@Sun

Sun Java™ System

Message Queue 3
Administration Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-2571-10

2005Q4

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

htt p: //wa sun. cond pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by third
parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp and Javadoc are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
I'adresse htt p: // waw sun. conf pat ents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

L'utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp et Javadoc sont
des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Ce produit est soumis a la législation américaine en matiere de contrdle des exportations et peut étre soumis a la reglementation en vigueur dans
d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris,
mais de maniere non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matiere de controle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

http://www.sun.com/patents
http://www.sun.com/patents

Part

Contents

List Of FIQUIesS ... 11
List Of Tables . ..o 13
List Of ProCeduUres 17
Preface .. . 19
Who Should Use This BOOK e 20
Before You Read This BOOK oo 20
How This Book IS Organized e 20
Conventions Used IN ThisS BOOK e 22
TeXt CONVENLIONS . . . oottt et et e e e e e e e e e e e e e e e e e 22
Directory Variable CONVENTIONS e e e e i 23
Related DOCUMENTAtIONo o e e e e e e 25
Message Queue Documentation Sett 25
Java Message Service Specification 26
ONliNe Help . 26
JAVADIOC . .. 26
Example Client Applications o 26
Related Third-Party Web Sites e 27
Sun Welcomes YOUr COMMENTSttt et e e e e e e e e e e e 27
Introduction to Message Queue Administration 29
Chapter 1 Administrative Tasks and Tools e 31
AdMINISTrative Tasks 31
Administration in a Development Environment i 31
Administration in a Production ENVIironmentt 32

AdMINiStration ToolS e e e 34

Command Line ULIIITIES e 34
Administration Console 35
Chapter 2 Quick-Start Tutorial e 37
Starting the Administration Console i e 39
Administration Console Online Help e 40
Working With BroKerso e 41
StArtiNg @ BrOKET . ..o e 41
Adding a Broker to the Administration Console i 42
Connecting to a BroKer i e 43
Viewing ConNeCtioN SEIVICESttt e e 44
Working With Physical Destinations e e e 46
Creating a Physical Destination e e 46
Viewing Physical Destination Propertiest e 48
Purging Messages From a Physical Destinationcoi i, 50
Deleting a Physical Destinationt i e e e 51
Working With Object StOreso 51
Adding an ObJeCt STOreot 52
Connecting to an ObjJeCt STOre it e 54
Working With Administered ODJECES it 55
Adding a ConnNection FaCtOrYttt e e 55
Adding a Destination 57
Viewing Administered Object Propertiesoii i 60
Deleting an Administered Object 60
Running the Sample Application 61
Part 1l Administration Tasks e 65
Chapter 3 Starting Brokersand Clients 65
Preparing System RESOUICESottt et e et et e e e e e e e e e 65
Synchronizing System CIoCKS 65
Setting the File Descriptor Limit e 66
StartiNg BrOKEIS . . .o 66
Starting Brokers Interactively 66
Starting Brokers Automatically 68
REMOVING BrOKEISo 71
Removing a Broker on Solaris or LINUX 71
Removing a Windows BroKer Service 72
Starting ClENtS . ..o e e 72

4 Message Queue 3 2005Q4 + Administration Guide

Chapter 4 Configuring aBroKer i 75

BrOKEr SEIVICES . .ottt 75
CONNECLION SEIVICES . .ottt e e e 76
ROUTING SEIVICES oottt 78
PersiStENCE SEIVICES . . . oottt 80
S CUNITY SBIVICES o .\ttt ettt et e e e e e e 83
MONITONING SEIVICES . .. ottt e e 87

Setting BroKer Properties 89
ConfigUIratioN FIlES ... o 90

Configuring a Persistent Data Storeot 93
Configuring a File-Based StOreo 93
Configuring @ JDBC-Based StOrettt e 94
SeCUring Persistent Dataot 95

Chapter 5 Managing a BroKer e e e 97

P EqUISITES . . oo 98

Using the imgemd ULIlity 98
Displaying Helpo 98
Displaying the Product VErsiont i 99
Specifying the User Name and Password i 99
Specifying the Broker Name and POrt e 100
EXAMIES . . 100

Displaying Broker Information 101

Updating BroKer Properties e 102

Pausing and Resuming a BroKer 103
Pausing a BroKer 103
ReSUMING @ BrOKEr 103

Shutting Down and Restarting a Broker i 104

Displaying BroKer MetriCso e e e e e 105

Managing ConNection SEIVICESottt e e e e e e e e 106
Listing CoNNECtioN SEIVICESottt e e e e e e e e e 107
Displaying Connection Service Information i 107
Updating Connection Service Properties e 108
Displaying Connection Service MetriCst 109
Pausing and Resuming a Connection Service 110

Getting Information About CONNECLIONS ot e 111

Managing Durable SUDSCHIPLIONSo e e 112

Managing TranSaCtioNSttt e e e e et e e e e 113

Chapter 6 Managing Physical Destinations i 117

Using the Command Utility e 118
SUDCOMMANAS 118

Creating a Physical Destination e 119

Contents 5

6

Listing Physical Destinations it e e 121

Displaying Information about Physical Destinations i 121
Updating Physical Destination Propertiesoouiiiii e 123
Pausing and Resuming Physical Destinations i 123
Purging Physical Destinations ittt e e e 124
Destroying Physical Destinationst e 125
Compacting Physical Destinationst e 126
Configuring Use of the Dead Message QUEUEttt it et 128
Configuring Use of the Dead Message QUEUEttt 128
Configuring and Managing the Dead Message QUEUEviieiieiieinannn.. 129
Enabling Dead Message LOgQiNg oottt e e 130
Chapter 7 Managing SeCUIYttt e e e e et 131
AUTNENTICAtING USEIS .o ittt e e 132
Using a Flat-File User RepoSitory e e e e 132
Using an LDAP Server for a User Repositoryt e 139
Authorizing Users: The Access Control PropertiesFile i i i, 142
Creating an Access Control Properties File i e 142
Syntax Of ACCESS RUIES e 143
How Permissions are COmMpPUted ottt 144
Access Control for ConNection SEIVICESottt e e 145
Access Control for Physical Destinationst 146
Access Control for Auto-Created Physical Destinations, 147
Working With an SSL-Based ServiCet 148
Secure Connection Services for TCP/ZIP o i e 149
Configuring the Use of Self-Signed Certificates 149
Configuring the Use of Signed Certificates i, 155
Using a Password File 158
SECUNILY CONCEITIS . .\t ittt ettt et e e e e e e e e e e e e 159
Password File Contents o 159
Creating an AUdItLOgottt e 160
Chapter 8 Managing Administered Objects i 161
(0] o] 1= o1 BT o] 1T 161
LDAP Server ObJect StOISottt e e e e 162
File-System ObJect StOreS 163
Administered Object AttribULES 164
Connection Factory AttribDULES 165
Destination Attributes 172

Message Queue 3 2005Q4 < Administration Guide

Using the Object Manager Utility o e 172

Adding Administered ObJECtSttt 173
Deleting Administered ODbjJectS i e 175
Listing Administered ObjJectS it 176
Viewing Administered Object Information i 177
Modifying Administered Object Attributes i 177
Using Command Files 178
Chapter 9 Working With Broker CIUStErs e e 181
Cluster Configuration Propertiest e e e e 181
Setting Cluster Properties for Individual Brokers 182
Using a Cluster Configuration File i e e 182
ManNaging ClUSTEIS ... ittt e e e e 183
CoNNECHING BrOKEIS .« . ottt e e e e 183
Adding Brokers to a CIUSTEro it 184
Removing Brokers From a CIUSter i e e e 185
Master BrOKer .. 186
Managing the Configuration Change Record i 187
When a Master Broker Is Unavailable i 188
Chapter 10 Monitoring a MesSSage SerVerttt e e e e 189
Introduction to Monitoring TOOIS 189
Configuring and Using Broker LOggingt e e 191
Default Logging Configuration e 191
Log Message FOrmat i e 192
Changing the Logger Configuration i e 192
Interactively Displaying MetriCsS i 196
IMOCMA MELIICS . . oo e e e e e e e e e e e e 197
Using the metrics Subcommand to Display MetricsData 198
Metrics OUtpuUts: IMQCMA MELIICS oo e e 199
IMOCMA QUENY .o e e e e e e e e 201
Writing an Application to Monitor BroKers 201
Setting Up Message-Based MONItOFINGottt e e 202
Security and Access CoNnsiderations e 203
Metrics OUtpULS: MEtricS MESSAgESottt et et e et e 204
Chapter 11 Analyzing and Tuning a Message Service, 205
ADOUL PerfOrmManCe e e e 205
The Performance TUNING ProCESSttt e e e e e 205
ASpPeCts Of Performance 206
Benchmarks o 207
Baseline Use Patterns 208

Contents 7

Part

8

Factors That Affect Performance i e e e e e e s 209

Application Design Factors that Affect Performance ot 210
Message Service Factors that Affect Performance i, 218
Adjusting Configuration To Improve Performanceiiiiiiiiiiiinnn 223
SYStEM AdJUSTMENES .. .ot 223
BroKer AdjUSTMENtS 228
Client Runtime Message FIow AdjUSIMENTSttt e 229
Chapter 12 Troubleshooting Problems i 233
A Client Cannot Establish @ CONNECtioN i e 234
Connection Throughput IS TOO SIOWot e e 239
A Client Cannot Create a Message ProdUCerttt e 241
Message Production Is Delayed or SIowed 242
Messages Are Backlogged 245
Message Server Throughput IsSporadiC i e e 250
Messages Are Not Reaching CONSUMEISottt e et e e 251
The Dead Message Queue Contains MeSSages oo vttt ettt ettt a s 255
[l Reference e 263
Chapter 13 Command Line Reference i 265
Command LiNe SYNTAXottt et e e e e e e e 265
BroKer Uty 266
Command ULty 271
Broker Management e 272
Connection Service Management it 273
Connection Management e e e 274
Physical Destination Management 275
Durable Subscription Management 277
Transaction Managementttt e e 277
General Command Utility Options e 277
Object Manager ULty e e 279
Database Manager Utility 280
User Manager ULty e e 282
Service Administrator Utility 283
Key Tool ULty e e e 284
Chapter 14 Broker Properties Reference 285
CONNECLION PrOPEITIES . ..ot ittt et e e e e e e e e e e et e e e 285
ROUTING Properties . ..o e 287

Message Queue 3 2005Q4 < Administration Guide

PerSIStENCE PrOPErtieS . . . oot 292

File-Based PersiSteNCeot 293
JDBC-Based PerSiSteNCEttt 295
SECUNITY PrOPeItieS ot e e 298
MONItOFING PrOPeItiES ..ot e e e e e e 303
Cluster Configuration Propertiest e e e e 307
Alphabetical List of Broker Properties e e 308
Chapter 15 Physical Destination Property Reference 313
Chapter 16 Administered Object Attribute Reference 317
Connection Factory AttribULES oo 317
Connection Handling o 318
Client Identification e 322
Reliability and Flow Control 322
QueUE Browser and SEIVEr SESSIONS . .. v v vttt e et e e 324
Setting Standard Message Propertiest 324
Message Header OVErTidest e e e 325
Destination AttribUtes 326
SOAP Endpoint Attributes 326
Chapter 17 JMS Resource Adapter Property Reference 327
ResourceAdapter JavaBean 328
ManagedConnectionFactory JavaBean oot 329
ActivationSpec JavaBean 331
Chapter 18 Metrics Reference e 335
JVM MIBEEICS .o e e 335
BroKerwide MetriCS o 336
COoNNECLION SErVICE MELIICS . . .ot e e e e e e 338
Destination MetriCSttt e e e e 340
Part IV ApPPeNdiXES ...t e e 345
Appendix A Platform-Specific Locations of Message QueueData 347
SOaNIS .o 348
LU e 349
WNOOWS e e 350

Contents 9

10

Appendix B Stability of Message Queue Interfaces 351

Appendix C HTTP/HTTPS SUPPOIt e e e e 355
HTTP/HTTPS Support ArchiteCture s 356
Enabling HT TP SUPPOIT . . .o e e e e e e 357
Step 1. Deploy the HTTP Tunnel Servilet e 358
Step 2. Configure the httpjms Connection Service 362
Step 3. Configure an HTTP CoNNeCtion i e 364
Enabling HTTPS SUPPOIt ... e e e e 366
Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet 366
Step 2. Modifying the HTTP Tunnel Servlet .war File’s Descriptor File 367
Step 3. Deploying the HTTPS Tunnel Servlet e 368
Step 4. Configuring the httpsjms Connection Servicecoo i, 372
Step 5. Configuring an HTTPS CONNECLION oot 374
TroubleshOotingo 377
Server or Broker Failure 377
Client Failure to Connect Through the Tunnel Servlet 377
Appendix D Frequently Used Command Utility Commands 379
Sy A ot e 379
Broker and Cluster Managementttt 380
Broker Configuration Properties (-0 OPtion) i 380
Service and Connection Managementttt 381
Durable Subscriber Management 381
Transaction Managementt 381
Destination Managementottt 382
Destination Configuration Properties (-0 Option)uutiririririnrnnnnns 382
MBEIICS oot 383
GlOS S ANy o oottt 385
o = 387

Message Queue 3 2005Q4 « Administration Guide

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7

List of Figures

Local and Remote Administration Utilities 36
Administration Console Window 39
Administration Console HelpWindow i, 40
Add Broker Dialog BOXt 42
Broker Displayed in Administration Console Window 43
Connectto Broker Dialog BOXt 44
Viewing Connection SErVICeSttt i 45
Service Properties Dialog BoX 45
Add Broker Destination Dialog BOXt 47
Broker Destination Properties Dialog BOX 49
Durable Subscriptions Panel 50
Add Object Store Dialog BOX oot 52
Object Store Displayed in Administration Console Window 54
Add Connection Factory Object Dialog BOX, 56
Add Destination Object Dialog BOXt 58
Destination Object Displayed in Administration Console Window 59
Persistent Data StOrage oot 81
SECUNITY SUP POt ..ttt e e 84
MONItOriNg SUPPOIT ..o e 87
Broker Configuration Files 91
Message Delivery Through a Message Queue Servicecovvevun... 209
Performance Impact of Delivery Modes i 213
Performance Impact of Subscription Types i .. 215
Performance Effect of a Message Size i 217
Transport Protocol Speeds 220
Performance Impact of Transport Protocol 221
Effect of Changing i nbuf sz on a 1k (1024 bytes) Packet 226

11

12

Figure 11-8
Figure 12-1
Figure 12-2
Figure C-1

Effect of Changing out buf sz on a 1k (1024 bytes) Packet 226

QBrowser WiNAOWot e e 253
QBrowser Message Details i 254
HTTP/HTTPS Support Architecture i 356

Message Queue 3 2005Q4 « Administration Guide

Table 1
Table 2
Table 3
Table 4
Table 5
Table 4-1
Table 4-2
Table 5-1
Table 5-2
Table 6-1
Table 6-2
Table 6-3
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 8-1
Table 8-2
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5
Table 10-6

List of Tables

Contentsof ThisManual 20
TeXt CONVENLIONSottt et e e e e et e e e e e e e 22
Message Queue Directory Variables i 23
Message Queue Documentation Set 25
JavaDOoC LOCAtIONSo 26
Message Queue CoNNECLION SEIVICESttt a s 76
Metric Topic Destinations i 89
Connection Services Supported by aBroker i 106
Connection Service Properties Updated by ingend 108
Physical Destination Subcommands for the Command Utility 118
Physical Destination Disk Utilization Metrics 127
Dead Message Queue Treatment of Standard Physical Destination Properties 129
Initial Entries in User Repository i 133
i nQUSEr Mgr OPLIONS 135
Syntactic Elements of AccessRules i 143
Elements of Physical Destination Access ControlRules 147
Distinguished Name Information Required for a Self-Signed Certificate 150
Commands That Use Passwordsuiiiiiiiiiiiiiiiiiieen.. 159
PasswordsinaPassword File 160
LDAP Object Store Attributes 162
File-system Object Store Attributes i 164
Benefits and Limitations of Metrics Monitoring Tools 190
Logging LeVelSo 192
i ngbr oker d Logger Options and Corresponding Properties 193
i ngend et rics Subcommand Syntax 197
i ngend et ri cs Subcommand Options 198
i ngend query Subcommand Syntax ... 201

13

14

Table 10-7
Table 11-1
Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5
Table 13-6
Table 13-7
Table 13-8
Table 13-9
Table 13-10
Table 13-11
Table 13-12
Table 13-13
Table 13-14
Table 13-15
Table 13-16
Table 14-1
Table 14-2
Table 14-3
Table 14-4
Table 14-5
Table 14-6
Table 14-7
Table 14-8
Table 14-9
Table 14-10
Table 15-1
Table 16-1
Table 16-2
Table 16-3
Table 16-4
Table 16-5
Table 16-6
Table 16-7
Table 16-8

Metrics Topic Destinations ...ttt e 202
Comparison of High Reliability and High Performance Scenarios 211
Broker Utility Options e 267
Command Utility Subcommands for Broker Management 272
Command Utility Subcommands for Connection Service Management 273
Command Utility Subcommands for Connection Service Management 274
Command Utility Subcommands for Physical Destination Management 275
Command Utility Subcommands for Durable Subscription Management 277
Command Utility Subcommands for Transaction Management 277
General Command Utility Options i i 277
Object Manager Subcommands i 279
Object Manager OPptioNSt e e 279
Database Manager SUbCOMMANASttt e 280
Database Manager OptioNnsot e 281
User Manager Subcommands 282
General User Manager Optionsottt 283
Service Administrator Subcommands 283
Service Administrator Options it 283
Broker Connection Propertiest e 285
Broker Routing Properties e 287
Broker Properties for Auto-Created Destinations 289
Global Broker Persistence Propertyuuiieiiiee i, 292
Broker Properties for File-Based Persistence i 293
Broker Properties for JDBC-Based Persistencec.oouiiiiiniinna... 295
Broker Security Propertieso 298
Broker Monitoring Properties e 303
Broker Properties for Cluster Configuration 307
Alphabetical List of Broker Properties 308
Physical Destination Properties 313
Connection Factory Attributes for Connection Handling 318
Message Server Addressing Schemes i 320
Message Server Address Examples 321
Connection Factory Attributes for Client Identification 322
Connection Factory Attributes for Reliability and Flow Control 322
Connection Factory Attributes for Queue Browser and Server Sessions 324
Connection Factory Attributes for Standard Message Properties 324
Connection Factory Attributes for Message Header Overrides 325

Message Queue 3 2005Q4 « Administration Guide

Table 16-9
Table 16-10
Table 17-1
Table 17-2
Table 17-3
Table 18-1
Table 18-2
Table 18-3
Table 18-4
Table A-1
Table A-2
Table A-3
Table B-1
Table B-2
Table C-1
Table C-2
Table D-1
Table D-2

Destination Attributes 326

SOAP Endpoint Attributes 326
Resource Adapter Properties 328
Managed Connection Factory Attributes i 329
Activation Specification Properties i 331
JVM MIELEICS .o e e 335
Brokerwide MetriCst 336
Connection Service MetriCst 338
Destination MetriCs oo e 340
Message Queue Data Locations on Solaris Platform 348
Message Queue Data Locations on Linux Platform 349
Message Queue Data Locations on Windows Platform 350
Interface Stability Classification Scheme o .. 351
Stability of Message Queue Interfaces i 352
ht t pj ms Connection Service Properties i 362
ht t psj ns Connection Service Properties ...t 373
Broker Configuration Properties (-ooption) 380
Destination Configuration Properties (-ooption) 382

List of Tables 15

16 Message Queue 3 2005Q4 + Administration Guide

List of Procedures

To Add a Broker to the Administration Console i 42
ToConnectto aBroKer 43
To View Available CONNECLION SEIVICESt 45
To Add a Physical Destination to a Broker 46
To View or Modify the Properties of a Physical Destination 48
To Purge Messages From a Physical Destination i 50
To Delete a Physical Destination i i 51
To Add an Object Store to the Administration Console 52
To Connectto an ObJeCt STOre it e 54
To Add a Connection Factory to an Object Store i 55
To Add a Destination to an ObjJect StOre i 58
To View or Modify the Properties of an Administered Object 60
To Delete an Administered Object 60
To Run the Sample Application 61
To Reconfigure a Broker Running as a Windows Servicec.oiiiiiiiininennnaan 69
To See Logged Service Error EVENTS o 71
To Configure @ JDBC-Based Data StOrettt e et 94
To create a physical destination i e 120
To Reclaim Unused Physical Destination Disk Space i 128
To Edit the Configuration File to Use an LDAP Server 139
To Set Up an Administrative USEr it e e e e 141
To Set Up an SSL-based CONNECLION SEIVICEttt e i 149
To Regenerate a Key Pair o 152
To Enable an SSL-based Service inthe Broker i 152
To Obtain a Signed Certificate i e 155
To Install a Signed Certificate 156
To Configure the Java Client RUNtimMe o e e 157

17

18

To Add a New Broker to a Cluster Using a Cluster ConfigurationFile 184

To Add a New Broker to a Cluster Without a Cluster ConfigurationFile 185
To Remove a Broker From a Cluster Using the Command Line 185
To Remove a Broker From a Cluster Using a Cluster ConfigurationFile 186
To Back Up the Configuration Change Record i 187
To Restore the Configuration Change Record i 187
To Change the Logger Configuration foraBroker i 192
To Use Log Files to Report Metrics Information i i 195
To Use the metrics Subcommand 199
To Set Up Message-based MONItOringt e e e 202
To Enable HTTP SUPPOIt . .. oo e e e 357
To Deploy the http Tunnel Servletasa .war File i 358
To Disable the Server ACCESS LOg . .. oottt e e e e 359
To Deploy the HTTP Tunnel Servlet in an Application Server Environment 360
To Modify the Application Server’s server.policy File 361
To Activate the httpjms ConNection SErvicettt e e 362
To Enable HTTPS SUPPOIT e e e e e 366
To Modify the HTTPS Tunnel Servilet .war File 367
To Deploy the https Tunnel Servletasa.warFile i i 369
To Disable the Server ACCESS LOQot e 370
To Deploy the HTTPS Tunnel Servlet in an Application Server Environment 370
To Modify the Application Server’s server.policy File 372
To Activate the httpsjms ConnNection SErVICet e 372
TO CoNfIQUIE JSSE . . . o 374

Message Queue 3 2005Q4 « Administration Guide

Preface

This Sun Java™ System Message Queue Administration Guide describes Sun Java
System Message Queue 3 2005Q4 (Message Queue 3.6), providing the information
you need in order to administer a Message Queue messaging system.

This preface contains the following sections:

“Who Should Use This Book” on page 20
“Before You Read This Book” on page 20
“How This Book Is Organized” on page 20
“Conventions Used In This Book™ on page 22
“Related Documentation” on page 25
“Related Third-Party Web Sites” on page 27

“Sun Welcomes Your Comments” on page 27

19

Who Should Use This Book

Who Should Use This Book

This manual is intended for administrators and application developers who need
to perform Message Queue administrative tasks. A Message Queue administrator is
responsible for setting up and managing a Message Queue messaging system,
especially the message server at the heart of the system.

Before You Read This Book

Before reading this manual, you should read the Message Queue Technical Overview
to become familiar with the Message Queue implementation of the Java Message
Specification, with the components of the Message Queue service, and with the
basic process of developing, deploying, and administering a Message Queue
application.

How This Book Is Organized

Table 1 briefly describes the contents of this manual.

Table 1 Contents of This Manual
Part/Chapter Description

Part I, “Introduction to Message Queue Administration”

Chapter 1, “Administrative Introduces Message Queue administrative tasks and tools.
Tasks and Tools”

Chapter 2, “Quick-Start Provides a hands-on tutorial to acquaint you with the Message
Tutorial” Queue Administration Console.

Part Il, “Administration Tasks”

Chapter 3, “Starting Brokers Describes how to start the Message Queue broker and clients.
and Clients”

Chapter 4, “Configuring a Describes how configuration properties are set and read, and
Broker” gives an introduction to the configurable aspects of the broker.

Also describes how to set up a file or database to perform
persistence functions.

20 Message Queue 3 2005Q4 « Administration Guide

Table 1

How This Book Is Organized

Contents of This Manual (Continued)

Part/Chapter

Description

Chapter 5, “Managing a Broker”

Chapter 6, “Managing Physical
Destinations”

Chapter 7, “Managing Security”

Chapter 8, “Managing
Administered Objects”

Chapter 9, “Working With
Broker Clusters”

Chapter 10, “Monitoring a
Message Server”

Chapter 11, “Analyzing and
Tuning a Message Service”

Chapter 12, “Troubleshooting
Problems”

Part Ill, “Reference”

Chapter 13, “Command Line
Reference”

Chapter 14, “Broker Properties
Reference”

Chapter 15, “Physical
Destination Property
Reference”

Chapter 16, “Administered
Object Attribute Reference”

Chapter 17, “JMS Resource
Adapter Property Reference”

Chapter 18, “Metrics
Reference”

Describes broker management tasks.

Describes management tasks relating to physical destinations.

Describes security-related tasks, such as managing password
files, authentication, authorization, and encryption.

Describes the object store and shows how to perform tasks
related to administered objects (connection factories and
destinations).

Describes how to set up and manage a cluster of Message
Queue brokers.

Describes how to set up and use Message Queue monitoring
facilities.

Describes techniques for analyzing and optimizing message
server performance.

Provides suggestions for determining the cause of common
Message Queue problems and the actions you can take to
resolve them.

Provides syntax and descriptions for Message Queue
command utilities.

Lists and describes the properties you can use to configure a
broker.

Lists and describes the properties you can use to configure
physical destinations.

Lists and describes the properties you can use to configure
administered objects (connection factories and destinations).

Lists and describes the properties you can use to configure the
Message Queue Resource Adapter for use with an application
server.

Lists and describes the metrics produced by a Message Queue
broker.

Preface 21

Conventions Used In This Book

Table 1 Contents of This

Manual (Continued)

Part/Chapter

Description

Part IV, “Appendixes”

Appendix A, “Platform-Specific
Locations of Message Queue
Data”

Appendix B, “Stability of
Message Queue Interfaces”

Appendix C, “HTTP/HTTPS
Support”

Appendix D, “Frequently Used
Command Utility Commands”

Lists the locations of Message Queue files on each supported
platform.

Describes the stability of various Message Queue interfaces.

Describes how to set up and use the Hypertext Transaction
protocol (HTTP) for Message Queue communication.

Lsts some frequently used Message Queue Command utility
(imgemd) commands.

Conventions Used In This Book

This section describes the conventions used in this manual.

22

Text Conventions

Table 2 summarizes the text conventions used in this manual.

Table 2 Text Conventions

Format

Description

italics

nonospace

(]

ALL CAPS

Key+Key

Message Queue 3 2005Q4 « Administration Guide

Italicized text represents a placeholder to be replaced with an
appropriate clause or value. It is also used for document titles, for
emphasis, and for key words or phrases being introduced.

Monospace text represents example code; commands that you
enter on the command line; directory, file, or path names; error
message text; class names; method names (including all elements
in the signature); package names; reserved words; and URLSs.

Square brackets indicate optional values in a command line syntax
statement.

Text in all capitals represents environment variables (such as
| MQ_HOME) or acronyms (such as JMS, GIF, or HTML).

Simultaneous keystrokes are joined with a plus sign: Ctrl+A means
press the Ctrl and A keys simultaneously.

Conventions Used In This Book

Table 2 Text Conventions (Continued)

Format Description

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S means
press the Esc key, release it, and then press the S key.

Directory Variable Conventions

Message Queue makes use of three directory variables; how they are set varies
from platform to platform. Table 3 describes these variables and how they are used
on the Solaris™, Linux, and Windows platforms.

NOTE In this manual, directory variables are shown without the usual
platform-specific syntax (such as $| M) HOVE on UNIX). Path names
generally use UNIX directory separator notation (/).

Table 3 Message Queue Directory Variables

Variable Description
| MQ_HOVE Refers to the Message Queue base directory (root installation
directory):

* Unused on Solaris and Linux; there is no Message Queue base
directory.

e OnWindows, set by the Message Queue installer (by default, to
C:\ Program Fi | es\ Sun\ MessageQueue3).

e For Sun Java System Application Server on Solaris and
Windows, set to /i ng under the Application Server base
directory.

| MQ_VARHOVE The directory in which Message Queue temporary or dynamically
created configuration and data files are stored; can be set as an
environment variable to point to any directory.

e On Solaris, defaults to / var/ i ng.
e On Linux, defaults to / var/ opt / sun/ ng directory.
e On Windows, defaults to | M) HOVE\ var .

» For Sun Java System Application Server, Evaluation Edition, on
Solaris, defaults to | M) HOVE var .

e For Sun Java System Application Server on Windows, defaults
to | MQ_ HOME\ var .

Preface 23

Conventions Used In This Book

Table 3 Message Queue Directory Variables (Continued)

Variable Description

| MQ_JAVAHOVE The location of the Java™ runtime (JRE) required by Message
Queue executables. Set by default to look in the following locations
in the order shown, but can optionally be set to wherever the
required JRE resides.

e On Solaris 8 or 9:

[usr/jdk/ entsys-j2se
fusr/jdk/jdkl. 5. *
[usr/jdk/j2sdkl.5.*
[usr/j2se

e On Solaris 10:
[usr/jdk/ entsys-j2se

[usr/java
[usr/j2se

e On Linux:

[usr/jdk/ ent sys-j 2se
lusr/javaljrel.5. *
lusr/javaljdkl.5.*
lusr/javaljrel. 4.2
/usr/javalj2sdkl. 4. 2*

e On Windows:
I MQ HOWE\ j r e*

24 Message Queue 3 2005Q4 « Administration Guide

Related Documentation

Related Documentation

The information resources listed in this section provide further information about
Message Queue in addition to that provided in this manual.

Message Queue Documentation Set

The Message Queue documentation set comprises the documents listed in Table 4.

Table 4

Message Queue Documentation Set

Document

Audience

Description

Message Queue Installation Guide

Message Queue Release Notes

Message Queue Technical
Overview

Message Queue Administration
Guide

Message Queue Developer’s Guide
for Java Clients

Message Queue Developer’s Guide
for C Clients

Developers and
administrators

Developers and
administrators

Developers and

administrators

Administrators and
developers

Developers

Developers

Explains how to install Message
Queue software on Solaris, Linux, and
Windows platforms.

Includes descriptions of new features,
limitations, and known bugs, as well
as technical notes.

Introduces Message Queue concepts,
features, and components.

Provides background and information
needed to perform administrative
tasks using Message Queue
administration tools.

Provides information on developing
Java client programs using the
Message Queue implementation of
the JMS and SOAP/JAXM
specifications.

Provides information on developing C
client programs using the C
application programming interface
(C-API) to the Message Queue
message service.

Preface 25

Related Documentation

Java Message Service Specification

The Message Queue message service conforms to the Java Message Service (JMS)
application programming interface, described in the Java Message Service
Specification. This document can be found at the URL

http://java. sun. con product s/ j ns/ docs. ht m

Online Help

Online help is available for the Message Queue command line utilities; see
Chapter 13, “Command Line Reference,” for details. The Message Queue graphical
user interface (GUI) administration tool, the Administration Console, also includes
a context-sensitive online help facility; see “Administration Console Online Help”
on page 40.

JavaDoc

JMS and Message Queue APl documentation in JavaDoc format is provided at the
locations shown in Table 5. This documentation can be viewed in any HTML
browser, such as Netscape or Internet Explorer. It includes standard JMS API
documentation as well as Message Queue-specific APIs.

Table 5 JavaDoc Locations

Platform Location

Solaris [usr/share/javadoc/ i ng/index. ht m
Linux [opt/sun/ ng/ j avadoc/ i ndex. ht ni /
Windows | M) HOWE j avadoc/ i ndex. ht ni

Example Client Applications

The Message Queue installation includes a directory containing several example
client applications. See Appendix A, “Platform-Specific Locations of Message
Queue Data,” for exact locations depending on the particular platform you are
using. The README files located in that directory and in each of its subdirectories
provide descriptive information about the example applications.

26 Message Queue 3 2005Q4 « Administration Guide

http://java.sun.com/products/jms/docs.html

Related Third-Party Web Sites

Related Third-Party Web Sites

Where relevant, this manual refers to third-party URLs that provide additional,
related information.

NOTE Sun is not responsible for the availability of third-party Web sites
mentioned in this manual. Sun does not endorse and is not
responsible or liable for any content, advertising, products, or other
materials available on or through such sites or resources. Sun will
not be responsible or liable for any actual or alleged damage or loss
caused by or in connection with the use of or reliance on any such
content, goods, or services available on or through such sites or
resources.

Sun Welcomes Your Comments

Sun is always interested in improving its documentation and welcomes your
comments and suggestions. To share your comments, go to

http://docs. sun. com

and click Send comments. In the resulting online form, provide the document title
and part numberd along with your comment. (The part number is a seven-digit or
nine-digit number that can be found on the title page of the book or at the top of the
document.)

Preface 27

http://docs.sun.com

Sun Welcomes Your Comments

28 Message Queue 3 2005Q4 « Administration Guide

Part |

Introduction to Message Queue
Administration

Chapter 1, “Administrative Tasks and Tools”

Chapter 2, “Quick-Start Tutorial”

Chapter 1

Administrative Tasks and Tools

This chapter provides an overview of Sun Java™ System Message Queue
administrative tasks and the tools for performing them, focusing on common
features of the command line administration utilities. It consists of the following
sections:

e “Administrative Tasks” on page 31

= “Administration Tools” on page 34

Administrative Tasks

The typical administrative tasks to be performed depend on the nature of the
environment in which you are running Message Queue. The demands of a
software development environment in which Message Queue applications are
being developed and tested are different from those of a production environment
in which such applications are deployed to accomplish useful work. The following
sections summarize the typical administrative requirements of these two different
types of environment.

Administration in a Development Environment

In a development environment, the emphasis is on flexibility. The Message Queue
message server is needed principally for testing applications under development.
Administration is generally minimal, with programmers often administering their
own systems. Such environments are typically distinguished by the following
characteristics:

= Simple startup of brokers for use in testing

31

Administrative Tasks

= Administered objects instantiated in client code rather than created
administratively

= Auto-created destinations
= File-system object store

= File-based persistence

= File-based user repository

= No master broker in multiple-broker clusters

Administration in a Production Environment

In a production environment in which applications must be reliably deployed and
run, administration is more important. Administrative tasks to be performed
depend on the complexity of the messaging system and of the applications it must
support. Such tasks can be classified into two general categories: setup operations
and maintenance operations.

Setup Operations

Administrative setup operations in a production environment typically include
some or all of the following:

Administrator security

= Setting the password for the default administrative user (adni n) (“Changing
the Default Administrator Password” on page 138)

= Controlling individual or group access to the administrative connection service
(“Access Control for Connection Services” on page 145) and the dead message
queue (“Access Control for Physical Destinations” on page 146)

= Regulating administrative group access to a file-based or Lightweight
Directory Access Protocol (LDAP) user repository (“Groups” on page 135,
“Setting Up Access Control for Administrators” on page 141)

General security

= Managing the contents of a file-based user repository (“Populating and
Managing a User Repository” on page 137) or configuring the broker to use an
existing LDAP user repository (“Editing the Instance Configuration File” on
page 139)

32 Message Queue 3 2005Q4 « Administration Guide

Administrative Tasks

= Controlling the operations that individual users or groups are authorized to
perform (“Authorizing Users: The Access Control Properties File” on page 142)

= Setting up encryption services using the Secure Socket Layer (SSL) (“Working
With an SSL-Based Service” on page 148)

Administered objects

= Setting up and configuring an LDAP object store (“LDAP Server Object Stores”
on page 162)

= Creating connection factories and destinations (“Adding Administered
Objects” on page 173)

Broker clusters

= Creating a cluster configuration file (“Using a Cluster Configuration File” on
page 182)

= Designating a master broker (“Master Broker” on page 186)
Persistence

= Configuring a broker to use a persistent store (“Configuring a Persistent Data
Store” on page 93).

Memory management

= Setting a destination’s configuration properties to optimize its memory usage
(“Updating Physical Destination Properties” on page 123, Chapter 15,
“Physical Destination Property Reference”)

Maintenance Operations

Because application performance, reliability, and security are at a premium in
production environments, message server resources must be tightly monitored and
controlled through ongoing administrative maintenance operations, including the
following:

Broker administration and tuning

= Using broker metrics to tune and reconfigure a broker (Chapter 11, “Analyzing
and Tuning a Message Service”)

= Managing broker memory resources (‘“Routing Services” on page 78)

Chapter 1 Administrative Tasks and Tools 33

Administration Tools

= Creating and managing broker clusters to balance message load (Chapter 9,
“Working With Broker Clusters™)

= Recovering failed brokers (“Starting Brokers” on page 66).

Administered objects

= Adjusting connection factory attributes to ensure the correct behavior of client
applications (“Connection Factory Attributes” on page 165)

= Monitoring and managing physical destinations (Chapter 6, “Managing
Physical Destinations™)

= Controlling user access to destinations (“Access Control for Physical
Destinations” on page 146)

Client management

= Monitoring and managing durable subscriptions (see “Managing Durable
Subscriptions” on page 112).

= Monitoring and managing transactions (see “Managing Transactions” on
page 113).

Administration Tools

34

Message Queue administration tools fall into two categories:
= Command line utilities

= The graphical Administration Console

Command Line Utilities

All Message Queue utilities are accessible via a command line interface. Utility
commands share common formats, syntax conventions, and options. They include
the following:

= The Broker utility (i mgbr oker d) starts up brokers and specifies their
configuration properties, including connecting them together into a cluster.

= The Command utility (i mgcnd) controls brokers and their resources and
manages physical destinations.

Message Queue 3 2005Q4 « Administration Guide

Administration Tools

= The Object Manager utility (i mgobj ngr) manages provider-independent
administered objects in an object store accessible via the Java Naming and
Directory Interface (JNDI).

= The Database Manager utility (i mgdbrgr) creates and manages databases for
persistent storage that conform to the Java Database Connectivity (JDBC)
standard.

= The User Manager utility (i rquser ngr) populates a file-based user repository for
user authentication and authorization.

= The Service Administrator utility (i mgsvcadm n) installs and manages a broker as
a Windows service.

= The Key Tool utility (i ngkeyt ool) generates self-signed certificates for Secure
Socket Layer (SSL) authentication.

See Chapter 13, “Command Line Reference,” for detailed information on the use of
these utilities.

Administration Console

The Message Queue Administration Console combines some of the capabilities of the
Command and Object Manager utilities. You can use it to perform the following
tasks:

= Connect to and control a broker remotely
= Create and manage physical destinations
= Create and manage administered objects in a JNDI object store

However, you cannot use the Administration Console to perform such tasks as
starting up a broker, creating broker clusters, managing a JDBC database or a user
repository, installing a broker as a Windows service, or generating SSL certificates.
For these, you need the other command line utilities (Broker, Database Manager,
User Manager, Service Administrator, and Key Tool), which cannot operate
remotely and must be run on the same host as the broker they manage (see

Figure 1-1).

Chapter 1 ~ Administrative Tasks and Tools 35

Administration Tools

Figure 1-1 Local and Remote Administration Utilities

Remote Admin Host Broker Host

— ———® Broker

imgcmd imgbrokerd imgkeytool

imgobjmgr imqusermgy imgdbmagr

4

imgsvcadmin
(Windows only))

See Chapter 2, “Quick-Start Tutorial,” for a brief, hands-on introduction to the
Administration Console. More detailed information on its use is available through
its own help facility.

36 Message Queue 3 2005Q4 « Administration Guide

Chapter 2

Quick-Start Tutorial

This quick-start tutorial provides a brief introduction to Message Queue
administration by guiding you through some basic administrative tasks using the
Message Queue Administration Console, a graphical interface for administering a
message broker and object store. The chapter consists of the following sections:

= “Starting the Administration Console” on page 39
= “Administration Console Online Help” on page 40
= “Working With Brokers” on page 41

= “Working With Physical Destinations” on page 46
= “Working With Obiject Stores” on page 51

= “Working With Administered Objects” on page 55
= “Running the Sample Application” on page 61

The tutorial sets up the physical destinations and administered objects needed to
run a simple JMS-compliant application, Hel | oWr | dMessageJNDI . The application
is available in the hel | owor | d subdirectory of the example applications directory
(demo on the Solaris and Windows platforms or exanpl es on Linux; see

Appendix A, “Platform-Specific Locations of Message Queue Data”). In the last
part of the tutorial, you will run this application.

NOTE You must have the Message Queue product installed in order to
follow the tutorial. If necessary, see the Message Queue Installation
Guide for instructions.

37

The tutorial is only a basic introduction; it is not a substitute for reading the
documentation. By following the steps described in the tutorial, you will learn how

to

Start a message broker

Connect to a broker and use the Administration Console to manage it
Create physical destinations on the broker

Create an object store and use the Administration Console to connect to it

Add administered objects to the object store and view their properties

NOTE The instructions given in this tutorial are specific to the Windows

platform. Where necessary, supplemental notes are added for users
of other platforms.

Some administrative tasks cannot be accomplished using the Administration
Console. You must use command line utilities to perform such tasks as the
following:

Start up a broker

Create a broker cluster

Configure certain physical destination properties
Manage a JDBC database for persistent storage
Manage a user repository

Install a broker as a Windows service

Generate SSL certificates

All of these tasks are covered in later chapters of this manual.

38 Message Queue 3 2005Q4 « Administration Guide

Starting the Administration Console

Starting the Administration Console

To start the Administration Console, use one of the following methods:
= On Solaris, enter the command

[usr/ bin/ingadm n
= On Linux, enter the command

/opt/ sun/ mg/ bi n/i myadm n

= On Windows, choose Start > Programs > Sun Microsystems > Sun Java System
Message Queue 3.6 > Administration.

You may need to wait a few seconds before the Administration Console window is
displayed (see Figure 2-1).

Figure 2-1 Administration Console Window

S him Lav sl Speten Mesaage Quens Aot shn Cesnls

1

Shrele B e Y
Ela R YL Wnraeae ¢

= W TR T
‘M Brzkers

4
k

@ Sun

Sun fava~ System
Message Queus

-
| T ——— wa0d Qb AN NS EEEEn Cof G0

Chapter 2 Quick-Start Tutorial 39

Administration Console Online Help

Take a few seconds to examine the Administration Console window. It has a menu
bar at the top, a tool bar just below it, a navigation pane to the left, a result pane to
the right (now displaying graphics identifying the Sun Java System Message
Queue product), and a status pane at the bottom.

NOTE As you work with the Administration Console, you can use the
Refresh command on the View menu to update the visual display of

any element or group of elements, such as a list of brokers or object
stores.

Administration Console Online Help

40

The Administration Console provides a help facility containing complete
information about how to use the Console to perform administrative tasks. To use
the help facility, pull down the Help menu at the right end of the menu bar and
choose Overview. The Administration Console’s Help window (Figure 2-2) will be
displayed.

Figure 2-2 Administration Console Help Window

o hiEl Lardlin) Sy EIET PEaaags (i Al slan. Carmns il P =
BT .

N - B e n
3§ e o Ll B il Rl ﬂ\l‘EWIE‘H ||

| Memnmge Jusae Diyecl Gl Wi fau wes the confroly in e admi niekeelen commele b o mmunicrs sh

| g Dijec Hias AP prmpre Weseage Gus s bk s @ e |
EI SRS Prapares The pdmmehabon congoie = ddgsd izl fes peree, pe s heine

| D CarnachTuicerm e Dl =

| O wad Dwrstination Oibgeci ! |
:Dr--l-\hlllrllﬁl'u- i Properie oo oo 4
!IJ Addd Conrestios Fasiary OHE B
:lj'-.'llllulll.lll iy D il Y 1 "
| MeunmgF Jueae Draber Wanaps -
{ [aau Bk
:DElr\h-'r'l'n-nﬂ.
!D'\. SrnECNLEC o] B ik 3
| o erei_i Sl Dbt
EE..I-:rI P ker Ciwwfm sbon W | - e by
| Dastriabion Prepares & 2-1a0l bl
| [semvice Praparses ¥ 3. nadgatiosal para
& 4 - r=aufa pEn e
B 5 lalid padi
14 -"—————I H Tl s mEry in e e e oricons in S ool Bar bl eoa i

Message Queue 3 2005Q4 « Administration Guide

Working With Brokers

The Help window’s navigation pane, on the left, organizes topics into three areas:
Message Queue Administration Console, Message Queue Object Store
Management, and Message Queue Broker Management. Within each area are files
and folders. The folders provide help for dialog boxes containing multiple tabs, the
files for simple dialog boxes or individual tabs. When you select an item in the
navigation pane, the result pane to the right shows the contents of that item. With
the Overview item chosen, the result pane displays a skeletal view of the
Administration Console window identifying each of the window’s panes, as
shown in the figure.

Your first task with the Administration Console will be to create a reference to a
broker. Before you start, however, check the Help window for information. Click
the Add Broker item in the Help window’s navigation pane; the contents of the
result pane will change to show text explaining what it means to add a broker and
describing the use of each field in the Add Broker dialog box. Read through the
help text, then close the Help window.

Working With Brokers

This section describes how to use the Administration Console to connect to and
manage message brokers.

Starting a Broker

You cannot start a broker using the Administration Console. Instead, use one of the
following methods:

= On Solaris, enter this command:
[usr/bin/imbrokerd

= On Linux, enter this command:
[opt/ sun/ ng/ bi n/ i mybr oker d

= On Windows, choose Start > Programs > Sun Microsystems > Sun Java System
Message Queue 3.6 > Message Broker.

If you used the Windows Start menu, the command window will appear,
indicating that the broker is ready by displaying lines like the following:

Loadi ng persistent data...
Broker “i ngbr oker @t an: 7676 ready.

Chapter 2 Quick-Start Tutorial 41

Working With Brokers

42

Reactivate the Administration Console window. You are now ready to add the
broker to the Console and connect to it. You do not have to start the broker before
adding a reference to it in the Administration Console, but you must start it before
you can connect to it.

Adding a Broker to the Administration Console

Adding a broker creates a reference to that broker in the Administration Console.
After adding the broker, you can connect to it.

0 To Add a Broker to the Administration Console

1.

Click on the Brokers item in the Administration Console window’s navigation
pane and choose Add Broker from the Actions menu.

Alternatively, you can right-click on Brokers and choose Add Broker from the
pop-up context menu. In either case, the Add Broker dialog box (Figure 2-3)
will appear.

Figure 2-3 Add Broker Dialog Box
E

Erslony Laiset: |SrokErL o

S r—

Frimewy Part; 770
Usemame; s
Pemuanne

WA] RS EE, IOF ITR W Sy we
i i@k o Do ST Y od] el B R e This
b P e e ol el s W D

R Pt [Do aailt Caistid ks

Enter a name for the broker in the Broker Label field.
This provides a label that identifies the broker in the Administration Console.

Note the default host name (I ocal host) and primary port (7676) specified in
the dialog box. These are the values you must specify later, when you
configure the connection factory that the client will use to create connections to
this broker.

For this exercise, type the name MyBr oker into the Broker Label field. Leave the
Password field blank; your password will be more secure if you specify it at
connection time.

Message Queue 3 2005Q4 « Administration Guide

Working With Brokers

3. Click OK to add the broker and dismiss the dialog box.

The new broker will appear under Brokers in the navigation pane, as shown in
Figure 2-4. The red X over the broker’s icon indicates that it is not currently
connected to the Administration Console.

Figure 2-4 Broker Displayed in Administration Console Window

Sl s haralfm] Spatem Message (ueis A ston Cassls o =
Coiteile EIR Actisim e g
.:h.::--\...;i B " H ik L il i s f Tilel] T PR -
" -

G ¢ o=
L]
A Braken
v
w

Once you have added a broker, you can use the Properties command on the
Actions menu (or the pop-up context menu) to display a Broker Properties dialog
box, similar to the Add Broker dialog shown in Figure 2-3, to view or modify any
of its properties.

Connecting to a Broker

Now that you have added a broker to the Administration Console, you can
proceed to connect to it.

0 To Connect to a Broker
1. Click on the broker’s name in the Administration Console window’s
navigation pane and choose Connect to Broker from the Actions menu.

Alternatively, you can right-click on the broker’s name and choose Connect to
Broker from the pop-up context menu. In either case, the Connect to Broker
dialog box (Figure 2-5) will appear.

Chapter 2 Quick-Start Tutorial 43

Working With Brokers

44

3.

Figure 2-5 Connect to Broker Dialog Box

| Sivarect lotreker %]
Upprmarne; s
P&
[on | coscol || el

Enter the user name and password with which to connect to the broker.

The dialog box initially displays the default user name, adm n. In a real-world
environment, you should establish secure user names and passwords as soon
as possible (see “Authenticating Users” on page 132); for this exercise, simply
use the default value.

The password associated with the default user name is also adm n; type it into
the Password field in the dialog box. This will connect you to the broker with
administrative privileges.

Click OK to connect to the broker and dismiss the dialog box.

Once you have connected to the broker, you can use the commands on the Actions
menu (or the context menu) to perform the following operations on a selected
broker:

Pause Broker temporarily suspends the operation of a running broker.
Resume Broker resumes the operation of a paused broker.

Restart Broker reinitializes and restarts a broker.

Shut Down Broker terminates the operation of a broker.

Query/Update Broker displays or modifies a broker’s configuration
properties.

Disconnect from Broker terminates the connection between a broker and the
Administration Console.

Viewing Connection Services

A broker is distinguished by the connection services it provides and the physical
destinations it supports.

Message Queue 3 2005Q4 « Administration Guide

Working With Brokers

0 To View Available Connection Services

1.

Select Services under the broker’s name in the Administration Console
window’s navigation pane.

A list of the available services will appear in the result pane (see Figure 2-6),
showing the name, port number, and current state of each service.

Figure 2-6 Viewing Connection Services

S hia Lar il Spatem Mesaage Queis A sban D is _._lm_m
RER & BN ne o
O, Owiect S | HirmiE T | Pt Mol | S B =
& (M Brion ! ms 107T [dsmamr| (A= T ey
B ST B lredn 1018 [oyearm] oL b 13
Er s3fme HTETIE LI M 0a
¥ Dacbnabiem hitigms ; LR KM CRs
Il & mE - L] b
55 ldrmie HTaTE LI KRR =
T |
-
El.!l.hﬂ!ll?d:l:"'llll'::lll;rl'Lli"'.l!-"l'l'l'll'ltl'llrl'l Coagog =
S el ERON BT R E R0 T Dby WS 1=

Select a service by clicking on its name in the result pane.
For this exercise, select the name j ns.
Choose Properties from the Actions menu.

The Service Properties dialog box (Figure 2-7) will appear. You can use this
dialog box to assign the service a static port number and to change the
minimum and maximum number of threads allocated for it.

Figure 2-7 Service Properties Dialog Box
(] cerver Prapetane |
Susvacn MamiE
Fari Mamber: @ Dypysmic 0140

Curinrl Mumlen ol A sld Theab: 1
TmreE Hamber of Comersmmna: 0

s R ot T ek 10
Rn Rt il Tt w1000

| or || cewn || wew

Chapter 2 Quick-Start Tutorial 45

Working With Physical Destinations

For this exercise, do not change any of the connection service’s properties.
4. Click OK to accept the new property values and dismiss the dialog box.

The Actions menu also contains commands for pausing and resuming a service. If
you select the admin service and pull down the Actions menu, however, you will

see that the Pause Service command is disabled. This is because the admin service
is the Administration Console’s link to the broker: if you paused it, you would no

longer be able to access the broker.

Working With Physical Destinations

46

A physical destination is a location on a message broker where messages received
from a message producer are held for later delivery to one or more message
consumers. Destinations are of two kinds, depending on the messaging domain in
use: queues (point-to-point domain) and topics (publish/subscribe domain). See the
Message Queue Technical Overview for further discussion of messaging domains
and the destinations associated with them.

Creating a Physical Destination

By default, message brokers are configured to create new physical destinations
automatically whenever a message producer or consumer attempts to access a
nonexistent destination. Such auto-created destinations are convenient to use while
testing client code in a software development environment. In a production setting,
however, it is advisable to disable the automatic creation of destinations and
instead require all destinations to be created explicitly by an administrator. The
following procedure shows how to add such an admin-created destination to a
broker.

[l To Add aPhysical Destination to a Broker

1. Click on the Destinations item under the broker’s name in the Administration
Console window’s navigation pane and choose Add Broker Destination from
the Actions menu.

Alternatively, you can right-click on Destinations and choose Add Broker
Destination from the pop-up context menu. In either case, the Add Broker
Destination dialog box (Figure 2-8) will appear.

Message Queue 3 2005Q4 « Administration Guide

Working With Physical Destinations

Figure 2-8 Add Broker Destination Dialog Box
(Bl rddbiaie Costiabum x|

Uil mndd s Pl
[ertrpmtom e & ueun
T

R by il By sanes
B lskmifted

Fxa Dl ol Blvesn g T
LSS]

R Py em i e owape-
LIRTE]

REaa Wumibaw i Pros e e

(N
Pud Feinodnn) o ACTRAE i i 5

Mg iFnibaw ol Bracuim Cong sy 51

o Rt To sl sl s Canii Heki

Enter a name for the physical destination in the Destination Name field.

Note the name that you assign to the destination; you will need it later when
you create an administered object corresponding to this physical destination.

For this exercise, type in the name M/QueueDest .

Select the Queue or Topic radio button to specify the type of destination to
create.

For this exercise, select Queue if it is not already selected.
Click OK to add the physical destination and dismiss the dialog box.

The new destination will appear in the result pane.

Chapter 2 Quick-Start Tutorial 47

Working With Physical Destinations

Viewing Physical Destination Properties

You can use the Properties command on the Administration Console’s Actions
menu to view or modify the properties of a physical destination.

[0 To View or Modify the Properties of a Physical Destination
1. Select Destinations under the broker’s name in the Administration Console
window’s navigation pane.

A list of the available physical destinations will appear in the result pane,
showing the name, type, and current state of each destination.

2. Select a physical destination by clicking on its name in the result pane.
3. Choose Properties from the Actions menu.

The Broker Destination Properties dialog box (Figure 2-9) will appear, showing
current status and configuration information about the selected physical
destination. You can use this dialog box to change various configuration
properties, such as the maximum number of messages, producers, and
consumers that the destination can accommodate.

48 Message Queue 3 2005Q4 < Administration Guide

Figure 2-9 Broker Destination Properties Dialog Box

Sl Bk De sl Progsies

Baile | Morsor Soliropeimgs
[= B mrrar RS
Drstnalem Py Crainsi
Neszpromnn SipE FlNNAG

Corread Faaninn oF Bewaages: U
Ciprasl Toisl Massage Bwes: D mdes
ol Blorsisn of Pradusmse 11
W] Nl O DU sl 52 0
CuyEnl Muralem ol Bsckup Cnmsummers N1

Hax Humbier of Msawansn & jdidiid

Min Il Misisoge Des! & |inlmiled

Mar fighus pod Mosdape & (rirmaed

Brn Plmuinsi o P §; [T m—

= a0
R WIRTEER TF PLETRER U R 8 Livdid
a i
Nan Fimulaim ol Dackig Cumeomee s Iimin 1l
=
Lmfl lishindar: FEJECT_HEWEST v

Lhwil Do] Wi gl Ui =

L Canm

Working With Physical Destinations

For this exercise, do not change any of the destination’s properties.

For topic destinations, the Broker Destination Properties dialog box contains an
additional tab, Durable Subscriptions. Clicking on this tab displays the
Durable Subscriptions panel (Figure 2-10), listing information about all durable
subscriptions currently associated with the given topic.

Chapter 2

Quick-Start Tutorial 49

Working With Physical Destinations

Figure 2-10 Durable Subscriptions Panel

Blaibe Do aleo Selrsiidisik
Ciirabibe Aol ™y CharmiDe HinTied o Miea e Dunail Sus. D

You can use the Durable Subscriptions panel’s Purge and Delete buttons to
o Purge all pending messages associated with a durable subscription

o Remove a durable subscription from the topic

The Durable Subscriptions tab is disabled for queue destinations.

4. Click OK to accept the new property values and dismiss the dialog box.

Purging Messages From a Physical Destination

Purging messages from a physical destination removes all pending messages
associated with the destination, leaving the destination empty.

[0 To Purge Messages From a Physical Destination

1. Select Destinations under the broker’s name in the Administration Console
window’s navigation pane.

A list of the available physical destinations will appear in the result pane,
showing the name, type, and current state of each destination.

2. Select a destination by clicking on its name in the result pane.
3. Choose Purge Messages from the Actions menu.

A confirmation dialog box will appear, asking you to confirm that you wish to
proceed with the operation.

4. Click Yes to confirm the operation and dismiss the confirmation dialog.

50 Message Queue 3 2005Q4 « Administration Guide

Working With Object Stores

Deleting a Physical Destination

Deleting a destination purges all of its messages and then destroys the destination
itself, removing it permanently from the broker to which it belongs.

[0 To Delete a Physical Destination

1. Select Destinations under the broker’s name in the Administration Console
window’s navigation pane.

A list of the available destinations will appear in the result pane, showing the
name, type, and current state of each destination.

2. Select a destination by clicking on its name in the result pane.
3. Choose Delete from the Edit menu.

A confirmation dialog box will appear, asking you to confirm that you wish to
proceed with the operation.

4. Click Yes to confirm the operation and dismiss the confirmation dialog.

For this exercise, do not delete the destination MyQueueDest that you created
earlier; instead, click No to dismiss the confirmation dialog without
performing the delete operation.

Working With Object Stores

An object store is used to store Message Queue administered objects, which
encapsulate implementation and configuration information specific to a particular
Message Queue provider. An object store can be either a Lightweight Directory
Access Protocol (LDAP) directory server or a directory in the local file system.

Although it is possible to instantiate and configure administered objects directly
from within a client application’s code, it is generally preferable to have an
administrator create and configure these objects and store them in an object store,
where client applications can access them using the Java Naming and Directory
Interface (JNDI). This allows the client code itself to remain provider-independent.

Chapter 2 Quick-Start Tutorial 51

Working With Object Stores

Adding an Object Store

Although the Administration Console allows you to manage an object store, you
cannot use it to create one; the LDAP server or file-system directory that will serve
as the object store must already exist ahead of time. You can then add this existing
object store to the Administration Console, creating a reference to it that you can
use to operate on it from within the Console.

NOTE The sample application used in this chapter assumes that the object
store is held in a directory named Tenp on the C drive. If you do not
already have a folder named Tenp on your C drive, create one before
proceeding with the following exercise. (On non-Windows
platforms, you can use the / t np directory, which should already
exist.)

[0 To Add an Object Store to the Administration Console
1. Click on the Object Stores item in the Administration Console window’s
navigation pane and choose Add Object Store from the Actions menu.

Alternatively, you can right-click on Object Stores and choose Add Object Store
from the pop-up context menu. In either case, the Add Object Store dialog box
(Figure 2-11) will appear.

Figure 2-11 Add Obiject Store Dialog Box

B chiect 2o i
Ghyeot Slore Lahet |
HIH Haiming Senaca Pragrrias:
R pevarammnglalinpisial -
Wiakii
s Walia Rl

T Pl bl A T v gl e T i i) s Yo el
ey Lai This il e Lalier B peu i nad aslen B i

of | O | Comel | ew

52 Message Queue 3 2005Q4 « Administration Guide

Working With Object Stores

Enter a name for the object store in the Object Store Label field.

This provides a label that identifies the object store in the Administration
Console.

For this exercise, type in the name M/Chj ect St ore.
Enter the JNDI attribute values to be used for looking up administered objects:

a. Select the name of the attribute you wish to specify from the Name
pull-down menu.

b. Type the value of the attribute into the Value field.
c. Click the Add button to add the specified attribute value.
The property and its value will appear in the property summary pane.
Repeat steps a to ¢ for as many attributes as you need to set.
For this exercise, set the j ava. nam ng. factory.initial attribute to
com sun. j ndi . f scont ext . Ref FSCont ext Fact ory
and the j ava. nam ng. provi der. url attribute to

file:/I/C/Tenp

(orfile:///tnpon the Solaris or Linux platforms). These are the only
attributes you need to set for a file-system object store; see “LDAP Server
Object Stores” on page 162 for information on the attribute values needed for
an LDAP store.

Click OK to add the object store and dismiss the dialog box.

The new object store will appear under Object Stores in the navigation pane, as
shown in Figure 2-12. The red X over the object store’s icon indicates that it is
not currently connected to the Administration Console.

Chapter 2 Quick-Start Tutorial 53

file:///C:/Temp
file:///tmp

Working With Object Stores

When you click on the object store in the navigation pane, its contents are listed in
the result pane. Since you have not yet added any administered objects to the object
store, the Count column shows 0 for both destinations and connection factories.

Once you have added an object store, you can use the Properties command on the
Actions menu (or the pop-up context menu) to display an Object Store Properties
dialog box, similar to the Add Object Store dialog shown in Figure 2-11, to view or

Figure 2-12

Comuple FdF Actism Wiew

] ﬂ_ﬂ-_ %3 g

Sl aim lararimd Speten Measage (ueis dibnasie st Dl

1a | -]

Object Store Displayed in Administration Console Window

=1oi

§ O Odnesd Siaias
B IR WS
‘W Cmgbrvdpmy
N CamrmpiEn etooad

=

JILLENEIEET LaTRINLINGL T BIN OTCENT Wit

¥ CEnlurits
It aknagiamne
o il EB3 0 Facicing &

Coniil

ScTEn ey sckded e obijsc] elore Welibier Elare

modify any of its properties.

Connecting to an Object Store

Now that you have added an object store to the Administration Console, you must
connect to it in order to add administered objects to it.

[l To Connect to an Object Store
Click on the object store’s name in the Administration Console window’s

1.

navigation pane and choose Connect to Object Store from the Actions menu.

Alternatively, you can right-click on the object store’s name and choose

Connect to Object Store from the pop-up context menu. In either case, the red X
will disappear from the object store’s icon, indicating that it is now connected

to the Administration

54 Message Queue 3 2005Q4 « Administration Guide

Console.

Working With Administered Objects

Working With Administered Objects

Once you have connected an object store to the Administration Console, you can
proceed to add administered objects (connection factories and destinations) to it.
This section describes how.

NOTE The Administration Console displays only Message Queue
administered objects. If an object store contains a non-Message
Queue object with the same lookup name as an administered object
that you want to add, you will receive an error when you attempt
the add operation.

Adding a Connection Factory

Connection factories are used by client applications to cretae connections to a broker.
By configuring a connection factory, you can control the properties of the
connections it creates.

[l To Add a Connection Factory to an Object Store

1. Make sure the object store is connected to the Administration Console (see
“Connecting to an Object Store” on page 54).

2. Click on the Connection Factories item under the object store’s name in the
Administration Console window’s navigation pane and choose Add
Connection Factory Object from the Actions menu.

Alternatively, you can right-click on Connection Factories and choose Add
Connection Factory Object from the pop-up context menu. In either case, the
Add Connection Factory Object dialog box (Figure 2-13) will appear.

Chapter 2 Quick-Start Tutorial 55

Working With Administered Objects

3.

Figure 2-13 Add Connection Factory Object Dialog Box

PRl T s s T ey Dl jeat |

Lol Bl ey Cnimies D onreciemsFame
Facinry Tvse Cnmpyeciankacisny -

Fain el Coisle

Nrmage Hamle (wvmiden | L0 CommerSon Handag
Frdusbiiiny sral Fiom Cererel ThrurErass s arel SesrSesnnns
Crawactam Hanallaig Chanl bl M i SRS Prapaeriing

Feenmp Serem Adtkess Lo
Pecdulv e Limd {hcker Il'I.'d".In'.'-
Harpbier of Rabmvees Lisd Wevsloes |
Ervabde Riggrameec] in Messse Sieer
Hanridia if liecosnsc] B eyl peie Bl wioe (|
Hacumimt | ndiarvial pei Pabd o fimillssscomeba i | 10410

Cormanciam Ping iidanval | secomdsi: | 11

K 3 FH'IH!IJ[IHH'I Cam i

Enter a name for the connection factory in the Lookup Name field.

This is the name that client applications will use when looking up the
connection factory with JNDI.

For this exercise, type in the name M/QueueConnect i onFact ory.

Choose the type of connection factory you wish to create from the Factory
Type pull-down menu.

For this exercise, choose QueueConnectionFactory.
Click the Connection Handling tab.

The Connection Handling panel will appear, as shown in Figure 2-13.

56 Message Queue 3 2005Q4 « Administration Guide

Working With Administered Objects

6. Fill in the Message Server Address List field with the address(es) of the
broker(s) to which this connection factory will create connections.

The address list may consist of a single broker or (in the case of a broker
cluster) multiple brokers. For each broker, it specifies information such as the
broker’s connection service, host name, and port number. The exact nature and
syntax of the information to be specified varies, depending on the connection
service to be used; see “Connection Handling” on page 318 for specifics.

For this exercise, there is no need to type anything into the Message Server
Address Listfield, since the sample application Hel | oWor | dMessageJNDI expects
the connection factory to use the standard address list attributes to which it is
automatically configured by default (connection service j ns, host name

| ocal host, and port number 7676).

7. Configure any other attributes of the connection factory as needed.

The Add Connection Factory Object dialog box contains a number of other
panels besides Connection Handling, which can be used to configure various
attributes for a connection factory.

For this exercise, do not change any of the other attribute settings. You may
find it instructive, however, to click through the other tabs to get an idea of the
kinds of configuration information that can be specified. Use the Help button
to learn more about the contents of these other configuration panels.

8. If appropriate, click the Read-Only checkbox.

This locks the connection factory object’s configuration attributes to the values
they were given at creation time. A read-only administered object’s attributes
cannot be overridden, whether programmatically from client code or
administratively from the command line.

For this exercise, do not check Read-Only.

9. Click OKto create the connection factory, add it to the object store, and dismiss
the dialog box.

The new connection factory will appear in the result pane.

Adding a Destination

A destination administered object represents a physical destination on a broker,
enabling clients to send messages to that physical destination independently of
provider-specific configurations and naming syntax. When a client sends a
message addressed via the administered object, the broker will deliver the message

Chapter 2 Quick-Start Tutorial 57

Working With Administered Objects

58

to the corresponding physical destination, if it exists. If no such physical
destination exists, the broker will create one automatically if auto-creation is
enabled, as described under “Creating a Physical Destination” on page 46, and
deliver the message to it; otherwise, it will generate an error signaling that the
message cannot be delivered.

The following procedure describes how to add a destination administered object to
the object store corresponding to an existing physical destination:

[0 To Add a Destination to an Object Store

1.

Make sure the object store is connected to the Administration Console (see
“Connecting to an Object Store” on page 54).

Click on the Destinations item under the object store’s name in the
Administration Console window’s navigation pane and choose Add
Destination Object from the Actions menu.

Alternatively, you can right-click on Destinations and choose Add Destination
Object from the pop-up context menu. In either case, the Add Destination
Object dialog box (Figure 2-14) will appear.

Figure 2-14 Add Destination Object Dialog Box
i et fstiabam it T
Libakass Rymie
Ueslastam Fgne 0 Choias

P Choike

Lo P T R T T [e T |
Merstinpliom: Pesrrplary (& Cieonpbon forite Deairoman Thect

OH | PessToDefosis || Canced || Hels

Enter a name for the destination administered object in the Lookup Name field.

This is the name that client applications will use when looking up the
destination with JNDI.

For this exercise, type in the name M/Queue.

Select the Queue or Topic radio button to specify the type of destination object
to create.

For this exercise, select Queue if it is not already selected.

Message Queue 3 2005Q4 « Administration Guide

Working With Administered Objects

Enter the name of the corresponding physical destination in the Destination
Name field.

This is the name you specified when you added the physical destination to the
broker (see “Working With Physical Destinations” on page 46).

For this exercise, type in the name M/QueueDest .

Optionally, enter a brief description of the destination in the Destination
Description field.

The contents of this field are intended strictly for human consumption and
have no effect on client operations.

For this exercise, you can either delete the contents of the Destination
Description field or type in some descriptive text such as

Exanpl e destination for MQ Adnin Quide tutorial
If appropriate, click the Read-Only checkbox.

This locks the destination object’s configuration attributes to the values they
were given at creation time. A read-only administered object’s attributes
cannot be overridden, whether programmatically from client code or
administratively from the command line.

For this exercise, do not check Read-Only.

Click OK to create the destination object, add it to the object store, and dismiss
the dialog box.

The new destination object will appear in the result pane, as shown in
Figure 2-15.

Figure 2-15 Destination Object Displayed in Administration Console Window

St hiai Lt Spaten Mesaage Queis A sbaen Do ls =10 X

n/a|n telte Bulr mim e

¥ Of Opee Sidias e Llﬂ:i.itr\-lll'lrl Dwi ptiivabah Tegi Cod ilaben Mami =
7 Bl s P Loty G s (=T by Cagm L [

"M Capbnaigre
W Carrmrien §etionad

. I k| |n} [Ix
[.'u'.-mr.ﬁ.'ﬂ]i-]'ﬁ..‘Z.‘.F:IFH'I.'.:.'I‘:I'.-T.E."'..-'.'I.-‘;H:!'.f-.:‘l:-ru.‘l.?ul-.l.--. . 8

Chapter 2 Quick-Start Tutorial 59

Working With Administered Objects

60

Viewing Administered Object Properties

You can use the Properties command on the Administration Console’s Actions
menu to view or modify the properties of an administered object.

[0 To View or Modify the Properties of an Administered Object
1. Select Connection Factories or Destinations under the object store’s name in the
Administration Console window’s navigation pane.

A list of the available connection factory or destination administered objects
will appear in the result pane, showing the lookup name and type of each (as
well as the destination name in the case of destination administered objects).

2. Select an administered object by clicking on its name in the result pane.
3. Choose Properties from the Actions menu.

The Connection Factory Object Properties or Destination Object Properties
dialog box will appear, similar to the Add Connection Factory Object
(Figure 2-13 on page 56) or Add Destination Object (Figure 2-14 on page 58)
dialog. You can use this dialog box to change the selected object’s
configuration attributes. Note, however, that you cannot change the object’s
lookup name; the only way to do this is the delete the object and then add a
new administered object with the desired lookup name.

4. Click OK to accept the new attribute values and dismiss the dialog box.

Deleting an Administered Object

Deleting an administered object removes it permanently from the object store to
which it belongs.

[0 To Delete an Administered Object

1. Select Connection Factories or Destinations under the object store’s name in the
Administration Console window’s navigation pane.

A list of the available connection factory or destination administered objects
will appear in the result pane, showing the lookup name and type of each (as
well as the destination name in the case of destination administered objects).

2. Select an administered object by clicking on its name in the result pane.

Message Queue 3 2005Q4 « Administration Guide

Running the Sample Application

3. Choose Delete from the Edit menu.

A confirmation dialog box will appear, asking you to confirm that you wish to
proceed with the operation.

4. Click Yes to confirm the operation and dismiss the confirmation dialog.

For this exercise, do not delete the administered objects M/Queue or
MyQueueConnect i onFact ory that you created earlier; instead, click No to
dismiss the confirmation dialog without performing the delete operation.

Running the Sample Application

The sample application Hel | oWor | dMessageJND is provided for use with this
tutorial. It uses the physical destination and administered objects that you created:

= A queue physical destination named MyQueueDest

= A gqueue connection factory administered object with JINDI lookup name
MyQueueConnect i onFact ory

= A queue administered object with JNDI lookup name M/Queue

The code creates a simple queue sender and receiver, and sends and receives a
Hel | o Wor | d message.

Before running the application, open the source file Hel | oWr | dMessageJNDI . j ava
and read through the code. The program is short and amply documented; you
should have little trouble understanding how it works.

[0 To Run the Sample Application

1. Make the directory containing the Hel | oWor | dnessageJNDI application your
current directory, using one of the following commands (depending on the
platform you’re using):

« On Solaris:

cd /usr/deno/ing/ hel | owor | d/ hel | owor | dnessagej ndi

« On Linux:

cd /opt/sun/ ng/ exanpl es/ hel | owor | d/ hel | owor | dnessagej ndi

Chapter 2 Quick-Start Tutorial 61

Running the Sample Application

« On Windows:

cd | MQ_HOVE\ deno\ hel | owor | d\ hel | owor | dnessagej ndi

You should find the file Hel | oWor | dMessageJNDI . ¢l ass present. (If you make
changes to the application, you must recompile it using the procedure for
compiling a client application given in the Message Queue Developer’s Guide for
Java Clients.)

2. Set the CLASSPATHvariable to include the current directory containing the file
Hel | oWr | dMessageJNDI . cl ass, as well as the following . j ar files that are
included in the Message Queue product:

jns.jar
ing.jar
jndi.jar
fscontext.jar

See the Message Queue Developer’s Guide for Java Clients for information on
setting the CLASSPATH variable.

NOTE The filej ndi . j ar is bundled with JDK 1.4. You need not add this file
to your CLASSPATHunless you are using an earlier version of the JDK.

3. Runthe Hel | oWr | dMessageJNDI application by executing one of the following
commands (depending on the platform you’re using):

« On Solaris or Linux:

%java Hel | owrl dMessageJNDI file:///tnp
« On Windows:

java Hel | oWr| dMessageJNDI

If the application runs successfully, you should see the output shown in Code
Example 2-1.

62 Message Queue 3 2005Q4 « Administration Guide

file:///tmp

Running the Sample Application

Code Example 2-1 Output From Sample Application

java Hel | oWr | dMessageJNDI
Wsing file:///C/Tenp for Context.PRO/ DER URL

Looki ng up Queue Connection Factory object with | ookup name: M/QueueConnectionFactory
Queue Connection Factory object found.

Looki ng up Queue object with | ookup nane: M/Queue

Queue obj ect found.

Creating connection to broker.
Connection to broker created.

Publ i shing a message to Queue: M/QueueDest
Recei ved the fol |l owi ng message: Hello Wrld

Chapter 2 Quick-Start Tutorial 63

file:///C:/Temp

Running the Sample Application

64 Message Queue 3 2005Q4 « Administration Guide

Part |l

Administration Tasks

Chapter 3, “Starting Brokers and Clients”
Chapter 4, “Configuring a Broker”

Chapter 5, “Managing a Broker”

Chapter 6, “Managing Physical Destinations”
Chapter 7, “Managing Security”

Chapter 8, “Managing Administered Objects”
Chapter 9, “Working With Broker Clusters”
Chapter 10, “Monitoring a Message Server”

Chapter 11, “Analyzing and Tuning a Message Service”

Chapter 12, “Troubleshooting Problems”

Chapter 3

Starting Brokers and Clients

After installing Sun Java System Message Queue and performing some
preparatory steps, you can begin starting brokers and clients. A broker’s
configuration is governed by a set of configuration files, which can be overridden
by command line options passed to the Broker utility (i ngbr oker d); see Chapter 4,
“Configuring a Broker,” for more information.

This chapter contains the following sections:
= “Preparing System Resources” on page 65
= “Starting Brokers” on page 66

= “Removing Brokers” on page 71

= “Starting Clients” on page 72

Preparing System Resources

Before starting a broker, there are two preliminary system-level tasks to perform:
synchronizing system clocks and (on the Solaris or Linux platform) setting the file
descriptor limit. The following sections describe these tasks.

Synchronizing System Clocks

Before starting any brokers or clients, it is important to synchronize the clocks on
all hosts that will interact with the Message Queue system. Synchronization is
particularly crucial if you are using message expiration (time-to-live). Time stamps
from clocks that are not synchronized could prevent message expiration from
working as expected and prevent the delivery of messages. Synchronization is also
crucial for broker clusters.

65

Starting Brokers

Configure your systems to run a time synchronization protocol, such as Simple
Network Time Protocol (SNTP). Time synchronization is generally supported by
the xnt pd daemon on Solaris and Linux, and by the WB2Ti ne service on Windows.
(See your operating system documentation for information about configuring this
service.) After the broker is running, avoid setting the system clock backward.

Setting the File Descriptor Limit

On the Solaris and Linux platforms, the shell in which a client or broker is running
places a soft limit on the number of file descriptors that a process can use. In
Message Queue, each connection a client makes, or a broker accepts, uses one of
these file descriptors. Each physical destination that has persistent messages also
uses a file descriptor.

As a result, the file descriptor limit constrains the number of connections a broker
or client can have. By default, the maximum is 256 connections on Solaris or 1024
on Linux. (In practice, the connection limit is actually lower than this because of the
use of file descriptors for persistence.) If you need more connections than this, you
must raise the file descriptor limit in each shell in which a client or broker will be
executing. For information on how to do this, see the ul i m t man page.

Starting Brokers

You can start a broker either interactively, using the Message Queue command line
utilities or the Windows Start menu, or by arranging for it to start automatically at
system startup. The following sections describe how.

Starting Brokers Interactively

You can start a broker interactively from the command line, using the Broker utility
(i mybr oker d). (Alternatively, on Windows, you can start a broker from the Start
menu.) You cannot use the Administration Console (i ngadni n) or the Command
utility (i ngcnd) to start a broker; the broker must already be running before you
can use these tools.

66 Message Queue 3 2005Q4 « Administration Guide

Starting Brokers

On the Solaris and Linux platforms, a broker instance must always be started by
the same user who initially started it. Each broker instance has its own set of
configuration properties and file-based message store. When the broker instance
first starts, Message Queue uses the user’s file creation mode mask (unask) to set
permissions on directories containing the configuration information and persistent
data for that broker instance.

A broker instance has the instance name i mgbr oker by default. To start a broker
from the command line with this name and the default configuration, simply use
the command

i ngbr oker d

This starts a broker instance named i ngbr oker on the local machine, with the Port
Mapper at the default port of 7676 (see “Port Mapper” on page 77).

To specify an instance name other than the default, use the - nane option to the
i mgbr oker d command. The following command starts a broker with the instance
name nyBr oker :

i ngbr okerd - name nyBroker

Other options are available on the i mgbr oker d command line to control various
aspects of the broker’s operation. The following example uses the -t ty option to
send errors and warnings to the command window (standard output):

i ngbr okerd - name nyBroker -tty

You can also use the - Doption on the command line to override the values of
properties specified in the broker’s instance configuration file

(config. properties). Thisexamplesetsthei ng. j ns. max_t hr eads property, raising
the maximum number of threads available to the j ns connection service to 2000:

i ngbr okerd - name nyBroker -Ding.jns. max_t hr eads=2000

See “Broker Utility” on page 266 for complete information on the syntax,
subcommands, and options of the i mgbr oker d command. For a quick summary of
this information, enter the command

i ngbr okerd - hel p

Chapter 3 Starting Brokers and Clients 67

Starting Brokers

NOTE If you have a Sun Java System Message Queue Platform Edition
license, you can use the i ngbr oker d command’s - | i cense option to
activate a trial Enterprise Edition license, allowing you to try
Enterprise Edition features for 90 days. Specify t ry as the license
name:

i mgbrokerd -1icense try

You must use this option each time you start a broker; otherwise the
broker will default to the standard Platform Edition license.

Starting Brokers Automatically

Instead of starting a broker explicitly from the command line, you can set it up to
start automatically at system startup. How you do this depends on the platform
(Solaris, Linux, or Windows) on which you are running the broker.

Automatic Startup on Solaris and Linux

On Solaris and Linux systems, scripts that enable automatic startup are placed in
the /et ¢/ rc* directory tree during Message Queue installation. To enable the use
of these scripts, you must edit the configuration file / et ¢/ i mg/ i mgbr oker d. conf
(Solaris) or / et ¢/ opt / sun/ ng/ i mybr oker d. conf (Linux) as follows:

= To start the broker automatically at system startup, set the AUTCSTART property
to YES.

= To have the broker restart automatically after an abnormal exit, set the RESTART
property to YES.

= Toset startup command line arguments for the broker, specify one or more
values for the ARGS property.

68 Message Queue 3 2005Q4 « Administration Guide

Starting Brokers

Automatic Startup on Windows

To start a broker automatically at Windows system startup, you must define the
broker as a Windows service. The broker will then start at system startup time and
run in the background until system shutdown. Consequently, you do not use the

i mgbr oker d command to start the broker unless you want to start an additional
instance.

A system can have no more than one broker running as a Windows service. Task
Manager lists such a broker as two executable processes:

= The native Windows service wrapper, i ngbr oker svc. exe
= The Java runtime that is running the broker

You can install a broker as a service when you install Message Queue on a
Windows system. After installation, you can use the Service Administrator utility
(i mysvcadni n) to perform the following operations:

= Add a broker as a Windows service
= Determine the startup options for the broker service
= Remove a broker that is running as a Windows service

To pass startup options to the broker, use the - ar gs argument to the i ngsvcadm n
command. This works the same way as the i ngbr oker d command’s - Doption, as
described under “Starting Brokers” on page 66. Use the Command utility (i rycnd)
to control broker operations as usual.

See “Service Administrator Utility” on page 283 for complete information on the
syntax, subcommands, and options of the i ngsvcadm n command.

Reconfiguring the Broker Service

The procedure for reconfiguring a broker installed as a Windows service is as
follows:

[l To Reconfigure a Broker Running as a Windows Service
1. Stop the service.

a. From the Settings submenu of the Windows Start menu, choose Control
Panel.

b. Open the Administrative Tools control panel.

c. Run the Services tool by selecting its icon and choosing Open from the File
menu or the pop-up context menu, or simply by double-clicking the icon.

Chapter 3 Starting Brokers and Clients 69

Starting Brokers

d. Under Services (Local), select the Message Queue Broker service and
choose Properties from the Action menu.

Alternatively, you can right-click on Message Queue Broker and choose
Properties from the pop-up context menu, or simply double-click on
Message Queue Broker. In either case, the Message Queue Broker
Properties dialog box will appear.

e. Under the General tab in the Properties dialog, click Stop to stop the broker
service.

2. Remove the service.
On the command line, enter the command
i ngsvcadni n renmove

3. Reinstall the service, specifying different broker startup options with the - ar gs
option or different Java version arguments with the -vnar gs option.

For example, to change the service’s host name and port number to br oker 1
and 7878, you could use the command

i ngsvcadnin install -args "-name brokerl -port 7878"

Using an Alternative Java Runtime

You can use eitheri mgsvcadni ncommand’s - j avahone or - j r ehore option to specify
the location of an alternative Java runtime. (You can also specify these options in
the Start Parameters field under the General tab in the service’s Properties dialog
window.)

NOTE The Start Parameters field treats the backslash character (\) as an
escape character, so you must type it twice when using it as a path
delimiter: for example,

-javahone c:\\j2sdk1.4.0

Displaying Broker Service Startup Options

To determine the startup options for the broker service, use the query option to the
i ngsvcadm n command, as shown in Code Example 3-1.

70 Message Queue 3 2005Q4 « Administration Guide

Removing Brokers

Code Example 3-1 Displaying Broker Service Startup Options

i mgsvcadni n query

Service Message Queue Broker is installed.

D spl ay Name: Message Queue Broker

Start Type: Automatic

Binary | ocation: C\Sun\MessageQueue\ bi n\i ngbroker svc. exe
JavaHore: c:\j2sdkl1.4.0

Broker Args: -name brokerl -port 7878

Troubleshooting Service Startup Problems

If you get an error when you try to start a broker as a Windows service, you can
view error events that were logged:

[J To See Logged Service Error Events
1. Open the Windows Administrative Tools control panel.
2. Start the Event Viewer tool.
3. Select the Application event log.

4. Choose Refresh from the Action menu to display any error events.

Removing Brokers

The procedure for removing a broker again varies from one platform to another, as
described in the following sections.

Removing a Broker on Solaris or Linux

To remove a broker instance on the Solaris or Linux platform, use the i ngbr okerd
command with the - renove option. The command format is as follows:

i ngbr oker d [options...] -remove instance
For example, if the name of the broker is nyBr oker , the command would be
i ngbr okerd - name nyBroker -renove instance

The command deletes the entire instance directory for the specified broker.

Chapter 3 Starting Brokers and Clients 71

Starting Clients

If the broker is set up to start automatically at system startup, edit the configuration
file / et ¢/ i my/ i mybr oker d. conf (Solaris) or / et ¢/ opt/ sun/ ng/ i mgbr oker d. conf
(Linux) and set the AUTCSTART property to NO

See “Broker Utility” on page 266 for complete information on the syntax,
subcommands, and options of the i ngbr oker d command. For a quick summary of
this information, enter the command

Removing a Windows Broker Service

To remove a broker that is running as a Windows service, use the command
i ngcmd shut down bkr

to shut down the broker, followed by
i ngsvcadni n renmove

to remove the service.

Alternatively, you can use the Windows Ser vi ces tool, reached via the
Adni ni strative Tool s control panel, to stop and remove the broker service.

Restart your computer after removing the broker service.

Starting Clients

Before starting a client application, obtain information from the application
developer about how to set up the system. If you are starting Java client
applications, you must set the CLASSPATHvariable appropriately and make sure you
have the correct . j ar files installed. The Message Queue Developer’s Guide for Java
Clients contains information about generic steps for setting up the system, but your
developer may have additional information to provide.

To start a Java client application, use the following command line format:
java clientAppName

To start a C client application, use the format supplied by the application
developer.

The application’s documentation should provide information on attribute values
that the application sets; you may want to override some of these from the

command line. You may also want to specify attributes on the command line for
any Java client that uses a Java Naming and Directory Interface (JNDI) lookup to

72 Message Queue 3 2005Q4 « Administration Guide

Starting Clients

find its connection factory. If the lookup returns a connection factory that is older
than the application, the connection factory may lack support for more recent
attributes. In such cases, Message Queue sets those attributes to default values; if
necessary, you can use the command line to override these default values.

To specify attribute values from the command line for a Java application, use the
following syntax:

java [[- Dattribute=value] ...] clientAppName

The value for attribute must be a connection factory administered object attribute, as
described in Chapter 16, “Administered Object Attribute Reference.” If there is a
space in the value, put quotation marks around the attribute=value part of the
command line.

The following example starts a client application named M\MX i ent , connecting to
a broker on the host Gt her Host at port 7677:

java - DingAddr essLi st =ny: // Oher Host : 7677/ j ms MyMX i ent

The host name and port specified on the command line override any others set by
the application itself.

In some cases, you cannot use the command line to specify attribute values. An
administrator can set an administered object to allow read access only, or an
application developer can code the client application to do so. Communication
with the application developer is necessary to understand the best way to start the
client program.

Chapter 3 Starting Brokers and Clients 73

mq://OherHost:7677/jms

Starting Clients

74 Message Queue 3 2005Q4 « Administration Guide

Chapter 4

Configuring a Broker

A broker’s configuration is governed by a set of configuration files and by the
options passed to the i mgbr oker d command at startup. This chapter describes the
available configuration properties and how to use them to configure a broker.

The chapter contains the following sections:

= “Broker Services” on page 75

= “Setting Broker Properties” on page 89

= “Configuring a Persistent Data Store” on page 93

For full reference information about broker configuration properties, see
Chapter 14, “Broker Properties Reference.”

Broker Services

Broker configuration properties can be divided into several categories, depending
on the services or broker components they affect:

= Connection services manage the physical connections between a broker and
its clients that provide transport for incoming and outgoing messages.

= Routing services route and deliver JMS payload messages, as well as control
messages used by the message service to support reliable delivery.

= Persistence services manage the writing and retrieval of data to and from
persistent storage.

= Security services authenticate users connecting to the broker and authorize
their actions.

= Monitoring services generate metric and diagnostic information about the
broker’s performance.

75

Broker Services

The following sections describe each of these services and the properties you use to
customize them for your particular needs.

Connection Services

Message brokers can offer various connection services supporting both application
and administrative clients, using a variety of transport protocols. Broker
configuration properties related to connection services are listed under
“Connection Properties” on page 285.

Table 4-1 shows the available connection services., which are distinguished by two
characteristics:

= The service type specifies whether the service provides JIMS message delivery
(NCRMAL) or Message Queue administration services (ADM N).

= The protocol type specifies the underlying transport protocol.

Table 4-1 Message Queue Connection Services

Service Name Service Type Protocol Type

j s NORMAL TCP

ssl j ms (Enterprise Edition) NORMAL TLS (SSL-based security)

ht t pj ms (Enterprise Edition) NORMAL HTTP

ht t psj ms (Enterprise Edition) NORVAL HTTPS (SSL-based security)
adnin ADM N TCP

ssl adm n ADM N TLS (SSL-based security)

By setting a broker’si n. servi ce. acti vel i st property, you can configure it to run
any or all of these connection services. The value of this property is a list of
connection services to be activated when the broker is started up; if the property is
not specified explicitly, the j ns and adm n services will be activated by default.

Each connection service also supports specific authentication and authorization
features; see “Security Services” on page 83 for more information.

76 Message Queue 3 2005Q4 « Administration Guide

Broker Services

Port Mapper

Each connection service is available at a particular port, specified by host name (or
IP address) and port number. You can explicitly specify a static port number for a
service or have the broker’s Port Mapper assign one dynamically. The Port Mapper
itself resides at the broker’s primary port, which is normally located at the standard
port number 7676. (If necessary, you can use the broker configuration property

i mg. port mapper . port to override this with a different port number.) By default,
each connection service registers itself with the Port Mapper when it starts up.
When a client creates a connection to the broker, the Message Queue client runtime
first contacts the Port Mapper, requesting a port number for the desired connection
service.

Alternatively, you can override the Port Mapper and explicitly assign a static port
number to a connection service, using the i ng.serviceName.protocol Type.por t
configuration property (where serviceName and protocol Type identify the specific
connection service, as shown in Table 4-1). (Only the j ns, ssl j ns, adni n, and

ssl adm n connection services can be configured this way; the htt pj ns and

ht t psj s services use different configuration properties, described in Appendix C,
“HTTP/HTTPS Support.”) Static ports are generally used only in special
situations, however, such as in making connections through a firewall, and are not
recommended for general use.

NOTE In cases where two or more hosts are available (such as when more
than one network card is installed in a computer), you can use
broker properties to specify which host the connection services
should bind to. The i ng. host name property designates a single
default host for all connection services; this can then be overridden,
if necessary, with i ng.serviceName.protocol Type.host nane (for the j ns,
ssl j ms,adm n,orssl adminservice)ori ng. port mapper . host nane (for
the Port Mapper itself).

When multiple Port Manager requests are received concurrently, they are stored in
an operating system backlog while awaiting action. The i ng. port mapper . backl og
property specifies the maximum number of such backlogged requests. When this

limit is exceeded, any further requests will be rejected until the backlog is reduced.

Thread Pool Management

Each connection service is multithreaded, supporting multiple connections. The
threads needed for these connections are maintained by the broker in a separate
thread pool for each service. As threads are needed by a connection, they are added
to the thread pool for the service supporting that connection.

Chapter 4 Configuring a Broker 77

Broker Services

The threading model you choose specifies whether threads are dedicated to a
single connection or shared by multiple connections:

= In the dedicated model, each connection to the broker requires two threads: one
for incoming and one for outgoing messages. This limits the number of
connections that can be supported, but provides higher performance.

= Inthe shared model, connections are processed by a shared thread when sending
or receiving messages. Because each connection does not require dedicated
threads, this model increases the number of possible connections, but at the
cost of lower performance because of the additional overhead needed for
thread management.

The broker’si ng.serviceName.t hr eadpool _nodel property specifies which of the two
models to use for a given connection service. This property takes either of two
string values: dedi cat ed orshar ed. If youdon’t set the property explicitly, dedi cat ed
is assumed by default.

You can also set the broker properties i my.serviceName.m n_t hr eads and

i mg.serviceName. max_t hr eads to specify a minimum and maximum number of
threads in a service’s thread pool. When the number of available threads exceeds
the specified minimum threshold, Message Queue will shut down threads as they
become free until the minimum is reached again, thereby saving on memory
resources. Under heavy loads, the number of threads might increase until the
pool’s maximum number is reached; at this point, new connections are rejected
until a thread becomes available.

The shared threading model uses distributor threads to assign threads to active
connections. The broker property i ng. shar ed. connecti onMni tor _|init specifies
the maximum number of connections that can be monitored by a single distributor
thread. The smaller the value of this property, the faster threads can be assigned to
connections. The i ng. pi ng. i nt erval property specifies the time interval, in
seconds, at which the broker will periodically test (“ping”) a connection to verify
that it is still active, allowing connection failures to be detected preemptively
before an attempted message transmission fails.

Routing Services

Once clients are connected to the broker, the routing and delivery of messages can
proceed. In this phase, the broker is responsible for creating and managing
different types of physical destinations, ensuring a smooth flow of messages, and
using resources efficiently. You can use the broker configuration properties
described under “Routing Properties” on page 287 to manage these tasks in a way
that suits your application’s needs.

78 Message Queue 3 2005Q4 « Administration Guide

Broker Services

The performance and stability of a broker depend on the system resources (such as
memory) available and how efficiently they are utilized. You can set configuration
properties to prevent the broker from becoming overwhelmed by incoming
messages or running out of memory. These properties function at three different
levels to keep the message service operating as resources become scarce:

Systemwide message limits apply collectively to all physical destinations on
the system. These include the maximum number of messages held by a broker
(i mg. syst em max_count) and the maximum total number of bytes occupied by
such messages (i my. syst em max_si ze). If either of these limits is reached, the
broker will reject any new messages until the pending messages fall below the
limit. There is also a limit on the maximum size of an individual message

(i my. message. max_si ze) and a time interval at which expired messages are
reclaimed (i mg. nessage. expi ration.interval).

Individual destination limits regulate the flow of messages to a specific
physical destination. The configuration properties controlling these limits are
described in Chapter 15, “Physical Destination Property Reference.” They
include limits on the number and size of messages the destination will hold,
the number of message producers and consumers that can be created for it, and
the number of messages that can be batched together for delivery to the
destination.

The destination can be configured to respond to memory limits by slowing
down the delivery of message by message producers, by rejecting new
incoming messages, or by throwing out the oldest or lowest-priority existing
messages. Messages deleted from the destination in this way may optionally be
moved to the dead message queue rather than discarded outright; the broker
property i mg. dest i nati on. DMQ t r uncat eBody controls whether the entire
message body is saved in the dead message queue, or only the header and
property data.

As a convenience during application development and testing, you can
configure a message broker to create new physical destinations automatically
whenever a message producer or consumer attempts to access a nonexistent
destination. The broker properties summarized in Table 14-3 on page 289
parallel the ones just described, but apply to such auto-created destinations
instead of administratively created ones.

System memory thresholds define levels of memory usage at which the broker
takes increasingly serious action to prevent memory overload. Four such usage
levels are defined:

o Green: Plenty of memory is available.

o Yellow: Broker memory is beginning to run low.

Chapter 4 Configuring a Broker 79

Broker Services

o Orange: The broker is low on memory.
o Red: The broker is out of memory.

The memory utilization percentages defining these levels are specified by the
broker propertiesi ng. green. t hreshol d, i ng. yel | ow. t hr eshol d,

i ng. orange. t hreshol d,andi my. r ed. t hr eshol d, respectively;thedefaultvalues
are 0% for green, 80% for yellow, 90% for orange, and 98% for red.

As memory usage advances from one level to the next, the broker responds
progressively, first by swapping messages out of active memory into persistent
storage and then by throttling back producers of honpersistent messages,
eventually stopping the flow of messages into the broker. (Both of these
measures degrade broker performance.) The throttling back of message
production is done by limiting the size of each batch delivered to the number
of messages specified by the properties i ng. resourceState. count , where
resourceState is gr een, yel | ow, or ange, or r ed, respectively.

NOTE The triggering of these system memory thresholds is a sign that
systemwide and destination message limits are set too high. Because
the memory thresholds cannot always catch potential memory
overloads in time, you should not rely on them to control memory
usage, but rather reconfigure the systemwide and destination limits
to optimize memory resources.

Persistence Services

For a broker to recover in case of failure, it needs to re-create the state of its
message delivery operations. To do this, the broker must save state information to
a persistent data store. When the broker restarts, it uses the saved data to re-create
destinations and durable subscriptions, recover persistent messages, roll back open
transactions, and rebuild its routing table for undelivered messages. It can then
resume message delivery.

Message Queue supports both file-based and JDBC-based persistence modules (see
Figure 4-1). File-based persistence uses individual files to store persistent data;
JDBC-based persistence uses the Java Database Connectivity (JDBC™) interface to
connect the broker to a JDBC-compliant data store. While file-based persistence is
generally faster than JDBC-based, some users prefer the redundancy and
administrative control provided by a JDBC-compliant store. The broker
configuration property i ng. persi st. st or e (see Table 14-4 on page 292) specifies
which of the two forms of persistence to use.

80 Message Queue 3 2005Q4 « Administration Guide

Broker Services

Figure 4-1 Persistent Data Storage

File-based

.éé Data Store

Broker

Physical
Destinationls

JDBC-compliant
Data Store

File-Based Persistence

By default, Message Queue uses a file-based persistent data store, in which
individual files store persistent data such as messages, destinations, durable
subscriptions, and transactions. Broker configuration properties related to
file-based persistence are listed under “File-Based Persistence” on page 293.

The file-based store is located in a directory identified by the name of the broker
instance (instanceName) to which the data store belongs:

...l i nst ances/ instanceName/ f s350/

(See Appendix A, “Platform-Specific Locations of Message Queue Data,” for the
location of the inst ances directory.) Each destination on the broker has its own
subdirectory holding messages delivered to that destination.

NOTE Because the persistent data store can contain messages of a sensitive
or proprietary nature, you should secure the
...l i nst ances/ instanceName/ f 350/ directory against unauthorized
access; see “Securing Persistent Data” on page 95.

All persistent data other than messages is stored in separate files: one file for
destinations, one for durable subscriptions, and one for transaction state
information. Most messages are stored in a single file consisting of variable-sized
records. You can compact this file to alleviate fragmentation as messages are added
and removed (see “Compacting Physical Destinations” on page 126). In addition,
messages above a certain threshold size are stored in their own individual files
rather than in the variable-sized record file. You can configure this threshold size
with the broker property i ny. persi st. fil e. nessage. max_record_si ze.

Chapter 4 Configuring a Broker 81

Broker Services

The broker maintains a file pool for these individual message files: instead of being
deleted when it is no longer needed, a file is returned to the pool of free files in its
destination directory so that it can later be reused for another message. The broker
property i my. persi st.file.destination. message. filepool.limt specifies the
maximum number of files in the pool. When the number of individual message
files for a destination exceeds this limit, files will be deleted when no longer
needed instead of being returned to the pool.

When returning a file to the file pool, the broker can save time at the expense of
storage space by simply tagging the file as available for reuse without deleting its
previouscontents.Youcanusethei ng. persi st.fil e. message. fil epool . cl eanratio
broker property to specify the percentage of files in each destination’s file pool that
should be maintained in a “clean” (empty) state rather than simply marked for
reuse. The higher you set this value, the less space will be required for the file pool,
but the more overhead will be needed to empty the contents of files when they are
returned to the pool. Ifthe broker’si my. per si st. fi | e. nessage. cl eanup property is
true, all files in the pool will be emptied at broker shutdown, leaving them in a
clean state; this conserves storage space but slows down the shutdown process.

In writing data to the persistent store, the operating system has some leeway in
whether to write the data synchronously or “lazily” (asynchronously). Lazy
storage can lead to data loss in the event of a system crash, if the broker believes the
data to have been written to persistent storage when it has not. To ensure absolute
reliability (at the expense of performance), you can require that all data be written
synchronously by setting the broker property i mg. persi st. fil e. sync. enabl ed to
true. In this case, the data is guaranteed to be available when the system comes
back up after a crash, and the broker can reliably resume operation. Note, however,
that although the data is not lost, it is not available to any other broker in a cluster,
since clustered brokers do not currently share data.

JDBC-Based Persistence

Instead of using file-based persistence, you can set up a broker to access any data
store accessible through a JDBC-compliant driver. This involves setting the
appropriate JDBC-related broker configuration properties and using the Database
Manager utility (i mgdbgr) to create a database with the proper schema. See
“Configuring a JDBC-Based Store” on page 94 for specifics.

The properties for configuring a broker to use a JDBC database are listed under
“JDBC-Based Persistence” on page 295. You can specify these properties either in
the instance configuration file (confi g. properti es) of each broker instance or by
using the - D command line option to the Broker utility (i ngbr oker d) or the
Database Manager utility (i ngdbngr).

82 Message Queue 3 2005Q4 « Administration Guide

Broker Services

Thei ng. persist.jdbc. driver property givesthe Javaclass name of the JDBC driver
to use in connecting to the database. There are also properties specifying the URLs
for connecting to an existing database (i ng. per si st . j dbc. opendburl), creating a
new database (i ng. per si st. j dbc. creat edburl), and closing a database connection
(i my. persi st. jdbc. cl osedburl).

Thei ng. per si st. j dbc. userandi ng. persi st. j dbc. passwor dpropertiesgivetheuser
nameand password foraccessingthedatabase;i ny. persi st. j dbc. needpasswor disa
boolean flag specifying whether a password is needed. For security reasons, the
password should be specified only in a password file designated via the - passfil e
command line option; if no such password file is specified, the i ngbr oker d and

i mgdbngr commands will prompt for the password interactively. Similarly, the user
name can be supplied from the command line using the - dbuser option to the

i mgbr oker d command or the - u option to i mydbnyr .

In a JDBC database shared by multiple broker instances, the configuration property
i my. persist.jdbc. brokeri d specifies a unique instance identifier for each, to be
appended to the names of database tables. (This is usually unnecessary for an
embedded database, which stores data for only one broker instance.) The
remaining JDBC-related configuration properties are used to customize the SQL
code that creates the database schema, one property for each database table. For
instance, thei ny. persi st. j dbc. t abl e. | MBV35property givesthe SQLcommandfor
creatingtheversiontable,i ny. per si st . j dbc. t abl e. | MQCCREC35fortheconfiguration
change record table, i ng. persi st. j dbc. t abl e. | MDEST35 for the destination table,
and so on; see Table 14-6 on page 295 for the complete list.

NOTE Because database systems vary in the exact SQL syntax required, be
sure to check the documentation from your database vendor for
details.

Security Services

Message Queue provides security services for user access control (authentication
and authorization) and for encryption:

= Authentication ensures that only verified users can establish a connection to a
broker.

= Authorization specifies which users or groups have the right to access resources
and to perform specific operations.

= Encryption protects messages from being tampered with during delivery over a
connection.

Chapter 4 Configuring a Broker 83

Broker Services

As a Message Queue administrator, you are responsible for setting up the
information the broker needs to authenticate users and authorize their actions. The
broker properties pertaining to security services are listed under “Security
Properties” on page 298. The boolean property i ng. accesscontrol . enabl ed acts
as a master switch that controls whether access control is applied on a brokerwide
basis; for finer control, you can override this setting for a particular connection
service by setting the i mg. serviceName. accesscont r ol . enabl ed property, where
serviceName is the name of the connection service, as shown in Table 4-1 on page 76:
for example, i ng. htt pj ns. accesscontrol . enabl ed.

Figure 4-2 shows the components needed by the broker to provide authentication
and authorization services. These services depend on a user repository containing
information about the users of the messaging system: their names, passwords, and
group memberships. In addition, to authorize specific operations for a user or
group, the broker consults an access control properties file that specifies which
operations a user or group can perform. You can designate a single access control
properties file for the broker as a whole, using the configuration property

i mg. accesscontrol . file.filenamne, or for a single connection service with

i my.serviceName.accesscontrol . file.filenane.

Figure 4-2 Security Support
Two
authentication LDAP Server User Repository
User .
Repository OpthﬂS
Broker

Flat File
User
Repository

catinaiio

Access Control

horization . -
guigonzais Properties File

accesscontrol.properties

As Figure 4-2 shows, you can store user data in a flat-file user repository that is
provided with the Message Queue service or you can plug in a preexisting
Lightweight Directory Access Protocol (LDAP) repository:

84 Message Queue 3 2005Q4 « Administration Guide

Broker Services

= If you choose a flat-file repository, you must use the Message Queue User
Manager utility (i muser ngr) to manage the repository. This option is built-in
and easy to use.

= |fyou want to use an existing LDAP server, you use the tools provided by the
LDAP vendor to populate and manage the user repository. You must also set
properties in the broker’s instance configuration file to enable the broker to
query the LDAP server for information about users and groups.

Thebroker’si ng. aut hent i cati on. basi c. user _reposit ory propertyspecifieswhich
type of repository to use. In general, an LDAP repository is preferable if scalability
is important or if you need the repository to be shared by different brokers (if you
are using broker clusters, for instance). See “Authenticating Users” on page 132 for
more information on setting up a flat-file or LDAP user repository.

Authentication

A client requesting a connection to a broker must supply a user name and
password, which the broker compares with those stored in the user repository.
Passwords transmitted from client to broker are encoded using either base-64
encoding (for flat-file repositories) or message digest (MD5) hashing (for LDAP
repositories). The choice is controlled by the i ng. aut henti cati on. t ype property for
the broker as a whole, or by i ng.serviceName. aut hent i cati on. t ype for a specific
connectionservice.Thei ng. aut henti cati on. cl i ent. response. ti neout propertysets
a timeout interval for authentication requests.

As described under “Using a Password File” on page 158, you can choose to put
your passwords in a password file instead of being prompted for them interactively.
The boolean broker property i ng.passfi | e. enabl ed controls this option. If this
property istrue, thei my. passfil e. di rpat handi my. passfi | e. nane properties give
the directory path and file name for the password file. The i mg. i nrgcnd. passwor d
property (which can be embedded in the password file) specifies the password for
authenticating an administrative user to use the Command utility (i ngcnd) for
managing brokers, connection services, connections, physical destinations, durable
subscriptions, and transactions.

If you are using an LDAP-based user repository, there are a whole range of broker
properties available for configuring various aspects of the LDAP lookup. The
address (host name and port number) of the LDAP server itself is specified by

i my. user_repository.|dap.server. Theing. user _repository.|dap.principal
property gives the distinguished name for binding to the LDAP repository, while
i ny. user _repository. | dap. passwor d supplies the associated password. Other
properties specify the directory bases and optional JNDI filters for individual user
and group searches, the provider-specific attribute identifiers for user and group
names, and so forth; see “Security Properties” on page 298 for details.

Chapter 4 Configuring a Broker 85

Broker Services

Authorization

Once authenticated, a user can be authorized to perform various Message
Queue-related activities. As a Message Queue administrator, you can define user
groups and assign individual users membership in them. The default access
control properties file explicitly refers to only one group, adni n (see “Groups” on
page 135). A user in this group has connection permission for the adm n connection
service, which allows the user to perform administrative functions such as creating
destinations and monitoring and controlling a broker. A user in any other group
that you define cannot, by default, get an admi n service connection.

When a user attempts to perform an operation, the broker checks the user’s name
and group membership (from the user repository) against those specified for access
to that operation (in the access control properties file). The access control properties
file specifies permissions to users or groups for the following operations:

= Connecting to a broker

= Accessing destinations: creating a consumer, a producer, or a queue browser
for any given destination or for all destinations

= Auto-creating destinations

Encryption

To encrypt messages sent between clients and broker, you need to use a connection
service based on the Secure Socket Layer (SSL) standard. SSL provides security at
the connection level by establishing an encrypted connection between an
SSL-enabled broker and client.

To use an SSL-based Message Queue connection service, you generate a
private/public key pair using the Key Tool utility (i ngkeyt ool). This utility
embeds the public key in a self-signed certificate and places it in a Message Queue
key store. The key store is itself password-protected; to unlock it, you must provide
a key store password at startup time, specified by the i ng. keyst or e. passwor d
property. Once the key store is unlocked, a broker can pass the certificate to any
client requesting a connection. The client then uses the certificate to set up an
encrypted connection to the broker.

The i ng. audi t. enabl ed broker property controls the logging of audit records to
the Message Queue broker log file; see “Creating an Audit Log” on page 160 for
more information.

86 Message Queue 3 2005Q4 « Administration Guide

Broker Services

Monitoring Services

The broker includes components for monitoring and diagnosing application and
broker performance. These include the following:

= Components that generate data, a Metrics Generator and broker code that logs
events

= A Logger component that writes out information to a number of output
channels

= A Metrics Message Producer that sends JMS messages containing metric
information to topic destinations for consumption by JMS monitoring clients

The general scheme is illustrated in Figure 4-3. Broker properties for configuring
the monitoring services are listed under “Monitoring Properties” on page 303.

Figure 4-3 Monitoring Support

Output Channels

Broker L l:‘:,‘> log file
Code ogger
ERROR ::,‘> console
WARNING
INFO
» syslog (Solaris)
Metrics
Generat
Metrics . .)
Message topic destinations
Producer

Metrics Generator

The Metrics Generator provides information about broker activity, such as message
flow in and out of the broker, the number of messages in broker memory and the
memory they consume, the number of open connections, and the number of
threads being used. The boolean broker property i nmg. net ri cs. enabl ed controls
whether such information is logged; imq. netri cs. i nt erval specifies how often.

Chapter 4 Configuring a Broker 87

Broker Services

Logger

The Logger takes information generated by broker code and the Metrics Generator
and writes that information to standard output (the console), to a log file, and, on
Solaris platforms, to the sysl og daemon process in case of errors. The log file to use
is identified by theimy.log.file.dirpath anding.log.file.fil ename broker
properties;i ng. | og. consol e. st r eamspecifies whether console output is directed to
stdout or stderr.

Theing. | og. | evel property controls the categories of metric information that the
Logger gathers: ERROR WARNI NG or | NFO. Each level includes those above it, so if you
specify, for example, WARNI NGas the logging level, error messages will be logged as
well. The i mg. | og. consol e. out put and i ng. | og. file. output properties control
which of the specified categories will be written to the console and the log file,
respectively. In this case, however, the categories do not include those above them;
so if you want, for instance, both errors and warnings written to the log file and
informational messages to the console, you must explicitly seti ng. | og. fil e. out put
toERRCR WARNI NGandi ng. | 0g. consol e. out put tol NFO.OnSolarisplatformsanother
property, i ng. | 0g. sysl og. out put , specifies the categories of metric information to
be written to the sysl og daemon. There is also an i ng. desti nati on. | ogDeadMsgs
property that specifies whether to log when dead messages are discarded or
moved to the dead message queue.

In the case of a log file, you can specify the point at which the file is closed and
output is rolled over to a new file. Once the log file reaches a specified size
(img.log.file.roll overbytes)orage(img. |l og.file.rolloversecs),itissavedanda
new log file created.

See “Monitoring Properties” on page 303 for additional broker properties related to
logging, and “Configuring and Using Broker Logging” on page 191 for further
details about how to configure the Logger and how to use it to obtain performance
information.

Metrics Message Producer (Enterprise Edition)

The Metrics Message Producer receives information from the Metrics Generator at
regular intervals and writes the information into metrics messages, which it then
sends to one of a number of metric topic destinations, depending on the type of
metric information contained in the message (see Table 4-2). Message Queue
clients subscribed to these metric topic destinations can consume the messages and
process the metric data they contain. This allows developers to create custom
monitoring tools to support messaging applications. For details of the metric
quantities reported in each type of metrics message, see the Message Queue
Developer’s Guide for Java Clients.

88 Message Queue 3 2005Q4 « Administration Guide

Setting Broker Properties

Table 4-2 Metric Topic Destinations

Topic Name Type of Metric Information

ng. metrics. broker Broker metrics

ng. netrics.jvm Java Virtual Machine metrics

ng. netrics. destination_|ist List of destinations and their types

ng. metrics. destination. queue. queueName Destination metrics for specified queue
ng. netrics. destination. t opi c. topicName Destination metrics for specified topic

Thebrokerpropertiesi ng. netri cs. t opi ¢. enabl edandi mg. netrics. topic.interval
control, respectively, whether messages are sent to metric topic destinations and
how often. The i mg. netrics.topic.timetoliveanding. metrics.topic. persist
properties specify the lifetime of such messages and whether they are persistent.

Besides the information contained in the body of a metrics message, the header of
each message includes properties that provide the following additional
information:

= The message type
= The address (host name and port number) of the broker that sent the message
= The time the metric sample was taken

These properties are useful to client applications that process metrics messages of
different types or from different brokers.

Setting Broker Properties

You can specify a broker’s configuration properties in either of two ways:
= Edit the broker’s configuration file
= Supply the property values directly from the command line

The following two sections describe these two methods of configuring a broker.

Chapter 4 Configuring a Broker 89

Setting Broker Properties

Configuration Files

Broker configuration files contain property settings for configuring a broker. They are
kept in a directory whose location depends on the operating system platform you
are using; see Appendix A, “Platform-Specific Locations of Message Queue Data”
for details. The directory stores the following files:

= A default configuration file, def aul t . properti es, that is loaded on startup. This
file is not editable, but you can read it to determine default settings and find
the exact names of properties you want to change.

= Aninstallation configuration file, i nst al | . properti es, containing any properties
specified when Message Queue was installed. This file cannot be edited after
installation.

In addition, each individual broker instance has its own instance configuration file, as
described below. If you connect broker instances in a cluster, you may also need to
use a cluster configuration file to specify configuration information for the cluster;
see “Cluster Configuration Properties” on page 307 for more information.

At startup, the broker merges property values from the various configuration files.
As shown in Figure 4-4, the files form a hierarchy in which values specified in the
instance configuration file override those in the installation configuration file,
which in turn override those in the default configuration file. At the top of the
hierarchy, you can manually override any property values specified in the
configuration files by using command line options to the i ngbr oker d command.

90 Message Queue 3 2005Q4 « Administration Guide

Setting Broker Properties

Figure 4-4 Broker Configuration Files

i ngbr okerd
- nane MyBr oker

SUECRRES_D overrides

x overrides
. : ‘ overrides
config.properties

install.properties

MyBroker

instance configuration file

install configuration file default.properties

default configuration file

Editing the Instance Configuration File

The first time you run a broker, an instance configuration file is created containing
configuration properties for that particular broker instance. The instance
configuration file is named conf i g. properti es and is stored in a directory
identified by the name of the broker instance to which it belongs:

.../ i nst ances/ instanceName/ pr ops/ confi g. properti es

(See Appendix A, “Platform-Specific Locations of Message Queue Data,” for the
location of the i nst ances directory.) If the file does not yet exist, you must use the
- name option when starting the broker (see “Broker Utility”” on page 266), to specify
an instance name that Message Queue can use to create the file.

NOTE The i nst ances/ instanceName directory and the instance configuration
file are owned by the user who created the corresponding broker
instance. The broker instance must always be restarted by that same
user.

Chapter 4 Configuring a Broker 91

Setting Broker Properties

92

The instance configuration file is maintained by the broker instance and is
modified when you make configuration changes using Message Queue
administration utilities. You can also edit an instance configuration file by hand to
customize the broker’s behavior and resource use. To do so, you must be the owner
of the i nst ances/ instanceName directory or log in asr oot to change the directory’s
access privileges.

The broker reads its instance configuration file only at startup. To make permanent
changes to the broker’s configuration, you must shut down the broker, edit the file,
and then restart the broker. Property definitions in the file (or any configuration
file) use the following syntax:

propertyName=value[[, valuel]...]

For example, the following entry specifies that the broker will hold up to 50,000
messages in memory and persistent storage before rejecting additional messages:

i mg. syst em max_count =50000

The following entry specifies that a new log file will be created every day (86,400
seconds):

inmy.log.file.rolloversecs=86400

See “Broker Services” on page 75 and Chapter 14, “Broker Properties Reference,”
for information on the available broker configuration properties and their default
values.

Setting Configuration Options from the Command Line

You can enter broker configuration options from the command line when you start
a broker, or afterward.

At startup time, you use the Broker utility (i ngbr oker d) to start a broker instance.
Using the command’s - Doption, you can specify any broker configuration property
and its value; see “Starting Brokers” on page 66 and “Broker Utility” on page 266
for more information. If you start the broker as a Windows service, using the
Service Administrator utility (i ngsvcadni n), you use the -ar gs option to specify
startup configuration properties; see “Service Administrator Utility” on page 283.

You can also change certain broker properties while a broker instance is running.
To modify the configuration of a running broker, you use the Command utility’s
i mgcmd updat e bkr command; see “Updating Broker Properties” on page 102 and
“Broker Management” on page 272.

Message Queue 3 2005Q4 « Administration Guide

Configuring a Persistent Data Store

Configuring a Persistent Data Store

A broker’s persistent data store holds information about physical destinations,
durable subscriptions, messages, transactions, and acknowledgments. Message
Queue brokers are configured by default to use a file-based persistent store, but
you can reconfigure them to plug in any data store accessible through a
JDBC-compliant driver. The broker configuration property i ng. persi st.store
(see Table 14-4 on page 292) specifies which of the two forms of persistence to use.

This section explains how to set up a broker to use a persistent store. It includes the
following topics:

= *“Configuring a File-Based Store” on page 93
= “Configuring a JDBC-Based Store” on page 94

= “Securing Persistent Data” on page 95

Configuring a File-Based Store

A file-based data store is automatically created when you create a broker instance.
The store is located in the broker’s instance directory; see Appendix A,
“Platform-Specific Locations of Message Queue Data,” for the exact location.

By default, Message Queue performs asynchronous write operations to disk. The
operating system can buffer these operations for efficient performance. However, if
an unexpected system failure should occur between write operations, messages
could be lost. To improve reliability (at the cost of reduced performance), you can
setthe broker propertyi my. persi st. fil e. synctowrite datasynchronously instead.
For further discussion about this property, see “File-Based Persistence” on page 81
and Table 14-5 on page 293.

When you start a broker instance, you can use the i ngbr oker d command’s - r eset
option to clear the file system store. For more information about this option and its
suboptions, see “Broker Utility” on page 266.

Chapter 4 Configuring a Broker 93

Configuring a Persistent Data Store

Configuring a JDBC-Based Store

To configure a broker to use JDBC-based persistence, you set JDBC-related
properties in the broker’s instance configuration file and create the appropriate
database schema. The Message Queue Database Manager utility (i ngdbngr) uses
your JDBC driver and the broker configuration properties to create and manage the
database. You can also use the Database Manager to delete corrupted tables from
the database or if you want to use a different database as a data store. See
“Database Manager Utility” on page 280 for more information.

NOTE Example configurations for Oracle and PointBase database products

are available. The location of these files is platform-dependent, and
is listed under “Example applications and configurations” in the
relevant tables of Appendix A, “Platform-Specific Locations of
Message Queue Data.” In addition, examples for PointBase
embedded version, PointBase server version, and Oracle are
provided as commented-out values in the instance configuration
file, confi g. properti es.

[0 To Configure a JDBC-Based Data Store

1.

Set JDBC-related properties in the broker’s configuration file.

The relevant properties are discussed under “JDBC-Based Persistence” on
page 82 and listed in Table 14-6 on page 295. In particular, you must set the
broker’s i ng. per si st. st or e property to j dbc (see Table 14-4 on page 292).

Place a copy of, or a symbolic link to, your JDBC driver’s . j ar file in the
following location:

[usr/sharel/libling/ext/ (Solaris)
[opt/sun/ ng/ share/ i b/ (Linux)
| MQ VARHOME\ | i b\ ext (Windows)

For example, if you are using PointBase on a Solaris system, the following
command copies the driver’s . j ar file to the appropriate location:

%cp j2eeSDKInstalIDirectory/ poi nt base/ | i b/ poi nt base. j ar /usr/share/lib/ing/ ext
The following command creates a symbolic link instead:

% n- sj2eeSDKInstallDirectory/ | i b/ poi nt base/ poi nt base. j ar/ usr/share/lib/i my/ ext

94 Message Queue 3 2005Q4 « Administration Guide

Configuring a Persistent Data Store

3. Create the database schema needed for Message Queue persistence.

Use the i ngdbngr creat e al | command (for an embedded database) or the
i mgdbngr creat etbl command (for an external database); see “Database
Manager Utility” on page 280.

a. Change to the directory where i mgdbrgr resides:

cd /usr/bin (Solaris)
cd /opt/sun/ my/ bi n (Linux)
cd | MY HOWE bi n (Windows)

b. Enter the i ngdbngr command:
i mgdbngr create all

NOTE If you use an embedded database, it is best to create it under the
following directory:

.../ i nst ances/ instanceName/ dbst or e/ databaseName

If an embedded database is not protected by a user name and
password, it is probably protected by file system permissions. To
ensure that the database is readable and writable by the broker, the
user who runs the broker should be the same user who created the
embedded database using the i nrgdbngr command.

Securing Persistent Data

The persistent store can contain, among other information, message files that are
being temporarily stored. Since these messages may contain proprietary
information, it is important to secure the data store against unauthorized access.
This section describes how to secure data in a file-based or JDBC-based data store.

Securing a File-Based Store

A broker using file-based persistence writes persistent data to a flat-file data store
whose location is platform-dependent (see Appendix A, “Platform-Specific
Locations of Message Queue Data”):

...l i nst ances/ instanceName/ f s350/

where instanceName is a name identifying the broker instance.

Chapter 4 Configuring a Broker 95

Configuring a Persistent Data Store

96

The instanceName/ f s350/ directory is created when the broker instance is started
for the first time. The procedure for securing this directory depends on the
operating system platform on which the broker is running:

= On Solaris and Linux, the directory’s permissions are determined by the file
mode creation mask (unask) of the user who started the broker instance. Hence,
permission to start a broker instance and to read its persistent files can be
restricted by setting the mask appropriately. Alternatively, an administrator
(superuser) can secure persistent data by setting the permissions on the
i nst ances directory to 700.

= On Windows, the directory’s permissions can be set using the mechanisms
provided by the Windows operating system. This generally involves opening a
Properties dialog for the directory.

Securing a JDBC-Based Store

A broker using JDBC-based persistence writes persistent data to a JDBC-compliant
database. For a database managed by a database server (such as Oracle), it is
recommended that you create a user name and password to access the Message
Queue database tables (tables whose names start with | M). If the database does not
allow individual tables to be protected, create a dedicated database to be used only
by Message Queue brokers. See the documentation provided by your database
vendor for information on how to create user name/password access.

The user name and password required to open a database connection by a broker
can be provided as broker configuration properties. However it is more secure to

provide them as command line options when starting up the broker, using the

i mgbr okerd command’s - dbuser and - dbpasswor d options (see “Broker Utility” on
page 266).

For an embedded database that is accessed directly by the broker via the database's
JDBC driver, security is usually provided by setting file permissions on the
directory where the persistent data will be stored, as described above under
“Securing a File-Based Store.” To ensure that the database is readable and writable
by both the broker and the Database Manager utility, however, both should be run
by the same user.

Message Queue 3 2005Q4 « Administration Guide

Chapter 5

Managing a Broker

This chapter explains how yo use the i ngcnd utility to manage the broker and its
services. This chapter has the following sections:

“Prerequisites” on page 98

“Using the imgcmd Utility” on page 98

“Displaying Broker Information” on page 101
“Updating Broker Properties” on page 102

“Pausing and Resuming a Broker” on page 103
“Shutting Down and Restarting a Broker” on page 104
“Displaying Broker Metrics” on page 105

“Managing Connection Services” on page 106
“Getting Information About Connections” on page 111
“Managing Durable Subscriptions” on page 112

“Managing Transactions” on page 113

This chapter does not cover all topics related to managing a broker. Additional
topics are covered in the following separate chapters:

Management of physical destinations on the broker. For information about
topics such as how to create, display, update and destroy physical destinations,
and how to use the dead message queue, see Chapter 6, “Managing Physical
Destinations.”

Setting up security for the broker. For information about topics such as user
authentication, access control, encryption, password files, and audit logging,
see Chapter 7, “Managing Security.”

97

Prerequisites

Prerequisites

You use the i mgcnd and i myuser ngr command line utilities to manage the broker.
Before managing the broker, you must do the following:

= Start the broker using the i ngbr oker d utility command. You cannot use the
other command line utilities until a broker is running.

= Determine whether you want to set up a Message Queue administrative user
or use the default account. You must specify a user name and password to use
management commands.

When you install Message Queue, a default flat-file user repository is installed.
The repository is shipped with two default entries: an admin user and a guest
user. If you are testing Message Queue, you can use the default user name and
password (adni n/adni n) to run the i ngcnd utility.

If you are setting up a production system, you must set up authentication and
authorization for administrative users. See Chapter 7, “Managing Security” for
information on setting up a file-based user repository or configuring the use of
an LDAP directory server. In a production environment, it is a good security
practice to use a nondefault user name and password.

= Set up and enable the ssl adni n service on the target broker instance, if you
want to use a secure connection to the broker. For more information, see
“Working With an SSL-Based Service” on page 148.

Using the imgcmd Utility

98

The i ngcmd utility enables you to manage the broker and its services.

Reference information about the syntax, subcommands, and options of the i ngcnd
command is in Chapter 13, “Command Line Reference” on page 265. Reference
information for use in managing physical destinations is in a separate chapter,
Chapter 15, “Physical Destination Property Reference” on page 313.

Displaying Help

To display help on the i ngcend utility, use the -h or -H option, and do not use a
subcommand. You cannot get help about specific subcommands.

Message Queue 3 2005Q4 « Administration Guide

Using the imgcmd Utility

For example, the following command displays help about i rgcnd:
ingend - H

If you enter a command line that contains the - h or - Hoption in addition to a
subcommand or other options, the i ngcnd utility processes only the -h or -H
option. All other items on the command line are ignored.

Displaying the Product Version

To display the Message Queue product version, use the - v option. For example:
ingemd -v

If you enter a command line that contains the - v option in addition to a
subcommand or other options, the i ngcd utility processes only the -v option. All
other items on the command line are ignored.

Specifying the User Name and Password

Because each i ngcnd subcommand is authenticated against the user repository, it
requires a user name and password. The only exceptions are commands that use
the -h or -Hoption to display help, and commands that use the - v option to display
the product version.

Specifying the User Name

Use the - u option to specify an administrative user name. If you omit the user
name, the command prompts you for it. For example, the following command
displays information about the default broker:

i ngend query bkr -u adnin

To make the examples in this chapter easy to read, the default user name admi n is
shown as the argument to the - u option. In a production environment, you would
use a custom user name.

Specifying the Password
Specify the password using one of the following methods:

= Create a password file (passfile) and enter the password into that file. On the
command line, use the -passfi | e option to provide the name of the password
file.

Chapter 5 Managing a Broker 99

Using the imgemd Utility

100

= Let the command prompt you for the password.

In previous versions of Message Queue, you could use the - p option to specify a
password on the i ngend command line. This option is being deprecated and will be
removed in a future version.

Specifying the Broker Name and Port

The default broker for i mgcmd is one that is running on the local host, and the
default port is 7676.

If you are issuing a command to a broker running on a remote host or listening on
a nondefault port, or both, you must use the - b option to specify the broker’s host
and port.

Examples

The examples in this section illustrate how to use i ngcnd.

The first example lists the properties of the broker running on | ocal host at port
7676, so the - b option is unnecessary. The command uses the default
administrative user name (adm n) and omits the password, so that the command
prompts for it.

i ngcmd query bkr -u adnin

The following example lists the properties of the broker running on the host
nyserver at port 1564. The user name is al addi n. (For this command to work, the
user repository would need to be updated to add the user name al addi n to the
admi n group.)

i ngcmd query bkr -b nyserver: 1564 -u al addin

The following example lists the properties of the broker running on | ocal host at
port 7676. The initial timeout for the command is set to 20 seconds and the number
of retries after timeout is set to 7. The user’s password is in a password file called
nyPassfi | e, located in the current directory at the time the command is invoked.

i ngcnd query bkr -u adnmin -passfile nyPassfile -rtm20 -rtr 7

For a secure connection to the broker, these examples could include the - secur e
option. The - secur e option causes i ngcnd to use the ssl adm n service if the service
has been configured and started.

Message Queue 3 2005Q4 « Administration Guide

Displaying Broker Information

Displaying Broker Information

To query and display information about a single broker, use the query bkr

subcommand.
This is the syntax of the query bkr subcommand:

i ngcmd query bkr -b hostName: portNumber

This subcommand lists the current settings of properties for the default broker or a
broker at the specified host and port. It also shows the list of running brokers (in a
multi-broker cluster) that are connected to the specified broker.

For example:

i ngcnd query bkr -u adnin

After prompting you for the password, the command produces output like the

following:
Versi on 3.6
| nst ance Nane i mybr oker
Primary Port 7676
Qurrent Nunber of Messages in System 0
Qurrent Total Message Bytes in System 0
Qurrent Nunber of Messages in Dead Message Queue 0
Qurrent Total Message Bytes in Dead Message Queue 0
Log Dead Messages true
Truncate Message Body in Dead Message Queue fal se
Max Nunber of Messages in System unlimted (-1)
Max Total Message Bytes in System unlimted (-1)
Max Message Size 70m
Auto Oreate Queues true
Auto Oreate Topics true
Auto Oreated Queue Max Nunber of Active Consuners 1
Auto Oreated Queue Max Nunber of Backup Consuners 0
G uster Broker List (active)
O uster Broker List (configured)
O uster Master Broker
Custer URL
Log Level I NFO
Log Rollover Interval (seconds) 604800
Log Rollover Size (bytes) unlimted (-1)

Chapter 5

Managing a Broker

101

Updating Broker Properties

Updating Broker Properties

You can use the updat e bkr subcommand to update the following broker properties:

* ing. autocreate. queue

e inmg.autocreate.topic

= inmg.autocreate. queue. maxNumAct i veConsuner s
= inmg. aut ocreat e. queue. maxNunBackupConsuner s
e inmg.cluster.url

e ing.destination. DMQ truncat eBody

e inmg.destination.| ogDeadMsgs

e im.log.level

e im.log.file.rolloversecs

e im.log.file.rolloverbytes

 ing.system nmax_count

e ing.systemnax_size

 inm. message. max_si ze

e i nmg. portmapper. port

This is the syntax of the updat e bkr subcommand:

102

i ngcnd updat e bkr [- b hostName: portNumber] - o attribute=value [[- 0 attribute=valuel] ...]

The subcommand changes the specified attributes for the default broker or a
broker at the specified host and port. For example, the following command turns
off the auto-creation of queue destinations:

i ngcnd update bkr -0 "inmg. autocreate. queue=fal se" -u adnin

The properties are described in Chapter 14, “Broker Properties Reference.”

Message Queue 3 2005Q4 « Administration Guide

Pausing and Resuming a Broker

Pausing and Resuming a Broker

After you start the broker, you can use i ngcnd subcommands to control the state of
the broker.

Pausing a Broker

Pausing a broker suspends the broker’s connection service threads, which causes
the broker to stop listening on the connection ports. As a result, the broker will no
longer be able to accept new connections, receive messages, or dispatch messages.

However, pausing a broker does not suspend the adm n connection service, letting
you perform administration tasks needed to regulate the flow of messages to the
broker. Pausing a broker also does not suspend the cl ust er connection service.
However message delivery within a cluster depends on the delivery functions
performed by the different brokers in the cluster. Therefore, pausing a broker in a
cluster might result in a slowing of some message traffic.

This is the syntax of the pause bkr subcommand:

i ngcnd pause bkr [-b hostName: portNumber]
The command pauses the default broker or a broker at the specified host and port.
The following command pauses the broker running on nyhost at port 1588.

i ngcnmd pause bkr -b nyhost: 1588 -u admn

You can also pause individual connection services and individual physical
destinations. For more information, see “Pausing and Resuming a Connection
Service” on page 110 and “Pausing and Resuming Physical Destinations” on
page 123.

Resuming a Broker

Resuming a broker reactivates the broker’s service threads and the broker resumes
listening on the ports.

This is the syntax of the resunme bkr subcommand:

i ngcmd resume bkr [-b hostName: portNumber]

Chapter 5 Managing a Broker 103

Shutting Down and Restarting a Broker

The subcommand resumes the default broker or a broker at the specified host and
port.

The following command resumes the broker running on | ocal host at port 7676.

i ngcnd resume bkr -u adm n

Shutting Down and Restarting a Broker

104

Shutting down the broker gracefully terminates the broker process. The broker
stops accepting new connections and messages, completes delivery of existing
messages, and terminates the broker process.

This is the syntax of the shut down bkr subcommand:
i ngcnd shut down bkr [-b hostName: portNumber]

The subcommand shuts down the default broker or a broker at the specified host
and port.

The following command shuts down the broker running on ctrl srv at port 1572:
i ngcnd shut down bkr -b ctrlsrv: 1572 -u adnmin

Usetherestart bkr subcommand to shut down and restart the broker. This is the
syntax of therestart bkr subcommand:

ingcnd restart bkr [-b hostName: portNumber]

The subcommand shuts down and restarts the default broker or a broker at the
specified host and port, using the options specified when the broker first started.
To choose different options, shut down the broker and then restart it, specifying
the options you want.

Message Queue 3 2005Q4 « Administration Guide

Displaying Broker Metrics

Displaying Broker Metrics

To display metrics information about a broker, use the et ri cs bkr subcommand.
This is the syntax of the netrics bkr subcommand:

i ngend netrics bkr [-b hostName: portNumber]
[- m metricType] [-int interval] [-nsp numSamples]

The subcommand displays broker metrics for the default broker or a broker at the
specified host and port.

Use the - moption to specify one of the following metric types to display:

- ttl Displays metrics about the messages and packets flowing into and out
of the broker (default metric type).

e rts Displays metrics about the rate of flow of messages and packets into
and out of the broker (per second).

= cxn Displays connections, virtual memory heap, and threads.

Use the - i nt option to specify the interval (in seconds) at which to display the
metrics. The default is 5 seconds.

Use the - nsp option to specify the number of samples displayed in the output. The
default is an unlimited number (infinite).

For example, to get the rate of message flow into and out of the broker at ten second
intervals:

inmgcnd netrics bkr -mrts -int 10 -u admn

This command produces output like the following:

Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec
In Qut I'n Qut In Qut In Qut
0 0 27 56 0 0 38 66
10 0 7365 56 10 10 7457 1132
0 0 27 56 0 0 38 73
0 10 27 7402 10 20 1400 8459
0 0 27 56 0 0 38 73

For a more detailed descriptionabout the data gathered and reported by the broker,
see “Brokerwide Metrics” on page 336.

Chapter 5 Managing a Broker 105

Managing Connection Services

Managing Connection Services

106

The i ngemd utility includes subcommands that allow you to perform the following
connection service management tasks:

= Listing Connection Services

= Displaying Connection Service Information
= Updating Connection Service Properties

= Displaying Connection Service Metrics

= Pausing and Resuming a Connection Service

A broker supports connections from both application clients and administration
clients. The connection services currently available from a Message Queue broker
are shown in Table 5-1. As shown in the table, each service is associated with the
service type it uses (NORVAL for application clients or ADM N for administration
clients) and with an underlying transport protocol.

Table 5-1 Connection Services Supported by a Broker

Service Name Service Type Protocol Type

jms NORMAL tcp

ssljms (Enterprise Edition) NORMAL tls (SSL-based security)
httpjms (Enterprise Edition) NORMAL http

httpsjms (Enterprise Edition) NORMAL https (SSL-based security)
admin ADMIN tcp

ssladmin (Enterprise Edition) ADMIN tls (SSL-based security)

You can use i ngecnmd subcommands to manage connection services as a whole or to
manage a particular connection service. If the target of a subcommand is a
particular service, use the - n option to specify one of the names listed in the Service
Name column of Table 5-1.

Message Queue 3 2005Q4 « Administration Guide

Managing Connection Services

Listing Connection Services

To list available connection services on a broker, use the | i st svc subcommand.
This is the syntax of the | i st svc subcommand:
ingcmd st svc [-b hostName: portNumber]

The subcommand lists all connection services on the default broker or on a broker
at the specified host and port.

The following command lists all services on the broker running on | ocal host at
port 7676:

ingcmd [ist sve -u admin

The command will output information like the following:

Servi ce Name Port Nunber Service State
adnin 41844 (dynam c) RUNNI NG
htt pj ns - UNKNOMN
htt psj ns - UNKNOWN
j ms 41843 (dynam c) RUNNI NG
ssladnin dynani ¢ UNKNOWN
ssljns dynam ¢ UNKNOWN

Displaying Connection Service Information

To query and display information about a single service, use the query
subcommand.

This is the syntax for the query svc subcommand:
i ngcmd query svc -n serviceName[- b hostName: portNumber]

The query svc subcommand displays information about the specified service
running on the default broker or on a broker at the specified host and port.

For example:

ingcnmd query svc -n jms -u adnmin

Chapter 5 Managing a Broker 107

Managing Connection Services

108

After prompting for the password, the command produces output like the
following:

Service Nane jms
Service State RUNNI NG
Port Nunber 60920 (dynamic)

CQurrent Number of Al ocated Threads 0
Qurrent Nunber of Connections 0

M n Nunber of Threads 10
Max Nunber of Threads 1000

Updating Connection Service Properties

You can use the updat e subcommand to change the value of one or more of the
service properties listed in Table 5-2.

Table 5-2 Connection Service Properties Updated by i ngcnd

Property Description

port The port assigned to the service to be updated (does not apply to
httpjms or httpsjms). A value of 0 means the port is dynamically
allocated by the Port Mapper.

m nThr eads The minimum number of threads assigned to the service.

maxThr eads The maximum number of threads assigned to the service.

This is the syntax of the updat e subcommand:

i ngcnd updat e svc -n serviceName[- b hostName: portNumber]
- 0 attribute=value [- o attribute=valuel] ...

This subcommand updates the specified attribute of the specified service running
on the default broker or on a broker at the specified host and port. For a description
of service attributes, see “Connection Properties” on page 285.

The following command changes the minimum number of threads assigned to the
jms service to 20.

i ngcnmd update svec -n jns -0 “mnThreads=20" -u admn

Message Queue 3 2005Q4 « Administration Guide

Managing Connection Services

Displaying Connection Service Metrics

To display metrics information about a single service, use the netri cs
subcommand.

This is the syntax of the net ri ¢cs subcommand:

ingcmd netrics sve -n serviceName|[- b hostName: portNumber] [- m metricType]
[-int interval] [-nsp numSamples]

The subcommand displays metrics for the specified service on the default broker or
on a broker at the specified host and port.

Use the - moption to specify the type of metric to display:

- ttl Displays metrics on messages and packets flowing into and out of the
broker by way of the specified connection service. (default metric type).

e rts Displays metrics on rate of flow of messages and packets into and out of
the broker (per second) by way of the specified connection service.

= cxn Displays connections, virtual memory heap, and threads.

Use the - i nt option to specify the interval (in seconds) at which to display the
metrics. The default is 5 seconds.

Use the - nsp option to specify the number of samples displayed in the output. The
default is an unlimited number (infinite).

For example, to get cumulative totals for messages and packets handled by the jms
connection service:

ingcnmd netrics sve -n jms -mttl -u adnin

After prompting for the password, the command produces output like the
following:

Msgs Msg Bytes Pkt s Pkt Bytes
In Qut I'n Qut In Qut In Qut
164 100 120704 73600 282 383 135967 102127
657 100 483552 73600 775 876 498815 149948

For a more detailed description of the use of i ngcnd to report connection service
metrics, see “Connection Service Metrics” on page 338.

Chapter 5 Managing a Broker 109

Managing Connection Services

110

Pausing and Resuming a Connection Service

To pause any service other than the admin service (which cannot be paused), use
the pause svc and resune svc subcommands.

This is the syntax of the pause svc subcommand:
i ngcnmd pause svc -n serviceName [-b hostName: portNumber]

The subcommand pauses the specified service running on the default broker or on
a broker at the specified host and port. For example, the following command
pauses the htt pj s service running on the default broker.

i ngcnmd pause svc -n httpjnms -u admn
Pausing a service has the following effects:

= The broker stops accepting new client connections on the paused service. If a
Message Queue client attempts to open a new connection, it will get an
exception.

= All the existing connections on the paused service are kept alive, but the broker
suspends all message processing on such connections until the service is
resumed. (For example, if a client attempts to send a message, the send method
will block until the service is resumed.)

= The message delivery state of any messages already received by the broker is
maintained. (For example, transactions are not disrupted and message delivery
will resume when the service is resumed.)

To resume a service, use the r esune svc subcommand.
This is the syntax of the resunme svc subcommand:
i ngcmd resume sve -n serviceName[- b hostName: portNumber]

The subcommand resumes the specified service running on the default broker or
on a broker at the specified host and port.

Message Queue 3 2005Q4 « Administration Guide

Getting Information About Connections

Getting Information About Connections

The i ngcrd utility includes subcommands that allow you to list and get
information about connections.

Thelist cxnsubcommand lists all connections of a specified service name. This is
the syntax of the list cxn subcommand:

ingemd [ist cxn [-svn serviceName] [-b hostName: portNumber]

The subcommand lists all connections of the specified service name on the default
broker or on a broker at the specified host and port. If the service name is not
specified, all connections are listed.

For example, the following command lists all connections on the default broker:

ingcnd [ist cxn -u admn

After prompting for the password, the command produces output like the

following:
Listing all the connections on the broker specified by:
Host Primary Port
| ocal host 7676
Connection ID User Service Producers Consumers Host
1964412264455443200 guest jns 0 1 127.0.0.1
1964412264493829311 adnin adnin 1 1 127.0.0.1
Successful ly Iisted connections.

To query and display information about a single connection service, use the query
subcommand.

query cxn -n connectionID[- b hostName: portNumber]

The subcommand displays information about the specified connection on the
default broker or on a broker at the specified host and port.

For example:

i ngcmd query cxn -n 421085509902214374 -u adnin

Chapter 5 Managing a Broker 111

Managing Durable Subscriptions

After prompting for the password, the command produces output like the
following:

Connection 1D 421085509902214374
User guest

Service j s

Producers 0

Consuner s 1

Host 111. 22. 333. 444

Por t 60953

dient ID

dient Platform

Managing Durable Subscriptions

112

Using i mgcnd subcommands you can manage a broker’s durable subscriptions by
doing one or more of the following:

= Listing durable subscriptions
= Purging all messages for a durable subscription
= Destroying a durable subscription

A durable subscription is a subscription to a topic that is registered by a client as
durable; it has a unique identity and it requires the broker to retain messages for
that subscription even when its consumer becomes inactive. Normally, the broker
may only delete a message held for a durable subscriber when the message expires.

To list durable subscriptions for a specified physical destination, use the | i st dur
subcommand. This is the syntax for the list dur subcommand:

ingcnd |ist dur -d destName

For example, the following command lists all durable subscriptions to the topic
SPQuot es, using the broker at the default port on the local host:

ingcnd |ist dur -d SPQuotes

For each durable subscription to a topic, the | i st dur subcommand returns the
name of the durable subscription, the client ID of the user, the number of messages
queued to this topic, and the state of the durable subscription (active/inactive). For
example:

Message Queue 3 2005Q4 « Administration Guide

Managing Transactions

Nane dient ID Nunber of Durabl e Sub
Messages State
nyDurable nydientID 1 | NACTI VE

You can use the information returned from the | i st dur subcommand to identify a
durable subscription you might want to destroy or for which you want to purge
messages.

The purge dur subcommand purges all messages for the specified durable
subscription with the specified Client Identifier. This is the syntax for the pur ge
dur subcommand:

i ngcnd purge dur -n subscrName -c clientlD

The destroy dur subcommand destroys a specified durable subscription with the
specified client identifier. This is the syntax for the destroy dur subcommand:

i ngcnd destroy dur -n subscrName -c clientlD

For example, the following command destroys the durable subscription nyDur abl e
and clientID, nydient | D.

i ngcnd destroy dur -n nyDurable -c nydientlD

Managing Transactions

All transactions initiated by client applications are tracked by the broker. These can
be simple Message Queue transactions or distributed transactions managed by a
distributed transaction (XA resource) manager.

Each transaction has a Message Queue transaction ID—a 64 bit number that
uniquely identifies a transaction on the broker. Distributed transactions also have a
distributed transaction ID (XID) assigned by the distributed transaction
manager—up to 128 bytes long. Message Queue maintains the association of an
Message Queue transaction 1D with an XID.

For distributed transactions, in cases of failure, it is possible that transactions could
be left in a PREPARED state without ever being committed. Hence, as an
administrator you might need to monitor and then roll back or commit transactions
left in a prepared state.

Chapter 5 Managing a Broker 113

Managing Transactions

To list all transactions, being tracked by the broker, use the | i st txn command.
This is the syntax for the | i st tx subcommand:

ingend |ist txn
For example, the following command lists all transactions in a broker.
ingend |ist txn

For each transaction, the | i st subcommand returns the transaction ID, state, user
name, number of messages or acknowledgments, and creation time. For example:

Transaction ID State User name # Msgs/ Creation time

Acks
64248349708800 PREPARED guest 4/0 1/30/02 10: 08: 31 AM
64248371287808 PREPARED guest 0/ 4 1/30/02 10: 09: 55 AM

The command shows all transactions in the broker, both local and distributed. You
can only commit or roll back transactions in the PREPARED state. You should only do
so if you know that the transaction has been left in this state by a failure and is not
in the process of being committed by the distributed transaction manager.

For example, if the broker’s auto-rollback property is set to false (see Table 14-2 on
page 287), you must manually commit or roll back transactions found in a
PREPARED state at broker startup.

The | i st subcommand also shows the number of messages that were produced in
the transaction and the number of messages that were acknowledged in the
transaction (#Msgs/ #Acks). These messages will not be delivered and the
acknowledgments will not be processed until the transaction is committed.

The query subcommand lets you see the same information plus a number of
additional values: the Client 1D, connection identification, and distributed
transaction ID (XID). This is the syntax of the query txn subcommand:

i ngend query txn -n transactionlD
For example, the following example produces the output shown below:

i ngend query txn -n 64248349708800

114 Message Queue 3 2005Q4 « Administration Guide

Managing Transactions

Aient ID

Connect i on guest @92. 18. 116. 219: 62209- >j ns: 62195
Creation tine 1/30/02 10:08:31 AM

Nunber of acknow edgnents 0

Nunber of messages 4

State PREPARED

Transaction I D 64248349708800

User nane guest

XD

6469706F6C7369646577696E6465723130313234313431313030373230

Use the conmi t and r ol | back subcommands to commit or roll back a distributed
transaction. As mentioned previously, only a transaction in the PREPARED state can
be committed or rolled back.

This is the syntax of the commit subcommand:
ingcnd commit txn -n transactionID

For example:
ingcnmd comit txn -n 64248349708800

This is the syntax of the r ol | back. subcommand:
i ngend rol | back txn -n transactionID

See the i ng. transacti on. aut or ol | back property in Table 14-2 on page 287 for
more information.

It is also possible to configure the broker to automatically roll back transactions in
the PREPARED state at broker startup.

Chapter 5 Managing a Broker 115

Managing Transactions

116 Message Queue 3 2005Q4 « Administration Guide

Chapter 6

Managing Physical Destinations

This chapter explains how you use the i ngcnd utility to manage physical
destinations. A Message Queue message is routed to its consumer clients by way of
a physical destination on a broker. The broker manages the memory and persistent
storage associated with the physical destinations, and sets their behaviors.

In a cluster, you create a physical destination on one broker, and the cluster
propagates that physical destination to all brokers. An application client can
subscribe to a topic or consume from a queue that is on any broker in the cluster,
because the brokers cooperate to route messages across the cluster. However, only
the broker to which a message was originally produced manages persistence and
acknowledgment for that message.

This chapter covers the following topics:

= *“Using the Command Utility” on page 118

= “Creating a Physical Destination” on page 119

= “Listing Physical Destinations” on page 121

= “Displaying Information about Physical Destinations” on page 121
= “Updating Physical Destination Properties” on page 123

= *“Pausing and Resuming Physical Destinations” on page 123
= “Purging Physical Destinations” on page 124

= “Destroying Physical Destinations” on page 125

= “Compacting Physical Destinations” on page 126

= “Configuring Use of the Dead Message Queue” on page 128

Table 13-5 provides full reference information about the i ngcnd subcommands for
managing physical destinations and accomplishing these tasks.

117

Using the Command Utility

See the Message Queue Technical Overview for an introduction to physical
destinations.

NOTE A client application uses a Dest i nat i on object whenever it interacts
with a physical destination. For provider-independence and
portability, clients typically use administrator-created destination
objects, which are called destination administered objects. You can
configure administered objects for use by client applications, as
described in Chapter 8, “Managing Administered Objects.”

Using the Command Utility

You use the Message Queue Command utility (i ngcnd) to manage physical
destinations. The syntax of the i ngcnd command is the same as when you use it for
managing other broker services.

Full reference information about i ngcnd, its subcommands, and its options, is
available in Chapter 13, “Command Line Reference” on page 265.

Subcommands

Table 6-1 lists the i ngcnd subcommands whose use is described in this chapter. For
reference information about these subcommands, see “Physical Destination
Management” on page 275.

Table 6-1 Physical Destination Subcommands for the Command Utility

Subcommand and Argument Description

conpact dst Compacts the file-based data store for one or more physical
destinations.

create dst Creates a physical destination.

destroy dst Destroys a physical destination.

list dst Lists physical destinations on a broker.

metrics dst Displays physical destination metrics.

pause dst Pauses one or more physical destinations on a broker.

purge dst Purges all messages on a physical destination without

destroying the physical destination.

118 Message Queue 3 2005Q4 « Administration Guide

Creating a Physical Destination

Table 6-1 Physical Destination Subcommands for the Command Utility (Continued)

Subcommand and Argument Description

query dst Queries and displays information on a physical destination.

resune dst Resumes one or more paused physical destinations on a
broker.

updat e dst Updates properties of a destination.

Creating a Physical Destination

To create a physical destination, you use the i ngcnd cr eat e subcommand. This is
the syntax for the cr eat e subcommand:

create dst -t destType -n destName [-0 property=valug] [-o0 property=valuel] ...
When creating a physical destination, you specify the following:
= The physical destination type, t (topic) or g (Queue).
= The physical destination name. The naming rules are as follows:

o The name must contain only alphanumeric characters. It cannot contain
spaces.

o The name can begin with an alphabetic character, the underscore character
(_) or the dollar sign ($). It cannot begin with the character string “mg.”

= Nondefault values for the physical destination’s properties.
You can also set properties when you update a physical destination.

Many physical destination properties affect broker memory resources and message
flow. For example, you can specify the number of producers that can send to a
physical destination, the number and size of the messages they can send, and the
response that the broker should take when physical destination limits are reached.
The limits are similar to brokerwide limits controlled by broker configuration
properties.

The following properties are used for both queue destinations and topic
destinations:

< maxNumvsgs. Specifies the maximum number of unconsumed messages
allowed in the physical destination.

= maxTot al MsgByt es: Specifies the maximum total amount of memory (in bytes)
allowed for unconsumed messages in the physical destination.

Chapter 6 Managing Physical Destinations 119

Creating a Physical Destination

120

< |imitBehavior. Specifies how the broker responds when a memory-limit
threshold is reached.

= nmaxByt esPer Msg. Specifies the maximum size (in bytes) of any single message
allowed in the physical destination.

= maxNunPr oducer s. Specifies the maximum number of producers for the physical
destination.

= consuner Fl owLi m t . Specifies the maximum number of messages to be
delivered to a consumer in a single batch.

= islLocal Only. Applies only to broker clusters. Specifies that a physical
destination is not replicated on other brokers, and is limited to delivering
messages only to local consumers (consumers connected to the broker on
which the physical destination is created).

= useDMQ Specifies whether a physical destination’s dead messages are
discarded or put on the dead message queue.

The following properties are used for queue destinations only:

= maxNumAct i veConsuner s. Specifies the maximum number of consumers that
can be active in load-balanced delivery from a queue destination.)

< maxNunBackupConsuner s. Specifies the maximum number of backup
consumers that can take the place of active consumers, if any fail during
load-balanced delivery from a queue destination.

= local DeliveryPreferred. Applies only to load-balanced queue delivery in
broker clusters. Specifies that messages be delivered to remote consumers only
if there are no consumers on the local broker.

See Chapter 15, “Physical Destination Property Reference” on page 313 for full
reference information about physical destination properties.

For auto-created destinations, you set default property values in the broker’s
instance configuration file. Reference information on auto-create properties is
located in Table 14-3 on page 289.

[l To create a physical destination
= Tocreate a queue destination, enter a command like the following:
ingcnmd create dst -n nyQueue -t g -0 “maxNumActi veConsuner s=5"
= To create a topic destination, enter a command like the following:

ingcnmd create dst -n nyTopic -t t -0 “nmaxByt esPer Msg=5000"

Message Queue 3 2005Q4 « Administration Guide

Listing Physical Destinations

Listing Physical Destinations

You can get information about a physical destination’s current property values,
about the number of producers or consumers associated with a physical
destination, and about messaging metrics, such as the number and size of messages
in the physical destination.

To find a physical destination about which you want to get information, list all
physical destinations on a broker using the | i st dst subcommand. This is the
syntax for the | i st dst subcommand:

[ist dst [-t destType] [-tnp]

The command lists physical destinations of the specified type. The value for the
destination type (-t) option can be q (queue) ort (topic).

If you omit the destination type, physical destinations of all types are listed.

Thelist dst subcommand can optionally specify the type of destination to list or
include temporary destinations (using the - t np option). Temporary destinations
are created by clients, normally for the purpose of receiving replies to messages
sent to other clients.

For example, to get a list of all physical destinations on the broker running on
nyHost at port 4545, enter the following command:

ingcnd |ist dst -b nyHost: 4545

Information for the dead message queue, ng. sys. dny, is always displayed, in
addition to any other physical destinations, unless you specify the destination type
t to include only topics.

Displaying Information about Physical
Destinations

To get information about a physical destination’s current properties, use the
query dst subcommand. This is the syntax of the quer y dst subcommand:

query dst -t destType - n destName

The command lists information about the destination of the specified type and
name. For example, the following command displays information about the queue
destination XQueue:

ingcmd query dst -t g -n XQueue -u admn

Chapter 6 Managing Physical Destinations 121

Displaying Information about Physical Destinations

The command produces output like the following:

| ocal host 7676

Destination Nanme XQueue
Destination Type Queue
Destination State RUNN NG
Created Administratively true

Qurrent Nunber of Messages 0

Qurrent Total Message Bytes 0

CQurrent Nunber of Producers 0

Qurrent Nunber of Active Consumers 0

Qurrent Nunber of Backup Consuners 0

Max Nunber of Messages unlimted (-1)
Max Total Message Bytes unlimted (-1)
Max Bytes per Message unlimted (-1)
Max Nunber of Producers 100

Max Nunber of Active Consuners 1

Max Nunber of Backup Consurers 0

Limt Behavior REJECT _NEWEST
Consuner F ow Lint 1000

I's Local Destination fal se

Local Delivery is Preferred fal se

Use Dead Message Queue true

The output also shows the number of producers and consumers associated with
the destination. For queue destinations, the number includes active consumers and
backup consumers.

You can use the updat e dst subcommand to change the value of one or more
properties (see “Updating Physical Destination Properties” on page 123).

122 Message Queue 3 2005Q4 « Administration Guide

Updating Physical Destination Properties

Updating Physical Destination Properties

You can change the properties of a physical destination by using the updat e dst
subcommand and the - o option to specify the property to update. This is the
syntax for the updat e dst subcommand:

update dst -t destType-n destName- o property=value [[-o0 property=valuel] ...]

The command updates the value of the specified properties at the specified
destination. The property name can be any property listed in Table 15-1.

You can use the - 0 option multiple times to update multiple properties. For
example, the following command changes the maxByt esPer Msg property to 1000
and the MaxNumvsgs property to 2000:

i ngcmd update dst -t g -n nyQueue -0 “nmaxByt esPer Msg=1000"
-0 “maxNunisgs=2000" -u adnin
See Chapter 15, “Physical Destination Property Reference” for a list of the
properties that you can update.

You cannot use the updat e dst subcommand to update the type of a physical
destination or to update the i sLocal Onl y property.

NOTE The dead message queue is a specialized physical destination whose
properties differ somewhat from those of other destinations. For
more information, see “Configuring Use of the Dead Message
Queue” on page 128.

Pausing and Resuming Physical Destinations

You can pause a physical destination to control the delivery of messages from
producers to the destination, or from the destination to consumers, or both. In
particular, you can pause the flow of messages into a destination to help prevent
destinations from being overwhelmed with messages when production of
messages is much faster than consumption. You must pause a physical destination
before compacting it.

To pause the delivery of messages to or from a physical destination, use the
pause dst subcommand. This is the syntax of the pause dst subcommand:

pause dst [-t destType - n destName] [-pst pauseType]

Chapter 6 Managing Physical Destinations 123

Purging Physical Destinations

The subcommand pauses the delivery of messages to consumers (- pst CONSUMERS),
or from producers (- pst PRCDUCERS), or both (- pst ALL), for the destination of the
specified type and name. If no destination type and name are specified, all physical
destinations are paused. The default is ALL.

Example:
i ngcnd pause dst -n nyQueue -t g -pst PRCDUCERS -u admin
i ngcnd pause dst -n nyTopic -t t -pst CONSUMERS -u admin

To resume delivery to a paused destination, use the r esune dst subcommand. This
is the syntax of the resune dst subcommand:

resume dst [-t destType - n destName]

The subcommand resumes delivery of messages to the paused destination of the
specified type and name. If no destination type and name are specified, all
destinations are resumed.

Example:

i ngcnd resume dst -n nyQueue -t g

In a broker cluster, instances of the physical destination reside on each broker in
the cluster. You must pause each one individually.

Purging Physical Destinations

124

You can purge all messages currently queued at a physical destination. Purging a
physical destination means that all messages stored at the destination are deleted.

You might want to purge messages when the accumulated messages are taking up
too much of the system’s resources. This might happen when a queue does not
have registered consumer clients and is receiving many messages. It might also
happen if inactive durable subscribers to a topic do not become active. In both
cases, messages are held unnecessarily.

To purge messages at a physical destination, use the pur ge dst subcommand. This
is the syntax of the pur ge dst subcommand:

purge dst -t destType -n destName

The subcommand purges messages at the physical destination of the specified type
and name.

Message Queue 3 2005Q4 « Administration Guide

Destroying Physical Destinations

Examples:
ingcnd purge dst -n nyQueue -t g -u adnmin
ingcnd purge dst -n nyTopic -t t -u adnmin

If you have shut down the broker and do not want old messages to be delivered
when you restart it, use the -reset messages option to purge stale messages; for
example:

i ngbrokerd -reset messages -u admin
This saves you the trouble of purging destinations after restarting the broker.

In a broker cluster, instances of the physical destination reside on each broker in
the cluster. You must purge each of these destinations individually.

Destroying Physical Destinations

To destroy a physical destination, use the dest roy dst subcommand. This is the
syntax of the destroy dst subcommand:

destroy dst -t destType -n destName
The subcommand destroys the physical destination of the specified type and name.
Example:

i ngcnd destroy dst -t g -n nyQueue -u admin

Destroying a physical destination purges all messages at that destination and
removes it from the broker; the operation is not reversible.

You cannot destroy the dead message queue.

Chapter 6 Managing Physical Destinations 125

Compacting Physical Destinations

Compacting Physical Destinations

126

If you are using a file-based data store as the persistent store for messages, you can
monitor disk utilization and compact the disk when necessary.

The file-based message store is structured so that messages are stored in directories
corresponding to the physical destinations in which they are being held. In each
physical destination’s directory, most messages are stored in one file consisting of
variable-sized records, the variable-sized record file. (To alleviate fragmentation,
messages whose size exceeds a configurable threshold are stored in their own
individual files.)

As messages of varying sizes are persisted and then removed from the
variable-sized record file, holes may develop in the file where free records are not
being re-used.

To manage unused free records, the Command utility includes subcommands for
monitoring disk utilization per physical destination and for reclaiming free disk
space when utilization drops.

Monitoring a Physical Destination’s Disk Utilization

To monitor a physical destination’s disk utilization, use a command like the
following:

ingcnd metrics dst -t g -n nyQueue -mdsk -u admn

This command produces output like the following:

806400 804096 99
1793024 1793024 100
2544640 2518272 98

Message Queue 3 2005Q4 « Administration Guide

Compacting Physical Destinations

The columns in the subcommand output have the following meaning:

Table 6-2 Physical Destination Disk Utilization Metrics

Metric Description

Reserved Disk space in bytes used by all records, including records that hold active
messages and free records waiting to be reused.

Used Disk space in bytes used by records that hold active messages.

Utilization Ratio Quotient of used disk space divided by reserved disk space. The higher the
ratio, the more the disk space is being used to hold active messages.

Reclaiming Unused Physical Destination Disk Space

The disk utilization pattern depends on the characteristics of the messaging
application that uses a particular physical destination. Depending on the relative
flow of messages into and out of a physical destination, and the relative size of
messages, the reserved disk space might grow over time.

If the message producing rate is greater than the message consuming rate, free
records should generally be reused and the utilization ratio should be on the high
side. However, if the message producing rate is similar to or smaller than the
message consuming rate, you can expect that the utilization ratio will be low.

In general, you want the reserved disk space to stabilize and the utilization to
remain high. As a rule, if the system reaches a steady state in which the amount of
reserved disk space generally stays constant and utilization rate is high (above
75%), there is no need to reclaim the unused disk space. If the system reaches a
steady state and utilization rate is low (below 50%), you can compact the disk to
reclaim the disk space occupied by free records.

Use the conpact dst subcommand to compact the data store. This is the syntax for
the compact dst subcommand:

conpact dst [-t destType -n destName]

The subcommand compacts the file-based data store for the physical destination of
the specified type and name. If no destination type and name are specified, all
destinations are compacted. Physical destinations must be paused before they can
be compacted.

If the reserved disk space continues to increase over time, reconfigure the
destination’s memory management by setting destination memory limit properties
and limit behaviors (see Table 15-1 on page 313).

Chapter 6 Managing Physical Destinations 127

Configuring Use of the Dead Message Queue

[0 To Reclaim Unused Physical Destination Disk Space

1. Pause the destination.

i ngcnd pause dst -t g -n nyQueue -u adnmin
2. Compact the disk.

i ngcnmd compact dst -t g -n nyQueue -u adnin
3. Resume the physical destination.

ingcnd resume dst -t g -n nyQueue -u admn

If destination type and name are not specified, these operations are performed for
all physical destinations.

Configuring Use of the Dead Message Queue

128

The dead message queue, ng. sys. dng, is a system-created physical destination that
holds the dead messages of a broker and its other physical destinations. The dead
message queue is a tool for monitoring, tuning system efficiency, and
troubleshooting. For a definition of the term “dead message” and a more detailed
introduction to the dead message queue, see the Message Queue Technical Overview.

The broker automatically creates a dead message queue when it starts. The broker
places messages on the queue if it cannot process them, or if their time-to-live has
expired. In addition, other physical destinations can use the dead message queue to
hold discarded messages. Use of the dead message queue provides information
that is useful for troubleshooting the system.

Configuring Use of the Dead Message Queue

By default, a physical destination is configured to use the dead message queue.
You can disable a physical destination from using the dead message queue, or
enable it to do so, by setting the physical destination property useDVQ

The following example creates a queue called nyDi st that uses the dead message
queue by default:

ingcnd create dst -n -nyDist -t q
The following example disables use of the dead message queue for the same queue:

ingcnd update dst -n nyDist -t q -0 useDMXfal se

Message Queue 3 2005Q4 « Administration Guide

Configuring Use of the Dead Message Queue

You can enable all auto-created physical destinations on a broker to use the dead
message queue, or disable them from doing so, by setting the
i my. aut ocr eat e. dest i nati on. useDMYbroker property.

Configuring and Managing the Dead Message
Queue

You can use the Message Queue Command utility (i ngecnd) to manage the dead
message queue as you manage other queues, with some differences. For example,
because the dead message queue is system-created, you cannot create, pause, or
destroy it. Also, as shown in Table 6-3, default values for the dead message queue
sometimes differ from those of normal queues.

Dead Message Queue Properties

You configure the dead message queue as you configure other queues, but certain
physical destination properties do not apply or have different default values.
Table 6-3 lists queue properties that the dead message queue handles in a unique
way.

Table 6-3 Dead Message Queue Treatment of Standard Physical Destination Properties

Property Unique Treatment by Dead Message Queue

|'i m t Behavi or The default value for the dead message queue is
REMOVE_QLDEST. (The default value for other queues is
REJECT_NEWEST.) Flow control is not supported on the dead
message queue.

| ocal Del i veryPreferred Does not apply to the dead message queue.

maxNumVsgs The default value for the dead message queue is 1000. The
default value for other queues is - 1 (unlimited).

maxNunPr oducer s Does not apply to the dead message queue.

maxTot al MsgByt es The default value for the dead message queue is 10 MB. The
default value for other queues is - 1 (unlimited).

i sLocal Onl'y In a broker cluster, a dead message queue is always a local
physical destination and this property is permanently set to
true. However, a local broker’s dead message queue can
contain messages produced by clients of other brokers in the
cluster, if the local broker marks the messages as dead.

Chapter 6 Managing Physical Destinations 129

Configuring Use of the Dead Message Queue

Message Contents

A broker can place an entire message on the dead message queue, or it can discard
the message body contents, retaining just the header and property data. By default,
the dead message queue stores entire messages.

If you want to reduce the size of the dead message queue and if you do not plan to
restore dead messages, consider setting the i my. desti nati on. DMQ t r uncat eBody
broker property to t r ue:

i ngcnd update bkr -o ing. destination. DMQ truncat eBody=t rue

This will discard the message body and retain only the headers and property data.

Enabling Dead Message Logging

Dead message logging is disabled by default. Enabling dead message logging
allows the broker to log the following events:

= The broker moves a message to the dead message queue

= The broker discards a message from the dead message queue and from any
physical destination that does not use the dead message queue

= A physical destination reaches its limits
The following command enables dead message logging:
i ngcnmd update bkr -0 ing. destination. | ogDeadMsgs=true

Dead message logging applies to all physical destinations that use the dead
message queue. You cannot enable or disable logging for an individual physical
destination.

130 Message Queue 3 2005Q4 « Administration Guide

Chapter 7

Managing Security

As administrator, you configure a user repository to authenticate users, to define
access control, to configure a Secure Socket Layer (SSL) connection service that
encrypts client-broker communication and to set up a password file for use in
broker startup.

The chapter includes the following sections:

= “Authenticating Users” on page 132

= “Authorizing Users: The Access Control Properties File” on page 142
= “Working With an SSL-Based Service” on page 148

e “Using a Password File” on page 158

= “Creating an Audit Log” on page 160

131

Authenticating Users

Authenticating Users

When a user attempts to connect to the broker, the broker authenticates the user by
inspecting the name and password provided. The broker grants the connection if
the name and password match those in a broker-specific user repository that each
broker is configured to consulit.

You are responsible for maintaining a list of users, their groups, and their
passwords in a user repository. You can use a different user repository for each
broker instance. This section explains how you create, populate, and manage that
repository.

The repository can be one of the following types:
= Aflat-file repository that is shipped with Message Queue

This type of user repository is very easy to use. You can populate and manage
the repository using the User Manager utility (i nquser ngr). To enable
authentication, you populate the user repository with each user’s name and
password and the name of the user’s group.

For more information on setting up and managing the user repository, see
“Using a Flat-File User Repository.”

e An LDAP server

This could be an existing or new LDAP directory server that uses the LDAP v2
or v3 protocol. It is not as easy to use as the flat-file repository, but it is more
scalable, and therefore better for production environments.

If you are using an LDAP user repository, you use the tools provided by the
LDAP vendor to populate and manage the user repository. For more
information, see “Using an LDAP Server for a User Repository” on page 139.

Using a Flat-File User Repository

Message Queue provides a flat-file user repository and a command line tool, the
User Manager utility (i ngquser ngr), that you can use to populate and manage the
flat-file user repository. The following sections describe the flat-file user repository
and how you use the User Manager utility to populate and manage that repository.

132 Message Queue 3 2005Q4 « Administration Guide

Authenticating Users

Creating a User Repository

The flat-file user repository is instance-specific. A default user repository (named
passwd) is automatically created for each broker instance that you start. This user
repository is placed in a directory identified by the name of the broker instance
with which the repository is associated (see Appendix A, “Platform-Specific
Locations of Message Queue Data”):

.Ji nst ances/ instanceName/ et c/ passwd

The repository is created with two entries. Each row of Table 7-1 shows an entry.

Table 7-1 Initial Entries in User Repository

User Name Password Group State
adm n adm n admn active
guest guest anonynous active

These initial entries allow the Message Queue broker to be used immediately after
installation without intervention by the administrator:

= Theinitial guest user entry allows clients to connect to a broker instance using
the default guest user name and password.

= The initial adm n user entry lets you use i ngcnd commands to administer a
broker instance using the default adn n user name and password. You should
update this initial entry to change the password (see “Changing the Default
Administrator Password” on page 138).

The following sections explain how you populate and manage a flat-file user
repository.

User Manager Utility

The Message Queue User Manager utility (i mguser ngr) lets you edit or populate a
flat-file user repository. This section introduces the User Manager utility.
Subsequent sections explain how you use the i mquser ngr subcommands to
accomplish specific tasks.

For full reference information about the i nrquser ngr command, see Chapter 13,
“Command Line Reference.”

Chapter 7 Managing Security 133

Authenticating Users

134

Before using the User Manager, keep the following things in mind:

If a broker-specific user repository does not yet exist, you must start up the
corresponding broker instance to create it.

The i nguser ngr command has to be run on the host where the broker is
installed.

You must have appropriate permissions to write to the repository,: namely, on
Solaris and Linux, you must be the root user or the user who first created the
broker instance.

NOTE Examples in the following sections assume the default broker
instance.
Subcommands

The i nquser ngr command has the subcommands add, del et e, | i st, and updat e.

The add subcommand adds a user and associated password to the specified (or
default) broker instance repository, and optionally specifies the user’s group.
The subcommand syntax is as follows:

add [-i instanceName] -u userName -p passwd [-g group] [-S]

The del et e subcommand deletes the specified user from the specified (or
default) broker instance repository. The subcommand syntax is as follows:

delete [-i instanceName] -u userName [-s] [-f]

The | i st subcommand displays information about the specified user or all
users in the specified (or default) broker instance repository. The subcommand
syntax is as follows:

list [-i instanceName] [-u userName]

The updat e subcommand updates the password and/or state of the specified
user in the specified (or default) broker instance repository. The subcommand
syntax is as follows:

update [-i instanceName] -u userName -p passwd [-a state] [-s] [-f]

update [-i instanceName] -u userName -a state [-p passwd] [-s] [-f]

Message Queue 3 2005Q4 « Administration Guide

Command Options

Authenticating Users

Table 7-2 lists the options to the i ngquser ngr command.

Table 7-2 i muser ngr Options

Option

Description

- a activeState

-f

Specifies (t r ue/f al se) whether the user’s state
should be active. A value of t r ue means that the state
is active. This is the default.

Performs action without user confirmation.

-h Displays usage help. Nothing else on the command
line is executed.

-i instanceName Specifies the broker instance name to which the
command applies. If not specified, the default
instance name, i mgbr oker , is assumed.

-p passwd Specifies the user’s password.

-g group Specifies the user group. Valid values are adni n,
user, anonymous.

-S Sets silent mode.

- U userName Specifies the user name.

-V Displays version information. Nothing else on the
command line is executed.

Groups

When adding a user entry to the user repository for a broker instance, you can
specify one of three predefined groups: adni n, user, or anonynous. If no group is
specified, the default group user is assigned. Groups should be assigned as follows:

e adnmingroup. For broker administrators. Users who are assigned this group
can, by default, configure, administer, and manage the broker. You can assign
more than one user to the adm n group.

= user group. For normal (hon-administration) Message Queue client users.
Most client users are in the user group. By default, users in this group can
produce messages to all topics and queues, consume messages from all topics
and queues, and browse messages in any queue.

Chapter 7 Managing Security

135

Authenticating Users

= anonynous group. For Message Queue clients that do not want a user name
that is known to the broker, possibly because the client application does not
know of a real user name to use. This account is analogous to the anonymous
account present in most FTP servers. You can assign only one user at a time to
the anonynous group. You should restrict the access privileges of this group as
compared to the user group or you should remove users from the group at
deployment time.

To change a user’s group, you must delete the user entry and then add another
entry for the user, specifying the new group.

You cannot rename or delete these system-created groups, or create new groups.
However, you can specify access rules that define the operations that the members
of that group can perform. For more information, see “Authorizing Users: The
Access Control Properties File” on page 142.

User States

When you add a user to a repository, the user’s state is active by default. To make
the user inactive, you must use the update command. For example, the following
command makes the user JoeDinactive:

i nguser mgr update -u JoeD -a fal se

Entries for users that have been rendered inactive are retained in the repository;
however, inactive users cannot open new connections. If a user is inactive and you
add another user who has the same name, the operation will fail. You must delete
the inactive user entry or change the new user’s name or use a different name for
the new user. This prevents you from adding duplicate user names.

Format of User Names and Passwords
User names and passwords must follow these guidelines:

= A user name cannot contain an asterisk (*), comma (,), colon (:), or a new-line
or carriage-return character.

= Auser name or password must be at least one character long.

= Ifauser name or password contains a space, the entire name or password must
be enclosed in quotation marks.

= There is no limit on the length of passwords or user names, except for
command shell restrictions on the maximum number of characters that can be
entered on a command line.

136 Message Queue 3 2005Q4 « Administration Guide

Authenticating Users

Populating and Managing a User Repository

Use the add subcommand to add a user to a repository. For example, the following
command adds the user Kat har i ne with the password sesane to the default broker
instance user repository.

i nquserngr add -u Katharine -p sesame -g user

Use the del et e subcommand to delete a user from a repository. For example, the
following command deletes the user, Bob:

i nquserngr del ete -u Bob

Use the updat e subcommand to change a user’s password or state. For example,
the following command changes Katharine’s password to al addi n:

i nguserngr update -u Katharine -p al addin

To list information about one user or all users, use the | i st command. The
following command shows information about the user named i sa:

inguserngr list -uisa

% imuserngr list -uisa

User repository for broker instance: ingbroker

Chapter 7 Managing Security 137

Authenticating Users

The following command lists information about all users:

i nqusernmgr |ist
% i myuserngr | st
User repository for broker instance: ingbroker
User Narre G oup Active State
adm n adm n true
guest anonynous true
i sa adm n true
testuserl user true
t est user2 user true
t est user 3 user true
testuser4 user fal se
testuserb user fal se

Changing the Default Administrator Password

For the sake of security, you should change the default password of adni n to one
that is known only to you. The following command changes the default
administrator password for the nybr oker broker instance fromadni nto gr andpoobah.

i nquser mgr updat e nybroker -u admin -p grandpoobah

You can quickly confirm that this change is in effect by running any of the
command line tools when the broker instance is running. For example, the
following command will prompt you for a password:

ingcmd |ist svc nybroker -u admn

Entering the new password (gr andpoobah) should work; the old password should
fail.

After changing the password, you should supply the new password any time you
use any of the Message Queue administration tools, including the Administration
Console.

138 Message Queue 3 2005Q4 « Administration Guide

Authenticating Users

Using an LDAP Server for a User Repository

To use an LDAP server for a user repository, you perform the following tasks:
= Editing the instance configuration file

= Setting up access control for administrators

Editing the Instance Configuration File

To have a broker use a directory server, you set the values for certain properties in
the broker instance configuration file, confi g. properti es. These properties enable
the broker instance to query the LDAP server for information about users and
groups whenever a user attempts to connect to the broker instance or perform
messaging operations.

The instance configuration file is located in a directory under the broker instance
directory. The path has the following format:

...l'i nst ances/ instanceName/ pr ops/ confi g. properti es

For information about the operating system-specific location of instance
directories, see Appendix A, “Platform-Specific Locations of Message Queue
Data.”

[0 To Edit the Configuration File to Use an LDAP Server
1. Specify that you are using an LDAP user repository by setting the following
property:
i ng. aut henti cati on. basi c. user _reposi t ory=l dap

2. Settheing. aut henti cation. type property to determine whether a password
should be passed from client to broker in base-64 (basi ¢) or MD5 (di gest)
encoding. When using an LDAP directory server for a user repository, you
must set the authentication type to basi c. For example,

i ng. aut henti cati on. t ype=basi c

Chapter 7 Managing Security 139

Authenticating Users

You must also set the broker properties that control LDAP access. These
properties are stored in a broker’s instance configuration file. The properties
are discussed under “Security Services” on page 83 and summarized under
“Security Properties” on page 298.

Message Queue uses JNDI APIs to communicate with the LDAP directory
server. Consult JNDI documentation for more information on syntax and on
terms referenced in these properties. Message Queue uses a Sun JNDI LDAP
provider and uses simple authentication.

Message Queue supports LDAP authentication failover: you can specify a list
of LDAP directory servers for which authentication will be attempted (see the
reference information for the i my. user. repos. | dap. server property).

See the broker’s confi g. properti es file for a sample of how to set properties
related to LDAP user-repository.

If necessary, you need to edit the users/groups and rules in the access control
properties file. For more information about the use of access control property
files, see “Authorizing Users: The Access Control Properties File” on page 142.

If you want the broker to communicate with the LDAP directory server over
SSL during connection authentication and group searches, you need to activate
SSL in the LDAP server and then set the following properties in the broker
configuration file:

o Specify the port used by the LDAP server for SSL communications. For
example:

i ng. user _repository. | dap. server=nyhost: 7878

o Setthe broker property i ng. user _repository. | dap. ssl . enabl ed
totrue.

When employing multiple LDAP directory servers, use | dap: // to specify
each additional directory server. For example:

i ny. user_repository. | dap. server =myHost: 7878 dap: / / otherHost: 7878...

Separate each additional directory server with a space. All directory
servers in the list must use the same values for other LDAP-related
properties.

140 Message Queue 3 2005Q4 « Administration Guide

ldap://to
ldap://otherHost:7878

Authenticating Users

Setting Up Access Control for Administrators

To create administrative users, you use the access control properties file to specify
users and groups that can create ADM Nconnections. These users and groups must
be predefined in the LDAP directory.

Any user or group who can create an ADM Nconnection can issue administrative
commands.

[0 To Set Up an Administrative User

1.

Enable the use of the access control file by setting the broker property
i my. accesscontrol . enabl ed to t r ue, which is the default value.

The i mg. accesscont rol . enabl ed property enables use of the access control
file.

Open the access control file, accesscontrol . properti es. The location for the
file is listed in Appendix A, “Platform-Specific Locations of Message Queue
Data.”

The file contains an entry such as the following:

servi ce connection access control
HHHHHEHHHEH
connection. NORVAL. al | ow. user =*
connection. ADM N. al | ow. gr oup=admi n

The entries listed are examples. Note that the adni n group exists in the
file-based user repository but does not exist by default in the LDAP directory.
You must substitute the name of a group that is defined in the LDAP directory,
to which you want to grant Message Queue administrator privileges.

To grant Message Queue administrator privileges to users, enter the user
names as follows:

connection. ADM N al | ow. user =userName[[, userName2]...]

To grant Message Queue administrator privileges to groups, enter the group
names as follows:

connection. ADM N al | ow. gr oup=groupName[[, groupName2]...]

Chapter 7 Managing Security 141

Authorizing Users: The Access Control Properties File

Authorizing Users: The Access Control
Properties File

142

An access control properties file (ACL file) contains rules that specify the operations
that users and groups of users can perform. You edit the ACL file to restrict
operations to certain users and groups. You can use a different ACL file for each
broker instance.

The ACL file is used whether user information is placed in a flat-file user
repository or in an LDAP user repository. A broker checks its ACL file when a
client application performs one of the following operations:

= Creates a connection
« Creates a producer
= Creates a consumer
= Browses a queue

The broker checks the ACL file to determine whether the user that generated the
request, or a group to which the user belongs, is authorized to perform the
operation.

If you edit an ACL file, the new settings take effect the next time the broker checks
the file to verify authorization. You need not restart the broker after editing the file.

Creating an Access Control Properties File

The ACL file is instance specific. Each time you start a broker instance, a default file
named accesscontrol . properti es is created in the instance directory. The path to
the file has the following format (see Appendix A, “Platform-Specific Locations of
Message Queue Data”):

.J i nst ances/ brokerlnstanceName/ et c/ accesscontrol . properties

The ACL file is formatted like a Java properties file. It starts by defining the version
of the file and then specifies access control rules in three sections:

= Connection access control
= Physical destination access control

= Physical destination auto-create access control

Message Queue 3 2005Q4 « Administration Guide

Authorizing Users: The Access Control Properties File

The ver si on property defines the version of the ACL properties file; you may not
change this entry.

ver si on=JMJFi | eAccessCont r ol Model / 100

The three sections of the ACL file that specify access control are described below,
following a description of the basic syntax of access rules and an explanation of
how permissions are calculated.

Syntax of Access Rules

In the ACL properties file, access control defines what access specific users or
groups have to protected resources like physical destinations and connection
services. Access control is expressed by a rule or set of rules, with each rule
presented as a Java property:

The basic syntax of these rules is as follows:
resourceType. resourceVariant. operation. access. principal Type=principals

Table 7-3 describes the elements of syntax rules.

Table 7-3 Syntactic Elements of Access Rules

Element Description
resourceType One of the following: connect i on, queue or t opi c.
resourceVariant An instance of the type specified by resourceType. For example, myQueue. The

wild card character (*) may be used to mean all connection service types or all
physical destinations.

operation Value depends on the kind of access rule being formulated.

access One of the following: al | owor deny.

principal Type One of the following: user or gr oup. For more information, see “Groups” on
page 135.

principals Who may have the access specified on the left-hand side of the rule. This may

be an individual user or a list of users (comma delimited) if the pri nci pal Type
is user; it may be a single group or a list of groups (comma delimited list) if the
pri nci pal Type is group. The wild card character (*) may be used to represent
all users or all groups.

Chapter 7 Managing Security 143

Authorizing Users: The Access Control Properties File

Here are some examples of access rules:

= The following rule means that all users may send a message to the queue
named ql.

queue. ql. produce. al | ow. user =*
= The following rule means that any user may send messages to any queue.

queue. *. produce. al | ow. user =*

NOTE To specify non-ASCII user, group, or destination names, use
Unicode escape (\ uXXXX) notation. If you have edited and saved the
ACL file with these names in a non-ASCII encoding, you can
convert the file to ASCII with the Java nat i ve2ascii tool. For more
detailed information, see

http://java. sun. conlj2se/ 1. 4/ docs/ gui de/intl/faq. htn

How Permissions are Computed

When there are multiple access rules in the file, permissions are computed as
follows:

= Specific access rules override general access rules. After applying the following
two rules, all users can send to all queues, but Bob cannot send to t q1.

queue. *. produce. al | ow. user =*
queue. t q1. produce. deny. user =Bob

= Access given to an explicit principal overrides access given to a * principal. The
following rules deny Bob the right to produce messages to t q1, but allow
everyone else to do it.

queue. t ql. produce. al | ow. user =*
queue. t q1. produce. deny. user =Bob

= The * principal rule for users overrides the corresponding * principal for groups.
For example, the following two rules allow all authenticated users to send
messages tot ql.

queue. t ql. produce. al | ow. user =*

queue. t q1. produce. deny. gr oup=*

144 Message Queue 3 2005Q4 « Administration Guide

http://java.sun.com/j2se/1.4/docs/guide/intl/faq.html

Authorizing Users: The Access Control Properties File

Access granted a user overrides access granted to the user’s group. In the
following example, even if Bob is a member of User, he cannot produce
messages to t 1. All other members of User will be able to do so.

queue. t g1. produce. al | ow. gr oup=User
queue. t g1. produce. deny. user =Bob

Any access permission not explicitly granted through an access rule is
implicitly denied. For example, if the ACL file contains no access rules, all
users are denied all operations.

Deny and allow permissions for the same user or group cancel themselves out.
For example, the following two rules cause Bob to be unable to browse q1:

queue. ql. browse. al | ow. user =Bob
queue. ql. br owse. deny. user =Bob

The following two rules prevent the group User from consuming messages at
gs.

queue. g5. consune. al | ow. gr oup=User
queue. g5. consune. deny. gr oup=User

When multiple same left-hand rules exist, only the last entry takes effect.

Access Control for Connection Services

The connection access control section in the ACL properties file contains access
control rules for the broker’s connection services. The syntax of connection access
control rules is as follows:

connect i on. resourceVariant. access. principal Type=principals

Two values are defined for resourceVariant: NORVAL and ADM N These predefined
values are the only types of connection services to which you can grant access.

The default ACL properties file gives all users access to NORVAL connection services
and gives users in the group adni n access to ADM N connection services:

connect i on. NORMAL. al | ow. user =*

connecti on. ADM N. al | ow. gr oup=adni n

Chapter 7 Managing Security 145

Authorizing Users: The Access Control Properties File

146

If you are using a file-based user repository, the default group adni n is created by
the User Manager utility. If you are using an LDAP user repository, you can do one
of the following to use the default ACL properties file:

« Define a group called adm n in the LDAP directory.

= Replace the name adm n in the ACL properties file with the names of one or
more groups that are defined in the LDAP directory.

You can restrict connection access privileges. For example, the following rules
deny Bob access to NORVAL but allow everyone else:

connect i on. NORVAL. deny. user =Bob
connecti on. NORVAL. al | ow. user =*
You can use the asterisk (*) character to specify all authenticated users or groups.

The way that you use the ACL properties file to grant access to ADM Nconnections
differs for file-based user repositories and LDAP user repositories, as follows:

= File-based user repository

o Ifaccess control is disabled, users in the group adni n have ADM N
connection privileges.

o Ifaccess control is enabled, edit the ACL file. Explicitly grant users or
groups access to the ADM Nconnection service.

= LDAP user repository. If you are using an LDAP user repository, do all of the
following:

o Enable access control.

o Edit the ACL file and provide the names of users or groups who can make
ADM N connections. Specify any users or groups that are defined in the
LDAP directory server.

Access Control for Physical Destinations

The destination access control section of the access control properties file contains
physical destination-based access control rules. These rules determine who
(users/groups) may do what (operations) where (physical destinations). The types
of access that are regulated by these rules include sending messages to a queue,
publishing messages to a topic, receiving messages from a queue, subscribing to a
topic, and browsing messages in a queue.

Message Queue 3 2005Q4 « Administration Guide

Authorizing Users: The Access Control Properties File

By default, any user or group can have all types of access to any physical
destination. You can add more specific destination access rules or edit the default
rules. The rest of this section explains the syntax of physical destination access
rules, which you must understand to write your own rules.

The syntax of destination rules is as follows:
resourceType. resourceVariant. operation. access. principal Type=principals

Table 7-4 describes these elements:

Table 7-4 Elements of Physical Destination Access Control Rules

Component Description

resourceType Can be queue or t opi c.

resourceVariant A physical destination name or all physical destinations (*),
meaning all queues or all topics.

operation Can be produce, consune, or br owse.

access Can be al | owor deny.

principal Type Can be user or group.

Access can be given to one or more users and/or one or more groups.

The following examples illustrate different kinds of physical destination access
control rules:

= Allow all users to send messages to any queue destinations.
queue. *. produce. al | ow. user =*

< Deny any member of the group user the ability to subscribe to the topic
Adni ssi ons.

t opi c. Admi ssi ons. consure. deny. gr oup=user

Access Control for Auto-Created Physical
Destinations

The final section of the ACL properties file, includes access rules that specify for
which users and groups the broker will auto-create a physical destination.

Chapter 7 Managing Security 147

Working With an SSL-Based Service

When a user creates a producer or consumer at a physical destination that does not
already exist, the broker will create the destination if the broker’s auto-create
property has been enabled.

By default, any user or group has the privilege of having a physical destination
auto-created by the broker. This privilege is specified by the following rules:

queue. create. al | ow. user =*
topic.create. al | ow. user=*

You can edit the ACL file to restrict this type of access.

The general syntax for physical destination auto-create access rules is as follows:
resourceType. cr eat e. access. principal Type=principals

Where resourceType is either queue or t opi c.

For example, the following rules allow the broker to auto-create topic destinations
for everyone except Snoopy.

topic.create. al | ow. user=*
t opi c. cr eat e. deny. user =Snoopy

Note that the effect of physical destination auto-create rules must be congruent
with that of physical destination access rules. For example, if you 1) change the
destination access rule to forbid any user from sending a message to a destination
but 2) enable the auto-creation of the destination, the broker will create the physical
destination if it does not exist but it will not deliver a message to it.

Working With an SSL-Based Service

148

A connection service that is based on the Secure Socket Layer (SSL) standard sends
encrypted messages sent between clients and broker. This section explains how to
set up an SSL-based connection service.

Message Queue supports the following connection services that are based on the
Secure Socket Layer (SSL) standard:

« ssljns, ssladm n, and cl ust er are used over TCP/IP.
e httpsjnsisused over HTTP.

These connection services allow for the encryption of messages sent between
clients and broker. Message Queue supports SSL encryption based on either
self-signed server certificates or signed certificates.

Message Queue 3 2005Q4 « Administration Guide

Working With an SSL-Based Service

To use an SSL-based connection service, you generate a private key/public key
pair using the Key Tool utility (i mgkeyt ool). This utility embeds the public key in a
self-signed certificate that is passed to any client requesting a connection to the
broker, and the client uses the certificate to set up an encrypted connection.

While Message Queue’s SSL-based connection services are similar in concept, there
are some differences in how you set them up.

The rest of this section describes how to set up secure connections over TCP/IP.

The SSL-based connection service for user over HTTP, ht t psj ns, lets a client and
broker establish a secure connection by way of an HTTPS tunnel servlet. For
information on setting up secure connections over HTTP, see Appendix C,
“HTTP/HTTPS Support” on page 355.

Secure Connection Services for TCP/IP

The following SSL-based connection services provide a direct, secure connection
over TCP/IP:

= The ssl j ns service delivers messages over a secure, encrypted connection
between a client and broker.

= The ssl adm n service creates a secure, encrypted connection between the
Message Queue Command utility (i rgcnd) and a broker. A secure connection
is not supported for the Administration Console (i rgadm n).

= Thecl uster service delivers messages and provides inter-broker
communication over a secure, encrypted connection between brokers in a
cluster (see “Secure Connections Between Brokers” on page 184).

Configuring the Use of Self-Signed Certificates

This section describes how to set up an SSL-based service using self-signed
certificates.

For a stronger level of authentication, you can use signed certificates that are
verified by a certificate authority. First follow the steps in this section and then go
to “Configuring the Use of Signed Certificates” on page 155 to perform additional
steps.

[0 To Set Up an SSL-based Connection Service
1. Generate a self-signed certificate.

Chapter 7 Managing Security 149

Working With an SSL-Based Service

2. Enable the ssl j ns, ssl admi n, or cl ust er connection service in the broker.
3. Start the broker.
4. Configure and run the client (applies only to ssl j ns connection service).

The procedures for setting up ssl j ns and ssl adni n connection services are
identical, except for Step 4, configuring and running the client.

Each of the steps is discussed in some detail in the sections that follow.

Step 1. Generating a Self-Signed Certificate

Message Queue SSL support with self-signed certificates is oriented toward
securing on-the-wire data with the assumption that the client is communicating
with a known and trusted server.

Run the Key Tool utility to generate a self-signed certificate for the broker. On
UNIX® systems you may need to run Key Tool as the superuser (r oot) in order to
have permission to create the key store.

The same certificate can be used for the ssl j ns, ssl adni n, or ¢l ust er connection
service.

Enter the following at the command prompt:
i ngkeyt ool - br oker
The utility prompts you for a key store password.

Generating keystore for the broker ...
Enter keystore password:

Next, the utility prompts for information that identifies the broker whose certificate
this is. The information that you supply will make up an X.500 distinguished name.
The following table lists the prompts, describes them, and provides an example for
each prompt. Values are case-insensitive and can include spaces.

Table 7-5 Distinguished Name Information Required for a Self-Signed Certificate

Prompt Description Example

What is your first and last name? The X.500 commonName (CN). Enter the nyhost . sun. com
fully qualified name of the server that is
running the broker.

What is the name of your organizational unit? The X.500 organizationalUnit (OU). Enter the purchasi ng

name of a department or division.

150 Message Queue 3 2005Q4 « Administration Guide

Working With an SSL-Based Service

Table 7-5 Distinguished Name Information Required for a Self-Signed Certificate (Continued)

Prompt Description Example

What is the name of your organization? The X.500 organizationName (ON). Name of M/ Conpany, Inc.
a larger organization, such as a company or
government entity.

What is the name of your city or locality? The X.500 localityName (L). San Franci sco

What is the name of your state or province? The X.500 stateName (ST). Enter the full California
name of the state or province, without
abbreviating.

What is the two-letter country code for this unit? The X.500 country (C). us

When you have entered the information, Key Tool displays it for confirmation. For
example:

I's ONengserver. sun. com QU=purchasing, O=My Conpany, Inc., L=San
Franci sco, ST=California, C=US correct?

To re-enter values, accept the default or enter no; to accept the current values and
proceed, enter yes. After you confirm, Key Tool pauses while it generates a key
pair.

Next, Key Tool asks for a password to lock the particular key pair (key password).
Enter Return in response to this prompt to use the same password as the key
password and key store password.

NOTE Remember the password you provide. You must provide this
password when you start the broker, to allow the broker to open the
key store. You can store the key store password in a password file
(see “Using a Password File” on page 158).

The i ngkeyt ool command runs the JDK keyt ool utility to generate a self-signed
certificate and places it in Message Queue’s key store, located in a directory that
depends upon the operating system, as shown in Appendix A, “Platform-Specific
Locations of Message Queue Data.”

The key store is in the same format as that supported by the JDK1.2 keyt ool utility.
These are the configurable properties for the Message Queue key store:

< inmg. keystore.file.dirpath. For SSL-based services: specifies the path to the
directory containing the key store file. For the default value, see Appendix A,
“Platform-Specific Locations of Message Queue Data.”

Chapter 7 Managing Security 151

Working With an SSL-Based Service

152

< im. keystore.file.name. For SSL-based services: specifies the name of the key
store file.

= inmm. keystore. passwor d. For SSL-based services: specifies the key store
password.

You might need to regenerate a key pair in order to solve certain problems; for
example:

= You forgot the key store password.

= The SSL-based service fails to initialize when you start a broker and you get the
exception j ava. security. Unrecover abl eKeyExcepti on: Cannot recover key.

This exception may result from the fact that you had provided a key password
that was different from the key store password when you generated the
self-signed certificate in “Step 1. Generating a Self-Signed Certificate” on

page 150.

To Regenerate a Key Pair
1. Remove the broker’s key store, located as shown in Appendix A,
“Platform-Specific Locations of Message Queue Data.”

2. Reruningkeyt ool to generate a key pair as described in “Step 1. Generating a
Self-Signed Certificate” on page 150.

Step 2. Enabling the SSL-Based Service in the Broker

To enable the SSL-based service in the broker, you need to add ssl j ms
(or ssl admi n) to the i ng. servi ce. acti vel i st property.

NOTE The SSL-based cl ust er connection service is enabled using the
i mg. cluster.transport property rather than the
i my. servi ce. activel i st property. See “Secure Connections
Between Brokers” on page 184.

[0 ToEnable an SSL-based Service in the Broker

1. Open the broker’s instance configuration file.

The instance configuration file is located in a directory identified by the name
of the broker instance (instanceName) with which the configuration file is
associated (see Appendix A, “Platform-Specific Locations of Message Queue
Data”):

.[i nst ances/ instanceName/ pr ops/ confi g. properti es

Message Queue 3 2005Q4 « Administration Guide

Working With an SSL-Based Service

Add an entry (if one does not already exist) for the i ng. servi ce. acti vel i st
property and include SSL-based services in the list.

By default, the property includes the jms and admin connection services. You
need to add the ssljms or ssladmin connection services or both (depending on
the services you want to activate):

i ng. servi ce. activel i st=j ns, adm n, ssl j ns, ssl adm n

Step 3. Starting the Broker

Start the broker, providing the key store password. You can provide the password
in any one of the following ways:

Allow the broker to prompt you for the password when it starts up:

i ngbr oker d
Pl ease enter Keystore password: myPassword

Put the password in a password file, as described in “Using a Password File”
on page 158. Once you have put the password in the password file and set the
property i my. passfil e. enabl ed=t r ue, do one of the following:

o Pass the location of the password file to the i mgbr oker d command:
i ngbr okerd -passfile /tmp/ myPassfile

o Start the broker without the -passfi | e option, but specify the location of
the password file using the following two broker configuration properties:

i my. passfile.dirpath=/tmp

i my. passfil e. name=myPassfile

When you start a broker or client with SSL, you might notice that it consumes a lot
of cpu cycles for a few seconds. This is because Message Queue uses JSSE (Java
Secure Socket Extension) to implement SSL. JSSE uses

j ava. security. Secur eRandomto generate random numbers. This method takes a
significant amount of time to create the initial random number seed, and that is
why you are seeing increased cpu usage. After the seed is created, the cpu level
will drop to normal.

Chapter 7 Managing Security 153

Working With an SSL-Based Service

154

Step 4. Configuring and Running SSL-Based Clients

Finally, you configure clients to use the secure connection services. There are two
types of secure connection scenarios over TCP/IP:

= Application clients using ssl j ns
= Message Queue administration clients (such as i ngcnd) using ssl adm n

These are treated separately in the following sections.

Application Clients Using ssljms

You must make sure the client has the necessary Secure Socket Extension (JSSE)
.j ar files in its classpath, and you need to tell it to use the ssl j ns connection
service.

1. Ifyour clientis not using J2SDKZ1.4 (which has JSSE and JNDI support built in),
make sure the client has the following . j ar files in its class path:

jsse.jar, jnet.jar, jcert.jar, jndi.jar

2. Make sure the client has the following Message Queue . j ar files in its class
path:

ing.jar, jns.jar
3. Start the client and connect to the broker’s ssljms service. One way to do this is
by entering a command like the following:
java -Di ngConnecti onType=TLS clientAppName
Setting i ngConnect i onType tells the connection to use SSL.

For more information on using ssl j ms connection services in client
applications, see the chapter on using administered objects in the Message
Queue Developer’s Guide for Java Clients.

Administration Clients (imgcmd) Using ssladmin

You can establish a secure administration connection by including the - secur e
option when using i ngcnd. For example:

imgcmd list svc -b hostName: portNumber -u adminName -secure

where adminName is a valid entry in the Message Queue user repository and the
command will prompt for the password. (If you are using a flat-file repository, see
“Changing the Default Administrator Password” on page 138).

Listing the connection services is a way to show that the ssl adni n service is
running, and that you can successfully make a secure admin connection, as shown
in the following output:

Message Queue 3 2005Q4 « Administration Guide

Working With an SSL-Based Service

Listing all the services on the broker specified by:
Host Primary Port

| ocal host 7676

Servi ce Nane Port Nunber Service State
adm n 33984 (dynamic) RUNNING

htt pj ns - UNKNOMN

htt psj ns - UNKNOMN

j s 33983 (dynamic) RUNN NG

ssl adm n 35988 (dynamic) RUNNING
ssljns dynam ¢ UNKNOMN
Successful ly |isted services.

Configuring the Use of Signed Certificates

Signed certificates provide a stronger level of server authentication than self-signed
certificates. To implement signed certificates, you install a signed certificate into
the key store, and then configure the Message Queue client so that it requires a
signed certificate when it establishes an SSL connection to i ngbr oker d.

You can implement signed certificates only between client and broker, and not
between multiple brokers in a cluster.

The instructions that follow assume that you have already performed the steps
documented under “Configuring the Use of Self-Signed Certificates” on page 149.
While you are following the instructions, it might be helpful to have access to the
information about J2SE keytool and X.509 certificates at http://j ava. sun. com

Step 1: Obtaining and Installing a Signed Certificate

[l To Obtain a Signed Certificate

1. Use the J2SE keytool to generate a Certificate Signing Request (CSR) for the
self-signed certificate you just generated.

Here is an example:

keytool -certreq -keyalg RSA -alias img -file certreq.csr
-keystore /etc/ing/ keystore -storepass nyStorePasswor d

The CSR now encapsulates the certificate in the file certreq. csr.

Chapter 7 Managing Security 155

http://java.sun.com

Working With an SSL-Based Service

156

2.

Generate or request a signed certificate by one of the following methods:

o Have the certificate signed by a well known certificate authority (CA), such
as Thawte or Verisign. See your CA’s documentation for more information
on this process.

o Sign the certificate yourself by using an SSL signing software package.

The resulting signed certificate is a sequence of ASCII characters. If you receive
the signed certificate from a CA, it might arrive as an email attachment or in
the text of a message.

When you get the signed certificate, save it in a file.

These instructions use the example name br oker . cer to represent the broker
certificate.

[0 To Install a Signed Certificate

1.

Check $JAVA HOW/ | i b/ security/ cacert s to find out whether J2SE supports
your CA by default, as follows:

keytool -v -list -keystore $JAVA HOW |ib/security/cacerts
The command lists the root CAs in the system key store.
If your CA is listed, skip the next step.

If your CA is not supported in J2SE, import the certificate authority’s root
certificate into the i mgbr okerd key store.

Here is an example:

keytool -inport -alias ca -file ca.cer -nopronpt -trustcacerts
-keystore /etc/ing/ keystore -storepass nySt orePassword

The ca. cer value is the CA root certificate obtained from the CA.

If you are using a CA test certificate, you probably need to import the Test CA
Root certificate. Your CA should have instructions on how to obtain a copy of
the Test CA Root.

Message Queue 3 2005Q4 « Administration Guide

Working With an SSL-Based Service

Import the signed certificate into the key store to replace the original
self-signed certificate.

For example:

keytool -inport -alias ing -file broker.cer -nopronpt -trustcacerts
-keystore /etc/ing/ keystore -storepass nySt orePassword

The br oker. cer value is the file that contains the signed certificate that you
received from the CA.

The i ngbr oker d key store now has a signed certificate to use for SSL connections.

Step 2: Configuring the Client Runtime to Require a Signed
Certificate

To Configure the Java Client Runtime

By default, the Message Queue client runtime trusts i ngbr oker d and accepts any
certificate that is presented to it. You must now configure the client runtime to
require signed certificates, and ensure that the client trusts the CA that signed the
certificate.

1.

To configure the client to require a valid, signed certificate from i ngbr oker d,
set the i mySSLI sHost Tr ust ed attribute to f al se for the client’s
Connect i onFact ory object.

Try to establish an SSL connection to i ngbr okr d, as described under “Step 4.
Configuring and Running SSL-Based Clients” on page 154.

If the br oker’ s certificate was signed by a well-known CA, the connection will
probably succeed and you can skip the next step. If the connection fails with a
certificate validation error, perform the next step.

Install the signing CA’s root certificate in the client’s trust store, as described in
the following sections.

There are three options for configuring the client with a trust store:

o Install the root CA into the default system cacert s file.

o Install the root CA into the alternative system file j ssecacerts. This is the
recommended option.

o Install the root CA into any key store file and configure the client to use
that as its trust store.

Chapter 7 Managing Security 157

Using a Password File

The following sections contain examples of how to install a VVerisign Test Root CA
using these options. The root CA is contained in a file called t est r oot ca. cer. The
examples assume that J2SE is installed in / usr/j 2se.

Installing into the Default System cacerts File

This example installs the root CA into the file
$JAVA HOWE usr/jrelliblsecurity/cacerts.

keytool -inport -keystore /usr/j2se/jre/lib/securityl/cacerts
-alias VerisignTestCA -file testrootca.cer -nopronpt
-trustcacerts -storepass nyStorePassword

The client searches this key store by default, so no further client configuration is
necessary.

Installing into jssecacerts

This example installs the root CA into the file
$JAVA HOME/ usr/jrel/libl/securityljssecacerts.

keytool -inport -keystore /usr/j2seljrellibl/security/jssecacerts
-alias VerisignTestCA -file testrootca.cer -nopronpt
-trustcacerts -storepass nyStorePassword

The client searches this key store by default, so no further client configuration is
necessary.

Installing into Other Files
This example installs the root CA into the file / hone/ snit h/ . keyst ore.

keytool -inport -keystore /hone/smth/.keystore
-alias VerisignTestCA -file testrootca.cer -nopronpt
-trustcacerts -storepass nyStorePassword

The client does not search this key store by default, so you must provide the
location of the trust store to the client. To do so, set the Java system property
j avax. net. ssl . trust St ore once the client is running. For example:

javax. net.ssl.trust Store=/home/smth/.keystore

Using a Password File

Several types of commands require passwords. In Table 7-6, the first column lists
the commands that require passwords and the second column lists the reason that
passwords are needed.

158 Message Queue 3 2005Q4 « Administration Guide

Using a Password File

Table 7-6 Commands That Use Passwords

Command Purpose Purpose of Password

i mgbr okerd Start the broker Access a JDBC-based persistent data
store, an SSL certificate key store, or an
LDAP user repository

i mgcnd Manage the broker Authenticate an administrative user who is
authorized to use the command
i nqdbngr Manage a JDBC-based data Access the data store
store

You can specify these passwords in a password file and use the -passfi | e option to
specify the name of the file. This is the format for the - passfi | e option:

i ngbr okerd -passfil e myPassfile

NOTE In previous releases, you could use the - p, -passwor d, -dbpasswor d,
and -l dappasswor d options to specify passwords on a command
line. These options are deprecated and will be removed in a future
release. In the current release, a value on the command line for one
of these options supersedes the associated value in a password file.

Security Concerns

Specifying a password interactively, in response to a prompt, is the most secure
method of specifying a password, unless your monitor is visible to other people.
You can also specify a password file on the command line. For non-interactive use
of commands, however, you must use a password file.

A password file is unencrypted, so you must set its permissions to protect it from
unauthorized access. Set permissions such that they limit the users who can view
the file, but provide read access to the user who starts the broker.

Password File Contents

A password file is a simple text file that contains a set of properties and values.
Each value is a password used by a command.

Chapter 7 Managing Security 159

Creating an Audit Log

A password file can contain the passwords shown in Table 7-7:

Table 7-7 Passwords in a Password File

Affected
Password Commands Description
i ng. i myend. passwor d i mycnd Specifies the administrator password for an i ngcn
command line. The password is authenticated for
each command.
i ng. keyst or e. passwor d i ngbr okerd Specifies the key store password for SSL-based
services.
i ng. persi st.jdbc. password i ngbr okerd Specifies the password used to open a database
i mdbrgr connection, if required.
i ng. user _reposi tory. | dap. password i ngbrokerd Specifies the password associated with the

distinguished name assigned to a broker for binding
to a configured LDAP user repository.

A sample password file is part of the Message Queue product. For the location of
the sample file, see Appendix A, “Platform-Specific Locations of Message Queue
Data.”

Creating an Audit Log

Message Queue supports audit logging in Enterprise Edition only. When audit
logging is enabled, Message Queue generates a record for the following types of
events:

= Startup, shutdown, restart, and removal of a broker instance
= User authentication and authorization

= Reset of a persistent store

= Creation, purge, and destruction of a physical destination

= Administrative destruction of a durable subscriber

To log audit records to the Message Queue broker log file, set the
i ng. audi t. enabl ed broker property to t r ue. All audit records in the log contain
the keyword AUDI T.

160 Message Queue 3 2005Q4 « Administration Guide

Chapter 8

Managing Administered Objects

Administered objects encapsulate provider-specific configuration and naming
information, enabling the development of client applications that are portable from
one JMS provider to another. A Message Queue administrator typically creates
administered objects for client applications to use in obtaining broker connections
for sending and receiving messages.

This chapter tells how to use the Object Manager utility (i ngobj ngr) to create and
manage administered objects. It contains the following sections:

= “Object Stores” on page 161

= “Administered Object Attributes” on page 164

= *“Using the Object Manager Utility” on page 172

= “Adding Administered Objects” on page 173

= “Listing Administered Objects” on page 176

= “Viewing Administered Object Information” on page 177

= “Modifying Administered Object Attributes” on page 177

Object Stores

Administered objects are placed in a readily available object store where they can
be accessed by client applications via the Java Naming and Directory Interface
(JNIDI). There are two types of object store you can use: a standard Lightweight
Directory Access Protocol (LDAP) directory server or a directory in the local file
system.

161

Object Stores

LDAP Server Object Stores

An LDAP server is the recommended object store for production messaging
systems. LDAP servers are designed for use in distributed systems and provide
security features that are useful in production environments.

LDAP implementations are available from a number of vendors. To manage an
object store on an LDAP server with Message Queue administration tools, you may
first need to configure the server to store Java objects and perform JNDI lookups;
see the documentation provided with your LDAP implementation for details.

To use an LDAP server as your object store, you must specify the attributes shown
in Table 8-1. These attributes fall into the following categories:

= Initial context. The j ava. nami ng. factory.ini tial attribute specifies the initial
context for INDI lookups on the server. The value of this attribute is fixed for a
given LDAP object store.

= Location. The j ava. nani ng. provi der. url attribute specifies the URL and
directory path for the LDAP server. You must verify that the specified
directory path exists.

= Security. The attributes j ava. nam ng. security. princi pal ,
j ava. nani ng. security. credential gngava. nam ng. security. authentication
govern the authentication of callers attempting to access the object store. The
exact format and values of these attributes depend on the LDAP service
provider; see the documentation provided with your LDAP implementation
for details and to determine whether security information is required on all
operations or only on those that change the stored data.

Table 8-1 LDAP Object Store Attributes

Attribute Description
java.namng. factory.initial Initial context for INDI lookup
Example:

com sun. j ndi . | dap. LdapCt xFact ory

j ava. nam ng. provi der. url Server URL and directory path
Example:
| dap: / / nydonai n. com 389/ ou=ngobj s, o=nyapp

where administered objects are stored in the
directory / nyapp/ ngobj s.

162 Message Queue 3 2005Q4 « Administration Guide

ldap://mydomain.com:389/ou=mqobjs,o=myapp

Object Stores

Table 8-1 LDAP Object Store Attributes (Continued)

Attribute

Description

j ava. nam ng. security. princi pal

java. nam ng. security. credential s

j ava. nam ng. security. authentication

Identity of the principal for authenticating callers

The format of this attribute depends on the
authentication scheme: for example,

ui d=honer Si npson, ou=Peopl e, o=nm

If this attribute is unspecified, the behavior is
determined by the LDAP service provider.

Credentials of the authentication principal

The value of this attribute depends on the
authentication scheme: for example, it might be a
hashed password, a clear-text password, a key,
or a certificate.

If this property is unspecified, the behavior is
determined by the LDAP service provider.

Security level for authentication

The value of this attribute is one of the keywords
none, si npl e, or strong. For example, If you
specify si npl e, you will be prompted for any
missing principal or credential values. This will
allow you a more secure way of providing
identifying information.

If this property is unspecified, the behavior is
determined by the LDAP service provider.

File-System Object Stores

Message Queue also supports the use of a directory in the local file system as an
object store for administered objects. While this approach is not recommended for
production systems, it has the advantage of being very easy to use in development
environments. Note, however, that for a directory to be used as a centralized object
store for clients deployed across multiple computer nodes, all of those clients must
have access to the directory. In addition, any user with access to the directory can
use Message Queue administration tools to create and manage administered

objects.

Chapter 8 Managing Administered Objects

163

Administered Object Attributes

To use a file-system directory as your object store, you must specify the attributes
shown in Table 8-2. These attributes have the same general meanings described
above for LDAP object stores; in particular, the j ava. nani ng. provi der . ur|
attribute specifies the directory path of the directory holding the object store. This
directory must exist and have the proper access permissions for the user of
Message Queue administration tools as well as the users of the client applications
that will access the store.

Table 8-2 File-system Object Store Attributes

Attribute Description
java.namng. factory.initial Initial context for INDI lookup
Example:

com sun. j ndi . f scont ext . Ref FSCont ext Fact ory

j ava. nam ng. provi der. url Directory path
Example:
file:///C /nyapp/ ngobj s

Administered Object Attributes

Message Queue administered objects are of two basic kinds:

= Connection factories are used by client applications to create connections to
brokers.

= Destinations represent locations on a broker with which client applications can
exchange (send and retrieve) messages.

Each of these types of administered object has certain attributes that determine the
object’s properties and behavior. This section describes how to use the Object
Manager command line utility (i rgobj ngr) to set these attributes; you can also set
them with the GUI Administration Console, as described in Chapter 2 (see
“Working With Administered Objects” on page 55).

164 Message Queue 3 2005Q4 « Administration Guide

file:///C:/myapp/mqobjs

Administered Object Attributes

Connection Factory Attributes

Client applications use connection factory administered objects to create connections
with which to exchange messages with a broker. A connection factory’s attributes
define the properties of all connections it creates. Once a connection has been
created, its properties cannot be changed; thus the only way to configure a
connection’s properties is by setting the attributes of the connection factory used to
create it.

Message Queue defines two classes of connection factory objects:

= Connecti onFact ory objects support normal messaging and nondistributed
transactions.

= XAConnecti onFact ory objects support distributed transactions.

Both classes share the same configuration attributes, which you can use to optimize
resources, performance, and message throughput. These attributes are listed and
described in detail in Chapter 16, “Administered Object Attribute Reference,” and
are discussed in the following sections below:

= “Connection Handling” on page 165

= “Client Identification” on page 168

= “Reliability And Flow Control” on page 170

= “Queue Browser and Server Sessions” on page 171
= “Standard Message Properties” on page 171

= “Message Header Overrides” on page 171

Connection Handling

Connection handling attributes specify the message server address to which to
connect and, if required, how to detect connection failure and attempt
reconnection. They are summarized in Table 16-1 on page 318.

Message Server Address List

The most important connection handling attribute is i mgjAddr essLi st , which
specifies the broker or brokers to which to establish a connection. The value of this
attribute is a string containing a message server address or (in the case of a broker
cluster) multiple addresses separated by commas. Server addresses can use a
variety of addressing schemes, depending on the connection service to be used (see
“Connection Services” on page 76) and the method of establishing a connection:

Chapter 8 Managing Administered Objects 165

Administered Object Attributes

166

= ng uses the broker’s Port Mapper to assign a port dynamically for either the j ns
or ssl j ms connection service.

= maqtcp bypasses the Port Mapper and connects directly to a specified port,
using the j ms connection service.

< nyssl makes a Secure Socket Layer (SSL) connection to a specified port, using
the ssl j ms connection service.

= http makes a Hypertext Transport Protocol (HTTP) connection to a Message
Queue tunnel servlet at a specified URL, using the ht t pj ns connection service.

= https makes a Secure Hypertext Transport Protocol (HTTPS) connection to a
Message Queue tunnel servlet at a specified URL, using the ht t psj ns
connection service.

These addressing schemes are summarized in Table 16-2 on page 320.
The general format for each message server address is
scheme: / / address

where scheme is one of the addressing schemes listed above and address denotes the
server address itself. The exact syntax for specifying the address varies depending
on the addressing scheme, as shown in the last column of Table 16-2. Table 16-3 on
page 321 shows examples of the various address formats.

In a multiple-broker cluster environment, the address list can contain more than
one server address. If the first connection attempt fails, the Message Queue client
runtime will attempt to connect to another address in the list, and so on until the
list is exhausted. Two additional connection factory attributes control the way this
is done:

= i ngAddr essLi st Behavi or specifies the order in which to try the specified
addresses. If this attribute is set to the string PRI ORI TY, addresses will be tried in
the order in which they appear in the address list. If the attribute value is
RANDOM the addresses will instead be tried in random order; this is useful, for
instance, when many Message Queue clients are sharing the same connection
factory object, to prevent them from all attempting to connect to the same
server address.

= imAddressListlterations specifies how many times to cycle through the list
before giving up and reporting failure. A value of - 1 denotes an unlimited
number of iterations: the client runtime will keep trying until it succeeds in
establishing a connection or until the end of time, whichever occurs first.

Message Queue 3 2005Q4 « Administration Guide

scheme://address

Administered Object Attributes

Automatic Reconnection

By setting a connection factory’s i ngReconnect Enabl ed attribute to t r ue, you can
enable a client to reconnect automatically to a broker if a connection fails. The

i ngReconnect At t enpt s attribute controls the number of reconnection attempts to a
given server address; i ngReconnect | nt er val specifies the interval, in milliseconds,
to wait between attempts.

In abroker cluster, where the message server address list (i mgjAddr essLi st) specifies
multiple addresses, a failed connection can be restored not only on the original
broker, but also on a different one in the cluster. If reconnection to the original
broker fails, the client runtime will try the other addresses in the list. The

i mgAddr essLi st Behavi or andi ngAddr essLi st | t er at i onsattributescontroltheorder
in which addresses are tried and the number of iterations through the list, as
described in the preceding section. Each address is tried repeatedly at intervals of

i mgReconnect | nt er val milliseconds, up to the maximum number of attempts
specified by i mgReconnect At t enpt s.

Automatic reconnection supports all client acknowledgment modes for message
consumption. Once a connection has been reestablished, the broker will redeliver
all unacknowledged messages it had previously delivered, marking them with a
Redel i ver flag. Application code can use this flag to determine whether any
message has already been consumed but not yet acknowledged. (In the case of
nondurable subscribers, however, the message server does not hold messages once
their connections have been closed. Thus any messages produced for such
subscribers while the connection is down cannot be delivered after reconnection
and will be lost.) Message production is blocked while automatic reconnection is in
progress; message producers cannot send messages to the server until after the
connection has been reestablished.

Automatic reconnection provides connection failover, but not data failover:
persistent messages and other state information held by a failed or disconnected
broker can be lost when the client is reconnected to a different broker instance.
While attempting to reestablish a connection, Message Queue does maintain
objects (such as sessions, message consumers, and message producers) provided
by the client runtime. Temporary destinations are also maintained for a time when
a connection fails, because clients might reconnect and access them again; after
giving clients time to reconnect and use these destinations, the broker will delete
them. In circumstances where the client-side state cannot be fully restored on the
broker on reconnection (for example, when using transacted sessions, which exist
only for the duration of a connection), automatic reconnection will not take place
and the connection’s exception handler will be called instead. It is then up to the
application code to catch the exception, reconnect, and restore state.

Chapter 8 Managing Administered Objects 167

Administered Object Attributes

168

Periodic Testing (Pinging) of Connections

The Message Queue client runtime can be configured to periodically test, or
“ping,” a connection, allowing connection failures to be detected preemptively
before an attempted message transmission fails. Such testing is particularly
important for client applications that only consume messages and do not produce
them, since such applications cannot otherwise detect when a connection has
failed. Clients that produce messages only infrequently can also benefit from this
feature.

The connection factory attribute i ngPi ngl nt er val specifies the frequency, in
seconds, with which to ping a connection. By default, this interval is set to 30
seconds; a value of - 1 disables the ping operation.

The response to an unsuccessful ping varies from one operating-system platform to
another. On some operating systems, an exception is immediately thrown to the
client application’s exception listener. (If the client does not have an exception
listener, its next attempt to use the connection will fail.) Other systems may
continue trying to establish a connection to the broker, buffering successive pings
until one succeeds or the buffer overflows.

Client Identification

The connection factory attributes listed in Table 16-4 on page 322 support client
authentication and the setting of client identifiers for durable subscribers.

Client Authentication

All attempts to connect to a broker must be authenticated by user name and
password against a user repository maintained by the message server. The
connectionfactoryattributesi ngDef aul t User naneandi ngDef aul t Passwor dspecifya
default user name and password to be used if the client does not supply them
explicitly when creating a connection.

As a convenience for developers who do not wish to bother populating a user
repository during application development and testing, Message Queue provides a
guest user account with user name and password both equal to guest . This is also
the defaultvalue for thei ngDef aul t User name andi ngDef aul t Passwor d attributes, so
that if they are not specified explicitly, clients can always obtain a connection under
the guest account. In a production environment, access to broker connections
should be restricted to users who are explicitly registered in the user repository.

Message Queue 3 2005Q4 « Administration Guide

Administered Object Attributes

Client Identifier

The Java Message Service Specification requires that a connection provide a unique
client identifier whenever the message server must maintain a persistent state on
behalf of a client. Message Queue uses such client identifiers to keep track of
durable subscribers to a topic destination. When a durable subscriber becomes
inactive, the broker retains all incoming messages for the topic and delivers them
when the subscriber becomes active again. The broker identifies the subscriber by
means of its client identifier.

While it is possible for a client application to set its own client identifier
programmatically using the connection object’s set d i ent | Dmethod, this makes it
difficult to coordinate client identifiers to ensure that each is unique. It is generally
better to have Message Queue automatically assign a unique identifier when
creating a connection on behalf of a client. This can be done by setting the
connection factory’s i rgConf i gur edd i ent | Dattribute to a value of the form

${ u} factoryID

The characters ${ u} must be the first four characters of the attribute value. (Any
character other than u between the braces will cause an exception to be thrown on
connection creation; in any other position, these characters have no special
meaning and will be treated as plain text.) The value for factoryID is a character
string uniquely associated with this connection factory object.

When creating a connection for a particular client, Message Queue will construct a
client identifier by replacing the characters ${ u} with u: userName, where userName
is the user name authenticated for the connection. This ensures that connections
created by a given connection factory, although identical in all other respects, will
each have their own unique client identifier. For example, if the user name is Cal vi n
and the string specified for the connection factory’s i ngConfi guredd i ent | D
attribute is ${ u} Hobbes, the client identifier assigned will be u: Cal vi nHobbes.

NOTE This scheme will not work if two clients both attempt to obtain
connections using the default user name guest, since each would
have a client identifier with the same ${ u} component. In this case,
only the first client to request a connection will get one; the second
client’s connection attempt will fail, because Message Queue cannot
create two connections with the same client identifier.

Chapter 8 Managing Administered Objects 169

Administered Object Attributes

Even if you specify a client identifier with i myConf i guredd i ent | D, client
applications can override this setting with the connection method set d i ent I D. You
can preventthis by setting the connection factory’si ngDi sabl eSet d i ent | Dattribute
to t r ue. Note that for an application that uses durable subscribers, the client
identifier must be set one way or the other: either administratively with

i mgConf i guredd i ent | Dor programmatically with setd i ent | D.

Reliability And Flow Control

Because “payload” messages sent and received by clients and control messages
(such as broker acknowledgments) used by Message Queue itself pass over the
same client-broker connection, excessive levels of payolad traffic can interfere with
the delivery of control messages. To help alleviate this problem, the connection
factory attributes listed in Table 16-5 on page 322 allow you to manage the relative
flow of the two types of message. These attributes fall into four categories:

= Acknowledgment timeout specifies the maximum time (i ngAckTi neout) to
wait for a broker acknowledgment before throwing an exception.

= Connection flow metering limits the transmission of payload messages to
batches of a specified size (i ngConnect i onFl owCount), ensuring periodic
opportunities to deliver any accumulated control messages.

= Connection flow control limits the number of payload messages
(i myConnect i onFl owLi m t) that can be held pending on a connection, waiting to
be consumed. When the limit is reached, delivery of payload messages to the
connection is suspended until the number of messages awaiting consumption
falls below the limit. Use of this feature is controlled by a boolean flag
(i myConnect i onFl owLi m t Enabl ed).

= Consumer flow control limits the number of payload messages
(i myConsuner Fl owLi m t) that can be held pending for any single consumer,
waiting to be consumed. (This limit can also be specified as a property of a
specific queue destination, consuner Fl owLi ni t.) When the limit is reached,
delivery of payload messages to the consumer is suspended until the number
of messages awaiting consumption, as a percentage of i ngConsuner Fl owLi m t,
falls below the limit specified by the i rgConsuner Fl owThr eshol d attribute. This
helps improve load balancing among multiple consumers by preventing any
one consumer from starving others on the same connection.

The use of any of these flow control techniques involves a tradeoff between
reliability and throughput; see “Client Runtime Message Flow Adjustments” on
page 229 for further discussion.

170 Message Queue 3 2005Q4 « Administration Guide

Administered Object Attributes

Queue Browser and Server Sessions

Table 16-6 on page 324 lists connection factory attributes affecting client queue
browsing and server sessions. The i ngQueueBr owser MaxMessagesPer Ret ri eve
attribute specifies the maximum number of messages to retrieve at one time when
browsing the contents of a queue destination; i nqQueueBr owser Ret ri eveTi neout
gives the maximum waiting time for retrieving them. The boolean attribute

i mgLoadMaxToSer ver Sessi on governs the behavior of connection consumers in an
application server session: if the value of this attribute is t r ue, the client will load
up to the maximum number of messages into a server session; if f al se, it will load
only a single message at a time.

Standard Message Properties

The Java Message Service Specification defines certain standard message properties,
which JMS providers (such as Message Queue) may optionally choose to support.
By convention, the names of all such standard properties begin with the letters
JMBX. The connection factory attributes listed in Table 16-7 on page 324 control
whether the Message Queue client runtime sets certain of these standard
properties. For produced messages, these include the following properties:

JMBXUser | D Identity of the user sending the message
JNVBXAppl D Identity of the application sending the message

JMBXPr oducer TXI D Transaction identifier of the transaction within which the
message was produced

For consumed messages, they include

JMBXConsuner TXI D Transaction identifier of the transaction within which the
message was consumed

JMBXRevTi mest anp Time the message was delivered to the consumer

Message Header Overrides

You can use the connection factory attributes listed in Table 16-8 on page 325 to
override the values set by a client for certain JMS message header fields. The
settings you specify will be used for all messages produced by connections
obtained from that connection factory. Header fields that you can override in this
way are

e JMBDeliveryMode Delivery mode (persistent or nonpersistent
< JMBSExpiration Expiration time
e JMSPriority Priority level

Chapter 8 Managing Administered Objects 171

Using the Object Manager Utility

There are two attributes for each of these fields: one boolean, to control whether the
field can be overridden, and another to specify its value. For instance, the attributes
forsettingthe priority levelarei ngOverri deJVMSPri orityandi mgJMSPriority. There
isalsoanadditionalattribute,i ngOver ri deJMSHeader sToTenpor ar yDest i nat i ons,that
controls whether override values apply to temporary destinations.

NOTE Because overriding message headers may interfere with the needs of
specific applications, these attributes should only be used in
consultation with an application’s designers or users.

Destination Attributes

The destination administered object that identifies a physical queue or topic
destination has only two attributes, listed in Table 16-9 on page 326. The important
one is i nyDest i nat i onNarre, which gives the name of the physical destination that
this administered object represents; this is the name that was specified with the - n
option to the i ngcnd cr eat e dst command that created the physical destination.
Thereisalsoan optional descriptive string, i nrgDest i nat i onDescri pti on, whichyou
can use to help identify the destination object and distinguish it from others you
may have created.

Using the Object Manager Utility

172

The Message Queue Object Manager utility (i mgobj ngr) allows you to create and
manage administered objects. The i ngobj ngr command provides the following
subcommands for performing various operations on administered objects:

add Add an administered object to an object store

del ete Delete an administered object from an object store

[ist List existing administered objects in an object store
query Display information about an administered object

update Modify the attributes of an administered object

See “Object Manager Utility” on page 279 for reference information about the
syntax, subcommands, and options of the i ngobj ngr command.

Most Object Manager operations require you to specify the following information
as options to the i ngobj ngr command:

Message Queue 3 2005Q4 « Administration Guide

Using the Object Manager Utility

< The JNDI lookup name of the administered object (-1 option)

This is the logical name by which client applications can look up the
administered object in the object store, using the Java Naming and Directory
Interface.

= The attributes of the INDI object store (-] option)

See “Object Stores” on page 161 for information on the possible attributes and
their values.

= The type of the administered object (-t option)
Possible types include the following:

q Queue destination
t Topic destination
cf Connection factory
gf Queue connection factory
tf Topic connection factory
xcf Connection factory for distributed transactions
xgf Queue connection factory for distributed transactions
xtf Topic connection factory for distributed transactions
e SOAP endpoint

= The attributes of the administered object (- 0 option)

See “Administered Object Attributes” on page 164 for information on the
possible attributes and their values.

Adding Administered Objects

The i ngobj mgr command’s add subcommand adds administered objects for
connection factories and topic or queue destinations to the object store.
Administered objects stored in an LDAP object store must have lookup names
beginning with the prefix cn=; lookup names in a file-system object store need not
begin with any particular prefix, but must not include the slash character (/).

Chapter 8 Managing Administered Objects 173

Using the Object Manager Utility

174

NOTE The Object Manager lists and displays only Message Queue
administered objects. If an object store should contain a
non-Message Queue object with the same lookup name as an
administered object that you wish to add, you will receive an error
when you attempt the add operation.

Adding a Connection Factory

To enable client applications to create broker connections, add a connection factory
administered object for the type of connection to be created: a queue connection
factory or a topic connection factory. Code Example 8-1shows a command to add a
gueue connection factory (administered object type gf) to an LDAP object store.
The object has lookup name ch=nyQCF and connects to a broker running on host
nyHost at port number 7272, using the j ns connection service.

Code Example 8-1 Adding a Connection Factory

i mgobj myr add
-1 "en=nyQCF"
-j "java.naming.factory.initial =comsun.jndi.|dap. LdapC xFact ory"
| "] ava.nam ng. provi der. url =l dap: // nydorai n. com 389/ o=i ny"
j "] ava.nam ng. security.princi pal =ui d=honer S npson, ou=Peopl e, o=i ng"
-] "Java.nam ng. security.credential s=doh"
-] "java.namng. security.aut henti cati on=si npl "
-t qf
0

q
"1 nmgAddr essLi st =ng: / / nyHost : 7272/ j ns"

Adding a Destination

When creating an administered object representing a destination, it is good practice
to create the physical destination first, before adding the administered object to the
object store. Use the Command utility (i ngcnd) to create the physical destination, as
described in “Creating a Physical Destination” on page 119.

The command shown in Code Example 8-2 adds an administered object to an
LDAP object store representing a topic destination with lookup name nyTopi ¢ and
physical destination name is physTopi c. The command for adding a queue
destination would be similar, except that the administered object type (-t option)
would be g (for “queue destination”) instead of t (for “topic destination”).

Message Queue 3 2005Q4 « Administration Guide

ldap://mydomain.com:389/o=imq
mq://myHost:7272/jms"

Using the Object Manager Utility

Code Example 8-2 Adding a Destination to an LDAP Object Store

i mgobj myr add

-1 "cn=nyTopi c"
j "java.namng.factory.initial =comsun.jndi.ldap.LdapQ xFact ory"
j "] ava.nam ng. provi der. url =l dap: // nydomai n. com 389/ o=i ng"
j "java.naning.security.principal =ui d=honer Si npson, ou=Peopl e, o=i ng"
j "] ava.nam ng.security.credential s=doh"

-] "java.namng. security.aut henti cati on=si npl "

-ttt
o "imDesti nat i onName=physTopi c"

Code Example 8-3 shows the same command, but with the administered object
stored in a Solaris file system instead of an LDAP server.

Code Example 8-3 Adding a Destination to a File-System Object Store

i mgobj ngr add
-1 "cn=nyTopi c"
-j "java.naming.factory.initial =
com sun. j ndi . f scont ext . Ref FSCont ext Fact or y"
-j "java.nam ng. provider.url=file:///hone/fooling_adm n_objects"
-ttt
-0 "ingDesti nati onNarme=physTopi c"

Deleting Administered Objects

To delete an administered object from the object store, you use the del et e
subcommand of the i ngobj mgr command, specify lookup name, type, and location
of the object to be deleted. The command shown in Code Example 8-4 deletes the
object that was added in Code Example 8-2 above.

Chapter 8 Managing Administered Objects 175

ldap://mydomain.com:389/o=imq
file:///home/foo/imq_admin_objects

Using the Object Manager Utility

176

Code Example 8-4 Deleting an Administered Object

i mgobj ngr del ete
-1 "cn=nyTopic"
"java.nam ng.factory.initial =com sun.jndi.| dap. LdapC xFact ory"
"] ava. nanm ng. provi der. url =l dap: // mydonai n. com 389/ o=i ny"
"J ava. nam ng. security. princi pal =ui d=homer Si npson, ou=Peopl e, o=i ny"
"] ava. nam ng. security. credenti al s=doh"
"] ava. nam ng. security. aut henti cati on=si npl "

[T T T T

Listing Administered Objects

You can use the Object Manager’s | i st subcommand to get a list of all
administered objects in an object store or those of a specific type. Code Example 8-5
shows how to list all administered objects on an LDAP server.

Code Example 8-5 Listing All Administered Obijects

i mgobj ngr |ist
-j "jJava.naming.factory.initial =comsun.jndi.|dap. LdapC xFact ory"
"] ava. nam ng. provi der. url =l dap: // mydonai n. com 389/ o=i ny"
"j ava. nam ng. security. princi pal =ui d=homer Si npson, ou=Peopl e, o=i ny"
"] ava. nam ng. security. credenti al s=doh"
"j ava. nam ng. security. aut henti cati on=si npl "

Code Example 8-6 lists all queue destinations (type q).

Code Example 8-6 Listing Administered Objects of a Specific Type

i mgobj ngr | ist
-j "jJava.naming.factory.initial =comsun.jndi.|dap. LdapC xFact ory"
j "] ava.nam ng. provi der. url =l dap: // nydomai n. com 389/ o=i ng"
-j "Java.nami ng.security. princi pal =ui d=hormrer Si npson, ou=Peopl e, o=i ny"
-] "Java.nam ng. security.credential s=doh"
j "java.nam ng.security.authentication=si npl e"
tq

Message Queue 3 2005Q4 « Administration Guide

ldap://mydomain.com:389/o=imq
ldap://mydomain.com:389/o=imq
ldap://mydomain.com:389/o=imq

Using the Object Manager Utility

Viewing Administered Object Information

The query subcommand displays information about a specified administered
object, identified by its lookup name and the attributes of the object store
containing it. Code Example 8-7 displays information about an object whose
lookup name is cn=nyTopi c.

Code Example 8-7 Viewing Administered Object Information

i nmgobj ngr query
-1 "cn=nyTopic"
"java.namng.factory.initial =comsun.jndi.| dap. LdapC xFact ory"
"] ava. nani ng. provi der. url =l dap: // nydonai n. com 389/ o=i my"
"] ava. nam ng. security. pri nci pal =ui d=homer Si npson, ou=Peopl e, o=i my"
"] ava. nam ng. security. credenti al s=doh"
"] ava. nam ng. security. aut henti cati on=si npl e"

Modifying Administered Object Attributes

To modify the attributes of an administered object, use the i mgobj ngr updat e
subcommand. You supply the object’s lookup name and location, and use the - o
option to specify the new attribute values.

Code Example 8-8 changes the value of the i ngReconnect At t enpt s attribute for the
gqueue connection factory that was added to the object store in Code Example 8-1
on page 174.

Code Example 8-8 Modifying an Administered Object’s Attributes

i nmgobj ngr updat e

-1 "en=nyQCF"
j "java.nam ng.factory.initial =comsun.jndi.ldap. LdapC xFact ory"
j "] ava.nam ng. provi der. url =l dap: // nydomai n. com 389/ o=i ny"
j "] ava.nam ng. security.princi pal =ui d=honer S npson, ou=Peopl e, o=i ng"
j "] ava.nam ng.security.credential s=doh"

-] "] ava. nam ng. security. aut henti cati on=si npl "

-t of
0 "ingReconnect At t enpt s=3"

Chapter 8 Managing Administered Objects 177

ldap://mydomain.com:389/o=imq
ldap://mydomain.com:389/o=imq

Using the Object Manager Utility

178

Using Command Files

The -i option to the i ngobj ngr command allows you to specify the name of a
command file that uses Java property file syntax to represent all or part of the
subcommand clause. This feature is especially useful for specifying object store
attributes, which typically require a lot of typing and are likely to be the same
across multiple invocations of i ngobj ngr. Using a command file can also allow you
to avoid exceeding the maximum number of characters allowed for the command
line.

Code Example 8-9 shows the general syntax for an Object Manager command file.
Note that the ver si on property is not a command line option: it refers to the
version of the command file itself (not that of the Message Queue product) and
must be set to the value 2. 0.

Code Example 8-9 Object Manager Command File Syntax

version=2.0

cmdtype=[add | delete | list | query | update]
obj . | ookupNare=| ookup nane

obj store. attrs. obj StoreAttrNamel=val uel

obj store. attrs. obj StoreAttrName2=val ue2

obj store. attrs. obj StoreAttr NanmeN=val ueN

obj.types[q | t | cf | of | tf | xcf | xqgf | xtf | e]
obj.attrs. obj AttrNamel=val uel

obj . attrs. obj AttrName2=val ue2

obj Lattrs. obj At t r NamreN=val ueN

As an example, consider the Object Manager command shown earlier in Code
Example 8-1 on page 174, which adds a queue connection factory to an LDAP
object store. This command can be encapsulated in a command file as shown in
Code Example 8-10. If the command file is named M/CndFi | e, you can then execute
the command with the command line

i ngobj mgr -i M/OmdFi | e

Message Queue 3 2005Q4 « Administration Guide

Using the Object Manager Utility

Code Example 8-10 Example Command File

version=2.0
cndt ype=add
obj . | ookupNane=cn=nyQCF

objstore. attrs.java. nam ng. security. princi pal =\

objstore.attrs.java. nam ng. security. credential s=doh
objstore.attrs.java. nam ng. security. aut henticati on=si npl e
obj . t ype=qgf

obj . attrs.i myAddressLi st =ng://nyHost: 7272/ j s

objstore.attrs.java. nam ng. factory.initial =com sun.j ndi. | dap. LdapQ xFact ory
obj store. attrs.java. nam ng. provi der. url =l dap: // nydomai n. com 389/ o=i ny

ui d=horer Si npson, ou=Peopl e, o=i My

A command file can also be used to specify only part of the i ngobj ngr subcommand
clause, with the remainder supplied explicitly on the command line. For example,
the command file shown in Code Example 8-12 specifies only the attribute values

for an LDAP object store.

Code Example 8-11 Partial Command File

version=2.0

obj store. attrs.java. nam ng. security. princi pal =\

objstore.attrs.java. nam ng. security. credential s=doh
objstore.attrs.java. nam ng. security. aut henticati on=si npl e

objstore.attrs.java. nam ng. factory.initial =com sun.j ndi. | dap. LdapQ xFact ory
objstore. attrs.java. nam ng. provi der. url =l dap: // nydomai n. com 389/ o=i ny

ui d=honer Si npson, ou=Peopl e, 0=i ny

You could then use this command file to specify the object store in an i ngobj ngr
command while supplying the remaining options explicitly, as shown in Code

Example 8-12.

Code Example 8-12 Using a Partial Command File

i mgobj myr add
-1 "cn=nyQCF"

-0 "ingAddressLi st=my: // nyHost : 7272/ j ns"

Chapter 8 Managing Administered Objects

179

ldap://mydomain.com:389/o=imq
mq://myHost:7272/jms
ldap://mydomain.com:389/o=imq
mq://myHost:7272/jms"

Using the Object Manager Utility

Additional examples of command files can be found at the following locations,
depending on your platform:

Solaris: / usr/ deno/ i my/ i ngobj ngr
Linux: / opt/ sun/ g/ exanpl es/ i mgobj ngr
Windows: | M) HOWE/ deno/ i ngobj ngr

180 Message Queue 3 2005Q4 « Administration Guide

Chapter 9

Working With Broker Clusters

Message Queue Enterprise Edition supports the use of broker clusters: groups of
brokers working together to provide message delivery services to clients. Clusters
enable a message server to scale its operations with the volume of message traffic
by distributing client connections among multiple brokers. See the Message Queue
Technical Overview for a general discussion of clusters and how they operate.

This chapter describes how to manage broker clusters, connect brokers to them,
and configure them. It contains the following sections:

= “Cluster Configuration Properties” on page 181
= *“Managing Clusters” on page 183
= “Master Broker” on page 186

Cluster Configuration Properties

You define a cluster by specifying cluster configuration properties for each of its
member brokers. You can set these properties individually for each broker in the
cluster, but it is generally more convenient to collect them into a central cluster
configuration file that all of the brokers reference. This prevents the settings from
getting out of agreement and ensures that all brokers in a cluster share the same,
consistent configuration information.

The cluster configuration properties are described in detail in Table 14-9 on
page 307. They include the following:

e img.cluster.brokerlist givesthe host names and port numbers for all
brokers belonging to the cluster.

< img.cluster. masterbroker designates which broker (if any) is the master
broker that keeps track of state changes.

181

Cluster Configuration Properties

182

e im.cluster.url specifies the location of the cluster configuration file, if any.

= inmm.cluster. host name gives the host name or IP address for the cl ust er
connection service, used for internal communication between brokers in the
cluster. This setting can be useful if more than one host is available: for
example, if there is more than one network interface card in a computer.

e inmg.cluster.port gives the port number for the cl ust er connection service.

< img.cluster.transport specifies the transport protocol used by the cl ust er
connection service, such astcp or ssl.

The host name and port properties can be set independently for each individual
broker, but brokerli st, mast er broker, url,and transport must have the same
values for all brokers in the cluster.

The following sections describe how to set a broker’s cluster configuration
properties, either individually for each broker in a cluster or centrally, using a
cluster configuration file.

Setting Cluster Properties for Individual Brokers

You can set a broker’s cluster configuration properties in its instance configuration
file (or on the command line when you start the broker). For example, to create a
cluster consisting of brokers at port 9876 on host 1, port 5000 on host 2, and the
default port (7676) on ctrl host , you would include the following property in the
instance configuration files for all three brokers:

i ng. cl uster. brokerlist=host1: 9876, host 2: 5000, ctr| host

Notice that if you need to change the cluster configuration, this method requires
you to update the instance configuration file for every broker in the cluster.

Using a Cluster Configuration File

For consistency and ease of maintenance, it is recommended that you collect all of
the shared cluster configuration properties into a single cluster configuration file
instead of setting them separately for each individual broker. In this method, each
broker’s instance configuration file must set the i ng. cl ust er. url property to point
to the location of the cluster configuration file: for example,

ing.cluster.url=file:/hone/cluster.properties

Message Queue 3 2005Q4 « Administration Guide

Managing Clusters

The cluster donfiguration file then defines the shared configuration properties for
all of the brokers in the cluster, such as the list of brokers to be connected

(i mg. cl ust er. brokerl i st), the transport protocol to use for the cl ust er
connection service (i mg. cl ust er. transport), and optionally, the address of the
master broker (i ng. cl ust er . mast er br oker). The following code defines the same
cluster as in the previous example, with the broker running on ct r| host serving as
the master broker:

i ng. cl uster. brokerlist=host 1: 9876, host 2: 5000, ctr| host
i ng. cl ust er. mast er br oker =ct r | host

Managing Clusters

This section describes how to connect a set of brokers to form a cluster, add new
brokers to an existing cluster, and remove brokers from a cluster.

Connecting Brokers

There are two general methods of connecting brokers into a cluster: from the
command line (using the - ¢l ust er option) or by setting the

i my. cl uster. brokerlist property in the cluster configuration file. Whichever
method you use, each broker that you start attempts to connect to the other brokers
every five seconds; the connection will succeed once the master broker is started up
(if one is configured). If a broker in the cluster starts before the master broker, it
will remain in a suspended state, rejecting client connections, until the master
broker starts; the suspended broker then will automatically become fully
functional.

To configure a broker cluster from the command line, use the - ¢l ust er option to
the i ngbr oker d command to specify the complete list of brokers in the cluster when
you start each one. For example, the following command starts a new broker and
connects it to the brokers running at the default port (7676) on host 1, port 5000 on
host 2, and port 9876 on the default host (I ocal host):

i ngbrokerd -cluster host1, host2: 5000, : 9876

An alternative method, better suited for production systems, is to create a cluster
configuration file that uses the i ng. cl ust er. broker | i st property to specify the
list of brokers to be connected. Each broker in the cluster must then set its own

i mg. cluster.url property to point to this cluster configuration file.

Chapter 9 Working With Broker Clusters 183

Managing Clusters

Linux Prerequisite: Setting the IP Address

There is a special prerequisite for connecting brokers into a cluster on Linux
systems. Some Linux installers automatically set the | ocal host entry to the
network loopback IP address (127. 0. 0. 1). You must set the system’s IP address so
that all brokers in the cluster can be addressed properly.

For all Linux systems that participate in a cluster, check the / et ¢/ host s file as part
of cluster setup. If the system uses a static IP address, edit the / et c/ host s file to
specify the correct address for | ocal host . If the address is registered with Domain
Name Service (DNS), edit the file / et ¢/ nsswi t ch. conf to change the order of the
entries so that the system performs DNS lookup before consulting the local host s
file. The line in the / et ¢/ nsswi t ch. conf file should read as follows:

hosts: dns files

Secure Connections Between Brokers

If you want secure, encrypted message delivery between brokers in a cluster,
configure the cl ust er connection service to use an SSL-based transport protocol. For
each broker in the cluster, set up SSL-based connection services, as described in
“Working With an SSL-Based Service” on page 148. Then set each broker’s

i mg. cluster.transport property to ssl, either in the cluster configuration file or
individually for each broker.

Adding Brokers to a Cluster

The procedure for adding a new broker to a cluster depends on whether the cluster
uses a cluster configuration file.

[0 To Add a New Broker to a Cluster Using a Cluster Configuration File

1. Add the new broker to the i ng. cl ust er. broker|i st property in the cluster
configuration file.

2. Issue the following command to every broker in the cluster:

imgcnd rel oad cls

This forces each broker to reload the cluster configuration, ensuring that all
persistent information for brokers in the cluster is up to date.

3. (Optional) Set the value of the i ng. cl uster. url property in the broker’s
confi g. properti es file to point to the cluster configuration file.

184 Message Queue 3 2005Q4 « Administration Guide

Managing Clusters

4, Start the new broker.
If you did not perform step 3, use the - Doption on the i ngbr oker d command
line to set the value of i ng. cl uster. url.

[0 To Add a New Broker to a Cluster Without a Cluster Configuration File

Set the value of the following properties, either by editing the confi g. properti es
file or by using the - Doption on the i mgbr oker d command line:

o imy.cluster. brokerlist
o im.cluster. nasterbroker (if necessary)

o img.cluster.transport (if you are using a secure cl ust er connection
service)

Removing Brokers From a Cluster

The method you use to remove a broker from a cluster depends on whether you
originally created the cluster via the command line or by means of a central cluster
configuration file.

Removing a Broker Using the Command Line

If you used the i ngbr oker d command from the command line to connect the
brokers into a cluster, you must stop each of the brokers and then restart them,
specifying the new set of cluster members on the command line. The procedure is
as follows:

[0 To Remove a Broker From a Cluster Using the Command Line
1. Stop each broker in the cluster, using the i mgcnd command.

2. Restart the brokers that will remain in the cluster, using the i ngbr oker d
command’s - cl ust er option to specify only those remaining brokers.

For example, suppose you originally created a cluster consisting of brokers A,
B, and C by starting each of the three with the command

i ngbrokerd -cluster A B,C

To remove broker A from the cluster, restart brokers B and C with the
command

i ngbrokerd -cluster B,C

Chapter 9 Working With Broker Clusters 185

Master Broker

Removing a Broker Using a Cluster Configuration File

If you originally created a cluster by specifying its member brokers with the

i mg. cluster. brokerlist property in a central cluster configuration file, it isn’t
necessary to stop the brokers in order to remove one of them. Instead, you can
simply edit the configuration file to exclude the broker you want to remove, force
the remaining cluster members to reload the cluster configuration, and reconfigure
the excluded broker so that it no longer points to the same cluster configuration
file. Here is the procedure:

[l To Remove a Broker From a Cluster Using a Cluster Configuration File

1. Edit the cluster configuration file to remove the excluded broker from the list
specified for the i ng. cl ust er. broker|i st property.

2. Issue the following command to each broker remaining in the cluster:
ingcnd rel oad cls
This forces the broker to reload the cluster configuration.

3. Stop the broker you’re removing from the cluster.

4. Edit that broker’s confi g. properti es file, removing or specifying a different
value for itsi mg. cl uster. url property.

Master Broker

A cluster can optionally have one master broker, which maintains a configuration
change record to keep track of any changes in the cluster’s persistent state. The
master broker is identified by the i ng. ¢l ust er. mast er br oker configuration
property, either in the cluster configuration file or in the instance configuration
files of the individual brokers.

The configuration change record contains information about changes in the
persistent entities associated with the cluster, such as durable subscriptions and
administrator-created physical destinations. All brokers in the cluster consult the
master broker during startup in order to update their information about these
persistent entities. Failure of the master broker makes such synchronization
impossible; see “When a Master Broker Is Unavailable” on page 188 for more
information.

186 Message Queue 3 2005Q4 « Administration Guide

Master Broker

Managing the Configuration Change Record

Because of the important information that the configuration change record
contains, it is important to back it up regularly so that it can be restored in case of
failure. Although restoring from a backup will lose any changes in the cluster’s
persistent state that have occurred since the backup was made, frequent backups
can minimize this potential loss of information. The backup and restore operations
also have the positive effect of compressing and optimizing the change history
contained in the configuration change record, which can grow significantly over
time.

To Back Up the Configuration Change Record

Use the - backup option of the i ngbr oker d command, specifying the name of the
backup file. For example:

i ngbr okerd - backup nybackupl og
To Restore the Configuration Change Record
1. Shut down all brokers in the cluster.

2. Restore the master broker’s configuration change record from the backup file
with the command

i ngbr okerd -restore nybackupl og

3. If you assign a new name or port number to the master broker, update the
i mg. cluster.brokerlist anding.cluster. nasterbroker properties
accordingly in the cluster configuration file.

4. Restart all brokers in the cluster.

Chapter 9 Working With Broker Clusters 187

Master Broker

When a Master Broker Is Unavailable

Because all brokers in a cluster need the master broker in order to perform
persistent operations, the following i ngcnd subcommands for any broker in the
cluster will return an error when no master broker is available:

e create dst

e destroy dst

e update dst

e destroy dur

Auto-created physical destinations and temporary destinations are unaffected.

In the absence of a master broker, any client application attempting to create a
durable subscriber or unsubscribe from a durable subscription will get an error.
However, a client can successfully specify and interact with an existing durable
subscription.

188 Message Queue 3 2005Q4 « Administration Guide

Chapter 10

Monitoring a Message Server

This chapter describes the tools you can use to monitor a message server and how
you can get metrics data. The chapter has the following sections:

= “Introduction to Monitoring Tools” on page 189

= *“Configuring and Using Broker Logging” on page 191

= “Interactively Displaying Metrics” on page 196

= “Writing an Application to Monitor Brokers” on page 201

Reference information on specific metrics is available in Chapter 18, “Metrics
Reference.”

Introduction to Monitoring Tools

There are three monitoring interfaces for Message Queue information: log files,
interactive commands, and a client API that can obtain metrics. Each has its
advantages and disadvantages, as follows:

= Logfiles provide a long-term record of metrics data, but cannot easily be
parsed.

< Commands enable you to quickly sample information tailored to your needs,
but do not enable you to look at historical information or manipulate the data
programmatically.

= The client API lets you extract information, process it, manipulate the data,
present graphs or send alerts. However, to use it, you must write a custom
application to capture and analyze the data.

Table 10-1 compares the different tools.

189

Introduction to Monitoring Tools

190

Table 10-1 Benefits and Limitations of Metrics Monitoring Tools

Metrics
Monitoring Tool Benefits Limitations
i ngecnd metrics Remote monitoring No single command gets all data
Convenient for spot checking Difficult to analyze data
Reporting interval set in programmatically
command option; can be Doesn't create historical record
changed on the fly Difficult to see historical trends
Easy to select specific data of
interest
Data presented in easy tabular
format
Log files Regular sampling Need to configure broker properties;
Creates a historical record must shut down and restart broker to
take effect
Local monitoring only
Data format very difficult to read or
parse; no parsing tools
Reporting interval cannot be changed
on the fly; the same for all metrics data
Does not provide flexibility in selection
of data
Broker metrics only; destination and
connection service metrics not included
Possible performance hit if interval set
too short
Client API Remote monitoring Need to configure broker properties;

Easy to select specific data of
interest

Data can be analyzed
programmatically and
presented in any format

must shut down and restart broker to
take effect

You need to write your own metrics
monitoring client

Reporting interval cannot be changed
on the fly; the same for all metrics data

In addition to the differences shown in the table, each tool gathers a somewhat
different subset of the metrics information generated by the broker. For
information on which metrics data is gathered by each monitoring tool, see

Chapter 18, “Metrics Reference” on page 335.

Message Queue 3 2005Q4 « Administration Guide

Configuring and Using Broker Logging

Configuring and Using Broker Logging

The Message Queue logger takes information generated by broker code, a
debugger, and a metrics generator and writes that information to a number of
output channels: to standard output (the console), to a log file, and, on Solaris™
operating systems, to the sysl og daemon process.

You can specify the type of information gathered by the logger as well as the type
written to each of the output channels. In particular, you can specify that you want
metrics information written out to a log file.

This section describes the default logging configuration for the broker and explains
how to redirect log information to alternative output channels, how to change log
file rollover criteria, and how to send metrics data to a log file.

Default Logging Configuration

A broker is automatically configured to save log output to a set of rolling log files.
The log files are located in a directory identified by the instance name of the
associated broker (see Appendix A, “Platform-Specific Locations of Message
Queue Data”):

./ i nst ances/ instanceName/ | og/
The log files are simple text files. They are named as follows, from earliest to latest:

| og. t xt
log_1.txt
log_2.txt

log_ 9. txt

By default, log files are rolled over once a week; the system maintains nine backup
files.

= Tochange the directory in which the log files are kept, set the property
i mg. | og.file.dirpath to the desired path.

= Tochange the root name of the log files from | og to something else, set the
ing.log.file.filename property.

The broker supports three log levels: ERROR WARNI NG | NFQ Table 10-2 explains each
level.

Chapter 10 Monitoring a Message Server 191

Configuring and Using Broker Logging

192

Table 10-2 Logging Levels

Level Description

ERROR Messages indicating problems that could cause system failure.
VWARNI NG Alerts that should be heeded but will not cause system failure.
I NFO Reporting of metrics and other informational messages.

Setting a logging level gathers messages for that level and all higher levels. The
default log level is | NFQ, so ERRCR, WARNI NG and | NFOmessages are all logged by
default.

Log Message Format

A logged message consists of a time stamp, message code, and the message itself.
The volume of information varies with the log level you have set. The following is
an example of an | NFOmessage.

[13/ Sep/ 2000: 16: 13: 36 PDT] B1004 Starting the broker service using tcp [
25374,100] with nmin threads 50 and max threads of 500

To change the time stamp time zone, see information about the i ng. | og. ti mezone
property, which is described in Table 14-8 on page 303.

Changing the Logger Configuration

Log-related properties are described in Table 14-8 on page 303.

[0 To Change the Logger Configuration for a Broker

1. Setthe log level.

2. Set the output channel (file, console, or both) for one or more logging
categories.

3. Ifyou log output to a file, configure the rollover criteria for the file.

Message Queue 3 2005Q4 « Administration Guide

Configuring and Using Broker Logging

You complete these steps by setting logger properties. You can do this in one of
two ways:

= Change or add logger properties in the confi g. properti es file for a broker
before you start the broker.

= Specify logger command line options in the i mybr oker d command that starts
the broker. You can also use the broker option - Dto change logger properties
(or any broker property).

Options passed on the command line override properties specified in the broker
instance configuration files. Table 10-3 lists the i ngbr oker d options that affect

logging.

Table 10-3 i mgbr oker d Logger Options and Corresponding Properties

imgbrokerd Options Description

-metrics interval Specifies the interval (in seconds) at which metrics information is
written to the logger.

-1 ogl evel level Sets the log level to one of ERROR, WARNI NG, | NFQ
-silent Turns off logging to the console.
-tty Sends all messages to the console. By default only WARNI NGand

ERRCR level messages are displayed.

The following sections describe how you can change the default configuration in
order to do the following:

= Change the output channel (the destination of log messages)

= Change rollover criteria

Changing the Output Channel

By default, error and warning messages are displayed on the terminal as well as
being logged to a log file. (On Solaris, error messages are also written to the
system’s sysl og daemon.)

You can change the output channel for log messages in the following ways:

= Tohave all log categories (for a given level) output displayed on the screen, use
the -tty option to the i ngbr oker d command.

= To prevent log output from being displayed on the screen, use the - si | ent
option to the i ngbr oker d command.

Chapter 10 Monitoring a Message Server 193

Configuring and Using Broker Logging

194

e Usetheim.log.file.output property to specify which categories of logging
information should be written to the log file. For example,

ing.log. file.output=ERROR

= Usetheiny. | og.consol e. out put property to specify which categories of
logging information should be written to the console. For example,

i ng. | 0g. consol e. out put =l NFO

= On Solaris, use the i ng. | 0g. sysl og. out put property to specify which
categories of logging information should be written to Solaris sysl! og. For
example,

i ng. | 0g. sysl og. out put =NONE

NOTE Before changing logger output channels, you must make sure that
logging is set at a level that supports the information you are
mapping to the output channel. For example, if you set the log level
to ERRORand then set the i ng. | 0og. consol e. out put property to
WARNI NG no messages will be logged because you have not enabled
the logging of WARNI NG messages.

Changing Log File Rollover Criteria

There are two criteria for rolling over log files: time and size. The default is to use a
time criteria and roll over files every seven days.

= Tochange the time interval, you need to change the property
imy.log.file.rolloversecs. For example, the following property definition
changes the time interval to ten days:

ing.log.file.rolloversecs=864000

= Tochange the rollover criteria to depend on file size, you need to set the
img.log.file.rolloverbytes property. For example, the following definition
directs the broker to rollover files after they reach a limit of 500,000 bytes

ing.log. file.rolloverbytes=500000

If you set both the time-related and the size-related rollover properties, the first
limit reached will trigger the rollover. As noted before, the broker maintains up to
nine rollover files.

You can set or change the log file rollover properties when a broker is running. To
set these properties, use the i ngcnd updat e bkr command.

Message Queue 3 2005Q4 « Administration Guide

Configuring and Using Broker Logging

Sending Metrics Data to Log Files

This section describes the procedure for using broker log files to report metrics
information. For general information on configuring the logger, see “Configuring
and Using Broker Logging” on page 191.

[0 To Use Log Files to Report Metrics Information
1. Configure the broker’s metrics generation capability:
a. Confirming. metrics. enabl ed=true
Generation of metrics for logging is turned on by default.
b. Set the metrics generation interval to a convenient number of seconds.
i my. metrics.interval =interval

This value can be set in the confi g. properti es file or using the
-metri cs interval command line option when starting up the broker.

2. Confirm that the logger gathers metrics information:
i ng. | og. | evel =I NFO

This is the default value. This value can be set in the confi g. properti es file or
using the -1 ogl evel level command line option when starting up the broker.

3. Confirm that the logger is set to write metrics information to the log file:
ing.log.file.output=lNO
This is the default value. It can be set in the confi g. properti es file.

4. Start up the broker.

The following shows sample broker metrics output to the log file:

[21/ Jul / 2004: 11: 21: 18 PDT]

Connections: 0 JWM Heap: 8323072 bytes (7226576 free) Threads: 0 (14-1010)
In: 0 negs (Obytes) O pkts (O bytes)
Qut: 0 nsgs (Obytes) O pkts (0 bytes)

Rate In: 0 nsgs/sec (0 bytes/sec) O pkts/sec (0 bytes/sec)

Rate Qut: 0 nsgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)

For reference information about metrics data, see Chapter 18, “Metrics Reference.”

Chapter 10 Monitoring a Message Server 195

Interactively Displaying Metrics

Logging Dead Messages

You can monitor physical destinations by enabling dead message logging for a
broker. You can log dead messages whether or not you are using a dead message
queue.

If you enable dead message logging, the broker logs the following types of events:
= A physical destination exceeded its maximum size.

= The broker removed a message from a physical destination, for a reason such
as the following:

o The destination size limit has been reached.

o The message time to live expired.

o The message is too large.

o Anerror occurred when the broker attempted to process the message.

If a dead message queue is in use, logging also includes the following types of
events:

= The broker moved a message to the dead message queue.
= The broker removed a message from the dead message queue and discarded it.

Dead message logging is disabled by default. To enable it, set the broker attribute
i ng. destination. | ogDeadMsgs.

Interactively Displaying Metrics

196

A Message Queue broker can report the following types of metrics:
= Java Virtual Machine (JVM) metrics. Information about the JVM heap size.

= Brokerwide metrics. Information about messages stored in a broker, message
flows into and out of a broker, and memory use. Messages are tracked in terms
of numbers of messages and numbers of bytes.

e Connection Service metrics. Information about connections and connection
thread resources, a nd information about message flows for a particular
connection service.

<« Destination metrics. Information about message flows into and out of a
particular physical destination, information about a physical destination’s
consumers, and information about memory and disk space usage.

Message Queue 3 2005Q4 « Administration Guide

Interactively Displaying Metrics

The i ngenmd command can obtain metrics information for the broker as a whole, for
individual connection services, and for individual physical destinations. To obtain
metrics data, you generally use the netri cs subcommand of i rgcnd. Metrics data
is written at an interval you specify, or the number of times you specify, to the
console screen.

You can also use the query subcommand to view similar data that also includes
configuration information. See “imgcmd query” on page 201 for more information.

imgcmd metrics

The syntax and options of i mgcnd net ri ¢s are shown in Table 10-4 and Table 10-5,
respectively.

Table 10-4 imgcmd net ri cs Subcommand Syntax

Subcommand Syntax Metrics Data Provided
netrics bkr Displays broker metrics for the default broker or a
[- b hostName: portNumber] broker at the specified host and port.

[- m metricType]
[-int interval]
[-msp numSamples]

or
nmetrics svc -n serviceName Displays metrics for the specified service on the default
[- b hostName: portNumber] broker or on a broker at the specified host and port.
[- m metricType]
[-int interval]
[-msp numSamples]
or
metrics dst -t destType Displays metrics information for the physical

-n destName destination of the specified type and name.
[- b hostName: portNumber]

[- m metricType]

[-int interval]

[- msp numSamples]

Chapter 10 Monitoring a Message Server 197

Interactively Displaying Metrics

198

Table 10-5 imgcnd net ri cs Subcommand Options

Subcommand Options Description

-b hostName: portNumber Specifies the hostname and port of the broker for which
metrics data is reported. The default is
| ocal host : 7676.

-int interval Specifies the interval (in seconds) at which to display
the metrics. The default is 5 seconds.

- m metricType Specifies the type of metric to display:
ttl Displays metrics on messages and packets

flowing into and out of the broker, service, or
destination (default metric type).

rts Displays metrics on rate of flow of messages
and packets into and out of the broker, connection
service, or destination (per second).

cxn Displays connections, virtual memory heap, and
threads (brokers and connection services only).

con Displays consumer-related metrics (destinations
only).

dsk Displays disk usage metrics (destinations only).

-nmsp numSamples Specifies the number of samples displayed in the
output. The default is an unlimited number (infinite).

-n destName Specifies the name of the physical destination (if any)
for which metrics data is reported. There is no default.

-n serviceName Specifies the connection service (if any) for which
metrics data is reported. There is no default.

-t destType Specifies the type (queue or topic) of the physical
destination (if any) for which metrics data is reported.
There is no default.

Using the metrics Subcommand to Display
Metrics Data

This section describes the procedure for using the net ri cs subcommand to report
metrics information.

Message Queue 3 2005Q4 « Administration Guide

Interactively Displaying Metrics

0 To Use the metrics Subcommand
1. Start the broker for which metrics information is desired.

See “Starting Brokers” on page 66.

2. Issue the appropriate i ngcmd netri cs subcommand and options as shown in
Table 10-4 and Table 10-5.

Metrics Outputs: imgcmd metrics

This section contains examples of output for the i ngend netri cs s subcommand.
The examples show brokerwide, connection service, and physical destination
metrics.

Brokerwide Metrics

To get the rate of message and packet flow into and out of the broker at 10 second
intervals, use the netri cs bkr subcommand:

inmgcnd netrics bkr -mrts -int 10 -u admn

This command produces output similar to the following (see data descriptions in
Table 18-2 on page 336):

Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec
In Qut I'n Qut In Qut In Qut
0 0 27 56 0 0 38 66
10 0 7365 56 10 10 7457 1132
0 0 27 56 0 0 38 73
0 10 27 7402 10 20 1400 8459
0 0 27 56 0 0 38 73

Connection Service Metrics

To get cumulative totals for messages and packets handled by the jms connection
service, use the netri cs svc subcommand:

ingcnd netrics sve -n jms -mttl -u admin

This command produces output similar to the following (see data descriptions in
Table 18-3 on page 338):

Chapter 10 Monitoring a Message Server 199

Interactively Displaying Metrics

Msgs Msg Bytes Pkt s Pkt Bytes
In Qut I'n Qut In Qut In Qut
164 100 120704 73600 282 383 135967 102127
657 100 483552 73600 775 876 498815 149948

Physical Destination Metrics

To get metrics information about a physical destination, use the et ri cs dst
subcommand:

ingcnd metrics dst -t g -n XQueue -mttl -u adnin

This command produces output similar to the following (see data descriptions in
Table 18-4 on page 340):

Msg Bytes Msg Count Total Msg Bytes (k) Lar gest
In In Qut Qurrent Peak Avg CQurrent Peak Avg Msg (K)
200 200 147200 147200 0 200 0 0 143 71 0
300 200 220800 147200 100 200 10 71 143 64 0
300 300 220800 220800 0 200 0 0 143 59 0
To get information about a physical destination’s consumers, use the following
metrics dst subcommand:
ingcnd metrics dst -t g -n Sinpl eQueue -mcon -u admn
This command produces output similar to the following (see data descriptions in
Table 18-4 on page 340):
Active Consuners Backup Consuners Mg Count
Qurrent Peak Avg Qurrent Peak Avg Qurrent Peak Avg
1 1 0 0 0 0 944 1000 525
200 Message Queue 3 2005Q4 « Administration Guide

Writing an Application to Monitor Brokers

imgcmd query

The syntax and options of i ngcnd query are shown in Table 10-6 along with a
description of the metrics data provided by the command.

Table 10-6 i mycnd query Subcommand Syntax

Subcommand Syntax Metrics Data Provided
query bkr Information on the current number of messages and
[- b hostName: portNumber] message bytes stored in broker memory and persistent
store (see “Displaying Broker Information” on
page 101).
or
query svc -n serviceName Information on the current number of allocated threads
[- b hostName: portNumber] and number of connections for a specified connection

service (see “Displaying Connection Service
Information” on page 107).

or

query dst -t destType Information on the current number of producers, active
-n destName and backup consumers, and messages and message
[-b hostName: portNumber] bytes stored in memory and persistent store for a

specified destination (see “Displaying Information about
Physical Destinations” on page 121).

NOTE Because of the limited metrics data provided by i ngcmd query, this
tool is not represented in the tables presented in Chapter 18,
“Metrics Reference” on page 335.

Writing an Application to Monitor Brokers

Message Queue provides a metrics monitoring capability by which the broker can
write metrics data into JMS messages, which it then sends to one of a number of
metrics topic destinations, depending on the type of metrics information contained
in the message.

You can access this metrics information by writing a client application that
subscribes to the metrics topic destinations, consumes the messages in these
destinations, and processes the metrics information contained in the messages.

Chapter 10 Monitoring a Message Server 201

Writing an Application to Monitor Brokers

There are five metrics topic destinations, whose names are shown in Table 10-7,
along with the type of metrics messages delivered to each destination.

Table 10-7 Metrics Topic Destinations

Topic Name Type of Metrics Messages

mg.metrics.broker Broker metrics

mg.metrics.jvm Java Virtual Machine metrics
mg.metrics.destination_list List of destinations and their types
mg.metrics.destination.queue. Destination metrics for queue of specified name

monitoredDestinationName

mg.metrics.destination.topic. Destination metrics for topic of specified name
monitoredDestinationName

Setting Up Message-Based Monitoring

This section describes the procedure for using the message-based monitoring
capability to gather metrics information. The procedure includes both client
development and administration tasks.

[0 To Set Up Message-based Monitoring
1. Write a metrics monitoring client.

See the Message Queue Developer’s Guide for Java Clients for instructions on
programming clients that subscribe to metrics topic destinations, consume
metrics messages, and extract the metrics data from these messages.

2. Configure the broker’s Metrics Message Producer by setting broker property
values in the confi g. properti es file:

a. Enable metrics message production.
Seting. netrics. topic. enabl ed=true
The default value is t r ue.

b. Set the interval (in seconds) at which metrics messages are generated.
Seting. netrics.topic.interval =interval.

The default is 60 seconds.

202 Message Queue 3 2005Q4 « Administration Guide

Writing an Application to Monitor Brokers

c. Specify whether you want metrics messages to be persistent (that is,
whether they will survive a broker failure).

Seting.netrics.topic. persist.
The defaultis f al se.

d. Specify how long you want metrics messages to remain in their respective
destinations before being deleted.

Seting.netrics.topic.timtolive.
The default value is 300 seconds.
3. Setany access control you desire on metrics topic destinations.
See the discussion in “Security and Access Considerations,” below.
4. Start up your metrics monitoring client.

When consumers subscribe to a metrics topic, the metrics topic destination will
automatically be created. Once a metrics topic has been created, the broker’s
metrics message producer will begin sending metrics messages to the metrics
topic.

Security and Access Considerations

There are two reasons to restrict access to metrics topic destinations:

= Metrics data might include sensitive information about a broker and its
resources.

= Excessive numbers of subscriptions to metrics topic destinations might
increase broker overhead and negatively affect performance.

Because of these considerations, it is advisable to restrict access to metrics topic
destinations.

Monitoring clients are subject to the same authentication and authorization control
as any other client. Only users maintained in the Message Queue user repository
are allowed to connect to the broker.

You can provide additional protections by restricting access to specific metrics
topic destinations through an access control properties file, as described in
“Authorizing Users: The Access Control Properties File” on page 142.

For example, the following entries in an accesscont rol . properti es file will deny
access to the mqg.metrics.broker metrics topic to everyone except userl and user 2.

Chapter 10 Monitoring a Message Server 203

Writing an Application to Monitor Brokers

204

t opi c. ng. netri cs. broker. consure. deny. user =*
t opi c. ng. netrics. broker. consure. al | ow. user =user 1, user 2

The following entries will only allow users user3 to monitor topic t1.

topi c. ng. netrics. destination. topic.t1. consune. deny. user =*
topi c. ng. netrics. destination. topic.tl. consune. al | ow. user=user3

Depending on the sensitivity of metrics data, you can also connect your metrics
monitoring client to a broker using an encrypted connection. For information on
using encrypted connections, see “Working With an SSL-Based Service” on
page 148.

Metrics Outputs: Metrics Messages

The metrics data outputs you get using the message-based monitoring APl is a
function of the metrics monitoring client you write. You are limited only by the
data provided by the metrics generator in the broker. For a complete list of this
data, see “Metrics Reference” on page 335.

Message Queue 3 2005Q4 « Administration Guide

Chapter 11

Analyzing and Tuning a
Message Service

This chapter covers a number of topics about how to analyze and tune a Message
Queue service to optimize the performance of your messaging applications. It
includes the following topics:

= “About Performance” on page 205
= “Factors That Affect Performance” on page 209

= *“Adjusting Configuration To Improve Performance” on page 223

About Performance

This section provides some background information on performance tuning.

The Performance Tuning Process

The performance you get out of a messaging application depends on the
interaction between the application and the Message Queue service. Hence,
maximizing performance requires the combined efforts of both the application
developer and the administrator.

The process of optimizing performance begins with application design and
continues through to tuning the message service after the application has been
deployed. The performance tuning process includes the following stages:

= Defining performance requirements for the application

= Designing the application taking into account factors that affect performance
(especially trade-offs between reliability and performance)

205

About Performance

= Establishing baseline performance measures
= Tuning or reconfiguring the message service to optimize performance

The process outlined above is often iterative. During deployment of the
application, a Message Queue administrator evaluates the suitability of the
message server for the application’s general performance requirements. If the
benchmark testing meets these requirements, the administrator can tune the
system as described in this chapter. However, if benchmark testing does not meet
performance requirements, a redesign of the application might be necessary or the
deployment architecture might need to be modified.

Aspects of Performance

In general, performance is a measure of the speed and efficiency with which a
message service delivers messages from producer to consumer. However, there are
several different aspects of performance that might be important to you,
depending on your needs.

Connection Load The number of message producers, or message consumers, or
the number of concurrent connections a system can support.

Message throughput The number of messages or message bytes that can be
pumped through a messaging system per second.

Latency The time it takes a particular message to be delivered from message
producer to message consumer.

Stability The overall availability of the message service or how gracefully it
degrades in cases of heavy load or failure.

Efficiency The efficiency of message delivery; a measure of message throughput
in relation to the computing resources employed.

These different aspects of performance are generally inter-related. If message
throughput is high, that means messages are less likely to be backlogged in the
message server, and as a result, latency should be low (a single message can be
delivered very quickly). However, latency can depend on many factors: the speed
of communication links, message server processing speed, and client processing
speed, to name a few.

In any case, there are several different aspects of performance. Which of them are
most important to you generally depends on the requirements of a particular
application.

206 Message Queue 3 2005Q4 « Administration Guide

About Performance

Benchmarks

Benchmarking is the process of creating a test suite for your messaging application
and of measuring message throughput or other aspects of performance for this test
suite.

For example, you could create a test suite by which some number of producing
clients, using some number of connections, sessions, and message producers, send
persistent or nonpersistent messages of a standard size to some number of queues
or topics (all depending on your messaging application design) at some specified
rate. Similarly, the test suite includes some number of consuming clients, using
some number of connections, sessions, and message consumers (of a particular
type) that consume the messages in the test suite’s physical destinations using a
particular acknowledgment mode.

Using your standard test suite you can measure the time it takes between
production and consumption of messages or the average message throughput rate,
and you can monitor the system to observe connection thread usage, message
storage data, message flow data, and other relevant metrics. You can then ramp up
the rate of message production, or the number of message producers, or other
variables, until performance is negatively impacted. The maximum throughput
you can achieve is a benchmark for your message service configuration.

Using this benchmark, you can modify some of the characteristics of your test
suite. By carefully controlling all the factors that might have an impact on
performance (see “Application Design Factors that Affect Performance” on

page 210), you can note how changing some of these factors affects the benchmark.
For example, you can increase the number of connections or the size of messages
five-fold or ten-fold, and note the impact on performance.

Conversely, you can keep application-based factors constant and change your
broker configuration in some controlled way (for example, change connection
properties, thread pool properties, JVM memory limits, limit behaviors, file-based
versus JDBC-based persistence, and so forth) and note how these changes affect
performance.

This benchmarking of your application provides information that can be valuable
when you want to increase the performance of a deployed application by tuning
your message service. A benchmark allows the effect of a change or a set of changes
to be more accurately predicted.

As a general rule, benchmarks should be run in a controlled test environment and
for a long enough period of time for your message service to stabilize.
(Performance is negatively impacted at startup by the Just-In-Time compilation
that turns Java code into machine code.)

Chapter 11 Analyzing and Tuning a Message Service 207

About Performance

Baseline Use Patterns

Once a messaging application is deployed and running, it is important to establish
baseline use patterns. You want to know when peak demand occurs and you want
to be able to quantify that demand. For example, demand normally fluctuates by
number of end-users, activity levels, time of day, or all of these.

To establish base-line use patterns you need to monitor your message server over
an extended period of time, looking at data such as the following:

e Number of connections

= Number of messages stored in the broker (or in particular physical
destinations)

= Message flows into and out of a broker (or particular physical destinations)
= Numbers of active consumers
You can also use average and peak values provided in metrics data.

It is important to check these baseline metrics against design expectations. By
doing so, you are checking that client code is behaving properly: for example, that
connections are not being left open or that consumed messages are not being left
unacknowledged. These coding errors consume message server resources and
could significantly affect performance.

The base-line use patterns help you determine how to tune your system for optimal
performance. For example:

= If one physical destination is used significantly more than others, you might
want to set higher message memory limits on that physical destination than on
others, or to adjust limit behaviors accordingly.

= |If the number of connections needed is significantly greater than allowed by
the maximum thread pool size, you might want to increase the thread pool size
or adopt a shared thread model.

= |f peak message flows are substantially greater than average flows, that might
influence the limit behaviors you employ when memory runs low.

In general, the more you know about use patterns, the better you are able to tune
your system to those patterns and to plan for future needs.

208 Message Queue 3 2005Q4 « Administration Guide

Factors That Affect Performance

Factors That Affect Performance

Message latency and message throughput, two of the main performance indicators,
generally depend on the time it takes a typical message to complete various steps
in the message delivery process. These steps are shown below for the case of a
persistent, reliably delivered message. The steps are described following the
illustration.

Figure 11-1 Message Delivery Through a Message Queue Service

Message
Producer Server

Client

/
d
ololoe
|

Data Stord

Consumer
Client

6001000

/4

Chapter 11 Analyzing and Tuning a Message Service 209

Factors That Affect Performance

210

1. The message is delivered from producing client to message server.
The message server reads in the message.

The message is placed in persistent storage (for reliability).

The message server confirms receipt of the message (for reliability).

The message server determines the routing for the message.

o o > w DN

The message server writes out the message.

7. The message is delivered from message server to consuming client.

8. The consuming client acknowledges receipt of the message (for reliability).

9. The message server processes client acknowledgment (for reliability).

10. The message server confirms that client acknowledgment has been processed.

Since these steps are sequential, any step can be a potential bottleneck in the
delivery of messages from producing clients to consuming clients. Most of these
steps depend upon physical characteristics of the messaging system: network
bandwidth, computer processing speeds, message server architecture, and so forth.
Some, however, also depend on characteristics of the messaging application and
the level of reliability it requires.

The following subsections discuss the impact of both application design factors
and messaging system factors on performance. While application design and
messaging system factors closely interact in the delivery of messages, each
category is considered separately.

Application Design Factors that Affect
Performance

Application design decisions can have a significant effect on overall messaging
performance.

The most important factors affecting performance are those that impact the
reliability of message delivery. Among these are the following factors:

« Delivery Mode (Persistent/Nonpersistent Messages)
= Use of Transactions
= Acknowledgment Mode

= Durable and Non-durable Subscriptions

Message Queue 3 2005Q4 « Administration Guide

Factors That Affect Performance

Other application design factors impacting performance are the following:

= Use of Selectors (Message Filtering)
= Message Size

= Message Body Type

The sections that follow describe the impact of each of these factors on messaging
performance. As a general rule, there is a trade-off between performance and
reliability: factors that increase reliability tend to decrease performance.

Table 11-1 shows how the various application design factors generally affect

messaging performance. The table shows two scenarios—a high reliability, low
performance scenario and a high performance, low reliability scenario—and the

choice of application design factors that characterizes each. Between these
extremes, there are many choices and trade-offs that affect both reliability and

performance.

Table 11-1 Comparison of High Reliability and High Performance Scenarios

Application Design High Reliability High Performance
Factor Low Performance Scenario Low Reliability Scenario
Delivery mode Persistent messages nonpersistent messages
Use of transactions Transacted sessions No transactions
acknowledgment mode AUTO_ACKNOW.EDGE or DUPS_OK_ACKNONLEDGE

CLI ENT_ACKNOWALEDGE

Durable/non-durable Durable subscriptions
subscriptions

Use of selectors Message filtering
Message size Large number of small messages
Message body type Complex body types

Non-durable subscriptions

No message filtering

Small number of large
messages

Simple body types

Chapter 11 Analyzing and Tuning a Message Service

211

Factors That Affect Performance

212

NOTE In the graphs that follow, performance data were generated on a
two-CPU, 1002 Mhz, Solaris 8 system, using file-based persistence.
The performance test first warmed up the Message Queue broker,
allowing the Just-In-Time compiler to optimize the system and the
persistent database to be primed.

Once the broker was warmed up, a single producer and single
consumer were created and messages were produced for 30
seconds. The time required for the consumer to receive all produced
messages was recorded, and a throughput rate (messages per
second) was calculated. This scenario was repeated for different
combinations of the application design factors shown in Table 11-1.

Delivery Mode (Persistent/Nonpersistent Messages)

Persistent messages guarantee message delivery in case of message server failure.
The broker stores the message in a persistent store until all intended consumers
acknowledge they have consumed the message.

Broker processing of persistent messages is slower than for nonpersistent messages
for the following reasons:

= A broker must reliably store a persistent message so that it will not be lost
should the broker fail.

= The broker must confirm receipt of each persistent message it receives.
Delivery to the broker is guaranteed once the method producing the message
returns without an exception.

= Depending on the client acknowledgment mode, the broker might need to
confirm a consuming client’s acknowledgment of a persistent message.

The differences in performance between the persistent and nonpersistent modes
can be significant. Figure 11-2 compares throughput for persistent and
nonpersistent messages in two reliable delivery cases: 10k-sized messages
delivered both to a queue and to a topic with durable subscriptions. Both cases use
the AUTO_ACKNOALEDGE acknowledgment mode.

Message Queue 3 2005Q4 « Administration Guide

Factors That Affect Performance

Figure 11-2 Performance Impact of Delivery Modes

[Papsistant
W Man-persisem

Mzgsisec.

Togic with Durab ke
Subscribar

Use of Transactions

A transaction is a guarantee that all messages produced in a transacted session and
all messages consumed in a transacted session will be either processed or not
processed (rolled back) as a unit.

Message Queue supports both local and distributed transactions.

A message produced or acknowledged in a transacted session is slower than in a
non-transacted session for the following reasons:

= Additional information must be stored with each produced message.

= In some situations, messages in a transaction are stored when normally they
would not be (for example, a persistent message delivered to a topic
destination with no subscriptions would normally be deleted, however, at the
time the transaction is begun, information about subscriptions is not available).

= Information on the consumption and acknowledgment of messages within a
transaction must be stored and processed when the transaction is committed.

Acknowledgment Mode

One mechanism for ensuring the reliability of IMS message delivery is for a client
to acknowledge consumption of messages delivered to it by the Message Queue
message server.

Chapter 11 Analyzing and Tuning a Message Service 213

Factors That Affect Performance

214

If a session is closed without the client acknowledging the message or if the
message server fails before the acknowledgment is processed, the broker redelivers
that message, setting a JMSRedel i ver ed flag.

For a non-transacted session, the client can choose one of three acknowledgment
modes, each of which has its own performance characteristics:

e AUTO ACKNOALEDGE. The system automatically acknowledges a message once
the consumer has processed it. This mode guarantees at most one redelivered
message after a provider failure.

= (LI ENT_ACKNOALEDGE. The application controls the point at which messages are
acknowledged. All messages processed in that session since the previous
acknowledgment are acknowledged. If the message server fails while
processing a set of acknowledgments, one or more messages in that group
might be redelivered.

e DUPS (K ACKNOALEDGE. This mode instructs the system to acknowledge
messages in a lazy manner. Multiple messages can be redelivered after a
provider failure.

(Using CLI ENT_ACKNONLEDGE mode is similar to using transactions, except there is
no guarantee that all acknowledgments will be processed together if a provider
fails during processing.)

Acknowledgment mode affects performance for the following reasons:

= Extra control messages between broker and client are required in
AUTO ACKNOWLEDGE and CLI ENT_ACKNOMLEDGE modes. The additional control
messages add additional processing overhead and can interfere with JMS
payload messages, causing processing delays.

e In AUTO ACKNOALEDGE and CLI ENT_ACKNOW.EDGE modes, the client must wait
until the broker confirms that it has processed the client’s acknowledgment
before the client can consume additional messages. (This broker confirmation
guarantees that the broker will not inadvertently redeliver these messages.)

= The Message Queue persistent store must be updated with the
acknowledgment information for all persistent messages received by
consumers, thereby decreasing performance.

Durable and Non-durable Subscriptions

Subscribers to a topic destination fall into two categories, those with durable and
non-durable subscriptions.

Message Queue 3 2005Q4 « Administration Guide

Factors That Affect Performance

Durable subscriptions provide increased reliability but slower throughput, for the
following reasons:

= The Message Queue message server must persistently store the list of messages
assigned to each durable subscription so that should a message server fail, the
list is available after recovery.

= Persistent messages for durable subscriptions are stored persistently, so that
should a message server fail, the messages can still be delivered after recovery,
when the corresponding consumer becomes active. By contrast, persistent
messages for non-durable subscriptions are not stored persistently (should a
message server fail, the corresponding consumer connection is lost and the
message would never be delivered).

Figure 11-3 compares throughput for topic destinations with durable and
non-durable subscriptions in two cases: persistent and nonpersistent 10k-sized
messages. Both cases use AUTO _ACKNON_EDCGE acknowledgment mode.

You can see from Figure 11-3 that the performance impact of using durable
subscriptions is manifest only in the case of persistent messages; and the impact in
that case is because persistent messages are only stored persistently for durable
subscriptions, as explained above.

Figure 11-3 Performance Impact of Subscription Types

E @ Ourable

=1 Subscriptions
oo B MNon-durabls
£ [Subscriptions

Parsistent MNon-persistent

Chapter 11 Analyzing and Tuning a Message Service 215

Factors That Affect Performance

216

Use of Selectors (Message Filtering)

Application developers often want to target sets of messages to particular
consumers. They can do so either by targeting each set of messages to a unique
physical destination or by using a single physical destination and registering one
or more selectors for each consumer.

A selector is a string requesting that only messages with property values that
match the string are delivered to a particular consumer. For example, the selector
Nurmber O Or der s >1 delivers only the messages with a Nunber O O der s property
value of 2 or more.

Registering consumers with selectors lowers performance (as compared to using
multiple physical destinations) because additional processing is required to handle
each message. When a selector is used, it must be parsed so that it can be matched
against future messages. Additionally, the message properties of each message
must be retrieved and compared against the selector as each message is routed.
However, using selectors provides more flexibility in a messaging application.

Message Size

Message size affects performance because more data must be passed from
producing client to broker and from broker to consuming client, and because for
persistent messages a larger message must be stored.

However, by batching smaller messages into a single message, the routing and
processing of individual messages can be minimized, providing an overall
performance gain. In this case, information about the state of individual messages
is lost.

Figure 11-4 compares throughput in kilobytes per second for 1k, 10k, and
100k-sized messages in two cases: persistent and nonpersistent messages. All cases
send messages are to a queue destination and use AUTO_ACKNON.EDGE
acknowledgment mode.

Figure 11-4 shows that in both cases there is less overhead in delivering larger
messages compared to smaller messages. You can also see that the almost 50%
performance gain of nonpersistent messages over persistent messages shown for
1k and 10k-sized messages is not maintained for 100k-sized messages, probably
because network bandwidth has become the bottleneck in message throughput for
that case.

Message Queue 3 2005Q4 « Administration Guide

Factors That Affect Performance

Figure 11-4 Performance Effect of a Message Size

U

n k
- ol

£ B0k
a8 || o100k
o

Farsistend Hon-parsisent

Message Body Type

JMS supports five message body types, shown below roughly in the order of
complexity:

= BytesMessage: Contains a set of bytes in a format determined by the
application.

= TextMessage: Is a simple java.lang.String.

= StreamMessage: Contains a stream of Java primitive values.
= MapMessage: Contains a set of name-and-value pairs.

= ObjectMessage: Contains a Java serialized object.

While, in general, the message type is dictated by the needs of an application, the
more complicated types (MapMessage and ObjectMessage) carry a performance
cost—the expense of serializing and deserializing the data. The performance cost
depends on how simple or how complicated the data is.

Chapter 11 Analyzing and Tuning a Message Service 217

Factors That Affect Performance

218

Message Service Factors that Affect
Performance

The performance of a messaging application is affected not only by application
design, but also by the message service performing the routing and delivery of
messages.

The following sections discuss various message service factors that can affect
performance. Understanding the impact of these factors is key to sizing a message
service and diagnosing and resolving performance bottlenecks that might arise in a
deployed application.

The most important factors affecting performance in a Message Queue service are
the following:

= Hardware

= Operating System

= Java Virtual Machine (JVM)

= Connections

= Broker Limits and Behaviors
= Message Server Architecture
= Data Store Performance

= Client Runtime Configuration

The sections below describe the impact of each of these factors on messaging
performance.

Hardware

For both the Message Queue message server and client applications, CPU
processing speed and available memory are primary determinants of message
service performance. Many software limitations can be eliminated by increasing
processing power, while adding memory can increase both processing speed and
capacity. However, it is generally expensive to overcome bottlenecks simply by
upgrading your hardware.

Message Queue 3 2005Q4 « Administration Guide

Factors That Affect Performance

Operating System

Because of the efficiencies of different operating systems, performance can vary,
even assuming the same hardware platform. For example, the thread model
employed by the operating system can have an important impact on the number of
concurrent connections a message server can support. In general, all hardware
being equal, Solaris is generally faster than Linux, which is generally faster than
Windows.

Java Virtual Machine (JVM)

The message server is a Java process that runs in and is supported by the host JVM.
As aresult, VM processing is an important determinant of how fast and efficiently
a message server can route and deliver messages.

In particular, the JVM’s management of memory resources can be critical.
Sufficient memory has to be allocated to the JVM to accommodate increasing
memory loads. In addition, the JVM periodically reclaims unused memory, and
this memory reclamation can delay message processing. The larger the JVM
memory heap, the longer the potential delay that might be experienced during
memory reclamation.

Connections

The number and speed of connections between client and broker can affect the
number of messages that a message server can handle as well as the speed of
message delivery.

Message Server Connection Limits

All access to the message server is by way of connections. Any limit on the number
of concurrent connections can affect the number of producing or consuming clients
that can concurrently use the message server.

The number of connections to a message server is generally limited by the number
of threads available. Message Queue can be configured to support either a
dedicated thread model or a shared thread model (see “Thread Pool Management”
on page 77).

The dedicated thread model is very fast because each connection has dedicated
threads, however the number of connections is limited by the number of threads
available (one input thread and one output thread for each connection). The shared
thread model places no limit on the number of connections, however there is
significant overhead and throughput delays in sharing threads among a number of
connections, especially when those connections are busy.

Chapter 11 Analyzing and Tuning a Message Service 219

Factors That Affect Performance

220

Transport Protocols

Message Queue software allows clients to communicate with the message server
using various low-level transport protocols. Message Queue supports the
connection services (and corresponding protocols) described in “Connection
Services” on page 76.

The choice of protocols is based on application requirements (encrypted, accessible
through a firewall), but the choice impacts overall performance.

Figure 11-5 Transport Protocol Speeds

HTTPS HTTP SSL TCP?

Slow Fast

Figure 11-5 reflects the performance characteristics of the various protocol
technologies:

= TCP provides the fastest method to communicate with the broker.

= SSL is 50 to 70 percent slower than TCP when it comes to sending and
receiving messages (50 percent for persistent messages, closer to 70 percent for
nonpersistent messages). Additionally, establishing the initial connection is
slower with SSL (it might take several seconds) because the client and broker
(or Web Server in the case of HTTPS) need to establish a private key to be used
when encrypting the data for transmission. The performance drop is caused by
the additional processing required to encrypt and decrypt each low-level TCP
packet.

Figure 11-6 compares throughput for TCP and SSL for two cases: a high
reliability scenario (1k persistent messages sent to topic destinations with
durable subscriptions and using AUTO_ACKNONEDGE acknowledgment mode)
and a high performance scenario (1k nonpersistent messages sent to topic
destinations without durable subscriptions and using DUPS_OK_ACKNON_EDGE
acknowledgment mode).

Figure 11-6 shows that protocol has less impact in the high reliability case. This
is probably because the persistence overhead required in the high reliability
case is a more important factor in limiting throughput than the protocol speed.

Message Queue 3 2005Q4 « Administration Guide

Factors That Affect Performance

Figure 11-6 Performance Impact of Transport Protocol

mTCP
ool

hspsisec.

Hagh reliability s oenana Law relability scenario

= HTTP is slower than either the TCP or SSL. It uses a servlet that runs on a Web
server as a proxy between the client and the broker. Performance overhead is
involved in encapsulating packets in HTTP requests and in the requirement
that messages go through two hops--client to servlet, servlet to broker--to reach
the broker.

e HTTPS is slower than HTTP because of the additional overhead required to
encrypt the packet between client and servlet and between servlet and broker.

Message Server Architecture

A Message Queue message server can be implemented as a single broker or as
multiple interconnected broker instances—a broker cluster.

As the number of clients connected to a broker increases, and as the number of
messages being delivered increases, a broker will eventually exceed resource
limitations such as file descriptor, thread, and memory limits. One way to
accommodate increasing loads is to add more broker instances to a Message Queue
message server, distributing client connections and message routing and delivery
across multiple brokers.

Chapter 11 Analyzing and Tuning a Message Service 221

Factors That Affect Performance

222

In general, this scaling works best if clients are evenly distributed across the
cluster, especially message producing clients. Because of the overhead involved in
delivering messages between the brokers in a cluster, clusters with limited
numbers of connections or limited message delivery rates, might exhibit lower
performance than a single broker.

You might also use a broker cluster to optimize network bandwidth. For example,
you might want to use slower, long distance network links between a set of remote
brokers within a cluster, while using higher speed links for connecting clients to
their respective broker instances.

For more information on clusters, see Chapter 9, “Working With Broker Clusters.”

Broker Limits and Behaviors

The message throughput that a message server might be required to handle is a
function of the use patterns of the messaging applications the message server
supports. However, the message server is limited in resources: memory, CPU
cycles, and so forth. As a result, it would be possible for a message server to
become overwhelmed to the point where it becomes unresponsive or unstable.

The Message Queue message server has mechanisms built in for managing
memory resources and preventing the broker from running out of memory. These
mechanisms include configurable limits on the number of messages or message
bytes that can be held by a broker or its individual physical destinations, and a set
of behaviors that can be instituted when physical destination limits are reached.

With careful monitoring and tuning, these configurable mechanisms can be used to
balance the inflow and outflow of messages so that system overload cannot occur.
While these mechanisms consume overhead and can limit message throughput,
they nevertheless maintain operational integrity.

Data Store Performance

Message Queue supports both file-based and JDBC-based persistence modules.
File-based persistence uses individual files to store persistent data. JDBC-based
persistence uses a Java Database Connectivity (JDBC™) interface and requires a
JDBC-compliant data store. File-based persistence is generally faster than
JDBC-based; however, some users prefer the redundancy and administrative
control provided by a JDBC-compliant store.

In the case of file-based persistence, you can maximize reliability by specifying that
persistence operations synchronize the in-memory state with the data store. This
helps eliminate data loss due to system crashes, but at the expense of performance.

Message Queue 3 2005Q4 « Administration Guide

Adjusting Configuration To Improve Performance

Client Runtime Configuration

The Message Queue client runtime provides client applications with an interface to
the Message Queue message service. It supports all the operations needed for
clients to send messages to physical destinations and to receive messages from
such destinations. The client runtime is configurable (by setting connection factory
attribute values), allowing you to control aspects of its behavior, such as
connection flow metering, consumer flow limits, and connection flow limits, that
can improve performance and message throughput. See “Client Runtime Message
Flow Adjustments” on page 229 for more information on these features and the
attributes used to configure them.

Adjusting Configuration To Improve Performance

System Adjustments

The following sections describe adjustments you can make to the operating system,
JVM, and communication protocols.

Solaris Tuning: CPU Utilization, Paging/Swapping/Disk 1/0
See your system documentation for tuning your operating system.

Java Virtual Machine Adjustments

By default, the broker uses a JVM heap size of 192MB. This is often too small for
significant message loads and should be increased.

When the broker gets close to exhausting the JVM heap space used by Java objects,
it uses various techniques such as flow control and message swapping to free
memory. Under extreme circumstances it even closes client connections in order to
free the memory and reduce the message inflow. Hence it is desirable to set the
maximum JVM heap space high enough to avoid such circumstances.

However, if the maximum Java heap space is set too high, in relation to system
physical memory, the broker can continue to grow the Java heap space until the
entire system runs out of memory. This can result in diminished performance,
unpredictable broker crashes, and/or affect the behavior of other applications and
services running on the system. In general, you need to allow enough physical
memory for the operating system and other applications to run on the machine.

Chapter 11 Analyzing and Tuning a Message Service 223

Adjusting Configuration To Improve Performance

224

In general it is a good idea to evaluate the normal and peak system memory
footprints, and configure the Java heap size so that it is large enough to provide
good performance, but not so large as to risk system memory problems.

To change the minimum and maximum heap size for the broker, use the - vimrar gs
command line option when starting the broker. For example:

[usr/bin/ingbrokerd -vmargs "- Xms256m - Xmx1024n

This command will set the starting Java heap size to 256 MB and the maximum Java
heap size to 1GB.

= On Solaris or Linux, if starting the broker via/ etc/ rc* (thatis,
letclinit.dl/ i), specify broker command line arguments in the file
[etcling/ingbrokerd. conf (Solaris) or / et c/ opt/sun/ nmg/ i ngbr oker d. conf
(Linux). See the comments in that file for more information.

= On Windows, if starting the broker as a Window's service, specify JVM
arguments using the - vimar gs option to the i mgsvcadmi ni nstal | command.
See “Service Administrator Utility” in Chapter 13, “Command Line
Reference.”

In any case, verify settings by checking the broker's log file or using the
i mgemd netrics bkr -m cxn command.

Tuning Transport Protocols

Once a protocol that meets application needs has been chosen, additional tuning
(based on the selected protocol) might improve performance.

A protocol's performance can be modified using the following three broker
properties:

* inmg.protocol . protocolType. nodel ay
* ing.protocol . protocol Type. i nbuf sz
* inmmg.protocol . protocol Type. out buf sz

For TCP and SSL protocols, these properties affect the speed of message delivery
between client and broker. For HTTP and HTTPS protocols, these properties affect
the speed of message delivery between the Message Queue tunnel servlet (running
on a Web server) and the broker. For HTTP/HTTPS protocols there are additional
properties that can affect performance (see “HTTP/HTTPS Tuning” on page 227).

The protocol tuning properties are described in the following sections.

Message Queue 3 2005Q4 « Administration Guide

Adjusting Configuration To Improve Performance

nodelay

The nodel ay property affects Nagle’s algorithm (the value of the TCP_NCDELAY
socket-level option on TCP/IP) for the given protocol. Nagle’s algorithm is used to
improve TCP performance on systems using slow connections such as wide-area
networks (WANSs).

When the algorithm is used, TCP tries to prevent several small chunks of data from
being sent to the remote system (by bundling the data in larger packets). If the data
written to the socket does not fill the required buffer size, the protocol delays
sending the packet until either the buffer is filled or a specific delay time has
elapsed. Once the buffer is full or the time-out has occurred, the packet is sent.

For most messaging applications, performance is best if there is no delay in the
sending of packets (Nagle’s algorithm is not enabled). This is because most
interactions between client and broker are request/response interactions: the client
sends a packet of data to the broker and waits for a response. For example, typical
interactions include:

= Creating a connection
= Creating a producer or consumer
= Sending a persistent message (the broker confirms receipt of the message)

= Sending a client acknowledgment in an AUTO_ACKNOWNLEDGE or
CLI ENT_ACKNOWLEDCE session (the broker confirms processing of the
acknowledgment)

For these interactions, most packets are smaller than the buffer size. This means
that if Nagle's algorithm is used, the broker delays several milliseconds before
sending a response to the consumer.

However, Nagle's algorithm may improve performance in situations where
connections are slow and broker responses are not required. This would be the case
where a client sends a nonpersistent message or where a client acknowledgment is
not confirmed by the broker (DUPS_CK_ACKNON_EDCE session).

inbufsz/outbufsz

The i nbuf sz property sets the size of the buffer on the input stream reading data
coming in from a socket. Similarly, out buf sz sets the buffer size of the output
stream used by the broker to write data to the socket.

In general, both parameters should be set to values that are slightly larger than the
average packet being received or sent. A good rule of thumb is to set these property
values to the size of the average packet plus 1k (rounded to the nearest k).

Chapter 11 Analyzing and Tuning a Message Service 225

Adjusting Configuration To Improve Performance

226

For example, if the broker is receiving packets with a body size of 1k, the overall
size of the packet (message body + header + properties) is about 1200 bytes. An
i nbuf sz of 2k (2048 bytes) gives reasonable performance.

Increasing the inbufsz or outbufsz greater than that size may improve performance
slightly; however, it increases the memory needed for each connection.

Figure 11-7 shows the consequence of changing i nbuf sz on a 1k packet.

Figure 11-7 Effect of Changing i nbuf sz on a 1k (1024 bytes) Packet

PlgraiSed ol

il e vk

Figure 11-8 shows the consequence of changing out buf sz on a 1k packet.

Figure 11-8 Effect of Changing out buf sz on a 1k (1024 bytes) Packet

cutbufsz an 1k messages

PagaSer

il T 1] FhTd 1nn
etz

Message Queue 3 2005Q4 « Administration Guide

Adjusting Configuration To Improve Performance

HTTP/HTTPS Tuning

In addition to the general properties discussed in the previous two sections,
HTTP/HTTPS performance is limited by how fast a client can make HTTP requests
to the Web server hosting the Message Queue tunnel servlet.

A Web server might need to be optimized to handle multiple requests on a single
socket. With JDK version 1.4 and later, HTTP connections to a Web server are kept
alive (the socket to the Web server remains open) to minimize resources used by
the Web server when it processes multiple HTTP requests. If the performance of a
client application using JDK version 1.4 is slower than the same application
running with an earlier JDK release, you might need to tune the Web server
keep-alive configuration parameters to improve performance.

In addition to such Web-server tuning, you can also adjust how often a client polls
the Web server. HTTP is a request-based protocol. This means that clients using an
HTTP-based protocol periodically need to check the Web server to see if messages
are waiting. The i mg. ht't pj ns. htt p. pul | Peri od broker property (and the
corresponding i mg. ht't psj ms. htt ps. pul | Peri od property) specifies how often the
Message Queue client runtime polls the Web server.

If the pul | Peri od value is - 1 (the default value), the client runtime polls the server
as soon as the previous request returns, maximizing the performance of the
individual client. As a result, each client connection monopolizes a request thread
in the Web server, possibly straining Web server resources.

If the pul | Peri od value is a positive number, the client runtime periodically sends
requests to the Web server to see if there is pending data. In this case, the client
does not monopolize a request thread in the Web server. Hence, if large numbers of
clients are using the Web server, you might conserve Web server resources by
setting the pul | Peri od to a positive value.

Tuning the File-based Persistent Store

For information on tuning the file-based persistent store, see “Persistence Services”
on page 80.

Chapter 11 Analyzing and Tuning a Message Service 227

Adjusting Configuration To Improve Performance

228

Broker Adjustments

The following sections describe adjustments you can make to broker properties to
improve performance.

Memory Management: Increasing Broker Stability Under Load

Memory management can be configured on a destination-by-destination level or
on a systemwide level (for all destinations, collectively).

Using Physical Destination Limits

For information on physical destination limits, see Chapter 6, “Managing Physical
Destinations.”

Using Systemwide Limits

If message producers tend to overrun message consumers, messages can
accumulate in the broker. The broker contains a mechanism for throttling back
producers and swapping messages out of active memory in low memory
conditions, but it is wise to set a hard limit on the total number of messages (and
message bytes) that the broker can hold.

Control these limits by setting the i ng. syst em max_count and the
i . system nmax_si ze broker properties.

For example:

i ng. syst em max_count =5000

The defined value above means that the broker will only hold up to 5000
undelivered/unacknowledged messages. If additional messages are sent, they are
rejected by the broker. If a message is persistent then the producer will get an
exception when it tries to send the message. If the message is nonpersistent, the
broker silently drops the message.

When an exception is returned in sending a message, the client should pause for a
moment and retry the send again. (Note that the exception will never be due to the
broker’s failure to receive a message; the only exceptions raised are those detected
by the client on the sending side.)

Message Queue 3 2005Q4 « Administration Guide

Adjusting Configuration To Improve Performance

Multiple Consumer Queue Performance

The efficiency with which multiple queue consumers process messages in a queue
destination depends on the following configurable queue destination attributes:

= The number of active consumers (maxNumAct i veConsurrer s)

= The maximum number of messages that can be delivered to a consumer in a
single batch (consurrer Fl owLi nit)

To achieve optimal message throughput there must be a sufficient number of active
consumers to keep up with the rate of message production for the queue, and the
messages in the queue must be routed and then delivered to the active consumers
in such a way as to maximize their rate of consumption. The general mechanism
for balancing message delivery among multiple consumers is described in the Sun
Java System Message Queue Technical Overview.

If messages are accumulating in the queue, it is possible that there is an insufficient
number of active consumers to handle the message load. It is also possible that
messages are being delivered to the consumers in batch sizes that cause messages
to be backing up on the consumers. For example, if the batch size

(consurrer Fl owLi mi t) is too large, one consumer might receive all the messages in a
queue while other active consumers receive none. If consumers are very fast, this
might not be a problem.

However, if consumers are relatively slow, you want messages to be distributed to
them evenly, and therefore you want the batch size to be small. The smaller the
batch size, the more overhead is required to deliver messages to consumers.
Nevertheless, for slow consumers, there is generally a net performance gain to
using small batch sizes.

Client Runtime Message Flow Adjustments

This section discusses flow control behaviors that affect performance (see “Client
Runtime Configuration” on page 223). These behaviors are configured as attributes
of connection factory administered objects. For information on setting connection
factory attributes, see Chapter 8, “Managing Administered Objects.”

Chapter 11 Analyzing and Tuning a Message Service 229

Adjusting Configuration To Improve Performance

230

Message Flow Metering

Messages sent and received by clients (payload messages), as well as Message Queue
control messages, pass over the same client-broker connection. Delays in the
delivery of control messages, such as broker acknowledgments, can result if control
messages are held up by the delivery of payload messages. To prevent this type of
congestion, Message Queue meters the flow of payload messages across a
connection.

Payload messages are batched (as specified with the connection factory attribute

i mgConnect i onFl owCount) so that only a set number are delivered. After the batch
has been delivered, delivery of payload messages is suspended and only pending

control messages are delivered. This cycle repeats, as additional batches of payload
messages are delivered followed by pending control messages.

The value of i ngConnect i onFl owCount should be kept low if the client is doing
operations that require many responses from the broker: for example, if the client is
using CLI ENT_ACKNOALEDGE or AUTO ACKNOALEDGE mode, persistent messages,
transactions, or queue browsers, or is adding or removing consumers. If, on the
other hand, the client has only simple consumers on a connection using

DUPS_ (K ACKNOWLEDGE mode, you can increase i ngConnect i onFl owCount without
compromising performance.

Message Flow Limits

There is a limit to the number of payload messages that the Message Queue client
runtime can handle before encountering local resource limitations, such as
memory. When this limit is approached, performance suffers. Hence, Message
Queue lets you limit the number of messages per consumer (or messages per
connection) that can be delivered over a connection and buffered in the client
runtime, waiting to be consumed.

Consumer Flow Limiits

When the number of payload messages delivered to the client runtime exceeds the
value of i mgConsurrer Fl owLi ni t for any consumer, message delivery for that
consumer stops. It is resumed only when the number of unconsumed messages for
that consumer drops below the value set with i ngConsurrer Fl owThr eshol d.

The following example illustrates the use of these limits: consider the default
settings for topic consumers:

i ngConsuner Fl owLi m t =1000
i ngConsuner FI owThr eshol d=50

Message Queue 3 2005Q4 « Administration Guide

Adjusting Configuration To Improve Performance

When the consumer is created, the broker delivers an initial batch of 1000 messages
(providing they exist) to this consumer without pausing. After sending 1000
messages, the broker stops delivery until the client runtime asks for more
messages. The client runtime holds these messages until the application processes
them. The client runtime then allows the application to consume at least 50%

(i myConsuner FI owThr eshol d) of the message buffer capacity (i.e. 500 messages)
before asking the broker to send the next batch.

In the same situation, if the threshold were 10%, the client runtime would wait for
the application to consume at least 900 messages before asking for the next batch.

The next batch size is calculated as follows:
i ngConsuner Fl owLi mit - (current number of pending msgs in buffer)

So if i ngConsuner FI owThr eshol d is 50%, the next batch size can fluctuate between
500 and 1000, depending on how fast the application can process the messages.

If the i ngConsuner Fl owThr eshol d is set too high (close to 100%), the broker will
tend to send smaller batches, which can lower message throughput. If the value is
set too low (close to 0%), the client may be able to finish processing the remaining
buffered messages before the broker delivers the next set, again degrading message
throughput. Generally speaking, unless you have specific performance or
reliability concerns, you will not need to change the default value of

i mgConsurrer Fl owThr eshol d attribute.

The consumer-based flow controls (in particular, i rgConsuner Fl owLi ni t) are the
best way to manage memory in the client runtime. Generally, depending on the
client application, you know the number of consumers you need to support on any
connection, the size of the messages, and the total amount of memory that is
available to the client runtime.

Connection Flow Limiits

In the case of some client applications, however, the number of consumers may be
indeterminate, depending on choices made by end users. In those cases, you can
still manage memory using connection-level flow limits.

Connection-level flow controls limit the total number of messages buffered for all
consumers on a connection. If this number exceeds the value of

i mgConnecti onFl owLi m t, delivery of messages through the connection stops until
that total drops below the connection limit. (The i ngConnect i onFl owLi m t
attribute is enabled only if you set i ngConnect i onFl owLi ni t Enabl ed to true.)

Chapter 11 Analyzing and Tuning a Message Service 231

Adjusting Configuration To Improve Performance

The number of messages queued up in a session is a function of the number of
message consumers using the session and the message load for each consumer. If a
client is exhibiting delays in producing or consuming messages, you can normally
improve performance by redesigning the application to distribute message
producers and consumers among a larger number of sessions or to distribute
sessions among a larger number of connections.

232 Message Queue 3 2005Q4 « Administration Guide

Chapter 12

Troubleshooting Problems

This chapter explains how to understand and resolve the following problems:

“A Client Cannot Establish a Connection” on page 234
“Connection Throughput Is Too Slow” on page 239

“A Client Cannot Create a Message Producer” on page 241
“Message Production Is Delayed or Slowed” on page 242
“Messages Are Backlogged” on page 245

“Message Server Throughput Is Sporadic” on page 250
“Messages Are Not Reaching Consumers” on page 251

“The Dead Message Queue Contains Messages” on page 255

When problems occur, it is useful to check the version number of the installed
Message Queue software. Use the version number to ensure that you are using
documentation whose version matches the software version. You also need the
version number to report a problem to Sun. To check the version number, issue the
following command:

ingemd -v

233

A Client Cannot Establish a Connection

A Client Cannot Establish a Connection

234

The symptoms of this problem are as follows:

= Client cannot make a new connection.

= Client cannot auto-reconnect on failed connection.
This section explores the following possible causes:

= Client applications are not closing connections, causing the number of
connections to exceed resource limitations.

= Broker is not running or there is a network connectivity problem.
= Connection service is inactive or paused.
= Too few threads available for the number of connections required.

= Too few file descriptors for the number of connections required on the Solaris
or Linux operating system.

= TCP backlog limits the number of simultaneous new connection requests that
can be established.

= Operating system limits the number of concurrent connections.

= Authentication or authorization of the user is failing.

Client applications are not closing connections, causing the number of
connections to exceed resource limitations

To confirm this cause of the problem
List all connections to a broker:
ingend |ist cxn

The output will list all connections and the host from which each connection has
been made, revealing an unusual number of open connections for specific clients.

To resolve the problem

Rewrite the offending clients to close unused connections.

Message Queue 3 2005Q4 « Administration Guide

A Client Cannot Establish a Connection

Broker is not running or there is a network connectivity problem
To confirm this cause of the problem

« Telnet to the broker’s primary port (for example, the default of 7676) and verify
that the broker responds with Port Mapper output.

= Verify that the broker process is running on the host.
To resolve the problem
= Start up the broker.
= Fix the network connectivity problem.
Connection service is inactive or paused
To confirm this cause of the problem
Check the status of all connection services:
ingend |ist svc

If the status of a connection service is shown as unknown or paused, clients will not
be able to establish a connection using that service.

To resolve the problem

= |f the status of a connection service is shown as unknown, it is missing from the
active service list (i mg. servi ce. acti ve). In the case of SSL-based services, the
service might also be improperly configured, causing the broker to make the
following entry in the broker log: ERRCR [B3009]: Unable to start service
ssljns: [B4001]: Unable to open protocol tls for ssljns service...
followed by an explanation of the underlying cause of the exception.

To properly configure SSL services, see “Working With an SSL-Based Service”
on page 148.

= If the status of a connection service is shown as paused, resume the service (see
“Pausing and Resuming a Connection Service” on page 110).

Chapter 12 Troubleshooting Problems 235

A Client Cannot Establish a Connection

236

Too few threads available for the number of connections required
To confirm this cause of the problem

Check for the following entry in the broker log:

WARNI NG [B3004] : No threads are avail abl e to process a new connection on
service ... dosing the new connecti on.

Also check the number of connections on the connection service and the number of
threads currently in use, using one of the following formats:

i ngcnmd query svc -n serviceName
ingcnd metrics svc -n serviceName - m cxn

Each connection requires two threads: one for incoming messages and one for
outgoing messages (see “Thread Pool Management” on page 77).

To resolve the problem

= Ifyou are using a dedicated thread pool model (i ng. serviceName.
t hreadpool _nodel =dedi cat ed), the maximum number of connections is half
the maximum number of threads in the thread pool. Therefore, to increase the
number of connections, increase the size of the thread pool
(i mg. serviceName. max_t hr eads) or switch to the shared thread pool model.

= Ifyou are using a shared thread pool model (i ng. serviceName.
t hreadpool _nodel =shar ed), the maximum number of connections is half the
product of the following two properties: the connection Monitor limit
(i mg. serviceName. connect i onMoni tor _|i ni t) and the maximum number of
threads (i ng. serviceName. max_t hr eads). Therefore, to increase the number of
connections, increase the size of the thread pool or increase the connection
monitor limit.

= Ultimately, the number of supportable connections (or the throughput on
connections) will reach input/output limits. In such cases, use a multi-broker
cluster to distribute connections among the broker instances within the cluster.

Too few file descriptors for the number of connections required on the
Solaris or Linux operating system

For more information about this issue, see “Setting the File Descriptor Limit” on
page 66.

To confirm this cause of the problem

Check for an entry in the broker log similar to the following: Too many open fil es.

Message Queue 3 2005Q4 « Administration Guide

A Client Cannot Establish a Connection

To resolve the problem

Increase the file descriptor limit, as described in the ul i m t man page.

TCP backlog limits the number of simultaneous new connection requests
that can be established

The TCP backlog places a limit on the number of simultaneous connection requests
that can be stored in the system backlog (i mg. por t mapper . backl og) before the Port
Mapper rejects additional requests. (On Windows operating systems there is a
hard-coded backlog limit: 5 for Windows desktops and 200 for Windows servers.)

The rejection of requests because of backlog limits is usually a transient
phenomenon, due to an unusually high number of simultaneous connection
requests.

To confirm this cause of the problem

Examine the broker log. First, check to see whether the broker is accepting some
connections during the same time period that it is rejecting other connections.
Next, check for messages that explain rejected connections. If you find such
messages, the TCP backlog is probably not the problem, because the broker does
not log connection rejections due to the TCP backlog.

If some successful connections are logged, and no connection rejections are logged,
the TCP backlog is probably the problem.

To resolve the problem
The following approaches can be used to resolve TCP backlog limitations:

= Program the client to retry the attempted connection after a short interval of
time (this normally works because of the transient nature of this problem).

= Increase the value of i ng. port napper . backl og.
= Check that clients are not closing and then opening connections too often.

Operating system limits the number of concurrent connections

The Windows operating system license places limits on the number of concurrent
remote connections that are supported.

To confirm this cause of the problem

Check that there are plenty of threads available for connections (using

i mgcmd query svc) and check the terms of your Windows license agreement. If
you can make connections from a local client, but not from a remote client,
operating system limitations might be the cause of the problem.

Chapter 12 Troubleshooting Problems 237

A Client Cannot Establish a Connection

238

To resolve the problem
= Upgrade the Windows license to allow more connections.

= Distribute connections among a number of broker instances by setting up a
multi-broker cluster.

Authentication or authorization of the user is failing

The authentication can be failing due to an incorrect password, because there is no
entry for the user in the user repository, or because the user does not have access
permissions for the connection service.

To confirm this cause of the problem

Check entries in the broker log for the For bi dden error message. This will indicate
an authentication error, but will not indicate the reason for it.

= Ifyou are using a file-based user repository, enter the following command:
i nqusermgr list -i instanceName -u userName

= |fthe output shows a user, the wrong password was probably submitted. If the
output shows the following error, there is no entry in the user repository:

Error [B3048]: User does not exist in the password file,

= Ifyou are using an LDAP server user repository, use the appropriate tools to
check if there is an entry for the user.

= Check the access control properties file to see if there are restrictions on access
to the connection service.

To resolve the problem

= [Ifthere is no entry for the user in the user repository, add the user to the user
repository (see “Populating and Managing a User Repository” on page 137).

= |fthe wrong password was used, provide the correct password.

= |fthe access control properties are improperly set, edit the access control
properties file to grant connection service permissions (see “Access Control for
Connection Services” on page 145).

Message Queue 3 2005Q4 « Administration Guide

Connection Throughput Is Too Slow

Connection Throughput Is Too Slow

The symptoms of this problem are as follows:
= Message throughput does not meet expectations.

= The number of supported connections to a broker is not limited as described in
“A Client Cannot Establish a Connection” on page 234, but rather by message
input/output rates.

This section explores the following possible causes:

= Network connection or WAN is too slow.

= Connection service protocol is inherently slow compared to TCP.
= Connection service protocol is not optimally tuned.

= Messages are so large they consume too much bandwidth.

= What appears to be slow connection throughput is actually a bottleneck in
some other step of the message delivery process.

Network connection or WAN is too slow
To confirm this cause of the problem

Ping the network to see how long it takes for the ping to return, and then consult a
network administrator. Also you can send and receive messages using local clients
and compare the delivery time with that of remote clients (which use a network
link).

To resolve the problem
If the connection is too slow, upgrade the network link.

Connection service protocol is inherently slow compared to TCP

As an example, SSL-based or HTTP-based protocols are slower than TCP (see
Figure 11-5 on page 220).

To confirm this cause of the problem

If you are using SSL-based or HTTP-based protocols, try using TCP and compare
the delivery times.

To resolve the problem

Application requirements usually dictate the protocols being used, so there is little
that you can do, other than to attempt to tune the protocol as described in (“Tuning
Transport Protocols” on page 224).

Chapter 12 Troubleshooting Problems 239

Connection Throughput Is Too Slow

240

Connection service protocol is not optimally tuned
To confirm this cause of the problem

Try tuning the protocol and see if it makes a difference.

To resolve the problem

Try tuning the protocol as described in (“Tuning Transport Protocols” on
page 224).

Messages are so large they consume too much bandwidth

To confirm this cause of the problem

Try running your benchmark with smaller-sized messages.

To resolve the problem

= Have application developers modify the application to use the message
compression feature, which is described in the Message Queue Developer’s Guide
for Java Clients.

= Use messages as notifications of data to be sent, but move the data using
another protocol.

What appears to be slow connection throughput is actually a bottleneck in
some other step of the message delivery process

To confirm this cause of the problem

If none of the items above appear to be the cause of what appears to be slow
connection throughput, consult Figure 11-1 on page 209 for other possible
bottlenecks and check for symptoms associated with the following problems:

= “Message Production Is Delayed or Slowed” on page 242
= “Messages Are Backlogged” on page 245

= “Message Server Throughput Is Sporadic” on page 250
To resolve the problem

Follow the problem resolution guidelines provided in the problem troubleshooting
sections above.

Message Queue 3 2005Q4 « Administration Guide

A Client Cannot Create a Message Producer

A Client Cannot Create a Message Producer

The symptoms of this problem are as follows:

= A message producer cannot be created for a physical destination; the client
receives an exception.

This section explores the following possible causes:

= A physical destination has been configured to allow only a limited number of
producers.

= The user is not authorized to create a message producer due to settings in the
access control properties file.

A physical destination has been configured to allow only a limited number of
producers

One of the ways of avoiding the accumulation of messages on a physical
destination is to limit the number of producers (maxNunPr oducer s) that it supports.
To confirm this cause of the problem

Check the physical destination (see “Displaying Information about Physical
Destinations” on page 121):

i ngcnd query dst

The output will show the current number of producers and the value of
maxNunPr oducer s. If the two values are the same, the number of producers has
reached its configured limit. When a new producer is rejected by the broker, the
broker returns a Resour ceAl | ocat i onException [C4088]: A JM5 destination
[imt was reached and makes the following entry in the broker log: [B4183] :
Producer can not be added to destination.

To resolve the problem

Increase the value of the naxNunPr oducer s attribute (see “Updating Physical
Destination Properties” on page 123).

The user is not authorized to create a message producer due to settings in
the access control properties file
To confirm this cause of the problem

When a new producer is rejected by the broker, the broker returns the following
message:

JMBSecurityException [C4076]: dient does not have permission to
create producer on destination

Chapter 12 Troubleshooting Problems 241

Message Production Is Delayed or Slowed

The broker also makes the following entries in the broker log:
[B2041]: Producer on destination deni ed and [B4051]: Forbi dden guest.
To resolve the problem

Change the access control properties to allow the user to produce messages (see
“Access Control for Physical Destinations” on page 146).

Message Production Is Delayed or Slowed

The symptoms of this problem are as follows:

= When sending persistent messages, the send method does not return and the
client blocks.

= When sending a persistent message, client receives an exception.
= Producing client slows down.
This section explores the following possible causes:

= The message server is backlogged and has responded by slowing message
producers.

= The broker cannot save a persistent message to the data store.

= Broker acknowledgment timeout is too short.

= A producing client is encountering JVM limitations.

The message server is backlogged and has responded by slowing

message producers
A backlogged server accumulates messages in broker memory.

When the number of messages or number of message bytes in physical destination
memory reaches configured limits, the broker attempts to conserve memory
resources in accordance with the specified limit behavior. The following limit
behaviors slow down message producers;

= FLON CONTRQL: The broker does not immediately acknowledge receipt of
persistent messages (thereby blocking a producing client).

= REJECT_NEVEST: The broker rejects new persistent messages.

242 Message Queue 3 2005Q4 « Administration Guide

Message Production Is Delayed or Slowed

Similarly, when the number of messages or number of message bytes in
brokerwide memory (for all physical destinations) reaches configured limits, the
broker will attempt to conserve memory resources by rejecting the newest
messages.

Also, when system memory limits are reached because physical destination or
brokerwide limits have not been set properly, the broker takes increasingly serious
action to prevent memory overload. These actions include throttling back message
producers.

To confirm this cause of the problem

When a message is rejected by the broker due to configured message limits, the
broker returns the following message:

JVMBException [C4036]: A server error occurred
The broker also makes this entry in the broker log:
WARNI NG[B2011]: Storing of JMS message from | Mxonn failed

The message is followed by a message indicating the limit that has been reached. If
the message limit is on a physical destination, the broker makes an entry like the
following:

[B4120]: Can not store message on destination destName because
capacity of maxNumMsgs woul d be exceeded.

If the message limit is broker wide, the broker makes an entry like the following:

[B4024]: The Maxi mum Number of nessages currrently in the systemhas
been exceeded, rejecting message.

More generally, you can check for message limit conditions before the rejections
occur as follows:

= By querying physical destinations and the broker and inspecting their
configured message limit settings.

= By monitoring the number of messages or number of message bytes currently
in a physical destination or in the broker as a whole, using the appropriate
i mgcmd commands. See Chapter 18, “Metrics Reference” for information about
metrics you can monitor, and the commands you use to obtain them.

Chapter 12 Troubleshooting Problems 243

Message Production Is Delayed or Slowed

244

To resolve the problem

There are a number of approaches to addressing the slowing of producers due to
messages becoming backlogged:

= Modify the message limits on a physical destination (or brokerwide) being
careful not to exceed memory resources.

In general, you should manage memory on a destination-by-destination level
so that brokerwide message limits are never reached. For more information,
see “Broker Adjustments” on page 228.

= Change the limit behaviors on a destination to not slow message production
when message limits are reached, but rather to discard messages in memory.

Forexample, you can specify the REMOVE_OLDESTand REMOVE_LON PRI ORI TY limit
behaviors, which delete messages that accumulate in memory (see Table 15-1
on page 313).

The broker cannot save a persistent message to the data store

If the broker cannot access a data store or write a persistent message to the data
store, the producing client is blocked. This condition can also occur if destination or
brokerwide message limits are reached, as described above.

To confirm this cause of the problem

If the broker is unable to write to the data store, it makes one of the following
entries in the broker log: [B2011] : Storing of JM5 nessage from connectionl D
failed.. or[B4004]: Failed to persist nessage nessagelD...

To resolve the problem

= In the case of file-based persistence, try increasing the disk space of the
file-based data store.

= In the case of a JDBC-compliant data store, check that JDBC-based persistence
is properly configured (see Chapter 4, “Configuring a Broker™). If so, consult
your database administrator to troubleshoot other database problems.

Broker acknowledgment timeout is too short

Due to slow connections or a lethargic message server (caused by high CPU
utilization or scarce memory resources), a broker might require more time to
acknowledge receipt of a persistent message than allowed by the value of the
connection factory’s i ngAckTi neout attribute.

Message Queue 3 2005Q4 « Administration Guide

Messages Are Backlogged

To confirm this cause of the problem

If the i ngAckTi meout value is exceeded, the broker returns the following message:
JVMBException [C4000]: Packet acknow edge fail ed

To resolve the problem

Change the value of the i ngAckTi neout connection factory attribute (see
“Reliability And Flow Control” on page 170).

A producing client is encountering JVM limitations
To confirm this cause of the problem
= Find out whether the client application receives an Out Of Memory error.

= Check the free memory available in the JVM heap using runtime methods such
as freeMenory, MaxMenory, and t ot al Menory.

To resolve the problem

Adjust the JVM (see “Java Virtual Machine Adjustments” on page 223).

Messages Are Backlogged

The symptoms of this problem are as follows:

= The number of messages or message bytes in the broker (or in specific
destinations) increases steadily over time.

To see whether messages are accumulating, check how the number of
messages or message bytes in the broker changes over time and compare to
configured limits. First check the configured limits:

i mgcrd query bkr

(Note: theingemd netrics bkr subcommand does not display this
information.)

Then check for message accumulation in each destination:
imgermd i st dst

To see whether messages have exceeded configured destination or brokerwide
limits, check the broker log for the following entry: WARNI NG [B2011] : Stori ng
of JM5 message from..fail ed. This entry will be followed by another entry
explaining the limit that has been exceeded.

Chapter 12 Troubleshooting Problems 245

Messages Are Backlogged

= Message production is delayed or produced messages are rejected by the
broker.

= Messages take an unusually long time to reach consumers.

This section explores the following possible causes:

= There are inactive durable subscriptions on a topic destination.

= There are too few consumers available to consume messages in a queue.

= Message consumers are processing too slowly to keep up with message
producers.

« Client acknowledgment processing is slowing down message consumption.
= The broker cannot keep up with produced messages.
= Client code defects: consumers are not acknowledging messages.

There are inactive durable subscriptions on a topic destination

If a durable subscription is inactive, messages are stored in a destination until the
corresponding consumer becomes active and can consume the messages.

To confirm this cause of the problem

Check the state of durable subscriptions on each topic destination:
ingcnd |ist dur -d destName

To resolve the problem

You can take any of the following actions:

= Purge all messages for the offending durable subscriptions (see “Managing
Durable Subscriptions” on page 112).

= Specify message limit and limit behavior attributes for the topic (see Table 15-1
on page 313). For example, you can specify the REMOVE_COLDEST and
REMOVE_LOW PRI ORI TY limit behaviors, which delete messages that accumulate
in memory.

= Purge all messages from the corresponding destinations (see “Purging Physical
Destinations” on page 124).

= Limit the time messages can remain in memory. You can rewrite the producing
client to set a time-to-live value on each message. You can override any such
settings for all producers sharing a connection by setting the
i mgOver ri deJMSExpi rat i on and i ngJMBEXpi rat i on connection factory
attributes (see “Message Header Overrides” on page 325).

246 Message Queue 3 2005Q4 « Administration Guide

Messages Are Backlogged

There are too few consumers available to consume messages in a queue

If there are too few active consumers to which messages can be delivered, a queue
destination can become backlogged as messages accumulate. This condition can
occur for any of the following reasons:

= Too few active consumers exist for the destination.

= Consuming clients have failed to establish connections.

= No active consumers use a selector that matches messages in the queue.
To confirm this cause of the problem

To help determine the reason for unavailable consumers, check the number of
active consumers on a destination:

ingcnmd nmetrics dst -n destName -t g -mcon

To resolve the problem

You can take any of the following actions, depending on the reason for unavailable
consumers:

= Create more active consumers for the queue, by starting up additional
consuming clients.

= Adjust the img.consumerFlowLimit broker property to optimize queue
delivery to multiple consumers (see “Multiple Consumer Queue Performance”
on page 229).

= Specify message limit and limit behavior attributes for the queue (see
Table 15-1 on page 313). For example, you can specify the REMOVE_COLDEST and
REM OVE_LON PRI OROTY limit behaviors, which delete messages that
accumulate in memory.

= Purge all messages from the corresponding destinations (see “Purging Physical
Destinations” on page 124).

= Limit the time messages can remain in memory. You can rewrite the producing
client to set a time-to-live value on each message, you can override any such
setting for all producers sharing a connection by setting the
i mgOver ri deJMBEXpi rat i on and i ngJMBEXpi rat i on connection factory
attributes (see “Message Header Overrides” on page 325).

Chapter 12 Troubleshooting Problems 247

Messages Are Backlogged

248

Message consumers are processing too slowly to keep up with message
producers

In this case topic subscribers or queue receivers are consuming messages more
slowly than the producers are sending messages. One or more destinations is
getting backlogged with messages due to this imbalance.

To confirm this cause of the problem

Check for the rate of flow of messages into and out of the broker:
ingcnd rmetrics bkr -mrts

Then check flow rates for each of the individual destinations:
ingcnd metrics bkr -t destType -n destName -mrts

To resolve the problem

= Optimize consuming client code.

= For queue destinations, increase the number of active consumers (see
“Multiple Consumer Queue Performance” on page 229).

Client acknowledgment processing is slowing down message consumption
Two factors affect the processing of client acknowledgments:

= Significant broker resources can be consumed in processing client
acknowledgments. As a result, message consumption might be slowed in those
acknowledgment modes in which consuming clients block until the broker
confirms client acknowledgments.

= JMS payload messages and Message Queue control messages (such as client
acknowledgments) share the same connection. As a result, control messages
can be held up by JMS payload messages, slowing message consumption.

To confirm this cause of the problem

= Check the flow of messages relative to the flow of packets. If the number of
packets per second is out of proportion to the number of messages, client
acknowledgments might be a problem.

= Check to see whether the client has received the following message:
JMBException [C4000]: Packet acknow edge fail ed
To resolve the problem

= Modify the acknowledgment mode used by clients, for example, switch to
DUPS_OK_ACKNOW.EDGE or CLI ENT_ACKNONLEDGE.

Message Queue 3 2005Q4 « Administration Guide

Messages Are Backlogged

= [Ifusing CLI ENT_ACKNOALEDGE or transacted sessions, group a larger number of
messages into a single acknowledgment.

= Adjust consumer and connection flow control parameters (see “Client Runtime
Message Flow Adjustments” on page 229).

The broker cannot keep up with produced messages

In this case, messages are flowing into the broker faster than the broker can route
and dispatch them to consumers. The sluggishness of the broker can be due to
limitations in any or all of the following: CPU, network socket read/write
operations, disk read/write operations, memory paging, the persistent store, or
JVM memory limits.

To confirm this cause of the problem

Check that none of the other causes of this problem are responsible.

To resolve the problem

= Upgrade the speed of your computer or your data store.

= Use a broker cluster to distribute the load among a number of broker instances.

Client code defects: consumers are not acknowledging messages

Messages are held in a destination until they have been acknowledged by all
consumers to which the messages have been sent. If a client is not acknowledging
consumed messages, the messages accumulate in the destination without being
deleted.

For example, client code might have the following defects:

= Consumers using CLI ENT_ACKNOANLEDGEacknow edgnent or transacted session
might not be calling Sessi on. acknow edge or Sessi on. comm t on a regular
basis.

= Consumers using AUTO ACKNOALEDGE sessions might be hanging for some
reason.

To confirm this cause of the problem

First check all other possible causes listed in this section. Next, list the destination
with the following command:

ingemd |ist dst

Chapter 12 Troubleshooting Problems 249

Message Server Throughput Is Sporadic

Notice whether the number of messages listed under the UnAcked header is the
same as the number of messages in the destination. The messages under the
UnAcked header were sent to consumers but not acknowledged. If this number is
the same as the total number of messages, the broker has sent all the messages and
is waiting for acknowledgment.

To resolve the problem

Request the help of application developers in debugging this problem.

Message Server Throughput Is Sporadic

250

The symptom of this problem is as follows:

= Message throughput sporadically drops, and then resumes normal
performance.

This section explores the following possible causes:

= The broker is very low on memory resources.

< JVM memory reclamation (garbage collection) is taking place.

= The JVM is using the Just-In-Time compiler to speed up performance.

The broker is very low on memory resources

Because destination and broker limits were not properly set, the broker takes
increasingly serious action to prevent memory overload, and this can cause the
broker to become very sluggish until the message backlog is cleared.

To confirm this cause of the problem

Check the broker log for a low memory condition ([B1089]: In | ow menory
condition, broker is attenpting to free up resources), followed by an entry
describing the new memory state and the amount of total memory being used.

Also check the free memory available in the JVM heap:

ingcnd metrics bkr -mcxn

Free memory is low when the value of total VM memory is close to the maximum
JVM memory value.

To resolve the problem
= Adjust the JVM (see “Java Virtual Machine Adjustments” on page 223).

= Increase system swap space.

Message Queue 3 2005Q4 « Administration Guide

Messages Are Not Reaching Consumers

JVM memory reclamation (garbage collection) is taking place

Memory reclamation periodically sweeps through the system to free up memory.
When this occurs, all threads are blocked. The larger the amount of memory to be
freed up and the larger the JVM heap size, the larger the delay due to memory
reclamation.

To confirm this cause of the problem

Monitor CPU usage on your computer. CPU usage drops when memory
reclamation is taking place.

Also start your broker using the following command line options:
-vmargs -verbose: gc

Standard output indicates the time that memory reclamation takes place.

To resolve the problem

In multiple CPU computers, set the memory reclamation to take place in parallel:
- XX: +UseParal | el GC=true

The JVM is using the Just-In-Time compiler to speed up performance

To confirm this cause of the problem

Check that none of the other causes of this problem are responsible.

To resolve the problem

Let the system run for a while; performance should improve.

Messages Are Not Reaching Consumers

The symptom of this problem is as follows:

= Messages sent by producers are not received by consumers.

This section explores the following possible causes:

= Limit behaviors are causing messages to be deleted on the broker.
= Message time-out value is expiring.

= Clocks are not synchronized.

= Consuming client failed to start message delivery on a connection.

Chapter 12 Troubleshooting Problems 251

Messages Are Not Reaching Consumers

252

Limit behaviors are causing messages to be deleted on the broker

When the number of messages or number of message bytes in destination memory
reach configured limits, the broker attempts to conserve memory resources. Three
of the configurable behaviors taken by the broker when these limits are reached
will cause messages to be lost:

< REMOVE CLDEST: deleting the oldest messages.

< REMOVE _LON PR ORI TY: deleting the lowest priority messages according to age
of the messages.

= REJECT _NEVEST: rejecting new persistent messages.

As the number of messages or number of message bytes in broker memory reach
configured limits, the broker attempts to conserve memory resources by rejecting
the newest messages.

To confirm this cause of the problem

Check the dead message queue, as described under “The Dead Message Queue
Contains Messages” on page 255. Specifically, use the instructions under “The
number of messages, or their sizes, exceed destination limits” on page 256. Look
for the REMOVE_CLDEST or REMOVE_LON PRI CRI TY reason.

To resolve the problem
Increase the destination limits. For example:
i ngcnd update dst -n MyDest -0 maxNunibgs=1000

Message time-out value is expiring

The broker deletes messages whose time-out value has expired. If a destination
gets sufficiently backlogged with messages, messages whose time-to-live value is
too short might be deleted.

To confirm this cause of the problem
Check the dead message queue to see whether messages are timing out.

Use the QBrowser demo application to look at the DMQ contents. The QBrowser
demo is in an operating system-specific location; for the location, see Appendix A,
“Platform-Specific Locations of Message Queue Data” and look in the tables for
“Example Applications and Locations.”

This is an example of invocation on Windows:

cd \ MessageQueue3\ deno\ appl i cat i ons\ gbr owser java QBrowser

Message Queue 3 2005Q4 « Administration Guide

Messages Are Not Reaching Consumers

When the QBrowser main window appears, select the queue name ng. sys. dng and
then click Browse. A list like the following appears.

Figure 12-1 QBrowser Window

| URHATYIE 1 H 43 00 POT
(AR D 4 POT
'l':iF.Il.i'Il:II:It 14 B FOT
1I.||.lwu 144 01 POT
1.':1|.|':I|I:l|14 101 FOT
[3R I B 3 08 POT
NEIETTICE 14 49 08 POT
EII O S 0 POT
131:]“'3]"14 lﬂ'l]"Ftl'l'
'lilf.llli‘l:ll-l 1448 08 FTT
131-:3]!!1 A4 POT
ﬂnuwmm-u H:I:I!-FDT
!:ﬂmm &4 LT
1mu-mu 144408 FOT
TR0 1241 POT
(T T 1808 A FOT
uuu-:h:lm: 1448 O P E

1.’|l.||l'1l]h=14 H:ﬂkF‘D’I"_
13:]“'3]“11113 ne FoT
1!]!.@['-!1] al HH:I'I
13!]“':2!]9:14 53 H'F'El'l"

*NIEI]H 1853 B8 FOT
|1 BT 4 21 58 POT
B) 18 5158 FOT
\'!:.Illl'l]l!lt 14 E]"H F'I:I'l"
| PRI B T4 5 A8 POT
| IR B 14 5158 FOT

Double click a message to display details about that message.

Chapter 12 Troubleshooting Problems 253

Messages Are Not Reaching Consumers

254

Figure 12-2 QBrowser Message Details

oS ol i Mgt]
JECrpaisatian: O

m
sEEDel LFerBedel o
IRt
IATRasra gl
-
=

S0 S-LTE EN 19T | eS s LA D AR HE | 8| ~LLES- 1OBFISAIRLITY
TR orp el asien [l
TESREplysTa: EyDart
SHEFELSELEYD 4

Muwsige Proparies s
oI iR _BORY_THIMCETER: I:-u'.:':l
SRI_STW DR _INPELTVEREY _EELION: OLIEST
JNS_STH R _INTELIVERET COMRFNT: [BO0Sd]: Destirstion :fplast Limaw
Wi & meSdejes B2 [BAULI]I URllRited PYLes Was Sddeedsd
JHI_STH_SRI_INEELTVEREE TIMESTENF: LEEATREEARTI

come; 3

E000 0003 0i00 (400 (0E0 D00 3008 O00d Lo
S0 G007 0500 DO0O [0S0 004D 9005 O00d
WD ATd 0 00 (0BG P00 G006 0000
B000 A003 0000 G100 (0N DOAD 3008 A0
E0I0 Q003 0500 CA00 [0S0 DOAD 205 A00d
BOOD Q003 OB0) 0300 (080 BOAD B(0E BE01
BO0D Q003 GRG0 D00 (0N DOAD 30 QB0

Note whether the JM5_SUN_DMQ UNDELI VERED REASON property for messages has
the value EXPI RED.

To resolve the problem
Contact the application developers and have them increase the time-to-live value.

Clocks are not synchronized

If clocks are not synchronized, broker calculations of message lifetimes can be
wrong, causing messages to exceed their expiration times and be deleted.

To confirm this cause of the problem

In the broker log file, look for any of the following messages: B2102, B2103, B2104.
These messages all report that possible clock skew was detected.

To resolve this problem

Check that you are running a time synchronization program, as described in
“Preparing System Resources” on page 65.

Message Queue 3 2005Q4 « Administration Guide

The Dead Message Queue Contains Messages

Consuming client failed to start message delivery on a connection

Messages cannot be delivered until client code establishes a connection and starts
message delivery on the connection.

To confirm this cause of the problem

Check that client code establishes a connection and starts message delivery.

To resolve the problem

Rewrite the client code to establish a connection and start message delivery.

The Dead Message Queue Contains Messages

The symptom of this problem is as follows:

When you list destinations, you see that the dead message queue contains
messages. For example, issue a command like the following.

imgerd | st dst

After you supply a user name and password, output like the following
appears:

Listing all the destinations on the broker specified by:

Nane Type State Producers Consuners Msgs
Total Count UnAck Avg Size
MyDest Queue RUNNING 0 0 5 0 1177.0
ng.sys.dny Queue RUNNING O 0 35 0 1422.0
Successfully listed destinations.

In this example, the dead message queue, ng. sys. dng, contains 35 messages.

This section explores the following possible causes:

The number of messages, or their sizes, exceed destination limits.
The broker clock and producer clock are not synchronized.

Consumers are not receiving the messages before messages time out.

Chapter 12 Troubleshooting Problems 255

The Dead Message Queue Contains Messages

= There are too many producers for the number of consumers.

= Producers are faster than consumers.

= A consumer is too slow.

= Clients are not committing messages.

= Durable consumers are inactive.

= Anunexpected broker error occurred.

The number of messages, or their sizes, exceed destination limits
To confirm this cause of the problem

Use the QBrowser demo application to look at the contents of the dead message
queue. The QBrowser demo is in an operating system-specific location; for the
location, see Appendix A, “Platform-Specific Locations of Message Queue Data”
and look in the tables for “Example Applications and Locations.”

This is an example of invocation on Windows:
cd \ MessageQueued\ deno\ appl i cat i ons\ gbr owser java (Browser

When the QBrowser main window appears, select the queue name ny. sys. dng and
then click Browse. A list like the one shown in Figure 12-1 on page 253 appears.

Double click any message to display details about that message. The window
shown in Figure 12-2 on page 254 appears.

Note the values for the following message properties:
e JMS_SUN DMQ UNDELI VERED REASON

e JM5_SUN DMQ UNDELI VERED COMVENT

= JMS_SUN DMQ UNDELI VERED TI MESTAWP

Under JMS Headers, note the value for JMsSDest i nat i on to determine the
destination whose messages are becoming dead.

To resolve this problem
Increase the destination limits. For example:
i ngcnd update dst -n MyDest -0 maxNunibgs=1000

The broker clock and producer clock are not synchronized
To confirm this cause of the problem:

256 Message Queue 3 2005Q4 « Administration Guide

The Dead Message Queue Contains Messages

Using the QBrowser application, view the message details for messages in the dead
message queue. Check the value for IM5_SUN_DMQ UNDELI VERED REASQN, looking
for messages with the reason EXPI RED.

In the broker log file, look for any of the following messages: B2102, B2103, B2104.
These messages all report that possible clock skew was detected.

To resolve this problem

Check that you are running a time synchronization program, as described in
“Preparing System Resources” on page 65.

Consumers are not receiving the messages before messages time out
To verify this cause of the problem

Using the QBrowser application, view the message details for messages in the dead
message queue. Check the value for JIM5_SUN_DMQ UNDELI VERED REASQN, | ooki ng
for messages with the reason EXPI RED.

Check to see whether there any consumers on the destination. For example:
ingcnd query dst -t g -n MyDest

Check the value listed for Current Number of Active Consumers. If there are active
consumers, one of the following is true:

= Aconsumer's connection is paused.

= The message timeout is too short for the speed at which the consumer executes.
To resolve the problem

Request that application developers increase message time-to-live values.

There are too many producers for the number of consumers

To confirm this cause of the problem

Using the QBrowser application, view the message details for messages in the dead
message queue. Check the value for JIM5_SUN DMQ UNDELI VERED REASON.

If the reason is REMOVE_CLDEST or REMOVE_LOWN PRI ORI TY, use the i ngecnd query dst
command to check the number of producers and consumers on the destination. If
the number of producers exceeds the number of consumers, production rate might
be overwhelming consumption rate.

Chapter 12 Troubleshooting Problems 257

The Dead Message Queue Contains Messages

258

To resolve the problem

Add more consumer clients or set the destination to use the FLOV CONTRCL limit
behavior. The FLON CONTRQOL limit behavior uses consumption rate to control
production rate.

Start the flow control behavior by using a command such as the following example:

i ngcnd update dst -n nyDst -t g -0 consuner Fl owLi m t =FLON CONTROL

Producers are faster than consumers
To confirm this cause of the problem

To determine whether slow consumers are causing producers to slow down, set the
destination limit behavior to FLON CONTRCL. The FLON CONTRCL limit behavior uses
consumption rate to control production rate.

Start the flow control behavior by using a command such as the following example:
i ngcnd update dst -n nyDst -t g -0 consuner Fl owLi m t =FLON CONTROL
Use metrics to examine the destination input and output, by issuing a command
like the following example:
ingcnd rmetrics dst -n nyDst -t g -mrts
In the metrics output, examine the following values:
= Mgs/sec Qut

This value shows how many messages per second the broker is removing. The
broker removes messages when all consumers acknowledge receiving them, so
the metric reflects consumption rate.

< Msgs/sec In

This value shows how many messages per second the broker is receiving from
producers. The metric reflects production rate.

Because flow control aligns production to consumption, note whether production
slows or stops. If the rate slows or stops, there is a discrepancy between the
processing speed of producers and consumers.

You can also check the number of unacknowledged (UnAcked) sent messages, by
using theirmgcnd |ist dst command. If the number of unacknowledged messages
is less than the size of the destination. the destination has additional capacity and is
being held back by client flow control.

Message Queue 3 2005Q4 « Administration Guide

The Dead Message Queue Contains Messages

To resolve the problem

If production rate is consistently faster than consumption rate, consider using flow
control regularly, to keep the system aligned.

In addition, using the subsequent sections, consider and attempt to resolve each of
the following possible factors:

= Aconsumer is too slow.

= Clients are not committing messages.

= Consumers are failing to acknowledge messages.
= Durable consumers are inactive.

= Anunexpected broker error occurred.

A consumer is too slow

To confirm this cause of the problem

Use metrics to determine the rate of production and consumption, as described
under “Producers are faster than consumers” on page 258.

To resolve the problem
Try one or more of the following:

= Set the destinations to use the FLON CONTRCL limit behavior. Use a command
like the following:

i ngcnd update dst -n nmyDst -t g -0 consuner Fl owLi m t =FLON CONTROL

Use of flow control slows production to the rate of consumption and prevents
the accumulation of messages on the broker. Producer applications hold
messages until the destination can process them in a timely manner, with less
risk of expiration.

= Find out from application developers whether producers send messages at a
steady rate, or in periodic bursts.

If an application sends bursts of messages, follow the instructions in the next
item to increase destination limits.

= Increase destination limits based on number of messages or number of bytes,
or both.

To change the number of messages on a destination, enter a command that has
the following format:

i ngcnd update dst -n destName -t {g/t} -o maxNumvsgs=number

Chapter 12 Troubleshooting Problems 259

The Dead Message Queue Contains Messages

260

To change the size of a destination, enter a command that has the following
format:

i ngcnd update dst -n destName -t {qg/t} -o maxTot al MsgByt es=number

Be aware that raising limits increases the amount of memory that the broker
uses. If limits are too high, the broker could run out of memory and become
unable to process messages.

= Consider whether you can accept loss of messages during levels of high
production load.

Clients are not committing messages
To confirm this cause of the problem

Check with application developers to find out whether the application uses
transactions. If the application uses transactions, list the active transactions as
follows:

ingend |ist txn

This is an example of the command output:

6800151593984248832 STARTED guest 3/2 7/19/04 11:03:08 AM

Note the numbers of messages and number of acknowledgments.

If the number of messages is high, producers may be sending individual messages
but failing to commit transactions. Until the broker receives a commit, it cannot
route and deliver the messages for that transaction.

If the number of acknowledgments is high, consumers may be sending
acknowledgments for individual messages but failing to commit transactions.
Until the broker receives a commit, it cannot remove the acknowledgments for that
transaction.

To resolve this problem

Contact application developers to fix the coding error.

Message Queue 3 2005Q4 « Administration Guide

The Dead Message Queue Contains Messages

Consumers are failing to acknowledge messages
To confirm this cause of the problem

Contact application developers to determine whether the application uses
system-based acknowledgment or client-based acknowledgment. If the application
uses system-based acknowledgment, skip this section.

If the application uses client-based acknowledgment (the CLI ENT_ACKNOALEDGE
type), first decrease the number of messages stored on the client. Use a command
like the following:

i ngcnd update dst -n nmyDst -t g -0 consuner Fl owLi mt=1

Next, you will determine whether the broker is buffering messages because a
consumer is slow, or whether the consumer processes messages quickly but does
not acknowledge them.

List the destination, using the following command:
ingend |ist dst

After you supply a user name and password, output like the following appears:

Listing all the destinations on the broker specified by:

Nane Type State Producers Consuners Msgs
Total Count UnAck Avg Size
MyDest Queue RUNNNG 0 0 5 200 1177.0
ng.sys.dng Queue RUNNING 0 0 35 0 1422.0
Successfully listed destinations.

The UnAck number represents messages that the broker has sent and for which it is
waiting for acknowledgment. If the UnAck number is high or increasing, you know
that the broker is sending messages, so it is not waiting for a slow consumer. You
also know that the consumer is not acknowledging the messages.

To resolve the problem

Contact application developers to fix the coding error.

Chapter 12 Troubleshooting Problems 261

The Dead Message Queue Contains Messages

262

Durable consumers are inactive
To confirm this cause of the problem

Look at the topic’s durable subscribers, using the following command format:
ingcnd |ist dur -d topicName

To resolve the problem

= Purge the durable consumers using the i mgcmd pur ge dur command.

= Restart the consumer applications.

An unexpected broker error occurred

To confirm this cause of the problem

Use QBrowser to examine a message, as described under “Producers are faster
than consumers” on page 258.

If the value for JM5_SUN DMQ UNDELI VERED REASONis ERRCR a broker error
occurred.

To resolve the problem
= Examine the broker log file to find the associated error.

= Contact Sun Technical Support to report the broker problem.

Message Queue 3 2005Q4 « Administration Guide

Chapter 13,
Chapter 14,
Chapter 15,
Chapter 16,
Chapter 17,

Chapter 18,

Part Il

Reference

“Command Line Reference”

“Broker Properties Reference”

“Physical Destination Property Reference”
“Administered Object Attribute Reference”
“JMS Resource Adapter Property Reference”

“Metrics Reference”

Chapter 13

Command Line Reference

This chapter provides reference information on the use of the Message Queue
command line administration utilities. It consists of the following sections:

“Command Line Syntax” on page 265
“Broker Utility” on page 266

“Command Utility” on page 271

“Object Manager Utility” on page 279
“Database Manager Utility” on page 280
“User Manager Utility” on page 282
“Service Administrator Utility” on page 283
“Key Tool Utility” on page 284

Command Line Syntax

Message Queue command line utilities are shell commands. The name of the utility
is a command and its subcommands or options are arguments passed to that
command. There is no need for separate commands to start or quit the utility.

All the command line utilities share the following command syntax:

utilityName [subcommand] [commandArgument] [[- optionName [- optionArgument]] .}

where utilityName is one of the following:

i mgbr oker d (Broker utility)
i mgcmd (Command utility)

265

Broker Utility

< i mobj ngr (Object Manager utility)

< imdbnygr (Database Manager utility)

= imuserngr (User Manager utility)

« inmgsvcadm n (Service Administrator utility)
= imgkeyt ool (Key Tool utility)

Subcommands and command-level arguments, if any, must precede all options
and their arguments; the options themselves may appear in any order. All
subcommands, command arguments, options, and option arguments are separated
with spaces. If the value of an option argument contains a space, the entire value
must be enclosed in quotation marks. (It is generally safest to enclose any
attribute-value pair in quotation marks.)

The following command, which starts the default broker, is an example of a
command line with no subcommand clause:

i ngbr oker d
Here is a fuller example:
i ngcnd destroy dst -t g -n nyQueue -u admn -f -s

This command destroys a queue destination (destination type q) named nyQueue.
Authentication is performed on the user name adni n; the command will prompt for
a password. The command will be performed without prompting for confirmation
(-f option) and in silent mode, without displaying any output (- s option).

Broker Utility

The Broker utility (i mgbr oker d) starts a broker. Command line options override
values in the broker configuration files, but only for the current broker session.

Table 13-1 shows the options to the i mgbr oker d command and the configuration
properties, if any, overridden by each option.

266 Message Queue 3 2005Q4 « Administration Guide

Table 13-1 Broker Utility Options

Broker Utility

Option Properties Overridden

Description

-nane instanceName i ng. i nst ancenane

-port portNumber i ng. por t mapper . port

-cluster brokerl [[, broker2]...] imy.cluster.brokerli st

- Dproperty=value Corresponding property in instance
configuration file

-reset props None

Instance name of broker

Multiple broker instances running on the
same host must have different instance
names.

Default value: i mgbr oker

Port number for broker’s Port Mapper

Message Queue clients use this port
number to connect to the broker. Multiple
broker instances running on the same host
must have different Port Mapper port
numbers.

Default value: 7676

Connect brokers into cluster?

The specified brokers are merged with the
listin the i mg. cl uster. brokerlist
property. Each broker argument has one of
the forms

hostName: portNumber
hostName
: portNumber

If hostName is omitted, the default value is
| ocal host ; if portNumber is omitted, the
default value is 7676.

Set configuration property

See Chapter 14, “Broker Properties
Reference,” for information about broker
configuration properties.

Caution: Be careful to check the spelling
and formatting of properties set with this
option. Incorrect values will be ignored
without notification or warning.

Reset configuration properties

Replaces the broker’s existing instance
configuration file (confi g. properti es)
with an empty file; all properties assume
their default values.

Chapter 13 Command Line Reference

267

Broker Utility

Table 13-1 Broker Utility Options (Continued)

Option

Properties Overridden

Description

-reset store

-reset nessages

-reset durables

- backup fileName

-restore fileName

-renove instance

- passwor d keyPassword

- dbuser userName

- dbpassword dbPassword

-1 dappasswor d ldapPassword

None

None

None

None

None

None

i ng. keyst or e. passwor d

i ng. persist.jdbc. user

i my. persist.jdbc. password

i ny. user_reposi tory. | dap. password

268 Message Queue 3 2005Q4 « Administration Guide

Reset persistent data store

Clears all persistent data from the data
store (including persistent messages,
durable subscriptions, and transaction
information), allowing you to start the
broker instance with a clean slate. To
prevent the persistent store from being
reset on subsequent restarts, restart the
broker instance without the - r eset option.

To clear only persistent messages or
durable subscriptions, use - r eset
messages or -reset dur abl es instead.

Clear persistent messages from data store

Clear durable subscriptions from data
store

Back up configuration change record to
filet

See “Managing the Configuration Change
Record” on page 187 for more information.

Restore configuration change record from
backup filet

The backup file must have been previously
created using the - backup option.

See “Managing the Configuration Change
Record” on page 187 for more information.

Remove broker instance?

Deletes the instance configuration file, log
files, persistent store, and other files and
directories associated with the instance.

Password for SSL certificate key store?

User name for JDBC-based persistent
data store

Password for JDBC-based persistent data
store®

Password for LDAP user repository®

Table 13-1 Broker Utility Options (Continued)

Broker Utility

Option Properties Overridden

Description

-passfil e filePath i ny. passfil e. enabl ed
i my. passfile.dirpath
i ng. passfil e. name

-shared i ng. j ms. t hr eadpool _nodel
-j avahone path None
-vrmargs argl [[arg2] ...] None
-license [licenseName] None

Location of password file

Sets the broker’s i ng. passfi | e. enabl ed
property to true, i ng. passfile.dirpath
to the path containing the password file,

and i ng. passfi |l e. nane to the file name
itself.

See “Using a Password File” on page 158
for more information.

Use shared thread pool model to
implement j ns connection service

Execution threads will be shared among
connections to increase the number of
connections supported.

Sets the broker’s
i ng. j ms. t hr eadpool _nodel property to
shar ed.

Location of alternative Java runtime

Default: Use runtime installed on system or
bundled with Message Queue.

Pass arguments to Java virtual machine

Arguments are separated with spaces. To
pass more than one argument, or an
argument containing a space, enclose the
argument list in quotation marks.

VM arguments can be passed only from
the command line; there is no associated
configuration property in the instance
configuration file.

License to load, if different from default for
installed edition of Message Queue
product:

pe Platform Edition with basic
features

try Platform Edition with enterprise
features (90-day trial)

unl Enterprise Edition

If no license name is specified, this option
lists all licenses installed on the system.

Chapter 13 Command Line Reference 269

Broker Utility

Table 13-1 Broker Utility Options (Continued)

Option Properties Overridden

Description

- upgr ade- st or e- nobackup None

-force None

-1 ogl evel level i ng. broker. 1 og. | evel

-metrics interval ing. netrics.interval

-tty i ng. | og. consol e. out put

-s|-silent i ng. | og. consol e. out put

-version None

-h|-help None

Automatically remove old data store on
upgrade to Message Queue 3.5 or 3.5 SPx
from an incompatible version?

See the Message Queue Installation Guide
for more information.

Perform action without user confirmation

This option applies only to the - r enove

i nst ance and - upgr ade- st or e- nobackup
options, which normally require
confirmation.

Logging level:

NONE
ERRCR
WARNI NG
I NFO

Default value: | NFO

Logging interval for broker metrics, in
seconds

Log all messages to console

Sets the broker’s
i ng. | og. consol e. out put property to ALL.

If not specified, only error and warning
messages will be logged.

Silent mode (no logging to console)

Sets the broker’s
i ng. | og. consol e. out put property to
NONE.

Display version information*

Display usage help*

1. This option applies only to broker clusters.

2. This option requires user confirmation unless - f or ce is also specified.

3. This option is being deprecated and will eventually be removed. Instead, either omit the password entirely (so that the command will
prompt for it interactively) or use the - passfi | e option to specify a password file containing the password.

4. Any other options specified on the command line are ignored .

270 Message Queue 3 2005Q4 « Administration Guide

Command Utility

Command Utility

The Command utility (i rgcnd) is used for managing brokers, connection services,
connections, physical destinations, durable subscriptions, and transactions.

Alli rgend commands must include a subcommand (except those using the-v or - h
option to display product version information or usage help). The possible
subcommands are listed here and described in detail in the corresponding sections
below. In all cases, if the subcommand accepts a broker address (- b option) and no
host name or port number is specified, the values | ocal host and 7676 are assumed

by default.

Broker Management
shut down bkr
restart bkr

pause bkr

resume bkr

updat e bkr

reload cls

query bkr

netrics bkr

Shut down broker

Restart broker

Pause broker

Resume broker

Set broker properties
Reload cluster configuration
List broker property values

Display broker metrics

Connection Service Management

pause svc
resume svc
updat e svc
list svc

query svc

netrics svc

Pause connection service

Resume connection service

Set connection service properties

List connection services available on broker
List connection service property values

Display connection service metrics

Connection Management
list cxn

query cxn

List connections on broker

Display connection information

Chapter 13 Command Line Reference

271

Command Utility

Physical Destination Management

create dst
destroy dst
pause dst
resume dst
updat e dst
purge dst
conpact dst
list dst
query dst

netrics dst

Create physical destination

Destroy physical destination

Pause message delivery for physical destination
Resume message delivery for physical destination
Set physical destination properties

Purge all messages from physical destination
Compact physical destination

List physical destinations

List physical destination property values

Display physical destination metrics

Durable Subscription Management

destroy dur
purge dur

list dur

Destroy durable subscription
Purge all messages for durable subscription

List durable subscriptions for topic

Transaction Management
conmmit txn

rol | back txn

list txn

query txn

Commit transaction
Roll back transaction
List transactions being tracked by broker

Display transaction information

Broker Management

The Command utility cannot be used to start a broker; use the Broker utility
(i mybr oker d) instead. Once the broker is started, you can use the i ngcnd
subcommands listed in Table 13-2 to manage and control it.

Table 13-2 Command Utility Subcommands for Broker Management

Syntax

Description

shut down bkr [-b hostName: portNumber] Shut down broker

restart bkr [-b hostName: portNumber] Restart broker

Shuts down the broker and then restarts it using the
same options specified when it was originally started.

272 Message Queue 3 2005Q4 « Administration Guide

Command Utility

Table 13-2 Command Utility Subcommands for Broker Management (Continued)

Syntax

Description

pause bkr [-b hostName: portNumber]

resune bkr [-b hostName: portNumber]

updat e bkr [-b hostName: portNumber]
-0 propertyl=valuel
[[- o property2=value?] ...]

reload cls

query bkr -b hostName: portNumber

netrics bkr [-b hostName: portNumber]
[- m metricType]
[-int interval]
[-msp numSamples]

Pause broker

See “Pausing a Broker” on page 103 for more
information.

Resume broker

Set broker properties

See Chapter 14, “Broker Properties Reference,” for
information on broker properties.

Reload cluster configuration®

Forces all persistent information to be brought up to
date.

List broker property values

Also lists all running brokers connected to the
specified broker in a cluster.

Display broker metrics
The - moption specifies the type of metrics to display:

ttl Messages and packets flowing into and out
of the broker

rts Rate of flow of messages and packets into
and out of the broker per second

cxn Connections, virtual memory heap, and
threads

Default value: tt1 .

The -i nt option specifies the interval, in seconds, at
which to display metrics. Default value: 5.

The - nmsp option specifies the number of samples to
display. Default value: unlimited (infinite).

1. This option applies only to broker clusters.

Connection Service Management

Table 13-3 lists the i ngcnd subcommands for managing connection services.

Table 13-3 Command Utility Subcommands for Connection Service Management

Syntax

Description

pause svc -n serviceName
[-b hostName: portNumber]

Pause connection service

The adm n connection service cannot be paused.

Chapter 13 Command Line Reference

Command Utility

Table 13-3 Command Utility Subcommands for Connection Service Management

Syntax

Description

resune svc -n serviceName
[- b hostName: portNumber]

updat e svc -n serviceName
[-b hostName: portNumber]
-0 propertyl=valuel
[[-o property2=value?] ...]

list svc [-b hostName: portNumber]

query svc - n serviceName
[-b hostName: portNumber]

netrics svc -n serviceName
[-b hostName: portNumber]
[- m metricType]
[-int interval]
[-msp numSamples]

Resume connection service

Set connection service properties

See “Connection Properties” on page 285 for
information on connection service properties.

List connection services available on broker

List connection service property values

Display connection service metrics
The - moption specifies the type of metrics to display:

ttl Messages and packets flowing into and out
of the broker by way of the specified
connection service

rts Rate of flow of messages and packets into
and out of the broker per second by way of
the specified connection service

cxn Connections, virtual memory heap, and
threads

Default value: tt1 .

The -i nt option specifies the interval, in seconds, at
which to display metrics. Default value: 5.

The - msp option specifies the number of samples to
display. Default value: unlimited (infinite).

Connection Management

Table 13-4 lists the i ngcnd subcommands for managing connections.

Table 13-4 Command Utility Subcommands for Connection Service Management

Syntax

Description

list cxn [-svn serviceName]
[-b hostName: portNumber]

query cxn -n connectionID
[-b hostName: portNumber]

List connections on broker

Lists all connections on the broker to the specified
connection service. If no connection service is
specified, all connections are listed.

Display connection information

274 Message Queue 3 2005Q4 « Administration Guide

Command Utility

Physical Destination Management

Table 13-5 lists the i ngcnmd subcommands for managing physical destinations. In all
cases, the -t (destination type) option can take either of two values:

g Queue destination
t Topic destination

Table 13-5 Command Utility Subcommands for Physical Destination Management

Syntax Description

create dst -t destType -n destName Create physical destination*
[-o propertyl=valuel]

The destination name destName may contain only
[[-o property2=value?] ...]

alphanumeric characters (no spaces) and must begin
with an alphabetic character or the underscore (_) or
dollar sign ($) character. It may not begin with the
characters ng.

destroy dst -t destType -n destName Destroy physical destination*

This operation cannot be applied to a system-created
destination, such as a dead message queue.

pause dst [-t destType -n destName] Pause message delivery for physical destination

[-pst pauseType] Pauses message delivery for the physical destination

specified by the -t and - n options. If these options
are not specified, all destinations are paused.

The pst option specifies the type of message delivery
to be paused:

CONSUMERS Pause delivery to message
consumers

PRODUCERS Pause delivery to message producers
ALL Pause all message delivery
Default value: ALL

resune dst [-t destType -n destName] Resume message delivery for physical destination

Resumes message delivery for the physical
destination specified by the -t and - n options. If
these options are not specified, all destinations are
resumed.

update dst -t destType -n destName Set physical destination properties
-0 propertyl=valuel

See Chapter 15, “Physical Destination Property
[[-o property2=value?] ...]

Reference,” for information on physical destination
properties.

purge dst -t destType -n destName Purge all messages from physical destination

Chapter 13 Command Line Reference 275

Command Utility

Table 13-5 Command Utility Subcommands for Physical Destination Management

Syntax

Description

conpact dst [-t destType -n destName]

list dst [-t destType]
[-tmp]

query dst -t destType -n destName

netrics dst -t destType -n destName
[- m metricType]
[-int interval]
[-msp numSamples]

Compact physical destination

Compacts the file-based persistent data store for the
physical destination specified by the -t and - n
options. If these options are not specified, all
destinations are compacted.

A destination must be paused before it can be
compacted.

List physical destinations

Lists all physical destinations of the type specified by
the -t option. If no destination type is specified, both
gueue and topic destinations are listed. If the -t np
option is specified, temporary destinations are listed
as well.

List physical destination property values

Display physical destination metrics
The - moption specifies the type of metrics to display:

ttl Messages and packets flowing into and out
of the destination and residing in memory

rts Rate of flow of messages and packets into
and out of the broker per second, along with
other rate information

con Metrics related to message consumers
dsk Disk usage
Default value: ttl .

The -int option specifies the interval, in seconds, at
which to display metrics. Default value: 5.

The - nsp option specifies the number of samples to
display. Default value: unlimited (infinite).

1. This operation cannot be performed in a broker cluster whose master broker is temporarily unavailable.

276 Message Queue 3 2005Q4 « Administration Guide

Command Utility

Durable Subscription Management

Table 13-6 lists the i mgcnd subcommands for managing durable subscriptions.

Table 13-6 Command Utility Subcommands for Durable Subscription Management

Syntax Description

destroy dur -c clientID Destroy durable subscription*
-n subscriberName

purge dur -c clientlD Purge all messages for durable subscription
-n subscriberName

list dur -d topicName List durable subscriptions for topic

1. This operation cannot be performed in a broker cluster whose master broker is temporarily unavailable.

Transaction Management

Table 13-7 lists the i rgcnd subcommands for managing transactions.

Table 13-7 Command Utility Subcommands for Transaction Management

Syntax Description

commt txn -n transactionID Commit transaction

rol | back txn -n transaction|D Roll back transaction

list txn List transactions being tracked by broker
query txn -n transactionID Display transaction information

General Command Utility Options

The additional options listed in Table 13-8 can be applied to any subcommand of
the i ngcmd command.

Table 13-8 General Command Utility Options

Option Description

-secure Use secure connection to broker with ssl adm n connection service

Chapter 13 Command Line Reference 277

Command Utility

Table 13-8 General Command Utility Options (Continued)

Option Description

-u userName User name for authentication

If this option is omitted, the Command utility will prompt for it
interactively.

-p password Password for authentication?

-passfile path Location of password file

See “Using a Password File” on page 158 for more information.

-rt m timeoutInterval Initial timeout interval, in seconds

This is the initial length of time that the Command utility will wait for a
reply from the broker before retrying a request. Each subsequent retry
will use a timeout interval that is a multiple of this initial interval.

Default value: 10.
-rtr numRetries Number of retries to attempt after a broker request times out

Default value: 5.

-j avahone path Location of alternative Java runtime
Default: Use runtime installed on system or bundled with Message
Queue.

-f Perform action without user confirmation

-s Silent mode (no output displayed)

-V Display version information??3

-h Display usage help??

-H Display expanded usage help, including attribute list and examples??

1. This option is being deprecated and will eventually be removed. Instead, either omit the password entirely (so
that the command will prompt for it interactively) or use the - passfil e option to specify a password file
containing the password.

2. Any other options specified on the command line are ignored .
3. A user name and password are not needed with this option.

278 Message Queue 3 2005Q4 « Administration Guide

Object Manager Utility

Object Manager Utility

The Object Manager utility (i ngobj ngr) creates and manages Message Queue
administered objects. Table 13-9 lists the available subcommands.

Table 13-9 Object Manager Subcommands

Subcommand

Description

add

del ete
l'ist
query
updat e

Add administered object to object store
Delete administered object from object store
List administered objects in object store
Display administered object information

Modify administered object

Table 13-10 lists the options to the i ngobj ngr command.

Table 13-10 Object Manager Options

Option

Description

-1 lookupName
-] attribute=value

-t objectType

- 0 attribute=value

-1 readOnlyState

-i fileName

JNDI lookup name of administered object
Attributes of JNDI object store (see “Object Stores” on page 161)

Type of administered object:
q Queue destination
t Topic destination
cf Connection factory
gf Queue connection factory
tf Topic connection factory
xcf Connection factory for distributed transactions
xqgf Queue connection factory for distributed transactions

xtf Topic connection factory for distributed transactions

e SOAP endpoint (see Message Queue Developer’s Guide for Java Clients)

Attributes of administered object (see “Administered Object Attributes” on
page 164 and Chapter 16, “Administered Object Attribute Reference”)

Is administered object read-only?

If t rue, client cannot modify object’s attributes. Default value: f al se.

Name of command file containing all or part of subcommand clause

Chapter 13 Command Line Reference

279

Database Manager Utility

Table 13-10 Object Manager Options (Continued)

Option Description

-pre Preview results without performing command
This option is useful for checking the values of default attributes.
-j avahone path Location of alternative Java runtime

Default: Use runtime installed on system or bundled with Message Queue.

-f Perform action without user confirmation

-s Silent mode (no output displayed)

-V Display version information*

-h Display usage help!

-H Display expanded usage help, including attribute list and examples?

1. Any other options specified on the command line are ignored .

Database Manager Utility

The Database Manager utility (i mgdbnmyr) sets up the database schema for a
JDBC-based persistent data store. You can also use it to delete Message Queue
database tables that have become corrupted or to change the data store. Table 13-11
lists the available subcommands.

Table 13-11 Database Manager Subcommands

Subcommand Description

create all Create new database and persistent store schema

Used on embedded database systems. The broker property
i ng. persist.jdbc. createdburl must be specified.

create thl Create persistent store schema for existing database

Used on external database systems.

del ete thl Delete Message Queue database tables from current persistent
store
del ete ol dthl Delete Message Queue database tables from earlier-version

persistent store

Used after the persistent store has been automatically migrated to
the current version of Message Queue.

280 Message Queue 3 2005Q4 « Administration Guide

Database Manager Utility

Table 13-11 Database Manager Subcommands (Continued)

Subcommand Description

recreate thl Re-create persistent store schema

Deletes all existing Message Queue database tables from the
current persistent store and then re-creates the schema.

reset |ck Reset persistent store lock

Resets the lock so that the persistent store database can be used by
other processes.

Table 13-12 lists the options to the i ngdbmgr command.

Table 13-12 Database Manager Options

Option Description
-b instanceName Instance name of broker
- Dproperty=value Set broker configuration property

See “Persistence Properties” on page 292 for information about
persistence-related broker configuration properties.

Caution: Be careful to check the spelling and formatting of
properties set with this option. Incorrect values will be ignored
without notification or warning.

-u name User name for authentication
-p password Password for authentication?
-passfil e path Location of password file

See “Using a Password File” on page 158 for more information.

-V Display version information?
-h Display usage help?
1. This option is being deprecated and will eventually be removed. Instead, either omit the password entirely (so

that the command will prompt for it interactively) or use the - passfil e option to specify a password file
containing the password.

Any other options specified on the command line are ignored .

I

Chapter 13 Command Line Reference

281

User Manager Utility

User Manager Utility

The User Manager utility (i mquser ngr) is used for populating or editing a flat-file
user repository. The utility must be run on the same host where the broker is
installed; if a broker-specific user repository does not yet exist, you must first start
up the corresponding broker instance in order to create it. You will also need the
appropriate permissions to write to the repository: on the Solaris or Linux
platforms, this means you must be either the root user or the user who originally

created the broker instance.

Table 13-13 lists the subcommands available with the i rquser ngr command. In all
cases, the -i option specifies the instance name of the broker to whose user
repository the command applies; if not specified, the default name i mgbr oker is

assumed.

Table 13-13 User Manager Subcommands

Syntax

Description

add [-i instanceName]
-u userName -p password

(-9 group]

del ete [-i instanceName]
-u userName

update [-i instanceName]
-u userName -p password
[-a activeState]

update [-i instanceName]
-u userName -a activeState
[-p password]

list [-i instanceName]
[-u userName]

Add user and password to repository

The optional - g option specifies a group to which to
assign this user:

adnin
user
anonynous

Delete user from repository

Set user’s password or active state (or both)

The - a option takes a boolean value specifying
whether to make the user active (t r ue) or inacftive
(f al se). Default value: tr ue.

Display user information

If no user name is specified, all users in the
repository are listed.

In addition, the options listed in Table 13-14 can be applied to any subcommand of

the i nguser ngr command.

282 Message Queue 3 2005Q4 « Administration Guide

Service

Service Administrator Utility

Table 13-14 General User Manager Options

Option Description

-f Performs action without user Perform action without user confirmation.
-S Silent mode (no output displayed)

-V Display version information*

-h Display usage help*

1. Any other options specified on the command line are ignored .

Administrator Utility

The Service Administrator utility (i mgsvcadni n) utility installs a broker as a
Windows service. Table 13-15 lists the available subcommands.

Table 13-15 Service Administrator Subcommands

Subcommand Description

install Install service

remove Remove service

query Display startup options

Startup options can include whether the service is started manually or
automatically, its location, the location of the Java runtime, and the values of
arguments passed to the broker on startup.

Table 13-16 lists the options to the i ngsvcadni n command.

Table 13-16 Service Administrator Options

Option

Description

-j avahone path

-jrehone path

Location of alternative Java runtime

Default: Use runtime installed on system or bundled with Message
Queue.

Location of alternative Java Runtime Environment (JRE)

Chapter 13 Command Line Reference

283

Key Tool Utility

Table 13-16 Service Administrator Options (Continued)

Option Description

-vrmargs argl[[arg?] ...] Additional arguments to pass to Java Virtual Machine running broker
service!
Example:

i ngsvcadmn install -vmargs "- Xnms16m - Xnmx128nt

-args argl[[arg?] ...] Additional command line arguments to pass to broker service!
Example:
imgsvcadnin install -args "-passfile d:\ingpassfile"

See “Broker Utility” on page 266 for information about broker
command line arguments.

-h Display usage help?

1. These arguments can also be specified in the Start Parameters field under the General tab in the service’s
Properties window (reached via the Services tool in the Windows Administrative Tools control panel).

2. Any other options specified on the command line are ignored .

Any information you specify using the -j avahone, - vimar gs, and - ar gs options is
stored inthe Windows registry under the keys JREHone, JVMAr gs, and Ser vi ceAr gs in
the path

HKEY_LOCAL_MACH NE\ SYSTEM Qurrent Cont rol Set\ Servi ces\i MQ Broker\ Paranet ers

Key Tool Utility

The Key Tool utility (i mgkeyt ool) generates a self-signed certificate for the broker,
which can be used for the ssl j s, ssl adni n, or ¢l ust er connection service. The
syntax is

i ngkeyt ool - br oker

On UNIX systems, you may need to run the utility from the super user (r oot)
account.

284 Message Queue 3 2005Q4 « Administration Guide

Chapter 14

Broker Properties Reference

This chapter provides reference information about configuration properties for a
message broker. It consists of the following sections:

“Connection Properties” on page 285

“Routing Properties” on page 287

“Persistence Properties” on page 292

“Security Properties” on page 298

“Monitoring Properties” on page 303

“Cluster Configuration Properties” on page 307

“Alphabetical List of Broker Properties” on page 308

Connection Properties

Table 14-1 lists the broker properties related to connection services.

Table 14-1 Broker Connection Properties

Property Type Default Description
i my. service. activelist String jns, admn List of connection services, separated by
commas, to be activated at broker startup
i ng. host nane String All available IP Default host name or IP address for all
addresses connection services
i ng. por t mapper . host nane String None Host name or IP address of Port Mapper

If specified, overrides i ng. host nane

285

Connection Properties

Table 14-1 Broker Connection Properties (Continued)

Property Type Default

Description

i ny. por t mapper. port? Integer 7676

i ny. serviceName. protocol Type. host name String None

i my. serviceName. protocol Type. por t Integer 0

i ng. por t mapper . backl og Integer 50

i my. serviceName. t hr eadpool _nodel String dedi cat ed

i ng. serviceName. m n_t hr eads Integer j ns:
sslj ns:
htt pj ms:
htt psj ns:
admi n:
ssl admi n:

286 Message Queue 3 2005Q4 « Administration Guide

10
10
10
10
4
4

Port number of Port Mapper

Note: If multiple broker instances are running
on the same host, each must be assigned a
unique Port Mapper port.

Host name or IP address for connection
service?

If specified, overrides i ng. host nane for the
designated connection service

Port number for connection service?

A value of 0 specifies that the port number
should be allocated dynamically by the Port
Mapper.

Maximum number of pending Port Mapper
requests in operating system backlog

Threading model for thread pool
management:

dedi cated Two dedicated threads per
connection, one for incoming
and one for outgoing
messages

shar ed?® Connections processed by
shared thread when sending or
receiving messages

The dedicated model limits the number of
connections that can be supported, but
provides higher performance; the shared
model increases the number of possible
connections, but at the cost of lower
performance because of the additional
overhead needed for thread management.

Minimum number of threads maintained in
connection service's thread pool

When the number of available threads
exceeds this threshold, threads will be shut
down as they become free until the minimum
is reached.

The default value varies by connection
service, as shown.

Routing Properties

Table 14-1 Broker Connection Properties (Continued)

Property Type Default Description

i my. serviceName. max_t hr eads Integer jns: 1000 The number of threads beyond which no new
sslj ms: 500 threads are added to the thread pool for use
httpjms: 500 by the named connection service. The number
httpsjms: 500 must be greater than zero and greater in value
admi n: 10 than the value of m n_t hreads.

ssladmn: 10 The default value varies by connection

service, as shown.

i ng. shared. connectionMnitor_limt Integer Solaris: 512 Maximum number of connections monitored
Linux: 512 by a distributor thread*
Windows: 64

The system allocates enough distributor
threads to monitor all connections. The
smaller the value of this property, the faster
threads can be assigned to active
connections. A value of - 1 denotes an
unlimited number of connections per thread.

The default value varies by operating-system
platform, as shown.

i ng. ping.interval Integer 120 Interval, in seconds, at which to test
connection between client and broker

A value of 0 or - 1 disables periodic testing of
the connection.

1. Can be used with i ngcnd updat e bkr command

2. jms, ssljns, adm n, and ssl adm n services only; see Appendix C, “HTTP/HTTPS Support,” for information on configuring the
ht t pj ms and ht t psj ns services

3. j ms and adni n services only
4. Shared threading model only

Routing Properties

Table 14-2 lists the broker properties related to routing services. Properties that
configure the automatic creation of destinations are listed in Table 14-3.

Table 14-2 Broker Routing Properties

Property Type Default Description

i ny. system max_count * Integer -1 Maximum number of messages held by broker

A value of - 1 denotes an unlimited message
count.

Chapter 14 Broker Properties Reference 287

Routing Properties

Table 14-2 Broker Routing Properties (Continued)

Property Type Default Description
i ny. system nmax_si ze! String -1 Maximum total size of messages held by broker
The value may be expressed in bytes, kilobytes,
or megabytes, using the following suffixes:
b Bytes
k Killobytes (1024 bytes)
m Megabytes (1024 x 1024
= 1,048,576 bytes)
An unsuffixed value is expressed in bytes; a
value of - 1 denotes an unlimited message
capacity.
Examples:
1600 1600 bytes
1600b 1600 bytes
16k 16 kilobytes (= 16,384 bytes)
16m 16 megabytes (= 16,777,216 bytes)
-1 No limit
i ny. nessage. max_si zet String 70m Maximum size of a single message body
The syntax is the same as for
i ng. system max_si ze (see above).
i ng. nessage. expi ration.interval Integer 60 Interval, in seconds, at which expired messages
are reclaimed
i my. resourceState. t hr eshol d Integer green: 0 Percent utilization at which memory resource
yel low 80 state is triggered (where resourceState is gr een,
yel | ow, or ange, or r ed)
orange: 90
red: 98
i my. resourceState. count Integer green: 5000 Maximum number of incoming messages allowed
yellow 500 in a batch before checking whether memory
resource state threshold has been reached
orange: 50 (where resourceState is gr een, yel | ow, or ange, or
red: 0 red)
This limit throttles back message producers as
system memory becomes increasingly scarce.
i ng. destination. DMQ truncat eBody! Boolean false Remove message body before storing in dead

288 Message Queue 3 2005Q4 « Administration Guide

message queue?

If true, only the message header and property
data will be saved.

Table 14-2 Broker Routing Properties (Continued)

Routing Properties

Property Type

Default

Description

i ng. transaction. aut orol | back Boolean

fal se

Automatically roll back distributed transactions
left in prepared state at broker startup?

If f al se, you must manually commit or roll back
transactions using the Command utility (i ngcnd).

1. Can be used with i ngcnd updat e bkr command

Table 14-3 Broker Properties for Auto-Created Destinations

Property Type Default Description

i ng. aut ocr eat e. queuet 2 Boolean true Allow auto-creation of queue
destinations?

i ny. aut ocr eat e. t opi ¢ Boolean true Allow auto-creation of topic
destinations?

i ng. aut ocr eat e. dest i nat i on. maxNumvkgs Integer 100000 Maximum number of unconsumed
messages
A value of - 1 denotes an
unliimited number of messages.

i ny. aut ocr eat e. dest i nat i on. maxByt esPer Msg String 10k Maximum size, in bytes, of any

single message

The value may be expressed in
bytes, kilobytes, or megabytes,
using the following suffixes:

b Bytes

k Killobytes (1024 bytes)

m Megabytes (1024 x 1024
=1,048,576 bytes)

An unsuffixed value is expressed
in bytes; a value of - 1 denotes an
unlimited message size.

Examples:

1600 1600 bytes
1600b 1600 bytes
16k 16 kilobytes

(= 16,384 bytes)
16m 16 megabytes

(= 16,777,216 bytes)
-1 No limit

Chapter 14 Broker Properties Reference

289

Routing Properties

Table 14-3 Broker Properties for Auto-Created Destinations (Continued)

Property

Type

Default

Description

i ny. aut ocr eat e. desti nati on. maxTot al MsgByt es

i ng. aut ocr eat e. desti nation.|im tBehavi or

i ng. aut ocr eat e. desti nati on. maxNunPr oducer s

i ny. aut ocr eat e. queue. maxNumAct i veConsuner s2

290

Message Queue 3 2005Q4 « Administration Guide

String

String

Integer

Integer

10m

REJECT_NEWEST

100

1

Maximum total memory, in bytes,
for unconsumed messages

The syntax is the same as for
i ng. aut ocr eat e. desti nati on.
maxByt esPer Msg (see above).

Broker behavior when
memory-limit threshold reached:

FLOW CONTRCL
Slow down producers

REMOVE_QLDEST
Throw out oldest
messages

REMOVE_LOW PRI ORI TY
Throw out lowest-priority
messages according to
age; no notification to
producing client

REJECT_NEVEST
Reject newest messages;
notify producing client with
an exception only if
message is persistent

If the value is REMOVE_QLDEST or
REMOVE_LON PRI ORI TY and the

i ng. aut ocr eat e. desti nati on.
useDMQ property is t r ue, excess
messages are moved to the dead
message queue.

Maximum number of message
producers for destination

When this limit is reached, no new
producers can be created. A value
of - 1 denotes an unliimited
number of producers.

Maximum number of active
message consumers in
load-balanced delivery from
queue destination

A value of - 1 denotes an
unliimited number of consumers.

Table 14-3 Broker Properties for Auto-Created Destinations (Continued)

Routing Properties

Description

i ny. aut ocr eat e. queue. maxNunBackupConsuner s2

i ny. aut ocr eat e. queue. consurrer Fl owLi mit?2

i ng. aut ocr eat e. t opi c. consuner Fl owLi m t2

i ny. aut ocr eat e. desti nation. i sLocal Only

Maximum number of backup
message consumers in
load-balanced delivery from
queue destination

A value of - 1 denotes an
unliimited number of consumers.

Maximum number of messages
delivered to queue consumer in a
single batch

In load-balanced queue delivery,
this is the initial number of queued
messages routed to active
consumers before load balancing
begins. A destination consumer
can override this limit by
specifying a lower value on a
connection.

A value of - 1 denotes an
unliimited number of consumers.

Maximum number of messages
delivered to topic consumer in a
single batch

A value of - 1 denotes an
unliimited number of consumers.

Local delivery only?

This property applies only to
destinations in broker clusters,
and cannot be changed once the
destination has been created. If
true, the destination is not
replicated on other brokers and is
limited to delivering messages
only to local consumers (those
connected to the broker on which
the destination is created).

Chapter 14 Broker Properties Reference 291

Persistence Properties

Table 14-3 Broker Properties for Auto-Created Destinations (Continued)

Property Type Default Description

i ng. aut ocr eat e. queue. | ocal Del i veryPreferred?> Boolean false Local delivery preferred?

This property applies only to
load-balanced queue delivery in
broker clusters. If t r ue, messages
will be delivered to remote
consumers only if there are no
consumers on the local broker;
the destination must not be
restricted to local-only delivery

(i my. aut ocr eat e. desti nati on.

i sLocal Onl y must be f al se).

i ng. aut ocr eat e. dest i nati on. useDMQ Boolean true Send dead messages to dead
message queue?

If f al se, dead messages will
simply be discarded.

1. Can be used with i ngcnd updat e bkr command
2. Queue destinations only
3. Topic destinations only

Persistence Properties

Message Queue supports both file-based and JDBC-based models for persistent
data storage. The broker property i ng. persi st . st or e (Table 14-4) specifies which
model to use. The following sections describe the broker configuration properties
for the two models.

Table 14-4 Global Broker Persistence Property

Property Type Default Description

ing. persist.store String file Model for persistent data storage:
file File-based persistence
jdbc JDBC-based persistence

292 Message Queue 3 2005Q4 « Administration Guide

File-Based Persistence

Table 14-5 lists the broker properties related to file-based persistence.

Table 14-5 Broker Properties for File-Based Persistence

Persistence Properties

Property

Type

Default

Description

imy. persist.file. nessage. max_record_si ze

inmy. persist.file. destination. message.filepool.limt

String

Integer

Im

100

Maximum-size message to add
to message storage file

Any message exceeding this
size will be stored in a separate
file of its own.

The value may be expressed in
bytes, kilobytes, or megabytes,
using the following suffixes:

b Bytes

k Killobytes (1024 bytes)

m Megabytes (1024 x 1024
=1,048,576 bytes)

An unsuffixed value is expressed
in bytes.

Examples:

1600 1600 bytes
1600b 1600 bytes
16k 16 kilobytes
(= 16,384 bytes)
16m 16 megabytes
(= 16,777,216 bytes)

Maximum number of free files
available for reuse in destination
file pool

Free files in excess of this limit
will be deleted. The broker will
create and delete additional files
in excess of the limit as needed.

The higher the limit, the faster
the broker can process
persistent data.

Chapter 14 Broker Properties Reference 293

Persistence Properties

Table 14-5 Broker Properties for File-Based Persistence (Continued)

Property Type Default Description

iny. persist.file. nessage.filepool.cleanratio Integer 0 Percentage of files in free file
pools to be maintained in a clean
(empty) state

The higher this value, the less
disk space is required for the file
pool, but the more overhead is
needed to clean files during
operation.

ing. persist.file. nessage. cl eanup Boolean false Clean up files in free file pools on
shutdown?

Setting this property to t rue
saves disk space for the file
store, but slows broker
shutdown.

ing. persist.file.sync.enabl ed Boolean false Synchronize in-memory state
with physical storage device?

Setting this property to t rue
eliminates data loss due to
system crashes, but at a cost in
performance.

Note: If running Sun Cluster and
the Sun Cluster Data Service for
Message Queue, set this
property to t r ue for brokers on all
cluster nodes.

294 Message Queue 3 2005Q4 « Administration Guide

JDBC-Based Persistence

Persistence Properties

Table 14-6 lists the broker properties related to JDBC-based persistence. Examples
shown are for the PointBase® family of database products from DataMirror Mobile

Solutions, Inc.

Table 14-6 Broker Properties for JDBC-Based Persistence

Property

Description

Example

i ng. persist.jdbc. brokerid

i ng. persist.jdbc.driver

i ng. persi st. j dbc. opendbur|

i ng. persist.jdbc. createdburl

i my. persist.jdbc. cl osedburl

(Optional) Broker instance
identifier

The identifier must be an
alphanumeric string whose
length does not exceed

n - 12, where n is the
maximum table name length
allowed by the database.

This identifier is appended to
database table names to
make them unique in the
case where more than one
broker instance is using the
same database as a
persistent data store. It is
usually unnecessary for an
embedded database, which
stores data for only one
broker instance.

Java class name of JDBC
driver for connecting to
database

URL for opening connection
to existing database

(Optional) URL for creating
new database

This property is needed only
if the database will be
created using the Message
Queue Database Manager
utility (i ngdbngr).

(Optional) URL for closing
database connection

Not required for PointBase embedded
version

com poi nt base. j dbc. j dbcUni ver sal Dri ver

j dbc: poi nt base: enbedded: dbName;
dat abase. hone=
... linstances/ instanceName/ dbst or e

j dbc: poi nt base: enbedded: dbName;
new, dat abase. hone=
... linstances/ instanceName/ dbst or e

Not required for PointBase

Chapter 14 Broker Properties Reference

295

Persistence Properties

Table 14-6 Broker Properties for JDBC-Based Persistence (Continued)

Property

Description

Example

i ny. persist.jdbc. user

i ng. persi st. j dbc. needpasswor d

i my. persi st. jdbc. password

i my. persist.jdbc.table. | MBV35

i ng. persist.jdbc.tabl e. | MOCREC35

i ng. persist.jdbc.table. | MDEST35

i ny. persist.jdbc. table. | MJ NT35

(Optional) User name for
opening database
connection, if required.

For security reasons, the
value can be specified
instead using command line
options i ngbr oker d - dbuser
and i ngdbnyr - u.

(Optional) Does database
require a password for
broker access?

If t rue, the i mgbr okerd and
i mgdbmgr commands will
prompt for a password,
unless you use the

- passfi | e option to specify
a password file containing
the password.

(Optional) Password for
opening database
connection

This property should be
specified only in a password
file.

SQL command to create
version table

SQL command to create
configuration change record
table

SQL command to create
destination table

SQL command to create
interest table

296 Message Queue 3 2005Q4 « Administration Guide

CREATE TABLE ${ name}
(STOREVERSI ON | NTEGER NOT NULL,
BROKER D VARCHAR(100))

CREATE TABLE ${ name}
(RECORDTI ME BI G NT NOT NULL,
RECORD BLOB(10K))

CREATE TABLE ${ name}
(DI D VARCHAR(100) NOT NULL,
DEST BLOB(10k),
primaryKey(DI D))

CREATE TABLE ${nane}
(CUD BIGNT NOT NULL,
| NTEREST BLOB(10k),
primaryKey(CU D))

Persistence Properties

Table 14-6 Broker Properties for JDBC-Based Persistence (Continued)

Property

Description

Example

i ny. persist.jdbc. table. | MVBG5

i ng. persist.jdbc.tabl e. | MPROPS35

i my. persist.jdbc. table. | MJLIST35

i ng. persist.jdbc. table. | MJTXN35

i ny. persist.jdbc. table. | MJTACK35

SQL command to create
message table

The default maximum length
for the M5Gcolumn is 1
megabyte (1n). If you expect
to have messages larger
than this, set the length
accordingly. If the tables
have already been created,
you must recreate them to
change the maximum
message length.

SQL command to create
property table

SQL command to create
interest state table

SQL command to create
transaction table

SQL command to create
transaction acknowledgment
table

CREATE TABLE ${ name}
(M D VARCHAR(100) NOT NULL,
D D VARCHAR(100) ,
VBGS| ZE Bl G NT,
MBG BLCB(1n),
primaryKey(M D))

CREATE TABLE ${ name}
(PROPNAME VARCHAR(100) NOT NULL,
PROPVALUE BLCB(10K) ,

primaryKey(PROPNAME))

CREATE TABLE ${ name}
(M D VARCHAR(100) NOT NULL,
QU D BI G NT,
D D VARCHAR(100) ,
STATE | NTEGER,
primaryKey(M D, CU D))

CREATE TABLE ${ name}
(TUD BIG NT NOT NULL,
STATE | NTEGER,
TSTATEOBJ BLCB(10K),
primaryKey(TU D))

CREATE TABLE ${ name}
(TU'D BI G NT NOT NULL,
TXNACK BLOB(10k))

Chapter 14 Broker Properties Reference

297

Security Properties

Security Properties

Table 14-7 lists the broker properties related to security services.

Table 14-7 Broker Security Properties

Property

Type

Default

Description

i ng. accesscontrol . enabl ed

imq. serviceName. accesscontrol . enabl ed

i ng. accesscontrol . file.filename

298

Message Queue 3 2005Q4 « Administration Guide

Boolean

Boolean

String

true

None

accesscontrol . properties

Use access control?

If true, the system will
check the access
control properties file to
verify that an
authenticated user is
authorized to use a
connection service or
to perform specific
operations with respect
to specific destinations.

Use access control for
connection service?

If specified, overrides

i ng. accesscontrol .
enabl ed for the
designated connection
service.

If true, the system will
check the access
control properties file to
verify that an
authenticated user is
authorized to use the
designated connection
service or to perform
specific operations with
respect to specific
destinations.

Name of access
control properties file

The file name specifies
a path relative to the
access control
directory (see
Appendix A).

Table 14-7 Broker Security Properties (Continued)

Security Properties

Property

Type

Default

Description

i my. serviceName. accesscontrol . file.filename

i ng. aut henti cati on. type

i my. serviceName. aut henti cati on. type

i ng. aut henti cati on. basi c. user _repository

i ng. aut hentication.client.response.timeout

i nmy. passfil e. enabl ed

ing. passfile.dirpath

i ng. passfil e. name

String

String

String

String

Integer

Boolean

String

String

None

di gest

None

file

180

fal se

See Appendix A

passfile

Chapter 14

Name of access
control properties file
for connection service

If specified, overrides
i ng. accesscontrol .
file.filenane for the
designated connection
service.

The file name specifies
a path relative to the
access control
directory (see
Appendix A).

Password encoding
method:

basic Base-64
digest MD5

Password encoding
method for connection
service:

basic Base-64
digest MD5

If specified, overrides

i ng. aut henti cation.
t ype for the designated
connection service.

Type of user repository
for base-64
authentication:

file File-based
| dap LDAP

Interval, in seconds, to
wait for client response
to authentication
requests

Obtain passwords from
password file?

Path to directory
containing password
file

Name of password file

Broker Properties Reference

299

Security Properties

Table 14-7 Broker Security Properties (Continued)

Property Type

Default

Description

i ng. i mycnd. password String

i ng. user _repository. | dap. server String

300 Message Queue 3 2005Q4 « Administration Guide

None

None

Password for
administrative user

The Command utility
(i myemd) uses this
password to
authenticate the user
before executing a
command.

Host name and port
number for LDAP
server

The value is of the form
hostName: port

where hostName is the
fully qualified DNS
name of the host
running the LDAP
server and port is the
port number used by
the server.

To specify a list of
failover servers, use
the following syntax:

host1: portl
| dap: / / host2: port2
| dap: / / host3: port3

Entries in the list are
separated by spaces.
Note that each failover
server address is
prefixed with | dap: //.
Use this format even if
you use SSL and have
set the property

i ng. user_repository.
| dap. ssl . enabl ed to
true. You need not
specify | daps in the
address.

ldap://host2:port2
ldap://host3:port3

Table 14-7 Broker Security Properties (Continued)

Security Properties

Property

Type

Default

Description

i ny. user _repository. | dap. princi pal

i ny. user _reposi tory. | dap. password

ing.
ing.

user_repository

user_repository

.user_repository

.user_repository

.user_repository

.user_repository

.user_repository

.user_repository

.| dap.
.| dap.

.| dap.

.| dap.

.| dap.

.| dap.

.| dap.

.| dap.

propertyName

base

uidattr

usrfilter

grpsear ch

gr pbase

gidattr

nmenmattr

String

String

To come

String

String

String

Boolean

String

String

String

None

None

To come

None

None

None

fal se

None

None

None

Chapter 14

Distinguished name for

binding to LDAP user
repository

Not needed if the
LDAP server allows
anonymous searches.

Password for binding
to LDAP user
repository

Not needed if the
LDAP server allows
anonymous searches.

This property should
be specified only in
password files.

To come

Directory base for
LDAP user entries

Provider-specific
attribute identifier for
LDAP user name

(Optional) JNDI filter
for LDAP user
searches

Enable LDAP group
searches?

Note: Message Queue
does not support
nested groups.

Directory base for
LDAP group entries

Provider-specific
attribute identifier for
LDAP group name

Provider-specific
attribute identifier for
user names in LDAP

group

Broker Properties Reference

301

Security Properties

Table 14-7 Broker Security Properties (Continued)

Property

Type

Default

Description

i ny. user _repository.|dap.grpfilter

i ny. user _repository. | dap. tineout

i ng. user _repository. | dap. ssl. enabl ed

imy. keystore.file.dirpath

i nmg. keystore. file. nane

i ng. keyst or e. passwor d

i ng. audi t. enabl ed

String

Integer

Boolean

String

String
String

Boolean

None

280

fal se

See Appendix A

keystore

None

fal se

(Optional) JNDI filter
for LDAP group
searches

Time limit for LDAP
searches, in seconds

Use SSL when
communicating with
LDAP server?

Path to directory
containing key store
file

Name of key store file

Password for key store
file

This property should
be specified only in a
password file.

Start audit logging to
broker log file?

This option applies to
Message Queue
Enterprise Edition only.

302 Message Queue 3 2005Q4 « Administration Guide

Monitoring Properties

Monitoring Properties

Table 14-8 lists the broker properties related to monitoring services.

Table 14-8 Broker Monitoring Properties

Property Type Default Description

ing.log.level? String I NFO Logging level

Specifies the categories of logging
information that can be written to an
output channel. Possible values,
from high to low:

ERRCR
VWARNI NG
I NFO

Each level includes those above it
(for example, WARNI NGincludes
ERRR).

i nmy. destination. | ogDeadMsgs® Boolean fal se Log information about dead
messages?

If t rue, the following events will be
logged:
¢ Adestination is full, having

reached its maximum size or
message count.

e The broker discards a message
for a reason other than an
administrative command or
delivery acknowledgment.

¢ The broker moves a message
to the dead message queue.

imq. | og. consol e. st ream String ERR Destination for console output:

QUT stdout
ERR stderr

Chapter 14 Broker Properties Reference

303

Monitoring Properties

Table 14-8 Broker Monitoring Properties (Continued)

Property Type Default

Description

i mg. | og. consol e. out put String ERRCR WARNI NG

ing.log.file.dirpath String See Appendix A
img.log.file.filename String | og. t xt
ing.log.file.output String ALL

inmg.log.file.rolloverbytes? Integer -1

ing.log.file.rolloversecst Integer 604800 (one week)

304 Message Queue 3 2005Q4 « Administration Guide

Categories of logging information to
write to console:

NONE
ERRCR
VWARNI NG
I NFO
ALL

The ERROR, WARNI NG AND | NFO
categories do not include those
above them, so each must be
specified explicitly if desired. Any
combination of categories can be
specified, separated by vertical bars

(-

Path to directory containing log file
Name of log file

Categories of logging information to
write to log file:

NONE
ERRCR
VWARNI NG
I NFO
ALL

The ERROR, WARNI NG, AND | NFO
categories do not include those
above them, so each must be
specified explicitly if desired. Any
combination of categories can be
specified, separated by vertical bars

(-

File length, in bytes, at which output
rolls over to a new log file

A value of - 1 denotes an unlimited
number of bytes (no rollover based
on file length).

Age of file, in seconds, at which
output rolls over to a new log file

A value of - 1 denotes an unlimited
number of seconds (no rollover
based on file age).

Table 14-8 Broker Monitoring Properties (Continued)

Monitoring Properties

Property Type Default Description
i ng. | og. sysl og. out put 2 String ERRCR Categories of logging information to
write to sysl ogd(1M :
NONE
ERRCR
WARN NG
I NFO
ALL
The ERROR, WARNI NG AND | NFO
categories do not include those
above them, so each must be
specified explicitly if desired. Any
combination of categories can be
specified, separated by vertical bars
(B2
ing.log.syslog.facility? String LOG_DAEMON sysl og facility for logging messages
Possible values mirror those listed
on the sysl og(3C) man page.
Appropriate values for use with
Message Queue include:
LOG USER
LOG_DAEMN
LOG LOCALO
LOG LOCALL
LOG LOCAL2
LOG LOCAL3
LOG LOCAL4
LOG LOCALS
LOG LOCAL6
LOG LOCAL7
ing. | og. syslog.identity? String i ngbr oker d_${i ng. instanceName} Identity string to be prefixed to all
messages logged to sysl og
i mg. | og. sysl og. | ogpi d? Boolean true Log broker process ID with
message?
i mg. | og. sysl og. | ogconsol e2 Boolean fal se Write messages to system console

if they cannot be sent to sysl og?

Chapter 14 Broker Properties Reference 305

Monitoring Properties

Table 14-8 Broker Monitoring Properties (Continued)

Property

Type

Default

Description

ing.log.tinezone

ing. netrics. enabl ed

ing.netrics.interval

ing. netrics.topic.enabl ed

inmg. netrics.topic.interval

ing. netrics. topic. persist

ing.netrics.topic.timetolive

String

Boolean

Integer

Boolean

Integer

Boolean

Integer

Local time zone

true

true

60

fal se

300

Time zone for log time stamps.

Possible values are the same as
those used by the method

java. util.Ti meZone. get Ti neZone.
Examples:

avr

QM- 8: 00

Ameri ca/ LosAngel es
Eur ope/ Rone

Asi a/ Tokyo

Enable writing of metrics
information to Logger?

Does not affect the production of
metrics messages (controlled by
ing. netrics. topic. enabl ed).

Time interval, in seconds, at which
to write metrics information to
Logger

Does not affect the time interval for
production of metrics messages
(controlled by
ing.netrics.topic.interval).

A value of - 1 denotes an indefinite
interval (never write metrics
information to the Logger).

Enable production of metrics
messages to metric topic
destinations?

If f al se, an attempt to subscribe to
a metric topic destination will throw
a client-side exception.

Time interval, in seconds, at which
to produce metrics messages to
metric topic destinations

Are metrics messages sent to
metric topic destinations persistent?

Lifetime, in seconds, of metrics
messages sent to metric topic
destinations

1. Can be used with i ngcnd updat e bkr command

2. Solaris platform only

306 Message Queue 3 2005Q4 « Administration Guide

Cluster Configuration Properties

Cluster Configuration Properties

Table 14-9 lists the configuration properties related to broker clusters.

Table 14-9 Broker Properties for Cluster Configuration

Property

Type

Default

Description

ing. cluster.

ing. cluster.

ing. cluster.

ing. cluster.

ing. cluster.

i my. cl ust er. mast er br oker*

brokerlist?

host name?

port?

transport?

url 3

String

String

Integer

String

String

String

None

None

tcp

None

None

List of broker addresses

The list consists of one or more addresses, separated by
commas. Each address specifies the host name and Port Mapper
port number of a broker in the cluster, in the form

hostName: portNumber. Example:

host 1: 3000, host 2: 8000, ct r | host

Host name or IP address for cl ust er connection service

If specified, overrides i ng. host narme (see Table 14-1 on
page 285) for the cl ust er connection service

Port number for cl ust er connection service

A value of 0 specifies that the port number should be allocated
dynamically by the Port Mapper.

Network transport protocol for cl ust er connection service

For secure, encrypted message delivery between brokers, set this
property to ssl .

URL of cl ust er configuration file, if any
Examples:
http://webserver/imy/ cluster.properties
(for a file on a Web server)
file:/net/nfsserver/inmg/cluster.properties
(for a file on a shared drive)

Host name and port number of cluster's master broker, if any

The value has the form hostName: portNumber, where hostName is the
host name of the master broker and portNumber is its Port Mapper
port number. Example:

ctrlhost: 7676

1. Must have the same value for all brokers in a cluster

2. Can be specified independently for each broker in a cluster
3. Can be used with i ngcmd updat e bkr command

Chapter 14 Broker Properties Reference 307

Alphabetical List of Broker Properties

Alphabetical List of Broker Properties

Table 14-10 is an alphabetical list of broker configuration properties, with

cross-references to the relevant tables in this chapter.

Table 14-10 Alphabetical List of Broker Properties

Property

Table

i ng. accesscontrol . enabl ed

i ng. accesscontrol . file.filename

i ng. audi t . enabl ed

i ng. aut henti cati on. basi c. user _repository

i ng. authentication.client.response.timeout
i ng. aut henti cation. type

i ng. aut ocr eat e. desti nati on. i sLocal Only

i ng. aut ocreat e. destination.|imtBehavior

i ny. aut ocr eat e. dest i nat i on. maxByt esPer Msg
i ng. aut ocr eat e. dest i nat i on. maxNumvkgs

i ng. aut ocr eat e. dest i nati on. maxNunPr oducer s
i ny. aut ocr eat e. desti nati on. maxTot al MsgByt es
i ny. aut ocr eat e. desti nati on. useDMQ

i my. aut ocr eat e. queue

i ny. aut ocr eat e. queue. consumer Fl owLi ni t

i ng. aut ocr eat e. queue. | ocal Del i veryPreferred
i ng. aut ocr eat e. queue. maxNumAct i veConsuner s
i ng. aut ocr eat e. queue. maxNunBackupConsuner s
i ng. aut ocreate. topic

i ny. aut ocr eat e. t opi ¢. consurer Fl owLi ni t

ing. cluster. brokerli st

i my. cl ust er. host nane

i my. cl ust er. mast er br oker

ing. cluster. port

i ng. cluster.transport

ing.cluster.url

308 Message Queue 3 2005Q4 « Administration Guide

Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-3 on page 289
Table 14-9 on page 307
Table 14-9 on page 307
Table 14-9 on page 307
Table 14-9 on page 307
Table 14-9 on page 307
Table 14-9 on page 307

Alphabetical List of Broker Properties

Table 14-10 Alphabetical List of Broker Properties (Continued)

Property

Table

i .
i .
i .
i .
i .
i .
i .
i .
i .

imq.

i .
i .
ing.
ing.
i .
i .
ing.
i .
i .
ing.
i .
i .
i .
i .
i .
i .
i .
i .
i .
i .

destinati on. DMQ t r uncat eBody

destination. | ogDeadMsgs

host name

i ngend. passwor d

keystore.file.dirpath

keystore.file. name

keyst or e. passwor d

keyst or e. propertyName

| og

consol e. out put

| og. consol e. st ream

file.dirpath
file.filename
.file.output
.file.rolloverbytes
.file.roll oversecs
.level
.syslog.facility
.syslog.identity

. sysl og. | ogconsol e
.sysl og. | ogpi d

. sysl og. out put

.tinezone

nmessage. expiration.interval

nessage. nex_si ze

netrics. enabl ed

netrics.interval

metrics. topic.enabl ed

metrics.topic.interval

metrics.topic. persist

metrics.topic.tinmetolive

Chapter 14

Table 14-2 on page 287
Table 14-8 on page 303
Table 14-1 on page 285
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-2 on page 287
Table 14-2 on page 287
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303
Table 14-8 on page 303

Broker Properties Reference

309

Alphabetical List of Broker Properties

Table 14-10 Alphabetical List of Broker Properties (Continued)

Property

Table

imy. passfile.dirpath

i ny. passfil e. enabl ed

i ng. passfil
i ny. persi st
i ny. persi st
i ng. persi st
i ng. persi st
i ny. persi st
i ny. persi st
i ng. persi st
i ny. persi st
i ny. persi st
i ng. persi st
i ng. persi st
i ny. persi st
i ny. persi st
i ng. persi st
i ny. persi st
i ny. persi st
i ng. persi st
i ng. persi st
i ny. persi st
i ng. persi st
i ng. persi st
i ny. persi st
i ny. persi st

e. namre
file.
file.
file.
file.
file.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.
.j dbc.

.store

i ng. ping.interval

destination. message. filepool.limt

nessage. cl eanup

nessage. fil epool . cl eanratio

nessage. max_record_si ze

sync. enabl ed

br okeri d

cl osedburl

creat edbur |
driver
needpasswor d
opendbur |
passwor d

tabl e. | MOCREC35
tabl e. | MDEST35
tabl e. | MJ LI ST35
tabl e. | MJ NT35
tabl e. | MQVBG35
tabl e. | MQPROPS35
tabl e. | MBV35
tabl e. | MJTACK35
tabl e. | MJTXN35

user

i ng. por t mapper . backl og

i ny. por t mapper . host nane

i ny. port mapper . port

310 Message Queue 3 2005Q4 « Administration Guide

Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-5 on page 293
Table 14-5 on page 293
Table 14-5 on page 293
Table 14-5 on page 293
Table 14-5 on page 293
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-6 on page 295
Table 14-4 on page 292
Table 14-1 on page 285
Table 14-1 on page 285
Table 14-1 on page 285
Table 14-1 on page 285

Alphabetical List of Broker Properties

Table 14-10 Alphabetical List of Broker Properties (Continued)

Property

Table

i ng. resourceState. count

i my. resourceState. t hr eshol d

i .
i .
i .
i .
i .
i .
i .
ing.
i .
i .
ing.
ing.
i .
i .
ing.
i .
i .
ing.
i .
i .
i .
i .
i .
i .
i .
i .
i .

service. activeli st

serviceName.
serviceName.
serviceName.
serviceName.
serviceName.
serviceName.
serviceName.

serviceName.

accesscontrol . enabl ed

accesscontrol . file.filenane

aut henti cati on. type
max_t hr eads

m n_t hr eads

protocol Type. host namre
protocol Type. por t

t hr eadpool _nodel

shar ed. connectionMnitor _[imt

syst em nax_count

syst em nax_si ze

transacti on. autorol | back

user_reposi tory. | dap. base

user_repository.|dap.gidattr

user_repository. | dap. grpbase

user_repository.|dap.grpfilter

user _repository. | dap. grpsear ch

user_repository. | dap. nemattr

user _reposi tory. | dap. password

user _repository. | dap. princi pal

user _repository. | dap. propertyName

user_reposi tory. | dap. server

user _repository. | dap.ssl.enabl ed

user_repository. | dap.ti meout

user_repository.|dap.uidattr

user_repository.|dap.usrfilter

Table 14-2 on page 287
Table 14-2 on page 287
Table 14-1 on page 285
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-1 on page 285
Table 14-1 on page 285
Table 14-1 on page 285
Table 14-1 on page 285
Table 14-1 on page 285
Table 14-1 on page 285
Table 14-2 on page 287
Table 14-2 on page 287
Table 14-2 on page 287
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298
Table 14-7 on page 298

Chapter 14

Broker Properties Reference

311

Alphabetical List of Broker Properties

312 Message Queue 3 2005Q4 « Administration Guide

Chapter 15

Physical Destination Property
Reference

This chapter provides reference information about configuration properties for
physical destinations. These properties can be set when creating or updating a
physical destination. For auto-created destinations, you set default values in the
broker’s instance configuration file (see Table 14-3 on page 289).

Table 15-1 Physical Destination Properties

Property Type Default Description

maxNumvsgs?t Integer -1 Maximum number of unconsumed messages
A value of - 1 denotes an unliimited number of messages.

For the dead message queue, the default value is 1000.

max Byt esPer Msg String -1 Maximum size, in bytes, of any single message

Rejection of a persistent message is reported to the
producing client with an exception; no notification is sent
for nonpersistent messages.

The value may be expressed in bytes, kilobytes, or
megabytes, using the following suffixes:

b Bytes
k Killobytes (1024 bytes)
m Megabytes (1024 x 1024 = 1,048,576 bytes)

An unsuffixed value is expressed in bytes; a value of - 1
denotes an unlimited message size.

Examples:

1600 1600 bytes

1600b 1600 bytes

16k 16 kilobytes (= 16,384 bytes)

16m 16 megabytes (= 16,777,216 bytes)
-1 No limit

313

Table 15-1 Physical Destination Properties (Continued)

Property Type Default

Description

maxTot al MsgByt es? String -1

|'i m t Behavi or String REJECT_NEWEST

maxNunPr oducer s? Integer -1

maxNumAct i veConsuner s Integer 1

maxNunBackupConsuner s Integer 0

314

Message Queue 3 2005Q4 « Administration Guide

Maximum total memory, in bytes, for unconsumed
messages

The syntax is the same as for maxByt esPer Msg (see
above).

For the dead message queue, the default value is 10m

Broker behavior when memory-limit threshold reached:
FLOW CONTROL Slow down producers
REMOVE_QLDEST Throw out oldest messages

REMOVE_LONPRICRI TY Throw out lowest-priority
messages according to age;
no notification to producing
client

REJECT_NEVEST Reject newest messages;
notify producing client with an
exception only if message is
persistent

If the value is REMOVE_QLDEST or REMOVE_LON PRI ORI TY
and the useDMQ property is t r ue, excess messages are
moved to the dead message queue. For the dead
message queue itself, the default limit behavior is
REMOVE_QLDEST and cannot be set to FLON CONTRCL.

Maximum number of message producers for destination

When this limit is reached, no new producers can be
created. A value of - 1 denotes an unliimited number of
producers.

Maximum number of active message consumers in
load-balanced delivery from queue destination

A value of - 1 denotes an unliimited number of
consumers. In Sun Java System Message Queue
Platform Edition, the value is limited to 2.

Maximum number of backup message consumers in
load-balanced delivery from queue destination

A value of - 1 denotes an unliimited number of
consumers. In Sun Java System Message Queue
Platform Edition, the value is limited to 1.

Table 15-1 Physical Destination Properties (Continued)

Property

Type

Default

Description

consuner Fl owLi ni t

i sLocal Onl y2

| ocal Del i veryPref erred??

useDMY

Integer

Boolean

Boolean

Boolean

1000

fal se

fal se

true

Maximum number of messages delivered to consumer in
a single batch

In load-balanced queue delivery, this is the initial number
of queued messages routed to active consumers before
load balancing begins. A destination consumer can
override this limit by specifying a lower value on a
connection.

A value of - 1 denotes an unliimited number of
consumers.

Local delivery only?

This property applies only to destinations in broker
clusters, and cannot be changed once the destination
has been created. If t r ue, the destination is not replicated
on other brokers and is limited to delivering messages
only to local consumers (those connected to the broker
on which the destination is created).

Local delivery preferred?

This property applies only to load-balanced queue
delivery in broker clusters. If t r ue, messages will be
delivered to remote consumers only if there are no
consumers on the local broker; the destination must not
be restricted to local-only delivery (i sLocal Onl y must be
fal se).

Send dead messages to dead message queue?

If f al se, dead messages will simply be discarded.

1. Inacluster environment, applies to each individual instance of a destination rather than collectively to all instances in the cluster
2. Does not apply to dead message queue

3. Queue destinations only

Chapter 15 Physical Destination Property Reference

315

316 Message Queue 3 2005Q4 « Administration Guide

Chapter 16

Administered Object Attribute
Reference

This chapter provides reference information about the attributes of administered
objects. It consists of the following sections:

“Connection Factory Attributes” on page 317
“Destination Attributes” on page 326
“SOAP Endpoint Attributes” on page 326

Connection Factory Attributes

The attributes of a connection factory object are grouped into categories described
in the following sections below:

“Connection Handling” on page 318

“Client Identification” on page 322

“Reliability and Flow Control” on page 322
“Queue Browser and Server Sessions” on page 324
“Setting Standard Message Properties” on page 324

“Message Header Overrides” on page 325

317

Connection Factory Attributes

Connection Handling

Table 16-1 lists the connection factory attributes for connection handling.

Table 16-1 Connection Factory Attributes for Connection Handling

Attribute Type Default Description
i myAddr essLi st String An existing List of broker addresses
g/lgss;ge Qut_efue The list consists of one or more message server
) .a_f ress, Ih addresses, separated by commas. Each address
?ny, : non_e,t e specifies (or implies) the host name, port number,
|rstt)lent:3y;n and connection service for a broker instance to
Tal 63120' on which the client can connect. Address syntax varies
page depending on the connection service and port
assignment method; see below for details.
i ngAddr essLi st Behavi or String PRRORTY Order in which to attempt connection to server
addresses:
PRICRITY Order specified in address list
RANDOM Random order
NOTE: If many clients share the same connection
factory, specify random connection order to prevent
them from all attempting to connect to the same
address.
i ngAddr essLi st terations Integer 5 Number of times to iterate through address list
attempting to establish or reestablish a connection
A value of - 1 denotes an unlimited number of
iterations.
i ngPi ngl nt erval Integer 30 Interval, in seconds, at which to test connection
between client and broker
A value of 0 or - 1 disables periodic testing of the
connection.
i mgReconnect Enabl ed Boolean false Attempt to reestablish a lost connection?
i mgReconnect At t enpt s Integer 0 Number of times to attempt connection (or

318 Message Queue 3 2005Q4 « Administration Guide

reconnection) to each address in address list before
moving on to next

A value of - 1 denotes an unliimited number of
connection attempts; attempt repeatedly to connect
to first address until successful.

Connection Factory Attributes

Table 16-1 Connection Factory Attributes for Connection Handling (Continued)

Attribute

Type

Default

Description

i mgReconnect I nt er val

i mySSLI sHost Tr ust ed

Long
integer

Boolean

3000

true

Interval, in milliseconds, between reconnection
attempts

This value applies both for successive attempts on a
given address and for successive addresses in the
list.

NOTE: Too small a value may give the broker
insufficient recovery time; too large a value may
cause unacceptable connection delays.

Accept broker’s self-signed authentication
certificate?

NOTE: To use signed certificates from a certificate
authority, set this attribute to f al se.

The value of the i ngAddr essLi st attribute is a comma-separated string specifying
one or more message server addresses to which to connect. The general syntax for
each address is as follows:

scheme: / / address

where scheme identifies one of the addressing schemes shown in the first column of
Table 16-2 and address denotes the server address itself. The exact syntax for
specifying the address depends on the addressing scheme, as shown in the last

column of the table.

Chapter 16 Administered Object Attribute Reference 319

scheme://address

Connection Factory Attributes

Table 16-2 Message Server Addressing Schemes

Scheme Service

Syntax

Description

ny jms or
ssljms
gt cp jns
nyssl ssljms
http httpj ns

[hostName][: portNumber][/ serviceName]

hostName: portNumber/ j ms

hostName: portNumber/ ssl j ns

ht t p: / / hostName: portNumber/ contextRoot/ t unnel

If multiple broker instances use the same tunnel
servlet, the following syntax connects to a specific

broker instance rather than a randomly selected one:

ht t p: / / hostName: portNumber/ contextRoot/ t unnel ?
Ser ver Nane=hostName: instanceName

320 Message Queue 3 2005Q4 « Administration Guide

Assign port dynamically for j s or
ssl j ms connection service.

The address list entry specifies
the host name and port number
for the Message Queue Port
Mapper. The Port Mapper itself
dynamically assigns a port to be
used for the connection.

Default values:

hostName = | ocal host
portNumber = 7676
serviceName = j ns

For the ssl j ms connection
service, all variables must be
specified explicitly.

Connect to specified port using
j ms connection service.

Bypasses the Port Mapper and
makes a TCP connection directly
to the specified host name and
port number.

Connect to specified port using
ssl j ms connection service.

Bypasses the Port Mapper and
makes a secure SSL connection
directly to the specified host name
and port number.

Connect to specified port using
ht t pj ms connection service.

Makes an HTTP connection to a
Message Queue tunnel servlet at
the specified URL. The broker
must be configured to access the
HTTP tunnel servlet.

Table 16-2 Message Server Addressing Schemes (Continued)

Connection Factory Attributes

Scheme

Service

Syntax

Description

https

htt psj ns

If multiple broker instances use the same tunnel
servlet, the following syntax connects to a specific
broker instance rather than a randomly selected one:

ht t ps: // hostName: portNumber/ contextRoot/ t unnel ?

ht t ps: // hostName: portNumber/ contextRoot/ t unnel

Ser ver Name=hostName: instanceName

Connect to specified port using
ht t psj ms connection service.

Makes a secure HTTPS

URL. The broker must be

configured to access the HTTPS

tunnel servlet.

connection to a Message Queue
tunnel servlet at the specified

Table 16-3 shows examples of the various address formats.

Table 16-3 Message Server Address Examples

Service Broker Host Port Example Address
Not specified Not specified Not specified No address
(mg: / /1 ocal Host : 7676/ j ns)
Not specified Specified host Not specified nyBkr Host
(mg: / / nyBkr Host : 7676/ j ms)
Not specified Not specified Specified Port 1012
Mapper port (mg: / /1 ocal Host : 1012/ j ns)
ssljns Local host Standard Port ny: / /1 ocal Host: 7676/ ssl j ns
Mapper port
ssljns Specified host Standard Port ny: / / nyBkr Host : 7676/ ssl j ns
Mapper port
ssljms Specified host Specified Port ng: / / myBkr Host : 1012/ ssl j ns
Mapper port
jms Local host Specified ngt cp: / /1 ocal host: 1032/ j ns
service port
ssljms Specified host Specified ngssl : // myBkr Host : 1034/ ssl j ns
service port
httpj ms Not applicable Not applicable http://websrvr1: 8085/ i ny/ t unnel
htt psj ns Not applicable Not applicable https: //websrvr2: 8090/ i my/ t unnel

Chapter 16

Administered Object Attribute Reference

321

Connection Factory Attributes

Client Identification

Table 16-4 lists the connection factory attributes for client identification.

Table 16-4 Connection Factory Attributes for Client Identification

Attribute Type Default Description

i myDef aul t User name String guest Default user name for authenticating with broker

i myDef aul t Passwor d String guest Default password for authenticating with broker

imgConfigureddientID String nul | Administratively configured client identifier

imgD sabl eSetCientID Boolean false Prevent client from changing client identifier using set 0 i ent | D
method?

Reliability and Flow Control

Table 16-5 lists the connection factory attributes for reliability and flow control.

Table 16-5 Connection Factory Attributes for Reliability and Flow Control

Attribute Type Default

Description

i mgAckTi meout String 0

i mgConnect i onFl owCount Integer 100

i mgConnect i onFl owLi m t Enabl ed Boolean fal se

322

Message Queue 3 2005Q4 « Administration Guide

Maximum time, in milliseconds, to wait for broker
acknowledgment before throwing an exception

A value of 0 denotes no timeout (wait indefinitely).

NOTE: In some situations, too low a value can cause
premature timeout: for example, initial authentication of a
user against an LDAP user repository using a secure
(SSL) connection can take more than 30 seconds.

Number of payload messages in a metered batch

Delivery of payload messages to the client is temporarily
suspended after this number of messages, allowing any
accumulated control messages to be delivered. Payload
message delivery is resumed on notification by the client
runtime, and continues until the count is again reached.

A value of 0 disables metering of message delivery and
may cause Message Queue control messages to be
blocked by heavy payload message traffic.

Limit message flow at connection level?

Connection Factory Attributes

Table 16-5 Connection Factory Attributes for Reliability and Flow Control (Continued)

Attribute

i mgConnect i onFl owLi m t

i mgConsuner Fl owLi m t

i mgConsuner Fl owThr eshol d

Type

Integer

Integer

Integer

Default
1000

100

50

Description

Maximum number of messages per connection to deliver
and buffer for consumption

Message delivery on a connection stops when the
number of unconsumed payload messages pending
(subject to flow metering governed by

i ngConnect i onFl owCount) exceeds this limit. Delivery
resumes only when the number of pending messages
falls below the limit. This prevents the client from being
overwhelmed with pending messages that might cause it
to run out of memory.

This attribute is ignored if
i ngConnect i onFl owLi mi t Enabl ed is f al se.

Maximum number of messages per consumer to deliver
and buffer for consumption

Message delivery to a given consumer stops when the
number of unconsumed payload messages pending for
that consumer exceeds this limit. Delivery resumes only
when the number of pending messages for the consumer
falls below the percentage specified by

i ngConsuner Fl owThr eshol d. This canbe used to improve
load balancing among multiple consumers and prevent
any single consumer from starving others on the same
connection.

This limit can be overridden by a lower value set for a
queue’s own consuner Fl owLi m t attribute (see

Chapter 15, “Physical Destination Property Reference”).
Note also that message delivery to all consumers on a
connection is subject to the overall limit specified by

i ngConnecti onFl owLim t.

Number of messages per consumer buffered in the client
runtime, as a percentage of i ngConsurer Fl owLi ni t,
below which to resume message delivery

Chapter 16 Administered Object Attribute Reference

323

Connection Factory Attributes

Queue Browser and Server Sessions

Table 16-6 lists the connection factory attributes for queue browsing and server
sessions.

Table 16-6 Connection Factory Attributes for Queue Browser and Server Sessions

Attribute Type Default Description
i mgQueueBr owser MaxMessagesPer Retrieve Integer 1000 Maximum number of messages to retrieve at
one time when browsing contents of a queue
destination
i mgQueueBr owser Ret ri eveTi neout Long 60000 Maximum time, in milliseconds, to wait to
integer retrieve messages, when browsing contents of a

gueue destination, before throwing an exception

i ngLoadMaxToSer ver Sessi on Boolean true Load up to maximum number of messages into
a server session?

If f al se, the client will load only a single
message at a time.

This attribute applies only to JMS application
server facilities.

Setting Standard Message Properties

The connection factory attributes listed in Table 16-7 control whether the Message
Queue client runtime sets certain standard message properties defined in the Java
Message Service Specification.

Table 16-7 Connection Factory Attributes for Standard Message Properties

Property Type Default Description

i mySet IMSXUser | D Boolean false Set IMSXUser | D property (identity of user sending message) for
produced messages?

i ngSet JMSXAppl D Boolean false Set IMBXAppl D property (identity of application sending message)
for produced messages?

i mgSet IMSXProducer TXID Boolean fal se Set IMBXPr oducer TXI D property (transaction identifier of
transaction within which message was produced) for produced
messages?

i mgSet IMSXConsumer TXID Boolean fal se Set IMSXConsurrer TXI D property (transaction identifier of
transaction within which message was consumed) for consumed
messages?

324 Message Queue 3 2005Q4 « Administration Guide

Connection Factory Attributes

Table 16-7 Connection Factory Attributes for Standard Message Properties (Continued)

Property Type Default

Description

i mgSet JIMSXRevTi mestanp Boolean fal se

Set IMSXRevTi mest anp property (time message delivered to
consumer) for consumed messages?

Message Header Overrides

Table 16-8 lists the connection factory attributes for overriding JMS message

header fields.

Table 16-8 Connection Factory Attributes for Message Header Overrides

Attribute Type Default Description
i mgOver ri deJVBDel i ver yMode Boolean fal se Allow client-set delivery mode to be
overridden?
i mgJMBDel i ver yMode Integer 2 Overriding value of delivery mode:
1 Nonpersistent
2 Persistent
i mgOver ri deJMBExpi rati on Boolean fal se Allow client-set expiration time to be
overridden?
i mgJMBExpi rati on Long 0 Overriding value of expiration time, in
integer milliseconds
A value of 0 denotes an unlimited
expiration time (message never
expires).
imgOverrideJVBPriority Boolean fal se Allow client-set priority level to be
overridden?
i mgJMBPriority Integer 4 (normal) Overriding value of priority level
(0to 9)
i mgOver ri deJMBHeader sToTenpor ar yDesti nati ons Boolean fal se Apply overrides to temporary

destinations?

Chapter 16

Administered Object Attribute Reference

325

Destination Attributes

Destination Attributes

Table 16-9 lists the attributes that can be set for a destination administered object.

Table 16-9 Destination Attributes

Attribute Type Default Description

i ngDest i nati onNarre String Untitled_Destination_(bject Name of physical destination

The destination name may contain
only alphanumeric characters (no
spaces) and must begin with an
alphabetic character or the
underscore (_) or dollar sign ($)
character. It may not begin with the
characters ng.

i ngDestinationDescription String None Descriptive string for destination

SOAP Endpoint Attributes

Table 16-10 lists the attributes used to configure endpoint URLs for applications
that use the Simple Object Access Protocol (SOAP); see the Message Queue
Developer’s Guide for Java Clients for more information.

Table 16-10 SOAP Endpoint Attributes

Attribute Type Default Description

i mgSQAPENdpoi nt Li st String None List of one of more URLSs representing SOAP
endpoints to which to send messages,
separated by spaces

Each URL should be associated with a servlet
that can receive and process SOAP
messages.

Example:
http://ww servl/ http://ww. serv2/

If the list specifies more than one URL,
messages are broadcast to all of them.

i ngEndpoi nt Narre String Untitled_Endpoi nt_Chject Name of SOAP endpoint
i ngEndpoi nt Descri ption String None Descriptive string for SOAP endpoint.
Example:

M/ endpoints for broadcast

326 Message Queue 3 2005Q4 « Administration Guide

Chapter 17

JMS Resource Adapter Property
Reference

The Message Queue JMS Resource Adapter (JMS RA) enables you to integrate Sun
Java System Message Queue with any J2EE 1.4 application server, by means of the
standard J2EE connector architecture (JCA). When the Message Queue JMS

Resource Adapter is plugged into an application server, an application deployed in
that application server can use Message Queue to send and receive JMS messages.

The Message Queue JMS Resource Adapter exposes its configuration properties
through three JavaBean components:

= Resour ceAdapt er configuration affects the behavior of the Resource Adapter as
awhole.

= ManagedConnect i onFact or y configuration affects connections created by the
Resource Adapter for use by message-driven beans (MDBS).

= ActivationSpec configuration affects message endpoints that represent
message-driven beans MDBs in their interactions with the messaging system.

To set property values for these entities, you use the tools that your application
server provides for configuration and deployment of the Resource Adapter and for
deployment of MDBs.

This chapter lists and describes the configuration properties of the Message Queue
JMS Resource Adapter. It contains the following sections;

= “ResourceAdapter JavaBean” on page 328
= *“ManagedConnectionFactory JavaBean” on page 329

= “ActivationSpec JavaBean” on page 331

327

ResourceAdapter JavaBean

ResourceAdapter JavaBean

The Resour ceAdapt er configuration configures the default IMS Resource Adapter
behavior. Table 17-1 lists and describes the properties with which you can
configure this JavaBean. A footnote marks each required property.

Table 17-1 Resource Adapter Properties

Property Default Description
addr esslLi st? ny: / /1 ocal host: 7676 The connection that the Resource Adapter makes to the
/jns Message Queue service, specified using the message

service address format.
The Resource Adapter supplies the default value.

This property name, addr esslLi st, is specific to Sun Java
System Message Queue, but has the same meaning as the
standard property connect i onURL. Sun Java System
Message Queue provides both property names. You must
set either connecti onURL or addr essLi st ; they are
equivalent.

addr essLi st Behavi or PRORTY A string specifying how the Resource Adapter connects to
the Message Queue service. The value is PRI ORI TY or
RANDOM

A PRI CRI TY connection selects a Message Queue broker by
choosing the first specified in the address list (addr essLi st).

A RANDOMconnection selects a Message Queue broker
randomly from the address list.

Reconnection after a connection failure is the same for
PRIORI TY and RANDOM A reconnection attempt starts with
the broker whose connection failed. If that attempt is
unsuccessful, the Resource Adapter proceeds sequentially
through the active address list.

addresslLi stlterations 1 The number of times to iterate through the address list. This
value applies to the initial connection and to subsequent
reconnection attempts.

connect i onURL ny: / /1 ocal host: 7676 The connection that the Resource Adapter makes to the
/jns Message Queue service, specified using the message
service address format.

Equivalent to the addr essLi st property; see description
above for further details.

user Narret guest The default user name with which the Resource Adapter
connects to the Message Queue service.

The Resource Adapter supplies the default value.

328 Message Queue 3 2005Q4 « Administration Guide

mq://localhost:7676
mq://localhost:7676

ManagedConnectionFactory JavaBean

Table 17-1 Resource Adapter Properties (Continued)
Property Default Description

passwor d* guest The default password with which the Resource Adapter
connects to the Message Queue service.

The Resource Adapter supplies the default value.

reconnect Att enpt s 6 The number of times to attempt reconnection to a single
entry in the address list. This property is used when
reconnect Enabl ed is set to t r ue.

reconnect Enabl ed fal se A boolean value specifying whether to attempt reconnection
after a connection failure.

The behavior of a reconnection attempt is governed by the
values for reconnect I nt erval and reconnect Attenpts.

reconnect | nt erval 30000 The interval between reconnection attempts, in milliseconds.
This property is used when r econnect Enabl ed is set to t r ue.

1. This property is required.

ManagedConnectionFactory JavaBean

A managed connection factory provides and defines the connections that the
Resource Adapter provides to a message-driven bean. If you set an attribute for
which the Resour ceAdapt er JavaBean has an analogous property, the setting
supersedes the analogous value specified for the Resour ceAdapt er bean.

Table 17-2 lists and describes the configurable attributes of a managed connection
factory provided by the Message Queue Resource Adapter.

Table 17-2 Managed Connection Factory Attributes

Attribute Default Description
addr essLi st None A list of connections derived from this managed connection
factory.

The format of this attribute adheres to the Message Service
addr esslLi st, as described in Table 17-1 on page 328. If this
value is not set, connections use the addr essLi st value
specified for the Resour ceAdapt er JavaBean and described
in that table.

Chapter 17 JMS Resource Adapter Property Reference 329

ManagedConnectionFactory JavaBean

Table 17-2 Managed Connection Factory Attributes (Continued)

Attribute Default Description

addr essLi st Behavi or PRIORITY A string specifying how the Resource Adapter connects to
the Message Queue service. The value is PRI ORI TY or
RANDOM

A PRI ORI TY connection selects a Message Queue broker by
choosing the first specified in the address list (addr essLi st).

A RANDOMconnection selects a Message Queue broker
randomly from the address list.

Reconnection after a connection failure is the same for
PRICR TY and RANDOM A reconnection attempt starts with
the broker whose connection failed. If that is unsuccessful,
the connection attempts proceed sequentially through the
active address list.

addresslLi stlterations 1 The number of times to iterate through the address list. This
value applies to the initial connection and to subsequent
reconnection attempts.

clientID None The client identifier to use for connections derived from this
managed connection factory.

passwor d guest (Optional) The password for connections.

If this value is not set, connections use the password
specified for the Resour ceAdapt er JavaBean, as described
in Table 17-1 on page 328.

reconnect Att enpt s 6 The number of times to attempt reconnection to a single
entry in the address list.

r econnect Enabl ed fal se A boolean value specifying whether to attempt reconnection
after failure of a connection or a new connection attempt.

The reconnection attempt is governed by the
reconnect I nterval and reconnect At t enpt s attributes.

reconnect | nt erval 30000 The minimum number of milliseconds to wait between
attempts to reconnect to the Message Queue service.

user Narre guest (Optional) The user name for connections.

If this value is not set, connections use the user name
specified for the Resour ceAdapt er JavaBean, as described
in Table 17-1 on page 328.

330 Message Queue 3 2005Q4 « Administration Guide

ActivationSpec JavaBean

ActivationSpec JavaBean

Acti vati onSpec JavaBean properties are used by the application server when it
instructs the Resource Adapter to activate a message endpoint and associate the
message endpoint with a message-driven bean.

Table 17-3 lists and describes the configurable properties for a message endpoint
activation specification. The table indicates the properties that are specific to the
Message Queue Resource Adapter and the properties that are specific to the
Enterprise JavaBean 2.1 standard or J2EE Connector Architecture (J2EE CA) 1.5

standard.

Table 17-3 Activation Specification Properties

Property

Default

Description

acknow edgeMbde

addr essLi st

clientld

cust omAcknow edgeMbde

Aut o- acknowl edge

Inherited

from addr essLi st
in the

Resour ceAdapt er
JavaBean
configuration

None

None

(Optional) The JMS session acknowledgment mode to
use for the consumer.

This is a standard EJB 2.1 and J2EE CA 1.5 property.
The value can be Aut o- acknow edge or
Dups- ok- acknow edge.

(Optional) The specification of the connection made by
the Resource Adapter on behalf of the message
endpoint.

This property is specific to the Message Queue JMS
Resource Adapter.

The valid values must conform to the message service
connection address syntax.

The JMS client ID to be used by the JMS connection
created for this consumer.

You must set this property if you set the
subscri ptionDurability property to Dur abl e.

This is a standard EJB 2.1 and J2EE CA 1.5 property.

A string specifying the mode for MDB message
consumption.

The valid values for this property are No_acknow edge
or null.

You can use No_acknow edge mode only for a
non-transacted, non-durable topic subscription. If you
use this setting with a transacted subscription or a
durable subscription, subscription activation fails.

Chapter 17 JMS Resource Adapter Property Reference 331

ActivationSpec JavaBean

Table 17-3 Activation Specification Properties (Continued)

Property

Default

Description

destination

destinati onType

endpoi nt Except i onRedel i very
Attenpts

nessageSel ect or

sendUndel i ver abl eMsgs ToDMQ

subscriptionDurability

None

None

None

true

NonDur abl e

332 Message Queue 3 2005Q4 « Administration Guide

The name of the destination from which this MDB
consumes messages.

This is a required property. It is a standard EJB 2.1 and
J2EE CAL.5 property.

The value must be set to the value of the
dest i nati onNanme property for a Message Queue
destination administered object.

The type of destination specified by the desti nati on
property. Valid values are j avax. j ns. Queue or
javax. j ms. Topi c.

This is a required property. It is a standard EJB 2.1 and
J2EE CAL.5 property.

The number of times to redeliver a message to the MDB
when the MDB throws an exception during message
delivery.

(Optional) A JMS message selector to use for filtering
the messages delivered to the consumer. The value is
of type String.

This is a standard EJB 2.1 and J2EE CA 1.5 property.

A boolean value specifying whether to place a message
in the dead message queue when the MDB throws a
runtime exception and the number of redelivery
attempts exceeds the value of

endpoi nt Except i onRedel i ver yAtt enpt s.

If f al se, the Message Queue broker will attempt
redelivery of the message to any valid consumer,
including the same MDB.

A string specifying whether a consumer for a topic
destination is durable or nondurable. The value can be
NonDur abl e or Dur abl e.

This property is optional for nondurable subscriptions
and required for durable subscriptions. If you set this
value to Dur abl e, you must also set the properties
clientl Dand subscri pti onNane.

This is a standard EJB 2.1 and J2EE CA1.5 property
and is valid only if the dest i nati onType property is set
to avax. j ns. Topi c.

ActivationSpec JavaBean

Table 17-3 Activation Specification Properties (Continued)
Property Default Description

subscri pti onNane None A string to use to name durable subscriptions.

You must set this property if you set
subscri ptionDurability property to Durabl e.

This is a standard EJB 2.1 and J2EE CA 1.5 property.

Chapter 17 JMS Resource Adapter Property Reference 333

ActivationSpec JavaBean

334 Message Queue 3 2005Q4 « Administration Guide

Chapter 18

Metrics Reference

This chapter lists and describes metrics produced by the Message Queue product.
This chapter contains the following sections:

e “JVM Metrics” on page 335

“Brokerwide Metrics” on page 336

“Connection Service Metrics” on page 338

“Destination Metrics” on page 340

JVM Metrics

Table 18-1 lists and describes the metrics data that the broker generates for the
broker process JVM heap. For each metric, the table shows which metrics
monitoring tools provide it.

Table 18-1 JVM Metrics

imgcmd Metrics
netrics bkr Log Message
Metric Quantity Description (metricType) File (metrics topic)?
JVM heap: free memory Amount of free memory available for usein Yes Yes Yes
the JVM heap (cxn) (...jvm
JVM heap: total memory Current JVM heap size Yes Yes Yes
(cxn) (..jvm
JVM heap: max memory Maximum to which the JVM heap size can No Yest! Yes
grow. (...jvm

1. Shown only at broker startup.
2. For metrics topic destination names, see Table 10-7 on page 202.

335

Brokerwide Metrics

Brokerwide Metrics

Table 18-2 lists and describes the data the broker reports regarding brokerwide
metrics information. It also shows which of the data can be obtained using the
different metrics monitoring tools.

Table 18-2 Brokerwide Metrics

imgcmd Metrics
metrics bkr Log Message
Metric Quantity Description (metricType) File (metrics topic)*
Connection Data
Num connections Number of currently open connections to Yes Yes Yes
the broker (cxn) (...broker)
Num threads Total number of threads currently in use for Yes Yes No
all connection services (cxn)
Min threads Number of threads, which once reached, Yes Yes No

are maintained in the thread pool for use by (cxn)
connection services

Max threads Number of threads, beyond which no new Yes Yes No
threads are added to the thread pool for use (cxn)
by connection services

Stored Messages Data

Num messages Number of payload messages currently No No Yes
stored in broker memory and persistent Use query bkr (...broker)
store

Total message bytes Number of payload messages bytes No No Yes
currently stored in broker memory and Use query bkr (...broker)

persistent store

Message Flow Data

Num messages in Number of payload messages that have Yes Yes Yes
flowed into the broker since it was last (ttl) (...broker)
started

Message bytes in Number of payload message bytes that Yes Yes Yes
have flowed into the broker since it was last (ttl) (...broker)
started

Num packets in Number of packets that have flowed intothe Yes Yes Yes
broker since it was last started; includes (ttl) (...broker)
both payload messages and control
messages

336 Message Queue 3 2005Q4 « Administration Guide

Table 18-2 Brokerwide Metrics (Continued)

Brokerwide Metrics

imgcmd Metrics
metrics bkr Log Message
Metric Quantity Description (metricType) File (metrics topic)*
Packet bytes in Number of packet bytes that have flowed Yes Yes Yes
into the broker since it was last started, (ttl) (...broker)
includes both payload messages and
control messages
Num messages out Number of payload messages that have Yes Yes Yes
flowed out of the broker since it was last (ttl) (...broker)
started.
Message bytes out Number of payload message bytes that Yes Yes Yes
have flowed out of the broker since it was (ttl) (...broker)
last started
Num packets out Number of packets that have flowed out of Yes Yes Yes
the broker since it was last started; includes (ttl) (...broker)
both payload messages and control
messages
Packet bytes out Number of packet bytes that have flowed Yes Yes Yes
out of the broker since it was last started; (ttl) (...broker)
includes both payload messages and
control messages
Rate messages in Current rate of flow of payload messages Yes Yes No
into the broker (rts)
Rate message bytes in Current rate of flow of payload message Yes Yes No
bytes into the broker (rts)
Rate packets in Current rate of flow of packets into the Yes Yes No
broker; includes both payload messages (rts)
and control messages
Rate packet bytes in Current rate of flow of packet bytes into the Yes Yes No
broker; includes both payload messages (rts)
and control messages
Rate messages out Current rate of flow of payload messages Yes Yes No
out of the broker (rts)
Rate message bytes out Current rate of flow of payload message Yes Yes No
bytes out of the broker (rts)
Rate packets out Current rate of flow of packets out of the Yes Yes No
broker; includes both payload messages (rts)
and control messages
Rate packet bytes out Current rate of flow of packet bytes out of Yes Yes No

the broker; includes both payload
messages and control messages

(rts)

Chapter 18

Metrics Reference

337

Connection Service Metrics

Table 18-2 Brokerwide Metrics (Continued)

imgcmd Metrics
metrics bkr Log Message
Metric Quantity Description (metricType) File (metrics topic)*
Destinations Data
Num destinations Number of physical destination in the broker No No Yes
(...broker)

1. For metrics topic destination names, see Table 10-7 on page 202.

Connection Service Metrics

Table 18-3 lists and describes the metrics data the broker reports for individual
connection services. It also shows which of the data can be obtained using the

different metrics monitoring tools.

Table 18-3 Connection Service Metrics

imgcmd Metrics
netrics svc Log Message
Metric Quantity Description (metricType) File (metrics topic)
Connection Data
Num connections Number of currently open connections Yes No No
(cxn)
Also query svc
Num threads Number of threads currently in use Yes No No
(cxn)
Also query svc
Min threads Number of threads, which once reached, are Yes No No
maintained in the thread pool for use by (cxn)
connection services, totaled across all
connection services
Max threads Number of threads, beyond which no new Yes No No
threads are added to the thread pool for use (cxn)
by connection services, totaled across all
connection services
Message Flow Data
Num messages in Number of payload messages that have Yes No No

flowed into the connection service since the
broker was last started

338 Message Queue 3 2005Q4 « Administration Guide

(ttl)

Table 18-3 Connection Service Metrics (Continued)

Connection Service Metrics

Metric Quantity

Description

imgcmd
metrics svc
(metricType)

Log

File

Metrics
Message
(metrics topic)

Message bytes in

Num packets in

Packet bytes in

Num messages out

Message bytes out

Num packets out

Packet bytes out

Rate messages in

Rate message bytes in

Rate packets in

Rate packet bytes in

Rate messages out

Number of payload message bytes that
have flowed into the connection service
since the broker was last started

Number of packets that have flowed into the
connection service since the broker was last
started; includes both payload messages
and control messages

Number packet bytes that have flowed into
the connection service since the broker was
last started; includes both payload
messages and control messages

Number of payload messages that have
flowed out of the connection service since
the broker was last started

Number of payload message bytes that
have flowed out of the connection service
since the broker was last started

Number of packets that have flowed out of
the connection service since the broker was
last started; includes both payload
messages and control messages

Number packet bytes that have flowed out of
the connection service since the broker was
last started; includes both payload
messages and control messages

Current rate of flow of payload messages
into the broker through the connection
service

Current rate of flow of payload message
bytes into the connection service

Current rate of flow of packets into the
connection service; includes both payload
messages and control messages

Current rate of flow of packet bytes into the
connection service; includes both payload
messages and control messages

Current rate of flow of payload messages
out of the connection service

Yes

(ttl)

Yes

(ttl)

Yes

(ttl)

Yes

(ttl)

Yes

(ttl)

Yes

(ttl)

Yes

(ttl)

Yes
(rts)

Yes
(rts)

Yes

(rts)

Yes

(rts)

Yes
(rts)

No

No

No

No

No

No

No

No

No

No

No

No

Chapter 18

No

No

No

No

No

No

No

No

No

No

No

No

Metrics Reference 339

Destination Metrics

Table 18-3 Connection Service Metrics (Continued)

imgcmd Metrics
netrics svc Log Message
Metric Quantity Description (metricType) File (metrics topic)
Rate message bytes out Current rate of flow of payload message Yes No No
bytes out of the connection service (rts)
Rate packets out Current rate of flow of packets out of the Yes No No
connection service; includes both payload (rts)
messages and control messages
Rate packet bytes out Current rate of flow of packet bytes out of Yes No No

the connection service; includes both
payload messages and control messages

(rts)

Destination Metrics

Table 18-4 Destination Metrics

Table 18-4 lists and describes the metrics data the broker reports for individual
destinations. It also shows which of the data can be obtained using the different
metrics monitoring tools.

imgcmd Metrics
metrics dst Log Message
Metric Quantity Description (metricType) File (metrics topic)*
Consumer Data
Num consumers Current number of consumers Yes No Yes
For a topic, this value includes non-durable (con) (.. destName)
subscriptions, active durable subscriptions,
and inactive durable subscriptions. For a
queue, this value includes active
consumers and backup consumers.
Avg num consumers Average number of consumers since the Yes No Yes
broker was last started (con) (...destName)
Peak num consumers Peak number of consumers since the Yes No Yes
broker was last started (con) (...destName)
Num active consumers Current number of active consumers Yes No Yes
(con) (...destName)
Avg num active Average number of active consumers since Yes No Yes
consumers the broker was last started (con) (...destName)

340 Message Queue 3 2005Q4 « Administration Guide

Table 18-4 Destination Metrics (Continued)

Destination Metrics

imgcmd Metrics
metrics dst Log Message

Metric Quantity Description (metricType) File (metrics topic)*

Peak num active Peak number of active consumers since Yes No Yes

consumers the broker was last started (con) (...destName)

Num backup consumers Current number of backup consumers Yes No Yes
(applies only to queues) (con) (...destName)

Avg num backup Average number of backup consumers Yes No Yes

consumers since the broker was last started (applies (con) (...destName)
only to queues)

Peak num backup Peak number of backup consumers since Yes No Yes

consumers the broker was last started (applies onlyto (con) (...destName)
gueues)

Stored Messages Data

Num messages Number of payload messages currently Yes No Yes
stored in destination memory and (con) (...destName)
persistent store (ttl)

(rts)
Also query dst

Avg num messages Average number of payload messages Yes No Yes
stored in destination memory and (con) (...destName)
persistent store since the broker was last (ttl)
started (rts)

Peak num messages Peak number of payload messages stored Yes No Yes
in destination memory and persistent store (con) (...destName)
since the broker was last started (ttl)

(rts)

Total message bytes Number of payload message bytes Yes No Yes
currently stored in destination memory and (ttl) (...destName)
persistent store (rts)

Also query dst

Avg total message bytes Average number of payload message Yes No Yes
bytes stored in destination memory and (ttl) (...destName)
persistent store since the broker was last (rts)
started

Peak total message Peak number of payload message bytes Yes No Yes

bytes

stored in destination memory and
persistent store since the broker was last
started

(ttl)
(rts)

Chapter 18

(...destName)

Metrics Reference 341

Destination Metrics

Table 18-4 Destination Metrics (Continued)

imgcmd Metrics
metrics dst Log Message
Metric Quantity Description (metricType) File (metrics topic)*
Peak message bytes Peak number of payload message bytesin Yes No Yes
a single message received by the (ttl) (...destName)
destination since the broker was last (rts)
started
Message Flow Data
Num messages in Number of payload messages that have Yes No Yes
flowed into this destination since the broker (ttl) (...destName)
was last started
Msg bytes in Number of payload message bytes that Yes No Yes
have flowed into this destination since the (ttl) (...destName)
broker was last started
Num messages out Number of payload messages that have Yes No Yes
flowed out of this destination since the (ttl) (...destName)
broker was last started
Msg bytes out Number of payload message bytes that Yes No Yes
have flowed out of this destination since (ttl) (...destName)
the broker was last started
Rate num messages in Current rate of flow of payload messages Yes No No
into the destination (rts)
Rate num messages out Current rate of flow of payload messages Yes No No
out of the destinatio (rts)
Rate msg bytes in Current rate of flow of payload message Yes No No
bytes into the destination (rts)
Rate Msg bytes out Current rate of flow of payload message Yes No No
bytes out of the destination (rts)
Disk Utilization Data
Disk reserved Disk space, in bytes, used by all message Yes No Yes
records (active and free) in the destination (dsk) (...destName)
file-based store
Disk used Disk space, in bytes, used by active Yes No Yes
message records in destination file-based (dsk) (...destName)
store
Disk utilization ratio Ratio of used disk space to reserved disk Yes No Yes
space. The higher the ratio, the more the (dsk) (...destName)

disk space is being used to hold active
messages

1. For metrics topic destination names, see Table 10-7 on page 202.

342 Message Queue 3 2005Q4 « Administration Guide

Destination Metrics

Chapter 18 Metrics Reference 343

Destination Metrics

344 Message Queue 3 2005Q4 « Administration Guide

Part IV

Appendixes

Appendix A, “Platform-Specific Locations of Message Queue
Data”

Appendix B, “Stability of Message Queue Interfaces”

Appendix C, “HTTP/HTTPS Support”

Appendix A

Platform-Specific Locations of
Message Queue Data

Sun Java System Message Queue data is stored in different locations on different
operating system platforms. The tables that follow show the location of various
types of Message Queue data on the following platforms:

= “Solaris” on page 348
e “Linux” on page 349
e “Windows” on page 350

In the tables, instanceName denotes the name of the broker instance with which the
data is associated.

347

Solaris

Solaris

Table A-1 shows the location of Message Queue data on the Solaris operating
system. If you are using Message Queue on Solaris with the standalone version of
Sun Java System Application Server, the directory structure is like that described
under “Windows” on page 350.

Table A-1 Message Queue Data Locations on Solaris Platform

Data Category Location
Broker instance configuration properties /var/ing/instances/ instanceName/ pr ops/ confi g. properti es
Broker configuration file templates [usr/sharellibling/props/ broker/
Persistent store (messages, destinations, /var/ing/instances/ instanceName/ f s350
durable subscriptions, transactions) or a JDBC-accessible data store
Broker instance log file directory (default /var/ing/instances/ instanceName/ | og/
location)
Administered objects (object store) Local directory of your choice or an LDAP server
Security: user repository /var/ing/instances/ instanceName/ et ¢/ passwd
or an LDAP server
Security: access control file (default location) /var/ing/instances/ instanceName/ et ¢/ accesscontrol . properties
Security: password file directory (default /var/ing/instances/ instanceName/ et c/
location)
Security: example password file letclingl passfile.sanple
Security: broker’s key store file location letcling/
JavaDoc AP| documentation [usr/sharel javadoc/ i ng/index. ht m
Example applications and configurations [usr/ demo/ i my/
Java archive (. j ar), Web archive (. war), and [usr/share/lib/

Resource Adapter archive (. rar) files

348 Message Queue 3 2005Q4 « Administration Guide

Linux

Linux

Table A-2 shows the location of Message Queue data on the Linux operating
system.

Table A-2 Message Queue Data Locations on Linux Platform

Data Category Location

Broker instance configuration /var/ opt/sun/ ng/ i nst ances/ instanceName/ pr ops/ conf i g. properti es
properties

Broker configuration file templates [opt/sun/ ng/ privat e/ share/ i b/ props/

Persistent store (messages, /var/ opt/sun/ ng/ i nst ances/ instanceName/ f s350/

destinations, durable subscriptions, or a JDBC-accessible data store

transactions)

Broker instance log file directory /var/ opt/sun/ ng/ i nst ances/ instanceName/ | og/

(default location)
Administered objects (object store) Local directory of your choice or an LDAP server

Security: user repository /var/ opt/sun/ ng/ i nst ances/ instanceName/ et ¢/ passwd
or an LDAP server

Security: access control file (default /var/ opt/sun/ ng/ i nst ances/ instanceName/ et ¢/ accesscontrol . properties
location)
Security: password file directory /var/ opt/sun/ ng/ i nst ances/ instanceName/ et ¢/

(default location)
Security: example password file /et c/opt/sun/ ny/ passfile. sanpl e

Security: broker’s key store file location /et c/ opt/ sun/ ng/

JavaDoc AP| documentation [opt/ sun/ ng/ j avadoc/ i ndex. ht m
Example applications and / opt/ sun/ ng/ exanpl es/
configurations

Java archive (.] ar), Web archive [opt/sun/ ng/ share/lib/

(. war), and Resource Adapter archive

(.rar) files

Shared library (. so) files [opt/sun/ng/lib/

Appendix A Platform-Specific Locations of Message Queue Data 349

Windows

Windows

Table A-3 shows the location of Message Queue data on the Windows operating
system. The table also applies to the Solaris platform when Message Queue is
bundled with the standalone version of Sun Java System Application Server. That
version of Application Server is bundled with neither Solaris nor Sun Java
Enterprise System. Use the pathnames in Table A-3, but change the direction of the
slash characters from the Windows backslash (\) to the Solaris forward slash (/).
See “Directory Variable Conventions” on page 23 for definitions of the | M) HOVE
and | MQ VARHOME directory variables.

Table A-3

Message Queue Data Locations on Windows Platform

Data Category

Location

Broker instance configuration properties
Broker configuration file templates

Persistent store (messages, destinations,
durable subscriptions, transactions)

Broker instance log file directory (default
location)

Administered objects (object store)

Security: user repository

Security: access control file (default
location)

Security: password file directory (default
location)

Security: example password file
Security: broker’s key store file location
JavaDoc API documentation

Example applications and configurations

Java archive (.| ar), Web archive (. war),

and Resource Adapter archive (. rar) files

| MQ_ VARHOWE\ i nst ances)\ instanceName\ pr ops\ confi g. properti es
| MQ_HOMVE\ | i b\ pr ops\ br oker\

| MQ_VARHOME\ i nst ances)\ instanceName\ f s350\
or a JDBC-accessible data store

I MQ_VARHOWE\ i nst ances)\ instanceName\ | og\

Local directory of your choice or an LDAP server

| MQ_VARHOWE\ i nst ances)\ instanceName\ et ¢\ passwd
or an LDAP server

I MQ_VARHOMVE\ i nst ances)\ instanceName\ et c\ accesscontrol . properti es

| MQ_HOWE\ et c\

| MQ_ HOVE\ et c\ passfil e. sanpl e
| MQ_HOWE\ et c\

| MQ_HOMVE\ j avadoc\ i ndex. ht m

| MQ_HOVE\ deno\

| MQ_HOME\ | i b\

350 Message Queue 3 2005Q4 « Administration Guide

Appendix B

Stability of Message Queue
Interfaces

Sun Java System Message Queue uses many interfaces that can help administrators
automate tasks. This appendix classifies the interfaces according to their stability.
The more stable an interface is, the less likely it is to change in subsequent versions
of the product.

Any interface that is not listed in this appendix is private and not for customer use.

Table B-1 describes the stability classification scheme.

Table B-1 Interface Stability Classification Scheme

Classification Description

Private Not for direct use by customers. May change or be removed in any
release.

Evolving For use by customers. Subject to incompatible change at a major

(e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. The changes will be
made carefully and slowly. Reasonable efforts will be made to
ensure that all changes are compatible but that is not guaranteed.

Stable For use by customers. Subject to incompatible change at a major
(e.g 3.0, 4.0) release only.

Standard For use by customers. These interfaces are defined by a formal
standard, and controlled by a standards organization. Incompatible
changes to these interfaces are rare.

Unstable For use by customers. Subject to incompatible change at a major
(e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. Customers are
advised that these interfaces may be removed or changed
substantially and in an incompatible way in a future release. It is
recommended that customers not create explicit dependencies on
unstable interfaces.

351

352

Table B-2 lists the interfaces and their classifications.

Table B-2 Stability of Message Queue Interfaces

Interface

Classification

Command Line Interfaces

i ngbr oker d command line interface Evolving
i rgadm n command line interface Unstable
i mgend command line interface Evolving
i mgdbmgr command line interface Unstable
i ngkeyt ool command line interface Evolving
i nmgobj mgr command line interface Evolving
i mguser ngr command line interface Unstable
Output from i ngbr oker d, i rgadm n, i ngend, i ngdbngr, i ngkeyt ool , Unstable
i ngobj ngr, i myuser nyr

Commands

i ngobj ngr command file Evolving
i ngbr oker d command Stable

i mgadm n command Unstable
i mgend command Stable

i mgdbmgr command Unstable
i ngkeyt ool command Stable

i mgobj ngr command Stable

i mguser ngr command Unstable
APIs

JMS API (j avax. j ms) Standard
JAXM API (j avax. xm) Standard
C-API Evolving
C-API environment variables Unstable
Message-based monitoring API Evolving
Administered Object API (com sun. nessagi ng) Evolving
.jar and .war Files

i ng. j ar location and name Stable
jms. j ar location and name Evolving

Message Queue 3 2005Q4 « Administration Guide

Table B-2 Stability of Message Queue Interfaces (Continued)

Interface Classification
i mgbr oker . j ar location and name Private
imut i | . j ar location and name Private

i ngadm n. j ar location and name Private

i mgservl et.jar location and name Evolving
i mght t p. war location and name Evolving
i nght t ps. war location and name Evolving
i ngj nsra. rar location and name Evolving
i mgxm j ar location and name Evolving
j axmapi . j ar location and name Evolving
saaj - api . j ar location and name Evolving
saaj -i npl . jar location and name Evolving
activation.jar location and name Evolving
mai | . j ar location and name Evolving
dom¥j . j ar location and name Private
fscontext.jar location and name Unstable
Files

Broker log file location and content format Unstable
password file Unstable
accesscontrol . properties file Unstable
System Destinations

ng. sys. dng destination Stable
ng. netrics. * destinations Evolving
Configuration Properties

Message Queue JMS Resource Adapter configuration properties Evolving
Message Queue JMS Resource Adapter JavaBean and ActivationSpec Evolving

configuration properties

Appendix B Stability of Message Queue Interfaces

353

354

Table B-2 Stability of Message Queue Interfaces (Continued)

Interface

Classification

Message Properties and Formats

Dead message queue message property, JV5XDel i ver yCount Standard
Dead message queue message properties, JVM5_SUN * Evolving
Message Queue client message properties: JM5_SUN * Evolving
JMS message format for metrics or monitoring messages Evolving
Miscellaneous

Message Queue JMS Resource Adapter package, Evolving
com sun. nessagi ng.j ns.ra

JDBC schema for storage of persistent messages Evolving

Message Queue 3 2005Q4 « Administration Guide

Appendix C

HTTP/HTTPS Support

Message Queue, Enterprise Edition includes support for a Java client to
communicate with the broker by means of an HTTP or secure HTTP (HTTPS)
transport, rather than a direct TCP connection. HTTP/HTTPS support is not
available for C clients.

This appendix describes the architecture used to enable this support and explains
the setup work needed to allow clients to use HTTP-based connections for Message
Queue messaging. It has the following sections:

e “HTTP/HTTPS Support Architecture” on page 356
= “Enabling HTTP Support” on page 357

< “Enabling HTTPS Support” on page 366

= “Troubleshooting” on page 377

355

HTTP/HTTPS Support Architecture

HTTP/HTTPS Support Architecture

Message Queue messaging can run on top of HTTP/HTTPS connections. Because
HTTP/HTTPS connections are normally allowed through firewalls, this allows
client applications to be separated from a broker by a firewall.

Figure C-1 on page 356 shows the main components involved in providing
HTTP/HTTPS support.

= Onthe client side, an HTTP or HTTPS transport driver encapsulates the
Message Queue message into an HTTP request and makes sure that these
requests are sent to the Web server/application server in the correct sequence.

= The client can use an HTTP proxy server to communicate with the broker if
necessary. The proxy’s address is specified using command line options when
starting the client. See “Using an HTTP Proxy” on page 365 for more
information.

e AnHTTP or HTTPS tunnel servlet (both bundled with Message Queue) is
loaded in a Web server/application server and used to pull payload messages
out of client HTTP requests before forwarding them to the broker. The
HTTP/HTTPS tunnel servlet also sends broker messages back to the client in
response to HTTP requests made by the client. A single HTTP/HTTPS tunnel
servlet can be used to access multiple brokers.

Figure C-1 HTTP/HTTPS Support Architecture

Broker
JMS Cliens httpjms/httpsjms
Connection
Message Queue Services
Client Runtime
HTTP/S Firewall TLS TCP/I
Transport
Drivers %p
HTTPS THTTPI
HTTPS L Tunnel Sunr:e
—p Servlet |>€rviet
Web Server or
HTTP Prox . .
y Application Serve

356 Message Queue 3 2005Q4 « Administration Guide

Enabling HTTP Support

= On the broker side, the httpjms or httpsjms connection service unwraps and
de-multiplexes incoming messages from the corresponding tunnel servlet.

= |fthe Web server/application server fails and is restarted, all connections are
restored and there is no effect on clients. If the broker fails and is restarted, an
exception is thrown and clients must re-establish their connections. In the
unlikely case that both the Web server/application server and the broker fail,
and the broker is not restarted, the Web server/application server will restore
client connections and continue waiting for a broker connection— without
notifying clients. To avoid this situation, always restart the broker.

As you can see from Figure C-1, the architecture for HTTP and HTTPS support are
very similar. The main difference is that, in the case of HTTPS (httpsjms connection
service), the tunnel servlet has a secure connection to both the client application
and broker.

The secure connection to the broker is provided through an SSL-enabled tunnel
servlet—Message Queue’s HTTPS tunnel servlet—which passes a self-signed
certificate to any broker requesting a connection. The certificate is used by the
broker to set up an encrypted connection to the HTTPS tunnel servlet. Once this
connection is established, a secure connection between a client application and the
tunnel servlet can be negotiated by the client application and the Web
server/application server.

Enabling HTTP Support

The following sections describe the steps you need to take to enable HTTP support.

[0 ToEnable HTTP Support

1. Deploy the HTTP tunnel servlet. You can deploy the HTTP tunnerl servlet on
the following:

o SunJava System Web Server
o SunJava System Application Server
2. Configure the broker’s httpjms connection service and start the broker.

3. Configure an HTTP connection.

Appendix C HTTP/HTTPS Support 357

Enabling HTTP Support

358

Step 1. Deploy the HTTP Tunnel Servlet

You can deploy the HTTP tunnel servlet as a Web archive (. war) file on a Sun Java
System Web Server or Sun Java System Application Server.

Deploying the HTTP tunnel servlet as a . war file consists of using the deployment
mechanism provided by the Web server/application server. The HTTP tunnel
servlet. war file (i mght t p. war) is located in the directory containing . j ar, . war, and
.rar files, and depends on your operating system (see Appendix A,
“Platform-Specific Locations of Message Queue Data”).

The . war file includes a deployment descriptor that contains the basic configuration
information needed by the Web server/application server to load and run the
servlet. Depending on the Web server/application server, you might also need to
specify the context root portion of the servlet’s URL.

Deploying as a Web Archive File

For deployment on a Sun Java System Web Server, see “Deploying the HTTP
Tunnel Servlet on Sun Java System Web Server” on page 358.

For deployment on a Sun Java System Application Server, see “Deploying the
HTTP Tunnel Servlet on Sun Java System Application Server” on page 360.

Deploying the HTTP Tunnel Servlet on Sun Java System Web Server

The instructions below refer to deployment on Sun Java System Web Server. You
can verify successful HTTP tunnel servlet deployment by accessing the serviet URL
using a Web browser. It should display status information.

To Deploy the http Tunnel Servlet as a .war File

1. Inthe browser-based administration GUI, select the Virtual Server Class tab
and select Manage Classes.

2. Select the appropriate virtual server class name (for example, def aul t d ass)
and click the Manage button.

3. Select Manage Virtual Servers.

4. Select an appropriate virtual server name and click the Manage button.

Message Queue 3 2005Q4 « Administration Guide

Enabling HTTP Support

5. Select the Web Applications tab.
6. Click on Deploy Web Application.

7. Select the appropriate values for the WAR File On and WAR File Path fields so
as to point to the i nght t p. war file, which can be found in a directory that
depends on your operating system (see Appendix A, “Platform-Specific
Locations of Message Queue Data”).

8. Enter a path in the Application URI field.

The Application URI field value is the / contextRoot portion of the tunnel servlet
URL:

ht t p: / / hostName: portNumber/ contextRoot/ t unnel

For example, if you set the contextRoot to i g, the Application URI field would
be:

/iy
9. Enter the installation directory path (typically somewhere under the Sun Java
System Web Server installation root) where the servlet should be deployed.

10. Click OK.

11. Restart the Web server instance.

The servlet is now available at the following address:
ht t p: / / hostName: portNumber/ contextRoot/ t unnel

Clients can now use this URL to connect to the message service using an HTTP
connection.

Disabling a Server Access Log

You do not have to disable the server access log, but you will obtain better
performance if you do.

To Disable the Server Access Log
1. Select the Status tab.

2. Choose the Log Preferences Page.

Use the Log client accesses control to disable logging.

Appendix C HTTP/HTTPS Support 359

Enabling HTTP Support

Deploying the HTTP Tunnel Servlet on Sun Java System Application
Server

This section describes how you deploy the HTTP tunnel servlet as a . war file on the
Sun Java System Application Server, and then configure the tunnel servlet to accept
connections from a Message Queue broker.

Two steps are required:
= Deploy the HTTP tunnel servlet using the Application Server deployment tool.

= Modify the application server instance’s server. pol i cy file.

Using the Deployment Tool
[l To Deploy the HTTP Tunnel Servlet in an Application Server Environment
1. Inthe Web-based administration GUI, choose
App Server > Instances > serverl > Applications > Web Applications.
2. Click the Deploy button.

3. Inthe File Path: text field, enter the location of the HTTP tunnel servlet . war file
(i mght t p. war), and click OK.

The location of the i nght t p. war file depends on your operating system (see
Appendix A, “Platform-Specific Locations of Message Queue Data”).

4. Set the value for the Context Root text field, and click OK.

The Context Root field value is the / contextRoot portion of the tunnel servlet
URL:

ht t p: / / hostName: portNumber/ contextRoot/ t unnel
For example, you could set the Context Root field to /i ng.

The confirmation screen that appears confirms that the tunnel servlet has been
successfully deployed, is enabled by default, and—in this case—is located at:

[var/ opt / SUN\Wappser ver 8/ domai ns/ domai n1/ ser ver 1/ appl i cati ons/
j 2ee-nodul es/imghttp_1

The servlet is now available at the following URL:
ht t p: // hostName: portNumber/ contextRoot/ t unnel

Clients can now use this URL to connect to the message service using an HTTP
connection.

360 Message Queue 3 2005Q4 « Administration Guide

Enabling HTTP Support

Modifying the server.policy File

The Application Server enforces a set of default security policies that, unless
modified, would prevent the HTTP tunnel servlet from accepting connections from
the Message Queue broker.

Each application server instance has a file that contains its security policies, or
rules. For example, the location of this file for the serverl instance on Solaris is:

/var/ opt/ SUN\Wappser ver 8/ donai ns/ domai n1/ server 1/ confi g/
server. policy

To configure the tunnel servlet to accept connections from the Message Queue
broker, an additional entry is required in this file.

[0 To Modify the Application Server’s server.policy File
1. Open the server. poli cy file.

2. Add the following entry:

grant codeBase
"file:/var/opt/ SU\Mappser ver 8/ domai ns/ donai nl/ server 1/

appl i cations/j2ee-nodul es/inmghttp_1/-"

per ni ssi on j ava. net. Socket Per m ssion "*",
“connect, accept, resol ve";

Appendix C HTTP/HTTPS Support 361

Enabling HTTP Support

362

Step 2. Configure the httpjms
Connection Service

HTTP support is not activated for a broker by default, so you need to reconfigure
the broker to activate the httpjms connection service. Once reconfigured, the broker
can be started as outlined in “Starting Brokers” on page 66.

To Activate the httpjms Connection Service
1. Open the broker’s instance configuration file.

The instance configuration file is stored in a directory identified by the name of
the broker instance (instanceName) with which the configuration file is
associated (see Appendix A, “Platform-Specific Locations of Message Queue
Data”):

.J i nstances/ instanceName/ pr ops/ confi g. properties
2. Add the htt pj ns value to the i ng. servi ce. acti vel i st property:
i ng. service.activelist=jns,adnin, httpjns

At startup, the broker looks for a Web server/application server and HTTP tunnel
servlet running on its host machine. To access a remote tunnel servlet, however,
you can reconfigure the ser vl et Host and servl et Port connection service
properties.

You can also reconfigure the pul | Peri od property to improve performance. The
httpjms connection service configuration properties are detailed in Table C-1.

Table C-1 httpj ns Connection Service Properties

Property Description
ing. httpjns. http. Change this value, if necessary, to specify the name of the host
servl et Host (hostname or IP address) on which the HTTP tunnel servlet is

running. (This can be a remote host or a specific hostname on a
local host.) Default: | ocal host .

ing. httpjns. http. Change this value to specify the port number that the broker uses to

servl et Port access the HTTP tunnel servlet. (If the default port is changed on
the Web server, you must change this property accordingly.)
Default: 7675.

Message Queue 3 2005Q4 « Administration Guide

Enabling HTTP Support

Table C-1 httpj ns Connection Service Properties (Continued)

Property Description
ing. httpjns. http. Specifies the interval, in seconds, between HTTP requests made by
pul | Period a client runtime to pull messages from the broker. (Note that this

property is set on the broker and propagates to the client runtime.) If
the value is zero or negative, the client keeps one HTTP request
pending at all times, ready to pull messages as fast as possible.
With a large number of clients, this can be a heavy drain on
Web/application server resources and the server may become
unresponsive. In such cases, you should set the pul | Peri od
property to a positive number of seconds. This sets the time the
client's HTTP transport driver waits before making subsequent pull
requests. Setting the value to a positive number conserves
Web/application server resources at the expense of the response
times observed by clients. Default: - 1.

i mg. httpjns. http. Specifies the time, in seconds, that the client runtime waits for a

connect i onTi neout response from the HTTP tunnel servlet before throwing an
exception. (Note that this property is set on the broker and
propagates to the client runtime.) This property also specifies the
time the broker waits after communicating with the HTTP tunnel
servlet before freeing up a connection. A timeout is necessary in this
case because the broker and the tunnel servlet have no way of
knowing if a client that is accessing the HTTP servlet has terminated
abnormally. Default: 60.

Appendix C HTTP/HTTPS Support 363

Enabling HTTP Support

364

Step 3. Configure an HTTP Connection

A client application must use an appropriately configured connection factory
administered object to make an HTTP connection to a broker. This section
discusses HTTP connection configuration issues.

Configuring the Connection Factory

To enable HTTP support, you need to set the connection factory’s i ngAddr essLi st
attribute to the HTTP tunnel serviet URL. The general syntax of the HTTP tunnel
servlet URL is the following:

ht t p: // hostName: portNumber/ contextRoot/ t unnel

where hostName: portNumber is the name and port of the Web server/application
server hosting the HTTP tunnel servlet and contextRoot is a path set when
deploying the tunnel servlet on the Web server/application server.

For more information on connection factory attributes in general, and the
i ngAddr essLi st attribute in particular, see the Message Queue Developer’s Guide for
Java Clients.

You can set connection factory attributes in one of the following ways:

= Using the - 0 option to the i ngobj ngr command that creates the connection
factory administered object (see “Adding a Connection Factory” on page 174),
or set the attribute when creating the connection factory administered object
using the Administration Console (i ngadni n).

= Using the - Doption to the command that launches the client (see the Message
Queue Developer’s Guide for Java Clients).

= Using an API call to set the attributes of a connection factory after you create it
programmatically in client code (see the Message Queue Developer’s Guide for
Java Clients).

Using a Single Servlet to Access Multiple Brokers

You do not need to configure multiple Web servers/application servers and servlet
instances if you are running multiple brokers. You can share a single Web
server/application server and HTTP tunnel servlet instance among concurrently
running brokers. If multiple broker instances are sharing a single tunnel servlet,
you must configure the i ngAddr essLi st connection factory attribute as shown
below:

ht t p: // hostName: portNumber/ contextRoot/ t unnel ?Ser ver Narme=bkrHostName: instanceName

Message Queue 3 2005Q4 « Administration Guide

Enabling HTTP Support

Where bkrHostName is the broker instance host name and instanceName is the name
of the specific broker instance you want your client to access.

To check that you have entered the correct strings for bkrHostName and
instanceName, generate a status report for the HTTP tunnel servlet by accessing the
servlet URL from a browser. The report lists all brokers being accessed by the
servlet:

HTTP tunnel servlet ready.
Servlet Start Time : Thu May 30 01:08:18 PDT 2005
Accepting TCP connections from brokers on port : 7675
Total available brokers = 2
Broker List :

j pgserv: br oker 2

cochi n: broker 1

Using an HTTP Proxy
If you are using an HTTP proxy to access the HTTP tunnel servlet:

= Sethttp.proxyHost system property to the proxy server host name.
= Sethttp. proxyPort system property to the proxy server port number.

You can set these properties using the - Doption to the command that launches the
client application.

Appendix C HTTP/HTTPS Support 365

Enabling HTTPS Support

Enabling HTTPS Support

366

The following sections describe the steps to enable HTTPS support. They are
similar to those in “Enabling HTTP Support” on page 357 with the addition of
steps needed to generate and access SSL certificates.

[J ToEnable HTTPS Support
1. Generate a self-signed certificate for the HTTPS tunnel servlet.
2. Modify the HTTP tunnel servlet . war file's deployment descriptor to:
o point to the location where you have placed the certificate key store
o specify the certificate key store password

3. Deploy the HTTP tunnel servlet. You can deploy the HTTP tunnel servlet on
the following:

o SunJava System Web Server

o SunJava System Application Server
4. Configure the broker’s httpsjms connection service and start the broker.
5. Configure an HTTPS connection.

Each of these steps is discussed in more detail in the sections that follow.

Step 1. Generating a Self-signed Cetrtificate for
the HTTPS Tunnel Servlet

Message Queue’s SSL support is oriented toward securing on-the-wire data with
the assumption that the client is communicating with a known and trusted server.
Therefore, SSL is implemented using only self-signed server certificates. In the
httpsjms connection service architecture, the HTTPS tunnel servlet plays the role of
server to both broker and application client.

Run the keyt ool utility to generate a self-signed certificate for the tunnel servlet.
Enter the following at the command prompt:

JRE_HOME/ bi n/ keyt ool -servl et keyStoreLocation

The utility will prompt you for the information it needs. (On Unix systems you
may need to run keyt ool as the superuser (root) in order to have permission to
create the key store.)

Message Queue 3 2005Q4 « Administration Guide

Enabling HTTPS Support

First, keyt ool prompts you for a key store password, and then it prompts you for
some organizational information, and then it prompts you for confirmation. After
it receives the confirmation, it pauses while it generates a key pair. It then asks you
for a password to lock the particular key pair (key password); you should enter
Return in response to this prompt: this makes the key password the same as the
key store password.

NOTE Remember the password you provide—you must provide this
password later to the tunnel servlet so it can open the key store.

The JDK keyt ool utility generates a self-signed certificate and places it in Message
Queue’s key store file located as specified in the keyStoreLocation argument.

NOTE The HTTPS tunnel servlet must be able to see the key store. Make
sure you move/copy the generated key store located in
keyStoreLocation to a location accessible by the HTTPS tunnel servlet
(see “Step 3. Deploying the HTTPS Tunnel Servlet” on page 368).

Step 2. Modifying the HTTP Tunnel Servlet .war
File’s Descriptor File

The HTTP Tunnel Servlet’s . war file includes a deployment descriptor that contains
the basic configuration information needed by the Web server/application server
to load and run the servlet.

The deployment descriptor of the i nght t ps. war file cannot know where you have
placed the key store file needed by the tunnel servlet. This requires you to edit the
tunnel servlet’s deployment descriptor (an XML file) to specify the key store
location and password before deploying the i nght t ps. war file.

[0 To Modify the HTTPS Tunnel Servlet .war File
1. Copy the. war file to a temporary directory.
cp /usr/share/libling/inmghttps.war /tnp (Solaris)
cp /opt/sun/my/share/lib/imhttps.war /tnp (Linux)
cp | MQ HOW/ |ib/inghttps.war /tnp (Windows)

Appendix C HTTP/HTTPS Support 367

Enabling HTTPS Support

2. Make the temporary directory your current directory.
$cd/tmp

3. Extract the contents of the . war file.
$ jar xvf inghttps. war

4. Listthe . war file’s deployment descriptor.
$Is -1 WEB-I NF/web. xm

5. Edit the web. xni file to provide correct values for the keyst or eLocat i on and
keyst or ePasswor d arguments (as well as servl et Port and ser vl et Host
arguments, if necessary).

6. Re-assemble the contents of the . war file.
$ jar uvf imghttps.war WEB-INF/web.xml

You are now ready to use the modified i mght t ps. war file to deploy the HTTPS
tunnel servlet. (If you are concerned about exposure of the key store password, you
can use file system permissions to restrict access to the i nght t ps. war file.)

Step 3. Deploying the HTTPS Tunnel Servlet

You can deploy the HTTP tunnel servlet as a Web archive (WAR) file on a Sun Java
System Web Server or Sun Java System Application Server.

Deploying the HTTPS tunnel servlet as a . war file consists of using the deployment
mechanism provided by the Web server/application server. The HTTPS tunnel
servlet . war file (i nghtt ps. war) is located in a directory that depends on your
operating system (see Appendix A, “Platform-Specific Locations of Message
Queue Data”).

You should make sure that encryption is activated for the Web server, enabling
end-to-end secure communication between the client and broker.

Deploying as a Web Archive File

For deployment on a Sun Java System Web Server, see “Deploying the HTTPS
Tunnel Servlet on Sun Java System Web Server” on page 369.

For deployment on a Sun Java System Application Server, see “Deploying the
HTTPS Tunnel Servlet on Sun Java System Application Server” on page 370.

368 Message Queue 3 2005Q4 « Administration Guide

Enabling HTTPS Support

Deploying the HTTPS Tunnel Servlet on Sun Java System Web
Server

This section describes how you deploy the HTTPS tunnel servlet as a . war file on
the Sun Java System Web Server. You can verify successful HTTPS tunnel servlet
deployment by accessing the servlet URL using a Web browser. It should display
status information.

Before deploying the HTTPS tunnel servlet, make sure that JSSE . j ar files are
included in the Web server’s classpath. The simplest way to do this is to copy the
fileg sse.jarjnet.jarand cert.jartonebServer TCPD R bin/https/jre/lib/ext.

To Deploy the https Tunnel Servlet as a .war File

1. Inthe browser-based administration GUI, select the Virtual Server Class tab.
Click Manage Classes.

2. Select the appropriate virtual server class name (for example, def aul t d ass)
and click the Manage button.

Select Manage Virtual Servers.
Select an appropriate virtual server name and click the Manage button.

Select the Web Applications tab.

I

Click on Deploy Web Application.

7. Select the appropriate values for the WAR File On and WAR File Path fields so
as to point to the modified i mght t ps. war file (see “To Modify the HTTPS
Tunnel Servlet .war File” on page 367.)

8. Enter a path in the Application URI field.

The Application URI field value is the / contextRoot portion of the tunnel servlet
URL:

htt ps: // hostName: portNumber/ contextRoot/ t unnel

For example, if you set the contextRoot to i ny, the Application URI field would
be:

[imy
9. Enter the installation directory path (typically somewhere under the Sun Java
System Web Server installation root) where the servlet should be deployed.

10. Click OK.

11. Restart the Web server instance.

Appendix C HTTP/HTTPS Support 369

Enabling HTTPS Support

370

The servlet is now available at the following URL:
ht t ps: // hostName: portNumber/ i mg/ t unnel

Clients can now use this URL to connect to the message service using a secure
HTTPS connection.

Disabling a Server Access Log

You do not have to disable the server access log, but you will obtain better
performance if you do.

To Disable the Server Access Log
1. Select the Status tab.
2. Choose the Log Preferences Page.

Use the Log client accesses control to disable logging.

Deploying the HTTPS Tunnel Servlet on Sun Java System
Application Server

This section describes how you deploy the HTTPS tunnel servlet as a . war file on
the Sun Java System Application Server.

Two steps are required:

= Deploy the HTTPS tunnel servlet using the Application Server deployment
tool.

= Modify the application server instance’s server. pol i cy file.

Using the Deployment Tool

[0 To Deploy the HTTPS Tunnel Servlet in an Application Server Environment

1. Inthe Web-based administration GUI, choose
App Server > Instances > serverl > Applications > Web Applications
2. Click the Deploy button.

3. Inthe File Path: text field, enter the location of the HTTPS tunnel servlet . war
file (i nght t ps. war), and click OK.

The location of the i nght t ps. war file depends on your operating system (see
Appendix A, “Platform-Specific Locations of Message Queue Data”).

Message Queue 3 2005Q4 « Administration Guide

Enabling HTTPS Support

4. Set the value for the Context Root text field, and click OK.

The Context Root field value is the /contextRoot portion of the tunnel servlet
URL:

htt ps: // hostName: portNumber/ contextRoot/ t unnel
For example, you could set the Context Root field to:

[imgy
The next screen shows that the tunnel servlet has been successfully deployed,
is enabled by default, and—in this case—is located at:

[var/ opt/ SUN\Wappser ver 8/ domai ns/ domai nl/ ser ver 1/ appl i cati ons/
j 2ee-nodul es/imghttps_1

The servlet is now available at the following URL:
ht t ps: // hostName: portNumber/ contextRoot/ t unnel
Clients can now use this URL to connect to the message service using an HTTPS

connection.

Modifying the server.policy file

Application Server enforces a set of default security policies that unless modified
would prevent the HTTPS tunnel servlet from accepting connections from the
Message Queue broker.

Each application server instance has a file that contains its security policies or rules.
For example, the location of this file for the serverl instance on Solaris is:

/var/ opt/ SUN\Wappser ver 8/ domai ns/ donai nl/ ser ver 1/ confi g/
server. policy

To make the tunnel servlet accept connections from the Message Queue broker, an
additional entry is required in this file.

Appendix C HTTP/HTTPS Support 371

Enabling HTTPS Support

372

[0 To Modify the Application Server’s server.policy File

1. Open the server.policy file.

2. Add the following entry:

grant codeBase
"file:/var/opt/ SU\Mappser ver 8/ domai ns/ donai nl/ server 1/

appl i cations/j2ee-nodul es/i mghttps_1/-"

per ni ssi on j ava. net. Socket Per m ssion "*",
“connect, accept, resol ve";

Step 4. Configuring the httpsjms
Connection Service

HTTPS support is not activated for a broker by default, so you need to reconfigure
the broker to activate the httpsjms connection service. Once reconfigured, the
broker can be started as outlined in “Starting Brokers” on page 66.

To Activate the httpsjms Connection Service
1. Open the broker’s instance configuration file.

The instance configuration file is stored in a directory identified by the name of
the broker instance (instanceName) with which the configuration file is
associated (see Appendix A, “Platform-Specific Locations of Message Queue
Data”):

./ i nstances/ instanceName/ pr ops/ confi g. properties
2. Add the htt psj ns value to the i ng. servi ce. activel i st property:
i ng. service. activel i st=j ns, adni n, htt psj ns

At startup, the broker looks for a Web server and HTTPS tunnel servlet running on
its host machine. To access a remote tunnel servlet, however, you can reconfigure
the servl et Host and ser vl et Port connection service properties.

You can also reconfigure the pul | Peri od property to improve performance. The
httpsjms connection service configuration properties are detailed in Table C-2.

Message Queue 3 2005Q4 « Administration Guide

Enabling HTTPS Support

Table C-2 htt psj ms Connection Service Properties

Property

Description

i ng. httpsjns. https.

servl et Host

i ng. httpsjms. https.

servl et Port

i ng. httpsjms. https.

pul | Period

i ng. httpsjns. https.

connect i onTi neout

Change this value, if necessary, to specify the name of the host
(hostname or IP address) on which the HTTPS tunnel servlet is
running. (This can be a remote host or a specific hostname on a
local host.) Default: | ocal host .

Change this value to specify the port number that the broker uses
to access the HTTPS tunnel servlet. (If the default port is changed
on the Web server, you must change this property accordingly.)
Default: 7674.

Specifies the interval, in seconds, between HTTP requests made
by each client to pull messages from the broker. (Note that this
property is set on the broker and propagates to the client runtime.)
If the value is zero or negative, the client keeps one HTTP request
pending at all times, ready to pull messages as fast as possible.
With a large number of clients, this can be a heavy drain on Web
server resources and the server may become unresponsive. In
such cases, you should set the pul | Peri od property to a positive
number of seconds. This sets the time the client’'s HTTP transport
driver waits before making subsequent pull requests. Setting the
value to a positive number conserves Web server resources at the
expense of the response times observed by clients. Default: - 1.

Specifies the time, in seconds, that the client runtime waits for a
response from the HTTPS tunnel servlet before throwing an
exception. (Note that this property is set on the broker and
propagates to the client runtime.) This property also specifies the
time the broker waits after communicating with the HTTPS tunnel
servlet before freeing up a connection. A timeout is necessary in
this case because the broker and the tunnel servlet have no way of
knowing if a client that is accessing the HTTPS servlet has
terminated abnormally. Default: 60.

Appendix C HTTP/HTTPS Support 373

Enabling HTTPS Support

374

Step 5. Configuring an HTTPS Connection

A client application must use an appropriately configured connection factory
administered object to make an HTTPS connection to a broker.

However, the client must also have access to SSL libraries provided by the Java
Secure Socket Extension (JSSE) and must also have a root certificate. The SSL
libraries are bundled with JDK 1.4. If you have an earlier JDK version, see
“Configuring JSSE,” otherwise proceed to “Importing a Root Certificate.”

Once these issues are resolved, you can proceed to configuring the HTTPS
connection.

Configuring JSSE

To Configure JSSE

1. Copy the JSSE . j ar files to the JRE HOW/ | i b/ ext directory.
jsse.jar, jnet.jar, jcert.jar

2. Statically add the JSSE security provider by adding
security. provider.n=com sun. net.ssl.internal.ssl.Provider

to the JRE HOWE | i b/ security/java. security file (where n is the next
available priority number for security provider package).

3. If not using JDK1.4, you need to set the following JSSE property using the - D
option to the command that launches the client application:

j ava. prot ocol . handl er. pkgs=com sun. net. ssl . i nt er nal . www. pr ot ocol

Importing a Root Certificate

If the root certificate of the CA who signed your Web server's certificate is not in
the trust database by default or if you are using a proprietary Web
server/application server certificate, you must add that certificate to the trust
database. If this is the case, follow the instruction below, otherwise go to
“Configuring the Connection Factory.”

Assuming that the certificate is saved in certFile and that trustStoreFile is your key
store, run the following command:

JRE_HOME/ bi n/ keyt ool -inport -trustcacerts
-al i as aliasForCertificate -fil e certFile
-keyst ore trustStoreFile

Answer YES to the question: Trust this certificate?

Message Queue 3 2005Q4 « Administration Guide

Enabling HTTPS Support

You also need to specify the following JSSE properties using the - Doption to the
command that launches the client application:

javax. net. ssl . trust St or e=trustStoreFile

javax. net. ssl . trust St or ePasswor d=trustStorePasswd

Configuring the Connection Factory

To enable HTTPS support, you need to set the connection factory’s
i ngAddr essLi st attribute to the HTTPS tunnel servlet URL. The general syntax of
the HTTPS tunnel servlet URL is the following:

ht t ps: / / hostName: portNumber/ contextRoot/ t unnel

where hostName: portNumber is the name and port of the Web server hosting the
HTTPS tunnel servlet and contextRoot is a path set when deploying the tunnel
servlet on the Web server.

For more information on connection factory attributes in general, and the
i mgAddr essLi st attribute in particular, see the Message Queue Developer’s Guide for
Java Clients.

You can set connection factory attributes in one of the following ways:

= Using the - o option to the i ngobj ngr command that creates the connection
factory administered object (see “Adding a Connection Factory” on page 174),
or set the attribute when creating the connection factory administered object
using the Administration Console (i ngadni n).

= Using the - Doption to the command that launches the client application (see
the Message Queue Developer’s Guide for Java Clients).

= Using an API call to set the attributes of a connection factory after you create it
programmatically in client application code (see the Message Queue Developer’s
Guide for Java Clients).

Using a Single Servlet to Access Multiple Brokers

You do not need to configure multiple Web servers and servlet instances if you are
running multiple brokers. You can share a single Web server and HTTPS tunnel
servlet instance among concurrently running brokers. If multiple broker instances
are sharing a single tunnel servlet, you must configure the i ngAddr essLi st
connection factory attribute as shown below:

ht t ps: / / hostName: portNumber/ contextRoot/ t unnel ?Ser ver Nanme=bkrHostName: instanceName

Where bkrHostName is the broker instance host name and instanceName is the name
of the specific broker instance you want your client to access.

Appendix C HTTP/HTTPS Support 375

Enabling HTTPS Support

To check that you have entered the correct strings for bkrhostName and
instanceName, generate a status report for the HTTPS tunnel servlet by accessing
the servlet URL from a browser. The report lists all brokers being accessed by the
servlet:

HTTPS tunnel servlet ready.
Servlet Start Time : Thu May 30 01:08:18 PDT 2002
Accepting secured connections frombrokers on port : 7674
Total available brokers = 2
Broker List :

j pgserv: br oker 2

cochi n: broker 1

Using an HTTP Proxy
If you are using an HTTP proxy to access the HTTPS tunnel servlet:

= Sethttp. proxyHost system property to the proxy server host name.
= Sethttp. proxyPort system property to the proxy server port number.

You can set these properties using the - Doption to the command that launches the
client application.

376 Message Queue 3 2005Q4 « Administration Guide

Troubleshooting

Troubleshooting

This section describes possible problems with an HTTP or HTTPS connection and
provides guidance on how to handle them.

Server or Broker Failure

If the Web server fails and is restarted, all connections are restored and there is no
effect on clients. However, if the broker fails and is restarted, an exception is
thrown and clients must re-establish their connections.

If both the Web server and the broker fail, and the broker is not restarted, the Web
server restores client connections and continues waiting for a broker connection
without notifying clients. To avoid this situation, always make sure the broker is
restarted.

Client Failure to Connect Through the
Tunnel Servlet

If an HTTPS client cannot connect to the broker through the tunnel servlet, do the
following:

1. Start the servlet and the broker.

2. Use abrowser to manually access the servlet through the HTTPS tunnel servlet
URL.

3. Use the following administrative commands to pause and resume the
connection:

i ngcnmd pause svc -n httpsjms -u adnin
i ngcnd resume sve -n httpsjns -u admn

When the service resumes, an HTTPS client should be able to connect to the broker
through the tunnel servlet.

Appendix C HTTP/HTTPS Support 377

Troubleshooting

378 Message Queue 3 2005Q4 « Administration Guide

Syntax

Appendix D

Frequently Used Command Utility
Commands

This appendix lists some frequently used Message Queue Command utility

(i myecnd) commands. For a comprehensive list of command options and attributes
available to you from the command line, refer to “Command Utility” on page 271
in Chapter 13, “Command Line Reference.”

i ngcmd subcommand argument [options]

ingemd -h| H

ingemd - v

-H or-h provides comprehensive help. The -v subcommand provides version
information.

When you use i ngcnd, the Command utility prompts you for a password. To avoid
the prompt (and to increase security), you can use the - passfil e pathToPassfile
option to point the utility to a password file that contains the administrator
username and password.

Example: i ngcnd query bkr -u adminUserName - passfil e pathToPassfile - b
myServer: 7676

379

Broker and Cluster Management

Broker and Cluster Management

i ngcnd query bkr

i ngcnd pause bkr

ingcnd restart bkr

i ngend resume bkr

i ngcnd shut down bkr - b myBroker: 7676

i ngcnd update bkr -0 "inmg. syst em max_count =1000"

ingcnd reload cls

Broker Configuration Properties (- o option)

Table D-1 lists frequently used broker configuration properties. For a full list of
broker configuration properties and their descriptions, see Chapter 14, “Broker

Properties Reference.”

Table D-1 Broker Configuration Properties (- 0 option)

Property

Notes

i my. aut ocr eat e. queue

i ng. aut ocr eat e. queue. maxNumAct i veConsuner s
i ng. aut ocr eat e. queue. mnaxNunBackupConsuner s
i ng. aut ocreate. topic

ing.cluster.url

i ng. destinati on. DMQ t r uncat eBody

i ng. destinati on. | ogDeadMessages
ing.log.file.rolloverbytes
ing.log.file.rolloversecs

ing.log.level

i ng. nessage. max_si ze
i ng. port mapper . port

i ng. syst em max_count

380 Message Queue 3 2005Q4 « Administration Guide

Specify - 1 for unlimited
Specify - 1 for unlimited

Specify - 1 for unlimited
Specify - 1 for unlimited

NONE
ERRCR
WARNI NG
I NFO

Specify - 1 for unlimited

Specify - 1 for unlimited

Service and Connection Management

Table D-1 Broker Configuration Properties (- 0 option)

Property Notes

i ny. system max_si ze Specify - 1 for unlimited

Service and Connection Management

ingemd |ist sve
i ngend query svc

i ngcnd update sve -n jns -0 "nminThreads=200" -o "maxThreads=400" -0
" port =8995"

i ngcnd pause svc -n jne
i ngcnd resume svc -n jns
ingcnd |ist cxn -svn jns

i ngcnd query cxn -n 1234567890

Durable Subscriber Management
inmgcmd |ist dur -d MyTopic
i ngcmd destroy dur -n myDurSub -c "clientl D 111. 222. 333. 444"
i ngcmd purge dur -n myDurSub -c¢ "clientlD 111. 222. 333. 444"

Transaction Management
ingemd |ist txn
ingcmd commit txn -n 1234567890
i ngcmd query txn -n 1234567890
ingcmd rol I back txn -n 1234567890

Appendix D Frequently Used Command Utility Commands 381

Destination Management

Destination Management

ingcnd create dst -n MyQueue -t g -0 "nmaxNunbgs=1000" -o
" maxNunPr oducer s=5"

i ngcnd update dst -n MyTopic -t t -0 "IimtBehavi or =FLON CONTROL|
REMOVE_QLDEST| REJECT_NEWEST| REMOVE_LON PR OR TY"

i ngcnd conpact dst -n MyQueue -t q

i ngcnd purge dst -n MyQueue -t q

i ngcnmd pause dst -n MyQueue -t g -pst PRCDUCERS| CONSUMVERS| ALL
i ngcnd resume dst -n MyQueue -t g

i ngcnd destroy dst -n MyQueue -t g

i ngcmd query dst -n MyQueue -t q

inmgcnd |ist dst -tnp

Destination Configuration Properties (- 0 option)

Table D-2 lists frequently used destination configuration properties. For a full list
of destination configuration properties and their descriptions, see Chapter 15,
“Physical Destination Property Reference.”

Table D-2 Destination Configuration Properties (- 0 option)

Property Notes

consumner Fl owLi m t Specify - 1 for unlimited
i sLocal Onl y (create only)

|'i m t Behavi or FLOW CONTRCL
REMOVE_OLDEST
REJECT_NEWEST
REMOVE_LOW PRI CRI TY

| ocal Del i veryPreferred (queue only)

maxNumAct i veConsuner s (queue only) Specify - 1 for unlimited
maxNunmBackupConsuner s (queue only) Specify - 1 for unlimited
maxByt esPer Msg Specify - 1 for unlimited
maxNumvsgs Specify - 1 for unlimited
maxNunPr oducer s Specify - 1 for unlimited

382 Message Queue 3 2005Q4 « Administration Guide

Metrics

Metrics

Table D-2 Destination Configuration Properties (- 0 option)

Property Notes
maxTot al MsgByt es Specify - 1 for unlimited
useDMQ

ingcmd metrics bkr -mecexn|rts|ttl -int 5 -msp 20
ingcnd metrics sve -mecexn|rts|ttl

ingend rmetrics dst -mcon|dsk|rts|ttl

Appendix D Frequently Used Command Utility Commands 383

Metrics

384 Message Queue 3 2005Q4 « Administration Guide

Glossary

For information about Message Queue terms, see the glossary in the Message Queue
Technical Overview. See the Java Enterprise System Glossary

(http://docs. sun. conl doc/ 816- 3875) for a complete list of terms that are used in the
Sun Java System product suite.

385

http://docs.sun.com/doc/816-3875

386 Message Queue 3 2005Q4 « Administration Guide

A

access control file
access rules 144
format of 143
location 348, 349, 350
use for 142
version 143

access rules 144

acknowledgeMode activation specification
attribute 331

ActivationSpec JavaBean 331
addressList activation specification attribute 331

addressList managed connection factory
attribute 329

addressList Resource Adapter attribute 328, 329

addressListBehavior managed connection factory
attribute 330

addressListBehavior Resource Adapter attribute 328
addressListlterations managed connection factory
attribute 330
addressListlterations Resource Adapter
attribute 328
admin connection service 76, 106
admin group 135
ADMIN service type 76
admin user 133, 138, 141
administered objects
attributes (reference) 317
deleting 175
listing 176
managing 161

Index

object stores, See object stores

querying 177

queue, See queues

required information 172

topic, See topics

updating 177

XA connection factory, See connection factory

administered objects

Administration Console

starting 39

tutorial 37
administration tasks

development environment 31

production environment 32
administration tools 34

Administration Console 35

command line utilities 34
administrator password 138
anonymous group 136
API documentation 348, 349, 350
applications, See client applications
attributes of physical destinations 313
audit logging 160
authentication

about 85

managing 132

See also access control
authorization

about 86

managing 142

user groups 86

See also access control

387

Section B

auto-create physical destinations brokers

access control 86, 147 access control, See authorization

properties (table) 289 auto-create physical destination properties 289
automatic reconnection automatically restarting 68

attributes for 167 clock synchronization 65

limitations 167 clusters, See broker clusters
AUTOSTART property 68 configuration files, See configuration files

connecting 183

dead message queue 129

displaying properties of 101

HTTP support 357
B httpjms connection service properties 362
HTTPS support 366

benchmarks, performance 207 httpsjms connection service properties 373

bottlenecks, performance 210 instance configuration properties 91
broker clusters instance name 267
adding brokers to 184 interconnected, See broker clusters
architecture 221 limit behaviors 79, 222
configuration change record 186 listing connection services 107
configuration file 181, 182, 183, 307 logging, See logger
configuration properties 181, 307 managing 97
connecting brokers 183 memory management 79, 119, 222
pausing physical destinations 124 message capacity 79, 102, 287, 311
performance effect of 222 message flow control, See message flow control
reasons for using 221 metrics, See broker metrics
replication of physical destinations 120 pausing 103, 273
secure inter-broker connections 184 permissions required for starting 67
broker components properties (reference) 285, 313
connection services 75, 76 querying 101
monitoring services 75, 87 recovery from failure 80
persistence services 75, 80 removing 71
routing services 75, 78 restarting 80, 104, 272
security services 75, 83 resuming 103, 104, 273
broker failure and secure connections 377 running as Windows service 69
broker metrics shutting c_Iown 104
logger properties 88, 195, 306 startup with SSL 153
metric quantities (table) 336 updating properties of 102

metrics messages 88
reporting interval, logger 270
using broker log files 195

using imgcmd 105, 199, 201 C
using message-based monitoring 202
broker monitoring service certificates 150, 366
properties 303 client applications
broker responses example 26, 348, 349, 350
wait period for client 322 factors affecting performance 210

388 Message Queue 3 2005Q4 « Administration Guide

client identifier (ClientID) 168
in destroying durable subscription 113
client runtime
configuration of 223
message flow tuning 230
clientld activation specification attribute 331, 332
clientlD managed connection factory attribute 330
clients
clock synchronization 65
starting 72
clock synchronization 65
cluster configuration file 181, 182, 183, 307
cluster configuration properties 181, 307
cluster connection service 149, 184
host name or IP address for 182, 307
network transport for 182, 183, 307
port number for 182, 307
clusters, See broker clusters
command files 178
command line syntax 265
command line utilities
about 34
basic syntax 265
displaying version 278
help 278
imgbrokerd, See, imgbrokerd command
imgcemd, See, imgcmd command
imgdbmgr See, imgdbmgr command
imgkeytool, See, imgkeytool command
imgobjmgr, See, imqobjmgr command
imgsvcadmin, See, imgsvcadmin command
imqusermgr, See, imqusermgr command
command options
as configuration overrides 72
compacting
file-based data store 81
physical destinations 126
config.properties file 91, 184, 185, 186
configuration change record 186
backing up 187
restoring 187
configuration files 90
broker (figure) 91
cluster 181, 182, 183, 307
default 90

Section C

editing 91
installation 90
instance 91, 182, 348, 349, 350
location 348, 349, 350
template location 348, 349, 350
templates 348, 349, 350
connecting brokers 183
connection factory administered objects
application server support attributes 324
attributes 165
client identification attributes 168
connection handling attributes 165
JMS properties support attributes 171
overriding message header fields 171
gueue browser behavior attributes 171, 324
reliability and flow control attributes 170
standard message properties 324
connection service metrics
metric quantities 338
using imgcmd metrics 109, 199
using imgcmd query 201
connection services
access control for 84, 298
activated at startup 285
admin 76, 106
cluster 149, 184
commands affecting 273
displaying properties of 107
HTTP, See HTTP connections
httpjms 76, 106
HTTPS, See HTTPS connections
httpsjms 76, 106
jms 76, 106
metrics data, See connection service metrics
pausing 110, 273
Port Mapper, See Port Mapper
properties 108, 285
protocol type 76
querying 107, 111
resuming 110, 274
service type 76
ssladmin, See ssladmin connection service
SSL-based 152
ssljms, See ssljms connection service
thread allocation 108
thread pool management 77
updating 108, 111, 274

Index

389

Section D

connection services, broker 75, 76 destination administered objects
connections attributes 172
automatic reconnection, See automatic destination metrics
reconnection metric quantities 340
failover, See automatic reconnection using imgcmd metrics 197, 200
limited by file descriptor limits 66 using imgcmd query 201
listing 111, 274 using message-based monitoring 202
performance effect of 219 destinationType activation specification
querying 111,274 attribute 332

serveror broker failure 377 ' destroying physical destinations 125
connectionURL Resource Adapter attribute 328 development environment administration tasks 31
customAcknowledgeMode activation specification directory lookup for clusters (Linux) 184

attribute 331 directory variables

IMQ_HOME 23
IMQ_JAVAHOME 24
IMQ_VARHOME 23

D disk space
physical destination utilization 126
data store reclaiming 127
about 80

displaying product version 278

distributed transactions
XA resource manager 113

compacting 81
configuring 93
contents of 93

flat-file 81 durable su_bscriptions
JDBC-compliant 82 destroying 113, 277
location 348, 349, 350 listing 112, 277

managing 112
performance effect of 214
purging messages for 277

performance effect of 222

resetting 268

synchronizing to disk 93
dead message queue

configuring 128

limit behavior 129

logging 88, 130 E

maxNumMsgs value 129)

maxTotalMsgBytes value 129 encryption
dead messages about 83, 86

logging 88 Key Tool and 8_6

See also dead message queue SSL-based services, and 148 o
default.properties file 90 endp0|r_1t.Exc.ept|onRedeI|veryAttempts activation
deleting specification attribute 332

broker instance 71 environment variables, See directory variables
deleting destinations 125 /etc/hosts file (Linux) 184
delivery modes example applications 26, 348, 349, 350

performance effect of 212
destination activation specification attribute 332

390 Message Queue 3 2005Q4 « Administration Guide

F

file descriptor limits 66
connection limits and 66
file sync
imq.persist.file.sync.enabled option 294, 310
with Sun Cluster 294, 310
file-based persistence 81
firewalls 356
flow control, See message flow control
fragmentation of messages 81

G

guest user 133

H

hardware, performance effect of 218
help (command line) 278
hosts file (Linux) 184
HTTP
connection service, See httpjms connection service
proxy 356
support architecture 356
transport driver 356
HTTP connections
multiple brokers, for 364
request interval 363
support for 356
tunnel servlet, See HTTP tunnel servlet
HTTP tunnel servlet
about 356
deploying 358
httpjms connection service
about 76, 106
configuring 362
setting up 357

Section F

HTTPS
connection service, See httpsjms connection
service
support architecture 356
HTTPS connections
multiple brokers, for 375
request interval 373
support for 356
tunnel servlet, See HTTPS tunnel servlet
HTTPS tunnel servlet
about 356
deploying 368
httpsjms connection service
about 76, 106
configuring 372
setting up 366

img.accesscontrol.enabled property 84, 298, 308
img.accesscontrol.file.filename property 84, 298, 308
img.audit.enabled property 86, 160, 302, 308
img.authentication.basic.user_repository
property 85, 299, 308
img.authentication.client.response.timeout
property 85, 299, 308
img.authentication.type property 85, 299, 308
img.autocreate.destination.isLocalOnly
property 291, 308
img.autocreate.destination.limitBehavior
property 290, 308
img.autocreate.destination.maxBytesPerMsg
property 289, 308
img.autocreate.destination.maxCount property 289,
308
img.autocreate.destination.maxNumMsgs
property 289, 308
img.autocreate.destination.maxNumProducers
property 290, 308
img.autocreate.destination.maxTotalMsgBytes
property 290, 292, 308
img.autocreate.destination.useDMQ property 129
img.autocreate.queue property 102, 289, 308

Index 391

Section |

img.autocreate.queue.consumerFlowLimit
property 291, 308

img.autocreate.queue.localDeliveryPreferred
property 292, 308

img.autocreate.queue.maxNumActiveConsumers
property 102, 290, 308

img.autocreate.queue.maxNumBackupConsumers
property 102, 291, 308

img.autocreate.topic property 102, 289, 308

imq.cluster.brokerlist property 181, 183, 184, 185,
186, 307, 308

imq.cluster.masterbroker property 181, 185, 186,
307, 308

imq.cluster.port property 182, 307, 308
img.cluster.transport property 182, 184, 185, 307, 308

imq.cluster.url property 102, 182, 183, 184, 185, 186,
307, 308

img.destination.DMQ.truncateBody property 79,
102, 288, 309

img.destination.logDeadMsgs property 88, 102, 303,
309

img.hostname property 77, 285, 309
imqg.httpjms.http.connectionTimeout property 363
imqg.httpjms.http.pullPeriod property 363
imqg.httpjms.http.servletHost property 362
imqg.httpjms.http.servietPort property 362
imq.httpsjms.https.connectionTimeout property 373
imq.httpsjms.https.pullPeriod property 373
imq.httpsjms.https.servietHost property 373
imq.httpsjms.https.serviletPort property 373
img.imqcmd.password property 85, 300, 309
imq.keystore.file.dirpath property 151, 302, 309
imq.keystore.file.name property 152, 309
imq.keystore.password property 86, 152, 160, 309
imq.keystore.property_name property 309
img.log.console.output property 88, 304, 309
img.log.console.stream property 88, 303, 309
imq.log file.dirpath property 88, 304, 309
imq.log.file.filename property 88, 304, 309
imq.log.file.output property 88, 304, 309
imq.log.file.rolloverbytes property 88, 102, 304, 309
imq.log file.rolloversecs property 88, 102, 304, 309
imq.log.level property 88, 102, 303, 309

392 Message Queue 3 2005Q4 « Administration Guide

imq.log.syslog.facility property 305, 309
imq.log.syslog.identity property 305, 309
img.log.syslog.logconsole property 305, 309
imq.log.syslog.logpid property 305, 309
imq.log.syslog.output property 88, 305, 309
img.log.timezone property 306, 309
img.message.expiration.interval property 79, 288,
309
img.message.max_size property 79, 102, 288, 309
img.metrics.enabled property 87, 306, 309
img.metrics.interval property 87, 306, 309
img.metrics.topic.enabled property 89, 306, 309
img.metrics.topic.interval property 89, 306, 309
imqg.metrics.topic.persist property 89, 306, 309
img.metrics.topic.timetolive property 89, 306, 309
imq.passfile.dirpath property 85, 299, 310
imq.passfile.enabled property 85, 299, 310
imq.passfile.name property 85, 299, 310
imq.persist.file.destination.message.filepool.limit
property 82,293, 310
imq.persist.file.message.cleanup property 82, 294,
310
imq.persist.file.message.filepool.cleanratio
property 82,294, 310
imq.persist.file.message.max_record_size
property 293, 310
imq.persist.file.message.vrfile.max_record_size
property 81
imq.persist.file.sync property 93
imq.persist.file.sync.enabled property 82, 294, 310
Sun Cluster requirement 294, 310
imq.persist.jdbc.brokerid property 83, 295, 310
imq.persist.jdbc.closedburl property 83, 295, 310
imq.persist.jdbc.createdburl property 83, 295, 310
imq.persist.jdbc.driver property 83, 295, 310
imq.persist.jdbc.needpassword property 83, 296, 310
imq.persist.jdbc.opendburl property 83, 295, 310
imq.persist.jdbc.password property 83, 160, 296, 310
imq.persist.jdbc.table.IMQCCREC35 property 83,
296, 310

imq.persist.jdbc.table.IMQDEST35 property 83, 296,
310

imq.persist.jdbc.table.IMQINT35 property 296, 310

imq.persist.jdbc.table.IMQLIST35 property 297, 310
imq.persist.jdbc.table.IMQMSG35 property 297, 310

imq.persist.jdbc.table.IMQPROPS35 property 297,
310

imq.persist.jdbc.table.IMQSV35 property 83, 296,
310

imq.persist.jdbc.table.IMQTACKS35 property 297,
310

imq.persist.jdbc.table.IMQTXNS35 property 297, 310
imq.persist.jdbc.user property 83, 296, 310
imq.persist.store property 80, 94, 292, 310
img.ping.interval property 78, 287, 310
imqg.portmapper.backlog property 77, 286, 310
imqg.portmapper.hostname property 77, 285, 310
imqg.portmapper.port property 77, 102, 286, 310
imq.protocol protocolType inbufsz 224
imq.protocol protocolType nodelay 224
imq.protocol protocolType outbufsz 224
imq.resource_state.count property 288, 311
imq.resource_state.threshold property 288, 311
imq.resourceState.count property 80
imq.service.activelist property 76, 285, 311
imq.service_name.accesscontrol.enabled

property 298, 311
imq.service_name.accesscontrol.file.filename

property 299, 311

imq.service_name.authentication.type property 299,
311

imq.service_name.max_threads property 287, 311
imq.service_name.min_threads property 286, 311
imq.service_name.protocol_type.hostname

property 182, 286, 307, 308, 311
imq.service_name.protocol_type.port property 286, 311

imq.service_name.threadpool_model property 286,
311

imq.serviceName.accesscontrol.enabled property 84
imq.serviceName.accesscontrol.file.filename
property 84
imq.serviceName.authentication.type property 85
imq.serviceName.max_threads property 78
imq.serviceName.min_threads property 78
imq.serviceName.protocol Type.hostname property 77
imq.serviceName.protocol Type.port property 77

Section |

imq.serviceName.threadpool_model property 78

img.shared.connectionMonitor_limit property 78,
287,311

img.system.max_count property 79, 102, 287, 311

img.system.max_size property 79, 102, 288, 311

img.transaction.autorollback property 115, 289, 311

imqg.user_repository.ldap.base property 301, 311

img.user_repository.ldap.gidattr property 301, 311

img.user_repository.ldap.grpbase property 301, 311

imqg.user_repository.ldap.grpfilter property 302, 311

img.user_repository.ldap.grpsearch property 301,
311

imqg.user_repository.ldap.memattr property 301, 311

img.user_repository.ldap.password property 85,
160, 301, 311

imqg.user_repository.ldap.principal property 85, 301,
311

imqg.user_repository.ldap.property_name
property 301, 311

img.user_repository.ldap.server property 85, 300,
311

img.user_repository.ldap.ssl.enabled property 302,
311

img.user_repository.ldap.timeout property 302, 311
imqg.user_repository.ldap.uidattr property 301, 311
imqg.user_repository.ldap.usrfilter property 301, 311
IMQ_HOME directory variable 23
IMQ_JAVAHOME directory variable 24
IMQ_VARHOME directory variable 23
imgAckTimeout attribute 322

imgAddressList attribute 318
imgAddressListBehavior attribute 318
imgAddressListlterations attribute 318

imgbrokerd command 66
about 34
adding a broker to a cluster 185
backing up configuration change record 187
clearing the data store 93, 125
configuration file (Solaris, Linux) 68, 72
connecting brokers 183
in password file 158
options 267
passing arguments to 92
reference 266

Index 393

Section |

imgbrokerd command (continued)

removing a broker 71

removing a broker from a cluster 185

restoring configuration change record 187

setting logging properties 193
imgbrokerd.conf file 68, 72
imgecmd command

about 34

dependent on master broker 188

durable subscription subcommands 112

general options 277, 282

in password file 158

metrics monitoring 196

physical destination management 117

physical destination subcommands (table) 118

reference 271

secure connection to broker 154, 277

transaction management 113
imgConfiguredClientID attribute 322
imgConnectionFlowCount attribute 322
imgConnectionFlowLimit attribute 323
imgConnectionFlowLimitEnabled attribute 322
imgConsumerFlowLimit attribute 323
imgConsumerFlowThreshold attribute 323
imgdbmgr command

about 35

in password file 158

options 281

reference 280
imgDefaultPassword attribute 322
imgDefaultUsername attribute 322
imgDestinationDescription attribute 326
imgDestinationName attribute 326
imgDisableSetClientID attribute 322
imgFlowControlLimit attribute 323
imgJMSDeliveryMode attribute 325
imgJMSExpiration attribute 325
imqgJMSPriority attribute 172, 325
imgkeytool command

about 35

command syntax 150, 366

reference 284

using 150
imgLoadMaxToServerSession attribute 171, 324

394 Message Queue 3 2005Q4 « Administration Guide

imgobjmgr command

about 35

options 279

reference 279

subcommands 279
imgOverrideJMSDeliveryMode attribute 325
imgOverrideJMSExpiration attribute 325
imgOverrideJMSHeadersToTemporaryDestinations

attribute 172, 325
imgOverrideJMSPriority attribute 172, 325
imgQueueBrowserMax MessagesPerRetrieve

attribute 171, 324
imgQueueBrowserRetrieveTimeout attribute 171,

324
imgReconnectAttempts attribute 318
imgReconnectEnabled attribute 318
imgReconnectinterval attribute 319
imqgSetIMSXAppID attribute 324
imqgSetIMSXConsumerTXID attribute 324
imqgSetIMSXProducerTXID attribute 324
imgSetIMSXRcvTimestamp attribute 325
imqgSetIMSXUserID attribute 324
imgSSLIsHostTrusted attribute 319
imgsvcadmin command

about 35

options 283

reference 283

subcommands 283
imgusermgr command

about 35

options 282

passwords 136

reference 282

subcommands 282

use for 133

user names 136
install.properties file 90
instance configuration files, See configuration files
instance directory

and file-based data store 93

and instance configuration file 139

removing 71

J

J2EE connector architecture (JCA) 327, 331
Java Message Service Specification 26
Java runtime

for Windows service 70

specifying path to 269, 278, 280, 283
Java Virtual Machine, See JVM
java.naming.factory.initial attribute 162, 164
java.naming.provider.url attribute 162, 164

java.naming.security.authentication attribute 163

java.naming.security.credentials attribute 163
java.naming.security.principal attribute 163
javahome option 70
JCA (J2EE connector architecture) 327, 331
JDBC support

about 82

configuring 93

driver 295
JDBC-based persistence

about 82

setting up 94

tuning for performance 227
jms connection service 76, 106
JMSDeliveryMode message header field 171
JMSExpiration message header field 171
JMSPriority message header field 171
JNDI

initial context 162

location (provider URL) 162

lookup 51

lookup name 173

object store 35, 161

object store attributes 162, 173
jrehome option 70
VM

metrics, See JVM metrics

performance effect of 219

tuning for performance 223
JVM metrics

metric quantities 335

using broker log files 195

using imgcmd metrics 198

using message-based monitoring 202

Section J

K

key pairs
generating 151
regenerating 152
key store
file 151, 152, 367
Key Tool 86

L

LDAP server
as user repository 139
authentication failover 140
object store attributes 162
user-repository access 140
licenses
startup option 269
limit behaviors
broker 79
physical destinations 119, 120, 314
load-balanced queue delivery
tuning for performance 229
location of object store 162
lof files
names 191
log files
changing default location 191
changing default name 191
dead message logging 196
default location 348, 349, 350
reporting metrics 195
rollover criteria 88, 194, 304, 309
rollover frequency 191
setting properties 193
logger
about 88
categories 191
changing configuration 193
levels 88, 191, 270, 303, 309
message format 192
metrics information 306
output channels 88, 191, 193
redirecting log messages 194

Index

395

Section M

logger (continued)

rollover criteria 194

setting properties 193

writing to console 88, 270, 304, 309
logging, See logger
loopback address 184

M

ManagedConnectionFactory JavaBean 329
master broker

configuration change record 186

specifying 181, 183

unavailable 188
MDBs, See message-driven beans
memory management

for broker 79

tuning for performance 228

using physical destination properties 119
message expiration

clock synchronization and 65
message flow control

attributes 170

broker 79, 119

limits 230

metering 230

performance effect of 229

tuning for performance 230
message header overrides 171
message server architecture 221
message service performance 218
message-driven beans

Resource Adapter configuration for 327, 331
messages

body type and performance 217

broker limits on 79, 102, 287, 311

destination limits on 290, 314

flow control, See message flow control

fragmentation 81

latency 206

396 Message Queue 3 2005Q4 « Administration Guide

metrics messages, See metrics messages
pausing flow of 123
persistence of 80
physical destination limits on 119
purging from a physical destination 124, 275
reclamation of expired 79, 288, 309
reliable delivery of 170
size, and performance 216
throughput performance 206
messageSelector activation specification
attribute 332
metrics
about 87
data, See metrics data
messages, See metrics messages
topic destinations 89, 202
metrics data
broker, See broker metrics
connection service, See connection service metrics
physical destination, See physical destination
metrics
using broker log files 195
using imgcmd metrics 198
using message-based monitoring API 202
metrics messages
about 202
type 89, 202
metrics monitoring tools
compared 189
Message Queue Command Utility (imgcmd) 196
Message Queue log files 195
message-based monitoring API 201
monitoring services, broker 75, 87
monitoring, See performance monitoring

N

NORMAL service type 76
nsswitch.conf file (Linux) 184

O

object stores 161
file-system 163
file-system store attributes 164
LDAP server 162
LDAP server attributes 162
locations 348, 349, 350
operating system
performance effect of 219
tuning Solaris performance 223
Oracle 94, 96
overrides
for message header 171
on command line 72

P

password file

broker configuration properties 85, 299

command line option 269

location 160, 348, 349, 350

using 158
password managed connection factory attribute 330
password Resource Adapter attribute 329
passwords

administrator 138

default 322

encoding of 299

JDBC 160

LDAP 160

naming conventions 136

password file, See password file

SSL key store 152, 160, 268
pausing

brokers 103, 273

connection services 110, 273

physical destinations 123, 124, 275
performance

about 205

baseline patterns 208

benchmarks 207

bottlenecks 210

factors affecting, See performance factors

Section O

indicators 206

measures of 206

monitoring, See performance monitoring
optimizing, See performance tuning
reliability trade-offs 211
troubleshooting 233

tuning, See performance tuning

performance factors

acknowledgment mode 214
broker limit behaviors 222
connections 219

data store 222

delivery mode 212

durable subscriptions 214
file sync 294, 310

hardware 218

JVM 219

message body type 217
message flow control 229
message server architecture 222
message size 216

operating system 219
selectors 216

transactions 213

transport protocols 220

performance monitoring

metrics data, See metrics data
tools, See metrics monitoring tools 189

performance tuning

broker adjustments 228

client runtime adjustments 229
process overview 205

system adjustments 223

permissions

access control properties file 86, 143
admin service 86

computing 144

data store 81

embedded database 95

key store 366

password file 159

user repository 134, 282

persistence

about 80
data store See data store
file-based 81

Index

397

Section Q

persistence (continued)
JDBC, See JDBC persistence
JDBC-based, See JDBC-based persistence
options (figure) 80
properties 293
security for 95
persistence services, broker 75, 80
physical destination
reclaiming disk space 127
using dead message queue 128
physical destinations
auto-created 148
batching messages for delivery 120, 291, 315
compacting 126
compacting file-based data store 127, 276
creating 119
dead message queue 128
dead message queue for 128
destroying 125
disk utilization 126
displaying property values 121
getting information about 121, 276
information about 121
limit behaviors 119, 120, 314
listing 121
managing 117
metrics, See physical destination metrics
pausing 123, 124, 275
properties of 313
property values 121
purging messages from 124, 275
restricted scope in cluster 120, 291, 315
resuming 124
temporary 121
types 121, 275
updating attributes 275
updating properties 123
PointBase 94
Port Mapper
about 77
port assignment for 267
precedence (of configuration properties) 90
producers
destination limits on 290, 314
physical destination limits on 120
production environment

398 Message Queue 3 2005Q4 « Administration Guide

administration tasks 32
maintaining 33
setting up 32
properties
auto-create 289
broker instance configuration 91
broker monitoring service 303
cluster configuration 307
connection services 285
httpjms connection service 362
httpsjms connection service 373
JDBC-related 91, 295
logger 303
memory management 119
persistence 293
physical destinations, See physical destinations,
properties of
routine services 287
security 298
syntax 92
protocol types
HTTP 76, 106
TCP 76, 106
TLS 76, 106
protocols, See transport protocols
purging, messages from physical destinations 124

Q

querying
brokers 101
connection services 107, 111
gueue load-balanced delivery
properties 120, 290, 291, 314
queues
adding administered objects for 175
auto-created 289, 308

R

reconnectAttempts managed connection factory
attribute 330

reconnectAttempts Resource Adapter attribute 329

reconnectEnabled managed connection factory
attribute 330

reconnectEnabled Resource Adapter attribute 329

reconnectinterval managed connection factory
attribute 330

reconnectinterval Resource Adapter attribute 329
reconnection, automatic See automatic reconnection
reliable delivery 170
performance trade-offs 211
removing
brokers 71
physical destinations 125
reset messages option 125
Resource Adapter 327
reconnection 328, 329, 330
ResourceAdapter JavaBean 328
RESTART property 68
restarting brokers 104, 272
resuming
brokers 103, 104, 273
connection services 110, 274
physical destinations 124
routine services
properties 287
routing services, broker 75, 78

S

Secure Socket Layer standard, See SSL
security
authentication, See authentication
authorization, See authorization
encryption, See encryption
manager, See security manager
object store, for 162
security manager
about 83
properties 298
security services, broker 75, 83
selectors
about 216

Section S

performance effect of 216
self-signed certificates 150, 366
sendUndeliverableMsgsToDMQ activation
specification attribute 332
server failure and secure connections 377
service (Windows)
Java runtime for 70
reconfiguring 69
removing broker 72
running broker as 69
startup parameters for 70
troubleshooting startup 71
service types
ADMIN 76
NORMAL 76
shutting down brokers 104, 272
as Windows service 72
Simple Network Time Protocol 66
SNTP 66
SSL
about 86
connection services, See SSL-based connection
services
enabling 152
encryption, and 148
over TCP/IP 149
ssladmin connection service
about 76, 106
setting up 149
SSL-based connection services
setting up 148, 149
starting up 153
ssljms connection service
about 76, 106
setting up 149
starting
clients 72
SSL-based connection services 153
startup parameters for broker Windows service 70
subscriptionDurability activation specification
attribute 331, 332, 333
subscriptionName activation specification
attribute 332, 333
Sun Cluster
configuration for 294

Index 399

Section T

synchronizing
clocks 65
memory to disk 93

syntax for all commands 265
syslog 88, 194
system clock synchronization 65

T

TCP 76, 106
temporary physical destinations 121
thread pool management

about 77

dedicated threads 78

shared threads 78
time synchronization service 66
time-to-live, See message expiration
TLS 76, 106
tools, administration, See administration tools
topics

adding administered objects for 174

auto-created 289, 308
transactions

committing 115, 277

information about 277

managing 113

performance effect of 213

rolling back 114, 277
transport protocols

performance effect of 220

protocol types, See protocol types

relative speeds 220

tuning for performance 224
troubleshooting 233

Windows service startup 71
tunnel servlet connection 377
tutorial 37

U

ulimit command 66

400 Message Queue 3 2005Q4 « Administration Guide

update dst subcommand
restrictions 123
updating
brokers 102
connection services 108, 111, 274
usage help 278
user groups 135
default 86
deleting assignment 136
predefined 135
user names 322
default 133
format 136
user repository
about 84
flat-file 132
initial entries 133
LDAP 139
LDAP server 140
location 348, 349, 350
managing 137
platform dependence 134, 282
populating 137
user groups 136
user states 136
userName managed connection factory attribute 330
userName Resource Adapter attribute 328
utilization ratio 127

Vv

version 278

W

W32Time service 66
Windows service, See service (Windows)
write operations (for file based store) 93

X

xntpd daemon 66

	Message Queue 3 Administration Guide
	Contents
	List of Figures
	List of Tables
	List of Procedures
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Conventions Used In This Book
	Text Conventions
	Directory Variable Conventions

	Related Documentation
	Message Queue Documentation Set
	Java Message Service Specification
	Online Help
	JavaDoc
	Example Client Applications

	Related Third-Party Web Sites
	Sun Welcomes Your Comments

	Part I. Introduction to Message Queue Administration
	1. Administrative Tasks and Tools
	Administrative Tasks
	Administration in a Development Environment
	Administration in a Production Environment
	Setup Operations
	Maintenance Operations

	Administration Tools
	Command Line Utilities
	Administration Console

	2. Quick-Start Tutorial
	Starting the Administration Console
	Administration Console Online Help
	Working With Brokers
	Starting a Broker
	Adding a Broker to the Administration Console
	To Add a Broker to the Administration Console

	Connecting to a Broker
	To Connect to a Broker

	Viewing Connection Services
	To View Available Connection Services

	Working With Physical Destinations
	Creating a Physical Destination
	To Add a Physical Destination to a Broker

	Viewing Physical Destination Properties
	To View or Modify the Properties of a Physical Destination

	Purging Messages From a Physical Destination
	To Purge Messages From a Physical Destination

	Deleting a Physical Destination
	To Delete a Physical Destination

	Working With Object Stores
	Adding an Object Store
	To Add an Object Store to the Administration Console

	Connecting to an Object Store
	To Connect to an Object Store

	Working With Administered Objects
	Adding a Connection Factory
	To Add a Connection Factory to an Object Store

	Adding a Destination
	To Add a Destination to an Object Store

	Viewing Administered Object Properties
	To View or Modify the Properties of an Administered Object

	Deleting an Administered Object
	To Delete an Administered Object

	Running the Sample Application
	To Run the Sample Application

	Part II. Administration Tasks
	3. Starting Brokers and Clients
	Preparing System Resources
	Synchronizing System Clocks
	Setting the File Descriptor Limit

	Starting Brokers
	Starting Brokers Interactively
	Starting Brokers Automatically
	Automatic Startup on Solaris and Linux
	Automatic Startup on Windows
	To Reconfigure a Broker Running as a Windows Service
	To See Logged Service Error Events

	Removing Brokers
	Removing a Broker on Solaris or Linux
	Removing a Windows Broker Service

	Starting Clients

	4. Configuring a Broker
	Broker Services
	Connection Services
	Port Mapper
	Thread Pool Management

	Routing Services
	Persistence Services
	File-Based Persistence
	JDBC-Based Persistence

	Security Services
	Authentication
	Authorization
	Encryption

	Monitoring Services
	Metrics Generator
	Logger
	Metrics Message Producer (Enterprise Edition)

	Setting Broker Properties
	Configuration Files
	Editing the Instance Configuration File
	Setting Configuration Options from the Command Line

	Configuring a Persistent Data Store
	Configuring a File-Based Store
	Configuring a JDBC-Based Store
	To Configure a JDBC-Based Data Store

	Securing Persistent Data
	Securing a File-Based Store
	Securing a JDBC-Based Store

	5. Managing a Broker
	Prerequisites
	Using the imqcmd Utility
	Displaying Help
	Displaying the Product Version
	Specifying the User Name and Password
	Specifying the User Name
	Specifying the Password

	Specifying the Broker Name and Port
	Examples

	Displaying Broker Information
	Updating Broker Properties
	Pausing and Resuming a Broker
	Pausing a Broker
	Resuming a Broker

	Shutting Down and Restarting a Broker
	Displaying Broker Metrics
	Managing Connection Services
	Listing Connection Services
	Displaying Connection Service Information
	Updating Connection Service Properties
	Displaying Connection Service Metrics
	Pausing and Resuming a Connection Service

	Getting Information About Connections
	Managing Durable Subscriptions
	Managing Transactions

	6. Managing Physical Destinations
	Using the Command Utility
	Subcommands

	Creating a Physical Destination
	To create a physical destination

	Listing Physical Destinations
	Displaying Information about Physical Destinations
	Updating Physical Destination Properties
	Pausing and Resuming Physical Destinations
	Purging Physical Destinations
	Destroying Physical Destinations
	Compacting Physical Destinations
	Monitoring a Physical Destination’s Disk Utilization
	Reclaiming Unused Physical Destination Disk Space
	To Reclaim Unused Physical Destination Disk Space

	Configuring Use of the Dead Message Queue
	Configuring Use of the Dead Message Queue
	Configuring and Managing the Dead Message Queue
	Dead Message Queue Properties
	Message Contents

	Enabling Dead Message Logging

	7. Managing Security
	Authenticating Users
	Using a Flat-File User Repository
	Creating a User Repository
	User Manager Utility
	Groups
	User States
	Format of User Names and Passwords
	Populating and Managing a User Repository
	Changing the Default Administrator Password

	Using an LDAP Server for a User Repository
	Editing the Instance Configuration File
	To Edit the Configuration File to Use an LDAP Server
	Setting Up Access Control for Administrators
	To Set Up an Administrative User

	Authorizing Users: The Access Control Properties File
	Creating an Access Control Properties File
	Syntax of Access Rules
	How Permissions are Computed
	Access Control for Connection Services
	Access Control for Physical Destinations
	Access Control for Auto-Created Physical Destinations

	Working With an SSL-Based Service
	Secure Connection Services for TCP/IP
	Configuring the Use of Self-Signed Certificates
	To Set Up an SSL-based Connection Service
	Step 1. Generating a Self-Signed Certificate
	To Regenerate a Key Pair
	Step 2. Enabling the SSL-Based Service in the Broker
	To Enable an SSL-based Service in the Broker
	Step 3. Starting the Broker
	Step 4. Configuring and Running SSL-Based Clients

	Configuring the Use of Signed Certificates
	Step 1: Obtaining and Installing a Signed Certificate
	To Obtain a Signed Certificate
	To Install a Signed Certificate
	Step 2: Configuring the Client Runtime to Require a Signed Certificate
	To Configure the Java Client Runtime

	Using a Password File
	Security Concerns
	Password File Contents

	Creating an Audit Log

	8. Managing Administered Objects
	Object Stores
	LDAP Server Object Stores
	File-System Object Stores

	Administered Object Attributes
	Connection Factory Attributes
	Connection Handling
	Client Identification
	Reliability And Flow Control
	Queue Browser and Server Sessions
	Standard Message Properties
	Message Header Overrides

	Destination Attributes

	Using the Object Manager Utility
	Adding Administered Objects
	Adding a Connection Factory
	Adding a Destination

	Deleting Administered Objects
	Listing Administered Objects
	Viewing Administered Object Information
	Modifying Administered Object Attributes
	Using Command Files

	9. Working With Broker Clusters
	Cluster Configuration Properties
	Setting Cluster Properties for Individual Brokers
	Using a Cluster Configuration File

	Managing Clusters
	Connecting Brokers
	Linux Prerequisite: Setting the IP Address
	Secure Connections Between Brokers

	Adding Brokers to a Cluster
	To Add a New Broker to a Cluster Using a Cluster Configuration File
	To Add a New Broker to a Cluster Without a Cluster Configuration File

	Removing Brokers From a Cluster
	Removing a Broker Using the Command Line
	To Remove a Broker From a Cluster Using the Command Line
	Removing a Broker Using a Cluster Configuration File
	To Remove a Broker From a Cluster Using a Cluster Configuration File

	Master Broker
	Managing the Configuration Change Record
	To Back Up the Configuration Change Record
	To Restore the Configuration Change Record

	When a Master Broker Is Unavailable

	10. Monitoring a Message Server
	Introduction to Monitoring Tools
	Configuring and Using Broker Logging
	Default Logging Configuration
	Log Message Format
	Changing the Logger Configuration
	To Change the Logger Configuration for a Broker
	Changing the Output Channel
	Changing Log File Rollover Criteria
	Sending Metrics Data to Log Files
	To Use Log Files to Report Metrics Information
	Logging Dead Messages

	Interactively Displaying Metrics
	imqcmd metrics
	Using the metrics Subcommand to Display Metrics Data
	To Use the metrics Subcommand

	Metrics Outputs: imqcmd metrics
	Brokerwide Metrics
	Connection Service Metrics
	Physical Destination Metrics

	imqcmd query

	Writing an Application to Monitor Brokers
	Setting Up Message-Based Monitoring
	To Set Up Message-based Monitoring

	Security and Access Considerations
	Metrics Outputs: Metrics Messages

	11. Analyzing and Tuning a Message Service
	About Performance
	The Performance Tuning Process
	Aspects of Performance
	Benchmarks
	Baseline Use Patterns

	Factors That Affect Performance
	Application Design Factors that Affect Performance
	Delivery Mode (Persistent/Nonpersistent Messages)
	Use of Transactions
	Acknowledgment Mode
	Durable and Non-durable Subscriptions
	Use of Selectors (Message Filtering)
	Message Size
	Message Body Type

	Message Service Factors that Affect Performance
	Hardware
	Operating System
	Java Virtual Machine (JVM)
	Connections
	Message Server Architecture
	Broker Limits and Behaviors
	Data Store Performance
	Client Runtime Configuration

	Adjusting Configuration To Improve Performance
	System Adjustments
	Solaris Tuning: CPU Utilization, Paging/Swapping/Disk I/O
	Java Virtual Machine Adjustments
	Tuning Transport Protocols
	Tuning the File-based Persistent Store

	Broker Adjustments
	Memory Management: Increasing Broker Stability Under Load
	Multiple Consumer Queue Performance

	Client Runtime Message Flow Adjustments
	Message Flow Metering
	Message Flow Limits

	12. Troubleshooting Problems
	A Client Cannot Establish a Connection
	Connection Throughput Is Too Slow
	A Client Cannot Create a Message Producer
	Message Production Is Delayed or Slowed
	Messages Are Backlogged
	Message Server Throughput Is Sporadic
	Messages Are Not Reaching Consumers
	The Dead Message Queue Contains Messages

	Part III. Reference
	13. Command Line Reference
	Command Line Syntax
	Broker Utility
	Command Utility
	Broker Management
	Connection Service Management
	Connection Management
	Physical Destination Management
	Durable Subscription Management
	Transaction Management
	General Command Utility Options

	Object Manager Utility
	Database Manager Utility
	User Manager Utility
	Service Administrator Utility
	Key Tool Utility

	14. Broker Properties Reference
	Connection Properties
	Routing Properties
	Persistence Properties
	File-Based Persistence
	JDBC-Based Persistence

	Security Properties
	Monitoring Properties
	Cluster Configuration Properties
	Alphabetical List of Broker Properties

	15. Physical Destination Property Reference
	16. Administered Object Attribute Reference
	Connection Factory Attributes
	Connection Handling
	Client Identification
	Reliability and Flow Control
	Queue Browser and Server Sessions
	Setting Standard Message Properties
	Message Header Overrides

	Destination Attributes
	SOAP Endpoint Attributes

	17. JMS Resource Adapter Property Reference
	ResourceAdapter JavaBean
	ManagedConnectionFactory JavaBean
	ActivationSpec JavaBean

	18. Metrics Reference
	JVM Metrics
	Brokerwide Metrics
	Connection Service Metrics
	Destination Metrics

	Part IV. Appendixes
	A. Platform-Specific Locations of Message Queue Data
	Solaris
	Linux
	Windows

	B. Stability of Message Queue Interfaces
	C. HTTP/HTTPS Support
	HTTP/HTTPS Support Architecture
	Enabling HTTP Support
	To Enable HTTP Support
	Step 1. Deploy the HTTP Tunnel Servlet
	Deploying the HTTP Tunnel Servlet on Sun Java System Web Server
	To Deploy the http Tunnel Servlet as a .war File
	To Disable the Server Access Log
	Deploying the HTTP Tunnel Servlet on Sun Java System Application Server
	Using the Deployment Tool
	To Deploy the HTTP Tunnel Servlet in an Application Server Environment
	Modifying the server.policy File
	To Modify the Application Server’s server.policy File

	Step 2. Configure the httpjms Connection�Service
	To Activate the httpjms Connection Service

	Step 3. Configure an HTTP Connection
	Configuring the Connection Factory
	Using a Single Servlet to Access Multiple Brokers
	Using an HTTP Proxy

	Enabling HTTPS Support
	To Enable HTTPS Support
	Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet
	Step 2. Modifying the HTTP Tunnel Servlet .war File’s Descriptor File
	To Modify the HTTPS Tunnel Servlet .war File

	Step 3. Deploying the HTTPS Tunnel Servlet
	Deploying as a Web Archive File
	Deploying the HTTPS Tunnel Servlet on Sun Java System Web Server
	To Deploy the https Tunnel Servlet as a .war File
	To Disable the Server Access Log
	Deploying the HTTPS Tunnel Servlet on Sun Java System Application Server
	To Deploy the HTTPS Tunnel Servlet in an Application Server Environment
	To Modify the Application Server’s server.policy File

	Step 4. Configuring the httpsjms Connection�Service
	To Activate the httpsjms Connection Service

	Step 5. Configuring an HTTPS Connection
	Configuring JSSE
	To Configure JSSE
	Importing a Root Certificate
	Configuring the Connection Factory
	Using a Single Servlet to Access Multiple Brokers
	Using an HTTP Proxy

	Troubleshooting
	Server or Broker Failure
	Client Failure to Connect Through the Tunnel�Servlet

	D. Frequently Used Command Utility Commands
	Syntax
	Broker and Cluster Management
	Broker Configuration Properties (-o option)

	Service and Connection Management
	Durable Subscriber Management
	Transaction Management
	Destination Management
	Destination Configuration Properties (-o option)

	Metrics

	Glossary
	Index

