@Sun

Sun Java™ System

Message Queue 3
Developer’s Guide for Java Clients

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-2573-10

2005Q4



Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

htt p: //wa sun. cond pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by third
parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp and Javadoc are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
I'adresse htt p: // waw sun. cont pat ent s et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

L'utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp et Javadoc sont
des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Ce produit est soumis a la législation américaine en matiere de contrdle des exportations et peut étre soumis a la reglementation en vigueur dans
d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris,
mais de maniere non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matiere de controle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.


http://www.sun.com/patents
http://www.sun.com/patents

Contents

LISt Of FIQUIeS . ..o e 9
List Of Tables .. .. 11
List of Code EXamples ... ... 13
PrefaCE . . 15
Who Should Use This BOOK . . ... ... e 15
Before You Read This BOOK . . .. ... oo 16
How This Book IS Organized . ........ ... ... e 16
Conventions Used iNthiS BOOK . .. . ... o e e 17
TeXt CONVENLIONS . . . .ottt ettt e e e e e e e e e e e e e e 17
Directory Variable CONVENTIONS .. .. ... e e i 18
Related DOCUMENTAtION . .. ..o o e e e e e e 19
The Message Queue Documentation Set .. ... ... ...t e 20
JAVADIOC . . . 20
Example Client Applications . .. ... o 21
The Java Message Service (JMS) Specification . ......... ... .. i 21
The SOAP with Attachments API for Java (SAAJ) Specification ............................ 21
Books 0N JMS Programming . .. .. ...ttt 22
Related Third-Party Web Site References . ... ... e 22
Sun Welcomes YOUr COMMENTS . . . ...ttt et e e e e e e e e e e e 22
Chapter 1 OVerVIiEW . ... e e e e e 23
Setting Up YOUr ENVIFONMENT . ..o e 23
Starting and Testing a Message BroKer . ... ...t 26
TO S At @ BrOKer . . . 26

To TSt aBroKer ... e 26
Developing a Client Application ... ... ... e 27
TOProdUCE MESSAGES . .« o v vttt ettt e e e et e 28

TO CONSUME IMESSAGES . . o v v ottt ettt et et e e e e e e e e e 30



4

Compiling and Running a Client Application . ............ i e 33

To Compile and Run the HelloWorldMessage Application . ............................ 36
Deploying a Client Application .. ... ... 37
Example Application COOE . ... ... 38
Chapter 2 Usingthe Java APl ... ... e e e 39
MeESSagINg DOMAINS . ...ttt e e 39
Working With ConneCtioNS . . ... ...t e e e e e 41

Obtaining a Connection FaCtory . ... .. it e e 41

Looking Up a Connection Factory With JNDI ........ ... ... i e 41

To Look Up a Connection Factory WithJNDI ........... ... i e 42

Overriding Configuration SEttings . ... ...t e 43

Instantiating @ ConNNection FaCtory . ... ..o ittt e e e 44

To Instantiate and Configure a Connection Factory ..., 45

USING CONNEBCHIONS . . . oottt e e e e e e e e 46
Working With Destinations . . ... ... ot e 49
Looking Up a Destination With INDI ... ... . i e e 49
To Look Up aDestination With INDI . ... ... e 50
Instantiating @ Destination . .. ... ... 52
Temporary Destinations . .. ...t 53
WOorking With SeSSIONS .. ..o i e 53

Acknowledgment MOdEeS .. ... . i 54

Transacted SESSIONS . . ..ottt 57
WOrKing With IMeSSageS . . . .ottt e e e e 58

MESSagE STIUCTUNE . . ..o et e e e e e e 58

Message Header ... ... . 58

MESSAgE PrOPEItiES . o e e 61

MESSAGE BOAY . .. oot 63

COMPOSING MESSAGES - .« o ettt et e ettt et e e e et 63

Composing TEXE MESSAGES . .« ..o vttt ettt et e e e 64

Composing STream MESSAGES . . . . o v vttt et e et 65

Composing Map MESSAGES . . . .. oo ettt e et e 66

Composing ObJECt MESSAGES . . . . vttt ettt et e et 67

CompoSiNg BYteS IMESSAGES . . . . vttt ettt et 68

SENAING MESSAGES . . . . oottt ettt e 69
RECEIVING IMIBSSAGES . . . . o ettt et ettt e e e e e 71

Creating Message CONSUMIEIS . ... vttt e et ettt e e e e 72

Receiving Messages Synchronously . .......... . 75

Receiving Messages Asynchronously . ......... o 76

To Set Up a Message Queue Java Client to Receive Messages Asynchronously ............ 76

AcKNOWIEdGINg MESSAGES . . . . o oottt et et e 77

Browsing MESSA0ES . . ..ottt e 78

CloSING @ CONSUMET . . . ottt ettt et e e e e e e e e e 79

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



ProcesSiNg IMEBSSA0ES . ...ttt ettt e e e 80

Retrieving Message Header Fields . ............. . i e 80
Retrieving Message Properties . ... ..ot 81
Processing the Message Body . .. ...t 82
Chapter 3 Message Queue Clients: Design and Features ............. ... .. covuvnn... 87
Client Design Considerations ... ...ttt e e 87
Developing Portable ClHents ... ... . e e 88
Choosing Messaging DOMmaiNSs .. ... ...ttt e 88
CoNNECtioNS aNd SESSIONS . . ..\ttt e e 90
Producers and CONSUMELS . . ..ottt ettt e e et e e e e e e e e e 91
Assigning Client ldentifiers . ... i 91
Message Order and Priority . ... 92
Using Selectors Efficiently .. ... 92
Balancing Reliability and Performance ............... i e 94
Managing Client Threads ... ...t e e e e 94
JMS Threading Restrictions . ... ... i e e e e 94
Thread Allocation for CONNECLIONS . . . . ..ottt e e e 95
Managing Memory and RESOUICES . . . o .ottt ettt ettt et e e et 96
MaNaging MEmMO Y ...ttt et e e e 96
Managing MESSAQgE SIZE . ... ottt 97
Message COMPIESSION . ...t sttt e e e e e e e e e e 97
Advantages and Limitations of Compression . ... 98
Compression EXamples .. ... 98
Managing the Dead Message QUEUE .. ...ttt e 99
Managing Physical Destination Limits .............. i 103
Programming Issues for Message CONSUMETS . ... .ottt ettt 103
Using the Client Runtime Ping Feature ............ e 103
Preventing Message Loss for Synchronous CONSUMErS . .......ouuiiiinenenenanns 104
Synchronous Consumption in Distributed Applications . ............ ... ... ... i, 104
Factors Affecting Performance . .......... . i 105
Delivery Mode (Persistent/NONPErsiStent) . ... ...ttt 106
USe Of TranSaCtioNs . . ...ttt e e 107
Acknowledgment MOde . . . ... o 108
Durable vs. Nondurable SUbsCriptions ............. . 109
Use of Selectors (Message Filtering) . ... e 110
MESSAGE SIZE . . .ottt 110
MeSSage BOAY Ty P . .ottt e e 111

Contents 5



Client Connection Failover (AUtO-ReCONNECt) . ... ... .ottt e e 112

Enabling AUto-ReCONNECt . . ... o 112
AULo-ReconNNect BENAVIOIS . ... .. o 114
AuUto-Reconnect LIMItations .. ... . ...t 115
Auto-Reconnect Configuration Examples . .......... i 116
Single-Broker AUtO-RECONNECE . . ... . it e e e e 116
Parallel Broker AUto-ReCONNECT . .. ... .o e 116
Clustered-Broker AUtO-RECONNECE . .. ... 117
Custom Client ACKNOWIedgment . . ... . e e 117
Using Client Acknowledge Mode .. ... o e 118
Using No Acknowledge Mode . ... ... i e 120
Communicating With C ClientS ... ... . e e e 122
Chapter 4 Using the Metrics Monitoring APl ... ... . e i 123
MONITOFING OVEIVIEW . o oottt e e e e e e e e 124
AdMINISTrative Tasks .. ... 125
Implementation SUMMArY . .. ... ot e e e 125
Creating a Metrics-Monitoring Client . ........ .. i e e 126
Format of MetriCS IMBSSAgES . . ..\ttt it e e e e e 127
BroKer MetriCs . ..o 127

IV I ICS o oottt e 129
Destination-List MetriCs .. ... .. i 129
Destination MetriCS .. ..ot 130
Metrics Monitoring Client Code Examples . . ... 132
A Broker Metrics EXample . ... .. oo 132

A Destination List Metrics Example .. ... 134

A Destination Metrics Example . ... 137
Chapter 5 Working with SOAP MESSAgES . . ...ttt i e 141
What IS SOA P o 142
SOAP with Attachments APl forJava ........ ... e 142
The TranspOrt LaYEr ... ... e e e e e 143

The SOAP Layer . ..o 143

The Language Implementation Layer . .......... i 144

The Profiles Layer . . ... o e 144
Interoperability .. .. ... . 144

THEe SOAP MESSAGE . . . oot i ettt e e e e e e e e e e e e e e 145
SOAP Packaging Models .. ... .. 146
SOAP Messaging iNn JAV A . .o 148
The SOAP Message ODjJeCt . .. ... oo e 149
Inherited Methods . . ... ... 151

N MBS PACES .« . . o\ ot 152

6 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Destination, Message Factory, and Connection Objects ........... ... .. ... 155

ENAPOINt .. 156
MESSAgE FaCIOrY . . .ottt 157
CONNECEION . oot 157
Using SOAP Administered ODbjJectS . ... ..o e 157
SOAP Messaging Models and Examples . ... e 159
SOAP Messaging Programming Models ......... ... .. i 160
Point-to-Point CONNECLIONS . . .. .. e 160
Working with Attachments ... ... .. 161
To Create and Add an Attachment .. ... e 161
Exceptionand Fault Handling . . ... . e 162
Writing @ SOAP Client . ... o e 162
WIItINg @ SOA P SBIVICE .ottt e e 165
Disassembling MeSSages . ... oottt 167
Handling AttaChments . ... ... i e e 168
REPIYING 10 MESSAGES .\ v vttt et et e 168
Handling SOAP Faults . ... .. e e 168
Integrating SOAP and Message QUEUE . .. ..ottt e et 172
Example 1: Deferring SOAP ProCessing . .. ..ottt e 173
To Transform the SOAP Message into a JMS Message and Send the JMS Message ........ 174

To Receive the JMS Message, Transform it into a SOAP Message, and Process It .......... 175
Example 2: Publishing SOAP MESSAgES . . . . ..ottt et 176
COde SAMPIES oo e 177
Appendix A Warning Messages and Client Error Codes . ... .. 183
IO X . et 197

Contents 7



8 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Figure 1-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10

List of Figures

Output From Testing a Broker . ......... .. e 27
Performance Impact of Delivery Modes ............ ... ... . i 107
Performance Impact of Subscription Types .......... ... ... i, 110
Performance Impact of a Message Size . ..., 111
SOAP Messaging Layers .. ...t e 143
SOAP Interoperability ....... ..o 145
SOAP Message Without Attachments ............. ... .. 147
SOAP Message with Attachments .......... .. .. . . . i 148
SOAP Message ObjeCt . . ... 150
Request-Reply MeSsaging . ... ......ouiiinii e 160
SOAP MeESSage Parts . . ..ot 163
SOAP Fault Element ... ... 169
Deferring SOAP Processing . .. ...t 174
Publishing @ SOAP MESSAgE . . .. ..ottt e 177



10 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Table 1
Table 2
Table 3
Table 4
Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 2-12
Table 2-13
Table 2-14
Table 2-15
Table 2-16
Table 2-17
Table 2-18

List of Tables

BOOK CONteNtS .. ... 16
Document CONVENTIONS . ... ...ttt et e et e e e e e e 17
Message Queue Directory Variables ........... ... .. i 18
Message Queue Documentation Set .. ... 20
djar File LOCationS .. ... 24
.jar Files Needed in CLASSPATH ... . e e e 24
Location of Message Queue Executables .............. ... .. i 26
Checklist for the Message Queue Administrator ............. ... ... i, 37
Example Programs . ... . 38
Interface Classes for Messaging Domains . .............oo ittt nenn.n. 40
Connection Methods . . .. ... o 46
SesSION MethOods ... ... 53
Message Header Fields . . ... . 58
Message Header Specification Methods ........... ... ... ... i, 59
Message Property Specification Methods ............. ... ... . i, 61
Standard JMS Message Properties . .............iiiiein i 62
Session Methods for Message Creation ............... .o iiiiiiiieiinnannn.. 63
Text Message Composition Method .......... ... ... ... i i 65
Stream Message Composition Methods ........... ... .. ... ... . ... 65
Map Message Composition Methods . ......... .. ... i 66
Object Message Composition Method ......... ... ... .. ... . ... 67
Bytes Message Composition Methods .......... ... ... . .. i, 68
Message Producer Methods . ... ... 69
Message Consumer Methods ... ... .t e 72
Message Acknowledgment Methods . ......... ... i 78
Queue Browser Methods ... .. e e e 79
Message Header Retrieval Methods .. ........... ... ... i i 80

11



12

Table 2-19
Table 2-20
Table 2-21
Table 2-22
Table 2-23
Table 2-24
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table A-1
Table A-2

Message Property Retrieval Methods ......... ... ... ... i 81

Text Message Access Method . ....... ... i 82
Stream Message Access Methods . ........... . i 82
Map Message Access Methods . ... e e e 83
Object Message Access Method ....... ... .. i 85
Bytes Message Access Methods . ... ... .. 86
JMS Programming Objects ... ...t 88
Message Properties Relating to Dead Message Queue . ........................ 100
Dead Message Properties . ... ... ...t 101
Comparison of High Reliability and High Performance Scenarios ............... 105
Metrics Topic Destinations .. .. ... ... it 124
Data in the Body of a Broker MetricsMessage . ...........cooiiiiiiinai... 128
Data in the Body of a JVM MetricS MEeSSage ... .....covviiiiiniii i 129
Data in the Body of a Destination-List MetricsMessage .. ...................... 130
Data in the Body of a Destination MetricsMessage .. ...............coiiiinn .. 130
Inherited Methods . ... 151
SOAP Administered Object Information ........... ... ... . ... .. ... ... 158
JAXMBervl et Methods . . ... .o 166
SOAP Faultcode Values ... ... 170
Message Queue Warning Message Codes . .. ... ...t 184
Message Queue Client Error Codes . ......... it 185

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Code Example 1-1
Code Example 2-1
Code Example 2-2
Code Example 2-3
Code Example 2-4
Code Example 2-5
Code Example 2-6
Code Example 3-1
Code Example 3-2
Code Example 3-3
Code Example 3-4
Code Example 3-5
Code Example 3-6
Code Example 3-7
Code Example 4-1
Code Example 4-2
Code Example 4-3
Code Example 4-4
Code Example 4-5
Code Example 4-6
Code Example 4-7
Code Example 5-1
Code Example 5-3
Code Example 5-2
Code Example 5-5
Code Example 5-4
Code Example 5-6

List of Code Examples

Simple Message Queue Client Application ............................ 33
Looking Up a Connection Factory ..., 42
Instantiating a Connection Factory . ... 44
Looking Up aDestination ............... . i, 50
Browsinga QUEUE . .. ... i 79
Enumerating Message Properties . ..., 82
Enumerating Map Message Values ............ ... ... . . ... 84
Sending a Compressed MeSSage . . . .« . vttt 98
Comparing Size of Compressed and Uncompressed Messages .......... 99
Example of Command to Configure a Single Broker ................... 116
Example of Command to Configure Parallel Brokers .................. 116
Example of Command to Configure a Broker Cluster .................. 117
Syntax for Acknowledgment Methods ............. ... ... .. ... .... 118
Example of Custom Client AcknowledgmentCode ................... 119
Example of Subscribing to a Broker Metrics Topic .................... 132
Example of Processing a Broker Metrics Message .. ................... 133
Example of Subscribing to the Destination List Metrics Topic........... 134
Example of Processing a Destination List Metrics Message ............. 135
Example of Extracting Destination Information From a Hash Table .. ... 136
Example of Subscribing to a Destination Metrics Topic ................ 137
Example of Processing a Destination Metrics Message ... .............. 138
Explicit Namespace Declarations .............. ..., 153
Looking up an Endpoint Administered Object ....................... 159
Adding an Endpoint Administered Object ........................... 159
A Simple Ping Message Service ..............iiiiiiiiiniini.n 166
Skeleton Message CONSUMIET . . ... ottt 166
Processing a SOAP MeSSage .. ...ovvi ittt 168

13



14

Code Example 5-7 Sending a JMS Message with a SOAP Payload . .

Code Example 5-8 Receiving a JIMS Message with a SOAP Payload

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Preface

This book provides information about concepts and procedures for developing
Java™ messaging applications (Java clients) that work with Sun Java™ System
Message Queue (formerly Sun™ ONE Message Queue).

This preface contains the following sections:

= “Who Should Use This Book” on page 15

= “Before You Read This Book” on page 16

= “How This Book Is Organized” on page 16

= “Conventions Used in this Book™ on page 17

= “Related Documentation” on page 19

= “Related Third-Party Web Site References” on page 22

e “Sun Welcomes Your Comments” on page 22

Who Should Use This Book

This guide is meant principally for developers of Java applications that use Sun
Java System Message Queue.

These applications use the Java Message Service (JMS) Application Programming
Interface (API), and possibly the SOAP with Attachments API for Java (SAAJ), to
create, send, receive, and read messages. As such, these applications are JMS clients
and/or SOAP client applications, respectively. The JMS and SAAJ specifications
are open standards.

15



Before You Read This Book

This Message Queue Developer’s Guide for Java Clients assumes that you are familiar
with the JMS APIs and with JMS programming guidelines. Its purpose is to help
you optimize your JMS client applications by making best use of the features and
flexibility of a Message Queue messaging system.

This book assumes no familiarity, however, with SAAJ. This material is described
in Chapter 5, “Working with SOAP Messages,” and assumes only basic knowledge

of XML.

Before You Read This Book

You must read the Message Queue Technical Overview to become familiar with
Message Queue’s implementation of the Java Message Specification, with the
components of the Message Queue service, and with the basic process of
developing, deploying, and administering a Message Queue application.

How This Book Is Organized

This guide is designed to be read from beginning to end. The following table
briefly describes the contents of each chapter:

16

Table 1 Book Contents

Chapter

Description

Chapter 1, “Overview”

Chapter 2, “Using the Java
API”

Chapter 3, “Message
Queue Clients: Design and
Features”

Chapter 4, “Using the
Metrics Monitoring API”

Chapter 5, “Working with
SOAP Messages”

A high-level overview of the Message Queue Java interface. It
includes a tutorial that acquaints you with the Message Queue
development environment using a simple example JMS client
application.

Explains how to use the Message Queue Java API in your client
application.

Describes architectural and configuration issues that depend upon
Message Queue’s implementation of the Java Message
Specification.

Describes message-based monitoring, a customized solution to
metrics gathering that allows metrics data to be accessed
programmatically and then to be processed in whatever way suits
the consuming client.

Explains how you send and receive SOAP messages with and
without Message Queue support.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Conventions Used in this Book

Table 1 Book Contents (Continued)

Chapter

Description

Appendix A, “Warning
Messages and
Client Error Codes”

Provides reference information for warning messages and error
codes returned by the Message Queue client runtime when it raises
a JMS exception.

Conventions Used in this Book

This section provides information about the conventions used in this document.

Text Conventions

Table 2 Document Conventions

Format

Description

italics

monospace

(]

ALL CAPS

Key+Key

Key-Key

Italicized text represents a placeholder. Substitute an appropriate
clause or value where you see italic text. Italicized text is also used
to designate a document title, for emphasis, or for a word or term
being introduced.

Monospace text represents example code; commands that you
enter on the command line; directory, file, or path names; error
message text; class names; method names (including all elements
in the signature); package names; reserved words; and URLs.

Square brackets indicate optional values in a command-line syntax
statement.

Text in all capitals represents file system types (GIF, TXT, HTML
and so forth), environment variables (I M) HOVE), or abbreviations
JSP).

Simultaneous keystrokes are joined with a plus sign: Ctrl+A means
press both keys simultaneously.

Consecutive keystrokes are joined with a hyphen: Esc-S means
press the Esc key, release it, then press the Skey.

Preface

17



Conventions Used in this Book

Directory Variable Conventions

Message Queue makes use of three directory variables; how they are set varies
from platform to platform. Table 3 describes these variables and summarizes how
they are used on the Solaris™, Windows, and Linux platforms.

Table 3 Message Queue Directory Variables

Variable Description

| MQ_HOMVE This is generally used in Message Queue documentation to refer to
the Message Queue base directory (root installation directory):

* On Solaris, there is no root Message Queue installation
directory. Therefore, | M) HOVE is not used in Message Queue
documentation to refer to file locations on Solaris.

* On Windows, the root Message Queue installation directory is
set by the Message Queue installer (by default, as C.\ Program
Fi | es\ Sun\ MessageQueue3).

* On Linux, there is no root Message Queue installation directory.
Therefore, | M) HOVE is not used in Message Queue
documentation to refer to file locations on Linux.

* For Sun Java System Application Server, on Windows, Solaris,
and Linux, the root Message Queue installation directory is
/i g, under the Application Server base directory.

| MQ_VARHOVE This is the / var directory in which Message Queue temporary or
dynamically-created configuration and data files are stored. It can
be set as an environment variable to point to any directory.

* On Solaris, | MY VARHOVE defaults to the / var/i ny directory.

e On Windows | M) VARHOME defaults to the | M) HOMVE\ var
directory.

e On Linux, | MY VARHOME defaults to the / var/ opt / sun/ ng
directory.

* For Sun Java System Application Server, on Solaris and Linux,
| MQ_VARHOME defaults to the domai n/ domai n1/i ng directory
under the App Server base directory.

» For Sun Java System Application Server, on Windows,
| MQ_VARHOME defaults to the donai n\ donai n1\i ng directory
under the App Server base directory.

18 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Related Documentation

Table 3 Message Queue Directory Variables (Continued)

Variable Description

| MQ_JAVAHOVE This is an environment variable that points to the location of the
Java runtime (JRE) required by Message Queue executables:

* On Solaris, | MY JAVAHOME looks for the java runtime in the
following order, but a user can optionally set the value to
wherever the required JRE resides.

Solaris 8 or 9:
[usr/jdk/entsys-j2se
lusr/jdk/jdkl. 5. *
[usr/jdk/j2sdkl. 5. *
lusr/j2se

Solaris 10:

[usr/jdk/ entsys-j2se
[usr/java
lusr/j2se

e On Linux, Message Queue first looks for the java runtime in the
following order, but a user can optionally set the value of
| MQ_JAVAHOME to wherever the required JRE resides.
[usr/jdk/ entsys-j2se
lusr/javaljrel.5.*
lusr/javaljdkl.5.*
lusr/javaljrel. 4. 2*
[usr/javalj2sdkl. 4. 2*

e On Windows, | M) JAVAHOME defaults to | MY HOVE\j re, but a
user can optionally set the value to wherever the required JRE
resides.

In this guide, | M) HOME, | MQ VARHOME, and | MQ JAVAHOME are shown without
platform-specific environment variable notation or syntax (for example, $I MY HOVE
on UNIX). Path names generally use UNIX directory separator notation (/).

Related Documentation

In addition to this guide, Message Queue provides additional documentation
resources.

Preface 19



Related Documentation

The Message Queue Documentation Set

The documents that comprise the Message Queue documentation set are listed in
Table 4 in the order in which you would normally use them.

Table 4 Message Queue Documentation Set

Document Audience Description
Message Queue Installation Guide  Developers and Explains how to install Message
administrators Queue software on Solaris, Linux, and
Windows platforms.
Message Queue Release Notes Developers and Includes descriptions of new features,
administrators limitations, and known bugs, as well
as technical notes.
Message Queue Technical Developers and Explains basic messaging concepts
Overview administrators and processes.
Message Queue Developer’s Guide  Developers Provides a quick-start tutorial and
for Java Clients programming information for

developers of Java client programs
using JMS and SAAJ and Message
Queue software.

Message Queue Developer’s Guide  Developers Provides programming and reference

for C Clients documentation for developers of C
client programs that use the Message
Queue software.

Message Queue Administration Administrators, also Provides background and information
Guide recommended for needed to perform administration
developers tasks using Message Queue

administration tools.

JavaDoc

JMS and Message Queue APl documentation in JavaDoc format is provided at the
following location:

Platform Location

Solaris [ usr/share/javadoc/ i ng/index. ht m
Linux [ opt/sun/ ng/ j avadoc/ i ndex. ht mi /
Windows | M) HOWE j avadoc/ i ndex. ht n

20 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Related Documentation

This documentation can be viewed in any HTML browser such as Netscape or
Internet Explorer. It includes standard JMS API documentation as well as Message
Queue-specific APIs for Message Queue clients.

Example Client Applications

Example applications that provide sample Java client application code are included
in the following directories:

Platform Location

Solaris [ usr/ deno/ i no/

Linux / opt / sun/ ng/ exanpl es/
Windows | MQ_HOMVE\ deno\

See the README file located in that directory and in each of its subdirectories.

The Java Message Service (JMS) Specification
The Java Message Service Specification can be found at the following location:
http://java. sun. con product s/ j ns/ docs. ht m

The specification includes sample client code.

The SOAP with Attachments API for Java
(SAAJ) Specification

The SOAP with Attachments API for Java (SAAJ) Specification can be found at the
following location:

http://java. sun. com xni / downl oads/ saaj . ht m

The specification includes sample client code.

Preface 21


http://java.sun.com/products/jms/docs.html
http://java.sun.com/xml/downloads/saaj.html

Related Third-Party Web Site References

Books on JMS Programming

For background on using the JMS API, you can consult the following
publicly-available books:

= Java Message Service by Richard Monson-Haefel and David A. Chappell,
O’Reilly and Associates, Inc., Sebastopol, CA

= Professional JMS by Scott Grant, Michael P. Kovacs, Meeraj Kunnumpurath,
Silvano Maffeis, K. Scott Morrison, Gopalan Suresh Raj, Paul Giotta, and James
McGovern, Wrox Press Inc., ISBN: 1861004931

= Practical Java Message Service by Tarak Modi, Manning Publications, ISBN:
1930110138

Related Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related
information.

NOTE Sun is not responsible for the availability of third-party Web sites
mentioned in this document. Sun does not endorse and is not
responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources.
Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance
on any such content, goods, or services that are available on or
through such sites or resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments
and suggestions.

To share your comments, go to htt p: // docs. sun. comand click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document.

22  Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients


http://docs.sun.com

Chapter 1

Overview

This chapter provides an overall introduction to Sun Java™ System Message
Queue and a quick-start tutorial. It describes the procedures needed to create,
compile, and run a simple example application. Before reading this chapter, you
should be familiar with the concepts presented in the Message Queue Technical
Overview.

The chapter covers the following topics:

“Setting Up Your Environment” on page 23

= “Starting and Testing a Message Broker” on page 26

= “Developing a Client Application” on page 27

= “Compiling and Running a Client Application” on page 33
= “Deploying a Client Application” on page 37

= “Example Application Code” on page 38

The minimum Java Development Kit (JDK) level required to compile and run
Message Queue clients is 1.2. For the purpose of this tutorial it is sufficient to run
the Message Queue message broker in a default configuration. For instructions on
configuring a message broker, see the Message Queue Administration Guide.

Setting Up Your Environment

The Message Queue files that need to be used in conjunction with Message Queue
Java clients can be found in the | i b directory in the installed location for Message
Queue on your platform. Message Queue Java clients need to be able to use several
.j ar files found in the | i b directory when these clients are compiled and run.

23



Setting Up Your Environment

You need to set the CLASSPATHenvironment variable when compiling and running
a JMS client. (The | M) HOVE variable, where used, refers to the directory where
Message Queue is installed on Windows platforms and on some Sun Java System
Application Server platforms.)

The value of CLASSPATHdepends on the following factors:
o The platform on which you compile or run
o The JDK version you are using
o Whether you are compiling or running a JMS application
o Whether your application uses the Simple Object Access Protocol (SOAP)
o Whether your application uses the SOAP/IMS transformer utilities

Table 1-1 shows the directories where . j ar files are to be found on the various
platforms.

Table 1-1  .j ar File Locations

Platform Directory
Solaris™ lusr/share/lib/
Solaris, using the standalone version of Sun | MQ_HOWE/ | i b/
Java System Application Server

Linux [opt/nmg/lib/
Windows I MQ_ HOVE\ i b\

Table 1-2 lists the . j ar files you need to compile and run different kinds of code.

Table 1-2 . j ar Files Needed in CLASSPATH

Type of Code To Compile To Run Remarks
JMS client jms.jar jms.jar See discussion of JNDI . j ar
ing.jar ing.jar files, following this table
jndi.jar jndi.jar
Directory
containing

compiled Java
application or’ .’

24  Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Setting Up Your Environment

Table 1-2 . j ar Files Needed in CLASSPATH ( Cont i nued)

Type of Code To Compile To Run Remarks
SOAP Client saaj-api.jar saaj-api.jar See Chapter 5, “Working with
activation.jar Directory SOAP Messages”
containing

compiled Java
application or .’

SOAP Servlet jaxmapi.jar Sun Java System Application
saaj-api.jar Server already includes these
activation.jar .j ar files for SOAP servlet

support

Code using i mgxm j ar i mgxm j ar Also add the appropriate . j ar

SOAP/IMS j ar files for IMS fl!es listed in this table fgr the

transformer and SOAP clients kind of code you are writing

utilities

A client application must be able to access the file j ndi . j ar even if the application
does not use the Java Naming and Directory Interface (JNDI) directly to look up
Message Queue administered objects. This is because JNDI is referenced by the
Desti nati on and Connect i onFact ory classes.

JNDI . j ar files are bundled with JDK 1.4. Thus, if you are using this JDK, you do
not have to add j ndi . j ar to your CLASSPATH setting. However, if you are using an
earlier version of the JDK, you must include j ndi . j ar in your CLASSPATH.

If you are using JNDI to look up Message Queue administered objects, you must
also include the following files in your CLASSPATH setting:

= If you are using the file-system service provider for JNDI (with any JDK
version), you must include the file f scont ext . j ar.

= Ifyou are using the Lightweight Directory Access Protocol (LDAP) context

o with JDK 1.2 or 1.3, include the files | dap. j ar, | dabbp. j ar, and
fscontext.jar.

o with JDK 1.4, all files are already bundled with this JDK.

Chapter1  Overview 25



Starting and Testing a Message Broker

Starting and Testing a Message Broker

This tutorial assumes that you do not have a Message Queue message broker
currently running. (If you run the broker as a UNIX startup process or Windows
service, then it is already running and you can skip to “Developing a Client
Application” on page 27.)

[0 To Start a Broker

1. Inaterminal window, change to the directory containing Message Queue
executables (see Table 1-3).

Table 1-3  Location of Message Queue Executables

Platform Location

Solaris [ usr/ bin/

Linux / opt/ sun/ ng/ bi n/
Windows | MQ_HOWE\ bi n\

2. Run the broker startup command (i ngbr oker d) as follows:
i ngbrokerd -tty

The -tty option causes all logged messages to be displayed to the terminal
console (in addition to the log file). The broker will start and display a few
messages before displaying the message

i ngbr oker @ost : 7676 ready

The broker is now ready and available for clients to use.

[0 To Testa Broker

One simple way to check the broker startup is by using the Message Queue
command utility (i ngcrd) to display information about the broker:

1. Inaseparate terminal window, change to the directory containing Message
Queue executables (see Table 1-3).

2. Runi ngend with the following arguments:
i ngend query bkr -u adnin

Supply the default password of adm n when prompted to do so. The output
displayed should be similar to that shown in Figure 1-1.

26  Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Figure 1-1 Output From Testing a Broker

Developing a Client Application

% imycmd query bkr -u admn
Querying the broker specified by:

Ver si on
I nst ance Nane
Primary Port

Qurrent Nunber of Messages in System
Qurrent Total Message Bytes in System

Max Nunber of Messages in System
Max Total Message Bytes in System
Max Message Size

Auto Oreate Queues
Auto Oreate Topics
Auto Oreated Queue Max Nunber of Active Consuners
Auto Oreated Queue Max Nunber of Backup Consuners

G uster Broker List (active)

O uster Broker List (configured)
O uster Master Broker

Custer URL

Log Level

Log Rollover Interval (seconds)
Log Rollover Size (bytes)

Successful 'y queried the broker.

Qurrent Nunber of Messages in System 0

3.6
i ngbr oker
7676

0
0

unlimted (-1)
unlinted (-1)
70m

true
true
1
0

| NFO
604800
unlimted (-1)

Developing a Client Application

This section introduces the general procedures for interacting with the Message
Queue API to produce and consume messages. The basic steps shown here are
elaborated in greater detail in Chapter 2, “Using the Java APL.” The procedures for
producing and consuming messages have a humber of steps in common, which
need not be duplicated if the same client is performing both functions.

Chapter1  Overview 27



Developing a Client Application

[l To Produce Messages
1. Get a connection factory.

A Message Queue Connect i onFact ory object encapsulates all of the needed
configuration properties for creating connections to the Message Queue
message service. You can obtain such an object either by direct instantiation

Connecti onFactory nyFactory = newcom sun. messagi ng. Connect i onFact ory();

or by looking up a predefined connection factory via the Java Naming and
Directory Interface (JNDI). In the latter case, all of the connection factory’s
properties will have been preconfigured to the appropriate values by your
Message Queue administrator. If you instantiate the factory object yourself,
you may heed to configure some of its properties explicitly: for instance,

nyFact ory. set Property(Connecti onConfi gurati on. i ngAddr essLi st,
"l ocal host: 7676, broker2: 5000, broker3:9999");
nyFact ory. set Property( Connecti onConfi gurati on. i rgReconnect Enabl &d,rue");

See “Obtaining a Connection Factory” on page 41 for further discussion.
2. Create a connection.

A Connect i on object is an active connection to the Message Queue message
service, created by the connection factory you obtained in Step 1:

Connection nyConnection = nyFactory. createConnection();
See “Using Connections” on page 46 for further discussion.
3. Create a session for communicating with the message service.

A Sessi on object represents a single-threaded context for producing and
consuming messages. Every session exists within the context of a particular
connection and is created by that connection’s cr eat eSessi on method:

Session nySession = nyConnecti on. cr eat eSessi on(f al se,
Sessi on. AUTO AKNONEDE) ;

The first (boolean) argument specifies whether the session is transacted. The
second argument is the acknowledgment mode, such as AUTO ACKNOALEDGE,
CLI ENT_ACKNOWLEDGE, or DUPS_OK_ACKNOMLEDGE; these are defined as static
constants in the JMS Sessi on interface. See “Acknowledgment Modes” on
page 54 and “Transacted Sessions” on page 57 for further discussion.

28 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Developing a Client Application

Get a destination to which to send messages.

A Dest i nati on object encapsulates provider-specific naming syntax and
behavior for a message destination, which may be either a point-to-point queue
or a publish/subscribe topic (see “Messaging Domains” on page 39). You can
obtain such an object by direct instantiation

Destination nyDest = new com sun. nessagi ng. Queue("nmyDest");

or by looking up a predefined destination via the JNDI API. See “Working
With Destinations™” on page 49 for further discussion.

Create a message producer for sending messages to this destination.

A MessagePr oducer object is created by a session and associated with a
particular destination:

MessageProducer nyProducer = nmySessi on. creat eProducer (nyDest);
See “Sending Messages” on page 69 for further discussion.
Create a message.

A Sessi on object provides methods for creating each of the six types of message
defined by JMS: text, object, stream, map, bytes, and null messages. For
instance, you can create a text message with the statement

Text Message out Msg = nySessi on. cr eat eText Message() ;
See “Composing Messages” on page 63 for further discussion.
Set the message’s content and properties.

Each type of message has its own methods for specifying the contents of the
message body. For instance, you can set the content of a text message with the
statement

out Msg. set Text ("Hel 1o, World!");

You can also use the property mechanism to define custom message properties
of your own: for instance,

out Msg. set StringProperty("Mgi cWwrd", "Shazant);
See “Working With Messages” on page 58 for further discussion.
Send the message.

The message producer’s send method sends a message to the destination with
which the producer is associated:

Chapter1  Overview 29



Developing a Client Application

nyProducer . send( out Msg) ;
See “Sending Messages” on page 69 for further discussion.
9. Close the session.
When there are no more messages to send, you should close the session
nySessi on. cl ose();

allowing Message Queue to free any resources it may have associated with the
session. See “Working With Sessions” on page 53 for further discussion.

10. Close the connection.

When all sessions associated with a connection have been closed, you should
close the connection by calling its cl ose method:

nyConnect i on. cl ose();

See “Using Connections” on page 46 for further discussion.

[l To Consume Messages
1. Get a connection factory.

A Message Queue Connect i onFact ory object encapsulates all of the needed
configuration properties for creating connections to the Message Queue
message service. You can obtain such an object either by direct instantiation

Connecti onFactory nyFactory = newcom sun. messagi ng. Connecti onFact ory();

or by looking up a predefined connection factory via the Java Naming and
Directory Interface (JNDI). In the latter case, all of the connection factory’s
properties will have been preconfigured to the appropriate values by your
Message Queue administrator. If you instantiate the factory object yourself,
you may heed to configure some of its properties explicitly: for instance,

nyFact ory. set Property(Connecti onConfi gurati on. i mgAddr essLi st
"l ocal host: 7676, broker2: 5000, broker3:9999");
nyFact ory. set Property( Connecti onConfi gurati on. i rgReconnect Enabl &d,rue");

See “Obtaining a Connection Factory” on page 41 for further discussion.
2. Create a connection.

A Connect i on object is an active connection to the Message Queue message
service, created by the connection factory you obtained in Step 1:

Connection nyConnection = nyFactory. createConnection();

See “Using Connections” on page 46 for further discussion.

30 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Developing a Client Application

Create a session for communicating with the message service.

A Sessi on object represents a single-threaded context for producing and
consuming messages. Every session exists within the context of a particular
connection and is created by that connection’s cr eat eSessi on method:

Session nySessi on = nyConnect i on. cr eat eSessi on(f al se,
Sessi on. AUTO ANONEDEE) ;

The first (boolean) argument specifies whether the session is transacted. The
second argument is the acknowledgment mode, such as AUTO ACKNOALEDGE,
CLI ENT_ACKNOWLEDGE, or DUPS_OK_ACKNOMLEDGE; these are defined as static
constants in the JMS Sessi on interface. See “Acknowledgment Modes” on
page 54 and “Transacted Sessions” on page 57 for further discussion.

Get a destination from which to receive messages.

A Desti nati on object encapsulates provider-specific naming syntax and
behavior for a message destination, which may be either a point-to-point queue
or a publish/subscribe topic (see “Messaging Domains” on page 39). You can
obtain such an object by direct instantiation

Destination nyDest = new com sun. nessagi ng. Queue("nmyDest");

or by looking up a predefined destination via the JNDI API. See “Working
With Destinations” on page 49 for further discussion.

Create a message consumer for receiving messages from this destination.

A MessageConsuner object is created by a session and associated with a
particular destination:

MessageConsuner nyConsuner = nySessi on. cr eat eConsuner (nyDest) ;
See “Receiving Messages” on page 71 for further discussion.
Start the connection.

In order for a connection’s message consumers to begin receiving messages,
you must start the connection by calling its st art method:

nyConnection. start();
See “Using Connections” on page 46 for further discussion.
Receive a message.

The message consumer’s r ecei ve method requests a message from the
destination with which the consumer is associated:

Chapter1  Overview 31



Developing a Client Application

32

10.

Message inMsg = nyConsuner.receive();

This method is used for synchronous consumption of messages. You can also
configure a message consumer to consume messages asynchronously, by
creating a message listener and associating it with the consumer. See “Receiving
Messages” on page 71 for further discussion.

Retrieve the message’s content and properties.

Each type of message has its own methods for extracting the contents of the
message body. For instance, you can retrieve the content of a text message with
the statements

Text Message txt Msg ( Text Message) i nMsg;
String nmsgText = txtMsg. get Text();

In addition, you may need to retrieve some of the message’s header fields: for
instance,

nmsgPriority = inMg.getJMSPriority();

You can also use message methods to retrieve custom message properties of
your own: for instance,

magi cWord = i nMsg. get StringProperty("MgicWrd");

See “Processing Messages” on page 80 for further discussion.

Close the session.

When there are no more messages to consume, you should close the session

nySessi on. cl ose();

allowing Message Queue to free any resources it may have associated with the
session. See “Working With Sessions” on page 53 for further discussion.

Close the connection.

When all sessions associated with a connection have been closed, you should
close the connection by calling its ¢l ose method:

nyConnect i on. cl ose();

See “Using Connections” on page 46 for further discussion.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Compiling and Running a Client Application

Compiling and Running a Client Application

This section leads you through the steps needed to compile and run a simple
example client application, Hel | oWor | dMessage, that sends a message to a
destination and then retrieves the same message from the destination. The code
shown in Code Example 1-1 is adapted and simplified from an example program
provided with the Message Queue installation: error checking and status reporting
have been removed for the sake of conceptual clarity. You can find the complete
original program in the directory | M) HOVE/ deno/ hel | owor | d/ hel | owor | dnmessage.

Code Example 1-1 Simple Message Queue Client Application

/1 lnmport the JM5 and JNDI APl cl asses
inport javax.jns.*;

i nport javax.nam ng.*;
inport java.util.Hashtable;

public class Hell oWrl| dvessage
{

/**
* Main nethod
*
*  Parameter args not used
*

*/

public static void main (String[] args)

try
{
/1 Get a connection factory.
I
/1l Create the environnent for constructing the initial JND namng context.
Hashtabl e env = new Hashtabl e();
[/ Store the environnment attributes that tell JND which initial context
/1 factory to use and where to find the provider.
Il (O Unix, use provider URL "file:///ing_adni n_objects" instead of
[l “file://]C/ing_adm n_objects".)

env. put (Context . | NI TI AL_CONTEXT_FACTCRY,
"com sun. j ndi . f scont ext . Ref FSCont ext Fact ory");
env. put (Cont ext . PROVIDER URL, "file:///C /i my_adni n_objects");

/1 Create the initial context.

Context ctx = new Initial Context(env);

Chapter1  Overview 33


file:///imq_admin_objects
file:///C:/imq_admin_objects
file:///C:/imq_admin_objects

Compiling and Running a Client Application

Code Example 1-1

Simple Message Queue Client Application (Continued)

iy

I

iy

iy

iy

I

iy

I

I

iy

Look up the connection factory object in the JND object store.
String CF_LOOKUP_NAME = "MConnectionFactory";
ConnectionFactory nyFactory =

(ConnectionFactory) ctx. | ookup(CF_LOCKUP_NAME) ;

Oreate a connection.

Connection nyConnection = nyFactory. creat eConnection();

Create a session.
Session nySession = nyConnecti on. creat eSessi on(f al se,
Sessi on. AUTO_ACKNOMLEDGE) ;
Look up the destination object in the JNDI object store.
String DEST_LOCKUP_NAME = "MDest";
Destination nyDest = (Destination) ctx.|ookup(DEST_LOOKUP_NAME);

Oreate a nessage producer.

MessagePr oducer nyProducer = nySession. creat eProducer (nyDest);

Oreate a message consuner.

MessageConsuner  myConsuner = nySessi on. cr eat eConsurer (nyDest ) ;

Oreate a nessage.

Text Message out Msg = nySessi on. cr eat eText Message("Hel o, World!");

Send the message to the destination.

Systemout. println("Sending nessage: " + outMsg. get Text());
nyPr oducer . send( out Msg) ;

Start the connection.

nyConnection.start();

Recei ve a nmessage fromthe destination.

Message inMsg = nyConsuner.receive();

34 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients




Compiling and Running a Client Application

Code Example 1-1 Simple Message Queue Client Application (Continued)

Il Retrieve the contents of the nessage.

if (inMg instanceof Text Message)
{ Text Message txtMg = (TextMessage) inMsg;
Systemout. println("Recei ved nessage: " + txtMg.getText());

}

/1 dose the session and the connection.

nySessi on. cl ose() ;
nyConnect i on. cl ose() ;

}

catch (Exception jnse)
{ Systemout.println( "Exception occurred: " + jnmse.toString() );
jmse. printStackTrace();

To compile and run Java clients in a Message Queue environment, it is
recommended that you use the Java 2 SDK, Standard Edition, version 1.4 or later,
though version 1.2 is also supported. The recommended SDK can be downloaded
from the following location:

http://java. sun. com j 2se/ 1. 4

Be sure to set your CLASSPATHenvironment variable correctly, as described in
“Setting Up Your Environment” on page 23, before attempting to compile or run a
client application.

Chapter1  Overview 35


http://java.sun.com/j2se/1.4

Compiling and Running a Client Application

NOTE If you are using JDK 1.5, you will get compiler errors if you use
the unqualified JMS Queue class along with the import statement

inport java.util.*

This is because the packagesj ava. util and j avax. j ns both
contain a class named Queue. To avoid the compilation errors,
you must eliminate the ambiguity by either fully qualifying
references to the JIMS Queue class as j avax. j ns. Queue or
correcting your import statements to refer to specific individual
java.util classes.

The following steps for compiling and running the Hel | oWr | dMessage application
are furnished strictly as an example. The program is shipped precompiled; you do
not actually need to compile it yourself (unless, of course, you modify its source
code).

[0 To Compile and Run the Hel | oWor | dMessage Application
1. Make the directory containing the application your current directory.

The Message Queue example applications directory on Solaris is not writable
by users, so copy the Hel | oWr | dMessage application to a writable directory
and make that directory your current directory.

2. Compile the Hel | oWr | dMessage application:

javac Hel | oWor| dMessage. j ava

This creates the file Hel | oWor | dMessage. cl ass in your current directory.
3. Run the Hel | oWor | dMessage application:

java Hel | oWr| dMessage

The program should display the following output:

Sendi ng Message: Hello, Wrld!
Recei ved Message: Hello, World!

36 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Deploying a Client Application

Deploying a Client Application

When you are ready to deploy your client application, you should make sure your
Message Queue administrator knows your application’s needs. The checklist in
Table 1-4 shows the general information required; consult with your administrator
for specific details. In some cases, it may be useful to provide a range of values
rather than a specific value. See the Message Queue Administration Guide for details
on configuration and on attribute names and default values for administered
objects.

Table 1-4  Checklist for the Message Queue Administrator

Administered objects

Connection factories

Type
JNDI lookup name
Other attributes

Destinations

Type (queue or topic)
JNDI lookup name
Physical destination name

Physical destinations

Type

Name

Attributes

Maximum number of messages expected
Maximum size of messages expected
Maximum message bytes expected

Broker or broker cluster

Name
Port
Properties

Dead message queue

Place dead messages on dead message queue?
Log placement of messages on dead message queue?
Discard body of messages placed on dead message queue?

Chapter1  Overview 37



Example Application Code

Example Application Code

The Message Queue installation includes example programs illustrating both JIMS
and JAXM messaging (see “Working with SOAP Messages” on page 141). They are
located in the following directories:

e On Solaris: / usr/ deno/ i ny
e On Linux:/opt/sun/ ng/ exanpl es
e On Windows: | M) HOVE\ deno\

Each directory (except the JMS directory) contains a READVE file describing the
source files included in that directory. Table 1-5 shows the directories of interest to
Message Queue Java clients.

Table 1-5  Example Programs

Directory Contents

hel I owor |l d Sample programs showing how to create and deploy a JMS client
in Message Queue, including the steps required to create
administered objects and to look up such objects with INDI from
within client code

jms Sample programs demonstrating the use of the JMS API with
Message Queue

j axm Sample programs demonstrating the use of SOAP messages in
conjunction with JMS in Message Queue

appl i cati ons Four subdirectories containing source code for the following:

* A GUI application using the JMS API to implement a simple
chat application

e A GUI application using the Message Queue JMS monitoring
API to obtain a list of queues from a Message Queue broker
and browse their contents with a JMS queue browser

* The Message Queue Ping demo program

* The Message Queue Applet demo program

moni t ori ng Sample programs demonstrating the use of the JMS API to monitor
a message broker

j dbc Examples for plugging in a PointBase and an Oracle database

i ngobj ngr Examples of i ngobj ngr command files

38 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Chapter 2

Using the Java API

This chapter describes how to use the classes and methods of the Message Queue
Java application programming interface (API) to accomplish specific tasks, and
provides brief code samples to illustrate some of these tasks. (For clarity, the code
samples shown in the chapter omit an exception check.) The topics covered include
the following:

= “Messaging Domains” on page 39

= “Working With Connections” on page 41
= “Working With Destinations” on page 49
= “Working With Sessions” on page 53

= “Working With Messages” on page 58

This chapter does not provide exhaustive information about each class and
method. For detailed reference information, see the JavaDoc documentation for
each individual class. For information on the practical design of Message Queue
Java programs, see Chapter 3, “Message Queue Clients: Design and Features.”

Messaging Domains

The Java Message Service (JMS) specification, which Message Queue implements,
supports two commonly used models of interaction between message clients and
message brokers, sometimes known as messaging domains:

= In the point-to-point (or PTP) messaging model, each message is delivered from
a message producer to a single message consumer. The producer delivers the
message to a queue, from which it is later delivered to one of the consumers
registered for the queue. Any number of producers and consumers can interact

39



Messaging Domains

with the same queue, but each message is guaranteed to be delivered to—and
successfully consumed by—exactly one consumer and no more. If no
consumers are registered for a queue, it holds the messages it receives and
eventually delivers them when a consumer registers.

In the publish/subscribe (or pub/sub) model, a single message can be delivered
from a producer to any number of consumers. The producer publishes the
message to a topic, from which it is then delivered to all active consumers that
have subscribed to the topic. Any number of producers can publish messages to
a given topic, and each message can be delivered to any number of subscribed
consumers. The model also supports the notion of durable subscriptions, in
which a consumer registered with a topic need not be active at the time a
message is published; when the consumer subsequently becomes active, it will
receive the message. If no active consumers are registered for a topic, the topic
does not hold the messages it receives unless it has inactive consumers with
durable subscriptions.

JMS applications are free to use either of these messaging models, or even to mix
them both within the same application. Historically, the JMS API provided a
separate set of domain-specific object classes for each model. While these
domain-specific interfaces continue to be supported for legacy purposes, client
programmers are now encouraged to use the newer unified domain interface, which
supports both models indiscriminately. For this reason, the discussions and code
examples in this manual focus exclusively on the unified interfaces wherever
possible. Table 2-1 shows the API classes for all three domains.

Table 2-1  Interface Classes for Messaging Domains

Unified Domain Point-to-Point Domain Publish/Subscribe Domain
Desti nati on* Queue Topi ¢

Connect i onFact ory QueueConnect i onFact ory Topi cConnect i onFact ory
Connecti on QueueConnect i on Topi cConnecti on

Sessi on QueueSessi on Topi cSessi on

MessagePr oducer QueueSender Topi cPubl i sher
MessageConsuner QueueRecei ver Topi cSubscri ber

1. Depending on programming approach, you might specify a particular destination type (Queue or Topi c).

40 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Connections

Working With Connections

All messaging occurs within the context of a connection. Connections are created via
a connection factory encapsulating all of the needed configuration properties for
connecting to a particular JMS provider. A connection’s configuration properties
are completely determined by the connection factory, and cannot be changed once
the connection has been created. Thus the only way to control the properties of a
connection is by setting those of the connection factory you use to create it.

Obtaining a Connection Factory

Typically, a connection factory is created for you by a Message Queue
administrator and preconfigured, using the administration tools described in the
Message Queue Administration Guide, with whatever property settings are
appropriate for connecting to particular JMS provider. The factory is then placed in
a publicly available administered object store, where you can access it by name via
the Java Naming and Directory Interface (JNDI) API. This arrangement has several
benefits:

= Itallows the administrator to control the properties of client connections to the
provider, ensuring that they are properly configured.

= It enables the administrator to tune performance and improve throughput by
adjusting configuration settings even after an application has been deployed.

= By relying on the predefined connection factory to handle the configuration
details, it helps keep client code provider-independent and thus more easily
portable from one JMS provider to another.

Sometimes, however, it may be more convenient to dispense with JNDI lookup and
simply create your own connection factory by direct instantiation. Although
hard-coding configuration values for a particular JMS provider directly into your
application code sacrifices flexibility and provider-independence, this approach
might make sense in some circumstances—such as in the early stages of
application development and debugging, or in applications where
reconfigurability and portability to other providers are not important concerns.

The following sections describe these two approaches to obtaining a connection
factory: by JNDI lookup or direct instantiation.

Looking Up a Connection Factory With JNDI

Code Example 2-1 shows how to look up a connection factory object in the JNDI
object store.

Chapter 2 Using the Java APl 41



Working With Connections

NOTE If a Message Queue client is a J2EE component, JNDI resources are
provided by the J2EE container. In such cases, JNDI lookup code
may differ from that shown here; see your J2EE provider
documentation for details.

Code Example 2-1 Looking Up a Connection Factory

I

—~—
—_——

I

iy

Ceate the environnent for constructing the initial JND namng context.

Hashtabl e env = new Hashtabl e();

Store the environment attributes that tell JNDI which initial context factory to use
and where to find the provider.

env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY, "com sun. jndi . fscont ext. Ref FSCont ext Factory");
env. put (Context. PROVIDER URL, "file:///C /i ny_adm n_objects");

Ceate the initial context.

Context ctx = new I nitial Context(env);

Look up the connection factory object in the JND object store.

String CF_LOOKUP_NAME = "M/Connecti onFactory";
ConnectionFactory nyFactory = (ConnectionFactory) ctx.|ookup(CF_LOOKUP_NAME) ;

42

The procedure consists of the following steps:

[0 To Look Up a Connection Factory With JNDI
1. Create the environment for constructing the initial INDI naming context.

How you create the initial context depends on whether you are using a
file-system object store or a Lightweight Directory Access Protocol (LDAP)
server for your Message Queue administered objects. The code shown here
assumes a file-system store; for information about the corresponding LDAP
object store attributes, see the Message Queue Administration Guide.

The constructor for the initial context accepts an environment parameter, a
hash table whose entries specify the attributes for creating the context:

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



file:///C:/imq_admin_objects

Working With Connections

Hashtabl e env = new Hashtabl e();

You can also set an environment by specifying system properties on the
command line, rather than programmatically. For instructions, see the READVE
file in the JMS example applications directory.

2. Store the environment attributes that tell INDI which initial context factory to
use and where to find the JMS provider.

The names of these attributes are defined as static constants in class Cont ext :

env. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY,
"com sun. j ndi . fscont ext . Ref FSCont ext Fact ory");
env. put (Cont ext. PROVIDER_URL, "file:///C: /img_admin_objects") ;

NOTE The directory represented by C. / img_admin_objects must already
exist; if necessary, you must create the directory before
referencing it in your code.

3. Create the initial context.
Context ctx = new Initial Context(env);

If you use system properties to set the environment, omit the environment
parameter when creating the context:

Context ctx = new Initial Context();

4. Look up the connection factory object in the administered object store and
typecast it to the appropriate class:

String CF_LOCKUP_NAME = "M Connecti onFact ory";
Connect i onFact ory
nyFactory = (ConnectionFactory) ctx. | ookup(C-_LOOKUP_NAME) ;

The lookup name you use, CF_LOOKUP_NAME, must match the name used when
the object was stored.

You can now proceed to use the connection factory to create connections to the
message broker, as described under “Using Connections” on page 46.

Overriding Configuration Settings

It is recommended that you use a connection factory just as you receive it from a
JNDI lookup, with the property settings originally configured by your Message
Queue administrator. However, there may be times when you need to override the
preconfigured properties with different values of your own. You can do this from

Chapter 2 Using the Java APl 43


file:///C:/imq_admin_objects

Working With Connections

44

within your application code by calling the connection factory’s set Property
method. This method (inherited from the superclass Adni ni st er edCbj ect ) takes two
string arguments giving the name and value of the property to be set. The property
names for the first argument are defined as static constants in the Message Queue
class Connect i onConfi gur at i on: for instance, the statement

nyFact ory. set Property( Connecti onConfi gurati on. i rgDef aul t Passwor d,
"mel | on");

sets the default password for establishing broker connections. See the Message
Queue Administration Guide for complete information on the available connection
factory configuration properties.

It is also possible to override connection factory properties from the command line,
by using the - Doption to set their values when starting your client application. For
example, the command line

java -Di ngDef aul t Passwor d=rrel | on MM i ent

starts an application named MM i ent with the same default password as in the
preceding example. Setting a property value this way overrides any other value
specified for it, whether preconfigured in the JNDI object store or set
programmatically with the set Property method.

NOTE A Message Queue administrator can prevent a connection factory’s
properties from being overridden by specifying that the object be
read-only when placing it in the object store. The properties of such
a factory cannot be changed in any way, whether with the - Doption
from the command line or via the set Pr oper t y method from within
your client application’s code. Any attempt to override the factory’s
property values will simply be ignored.

Instantiating a Connection Factory

Code Example 2-2 shows how to create a connection factory object by direct
instantiation and configure its properties.

Code Example 2-2 Instantiating a Connection Factory

Il Instantiate the connection factory object.

com sun. nessagi ng. Connect i onFact ory
nyFact ory = new com sun. nessagi ng. Connect i onFact ory();

/1 Set the connection factory's configuration properties.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Connections

Code Example 2-2 Instantiating a Connection Factory (Continued)

nyFact ory. set Propert y(Connect i onConfi gurati on. i ngAddr essLi st ,
"l ocal host : 7676, br oker 2: 5000, br oker 3: 9999") ;

The steps are as follows:

[0 To Instantiate and Configure a Connection Factory

1.

Instantiate the connection factory object.

The name Connect i onFact ory is defined both as a JMS interface (in package

j avax. j ns) and as a Message Queue class (in com sun. messagi ng) that
implements that interface. Since only a class can be instantiated, you must use
the constructor defined in com sun. messagi ng to create your connection factory
object. Note, however, that you cannot import the name from both packages
without causing a compilation error. Hence, if you have imported the entire
package j avax. j ms. *, you must qualify the constructor with the full package
name when instantiating the object:

com sun. messagi ng. Connect i onFact ory
nyFactory = new com sun. nessagi ng. Connect i onFact ory();

Notice that the type declaration for the variable nyFact ory, to which the
instantiated connection factory is assigned, is also qualified with the full
package name. This is because the set Property method, used in Step 2,
belongs to the Connect i onFact ory class defined in the package

com sun. messagi ng, rather than to the Connect i onFact or y interface defined in
j avax. j ms. Thus in order for the compiler to recognize this method, nyFact ory
must be typed explicitly as com sun. nessagi ng. Connect i onFact ory rather
than simply Connect i onFact ory (which would resolve to

j avax. j ms. Connect i onFact ory after importing j avax. j ns. *).

Set the connection factory’s configuration properties.

The most important configuration property is i ngAddr essLi st , which specifies
the host names and port numbers of the message brokers to which the factory
creates connections. By default, the factory returned by the Connect i onFact ory
constructor in Step 1 is configured to create connections to a broker on host

| ocal host at port number 7676. If necessary, you can use the set Property
method, described in the preceding section, to change that setting:

Chapter 2 Using the Java APl 45



Working With Connections

46

nyFact ory. set Property(Connecti onConfi gurati on. i ngAddr essLi st
"| ocal host: 7676, br oker 2: 5000, br oker 3: 9999") ;

Of course, you can also set any other configuration properties your application
may require. See the Message Queue Administration Guide for a list of the
available connection factory properties.

You can now proceed to use the connection factory to create connections to the
message service, as described in the next section.

Using Connections

Once you have obtained a connection factory, you can use it to create a connection
to the message service. The factory’s cr eat eConnect i on method takes a user name
and password as arguments:

Connecti on
nyConnect i on = nyFact ory. creat eConnection("mthrandir", "mellon");

Before granting the connection, Message Queue authenticates the user name and
password by looking them up in its user repository. As a convenience for
developers who do not wish to go to the trouble of populating a user repository
during application development and testing, there is also a parameterless form of
the cr eat eConnect i on method:

Connection nyConnection = nyFactory. createConnection();

This creates a connection configured for the default user identity, with both user
name and password set to guest .

This unified-domain cr eat eConnect i on method is part of the generic IMS
Connect i onFact ory interface, defined in package j avax. j ns; the Message Queue
version in com sun. messagi ng adds corresponding methods

creat eQueueConnect i on and creat eTopi cConnect i on for use specifically with the
point-to-point and publish/subscribe domains.

Table 2-2 shows the methods defined in the Connect i on interface.

Table 2-2  Connection Methods

Name Description

creat eSessi on Create session
setdientID Set client identifier
getdientlD Get client identifier

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Connections

Table 2-2  Connection Methods (Continued)

Name Description

set Except i onLi st ener Set exception listener

get Except i onLi st ener Get exception listener

get Met aDat a Get metadata for connection
cr eat eConnect i onConsurner Create connection consumer

cr eat eDur abl eConnect i onConsuner Create durable connection consumer

start Start incoming message delivery
stop Stop incoming message delivery
cl ose Close connection

The main purpose of a connection is to create sessions for exchanging messages
with the message service:

nyConnect i on. creat eSessi on(fal se, Sessi on. AUTO ACKNOALEDGE) ;

The first argument to cr eat eSessi on is a boolean indicating whether the session is
transacted; the second specifies its acknowledgment mode. Possible values for this
second argument are AUTO ACKNONLEDGE, CLI ENT_ACKNOALEDGE, and

DUPS_ K _ACKNOWLEDGE, all defined as static constants in the standard JMS Sessi on
interface, j avax. j ns. Sessi on; the extended Message Queue version of the
interface, com sun. messagi ng. j ms. Sessi on, adds another such constant,

NO ACKNOALEDGE. See “Acknowledgment Modes” on page 54 and “Transacted
Sessions” on page 57 for further discussion.

If your client application will be using the publish/subscribe domain to create
durable topic subscriptions, it must have a client identifier to identify itself to the
message service. In general, the most convenient arrangement is to configure the
client runtime to provide a unique client identifier automatically for each client.
However, the Connect i on interface also provides amethod, set A i ent | D, for setting
aclient identifier explicitly, and a corresponding get d i ent | Dmethod for retrieving
its value. See “Assigning Client Identifiers” on page 91 and the Message Queue
Administration Guide for more information.

You should also use the set Except i onLi st ener method to register an exception
listener for the connection. This is an object implementing the JMS
Excepti onLi st ener interface, which consists of the single method onExcept i on:

voi d onException (JVMSException exception)

Chapter 2 Using the Java APl 47



Working With Connections

48

In the event of a problem with the connection, the message broker will call this
method, passing an exception object identifying the nature of the problem.

A connection’s get Met aDat a method returns a Connect i onhet aDat a object, which in
turn provides methods for obtaining various items of information about the
connection, such as its JMS version and the name and version of the JMS provider.

The cr eat eConnect i onConsurner and cr eat eDur abl eConnect i onConsuner methods
(as well as the session methods set MessagelLi st ener and get MessagelLi st ener,
listed in Table 2-3 on page 53) are used for concurrent message consumption; see
the Java Message Service Specification for more information.

In order to receive incoming messages, you must 7start the connection by calling its
start method:

nyConnection. start();

It is important not to do this until after you have created any message consumers
you will be using to receive messages on the connection. Starting the connection
before creating the consumers risks missing some incoming messages before the
consumers are ready to receive them. It is not necessary to start the connection in
order to send outgoing messages.

If for any reason you need to suspend the flow of incoming messages, you can do
so by calling the connection’s st op method:

myConnecti on. st op();

To resume delivery of incoming messages, call the st art method again.

Finally, when you are through with a connection, you should close it to release any
resources associated with it:

nyConnect i on. cl ose();

This automatically closes all sessions, message producers, and message consumers
associated with the connection and deletes any temporary destinations. All
pending message receives are terminated and any transactions in progress are
rolled back. Closing a connection does not force an acknowledgment of
client-acknowledged sessions.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Destinations

Working With Destinations

All Message Queue messages travel from a message producer to a message
consumer by way of a destination on a message broker. Message delivery is thus a
two-stage process: the message is first delivered from the producer to the
destination and later from the destination to the consumer. Physical destinations
on the broker are created administratively by a Message Queue administrator,
using the administration tools described in the Message Queue Administration
Guide; the broker provides routing and delivery services for messages sent to such
a destination.

As described earlier under “Messaging Domains” on page 39, Message Queue
supports two types of destination, depending on the messaging domain being
used:

= Queues (point-to-point domain)
= Topics (publish/subscribe domain)

These two types of destination are represented by the Message Queue classes
Queue and Topi ¢, respectively. These, in turn, are both subclasses of the generic
class Dest i nat i on, part of the unified messaging domain that subsumes both the
point-to-point and publish-subscribe domains. A client program that uses the
Dest i nati on superclass can thus handle both queue and topic destinations
indiscriminately.

Looking Up a Destination With JNDI

Because JMS providers differ in their destination addressing conventions, Message
Queue does not define a standard address syntax for obtaining access to a
destination. Rather, the destination is typically placed in a publicly available
administered object store by a Message Queue administrator and accessed by the
client via a JNDI lookup in a manner similar to that described earlier for connection
factories (see “Looking Up a Connection Factory With JNDI”” on page 41).

Code Example 2-3 shows how to look up a destination object in the JNDI object
store.

NOTE If a Message Queue client is a J2EE component, JNDI resources are
provided by the J2EE container. In such cases, JNDI lookup code
may differ from that shown here; see your J2EE provider
documentation for details.

Chapter 2 Using the Java APl 49



Working With Destinations

Code Example 2-3 Looking Up a Destination

I

—~—
—_——

I

iy

Ceate the environnent for constructing the initial JND namng context.

Hashtabl e env = new Hashtabl e();

Store the environment attributes that tell JNDI which initial context factory to use
and where to find the provider.

env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY, "com sun. j ndi . fscont ext. Ref FSCont ext Factory");
env. put (Context. PROVIDER URL, "file:///C /i nmy_adm n_objects");

Ceate the initial context.

Context ctx = new I nitial Context(env);

Look up the destination object in the JNDI object store.

String DEST_LOCKUP_NAME = "MDest";
Destination MDest = (Destination) ctx.|ookup(DEST_LOOKUP_NAME);

50

The procedure consists of the following steps:

[0 To Look Up a Destination With JNDI
1. Create the environment for constructing the initial INDI naming context.

How you create the initial context depends on whether you are using a
file-system object store or a Lightweight Directory Access Protocol (LDAP)
server for your Message Queue administered objects. The code shown here
assumes a file-system store; for information about the corresponding LDAP
object store attributes, see the Message Queue Administration Guide.

The constructor for the initial context accepts an environment parameter, a
hash table whose entries specify the attributes for creating the context:

Hashtabl e env = new Hashtabl e();

You can also set an environment by specifying system properties on the
command line, rather than programmatically. For instructions, see the READVE
file in the JMS example applications directory.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



file:///C:/imq_admin_objects

Working With Destinations

2. Store the environment attributes that tell INDI which initial context factory to
use and where to find the JMS provider.

The names of these attributes are defined as static constants in class Cont ext :

env. put (Cont ext. I NI TI AL_CONTEXT_FACTCRY,
"com sun. j ndi . fscont ext . Ref FSCont ext Fact ory");
env. put (Cont ext. PROVIDER_URL, "file:///C:/img_admin_objects") ;

NOTE The directory represented by C. / img_admin_objects must already
exist; if necessary, you must create the directory before
referencing it in your code.

3. Create the initial context.
Context ctx = new Initial Context(env);

If you use system properties to set the environment, omit the environment
parameter when creating the context:

Context ctx = new Initial Context();

4. Look up the destination object in the administered object store and typecast it
to the appropriate class:

String DEST_LOOKUP_NAME = "MDest";
Destination MDest = (Destination) ctx.|ookup(DEST_LOCKUP_NAME) ;

The lookup name you use, DEST_LOXKUP_NAME, must match the name used when
the object was stored. Note that the actual destination object returned from the
object store will always be either a (point-to-point) queue or a
(publish/subscribe) topic, but that either can be assigned to a variable of the
generic unified-domain class Dest i nat i on.

You can now proceed to send and receive messages via the destination, as
described under “Sending Messages” on page 69 and “Receiving Messages” on
page 71.

Chapter 2 Using the Java APl 51


file:///C:/imq_admin_objects

Working With Destinations

52

Instantiating a Destination

As with connection factories, you may sometimes find it more convenient to
dispense with JNDI lookup and simply create your own queue or topic destination
objects by direct instantiation. Although a variable of type Dest i nati on can accept
objects of either class, you cannot directly instantiate a Dest i nati on object; the
object must always belong to one of the specific classes Queue or Topi c. The
constructors for both of these classes accept a string argument specifying the name
of the physical destination to which the object corresponds:

Destination nyDest = new com sun. nessagi ng. Queue("nmyDest");

Note, however, that this only creates a Java object representing the destination; it
does not actually create a physical destination on the message broker. The physical
destination itself must still be created by a Message Queue administrator, with the
same name you pass to the constructor when instantiating the object.

NOTE Destination names beginning with the letters ny are reserved and
should not be used by client programs.

Unlike connection factories, destinations have a much more limited set of
configuration properties. In fact, only two such properties are defined in the
Message Queue class Dest i nati onConfi gurati on: the name of the physical
destination itself (i ngDest i nat i onNane) and an optional descriptive string

(i myDest i nati onDescri pti on). Since the latter property is rarely used and the
physical destination name can be supplied directly as an argument to the Queue or
Topi ¢ constructor as shown above, there normally is no need (as there often is with
a connection factory) to specify additional properties with the object’s set Property
method. Hence the variable to which you assign the destination object (nyDest in
the example above) need not be typed with the Message Queue class

com sun. messagi ng. Dest i nat i on; the standard JMS interface

j avax. j ns. Desti nati on (which the Message Queue class implements) is sufficient.
If you have imported the full IMS package j avax. j ms. *, you can simply declare
the variable with the unqualified name Dest i nat i on, as above, rather than with
something like

com sun. messagi ng. Desti nati on
nyDest = new com sun. nessagi ng. Queue("nyDest");

as shown earlier for connection factories.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Sessions

Temporary Destinations

A temporary destination is one that exists only for the duration of the connection that
created it. You may sometimes find it convenient to create such a destination to
use, for example, as a reply destination for messages you send. Temporary
destinations are created with the session method cr eat eTenpor ar yQueue or

creat eTenpor ar yTopi ¢ (see “Working With Sessions,” below): for example,

Tenpor aryQueue tenpQueue = nySession. creat eTenpor ar yQueue() ;

Although the temporary destination is created by a particular session, its scope is
actually the entire connection to which that session belongs. Any of the
connection’s sessions (not just the one that created the temporary destination) can
create a message consumer for the destination and receive messages from it. The
temporary destination is automatically deleted when its connection is closed, or
you can delete it explicitly by calling its del et e method:

t enpQueue. del ete() ;

Working With Sessions

A session is a single-threaded context for producing and consuming messages. You
can create multiple message producers and consumers for a single session, but you
are restricted to using them serially, in a single logical thread of control.

Table 2-3 shows the methods defined in the Sessi on interface; they are discussed in
the relevant sections below.

Table 2-3  Session Methods

Name Description

creat eProducer Create message producer

cr eat eConsuner Create message consumer

cr eat eDur abl eSubscri ber Create durable subscriber for topic
unsubscri be Delete durable subscription to topic
creat eMessage Create null message

creat eText Message Create text message

creat eSt r eanessage Create stream message

creat eMapMessage Create map message

creat eChj ect Message Create object message

Chapter 2 Using the Java APl 53



Working With Sessions

54

Table 2-3  Session Methods (Continued)

Name Description

creat eByt esMessage Create bytes message

creat eQueue Create queue destination

creat eTopi c Create topic destination

creat eTenpor ar yQueue Create temporary queue

creat eTenpor ar yTopi ¢ Create temporary topic

creat eBr owser Create message browser

set MessagelLi st ener Set distinguished message listener
get MessagelLi st ener Get distinguished message listener
get Acknowl edgeMbde Get session’s acknowledgment mode
get Transact ed Is session transacted?

conmi t Commit transaction

rol | back Roll back transaction

recover Recover unacknowledged messages
cl ose Close session

Every session exists within the context of a particular connection. The number of
sessions you can create for a single connection is limited only by system resources.
As described earlier (see “Using Connections” on page 46), you use the
connection’s cr eat eSessi on method to create a session:

Sessi on
nySessi on = nyConnect i on. cr eat eSessi on(f al se,
Sessi on. AUTO ACKNOMLEDGE) ;

The first (boolean) argument specifies whether the session is transacted; see
“Transacted Sessions” on page 57 for further discussion. The second argument is
an integer constant representing the session’s acknowledgment mode, as described
in the next section.

Acknowledgment Modes

A session’s acknowledgment mode determines the way your application handles the
exchange of acknowledgment information when receiving messages from a broker.
The JMS specification defines three possible acknowledgment modes:

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Sessions

In auto-acknowledge mode, the Message Queue client runtime immediately sends
a client acknowledgment for each message it delivers to the message consumer; it
then blocks waiting for a return broker acknowledgment confirming that the
broker has received the client acknowledgment. This acknowledgment
“handshake” between client and broker is handled automatically by the client
runtime, with no need for explicit action on your part.

In client-acknowledge mode, your client application must explicitly acknowledge
the receipt of all messages. This allows you to defer acknowledgment until
after you have finished processing the message, ensuring that the broker will
not delete it from persistent storage before processing is complete. You can
either acknowledge each message individually or batch multiple messages and
acknowledge them all at once; the client acknowledgment you send to the
broker applies to all messages received since the previous acknowledgment. In
either case, as in auto-acknowledge mode, the session thread blocks after
sending the client acknowledgment, waiting for a broker acknowledgment in
return to confirm that your client acknowledgment has been received.

In dups-OK-acknowledge mode, the session automatically sends a client
acknowledgment each time it has received a fixed number of messages, or
when a fixed time interval has elapsed since the last acknowledgment was
sent. (This fixed batch size and timeout interval are currently 10 messages and
7 seconds, respectively, and are not configurable by the client.) Unlike the first
two modes described above, the broker does not acknowledge receipt of the
client acknowledgment, and the session thread does not block awaiting such
return acknowledgment from the broker. This means that you have no way to
confirm that your acknowledgment has been received; if it is lost in
transmission, the broker may redeliver the same message more than once.
However, because client acknowledgments are batched and the session thread
does not block, applications that can tolerate multiple delivery of the same
message can achieve higher throughput in this mode than in
auto-acknowledge or client-acknowledge mode.

Message Queue extends the JMS specification by adding a fourth acknowledgment
mode:

In no-acknowledge mode, your client application does not acknowledge receipt of
messages, nor does the broker expect any such acknowledgment. There is thus
no guarantee whatsoever that any message sent by the broker has been
successfully received. This mode sacrifices all reliability for the sake of
maximum throughput of message traffic.

Chapter 2 Using the Java APl 55



Working With Sessions

The standard JMS Sessi on interface, defined in package j avax. j s, defines static
constants for the first three acknowledgment modes (AUTO_ACKNONLEDGE,

CLI ENT_ACKNOWLEDGE, and DUPS_OK_ACKNONLEDGE), to be used as arguments to the
connection’s cr eat eSessi on method. The constant representing the fourth mode
(NO_ACKNOALEDGE) is defined in the extended Message Queue version of the
interface, in package com sun. messagi ng. j ns. The session method

get Acknow edgeMbde returns one of these constants:

int ackMbdde = nySessi on. get Acknow edgeMde() ;
swi tch (ackMode)
{
case Sessi on. AUTO ACKNOMLEDCE:
/* Code here to handl e auto-acknow edge node */
br eak;

case Session. CLI ENT_ACKNOALEDGE:

/* Code here to handl e client-acknow edge node */
br eak;

case Session. DUPS_ (K ACKNONEDCE:
/* Code here to handl e dups- OK- acknow edge node */
br eak;

case com sun. messagi ng. j nms. Sessi on. NO_ ACKNONLEDGE:
/* Code here to handl e no-acknow edge node */
br eak;

NOTE All of the acknowledgment modes discussed above apply to
message consumption. For message production, the broker’s
acknowledgment behavior depends on the message’s delivery
mode (persistent or nonpersistent; see “Message Header” on
page 58). The broker acknowledges the receipt of persistent
messages, but not of nonpersistent ones; this behavior is not
configurable by the client.

In a transacted session (see next section), the acknowledgment mode is ignored and
all acknowledgment processing is handled for you automatically by the Message
Queue client runtime. In this case, the get Acknow edgeMbde method returns the
special constant Sessi on. SESSI ON_TRANSACTED.

56 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Working With Sessions

Transacted Sessions

Transactions allow you to group together an entire series of incoming and outgoing
messages and treat them as an atomic unit. The message broker tracks the state of
the transaction’s individual messages, but does not complete their delivery until
you commit the transaction. In the event of failure, you can roll back the transaction,
canceling all of its messages and restarting the entire series from the beginning.

Transactions always take place within the context of a single session. To use them,
you must create a transacted session by passing t r ue as the first argument to a
connection’s cr eat eSessi on method:

Sessi on
nySessi onmyConnect i on. cr eat eSessi on(t rue,Sessi on. SESSI ON_TRANSACTED) ;

The session’s get Tr ansact ed method tests whether it is a transacted session:

if ( nySession.getTransacted() )
{ I'* Code here to handl e transacted session */

}

el se
{ /* Code here to handl e non-transacted session */

}

A transacted session always has exactly one open transaction, encompassing all
messages sent or received since the session was created or the previous transaction
was completed. Committing or rolling back a transaction ends that transaction and
automatically begins another.

NOTE Because the scope of a transaction is limited to a single session, it is
not possible to combine the production and consumption of a
message into a single end-to-end transaction. That is, the delivery of
a message from a message producer to a destination on the broker
cannot be placed in the same transaction with its subsequent
delivery from the destination to a consumer.

When all messages in a transaction have been successfully delivered, you call the
session’s commi t method to commit the transaction:

nySessi on. comit () ;

All of the session’s incoming messages are acknowledged and all of its outgoing
messages are sent. The transaction is then considered complete and a new one is
started.

Chapter 2 Using the Java APl 57



Working With Messages

When a send or receive operation fails, an exception is thrown. While it is possible
to handle the exception by simply ignoring it or by retrying the operation, it is
recommended that you roll back the transaction, using the session’s rol | back
method:

nmySessi on. rol | back();

All of the session’s incoming messages are recovered and redelivered, and its
outgoing messages are destroyed and must be re-sent.

Working With Messages

58

This section describes how to use the Message Queue Java API to compose, send,
receive, and process messages.

Message Structure

A message consists of the following parts:
= A header containing identifying and routing information

= Optional properties that can be used to convey additional identifying
information beyond that contained in the header

= A body containing the actual content of the message

The following sections discuss each of these in greater detail.

Message Header

Every message must have a header containing identifying and routing information.
The header consists of a set of standard fields, which are defined in the Java
Message Service Specification and summarized in Table 2-4. Some of these are set
automatically by Message Queue in the course of producing and delivering a
message, some depend on settings specified when a message producer sends a
message, and others are set by the client on a message-by-message basis.

Table 2-4  Message Header Fields

Name Description
JVBMessagel D Message identifier
JMBDest i nation Destination to which message is sent

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

Table 2-4  Message Header Fields (Continued)
Name Description
JMBRepl yTo Destination to which to reply

JMBCorrel ationl D
JNVBDel i ver yMode
JMBPriority

JVBTI mest anp
JMBExpi ration
JMBType

JMBRedel i vered

Link to related message

Delivery mode (persistent or nonpersistent)

Priority level

Time of transmission
Expiration time
Message type

Has message been delivered before?

The JMS Message interface defines methods for setting the value of each header

field: for instance,

out Msg. set JIMSRepl yTo(repl yDest ) ;

Table 2-5 lists all of the available header specification methods.

Table 2-5

Message Header Specification Methods

Name

Description

set JMBMessagel D

set JMSDest i nat i on
set JMBRepl yTo

set JMSCorrel ationl D
set JMSCor rel at i onl DAsByt es
set JMBDel i ver yMode
set IMBPriority

set JVBTI mest anp

set JMBExpi rati on

set IMBType

set JMSRedel i ver ed

Set message identifier

Set destination

Set reply destination

Set correlation identifier from string

Set correlation identifier from byte array
Set delivery mode

Set priority level

Set time stamp

Set expiration time

Set message type

Set redelivered flag

Chapter 2

Using the Java API

59



Working With Messages

60

The message identifier (JMSMessagel D) is a string value uniquely identifying the
message, assigned and set by the message broker when the message is sent.
Because generating an identifier for each message adds to both the size of the
message and the overhead involved in sending it, and because some client
applications may not use them, the JMS interface provides a way to suppress the
generation of message identifiers, using the message producer method

set Di sabl eMessagel D (see “Sending Messages” on page 69).

The JMBDest i nati on header field holds a Dest i nati on object representing the
destination to which the message is directed, set by the message broker when the
message is sent. There is also a JMSRepl yTo field that you can set to specify a
destination to which reply messages should be directed. Clients sending such a
reply message can set its JMSCor r el at i onl Dheader field to refer to the message to
which they are replying. Typically this field is set to the message identifier string of
the message being replied to, but client applications are free to substitute their own
correlation conventions instead, using either the set JMSCor r el at i onl Dmethod (if
the field value is a string) or the more general set JMSCor r el at i onl DAsByt es (if it is
not).

The delivery mode (JMSDel i ver yMode) specifies whether the message broker should
log the message to stable storage. There are two possible values, PERSI STENT and
NON_PERSI STENT, both defined as static constants of the JMS interface Del i ver yMode:
for example,

out Msg. set JIMSDel i ver yMode( Del i ver yMbde. NON_PERSI STENT) ;

The default delivery mode is PERSI STENT, represented by the static constant
Message. DEFAULT_DELI VERY_MXDE.

The choice of delivery mode represents a tradeoff between performance and
reliability:

= In persistent mode, the broker logs the message to stable storage, ensuring that it
will not be lost in transit in the event of transmission failure; the message is
guaranteed to be delivered exactly once.

= In nonpersistent mode, the message is not logged to stable storage; it will be
delivered at most once, but may be lost in case of failure and not delivered at
all. This mode does, however, improve performance by reducing the broker’s
message-handling overhead. It may thus be appropriate for applications in
which performance is at a premium and reliability is not.

The message’s priority level (JMSPri ori ty) is expressed as an integer from 0
(lowest) to 9 (highest). Priorities from 0 to 4 are considered gradations of normal
priority, those from 5 to 9 of expedited priority. The default priority level is 4,
represented by the static constant Message. DEFAULT PRI CRI TY.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

The JMBTI nest anp header field is set by the Message Queue client runtime to the
time it delivers the message to the broker, expressed as a long integer in standard
Java format (milliseconds since midnight, January 1, 1970 UTC). The message’s
lifetime, specified when the message is sent, is added to this value and the result is
stored in the JMBExpi r at i on header field. (The default lifetime value of 0,
represented by the static constant Message. DEFAULT_TI ME_TO LI VE, denotes an
unlimited lifetime. In this case, the expiration time is also set to 0 to indicate that
the message never expires.) As with the message identifier, client applications that
do not use a message’s time stamp can improve performance by suppressing its
generation with the message producer method set D sabl eMessageTi nest anp (see
“Sending Messages” on page 69).

The header field JM5Type can contain an optional message type identifier string
supplied by the client when the message is sent. This field is intended for use with
other JMS providers; Message Queue clients can simply ignore it.

When a message already delivered must be delivered again because of a failure,
the broker indicates this by setting the IMSRedel i ver ed flag in the message header to
t rue. This can happen, for instance, when a session is recovered or a transaction is
rolled back. The receiving client can check this flag to avoid duplicate processing of
the same message (such as when the message has already been successfully
received but the client’s acknowledgment was missed by the broker).

See the Java Message Service Specification for a more detailed discussion of all
message header fields.

Message Properties

A message property consists of a name string and an associated value, which must be
either a string or one of the standard Java primitive data types (i nt, byt e, short,

| ong, fl oat,doubl e, orbool ean). The Message interface provides methods for setting
properties of each type (see Table 2-6). There is also a set Chj ect Property method

that accepts a primitive value in objectified form, as a Java object of class | nt eger,

Byt e, Short, Long, Fl oat , Doubl e, Bool ean, or St ri ng. The cl ear Properti es method
deletes all properties associated with a message; the message header and body are
not affected.

Table 2-6  Message Property Specification Methods

Name Description
setlntProperty Set integer property

set ByteProperty Set byte property

set Short Property Set short integer property

Chapter 2 Using the Java APl 61



Working With Messages

62

Table 2-6  Message Property Specification Methods (Continued)

Name Description

set LongProperty Set long integer property

set Fl oat Property Set floating-point property
set Doubl eProperty Set double-precision property
set Bool eanProperty Set boolean property

set StringProperty Set string property

set Obj ect Property Set property from object
clearProperties Clear properties

The JMS specification defines certain standard properties, listed in Table 2-7. By
convention, the names of all such standard properties begin with the letters JM5X;
names of this form are reserved and must not be used by a client application for its
own custom message properties. Similarly, property names beginning with
JMS_SWNare reserved for provider-specific properties defined by Message Queue
itself; these are discussed in Chapter 3, “Message Queue Clients: Design and
Features.”

Table 2-7  Standard JMS Message Properties

Name Description

JVBXUser | D Identity of user sending message

JVBXAppl D Identity of application sending message

JVBXDel i ver yCount Number of delivery attempts

JMBXG oupl D Identity of message group to which this message belongs

JVBX@ oupSeq Sequence number within message group

JVBXPr oducer TXI D Identifier of transaction within which message was
produced

JVMBXConsuner TXI D Identifier of transaction within which message was
consumed

JVMBXRev Ti mest anp Time message delivered to consumer

JVBXSt at e Message state (waiting, ready, expired, or retained)

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

Message Body

The actual content of a message is contained in the message body. JIMS defines six
classes (or types) of message, each with a different body format:

= A text message (interface Text Message) contains a Java string.

= A stream message (interface St r eanMessage) contains a stream of Java primitive
values, written and read sequentially.

= A map message (interface MapMessage) contains a set of name-value pairs, where
each name is a string and each value is a Java primitive value. The order of the
entries is undefined; they can be accessed randomly by name or enumerated
sequentially.

= An object message (interface (bj ect Message) contains a serialized Java object
(which may in turn be a collection of other objects).

= A bytes message (interface Byt esMessage) contains a stream of uninterpreted
bytes.

= A null message (interface Message) consists of a header only, with no message
body.

Each of these is a subinterface of the generic Message interface, extended with
additional methods specific to the particular message type.

Composing Messages

The JMS Sessi on interface provides methods for creating each type of message, as
shown in Table 2-8. For instance, you can create a text message with a statement
such as

Text Message out Msg = nySessi on. cr eat eText Message() ;

In general, these methods create a message with an empty body; the interfaces for
specific message types then provide additional methods for filling the body with
content, as described in the sections that follow.

Table 2-8  Session Methods for Message Creation

Name Description

creat eMessage Create null message
creat eText Message Create text message
creat eSt r eanessage Create stream message

Chapter 2 Using the Java APl 63



Working With Messages

Table 2-8  Session Methods for Message Creation (Continued)

Name Description

creat eMapMessage Create map message

creat eChj ect Message Create object message

creat eByt esMessage Create bytes message

NOTE Some of the message-creation methods have an overloaded form
that allows you to initialize the message body directly at creation:
for example,

Text Message

out Msg = nySessi on. creat eText Message("Hel o, World!");

These exceptions are pointed out in the relevant sections below.

Once a message has been delivered to a message consumer, its body is considered
read-only; any attempt by the consumer to modify the message body will cause an
exception (MessageNot Wi t eabl eExcept i on) to be thrown. The consumer can,
however, empty the message body and place it in a writeable state by calling the
message method cl ear Body:

out Msg. cl ear Body() ;

This places the message in the same state as if it had been newly created, ready to
fill its body with new content.

Composing Text Messages

You create a text message with the session method cr eat eText Message. You can
either initialize the message body directly at creation time

Text Message out Msg = nySessi on. creat eText Message("Hel l o, VWrld!");

or simply create an empty message and then use its set Text method (Table 2-9) to
set its content:

Text Message out Msg = nySessi on. cr eat eText Message() ;
out Msg. set Text ("Hel 1o, World!'");

64 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Working With Messages

Table 2-9  Text Message Composition Method

Name Description

set Text Set content string

Composing Stream Messages

The session method cr eat eSt r eamvessage returns a new, empty stream message.
You can then use the methods shown in Table 2-10 to write primitive data values
into the message body, similarly to writing to a data stream: for example,

Streanmvessage out Msg = nySessi on. creat eStr eanMessage() ;
out Msg. writeString("The Meaning of Life");
out Msg. writelnt (42);

Table 2-10 Stream Message Composition Methods

Name Description

writelnt Write integer to message stream

witeByte Write byte value to message stream
writeBytes Write byte array to message stream
writeShort Write short integer to message stream
writelLong Write long integer to message stream

wr it eFl oat Write floating-point value to message stream
wri t eDoubl e Write double-precision value to message stream
wri t eBool ean Write boolean value to message stream
writeChar Write character to message stream
witeString Write string to message stream

writeChj ect Write value of object to message stream
reset Reset message stream

As a convenience for handling values whose types are not known until execution
time, the wri t eChj ect method accepts a string or an objectified primitive value of
class| nt eger,Byt e, Short,Long, Fl oat ,Doubl e,Bool ean, or Char act er and writesthe
corresponding string or primitive value to the message stream: for example, the
statements

Chapter 2 Using the Java APl 65



Working With Messages

Integer nmeaningCtfLife = new I nteger(42);
out Msg. wri t e(hj ect (neani ngOxf Li fe);

are equivalent to
out Msg. writelnt (42);

This method will throw an exception (MessageFor mat Except i on) if the argument
given to it is not of class St ri ng or one of the objectified primitive classes.

Once you’ve written the entire message contents to the stream, the r eset method
out Msg. reset ();

puts the message body in read-only mode and repositions the stream to the
beginning, ready to read (see “Processing Messages” on page 80). When the
message is in this state, any attempt to write to the message stream will throw the
exceptionMessageNot Wi t eabl eExcept i on.Acalltothecl ear Body method (inherited
from the superinterface Message) deletes the entire message body and makes it
writeable again.

Composing Map Messages

Table 2-11 shows the methods available in the MapMessage interface for adding
content to the body of a map message. Each of these methods takes two arguments,
a name string and a primitive or string value of the appropriate type, and adds the
corresponding name-value pair to the message body: for example,

StreanMessage out Msg = nySessi on. cr eat eMapMessage() ;
out Msg. set I nt (" The Meaning of Life", 42);

Table 2-11 Map Message Composition Methods

Name Description

set | nt Store integer in message map by name

setByte Store byte value in message map by name

set Byt es Store byte array in message map by name

set Short Store short integer in message map by name

set Long Store long integer in message map by name

set Fl oat Store floating-point value in message map by name
set Doubl e Store double-precision value in message map by name
set Bool ean Store boolean value in message map by name

set Char Store character in message map by name

set String Store string in message map by name

66 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Working With Messages

Table 2-11 Map Message Composition Methods (Continued)

Name Description

set bj ect Store object in message map by name

Like stream messages, map messages provide a convenience method (set Chj ect)
for dealing with values whose type is determined dynamically at execution time;
for example, the statements

Integer nmeaningdfLife = new I nteger(42);
out Msg. set Cbj ect (" The Meani ng of Life", neaningOlLife);

are equivalent to
out Msg. set I nt (" The Meaning of Life", 42);

The object supplied must be either a string object (class St ri ng) or an objectified
primitive value of class | nt eger, Byt e, Short, Long, Fl oat, Doubl e, Bool ean, or
Char act er ; otherwise an exception (MessageFor nat Except i on) will be thrown.

Composing Object Messages

The Cbj ect Message interface provides just one method, set Gbj ect (Table 2-12), for
setting the body of an object message:

(hj ect Message out Msg = nySessi on. cr eat e(hj ect Message() ;
out Msg. set bj ect (body(hj ect ) ;

The argument to this method can be any serializable object (that is, an instance of
any class that implements the standard Java interface Seri al i zabl e). If the object is
not serializable, the exception MessageFor mat Except i on will be thrown.

Table 2-12 Object Message Composition Method

Name Description

set Obj ect Serialize object to message body

As an alternative, you can initialize the message body directly when you create the
message, by passing an object to the session method cr eat e(hj ect Message:

(bj ect Message out Msg = nySessi on. cr eat e(hj ect Message( bodyoj ect ) ;

Again, an exception will be thrown if the object is not serializable.

Chapter 2 Using the Java APl 67



Working With Messages

Composing Bytes Messages

The body of a bytes message simply consists of a stream of uninterpreted bytes; its
interpretation is entirely a matter of conventional agreement between sender and
receiver. This type of message is intended primarily for encoding message formats
required by other existing message systems; Message Queue clients should
generally use one of the other, more specific message types instead.

Composing a bytes message is similar to composing a stream message (see
“Composing Stream Messages” on page 65). You create the message with the
session method cr eat eByt esMessage, then use the methods shown in Table 2-13 to
encode primitive values into the message’s byte stream: for example,

Byt esMessage out Msg = nySessi on. cr eat eByt esMessage() ;
out Msg. wri teUTF(" The Meaning of Life");
out Msg. writelnt (42);

Table 2-13 Bytes Message Composition Methods

Name Description

writelnt Write integer to message stream

witeByte Write byte value to message stream
writeBytes Write byte array to message stream

writeShort Write short integer to message stream
writelong Write long integer to message stream

wr it eFl oat Write floating-point value to message stream

wri t eDoubl e Write double-precision value to message stream

wri t eBool ean

Write boolean value to message stream

wr it eChar Write character to message stream
writeUTF Write UTF-8 string to message stream
writeChj ect Write value of object to message stream
reset Reset message stream

As with stream and map messages, you can use the generic object-based method
w it eChj ect to handle values whose type is unknown at compilation time: for
example, the statements

Integer nmeaningdfLife = new I nteger(42);
out Msg. wri t eChj ect (neani ngx Life);

68 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



are equivalent to
out Msg. writelnt (42);
The message’s r eset method

out Msg. reset ();

puts the message body in read-only mode and repositions the byte stream to the
beginning, ready to read (see “Processing Messages” on page 80). Attempting to

Working With Messages

write further content to a message in this state will cause an exception
(MessageNot Wi t eabl eExcept i on). The inherited Message method cl ear Body can be
used to delete the entire message body and make it writeable again.

Sending Messages

In order to send messages to a message broker, you must create a message producer
using the session method cr eat ePr oducer :

MessagePr oducer

nyProducer = nySessi on. creat eProducer (nyDest);

The scope of the message producer is limited to the session that created it and the
connection to which that session belongs. Table 2-14 shows the methods defined in

the MessagePr oducer interface.

Table 2-14 Message Producer Methods

Name

Description

get Destination

set Del i ver yMode

get Del i ver yMode
setPriority

getPriority

set Ti neToLi ve

get Ti meToLi ve

set Di sabl eMessagel D

get D sabl eMessagel D

set Di sabl eMessageTi nest anp
get D sabl eMessageTi mest anp

send

Get default destination

Set default delivery mode

Get default delivery mode

Set default priority level

Get default priority level

Set default message lifetime

Get default message lifetime

Set message identifier disable flag
Get message identifier disable flag
Set time stamp disable flag

Get time stamp disable flag

Send message

Chapter 2

Using the Java API

69



Working With Messages

70

Table 2-14 Message Producer Methods (Continued)

Name Description

cl ose Close message producer

The cr eat ePr oducer method takes a destination as an argument, which may be
either a (point-to-point) queue or a (publish/subscribe) topic. The producer will
then send all of its messages to the specified destination. If the destination is a
queue, the producer is called a sender for that queue; if it is a topic, the producer is a
publisher to that topic. The message producer’s get Dest i nat i on method returns this
destination.

You also have the option of leaving the destination unspecified when you create a
producer

MessageProducer nyProducer = nySessi on. createProducer (null);

in which case you must specify an explicit destination for each message. This
option is typically used for producers that must send messages to a variety of
destinations, such as those designated in the JMSRepl yTo header fields of incoming
messages (see “Message Header” on page 58).

NOTE The generic MessagePr oducer interface also has specialized
subinterfaces, QueueSender and Topi cPubl i sher, for sending
messages specifically to a point-to-point queue or a
publish/subscribe topic. These types of producer are created by the
creat eSender and cr eat ePubl i sher methods of the specialized
session subinterfaces QueueSessi on and Topi cSessi on, respectively.
However, it is generally more convenient (and recommended) to
use the generic form of message producer described here, which can
handle both types of destination indiscriminately.

A producer has a default delivery mode (persistent or nonpersistent), priority
level, and message lifetime, which it will apply to all messages it sends unless
explicitly overridden for an individual message. You can set these properties with
the message producer methodsset Del i ver yMbde,set Priority,andset Ti neToli ve,
and retrieve them with get Del i ver yMode, get Pri ori ty, and get Ti meToLi ve. If you
don’t set them explicitly, they default to persistent delivery, priority level 4, and a
lifetime value of 0, denoting an unlimited message lifetime.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

The heart of the message producer interface is the send method, which is available
in a variety of overloaded forms. The simplest of these just takes a message as its
only argument:

nyPr oducer . send( out Msg) ;

This simply sends the specified message to the producer’s default destination,
using the producer’s default delivery mode, priority, and message lifetime.
Alternatively, you can explicitly specify the destination

nyProducer. send(nyDest, out Msg);
or the delivery mode, priority, and lifetime in milliseconds
nyProducer. send(out Msg, Del i ver yMode. NON_PERS| STENT, 9, 1000);
or all of these at once:
nyProducer. send(nyDest, out Msg, DeliveryMde. NON PERSI STENT, 9, 1000);

Recall that if you did not specify a destination when creating the message
producer, you must provide an explicit destination for each message you send.

As discussed earlier under “Message Header” on page 58, client applications that
have no need for the message identifier and time stamp fields in the message
header can gain some performance improvement by suppressing the generation of
these fields, using the message producer’s set Di sabl eMessagel Dand

set di sabl eMessageTi nest anp methods. Note that a t r ue value for either of these
flags disables the generation of the corresponding header field, while a f al se value
enables it. Both flags are set to f al se by default, meaning that the broker will
generate the values of these header fields unless explicitly instructed otherwise.

When you are finished using a message producer, you should call its cl ose method
nyProducer . cl ose();

allowing the broker and client runtime to release any resources they may have
allocated on the producer’s behalf.

Receiving Messages

Messages are received by a message consumer, within the context of a connection
and a session. Once you have created a consumer, you can use it to receive
messages in either of two ways:

= In synchronous message consumption, you explicitly request the delivery of
messages when you are ready to receive them.

Chapter 2 Using the Java APl 71



Working With Messages

72

= In asynchronous message consumption, you register a message listener for the
consumer. The Message Queue client runtime then calls the listener whenever
it has a message to deliver.

These two forms of message consumption are described in the sections “Receiving
Messages Synchronously” on page 75 and “Receiving Messages Asynchronously”
on page 76.

Creating Message Consumers

The session method cr eat eConsuner creates a generic consumer that can be used to
receive messages from either a (point-to-point) queue or a (publish/subscribe)
topic:

MessageConsuner nyConsuner = nySessi on. cr eat eConsuner (nyDest);

If the destination is a queue, the consumer is called a receiver for that queue; if itis a
topic, the consumer is a subscriber to that topic.

NOTE The generic MessageConsuner interface also has specialized
subinterfaces, QueueRecei ver and Topi cSubscri ber, for receiving
messages specifically from a point-to-point queue or a
publish/subscribe topic. These types of consumer are created by the
creat eRecei ver and cr eat eSubscri ber methods of the specialized
session subinterfaces QueueSessi on and Topi cSessi on, respectively.
However, it is generally more convenient (and recommended) to
use the generic form of message consumer described here, which
can handle both types of destination indiscriminately.

A subscriber created for a topic destination with the cr eat eConsuner method is
always nondurable, meaning that it will receive only messages that are sent
(published) to the topic while the subscriber is active. If you want the broker to
retain messages published to a topic while no subscriber is active and deliver them
when one becomes active again, you must instead create a durable subscriber, as
described in “Durable Subscribers” on page 74.

Table 2-15 shows the methods defined in the MessageConsurer interface, which are
discussed in detail in the relevant sections below.

Table 2-15 Message Consumer Methods

Name Description

get MessageSel ect or Get message selector

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

Table 2-15 Message Consumer Methods (Continued)

Name Description

receive Receive message synchronously

recei veNoWi t Receive message synchronously without blocking
set MessagelLi st ener Set message listener for asynchronous reception
get MessagelLi st ener Get message listener for asynchronous reception
cl ose Close message consumer

Message Selectors

If appropriate, you can restrict the messages a consumer will receive from its
destination by supplying a message selector as an argument when you create the
consumer:

String nySelector = "/* Text of selector here */";
MessageConsuner nyConsuner =nmySessi on. cr eat eConsuner ( nyDest, nySel ector);

The selector is a string whose syntax is based on a subset of the SQL92 conditional
expression syntax, which allows you to filter the messages you receive based on the
values of their properties (see “Message Properties” on page 61). See the Java
Message Service Specification for a complete description of this syntax. The message
consumer’s get MessageSel ect or method returns the consumer’s selector string (or
nul | if no selector was specified when the consumer was created):

String nySelector = nyConsuner. get MessageSel ector ();

NOTE Messages whose properties do not satisfy the consumer’s selector
will be retained undelivered by the destination until they are
retrieved by another message consumer. The use of message
selectors can thus cause messages to be delivered out of sequence
from the order in which they were originally produced. Only a
message consumer without a selector is guaranteed to receive
messages in their original order.

Chapter 2 Using the Java APl 73



Working With Messages

74

In some cases, the same connection may both publish and subscribe to the same
topic destination. The cr eat eConsuner method accepts an optional boolean
argument that suppresses the delivery of messages published by the consumer’s
own connection:

String nySelector = "/* Text of selector here */";
MessageConsurer
nyConsuner = nySessi on. cr eat eConsurrer (nyDest, nySel ector, true);

The resulting consumer will receive only messages published by a different
connection.

Durable Subscribers

To receive messages delivered to a publish/subscribe topic while no message
consumer is active, you must ask the message broker to create a durable subscriber
for that topic. All sessions that create such subscribers for a given topic must have
the same client identifier (see “Using Connections” on page 46). When you create a
durable subscriber, you supply a subscriber name that must be unique for that client
identifier:

MessageConsuner
nyConsuner = nySessi on. creat eDur abl eSubscri ber (nmyDest, "nySub");

(The object returned by the cr eat eDur abl eSubscri ber method is actually typed as
Topi cSubscri ber, butsince that is a subinterface of MessageConsuner , you can safely
assign it to a MessageConsurer variable. Note, however, that the destination nyDest
must be a publish/subscribe topic and not a point-to-point queue.)

You can think of a durable subscriber as a “virtual message consumer” for the
specified topic, identified by the unique combination of a client identifier and
subscriber name. When a message arrives for the topic and no message consumer
is currently active for it, the message will be retained for later delivery. Whenever
you create a consumer with the given client identifier and subscriber name, it will
be considered to represent this same durable subscriber and will receive all of the
accumulated messages that have arrived for the topic in the subscriber’s absence.
Each message is retained until it is delivered to (and acknowledged by) such a
consumer or until it expires.

NOTE Only one session at a time can have an active consumer for a given
durable subscription. If another such consumer already exists, the
creat eDur abl eSubscri ber method will throw an exception.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

Like the cr eat eConsuner method described in the preceding section (which creates
nondurable subscribers), cr eat eDur abl eSubscr i ber canacceptan optional message
selector string and a boolean argument telling whether to suppress the delivery of
messages published by the subscriber’s own connection:

String nySelector = "/* Text of selector here */";
MessageConsumer  nyConsuner
= nySessi on. creat eDur abl eSubscri ber (nmyDest, "nySub”,
nySel ect oty ue);

You can change the terms of a durable subscription by creating a new subscriber
with the same client identifier and subscription name but with a different topic,
selector, or both. The effect is as if the old subscription were destroyed and a new
one created with the same name. When you no longer need a durable subscription,
you can destroy it with the session method unsubscri be:

nySessi on. unsubscri be("nmySub");

Receiving Messages Synchronously

Once you have created a message consumer for a session, using either the
creat eConsuner or cr eat eDur abl eSubscri ber method, you must start the session’s
connection to begin the flow of incoming messages:

nyConnection. start();

(Note that it is not necessary to start a connection in order to produce messages,
only to consume them.) You can then use the consumer’s r ecei ve method to receive
messages synchronously from the message broker:

Message inMsg = nyConsuner.receive();

This returns the next available message for this consumer. If no message is
immediately available, the r ecei ve method blocks until one arrives. You can also
provide a timeout interval in milliseconds:

Message inMsg = nyConsuner. recei ve(1000);

In this case, if no message arrives before the specified timeout interval (1 second in
the example) expires, the method will return with a null result. An alternative
method, r ecei veNoWi t, returns a null result immediately if no message is currently
available:

Message inMsg = nyConsuner.recei veNoV&it();

Chapter 2 Using the Java APl 75



Working With Messages

76

Receiving Messages Asynchronously

If you want your message consumer to receive incoming messages
asynchronously, you must create a message listener to process the messages. This is
a Java object that implements the JMS MessagelLi st ener interface. The procedure is
as follows:

[l To Set Up a Message Queue Java Client to Receive Messages Asynchronously
1. Define a message listener class implementing the MessagelLi st ener interface.

The interface consists of the single method onMessage, which accepts a message
as a parameter and processes it in whatever way is appropriate for your
application:

public class M/Messageli stener inplenents Messageli stener

{
public void onMessage (Message inMsQ)

/* Code here to process message */

}
}

2. Createa message consumer.

You can use either the cr eat eConsuner or cr eat eDur abl eSubscri ber method of
the session in which the consumer will operate: for instance,

MessageConsuner nyConsuner = nySessi on. cr eat eConsuner (nyDest) ;
3. Create an instance of your message listener class.

M/MessagelLi st ener nyLi stener = new MyMessagelLi st ener();
4. Associate the message listener with your message consumer.

The message consumer method set MessagelLi st ener accepts a message listener
object and associates it with the given consumer:

nyConsurrer . set MessagelLi st ener (nyLi st ener);

5. Start the connection to which this consumer’s session belongs.

The connection’s st art method begins the flow of messages from the message
broker to your message consumer:

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

nyConnection. start();

Once the connection is started, the Message Queue client runtime will call your
message listener’s onMessage method each time it has a message to deliver to
this consumer.

To ensure that no messages are lost before your consumer is ready to receive
them, it is important not to start the connection until after you have created the
message listener and associated it with the consumer. If the connection is
already started, you should stop it before creating an asynchronous consumer,
then start it again when the consumer is ready to begin processing.

Setting a consumer’s message listener to nul | removes any message listener
previously associated with it;

nyConsuner . set MessageLi st ener (nul | );

Theconsumer’sget MessagelLi st ener method returnsits current message listener (or
nul | if there is none):

M/MessagelLi st ener nyLi st ener = nyConsuner. get MessagelLi st ener () ;

Acknowledging Messages

If you have specified client-acknowledge as your session’s acknowledgment mode
(see “Acknowledgment Modes” on page 54), it is your client application’s
responsibility to explicitly acknowledge each message it receives. If you have
received the message synchronously, via a message consumer’s r ecei ve (or

r ecei veNoWi t ) method, you should process the message first and then
acknowledge it; if you have received it asynchronously, your message listener’s
onMessage method should acknowledge the message after processing it. This
ensures that the message broker will not delete the message from persistent storage
until processing is complete.

NOTE In a transacted session (see “Transacted Sessions” on page 57), there
is no need to acknowledge a message explicitly: the session’s
acknowledgment mode is ignored and all acknowledgment
processing is handled for you automatically by the Message Queue
client runtime. In this case, the session’s get Acknow edgeMbde
method will return the special constant
Sessi on. SESSI ON_TRANSACTED.

Table 2-16 shows the methods available for acknowledging a message. The most
general is acknow edge, defined in the standard JMS interface j avax. j ms. Message:

Chapter 2 Using the Java APl 77



Working With Messages

78

i nMsg. acknowl edge() ;

This acknowledges all unacknowledged messages consumed by the session up to
the time of call. You can use this method to acknowledge each message
individually as you receive it, or you can group several messages together and
acknowledge them all at once by calling acknow edge on the last one in the group.

Table 2-16 Message Acknowledgment Methods

Function Description
acknow edge Acknowledge all unacknowledged messages for session
acknowl edgeThi sMessage Acknowledge this message only

acknowl edgeUpThr oughThi sMessage  Acknowledge all unacknowledged messages through this
one

The Message Queue version of the Message interface, defined in the package

com sun. messagi ng. j ns, adds two more methods that provide more flexible
control over which messages you acknowledge. The acknow edgeThi sMessage
method just acknowledges the single message for which it is called, rather than all
messages consumed by the session; acknowl edgeUpThr oughThi sMessage
acknowledges the message for which it is called and all previous messages;
messages received after that message remain unacknowledged.

Browsing Messages

If the destination from which you are consuming messages is a point-to-point
queue, you can use a queue browser to examine the messages in the queue without
consuming them. The session method cr eat eBr owser creates a browser for a
specified queue;

QueueBrowser nyBrowser = nySession. creat eBrowser (nyDest);

The method will throw an exception (I nval i dDesti nati onExcepti on) if you try to
pass it a topic destination instead of a queue. You can also supply a selector string
as an optional second argument:

String nySelector = "/* Text of selector here */";
QueueBrowser nyBrowser = nySessi on. creat eBrowser (nmyDest, nySelector);

Table 2-17 shows the methods defined in the QueueBr owser interface. The get Queue
and get MessageSel ect or methods return the browser’s queue and selector string,
respectively.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

Table 2-17 Queue Browser Methods

Name Description

get Queue Get queue from which this browser reads

get MessageSel ect or Get message selector

get Enurrer at i on Get enumeration of all messages in the queue
cl ose Close browser

The most important queue browser method is get Enurrer at i on, which returns a Java
enumeration object that you can use to iterate through the messages in the queue,
as shown in Code Example 2-4.

Code Example 2-4 Browsing a Queue

Enuneration queueMessages = nyBrowser. get Enuneration();
Message eachMessage;

whil e ( queueMessages. hasMr eE enents() )
{ eachMessage = queueMessages. next H enent ();
/* Do sonmething with the nessage */

}

The browser’s ¢l ose method closes it when you’re through with it:

nyBrowser. cl ose();

Closing a Consumer

As a matter of good programming practice, you should close a message consumer
when you have no further need for it. Closing a session or connection
automatically closes all consumers associated with it; to close a consumer without
closing the session or connection to which it belongs, you can use its cl ose method:

nyConsurer . cl ose();

Chapter 2 Using the Java APl 79



Working With Messages

80

For a consumer that is a nondurable topic subscriber, this terminates the flow of
messages to the consumer. However, if the consumer is a queue receiver or a
durable topic subscriber, messages will continue to be accumulated for the
destination and will be delivered the next time a consumer for that destination
becomes active. To terminate a durable subscription permanently, call its session’s
unsubscri be method with the subscriber name as an argument:

nySessi on. unsubscri be("nmySub");

Processing Messages

Processing a message after you have received it may entail examining its header
fields, properties, and body. The following sections describe how this is done.

Retrieving Message Header Fields

The standard JMS message header fields are described under “Message Header”
on page 58. Table 2-18 shows the methods provided by the IMS Message interface
for retrieving the values of these fields: for instance, you can obtain a message’s
reply destination with the statement

Destination replyDest = inMg.get JIMSRepl yTo();

Table 2-18 Message Header Retrieval Methods

Name Description

get IMBMessagel D Get message identifier

get JMBDest i nati on Get destination

get JMBRepl yTo Get reply destination

get JMBCorrel ationl D Get correlation identifier as string
get JMBCor r el at i onl DAsByt es Get correlation identifier as byte array
get JMBDel i ver yMode Get delivery mode
getJMBPriority Get priority level

get JMBTi nest anp Get time stamp

get JMBExpi rati on Get expiration time

get IMSType Get message type

get JMBRedel i ver ed Get redelivered flag

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

Retrieving Message Properties

Table 2-19 lists the methods defined in the JMS Message interface for retrieving the
values of a message’s properties (see “Message Properties” on page 61). There is a
retrieval method for each of the possible primitive types that a property value can
assume: for instance, you can obtain a message’s time stamp with the statement

long tineStanp = i nMsg. get LongProperty("JVMSXRevTi nest anp”) ;

Table 2-19 Message Property Retrieval Methods

Name

Description

getlntProperty
get Byt eProperty
get Short Property
get LongProperty
get Fl oat Property
get Doubl ePr operty
get Bool eanPr operty
get StringProperty
get (oj ect Property
get Propert yNames
propertyExi sts

Get integer property

Get byte property

Get short integer property
Get long integer property

Get floating-point property
Get double-precision property
Get boolean property

Get string property

Get property as object

Get property names

Does property exist?

There is also a generic get (bj ect Property method that returns a property value in
objectified form, as a Java object of class | nt eger, Byt e, Short, Long, Fl oat , Doubl e,
Bool ean, or Stri ng. For example, another way to obtain a message’s time stamp,
equivalent to that shown above, would be

Long ti meSt anp(hj ect =(Long) i nMsg. get Coj ect Property(" JMSXRevTi nmest anp”) ;
long tineStanp = tinmeStanphj ect.|ongVal ue();

If the message has no property with the requested name, get bj ect Property will
return nul | ; the message method pr opert yExi st s tests whether this is the case.

The get Proper t yNanes method returns a Java enumeration object for iterating
through all of the property names associated with a given message; you can then
use the retrieval methods shown in the table to retrieve each of the properties by
name, as shown in Code Example 2-5.

Chapter 2 Using the Java APl 81



Working With Messages

82

Code Example 2-5 Enumerating Message Properties

Enuneration propNanes = inMsg. get PropertyNames();
String eachNarre;
(bj ect eachVal ue;

whil e ( propNanes. hashor eH enents() )
{ eachName = propNanes. next El enent ();
eachVal ue = i nMsg. get (hj ect Propert y(eachNane) ;
/* Do something with the value */

}

Processing the Message Body

The methods for retrieving the contents of a message’s body essentially parallel
those for composing the body, as described earlier under “Composing Messages”
on page 63. The following sections describe these methods for each of the possible
message types (text, stream, map, object, and bytes).

Processing Text Messages

The text message method get Text (Table 2-20) retrieves the contents of a text
message’s body in the form of a string:

String textBody = inMsg. get Text();

Table 2-20 Text Message Access Method

Name Description

get Text Get content string

Processing Stream Messages

Reading the contents of a stream message is similar to reading from a data stream,
using the access methods shown in Table 2-21: for example, the statement

int intVal = inMg.readlnt();

retrieves an integer value from the message stream.

Table 2-21  Stream Message Access Methods

Name Description

readl nt Read integer from message stream

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

Table 2-21 Stream Message Access Methods (Continued)

Name Description

readByt e Read byte value from message stream

readByt es Read byte array from message stream

readShort Read short integer from message stream

readLong Read long integer from message stream

readFl oat Read floating-point value from message stream

r eadDoubl e Read double-precision value from message stream

readBool ean
readChar
readString
readj ect

Read boolean value from message stream
Read character from message stream
Read string from message stream

Read value from message stream as object

The r eadbj ect method returns the next value from the message stream in
objectified form, as a Java object of the class corresponding to the value’s primitive
data type: for instance, if the value is of type i nt, r eadChj ect returns an object of
class | nt eger . The following statements are equivalent to the one shown above:

I nt eger

int

Processing Map Messages

(I'nteger) inMsg.readChject();
i nt oj ect. i ntVal ue();

The MapMessage interface provides the methods shown in Table 2-22 for reading
the body of a map message. Each access method takes a name string as an
argument and returns the value to which that name is mapped: for instance, under
the example shown in “Composing Map Messages” on page 66, the statement

int neaningOLife

i nMsg. get I nt ("The Meaning of Life");

would set the variable meani ngCr Li f e to the value 42.

Table 2-22 Map Message Access Methods

Name Description

getlnt Get integer from message map by name

get Byte Get byte value from message map by name
get Bytes Get byte array from message map by name
get Short Get short integer from message map by name

Chapter 2 Using the Java APl 83



Working With Messages

84

Table 2-22 Map Message Access Methods (Continued)

Name Description

get Long Get long integer from message map by name

get Fl oat Get floating-point value from message map by name
get Doubl e Get double-precision value from message map by name
get Bool ean Get boolean value from message map by name

get Char Get character from message map by name

getString Get string from message map by name

get (yj ect Get object from message map by name

i temExists Does map contain an item with specified name?

get MapNanes Get enumeration of all names in map

Like stream messages, map messages provide an access method, get Cbj ect, that
returns a value from the map in objectified form, as a Java object of the class
corresponding to the value’s primitive data type: for instance, if the value is of type
i nt, get j ect returns an object of class | nt eger . The following statements are
equivalent to the one shown above:

I nt eger meani ngGhj ect = (I nteger) i nMsg. get hj ect (" The Meani ng of Life");
i nt meani ngxr Li fe = meani ngQoj ect . i nt Val ue();

The i t enExi st s method returns a boolean value indicating whether the message
map contains an association for a given name string:

if (inMsg.itenExists("The Meaning of Life") )
{ I* Life is neaningful */
}

el se
{ I* Life is meaningless */

}

The get MapNanes method returns a Java enumeration object for iterating through all
of the names defined in the map; you can then use get Cbj ect to retrieve the
corresponding values, as shown in Code Example 2-6.

Code Example 2-6 Enumerating Map Message Values

Enuneration mapNames = i nMsg. get MapNanes() ;
String eachNarre;
(bj ect eachVal ue;

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Working With Messages

Code Example 2-6 Enumerating Map Message Values (Continued)

whi | e ( mapNanes. hasMor eEl enent s() )
{ eachName = mapNames. next B erent () ;
eachVal ue = i nMsg. get (hj ect (eachNane) ;
/* Do something with the value */

}

Processing Object Messages

The (bj ect Message interface provides just one method, get (bj ect (Table 2-23), for
retrieving the serialized object that is the body of an object message:

(hj ect messageBody = i nMsg. get (hj ect () ;

You can then typecast the result to a more specific class and process it in whatever
way is appropriate.

Table 2-23 Object Message Access Method

Name Description

get (yj ect Get serialized object from message body

Processing Bytes Messages

The body of a bytes message simply consists of a stream of uninterpreted bytes; its
interpretation is entirely a matter of conventional agreement between sender and
receiver. This type of message is intended primarily for decoding message formats
used by other existing message systems; Message Queue clients should generally
use one of the other, more specific message types instead.

Reading the body of a bytes message is similar to reading a stream message (see
“Processing Stream Messages” on page 82): you use the methods shown in
Table 2-24 to decode primitive values from the message’s byte stream. For
example, the statement

int intVal = inMg.readlnt();

retrieves an integer value from the byte stream. The get BodyLengt h method returns
the length of the entire message body in bytes:

int bodyLength = inMsg. get BodyLengt h();

Chapter 2 Using the Java APl 85



Working With Messages

86

Table 2-24 Bytes Message Access Methods

Name Description

get BodyLengt h Get length of message body in bytes

readl nt Read integer from message stream

readByt e Read signed byte value from message stream

readUnsi gnedByt e
r eadByt es
readShort
readUnsi gnedShor t
readLong

readFl oat
readDoubl e
readBool ean
readChar

readUTF

Read unsigned byte value from message stream
Read byte array from message stream

Read signed short integer from message stream
Read unsigned short integer from message stream
Read long integer from message stream

Read floating-point value from message stream
Read double-precision value from message stream
Read boolean value from message stream

Read character from message stream

Read UTF-8 string from message stream

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Chapter 3

Message Queue Clients: Design and
Features

This chapter addresses architectural and configuration issues that depend upon
Message Queue’s implementation of the Java Message Specification. It covers the
following topics:

= “Client Design Considerations” on page 87

= *“Managing Client Threads” on page 94

= “Managing Memory and Resources” on page 96

= “Programming Issues for Message Consumers” on page 103
= “Factors Affecting Performance” on page 105

= “Client Connection Failover (Auto-Reconnect)” on page 112
e “Custom Client Acknowledgment” on page 117

= “Communicating with C Clients” on page 122

Client Design Considerations

The choices you make in designing a JMS client relate to portability, to allocating
work between connections and sessions, to reliability and performance, to resource
use, and to ease of administration. This section discusses basic issues that you need
to address in client design. It covers the following topics:

= “Developing Portable Clients” on page 88
= “Choosing Messaging Domains” on page 88

= “Connections and Sessions” on page 90

87



Client Design Considerations

88

= “Producers and Consumers” on page 91

= “Balancing Reliability and Performance” on page 94

Developing Portable Clients

The Java Messaging Specification was developed to abstract access to
message-oriented middleware systems (MOMS). A client that writes JMS code
should be portable to any provider that implements this specification. If code
portability is important to you, be sure that you do the following in developing
clients:

< Make sure your code does not depend on extensions or features that are
specific to Message Queue.

= Look up, using JNDI, (rather than instantiate) administered objects for
connection factories and destinations.

Administered objects encapsulate provider-specific implementation and
configuration information. Besides allowing for portability, administered
objects also make it much easier to share connection factories between
applications and to tune a JMS application for performance and resource use.
So, even if portability is not important to you, you might still want to leave the
work of creating and configuring these objects to an administrator. For more
information, see “Looking Up a Connection Factory With JNDI”” on page 41
and “Looking Up a Destination With JNDI” on page 49.

Choosing Messaging Domains

As described in the Message Queue Technical Overview, JMS supports two distinct
message delivery models: point-to-point and publish/subscribe. These two
message delivery models can be handled using different API objects—with slightly
different semantics—representing different programming domains, as shown in
Table 3-1, or they can be handled by base (unified domain) types.

Table 3-1  JMS Programming Objects

Publish/Subscribe

Unified Domain Point-to-Point Domain Domain

Destination (Queue or Topic)* Queue Topic
ConnectionFactory QueueConnectionFactory TopicConnectionFactory
Connection QueueConnection TopicConnection

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Client Design Considerations

Table 3-1  JMS Programming Objects (Continued)

Publish/Subscribe

Unified Domain Point-to-Point Domain Domain
Session QueueSession TopicSession
MessageProducer QueueSender TopicPublisher
MessageConsumer QueueReceiver TopicSubscriber

1. Depending on programming approach, you might specify a particular destination type.

Using the point-to-point or publish/subscribe domains offers the advantage of a
clean API that prevents certain types of programming errors; for example, creating
a durable subscriber for a queue destination. However, the non-unified domains
have the disadvantage that you cannot combine point-to-point and
publish/subscribe operations in the same transaction or in the same session. If you
need to do that, you should choose the unified domain API.

The JMS 1.1 specification continues to support the separate JMS 1.02 programming
domains. (The example applications included with the Message Queue product as
well as the code examples provided in this book all use the separate JMS 1.02
programming domains.) You can choose the API that best suits your needs. The
only exception are those developers needing to write clients for the Sun Java
System Application Server 7 environment, as explained in the following note.

NOTE Developers of applications that run in the Sun Java System
Application Server 7 environment are limited to using the JMS 1.0.2
API. This is because Sun Java System Application Server 7 complies
with the J2EE 1.3 specification, which supports only JMS 1.0.2. Any
JMS messaging performed in servlets and EJBs—including
message-driven beans must be based on the domain-specific IMS
APIs and cannot use the JMS 1.1 unified domain APIs. Developers
of J2EE applications that will run in J2EE 1.4-compliant servers can,
however, use the simpler IMS 1.1 APIs.

Chapter 3  Message Queue Clients: Design and Features 89



Client Design Considerations

90

Connections and Sessions

A connection is a relatively heavy-weight object because of the authentication and
communication setup that must be done when a connection is created. For this
reason, it’s a good idea to use as few connections as possible. The real allocation of
work occurs in sessions, which are light-weight, single-threaded contexts for
producing and consuming messages. When you are thinking about structuring
your client, it is best to think of the work that is done at the session level.

A session
= Isafactory for its message producers and consumers
= Supplies provider-optimized message factories

= Supports a single series of transactions that combine work spanning its
producers and consumers into atomic units

= Defines a serial order for the messages it consumes and the messages it
produces

= Retains messages until they have been acknowledged

= Serializes execution of message listeners registered with its message
consumers

The requirement that sessions be operated on by a single thread at a time places
some restrictions on the combination of producers and consumers that can use the
same session. In particular, if a session has an asynchronous consumer, it may not
have any other synchronous consumers. For a discussion of the connection and
session’s use of threads, see “Managing Client Threads” on page 94. With the
exception of these restrictions, let the needs of your application determine the
number of sessions, producers, and consumers.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Client Design Considerations

Producers and Consumers

Aside from the reliability your client requires, the design decisions that relate to
producers and consumers include the following:

= Do you want to use a point-to-point or a publish/subscribe domain?

There are some interesting permutations here. There are times when you
would want to use publish/subscribe even when you have only one
subscriber. On the other hand, performance considerations might make the
point-to-point model more efficient than the publish/subscribe model, when
the work of sorting messages between subscribers is too costly. Sometimes You
cannot make these decisions cannot in the abstract, but must actually develop
and test different prototypes.

= Are you using an asynchronous message consumer that does not receive
messages often or a producer that is seldom used?

Let the administrator know how to set the ping interval, so that your client gets
an exception if the connection should fail. For more information see “Using the
Client Runtime Ping Feature” on page 103.

= Are you using a synchronous consumer in a distributed application?

You might need to allow a small time interval between connecting and calling
the recei veNoWai t () method in order not to miss a pending message. For more
information, see “Synchronous Consumption in Distributed Applications” on
page 104.

= Do you need message compression?

Benefits vary with the size and format of messages, the number of consumers,
network bandwidth, and CPU performance; and benefits are not guaranteed.
For a more detailed discussion, see “Message Compression” on page 97.

Assigning Client Identifiers

A connection can have a client identifier. This identifier is used to associate a JIMS
client’s connection to a message service, with state information maintained by the
message service for that client. The JMS provider must ensure that a client
identifier is unique, and applies to only one connection at a time. Currently, client
identifiers are used to maintain state for durable subscribers. In defining a client
identifier, you can use a special variable substitution syntax that allows multiple
connections to be created from a single Connect i onFact or y object using different
user name parameters to generate unique client identifiers. These connections can
be used by multiple durable subscribers without naming conflicts or lack of
security.

Chapter 3  Message Queue Clients: Design and Features 91



Client Design Considerations

92

Message Queue allows client identifiers to be set in one of two ways:

= Programmatically: You use theset A i ent | Dmethod of the Connect i on object. If
you use this method, you must set the client id before you use the connection.
Once the connection is used, the client identifier cannot be set or reset.

= Administratively: The administrator specifies the client ID when creating the
connection factory administrative object.

For more information about client identifiers and how these work with client
authentication, see the Message Queue Administration Guide.

Message Order and Priority

In general, all messages sent to a destination by a single session are guaranteed to
be delivered to a consumer in the order they were sent. However, if they are
assigned different priorities, a messaging system will attempt to deliver higher
priority messages first.

Beyond this, the ordering of messages consumed by a client can have only a rough
relationship to the order in which they were produced. This is because the delivery
of messages to a number of destinations and the delivery from those destinations
can depend on a number of issues that affect timing, such as the order in which the
messages are sent, the sessions from which they are sent, whether the messages are
persistent, the lifetime of the messages, the priority of the messages, the message
delivery policy of queue destinations (see the Message Queue Administration Guide),
and message service availability.

Using Selectors Efficiently

The use of selectors can have a significant impact on the performance of your
application. It's difficult to put an exact cost on the expense of using selectors since
it varies with the complexity of the selector expression, but the more you can do to
eliminate or simplify selectors the better.

One way to eliminate (or simplify) selectors is to use multiple destinations to sort
messages. This has the additional benefit of spreading the message load over more
than one producer, which can improve the scalability of your application. For those
cases when it is not possible to do that, here are some techniques that you can use
to improve the performance of your application when using selectors:

= Have consumers share selectors. As of version 3.5 of Message Queue, message
consumers with identical selectors “share” that selector in i ngbr oker d which
can significantly improve performance. So if there is a way to structure your
application to have some selector sharing, consider doing so.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Client Design Considerations

Use | Ninstead of multiple string comparisons. For example, the following
expression:

color IN('red, "green’, '"white')

is much more efficient than this expression

color ='red ORcolor = 'green’” ORcolor = "white'

especially if the above expression usually evaluates to false.

Use BETWEEN instead of multiple integer comparisons. For example:
si ze BETWEEN 6 AND 10

is generally more efficient than

size >=> 6 AND size <= 10

especially if the above expression usually evaluates to true.

Order the selector expression so that Message Queue can determine its
evaluation as soon as possible. (Evaluation proceeds from left to right.) This
can easily double or triple performance when using selectors, depending on
the complexity of the expression.

o If you have two expressions joined by an OR, put the expression that is most
likely to evaluate to TRUE first.

o If you have two expressions joined by an AND, put the expression that is
most likely to evaluate to FALSE first.

For example, if si ze is usually greater than 6, but color is rarely r ed you'd want
the order of an CRexpression to be:

size > 6 CRcolor ="'red
If you are using AND:

color ='red AND size > 6

Chapter 3  Message Queue Clients: Design and Features 93



Managing Client Threads

Balancing Reliability and Performance

Reliable messaging is implemented in a variety of ways: through the use of
persistent messages, acknowledgments or transactions, durable subscriptions, and
connection failover.

In general, the more reliable the delivery of messages, the more overhead and
bandwidth are required to achieve it. The trade-off between reliability and
performance is a significant design consideration. You can maximize performance
and throughput by choosing to produce and consume nonpersistent messages. On
the other hand, you can maximize reliability by producing and consuming
persistent messages in a transaction using a transacted session. For a detailed
discussion of design options and their impact on performance, see “Factors
Affecting Performance” on page 105.

Managing Client Threads

94

Using client threads effectively requires that you balance performance,
throughput, and resource needs. To do this, you need to understand JMS
restrictions on thread usage, what threads Message Queue allocates for itself, and
the architecture of your applications. This section addresses these issues and offers
some guidelines for managing client threads.

JMS Threading Restrictions

The Java Messaging Specification mandates that a session not be operated on by
more than one thread at a time. This leads to the following restrictions:

= Assession may not have an asynchronous consumer and a synchronous
consumer.

= Asession that has an asynchronous consumer can only produce messages from
within the onMessage() method (the message listener). The only call that you
can make outside the message listener is to close the session.

= Asession may include any number of synchronous consumers, any number of
producers, and any combination of the two. That is, the single-thread
requirement cannot be violated by these combinations. However, performance
may suffer.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Managing Client Threads

The system does not enforce the requirement that a session be single threaded. If
your client application violates this requirement, you will get a JVMSI | | egal Stat e
exception or unexpected results.

Thread Allocation for Connections

When the Message Queue client runtime creates a connection, it creates two
threads: one for consuming messages from the socket, and one to manage the flow
of messages for the connection. In addition, the client runtime creates a thread for
each client session. Thus, at a minimum, for a connection using one session, three
threads are created. For a connection using three sessions, five threads are created,
and so on.

Managing threads in a JMS application often involves trade-offs between
performance and throughput. Weigh the following considerations when dealing
with threading issues.

= When you create several asynchronous message consumers in the same
session, messages are delivered serially by the session thread to these
consumers. Sharing a session among several message consumers might starve
some consumers of messages while inundating other consumers. If the
message rate across these consumers is high enough to cause an imbalance,
you might want to separate the consumers into different sessions. To
determine whether message flow is unbalanced, you can monitor destinations
to see the rate of messages coming in. See Chapter 4, “Using the Metrics
Monitoring API” on page 123.

= You can reduce the number of threads allocated to the client application by
using fewer connections and fewer sessions. However, doing this might slow
your application’s throughput.

= You might be able to use certain JVM runtime options to improve thread
memory usage and performance. For example, if you are running on the
Solaris platform, you may be able to run with the same number (or more)
threads by using the following vmoptions with the client: Refer to the JDK
documentation for details.

o Use the Xss128K option to decrease the memory size of the heap.

o Use the xconcurrent | O option to improve thread performance in the 1. 3
VM.

Chapter 3  Message Queue Clients: Design and Features 95



Managing Memory and Resources

Managing Memory and Resources

96

This section describes memory and performance issues that you can manage by
increasing JVM heap space and by managing the size of your messages. It covers
the following topics:

= “Managing Memory” on page 96

= *“Managing Message Size” on page 97

= “Managing the Dead Message Queue” on page 99

= “Managing Physical Destination Limits” on page 103

You can also improve performance by having the administrator set connection
factory attributes to meter the message flow over the client-broker connection and
to limit the message flow for a consumer. For a detailed explanation, please see the
Message Queue Administration Guide.

Managing Memory

A client application running in a JVM needs enough memory to accommodate
messages that flow in from the network as well as messages the client creates. If
your client gets Qut O Menor yEr r or errors, chances are that not enough memory was
provided to handle the size or the number of messages being consumed or
produced.

Your client might need more than the default JVM heap space. On most systems,
the default is 64 MB but you will need to check the default values for your system.

Consider the following guidelines:

= Evaluate the normal and peak system memory footprints when sizing heap
space.

= You can start by doubling the heap size using a command like the following:
java - Xmx128m M/d ass

= The best size for the heap space depends on both the operating system and the
JDK release. Check the JDK documentation for restrictions.

= The size of the VM’s memory allocation pool must be less than or equal to the
amount of virtual memory that is available on the system.

Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Managing Memory and Resources

Managing Message Size

In general, for better manageability, you can break large messages into smaller
parts, and use sequencing to ensure that the partial messages sent are concatenated
properly. You can also use a Message Queue JMS feature to compress the body of a
message. This section describes the programming interface that allows you to
compress messages and to compare the size of compressed and uncompressed
messages.

Message compression and decompression is handled entirely by the client runtime,
without involving the broker. Therefore, applications can use this feature with a
pervious version of the broker, but they must use version 3.6 or later of the
Message Queue client runtime library.

Message Compression

You can use the Message. set Bool eanProperty() method to specify that the body of
amessage be compressed. If the IM5_SUN_COMPRESS property issettot r ue, the client
runtime, will compress the body of the message being sent. This happens after the
producer’s send method is called and before the send method returns to the caller.
The compressed message is automatically decompressed by the client runtime
before the message is delivered to the message consumer.

For example, the following call specifies that a message be compressed:
M/Message. set Bool eanPr opert y(“JM5_SUN COMPRESS’, true);

Compression only affects the message body; the message header and properties are
not compressed.

Two read-only JMS message properties are set by the client runtime after a
message is sent.

Applications can test the properties (JVM5_SUN_UNCOMPRESSED SI ZE and

JM5_SUN OCOWPRESSED Sl ZE) after a send returns to determine whether compression
is advantageous. That is, applications wanting to use this feature, do not have to
explicitly receive a compressed and uncompressed version of the message to
determine whether compression is desired.

If the consumer of a compressed message wants to resend the message in an
uncompressed form, it should call the Message. cl ear Properti es() to clear the
JMS_SUN CQOWPRESS property. Otherwise, the message will be compressed before it is
sent to its next destination.

Chapter 3  Message Queue Clients: Design and Features 97



Managing Memory and Resources

Advantages and Limitations of Compression

Although message compression has been added to improve performance, such
benefit is not guaranteed. Benefits vary with the size and format of messages, the
number of consumers, network bandwidth, and CPU performance. For example,
the cost of compression and decompression might be higher than the time saved in
sending and receiving a compressed message. This is especially true when sending
small messages in a high-speed network. On the other hand, applications that
publish large messages to many consumers or who publish in a slow network
environment, might improve system performance by compressing messages.

Depending on the message body type, compression may also provide minimal or
no benefit. An application client can use the JM5_SUN UNCOWPRESSED Sl ZE and
JM5_SUN OOWPRESSED Sl ZE properties to determine the benefit of compression for
different message types.

Message consumers deployed with client runtime libraries that precede version 3.6
cannot handle compressed messages. Clients wishing to send compressed
messages must make sure that consumers are compatible. C clients cannot
currently consume compressed messages.

Compression Examples
Code Example 3-1 shows how you set and send a compressed message:

Code Example 3-1 Sending a Compressed Message

/I topi cSession and nyTopi c are assuned to have been creat ed
t opi cPubl i sher publisher = topi cSession. createPublisher(nyTopic);
Byt esMessage byt esMessage=t opi cSessi on. cr eat eByt esMessage() ;

/IbyteArray is assumed to have been created
byt esMessage. wri t eByt es( byt eArray);

/linstruct the client runtine to conpress this nmessage
byt esMessage. set Bool eanProperty("JM5_SUN COWPRESS', true);

/I publish message to the nyTopi c destination
publ i sher. publ i sh( byt esMessage) ;

Code Example 3-2 shows how you examine compressed and uncompressed
message body size. The byt esMessage was created as in Code Example 3-1:

98 Message Queue 3 2005Q4 « Developer’'s Guide for Java Clients



Managing Memory and Resources

Code Example 3-2 Comparing Size of Compressed and Uncompressed Messages

/Tget unconpr essed body size
i nt unconpr essed=byt esMessage. get | nt Propert y(“JMS_SUN UNCOWPRESSED S| ZE");

/1 get conpressed body size
i nt conpressed=byt esMessage. get | nt Property(“JM5_SUN COWRESSED Sl ZE') ;

Managing the Dead Message Queue

When a message is deemed undeliverable, it is automatically placed on a special
queue called the dead message queue. A message placed on this queue retains all
of its original headers (including its original destination) and information is added
to the message’s properties to explain why it became a dead message. An
administrator or a developer can access this queue, remove a message, and
determine why it was placed on the queue.

= Foran introduction to dead messages and the dead message queue, see the
Message Queue Technical Overview.

= Foradescription of the destination properties and of the broker properties that
control the system’s use of the dead message queue, see the Message Queue
Administration Guide.

This section describes the message properties that you can set or examine
programmatically to determine the following:

= Whether a dead message can be sent to the dead message queue.

= Whether the broker should log information when a message is destroyed or
moved to the dead message queue.

= Whether the body of the message should also be stored when the message is
placed on the dead message queue.

= Why the message was placed on the dead message queue and any ancillary
information.

Message Queue 3.6 clients can set properties related to the dead message queue on
messages and send those messages to clients compiled against earlier versions.
However clients receiving such messages cannot examine these properties without
recompiling against 3.6 libraries.

Chapter 3  Message Queue Clients: Design and Features 99



Managing Memory and Resources

The dead message queue is automatically created by the broker and called

ng. sys. dng. You can use the message monitoring API, described in Chapter 4 on
page 123, to determine whether that queue is growing, to examine messages on
that queue, and so on.

You can set the properties described in Table 3-2 for any message to control how
the broker should handle that message if it deems it to be undeliverable. Note that
these message properties are needed only to override destination, or broker-based
behavior.

Table 3-2  Message Properties Relating to Dead Message Queue

Property Type Description

JV5_SUN_PRESERVE _UNDELI| VERED Boolean For a dead message, the default value of
unset, specifies that the message should
be handled as specified by the useDMQ
property of the destination to which the
message was sent.

A value of t r ue overrides the setting of
the useDMQ property and sends the dead
message to the dead message queue.

A value of f al se overrides the setting of
the useDMQ property and prevents the
dead message from being placed in the
dead message queue.

JV5_SUN_LOG DEAD MESSAGES Boolean The default value of unset, will behave as
specified by the broker configuration
property i . desti nati on. | ogDeadMsgs.

A value of t rue overrides the setting of
the i ng. desti nati on. | ogDeadMsgs
broker property and specifies that the
broker should log the action of removing
a message or moving it to the dead
message queue.

A value of f al se overrides the setting of
the i ng. desti nati on. | ogDeadMsgs
broker property and specifies that the
broker should not log these actions.

100 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Managing Memory and Resources

Table 3-2  Message Properties Relating to Dead Message Queue (Continued)

Property Type

Description

JMS_SUN_TRUNCATE_MBG BCDY Boolean

The default value of unset, will behave as
specified by the broker property
i ng. desti nati on. DMQ t r uncat eBody.

A value of t rue overrides the setting of
the i ng. dest i nati on. DMQ t r uncat eBody
property and specifies that the body of
the message should be discarded when
the message is placed in the dead
message queue.

A value of f al se overrides the setting of
the i ng. dest i nati on. DMQ t r uncat eBody
property and specifies that the body of
the message should be stored along with
the message header and properties when
the message is placed in the dead
message queue.

The properties described in Table 3-3 are set by the broker for a message placed in
the dead message queue. You can examine the properties for the message to
retrieve information about why the message was placed on the queue and to gather
other information about the message and about the context within which this

action was taken.

Table 3-3  Dead Message Properties

Property Type

Description

JMBXDel i ver yCount Integer

JMS_SUN_ DV UNDELI VERED TI MESTAMP  Long

Specifies the most number of times the
message was delivered to a given
consumer. This value is set only for ERROR
or UNDELI VERABLE messages.

Specifies the time (in milliseconds) when
the message was placed on the dead
message queue.

Chapter 3

Message Queue Clients: Design and Features 101



Managing Memory and Resources

102

Table 3-3  Dead Message Properties (Continued)

Property

Type

Description

JMS_SUN_DMVQ UNDELI VERED REASON

JMS_SUN_DVQ PRODUCI NG BROKER

JMB_SUN_ DV UNDELI VERED EXCEPTI ON

JVB_SUN_DV) UNDELI VERED COMVENT

JVB_SUN_DV BODY_TRUNCATED

String

String

String

String

Boolean

Specifies one of the following values to
indicate the reason why the message was
placed on the dead message queue:

CLDEST

LON PR ORI TY
EXPI RED
UNDELI VERABLE
ERRCR

If the message was marked dead for
multiple reasons, for example it was
undeliverable and expired, only one
reason will be specified by this property.

The ERRCRreason indicates that an
internal error made it impossible to
process the message. This is an
extremely unusual condition, and the
sender should just resend the message.

For message traffic in broker clusters:
specifies the broker name and port
number of the broker that placed the
message on the dead message queue. A
null value indicates that it was the local
broker.

Specifies the name of the exception (if
the message was dead because of an
exception) on either the client or the
broker.

An optional comment provided when the
message is marked dead.

A value of t rue indicates that the
message body was not stored. A value of
f al se indicates that the message body
was stored.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Programming Issues for Message Consumers

Managing Physical Destination Limits

When creating a topic or queue destination, the administrator can specify how the
broker should behave when certain memory limits are reached. Specifically, when
the number of unconsumed messages reaching a physical destination exceeds the
number specified with the naxNumvgs property or when the total amount of
memory allowed for unconsumed messages exceeds the number specified with the
maxTot al MsgByt es property, the broker takes one of the following actions,
depending on the setting of the | i m t Behavi or property:

= Slows message producers (FLON CONTROL)

= Throws out the oldest message in memory (REMOVE_COLDEST)

= Throws out the lowest priority message in memory (REMOVE_LON PR CRI TY)
= Rejects the newest messages (REJECT_NEWEST)

If the default value REJECT NEWEST is specified for the | i m t Behavi or property, the
broker throws out the newest messages received when memory limits are
exceeded. If the message discarded is a persistent message, the producing client
gets an exception which should be handled by resending the message later.

If any of the other values is selected for the | i ni t Behavi or property or if the
message is not persistent, the application client is not notified if a message is
discarded. Application clients should let the administrator know how they prefer
this property to be set for best performance and reliability.

Programming Issues for Message Consumers

This section describes two problems that consumers might need to manage: the
undetected loss of a connection, or the loss of a message for distributed
synchronous consumers.

Using the Client Runtime Ping Feature

Message Queue defines a connection factory attribute for a ping interval. This
attribute specifies the interval at which the client runtime should check the client’s
connection to the broker. The ping feature is especially useful to Message Queue
clients that exclusively receive messages and might therefore not be aware that the
absence of messages is due to a connection failure. This feature could also be useful
to producers who don’t send messages frequently and who would want
notification that a connection they’re planning to use is not available.

Chapter 3  Message Queue Clients: Design and Features 103



Programming Issues for Message Consumers

104

The connection factory attribute used to specify this interval is called
i mgPi ngl nt erval . Its default value is 30 seconds. A value of -1 or 0, specifies that the
client runtime should not check the client connection.

Developers should set (or have the administrator set) ping intervals that are
slightly more frequent than they need to send or receive messages, to allow time to
recover the connection in case the ping discovers a connection failure. Note also
that the ping may not occur at the exact time specified by the value you supply for
i nt erval ; the underlying operating system’s use of i/o buffers may affect the
amount of time needed to detect a connection failure and trigger an exception.

A failed ping operation results in a JMBExcept i on on the subsequent method call
that uses the connection. If an exception listener is registered on the connection, it
will be called when a ping operation fails.

Preventing Message Loss for Synchronous
Consumers

It is always possible that a message can be lost for synchronous consumers in a
session using AUTO ACKNOALEDGE mode if the provider fails. To prevent this
possibility, you should either use a transacted session or a session in

CLI ENT_ACKNOMLEDGE mode.

Synchronous Consumption in Distributed
Applications

Because distributed applications involve greater processing time, such an
application might not behave as expected if it were run locally. For example,
calling the r ecei veNoWai t method for a synchronous consumer might return nul |
even when there is a message available to be retrieved.

If a client connects to the broker and immediately calls the r ecei veNoVi t method,
it is possible that the message queued for the consuming client is in the process of
being transmitted from the broker to the client. The client runtime has no
knowledge of what is on the broker, so when it sees that there is no message
available on the client’s internal queue, it returns with a nul | , indicating no
message.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Factors

Factors Affecting Performance

You can avoid this problem by having your client do either of the following:
= Use one of the synchronous receive methods that specifies a timeout interval.

= Use a queue browser to check the queue before calling the r ecei veNoWi t
method.

Affecting Performance

Application design decisions can have a significant effect on overall messaging
performance. The most important factors affecting performance are those that
impact the reliability of message delivery; among these are the following:

« Delivery Mode (Persistent/Nonpersistent)

* Use of Transactions

= Acknowledgment Mode

= Durable vs. Nondurable Subscriptions

Other application design factors impacting performance include the following:
= Use of Selectors (Message Filtering)

= Message Size

= Message Body Type

The sections that follow describe the impact of each of these factors on messaging
performance. As a general rule, there is a trade-off between performance and
reliability: factors that increase reliability tend to decrease performance.

Table 3-4 shows how application design factors affect messaging performance. The
table shows two scenarios—a high-reliability, low-performance scenario and a
high-performance, low-reliability scenario—and the choice of application design
factors that characterizes each. Between these extremes, there are many choices and
trade-offs that affect both reliability and performance.

Table 3-4  Comparison of High Reliability and High Performance Scenarios

Application Design High Reliability, High Performance,
Factor Low Performance Low Reliability

Delivery mode Persistent messages Nonpersistent messages
Use of transactions Transacted sessions No transactions

Chapter 3 Message Queue Clients: Design and Features 105



Factors Affecting Performance

106

Table 3-4  Comparison of High Reliability and High Performance Scenarios (Continued)

Application Design High Reliability, High Performance,
Factor Low Performance Low Reliability
Acknowledgment mode AUTO_ACKNOWNLEDGE or DUPS_OK_ACKNOW.EDGE
CLI ENT_ACKNON.EDGE NO_ACKNONLEDGE
Durable/nondurable Durable subscriptions Nondurable subscriptions
subscriptions
Use of selectors Message filtering No message filtering
Message size Small messages Large messages
Message body type Complex body types Simple body types
NOTE In the graphs that follow, performance data was generated on a

two-CPU, 1002 Mhz, Solaris 8 system, using file-based persistence.
The performance test first warmed up the Message Queue broker,
allowing the Just-In-Time compiler to optimize the system and the
persistent database to be primed.

Once the broker was warmed up, a single producer and a single
consumer were created, and messages were produced for 30
seconds. The time required for the consumer to receive all produced
messages was recorded, and a throughput rate (messages per
second) was calculated. This scenario was repeated for different
combinations of the application design factors shown in Table 3-4.

Delivery Mode (Persistent/Nonpersistent)

Persistent messages guarantee message delivery in case of broker failure. The
broker stores these message in a persistent store until all intended consumers
acknowledge that they have consumed the message.

Broker processing of persistent messages is slower than for nonpersistent messages
for the following reasons:

= A broker must reliably store a persistent message so that it will not be lost
should the broker fail.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Factors Affecting Performance

= The broker must confirm receipt of each persistent message it receives.
Delivery to the broker is guaranteed once the method producing the message
returns without an exception.

= Depending on the client acknowledgment mode, the broker might need to
confirm a consuming client’s acknowledgment of a persistent message.

The differences in performance for persistent and nonpersistent modes can be
significant--about 25% faster for nonpersistent messages. Figure 3-1 compares
throughput for persistent and nonpersistent messages in two reliable delivery
cases: 10k-sized messages delivered both to a queue and to a topic with durable
subscriptions. Both cases use the AUTO ACKNOALEDGE acknowledgment mode.

Figure 3-1 Performance Impact of Delivery Modes

O Persistent

W Non-persistent

Msgs/sec.

Queue Topic with
Durable
Subscriber

Use of Transactions

A transaction guarantees that all messages produced in a transacted session and all
messages consumed in a transacted session will be either processed or not
processed (rolled back) as a unit. Message Queue supports both local and
distributed transactions.

A message produced or acknowledged in a transacted session is slower than in a
non-transacted session for the following reasons:

= Additional information must be stored with each produced message.

Chapter 3 Message Queue Clients: Design and Features 107



Factors Affecting Performance

108

= In some situations, messages in a transaction are stored when normally they
would not be. For example, a persistent message delivered to a topic
destination with no subscriptions would normally be deleted, however, at the
time the transaction is begun, information about subscriptions is not available.

= Information on the consumption and acknowledgment of messages within a
transaction must be stored and processed when the transaction is committed.

Acknowledgment Mode

Other than using transactions, you can ensure reliable delivery by having the client
acknowledge receiving a message. If a session is closed without the client
acknowledging the message or if the message broker fails before the
acknowledgment is processed, the broker redelivers that message, setting a
JMBRedel i ver ed flag.

For a non-transacted session, the client can choose one of three acknowledgment
modes, each of which has its own performance characteristics:

= AUTO ACKNOWNLEDGE. The system automatically acknowledges a message once the
consumer has processed it. This mode guarantees at most one redelivered
message after a provider failure.

e (LI ENT_ACKNOALEDGE. The application controls the point at which messages are
acknowledged. All messages processed in that session since the previous
acknowledgment are acknowledged. If the broker fails while processing a set
of acknowledgments, one or more messages in that group might be
redelivered.

(Using CLI ENT_ACKNOALEDGE mode is similar to using transactions, except there
is no guarantee that all acknowledgments will be processed together if a
provider fails during processing.)

= DUPS (K ACKNOALEDGE. Thismode instructs the system to acknowledge messages
in a lazy manner. Multiple messages can be redelivered after a provider failure.

= NO ACKNONLEDCGE In this mode, the broker considers a message acknowledged as
soon as it has been written to the client. The broker does not wait for an
acknowledgment from the receiving client. This mode is best used by typic
subscribers who are not worried about reliability.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Factors Affecting Performance

Performance is impacted by acknowledgment mode for the following reasons:

= Extra control messages between broker and client are required in
AUTO ACKNOALEDGE and CLI ENT_ACKNOMLEDGE modes. The additional control
messages add processing overhead and can interfere with JMS payload
messages, causing processing delays.

e InAUTO ACKNOALEDGEand CLI ENT_ACKNOALEDGE modes, the client must wait until
the broker confirms that it has processed the client’s acknowledgment before
the client can consume more messages. (This broker confirmation guarantees
that the broker will not inadvertently redeliver these messages.)

= The Message Queue persistent store must be updated with the
acknowledgment information for all persistent messages received by
consumers, thereby decreasing performance.

Durable vs. Nondurable Subscriptions

Subscribers to a topic destination have either durable and nondurable
subscriptions. Durable subscriptions provide increased reliability at the cost of
slower throughput for the following reasons:

= The Message Queue message broker must persistently store the list of
messages assigned to each durable subscription so that should the broker fail,
the list is available after recovery.

= Persistent messages for durable subscriptions are stored persistently, so that
should a broker fail, the messages can still be delivered after recovery, when
the corresponding consumer becomes active. By contrast, persistent messages
for nondurable subscriptions are not stored persistently (should a broker fail,
the corresponding consumer connection is lost and the message would never
be delivered).

Figure 3-2 compares throughput for topic destinations with durable and
nondurable subscriptions in two cases: persistent and nonpersistent 10k-sized
messages. Both cases use AUTO ACKNON_EDGE acknowledgment mode.

You can see from Figure 3-2 that using durable subscriptions affects performance
only in the case of persistent messages; this is because persistent messages are only
stored persistently for durable subscriptions, as explained above.

Chapter 3 Message Queue Clients: Design and Features 109



Factors Affecting Performance

110

Figure 3-2  Performance Impact of Subscription Types

O Durable
Subscriptions

m Non-durable
Subscriptions

Msgs/sec.

Persistent Non-persistent

Use of Selectors (Message Filtering)

Application developers can have the messaging provider sort messages according
to criteria specified in the message selector associated with a consumer and deliver
to that consumer only those messages whose property value matches the message
selector. For example, if an application creates a subscriber to the topic

W dget Or der s and specifies the expression Nunber O O der s >1000 for the message
selector, messages with a Nunber O Or der s property value of 1001 or more are
delivered to that subscriber.

Creating consumers with selectors lowers performance (as compared to using
multiple destinations) because additional processing is required to handle each
message. When a selector is used, it must be parsed so that it can be matched
against future messages. Additionally, the message properties of each message
must be retrieved and compared against the selector as each message is routed.
However, using selectors provides more flexibility in a messaging application and
may lower resource requirements at the expense of speed.

Message Size

Message size affects performance because more data must be passed from
producing client to broker and from broker to consuming client, and because for
persistent messages a larger message must be stored.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Factors Affecting Performance

However, by batching smaller messages into a single message, the routing and
processing of individual messages can be minimized, providing an overall
performance gain. In this case, information about the state of individual messages
is lost.

Figure 3-3 compares throughput in kilobytes per second for 1k, 10k, and 100k-sized
messages for persistent and nonpersistent messages. All messages are sent to a
queue destination and use AUTO ACKNOALEDGE acknowledgment mode.

Figure 3-3 shows that in both cases there is less overhead in delivering larger
messages compared to smaller messages. You can also see that the almost 50%
performance gain of nonpersistent messages over persistent messages shown for
1k and 10k-sized messages is not maintained for 100k-sized messages, probably
because network bandwidth has become the bottleneck in message throughput for
that case.

Figure 3-3 Performance Impact of a Message Size

o1k
m 10k
100k

Kilobytes/sec.

Persistent Non-persistent

Message Body Type

JMS supports five message body types, shown below roughly in the order of
complexity:

= Bytes: Contains a set of bytes in a format determined by the application
e Text:Isasimplejava.lang. String

= Stream: Contains a stream of Java primitive values

Chapter 3  Message Queue Clients: Design and Features 111



Client Connection Failover (Auto-Reconnect)

= Map: Contains a set of name-and-value pairs
= Obiject: Contains a Java serialized object

While, in general, the message type is dictated by the needs of an application, the
more complicated types (map and object) carry a performance cost—the expense
of serializing and deserializing the data. The performance cost depends on how
simple or how complicated the data is.

Client Connection Failover (Auto-Reconnect)

112

Message Queue supports client connection failover. A failed connection can be
automatically restored not only to the original broker, but to a different broker in a
broker cluster. There are circumstances under which the client-side state cannot be
restored on any broker during an automatic reconnection attempt; for example,
when the client uses transacted sessions or temporary destinations. At such times
the auto-reconnect will not take place, and the connection exception handler is
called instead. In this case the application code has to catch the exception,
reconnect, and restore state.

This section explains how automatic reconnection is enabled, how the broker
behaves during a reconnect, how automatic reconnection impacts producers and
consumers. Reconnection limitations are also discussed and some examples are
provided. For additional information about this feature, please see the Message
Queue Administration Guide.

Enabling Auto-Reconnect

The developer or the administrator can enable automatic reconnection by setting
the connection factory i mgReconnect Enabl ed attribute to t r ue. The connection
factory administered object must also be configured to specify the following:

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Client Connection Failover (Auto-Reconnect)

A list of message-service addresses (using the i mgAddr essLi st attribute).
When the client runtime needs to establish or re-establish a connection to a
message service, it attempts to connect to the brokers in the list until it finds (or
fails to find) an available broker. If you specify only a single broker instance on
the i ngAddr essLi st attribute, the configuration won’t support recovery from
hardware failure.

When you specify more than one broker, you can decide whether to use
parallel brokers or a broker cluster. In a parallel configuration, there is no
communication between brokers, while in a broker cluster, the brokers interact
to distribute message delivery loads. (Refer to the Message Queue
Administration Guide for more information on broker clusters.)

o Toenable parallel-broker reconnection, set the i ngReconnect Li st Behavi or
attribute to PRI ORI TY. Typically, you would specify no more than a pair of
brokers for this type of reconnection. This way, the messages are published
to one broker, and all clients fail over together from the first broker to the
second.

o Toenableclustered-brokerreconnection,setthei ngReconnect Li st Behavi or
attribute to RANDOM This way, the client runtime randomizes connection
attempts across the list, and client connections are distributed evenly
across the broker cluster.

Each broker in a cluster uses its own separate persistent store (which
means that undelivered persistent messages are unavailable until a failed
broker is back online). If one broker crashes, its client connections are
re-established on other brokers.

The number of iterations to be made over the list of brokers when attempting
to create a connection or to reconnect, using the i ngAddr essLi st terati ons
attribute.

The number of attempts to reconnect to a broker if the first connection fails,
using the i ngReconnect At t enpt s attribute.

The interval, in milliseconds, between reconnect attempts, using the
i ngReconnect | nt erval attribute.

Chapter 3  Message Queue Clients: Design and Features 113



Client Connection Failover (Auto-Reconnect)

114

Auto-Reconnect Behaviors

A broker treats an automatic reconnection as it would a new connection. When an
original connection is lost, all the resources associated with that connection are
released. For example, in a broker cluster, as soon as one broker fails, the other
brokers assume that the client connections associated with the failed broker are
gone. After auto-reconnect takes place, the client connections are re-created from
scratch.

Sometimes the client-side state cannot be fully restored by auto-reconnect. Perhaps
a resource that the client needs cannot be re-created. In this case, the client runtime
calls the client’s connection exception handler and the client must explicitly
reconnect and restore state.

If the client is automatically-reconnected to a different broker instance, persistent
messages and other state information held by the failed or disconnected broker can
be lost. The messages held by the original broker, once it is restored, might be
delivered out of order. This is because broker instances in a cluster do not use a
shared, highly available persistent store.

A transacted session is the most reliable method of ensuring that a message isn’t
lost if you are careful in coding the transaction. If auto-reconnect happens in the
middle of a transaction, then the broker loses the information, the client runtime
throws an exception when the transaction is committed, and the transaction is
rolled back. At that point, you must make sure that the client restarts the whole
transaction. (This is especially important when you use a broker cluster.)

When auto-reconnect happens in a CLI ENT_ACKNOALEDGE session, the client runtime
throws a JMSExcept i on and the acknowledgment of any set of messages must be
rolled back. Therefore, if you get a JMSExcept i on message in such a session, call
sessi on. recover.

Automatic reconnection affects producers and consumers differently:

= During reconnection, producers cannot send messages. The production of
messages (of any operation that involves communication with the message
broker) is blocked until the connection is re-established.

= For consumers, automatic reconnection is supported for all client
acknowledgment modes. After a connection is re-established, the broker will
redeliver all unacknowledged messages it had previously delivered, marking
them with a Redel i ver flag. The client can examine this flag to determine
whether any message has already been consumed (but not yet acknowledged).

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Client Connection Failover (Auto-Reconnect)

In the case of nondurable subscribers, some messages might be lost because the
broker does not hold their messages once their connections have been closed.
Any messages produced for nondurable subscribers while the connection is
down cannot be delivered when the connections is re-established.

Auto-Reconnect Limitations

Notice the following points when using the auto-reconnect feature:

Messages might be redelivered to a consumer after auto-reconnect takes place.
In auto-acknowledge mode, you will get no more than one redelivered
message. In other session types, all unacknowledged persistent messages are
redelivered.

While the client runtime is trying to reconnect, any messages sent by the broker
to nondurable topic consumers are lost.

Any messages that are in queue destinations and that are unacknowledged
when a connection fails are redelivered after auto-reconnect. However, in the
case of queues delivering to multiple consumers, these messages cannot be
guaranteed to be redelivered to the original consumers. That is, as soon as a
connection fails, an unacknowledged queue message might be rerouted to
other connected consumers.

In the case of a broker cluster, the failure of the master broker has more
implications than the failure of other brokers in the cluster. While the master
broker is down, the following operations on any other broker do not succeed:

o Creating or destroying a new durable subscription.

o Creating or destroying a new physical destination using the
i mgcmd create dst command.

o Starting a new broker process. (However, the brokers that are already
running continue to function normally even if the master broker goes
down.)

You can configure the master broker to restart automatically using Message
Queue broker support for r ¢ scripts or the Windows service manager.

Auto-reconnect doesn’t work if the client uses a Connect i onConsuner to
consume messages. In that case, the client runtime throws an exception.

Chapter 3 Message Queue Clients: Design and Features 115



Client Connection Failover (Auto-Reconnect)

116

Auto-Reconnect Configuration Examples

The following examples illustrate how to enable each type of auto-reconnect
support.

Single-Broker Auto-Reconnect
Configure your connection-factory object as follows:

Code Example 3-3 Example of Command to Configure a Single Broker

i mgobj ngr add -t cf -1 "cn=nyConnectionFactory" \
-0 "ingAddressLi st=my://j pgserv/jns" \
-0 "ingReconnect =true" \
-0 "i ngReconnect At t enpt s=10"

This command creates a connection-factory object with a single address in the
broker address list. If connection fails, the client runtime will try to reconnect with
the broker 10 times. If an attempt to reconnect fails, the client runtime will sleep for
three seconds (the default value for the i rgReconnect | nt er val attribute) before
trying again. After 10 unsuccessful attempts, the application will receive a
JVBExcepti on.

You can ensure that the broker starts automatically with at system start-up time.
See the Message Queue Installation Guide for information on how to configure
automatic broker start-up. For example, on the Solaris platform, you can use

[ etclrc.d scripts.

Parallel Broker Auto-Reconnect
Configure your connection-factory objects as follows:

Code Example 3-4 Example of Command to Configure Parallel Brokers

i mgobj ngr add -t cf -1 "cn=nyCF" \
-0 "ingAddressLi st =nyhost 1, ngtcp://nyhost 2: 12345/ j ns" \
-0 "ingReconnect =true" \
-0 "ingReconnect Ret ri es=5"

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



mq://jpgserv/jms
mqtcp://myhost2:12345/jms

Custom Client Acknowledgment

This command creates a connection factory object with two addresses in the broker
list. The first address describes a broker instance running on the host nyhost 1 with
a standard port number (7676). The second address describes a j ns connection
service running at a statically configured port number (12345).

Clustered-Broker Auto-Reconnect
Configure your connection-factory objects as follows:

Code Example 3-5 Example of Command to Configure a Broker Cluster

i mgobj ngr add -t cf -1 "cn=nyConnectionFactory" \
-0 "i ngAddressLi st=ny: // nyhost 1/ ssl jns, \
ny: // nyhost 2/ ssljns, \
ng: // nyhost 3/ ssljns, \
ng: // nyhost 4/ ssljns” \
-0 "ingReconnect =true" \
-0 "ingReconnect Retri es=5" \
-0 "i ngAddr essLi st Behavi or =RANDOM'

This command creates a connection factory object with four addresses in the

i mgAddr essLi st . All the addresses pointtoj ns services running on SSL transport on
differenthosts. Sincethei ngAddr essLi st Behavi or attribute is setto RANDOM the client
connections that are established using this connection factory object will be
distributed randomly among the four brokers in the address list.

This is a clustered broker configuration, so you must configure one of the brokers
in the cluster as the master broker. In the connection-factory address list, you can
also specify a subset of all the brokers in the cluster.

Custom Client Acknowledgment

Message Queue supports the standard JMS acknowledgment modes
(auto-acknowledge, client-acknowledge, and dups-OK-acknowledge). When you
create a session for a consumer, you can specify one of these modes. Your choice
will affect whether acknowledgment is done explicitly (by the client application) or
implicitly (by the session) and will also affect performance and reliability. This
section describes additional options you can use to customize acknowledgment
behavior:

Chapter 3  Message Queue Clients: Design and Features 117


mq://myhost1/ssljms
mq://myhost2/ssljms
mq://myhost3/ssljms
mq://myhost4/ssljms%E2%80%9D

Custom Client Acknowledgment

118

= You can customize the JMS client-acknowledge mode to acknowledge one
message at a time.

= |If performance is key and reliability is not a concern, you can use the
proprietary no-acknowledge mode to have the broker consider a message
acknowledged as soon as it has been sent to the consuming client.

The following sections explain how you program these options.

Using Client Acknowledge Mode

For more flexibility, Message Queue lets you customize the JMS
client-acknowledge mode. In client-acknowledge mode, the client explicitly
acknowledges message consumption by invoking the acknow edge() method of a
message object. The standard behavior of this method is to cause the session to
acknowledge all messages that have been consumed by any consumer in the
session since the last time the method was invoked. (That is, the session
acknowledges the current message and all previously unacknowledged messages,
regardless of who consumed them.)

In addition to the standard behavior specified by JMS, Message Queue lets you use
client-acknowledge mode to acknowledge one message at a time.

Observe the following rules when implementing custom client acknowledgment:

= To acknowledge an individual message, call the acknow edgeThi sMessage()
method. To acknowledge all messages consumed so far, call the
acknow edgeUpThr oughThi sMessage() method. Both are shown in Code
Example 3-6.

Code Example 3-6 Syntax for Acknowledgment Methods

public interface com sun. messagi ng.j ns. Message {
voi d acknow edgeThi sMessage() throws JMSExcepti on;

voi d acknow edgeUpThr oughThi sMessage() throws JMBExcepti on;

= When you compile the resulting code, include both i ng. jar and j ns. j ar inthe
classpath.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Custom Client Acknowledgment

= Don’t call acknow edge(), acknow edgeThi sMessage(), or
acknow edgeUpThr oughThi sMessage() in any session except one that uses
client-acknowledge mode. Otherwise, the method call is ignored.

= Don’t use custom acknowledgment in transacted sessions. A transacted session
defines a specific way to have messages acknowledged.

If a broker fails, any message that was not acknowledged successfully (that is, any
message whose acknowledgment ended in a JMSExcept i on) is held by the broker for
delivery to subsequent clients.

Code Example 3-7 demonstrates both types of custom client acknowledgment.

Code Example 3-7 Example of Custom Client Acknowledgment Code

i nport javax.jns.*;
... [Look up a connection factory and create a connection.]

Sessi on session = connecti on. creat eSessi on(fal se,
Sessi on. CLI ENT_ACKNONLEDGE) ;

[Create a consumer and recei ve nessages. ]
Message nmessagel = consuner.receive();
Message nessage2 = consuner.receive();
Message message3 = consuner.receive();

[ Process nessages. |

[ Acknow edge one i ndivi dual nessage.
Notice that the fol |l owing acknow edges only message 2.]

((com sun. nessagi ng. j ns. Message) nessage?2) . acknow edgeThi sMessage() ;
[Continue. Receive and process more messages. |
Message nessage4d

Message messageb
Message nessage6

consuner . recei ve();
consuner. recei ve();
consuner . recei ve();

[ Acknowl edge al | messages up through nessage 4. Notice that this
acknow edges nessages 1, 3, and 4, because message 2 was acknow edged
earlier.]

((com sun. nessagi ng. j ns. Message) nessage4) . acknow edgeUpThr oughThi sMessage() ;

Chapter 3 Message Queue Clients: Design and Features 119



Custom Client Acknowledgment

Code Example 3-7 Example of Custom Client Acknowledgment Code (Continued)

. [Continue. Finally, acknow edge all nessages consuned in the session.

Notice that this acknow edges all renaining consuned nessages, that is,
nmessages 5 and 6, because this is the standard behavior of the JVM5 API.]

nmessageb. acknowl edge() ;

120

Using No Acknowledge Mode

No-acknowledge mode is a honstandard extension to the JMS API. Normally, the
broker waits for a client acknowledgment before considering that a message has
been acknowledged and discarding it. That acknowledgment must be made
programmatically if the client has specified client-acknowledge mode or it can be
made automatically, by the session, if the client has specified auto-acknowledge or
dups-OK-acknowledge. If a consuming client specifies no-acknowledge mode, the
broker discards the message as soon as it has sent it to the consuming client. This
feature is intended for use by nondurable subscribers consuming nonpersistent
messages, but it can be used by any consumer.

Using this feature improves performance by reducing protocol traffic and broker
work involved in acknowledging a message. This feature can also improve
performance for brokers dealing with misbehaving clients who do not
acknowledge messages and therefore tie down broker memory resources
unnecessarily. Using this mode has no effect on producers.

You use this feature by specifying NO ACKNOALEDGE for the acknow edgeMbde
parameter to the cr eat eSessi on, cr eat eQueueSessi on, or cr eat eTopi cSessi on
method. No-acknowledge mode must be used only with the connection methods
defined in the com sun. nessagi ng. | ns package. Note however that the connection
itself must be created using the j avax. j ns package.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients




Custom Client Acknowledgment

Thefollowingaresample variable declarationsforconnect i on,queueConnect i onand
t opi cConnect i on:

javax.j ms. connecti on Connecti on;
j avax. j ms. queueConnect i on queueConnecti on
javax. j ms. t opi cConnection topi cConnecti on

The following are sample statements to create different kinds of no-acknowledge
sessions:

//to create a no ack session

Sessi on noAckSession =
((com sun. nessagi ng. j ms. Connect i on) connect i on)
. creat eSessi on( com sun. nessagi ng. j ns. Sessi on. NO ACKNOALEDGE) ;

/'l to create a no ack topic session

Topi cSessi on noAckTopi cSession =
((com sun. nessagi ng. j ms. Topi cConnect i on) topi cConnecti on)
. creat eTopi cSessi on(com sun. messagi ng. j ms. Sessi on. NO ACKNOALEDGE) ;

//to create a no ack queue session

QueueSessi on noAckQueueSession =
((com sun. nessagi ng. j ms. QueueConnect i on) queueConnecti on)
. cr eat eQueueSessi on( com sun. messagi ng. j ms. Sessi on. NO ACKNOALEDGE) ;

Specifying no-acknowledge mode for a session results in the following behavior:
« The client runtime will throw a JMSExcept i on if Sessi on. recover () is called.

= Theclientruntime will ignore a call to the Message. acknow edge() method from
a consumer.

= Messages can be lost. As opposed to dups-OK-acknowledge, which can result
in duplicate messages being sent, no-acknowledge mode bypasses checks and
balances built into the system and may result in message loss.

Chapter 3 Message Queue Clients: Design and Features 121



Communicating with C Clients

Communicating with C Clients

Message Queue supports C clients as message producers and consumers.

A Java client consuming messages sent by a C client faces only one restriction: a C
client cannot be part of a distributed transaction, and therefore a Java client
receiving a message from a C client cannot participate in a distributed transaction
either.

A Java client producing messages for a consuming C client must be aware of the
following differences in the Java and C interfaces because these differences will
affect the C client’s ability to consume messages: C clients

= Can only consume messages of type t ext and byt es
= Cannot consume messages whose body has been compressed
= Cannot participate in distributed transactions

= Cannot receive SOAP messages

122 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Chapter 4

Using the Metrics Monitoring API

Message Queue provides several ways of obtaining metrics data as a means of
monitoring and tuning performance. One of these methods, message-based
monitoring, allows metrics data to be accessed programmatically and then to be
processed in whatever way suits the consuming client. Using this method, a client
subscribes to one or more metrics destinations and then consumes and processes
messages produced by the broker to those destinations. Message-based monitoring
is the most customized solution to metrics gathering, but it does require the effort
of writing a consuming client that retrieves and processes metrics messages.

The three methods of obtaining metrics data are described in the Message Queue
Administration Guide, which also discusses the relative merits of each method and
the set of data that is captured by each. Before you decide to used message-based
monitoring, you should consult this guide to make sure that you will be able to
obtain the information you need using this method.

Message-based monitoring is enabled by the combined efforts of administrators
and programmers. The administrator is responsible for configuring the broker so
that it produces the messages of interest at a specified interval and that it persists
these messages for a set time. The programmer is responsible for selecting the data
to be produced and for creating the client that will consume and process the data.

This chapter focuses on the work the programmer must do to implement a
message-based monitoring client. It includes the following sections:

= “Monitoring Overview” on page 124
= “Creating a Metrics-Monitoring Client” on page 126
= “Format of Metrics Messages” on page 127

= “Metrics Monitoring Client Code Examples” on page 132

123



Monitoring Overview

Monitoring Overview

Message Queue includes an internal client that is enabled by default to produce
different types of metrics messages. Production is actually enabled when a client
subscribes to a topic destination whose name matches one of the metrics message
types. For example, if a client subscribes to the topic ng. metri cs. j vm the client
receives information about JMV memory usage.

The metrics topic destinations (metric message types) are described in Table 4-1.

Table 4-1  Metrics Topic Destinations

Topic Destination Name Type of Metrics Messages

ng. netrics. broker Broker metrics: information on connections,
message flow, and volume of messages in the
broker.

ng. netrics.jvm Java Virtual Machine metrics: information on

memory usage in the JVM.

ng. netrics. destination_|ist A list of all destinations on the broker, and their
types.

ng. netrics. destination. queue. Destination metrics for a queue of the specified

destination_name name. Metrics data includes number of consumers,

message flow or volume, disk usage, and more.

ng. netrics. destination.topic. Destination metrics for a topic of the specified
destination_name name. Metrics data includes number of consumers,
message flow or volume, disk usage, and more.

A metrics message that is produced to one of the destinations listed in Table 4-1 is a
normal JMS message; its header and body are defined to hold the following
information:

= The message header has several properties, one that specifies the metrics
message type, one that records the time the message was produced
(timestamp), and a collection of properties identifying the broker that sent the
metric message (broker host, port, and address/URL).

= The message body contains name-value pairs that vary with the message type.

The section “Format of Metrics Messages” on page 127 provides complete
information about the types of metrics messages and their content (name-value
pairs).

124  Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Monitoring Overview

To receive metrics messages, the consuming client must be subscribed to the
destination of interest. Otherwise, consuming a metrics message is exactly the same
as consuming any JMS message. The message can be consumed synchronously or
asynchronously, and then processed as needed by the client.

Message-based monitoring is concerned solely with obtaining metrics information.
It does not include methods that you can call to work with physical destinations,
configure or update the broker, or shutdown and restart the broker.

Administrative Tasks

By default the Message Queue metrics-message producing client is enabled to
produce nonpersistent messages every sixty seconds. The messages are allowed to
remain in their respective destinations for 5 minutes before being automatically
deleted. To persist metrics messages, to change the interval at which they are
produced, or to change their time-to-live interval, the administrator must set the
following properties in the confi g. properti es file:i ng. metri cs. t opi c. persi st,
inmg.metrics.topic.interval,ing.netrics.topic.timetolive.

In addition, the administrator might want to set access controls on the metrics
destinations. This restricts access to sensitive metrics data and helps limit the
impact of metrics subscriptions on overall performance. For more information
about administrative tasks in enabling message-based monitoring and access
control, see Message Queue Administration Guide.

Implementation Summary

The following task list summarizes the steps required to implement message based
monitoring:

1. The developer designs and writes a client that subscribes to one or more
metrics destinations.

2. The administrator sets those metrics-related broker properties whose default
values are not satisfactory.

3. (Optional) The administrator sets entries in the access. control . properti es file
to restrict access to metrics information.

4. The developer or the administrator starts the metrics monitoring client.

When consumers subscribe to a metrics topic, the topic’s physical destination is
automatically created. After the metrics topic has been created, the broker’s metrics
message producer begins to send metrics messages to the appropriate destination.

Chapter 4  Using the Metrics Monitoring APl 125



Creating a Metrics-Monitoring Client

Creating a Metrics-Monitoring Client

126

You create a metrics monitoring client in the same way that you would write any
JMS client, except that the client must subscribe to one or more special metrics
message topic and must be ready to receive and process messages of a specific type
and format.

No hierarchical naming scheme is implied in the metrics-message names. You can’t
use a wildcard character (*) to identify multiple destination names.

A client that monitors broker metrics must perform the following basic tasks:
1. Create a Topi cConnect i onFact ory object.

Create a Topi cConnect i on to the Message Queue service.

Create a Topi cSessi on.

2
3
4. Create a metrics Topi ¢ destination object.
5. Create a Topi cSubscri ber.

6

Register as an asynchronous listener to the topic, or invoke the synchronous
recei ve() method to wait for incoming metrics messages.

7. Process metrics messages that are received.

In general, you would use JNDI lookups of administered objects to make your
client code provider-independent. However, the metrics-message production is
specific to Message Queue, there is no compelling reason to use JNDI lookups. You
can simply instantiate these administered objects directly in your client code. This
is especially true for a metrics destination for which an administrator would not
normally create an administered object.

Notice that the code examples in this chapter instantiate all the relevant
administered objects directly.

You can use the following code to extract the type (St ri ng) or timestamp (I ong)
properties in the message header from the message:

MapMessage mapMsg;

/*

* mapMsg is the metrics message received

*

/

String type = mapMsg. get StringProperty("type");

I ong timestanp = mapMsg. get LongProperty("ti mestanp");

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Format of Metrics Messages

You use the appropriate get method in the class j avax. j ns. MapMessage to extract
the name-value pairs. The get method you use depends on the value type. Three
examples follow:

 ong val uel = mapMsg. get Long( " nunisgsl n");
| ong val ue2 = mapMsg. get Long( " nunikgsQut");
int value3 = napMsg. getlnt("diskWilizationRatio");

Format of Metrics Messages

In order to consume and process a metrics messages, you must know its type and
format. This section describes the general format of metrics messages and provides
detailed information on the format of each type of metrics message.

Metrics messages are of type MapMessage. (A type of message whose body contains
a set of name-value pairs. The order of entries is not defined.)

= The message header has properties that are useful to applications. The t ype
property identifies the type of metric message (and therefore its contents). It is
useful if the same subscriber processes more than one type of metrics message
for example, messages from the topics my. et ri cs. br oker and
ng. netrics.jvm The ti nest anp property indicates when the metric sample
was taken and is useful for calculating rates or drawing graphs. The
br oker Host , br oker Por t , and br oker Addr ess properties identify the broker
that sent the metric message and are useful when a single application needs to
process metric messages from different brokers.

= The body of the message contains name-value pairs, and the data values
depend on the type of metrics message. The following subsections describe the
format of each metrics message type.

Note that the names of name-value pairs (used in code to extract data) are
case-sensitive and must be coded exactly as shown. For example, NunisgsQut is
incorrect; numvsgsQut is correct.

Broker Metrics

The messages you receive when you subscribe to the topic ng. netri cs. br oker
have the type property set to ng. netri cs. br oker in the message header and have
the data listed in Table 4-2 in the message body.

Chapter 4  Using the Metrics Monitoring APl 127



Format of Metrics Messages

128

Table 4-2  Data in the Body of a Broker Metrics Message

Metric Name Value Type Description

nunConnect i ons long Current number of connections to the broker

nunisgsi n long Number of IMS messages that have flowed into the
broker since it was last started

numvsgs Qut long Number of IMS messages that have flowed out of the
broker since it was last started

nunikgs long Current number of JIMS messages stored in broker
memory and persistent store

nmsgByt esl n long Number of IMS message bytes that have flowed into the
broker since it was last started

nmsgByt esCQut long Number of IMS message bytes that have flowed out of
the broker since it was last started

t ot al MsgByt es long Current number of JMS message bytes stored in broker
memory and persistent store

nunPkt sl n long Number of packets that have flowed into the broker
since it was last started; this includes both JMS
messages and control messages

nunPkt sQut long Number of packets that have flowed out of the broker
since it was last started; this includes both JMS
messages and control messages

pkt Byt esl n long Number of packet bytes that have flowed into the broker
since it was last started; this includes both JMS
messages and control messages

pkt Byt esQut long Number of packet bytes that have flowed out of the
broker since it was last started; this includes both IMS
messages and control messages

nunDest i nat i ons long Current number of destinations in the broker

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Format of Metrics Messages

JVM Metrics

The messages you receive when you subscribe to the topic ng. netri cs. j vmhave
the type property set to ng. metri cs. j vm in the message header and have the data
listed in Table 4-3 in the message body.

Table 4-3  Data in the Body of a JVM Metrics Message

Metric Name Value Type Description

freeMenory long Amount of free memory available for use in the JVM heap
maxMenory long Maximum size to which the JVM heap can grow

t ot al Menory long Total memory in the JVM heap

Destination-List Metrics

The messages you receive when you subscribe to a topic named
ng. netrics.destination_|ist have thetype property setto
ng. netrics.destination_|ist inthe message header.

Each destination in the broker has a corresponding, unique map name (a
name-value pair) in the message body. The name depends on whether the
destination is a queue or a topic. The type of the name-value pair is hasht abl e.

Each hashtable in the message contains information about a specific destination on
the broker. The sub-table within Table 4-4 describes the key-value pairs that can be
used to extract this information.

By enumerating through the map names and extracting the hashtable described in
Table 4-4, you can form a complete list of destination names and some of their
characteristics.

The destination list does not include the following:
= Destinations that are used by Message Queue administration tools
= Destinations that the Message Queue broker creates for internal use

The message body contains name-value pairs as follows:

Chapter 4  Using the Metrics Monitoring APl 129



Format of Metrics Messages

Table 4-4  Data in the Body of a Destination-List Metrics Message

Metric Name Value Type Value or Description

One of the following: hashtable The corresponding value for the map name is an object of
type java. util . Hasht abl e. This hashtable contains the

e ng.metrics. destination. queue. A :
following key-value pairs:

monitored_destination_name

« . metrics. destination. t opic. Key (String) Value Type Value or Description
monitored_destination_name name String Destination name
type String Destination type (queue or
t opi ¢)
i sTenporary Boolean Is destination temporary?

Notice that the destination name and type could be extracted directly from the
metrics topic destination name, but the hashtable includes it for your convenience.

Destination Metrics

The messages you receive when you subscribe to the topic

ng. netrics. destinati on. queue. monitored_destination_name have the type
property ng. metrics. desti nati on. queue. monitored_destination_name set in the
message header. The messages you receive when you subscribe to the topic

ng. netrics. destination. topi c. monitored_destination_name have the type
property ng. metrics. destination. t opi c. monitored_destination_name set in the
message header. Either of these messages has the data listed in Table 4-5 in the
message body.

Table 4-5  Data in the Body of a Destination Metrics Message

Metric Name Value Type Description

numAct i veConsuner s long Current number of active consumers

avgNunct i veConsurer s long Average number of active consumers since the broker was last
started

peakNunct i veConsurer s long Peak number of active consumers since the broker was last
started

nunBackupConsuner s long Current number of backup consumers (applies only to queues)

avgNunBackupConsurrer s long Average number of backup consumers since the broker was last

started (applies only to queues)

peakNunBackupConsurer s long Peak number of backup consumers since the broker was last
started (applies only to queues)

130 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Format of Metrics Messages

Table 4-5  Data in the Body of a Destination Metrics Message (Continued)

Metric Name Value Type Description

nunivsgsi n long Number of JMS messages that have flowed into this destination
since the broker was last started

nunivsgsQut long Number of JIMS messages that have flowed out of this destination
since the broker was last started

nunikgs long Number of JMS messages currently stored in destination memory
and persistent store

avgNunisgs long Average number of IMS messages stored in destination memory
and persistent store since the broker was last started

peakNunmvkgs long Peak number of JMS messages stored in destination memory and
persistent store since the broker was last started

nsgByt esl n long Number of IMS message bytes that have flowed into this
destination since the broker was last started

msgByt esCut long Number of IMS message bytes that have flowed out of this
destination since the broker was last started

t ot al MsgByt es long Current number of JMS message bytes stored in destination
memory and persistent store

avgTot al MsgByt es long Average number of JMS message bytes stored in destination
memory and persistent store since the broker was last started

peakTot al MsgByt es long Peak number of IMS message bytes stored in destination memory
and persistent store since the broker was last started

peakMsgByt es long Peak number of IMS message bytes in a single message since
the broker was last started

di skReser ved long Disk space (in bytes) used by all message records (active and
free) in the destination file-based store

di skUsed long Disk space (in bytes) used by active message records in
destination file-based store

diskWilizationRatio int Quotient of used disk space over reserved disk space. The higher
the ratio, the more the disk space is being used to hold active
messages

Chapter 4  Using the Metrics Monitoring APl 131



Metrics Monitoring Client Code Examples

Metrics Monitoring Client Code Examples

132

Several complete monitoring example applications (including source code and full
documentation) are provided when you install Message Queue. You’ll find the
examples in your IMQ home directory under / deno/ noni t ori ng. Before you can
run these clients, you must set up your environment (for example, the CLASSPATH
environment variable). For details, see “Setting Up Your Environment” on page 23.

Next are brief descriptions of three examples—Broker Metrics, Destination List
Metrics, and Destination Metrics—with annotated code examples from each.

These examples use the utility classes Metri csPrint er and Mul ti Col umPrinter to
print formatted and aligned columns of text output. However, rather than
explaining how those utility classes are used, the following code examples focus on
how to subscribe to the metrics topic and how to extract information from the
metrics messages received.

Notice that in the source files, the code for subscribing to metrics topics and
processing messages is actually spread across various methods. However, for the
sake of clarity, the examples are shown here as though they were contiguous
blocks of code.

A Broker Metrics Example

The source file for this code example is Br oker Met ri ¢s. j ava. This metrics
monitoring client subscribes to the topic ng. netri cs. broker and prints
broker-related metrics to the standard output.

Code Example 4-1 shows how to subscribe to ng. et ri cs. br oker .

Code Example 4-1 Example of Subscribing to a Broker Metrics Topic

com sun. messagi ng. Topi cConnect i onFact ory net ri cConnecti onFact ory;
Topi cConnect i on netri cConnection;
Topi cSessi on metri cSessi on;
Topi cSubscri ber netricSubscri ber;
Topi ¢ met ri cTopi c;

netri cConnecti onFactory = new
com sun. nessagi ng. Topi cConnect i onFactory();

netri cConnection = netricConnecti onFactory. creat eTopi cConnection();
metri cConnection.start();

metricSession = netricConnecti on. creat eTopi cSessi on(f al se,
Sessi on. AUTO_ACKNOMLEDGE) ;

metricTopic = netricSession. createTopi c("ny. metrics. broker");

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Metrics Monitoring Client Code Examples

Code Example 4-1 Example of Subscribing to a Broker Metrics Topic (Continued)

metri cSubscri ber = netricSession. createSubscri ber(netricTopic);
metri cSubscri ber. set Messageli stener (this);

The incoming message is processed in the onMessage() and doTot al s() methods,

as shown in Code Example 4-2.

Code Example 4-2 Example of Processing a Broker Metrics Message

public void onMessage(Message nm) {
try {
MapMessage mapMsg = (MapMessage) m
String type = mapMsg. get StringProperty("type");

if (type.equal s("ng.metrics.broker")) {
if (showTotals) {
doTot al s( mapMsg) ;

}
}
private void doTot al s(MapMessage maphsg) |
try {
String oneRow] = new String[ 8 ];
int i =0;
/*
* Extract broker netrics
*/
oneRow i ++] = Long. toStri ng( mapMsg. get Long(" numvsgsin"));
oneRow i ++] = Long. toStri ng( mapMsg. get Long( " numvsgsQut™));
oneRow i ++] = Long. toStri ng( mapMsg. get Long(" nsgBytesin"));
oneRow i ++] = Long.toStri ng( mapMsg. get Long( " nsgBytesQut™"));
oneRow i ++] = Long. toStri ng( mapMsg. get Long(" nunPktsin"));
oneRow i ++] = Long. toStri ng( mapMsg. get Long( " nunPkt sQut™));
oneRow i ++] = Long. toStri ng( mapMsg. get Long(" pkt Bytesin"));
oneRow i ++] = Long.toStri ng( mapMsg. get Long(" pkt BytesQut"));
} catch (Exception e) {
Systemerr. println("onMessage: Exception caught: " + e);
}
}

Chapter 4  Using the Metrics Monitoring API

133



Metrics Monitoring Client Code Examples

134

Notice how the metrics type is extracted, using the get St ri ngPr operty() method,
and is checked. If you use the onMessage() method to process metrics messages of
different types, you can use the t ype property to distinguish between different
incoming metrics messages.

Also notice how various pieces of information on the broker are extracted, using
the get Long() method of mapMsg.

Run this example monitoring client with the following command:
java BrokerMetrics

The output looks like the following:

Msgs Msg Bytes Pkt s Pkt Bytes

In Qut In Qut In Qut In Qut

0 0 0 0 6 5 888 802

0 1 0 633 7 8 1004 1669

A Destination List Metrics Example

The source file for this code example is Dest Li st Metri ¢s. j ava. This client
application monitors the list of destinations on a broker by subscribing to the topic
ng. netrics. destination_|ist. The messages that arrive contain information
describing the destinations that currently exist on the broker, such as destination
name, destination type, and whether the destination is temporary.

Code Example 4-3 shows how to subscribe to ng. et ri cs. destination_|ist.

Code Example 4-3 Example of Subscribing to the Destination List Metrics
Topic

com sun. messagi ng. Topi cConnect i onFact ory
met ri cConnect i onFact ory;

Topi cConnect i on met ri cConnecti on;

Topi cSessi on netri cSession;

Topi cSubscri ber met ri cSubscri ber;

Topi ¢ met ri cTopi c;

String met ri cTopi cNarme = nul | ;

net ri cConnecti onFactory = new com sun. nessagi ng. Topi cConnecti onFactory();
netri cConnection = netricConnecti onFactory. creat eTopi cConnection();
netricConnection.start();

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Metrics Monitoring Client Code Examples

Code Example 4-3 Example of Subscribing to the Destination List Metrics
Topic (Continued)

metricSession = netricConnection. creat eTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOMLEDGE) ;

netricTopi cNane = "ng. netrics.destination_|ist";
metricTopic = nmetricSession. creat eTopi c(netricTopi cNane) ;

met ri cSubscriber = netricSession. creat eSubscri ber (netricTopic);
netri cSubscri ber. set Messageli st ener (this);

The incoming message is processed in the onMessage() method, as shown in Code
Example 4-4:

Code Example 4-4 Example of Processing a Destination List Metrics Message

public void onMessage(Message n) {
try {
MapMessage mapMsg = (MapMessage) m
String type = mapMsg. get StringProperty("type");

if (type.equal s(netricTopicNane)) {
String oneRoW] = new String[ 3 ];

/*

* Extract metrics

*/

for (Enunmeration e = mapMsg. get MapNanes();
e. hasMreEl enents();) {

String metricDest Nane = (String)e. nextEl enment();
Hasht abl e dest Val ues =
(Hasht abl e) mapMsg. get (bj ect (et ri cDest Nane) ;

int i =0;
oneRow[ i ++] = (dest Val ues. get ("nane")).toString();
oneRow[ i ++] = (dest Val ues. get ("type")).toString();

oneRow[ i ++] = (dest Val ues. get ("i sTenporary")).toString();

| np. add( oneRow) ;

mp. print();
Systemout.printin("");

np. cl ear ();
} else {

Systemerr.println("Mg received:
not destination list netric type");

Chapter 4  Using the Metrics Monitoring APl 135



Metrics Monitoring Client Code Examples

136

Code Example 4-4 Example of Processing a Destination List Metrics Message

}
} catch (Exception e) {

Systemerr. println("onMessage: Exception caught: " + e);
}

Notice how the metrics type is extracted and checked, and how the list of
destinations is extracted. By iterating through the map names in mapMsg and
extracting the corresponding value (a hashtable), you can construct a list of all the
destinations and their related information.

As discussed in “Format of Metrics Messages” on page 127, these map names are
metrics topic names having one of two forms:

ngy. netri cs. desti nati on. queue. monitored_destination_name
ny. netrics. destination. topi c. monitored_destination_name

(The map names can also be used to monitor a destination, but that is not done in
this particular example.)

Notice that from each extracted hashtable, the information on each destination is
extracted using the keys nare, t ype, and i sTenpor ar y. The extraction code from the
previous code example is reiterated here for your convenience.

Code Example 4-5 Example of Extracting Destination Information From a Hash Table

String metricDestNane = (String)e. nextE enment();
Hasht abl e dest Val ues = (Hasht abl e) mapMsg. get (bj ect (net ri cDest Nane) ;
int i =0

oneRow i ++] = (dest Val ues. get ("name")).toString();
oneRow i ++] = (destVal ues. get ("type")).toString();
oneRow i ++] = (destVal ues. get ("i sTenporary")).toString();

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Metrics Monitoring Client Code Examples

Run this example monitoring client with the following command:
java DestListMetrics
The output looks like the following:

Destination Nane Type | sTenporary
Si npl eQueue queue fal se
f ooQueue queue fal se
topi cl topic fal se

A Destination Metrics Example

The source file for this code example is Dest Metri cs. j ava. This client application
monitors a specific destination on a broker. It accepts the destination type and
name as parameters, and it constructs a metrics topic name of the form

ng. netrics. destinati on. queue. monitored_destination_name or

ng. netrics. destination.topi c. monitored_destination_name.

Code Example 4-6 shows how to subscribe to the metrics topic for monitoring a
specified destination.

Code Example 4-6 Example of Subscribing to a Destination Metrics Topic

com sun. messagi ng. Topi cConnect i onFact ory met ri cConnect i onFact ory;
Topi cConnect i on nmetri cConnecti on;

Topi cSessi on net ri cSessi on;

Topi cSubscri ber nmetri cSubscri ber;

Topi ¢ net ri cTopi c;

String netri cTopi cNane = nul | ;

String dest Nare = nul |,

dest Type = nul | ;
for (int i =0; i <args.length; ++) {
'}.élse if (args[i].equals("-n")) {
destNane = args[i +1];
} else if (args[i].equals("-t")) {
dest Type = args[i +1];
}

netri cConnecti onFactory = new com sun. nessagi ng. Topi cConnecti onFactory();

netricConnection = netricConnecti onFactory. creat eTopi cConnection();

Chapter 4  Using the Metrics Monitoring APl 137



Metrics Monitoring Client Code Examples

Code Example 4-6 Example of Subscribing to a Destination Metrics Topic (Continued)

netricConnection.start();

netricSession = netricConnection. creat eTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOMLEDCGE) ;

if (destType.equals("q")) {

metri cTopi cNane = "ng. netrics. destination. queue." + dest Nane;
} else {

metri cTopi cNane = "ng. netrics. destination.topic." + destNang;
}

metricTopic = netricSession. creat eTopi c(netricTopi cNane) ;

metri cSubscriber = netricSession. creat eSubscri ber(netricTopic);
netri cSubscri ber. set MessagelLi st ener (this);

The incoming message is processed in the onMessage() method, as shown in Code
Example 4-7:

Code Example 4-7 Example of Processing a Destination Metrics Message

public void onMessage(Message nm) {
try {
MapMessage mapMsg = (MapMessage) m
String type = mapMsg. get StringProperty("type");

if (type.equal s(netricTopicNane)) {
String oneRoW] = new String[ 11 ];

int i =0;
/*
* Extract destination netrics
*/
oneRow[ i ++] = Long. toString( mapMsg. get Long(" numvbgsin"));
oneRow[ i ++] = Long. toString( mapMsg. get Long(" numvbgsQut™));
oneRow[ i ++] = Long. toString( mapMsg. get Long(" nsgBytesin"));
oneRow[ i ++] = Long. toString( mapMsg. get Long(" nsgBytesQut™));
oneRow[ i ++] = Long. toString( mapMsg. get Long(" numvbgs"));
oneRow[ i ++] = Long. toString( mapMsg. get Long(" peakNunvsgs"));
oneRow[ i ++] = Long. toString( mapMsg. get Long(" avgNunivsgs"));
oneRow[ i ++] =

Long. t oSt ri ng( mapMsg. get Long( "t ot al MsgByt es")/1024);
oneRow[ i ++] =

Long. t oSt ri ng( mapMsg. get Long( " peakTot al MsgByt es")/ 1024) ;
oneRow[ i ++] =

138 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Metrics Monitoring Client Code Examples

Code Example 4-7 Example of Processing a Destination Metrics Message (Continued)

Long. t oSt ri ng( mapMsg. get Long( " avgTot al MsgByt es")/ 1024) ;

oneRow[ i ++] =
Long. t oSt ri ng( mapMsg. get Long( " peakMsgByt es")/ 1024) ;

np. add( oneRow) ;

}
} catch (Exception e) {
Systemerr. println("onMessage: Exception caught: " + e);

Notice how the metrics type is extracted, using the get St ri ngProperty() method
as in the previous examples, and is checked. Also notice how various destination

data are extracted, using the get Long() method of mapMsg.

Run this example monitoring client with one of the following commands:
java DestMetrics -t t -n topic_name

java DestMetrics -t g -n queue_name

Using a queue named Si npl eQueue as an example, the command would be:
java DestMetrics -t g -n Sinpl eQueue

The output looks like the following:

Msgs
In Qut
500 O

Msg Bytes Mg Count Tot Msg Bytes (k) Largest Mg
In Qut Qurr Peak Avg Qurr  Peak Avg (k)
318000 O 500 500 250 310 310 155 0

Chapter 4  Using the Metrics Monitoring APl 139



Metrics Monitoring Client Code Examples

140 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Chapter 5

Working with SOAP Messages

SOAP is a protocol that allows for the exchange of data whose structure is defined
by an XML scheme. Using Message Queue, you can send JMS messages that
contain a SOAP payload. This allows you to transport SOAP messages reliably and
to publish SOAP messages to JMS subscribers. This chapter covers the following
topics:

“What is SOAP?” on page 142

“SOAP Messaging in JAVA” on page 148

“Using SOAP Administered Objects” on page 157
“SOAP Messaging Models and Examples” on page 159
“Integrating SOAP and Message Queue” on page 172

If you are familiar with the SOAP specification, you can skip the introductory
section and start by reading “SOAP Messaging in JAVA” on page 148.

141



What is SOAP?

What is SOAP?

SOAP, the Simple Object Access Protocol, is a protocol that allows the exchange of
structured data between peers in a decentralized, distributed environment. The
structure of the data being exchanged is specified by an XML scheme.

The fact that SOAP messages are encoded in XML makes SOAP messages portable,
because XML is a portable, system-independent way of representing data. By
representing data using XML, you can access data from legacy systems as well as
share your data with other enterprises. The data integration offered by XML also
makes this technology a natural for Web-based computing such as Web services.
Firewalls can recognize SOAP packets based on their content type (t ext / xni - SOAP)
and can filter messages based on information exposed in the SOAP message
header.

The SOAP specification describes a set of conventions for exchanging XML
messages. As such, it forms a natural foundation for Web services that also need to
exchange information encoded in XML. Although any two partners could define
their own protocol for carrying on this exchange, having a standard such as SOAP
allows developers to build the generic pieces that support this exchange. These
pieces might be software that adds functionality to the basic SOAP exchange, or
might be tools that administer SOAP messaging, or might even comprise parts of
an operating system that supports SOAP processing. Once this support is put in
place, other developers can focus on creating the Web services themselves.

The SOAP protocol is fully described at htt p: // waw w3. or g/ TR/ SOAP. This section
restricts itself to discussing the reasons why you would use SOAP and to
describing basic concepts that will make it easier to work with SOAP messages.

SOAP with Attachments API for Java

The Soap with Attachments API for Java (SAAJ) is a JAVA-based API that enforces
compliance to the SOAP standard. When you use this API to assemble and
disassemble SOAP messages, it ensures the construction of syntactically correct
SOAP messages. SAAJ also makes it possible to automate message processing
when several applications need to handle different parts of a message before
forwarding it to the next recipient.

Figure 5-1 shows the layers that can come into play in the implementation of SOAP
messaging. This chapter focuses on the SOAP and language implementation layers.

142  Message Queue 3 2005Q4 « Developer's Guide for Java Clients


http://www.w3.org/TR/SOAP

What is SOAP?

Figure 5-1 SOAP Messaging Layers

Profile
Messaging & Delivery Semantics
SOAP
Language Implementation Messaging

SOAP with Attachments Encoding

Wire Transport Protocol

The sections that follow describe each layer shown in the preceding figure in
greater detail. The rest of this chapter focuses on the SOAP and language
implementation layers.

The Transport Layer

Underlying any messaging system is the transport or wire protocol that governs
the serialization of the message as it is sent across a wire and the interpretation of
the message bits when it gets to the other side. Although SOAP messages can be
sent using any number of protocols, the SOAP specification defines only the
binding with HTTP. SOAP uses the HTTP request/response message model. It
provides SOAP request parameters in an HTTP request and SOAP response
parameters in an HTTP response. The HTTP binding has the advantage of allowing
SOAP messages to go through firewalls.

The SOAP Layer

Above the transport layer is the SOAP layer. This layer, which is defined in the
SOAP Specification, specifies the XML scheme used to identify the message parts:
envelope, header, body, and attachments. All SOAP message parts and contents,
except for the attachments, are written in XML. The following sample SOAP
message shows how XML tags are used to define a SOAP message:

Chapter 5  Working with SOAP Messages 143



What is SOAP?

<SCAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schermas. xm soap. or g/ soap/ envel ope/ "
SQAP- ENV: encodi ngSt yl e=
"http://schemas. xm soap. or g/ soap/ encodi ng/ " >
<SQAP- ENV: Body>
<m Cet Last TradePri ce xm ns: m=" Sone- URI " >
<synbol >Dl S</ synbol >
</ m Get Last Tr adePri ce>
</ SQAP- ENV: Body>
</ SOAP- ENV: Envel ope>

The wire transport and SOAP layers are actually sufficient to do SOAP messaging.
You could create an XML document that defines the message you want to send,
and you could write HTTP commands to send the message from one side and to
receive it on the other. In this case, the client is limited to sending synchronous
messages to a specified URL. Unfortunately, the scope and reliability of this kind of
messaging is severely restricted. To overcome these limitations, the provider and
profile layers are added to SOAP messaging.

The Language Implementation Layer

A language implementation allows you to create XML messages that conform to
SOAP, using API calls. For example, the SAAJ implementation of SOAP, allows a
Java client to construct a SOAP message and all its parts as Java objects. The client
would also use SAAJ to create a connection and use it to send the message.
Likewise, a Web service written in Java could use the same implementation (SAAJ),
or any other language implementation, to receive the message, to disassembile it,
and to acknowledge its receipt.

The Profiles Layer

In addition to a language implementation, a SOAP implementation can offer
services that relate to message delivery. These could include reliability, persistence,
security, and administrative control, and are typically delivered by a SOAP
messaging provider. These services will be provided for SOAP messaging by
Message Queue in future releases.

Interoperability

Because SOAP providers must all construct and deconstruct messages as defined
by the SOAP specification, clients and services using SOAP are interoperable. That
is, as shown in Figure 5-2, the client and the service doing SOAP messaging do not
need to be written in the same language nor do they need to use the same SOAP
provider. It is only the packaging of the message that must be standard.

144  Message Queue 3 2005Q4 « Developer's Guide for Java Clients



What is SOAP?

Figure 5-2 SOAP Interoperability

SOAP Messaging SOAP Service
Client

SOAP
Implementation

HTTP

f SOAB >
l Msg'

In order for a SAAJ client or service to interoperate with a service or client using a
different implementation, the parties must agree on two things:

= They must use the same transport bindings--that is, the same wire protocol.

= They must use the same profile in constructing the SOAP message being sent.

The SOAP Message

Having surveyed the SOAP messaging layers, let’s examine the SOAP message
itself. Although the work of rendering a SOAP message in XML is taken care of by
the SAAJ implementation, you must still understand its structure in order to make
the SAAJ calls in the right order.

A SOAP message is an XML document that consists of a SOAP envelope, an
optional SOAP header, and a SOAP body. The SOAP message header contains
information that allows the message to be routed through one or more
intermediate nodes before it reaches its final destination.

= The envelope is the root element of the XML document representing the
message. It defines the framework for how the message should be handled and
by whom. Once it encounters the Envelope element, the SOAP processor
knows that the XML is a SOAP message and can then look for the individual
parts of the message.

Chapter 5  Working with SOAP Messages 145



What is SOAP?

= The header is a generic mechanism for adding features to a SOAP message. It
can contain any number of child elements that define extensions to the base
protocol. For example, header child elements might define authentication
information, transaction information, locale information, and so on. The actors,
the software that handle the message may, without prior agreement, use this
mechanism to define who should deal with a feature and whether the feature is
mandatory or optional.

= The body is a container for mandatory information intended for the ultimate
recipient of the message.

A SOAP message may also contain an attachment, which does not have to be in
XML. For more information, see “SOAP Packaging Models” next.

A SOAP message is constructed like a nested matrioshka doll. When you use SAAJ
to assemble or disassemble a message, you need to make the API calls in the
appropriate order to get to the message part that interests you. For example, in
order to add content to the message, you need to get to the body part of the
message. To do this you need to work through the nested layers: SOAP part, SOAP
envelope, SOAP body, until you get to the SOAP body element that you will use to
specify your data. For more information, see “The SOAP Message Object” on

page 149.

SOAP Packaging Models

The SOAP specification describes two models of SOAP messages: one that is
encoded entirely in XML and one that allows the sender to add an attachment
containing non-XML data. You should look over the following two figures and
note the parts of the SOAP message for each model. When you use SAAJ to define
SOAP messages and their parts, it will be helpful for you to be familiar with this
information.

Figure 5-3 shows the SOAP model without attachments. This package includes a
SOAP envelope, a header, and a body. The header is optional.

146  Message Queue 3 2005Q4 « Developer's Guide for Java Clients



What is SOAP?

Figure 5-3 SOAP Message Without Attachments

Communication Protocol Envelope <4¢—— HTTP, SMTP, ...

SOAP1.1 Message Package

Envelope

Header

Body

When you construct a SOAP message using SAAJ, you do not have to specify
which model you’'re following. If you add an attachment, a message like that
shown in Figure 5-4 is constructed; if you don’t, a message like that shown in
Figure 5-3 is constructed.

Figure 5-4 shows a SOAP Message with attachments. The attachment part can
contain any kind of content: image files, plain text, and so on. The sender of a
message can choose whether to create a SOAP message with attachments. The
message receiver can also choose whether to consume an attachment.

A message that contains one or more attachments is enclosed in a MIME envelope
that contains all the parts of the message. In SAAJ, the MIME envelope is
automatically produced whenever the client creates an attachment part. If you add
an attachment to a message, you are responsible for specifying (in the MIME
header) the type of data in the attachment.

Chapter 5  Working with SOAP Messages 147



SOAP Messaging in JAVA

Figure 5-4 SOAP Message with Attachments

Communication Protocol Envelope <4—— HTTP, SMTP, ...

MIME Envelope

SOAP Part

Envelope

Header

Body

Attachment Part

SOAP Attachment
(XML or non-XML)

SOAP Messaging in JAVA

The SOAP specification does not provide a programming model or even an API for
the construction of SOAP messages; it simply defines the XML schema to be used
in packaging a SOAP message.

SAAJ is an application programming interface that can be implemented to support
a programming model for SOAP messaging and to furnish Java objects that
application or tool writers can use to construct, send, receive, and examine SOAP
messages. SAAJ defines two packages:

= javax.xn.soap: you use the objects in this package to define the parts of a
SOAP message and to assemble and disassemble SOAP messages. You can also
use this package to send a SOAP message without the support of a provider.

148 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



SOAP Messaging in JAVA

= javax.xnl.messagi ng: you use the objects in this package to send a SOAP
message using a provider and to receive SOAP messages.

This chapter focuses on the j avax. xni . soap package and how you use the objects
and methods it defines

= toassemble and disassemble SOAP messages
= tosend and receive these messages

It also explains how you can use the IMS API and Message Queue to send and
receive JMS messages that carry SOAP message payloads.

The SOAP Message Object

A SOAP Message Object is a tree of objects as shown in Figure 5-5. The classes or
interfaces from which these objects are derived are all defined in the
j avax. xni . soap package.

Chapter 5  Working with SOAP Messages 149



SOAP Messaging in JAVA

150

Figure 5-5 SOAP Message Object

SOAP Message

SOAP Part Attachment
Part
ESO'?P MIME
nvelope Headers
SOAP SOAP MIME

Header Body Header
Attachment
SOAP
Fault
SOAP Header
Element SOAP Body Detail
Element
Detall
Entry

As shown in the figure, the SOAPMessage object is a collection of objects divided in
two parts: a SOAP part and an attachment part. The main thing to remember is that
the attachment part can contain non-xml data.

The SOAP part of the message contains an envelope that contains a body (which
can contain data or fault information) and an optional header. When you use SAAJ
to create a SOAP message, the SOAP part, envelope, and body are created for you:
you need only create the body elements. To do that you need to get to the parent of
the body element, the SOAP body.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



SOAP Messaging in JAVA

In order to reach any object in the SOAPMessage tree, you must traverse the tree
starting from the root, as shown in the following lines of code. For example,
assuming the SOAPMessage is M/Msg, here are the calls you would have to make in
order to get the SOAP body:

SOAPPart MyPart = MyMsg. get SOAPPart () ;
SQOAPEnvel ope M/Env = MyPart. get Envel ope();
SOAPBody MyBody = envel ope. get Body() ;

At this point, you can create a name for a body element (as described in
“Namespaces” on page 152) and add the body element to the SOAPMessage.

For example, the following code line creates a name (a representation of an XML
tag) for a body element:

Narre bodyName = envel ope. creat eNare( " Tenperature");

The next code line adds the body element to the body:

SQAPBodyEl ement nyTenp = M/Body. addBodyEl enent (bodyNarre) ;

Finally, this code line defines some data for the body element bodyNane:

nyTenp. addText Node( " 98. 6");

Inherited Methods

The elements of a SOAP message form a tree. Each node in that tree implements
the Node interface and, starting at the envelope level, each node implements the
SOAPE! enent interface as well. The resulting shared methods are described in
Table 5-1.

Table 5-1 Inherited Methods

Inherited From Method Name Purpose
SQAPE! errent addAttri bute(Nane, String) Add an attribute with the specified Nane object and
string value
addChi | dE enent (Nane) Create a new SOAPEl enent object, initialized with the

addChi | dEl enent (String, String)  given Nane object, and add the new element
addChi | dEl enent (String, String,  (Use the Envel ope. creat eName method to create a

String) Nare object)

addNaneSpaceDecl ar ati on Add a namespace declaration with the specified prefix
(String, String) and URI

addText node( Stri ng) Create a new Text object initialized with the given

String and add it to this SOAPE! enent object

Chapter 5  Working with SOAP Messages 151



SOAP Messaging in JAVA

Table 5-1  Inherited Methods (Continued)

Inherited From Method Name

Purpose

get Al Attributes()

get At tri but eVal ue( Narre)
get Chi | dEl ement s()

get Chi | dEl enent s( Nane)

get B erent Nare()

get Encodi ngSt yl e()

get NaneSpacePr ef i xes()
get NanespaceURl (String)
removeAt tri but e( Nane)

r emoveNanespaceDecl ar ati on
(String)

set Encodi ngStyl e(Stri ng)

Node det achNode()
get Par ent El enent ()

get Val ue

recycl eNode()

set Par ent El enmrent
( SQAPE! enent )

Return an iterator over all the attribute names in this
object

Return the value of the specified attribute

Return an iterator over all the immediate content of this
element

Return an iterator over all the child elements with the
specified name

Return the name of this object

Return the encoding style for this object

Return an iterator of namespace prefixes

Return the URI of the namespace with the given prefix
Remove the specified attribute

Remove the namespace declaration that corresponds
to the specified prefix

Set the encoding style for this object to that specified
by String

Remove this Node object from the tree
Return the parent element of this Node object

Return the value of the immediate child of this Node
object if a child exists and its value is t ext

Notify the implementation that his Node object is no
longer being used and is free for reuse

Set the parent of this object to that specified by the
SQAPHE enent parameter

Namespaces

An XML namespace is a means of qualifying element and attribute names to
disambiguate them from other names in the same document. This section provides
a brief description of XML namespaces and how they are used in SOAP. For
complete information, see http: //ww w3. or g/ TR/ REG xni - nanes/ .

152  Message Queue 3 2005Q4 « Developer's Guide for Java Clients


http://www.w3.org/TR/REC-xml-names/

SOAP Messaging in JAVA

An explicit XML namespace declaration takes the following form:
<prefix: myElement
xm ns: prefix =" URI" >

The declaration defines prefix as an alias for the specified URI. In the element
nyE enent, you can use prefix with any element or attribute to specify that the
element or attribute name belongs to the namespace specified by the URI.

The following is an example of a namespace declaration:

<SQAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / scheras. xm soap. or g/ soap/ envel ope/ "

This declaration defines SOAP_ENV as an alias for the namespace:
htt p: // schemas. xm soap. or g/ soap/ envel ope/

After defining the alias, you can use it as a prefix to any attribute or element in the
Envel ope element. In Code Example 5-1, the elements <Envel ope> and <Body> and
the attribute encodi ngSt yl e all belong to the SOAP namespace specified by the
URI "http://schemas. xn soap. or g/ soap/ envel ope/ ".

Code Example 5-1 Explicit Namespace Declarations

<SQAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schermas. xm soap. or g/ soap/ envel ope/ "
SQAP- ENV: encodi ngSt yl e=
"http://schemas. xm soap. or g/ soap/ encodi ng/ ">
<SOAP- ENV: Header >
<Header A
xm ns="Header UR "
SQAP- ENV: nust Under st and="0">
The text of the header
</ Header A>
</ SQAP- ENV: Header >
<SQAP- ENV: Body>

</ SQAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Note that the URI that defines the namespace does not have to point to an actual
location; its purpose is to disambiguate attribute and element names.

Chapter 5  Working with SOAP Messages 153



SOAP Messaging in JAVA

Pre-defined SOAP Namespaces
SOAP defines two namespaces:

= The SOAP envelope, the root element of a SOAP message, has the following
namespace identifier:

"http://schemas. xm soap. or g/ soap/ envel ope"

= The SOAP serialization, the URI defining SOAP’s serialization rules, has the
following namespace identifier:

"http://schenmas. xn soap. or g/ soap/ encodi ng"

When you use SAAJ to construct or consume messages, you are responsible for
setting or processing hamespaces correctly and for discarding messages that have
incorrect namespaces.

Using Namespaces when Creating a SOAP Name

When you create the body elements or header elements of a SOAP message, you
must use the Narre object to specify a well-formed name for the element. You obtain
a Nane object by calling the method SOAPEnvel ope. cr eat eNarre.

When you call this method, you can pass a local name as a parameter or you can
specify a local name, prefix, and URI. For example, the following line of code
defines a name object bodyNane.

Nare bodyName = M/Envel ope. creat eName(" TradePri ce",
"Get LTP,
"http://foo.eztrade. cont);

This would be equivalent to the namespace declaration:
<Get LTP: TradePri ce xm ns: Get LTP= "http://foo0. ezt rade. con' >

The following code shows how you create a name and associate it with a SOAPBody
element. Note the use and placement of the cr eat eNane method.

SoapBody body = envel ope. get Body();//get body from envel ope

Narre bodyName = envel ope. cr eat eNane(" Tr adePri ce”, "GetLTP",
"http://foo.eztrade.cont);

SQAPBodyEl ement gl tp = body. addBodyEl enent (bodyNane) ;

154 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



SOAP Messaging in JAVA

Parsing Name Objects
For any given Nane object, you can use the following Name methods to parse the

name:

e getQualifiedName returns "prefix:LocalName", for the given name, this would
be Get LTP: TradePri ce.

e get UR would return"http://foo. eztrade. con.

« getLocal Narme would return "Tr adePri ce".

= getPrefix would return "Get LTP".

Destination, Message Factory, and Connection
Objects

SOAP messaging occurs when a SOAP message, produced by a message factory, is
sent to an endpoint via a connection.

= Ifyou are working without a provider, you must do the following:

0

u]

u]

u]

0

0

Create a SOAPConnect i onFact or y object.

Create a SQAPConnect i on obj ect.

Create an Endpoi nt object that represents the message’s destination.
Create a MessageFact or y object and use it to create a message.
Populate the message.

Send the message.

= Ifyou are working with a provider, you must do the following:

u]

u]

u]

Create a Provi der Connect i onFact or y object.
Get a Provi der Connect i on object from the provider connection factory.

Get a MessageFact ory object from the provider connection and use it to
create a message.

Populate the message.

Send the message.

Chapter 5  Working with SOAP Messages 155



SOAP Messaging in JAVA

The following three sections describe endpoint, message factory, and connection
objects in greater detail.

Endpoint

An endpoint identifies the final destination of a message. An endpoint is defined
either by the Endpoi nt class (if you use a provider) or by the URLEndpoi nt class (if
you don’t use a provider).)

Constructing an Endpoint

You can initialize an endpoint either by calling its constructor or by looking it up in
a naming service. For information about creating administered objects for
endpoints, see “Using SOAP Administered Objects” on page 157.

The following code uses a constructor to create a UR_LEndpoi nt :

nyEndpoi nt = new URLEndpoi nt ("http://sonehost/nyServlet");

Using the Endpoint to Address a Message

If you are using a provider, the Message Factory creating the message includes the
endpoint specification in the message header.

If you do not use a provider, you can specify the endpoint as a parameter to the
SQAPConnect i on. cal | method, which you use to send a SOAP message.

Sending a Message to Multiple Endpoints

If you are using an administered object to define an endpoint, note that it is
possible to associate that administered object with multiple URLs--each URL, is
capable of processing incoming SOAP messages. The code sample below associates
the endpoint whose lookup name is nyEndpoi nt with two URLS:

http://waw nyServlet1/ andhttp://ww nmyServl et2/.

i mgobj myr add
-t e
-1 "cn=nyEndpoi nt "
-0 "i ngSQAPENdpoi nt Li st=ht t p: / / waw. nySer vl et 1/
http:// ww nyServl et2/"

This syntax allows you to use a SOAP connection to publish a SOAP message to
multiple endpoints. For additional information about the endpoint administered
object, see “Using SOAP Administered Objects” on page 157.

156 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Using SOAP Administered Objects

Message Factory
You use a Message Factory to create a SOAP message.

To instantiate a message factory directly, use a statement like the following:

MessageFactory nf = MessageFact ory. newl nst ance();

Connection

To send a SOAP message using SAAJ, you must obtain a SOAPConnect i on. You can
also transport a SOAP message using Message Queue; for more information, see
“Integrating SOAP and Message Queue” on page 172.

SOAP Connection

A SQAPConnect i on allows you to send messages directly to a remote party. You can
obtain a SQAPConnect i on object simply by calling the static method

SOAPConnect i onFact ory. new nst ance() . Neither reliability nor security are
guaranteed over this type of connection.

Using SOAP Administered Objects

Administered objects are objects that encapsulate provider-specific configuration and
naming information. For endpoint objects, you have the choice either to instantiate
such an object or to create an administered object and associate it with an endpoint
object instance.

The main benefit of creating an endpoint through a JNDI lookup is to isolate
endpoint URLs from the code, allowing the application to switch the destination
without recompiling the code. A secondary benefit is provider independence.

Creating an administered object for a SOAP element is the same as creating an
administered object in Message Queue: you use the Object Manager (i ngobj mgr)
utility to specify the lookup name of the object, its attributes, and its type.

Table 5-2 lists and describes the attributes and other information that you need to
specify when you create an endpoint administered object. Remember to specify all
attributes as strings.

Chapter 5  Working with SOAP Messages 157



Using SOAP Administered Objects

158

Table 5-2  SOAP Administered Object Information

Option Description

-0 “attribute=val” Use this option to specify three possible attributes for an endpoint
administered object:
* AURL list

-0 “i mySOAPENndpoi nt Li st = “urll url2 ....urln”

The list may contain one or more space-separated URLSs. If it
contains more than one, the message is broadcast to all the
URLs. Each URL should be associated with a servlet that can
receive and process a SOAP message.

* Aname
-0 “i myEndpoi nt Nanme=SomeName”

If you don’t specify a name, the name
Untitled_Endpoi nt_bj ect is used by default.

e Adescription
-0 "i myEndpoi nt Descri ption=ny endpoi nts for broadcast"”

If you don’t specify a description, the default value " A
description for the endpoint object" is supplied by default.

-l “cn=lookupName” Use this option to specify the lookup name of the endpoint.

-t type Use this option to specify the object’s type. This is always e for an
endpoint.

-i filename Use this option to specify the name of an input file containing

i ngobj ngr commands. Such an input file is typically used to specify
object store attributes.

-j “attribute=val” Use this option to specify object store attributes. You can also specify
these in an input file. Use the -i option to specify the input file.

Code Example 5-2 shows how you use the i ngobj ngr command to create an
administered object for an endpoint and add it to an object store. The -i option
specifies the name of an input file that defines object store attributes (-j option).

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



SOAP Messaging Models and Examples

Code Example 5-2 Adding an Endpoint Administered Object

i mgobj ngr add
-t e
-1 "cn=nyEndpoi nt "
-0 "i ngSQAPEndpoi nt Li st=htt p: // waw nySer vl et/
http://www nyServl et2/"
-0 "i ngEndpoi nt Nane=M/Br oadcast Endpoi nt "
-i MQbj StoreAttrs

Having created the administered object and added it to an object store, you can
now use it when you want to use an endpoint in your SAAIJ application. In Code
Example 5-3, you first create an initial context for the JNDI lookup and then you
look up the desired object.

Code Example 5-3 Looking up an Endpoint Administered Object

Hasht abl e env = new Hasht abl e();
env. put (Context.| N Tl AL_CONTEXT_FACTCRY,

"com sun. j ndi . f scont ext . Ref FSCont ext Fact ory");
env. put (Context.PROVI DER_URL,
“file:/l/c:/img_admin_objects");
Context ctx = new Initial Context(env);
Endpoi nt nySQAPEndpoi nt = ( Endpoi nt)
ct x. | ookup(" cn=nyEndpoi nt");

You can also list, delete, and update administered objects. For additional
information, please see the Message Queue Administration Guide.

SOAP Messaging Models and Examples

This section explains how you use SAAJ to send and receive a SOAP message. It is
also possible to construct a SOAP message using SAAJ and to send it as the
payload of a IMS message. For information, see “Integrating SOAP and Message
Queue” on page 172.

Chapter 5  Working with SOAP Messages 159



SOAP Messaging Models and Examples

SOAP Messaging Programming Models

This section provides a brief summary of the programming models used in SOAP
messaging using SAAJ.

A SOAP message is sent to an endpoint by way of a point-to-point connection
(implemented by the SOAPConnect i on class).

Point-to-Point Connections
You use point-to-point connections to establish a request-reply messaging model.

The request-reply model is illustrated in Figure 5-6.

Figure 5-6 Request-Reply Messaging

Sender SOAPENdpoint
Sender @ ;
Receive
SOAP Message
blocks g and
process
message

Call returns

Using this model, the client does the following:

= Creates an endpoint that specifies the URL that will be passed to the
SQAPConnect i on. cal | method that sends the message.

See “Endpoint” on page 156 for a discussion of the different ways of creating
an endpoint.

= Creates a SOAPConnection factory and obtains a SOAP connection.

= Creates a message factory and uses it to create a SOAP message.

160 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



SOAP Messaging Models and Examples

= Creates a name for the content of the message and adds the content to the
message.

= Uses the SOAPConnect i on. cal | method to send the message.

It is assumed that the client will ignore the SOAPMessage object returned by the call
method because the only reason this object is returned is to unblock the client.

The SOAP service listening for a request-reply message uses a ReqRespLi st ener
object to receive messages.

For a detailed example of a client that does point-to-point messaging, see “Writing
a SOAP Client” on page 162.

Working with Attachments

If a message contains any data that is not XML, you must add it to the message as
an attachment. A message can have any number of attachment parts. Each
attachment part can contain anything from plain text to image files.

To create an attachment, you must create a URL object that specifies the location of
the file that you want to attach to the SOAP message. You must also create a data
handler that will be used to interpret the data in the attachment. Finally, you need
to add the attachment to the SOAP message.

To create and add an attachment part to the message, you need to use the
JavaBeans Activation Framework (JAF) API. This API allows you to determine the
type of an arbitrary piece of data, encapsulate access to it, discover the operations
available on it, and activate a bean that can perform these operations. You must
include the activati on. j ar library in your application code in order to work with
the JavaBeans Activation Framework.

[0 To Create and Add an Attachment

1. Create a URL object and initialize it to contain the location of the file that you
want to attach to the SOAP message.

URL url = new URL("http://wonbats. coniing.jpg");

2. Create a data handler and initialize it with a default handler, passing the URL
as the location of the data source for the handler.

Dat aHandl er dh = new Dat aHandl er (url);

3. Create an attachment part that is initialized with the data handler containing
the URL for the image.

Attachnent Part apl = nessage. creat eAttachment Part (dh);

Chapter 5  Working with SOAP Messages 161



SOAP Messaging Models and Examples

162

4. Add the attachment part to the SOAP message.
nyMessage. addAt t achnent Part (apl) ;

After creating the attachment and adding it to the message, you can send the
message in the usual way.

If you are using JMS to send the message, you can use the

SQAPMessagel nt oJMsMessage conversion utility to convert a SOAP message that
has an attachment into a JMS message that you can send to a JMS queue or topic
using Message Queue.

Exception and Fault Handling

A SOAP application can use two error reporting mechanisms: SOAP exceptions
and SOAP faults:

= Use a SOAP exception to handle errors that occur on the client side during the
generation of the SOAP request or the unmarshalling of the response.

= Use a SOAP fault to handle errors that occur on the server side when
unmarshalling the request, processing the message, or marshalling the
response. In response to such an error, server-side code should create a SOAP
message that contains a fault element, rather than a body element, and then it
should send that SOAP message back to the originator of the message. If the
message receiver is not the ultimate destination for the message, it should
identify itself as the soapact or so that the message sender knows where the
error occurred. For additional information, see “Handling SOAP Faults” on
page 168.

Writing a SOAP Client

The following steps show the calls you have to make to write a SOAP client for
point-to-point messaging.

1. Getan instance of a SOAPConnect i onFact ory:
SQAPConnect i onFactory nyFct = SQAPConnecti onFact ory. newl nst ance();
2. Geta SOAP connection from the SOAPConnect i onFact ory object:
SQAPConnecti on myCon = nyFct . creat eConnection();

The nyCon object that is returned will be used to send the message.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



SOAP Messaging Models and Examples

Get a MessageFact ory object to create a message:
MessageFact ory nyMsgFct = MessageFact ory. newl nstance();
Use the message factory to create a message:

SOAPMessage nessage = nyMsgFct . creat eMessage() ;

The message that is created has all the parts that are shown in Figure 5-7.

Figure 5-7 SOAP Message Parts

SOAP Message

SOAP Part
SOAP
Envelope
SOAP SOAP
Header Body

At this point, the message has no content. To add content to the message, you
need to create a SOAP body element, define a name and content for it, and then
add it to the SOAP body.

Remember that to access any part of the message, you need to traverse the tree,
calling a get method on the parent element to obtain the child. For example, to
reach the SOAP body, you start by getting the SOAP part and SOAP envelope:

SOAPPart nySPart = nessage. get SQAPPart () ;
SQAPENnvel ope nyEnvp = nySPart. get Envel ope();

Chapter 5  Working with SOAP Messages 163



SOAP Messaging Models and Examples

164

10.

Now, you can get the body element from the nyEnvp object:
SOAPBody body = nyEnvp. get Body();

The children that you will add to the body element define the content of the
message. (You can add content to the SOAP header in the same way.)

When you add an element to a SOAP body (or header), you must first create a
name for it by calling the envel ope. cr eat eName method. This method returns a
Nane object, which you must then pass as a parameter to the method that
creates the body element (or the header element).

Narre bodyName = envel ope. cr eat eNane(" Get Last TradePri ce”, "nf,
"http://eztrade. cont)

SOAPBodyEl ement gl tp = body. addBodyEl enent (bodyNane) ;
Now create another body element to add to the gl t p element:

Narre nyContent = envel ope. cr eat eNane("synbol ") ;
SQOAPE! enent nySynbol = gl tp. addChi | dEl errent (myContent ) ;

And now you can define data for the body element nySynbol :
nySynbol . addText Node(" SUNW ) ;

The resulting SOAP message object is equivalent to this XML scheme:

<SQAP- ENV: Envel ope
xm ns: SOAPENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ ">
<SQAP- ENV: Body>
<m Get Last TradePri ce xm ns: m="http://eztrade. cont>
<synbol >SUNW/ synbol >
</ m Cet Last TradePri ce>
</ SQAP- ENV: Body>
</ SOAP- ENV:  Envel ope>

Every time you send a message or write to it, the message is automatically
saved. However if you change a message you have received or one that you
have already sent, this would be the point when you would need to update the
message by saving all your changes. For example:

message. saveChanges() ;

Before you send the message, you must create a URLEndpoi nt object with the
URL of the endpoint to which the message is to be sent. (If you use a profile
that adds addressing information to the message header, you do not need to do
this.)

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



SOAP Messaging Models and Examples

URLEndpoi nt endPt = new
URLENdpoi nt ("http://eztrade. com /quotes");

11. Now, you can send the message:
SOAPMessage reply = nyCon. cal | (nessage, endPt);
The reply message (r epl y) is received on the same connection.

12. Finally, you need to close the SOAPConnect i on object when it is no longer
needed:

nyCon. cl ose();

Writing a SOAP Service

A SOAP service represents the final recipient of a SOAP message and should
currently be implemented as a servlet. You can write your own servlet or you can
extend the JAX\VBer vl et class, which is furnished in the soap. messagi ng package
for your convenience. This section describes the task of writing a SOAP service
based on the JAXVBer vl et class.

Your servlet must implement either the ReqRespLi st ener or CneVayLi st ener
interfaces. The difference between these two is that ReqRespLi st ener requires that
you return a reply.

Using either of these interfaces, you must implement a method called

onMessage( SOAPMsQ) . JAXMBer vl et willcallonMessageafterreceivingamessage using
the HTTP PCST method, which saves you the work of implementing your own
doPost () method to convert the incoming message into a SOAP message.

Code Example 5-4 shows the basic structure of a SOAP service that uses the
JAXMBer vl et utility class.

Chapter 5  Working with SOAP Messages 165



SOAP Messaging Models and Examples

Code Example 5-4 Skeleton Message Consumer

public class M/Servlet extends JAXVBervlet inplenents
RegRespLi st ener

ubli c SOAPMessage onMessage(SQAP Message nsg)
/I Process nmessage here

—

Code Example 5-5 shows a simple ping message service:

Code Example 5-5 A Simple Ping Message Service

public class SOAPEchoServl et extends JAXMBervl et
i npl enent s ReqRespLi st ener {

public SCQAPMessage onMessage( SOAPMessage nmySoapMessage) {
return nySoapMessage
}

Table 5-3 describes the methods that the JAXM servlet uses. If you were to write
your own servlet, you would need to provide methods that performed similar
work. In extending JAXVBer vl et , you may need to override the | ni t method and
the Set MessageFact ory method; you must implement the onMessage method.

Table 5-3 JAX\VBer vl et Methods

Method Description
void init Passes the Ser vl et Confi g object to its parent’s constructor and
(Servl et Config) creates a default nessageFact ory object.

If you want incoming messages to be constructed according to a
certain profile, you must call the Set MessageFact ory method
and specify the profile it should use in constructing SOAP

messages.
voi d doPost Gets the body of the HTTP request and creates a SOAP
(HTTPRequest , message according to the default or specified MessageFactory
HTTPResponse profile.

Calls the onMessage() method of an appropriate listener, passing
the SOAP message as a parameter.

It is recommended that you do not override this method.

166 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



SOAP Messaging Models and Examples

Table 5-3  JAXMBer vl et Methods (Continued)

Method Description

voi d set MessageFact ory Sets the MessageFact ory object. This is the object used to

(MessageFact ory) create the SOAP message that is passed to the onMessage
method.

M neHeader s get Headers Returns a M neHeader s object that contains the headers in the

(HTTPRequest) given HTTPRequest object.

voi d put Headers Sets the given HTTPResponse object with the headers in the

(m neHeaders, given M neHeader s object.

HTTPr esponse)

onMessage User-defined method that is called by the servlet when the

( SOAPMesssage) SOAP message is received. Normally this method needs to

disassemble the SOAP message passed to it and to send a
reply back to the client (if the servlet implements the
RegRespLi st ener interface.)

Disassembling Messages

The onMessage method needs to disassemble the SOAP message that is passed to it
by the servlet and process its contents in an appropriate manner. If there are
problems in the processing of the message, the service needs to create a SOAP fault
object and send it back to the client as described in “Handling SOAP Faults” on
page 168.

Processing the SOAP message may involve working with the headers as well as
locating the body elements and dealing with their contents. The following code
sample shows how you might disassemble a SOAP message in the body of your
onMessage method. Basically, you need to use a Document Object Model (DOM)
API to parse through the SOAP message.

See http://xm . coverpages. org/ dom ht M for more information about the DOM API.

Chapter 5  Working with SOAP Messages 167


http://xml.coverpages.org/dom.html

SOAP Messaging Models and Examples

168

Code Example 5-6 Processing a SOAP Message

{http://xn.coverpages. or g/ dom ht m
SQAPEnvel ope env = reply. get SOAPPart (). get Envel ope();
SQAPBody sh = env. get Body() ;

/] create Nane object for XE enent that we are searching for
Name El Nane = env. createNarme(" XE erment ") ;

[/Get child elements with the nane XH enent
Iterator it = sh.getChil dE enents(E Nane);

[/ CGet the first matched child el enent.

/I'\% know there is only one.
SQAPBodyEl enent she = ( SQAPBodyE enent) it.next();

[/ CGet the value for XH enent
M/Val ue =  sbe. get Val ue() ;

Handling Attachments

A SOAP message may have attachments. For sample code that shows you how to
create and add an attachment, see Code Example 5-7 on page 178. For sample code
that shows you how to receive and process an attachment, see Code Example 5-8
on page 180.

In handling attachments, you will need to use the Java Activation Framework API.
See http://java. sun. cond product s/ j avabeans/ gl asgow j af . ht M for more
information.

Replying to Messages
In replying to messages, you are simply taking on the client role, now from the
server side.

Handling SOAP Faults

Server-side code must use a SOAP fault object to handle errors that occur on the
server side when unmarshalling the request, processing the message, or
marshalling the response. The SOAPFaul t interface extends the SOAPBodyEl enent
interface.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients


http://java.sun.com/products/javabeans/glasgow/jaf.html

SOAP Messaging Models and Examples

SOAP messages have a specific element and format for error reporting on the
server side: a SOAP message body can include a SOAP fault element to report
errors that happen during the processing of a request. Created on the server side
and sent from the server back to the client, the SOAP message containing the
SOAPFaul t object reports any unexpected behavior to the originator of the message.

Within a SOAP message object, the SOAP fault object is a child of the SOAP body,
as shown in Figure 5-8. Detail and detail entry objects are only needed if one needs
to report that the body of the received message was malformed or contained
inappropriate data. In such a case, the detail entry object is used to describe the
malformed data.

Figure 5-8 SOAP Fault Element

SOAP Message

SOAP Part

SOAP

SOAP
Fault

Detail

Detall
Entry

Chapter 5  Working with SOAP Messages 169



SOAP Messaging Models and Examples

170

The SOAP Fault element defines the following four sub-elements:
+ faultcode

A code (qualified name) that identifies the error. The code is intended for use
by software to provide an algorithmic mechanism for identifying the fault.
Predefined fault codes are listed in Table 5-4 on page 170. This element is
required.

+ faultstring

A string that describes the fault identified by the fault code. This element is
intended to provide an explanation of the error that is understandable to a
human. This element is required.

« faultactor

A URI specifying the source of the fault: the actor that caused the fault along
the message path. This element is not required if the message is sent to its final
destination without going through any intermediaries. If a fault occurs at an
intermediary, then that fault must include a f aul t act or element.

o detail

This element carries specific information related to the Body element. It must
be present if the contents of the Body element could not be successfully
processed. Thus, if this element is missing, the client should infer that the body
element was processed. While this element is not required for any error except
a malformed payload, you can use it in other cases to supply additional
information to the client.

Predefined Fault Codes

The SOAP specification lists four predefined f aul t code values. The namespace
identifier for these is htt p: // schenmas. xm soap. or g/ soap/ envel ope/ .

Table 5-4 SOAP Faultcode Values

Faultcode Name Meaning

Ver si onM smat ch The processing party found an invalid namespace for the SOAP
envelope element; that is, the namespace of the SOAP envelope
element was not htt p: // schemas. xm soap. or g/ soap/ envel ope/ .

Mist Under st and An immediate child element of the SOAP Header element was
either not understood or not appropriately processed by the
recipient. This element’s nust Under st and attribute was set to 1
(true).

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients


http://schemas.xmlsoap.org/soap/envelope/

SOAP Messaging Models and Examples

Table 5-4  SOAP Faultcode Values (Continued)

Faultcode Name

Meaning

dient

Server

The message was incorrectly formed or did not contain the
appropriate information. For example, the message did not have
the proper authentication or payment information. The client should
interpret this code to mean that the message must be changed
before it is sent again.

If this is the code returned, the SOAPFaul t object should probably
include a det ai | Ent ry object that provides additional information
about the malformed message.

The message could not be processed for reasons that are not
connected with its content. For example, one of the message
handlers could not communicate with another message handler
that was upstream and did not respond. Or, the database that the
server needed to access is down. The client should interpret this
error to mean that the transmission could succeed at a later point in
time.

These standard fault codes represent classes of faults. You can extend these by
appending a period to the code and adding an additional name. For example, you
could define a Ser ver. Qut O Menory code, a Ser ver . Down code, and so forth.

Defining a SOAP Fault

Using SAAJ you can specify the value for f aul t code, f aul t string, and faul t act or
using methods of the SOAPFaul t object. The following code creates a SOAP fault
object and sets the f aul t code, faul tstring, and faul tactor attributes:

SOAPFaul t faul t;

reply = factory. creat eMessage();

envp = reply. get SOAPPart (). get Envel ope(true);

soneBody = envp. get Body();

fault = someBody. addFaul t ():

faul t.setFaul t Code(" Server");

fault.setFaul t String("Some Server Error");

faul t.setFaul t Actor(http://xxx. me.comlist/endpoint.esp/)
reply. saveChanges();

The server can return this object in its reply to an incoming SOAP message in case

of a server error.

Chapter 5  Working with SOAP Messages 171



Integrating SOAP and Message Queue

The next code sample shows how to define a detail and detail entry object. Note
that you must create a name for the detail entry object.

SOAPFaul t fault = someBody. addFaul t ();

faul t. set Faul t Code(" Server");

fault.setFaul t Actor("http://foo.comuri");
fault.setFaul tString ("Unkown error");

Detail nyDetail = fault.addDetail ();

detai | . addDet ai | Entry(envel ope. cr eat eNane(" 125detail", "ni,

"Soneuri")).addText Node("t he nmessage cannot contain

the string //");
reply. saveChanges();

Integrating SOAP and Message Queue

This section explains how you can send, receive, and process a JMS message that
contains a SOAP payload.

Message Queue provides a utility to help you send and receive SOAP messages
using the JMS API. With the support it provides, you can convert a SOAP message
into a JMS message and take advantage of the reliable messaging service offered by
Message Queue. You can then convert the message back into a SOAP message on
the receiving side and use SAAJ to process it.

To send, receive, and process a JMS message that contains a SOAP payload, you
must do the following:

« Import the library com sun. nessagi ng. xni . MessageTr ansf or mer . This is the
utility whose methods you will use to convert SOAP messages to JMS
messages and vice versa.

= Before you transport a SOAP message, you must call the
MessageTr ansf or ner . SOAPMessagel nt oJMBMessage method. This method
transforms the SOAP message into a JIMS message. You then send the resulting
JMS message as you would a normal JMS message. For programming
simplicity, it would be best to select a destination that is dedicated to receiving
SOAP messages. That is, you should create a particular queue or topic as a
destination for your SOAP message and then send only SOAP messages to this
destination.

172  Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Integrating SOAP and Message Queue

Message nyMsg= MessageTr ansf or mer . SOAPMessagel nt oJVSMessage
(SOAPMessage, Session);

The Sessi on argument specifies the session to be used in producing the
Message.

= On the receiving side, you get the JIMS message containing the SOAP payload
as you would a normal JMS message. You then call the
MessageTr ansf or mer . SOAPMessageFr omJMBMessage utility to extract the SOAP
message, and then use SAAJ to disassemble the SOAP message and do any
further processing. For example, to obtain the SOAPMessage make a call like
the following:

SOAPMessage nyMsg= MessageTr ansf or mer . SOAPMessageFr omd VBMessage
(Message, MessageFactory);

The MessageFact ory argument specifies a message factory that the utility
should use to construct the SOAPMessage from the given JMS Message.

The following sections offer several use cases and code examples to illustrate this
process.

Example 1: Deferring SOAP Processing

In the first example, illustrated in Figure 5-9, an incoming SOAP message is
received by a servlet. After receiving the SOAP message, the servlet MySer vl et
uses the MessageTr ansf or mer utility to transform the message into a JMS message,
and (reliably) forwards it to an application that receives it, turns it back into a
SOAP message, and processes the contents of the SOAP message.

For information on how the servlet receives the SOAP message, see “Writing a
SOAP Service” on page 165.

Chapter 5  Working with SOAP Messages 173



Integrating SOAP and Message Queue

174

Figure 5-9 Deferring SOAP Processing

MyServlet

SOAPMessagelntoJMSMessage
( mySOAP, mySession)

SOAPMsg

Message Queue

e Broker

JMSMsg

SOAPMessageFromJMSMessage
(myJMS, myFactory)
llprocess SOAP message here

MyListener

[0 To Transform the SOAP Message into a JIMS Message and Send the
JMS Message

1.

Instantiate a Connect i onFact or y object and set its attribute values, for example:

QueueConnect i onFact ory nyQonnFact =
new com sun. messagi ng. QieueConnect i onFactory();

Use the Connect i onFact or y object to create a Connect i on object.

QueueConnecti on nyQConn =
nyQonnFact . cr eat eQueueConnection();

Use the Connect i on object to create a Sessi on object.

QueueSessi on ny@ess = nyQConn. cr eat eQueueSessi on(f al se,
Sessi on. AUTO_ACKNOW.EDGE) ;

Instantiate a Message Queue Destination administered object corresponding to
a physical destination in the Message Queue message service. In this example,
the administered object is nySOAPQueue and the physical destination to which it

refers is nyPSQAPQ
Queue nySQAPQueue = new com sun. messagi ng. Queue( " nyPSQAPQ') ;

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



5.

Integrating SOAP and Message Queue

Use the MessageTr ansf or mer utility, as shown, to transform the SOAP message
into a JMS message. For example, given a SOAP message named M/SQAPMsg,

Message MyJMB = MessageTr ansf or mer . SOAPMessagel nt oJMBMessage
(M/SOAPMsg, M/(Bess) ;

Create a QueueSender message producer.

This message producer, associated with ny SOAPQueue, is used to send messages
to the queue destination named nyPSQAPQ

QueueSender nyQueueSender = ny(Sess. creat eSender ( my SQAPQueue) ;
Send a message to the queue.

nyQueueSender . send( nyJMB) ;

[0 To Receive the IMS Message, Transform it into a SOAP Message, and Process It

1.

Instantiate a Connect i onFact ory object and set its attribute values.

QueueConnect i oFact ory nyQoonnFact = new
com sun. messagi ng. QueueConnect i onFactory();

Use the Connect i onFact or y object to create a Connect i on object.
QueueConnecti on nyQConn = nyQonnFact . cr eat eQueueConnecti on();
Use the Connect i on object to create one or more Sessi on objects.

QueueSessi on nyR@ess = nyQConn. cr eat eQueueSessi on(f al se,
sessi on. AUTO_ACKNOMLEDGE) ;

Instantiate a Dest i nat i on object and set its name attribute.
Queue nyRQueue = new com sun. messagi ng. Queue( " nySQAPQ') ;

Use a Sessi on object and a Dest i nat i on object to create any needed
MessageConsuner objects.

QueueRecei ver nyQueueRecei ver =
nyR@Bess. cr eat eRecei ver (nyRQeue) ;

If needed, instantiate a MessagelLi st ener object and register it with a
MessageConsuner object.

Start the QueueConnect i on you created in Step 2. Messages for consumption
by a client can only be delivered over a connection that has been started.

nyQConn. start();

Chapter 5  Working with SOAP Messages 175



Integrating SOAP and Message Queue

8. Receive a message from the queue.
The code below is an example of a synchronous consumption of messages:
Message nyJMS = nyQueueRecei ver. recei ve();

9. Use the Message Transformer to convert the JMS message back to a SOAP
message.

SOAPMessage MySoap =
MessageTr ansf or ner . SOAPMessageFr omJ MBMessage
(nyJMB, MyMsgFactory);

If you specify null for the MessageFact or y argument, the default Message
Factory is used to construct the SOAP Message.

10. Disassemble the SOAP message in preparation for further processing. See “The
SOAP Message Object” on page 149 for information.

Example 2: Publishing SOAP Messages

In the next example, illustrated in Figure 5-10, an incoming SOAP message is
received by a servlet. The servilet packages the SOAP message as a JMS message
and (reliably) forwards it to a topic. Each application that subscribes to this topic,
receives the JIMS message, turns it back into a SOAP message, and processes its
contents.

176  Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Integrating SOAP and Message Queue

Figure 5-10  Publishing a SOAP Message

MyServlet

SOAPMessagelntoJMSMessage
(mySOAP, mySession)

SOAPMsg JMSMsg

Message Queue

Broker
JMSMsg
SOAPMessageFromJMSMessage SOAPMessageFromJMSM ge SOAPMessageFromJMSMessage
(myJMS, myFactory) (myJMS, myFactory) (myJMS, myFactory)
\\process message here \\process message here \\process message here
MyListenerl MyListener2 MyListener3

The code that accomplishes this is exactly the same as in the previous example,
except that instead of sending the JMS message to a queue, you send it to a topic.
For an example of publishing a SOAP message using Message Queue, see Code
Example 5-7 on page 178.

Code Samples

This section includes and describes two code samples: one that sends a JMS
message with a SOAP payload, and another that receives the IMS/SOAP message
and processes the SOAP message.

Code Example 5-7 illustrates the use of the JMS API, the SAAJ API, and the JAF
API to send a SOAP message with attachments as the payload to a JMS message.
The code shown for the SendSQAPMessageW t hJNV5 includes the following methods:

= Aconstructor that calls the i ni t method to initialize all the JMS objects
required to publish a message

Chapter 5  Working with SOAP Messages 177



Integrating SOAP and Message Queue

= Asend method that creates the SOAP message and an attachment, converts the
SOAP message into a JMS message, and publishes the JMS message

= A cl ose method that closes the connection

< A mai n method that calls the send and close methods

Code Example 5-7 Sending a JMS Message with a SOAP Payload

/ILibraries needed to build SOAP nessage
i nport javax.xn.soap. SOAPMessage;

i mport | avax.xm . soap. SOAPPart ;

i nport | avax.xmn . soap. SOAPEnvel ope;

i nport | avax. xm . soap. SOAPBody;

i mport | avax.xn.soap. SOAPE enent ;

i nport | avax.xnl.soap. MessageFact ory;

i mport | avax.xm .soap. Attachment Part;

i nport | avax.xm . soap. Nane

/ILibraries needed to work with attachnents (Java Activation Franework API)
i nport java.net.URL;
i nport | avax. activation. Dat aHandl er;

/ILibraries needed to convert the SOAP nessage to a JVM5 nessage and to send it
i mport com sun. messagi ng. xn . MessageTr ansf or rer ;
i mport com sun. messagi ng. Basi cConnecti onFact ory;

/ILibraries needed to set up a JVM5 connection and to send a nessage
i mport | avax.j nms. Topi cConnect i onFact ory;

i nport | avax. ] ns. Topi cConnecti on;

i mport | avax. ) ns. JMSExcepti on;

i nport | avax. ) nms. Sessi on;

i nport | avax.j nms. Message;

i nport | avax. ] ns. Topi cSessi on;

i nport | avax.j nms. Topi C;

i nport | avax. ) ns. Topi cPubl i sher;

/1 Define class that sends JMS nessage with SOAP payl oad
public class SendSCAPMessageW t hJVB{

Topi cConnectionFactory tcf = null;
Topi cConnection tc = null;

Topi cSessi on session = nul | ;

Topic topic = null;

Topi cPubl i sher publisher = null;

//default constructor nethod

publ i c SendSOAPMessageWt hJMB(String topi cNane) {
init(topicName);
}

/I'Method to nitialize JMS Connection, Session, Topic, and Publisher
public void init(String topicName) {
try {

178 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Integrating SOAP and Message Queue

Code Example 5-7 Sending a JMS Message with a SOAP Payload (Continued)

tcf = new com sun. nessagi ng. Topi cConnect i onFact ory();

tc = tcf.createTopi cConnection();

session = tc. createTopi cSessi on(fal se, Sessi on. AUTO ACKNOALEDGE) ;
topi ¢ = session. createTopi c(topi cNane) ;

publ i sher = sessi on. creat ePubl | sher (topic);

}

/I Method to create and send the SQAP/ JM5S nessage

public void send() throws Exception{
MessageFactory nf = MessageFactory. newl nstance(); //create default factory
SOAPMessage soapMessage=ni cr eat eMessage(); //create SOAP nessage obj ect
SQAPPart soapPart = soapMessage. get SOAPPart();//start to drill down to body
SQAPENnvel ope soapEnvel ope = soapPart. get Envel ope(); //first the envel ope
SQAPBody soapBody = soapEnvel ope. get Body() ;
Name nyNane = soapEnvel ope. creat eNane(" Hel | oWor | d", "hw',

http;//www sun.conding'); //nane for body el enent

SQAPEl errent el ement = soapBody. addChi | dEl enent (nyNane) ; //add body el ement
el enent . addText Node(" Wl cone to SUnOne Wb Services."); //add text val ue

//Oreate an attachnment with the Java Framework Activation API
URL url = new URL("http://java.sun. com webservices/");

Dat aHandl er dh = new Dat aHhadl er (url);

Attachment Part ap = soapMessage. creat eAt t achnment Part (dh);

/1Set content type and ID
ap. set Cont ent Type("text/htm");
ap. set Content |1 D(’ ci d- 001");

/1 Add attachnent to the SOAP message
soapMessage. addAt t achnent Part (ap) ;
soapMessage. saveChanges();

/] Convert SOAP to JMS nessage.
Message m = MessageTr ansf or mer . SOAPMessagel nt oJMBMessage( soapMessage,

sessi on);

/' Publish JM5 nessage
publ i sher. publish(n;

//d ose JM5 connection
public void close() throws JMSException {
tc.close();

/I Main programto send SOAP nessage with JVS
public static void main (String[] args) {
try {
String topi cNanme = System get Property("Topi cNane");
if(topicName == null) {
topi cNane = "test";

SendSCAPMESsageW t hIMS ssm = new SendSQAPMESsageW t hJMB(t opi cNane) ;

Chapter 5  Working with SOAP Messages

179



Integrating SOAP and Message Queue

Code Example 5-7

Sending a JMS Message with a SOAP Payload (Continued)

ssmsend();
ssmcl ose();

}
}

catch (Exception e) {
e.printStackTrace();

Code Example 5-8 illustrates the use of the JMS API, SAAJ, and the DOM API to
receive a SOAP message with attachments as the payload to a JMS message. The
code shown for the Recei veSQAPMessageW t hJM5 includes the following methods:

Code Example 5-8

A constructor that calls the i ni t method to initialize all the JMS objects needed
to receive a message.

An onMessage method that delivers the message and which is called by the
listener. The onMessage method also calls the message transformer utility to
convert the JIMS message into a SOAP message and then uses SAAJ to process
the SOAP body and uses SAAJ and the DOM API to process the message
attachments.

A mai n method that initializes the Recei veSQAPMessageW t hJMB class.

Receiving a IMS Message with a SOAP Payload

//Libraries that
i mport javax.xm.
import | avax.xm.
i mport | avax.xm .

support SQOAP processi ng
soap. MessageFact ory;
soap. SOAPMessage;

soap. At t achment Par t

/ILibrary containing the JM5 to SQAP transformer
i mport com sun. messagi ng. xn . MessageTr ansf or rer ;

/ILibraries for JM5 nessagi ng support
i mport com sun. messagi ng. Topi cConnect i onFact ory

/llnterfaces for
i nport javax.j ns.
i nport | avax. | s.
i nport | avax. | ns.
i nport | avax. | s.
i nport | avax. | ns.
i nport | avax. | s.
i nport | avax. | ns.
i nport | avax. | s.

JM5S messagi ng
Messageli st ener;
Topi cConnect i on;
Topi cSessi on;
Message;

Sessi on;

Topi c;
JMBExcepti on;
Topi cSubscri ber

180 Message Queue 3 2005Q4 « Developer's Guide for Java Clients




Integrating SOAP and Message Queue

Code Example 5-8 Receiving a IMS Message with a SOAP Payload (Continued)

[ILibrary to support parsing attachnent part (from DOM APIl)
inport java.util.iterator;

public class Recei veSOAPMessageWt hJMS i npl ement s Messageli st ener {
Topi cConnectionFactory tcf = null;
Topi cConnection tc = null;
Topi cSessi on session = nul | ;
Topic topic = null;
Topi cSubscri ber subscriber = null;
MessageFact ory nmessageFactory = nul | ;

[/ Defaul t constructor
public Recei veSOAPMessageWt hJMS(String topi cNane) {
init(topicName);

/1Set up JMB connection and rel ated objects
public void init(String topicName){
try {
/I Construct default SOAP nessage factory
nessageFactory = MessageFact ory. newl nst ance();

/1 INS set up

tcf = new. com sun. messagi ng. Topi cConnecti onFactory();

tc = tcf.createTopi cConnection();

session = tc. createTopi cSesstion(fal se, Session. AUTO ACKNONEDGE) ;
topi ¢ = sessi on. creat eTopi ¢(topi cNane) ;

subscri ber = session. creat eSubscri ber(topic);

subscri ber. set MessageLi st ener (thi s);

tc.start();

Systemout.println("ready to receive SOAP messages...");
}catch (Exception jnse){
jmse. printStackTrace();

}

/1 IJM5 nmessages are delivered to the onMessage net hod
public void onMessage( Message nmessage){
try {
/1 Convert JVM5 to SOAP nessage
SOAPMessage soapMessage = MessageTr ansf or mer . SOAPMessageFr omJMBMessage

(message, nessageFactory);

[/Print attchnment counts
Systemout . printl n("message recei ved! Attachment counts:

" + soapMessage. count Att achment s());

/1 Get attachnent parts of the SOAP nessage
Iterator iterator = soapMessage. get Attachnents();
while (iterator.hasNext()) {

//Get next attachnent

Chapter 5  Working with SOAP Messages 181



Integrating SOAP and Message Queue

Code Example 5-8 Receiving a IMS Message with a SOAP Payload (Continued)

Attachrment Part ap = (AttachrmentPart) iterator.next();

/1 Get content type
String content Type = ap. get Cont ent Type();
Systemout. printlin("content type: " + conent TYpe);

//CGet content id
String content|ID = ap. getContent | () ;
Systemout. printin("content 1d:" + contentld);

//Check to see if this is text

i f(content Type.indexO"text")>=0 {
//Get and print string content if it is a text attachnent
String content = (String) ap.getContent();
Systemoutprintln("*** attachnent content: " + content);

}

}
}catch (Exception e) {
e.printStackTrace();
}
}

/I'Main nethod to start sanple receiver
public static void main (String[] args){
try {
String topi cName = System get Property("Topi cName");
i f( topicNane == null) {
topi cNane = "test";

}
Recei veSOAPMessageWt hJM5 rsm = new Recei veSOAPMessageW t hJMB( t opi cNane) ;

}catch (Exception e) {
e.printStackTrace();

}
}

182 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Appendix A

Warning Messages and
Client Error Codes

This appendix provides reference information for warning messages and for error
codes returned by the Message Queue client runtime when it raises a IMS
exception.

= A warning message is a message output when the MQ Java client runtime
experiences a problem that should not occur under normal operating
conditions. The message is displayed where the application displays its output.
Usually, this is the window from which the application is started. Table A-1
lists Message Queue warning messages.

In general, a warning message does not cause message loss or affect reliability.
issues. But when warning messages appear constantly on the application’s
console, the user should contact MQ technical support to diagnose the cause of
the warning messages.

= Error codes and messages are returned by the client runtime when it raises an
exception. You can obtain the error code and its corresponding message using
theJVBExcept i on. get Err or Code() methodandtheJVMSExcept i on. get Message()
method. Table A-2 lists Message Queue error codes.

Note that warning messages and error codes are not defined in the IMS
specification, but are specific to each JMS provider. Applications that rely on these
error codes in their programming logic are not portable across JMS providers.

183



Table A-1

Message Queue Warning Message Codes

Code

Message and Description

W2000

W2001

W2003

Message Warning: Received unknown packet: mg-packet-dump.

Cause The Message Queue client runtime received an
unrecognized Message Queue packet, where mg-packet-dump is
replaced with the specific Message Queue packet dump that
caused this warning message.

The Message Queue broker may not be fully compatible with the
client runtime version.

Message Warning: pkt not processed, no message
consumer:mg-packet-dump.

Cause The Message Queue client runtime received an unexpected
Message Queue acknowledge message. The variable
mq-packet-dump is replaced with the specific Message Queue
packet dump that caused this warning message.

Message Warning: Broker not responding X for Y seconds. Still
trying....

Cause The Message Queue client runtime has not received a
response from the broker for more than 2 minutes (default). In the
actual message, the X variable is replaced with the Message
Queue packet type that the client runtime is waiting for, and the Y
variable is replaced with the number of seconds that the client
runtime has been waiting for the packet.

Table A-2 lists the error codes in numerical order. For each code listed, it supplies
the error message and a probable cause.

Each error message returned has the following format:

[ Code]: “Message -cause Root - cause-excepti on- nmessage. ”

Message text provided for - cause is only appended to the message if there is an
exception linked to the JMS exception. For example, a JMS exception with error
code C4003 returns the following error message:

[C4003]: Error occurred on connection creation [local host:7676] - cause:
j ava. net. Connect Exception: Connection refused: connect

184 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Table A-2

Message Queue Client Error Codes

Code

Message and Description

C4000

C4001

C4002

C4003

C4004

C4005

C4006

C4007

C4008

C4009

C4010

Message Packet acknowledge failed.

Cause The client runtime was not able to receive or process the expected
acknowledgment sent from the broker.

Message Write packet failed.

Cause The client runtime was not able to send information to the broker. This
might be caused by an underlying network 1/O failure or by the JMS connection
being closed.

Message Read packet failed.

Cause The client runtime was not able to process inbound message properly.
This might be caused by an underlying network I/O failure.

Message Error occurred on connection creation [host, port].

Cause The client runtime was not able to establish a connection to the broker
with the specified host name and port number.

Message An error occurred on connection close.

Cause The client runtime encountered one or more errors when closing the
connection to the broker.

Message Get properties from packet failed.

Cause The client runtime was not able to retrieve a property object from the
Message Queue packet.

Message Set properties to packet failed.

Cause The client runtime was not able to set a property object in the Message
Queue packet.

Message Durable subscription {0} in use.
{0} is replaced with the subscribed destination name.

Cause The client runtime was not able to unsubscribe the durable subscriber
because it is currently in use by another consumer.

Message Message in read-only mode.

Cause An attempt was made to write to a JMS Message that is in read-only
mode.

Message Message in write-only mode.

Cause An attempt was made to read a JMS Message that is in write-only
mode.

Message Read message failed.

Cause The client runtime was not able to read the stream of bytes from a
Byt esMessage type message.

Appendix A Warning Messages and Client Error Codes

185



186

Table A-2  Message Queue Client Error Codes (Continued)

Code Message and Description

C4011 Message Write message failed.

Cause The client runtime was not able to write the stream of bytes to a
Byt esMessage type message.

C4012 Message message failed.

Cause The client runtime encountered an error when processing the reset ()
method for a Byt esMessage or St r eanMessage type message.

C4013 Message Unexpected end of stream when reading message.

Cause The client runtime reached end-of-stream when processing the
readXXX() method for a Byt esMessage or St reanMessage type message.

C4014 Message Serialize message failed.

Cause The client runtime encountered an error when processing the
serialization of an object, such as
hj ect Message. set oj ect (j ava.io. Serializable object).

C4015 Message Deserialize message failed.

Cause The client runtime encountered an error when processing the
deserialization of an object, for example, when processing the method
oj ect Message. get Ooj ect ().

C4016 Message Error occurred during message acknowledgment.

Cause The client runtime encountered an error during the process of message
acknowledgment in a session.

C4017 Message Invalid message format.

Cause The client runtime encountered an error when processing a JMS
Message; for example, during data type conversion.

C4018 Message Error occurred on request message redeliver.

Cause The client runtime encountered an error when processing r ecover () or
rol | back() for the JIMS session.

C4019 Message Destination not found: {0}.
{0} is replaced with the destination name specified in the API parameter.

Cause The client runtime was unable to process the API request due to an
invalid destination specified in the API, for example, the call

MessagePr oducer. send (null, nessage) raises JMSExcepti on with this error
code and message.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Table A-2  Message Queue Client Error Codes (Continued)

Code Message and Description

C4020 Message Temporary destination belongs to a closed connection or another
connection - {0}.
{0} is replaced with the temporary destination name specified in the API
parameter.

Cause An attempt was made to use a temporary destination that is not valid for
the message producer.

C4021 Message Consumer not found.

Cause The Message Queue session could not find the message consumer for
a message sent from the broker. The message consumer may have been
closed by the application or by the client runtime before the message for the
consumer was processed.

C4022 Message Selector invalid: {0}.
{0} is replaced with the selector string specified in the API parameter.

Cause The client runtime was unable to process the JMS API call because the
specified selector is invalid.

C4023 Message Client unacknowledged messages over system defined limit.

Cause The client runtime raises a JMSExcept i on with this error code and
message if unacknowledged messages exceed the system defined limit in a
CLI ENT_ACKNONLEDCE session.

C4024 Message The session is not transacted.

Cause An attempt was made to use a transacted session APl in a
non-transacted session. For example, calling the methods comnit () or
rol | back in a AUTO ACKNONLEDGE session.

C4025 Message Cannot call this method from a transacted session.

Cause An attempt was made to call the Sessi on. recover () method from a
transacted session.

C4026 Message Client non-committed messages over system defined limit.

Cause The client runtime raises a JMSExcept i on with this error code and
message if non committed messages exceed the system -defined limit in a
transacted session.

C4027 Message Invalid transaction ID: {0}.
{0} is replaced with the internal transaction ID.

Cause An attempt was made to commit or rollback a transacted session with a
transaction ID that is no longer valid.

Appendix A Warning Messages and Client Error Codes 187



Table A-2  Message Queue Client Error Codes (Continued)

Code Message and Description

C4028 Message Transaction ID {0} in use.
{0} is replaced with the internal transaction ID.

Cause The internal transaction ID is already in use by the system. An
application should not receive a JMSExcept i on with this error code under
normal operations.

C4029 Message Invalid session for ServerSession.

Cause An attempt was made to use an invalid JMS session for the
Ser ver Sessi on object, for example, no message listener was set for the
session.

C4030 Message lllegal maxMessages value for ServerSession: {0}.
{0} was replaced with naxMessages value used by the application.

Cause The configured maxMessages value for Ser ver Sessi on is less than 0.
C4031 Message MessageConsumer and ServerSession session conflict.

Cause An attempt was made to create a message consumer for a session
already used by a Ser ver Sessi on object.

C4032 Message Can not use receive() when message listener was set.

Cause An attempt was made to do a synchronous receive with an
asynchronous message consumer.

C4033 Message Authentication type does not match: {0} and {1}.
{0} is replaced with the authentication type used by the client runtime.
{1} is replaced with the authentication type requested by the broker.

Cause The authentication type requested by the broker does not match the
authentication type in use by the client runtime.

C4034 Message lllegal authentication state.
Cause The authentication hand-shake failed between the client runtime and
the broker.

C4035 Message Received AUTHENTI CATE_REQUEST status code FORBI DDEN.

Cause The client runtime authentication to the broker failed.
C4036 Message A server error occurred.

Cause A generic error code indicating that the client’s requested operation to
the broker failed.

C4037 Message Server unavailable or server timeout.

Cause The client runtime was unable to establish a connection to the broker.

188 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



Table A-2  Message Queue Client Error Codes (Continued)

Code Message and Description

C4038 Message [4038] - cause: {0}
{0} is replaced with a root cause exception message.

Cause The client runtime caught an exception thrown from the JVM. The client
runtime throws JVMBExcept i on with the “root cause exception” set as the linked
exception.

C4039 Message Cannot delete destination.

Cause The client runtime was unable to delete the specified temporary
destination.

See Tenpor aryTopi c. del et e() and Tenpor ar yQueue. del et e() API Javadoc
for constraints on deleting a temporary destination.

C4040 Message Invalid ObjectProperty type.

Cause An attempt was made to set a non-primitive Java object as a JMS
message property. Please see Message. set Ohj ect Property() APl Javadoc
for valid object property types.

c4041 Message Reserved word used as property name - {0}.

Cause An attempt was made to use a reserved word, defined in the JMS
Message API Javadoc, as the message property name, for example, NULL,
TRUE, FALSE.

C4042 Message lllegal first character of property name - {0}
{0} is replaced with the illegal character.

Cause An attempt was made to use a property name with an illegal first
character. See JMS Message API Javadoc for valid property names.

C4043 Message lllegal character used in property name - {0}
{0} is replaced with the illegal character used.

Cause An attempt was made to use a property name containing an illegal
character. See JMS Message API Javadoc for valid property names.

C4044 Message Browser timeout.

Cause The queue browser was unable to return the next available message to
the application within the system’s predefined timeout period.

C4045 Message No more elements.

Cause In QueueBr owser, the enumeration object has reached the end of
element but next El ement () is called by the application.

C4046 Message Browser closed.

Cause An attempt was made to use QueueBr owser methods on a closed
QueueBr owser object.

Appendix A Warning Messages and Client Error Codes

189



190

Table A-2  Message Queue Client Error Codes (Continued)

Code Message and Description

C4047 Message Operation interrupted.

Cause Ser ver Sessi on was interrupted. The client runtime throws
Runt i neExcept i on with the above exception message when it is interrupted in
the Ser ver Sessi on.

C4048 Message ServerSession is in progress.
Cause Multiple threads attempted to operate on a server session concurrently.
C4049 Message Can not call Connection.close(), stop(), etc from message listener.

Cause An attempt was made to call Connecti on. cl ose(), . ..stop(), etc from
a message listener.

C4050 Message Invalid destination name - {0}
{0} is replaced with the invalid destination name used.

Cause An attempt was made to use an invalid destination name, for example,
NULL.

C4051 Message Invalid delivery parameter. {0} : {1}
{0} is replaced with delivery parameter name, such as “DeliveryMode”.
{1} is replaced with delivery parameter value used by the application.

Cause An attempt was made to use invalid JMS delivery parameters in the
API, for example, values other than Del i ver yMbde. NON_PERS| STENT or
Del i ver yMode. PERS| STENT were used to specify the delivery mode.

C4052 Message Client ID is already in use - {0}
{0} is replaced with the client ID that is already in use.

Cause An attempt was made to set a client ID to a value that is already in use
by the system.

C4053 Message Invalid client ID - {0}
{0} is replaced with the client ID used by the application.

Cause An attempt was made to use an invalid client ID, for example, nul | or
empty client ID.

C4054 Message Can not set client ID, invalid state.

Cause An attempt was made to set a connection’s client ID at the wrong time
or when it has been administratively configured.

C4055 Message Resource in conflict. Concurrent operations on a session.

Cause An attempt was made to concurrently operate on a session with
multiple threads.

C4056 Message Received goodbye message from broker.

Cause A Message Queue client received a GQ0CD_BYE message from broker.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Table A-2  Message Queue Client Error Codes (Continued)

Code Message and Description

C4057 Message No username or password.

Cause An attempt was made to use a null object as a user name or password
for authentication.

C4058 Message Cannot acknowledge message for closed consumer.

Cause An attempt was made to acknowledge message(s) for a closed
consumer.

C4059 Message Cannot perform operation, session is closed.
Cause An attempt was made to call a method on a closed session.

C4060 Message Login failed: {0}
{0} message was replaced with user nane.

Cause Login with the specified user name failed.
C4061 Message Connection recovery failed, cannot recover connection.

Cause The client runtime was unable to recover the connection due to internal
error.

C4062 Message Cannot perform operation, connection is closed.

Cause An attempt was made to call a method on a closed connection.
C4063 Message Cannot perform operation, consumer is closed.

Cause An attempt was made to call a method on a closed message consumer.
C4064 Message Cannot perform operation, producer is closed.

Cause An attempt was made to call a method on a closed message producer.

C4065 Message Incompatible broker version encountered. Client version {0}.Broker
version {1}
{0} is replaced with client version number.
{1} is replaced with broker version number.

Cause An attempt was made to connect to a broker that is not compatible with
the client version.

C4066 Message Invalid or empty Durable Subscription Name was used: {0}
{0} is replaced with the durable subscription name used by the application.

Cause An attempt was made to use a null or empty string to specify the name
of a durable subscription.

C4067 Message Invalid session acknowledgment mode: {0}
{0} is replaced with the acknowledge mode used by the application.

Cause An attempt was made to use a non-transacted session mode that is not
defined in the JMS Session API.

Appendix A Warning Messages and Client Error Codes 191



192

Table A-2  Message Queue Client Error Codes (Continued)

Code Message and Description

C4068 Message Invalid Destination Classname: {0}.

Cause An attempt was made to create a message producer or message
consumer with an invalid destination class type. The valid class type must be
either Queue or Topi c.

C4069 Message Cannot commit or rollback on an XASession.

Cause The application tried to make a sessi on.comm t () or a
session. rol | back() call in an application server component whose
transactions are being managed by the Transaction Manager via the
XAResource. These calls are not allowed in this context.

C4070 Message Error when converting foreign message.

Cause The client runtime encountered an error when processing a
non-Message Queue JMS message.

C4071 Message Invalid method in this domain: {0}
{0} is replaced with the method name used.

Cause An attempt was made to use a method that does not belong to the
current messaging domain. For example calling Topi cSessi on. cr eat eQueue()
will raise a JMSExcept i on with this error code and message.

C4072 Message lllegal property name - " or null.
Cause An attempt was made to use a null or empty string to specify a property
name.

C4073 Message A JMS destination limit was reached. Too many

Subscribers/Receivers for {0} : {1}
{0} is replaced with “Queue” or “Topic”
{1} is replaced with the destination name.

Cause The client runtime was unable to create a message consumer for the
specified domain and destination due to a broker resource constraint.

C4074 Message Transaction rolled back due to provider connection failover.

Cause An attempt was made to call Sessi on. commi t () after connection
failover occurred. The transaction is rolled back automatically.

C4075 Message Cannot acknowledge messages due to provider connection failover.
Subsequent acknowledge calls will also fail until the application calls
session. recover ().

Cause As stated in the message.

C4076 Message Client does not have permission to create producer on
destination: {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to create a message
producer with the specified destination.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Table A-2  Message Queue Client Error Codes (Continued)

Code Message and Description

C4077 Message Client is not authorized to create destination : {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to create the specified
destination.

C4078 Message Client is unauthorized to send to destination: {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to produce messages
to the specified destination.

C4079 Message Client does not have permission to register a consumer on the
destination: {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to create a message
consumer with the specified destination name.

C4080 Message Client does not have permission to delete consumer: {0}
{0} is replaced with the consumer ID for the consumer to be deleted.

Cause The application does not have permission to remove the specified
consumer from the broker.

C4081 Message Client does not have permission to unsubscribe: {0}
{0} was replaced with the name of the subscriber to unsubscribe.

Cause The client application does not have permission to unsubscribe the
specified durable subscriber.

C4082 Message Client is not authorized to access destination: {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client is not authorized to access the specified
destination.

C4083 Message Client does not have permission to browse destination: {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to browse the specified
destination.

C4084 Message User authentication failed: {0}
{0} is replaced with the user name.

Cause User authentication failed.

C4085 Message Delete consumer failed. Consumer was not found: {0}
{0} is replaced with name of the consumer that could not be found.

Cause The attempt to close a message consumer failed because the broker
was unable to find the specified consumer.

Appendix A Warning Messages and Client Error Codes 193



194

Table A-2

Message Queue Client Error Codes (Continued)

Code

Message and Description

C4086

C4087

C4088

C4089

C4090

C4091

C4092

C4093

Message Unsubscribe failed. Subscriber was not found: {0}
{0} is replaced with name of the durable subscriber.

Cause An attempt was made to unsubscribe a durable subscriber with a name
that does not exist in the system.

Message Set Client ID operation failed. Invalid Client ID: {0}
{0} is replaced with the ClientID that caused the exception.

Cause Client is unable to set Client ID on the broker and receives a
BAD REQUEST status from broker.

Message A JMS destination limit was reached. Too many producers for {0} :
{1}

{0} is replaced with Queue or Topi ¢

{1} is replaced with the destination name for which the limit was reached.

Cause The client runtime was not able to create a message producer for the
specified domain and destination due to limited broker resources.

Message Caught JVM Error: {0}
{0} is replaced with root cause error message.

Cause The client runtime caught an error thrown from the JVM; for example,
Qut O Menory error.

Message Invalid port number. Broker is not available or may be paused:{0}
{0} is replaced with “[host, port]” information.

Cause The client runtime received an invalid port number (0) from the broker.
Broker service for the request was not available or was paused.

Message Cannot call Sessi on. recover () from a NO ACKNOALEDGE session.

Cause The application attempts to call Sessi on. recover () from a
NO_ACKNONLEDCE session.

Message Broker does not support Sessi on. NO_ ACKNOALEDGE mode, broker
version: {0}

{0} is replaced with the version number of the broker to which the Message
Queue application is connected.

Cause The application attempts to create a NO_ ACKNOANLEDCE session to a
broker with version # less than 3.6.

Message Received wrong packet type. Expected: {0}, but received: {1}

{0} is replaced with the packet type that the Message Queue client runtime
expected to receive from the broker.

{1} is replaced with the packet type that the Message Queue client runtime
actually received from the broker.

Cause The Message Queue client runtime received an unexpected Message
Queue packet from broker.

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Table A-2  Message Queue Client Error Codes (Continued)

Code Message and Description

C4094 Message The destination this message was sent to could not be found: {0}
{0} is replaced with the destination name that caused the exception.
Cause: A destination to which a message was sent could not be found.

C4095 Message: Message exceeds the single message size limit for the server or
destination: {0}
{0} is replaced with the destination name that caused the exception.
Cause: A message exceeds the single message size limit for the server or
destination.

C4096 Message: Destination is full and is rejecting new messages: {0}

{0} is replaced with the destination name that caused the exception.

Cause: A destination is full and is rejecting new messages.

Appendix A Warning Messages and Client Error Codes

195



196 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



A

acknow edge method (Message) 77,78
acknowl edgeThi sMessage method (Message) 78
acknow edgeUpThr oughThi sMessage method
(Message) 78
acknowledging messages 77, 117
acknowledgment modes 28, 31, 47
auto-acknowledge 55, 115, 117, 118
client-acknowledge 55, 77, 117
defined 54
dups-OK-acknowledge 55, 117
no-acknowledge 55, 118, 120
activation.jar file 25
administered object store 41
administered objects
SAAJ, for 157
set Property method 28, 30, 44, 45, 52
Adni ni st ered(hj ect object 44
set Property method 28, 30, 44, 45, 52
asynchronous message consumption 32, 76
defined 72
authentication, user 46
AUTO_ACKNONLEDCE constant (Sessi on) 47, 56
auto-acknowledge mode 115, 117, 118
defined 55
auto-reconnect
behavior 114, 115
configurable attributes 116
limitations 115

Index

B

broker acknowledgments
defined 55
broker clusters 37,113, 117
broker, metrics for 127
browsing messages 78
bytes messages
composing 68
defined 63
get BodyLengt h method 85, 86
processing 85
r eadBool ean method 86
r eadByt e method 86
r eadByt es method 86
readChar method 86
r eadDoubl e method 86
r eadFl oat method 86
readl nt method 86
readLong method 86
readShort method 86
readUnsi gnedByt e method 86
readUnsi gnedShort method 86
r eadUTF method 86
reset method 68, 69
wri t eBool ean method 68
writ eByt e method 68
wr it eByt es method 68
wr it eChar method 68
wr i t eDoubl e method 68
writeFl oat method 68

197



Section C

bytes messages (continued) client applications

writelnt method 68 avoiding deadlock 95

wri t eLong method 68 compiling 33

writ eChj ect method 68 deploying 37

writeShort method 68 developing 27

wri t eUTF method 68 performance, factors impacting 105
Byt esMessage object 63 portability of 87

access methods 85 provider independence 88

composition methods 68 running 33

get BodyLengt h method 85, 86 client identifier 74,91

r eadBool ean method 86 setting 47

readByt e method 86 client threads

r eadByt es method 86 managing use of 95

readChar method 86 performance 95

readDoubl e method 86 CLI ENT_ACKNOALEDGE constant (Sessi on) 47, 56

reag::l oat mr?tgog686 client-acknowledge mode 77, 117
readl nt metho defined 55

readLong method 86 .
readShort method 86 cl ose method (Connect i on) 30, 32, 47, 48

r eadUnsi gnedByt e method 86 cl ose method (MessageConsuner) 73, 79

r eadUnsi gnedShort method 86 cl ose method (MessagePr oducer) 70, 71

r eadUTF method 86 cl ose method (QueueBr owser) 79

reset method 68, 69 cl ose method (Sessi on) 30, 32, 54

wri t eBool ean method 68 clustered broker configuration 37, 113, 117

writeByte method 68
wri t eByt es method 68
wr it eChar method 68
wri t eDoubl e method 68

com sun. nessagi ng package 45, 46
com sun. nessagi ng. j ns package 56, 78
command line

writeFl oat method 68 -Doption 44

witelnt method 68 commi t method (Sessi on) 54, 57
wri t eLong method 68 committing transactions 57

wri t eChj ect method 68 defined 57

witeShort method 68 configuration properties

wri t eUTF method 68 connection factory, overriding 43, 45

i ngAddr essLi st 113,116
i ngAddr essLi st Behavi or 117
i ngAddr essLi stlterations 113
i ngDef aul t Password 44
C i ngDest i nati onDescri ption 52

C clients, communicating with 122 i mgDest i nat i onNare 52
CLASSPATH environment variable 24, 25, 35 i mgPi ngl nterval 104

i ngReconnect Attenpts 113
cl ear Body method (Message) 64, 66, 69 i ngReconnect Enabl ed 112

client acknowledgments i mgReconnect I nterval 113,116
defined 55 i ngReconnect Li st Behavi or 113

198 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



connection factories
creat eConnect i on method 28, 30, 46
cr eat eQueueConnect i on method 46
cr eat eTopi cConnect i on method 46
defined 41
i ngAddr essLi st configuration property 45
instantiating 28, 30, 44
JNDI lookup 28, 30, 41
overriding configuration properties 43, 45
read-only 44
Connect i on object 28, 30, 40
cl ose method 30, 32, 47, 48
cr eat eConnect i onConsuner method 47, 48
cr eat eDur abl eConnect i onConsuner method 47,
48
cr eat eSessi on method 28, 31, 46, 47, 54, 56, 57
getd i ent | Dmethod 46, 47
get Except i onLi st ener method 47
get Met aDat a method 47, 48
methods 46
setd i ent| Dmethod 46, 47
set Excepti onLi st ener method 47
start method 31, 47, 48, 75, 76
st op method 47, 48
Connect i onConf i gur at i on object 44
Connect i onFact ory object 25, 28, 30, 40, 45, 46
cr eat eConnect i on method 28, 30, 46
cr eat eQueueConnect i on method 46
cr eat eTopi cConnect i on method 46
Connect i onMet aDat a object 48
connections
authentication 46
client identifier 47,74
cl ose method 30, 32, 47, 48
closing 30, 32, 48
cr eat eConnect i onConsuner method 47, 48
cr eat eDur abl eConnect i onConsuner method 47,
48
cr eat eSessi on method 28, 31, 46, 47, 54, 56, 57
creating 28, 30, 46
default user identity 46
defined 41
exception listener 47
getdient| Dmethod 46, 47
get Excepti onLi st ener method 47
get Met aDat a method 47, 48

Section C

password 46
reconnecting 112
setd i ent| Dmethod 46, 47
set Excepti onLi st ener method 47
setting default password 44
start method 31, 47, 48, 75, 76
starting 31, 48, 75
st op method 47, 48
thread use by 95
constants
AUTO_ACKNOWNLEDCE (Sessi on) 47, 56
CLI ENT_ACKNON.EDCGE (Sessi on) 47, 56
DEFAULT_DELI VERY_MCDE (Message) 60
DEFAULT_PRI ORI TY (Message) 60
DEFAULT_TI ME_TO LI VE (Message) 61
DUPS_(K_ACKNOWM.EDCE (Sessi on) 47, 56
NO_ACKNOWNLEDCE (Sessi on) 47, 56
NON_PERSI STENT (Del i ver yMbde) 60
PERSI STENT (Del i ver yMbde) 60
SESSI ON_TRANSACTED (Sessi on) 56, 77
correlation identifier
defined 60
creat eBrowser method (Sessi on) 54, 78
cr eat eByt esMessage method (Sessi on) 54, 64, 68
cr eat eConnect i on method (Connect i onFact ory) 28,
30, 46
cr eat eConnect i onConsuner method
(Connection) 47,48
cr eat eConsuner method (Sessi on) 31, 53, 72, 74, 75,
76
cr eat eDur abl eConnect i onConsuner method
(Connection) 47,48
cr eat eDur abl eSubscri ber method (Sessi on) 53, 74,
75, 76
cr eat eMapMessage method (Sessi on) 53, 64
cr eat eMessage method (Sessi on) 53, 63
cr eat eChj ect Message method (Sessi on) 53, 64, 67
creat eProducer method (Sessi on) 29, 53, 69, 70
cr eat ePubl i sher method (Topi cSessi on) 70, 72
cr eat eQueue method (Sessi on) 54
cr eat eQueueConnect i on method
(Connecti onFact ory) 46
cr eat eRecei ver method (QueueSessi on) 72
cr eat eSender method (QueueSessi on) 70

Index 199



Section D

cr eat eSessi on method (Connecti on) 28, 31, 46, 47,

54, 56, 57

cr eat eSt r eamvessage method (Sessi on) 53, 63, 65
cr eat eTenpor ar yQueue method (Sessi on) 53, 54

cr eat eTenpor ar yTopi ¢ method (Sessi on) 53, 54

cr eat eText Message method (Sessi on) 29, 53, 63, 64
cr eat eTopi ¢ method (Sessi on) 54

cr eat eTopi cConnect i on method

D

-D

(Connect i onFact ory) 46

command-line option 44

dead message queue 99

default user identity 46

DEFAULT_DELI VERY_MCDE constant (Message) 60
DEFAULT_PRI OR TY constant (Message) 60
DEFAULT_TI ME_TO LI VE constant (Message) 61

del

et e method (Tenpor ar yQueue,
Tenpor aryTopi ¢) 53

delivery modes 56, 106

Del

default, message producer 70, 71
defined 60

nonpersistent 60

persistent 60

setting 71

i ver yMbde object 60

NON_PERSI STENT constant 60
PERSI STENT constant 60

deploying client applications 37
destination metrics 129

Desti nati on object 25, 29, 31, 40, 49, 60
Desti nati onConfi gurati on object 52
destinations

200

default, message producer 70, 71
defined 49

instantiating 29, 31, 52

JNDI lookup 29, 31, 49

message, setting 71

queue 29, 31, 39, 49, 70,72, 78
temporary 53

topic 29, 31, 40, 49, 70, 72, 74

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients

directory variables
I MQ_ HOVE 18, 24
I MQ_JAVAHOME 19
| MQ_VARHOME 18
distributed applications and synchronous
consumers 104
DUPS_CK_ACKNOWMLEDGE constant (Sessi on) 47, 56
dups-OK-acknowledge mode 117
defined 55
durable subscribers 72
client identifier 74
closing 80
defined 74
subscriber name 74
durable subscriptions 47
defined 40
performance impact of 109

E

example programs 38
Hel | oWr | dMessage 33

exception listeners 47
onExcepti on method 47

Excepti onLi st ener object 47
onExcepti on method 47

exceptions
I nval i dDesti nati onException 78
MessageFor mat Excepti on 66, 67
MessageNot Wi t eabl eExcept i on 64, 66, 69

expiration time (message) 61

F

file-system object store 42, 50
FLON CONTRCL property 103
fscontext.jar file 25



G

get Acknow edgeMbde method (Sessi on) 54, 56, 77
get BodyLengt h method (Byt esMessage) 85, 86

get Bool ean method (MapMessage) 84

get Bool eanPr operty method (Message) 81

get Byt e method (MapMessage) 83

get Byt eProperty method (Message) 81

get Byt es method (MapMessage) 83

get Char method (MapMessage) 84

get d i ent | Dmethod (Connecti on) 46, 47

get Del i ver yMode method (MessagePr oducer) 69, 70
get Dest i nat i on method (MessagePr oducer) 69, 70

get D sabl eMessagel D method
(MessagePr oducer) 69

get Di sabl eMessageTi nest anp method
(MessagePr oducer) 69

get Doubl e method (MapMessage) 84

get Doubl ePr opert y method (Message) 81
get Enuner at i on method (QueueBr owser) 79
get Excepti onLi st ener method (Connect i on) 47
get Fl oat method (MapMessage) 84

get Fl oat Property method (Message) 81
get | nt method (MapMessage) 83

get | nt Property method (Message) 81

get IMSCor r el at i onl Dmethod (Message) 80
get IMSCor rel at i onl DAsByt es method (Message) 80
get IMSDel i ver yMbde method (Message) 80
get JIMSDest i nat i on method (Message) 80
get JMSExpi r ati on method (Message) 80
get JIMSMessagel Dmethod (Message) 80

get IMSPri ori ty method (Message) 32, 80
get JMSRedel i ver ed method (Message) 80
get JMSRepl yTo method (Message) 80

get JMSTI nest anp method (Message) 80

get IMSType method (Message) 80

get Long method (MapMessage) 84

get LongPr operty method (Message) 81

get MapNanes method (MapMessage) 84

get MessagelLi st ener method (MessageConsuner) 73,
7

get MessagelLi st ener method (Sessi on) 48, 54

Section G

get MessageSel ect or method (MessageConsuner) 72,
73

get MessageSel ect or method (QueueBr owser) 78, 79
get Met aDat a method (Connecti on) 47, 48

get bj ect method (MapMessage) 84

get j ect method ((hj ect Message) 85

get Ovj ect Property method (Message) 81

get Priority method (MessagePr oducer) 69, 70
get Pr oper t yNanes method (Message) 81

get Queue method (QueueBr owser) 78, 79

get Short method (MapMessage) 83

get Short Property method (Message) 81

get Stri ng method (MapMessage) 84

get Stri ngProperty method (Message) 32, 81

get Text method (Text Message) 32, 82

get Ti neToLi ve method (MessagePr oducer) 69, 70
get Tr ansact ed method (Sessi on) 54, 57

H

hash table for destination-list metrics 129, 136
heap space, VM 96
Hel | oWr | dMessage example program 33

I

ing.jar file 24

| MQ_HOME directory variable 18, 24

I MQ_JAVAHQOVE directory variable 19

I MQ_VARHOME directory variable 18

i ngAddr essLi st configuration property 45, 113, 116

i ngAddr essLi st Behavi or configuration
property 117

i ngAddr essLi st It erati ons configuration
property 113

i ngbr oker d command 26

i ngcnd command 26

i ngDef aul t Passwor d configuration property 44

Index 201



Section J

i ngDest i nati onDescri pti on configuration
property 52

i ngDest i nat i onNane configuration property 52

i ngPi ngl nt erval configuration property 104

i ngReconnect At t enpt s configuration property 113

i ngReconnect Enabl ed configuration property 112

i ngReconnect I nterval configuration property 113,
116

i ngReconnect Li st Behavi or configuration
property 113

i ngxm j ar file 25

I nval i dDesti nati onExcepti on exception 78

i t enExi st s method (MapMessage) 84

J

JAF, See JavaBeans Activation Framework
.jar files 23
activation.jar 25
for IMS and SOAP clients 25
fscontext.jar 25
ing.jar 24
ingxmjar 25
jaxmapi.jar 25
jms.jar 24
jndi.jar 24,25
| dabbp.jar 25
I dap.jar 25
locations 24
needed in CLASSPATH 24
saaj-api.jar 25
Java Development Kit (JDK) 23, 24, 25
Java Message Service Specification 15, 21, 39, 48, 58, 61,
73
Java Naming and Directory Interface (JNDI) 41
environment parameter 42, 50
initial context 43, 51
initial context factory 43, 51
.j ar file needed for 25
obtaining connection factories with 28, 30, 41
obtaining destinations with 29, 31, 49

202 Message Queue 3 2005Q4 « Developer's Guide for Java Clients

Java Virtual Machine
heap space 96
metrics for 129

java.util package 36

JavaBeans Activation Framework (JAF) 161

j avax. j ms package 36, 45, 46, 52, 56

javax. xm . messagi ng package 149

javax. xm . soap package 148

jaxmapi.jar file 25

JAXVBer vl et object 165

JDK, See Java Development Kit

jms.jar file 24

JVS_SUN COVPRESS property 97

JVS_SUN COWPRESSED SI ZE property 97

JVS_SUN DMQ BODY_TRUNCATED property 102
JVS_SUN DMQ PRCDUCI NG _BRCKER property 102
JVS_SUN DMV UNDELI VERED COWMMENTS property 102
JVS_SUN DMRQ UNDELI VERED EXCEPTI ON property 102
JVS_SUN DMQ UNDELI VERED REASON property 102
JVS_SUN DMQ UNDELI VERED TI MESTAWP property 101
JVS_SUN LOG DEAD MESSAGES property 100
JVS_SUN PRESERVE_UNDELI VERED property 100
JVS_SUN TRUNCATE_MSG _BCODY property 101
JVS_SUN UNCOVPRESSED S ZE property 97
JMSCorr el ati onl Dmessage header field 59, 60
JMBDel i ver yMbde message header field 59, 60
JMBDest i nat i on message header field 58, 60
JMBExpi rat i on message header field 59, 61
JMBMessagel D message header field 58, 60
JMBPriority message header field 59, 60
JVMBRedel i ver ed message header field 59, 61
JMBRepl yTo message header field 59, 60, 70
JMSTi nest anp message header field 59, 61
JMSType message header field 59, 61

JVBXAppl D message property 62
JVBXConsuner TXI Dmessage property 62

JMBXDel i ver yCount message property 62
JMBXDel i ver yCount property 101

JVBXG oupl Dmessage property 62

JVBXG oupSeq message property 62

JVBXPr oducer TXI D message property 62
JVMBXRevTi nest anp message property 62



JIVBXSt at e message property 62

JVBXUser | Dmessage property 62

JNDI, See Java Naming and Directory Interface
jndi.jar file 24,25

JVM, See Java Virtual Machine

L

| dabbp. j ar file 25
LDAP, See Lightweight Directory Access Protocol
| dap. j ar file 25
l'i b directory 23
lifetime (message) 61
default, message producer 70, 71
setting 71
Lightweight Directory Access Protocol (LDAP)
.j ar files needed for 25
object store 42, 50

M

map messages
composing 66
defined 63
get Bool ean method 84
get Byt e method 83
get Byt es method 83
get Char method 84
get Doubl e method 84
get Fl oat method 84
get | nt method 83
get Long method 84
get MapNanes method 84
get bj ect method 84
get Short method 83
get String method 84
i t emExi st s method 84
processing 83
set Bool ean method 66

Section L

set Byt e method 66
set Byt es method 66
set Char method 66
set Doubl e method 66
set Fl oat method 66
set | nt method 66
set Long method 66
set Chj ect method 67
set Short method 66
set String method 66

MapMessage object 63

access methods 83
composition methods 66
get Bool ean method 84
get Byt e method 83
get Byt es method 83
get Char method 84
get Doubl e method 84
get Fl oat method 84
get | nt method 83

get Long method 84
get MapNanes method 84
get bj ect method 84
get Short method 83
get Stri ng method 84
i t emExi st s method 84
set Bool ean method 66
set Byt e method 66
set Byt es method 66
set Char method 66
set Doubl e method 66
set Fl oat method 66
set | nt method 66

set Long method 66
set bj ect method 67
set Short method 66
set String method 66

master broker 117
memory management 96
message body

defined 63
processing 82

message brokers

starting 26
testing 26

Index

203



Section M

message consumers get Bool eanPr operty method 81
cl ose method 73, 79 get Byt eProperty method 81
closing 79 get Doubl ePr operty method 81
creating 31, 72 get Fl oat Property method 81
dedicated 103 get | nt Property method 81
defined 71 get IMSCor rel ati onl Dmethod 80
get MessagelLi st ener method 73, 77 get IMSCor r el at i onl DAsByt es method 80
get MessageSel ect or method 72, 73 get JMBDel i ver yMbde method 80
message loss, correcting 104 get JMSDest i nat i on method 80
pinging 103 get JMSExpi r at i on method 80
recei ve method 31, 73, 75, 77 get JIMSMessagel Dmethod 80
recei veNoVi t method 73, 75, 77 get IMSPri ority method 32, 80
set Messageli st ener method 73, 76 get JMSRedel i ver ed method 80
synchronous 104 get JMSRepl yTo method 80

message delivery models 88 get JVSTi nest anp method 80

message header get IMSType method 80
defined 58 get LongPr operty method 81
JINBCor rel ati onl Dfield 59, 60 get Cbj ect Proper ty method 81
JINBDel i veryMbde field 59, 60 get Pr oper tyNames method 81
JINBDest i nat i on field 58, 60 get Shor t Pr oper ty method 81
JVBExpi rati on field 59, 61 get Stri ngProperty method 32, 81
JVBMessagel Dfield 58, 60 header retrieval methods 80
JVBPriority field 59, 60 header specification methods 59
JMVBRedel i ver ed field 59, 61 property retrieval methods 81
JVBRepl yTo field 59, 60, 70 property specification methods 61
JNBTI mest anp field 59, 61 propert yExi st s method 81
JVBType field 59, 61 set Bool eanProperty method 62
retrieving fields 80 set Byt eProperty method 61

set Doubl ePr operty method 62

message identifier
def?neld GOI : set Fl oat Property method 62

set | nt Property method 61

set JMSCor r el at i onl Dmethod 59, 60

set JIMSCor r el at i onl DAsByt es method 59, 60
set JMBDel i ver yMbde method 59

set JMBDest i nat i on method 59

suppressing 71

message listeners 32, 72
creating 76
onMessage method 76, 77

Message object 63 set JMBExpi r at i on method 59
acknow edge method 77,78 set JMBMessagel Dmethod 59
acknow edgeThi sMessage method 78 set IMSPri ori ty method 59
acknow edgeUpThr oughThi sMessage method 78 set JVSRedel i ver ed method 59
acknowledgment methods 77 set IMBRepl yTo method 59
cl ear Body method 64, 66, 69 set VBT mest anp method 59
cl ear Properties method 61, 62 set JMSType method 59
DEFAULT_DELI VERY MCDE constant 60

set LongPr operty method 62
DEFAULT_PR CR TY constant 60 set Obj ect Property method 61, 62

DEFAULT_TI ME_TO LI VE constant 61 set Shor t Proper ty method 61

set StringProperty method 29, 62

204 Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



message producers
cl ose method 70, 71
creating 29, 69
default delivery mode 70, 71
default destination 70, 71
default message lifetime 70, 71
default message priority 70, 71
defined 69
get Del i ver yMbde method 69, 70
get Dest i nat i on method 69, 70
get Di sabl eMessagel D method 69
get Di sabl eMessageTi nest anp method 69
getPriority method 69, 70
get Ti neToLi ve method 69, 70
send method 29, 69, 71
set Del i ver yMbde method 69, 70
set Di sabl eMessagel Dmethod 60, 69, 71
set Di sabl eMessageTi nest anp method 61, 69, 71
setPriority method 69, 70
set Ti meToLi ve method 69, 70
message properties
defined 61
filtering on 73
retrieving 81
Message Queue Administration Guide 23, 37, 41, 42,
44, 46, 47, 49, 50
Message Queue Technical Overview 23
message selectors
browsing with 78
defined 73
efficient use of 92
performance impact 110
message type identifier
defined 61
message types
defined 63
message-based monitoring 123
MessageConsuner object 31, 40, 72, 74
cl ose method 73, 79
get MessagelLi st ener method 73, 77
get MessageSel ect or method 72, 73
methods 72
recei ve method 31, 73, 75, 77
recei veNoVi t method 73, 75, 77
set Messageli st ener method 73, 76

Section M

MessageFact ory objectd 167
MessageFor mat Except i on exception 66, 67
Messageli st ener object 76

onMessage method 76, 77

MessageNot Wi t eabl eExcept i on exception 64, 66, 69
MessagePr oducer object 29, 40, 70

cl ose method 70, 71

get Del i ver yMbde method 69, 70

get Dest i nat i on method 69, 70

get Di sabl eMessagel D method 69

get Di sabl eMessageTi mest anp method 69
getPriority method 69, 70

get Ti neToLi ve method 69, 70

methods 69

send method 29, 69, 71

set Del i ver yMbde method 69, 70

set Di sabl eMessagel Dmethod 60, 69, 71
set Di sabl eMessageTi nest anp method 61, 69, 71
setPriority method 69, 70

set Ti meToLi ve method 69, 70

messages

acknow edge method 77,78
acknow edgeThi sMessage method 78
acknow edgeUpThr oughThi sMessage method 78
acknowledging 77, 117

body 63, 82

body type and performance 111
browsing 78

bytes messages 63, 68, 85

cl ear Body method 64, 66, 69

cl ear Properties method 61, 62
composing 63

compression 91, 97

correlation identifier 60

creating 29, 63

delivery mode 71

delivery models 88

destination 71

expiration time 61

filtering 73

get Bool eanPr operty method 81
get Byt eProperty method 81

get Doubl ePr operty method 81
get Fl oat Property method 81
get | nt Property method 81

get IMSCor rel ati onl Dmethod 80

Index 205



Section M

messages (continued) set Byt eProperty method 61
get IMSCor rel at i onl DAsByt es method 80 set Doubl ePr operty method 62
get JMBDel i ver yMbde method 80 set Fl oat Property method 62
get JMSDest i nat i on method 80 set | nt Property method 61
get JMSExpi r ati on method 80 set IMSCor rel ati onl Dmethod 59, 60
get IMSMessagel Dmethod 80 set JMSCor r el at i onl DAsByt es method 59, 60
get IMSPri ority method 32, 80 set JMBDel i ver yMbde method 59
get JMSRedel i ver ed method 80 set JMSDest i nat i on method 59
get JMSRepl yTo method 80 set JMSExpi r at i on method 59
get JMSTI nest anp method 80 set JIMSMessagel Dmethod 59
get IMSType method 80 set IMSPri ority method 59
get LongPr operty method 81 set JMSRedel i ver ed method 59
get vj ect Property method 81 set JMSRepl yTo method 59
get Pr opert yNanes method 81 set JMSTi nmest anp method 59
get Short Property method 81 set JIMSType method 59
get Stri ngProperty method 32, 81 set LongPr operty method 62
header 58, 80 set bj ect Property method 61, 62
JVBXAppl D property 62 set Short Property method 61
JMBXConsuner TXI D property 62 set Stri ngProperty method 29, 62
JVBXDel i ver yCount property 62 setting content 29
JMBXG oupl D property 62 setting properties 29
JMBXG oupSeq property 62 size of 96, 97
JMBXPr oducer TXI D property 62 size, and performance 110
JVMBXRevTi nest anp property 62 SOAP payloads, with 172
JVBXSt at e property 62 standard properties 62
JVBXUser | D property 62 stream messages 63, 65, 82
lifetime 61, 71 structure 58
map messages 63, 66, 83 text messages 63, 64, 82
message identifier 60, 71 time stamp 61, 71
message type identifier 61 messaging domains 39, 88
message types 63 point-to-point (PTP) 29, 31, 39, 46
null messages 63 publish/subscribe (pub/sub) 29, 31, 40, 46, 47
object messages 63, 67, 85 unified 40, 46, 49
or(_:Ier_ir_19_ of 92 methods
prioritizing 92 acknow edge (Message) 77, 78
priority 60, 71 acknow edgeThi sMessage (Message) 78
processing 80 acknow edgeUpThr oughThi sMessage (Message) 78
properties 61, 81 cl ear Body (Message) 64, 66, 69
propertyExi sts method 81 cl ose (Connecti on) 30, 32, 47, 48
receiving 3L, 71 cl ose (MessageConsuner) 73, 79
redelivered flag 61 cl ose (MessagePr oducer) 70, 71
retrieving content 32 cl ose (QueueBr owser) 79
retrieving header fields 32 cl ose (Sessi on) 30, 32, 54
retrieving properties 32 comni t (Sessi on) 54, 57
sendmg_29, 69 cr eat eBr owser (Sessi on) 54, 78
sequencing 96 cr eat eByt esMessage (Sessi on) 54, 64, 68

set Bool eanPr operty method 62

206 Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



methods (continued)

cr eat eConnecti on (Connecti onFact ory) 28, 30,
46

cr eat eConnect i onConsuner (Connecti on) 47, 48

cr eat eConsuner (Session) 31,53,72, 74,75, 76

cr eat eDur abl eConnect i onConsuner
(Connection) 47,48

creat eDur abl eSubscri ber (Session) 53, 74, 75,
76

cr eat eMapMessage (Sessi on) 53, 64

cr eat eMessage (Sessi on) 53, 63

creat eChj ect Message (Sessi on) 53, 64, 67

creat eProducer (Sessi on) 29, 53, 69, 70

creat ePubl i sher (Topi cSessi on) 70, 72

cr eat eQueue (Sessi on) 54

cr eat eQueueConnect i on (Connect i onFact ory) 46

cr eat eRecei ver (QueueSessi on) 72

creat eSender (QueueSessi on) 70

cr eat eSessi on (Connecti on) 28, 31, 46, 47, 54, 56,
57

creat eSt r eamvessage (Sessi on) 53, 63, 65

cr eat eTenpor ar yQueue (Sessi on) 53, 54

cr eat eTenpor ar yTopi ¢ (Sessi on) 53, 54

cr eat eText Message (Sessi on) 29, 53, 63, 64

creat eTopi ¢ (Sessi on) 54

cr eat eTopi cConnect i on (Connect i onFact ory) 46

del et e (Tenpor ar yQueue, Tenpor ar yTopi ¢) 53

get Acknow edgeMde (Sessi on) 54, 56, 77

get BodyLengt h (Byt esMessage) 85, 86

get Bool ean (MapMessage) 84

get Bool eanProperty (Message) 81

get Byt e (MapMessage) 83

get Byt eProperty (Message) 81

get Byt es (MapMessage) 83

get Char (MapMessage) 84

getdient|D(Connection) 46, 47

get Del i ver yMbde (MessagePr oducer) 69, 70

get Dest i nati on (MessagePr oducer) 69, 70

get Di sabl eMessagel D (MessagePr oducer) 69

get Di sabl eMessageTi mest anp
(MessagePr oducer) 69

get Doubl e (MapMessage) 84

get Doubl ePr operty (Message) 81

get Enuner at i on (QueueBr owser) 79

get Except i onLi st ener (Connection) 47

get Fl oat (MapMessage) 84

get Fl oat Property (Message) 81

Section M

get I nt (MapMessage) 83

get | nt Property (Message) 81

get IMSCorrel ati onl D(Message) 80
get IMSCor rel at i onl DAsByt es (Message) 80
get JMBDel i ver yMbde (Message) 80
get JIMSDest i nati on (Message) 80
get JMSExpi rati on (Message) 80
get JIMSMessagel D (Message) 80

get IMSPri ority (Message) 32, 80
get JMSRedel i ver ed (Message) 80
get IMSRepl yTo (Message) 80

get JMSTI nest anp (Message) 80

get IMSType (Message) 80

get Long (MapMessage) 84

get LongProperty (Message) 81

get MapNanes (MapMessage) 84

get MessagelLi st ener (MessageConsurer) 73, 77

get MessagelLi st ener (Session) 48, 54

get MessageSel ect or (MessageConsuner) 72, 73

get MessageSel ect or (QueueBrowser) 78, 79
get Met aDat a (Connect i on) 47, 48

get bj ect (MapMessage) 84

get hj ect ((bj ect Message) 85

get Ovj ect Property (Message) 81
getPriority (MessageProducer) 69, 70
get Propert yNanes (Message) 81

get Queue (QueueBr owser) 78, 79

get Short (MapMessage) 83

get Short Property (Message) 81

get String (MapMessage) 84

get StringProperty (Message) 32, 81

get Text (Text Message) 32, 82

get Ti neToLi ve (MessagePr oducer) 69, 70
get Tr ansact ed (Sessi on) 54, 57

i tenExi sts (MapMessage) 84

onExcepti on (Excepti onLi st ener) 47
onMessage (Messageli st ener) 76, 77, 166
propert yExi sts (Message) 81

Queue constructor 52

r eadBool ean (Byt esMessage) 86

r eadBool ean (St reanessage) 83

r eadByt e (Byt esMessage) 86
readByt e (StreanMessage) 83

readByt es (Byt esMessage) 86

readByt es (St reamvessage) 83

readChar (Byt esMessage) 86

readChar (StreaniMessage) 83

Index

207



Section M

me

208

thods (continued)

readDoubl e (Byt esMessage) 86

readDoubl e (St reamvessage) 83

readFl oat (Byt esMessage) 86

readFl oat (Streamvessage) 83

readl nt (Byt esMessage) 86

readl nt (Streamvessage) 82

readLong (Byt esMessage) 86

readLong (St reanMessage) 83

readChj ect (Streamvessage) 83

readshort (Byt esMessage) 86

readshort (Streamvessage) 83

readString (Streamvessage) 83

readUnsi gnedByt e (Byt esMessage) 86

readUnsi gnedShort (Byt esMessage) 86

readUTF (Byt esMessage) 86

recei ve (MessageConsuner) 31, 73, 75, 77

recei veNoVdi t (MessageConsuner) 73, 75, 77

recover (Session) 54

reset (BytesMessage) 68, 69

reset (Streamvessage) 65, 66

rol | back (Sessi on) 54, 58

send (MessagePr oducer) 29, 69, 71

set Bool ean (MapMessage) 66

set Bool eanPr operty (Message) 62, 97

set Byt e (MapMessage) 66

set Byt eProperty (Message) 61

set Byt es (MapMessage) 66

set Char (MapMessage) 66

setdient|D(Connection) 46, 47

set Del i ver yMode (MessagePr oducer) 69, 70

set Di sabl eMessagel D (MessagePr oducer) 60, 69,
71

set Di sabl eMessageTi nmest anp
(MessagePr oducer) 61, 69, 71

set Doubl eProperty (Message) 62

set Except i onLi st ener (Connection) 47

set Fl oat (MapMessage) 66

set Fl oat Property (Message) 62

set | nt (MapMessage) 66

set | nt Property (Message) 61

set JMSCorrel ati onl D(Message) 59, 60

set JIMSCorrel at i onl DAsByt es (Message) 59, 60

set JMBDel i ver yMode (Message) 59

set JMSDest i nati on (Message) 59

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients

set JMSExpi rat i on (Message) 59

set JMBMessagel D (Message) 59, 61, 62

set IMSPriority (Message) 59

set JMSRedel i ver ed (Message) 59

set IMSRepl yTo (Message) 59

set JMBTi nest anp (Message) 59

set IMSType (Message) 59

set Long (MapMessage) 66

set LongProperty (Message) 62

set MessagelLi st ener (MessageConsurrer) 73, 76

set MessagelLi st ener (Session) 48, 54

set Chj ect (MapMessage) 67

set (hj ect (Chj ect Message) 67

set Chj ect Property (Message) 61, 62

setPriority (MessageProducer) 69, 70

set Property (Adm ni st ered(hj ect) 28, 30, 44, 45,
52

set Short (MapMessage) 66

set Short Property (Message) 61

set String (MapMessage) 66

set StringProperty (Message) 29, 62

set Text (Text Message) 29, 64, 65

set Ti neTolLi ve (MessagePr oducer) 69, 70

start (Connection) 31, 47,48, 75, 76

st op (Connection) 47,48

Topi ¢ constructor 52

unsubscri be (Sessi on) 53, 75, 80

wri t eBool ean (Byt esMessage) 68

wri t eBool ean (St r eamMessage) 65

writeByte (BytesMessage) 68

writeByte (StreanMessage) 65

writeBytes (Byt esMessage) 68

writeBytes (Streamvessage) 65

writeChar (BytesMessage) 68

writeChar (StreanMessage) 65

wri t eDoubl e (Byt esMessage) 68

wri t eDoubl e (Stream\essage) 65

writeF oat (Byt esMessage) 68

witeF oat (Streamvessage) 65

witelnt (BytesMessage) 68

witelnt (MapMessage) 66

witelnt (Streamvessage) 65

wri t eLong (Byt esMessage) 68

writeLong (St reanMessage) 65

writeChject (BytesMessage) 68



methods (continued)
writeChject (Streamvessage) 65
witeShort (BytesMessage) 68
witeShort (Streamvessage) 65
witeString (Streamvessage) 65
writ eUTF (Byt esMessage) 68
metrics messages
format of 124, 127
properties of 127
type 124
metrics-based monitoring
administration of 125
creating client for 126
examples of 132
implementation of 125
introduced 123
M meHeader s object 167
ny. netrics. broker topic 124
ng. netrics. desti nati on. queue. destination_name
topic 124
ng. netrics. desti nati on. t opi c. destination_name
topic 124
ng. netrics. destination_|ist topic 124
ng. netrics. j vmtopic 124
ng. sys. dng queue 100

N

namespaces (SOAP) 152
NO_ACKNOWMLEDCGE constant (Sessi on) 47, 56

no-acknowledge mode 118, 120
defined 55
NON_PERSI STENT constant (Del i ver yMode) 60
nondurable subscribers 72
closing 80
nonpersistent delivery mode
defined 60

null messages
defined 63

Section N

O

object messages
composing 67
defined 63
get j ect method 85
processing 85
set Cbj ect method 67

object stores
file-system 42, 50
LDAP 42,50

(bj ect Message object 63
access method 85
composition method 67
get bj ect method 85
set Cbj ect method 67

objects
Adni ni steredChj ect 44
Byt esMessage 63, 68, 85
Connection 28, 30, 40, 46
Connect i onConfiguration 44
Connect i onFact ory 25, 28, 30, 40, 45, 46
Connect i onMet aDat a 48
Del i ver yMbde 60
Desti nation 25, 29, 31, 40, 49, 60
Desti nati onConfi guration 52
Excepti onLi st ener 47
MapMessage 63, 66, 83
Message 59, 61, 63, 77, 80, 81
MessageConsuner 31,40, 72, 74
MessageFact ory 167
Messageli st ener 76
MessagePr oducer 29, 40, 69, 70
M neHeaders 167
(bj ect Message 63, 67, 85
Queue 36, 40, 49
QueueBrowser 78
QueueConnection 40
QueueConnect i onFact ory 40
QueueRecei ver 40, 72
QueueSender 40, 70
QueueSessi on 40, 70, 72
RegRespLi st ener 161
Servl et Config 166
Sessi on 28, 31, 40, 53, 63
Streanmvessage 63, 65, 82

Index

209



Section P

objects (continued) priority (message)
Text Message 63, 82 default, message producer 70, 71
Topi ¢ 40, 49 defined 60
Topi cConnecti on 40 setting 71
Topi cConnect i onFactory 40 processing messages 80
Topi cPubl i sher 40, 70 propert yExi st s method (Message) 81

Topi cSessi on 40, 70, 72

Topi cSubscri ber 40,72, 74

URLEndpoi nt 164
onExcept i on method (Excepti onLi st ener) 47
onMessage method (Messageli st ener) 76, 77, 166
Qut O Menor yEr ror error 96

provider independence 88
PTP, See point-to-point messaging domain
pub/sub, See publish/subscribe messaging domain
publish/subscribe (pub/sub) messaging domain 29,
31, 46, 47
defined 40

packages o 45 46 queue browsers 78
com sun. nessagi ng 4o, cl ose method 79

com sun. Iﬂezzagl ng.jns 56, 78 get MessageSel ect or method 78, 79
java. uti get Queue method 78, 79

J‘ZXZiljxﬁ igsiz T'?] 521’426 gueue destinations 29, 31, 49, 70, 72
J o g! ng browsing 78

j .xm . 148 \
pasjsf\i/://g:d;( "o defined 39
connection, authentication 46 Queue object 36, 40, 49
connection, setting 44 constructor method 52
performance and reliability 105 quitlfslirﬁceg:rs
performance, factors impacting define% o
acknowledgment mode 108

delivery mode 106 queue senders

durable subscriptions 109 defmed_ 70
message body type 111 queue sessions
message selectors 110 cr eat eRecei ver method 72
message size 110 cr eat eSender method 70
transactions 107 QueueBr owser object

PERS| STENT constant (Del i ver yMbde) 60 cl ose method 79

ersistent delivery mode get MessageSel ect or method 78, 79
P defined 60 get Queue method 78, 79

methods 78
QueueConnect i on object 40
QueueConnect i onFact ory object 40
QueueRecei ver object 40, 72
QueueSender object 40, 70

physical destination properties 103

ping interval 103

point-to-point (PTP) messaging domain 29, 31, 46
defined 39

210 Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



Section R

QueueSessi on object 40, 70, 72 REMOVE_QLDEST property 103
cr eat eRecei ver method 72 ReqRespLi st ener object 161
creat eSender method 70 reset method (Byt esMessage) 68, 69

reset method (St reanMessage) 65, 66
rol | back method (Sessi on) 54, 58

rolling back transactions 58
R defined 57

r eadBool ean method (Byt esMessage) 86
r eadBool ean method (St r eamvessage) 83
r eadByt e method (Byt esMessage) 86

readByt e method (St r eamvessage) 83 S

readByt es method (Byt esMessage) 86 SAAJ, See SOAP with Attachments API for Java
r eadByt es method (St r eanmvessage) 83 saaj -api . | ar file 25

readChar method (Byt esMessage) 86 selectors, message

readChar method (St r eamvessage) 83 browsing with 78

r eadDoubl e method (Byt esMessage) 86 defined 73

r eadDoubl e method (St r eamMessage) 83 efficient use of 92

performance impact 110
send method (MessagePr oducer) 29, 69, 71
sending messages 29, 69
sequencing partial messages 96
Servl et Confi g object 166

Sessi on object 28, 31, 40
AUTO _ACKNOWNLEDCE constant 47, 56
CLI ENT_ACKNON.EDGE constant 47, 56

readFl oat method (Byt esMessage) 86
readFl oat method (St r eanvessage) 83
readl nt method (Byt esMessage) 86
readl nt method (St r eaniessage) 82
readLong method (Byt esMessage) 86
readLong method (St r eamvessage) 83
readChj ect method (St r eanMessage) 83

readShort method (Byt esMessage) 86 cl ose method 30, 32, 54

readShort method (St r eamvessage) 83 commi t method 54, 57

readsSt ri ng method (St reanMessage) 83 creat eBrowser method 54, 78

readUnsi gnedByt e method (Byt esMessage) 86 cr eat eByt esMessage method 54, 64, 68

r eadUnsi gnedShort method (Byt esMessage) 86 cr eat eConsuner method 31, 53, 72, 74, 75, 76

r eadUTF method (Byt esMessage) 86 cr eat eDur abl eSubscri ber method 53, 74, 75, 76

cr eat eMapMessage method 53, 64
cr eat eMessage method 53, 63
cr eat eChj ect Message method 53, 64, 67

recei ve method (MessageConsunrer) 31, 73, 75, 77
recei veNoVi t method (MessageConsuner) 73, 75,

7_7 ) creat eProducer method 29, 53, 69, 70
receiving messages 31, 71 cr eat eQueue method 54
asynchronously 76 creat eSt r eanessage method 53, 63, 65
synchronously 75 cr eat eTenpor ar yQueue method 53, 54
recover method (Sessi on) 54 cr eat eTenpor ar yTopi ¢ method 53, 54
redelivered flag (message) cr eat eText Message method 29, 53, 63, 64
defined 61 creat eTopi ¢ method 54
E‘]ECT_[\EV\EST property 103 DUPS_ (K ACKNOALEDCE constant 47, 56

get Acknow edgeMbde method 54, 56, 77

reliability and performance 105 )
get MessagelLi st ener method 48, 54

REMOVE_LON PR ORI TY property 103

Index 211



Section S

Sessi on object (continued)

get Tr ansact ed method 54, 57
message creation methods 63
methods 53

NO ACKNOALEDCE constant 47, 56
recover method 54

rol | back method 54, 58

SESSI ON_TRANSACTED constant 56, 77
set MessagelLi st ener method 48, 54
unsubscri be method 53, 75, 80

SESSI ON_TRANSACTED constant (Sessi on) 56, 77
sessions

212

AUTO _ACKNOWNLEDCE constant 47, 56

CLI ENT_ACKNOWN.EDCGE constant 47, 56

cl ose method 30, 32, 54

closing 30, 32

comm t method 54, 57

cr eat eBronser method 54, 78

cr eat eByt esMessage method 54, 64, 68
cr eat eConsuner method 31, 53, 72, 74, 75, 76
creat eDur abl eSubscri ber method 53, 74, 75, 76
cr eat eMapMessage method 53, 64

cr eat eMessage method 53, 63

cr eat eChj ect Message method 53, 64, 67
cr eat eProducer method 29, 53, 69, 70
cr eat eQueue method 54

creat eSt r eamvessage method 53, 63, 65
cr eat eTenpor ar yQueue method 53, 54
creat eTenpor ar yTopi ¢ method 53, 54
cr eat eText Message method 29, 53, 63, 64
cr eat eTopi ¢ method 54

creating 28, 31, 47,54

defined 53

DUPS_CK_ACKNOALEDGE constant 47, 56
get Acknow edgeMbde method 54, 56, 77
get MessagelLi st ener method 48, 54

get Tr ansact ed method 54, 57

NO ACKNOALEDCE constant 47, 56
recover method 54

rol | back method 54, 58

SESSI ON_TRANSACTED constant 56, 77

set MessagelLi st ener method 48, 54
threading restrictions in 94

transacted 28, 31, 56, 57, 77

unsubscri be method 53, 75, 80

work done by 90

Message Queue 3 2005Q4 « Developer’s Guide for Java Clients

set Bool ean method (MapMessage) 66

set Bool eanPr operty method (Message) 62, 97

set Byt e method (MapMessage) 66

set Byt eProperty method (Message) 61

set Byt es method (MapMessage) 66

set Char method (MapMessage) 66

set d i ent | Dmethod (Connecti on) 46, 47

set Del i ver yMbde method (MessagePr oducer) 69, 70

set Di sabl eMessagel D method
(MessagePr oducer) 60, 69, 71

set Di sabl eMessageTi nest anp method
(MessagePr oducer) 61, 69, 71

set Doubl ePr operty method (Message) 62

set Excepti onLi st ener method (Connect i on) 47
set Fl oat method (MapMessage) 66

set Fl oat Property method (Message) 62

set | nt method (MapMessage) 66

set | nt Property method (Message) 61

set JMSCor r el at i onl Dmethod (Message) 59, 60

set JMSCor r el at i onl DAsByt es method (Message) 59,
60

set JMBDel i ver yMbde method (Message) 59
set JMSDest i nat i on method (Message) 59
set JMSExpi r at i on method (Message) 59
set JMSMessagel Dmethod (Message) 59, 61, 62
set IMSPri ority method (Message) 59

set JMSRedel i ver ed method (Message) 59
set JMSRepl yTo method (Message) 59

set JMSTI nest anp method (Message) 59
set IMSType method (Message) 59

set Long method (MapMessage) 66

set LongPr operty method (Message) 62

set MessagelLi st ener method (MessageConsuner) 73,
76

set Messageli st ener method (Sessi on) 48, 54

set Chj ect method (MapMessage) 67

set (bj ect method (Chj ect Message) 67

set (hj ect Property method (Message) 61, 62

set Priority method (MessagePr oducer) 69, 70

set Property method (Adm ni st er edChj ect) 28, 30,
44, 45, 52

set Short method (MapMessage) 66



set Shor t Proper ty method (Message) 61

set St ri ng method (MapMessage) 66

set Stri ngProperty method (Message) 29, 62
set Text method (Text Message) 29, 64, 65

set Ti neToLi ve method (MessagePr oducer) 69, 70

Simple Object Access Protocol (SOAP)
client code 162
connections 157
defined 142
endpoints 156
exception handling 162
fault codes 170
fault handling 162, 168
layers 142
message factories 157
namespaces 152
point-to-point connections 160
programming models 160
service code 165
SOAPMessageFr om)MsMessage method 173
SQAPMessagel nt oJMBMessage utility 172
SOAP messages
disassembling 167
envelope 145
header 146
MIME envelope for 147
models of 146
Nane object 155
payload to JMS message, as 172
SOAPMessage object 149
structure of 146
SOAP with Attachments API for Java (SAAJ)
about 148
client code 162
exception handling 162
fault handling 162, 168
javax. xm . messagi ng package 149
javax. xm . soap package 148
programming model 142, 148, 160
service code 165
SOAP with Attachments API for Java (SAAJ)
Specification 15, 21
SOAP, See Simple Object Access Protocol

Section S

SQL92 73

standard message properties 62
JVBXAppl D 62
JMBXConsurer TXI D 62
JMBXDel i ver yCount 62
JVBX@ oupl D 62
JVBXG oupSeq 62
JVBXPr oducer TXI D 62
JVMBXRevTi nest anp 62
JVBXState 62
JVBXUser | D 62

start method (Connecti on) 31, 47, 48, 75, 76

starting
connections 31, 48, 75
message brokers 26

st op method (Connect i on) 47, 48

stream messages
composing 65
defined 63
processing 82
r eadBool ean method 83
readByt e method 83
readByt es method 83
readChar method 83
r eadDoubl e method 83
readFl oat method 83
readl nt method 82
readLong method 83
readChj ect method 83
readShort method 83
readsString method 83
reset method 65, 66
w i t eBool ean method 65
wri t eByt e method 65
wr it eByt es method 65
wri t eChar method 65
wri t eDoubl e method 65
wr it eFl oat method 65
witelnt method 65
wri t eLong method 65
writ eChj ect method 65
writeShort method 65
witeString method 65

Index

213



Section T

St reaniessage object 63 text messages
access methods 82 composing 64
composition methods 65 defined 63
r eadBool ean method 83 get Text method 32, 82
readByt e method 83 processing 82
r eadByt es method 83 set Text method 29, 64, 65
readChar method 83 Text Message object 63
r eadDoubl e method 83 access method 82
readFl oat method 83 get Text method 32, 82
readl nt method 82 set Text method 29, 64, 65
readLong method 83 threads, See client threads
readChj ect method 83

time stamp (message)
readShort method 83 defined 61

readStri ng method 83
reset method 65, 66

wr i t eBool ean method 65
wr it eByt e method 65

suppressing 71
time-to-live, See lifetime (message)
topic destinations 29, 31, 49, 70, 72

w i t eByt es method 65 defined 40
Wi teChar method 65 durable subscribers 74
wri t eDoubl e method 65 Topi ¢ object 40, 49
writeFl oat method 65 constructor method 52
witelnt method 65 topic publishers
wri t eLong method 65 defined 70
wri t eChj ect method 65 topic sessions
wri teShort method 65 cr eat ePubl i sher method 70
writeString method 65 creat eSubscri ber method 72
subscriber name 74 topic subscribers
synchronous message consumption 75 defined 72
defined 71 durable 72,74, 80

nondurable 72, 80
Topi cConnect i on object 40
Topi cConnect i onFact ory object 40

T Topi cPubl i sher object 40, 70
Topi cSessi on object 40, 70, 72
temporary destinations creat ePubl i sher method 70
defined 53 creat eSubscri ber method 72
Tenpor ar yQueue object Topi cSubscri ber object 40, 72, 74
del et e method 53 transacted sessions 28, 31, 56
Tenpor ar yTopi ¢ object and acknowledgment 77
del et e method 53 defined 57
testing message brokers 26 transactions

and custom client acknowledgment 119
committing 57

defined 57

performance impact of 107

rolling back 57, 58

214  Message Queue 3 2005Q4 « Developer’s Guide for Java Clients



U

unified messaging domain 46, 49
defined 40

unsubscri be method (Sessi on) 53, 75, 80
URLENndpoi nt object 164
user authentication 46

W

warning messages 183

Web services 142

wr i t eBool ean method (Byt esMessage) 68
wri t eBool ean method (St r eamvessage) 65
wri t eByt e method (Byt esMessage) 68
writ eByt e method (St r eamvessage) 65
writ eByt es method (Byt esMessage) 68
wr it eByt es method (St r eanMessage) 65
wri t eChar method (Byt esMessage) 68

wr it eChar method (St r eanmvessage) 65
wr i t eDoubl e method (Byt esMessage) 68
wri t eDoubl e method (St r eanessage) 65

Section U

writ eFl oat method (Byt esMessage) 68
writ eFl oat method (St reaniessage) 65
writelnt method (Byt esMessage) 68
writelnt method (MapMessage) 66
writelnt method (StreanMessage) 65
wri t eLong method (Byt esMessage) 68
wri t eLong method (St r eanmvessage) 65
wr it eChj ect method (Byt esMessage) 68
wr it eChbj ect method (St r eanMessage) 65
writeShort method (Byt esMessage) 68
writeShort method (St reaniessage) 65
writeString method (StreanMessage) 65
wr i t eUTF method (Byt esMessage) 68

Index 215



Section W

216 Message Queue 3 2005Q4 « Developer's Guide for Java Clients



	Message Queue 3 Developer’s Guide for Java Clients
	Contents
	List of Figures
	List of Tables
	List of Code Examples
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Conventions Used in this Book
	Text Conventions
	Directory Variable Conventions

	Related Documentation
	The Message Queue Documentation Set
	JavaDoc
	Example Client Applications
	The Java Message Service (JMS) Specification
	The SOAP with Attachments API for Java (SAAJ) Specification
	Books on JMS Programming

	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	1.  Overview
	Setting Up Your Environment
	Starting and Testing a Message Broker
	Developing a Client Application
	Compiling and Running a Client Application
	Deploying a Client Application
	Example Application Code

	2.  Using the Java API
	Messaging Domains
	Working With Connections
	Obtaining a Connection Factory
	Looking Up a Connection Factory With JNDI
	Overriding Configuration Settings
	Instantiating a Connection Factory

	Using Connections

	Working With Destinations
	Looking Up a Destination With JNDI
	Instantiating a Destination
	Temporary Destinations

	Working With Sessions
	Acknowledgment Modes
	Transacted Sessions

	Working With Messages
	Message Structure
	Message Header
	Message Properties
	Message Body

	Composing Messages
	Composing Text Messages
	Composing Stream Messages
	Composing Map Messages
	Composing Object Messages
	Composing Bytes Messages

	Sending Messages
	Receiving Messages
	Creating Message Consumers
	Message Selectors
	Durable Subscribers

	Receiving Messages Synchronously
	Receiving Messages Asynchronously
	Acknowledging Messages
	Browsing Messages
	Closing a Consumer

	Processing Messages
	Retrieving Message Header Fields
	Retrieving Message Properties
	Processing the Message Body
	Processing Text Messages
	Processing Stream Messages
	Processing Map Messages
	Processing Object Messages
	Processing Bytes Messages




	3.  Message Queue Clients: Design and Features
	Client Design Considerations
	Developing Portable Clients
	Choosing Messaging Domains
	Connections and Sessions
	Producers and Consumers
	Assigning Client Identifiers
	Message Order and Priority
	Using Selectors Efficiently

	Balancing Reliability and Performance

	Managing Client Threads
	JMS Threading Restrictions
	Thread Allocation for Connections

	Managing Memory and Resources
	Managing Memory
	Managing Message Size
	Message Compression
	Advantages and Limitations of Compression
	Compression Examples

	Managing the Dead Message Queue
	Managing Physical Destination Limits

	Programming Issues for Message Consumers
	Using the Client Runtime Ping Feature
	Preventing Message Loss for Synchronous Consumers
	Synchronous Consumption in Distributed Applications

	Factors Affecting Performance
	Delivery Mode (Persistent/Nonpersistent)
	Use of Transactions
	Acknowledgment Mode
	Durable vs. Nondurable Subscriptions
	Use of Selectors (Message Filtering)
	Message Size
	Message Body Type


	Client Connection Failover (Auto-Reconnect)
	Enabling Auto-Reconnect
	Auto-Reconnect Behaviors
	Auto-Reconnect Limitations
	Auto-Reconnect Configuration Examples
	Single-Broker Auto-Reconnect
	Parallel Broker Auto-Reconnect
	Clustered-Broker Auto-Reconnect


	Custom Client Acknowledgment
	Using Client Acknowledge Mode
	Using No Acknowledge Mode

	Communicating with C Clients

	4.  Using the Metrics Monitoring API
	Monitoring Overview
	Administrative Tasks
	Implementation Summary

	Creating a Metrics-Monitoring Client
	Format of Metrics Messages
	Broker Metrics
	JVM Metrics
	Destination-List Metrics
	Destination Metrics

	Metrics Monitoring Client Code Examples
	A Broker Metrics Example
	A Destination List Metrics Example
	A Destination Metrics Example


	5.  Working with SOAP Messages
	What is SOAP?
	SOAP with Attachments API for Java
	The Transport Layer
	The SOAP Layer
	The Language Implementation Layer
	The Profiles Layer
	Interoperability

	The SOAP Message
	SOAP Packaging Models

	SOAP Messaging in JAVA
	The SOAP Message Object
	Inherited Methods
	Namespaces
	Pre-defined SOAP Namespaces
	Using Namespaces when Creating a SOAP Name
	Parsing Name Objects


	Destination, Message Factory, and Connection Objects
	Endpoint
	Constructing an Endpoint
	Using the Endpoint to Address a Message
	Sending a Message to Multiple Endpoints

	Message Factory
	Connection
	SOAP Connection



	Using SOAP Administered Objects
	SOAP Messaging Models and Examples
	SOAP Messaging Programming Models
	Point-to-Point Connections

	Working with Attachments
	Exception and Fault Handling
	Writing a SOAP Client
	Writing a SOAP Service
	Disassembling Messages
	Handling Attachments
	Replying to Messages
	Handling SOAP Faults
	Predefined Fault Codes
	Defining a SOAP Fault



	Integrating SOAP and Message Queue
	Example 1: Deferring SOAP Processing
	Example 2: Publishing SOAP Messages
	Code Samples


	A.  Warning Messages and Client Error Codes
	Index


