands
results in a warning. Useasadmin start-domain and asadmin stop-domain instead.

In Application Server 8.1, the Log Messages to Standard Error field has been removed from the
Administration Console. The log-to-console attribute in the domain.xml file is deprecated
and ignored. The asadmin set command has no effect on the log-to-console attribute. Use
the - - -verbose option of the asadmin start-domain command to print messages to the
window in which you executed the asadmin start-domain command. This only works if you
execute the asadmin start-domain command on the machine on which the domain you are
starting is installed.

Command Line Interface: asadmin

The following sections describe changes to the command line utility asadmin:

“Subcommands” on page 23

“Error Codes for Start and Stop Subcommands” on page 24
“Options” on page 24

“Dotted Names” on page 25

“Tokens in Attribute Values” on page 27

“Nulls in Attribute Values” on page 27

For more information about the asadmin commands, see the Sun Java System Application
Server Enterprise Edition 8.1 2005Q2 Reference Manual.

Subcommands

Subcommands are backward compatible except as noted below.

The following subcommand is deprecated and ignored:

® reconfig

The following subcommands are not supported in Application Server 8.1:

show-instance-status (use list-instances)

restart-instance (use stop-instance followed by start-instance)
configure-session-persistence (renamed to configure-ha-persistence)
create-session-store (renamed to create-ha-store)
clear-session-store (renamed to clear-ha-store)

The following subcommands are no longer supported in Application Server 8.1, because the
software license key and web core were removed, and because controlled functions from web
server features are no longer supported:

Chapter 1 « Application Server Compatibility Issues 23

Command Line Interface: asadmin

m install-license
m display-license
®m create-http-qos
m delete-http-qos
create-mime
delete-mime
list-mime
create-authdb

m delete-authdb

m list-authdbs

® create-acl

m delete-acl

m list-acls

Error Codes for Start and Stop Subcommands

For Application Server 7, the exit codes returned by the start and stop subcommands of the
asadmin command were based on the desired end state. For example, for asadmin
start-domain, if the domain was already running, the exit code was 0 (success). If domain
startup failed, the exit code was 1 (error).

For Application Server 8.1, the exit codes are based on whether the commands execute as
expected. For example, the asadmin start-domain command returns exit code 1 if the domain
is already running or if domain startup fails. Similarly, asadmin stop-domain returns exit code
1 if the domain is already not running or cannot be stopped

Options
Options in the following table are deprecated or no longer supported.

TABLE1-3 Deprecated and Unsupported asadmin Options

Option Deprecated or Unsupported in Subcommands

--acceptlang Deprecated for the create-virtual-server subcommand.

--acls Deprecated for the create-virtual-server subcommand.
--adminpassword Deprecated for all relevant subcommands. Use - -passwordfile instead.
--blockingenabled Deprecated for the create-http-listener subcommand.
--configfile Deprecated for the create-virtual-server subcommand.

24 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Command Line Interface: asadmin

TABLE1-3 Deprecated and Unsupported asadmin Options (Continued)

Option Deprecated or Unsupported in Subcommands

--defaultobj Deprecated for the create-virtual-server subcommand.

--domain Deprecated for the stop-domain subcommand.

--family Deprecated for the create-http-listener subcommand.

--instance Deprecated for all remote subcommands. Use - -target instead.

--mime Deprecated for the create-virtual-server subcommand.

--optionsfile No longer supported for any commands.

--password Deprecated for all remote subcommands. Use - -passwordfile instead.

--path Deprecated for the create-domain subcommand. Use - -domaindir instead.

--resourcetype Deprecated for all relevant subcommands. Use - - restype instead.

--storeurl No longer supported for any commands.

--target Deprecated for all jdbc-connection-pool, connector-connection-pool,
connector-security-map, and resource-adapter-config subcommands.

--type Deprecated for all relevant subcommands.

Dotted Names

The following use of dotted names in asadmin get and set subcommands are not backward
compatible:

= Default server name is server instead of serverl
m gerver_instance.resource becomes domain.resources.resource
= server_instance.app-module becomes domain.applications.app-module

= Attributes names format is different, for example, poolResizeQuantity is now
pool-resize-quantity

= Some aliases supported in Application Server 7 are not supported in Application Server 8.1
In Application Server 8.1, the - - -passwordfile option of the asadmin command does not read
the password. conf file, and the upgrade tool does not upgrade this file. For information about

creating a password file in Application Server 8.1, see the Sun Java System Application Server
Enterprise Edition 8.1 2005Q2 Administration Guide.

The table below displays a one-to-one mapping of the incompatibilities in dotted names
between Application Server 7 and 8.1. The compatible dotted names are not listed in this table.

Chapter 1 « Application Server Compatibility Issues 25

Command Line Interface: asadmin

26

TABLE1-4 Incompatible Dotted Names Between Versions

Application Server 7 Dotted Names

Application Server 8 Dotted Names

server_instance.http-listener.listener_idserver_inst

pswevdrt ipsteemceibetptspriiseehetplibtesteenat . listener_idconfig_nam

server_instance.orbserver_instance.iiop-service

server_instance.iiop-se rviceconﬁg_name. iiop-service

server_instance.orblistenerserver_instance.iiop-1i

st@mer_instance.iiop-service.iiop-listener. listeneriidconﬁginam

server_instance. jdbc-resource .jndi_nume

server_instance.resources. jdbc-resource .jndi_numedomain .resou

server_instance. jdbc-connection-pool .pool_id

server_instance.resources. jdbc-connection-pool .pool_iddomain T

server_instance.external-jndi-resource .jndi_nume

seeveer insstmaeee j misiou‘eswmr@etg‘ndéjmjnﬂzi -resource .jndi_namedom

server_instance. custom- resource.jndi_name

server_instance. resources. custom-resource.jndi_namedomain. res

server_instance.web-container.logLevel

(see note below)

server_instance.log-service.module-log-levels.web-containerco

server_instance.web-container.monitoringEnabled

(see note below)

server_instance.monitoring-service.module-monitoring-levels.w

server_instance. j2ee-application.application_namesseveer ifsstacee aqpititedt don sippi

appidiareion . application_numa

server_instance.ejb-module.ejb-module_name

server_instance.applications.ejb-module. ejb-module_namedomain

server_instance.web-module.web-module_name

server_instance.applications.web-module.web-module_namedomail

server_instance.connector-module.connector_moduls

 samvele_instance.applications.connector-module. connector_module

server_instance.lifecycle-module. lifecycle_module_

nsemeer_instance.applications. lifecycle-module. lifecycle_module_i

server_instance.virtual-server-class

N/A

server_instance.virtual-server.virtual-server_id

server_instance . http-service.virtual-server.virtual-server_idconfig_nan

server_instance.mime.mime_id

N/A

server_instance.acl.acl_id

N/A

server_instance.virtual-server.virtual-server_id.auth

NpAauth-db_id

server_instance.authrealm.realm_idserver_instance.se

Cuerivey - Bestuiice. sedtirety aselitadauth - realm. realm_idconfig_nam

server_instance.persistence-manager-factory-resg

wecee(imhsﬁ_tuuwemmn_rimm;mmsnmg;dstﬁammmnagmurf

server_instance.http-service.acl.acl_id

N/A

server_instance.mail-resource.jndi_name

server_instance.resources.mail-resource .jndi_namedomain .resou

server_instance.profiler

server_instance. java-config.profilerconfig name.java-config.pi

Sun Java System Application Server Enterprise Edition 8.1 2005

Q2 Upgrade and Migration Guide - July 2007

Command Line Interface: asadmin

Note - Rows with note in previous table describe attribute names. In these instances, there is not
a one-to-one relationship with the dotted names between Application Server 7 and 8.1.

Tokens in Attribute Values

The asadmin get command shows raw values in Application Server 8.1 instead of resolved
values as in Application Server 8. These raw values may be tokens. For example, executing the
following command:

asadmin get domain.log-root

displays the following value:

${com.sun.aas.instanceRoot}/logs

Nulls in Attribute Values

In Application Server 8, attributes with no values contained nulls. This caused problems in
attributes that specified paths. In Application Server 8.1, attributes with no values contain
empty strings, as they did in Application Server 7.

Chapter 1 « Application Server Compatibility Issues 27

28

L K R 4 CHAPTER 2

J2EE 1.4 Compatibility Issues

The following topics are covered in this chapter:

“Binary Compatibility” on page 29

“Source Compatibility” on page 29

“Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)” on page 30

“JAXP and SAX Incompatibilities” on page 32

“Application Server 8.1 Options Incompatible with J2EE 1.4 Specification Requirements” on
page 33

= “Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations” on

page 33

Binary Compatibility

In this Application Server 8.1 release, the included Java SDK is The Java' 2 Platform, Enterprise
Edition (J2EE™ platform), version 1.4 SDK. This version of the J2EE SDK is upwards
binary-compatible with J2EE SDK, v1.3, except for the incompatibilities listed below. This
means that, except for the noted incompatibilities, applications built for version 1.3 run
correctly in the Sun Java System Application Server 8.1 release. For ease of reference, the version
of the J2EE SDK included in this release is referred to throughout this section as J2EE 1.4.

Source Compatibility

Downward source compatibility is not supported. If source files use new J2EE APIs, they are not
usable with an earlier version of the J2EE platform.

In general, the policy is as follows:

= Maintenance releases do not introduce any new APIs, so they maintain
source-compatibility with one another. However, since J2EE is based on J2SE, a new
Application Server release may include a new version of J2SE. Refer to the document on
compatibility issues in J2SE for more information:

29

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)

http://java.sun.com/j2se/1.4.2/compatibility.html
(http://java.sun.com/j2se/1.4.2/compatibility.html)

= Functionality releases and major releases maintain upwards but not downwards
source-compatibility.

Deprecated APIs are methods and classes that are supported only for backward compatibility,
and the compiler generates a warning message whenever one of these is used, unless the
-nowarn command-line option is used. It is recommended that programs be modified to
eliminate the use of deprecated methods and classes, though there are no current plans to
remove such methods and classes entirely from the system.

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3
release)

The Sun Java System Application Server 8.1 release is based on the Java 2 Platform, Enterprise
Edition, version 1.4. The Sun Java System Application Server 7 release is based on the Java 2
Platform, Enterprise Edition, version 1.3.

The Sun Java System Application Server 8.1 release is strongly compatible with previous
versions of the J2EE platform. Almost all existing programs should run on the Sun Java System
Application Server 8.1 release without modification. However, there are some minor potential
incompatibilities that involve rare circumstances and corner cases that we are documenting
here for completeness.

= Java Servlet Specification Version 2.4 ships with the Sun Java System Application Server 8.1
release, and can be downloaded from the following URL:

http://java.sun.com/products/servlet/ (http://java.sun.com/products/serviet/)

Version 2.3 of the specification shipped with the J2EE 1.3 SDK. The following items discuss
compatibility issues between these releases.

= HttpSessionListener sessionDestroyed method was previously used to notify that a
session was invalidated. As of this release, this method is used to notify that a session is
about to be invalidated so that it notifies before the session invalidation. If the code
assumed the previous behavior, it must be modified to match the new behavior.

® ServletRequest methods getRemotePort, getLocalName, getLocalAddr,
getLocalPort

The following methods are added in the ServletRequest interface in this version of the
specification. Be aware that this addition causes source incompatibility in some cases,
such as when a developer implements the ServletRequest interface. In this case, ensure
that all the new methods are implemented:

= public int getRemotePort() returns the Internet Protocol (IP) source port of the
client or last proxy that sent the request.

30 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

http://java.sun.com/j2se/1.4.2/compatibility.html
http://java.sun.com/j2se/1.4.2/compatibility.html
http://java.sun.com/products/servlet/

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)

= publicjava.lang.String getLocalName() returns the host name of the Internet
Protocol (IP) interface on which the request was received.

= publicjavalang.String getLocalAddr() returns the Internet Protocol (IP) address of
the interface on which the request was received.

= publicint getLocalPort() returns the Internet Protocol (IP) port number of the
interface on which the request was received.

JavaServer Pages Specification 2.0 ships with the Sun Java System Application Server 8.1
release and is downloadable from the following URL:

http://java.sun.com/products/jsp/ (http://java.sun.com/products/jsp/)

JSP Specification 1.2 shipped with the J2EE 1.3 SDK. Where possible, the JSP 2.0
Specification attempts to be fully backward compatible with the JSP 1.2 Specification. In
some cases, there are ambiguities in the JSP 1.2 specification that have been clarified in
the JSP 2.0 Specification. Because some JSP 1.2 containers behave differently, some
applications that rely on container-specific behavior may need to be adjusted to work
correctly in a JSP 2.0 environment.

The following is a list of known backward compatibility issues of which developers who
use JSP technology should be aware:

= Tag Library validators that are not namespace aware and that rely solely on the prefix
parameter might not correctly validate some JSP 2.0 pages. This is because the XML view
might contain tag library declarations in elements other than jsp: root, and might
contain the same tag library declaration more than once, using different prefixes. The uri
parameter should always be used by tag library validators instead. Existing JSP pages
with existing tag libraries do not create any problems.

= Users may observe differences in I18N behavior on some containers due primarily to
ambiguity in the JSP 1.2 specification. Where possible, steps were taken to minimize the
impact on backward compatibility and overall, the I18N abilities of technology have
been greatly improved.

In JSP specification versions previous to JSP 2.0, JSP pages in XML syntax (“JSP
documents”) and those in standard syntax determined their page encoding in the same
fashion, by examining the pageEncoding or contentType attributes of their page
directive, defaulting to ISO-8859-1 if neither was present.

As of the JSP Specification v2.0, the page encoding for JSP documents is determined as
described in section 4.3.3 and appendix E1 of the XML specification, and the
pageEncoding attribute of those pages is only checked to make sure it is consistent with
the page encoding determined as per the XML specification.

Asaresult of this change, JSP documents that rely on their page encoding to be
determined from their pageEncoding attribute will no longer be decoded correctly.
These JSP documents must be changed to include an appropriate XML encoding
declaration.

Chapter2 - J2EE 1.4 Compatibility Issues 31

http://java.sun.com/products/jsp/

JAXP and SAX Incompatibilities

Additionally, in the JSP 1.2 Specification, page encodings are determined on a per
translation unit basis whereas in the JSP 2.0 Specification, page encodings are
determined on a per-file basis. Therefore, if a.jsp statically includes b.jsp, and a page
encoding is specified in a.jsp but not in b.jsp, in the JSP 1.2 Specification a.jsp’s encoding
is used for b.jsp, but in the JSP 2.0 Specification, the default encoding is used for b.jsp.

= The type coercion rules (shown in Table JSP.1-11 in the JSP 2.0 Specification) have been
reconciled with the EL coercion rules. There are some exceptional conditions that no
longer result in an exception in the JSP 2.0 Specification. In particular, when passing an
empty String to an attribute of a numeric type, a translation error or a
NumberFormatException used to occur, whereas in the JSP 2.0 Specification, a 0 is
passed in instead. See Table JSP.1-11 in the JSP 2.0 Specification for details. In general,
this is not expected to cause any problems because these would have been exceptional
conditions in the JSP 1.2 Specification and the specification allowed for these exceptions
to occur at either translation time or request time.

= TheJSP container uses the version of web.xml to determine the default behavior of
various container features. The following is a list of items of which JSP developers should
be aware when upgrading their web . xml file from Servlet version 2.3 Specification to
Servlet version 2.4 Specification.

= EL expressions are ignored by default in applications created with JSP 1.2
technology. When upgrading a Web application to the JSP 2.0 Specification, EL
expressions are interpreted by default. The escape sequence \\$ can be used to escape
EL expressions that should not be interpreted by the container. Alternatively, the
isELIgnored page directive attribute, or the el-ignored configuration element can
deactivate EL for entire translation units. Users of JSTL 1.0 need to either upgrade
their taglib/ imports to the JSTL 1.1 URIs, or they need to use the _rt versions of the
tags (for example c_rt instead of ¢, or fmt_rt instead of fmt).

= Files with an extension of .jspx are interpreted as JSP documents by default. Use the
JSP configuration element is-xml to treat .jspx files as regular JSP pages. There is no
way to disassociate .jspx from the JSP container.

= The escape sequence \\$ was not reserved in the JSP 1.2 Specification. Any template
text or attribute value that appeared as \\$ in the JSP 1.2 Specification used to output
\\$ but now outputs just $.

JAXP and SAX Incompatibilities

32

Sun Java System Application Server 8.1 supports JAXP 1.3, which in turn supports SAX 2.0.2. In
SAX2.0.2,DeclHandler.externalEntityDecl requires the parser to return the absolute
system identifier for consistency with DTDHandler.unparsedEntityDecl. This might cause
some incompatibilities when migrating applications that use SAX 2.0.0.

To migrate an application that uses SAX 2.0.0 to SAX 2.0.2 without changing the previous
behavior of externalEntityDecl, you can set the resolve-dtd-uris feature to false. For example:

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setFeature("http://xml.org/sax/features/resolve-dtd-uris", false);

Other incompatibilities between SAX 2.0.0 and SAX 2.0.2 are documented in the JAXP
Compatibility Guide.

Application Server 8.1 Options Incompatible with J2EE 1.4
Specification Requirements

Sun Java System Application Server 8.1 is compatible with the Java 2 Platform, Enterprise
Edition specification by default. In this case, all portable J2EE programs run on the Application
Server without modification. However, as allowed by the J2EE compatibility requirements, it is
possible to configure applications to use features of the Sun Java System Application Server 8.1
that are not compatible with the J2EE specification.

The pass-by-reference element in the sun-ejb- jar.xml file only applies to remote calls. As
defined in the EJB 2.0 specification, section 5.4, calls to local interfaces use pass-by-reference
semantics.

If the pass-by-reference element is set to its default value of false, the parameter passing
semantics for calls to remote interfaces comply with the EJB 2.0 specification, section 5.4. If set
to true, remote calls involve pass-by-reference semantics instead of pass-by-value semantics,
contrary to this specification.

Portable programs cannot assume that a copy of the object is made during such a call, and thus
that it’s safe to modify the original. Nor can they assume that a copy is not made, and thus that
changes to the object are visible to both caller and callee. When this flag is set to true,
parameters and return values are considered read-only. The behavior of a program that
modifies such parameters or return values is undefined. For more information about the
pass-by-reference element, see the Sun Java System Application Server Enterprise

Edition 8.1 2005Q2 Developer’s Guide.

Application Server 8.1 Options Contrary to J2EE 1.4
Specification Recommendations

If the delegate attribute in the class-loader element of the sun-web.xml file is set to its default
value of true, classes and resources residing in container-wide library JAR files are loaded in
preference to classes and resources packaged within the WAR file, contrary to what is
recommended in the Servlet 2.3 specification, section 9.7.2. If set to false, the classloader
delegation behavior complies with what is recommended in the Servlet 2.3 specification, section
9.7.2.

Chapter2 « J2EE 1.4 Compatibility Issues 33

http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html#SAX
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html#SAX

Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations

Do not package portable programs that use the delegate attribute with the value of true with any
classes or interfaces that are a part of the J2EE specification. The behavior of a program that
includes such classes or interfaces in its WAR file is undefined. For more information about the
class-loader element, the Sun Java System Application Server Enterprise Edition 8.1 2005Q2

Developer’s Guide.

34 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

L K R 4 CHAPTER 3

Upgrading an Application Server Installation

You can upgrade to Sun Java System Application Server 8.1 (hereafter called Application
Server) from Sun Java(TM) System Application Server 7.x (formerly Sun ONE(TM)
Application Server 7.x) or a Sun Java System Application Server 8.x Platform Edition
installation. Information that is transferred includes data about deployed applications, the file
realm, security certificates, and other resource and server configuration settings. You can install
your upgrade in a new location, or you can upgrade in place by overwriting your previous
installation.

If your version of Application Server was installed as part of Java Enterprise System, or if it was
included with a Solaris operating system bundle, refer to “Before You Start the Upgrade
Process” on page 37. Additional information regarding upgrading of all JES components
including the Application Server can be found at Sun Java Enterprise System 2005Q4 Upgrade
Guide.

This chapter discusses the following topics:

= “Upgrade Overview” on page 35

“Before You Start the Upgrade Process” on page 37

“Upgrading Through the Upgrade Utility” on page 37
“Upgrading Through the Wizard” on page 40

= “Upgrading a Cluster” on page 42

= “Correcting Potential PE and EE Upgrade Problems” on page 43

Upgrade Overview

The following table shows supported Sun Java System Application Server upgrades, where PE
indicates Platform Edition and EE indicates Enterprise Edition.

35

Upgrade Overview

TABLE3-1 Supported Upgrade Paths

Source Installation 8.1Platform Edition 8.1 Enterprise Edition
7. XPE X X
7.XSE X
7 XEE X
8.0PE X X
8.1PE X

The software provides two methods, a command-line utility (asupgrade) and a graphical user
interface (Upgrade Wizard), for completing the upgrade. If you issue the asupgrade command
with no options, the Upgrade Wizard GUI will be displayed. If the asupgrade command is used
in command-line mode and all of the required information is not supplied, an interviewer will
request information for any required options that were omitted. The Upgrade Wizard
automatically detects the version of the specified source server installation.

If a domain contains information about a deployed application and the installed application
components do not agree with the configuration information, the configuration will be
migrated as is without any attempt to reconfigure the incorrect configurations.

During an upgrade, the configuration and deployed applications of a previous version of the
Application Server are migrated; however, the runtime binaries of the server are not updated.
Database migrations or conversions are also beyond the scope of this upgrade process.

Only those instances that do not use Sun Java SystemWeb Server-specific features will be
upgraded seamlessly. Configuration files related to HT'TP path, CGI bin, SHTML, and NSAPI
plug-ins will not be upgraded.

Application archives (EAR files) and component archives (JAR, WAR, and RAR files) that are
deployed in the Application Server 7.x/8.0 environment do not require any modification to run
on Application Server 8.1.

Applications and components that are deployed in the source server are deployed on the target
server during the upgrade. Applications that do not deploy successfully on the target server
must be migrated using the Migration Tool or asmigrate command, then deployed again
manually.

If the upgrade includes clusters, specify one or more cluster files. Upon successful upgrade, an
upgrade report is generated listing successfully migrated items along with a list of the items that
could not be migrated.

36 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Upgrading Through the Upgrade Utility

Before You Start the Upgrade Process

If you have used the Java ES installer to install your version of Application Server 7, and if you
have chosen the Configure Later option in the Java ES installer, you need to perform the steps in
this section.

Note - While upgrading Application Server using the postInstall script, you might receive some
warning messages if Pointbase is not installed. These warning messages can be ignored.

1. Locate the Accessory CD containing the Add-ons for your version of Application Server.
Alternatively, you can download the contents of the CD from
http://www.sun.com/download/index.jsp..

2. Runthe postInstall script as follows:
./postInstall AS_INSTALL_DIR AS_DATA_CONFIG_DIR

For example, for the default installation, this command looks like this: . /postInstall
/opt/SUNWappserver /var/opt/SUNWappserver

For detailed instructions on how to run this script, refer to the Readme. txt file in the Addon
folder in the accessory CD or in the location where you have extracted the Add-ons.

Note - Before starting the upgrade process, make sure that both the source server (the server
from which you are upgrading) and the target server (the server to which you are upgrading)
are stopped.

Upgrading Through the Upgrade Utility

The upgrade utility is run from the command line using the following syntax:

asupgrade

[--console]

[--version]

[--help]

[--source applicationserver 7.x/8.x_installation]
[--target applicationserver 8.1 installation]
--adminuser admin_user
[--adminpassword admin_password]
[--masterpassword changeit]
[--passwordfile path to password file]

[--domain domain_name]

[--nsspwdfile NSS password filepath]
[--targetnsspwdfile target NSS password filepath]
[--jkspwdfile JKS password filepath]

[--capwdfile CA password filepath]

[--clinstancefile filel [, file2, file3, ... filenl]]

Chapter3 - Upgrading an Application Server Installation 37

http://www.sun.com/download/index.jsp

Upgrading Through the Upgrade Utility

The following table describes the command options in greater detail, including the short form,
the long form, and a description.

TABLE3-2 asupgrade Utility Command Options

Short Form Long Form Description

-c ---console Launches the upgrade command line utility.

-V ---version The version of the Upgrade Tool.

-h ---help Displays the arguments for launching the upgrade utility.

-t ---target The installation directory for Sun Java System Application
Server 8.1.

-a ---adminuser The username of the administrator.

-w ---adminpassword | The password for the adminuser. Although this option can be
used, the recommended way to transmit passwords is by using
the -passwordfile option.

-m --masterpassword The master password that is created during installation. The
default value is changeit. Although this option can be used, the
recommended way to transmit passwords is by using the
--passwordfile option.

Note: This option is required only if your target server is
Application Server 8.1 EE.

-f --passwordfile The path to the file that contains the adminpassword and
masterpassword. Content of this file should be in the following
format:

AS_ADMIN_ADMINPASSWORD=adminpassword
AS_ADMIN_MASTERPASSWORD=masterpassword

-d --domain The domain name for the migrated certificates.

-n --nsspwdfile The path to the NSS password file.

-e --targetnsspwdfile The path to the target NSS password file.

-j --jkspwdfile The path to the JKS password file.

-p --capwdfile The path to the CA certificate password file.

-i --clinstancefile The path to the cluster file. The default filename is

$AS_INSTALL/conf/clinstance.conf.

The following examples show how to use the asupgrade command-line utility to upgrade an
existing application server installation to Application Server 8.1.

38 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Upgrading Through the Upgrade Utility

Example 1: Upgrading an Application Server 7 Installation to Application Server 8.1 with
Prompts for Certificate Migration.

This example shows how to upgrade a Sun Java SystemApplication Server 7 installation to Sun
Java System Application Server 8.1. You will be prompted to migrate certificates. If you reply no,
then no certificates will be migrated.

asupgrade --adminuser admin --passwordfile password.txt
--source /home/sunas7 --target /home/sjsas8.1

Example 2: Upgrading an Application Server 7.1 EE Installation with Clusters and NSS
Certificates to Application Server 8.1 EE

This example shows how to upgrade a Sun Java System Application Server 7.1 EE installation
with a cluster to Sun Java System Application Server 8.1 EE. NSS certificates will be migrated, as
will the clinstance.conf cluster file.

asupgrade --adminuser admin --passwordfile password.txt
-source /home/sjsas7.1

--target /home/sjsas8.1

--domain domainl

--nsspwdfile /home/sjsas7.1l/nsspassword.txt
--targetnsspwdfile /home/sjsas8.1/nsspassword.txt
--clinstancefile /home/sjsas7.1/config/clinstance.conf

After the upgrade, node agents for all remote instances must be created and started on their
respective host systems.

Example 3: Upgrading an Application Server 7 PE Installation with NSS Certificates to
Application Server 8.1 PE

This example shows how to upgrade a Sun Java System Application Server 7 PE installation to
Sun Java System Application Server 8.1 PE. The NSS certificates from the 7.0 PE source server
will be converted to JKS and CA certificates in the 8.1 PE target server.

asupgrade --adminuser admin --passwordfile password.txt
--source /home/sjsas7.0

--target /home/sjsas8.1

--domain domainl

--nsspwdfile /home/sjsas7.0/nsspassword.txt
--jkspwdfile /home/sjsas7.0/jkspassword.txt

--capwdfile /home/sjsas7.0/capassword.txt

Example 4: Upgrading an Application Server 8.0 PE Installation with JKS and CA Certificates to
Application Server 8.1 PE

This example shows how to upgrade a Sun Java System Application Server 8.0 PE installation to
Sun Java System Application Server 8.1 PE. JKS and CA certificates will be migrated.

Chapter 3 - Upgrading an Application Server Installation 39

Upgrading Through the Wizard

asupgrade --adminuser admin --passwordfile password.txt
--source /home/sjsas8.0

--target /home/sjsas8.1

--domain domainl

--jkspwdfile /home/sjsas8.0/jkspassword.txt

--capwdfile /home/sjsas8.1/capassword.txt

Upgrading Through the Wizard

40

The Upgrade wizard provides a graphical user interface (GUI). Using the wizard increases
install time and space requirements. You can start the Upgrade wizard in GUI mode from the
command line or from the desktop.

To start the wizard,
- On UNIX, change to the <install_dir>/bin directory and type asupgrade.
- On Windows, double-click the asupgrade icon in the <install_dir>/bin directory.

If the Upgrade checkbox was selected during the Application Server installation process, the
Upgrade Wizard screen will automatically display after the installation completes.

From the Upgrade Wizard screen:

To Use the Upgrade Wizard

In the Source Installation Directory field, enter the location of the existing installation from
which to import the configuration.

This installation can be Sun Java System Application Server 7 (formerly Sun ONE Application
Server 7) or Sun Java System Application Server 8.x.

In the Target Installation Directory field, enter the location of the Application Server installation
to which to transfer the configuration.

If the upgrade wizard was started from the installation (the Upgrade from Previous Version
checkbox was checked during the Application Server installation), the default value for this field
will be the directory to which the Application Server software was just installed.

If you are upgrading Sun Java System Application Server 7.1 Enterprise Edition installation with
clusters and no security certificates to Sun Java System Application Server 8.1 Enterprise
Edition, press the Next button and continue with “Upgrading Through the Wizard” on page 40.

All other upgrades without certificates continue with “Upgrading Through the Wizard” on
page 40. Continue with Step 4 if security certificates need to be transferred.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Upgrading Through the Wizard

10

11

12

13

If the source installation has security certificates that must be transferred, check the Transfer
Security Certificates checkbox, press the Next button, and the

The Transfer Security Certificates screen displays.

From the Transfer Security Certificates screen, press the Add Domain button to add domains
with certificates to be transferred.

The Add Domain dialog displays.

From the Add Domain dialog, select the domain name that contains the security certificates to
migrate and enter the appropriate passwords.

Click the OK button when done.

The Transfer Security Certificates screen will be displayed again.

Repeat “Upgrading Through the Wizard” on page 40 and “Upgrading Through the Wizard” on
page 40 until all the domains that have certificates to be transferred have been added.

After all of the domains that contain certificates to be transferred have been added, press the
Next button and

Continue with “Upgrading Through the Wizard” on page 40 or with “Upgrading Through the
Wizard” on page 40 if cluster configuration information needs to be transferred.

If you are upgrading a Sun Java System Application Server 7.1 Enterprise Edition installation
with clusters to Sun Java System Application Server 8.1 Enterprise Edition, the Transfer Cluster
Configurations screen will be displayed. Press the Add Cluster button.

The Select clinstance. conf file dialog box will be displayed. Choose clinstance. conf file and
click the Open button. The clinstance. conf file will be added to the list.

Enter the cluster file name, which contains the cluster configuration information to be migrated.

Repeat this process until all the cluster configuration files that need to be migrated have been
added, then press the Next button.

The Upgrade Results screen displays, showing the status of the upgrade operation in the Results
field.

Click the Finish button to close the Upgrade Tool when the upgrade process is complete.

Chapter3 - Upgrading an Application Server Installation 41

Upgrading a Cluster

Upgrading a Cluster

42

The Application Server’s Upgrade utility captures cluster details from the clinstance. conf file,
the cluster configuration file. If more than one cluster has been defined for the Application
Server 7.x, multiple .conf files may exist prior to the upgrade. The configuration files could have
any name, but all would have the .conf file extension. If clusters will be included in an upgrade,
consider the following points when you are defining clinstance.conf files.

Instance names in the clinstance. conf file must be unique. For example, in Application
Server 7.x, machine A could have serverl and server2 participating in a cluster. Machine B
could also have a serverl participating in the same cluster. Typically, the clinstance.conf file
would include the serverl and server2 of machine A and serverl of machine B. Application
Server 8.1 requires instance names in a cluster to be unique. Therefore, prior to the upgrade, in
the clinstance.conf file you would need to rename serverl of machine B to a unique name, such
as server3 or serverlof machineB. You do not, however, need to rename the server1 instance
itself in machine B; you only need to rename the server in the clinstance.conf file. The
expectation is that instances participating in the cluster are homogeneous, in the sense that they
would have same kind of resources, and same applications deployed in them.

When the upgrade process runs, the instance marked as the master instance will be picked up
for transferring the configuration. If there is no instance marked as the master instance, one of
the instances will be picked up in a random manner and used for transferring the configuration.

A cluster is created in the DAS, along with instances defined in the clinstance.conf file. All these
instances participating in this cluster share the same configuration named
<cluster_name>-config, where the cluster_name is cluster_0 for the first cluster, cluster_1 for
the next cluster, and so forth. Each instance in the cluster has HTTP and IIOP ports set in their
system properties. The HTTP port is the port defined in the clinstance.conf file as the instance
port. IIOP ports are selected from the iiop-cluster configuration in the server. xmt file.

Server instances that participate in the cluster and that run on a machine other than the
machine on which the DAS is running, are created with a node-agent named
<host-name>-<domain-name>, where the host-name is the name given in the

clisntance. conf file for that particular instance and the domain-name is the name to which
this cluster belongs.

After the upgrade process has been completed on the DAS, install Application Server 8.1 on the
other machines where clustered instances need to run.

To Upgrade a Cluster

Copy the node-agent directory from DAS machine to client machine under
install-dir/nodeagents/. For instance, if your DAS is installed on HostA and client machine name
is HostB, the upgrade process would have created a node agent named

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Correcting Potential PE and EE Upgrade Problems

“HostB-<domain_name>"as the node-agent for HostB. Hence copy HostB-<domain_name>
from HostA<AS81_install_dir>/nodeagents/HostB-<domain_name> directory to HostB
<AS81_install_dir>/nodeagents. After copying, delete the copied node agent directory under
HostA.

2 Edit nodeagent.properties file on client machine HostB under agent/config directory. Set
agent.client.host to the client machine name. In this case it should be HostB.

3 Editdas.properties file on client machine HostB under agent/config directory. Make sure
agent.das.isSecure=false in das.properties file. It should be set to false if by default Application
Server 7.x Administration Server was running on non secure port. If Application Server 7.x
Administration Server was running on secure port, then it should be set to true.

4 Start domain and start node agents on both DAS machine as well as client machines. This in turn
will run the clustered instance.

Correcting Potential PE and EE Upgrade Problems

This section addresses the following issues that could occur during an upgrade to Application
Server 8.1:

= “To Migrate Additional HTTP Listeners Defined on the Source Server to the Target PE
Server” on page 43

= “To Migrate Additional HTTP and IIOP Listeners Defined on the Source Server to the Target
EE Server” on page 44

= “Eliminating Port Conflict Problems” on page 45

= “Eliminating Problems Encountered When A Single Domain has Multiple Certificate
Database Passwords” on page 45

v To Migrate Additional HTTP Listeners Defined on the
Source Server to the Target PE Server

If additional HTTP listeners have been defined in the PE source server, those listeners need to
be added to the PE target server after the upgrade:

1 Startthe Admin Console.
2 Expand Configuration.
3 Expand HTTP Service.

4 Expand Virtual Servers.

Chapter3 - Upgrading an Application Server Installation 43

Correcting Potential PE and EE Upgrade Problems

44

Select <server>.
In the right hand pane, add the additional HTTP listener name to the HTTP Listeners field.

Click Save when done.

To Migrate Additional HTTP and IIOP Listeners
Defined on the Source Server to the Target EE Server

If additional HTTP listeners or IIOP listeners have been defined in the source server, the IIOP
ports must be manually updated for the target EE servers before any clustered instances are
started. For example, if MyHttpListener was defined as an additional HT'TP listener in serverl,
which is part of the cluster, because server instances are symmetrical in a cluster, the other
instances in the cluster will also have the same HTTP listener. In the target configuration named
<cluster_name>-config, this listener must be added with its port set to a system property
{myHttpListener_ HTTP_LISTENER_PORT}. In the target server, each server instance in this
cluster that uses this configuration would have system property named

myHttpListener HTTP_LISTENER_PORT. The value of this property for all server instances
would be set to the port value in the source server, serverl. These system properties for these
server instances must be manually updated with non-conflicting port numbers before the server
is started.

If additional HTTP listeners have been defined in the source server, those listeners need to be
added to the target server after the upgrade:

Start the Admin Console.

Expand Configuration and select the appropriate <server>-config configuration.

Expand HTTP Service.

Expand Virtual Servers.

Select <server>.

In the right hand pane, add the additional HTTP listener name(s) to the HTTP Listeners field.

Click Save when done.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Correcting Potential PE and EE Upgrade Problems

Eliminating Port Conflict Problems

After upgrading the source server to AS 8.1 EE, start the domain. Start the node agent that, by
default, starts the server instances. Start the Admin Console and verify that these servers are
started. If any of the servers are not running, in the
install_dir/nodeagents/node-agent-name/server_name/logs/server.log file, check for
failures that are caused by port conflicts. If there any failures due to port conflicts, use the
Admin Console and modify the port numbers so there are no more conflicts, then stop and
restart the node agent and servers.

Ifan AS 7.1 EE source server with no clusters is being upgraded to AS 8.1 EE (only standalone
instances are being upgraded), and if serverl in the AS 7.1 source server has a server instance
listening on any of the default port of Application Server 8.1, a conflict occurs. If these
conditions exist, start the Admin Console after the upgrade and change the port for the
server-config’s listener to a non conflicting port number. If an AS 7.x SE source server is being
upgraded to AS 8.1 EE, the upgrade process should automatically update the port for the
<server-config>.

Note - The default ports in Application Server 8.1 EE are:

8080 for HTTP Instance(DAS instance)
7676 for JMS

3700 for IIOP

8181 for HTTP_SSL.

3820 for IIOP_SSL

3920 for IIOP_MUTUALAUTH

8686 for IMX_ADMIN

Eliminating Problems Encountered When A Single
Domain has Multiple Certificate Database Passwords

If the upgrade includes certificates, provide the passwords for the source PKCS12 file and the
target JKS keyfile for each domain that contains certificates to be migrated. Since Application
Server 7 uses a different certificate store format (NSS) than Application Server 8 PE (JSSE), the
migration keys and certificates are converted to the new format. Only one certificate database
password per domain is supported. If multiple certificate database passwords are used in a
single domain, make all of the passwords the same before starting the upgrade. Then reset the
passwords after the upgrade has been completed.

Chapter3 - Upgrading an Application Server Installation 45

46

CHAPTER 4

Understanding Migration

This chapter addresses the following topics:

= “J2EE Component Standards” on page 47

= “J2EE Application Components” on page 48

= “Migration and Deployment” on page 49

J2EE Component Standards

Sun Java System Application Server 8.1 August 22, 2005(hereafter called Application Server) is a
J2EE v1.4-compliant server based on the component standards developed by the Java
community. By contrast, Sun Java System Application Server 7 (Application Server 7) is a J2EE
v1.3-compliant server and Sun ONE Application Server 6.x (Application Server 6.x) is a J2EE
v1.2-compliant server. Between the three J2EE versions, there are considerable differences with
the J2EE application component APIs.

The following table characterizes the differences between the component APIs used with the
J2EE v1.4-compliant Sun Java System Application Server 8.1, the J2EE v1.3-compliant Sun
ONE Application Server 7, and the J2EE v1.2-compliant Sun ONE Application Server 6.x.

TABLE4-1 Application Server Version Comparison of APIs for J2EE Components

Sun Java System Application

Sun Java System Application

Component API Sun ONE Application Server6.x | Server7 Server 8.1
JDK 1.2.2 1.4 1.4
Servlet 2.2 2.3 2.4

JSP 1.1 1.2 2.0
JDBC 2.0 2.0 2.1,3.0

47

J2EE Application Components

TABLE4-1 Application Server Version Comparison of APIs for J2EE Components (Continued)
Sun Java System Application Sun Java System Application
Component API Sun ONE Application Server 6.x | Server7 Server 8.1
EJB 1.1 2.0 2.0
JNDI 1.2 1.2 1.2.1
JMS 1.0 1.1 1.1
JTA 1.0 1.01 1.01

J2EE Application Components

48

J2EE simplifies development of enterprise applications by basing them on standardized,
modular components, providing a complete set of services to those components, and handling
many details of application behavior automatically, without complex programming. J2EE v1.4
architecture includes several component APIs. Prominent J2EE components include:

Client Application

Web Application

Enterprise JavaBean (EJB)

Connector

Enterprise Application Archive (EAR)

J2EE components are packaged separately and bundled into a J2EE application for deployment.
Each component, its related files such as GIF and HTML files or server-side utility classes, and a
deployment descriptor are assembled into a module and added to the J2EE application. A J2EE
application is composed of one or more enterprise bean(s), Web, or application client
component modules. The final enterprise solution can use one J2EE application or be made up
of two or more J2EE applications, depending on design requirements.

A J2EE application and each of its modules has its own deployment descriptor. A deployment
descriptor is an XML document with an .xml extension that describes a component’s
deployment settings.

A J2EE application with all of its modules is delivered in an Enterprise Archive (EAR) file. An
EAR file is a standard Java Archive (JAR) file with an .ear extension. The EAR file contains EJB
JAR files, application client JAR files and/or Web Archive (WAR) files.

The migration process is concerned with moving J2EE application components, modules, and
files. For more information on migrating various J2EE components, refer to Chapter 6,
“Migrating from Application Server 6.x/7.x to Application Server 8.1

For more information on J2EE, see:

= J2EE 1.4 tutorial
= J2EE overview

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/overview.html

Migration and Deployment

= J2EE website

Migration and Deployment

This section describes the need to migrate J2EE applications and the particular files that must be
migrated. Following successful migration, a J2EE application is redeployed to the Application
Server.

Redeployment is also described in this section.
The following topics are addressed:

= “Why is Migration Necessary?” on page 49
= “What Needs to be Migrated” on page 49
= “Deployment of Migrated Applications” on page 50

Why is Migration Necessary?

Although J2EE specifications broadly cover requirements for applications, they are nonetheless
evolving standards. They either do not cover some aspects of applications or leave
implementation details to the application providers.

This leads to different implementations of the application servers, also well as difference in the
deployment of J2EE components on application servers. The array of available configuration
and deployment tools for use with any particular application server product also contributes to
the product implementation differences.

The evolutionary nature of the specifications itself presents challenges to application providers.
Each of the component APIs are also evolving. This leads to a varying degree of conformance by
products. In particular, an emerging product, such as the Application Server, has to contend
with differences in J2EE application components, modules, and files deployed on other
established application server platforms. Such differences require mappings between earlier
implementation details of the J2EE standard, such as file naming conventions, messaging
syntax, and so forth.

Moreover, product providers usually bundle additional features and services with their
products. These features are available as custom JSP tags or proprietary Java API libraries.
Unfortunately, using these proprietary features renders these applications non-portable.

What Needs to be Migrated

For migration purposes, the J2EE application consists of the following file categories:

= Deployment descriptors (XML files)
= JSP source files that contain Proprietary APIs

Chapter4 - Understanding Migration 49

http://java.sun.com/j2ee

Migration and Deployment

50

= Javasource files that contain Proprietary APIs

Deployment descriptors (XML files)

Deployment is accomplished by specifying deployment descriptors (DDs) for standalone
enterprise beans (EJB JAR files), front-end Web components (WAR files) and enterprise
applications (EAR files). Deployment descriptors are used to resolve all external dependencies
of the J2EE components/applications. The J2EE specification for DDs is common across all
application server products. However, the specification leaves several deployment aspects of
components pertaining to an application dependent on product-implementation.

JSP source files

J2EE specifies how to extend JSP by adding extra custom tags. Product vendors include some
custom JSP extensions in their products, simplifying some tasks for developers. However, usage
of these proprietary custom tags results in non-portability of JSP files. Additionally, JSP can
invoke methods defined in other Java source files as well. The JSPs containing proprietary APIs
needs to be rewritten before they can be migrated.

Java source files

The Java source files can be EJBs, servlets, or other helper classes. The EJBs and servlets can
invoke standard J2EE services directly. They can also invoke methods defined in helper classes.
Java source files are used to encode the business layer of applications, such as EJBs.Vendors
bundle several services and proprietary Java API with their products. The use of proprietary
Java APIs is a major source of non-portability in applications. Since J2EE is an evolving
standard, different products can support different versions of J2EE component APIs. This is
another aspect that migration addresses.

Deployment of Migrated Applications

Deployment refers to deploying a migrated application that was previously deployed on an
earlier version of Sun’s Application Server, or any third party application server platforms.

To be able to deploy your migrated applications on Application Server 8.1, it is important to
understand classloaders in Application Server 8.1 and changes to the architecture of
Application Server 8.1.

In Application Server 7, the DAS controls multiple local instances. The Common Classloader
loads the classes in the install-dir/<yourdomain>/<yourinstance>/1ib/classes directory and
the install-dir/ <yourdomain>/<yourinstance>/11ib directory. All resources and configurations
correspond to a specific instance.

In Application Server 8.1, the DAS controls local and remote instances. The Common
Classloader loads the JAR and ZIP files in the domain-dir/1ib directory and the classes in the
domain-dir/1ib/classes directory.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migration and Deployment

In Application Server 8.1, any JAR file placed in the lib directory of the DAS is replicated to all
instances controlled by that DAS. The JAR files bundled with the Application Server reside in
the install-dir/1ib directory.

For more information on the classloader hierarchy in Application Server 8.1, see “The
Classloader Hierarchy” in Sun Java System Application Server Enterprise Edition 8.1 2005Q2
Developer’s Guide.

You can use the delegation inversion mechanism to use libraries bundled with your application
instead of those bundled with the Application Server. However, it is safe to use this mechanism
only for web modules that do not access EJB components and do not interact with other
applications. For more information on the delegation model of Application Server 8.1, see
“Classloader Delegation” in Sun Java System Application Server Enterprise Edition 8.1 2005Q2
Developer’s Guide.

Note - The default value of the delegate attribute is true in Application Server 8.1. See “Sun
Deployment Descriptor: sun-web.xml” on page 19.

The JAXP 1.3 parser is bundled with Application Server 8.1. You cannot override the JAXP 1.3
parser for Application Server 8.1.

In Application Server 8.1, to share a library with all the applications and modules in a domain,
place the libraries (JAR files) in the domain-dir/1ib directory and restart the Application Server.
The Common Classloader will load the new libraries. Use this approach to share commonly
shared libraries, such as JDBC drivers.

To share libraries across a specific cluster instead of over an entire domain, add the JAR files to
the domain-dir/config/<cluster-name>-config/1ib directory and add the path to the JAR files
in the classpath-suffix attribute. For instructions on how to change this attribute, see “Using
the System Classloader” in Sun Java System Application Server Enterprise Edition 8.1 2005Q2
Developer’s Guide.

Copy the JAR files to domain-dir/config/<cluster-name>- config/lib/ext directory to add to
java.ext.dirs. To create an optional package that can be shared across the domain, add the
JAR file to domain-dir/1ib/ext directory and restart the Application Server.

Note - If multiple applications deployed on a single instance require different versions of the
same JAR file, ensure that those JAR files have different names.

Chapter4 - Understanding Migration 51

52

L K R 4 CHAPTER 5

Migrating from EJB 1.1 to EJB 2.0

Although the EJB 1.1 specification will continue to be supported in Sun Java System Application
Server 8.1, the use of the EJB 2.0 architecture is recommended to leverage its enhanced
capabilities.

To migrate EJB 1.1 to EJB 2.0 a number of modifications are required, including within the
source code of components.

Essentially, the required modifications relate to the differences between EJB 1.1 and EJB 2.0, all
of which are described in the following topics.

= “EJB Query Language” on page 53

= “Local Interfaces” on page 54

= “EJB 2.0 Container-Managed Persistence (CMP)” on page 54
= “Migrating EJB Client Applications” on page 56

= “Migrating CMP Entity EJBs” on page 58

EJB Query Language

The EJB 1.1 specification left the manner and language for forming and expressing queries for
finder methods to each individual application server. While many application server vendors let
developers form queries using SQL, others use their own proprietary language specific to their
particular application server product. This mixture of query implementations causes
inconsistencies between application servers.

The EJB 2.0 specification introduces a query language called EJB Query Language, or EJB QL to
correct many of these inconsistencies and shortcomings. EJB QL is based on SQL92. It defines
query methods, in the form of both finder and select methods, specifically for entity beans with
container-managed persistence. EJB QLs principal advantage over SQL is its portability across
EJB containers and its ability to navigate entity bean relationships.

53

Local Interfaces

Local Interfaces

In the EJB 1.1 architecture, session and entity beans have one type of interface, a remote
interface, through which they can be accessed by clients and other application components. The
remote interface is designed such that a bean instance has remote capabilities; the bean inherits
from RMI and can interact with distributed clients across the network.

With EJB 2.0, session beans and entity beans can expose their methods to clients through two
types of interfaces: a remote interface and a local interface. The 2.0 remote interface is identical
to the remote interface used in the 1.1 architecture, whereby, the bean inherits from RMI,
exposes its methods across the network tier, and has the same capability to interact with
distributed clients.

However, the local interfaces for session and entity beans provide support for lightweight access
from EJBs that are local clients; that is, clients co-located in the same E]JB container. The EJB 2.0
specification further requires that EJBs that use local interfaces be within the same application.
That is, the deployment descriptors for an application’s EJBs using local interfaces must be
contained within one ejb-jar file.

Thelocal interface is a standard Java interface. It does not inherit from RMI. An enterprise bean
uses the local interface to expose its methods to other beans that reside within the same
container. By using a local interface, a bean may be more tightly coupled with its clients and
may be directly accessed without the overhead of a remote method call.

In addition, local interfaces permit values to be passed between beans with pass by reference
semantics. Because you are now passing a reference to an object, rather than the object itself,
this reduces the overhead incurred when passing objects with large amounts of data, resulting
in a performance gain.

EJB 2.0 Container-Managed Persistence (CMP)

54

The EJB 2.0 specification expanded CMP to allow multiple entity beans to have relationships
among themselves. This is referred to as Container-Managed Relationships (CMR). The
container manages the relationships and the referential integrity of the relationships.

The EJB 1.1 specification presented a more limited CMP model. The EJB 1.1 architecture
limited CMP to data access that is independent of the database or resource manager type. It
allowed you to expose only an entity bean’s instance state through its remote interface; there is
no means to expose bean relationships. The EJB 1.1 version of CMP depends on mapping the
instance variables of an entity bean class to the data items representing their state in the
database or resource manager. The CMP instance fields are specified in the deployment
descriptor, and when the bean is deployed, the deployer uses tools to generate code that
implements the mapping of the instance fields to the data items.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

EJB 2.0 Container-Managed Persistence (CMP)

You must also change the way you code the bean’s implementation class. According to the EJB
2.0 specification, the implementation class for an entity bean that uses CMP is now defined as
an abstract class.

The following topics are discussed in this section:

= “Defining Persistent Fields” on page 55
= “Defining Entity Bean Relationships” on page 55
= “Message-Driven Beans” on page 55

Defining Persistent Fields

The EJB 2.0 specification lets you designate an entity bean’s instance variables as CMP fields or
CMR fields. You define these fields in the deployment descriptor. CMP fields are marked with
the element cmp - field, while container-managed relationship fields are marked with the
element cmr-field.

In the implementation class, note that you do not declare the CMP and CMR fields as public
variables. Instead, you define get and set methods in the entity bean to retrieve and set the
values of these CMP and CMR fields. In this sense, beans using the 2.0 CMP follow the
JavaBeans model: instead of accessing instance variables directly, clients use the entity bean’s
get and set methods to retrieve and set these instance variables. Keep in mind that the get and
set methods only pertain to variables that have been designated as CMP or CMR fields.

Defining Entity Bean Relationships

As noted previously, the EJB 1.1 architecture does not support CMRs between entity beans. The
EJB 2.0 architecture does support both one-to-one and one-to-many CMRs. Relationships are
expressed using CMR fields, and these fields are marked as such in the deployment descriptor.
You set up the CMR fields in the deployment descriptor using the appropriate deployment tool
for your application server.

Similar to CMP fields, the bean does not declare the CMR fields as instance variables. Instead,
the bean provides get and set methods for these fields.

Message-Driven Beans

Message-driven beans are another new feature introduced by the EJB 2.0 architecture.
Message-driven beans are transaction-aware components that process asynchronous messages
delivered through the Java Message Service (JMS). The JMS APl is an integral part of the J2EE
1.3 and J2EE 1.4 platform.

Chapter5 « Migrating from EJB 1.1to EJB 2.0 55

Migrating EJB Client Applications

Asynchronous messaging allows applications to communicate by exchanging messages so that
senders are independent of receivers. The sender sends its message and does not have to wait for
the receiver to receive or process that message. This differs from synchronous communication,
which requires the component that is invoking a method on another component to wait or
block until the processing completes and control returns to the caller component.

Migrating EJB Client Applications

This section includes the following topics:

= “Declaring EJBs in the JNDI Context” on page 56
= “Recap on Using EJB JNDI References” on page 57

Declaring EJBs in the JNDI Context

In Sun Java System Application Server 8.1, E]Bs are systematically mapped to the JNDI
sub-context ejb/. If we attribute the JNDI name Account to an EJB, then Sun Java System
Application Server 8.1 will automatically create the reference ejb/Account in the global JNDI
context. The clients of this EJB will therefore have to look up ejb/Account to retrieve the
corresponding home interface.

Let us examine the code for a servlet method deployed in Sun ONE Application Server 6.x.

The servlet presented here calls on a stateful session bean, BankTeller, mapped to the root of the
JNDI context. The method whose code we are considering is responsible for retrieving the
home interface of the EJB, so as to enable a BankTeller object to be instantiated and a remote
interface for this object to be retrieved, in order to make business method calls to this
component.

/**
* Look up the BankTellerHome interface using JNDI.
*/
private BankTellerHome lookupBankTellerHome(Context ctx)
throws NamingException
{
try
{
Object home = (BankTellerHome) ctx.lookup("ejb/BankTeller");
return (BankTellerHome) PortableRemoteObject.narrow(home, BankTellerHome.class);

}

catch (NamingException ne)

{
log("lookupBankTellerHome: unable to lookup BankTellerHome" +
"with JNDI name ’'BankTeller’: " + ne.getMessage());

56 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating EJB Client Applications

throw ne;
}
}

Asthe code already uses ejb/BankTeller as an argument for the lookup, there is no need for
modifying the code to be deployed on Sun Java System Application Server 8.1.

Recap on Using EJB JNDI References

This section summarizes the considerations when using EJB JNDI references. Where noted, the
consideration details are specific to a particular source application server platform.

Placing EJB References in the JNDI Context

It is only necessary to modify the name of the EJB references in the JNDI context mentioned
above (moving these references from the JNDI context root to the sub-context ejb/) when the
EJBs are mapped to the root of the JNDI context in the existing WebLogic application.

If these EJBs are already mapped to the JNDI sub-context ejb/ in the existing application, no
modification is required.

However, when configuring the JNDI names of EJBs in the deployment descriptor within the
Sun Java Studio IDE, it is important to avoid including the prefix ejb/ in the JNDI name of an
EJB. Remember that these EJB references are automatically placed in the INDI ejb/
sub-context with Sun Java System Application Server 8.1. So, if an EJB is given to the JNDI
name BankTeller in its deployment descriptor, the reference to this EJB will be translated by Sun
Java System Application Server 8.1 into ejb/BankTeller, and this is the JNDI name that client
components of this EJB must use when carrying out a lookup.

Global JNDI context versus local JNDI context

Using the global JNDI context to obtain EJB references is a perfectly valid, feasible approach
with Sun Java System Application Server 8.1. Nonetheless, it is preferable to stay as close as
possible to the J2EE specification, and retrieve EJB references through the local INDI context of
EJB client applications. When using the local JNDI context, you must first declare EJB resource
references in the deployment descriptor of the client part (web . xml for a Web application,
ejb-jar.xml for an EJB component).

Chapter5 - Migrating from EJB 1.1to EJB 2.0 57

Migrating CMP Entity EJBs

Migrating CMP Entity EJBs

58

This section describes the steps to migrate your application components from the EJB 1.1
architecture to the EJB 2.0 architecture.

In order to migrate a CMP 1.1 bean to CMP 2.0, we first need to verify if a particular bean can be
migrated. The steps to perform this verification are as follows.

To Verify if a Bean Can be Migrated

Fromtheejb-jar.xml file, go to the <cmp- fields>names and check if the optional tag
<prim-key-field>is presentintheejb-jar.xml file and has an indicated value. If it does, go
to next step.

Look for the <prim-key- class> field name in the ejb- jar.xml, get the class name and get the
public instance variables declared in the class. Now see if the signature (name and case) of
these variables matches with the <cmp - field> names above. Segregate the ones that are found.
In these segregated fields, check if some of them start with an upper case letter. If any of them
do, then migration cannot be performed.

Look into the bean class source code and obtain the java types of all the <cmp - field> variables.

Change all the <cmp - field>names to lowercase and construct accessors from them. For
exampleif the original field name is Name and its java typeis String, the accessor method
signature will be:

Public void setName(String name)Public String getName()

Compare these accessor method signatures with the method signatures in the bean class. If
there is an exact match found, migration is not possible.

Get the custom finder methods signatures and their corresponding SQLs. Check if there is a
"Join’ or "Outer join’ or an "OrderBy’in the SQL, if yes, we cannot migrate, as EJB QL does not

’

support “joins; “Outer join’and “OrderBy"

Any CMP 1.1 finder, which used java.util.Enumeration, must now use
java.util.Collection.Change your code to reflect this. CMP2.0 finders cannot return
java.util.Enumeration.

“Migrating the Bean Class” on page 58 explains how to perform the actual migration process.

Migrating the Bean Class

This section describes the steps required to migrate the bean class to Sun Java System
Application Server 8.1.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating CMP Entity EJBs

V¥ To Migrate the Bean Class

1 Prepend the bean class declaration with the keyword abstract.
For example if the bean class declaration was:

Public class CabinBean implements EntityBean // before modification

change it to:
abstract Public class CabinBean implements EntityBean // after modification
2 Prefixthe accessors with the keyword abstract.

3 Insertall the accessors after modification into the source(.java) file of the bean class at class
level.

4 Commentoutall the cmp fields in the source file of the bean class.

5 Construct protected instance variable declarations from the cmp - field names in lowercase and
insert them at the class level.

6 ReadupalltheejbCreate() methodbodies (there could be more thanone ejbCreate).

Look for the pattern *<cmp - field>=some value or local variable) and replace it with the
expression “abstract mutator method name (same value or local variable)’

For example, if the ejbCreate body before migration is:
public MyPK ejbCreate(int id, String name) {
this.id = 10*id;
Name = name; //1
return null;

}
Change it to:

public MyPK ejbCreate(int id, String name) {
setId(10*id);
setName (name) ; //1
return null;

}

Note that the method signature of the abstract accessor in //1 is as per the Camel Case
convention mandated by the EJB 2.0 specification. Also, the keyword "this’ may or may not be
present in the original source, but it must be removed from the modified source file.

Chapter5 « Migrating from EJB 1.1to EJB 2.0 59

Migrating CMP Entity EJBs

60

10

Initialize all the protected variables declared in the ejbPostCreate () methods in step 5.

The protected variables will be equal in number with the ejbCreate () methods. This
initialization will be done by inserting the initialization code in the following manner:
protected String name; //from step 5
protected int id; //from step 5
public void ejbPostCreate(int id, String name) {

name = getName(); /*abstract accessor*/ //inserted in this step

id = getId(); /*abstract accessor*/ //inserted in this step

Inside the ejbLoad method, set the protected variables to the beans’ database state.
To do so, insert the following lines of code:

public void ejblLoad() {
name = getName(); // inserted in this step
id = getId(); // inserted in this step
// existing code

Similarly, update the beans’state inside ejbStore () so that its database state gets updated.
But remember, you are not allowed to update the setters that correspond to the primary key
outside the ejbCreate(), so do not include them inside this method. Insert the following lines
of code:
public void ejbStore() {

setName(name) ; //inserted in this step

setId(id); //Do not insert this if it is a part of the primary key

//already present code

Replace all occurrences of any <cmp - field> variable names with the equivalent protected
variable name (as declared in step 5).

If you do not migrate the bean, at the minimum you need to insert the
<cmp-version>1.x</cmp-version>taginside the ejb-jar.xml file at the appropriate place, so
that the unmigrated bean still works on Sun Java System Application Server 8.1.

Migration of ejb-jar.xml

To migrate the file ejb-jar.xml to Sun Java System Application Server 8.1, perform the
following steps:

To Migrate the EJB Deployment Descriptor

To migrate the EJB deployment descriptor file, ejb-jar.xml, edit the file and make the
following changes.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating CMP Entity EJBs

Convertall <cmp-fields>to lowercase.

Insert the tag <abstract-schema-name> after the <reentrant>tag.

»

The schema name will be the name of the bean as in the < ejb-name> tag, prefixed with “ias_”.

Insert the following tags after the <primkey-field>tag:
<security-identity>

<use-caller-identity/>
</security-identity>

Use the SQL obtained above to construct the EJB QL from SQL.

Insert the <query> tag and all its nested child tags with all the required information just after
the<security-identity>tag.

Custom Finder Methods

The custom finder methods are the findBy... methods (other than the default
findByPrimaryKey method), which can be defined in the home interface of an entity bean.
Since the EJB 1.1 specification does not stipulate a standard for defining the logic of these finder
methods, EJB server vendors are free to choose their implementations. As a result, the
procedures used to define the methods vary considerably between the different
implementations chosen by vendors.

Sun ONE Application Server 6.x uses standard SQL to specify the finder logic.

Information concerning the definition of this finder method is stored in the enterprise bean’s
persistence descriptor (Account-ias-cmp.xml) as follows:

<bean-property>
<property>
<name>findOrderedAccountsForCustomerSQL</name>
<type>java.lang.String</type>
<value>
SELECT BRANCH CODE,ACC NO FROM ACCOUNT where CUST NO = ?
</value>
<delimiter>,</delimiter>
</property>
</bean-property>
<bean-property>
<property>
<name>findOrderedAccountsForCustomerParms</name>
<type>java.lang.Vector</type>
<value>CustNo</value>
<delimiter>,</delimiter>

Chapter5 - Migrating from EJB 1.1to EJB 2.0 61

Migrating CMP Entity EJBs

62

</property>
</bean-property>

Each findXXX finder method therefore has two corresponding entries in the deployment
descriptor (SQL code for the query, and the associated parameters).

In Sun Java System Application Server 8.1 the custom finder method logic is also declarative,
but is based on the EJB query language EJB QL.

The EJB-QL language cannot be used on its own. It has to be specified inside the file
ejb-jar.xml, inthe <ejb-ql> tag. This tag is inside the <query> tag, which defines a query
(finder or select method) inside an EJB. The EJB container can transform each query into the
implementation of the finder or select method. Here’s an example of an <ejb-ql> tag:

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>hotelEJIB</ejb-name>

<abstract-schema-name>TMBankSchemaName</abstract-schema-name>
<cmp-field>

<query>
<query-method>
<method-name>findByCity</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</query-method>
<ejb-ql>
<! [CDATA[SELECT OBJECT(t) FROM TMBankSchemaName AS t WHERE t.city = ?1]]>
</ejb-ql>
</query>
</entity>

</enterprise-beans> ...
</ejb-jar>

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

CHAPTER 6

Migrating from Application Server 6.x/7 x to
Application Server 8.1

This chapter describes the considerations and strategies that are needed when moving J2EE
applications from Application Server 6.x and Application Server 7 to the Application Server
Platform Edition 8.1product line. However, Application Server 8.1 provides backward
compatibility standard, with Application Server 7 as the baseline. That is, applications
developed in Application Server 7 can be deployable directly to Application Server 8.1 with
minimum or no changes.

The sections that follow describe issues that arise while migrating the main components of a
typical J2EE application from Application Server 6.x/7.x to Application Server Platform Edition
8.1.

This chapter contains the following sections:

“Migrating Deployment Descriptors” on page 64

“Migrating Web Application Modules” on page 68

“Migrating Enterprise EJB Modules” on page 69

“Migrating Enterprise Applications” on page 73

“Migrating Proprietary Extensions” on page 76

“Migrating UIF” on page 77

“Migrating JDBC Code” on page 78

“Migrating Rich Clients” on page 80

“Migrating Applications to Support HTTP Failover (Enterprise Edition)” on page 83
“Migrating Applications from Application Server 7 to Application Server 8.1” on page 86

The migration issues described in this chapter are based on an actual migration that was
performed for a J2EE application called iBank, a simulated online banking service, from
Application Server 6.x to Sun Java System Application Server 8.1. This application reflects all
aspects of a traditional J2EE application.

The following areas of the J2EE specification are covered by the iBank application:
= Servlets, especially with redirection to JSP pages (model-view-controller architecture)

= JSP pages, especially with static and dynamic inclusion of pages

63

Migrating Deployment Descriptors

= JSP custom tag libraries

= Creation and management of HTTP sessions

= Database access through the JDBC API

= Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP entity beans.
= Assembly and deployment in line with the standard packaging methods of the J2EE

application

The iBank application is described in detail in Chapter 9, “iBank Application Specification.”

Migrating Deployment Descriptors

There are two types of deployment descriptors, namely, Standard Deployment Descriptors and
Runtime Deployment Descriptors. Standard deployment descriptors are portable across J2EE
platform versions and vendors and does not require any modifications. Currently, there are
exceptions due to standards interpretation. The following table lists such deployment
descriptors.

Source Deployment Descriptor

Target Deployment Descriptor

ejb-jar.xml- 1.1

ejb-jar.xml - 2.0

web . xml

web . xml

application.xml

application.xml

The J2EE standard deployment descriptors ejb-jar.xml, web.xml and application.xml are
not modified significantly. However, the ejb- jar.xml deployment descriptor is modified to
make it compliant with EJB 2.0 specification in order to make the application deployable on Sun

Java System Application Server 8.1.

Runtime deployment descriptors are vendor and product specific and are not portable across
application servers due to difference in their format. Hence, deployment descriptors require
migration. This section describes how you can manually create the runtime deployment

descriptors and migrate relevant information.

The following table summarizes the deployment descriptor migration mapping.

Source Deployment Descriptor

Target Deployment Descriptor

ias-ejb-jar.xml

sun-ejb-jar.xml

<bean-name>-ias-cmp.xml

sun-cmp-mappings.xml

64 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating Web Applications

ias-web.xml sun-web.xml

The standard deployment descriptors of Application Server 6.x needs modification when
moving to Application Server 8.1 because of non-conformance with the DTDs.

A majority of the information required for creating sun-ejb-jar.xml and sun-web.xml comes
from ias-ejb-jar.xml and ias-web.xml respectively. However, there is some information
that is required and extracted from the home interface (java file) of the CMP entity bean, in case
the sun-ejb-jar.xml being migrated declares one. This is required to build the
<query-filter> construct inside the sun-ejb-jar.xml, which requires information from
inside the home interface of that CMP entity bean. If the source file is not present during the
migration time, the <query-filter> construct is created, but with missing information (which
manifests itself in the form of REPLACE ME phrases in the migrated sun-ejb-jar.xml).

Additionally, if the ias-ejb-jar.xml contains a <message-driven> element, then information
from inside this element is picked up and used to fill up information inside both ejb-jar.xml
and sun-ejb-jar.xml. Also, inside the <message-driven> element of ias-ejb-jar.xml, there
isan element <destination-name>, which holds the JNDI name of the topic or queue to which
the MDB listens. In Application Server 6.5, the naming convention for this jndi name is
cn=<SOME_NAME>. Since a JMS Topic or Queue with this name is not deployable on Application
Server, the application server changes this to <SOME_NAME>, and inserts this information in the
sun-ejb-jar.xml. This change must be reflected for all valid input files, namely, all . java,
.jspand .xml files. Hence, this INDI name change is propagated across the application, and if
some source files that contain reference to this jndi-name are unavailable, the administrator
must make the changes manually so that the application becomes deployable.

Migrating Web Applications

Application Server 6.x support servlets (Servlet AP12.2), and JSPs (JSP 1.1). Sun Java System
Application Server 8.1 supports Servlet API 2.4 and JSP 2.0.

Within these environments it is essential to group the different components of an application
(servlets, JSP and HTML pages and other resources) together within an archive file
(J2EE-standard Web application module) deploying it on the application server.

According to the J2EE specification, a Web application is an archive file (WAR file) with the
following structure:

= Arootdirectory containing the HTML pages, JSP, images and other static resources of the
application.

= A META-INF/ directory containing the archive manifest file MANIFEST . MF containing the
version information for the SDK used and, optionally, a list of the files contained in the
archive.

Chapter6 « Migrating from Application Server 6.x/7.x to Application Server 8.1 65

Migrating Web Applications

66

= A WEB-INF/ directory containing the application deployment descriptor (web.xmt file) and
all the Java classes and libraries used by the application, organized as follows:

= A classes/ sub-directory containing the tree-structure of the compiled classes of the
application (servlets, auxiliary classes), organized into packages

= A lib/ directory containing any Java libraries (JAR files) used by the application

Migrating Java Server Pages and JSP Custom Tag
Libraries

Application Server 6.x complies with the JSP 1.1 specification and Application Server 8.1
complies with the JSP 2.0 specification.

JSP 2.0 specification contains many new features, as well as updates to the JSP 1.1 specification.

These changes are enhancements and are not required to migrate to JSP pages from JSP 1.1 to
2.0.

The implementation of JSP custom tag libraries in Application Server 6.x complies with the
J2EE specification. Consequently, migrating JSP custom tag libraries to the Application Server
Platform Edition 8.1does not pose any particular problem, nor require any modifications.

Migrating Servlets

Application Server 6.x supports the Servlet 2.2 APIL. Sun Java System Application Server 8.1
supports the Servlet 2.4 APL

Servlet API 2.4 leaves the core of servlets relatively untouched. Most changes are concerned
with adding new features outside the core.

The most significant features are:

= Servlets now require JDK 1.2 or later

= Filter mechanisms have been created

= Application lifecycle events have been added

= Internationalization support has been added

= Errorand security attributes have been expanded

= HttpUtils class has been deprecated

= Several DTD behaviors have been expanded and clarified

These changes are enhancements and are not required to be made when migrating servlets from
Servlet API2.2t02.4.

However, if the servlets in the application use JNDI to access resources in the J2EE application
(such as data sources or EJBs), some modifications might be needed in the source files or in the
deployment descriptor.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating Web Applications

These modifications are explained in detail in the following sections:

= “Obtaining a Data Source from the JNDI Context” on page 67
= “Declaring E]JBs in the JNDI Context” on page 67

One last scenario might require modifications to the servlet code. Naming conflicts can occur
with Application Server 6.x if a JSP page has the same name as an existing Java class. In this case,
the conflict must be resolved by modifying the name of the JSP page in question. This in turn
can mean editing the code of the servlets that call this JSP page. This issue is resolved in
Application Server as it uses a new class loader hierarchy. In the new version of the application
server, for a given application, one class loader loads all EJB modules and another class loader
loads web module. As these two loaders do not talk with each other, there is no naming conflict.

Obtaining a Data Source from the JNDI Context

To obtain a reference to a data source bound to the JNDI context, look up the data source’s
JNDI name from the initial context object. The object retrieved in this way is then be cast as a
DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName) ;

For detailed information, refer to section “Migrating JDBC Code”

Declaring EJBs in the JNDI Context

Please refer to section “Declaring EJBs in the JNDI Context” on page 56 in Chapter 5,
“Migrating from EJB 1.1 to EJB 2.0”

Potential Servlets and JSP Migration Problems

The actual migration of the components of a Servlet / JSP application from Application Server
6.x to Application Server 8.1does not require any modifications to the component code.

If the Web application is using a server resource, a DataSource for example, the Application
Server requires that this resource to be declared inside the web . xm1 file and, correspondingly,
inside the sun-web.xml file. To declare a DataSource called jdbc/iBank, the <resource-ref>
tag in the web . xml file is as follows:

<resource-ref>
<res-ref-name>jdbc/iBank</res-ref-name>
<res-type>javax.sql.XADataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

The corresponding declaration inside the sun-web . xm1 file looks like this:

Chapter6 - Migrating from Application Server 6.x/7.x to Application Server 8.1 67

Migrating Web Applications

68

<?xml version="1.0" encoding="UTF-8"?>
<! DOCTYPE FIX ME: need confirmation on the DTD to be used for this file
<sun-web-app>
<resource-ref>
<res-ref-name>jdbc/iBank</res-ref-name>
<jndi-name>jdbc/iBank</jndi-name>
</resource-ref>
</sun-web-app>

Migrating Web Application Modules

Migrating applications from Application Server 6.x to Sun Java System Application Server 8.1
does not require any changes to the Java code or Java Server Pages. However, you must change
the following files:

= web.xml
® jas-web.xml

The Application Server adheres to J2EE 1.4 standards, according to which, the web. xm1 file
inside a WAR file must comply with the revised DTD at
http://java.sun.com/dtd/web-app_2_3.dtd. This DTD is a superset of the previous
versions’ DTD, hence only the <! DOCTYPE definition needs to be changed inside the web. xml
file, which is to be migrated. The modified <! DOCTYPE declaration looks like:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd">

In Application Server Platform Edition 8.1, the name of this file is changed to sun-web. xmL.

This XML file must declare the Application Server-specific properties and resources that are
required by the Web application.

See “Potential Servlets and JSP Migration Problems” on page 67 for information about
important inclusions to this file.

If the ias-web.xml of the Application Server 6.5 application is present and does declare
Application Server 6.5 specific properties, then this file needs to be migrated to Application
Server standards. The DTD file name has to be changed to sun-web.xml. For more details, see
URL http://wwws.sun.com/software/dtd/appserver/sun-web-app 2 4-1.dtd

Once you have made these changes to the web . xml and ias-web.xml files, the Web application
(WAR file) can be deployed from the Application Server’s deploytool GUI interface or from the
command line utility asadmin. The deployment command must specific the type of application
as web.

Invoke the asadmin command line utility by running asadmin. bat file or the asadmin. sh script
in the Application Server’s bin directory.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

http://java.sun.com/dtd/web-app_2_3.dtd
http://wwws.sun.com/software/dtd/appserver/sun-web-app_2_4-1.dtd

Migrating Enterprise EJB Modules

Migrating

The command at the asadmin prompt is:

asadmin deploy -u username -w password
-H hostname

-p adminport

--type web

[--contextroot contextroot]
[--force=true]

[--name component-name]
[--upload=true] filepath

Enterprise EJB Modules

Application Server 6.x supports EJB 1.1, and the Application Server supports EJB 2.0. Therefore,
both can support:

= Stateful or stateless session beans
= Entity beans with bean-managed persistence (BMP), or container-managed persistence
(CMP)

EJB 2.0, however, introduces a new type of enterprise bean, called a message-driven bean
(MDB).

J2EE 1.4 specification dictates that the different components of an EJB must be grouped
together in a JAR file with the following structure:
= META-INF/ directory with an XML deployment descriptor named ejb- jar.xml

= The .class files corresponding to the home interface, remote interface, the implementation
class, and the auxiliary classes of the bean with their package

Application Server 6.x use this archive structure. However, the EJB 1.1 specification leaves each
EJB container vendor to implement certain aspects as they see fit:

= Database persistence of CMP EJBs (particularly the configuration of mapping between the
bean’s CMP fields and columns in a database table).
= Implementation of the custom finder method logic for CMP beans.

= Application Server 6.x andApplication Server 8.1do not handle migrations in the same way,
which means that some XML files must be modified:

= The <!DOCTYPE definition must be modified to point to the latest DTD url (in the case of
J2EE standard DDs, like ejb-jar.xml).

= Replace the ias-ejb-jar.xml file with the modified version of this file (for example, file
sun-ejb-jar.xml, which is created manually according to the DTDs). For more
information, see
http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar 2 1-1.dtd

Chapter6 « Migrating from Application Server 6.x/7.x to Application Server 8.1 69

http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd

Migrating Enterprise EJB Modules

70

= Replace all the <ejb-name>-1ias-cmp.xml files with one sun-cmp-mappings . xml file, which
is created manually. For more information, see
http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping 1 2.dtd

= QOptionally, for CMP entity beans, use the capture-schema utility in the Application Server’s
bin directory to generate the dbschema. Then place it above the META- INF directory for the
entity beans.

EJB Migration

As mentioned in Chapter 4, “Understanding Migration,” while Application Server 6.x supports
the EJB 1.1 specification, Application Server also supports the EJB 2.0 specification. The EJB 2.0
specification introduces the following new features and functions to the architecture:

Message Driven Beans (MDBs)

Improvements in Container-Managed Persistence (CMP)
Container-managed relationships for entity beans with CMP
Local interfaces

EJB Query Language (EJB QL)

Although the EJB 1.1 specification continues to be supported in the Application Server, the use
of the EJB 2.0 architecture is recommended to leverage its enhanced capabilities.

For detailed information on migrating from EJB 1.1 to EJB 2.0, please refer to Chapter 5,
“Migrating from EJB 1.1 to EJB 2.0”

EJB Changes Specific to Application Server Platform
Edition 8.1

Migrating EJBs from Application Server 6.x to Application Server 8.1 is done without making
any changes to the EJB code. However, the following DTD changes are required.

Session Beans

® The <!DOCTYPE> definition must be modified to point to the latest DTDs with J2EE standard
DDs, suchasejb-jar.xml.

= Replace ias-ejb-jar.xml file with the modified version of this file, named
sun-ejb-jar.xml, created manually according to the DDs. For more details, see
http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar 2 1-1.dtd

= Inthesun-ejb-jar.xml file, the INDI name for all the EJBs must be added before ”ejb/’ in
all the JNDI names. This is required because, in Application Server 6.5, the JNDI name of
the EJB can only be ejb/<ejb-name> where <ejb-name> is the name of the EJB as declared
inside the ejb-jar.xml file.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd
ttp://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd

Migrating Enterprise EJB Modules

In the Application Server, a new tag has been introduced in the sun-ejb-jar.xml. This is
where the JNDI name of the EJB is declared.

Note - To avoid changing JNDI names throughout the application, declare the JNDI name of the
EJB as ejb/<ejb-name> inside the <jndi-name> tag.

Migrating EJB Applications that Support SFSB Failover (Enterprise
Edition)

Sun ONE Application Server 6.5 supports failover of stateful session beans. To take advantage
of the SFSB failover in 6.5, the session bean need to be configured with failover and DSync. The
DSync (Distributed Store) mechanism is used to save the session beans’s conversational state
during runtime.

Note - Sun ONE Application Server 6.5 does not support failover of stateful session beans for
rich clients on the RMI/IIOP path. Such applications can take advantage of SESB failover on the
RMI/IIOP path in Sun Java System Application Server 8.1. For more information on SFSB
failover configuration, see “Stateful Session Bean Failover” in Sun Java System Application
Server Enterprise Edition 8.1 2005Q2 High Availability Administration Guide.

Sun Java System Application Server 8.1, Enterprise Edition supports failover of stateful session
beans. Application Server 8.1 uses the High Availability Database (HADB) for storing session
data. The principle followed in supporting SESB failover in saving the conversational state of an
SESB at predefined points in its lifecycle to a persistent store. This mechanism is referred to as
checkpointing. In case of a server crash, the checkpointed state of an SFSB can be retrieved from
the persistent store. In order to use HADB for storing session data, you must configure HADB
as the persistent store. The underlying store for the HTTP sessions and stateful session beans is
same and the configuration of persistent store is exactly similar to configuration of session
store.

For information on configuring HADB for session failover, see Chapter 8, “Configuring High
Availability Session Persistence and Failover,” in Sun Java System Application Server Enterprise
Edition 8.1 2005Q2 High Availability Administration Guide.

Migration of stateful session beans deployed in Sun ONE Application Server 6.5 to Sun Java
System Application Server 8.1 does not require any changes in the EJB code. However, the
following steps must be performed:

= Modify the <!DOCTYPE definition to point to the latest DTD url in case of J2EE standard
DDs, like ejb-jar.xml.

= Replace ias-ejb-jar.xml with the modified version of this file, i.e., sun-ejb-jar.xml,
which is created manually according to the DTDs.

Chapter6 - Migrating from Application Server 6.x/7.x to Application Server 8.1 71

Migrating Enterprise EJB Modules

72

Replace all the <ejb-name>-ias-cmp.xml files with one sun-cmp-mappings.xml file, which
is created manually.

No changes are required in the application source code for taking advantage of the SESB
state failover support. All configuration needed for checkpointing SFSBs will be applied at
the Application Server specific deployment descriptor (sun-ejb-jar.xml), or in the domain
configuration file (domain.xmd).

However, if you are accessing theE]Bs through servlets then you need to store the EJB home
and remote references in the session. The following is the code example to store ejpHome
and ejbRemote interfaces in the session:

session.setAttribute("ejbhome", ejbHome);
session.setAttribute("ejbremote", ejbRemote);

The following code example demonstrates how to retrieve the ejpHome and ejpRemote
from the session:

ejbHome = session.getAttribute("ejbhome");
ejbRemote = session.getAttribute("ejbremote");

In the domain.xml, make sure that the availability-enabled attribute of
availability-service elementisset to TRUE. If availability-enabled attribute is set to
TRUE indicates that failover is enabled at the server instance level. That is, if a server
instance fails to process a request, the request is routed to the next available server instance.

SESB checkpointing adds performance overhead on the EJB container, you may want to
restrict checkpointing to a list of SEFSBs whose state failover is critical to the application.

You can enable/disable the checkpointing at the method level in sun-ejb-jar.xml. For
more details see“Specifying Methods to Be Checkpointed” in Sun Java System Application
Server Enterprise Edition 8.1 2005Q2 High Availability Administration Guide.

If, in the deployment descriptor for the SFSB ejb module in 6.5 (ias-ejb-jar.xml), the
failoverrequired attribute of the session element is set to TRUE, you might want to
enable availability-service for such ejb modules in the Application Server 8.1 environment.

Entity Beans

The <!DOCTYPE> definition must be modified to point to the latest DTDs containing J2EE
standard DDs, such asejb-jar.xml.

Update the <cmp-version> tag with the value 1.1, for all CMPs in the ejb-jar.xml file.

Replace all the <ejb-name>-ias-cmp.xml files with the manually created
sun-cmp-mappings.xml file. For more information, see
http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping 1 2.dtd

Generate dbschema by using the capture-schema utility in the Application Server
installation’s bin directory and place it above META- INF folder for Entity beans.

Replace the ias-ejb-jar.xml with the sun-ejb.jar.xml in Application Server.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

Migrating Enterprise Applications

= In Application Server 6.5, the finder's SQL was directly embedded into the
<ejb-name>-1ias-cmp.xml. In Application Server, mathematical expressions are used to
declare the <query-filter> for the various finder methods.

Message Driven Beans

Application Server provides seamless Message Driven Support through the tight integration of
Sun Java System Message Queue with the Application Server, providing a native, built-in JMS
Service.

This installation provides Application Server with a JMS messaging system that supports any
number of Application Server instances. Each server instance, by default, has an associated
built-in JMS Service that supports all JMS clients running in the instance.

Both container-managed and bean-managed transactions, as defined in the Enterprise
JavaBeans Specification, v2.0, are supported.

Message Driven Bean support in iPlanet Application Server was restricted to developers, and
used many of the older proprietary APIs. Messaging services were provided by iPlanet Message
Queue for Java 2.0. An LDAP directory was also required under iPlanet Application Server to
configure the Queue Connection Factory object.

The QueueConnectionFactory, and other elements required to configure Message Driven
Beans in Application Server are now specified in the ejb-jar.xml file.

For more information on the changes to deployment descriptors, see “Migrating Deployment
Descriptors” on page 64 For information on Message Driven Beans see “Using Message-Driven
Beans” in Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Developer’s Guide.

Migrating Enterprise Applications

According to the J2EE specifications, an enterprise application is an EAR file, which must have
the following structure:

= A META-INF/ directory containing the XML deployment descriptor of the J2EE application
called application.xml

= TheJAR and WAR archive files for the EJB modules and Web module of the enterprise
application, respectively

In the application deployment descriptor, the modules that make up the enterprise application
and the Web application’s context root are defined.

Application server 6.x and the Application Server 8.1support the J2EE model wherein
applications are packaged in the form of an enterprise archive (EAR) file (extension .ear). The
application is further subdivided into a collection of J2EE modules, packaged into Java archives
(JAR files, which have a . jar file extension) and EJBs and Web archives (WAR files, which have
a .war file extension) for servlets and JSPs.

Chapter6 - Migrating from Application Server 6.x/7.x to Application Server 8.1 73

Migrating Enterprise Applications

74

It is essential to follow the steps listed here before deploying an enterprise application:

To Build an EARFile

Package EJBs in one or more EJB modules.
Package the components of the Web application in a Web module.
Assemble the EJB modules and Web modules in an enterprise application module.

Define the name of the enterprise application’s root context, which will determine the URL for
accessing the application.

The Application Server uses a newer class loader hierarchy than Application Server 6.x does. In
the new scheme, for a given application, one class loader loads all EJB modules and another
class loader loads Web modules. These two are related in a parent child hierarchy where the JAR
module class loader is the parent module of the WAR module class loader. All classes loaded by
the JAR class loader are available/accessible to the WAR module but the reverse is not true. If a
certain class is required by the JAR file as well as the WAR file, then the class file must be
packaged inside the JAR module only. If this guideline is not followed it can lead to class
conflicts.

Application Root Context and Access URL

There is a major “difference between Application Server 6.x and the Application Server,
concerning the applications access URL (root context of the application’s Web module. If
AppName is the name of the root context of an application deployed on a server called hostname,
the access URL for this application will differ depending on the application server used:

= With Application Server 6.x, which is always used jointly with a Web front-end, the access
URL for the application takes the following form (assuming the Web server is configured on
the standard HTTP port, 80):

http://<hostname>/NASApp/AppName/
= With the Application Server, the URL takes the form:

http://<hostname>:<portnumber>/AppName/
The TCP port used as default by Application Server is port 8080.

Although the difference in access URLs between Application Server 6.x and the Application
Server might appear minor, it can be problematic when migrating applications that make use of

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating Enterprise Applications

absolute URL references. In such cases, it is necessary to edit the code to update any absolute
URL references so that they are no longer prefixed with the specific marker used by the Web
Server plug-in for Application Server 6.x.

Applications With Form-based Authentication

Applications developed on Application Server 6.5 that use form-based authentication can pass
the request parameters to the Authentication Form or the Login page. The Login page could be
customized to display the authentication parameters based on the input parameters.

For example:

http://gatekeeper.uk.sun.com:8690/NASApp/test/secured/page.jsp?
argl=test&arg2=m

Application Server 8.1 does not support the passing of request parameters while displaying the
Login page. The applications that uses form-based authentication, which passes the request
parameters can not be migrated to Application Server 8.1. Porting such applications to
Application Server 8.1 requires significant changes in the code. Instead, you can store the
request parameter information in the session, which can be retrieved while displaying the Login

page.
The following code example demonstrates the workaround:

Before changing the code in 6.5:

————————— index-65.jsp -----------

<%@page contentType="text/html"%>

<html>

<head><title>JSP Page</title></head>

<body>

go to the secured a rea
</body>

</html>

<%@page contentType="text/html"%>

<html>

<head> </head>

<body>

<!-- Print login form -->

<h3>Parameters</h3>

out.println("argl is " + request.getParameter("argl"));
out.println("arg2 is " + request.getParameter("arg2"));
</body>

</html>

After changing the code in Application Server 8.1:

Chapter6 - Migrating from Application Server 6.x/7.x to Application Server 8.1 75

Migrating Proprietary Extensions

————————— index-81.jsp -----------

<%@page contentType="text/html"%>

<html>

<head><title>JSP Page</title></head>

<body>

<%session.setAttribute("argl","test"); %>
<%session.setAttribute("arg2","me"); %>

go to the secured area
</body>

</html>

The index-81. jsp shows how you can store the request parameters in a session.

<%@page contentType="text/html"%>

<html>

<head> </head>

<body>

<!-- Print login form -->

<h3>Parameters</h3>

<!--retrieving the parameters from the session -->
out.println("argl is"+(String)session.getAttribute("argl"));
out.println("arg2 is” + (String)session.getAttribute("arg2"));
</body>

</html>

Migrating Proprietary Extensions

76

A number of classes proprietary to the Application Server 6.x environment might have been
used in applications. Some of the proprietary packages used by Application Server 6.x are listed
below:

com.iplanet.server.servlet.extension
com.kivasoft.dlm
com.iplanetiplanet.server.jdbc
com.kivasoft.util
com.netscape.server.servlet.extension
com.kivasoft

= com.netscape.server

These APIs are not supported in the Application Server. Applications using any classes
belonging to the above package must be rewritten to use standard J2EE APIs. Applications
using custom JSP tags and UIF framework also need to be rewritten to use standard J2EE APIs.

For a sample migration walkthrough using the iBank application, see Chapter 7, “Migrating a
Sample Application - an Overview.”

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating UIF

Migrating UIF

The Application Server does not support the use of Unified Integration Framework (UIF) API
for applications. Instead, it supports the use of J2EE Connector Architecture (JCA) for
integrating the applications. However, the applications developed in Application Server 6.5 use
the UIE. In order to deploy such applications to the Application Server, migrate the UIF to the
J2EE Connector Architecture. This section discusses the prerequisites and steps to migrate the
applications using UIF to Application Server.

Before migrating the applications, ensure that the UIF is installed on Application Server 6.5. To
check for the installation, follow either of the following approaches:

Checking in the Registry Files

UIF is installed as a set of application server extensions. They are registered in the application
server registry during the installation. Search for the following strings in the registry to check
whether UIF is installed.

Extension Name Set:

Extension DataObjectExt-cDataObject
Extension RepositoryExt-cLDAPRepository
Extension MetadataService-cMetadataService
Extension RepoValidator-cRepoValidator
Extension BSPRuntime-cBSPRuntime
Extension BSPErrorLogExt-cErrorLogMgr
Extension BSPUserMap-cBSPUserMap

The registry file on Solaris Operating Environment can be found at the following location:

AS_HOME/AS/registry/reg.dat

Checking for UIF Binaries in Installation Directories

UIF installers copy specific binary files in to the application server installation. Successfully
finding the files listed below, indicates that UIF is installed.

The location of the following files on Solaris and Windows is:
AS_HOME/AS/APPS/bin

List of files to be searched on Solaris:

m 1ibcBSPRlop.so
® libcBSPRuntime.so
® 1ibcBSPUserMap.so

Chapter6 - Migrating from Application Server 6.x/7.x to Application Server 8.1 77

Migrating JDBC Code

libcDataObject.so
libcErrorLogMgr.so
libcLDAPRepository.so
libcMetadataService.so
libcRepoValidator.so
libjx2cBSPRuntime.so
libjx2cDataObject.so
libjx2cLDAPRepository.so
libjx2cMetadataService.so

List of files to be searched on Windows:

Before migrating the UIF to Application Server, ensure that the UIF API is being used in the

cBSPRlop.dll
cBSPRuntime.dll
cBSPUserMap.dll
cDataObject.dll
ErrorLogMgr.dll
cLDAPRepository.dll
cMetadataService.dll
cRepoValidator.dll
jx2cBSPRuntime.dll
jx2cDataObject.dll
jx2cLDAPRepository.dll
jx2cMetadataService.dll

applications. To verify its usage:

Contact appserver-migration@sun.com for information about UIF migration to the

Check for the usage of netscape. bsp package name in the Java sources

Check for the usage of access_cBSPRuntime.getcBSPRuntime method in the sources. You
must call this method to acquire the UIF runtime.

Application Server.

Migrating JDBC Code

78

With the JDBC API, there are two methods of database access:

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Establishing Connections Through the DriverManager Interface

(JDBC 1.0 API), by loading a specific driver and providing a connection URL. This method
is used by other Application Servers, such as IBM’s WebSphere 4.0

Using JDBC 2.0 Data Sources

The DataSource interface (JDBC 2.0 API) can be used via a configurable connection pool.
According to J2EE 1.2, a data source is accessed through the JNDI naming service

Migrating JDBC Code

Note — Application Server does not support the Native Type 2 JDBC drivers bundled with
Application Server 6.x. Code that uses the Type 2 drivers to access third party JDBC drivers,
must be manually migrated.

Establishing Connections Through the DriverManager
Interface

Although this database access method is not recommended, as it is obsolete and is not very
effective, there can be some applications that still use this approach.

In this case, the access code is similar to the following:

public static final String driver = "oracle.jdbc.driver.OracleDriver";

public static final String url = "jdbc:oracle:thin:tmb user/tmb_user@iben:1521:tmbank";
Class.forName(driver) .newInstance();

Properties props = new Properties();

props.setProperty("user", "tmb user");

props.setProperty("password", "tmb user");

Connection conn = DriverManager.getConnection(url, props);

This code can be fully ported from Application Server 6.x to Application Server, as long as the
Application Server is able to locate the classes needed to load the right JDBC driver. In order to
make the required classes accessible to the application deployed in the Application Server, place
the archive (JAR or ZIP) for the driver implementation in the /1ib directory of the Application
Server installation directory.

Modify the CLASSPATH by setting the path for the driver through the Admin Console GUI.

= (Click the server instance “serverl”

= Click the tab “JVM Settings” from the right pane.

= Click the option Path Settings and add the path in the classpath suffix text entry box.
= Once the changes are made, click “Save”

= Apply the new settings.

= Restart the server to modify the configuration file, server. xmt.

Using JDBC 2.0 Data Sources

Using JDBC 2.0 data sources to access a database provides performance advantages, such as
transparent connection pooling, enhanced productivity by simplifying code and
implementation, and code portability.

Chapter6 - Migrating from Application Server 6.x/7.x to Application Server 8.1 79

Migrating Rich Clients

If there is a datasource by the name ”xyz’ on Application Server 6.x application and you do not
want any impact on your JNDI lookup code, make sure that the datasource you create for
Application Server 8.1 is prefixed with jdbc. For example: jdbc/xyz.

For information on configuring JDBC Datasources, see Chapter 3, “JDBC Resources,” in Sun
Java System Application Server Enterprise Edition 8.1 2005Q2 Administration Guide.

Looking Up the Data Source Via JNDI To Obtain a Connection

To obtain a connection from a data source, do the following:

V¥ To Connect to a Data Source

1 Obtain theinitial INDI context.

To guarantee portability between different environments, the code used to retrieve an
InitialContext object (in a servlet, in a JSP page, or an EJB) is as follows:

InitialContext ctx = new InitialContext();

2 UseaJNDIlookup to obtain a data source reference.

To obtain a reference to a data source bound to the JNDI context, look up the data source’s
JNDI name from the initial context object. The object retrieved in this way is cast as a
DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

3 Usethedatasource reference to obtain the connection.

This operation requires the following line of code:
conn = ds.getConnection();

Application Server 6.x and Application Server both follow these technique to obtain a
connection from the data source.

Migrating Rich Clients

This section describes the steps for migrating RMI/IIOP and ACC clients developed in Planet
Application Server 6.x to the Application Server.

80 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating Rich Clients

Authenticating a Client in Application Server 6.x

Application Server 6.x provides a client-side callback mechanism that enables applications to
collect authentication data from the user, such as the username and the password.The
authentication data collected by the iPlanet CORBA infrastructure is propagated to the
application server via IIOP.

If ORBIX 2000 is the ORB used for RMI/IIOP, portable interceptors implement security by
providing hooks, or interception points, which define stages within the request and reply
sequence.

Authenticating a Client in Sun Java System
Application Server 8.1

The authentication is done based on JAAS (Java Authorization and Authentication System
API). If a client does not provide a CallbackHandler, then the default CallbackHandler, called
the LoginModule, is used by the ACC to obtain the authentication data.

For detailed instructions on using JAAS for authentication, see Chapter 9, “Configuring
Security;” in Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Administration
Guide.

Using ACCin Application Server 6.x and Sun Java
System Application Server 8.1

In Application Server 6.x, no separate appclient script is provided. You are required to place the
iasacc. jar file in the classpath instead of the iascleint. jar file. The only benefit of using the
ACC for packaging application clients in 6.x is that the JNDI names specified in the client
application are indirectly mapped to the absolute JNDI names of the E]Bs.

In case of Application Server 6.x applications, a stand-alone client uses the absolute name of the
EJB in the JNDI lookup. That is, outside an ACC, the following approach is used to lookup the
JNDI:

initial.lookup(“ejb/ejb-name”);
initial.lookup(“ejb/module-name/ejb-name”);

If your application was developed using Application Server 6.5 SP3, you would have used the
prefix “java: comp/env/ejb/” when performing lookups via absolute references.

initial.lookup("java:comp/env/ejb/ejb-name");

Chapter6 - Migrating from Application Server 6.x/7.x to Application Server 8.1 81

Migrating Rich Clients

82

In Sun Java System Application Server 8.1, the JNDI lookup is done on the jndi-name of the
EJB. The absolute name of the ejb must not be used. Also, the prefix, java: comp/env/ejb is not
supported in Sun Java System Application Server 8.1. Replace the iasclient.jar, iasacc.jar,
or javax.jar JAR files in the classpath with appserv-ext. jar.

If your application provides load balancing capabilities, in Sun Java System Application Server
8.1, load balancing capabilities are supported only in the form of SIASCTXFactory as the
context factory on the client side and then specifying the alternate hosts and ports in the cluster
by setting the com.sun.appserv.iiop.loadbalancingpolicy system property as follows:

com.sun.appserv.iiop.loadbalancingpolicy=
roundrobin,hostl:portl,host2:port2,...,

This property provides the administrator with a list of host:port combinations to round robin
the ORBs. These host names can also map to multiple IP addresses. If this property is used along
with org.omg.CORBA.ORBInitialHost and org.omg.CORBA.ORBInitialPort as system
properties, the round robin algorithm will round robin across all the values provided. If,
however, a host name and port number are provided in your code, in the environment object,
that value overrides any other system property settings.

The Provider URL to which the client is connected in Application Server 6.5 is the IIOP host
and port of the CORBA Executive Engine (CXS Engine). In case of Sun Java System Application
Server 8.1, the client needs to specify the IIOP listener Host and Port number of the instance. No
separate CXS engine exists in Sun Java System Application Server 8.1.

The default IIOP port is 3700 in Sun Java System Application Server 8.1; the actual value of the
IIOP Port can be found in the domain . xml configuration file.

Load-balancing and Failover Features in ACC Clients (Enterprise
Edition)
Load balancing is handled implicitly by the CXS engine in SunONE Application Server 6.5

upon number of Java engines registered. In Application Server 8.1 Enterprise Edition, this
feature requires explicit configuration details from the clients.

After migrating the deployment descriptors from 6.x to 8.1, provide the configuration details in
the sun-acc. xml file to enable failover capabilities in your ACC client. See “Migrating
Deployment Descriptors” on page 64 for information on migrating deployment descriptors.

Define the load balancing properties in the sun-acc. xml file to provide a highly available ACC

client. The properties are defined as property elements in the sun-acc.xml file.

® com.sun.appserv.iiop.endpoints

This property defines the list of one or more IIOP endpoints. An endpoint is specified as
host:port where host is the name or IP address of the system where Application Server 8.1 is
running. Port is the IIOP port at which the server is listening for IIOP requests.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating Applications to Support HTTP Failover (Enterprise Edition)

® com.sun.appserv.iiop.loadbalancingpolicy

If the endpoint property is specified, then, this property is used to specify the load balancing
policy. The value for this property must be Initial Context-based.

For example:

<client-container>
<target-server name="gasol-el" address="gasol-el" port="3700">
<property name="com.sun.appserv.iiop.loadbalancingpolicy" value="ic-based" />
<property name="com.sun.appserv.iiop.endpoints" value="qgasol-el:3700,qgasol-el:3800" />
</client-container>

To failover an ACC client on the RMI/IIOP path, information about all the endpointsin a
cluster to which the RMI/ IIOP requests can be failed over must be available. You must have
defined the IIOP endpoints in the domain.xml file. The iiop-cluster element under the
availability-service element defines the IIOP endpoints.

For more information, see Chapter 4, “Configuring Load Balancing and Failover,” in Sun Java
System Application Server Enterprise Edition 8.1 2005Q2 High Availability Administration
Guide.

Migrating Applications to Support HTTP Failover (Enterprise

Edition)

Application Server, Enterprise Edition 8.1 supports load balancing and HTTP session
persistence. The primary goal of load-balancing is to distribute the work load between multiple
server instances, thereby increasing overall throughput of the system.

For information on configuring HTTP session failover, see “HTTP Session Failover” in Sun
Java System Application Server Enterprise Edition 8.1 2005Q2 High Availability Administration
Guide.

To migrate 6.x HTTP applications to Application Server 8.1 EE environment and enable
load-balancing capabilities, perform the following steps. Note that, no code changes will be
required in the application.

To Migrate and Enable Load-Balancing

Make sure that at least two application server instances are created and configured.

Renamethe ias-web-app.xmlto sun-web.xml.

For more information on migrating the deployment descriptors, see the “Migrating
Deployment Descriptors” on page 64.

Chapter6 « Migrating from Application Server 6.x/7.x to Application Server 8.1 83

Migrating Applications to Support HTTP Failover (Enterprise Edition)

3 Update the <DOCTYPE definition with the following code:

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN’
"http://java.sun.com/j2ee/dtds/web-app 2 3-1.dtd’'>

4 InSun ONE Application Server 6.5, the failover of HTTP applications was based on Dsync
mechanism. The configuration for HTTP failover was done in the ias-web-app . xml file.

The <server-info> element defined under the <servlet-info> element, specifies whether the
server on which the servlet will be served from is enabled.

The <session-info> element defines the following:

dsync-type: This can take the value dsync-distributed or dsync-local.

dsync-distributed implies that the session is distributed and thus available on all
configured servers.

dsync-local implies that the session is available on available only on the server on which
the session was created.

impl: This can take the values distributed or lite.
distributed implies that the session on distributed.

lite implies that the session is local to the Java engine where the session was created. If
this value is set, the dsync-type setting is ignored. I

In Sun Java System Application Server 8.1, to enable failover of applications on the
HTTP route, you define the following properties in the sun-specific web application
deployment descriptor file: sun-web. xml.

persistence-store - This can take the values memory, file, or ha. In 6.5, however, only
memory based persistence store was supported.

persistence-scope - define the scope of persistence.
= session - For every session, the session information will be saved.
= modified-session - Only the modified session data will be stored.

= modified-attribute - Only the modified attribute data will be stored. In 6.5, only
modified-attribute sope was supported.

persistenceFrequency - The frequecy can be for every web method or time based. In
6.5, only web-method was supported.

= web-method - The session state is stored at the end of each web request prior to
sending a response back to the client. This mode provides the best guarantee that the
session state is fully updated in case of failure.

= time-based - The session state is stored in the background at the specified frequency.
This mode provides less of a guarantee that the session state is fully updated.
However, it can provide a significant performance improvement because the state is
not stored after each request.

84 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating Applications to Support HTTP Failover (Enterprise Edition)

A sample of the sun-web . xm1 file is given below:

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE
sun-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Sun ONE Application Server 7.1 Servlet 2.3//EN’
"http://www.sun.com/software/sunone/appserver/dtds/sun-web-app 2 3-1.dtd’>
<sun-web-app>
<session-config>
<seession-manager>
<manager-properties>
<property name="persistence-type" value "ha'’>
<property name="persistenceFrequency" value ="web-based">
</manager-properties>
<store-properties>
<property name="persistenceScope" value="session">
</store-properties>
</session-manager>
</session-config>
</sun-web-app>

For more information on the sun-web . xml configuration file, see “The sun-web.xml
File” in Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Developer’s
Guide.

5 SunJava System Application Server 8.1 requires the load balancer plug-in to be installed and
configured, in order to load-balance the HTTP request and failover the requests to available
server instances in a cluster when there is a failure.

For more information about the load balancer, see Chapter 4, “Configuring Load Balancing and

Failover,” in Sun Java System Application Server Enterprise Edition 8.1 2005Q2 High Availability
Administration Guide.

6 Intheload-balancer.xml file, make sure that the web-module enabled elementis set to true.

<loadbalancer>
<cluster name=clusterl>

<web-module context-root="abc" enabled=true>
</cluster>
<property name="https-routing" value="true"/>
</loadbalancer>

enabled=true specifies that the web module is active (enabled) for requests to be load balanced
to it.

7 Definethe https-routing property and setits value to true.

For more information on editing the load-balancer.xml file, see Chapter 4, “Configuring
Load Balancing and Failover,” in Sun Java System Application Server Enterprise
Edition 8.1 2005Q2 High Availability Administration Guide.

Chapter6 « Migrating from Application Server 6.x/7.x to Application Server 8.1 85

Migrating Applications from Application Server 7 to Application Server 8.1

Deploy the applications on all server instances that is participating in load balancing.

Migrating Applications from Application Server 7 to
Application Server 8.1

Migrating Rich Clients From 7 PE/SE to 8.1 EE

Migrating rich clients that are deployed in Application Server 7 PE/SE to Application Server 8.1
is rather simple. The deployment descriptors used in Application Server 7 can be used as is in
Application Server 8.1. However, if you wish to enable load-balancing and failover features in
your client applications, you will need to configure the load-balancing and failover capabilities
in the deployment descriptors.

The following procedure describes the steps to migrate the applications:

¥ To Migrate Rich Clients
1 Identify the components which were installed previously.

2 Find out the server-instances, using asadmin command or through the directory listing.

The asadmin command requires administration instances to be running. However,
administration instances need not be running if the directory listing is used to identify the
instances.

3 Intheserver.xmlfile, add the following jvm-options under jvm-config element to enable
RMI/IIOP failover feature:

<jvm-config java-home=path...server-classpath=path>
<jvm-option>
Dorg.omg.PortableInterceptor.ORBInitializerClass.
com.sun.appserv.ee.iiop.EEORBInitializer
</jvm-option>
<jvm-option>
Dorg.omg.PortableInterceptor.ORBInitializerClass.
com.sun.appserv.ee.iiop.EEIORInterceptorInitializer
</jvm-option>
<jvm-option>
Dcom.sun.CORBA. connection.ORBSocketFactoryClass=
com.sun.appserv.enterprise.iiop.EEIIOPSocketFactory
</jvm-option>
</jvm-config>

86 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating Applications from Application Server 7 to Application Server 8.1

4 Updatetheavailability-service elementwithavailability-enabled flagsettoTrue:

<availability-service availability-enabled="true">
<persistence-store>
<property-name="store-pool-jndi-name" value="" />
<property-name="cluster-id" value="clusterl" />
</persistence-store>
</availability-service>

5 Modify the server classpath entry under the java-config elementtoinclude:
install_dir/SUNWhads/4.2.2-17/1ib/hadbjdbc.jar;

install_dir/lib/appserv-rt-ee.jar

6 Add the following jvm-option under java-config element:

<jvm-option>

Dcom. sun.aas.hadbRoot=install-dir/SUNWhadb/4.2.2-17
</jvm-option>

7 Update the sun-acc.xml with the following new load-balancing properties:

<property-name="com.sun.appserv.iiop.loadbalancingpolicy" value="ic-based" />
<property name="com.sun.appserv.iiop.endpoints" value=<host>:<port>" />

Migrating Rich Clients From 7 EE to 8.1 EE
To migrate 7 EE applications to 8.1 EE, follow the steps given below:

¥ To Migrate Rich Clients From 7 EE to 8.1 EE

1 Add the following jvm-options under java-config element for enabling RMI/IIOP failover
feature:

<jvm-config java-home=path...server-classpath=path>
<jvm-option>
Dorg.omg.PortableInterceptor.ORBInitializerClass.com.sun.appserv.ee.iiop.EEORBInitializer
</jvm-option>
<jvm-option>
Dorg.omg.PortableInterceptor.ORBInitializerClass.com.sun.appserv.ee.iiop.EEIORInterceptorInitializer
</jvm-option>
<jvm-option>
Dcom.sun.CORBA. connection.ORBSocketFactoryClass=com.sun.appserv.enterprise.iiop.EEIIOPSocketFactory
</jvm-option>
</jvm-config>

Chapter6 - Migrating from Application Server 6.x/7.x to Application Server 8.1 87

Migrating Applications from Application Server 7 to Application Server 8.1

88

Add the following entry in server.xml to setup the iiop-cluster.
<iiop-cluster>
<iiop-server-instance name=<server-name>>
<iiop-endpoint id=orb-listener-id, host=hostname, port=orb-listener-port/>
</iiop-server-instance>
</iiop-cluster>

Update sun-acc. xml with the following new entries:

<property-name=A[a8]com.sun.appserv.iiop.loadbalancingpolicy" value="ic-based" />
<property name="com.sun.appserv.iiop.endpoints" value="hosnunne:p0rﬂ />

The host and port is that of ORB-lister-1 ”s which is defined under iiop-listener elementin
server.xml.

Migrating 7 2004Q2, SE Applications to Application Server 8.1 EE

To migrate the applications from 7 2004Q2 SE, follow the steps described in the section
“Migrating Rich Clients From 7 PE/SE to 8.1 EE” on page 86.

Migrating EJB Applications to Support SFSB Failover

Application Server 7 does not support failover of stateful session beans. Application Server 8.1,
Platform Edition supports failover of stateful session beans on the HTTP and RMI/IIOP path.
This section describes the procedure to migrate EJB applications from Application Server 7
SE/PE/EE to Application Server 8.1 EE to support SESB state failover.

Migrating EJB Applications From 7 SE/PE/EE to 8.1 EE

To achieve high availability of EJB applications that use stateful session beans to persist the data,
you need to configure a persistent store for each cluster of application servers, where client
session information can be maintained across potential failures of individual appserver
instances. In addition, the availability-enabled flag must be turned on for each server instance in
the cluster.

Application Server 8.1 EE supports the failover of stateful session beans. In order to enable this
feature in your EJB applications that were deployed to Application Server 8.1 EE, follow the
steps below:

To migrate Entity beans from previous releases of Sun’s Application Server, follow the
procedure described in “Entity Beans” on page 72.

SESB failover is supported when the SESB is accessed from E]Bs, servlets, or Java Server Pages in
applications executing in the same application server process. The SFSB can be accessed
through either a local or remote interface.

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Migrating Applications from Application Server 7 to Application Server 8.1

To take advantage of SFSB state failover support, you need not edit the code. However, you
need to provide all the configuration parameters needed for checkpointing the SFSBs in the
Sun-specific deployment descriptor (sun-ejb-jar.xml) or in the server configuration file.

For detailed information on SESB Failover, see “Stateful Session Bean Failover” in Sun Java

System Application Server Enterprise Edition 8.1 2005Q2 High Availability Administration
Guide.

Chapter6 « Migrating from Application Server 6.x/7.x to Application Server 8.1 89

90

CHAPTER 7

Migrating a Sample Application - an Overview

This chapter describes the process for migrating the main components of a typical J2EE
application from Sun ONE Application Server 6.x to Sun Java System Application Server 8.1.
This chapter highlights some of the problems posed during the migration of each type of
component and suggests practical solutions to overcome such problems.

For this migration process, the J2EE application presented is called iBank and is based on the
actual migration of the iBank application from Sun ONE Application Server 6.x to Application
Server 8.1. iBank simulates an online banking service and covers all of the aspects traditionally
associated with a J2EE application.

The major points of the J2EE specification covered by the iBank application are:

= Servlets, especially with redirection to JSP pages (model-view-controller architecture)
= JSP pages, especially with static and dynamic inclusion of pages

= JSP custom tag libraries

= Creation and management of HT'TP sessions

= Database access through the JDBC API

= Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP entity beans
= Assembly and deployment in line with the standard packaging methods of the J2EE

application

The iBank application is presented in detail in

91

Preparing for Migrating the iBank Application

Preparing for Migrating the iBank Application

Before starting the migration process, it in important to understand the differences in the
deployment descriptors. For detailed information, see “Migrating Deployment Descriptors” on
page 64.

Choosing the Target

To start, choose Sun Java System Application Server 8.1 as the target migration server. Install
the server in the migration environment. For step-by-step instructions on how to install the
software, see the Sun Java System Application Server 8.1 Installation Guide.

If you are using Migration Tool for Sun Java System Application Server 8.1.1 to migrate the
components, install the tool. The Migration Tool can be downloaded from the following
location:

http://java.sun.com/j2ee/tools/migration (http://java.sun.com/j2ee/tools/migration)

For information on how to use the Migration Tool for Sun Java System Application Server 8.1.1,
see the Migration Tool online help. The iBank application is bundled with the tool.

Identifying the Components of the iBank Application
The iBank application has the following directory structure:

iBank/docroot/session/entity/misc

= /docroot contains HTML, JSP’s and Image files in its root. It also contains the source files
for servlets and EJBs in the sub-folder WEB- INF\\classes following the package structure
com.sun.bank.*. A war file is generated using this directory.

= /session contains the source code for the session beans following the package structure
com.sun.bank.ejb.session. This directory forms the EJB module for the session beans.

= /entity contains the entity beans following the package structure
com.sun.bank.ejb.entity. This directory would form the EJB module for entity beans.

= /misc contain the sql scripts for the database setup.

92 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

http://java.sun.com/j2ee/tools/migration

Manual Steps in the iBank Application Migration

Manual Steps in the iBank Application Migration

Most of the migration is done by the Migration Tool. There are some aspects of migration that
must be done manually. These steps are documented in the Migration Tool’s user’s guide and
the documentation for the iBank sample application.

Configuring Database Connectivity

In order to deploy an application to the target server, you must add a connection pool, add a
JDBC resource and a persistence manager.

This section discusses the following topics:

= “Addinga Connection Pool” on page 93
= “Addinga JDBC Resource” on page 94
= “Adding a Persistence Manager” on page 94

Note - Before you begin these steps, make sure that the domain to which the application will be
deployed is in the running state. These instructions assume that the application will be deployed
to the default domain, domainl.

Use the asadmin utility in the Application Server bin directory to perform these tasks.

Adding a Connection Pool

A JDBC connection pool is a group of reusable connections for a particular database. Because
creating each new physical connection is time consuming, the server maintains a pool of
available connections to increase performance. When an application requests a connection, it
obtains one from the pool. When an application closes a connection, the connection is returned
to the pool.

Use the asadmin create-jdbc-connection-pool command to add a connection pool to the
server. The syntax of the command is given below.

asadmin create-jdbc-connection-pool
--user admin_user
--password admin_password
--host localhost
--port portno
--datasourceclassname dsclassname
--property User=ibank user:Password=ibank user: URL_PROP=db_url TMB

where, dsclassname is:

®m oracle.jdbc.pool.OracleDataSource for Oracle

Chapter7 - Migrating a Sample Application - an Overview 93

Manual Steps in the iBank Application Migration

® com.pointbase.jdbc.jdbcDataSource for PointBase
URL_PRORPis:

= url for Oracle
® DatabaseName for PointBase

db_urlis:

®m jdbc:oracle:thin:@QORACLE_HOST:1521:SID for Oracle, where ORACLE_HOST is the
machine name/IP address on which the database is installed, and SID is the System ID of the
Oracle database.

m jdbc:pointbase:server://POINTBASE_HOST:9092/migration-samples for Pointbase,
where POINTBASE_HOST is the machine name/IP address on which the database is
installed. This will be localhost in most cases.

Adding a JDBC Resource

A JDBC resource (data source) provides applications with a means of connecting to a database.
Before creating a JDBC resource, you must first create a JDBC connection pool.

Use the asadmin create-jdbc-resource command to add resource.

asadmin create-jdbc-resource --user admin_user - -password admin_password --host
localhost --port portno --connectionpoolid TMB jdbc/IBank

Adding a Persistence Manager

A persistence manager is required for backward compatibility. To run on version 7 of the
Application Server, a persistent manager resource was required for applications with
container-managed persistent beans (a type of EJB component).

Use the asadmin create-persistence-resource command.

asadmin create-persistence-resource --user admin_user - -password admin_password
--host localhost --port portno --connectionpoolid TMB --factoryclass
com.sun.jdo.spi.persistence.support.sqlstore.impl.PersistenceManagerFactoryImpljdo/pmf

Assembling Application for Deployment

Application Server primarily supports the J2EE model wherein applications are packaged in the
form of an enterprise archive (EAR) file (extension .ear). The application is further subdivided
into a collection of J2EE modules, packaged into Java archives (JAR, extension .jar) for E]Bs and
web archives (WAR, extension .war) for servlets and JSPs.

All the JSPs and Servlets must be packaged into WAR file, all EJBs into the JAR file and finally
the WAR and the JAR file together with the deployment descriptors in to the EAR file. This EAR
file is a deployable component.

94 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Manual Steps in the iBank Application Migration

Using the asadmin Utility to Deploy the iBank
Application on Application Server

The last step is to deploy the application on Sun Java System Application Server 8.1. The process
for deploying an application is described below:

The Sun Java System Application Server 8.1 asadmin command includes a help section on
deployment that is accessible from the Help menu.

The command line utility asadmin can be invoked by executing asadmin.bat file in Windows
and asadmin file in Solaris Operating Environment that is stored in Application Server’s
installation’s bin directory.

Atasadmin prompt, the command for deployment looks like this:

asadmin> deploy -u username -w password -H hostname -p adminport
absolute_path_to_application

After restarting the Application Server, open a browser and go to the following URL to test the
application:

http://<machine_name>:<port_number>/ibank

When prompted, enter one of the available user names and passwords. The main menu page of
the iBank application displays.

Chapter7 - Migrating a Sample Application - an Overview 95

96

CHAPTER 8

Migration Tools and Resources

This chapter describes migration tools that help automate the migration process from earlier
versions of Sun ONE Application Server, Sun Java System Application Server 7, Netscape
Application Server (Kiva), NetDynamics Application Server, and competitive application
servers to Sun Java System Application Server 8.1.

Migration Tool for Sun Java System Application Server 8.1

The Migration Tool for Sun Java System Application Server 8.1 (hereafter called Migration
Tool) migrates J2EE applications from other server platforms to Sun Java System Application
Server 8.1.

The following source platforms are supported for Sun Java System Application Server 8.1:

Sun ONE Application Server 6.x

Sun Java System Application Server 7

J2EE Reference Implementation Application Server (RI) 1.3, 1.4 Betal
WebLogic Application Server (WLS) 5.1, 6.0, 6.1, 8.1

WebSphere Application Server (WAS) 4.0, 5.x

Sun ONE Web Server 6.0

JBoss Application Server 3.0

TomCat Web Server 4.1

Migration Tool automates the migration of J2EE applications to Sun Java System Application
Server 8.1, without much modification to the source code.

The key features of the tool are:
= Migration of application server-specific deployment descriptors

= Runtime support for selected custom JavaServer Pages (JSP) tags and proprietary APIs

= Conversion of selected configuration parameters with equivalent functionality in
Application Server

97

J2EE Application Verification Kit

= Automatic generation of Ant based scripts for building and deploying the migrated
application to the target server, Application Server

= Generation of comprehensive migration reports after achieving migration
Download the Migration Tool from the following location:

http://java.sun.com/j2ee/tools/migration/index.html
(http://java.sun.com/j2ee/tools/migration/index.html)

For detailed information on how to install and use the tool, see online help.

The Migration Tool specifications and migration process change from time to time, so the
sample migration using the tool is not included in this guide. The migration process of a sample
application is discussed in the documentation for this tool.

Redeploying Migrated Applications

Most of the applications that are migrated automatically through the use of the available
migration tools utilize the standard deployment tasks described in the Sun Java System
Application Server 8.1 Administration Guide.

In some cases, the automatic migration is not able to migrate particular methods or syntaxes
from the source application. When this occurs, a message displays describing the steps needed
to complete the migration. Once these steps are completed, the administrator is able to deploy
the application in the standard manner.

J2EE Application Verification Kit

The Java Application Verification Kit (AVK) for the Enterprise helps build and test applications
to ensure that they are using the J2EE APIs correctly and to migrate to other J2EE compatible
application servers using specific guidelines and rules.

Download the Java Application Verification Kit (AVK) from the following location:

http://java.sun.com/j2ee/verified/ (http://java.sun.com/j2ee/verified/)

98 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

http://java.sun.com/j2ee/tools/migration/index.html
http://java.sun.com/j2ee/tools/migration/index.html
http://java.sun.com/j2ee/verified/

CHAPTER 9

iBank Application Specification

The iBank application is used as the migration sample. This application simulates a basic online
banking service with the following functionality:

Log on to the online banking service

View/edit personal details and branch details

Summary view of accounts showing cleared balances

Facility to drill down by account to view individual transaction history
Money transfer service, allowing online transfer of funds between accounts

Compound interest earnings projection over a number of years for a given principal and
annual yield rate

The application is designed after the MVC (Model-View-Controller) model where:

EJBs are used to define the business and data model components of the application
JavaServer Pages handle the presentation logic and represent the View.

Servlets play the role of Controllers and handle application logic, taking charge of calling the
business logic components and accessing business data via E]Bs (the Model), and
dispatching processed data for display to JavaServer Pages (the View).

Standard J2EE methods are used for assembling and deploying the application components.
This includes the definition of deployment descriptors and assembling the application
components within the archive files:

A web application archive (WAR) file for the Web application including HTML pages,
images, Servlets, JSP files and custom tag libraries, and ancillary server-side Java classes.

EJB-JAR archive files for the assembling of one or more E]Bs, including deployment
descriptor, bean class and interfaces, stub and skeleton classes, and other helper classes as
required.

99

Database Schema

An enterprise application archive (EAR) archive file for the packaging of the enterprise
application module that includes the Web application module and the EJB modules used by
the application.

Use standard J2EE assembling methods to determine any differences between Sun ONE
Application Server 6.x/7.x and Sun Java System Application Server 8.1.

Database Schema

The iBank database schema is derived from the following business rules:

The iBank company has local branches in major cities.
A Branch manages all customers within its regional area.
A Customer has one or more accounts held at their regional branch.

A customer Account is uniquely identified by the branch code and account number, and
also holds the number of the customer to which it belongs. The current cleared balance
available is also stored with the account.

Accounts are of a particular Account Type that is used to distinguish between several kinds
of accounts (checking account, savings account, etc.).

Each Account Type stores a number of particulars that apply to all accounts of this type
(regardless of branch or customer) such as interest rate and allowed overdraft limit.

Every time a customer receives or pays money into/from one of their accounts, the
transaction is recorded in a global transaction log, the Transaction History.

The Transaction History stores details about individual transactions, such as the relevant
branch code and account number, the date the transaction was posted (recorded), a code
identifying the type of transaction and a complementary description of the particular
transaction, and the amount for the transaction.

Transaction types allow different types of transactions to be distinguished, such as cash
deposit, credit card payment, fund transfer between accounts, and so on.

The entity-relationship diagram shown below illustrates these business rules.

100 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Database Schema

TME=ank -- Database schema I

Cu clomer Nom Lno spoount AccTwe_u = Apoount Type
pu ct_No Branoh _Cade acType_id pooType_ld
pranch_Cook poo_Wo pocTme_Desc
jos _Userrame =7 pocTme_nkeres IRake
jos _ Passwond proc Troe_ich
jo= I Emal poc_Baae
L Tie
o _Guen Names
[0t _Eurrame
[t I Address1
[t I Address2
==l
e ap
(==l

branch_Code = branch_Code
branch_Code = branch_Code acc_Mow= aoc_No
Eranoh Tran mofon i Fare_Type k- Tran motan_Tyon
are_Twmed
:r""""—:::: frane_in franctzae
b = ddress1 mtcmz rarsTme_Desc
pranch_sddress2]
:rm_cllh‘ s _Poslbale
r; n
prmoeee e
FIGURE9-1 Database Schema

iBank Database Schema Tables

This section lists the tables in the iBank database schema.

TABLE9-1 BRANCH Table

Column Name Datatype Nullable/Default Description

BRANCH_CODE | CHAR(4) NOT NULL 4-digit code identifying the branch

BRANCH_NAME | VARCHAR(40) NOT NULL Name of the branch

BRANCH_ADDRES$IVARCHAR(60) NOT NULL Branch postal address, street address, 1st
line

BRANCH_ADDRES§2ZARCHAR(60) Branch postal address, street address, 2nd
line

BRANCH_CITY VARCHAR(30) NOT NULL Branch postal address, City

BRANCH_ZIP VARCHAR(10) NOT NULL Branch postal address, Zip code

BRANCH_STATE | CHAR(2) NOT NULL Branch postal address, State abbreviation

Chapter9 - iBank Application Specification

101

Database Schema

TABLE9-2 CUSTOMER Table

Column Name Datatype Nullable/Default Description
CUST_NO INT NOT NULL iBank customer number (global)
BRANCH_CODE CHAR(4) NOT NULL References this customer’s branch
CUST_USERNAME | VARCHAR(16) NOT NULL Customer’s login username
CUST_PASSWORD | VARCHAR(10) NOT NULL Customer’s login password
CUST_EMAIL VARCHAR(40) Customer’s e-mail address
CUST_TITLE VARCHAR(3) NOT NULL Customer’s courtesy title
CUST_GIVENNAMES/ARCHAR(40) NOT NULL Customer’s given names
CUST_SURNAME | VARCHAR(40) NOT NULL Customer’s family name
CUST_ADDRESS1 | VARCHAR(60) NOT NULL Customer postal address, street address,
1stline
CUST_ADDRESS2 | VARCHAR(60) Customer postal address, street address,
2nd line
CUST_CITY VARCHAR(30) NOT NULL Customer postal address, City
CUST_ZIP VARCHAR(10) NOT NULL Customer postal address, Zip code
CUST_STATE CHAR(2) NOT NULL Customer postal address, State

abbreviation

TABLE9-3 ACCOUNT _TYPE Table

Column Name Datatype Nullable/Default Description
ACCTYPE_ID CHAR(3) NOT NULL 3-letter account type code
ACCTYPE_DESC VARCHAR(30) NOT NULL Account type description
ACCTYPE_INTERESTRKIIMAL(4,2) DEFAULT 0.0 Annual interest rate

TABLE9-4 ACCOUNT Table
Column Name Datatype Nullable/Default Description
ACCOUNT
BRANCH_CODE | CHAR(4) NOT NULL branch code (primary-key part 1)
ACC_NO CHAR(8) NOT NULL account no. (primary-key part 2)
CUST_NO INT NOT NULL Customer to whom accounts belongs

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Database Schema

TABLE9-4 ACCOUNT Table (Continued)
Column Name Datatype Nullable/Default Description
ACCTYPE_ID CHAR(3) NOT NULL Account type, references
ACCOUNT_TYPE
ACC_BALANCE DECIMAL(10,2) DEFAULT 0.0 Cleared balance available

TABLE9-5 TRANSAC

TION_TYPE Table

Column Name Datatype Nullable/Default Description
TRANSTYPE_ID CHAR(4) NOT NULL A 4-letter transaction type code
TRANSTYPE_DESC| VARCHAR(40) NOT NULL Human-readable description of code

TABLE9-6 TRANSACTION_HISTORY Table

Column Name Datatype Nullable/Default Description

TRANS_ID LONGINT NOT NULL Global transaction serial no
BRANCH_CODE | CHAR(4) NOTNULL key referencing ACCOUNT part 1
ACC_NO CHAR(8) NOT NULL key referencing ACCOUNT part 2
TRANSTYPE_ID CHAR(4) NOT NULL References TRANSACTION_TYPE
TRANS_POSTDATE| TIMESTAMP NOT NULL Date & time transaction was posted
TRANS_DESC VARCHAR(40) Additional details for the transaction
TRANS_AMOUNT | DECIMAL(10,2) NOT NULL Money amount for this transaction

The TRANSACTION_HISTORY table is shown below.

TABLE9-7 TRANSACTION_HISTORY Table

Column Name Datatype Nullable/Default Description

TRANS_ID LONGINT NOT NULL Global transaction serial no
BRANCH_CODE | CHAR(4) NOT NULL key referencing ACCOUNT part 1
ACC_NO CHAR(8) NOT NULL key referencing ACCOUNT part 2
TRANSTYPE_ID CHAR(4) NOT NULL References TRANSACTION_TYPE
TRANS_POSTDATE| TIMESTAMP NOTNULL Date & time transaction was posted
TRANS_DESC VARCHAR(40) Additional details for the transaction
TRANS_AMOUNT | DECIMAL(10,2) NOT NULL Money amount for this transaction

Chapter9 « iBank Application Specification

103

Application Navigation and Logic

Application Navigation and Logic

The following figure provides a high-level view of iBank application navigation.

FIGURE9-2 iBank Application Navigation and Logic

iBank Login Process

The following figure shows the login process used in the iBank application.

i) AtCEeck) BankTeller
indkxfp - Login Serviet
Login page. Atempts to auhenticate ;ﬂr&h&‘:@ ‘:hmemms
Fommn with username & the user uith the s aﬁ d'm caCusteugg
password fields and BarkTeller EJB iincing & Lustamer
brmit bt with maching usemame
= on ard password
ety Sccesch|
artiettaton Callf e rme thod:
| artieteatoy dByCstilzename §
R User Merujsp Customer
I i i ik plaiplienuiispiaying Customer WP entity
bgckmlogiﬁ rage all avaiable options bean

FIGURE9-3 iBank Login Process

View/Edit Details

The following figure shows the view/edit details process used in the iBank application.

104 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Application Navigation and Logic

D etailsl) pdateF ailed.jsp

Printz indication of reazon
faor failure, with links back to
the detsils update form and
main menu page

~ a e Bdit my
| UserMenwjsp | details» Get branch details o Branch
— hd
Main Menu displaying Branch CMWP
all available options Retrieve user & branch et entity bean
details customer
detailz
o Customer
Retum to main menu
m/ Customer BMP
N _ [up pdate ity e
Ci J5p o Lt customer AL
pdate my detail
details Check s user ertry and attempt Al
* Form displaying: to update CustomerEJB with
- editakle user detailz new details
- non-gcitakle branch h
details.
i ful
* Submit button to update u:;;:f
uzer cetails.
. Inalid user
Tryagain entry or emor

UpdatedD etails.jsp

Print indication of
successful update of details
and link back to menu page

FIGURE9-4 View/Edit Details Process

Account Summary and Transaction History

The following figure shows how the account summary and transaction history work in the

iBank

UnarMenu j1p Exsd T2

W Ukw oty

Mal Me s dipiayig
allaakbk cposs

f 3

Retary tomal me vy

application.

o i QetACCon VtSm mady BanhTallar
Lt Seret

Re rkue list of cismer accon it

gethcoon VS ammany(:

Bl 3 lstotaccon e
Mk rmethod fiatbe big D the
cHmetersomer

Callfedermetiod:
Tt roke e o0 n i Forc s tome rij

7P

ShowTranmactonH rtory. Jip W

Az count

Tabk dEpbyhg-
-chkkabk accont# or
driilgdow s @eacton
ey

-aconntype

-cATE itba e

Chokon
Aot
Ik

Uges 3 cosom B9 bRy to
privtatabk showkg kduidal
trarsactions torthie se bokd
axont

Accon it CHR
eithybean

?rManlscIonHumr;' \

JSP Bglibrary

Actagges the TMBI ik dFEbase thirongh 3J0AC

daE sonrc: D pMmth S Erom te el br

altaizactons bra partciarbeck code aid
CCONITND,

FIGURE9-5 Account Summary and Transaction History

Fund Transfer

The following figure shows how funds are transferred in the iBank application.

Chapter9 - iBank Application Specification

105

Application Components

4« Fanekr g
beweEn my Aok
EeiH s - TrareferFuncs Serviet ot e Bummay 0 BankTeller
Wain Meru Ratriewe list ofcusbmeraccounts
digplaningall
udlable optiors
WooounEummanyg:
Bulds 3] ofacauns
de ks for he amen
Ve skrE urdst) cuslomer
? Rekrnk manmeru raceroas):
alemak ko kEnser
Trarefa Funds j3o - CheckTransferSeret Ard = e WeEn Mo
| o
Transkr seletion £rmuwth - Checktransker sattings and
- listtachoom ‘o account proceed if OK catl rder me b
- listtochoos Yo' account 0 rerE Ao For G kom EG)
- iddio enter amount
o Accourt
et fcount (P
Transfer theckFailed j=p e Tranef g Siocessop ertitybean
Piirt an ndicat 1t Prirt 3 corfimraion message
e AT
incomect, or whythe GOl a=
operation faled uceessidlyeamed out

FIGURE9-6 Fund Transfer

Interest Calculation
The following figure shows how interest is calculated in the iBank application.

s pe M CEpHE | Qrwt

UserMenujsp |~ - iiere =l ClcED) terest Calouiator
:;'_‘EiI';M_enUal Form displaying fidddsto enter:
i=p [3ang Al - stat principal rojectEanligeii:
Swailable options - interast rate Eau =] eangligns ona
- year period “ye @My ear bas ke Tor a
y duel SErtprhcpalad

and =ubrmit button prkcEan g i
¥ warpemd
ShowProjection Resuts jsp

Ead it Calohput jsp
Izt prt ProjectEamings Serviet
Prirt an indication 2= to | parame ke Checkinput p FLess Print projection resultsin
. - h parameters, ard if
why Nput is incorect - comect, perbrm projection and - tabular form
- refriene results
... 000000

FIGURE9-7 Interest Calculation

Application Components

Data Components

Each table in the database schema is encapsulated as an entity bean:

Entity Bean Database Table

Account ACCOUNT table

106 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide - July 2007

Application Components

AccountType ACCOUNT _TYPE table

Branch BRANCH table

Customer CUSTOMER table

Transaction TRANSACTION_HISTORY table
TransactionType TRANSACTION_TYPE table

All entity beans use container-managed persistence (CMP), except Customer, which uses
bean-managed persistence (BMP).

Currently, the application only makes use of the Account, AccountType, Branch, and
Customer beans.

Business Components

Business components of the application are encapsulated by session beans.

The BankTeller bean is a stateful session bean that encapsulates all interaction between the
customer and the system. BankTeller is notably in charge of the following activities:

= Authenticating a customer through the authCheck () method

= Giving the list of accounts for the customer through the getAccountSummary () method
= Transferring funds between accounts on behalf of the customer through the

transferFunds () method

The InterestCalculator bean is a stateless session bean that encapsulates financial
calculations. It is responsible for providing the compound interest projection calculations,
through the projectEarnings () method.

Application Logic Components (Servlets)

Component name Purpose

LoginServlet Authenticates the user with the BankTeller session bean (authCheck () method),
creates the HTTP session and saves information pertaining to the user in the
session.Upon successful authentication, forwards request to the main menu page
(UserMenu. jsp)

CustomerProfileServlgtRetrieves customer and branch details from the Customer and Branch entity beans and
forwards request to the view/edit details page (CustomerProfile.jsp).

Chapter9 - iBank Application Specification 107

Application Components

UpdateCustomerDeta

| #Seengits to effect customer details changes amended in CustomerProfile. jsp by
updating the Customer entity bean after checking validity of changes. Redirects to
UpdatedDetails. jsp if success, or to DetailsUpdateFailed. jsp in case of incorrect
input.

ShowAccountSummar

y8etnilstes the list of customer accounts from the BankTeller session bean
(getAccountSummary () method) and forwards request to AccountSummary . jsp for
display.

TransferFundsServlet

Retrieves the list of customer accounts from the BankTeller session bean
(getAccountSummary () method) and forwards request to TransferFunds. jsp
allowing the user to set up the transfer operation.

CheckTransferServlet

Checks the validity of source and destination accounts selected by the user for transfer
and the amount entered. Calls the transferFunds () method of the BankTeller session
bean to perform the transfer operation. Redirects the user to

CheckTransferFailed. jsp in case of input error or processing error, or to
TransferSuccess. jsp if the operation was successfully carried out.

ProjectEarningsServle

Retrieves the interest calculation parameters defined by the user in InterestCalc.jsp and
calls the projectEarnings () method of the InterestCalculator stateless session bean to
perform the calculation, and forwards results to the ShowProjectionResults.jsp
page for display. In case of invalid input, redirects to BadIntCalcInput.jsp

Presentation Logic Components (JSP Pages)

Component name

Purpose

index.jsp

Index page to the application that also serves as the login page.

LoginError.jsp

Login error page displayed in case of invalid user credentials supplied. Prints an
indication as to why login was unsuccessful.

Header.jsp

Page header that is dynamically included in every HTML page of the application

CheckSession.jsp

This page is statically included in every page in the application and serves to verify
whether the user is logged in (i.e. has a valid HTTP session). If no valid session is active,
the user is redirected to the NotLoggedIn. jsp page.

NotLoggedIn.jsp

Page that the user gets redirected to when they try to access an application page without
having gone through the login process first.

UserMenu. jsp

Main application menu page that the user gets redirected to after successfully logging
in. This page provides links to all available actions.

CustomerProfile.jsq

Page displaying editable customer details and static branch details. This page allows the
customer to amend their correspondence address.

UpdatedDetails.jsp

Page where the user gets redirected to after successfully updating their details.

108 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Potential Migration Issues

DetailsUpdateFaile

Poagre where the user gets redirected if an input error prevents their details to be
updated.

AccountSummaryPage

jlipis page displays the list of accounts belonging to the customer in tabular form listing
the account no, account type and current balance. Clicking on an account no. in the
table causes the application to present a detailed transaction history for the selected
account.

ShowTransactionHis

dMyisjmge prints the detailed transaction history for a particular account no. The
transaction history is printed using a custom tag library.

TransferFunds.jsp

This page allows the user to set up a transfer from one account to another for a specific
amount of money.

TransferCheckFaile

Waren the user chooses incorrect settings for fund transfer, they get redirected to this
page.

TransferSuccess. jsq

When the fund transfer set-up by the user can successfully be carried out, this page will
be displayed, showing a confirmation message.

InterestCalc.jsp

This page allows the user to enter parameters for a compound interest calculation.

BadIntCalcInput.jsy

If the parameters for compound interest calculation are incorrect, the user gets
redirected to this page.

ShowProjectionResul

W hiespan interest calculation is successfully carried out, the user is redirected to this
page that displays the projection results in tabular form.

Logout.jsp Exit page of the application. This page removes the stateful session bean associated
with the user and invalidates the HTTP session.
Error.jsp In case of unexpected application error, the user will be redirected to this page that will

print details about the exception that occurred.

Potential Migration Issues

While many of application design choices made are certainly debatable especially in the
“real-world” context, care was taken to ensure that these choices enable the sample application
to encompass as many potential issues as possible as one would face in the process of migrating
atypical J2EE application.

This section will go through the potential issues that you might face when migrating a J2EE

application, and the

corresponding component of iBank that was included to check for this

issue during the migration process.

With respect to the selected migration areas to address, this section specifically looks at the
following technologies:

Chapter9 - iBank Application Specification

109

Potential Migration Issues

110

Servlets

The iBank application includes a number of servlets, that enable us to detect potential issues
with:

= The use of generic functionality of the Servlet API

= Storage/retrieval of attributes in the HTTP session and HT'TP request
= Retrieval of servlet context initialization parameters

= Page redirection

JavaServer Pages

With respect to the JSP specification, the following aspects have been addressed:

m Use of JSP declarations, scriptlets, expressions, and comments

= Static includes (<%@ include file=".." %>): notably tested with the inclusion of the
CheckSession. jsp file in every page)

= Dynamic includes (<jsp:include page=.. />): this is catered for by the dynamic inclusion

of Header. jsp in every page

= Use of custom tag libraries: a custom tag library is used in the file
ShowTransactionHistory.jsp

= Error pages for JSP exception handling: the Error. j sp page is the application error
redirection page

JDBC

The iBank application accesses a database via a connection pool and the data source, both
programmatically (BMP entity bean, BankTeller session bean, custom tag library) and
declaratively (with the CMP entity beans).

Enterprise Java Beans

The iBank application uses a variety of Enterprise Java Beans.

Entity Beans

Bean-managed persistence (Customer bean): allows us to test the following:

= JNDIlookup of initial context
® Pooled data source access via JDBC
® Definition of a BMP custom finder (findByCustUsername())

Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

Potential Migration Issues

Container-managed persistence (Account and Branch beans): allow us to test the following:

= Object/Relational mapping with the development tool and within the deployment
descriptor

= Use of composite primary keys (Account)

m Definition of custom CMP finders (with the Account bean, and its
findOrderedAccountsForCustomer () method). This is the occasion to look at differences
in declaring the query logic in the deployment descriptor, and also to have a complex
example returning a collection of objects.

Session Beans

Stateless session beans: InterestCalculator allows us to test the following:

= Using and deploying a stateless session bean
= Calling a business method for calculations

Stateful session beans: BankTeller allows us to test the following:

= Looking up various interfaces using JNDI and initial contexts
= Using JDBC to perform database queries

= Using various transactional attributes on bean methods

= Using container-demarcated transactions

= Maintaining conversational state between calls

»

= Business methods acting as front-ends to entity beans (e.g., the “getAccountSummary ()
method)

Application Assembly

The iBank application is assembled by following the J2EE standard procedures. It contains the
following components:

= A Web application archive file for the Web application module, and EJB-JAR archives for
the EJBs

= Anenterprise application archive file (EAR file) for the final packaging of the Web
application and EJB modules

Chapter9 - iBank Application Specification m

112

Index

A

asadmin command for deploying a Web
application, 69

asupgrade command, 37

Backward compatibility issues, 31

C
cluster upgrade, 42

D

data source benefits, 79

database connectivity, 93-94
connection pool, 93
jdbcresource, 94

database connetivity, persistence manager, 94

Deployment descriptors, 48
Deprecated APIs, 30
Downward source compatibility, 29

DTD changes for S1IAS 6.x to SJS AS 8 EJB

migration, 70-73

E
EAR file contents, 48

EAR file definition, 48
EJB1.1toEJB2.0
Defining Entity Bean Relationships, 55
EJB 2.0 Container-Managed Persistence
(CMP), 54-56
EJB Query Language, 53
Message-Driven Beans, 55-56
Migrating CMP Entity EJBs
Custom Finder Methods, 61-62
Migrating the Bean Class, 58-60
Migration of ejb-jar.xml, 60-61
Migrating EJB Client Applications, 56-57
Declaring EJBs in the JNDI Context, 56-57
Migration of ejb-jar.xml, 60-61
EJB migration actions, 70
EL Expressions, 32

G

getLocalAddr, 30
getLocalName, 30
getLocalPort, 30

getRemotePort, 30

H

HttpSessionListener.sessionDestroyed, 30

113

Index

I T
118N behavior, 31 Tag Library validations, 31
iBank Application specification Type coercion rules, 32

Application Components, 106-109

Application navigation and logic, 104-106

Database schema, 100-104

Fitness of design choices with regard to potential u

upgrade

migration issues, 109-111

iBank sample application, 63 http and iiop listeners, 44

http listeners, 43

port conflict, 45
upgrade server, 35-45
J supported servers, 35
upgrade tool, 40
upgrade UL, 40
upgrade wizard, 40

J2EE applications, components, 48

J2EE Component Standards, 47-48

JDBC code migration, 78-80

JSP and JSP custom tag library conversions, 66

M

manual migration of iBank application, 93-95
assembling application for deployment, 94

Migration Tool for Sun Java System Application Server
Platform Edition 8, 97-98

(0]

obtaining a data source from the JNDI context, 67

P

Page encoding, 31
pass-by-reference, 33

S

servlet migration modifications, 66-68

114 Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide « July 2007

	Sun Java System Application Server Enterprise Edition 8.1 2005Q2 Upgrade and Migration Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Application Server Documentation Set
	Related Books
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Accessing Sun Resources Online
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Application Server Compatibility Issues
	Web Server Features
	Security Realms
	Sun Deployment Descriptor: sun-web.xml
	encodeCookies Property
	CORBA Performance Option
	File Formats
	Tools Interoperability
	Cluster Scripts
	Primary Key Attribute Values
	Command Line Interface: hadbm
	Command Line Interface: start-appserv and stop-appserv
	Command Line Interface: asadmin
	Subcommands
	Error Codes for Start and Stop Subcommands
	Options
	Dotted Names
	Tokens in Attribute Values
	Nulls in Attribute Values

	J2EE 1.4 Compatibility Issues
	Binary Compatibility
	Source Compatibility
	Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)
	JAXP and SAX Incompatibilities
	Application Server 8.1 Options Incompatible with J2EE 1.4 Specification Requirements
	Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations

	Upgrading an Application Server Installation
	Upgrade Overview
	Before You Start the Upgrade Process
	Upgrading Through the Upgrade Utility
	Upgrading Through the Wizard
	To Use the Upgrade Wizard

	Upgrading a Cluster
	To Upgrade a Cluster

	Correcting Potential PE and EE Upgrade Problems
	To Migrate Additional HTTP Listeners Defined on the Source Server to the Target PE Server
	To Migrate Additional HTTP and IIOP Listeners Defined on the Source Server to the Target EE Server
	Eliminating Port Conflict Problems
	Eliminating Problems Encountered When A Single Domain has Multiple Certificate Database Passwords

	Understanding Migration
	J2EE Component Standards
	J2EE Application Components
	Migration and Deployment
	Why is Migration Necessary?
	What Needs to be Migrated
	Deployment descriptors (XML files)
	JSP source files
	Java source files

	Deployment of Migrated Applications

	Migrating from EJB 1.1 to EJB 2.0
	EJB Query Language
	Local Interfaces
	EJB 2.0 Container-Managed Persistence (CMP)
	Defining Persistent Fields
	Defining Entity Bean Relationships
	Message-Driven Beans

	Migrating EJB Client Applications
	Declaring EJBs in the JNDI Context
	Recap on Using EJB JNDI References
	Placing EJB References in the JNDI Context
	Global JNDI context versus local JNDI context

	Migrating CMP Entity EJBs
	To Verify if a Bean Can be Migrated
	Migrating the Bean Class
	To Migrate the Bean Class

	Migration of ejb-jar.xml
	To Migrate the EJB Deployment Descriptor

	Custom Finder Methods

	Migrating from Application Server 6.x/7.x to Application Server 8.1
	Migrating Deployment Descriptors
	Migrating Web Applications
	Migrating Java Server Pages and JSP Custom Tag Libraries
	Migrating Servlets
	Obtaining a Data Source from the JNDI Context
	Declaring EJBs in the JNDI Context
	Potential Servlets and JSP Migration Problems

	Migrating Web Application Modules

	Migrating Enterprise EJB Modules
	EJB Migration
	EJB Changes Specific to Application Server Platform Edition 8.1
	Session Beans
	Migrating EJB Applications that Support SFSB Failover (Enterprise Edition)
	Entity Beans
	Message Driven Beans

	Migrating Enterprise Applications
	To Build an EAR File
	Application Root Context and Access URL
	Applications With Form-based Authentication

	Migrating Proprietary Extensions
	Migrating UIF
	Checking in the Registry Files
	Checking for UIF Binaries in Installation Directories

	Migrating JDBC Code
	Establishing Connections Through the DriverManager Interface
	Using JDBC 2.0 Data Sources
	Looking Up the Data Source Via JNDI To Obtain a Connection
	To Connect to a Data Source

	Migrating Rich Clients
	Authenticating a Client in Application Server 6.x
	Authenticating a Client in Sun Java System Application Server 8.1
	Using ACC in Application Server 6.x and Sun Java System Application Server 8.1
	Load-balancing and Failover Features in ACC Clients (Enterprise Edition)

	Migrating Applications to Support HTTP Failover (Enterprise Edition)
	To Migrate and Enable Load-Balancing

	Migrating Applications from Application Server 7 to Application Server 8.1
	Migrating Rich Clients From 7 PE/SE to 8.1 EE
	To Migrate Rich Clients
	Migrating Rich Clients From 7 EE to 8.1 EE
	To Migrate Rich Clients From 7 EE to 8.1 EE

	Migrating 7 2004Q2, SE Applications to Application Server 8.1 EE

	Migrating EJB Applications to Support SFSB Failover
	Migrating EJB Applications From 7 SE/PE/EE to 8.1 EE

	Migrating a Sample Application - an Overview
	Preparing for Migrating the iBank Application
	Choosing the Target
	Identifying the Components of the iBank Application

	Manual Steps in the iBank Application Migration
	Configuring Database Connectivity
	Adding a Connection Pool
	Adding a JDBC Resource
	Adding a Persistence Manager

	Assembling Application for Deployment
	Using the asadmin Utility to Deploy the iBank Application on Application Server

	Migration Tools and Resources
	Migration Tool for Sun Java System Application Server 8.1
	Redeploying Migrated Applications

	J2EE Application Verification Kit

	iBank Application Specification
	Database Schema
	iBank Database Schema Tables

	Application Navigation and Logic
	iBank Login Process
	View/Edit Details
	Account Summary and Transaction History
	Fund Transfer
	Interest Calculation

	Application Components
	Data Components
	Business Components
	Application Logic Components (Servlets)
	Presentation Logic Components (JSP Pages)

	Potential Migration Issues
	Servlets
	JavaServer Pages
	JDBC
	Enterprise Java Beans
	Entity Beans
	Session Beans

	Application Assembly

	Index

