
Sun Java System Messaging
Server 6 2005Q4 MTA Developer’s

Reference

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–2652–10
October 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. This product includes software developed by Computing Services at Carnegie Mellon University
(http://www.cmu.edu/computing).

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java et Solaris sont des marques de fabrique ou des marques
déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques
de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc. Ce produit comprend du logiciel dévelopé par Computing Services à Carnegie
Mellon University (http://www.cmu.edu/computing).

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

050923@13215

http://www.cmu.edu/computing
http://www.cmu.edu/computing

Contents

Preface 21

1 MTA SDK Concepts and Overview 29
Channel Programs and Message Queuing 29
Managing Multiple Threads Using Contexts 30
Enqueuing Messages 30

Message Components 30
Threads and Enqueue Contexts 32
Enqueuing Dequeued Mail 32

Dequeuing Messages 33
Threads and Dequeue Contexts 34
Message Processing Threads 34

String-valued Call Arguments 34
Item Codes and Item Lists 35

2 MTA SDK Programming Considerations 39
Running Your Enqueue and Dequeue Programs 39
Debugging Programs and Logging Diagnostics 40
Required Privileges 41
Compiling and Linking Programs 42

Compiling 42
Linking Instructions for Solaris 42

Running Your Test Programs 42
� To Run Test Programs in a Messaging Environment 43
� To Manually Run Your Test Programs 44

Preventing Mail Loops when Re-enqueuing Mail 44

3

Miscellaneous Programming Considerations 45
Retrieving Error Codes 45
Writing Output From a Channel Program 46
Considerations for Persistent Programs 46

3 Enqueuing Messages 49

Basic Steps to Enqueue Messages 50
Originating Messages 51
A Simple Example of Enqueuing a Message 51

Enqueuing a Message Example Output 53
Transferring Messages into the MTA 54
Intermediate Processing Channels 54
Delivery Processing Options (Envelope Fields) 55
Order Dependencies 56

4 Dequeuing Messages 57

How Dequeuing Works 57
Basic Dequeuing Steps 58
Caller-Supplied Processing Routine 59

Dequeue Message Processing Routine Tasks 59
The process_message() Routine 62
A Simple Dequeuing Example 63

Explanatory Text for Numbered Comments in the Simple Dequeue
Example 66

Processing the Message Queue 68
The process_done() Routine 69
A Complex Dequeuing Example 70

Explanatory Text for Numbered Comments in the Complex Dequeue
Example 76

Intermediate processing channels 78
Preserve Envelope Information 79
Use MTA_ENV_TO 79
Use Rewrite Rules to Prevent Message Loops 79

Intermediate Channel Example 80
Explanatory Text for Numbered Comments in the Intermediate Channel
Example 85

Thread Creation Loop in mtaDequeueStart() 87
Multiple Calls to mtaDequeueStart() 89

4 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Calling Order Dependencies 89

5 Decoding Messages 91
Usage Modes for mtaDecodeMessage() 91
The Input Source 93

Dequeue Context 93
The Inspection Routine 94
A Simple Decoding Example 94

Explanatory Text for Numbered Comments in the Simple Decoding
Example 98

The Output Destination 99
Enqueue Context 99

Decode Contexts 100
A Simple Virus Scanner Example 101

Example Option File 112

6 MTA SDK Reference 117

Summary of SDK Routines 117
Address Parsing 118
Dequeue 118
Enqueue 119
Error Handling 119
Initialization 119
Logging and Diagnostics 120
MIME Parsing and Decoding 120
Miscellaneous 120
Option File Processing 121

MTA SDK Routines 122
mtaAccountingLogClose() 124
Syntax 124
Arguments 124
Description 124
Return Values 124
Example 124

mtaAddressFinish() 125
Syntax 125
Arguments 125
Description 125

5

Return Values 125

Example 125

mtaAddressGetN() 126

Syntax 126

Arguments 126

Description 126

Elements Argument 127

Address Argument 127

Return Values 128

Example 128

mtaAddressParse() 128

Syntax 129

Arguments 129

Description 129

Return Values 130

Example 130

mtaAddressToChannel() 131

Syntax 131

Arguments 131

Description 132

Return Values 132

Example 133

mtaBlockSize() 133

Syntax 133

Arguments 133

Description 133

Return Values 134

Example 134

mtaChannelGetName() 134

Syntax 134

Arguments 135

Description 135

Return Values 135

Example 135

mtaChannelToHost() 136

Syntax 136

Arguments 136

Description 136

6 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values 137

Example 138

mtaDateTime() 138

Syntax 138

Arguments 138

Description 139

Return Values 139

Example 139

mtaDebug() 140

Syntax 140

Arguments 140

Description 140

Return Values 142

Example 142

mtaDecodeMessage() 143

Syntax 143

Arguments 143

Description 144

Return Values 152

Example 153

mtaDecodeMessageInfoInt() 153

Syntax 153

Arguments 153

Description 153

Return Values 154

Example 154

mtaDecodeMessageInfoParams() 154

Syntax 154

Arguments 155

Description 155

Return Values 156

Example 156

mtaDecodeMessageInfoString() 156

Syntax 156

Arguments 157

Description 157

Return Values 158

Example 158

7

mtaDecodeMessagePartCopy() 158

Syntax 158

Arguments 159

Return Values 159

Example 159

mtaDecodeMessagePartDelete() 160

Syntax 160

Arguments 160

Description 160

Return Values 163

Example 163

mtaDequeueInfo() 164

Syntax 164

Arguments 164

Description 164

Return Values 168

Example 168

mtaDequeueLineNext() 169

Syntax 169

Arguments 169

Description 169

Return Values 170

Example 170

mtaDequeueMessageFinish() 171

Syntax 171

Arguments 171

Description 171

Return Values 173

Example 174

mtaDequeueRecipientDisposition() 174

Syntax 175

Arguments 175

Description 175

Return Values 177

Example 178

mtaDequeueRecipientNext() 178

Syntax 178

Arguments 178

8 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Description 179

Return Values 179

Example 179

mtaDequeueRewind() 180

Syntax 180

Arguments 180

Description 180

Return Values 181

Example 181

mtaDequeueStart() 181

Syntax 181

Arguments 182

Description 182

Return Values 185

Example 185

Other Considerations for mtaDequeueStart() 185

Multiple Calls to mtaDequeueStart() 186

mtaDequeueThreadId() 191

Syntax 191

Arguments 191

Description 191

Return Values 192

Example 192

mtaDone() 192

Syntax 192

Arguments 192

Description 192

Return Values 193

Example 193

mtaEnqueueCopyMessage() 193

Syntax 193

Arguments 193

Description 193

Return Values 194

Example 194

mtaEnqueueError() 195

Syntax 195

Arguments 195

9

Description 195

Return Values 195

Example 196

mtaEnqueueFinish() 196

Syntax 196

Arguments 196

Description 196

Return Values 198

Example 199

mtaEnqueueInfo() 199

Syntax 199

Arguments 199

Description 199

Return Values 202

Example 203

mtaEnqueueStart() 203

Syntax 203

Arguments 204

Description 204

Return Values 210

Example 210

mtaEnqueueTo() 211

Syntax 211

Arguments 211

Description 211

Return Values 215

Example 216

mtaEnqueueWrite() 216

Syntax 216

Arguments 217

Description 217

Return Values 217

Example 218

mtaEnqueueWriteLine() 219

Syntax 219

Arguments 219

Description 219

Example 220

10 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

mtaErrno() 221

Syntax 221

Arguments 221

Description 221

Return Values 221

Example 221

mtaInit() 222

Syntax 222

Arguments 222

Description 222

Return Values 225

Example 225

mtaLog() 226

Syntax 226

Arguments 226

Description 226

Return Values 226

Example 227

mtaLogv() 227

Syntax 227

Arguments 227

Description 227

Return Values 228

Example 228

mtaOptionFinish() 228

Syntax 228

Arguments 229

Description 229

Return Values 229

Example 229

mtaOptionFloat() 229

Syntax 229

Arguments 230

Description 230

Return Values 230

Example 231

mtaOptionInt() 231

Syntax 231

11

Arguments 232

Description 232

Return Values 232

Example 233

mtaOptionStart() 233

Syntax 233

Arguments 234

Description 234

Return Values 235

Example 236

mtaOptionString() 236

Syntax 236

Arguments 237

Description 237

Return Values 237

Example 238

mtaPostmasterAddress() 238

Syntax 238

Arguments 239

Description 239

Return Values 239

Example 240

mtaStackSize() 240

Syntax 240

Arguments 240

Description 240

Return Values 241

Example 241

mtaStrError() 241

Syntax 241

Arguments 241

Description 241

Return Values 241

Example 242

mtaUniqueString() 242

Syntax 242

Arguments 242

Description 242

12 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values 243
Example 243

mtaVersionMajor() 243
Syntax 243
Arguments 243
Description 243
Return Values 243
Example 244

mtaVersionMinor() 244
Syntax 244
Arguments 244
Description 244
Return Values 244
Example 244

mtaVersionRevision() 245
Syntax 245
Arguments 245
Description 245
Return Values 245
Example 245

7 Using Callable Send mtaSend() 247

Sending a Message 247
Envelope and Header From Addresses 248
To, Cc, and Bcc Addresses 249
Message Headers and Content 250
Required Privileges for mtaSend() 251
mtaSendDispose() 251

Syntax 251
Arguments 252
Description 252
Return Values 252
Example 252

Compiling and Linking Programs 252
Examples of Using mtaSend() 253

Sending a Simple Message 253
Example 2 Specifying an Initial Message Header 254
Example 3 Sending a Message to Multiple Recipients 255

13

Example 4 Using an Input Procedure to Generate the Message Body 257

8 mtaSend() Routine Specification 259

List of Item Codes 259
mtaSend() Syntax 261

Syntax 261
Arguments 261

item_list 261
Item Descriptor Fields 262

item_code 262
item_address 262
item_length 262
item_status 262
item_smessage 263

Description 263
Item Codes 263

MTA_ADR_NOSTATUS 263
MTA_ADR_STATUS 263
MTA_BCC 264
MTA_BLANK 264
MTA_CC 264
MTA_CHANNEL 264
MTA_CFILENAME 265
MTA_CFILENAME_NONE 265
MTA_CTYPE 265
MTA_ENC_BASE64 265
MTA_ENC_BASE85 265
MTA_ENC_BINHEX 266
MTA_ENC_BTOA 266
MTA_ENC_COMPRESSED_BASE64 266
MTA_ENC_COMPRESSED_BINARY 266
MTA_ENC_COMPRESSED_UUENCODE 266
MTA_ENC_HEXADECIMAL 266
MTA_ENC_NONE 267
MTA_ENC_PATHWORKS 267
MTA_ENC_QUOTED_PRINTABLE 267
MTA_ENC_UNKNOWN 267
MTA_ENC_UUENCODE 267

14 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

MTA_END_LIST 267

MTA_ENV_FROM 268

MTA_ENV_TO 268

MTA_FRAGMENT_BLOCKS 268

MTA_FRAGMENT_LINES 269

MTA_FROM 269

MTA_HDR_ADRS 269

MTA_HDR_BCC 269

MTA_HDR_CC 269

MTA_HDR_FILE 270

MTA_HDR_LINE 270

MTA_HDR_NOADRS 270

MTA_HDR_NORESENT 270

MTA_HDR_PROC 270

MTA_HDR_RESENT 271

MTA_HDR_TO 271

MTA_HDRMSG_FILE 271

MTA_HDRMSG_PROC 271

MTA_IGNORE_ERRORS 272

MTA_INTERACTIVE 272

MTA_ITEM_LIST 272

MTA_MAX_TO 272

MTA_MODE_BINARY 272

MTA_MODE_TEXT 272

MTA_MSG_FILE 273

MTA_MSG_PROC 273

MTA_NOBLANK 273

MTA_NOIGNORE_ERRORS 273

MTA_PRIV_DISABLE_PROC 274

MTA_PRIV_ENABLE_PROC 274

MTA_SUBADDRESS 274

MTA_SUBJECT 274

MTA_TO 275

MTA_USER 275

9 Error Status Codes Summary 277

Error Status Codes 277

15

Index 281

16 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Examples

EXAMPLE 1–1 Sample Enqueued Message 32

EXAMPLE 3–1 Enqueuing a Message 52

EXAMPLE 4–1 Simple Dequeue Example 64

EXAMPLE 4–2 Complex Dequeue Example 70

EXAMPLE 4–3 Intermediate Channel Example 80

EXAMPLE 5–1 Decoding MIME Messages Simple Example 95

EXAMPLE 5–2 Decoding MIME Messages Complex Example 101

EXAMPLE 7–1 Send a Simple Message 253

EXAMPLE 7–2 Specify an Initial Message Header 254

EXAMPLE 7–3 Sending a Message to Multiple Recipients 256

EXAMPLE 7–4 Using an Input Procedure to Generate the Message Body 257

17

18 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Figures

FIGURE 3–1 Calling order Dependency for Message Enqueue Routines 56

FIGURE 4–1 Calling Order Dependency for Message Dequeue Routines 90

19

20 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Preface

This manual describes the Sun Java™ System Messaging Server 6 2005Q4 Message
Transfer Agent (MTA) Software Development Kit (SDK) and Callable Send facility.

Who Should Use This Book
While this document is primarily intended for system programmers writing mail
software, system managers wishing to become more familiar with the inner workings
of the MTA may also benefit from a casual reading of this manual.

Programmers wishing to write gateways or channels should use the MTA SDK.
Programmers writing code merely to send mail will probably find the Callable Send
facility sufficient for their needs.

Before You Read This Book
A working knowledge of the following material is essential to programmers writing
software that will create electronic mail messages with the MTA SDK:

� Sun Java™ Enterprise System Messaging Server

� RFC 2822 - the successor to RFCs 822 and 1123

Understanding this RFC is essential for programmers writing software that creates
electronic mail messages with this SDK.

� RFCs 2045, 2046, 2047, and 2049

These RFCs are useful for programmers interested in creating MIME compliant
messages.

21

How This Book Is Organized
This manual describes two distinct interfaces. Each interface has an introductory
chapter and a reference chapter and corresponding appendixes.

Chapter 1 provides an overview and description of general concepts of the MTA SDK.

Chapter 2 describes procedures and run time instructions.

Chapter 3 describes the process of submitting a message to the MTA for delivery.

Chapter 4 describes the process of dequeing messages.

Chapter 5 describes the process of decoding messages.

Chapter 6 contains definitions of the MTA SDK routines.

Chapter 7 describes the MTA Callable Send facility which is used to send mail
messages from the local host.

Chapter 8 provides syntax and item codes for the mtaSend() routine.

Chapter 9 describes the error status codes returned by the MTA SDK and mtaSend().

Messaging Server Documentation Set
The following table summarizes the books included in the Messaging Server core
documentation set.

TABLE P–1 Messaging Server Documentation Set

Document Title Contents

Chapter 2, “Sun Java System Messaging
Server 6 2005Q4 Release Notes,” in Sun Java
System Communications Services 2005Q4 Release
Notes

Contains important information available at
the time of release of Sun Java System
Messaging Server 6 2005Q4.

Sun Java System Messaging Server 6 2005Q4
Administration Guide

Explains how to administer Messaging
Serverand its accompanying software
components.

22 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

TABLE P–1 Messaging Server Documentation Set (Continued)
Document Title Contents

Sun Java System Messaging Server 6 2005Q4
Administration Reference

Describes the Messaging Server Message
Transfer Agent (MTA) Software Development
Kit (SDK) and Callable Send facility.

Sun Java System Messenger Express 6 2005Q4
Customization Guide

Explains how to customize the look and feel of
Sun Java™ System Messenger Express.
Although the product architecture permits an
almost unlimited customization of the static
portion of the pages served by the Messenger
Express HTTP daemon, this guide focuses on
how to perform the most commonly requested
customizations.

Related Books
The http://docs.sun.comSM web site enables you to access Sun technical
documentation online. You can browse the archive or search for a specific book title or
subject.

For other server documentation related to deploying Messaging Server, go to the
following:

� Access Manager documentation:
http://docs.sun.com/app/docs/coll/1292.1

� Calendar Server documentation:
http://docs.sun.com/app/docs/coll/1313.1

� Communications Express documentation:
http://docs.sun.com/app/docs/coll/1312.1

� Directory Server documentation:
http://docs.sun.com/app/docs/coll/1316.1

� Instant Messaging documentation:
http://docs.sun.com/app/docs/coll/1309.1

� Messaging Server documentation:
http://docs.sun.com/app/docs/coll/1312.1

23

http://docs.sun.com
http://docs.sun.com/app/docs/coll/1292.1
http://docs.sun.com/app/docs/coll/1313.1
http://docs.sun.com/app/docs/coll/1312.1
http://docs.sun.com/app/docs/coll/1316.1
http://docs.sun.com/app/docs/coll/1309.1
http://docs.sun.com/app/docs/coll/1312.1

Default Paths and File Names
The following table describes the default paths and file names that are used in this
book.

TABLE P–2 Default Paths and File Names

Placeholder Description Default Value

msg_svr_base Represents the base installation
directory for Messaging Server.

Solaris systems:
/opt/SUNWmsgsr

Linux systems:
/opt/sun/messaging

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User’s
Guide.

A cache is a copy that is stored
locally.

Do not save the file.

24 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Shell Prompts in Command Examples
The following table shows default system prompts and superuser prompts.

TABLE P–4 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_name%

C shell superuser on UNIX and Linux systems machine_name#

Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Microsoft Windows command line C:\

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–5 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices
for a required command
option.

-d {y|n} The -d option requires that you
use either the y argument or the
n argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while you
press the A key.

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release it,
and then press the subsequent
keys.

25

TABLE P–5 Symbol Conventions (Continued)
Symbol Description Example Meaning

→ Indicates menu item
selection in a graphical
user interface.

File → New →
Templates

From the File menu, choose
New. From the New submenu,
choose Templates.

Accessing Sun Resources Online
The docs.sun.comSM web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. Books are available as online files in PDF and HTML formats. Both formats are
readable by assistive technologies for users with disabilities.

To access the following Sun resources, go to http://www.sun.com:

� Downloads of Sun products
� Services and solutions
� Support (including patches and updates)
� Training
� Research
� Communities (for example, Sun Developer Network)

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related
information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in
this document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused or alleged to be caused by or in connection with use of or reliance on any
such content, goods, or services that are available on or through such sites or
resources.

26 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

http://docs.sun.com
http://www.sun.com

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send
Comments. In the online form, provide the full document title and part number. The
part number is a 7-digit or 9-digit number that can be found on the book’s title page or
in the document’s URL. For example, the part number of this book is 819-2652.

27

http://docs.sun.com

28 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

CHAPTER 1

MTA SDK Concepts and Overview

The Sun Java System Messaging Server MTA SDK is a low-level interface, with
routines falling into three categories: those that enqueue messages, those that dequeue
messages, and miscellaneous routines that typically query or set MTA states, or parse
message structures, such as lists of RFC 822 addresses.

The Callable Send facility, described in Chapter 5 and Chapter 6 and used only for
originating mail from the local host, can be used simultaneously with the MTA SDK.

This chapter contains the following topics:

� “Channel Programs and Message Queuing” on page 29
� “Managing Multiple Threads Using Contexts” on page 30
� “Enqueuing Messages” on page 30
� “Dequeuing Messages” on page 33
� “String-valued Call Arguments” on page 34
� “Item Codes and Item Lists” on page 35

Channel Programs and Message
Queuing
Message enqueuing and dequeuing are generally done by channel programs also
referred to simply as channels. There are two types of channel programs, master
channel that dequeue messages, and channels (sometimes referred to as slave
channels) that enqueue messages. Each MTA channel has its own message queue,
referred to as a channel queue. Channel programs may also perform intermediate
roles by dequeuing messages from one message queue and re-enqueuing them to
another while, typically, processing the message at the same time. For example, the
message processing might be to convert the message body from one format to another.

29

Managing Multiple Threads Using
Contexts
A number of SDK operations require multiple, sequential calls to the SDK routines. To
manage this, the SDK provides the caller with a pointer to an opaque data structure
called a context. This mechanism allows for management of state information across
calls to the SDK. Use of the contexts allows multiple threads within a single program
to make simultaneous calls to the same SDK routine. The only limitation is that a
single, specific context may not be simultaneously used by different threads in calls to
the SDK. When such usage is detected in an SDK call, an MTA_THREAD error results.

In some cases these contexts are automatically created for you, such as dequeue and
decode contexts. In all other cases, for example for enqueue contexts, you must make
an explicit call to create them. The calls that automatically create contexts also
automatically dispose of them. In all other cases, a call must be made to explicitly
dispose of a context. It is important to dispose of contexts when you no longer need
them as so doing releases resources such as virtual memory.

For more information on contexts, see “Threads and Enqueue Contexts” on page 32
and “Threads and Dequeue Contexts” on page 34.

Enqueuing Messages
Messages are introduced to the MTA by enqueuing them. Each enqueued message
contains two required components, the message envelope and the message header,
and may optionally contain a third component, the message body. The contents of the
envelope and header must be provided by the program using the SDK.

For instructions on how to enqueue messages, see Chapter 2.

For an example of how to enqueue a message, see “A Simple Example of Enqueuing a
Message” on page 51.

Message Components
This section describes the three message components: envelope, header and body.

30 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Envelope
The message envelope contains the envelope From: address, and the list of envelope
To: addresses. The envelope is created by the SDK as the message is enqueued. The
addresses to be placed in the envelope must conform to RFC 2822. The envelope To:
addresses are often referred to as envelope recipient addresses.

Programs should rely solely upon the MTA SDK routines to read and write envelope
information, since the queued message file formats are subject to change. Using the
SDK routines insulates programmers from format changes.

The routines mtaEnqueueStart(and mtaEnqueueTo(are used to construct a
message envelope.

Header
The message header contains RFC 2822 style header lines. The program enqueuing the
message has nearly complete control over the contents of the header and can specify
as many or as few header lines as it sees fit, with a few exceptions. A header must
have at a minimum three lines: From:, Date:, and at least one recipient header line,
such as To:, Cc:, or Bcc:.

As the message is enqueued, the SDK will do its best to supply any mandatory header
lines that are missing as well as take some measures to ensure that the contents of the
header lines conform to any relevant standards. If the From: header line is omitted by
the program using the SDK, the SDK code will construct a default header line from the
envelope From: address. This may not always be appropriate; for instance, when mail
is addressed to a mailing list that specifies an Errors-to: address, then the
Errors-to: address should be used as the envelope From: address. In this case, it is
not appropriate to derive the header From: line from the envelope From: address. If
the Date: header line is omitted, the SDK code will supply it, as well as a
Date-warning: header line. Finally, if no recipient header lines are present, then the
SDK code will generate them using the envelope recipient addresses.

Any addresses appearing in the message header should conform to RFC 2822.

The header is written line-by-line using the routines mtaEnqueueWrite() and
mtaEnqueueWriteLine().

Body
The optional message body contains the content of the message. As with the message
header, the program enqueuing the message has nearly complete control over the
contents of the message body. The only exception to this is when the message is
structured with multiple parts or requires encoding, for example if it contains binary
data, or lines requiring wrapping. In such cases, the SDK will ensure that the message
body conforms to MIME standards (RFCs 2045– 2049).

Chapter 1 • MTA SDK Concepts and Overview 31

As with the message header, message body lines are written with the routines
mtaEnqueueWrite() and mtaEnqueueWriteLine().

EXAMPLE 1–1 Sample Enqueued Message

Enqueued messages may be seen in the MTA queue directories and are merely ASCII
text files. In the following sample message, lines 1 and 2 are the message envelope, the
next four lines are the header, and the rest of the lines are the body.

jdoe@siroe.com
msmith@siroe.com

Date: Tues, 1 Apr 2003 15:01 PST
From: John Doe
To: Mike Smith
Subject: Lunch today

Mike,
Just confirming our lunch appointment today I’ll meet you at the
restaurant at noon.
John

Note – As stated earlier, do not directly read from or write messages to the MTA
message queues. Always use the SDK routines or Callable Send. The file structure of
messages in the MTA queues are subject to change. In addition, site specific constraints
may be placed on things such as encodings, and character set usage. The SDK routines
automatically handle these and other issues.

Threads and Enqueue Contexts
Each individual message being enqueued to the MTA is represented within the SDK
by an opaque enqueue context of type mta_nq_t. This enqueue context is created by
mtaEnqueueStart() and destroyed by mtaEnqueueFinish(). Throughout the
enqueue process, the message being enqueued is referenced through its enqueue
context. A program using the SDK may simultaneously enqueue multiple messages,
each message represented by its own enqueue context. Indeed, multiple threads may
simultaneously enqueue one or more messages per thread. The only requirement is
that a specific enqueue context not be simultaneously used by two or more threads. In
the event that the SDK detects simultaneous usages, it returns the MTA_THREAD error.

Enqueuing Dequeued Mail
If a message being enqueued is the result of dequeuing a message, then all envelope
fields can automatically be carried over from the old message to the new message.
Both per-message fields (such as envelope IDs) and per-recipient fields (such as

32 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

delivery receipt requests) can be preserved. This preservation is achieved by
supplying the associated dequeue context to the routines mtaEnqueueStart(), or
mtaEnqueueTo(), or both. Supplying the dequeue context to mtaEnqueueStart()
preserves per-message envelope fields, while supplying the dequeue context to
mtaEnqueueTo() preserves the per-recipient fields for the specified envelope
recipient.

For information on message dequeuing and message dequeue contexts, see
“Dequeuing Messages” on page 33.

Dequeuing Messages
Messages stored in the MTA message queues are removed from their queues by
dequeuing them. This is typically done by channel programs (see “Channel Programs
and Message Queuing” on page 29). When a message is dequeued, it is literally
removed from the MTA message queues and, as far as the MTA is concerned, no
longer exists. That is, dequeuing a message relieves the MTA of all further
responsibility for the message. The responsibility is assumed to have been passed on
to some other entity such as another MTA or a message store.

The channel name used by the program identifies the MTA message queue being
serviced by the program. The channel name can either be explicitly specified by the
program or determined from the run time environment using the PMDF_CHANNEL
environment variable.

Note – Channel naming conventions: the name must be 32 bytes or less, should be in
lower case, and if the channel will have multiple instantiations, then it should be given
a generic name, such as tcp, and then each instantiation can be given a specific
version of it, such as tcp_local, tcp_auth, tcp_intranet.

Multiple programs may simultaneously process the same message queue. The SDK
and Job Controller will automatically coordinate such efforts, using file locks to
prevent two or more programs or threads from simultaneously processing the same
message. When the message processing program (see “Dequeue Message Processing
Routine Tasks” on page 59) is called, the message to be process is locked so that no
other jobs may access that message. The message is then unlocked when
“mtaDequeueMessageFinish()” on page 171 is called, or when the program exits,
normally or abnormally.

Chapter 1 • MTA SDK Concepts and Overview 33

Threads and Dequeue Contexts
Each individual message being dequeued from the MTA is represented within the
SDK by an opaque dequeue context of type mta_dq_t. Each dequeue context is
created by “mtaDequeueStart()” on page 181 and passed to a caller-supplied
processing procedure. Each dequeue context is then destroyed when
“mtaDequeueMessageFinish()” on page 171 is called. Throughout the dequeue
process, the message being dequeued is referenced through its dequeue context.
Under typical usage, a program will have multiple threads operating, each
simultaneously dequeuing a message. However, it is not permitted for two threads to
simultaneously use the same dequeue context in calls to the SDK. In the event the SDK
detects simultaneous usages, it returns the MTA_THREAD error.

Message Processing Threads
When “mtaDequeueStart()” on page 181 is called, a communication path with the
MTA Job Controller is established. The Job Controller is then asked if there are
messages to be processed for the channel. Typically there will be messages to process
since the Job Controller normally only starts channel programs when there are queued
messages in need of processing. Based upon information obtained from the Job
Controller, mtaDequeueStart() will then begin to create non-joinable processing
threads. Each processing thread immediately begins processing the queued messages.

For further information about the exact steps a message processing thread goes
through, see “Debugging Programs and Logging Diagnostics” on page 40.

String-valued Call Arguments
Strings passed as call arguments to the MTA SDK routines also have an associated
length argument. Use of the length argument is optional; that is, if you do not know
the length or do not wish to supply it, then supply a value of zero for the length
argument. However, in that case the supplied string must be NULL terminated so that
the SDK routine can determine the string’s length. When a non-zero length is
supplied, then the string does not need to be NULL terminated. Wherever possible,
the SDK routines return pointers to output strings rather than returning the strings
themselves. These pointers are always thread safe; however, when associated with an
SDK context they often are only valid as long as the context itself is valid. Such limits
will be noted in the description of the individual routines in Chapter 4. In some cases,
an output string buffer must be supplied, as with the mtaDateTime() and
mtaUniqueString() routines.

Internally, the MTA has several basic string sizes. Users of the SDK generally do not
need to concern themselves with this fact. However, at times it may be helpful to be
aware of them as they can provide an upper bound on the length of various strings

34 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

you might encounter. As shown in the following table, for instance, channel names
will never be longer than CHANLENGTH bytes; channel option values will never exceed
a length of BIGALFA_SIZE bytes; and envelope addresses will never exceed a length
of ALFA_SIZE bytes:

Symbolic Names
Value in
Bytes Typical Usage

ALFA_SIZE 256 Upper limit on the length of an address

BIGALFA_SIZE 1024 Upper limit on the length of message line and channel option
value

CHANLENGTH 32 Upper limit on the length of a channel name

Item Codes and Item Lists
A number of the MTA SDK routines accept a variable length list of item code
arguments. For instance, mtaInit() has the call syntax:

int mtaInit(int item_code, ...)

That is to say, it accepts one or more integer-valued call arguments. These call
arguments are referred to as an “item code list” or, more simply, an “item list.” Each
item list must be terminated by a call argument with the value 0. As such, the call
syntax for mtaInit() can be expressed as

int mtaInit([int item_code[, ...]], 0)

There can be zero or more item codes with non-zero values which must then be
followed by an item code with the value zero.

In the MTA SDK, item lists serve two purposes. First, they allow code using the SDK
to specify optional behaviors and actions to the SDK. Second, they provide an
extension mechanism for future versions of the SDK to extend the functionality of
routines through the introduction of new item codes.

However, there is a drawback to the use of item lists; the number of items passed to an
SDK routine must be known at compile time. That is, it is difficult if not impossible for
a program at run time to adjust the number of item codes that it wishes to pass. In
recognition of this limitation, all SDK routines that accept an item code list also accept
a pointer to an arbitrary length array of item codes. Such an array is referred to as an
“item list array” and is specified with the MTA_ITEM_LIST item code. This
mechanism allows programs to dynamically construct the array at run time, while still
using a fixed number of arguments at compile time.

Chapter 1 • MTA SDK Concepts and Overview 35

The MTA_ITEM_LIST item code is always followed by an additional call argument
whose value is a pointer to an array of mta_item_list_t type elements. Each array
entry has the following five fields:

Fields Description

int item_code An item code value indicating an action to be effected. The
permitted item code values are routine specific.

const void
*item_address

The caller-suppled address of data to be used in conjunction with
the action specified by the item_code field. Not all actions require
use of this field.

size_t item_length When the item code has an associated string value, this field
optionally provides the length in bytes of the string, not including
any NULL terminator. If a value of zero is supplied, then the string
pointed at by the item_address field must be NULL terminated.

When the item code has an associated integral value, this field
supplies that value. Not all actions require the use of this field.

int item_status Only used by mtaSend(). Not used by other MTA SDK routines.

const char
*item_smessage

Only used by mtaSend(). Not used by other MTA SDK routines.

The end of the array is signified by an array entry whose item_code field has the value
zero (MTA_END_LIST). As an example of using MTA_ITEM_LIST, consider the
following mtaInit() call:

istat = mtaInit(MTA_DEBUG_SDK, MTA_DEBUG_OS, MTA_DEBUG_MM, 4,
MTA_DEBUG_DEQUEUE, MTA_DEBUG_DECODE, 0);

In the above call, the decision to enable the listed debug modes is made at compile
time. Using an item list array allows the decision to be made at run time as illustrated
in the following example:

mta_item_list_t item_list[6];
int index;

index = 0;
if (debug_sdk)

item_list[index++].item_code = MTA_DEBUG_SDK;
if (debug_os)

item_list[index++].item_code = MTA_DEBUG_OS;
if (debug_mm)
{

item_list[index].item_code = MTA_DEBUG_MM;
item_list[index++].item_length = 4;

}
if (debug_dq)

item_list[index++].item_code = MTA_DEBUG_DEQUEUE;

36 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

if (debug_decode)
item_list[index++].item_code = MTA_DEBUG_DECODE;

item_list[index].item_code = MTA_END_LIST;
istat = mtaInit(MTA_ITEM_CODE, item_list, 0);

The list of item code arguments must still be terminated with a call argument with
value zero. Further, item codes may simultaneously be passed as distinct call
arguments and also in item list arrays. For example:

mtaInit(MTA_DEBUG_SDK, MTA_ITEM_LIST, item_list1,
MTA_INTERACTIVE, MTA_ITEM_LIST, item_list2, 0);

In the above, the item codes MTA_DEBUG_SDK, MTA_ITEM_LIST, MTA_INTERACTIVE,
and MTA_ITEM_LIST are all explicitly passed as call arguments. Additional item
codes are passed via the item list arrays item_list1 and item_list2.

When processing item codes, they are processed from left to right as the call argument
list is interpreted. Using the above example, mtaInit() processes MTA_DEBUG_SDK,
then MTA_ITEM_LIST, MTA_INTERACTIVE, MTA_ITEM_LIST, and finally the
terminating 0 call argument which terminates the item code processing. When
processing the first occurrence of MTA_ITEM_LIST, the entries of item_list1 are
processed starting with the first entry (index 0), then the second, and so on until an
entry with an item code value of 0 is encountered. The same processing occurs for
item_list2.

If two item codes set the same underlying option or value, the last processed instance
of that item code will prevail. For example, the call:

mtaInit(MTA_DEBUG_ENQUEUE, MTA_DEBUG_MM, 10, 0);

will leave the enqueue debug level set to 10. While the MTA_DEBUG_ENQUEUE item
code sets it to 5, the subsequent MTA_DEBUG_MM item code changes the setting to 10.

Chapter 1 • MTA SDK Concepts and Overview 37

38 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

CHAPTER 2

MTA SDK Programming
Considerations

This chapter describes procedures and run time instructions useful for programmers
using the Sun Java System Messaging Server MTA SDK. It includes the following
topics:

� “Running Your Enqueue and Dequeue Programs” on page 39
� “Debugging Programs and Logging Diagnostics” on page 40
� “Required Privileges” on page 41
� “Compiling and Linking Programs” on page 42
� “Running Your Test Programs” on page 42
� “Preventing Mail Loops when Re-enqueuing Mail” on page 44
� “Miscellaneous Programming Considerations” on page 45

Running Your Enqueue and Dequeue
Programs
At run time, when your program enqueues a message to, or dequeues a message from
the MTA, the SDK must be able to determine the name of the MTA channel under
which to perform the enqueue or dequeue. If this name cannot be determined, then
the enqueue or dequeue operation will fail. Consequently, when calling
mtaEnqueueStart() or mtaDequeueStart(), a channel name can be specified.
Whether or not you need to specify this channel name depends upon the conditions
under which your program runs. While developing your program and manually
running it, you may either code the channel name into your program or specify it
through your run time environment with the PMDF_CHANNEL environment variable.
For example, to do the latter on UNIX® platforms use a command of the following
form:

PMDF_CHANNEL=channel-name program-name

39

where channel-name is the name of the channel and program-name is the name of the
executable program to run.

In production, if your program will run as a master or slave channel program under
the MTA Job Controller, then you do not need to specify the channel name; it will
automatically be set by the Job Controller using the PMDF_CHANNEL environment
variable. If, however, your program will be run manually or as a server, then either the
program can specify its channel name through code or using the PMDF_CHANNEL
environment variable. For the latter, setting the environment variable is typically
achieved by wrapping your executable program with a shell script. The shell script
would set the environment and then invoke your program, as illustrated in the
following code example:

#!/bin/sh

PMDF_CHANNEL=channel-name

PMDF_CHANNEL_OPTION=option-file-path

export PMDF_CHANNEL PMDF_CHANNEL_OPTION

program-name

exit

The option-file-path shown in the previous example is the full, absolute path to the
channel’s option file, if any.

A program can query the SDK to determine what channel name is being used with
either the mtaChannelGetName(), mtaEnqueueInfo(), or mtaDequeueInfo()
routines. The former returns the channel name the SDK will use when no other name
is explicitly specified through code. The latter two return the name specifically being
used with a given enqueue or dequeue context.

Note – The SDK only reads the PMDF_CHANNEL environment variable once per
program invocation. As such, running code cannot expect to change its channel name
by changing the value of the environment variable.

Debugging Programs and Logging
Diagnostics
The SDK has diagnostic facilities that may help in tracking down unusual behavior.
Enable SDK diagnostics in one of two ways: either when the SDK is initialized with
“mtaInit()” on page 222 or afterwards with “mtaDebug()” on page 140. The
following table lists the diagnostics types that may be enabled through either routine:

40 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Diagnostic Type Description

MTA_DEBUG_SDK Provide diagnostics whenever the SDK returns an error status

MTA_DEBUG_DEQUEUE Provide diagnostics from the MTA low-level dequeue library

MTA_DEBUG_ENQUEUE Provide diagnostics from the MTA low-level enqueue library

MTA_DEBUG_OS Provide diagnostics from the MTA low-level, operating-system
dependent library

All diagnostic output is written to stdout. In the case of a channel program, this is
typically the channel’s debug file. Message enqueue and dequeue activities performed
through the MTA SDK (and Callable Send facility) will be logged when the channels
involved are marked with the logging channel keyword.

Required Privileges
Use of the MTA SDK often requires access rights to the MTA message queues and
configuration data. Indeed, were such rights not required, then any user capable of
logging in to the operating system of the machine running Messaging Server could
read messages out of the MTA message queues and send fraudulent mail messages.
Consequently, any programs using the MTA SDK need read access to the MTA
configuration, possibly including files with credentials required to bind to either the
Job Controller or an LDAP server or both. Additionally, programs that will enqueue
messages to the MTA need write access to the MTA message queues. Programs that
will dequeue messages from the MTA need read, write, and delete access to the MTA
message queues.

To facilitate this access, site-developed programs that will enqueue or dequeue
messages should be owned and run by the account used for Messaging Server. The
programs do not need to run as a superuser with root access in order to enqueue or
dequeue mail to the MTA. However, it is safe to allow them to do so, if needed for
concerns outside the scope of Messaging Server. For instance, if the program will be
performing other functions requiring system access rights, it needs to run as a
superuser with root access.

Chapter 2 • MTA SDK Programming Considerations 41

Compiling and Linking Programs
This section contains information useful for compiling and linking your C programs.

Compiling
To declare the SDK routines, data structures, constant, and error codes, C programs
should use the msg_server_base/include/mtasdk.h header file.

Linking Instructions for Solaris
The linking instructions that follow are for the Solaris platform:

The table that follows shows the link command used to link a C program to the SDK:

% SERVER_ROOT=msg_svr_base
% cc -o program program.c \

-I$SERVER_ROOT/include \
-L$SERVER_ROOT/lib \
-lmtasdk

In the example, msg_server_base is the directory path to the top-level Messaging Server
directory, and program is the name of your program.

If running the program in a standalone mode, that is, not under the Job Controller,
then the CONFIGROOT, INSTANCEDIR, IMTA_TAILOR, and the LD_LIBRARY_PATH
environment variables must be defined. See the imsimta shell script used to launch
MTA programs and utilities for details.

Running Your Test Programs
This section describes the tasks that are typically required for running your test
programs that enqueue or dequeue messages. The tasks are divided into two groups,
those used to run your test programs in a fully functional messaging environment,
and those needed if you want to run them manually:

� “To Run Test Programs in a Messaging Environment” on page 43
� “To Manually Run Your Test Programs” on page 44

42 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

� To Run Test Programs in a Messaging Environment

1. Add a test channel to the bottom of the imta.cnf file.

For example:

(required blank line)
x_test
x-test-daemon

2. Add rewrite rules to the top of the imta.cnf file.

The following code fragment illustrates this:

x_test $U%x-test@x-test-daemon

3. To enable your test channel so that mail can be addressed to user@x_test,
recompile your configuration and restart the SMTP server.

Use the instructions found in the following code example:

imsimta cnbuild
imsimta restart dispatcher

4. Create the job_controller.site text file.

The file should be owned by the Messaging Server and reside in the same directory
as the job_controller.cnf file. The following code example shows the lines
you must add to the file:

[CHANNEL=x_test]
master_command=file-path

In the above example, file-path is the full path to your executable program.

5. Make sure your executable has permissions and ownership such that the
Messaging Server can run it.

6. Restart the Job Controller.

Use the command found in the following code example:

imsimta restart job_controller

If the program performing enqueues is also a channel that will be dequeuing
messages, and more specifically, is doing intermediate processing that leaves the
envelope recipient addresses unchanged, then special rewrite rules must be used to
prevent a message loop in that the channel just enqueues the mail back to itself. For
directions on how to prevent a message loop and other specific examples of rewrite
rules, see “Preventing Mail Loops when Re-enqueuing Mail” on page 44.

Steps

Chapter 2 • MTA SDK Programming Considerations 43

� To Manually Run Your Test Programs

1. If the program does not explicitly set the channel name, then you must define
the PMDF_CHANNEL environment variable.

The value of that variable must be the name of your channel. The following
example shows how to set the PMDF_CHANNEL environment variable:

PMDF_CHANNEL=x_test
export PMDF_CHANNEL

For further information, see “Running Your Enqueue and Dequeue Programs”
on page 39.

2. Ensure that any environment variables required to run a program linked against
the MTA SDK are defined.

See “Compiling and Linking Programs” on page 42 for additional information.

3. Under some circumstances, it might be useful to comment out the
master_command= line in the job_controller.site file.

If you do this, you can enqueue mail to your test channel but not have the Job
Controller actually run your channel program.

4. When repeatedly testing your channel program, it is often necessary to restart
the Job Controller before each manual test run.

Otherwise, the Job Controller will hand off messages to your program on the first
manual run but not the second manual run. The Job Controller will think that
retries of the messages need to be delayed by several hours. By restarting the Job
Controller, you cause it to “forget” which queued messages are to be deferred.
Thus, when you run your channel again, it will be presented with all of the queued
messages.

Preventing Mail Loops when
Re-enqueuing Mail
This section shows how to add a new rewrite rule to prevent a message loop from
happening if the program is doing intermediate processing that leaves the envelope
recipient addresses unchanged. Otherwise, the channel would just enqueue the mail
back to itself.

For discussion purposes, suppose that the channel is to provide intermediate
processing for mail addressed to user@siroe.com. Further, the imta.cnf file has
the following rewrite rule for siroe.com:

Steps

44 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

siroe.com $U@siroe.com

For example, as shown in the code example that follows, assume that the intermediate
processing channel’s name is “xloop_test.” Near the bottom of the imta.cnf file with
other channel definitions, you would see the following definition:

xloop_test
x-looptest-daemon

Then, as shown in the following example, a new rewrite rule for siroe.com needs to
be added to the top of the imta.cnf file:

siroe.com $U%siroe.com@x-looptest-daemon$Nxloop_test
siroe.com $U@siroe.com

The new rewrite rule causes the following to happen:

� When a new inbound or outbound message for user@siroe.com is enqueued to
the xloop_text channel, it processes the message and re-enqueues it to
user@siroe.com.

� In the new rewrite rule, $N says that the first (new) rewrite rule is to be ignored
when the xloop_test channel itself enqueues a message.

� Therefore, after the xloop_test channel does its processing and re-enqueues the
message to user@siroe.com, the first (new) rewrite rule is ignored and the
second (old) rule is then applied, causing the message to be routed as it would
have been before the xloop_test channel was added to the MTA.

Miscellaneous Programming
Considerations
This section covers miscellaneous topics of interest to programmer’s using the SDK:

� “Retrieving Error Codes” on page 45
� “Writing Output From a Channel Program” on page 46
� “Considerations for Persistent Programs” on page 46

Retrieving Error Codes
With few exceptions, all routines in the SDK return an integer-valued result with a
value of zero (0) indicating success. When a non-zero value is returned, it is also saved
in a per-thread data section, which may be retrieved with either the mtaErrno()
function or the mta_errno C pre-processor macro.

The exceptional routines either return nothing (that is, always succeed), or return a
string pointer, and signify an error with a return value of NULL.

Chapter 2 • MTA SDK Programming Considerations 45

Writing Output From a Channel Program
The C runtime library stdout input-output destination may be usurped by the SDK,
depending upon the context under which a channel program has been invoked. As
such, programs that will operate as channels should use the mtaLog() routine to
write information to their log file. Such programs should never write output directly
to stdout or stderr or other generic I/O destinations, such as Pascal’s output, or
FORTRAN’s default output logical unit. There’s no telling where such output might
go: it might go to the Job Controller’s log file, it might even go down a network pipe
to a remote client or server.

Note – The channel log file is a different file from the MTA log file. The mtaLog() and
mtaAccountingLogClose() are unrelated routines.

Considerations for Persistent Programs
There are two main problems to consider when creating programs that persist over
long periods of time (for weeks or months):

� “Refreshing Stale Configuration Information” on page 46
� “Keeping the Log File Available For Update” on page 46

Refreshing Stale Configuration Information
Some programs, once started, run indefinitely (for weeks or months). An example of
this kind of program is a server that listens continually for incoming mail connections,
enqueuing received messages. Site-specific configuration information is loaded at
initialization. In the case of these long running programs, the information can become
stale due to changes to configuration information, such as rewrite rules or channel
definitions. Subsequent calls to mtaInit() do not accomplish this task. A program
must exit and restart in order to ensure that all configuration information is reloaded.

Keeping the Log File Available For Update
A program that enqueues and dequeues messages may open the MTA log file,
mail.log_current. For persistent programs, care should be taken that this log file
is not left open during periods of inactivity. Otherwise, activities that require exclusive
access to this file will be blocked. Before going idle, persistent programs should call
mtaAccountingLogClose(). The log file will automatically reopened when needed.

46 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Note – The MTA log file, mail.log_current, is not the log written to by mtaLog().

Chapter 2 • MTA SDK Programming Considerations 47

48 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

CHAPTER 3

Enqueuing Messages

The MTA SDK provides routines with which to construct a mail message and then
submit the message to the MTA. The MTA then effects delivery of the message to its
recipients. The act of submitting a message to the MTA for delivery is referred to as
“enqueuing a message.” This choice of terminology reflects the fact that each message
submitted to the MTA for delivery is placed into one or more message queues. Using
its configuration, the MTA determines how to route each message to its destination
and which message queues to place each the message into. However, programs
enqueuing messages do not need to concern themselves with these details; they
merely supply the message’s list of recipients and the message itself. The recipients are
specified one-by-one as RFC 2822 conformant Internet email addresses. The message
header and content is supplied in the form of an RFC 2822 and MIME conformant
email message.

When starting a coding project to enqueue messages to the MTA, always stop to
consider whether simply using SMTP will be acceptable. The advantage of using
SMTP is that it will work with any MTA SMTP server, making it portable. The
disadvantages are poorer performance and lack of flexibility and control.

This chapter covers the following enqueuing topics:

� “Basic Steps to Enqueue Messages” on page 50
� “Originating Messages” on page 51
� “A Simple Example of Enqueuing a Message” on page 51
� “Transferring Messages into the MTA” on page 54
� “Intermediate Processing Channels” on page 54
� “Delivery Processing Options (Envelope Fields)” on page 55
� “Order Dependencies” on page 56

49

Basic Steps to Enqueue Messages
The basic steps necessary to enqueue one or more messages to the MTA are:

1. Initialize SDK resources and data structures with mtaInit().

2. For each message to enqueue:

a. Specify the message envelope with mtaEnqueueStart() and
mtaEnqueueTo().

b. Specify the message header with mtaEnqueueWrite() or
mtaEnqueueWriteLine().

c. Optionally, if a message body is to be supplied, terminate the message header
and start the message body by writing a blank line to the message with
mtaEnqueueWrite() or mtaEnqueueWriteLine().

d. Optionally if a message body is to be supplied, write the message body with
mtaEnqueueWrite() or mtaEnqueueWriteLine().

e. Submit the message with mtaEnqueueFinish().

3. When you have completed enqueuing messages, deallocate SDK resources and
data structures with mtaDone().

In Step 2e, mtaEnqueueFinish() commits the message to disk. As part of the
enqueue process, the MTA performs any access checks, size checks, format
conversions, address rewritings, and other tasks called for by the site’s MTA
configuration. After these steps are completed and the message has been successfully
written to disk, mtaEnqueueFinish() returns.

Other MTA processes controlled by the MTA Job Controller then begin processing the
new message so as to effect its delivery. In fact, these processes may begin handling
the new message before mtaEnqueueFinish() even returns. As such,
mtaEnqeueueFinish() doesn’t block waiting on these processes; it returns as soon
as all requisite copies of the enqueued message have been safely written to disk. The
subsequent handling of the newly enqueued message is performed by other MTA
processes, and the program which enqueued the message isn’t left waiting for them.

A message submission can be aborted at any point in Step 2 by calling either
mtaEnqueueFinish() with the MTA_ABORT option specified or mtaDone(). Using
the first method, mtaEnqueueFinish() aborts only the specified message enqueue
context while allowing additional messages to be enqueued. Whereas, mtaDone()
aborts all active message enqueue contexts in all threads, and deallocates SDK
resources disallowing any further submission attempts until the SDK is again
initialized.

50 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Originating Messages
Messages enqueued to the MTA fall into one of two broad classes: new messages being
originated and messages which were originated elsewhere and which are being
transferred into the MTA. The former are typically the product of a local user agent or
utility which uses the MTA SDK. The latter are generated by remote user agents, and
received by local programs such as SMTP or HTTP servers which then enqueue them
to the MTA for routing or delivery or both. In either case, it is the job of the MTA to
route the message to its destination, be it a local message store or a remote MTA.

The only distinction the MTA SDK makes between these two cases occurs when the
message’s recipient addresses are specified. For new messages being originated, the
recipient addresses should be added to both the message’s header and its envelope.
For messages originated elsewhere, the recipient addresses should only be added to
the message’s envelope. For a discussion of messages originated elsewhere, see
“Transferring Messages into the MTA” on page 54, and “Intermediate Processing
Channels” on page 54.

When originating a new message, it is easiest to use the MTA_TO, MTA_CC, and
MTA_BCC item codes with mtaEnqueueTo(). That tells the SDK to use the specified
addresses as both the envelope recipient list and to put them into the message’s
header. When using this approach, do not specify any From:, To:, Cc:, or Bcc:
header lines in the supplied message’s header; the SDK will add them automatically.

An example of using this approach is found in the section that follows.

A Simple Example of Enqueuing a
Message
The program shown in Example 3–1 demonstrates how to enqueue a simple “Hello
World” message. The originator address associated with the message is that of the
MTA postmaster. The recipient address can be specified on the invocation command
line.

After the Messaging Server product is installed, this program can be found in the
following location:

msg_server_base/examples/mtasdk/

Note that certain lines of code have numbered comments immediately preceding them
of the format:

Chapter 3 • Enqueuing Messages 51

/* This generates output line N */

where N corresponds to the numbers found next to certain output lines in the sample
output in “Enqueuing a Message Example Output” on page 53.

Refer to “Running Your Test Programs” on page 42 for information on how to run the
sample program.

EXAMPLE 3–1 Enqueuing a Message

/* hello_world.c -- A simple "Hello World!" enqueue example */
#include <stdio.h\>
#include <stdlib.h\>
#include "mtasdk.h"

mta_nq_t *ctx = NULL;
static void quit(void);
#define CHECK(x) if(x) quit();

void main(int argc, const char *argv[])
{

char buf[100];

/* Initialize the SDK */
CHECK(mtaInit(0));

/* Start a new message; From: postmaster*/
/* This generates output line 1 */
CHECK(mtaEnqueueStart(&ctx, mtaPostmasterAddress(NULL, NULL,

0), 0, 0));

/* Enqueue the message to argv[1] or root */
/* This generates output line 2 */
CHECK(mtaEnqueueTo(ctx, (argv[1] ? argv[1] : "root"), 0, 0));

/* Date: header line */
/* This generates output line 3 */
CHECK(mtaEnqueueWriteLine(ctx, "Date: ", 0, mtaDateTime(buf,

NULL, sizeof(buf), 0), 0, NULL))

/* Subject: header line */
/* This generates output line 4 */

CHECK(mtaEnqueueWriteLine(ctx, "Subject: " __FILE__, 0,
NULL));

/* Blank line ending the header, starting the message body */
/* This generates output line 5 */
CHECK(mtaEnqueueWriteLine(ctx, "", 0, NULL));

/* Text of the message body (2 lines) */
/* This generates output line 6 */
CHECK(mtaEnqueueWriteLine(ctx, "Hello", 0, NULL));
/* This generates output line 7 */
CHECK(mtaEnqueueWriteLine(ctx, " World!", 0, NULL));

52 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 3–1 Enqueuing a Message (Continued)

/* Enqueue the message */
CHECK(mtaEnqueueFinish(ctx, 0));

/* All done */
mtaDone();

}

void quit(void)
{

fprintf(stderr, "The MTA SDK returned the error code %d\n
%s", mta_errno, mtaStrError(mta_errno, 0));

if (ctx)
mtaEnqueueFinish(ctx, MTA_ABORT, 0);

exit(1);

}

Enqueuing a Message Example Output
The example that follows shows the output generated by the enqueuing example.
Comment numbers correspond to the numbered comments in Example 3–1.

Comment Number Output Lines

Received:from siroe.com by siroe.com (SunONE Messaging
Server 6.0)id

<01GP37SOPRW0A9KZFV@siroe.com\>; Fri, 21 Mar 2003
09:07:32 -0800(PST)

3 Date: Fri, 21 Mar 2003 09:07:41 -0800 (PST)

1 From: postmaster@siroe.com

2 To: root@siroe.com

4 Subject: enqueuing_example.c Message-id:
<01GP37SOPRW2A9KZFV@siroe.com\> Content-type:
TEXT/PLAIN; CHARSET=US-ASCII Content-transfer-encoding:
7BIT

5

6 Hello

7 World!

Chapter 3 • Enqueuing Messages 53

Transferring Messages into the MTA
When transferring a message originated elsewhere into the MTA, programs should
use the MTA_ENV_TO item code with mtaEnqueueTo(). This way, each of the
recipient addresses will only be added to the message’s envelope, and not to its
already constructed header. Additionally, supply the message’s header as-is. Do not
remove or add any origination or destination header lines unless necessary. Failure to
use the MTA_ENV_TO item code will typically cause the SDK to add Resent- header
lines to the message’s header.

“A Complex Dequeuing Example” on page 70, and “A Simple Virus Scanner
Example” on page 101 both illustrate the use of the MTA_ENV_TO item code.

Intermediate Processing Channels
Like programs which transfer messages into the MTA, intermediate processing
channels should also use the MTA_ENV_TO item code with mtaEnqueueTo(). When
re-enqueuing a message, intermediate processing channels should also preserve any
MTA envelope fields present in the message being re-enqueued. This is done using the
MTA_DQ_CONTEXT item code in conjunction with mtaEnqueueStart() and
mtaEnqueueTo(). Failure to preserve these envelope fields can result in loss of
delivery receipt requests, special delivery flags, and other flags which influence
handling and delivery of the message.

“A Complex Dequeuing Example” on page 70 and “A Simple Virus Scanner
Example” on page 101 both illustrate the use of the MTA_ENV_TO and
MTA_DQ_CONTEXT item codes. item codes. Both of those examples represent
intermediate processing channels that handle previously constructed messages. As
such, they do not need to alter the existing message header, and they preserve any
MTA envelope fields.

54 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Delivery Processing Options (Envelope
Fields)
A variety of delivery processing options may be set through the MTA SDK. These
options are then stored in the message’s envelope and are generically referred to as
“envelope fields.” Options which pertain to the message as a whole are set with
mtaEnqueueStart(). Options which pertain to a specific recipient of the message
are set with mtaEnqueueTo(). These options, per message and per recipient, include
the following:

Delivery flags These flags are used to communicate information between channels.
For instance, a scanning channel might set the flag to indicate suspected
spam content. A delivery channel could then see that the flag is set and,
at delivery time, add a header line indicating potential spam content.
These flags may also be set using the deliveryflags channel
keyword.

Notification flags These flags influence whether delivery or non-delivery notification
messages are generated. They can be set on a per recipient basis.
Typically, they are used to request a delivery receipt. Another common
usage is for bulk mail to request no notifications, neither delivery nor
non-delivery.

Original recipient
address

This field is specified on a per recipient basis. It is used to indicate the
original form of the associated recipient’s address. This original address
can then be used in any notification messages. Its use allows the
recipient of the notification to see the original address they specified
rather than its evolved form. For example, the recipient would see the
name of the mailing list they posted to rather than the failed address of
some member of the list.

Envelope ID Set on a per message basis, this is an RFC 1891 envelope ID and can
appear in RFC 1892 - 1894 conformant notifications about the message.

Fragmentation size Set on a per message basis, this controls if and when the message is
fragmented into smaller messages using the MIME message/partial
mechanism.

For additional information, see the descriptions of “mtaEnqueueStart()” on page
203, and “mtaEnqueueTo()” on page 211.

Chapter 3 • Enqueuing Messages 55

Order Dependencies
When you are constructing programs, there is a calling order for the MTA SDK
routines that must be observed; for a given enqueue context, some routines must be
called before others.

Figure 3–1 visually depicts the calling order dependency of the message enqueue
routines. To the right of each routine name appears a horizontal line segment, possibly
broken across a column, for example, mtaEnqueueWrite(). Routines for which two
horizontal line segments, one atop the other, appear are required routines; that is,
routines that must be called in order to successfully enqueue a message. These
routines are mtaEnqueueStart(), mtaEnqueueTo(), and mtaEnqueueFinish().
To determine at which point a routine may be called, start in the leftmost column and
work towards the rightmost column. Any routine whose line segment lies in the first
(leftmost) column may be called first. Any routine whose line segment falls in the
second column may next be called, after which any routine whose line segment falls in
the third column may be called, and so forth. When more than one routine appears in
the same column, any or all of those routines may be called in any order. Progression
from left to right across the columns is mandated by the need to call the required
routines. Of the required routines, only mtaEnqueueTo() may be called multiple
times for a given message.

mtaInitmtaInit

mtaEnqueueStartmtaEnqueueStart

mtaEnqueueTomtaEnqueueTo

mtaEnqueueWritemtaEnqueueWrite

mtaEnqueueWriteLinemtaEnqueueWriteLine

mtaEnqueueCopyMessagemtaEnqueueCopyMessage

mtaEnqueueInfomtaEnqueueInfo

mtaEnqueueErrormtaEnqueueError

mtaEnqueueFinishmtaEnqueueFinish

FIGURE 3–1 Calling order Dependency for Message Enqueue Routines

56 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

CHAPTER 4

Dequeuing Messages

Once enqueued to the MTA, messages are processed using the SDK dequeue routines.
These routines provide channel programs and MTA utilities with programmatic access
to queued messages. With these routines, a channel program can process its queue of
messages, accessing the message’s envelope information and message content.

This chapter discusses the following dequeuing topics:

� “How Dequeuing Works” on page 57
� “Basic Dequeuing Steps” on page 58
� “Caller-Supplied Processing Routine” on page 59
� “The process_message() Routine” on page 62
� “A Simple Dequeuing Example” on page 63
� “Processing the Message Queue” on page 68
� “The process_done() Routine” on page 69
� “A Complex Dequeuing Example” on page 70
� “Intermediate processing channels” on page 78
� “Intermediate Channel Example” on page 80
� “Thread Creation Loop in mtaDequeueStart()” on page 87
� “Multiple Calls to mtaDequeueStart()” on page 89
� “Calling Order Dependencies” on page 89

How Dequeuing Works
Channel programs wishing to dequeue messages from the MTA must associate
themselves with a specific MTA channel or channels. Without this information, the
MTA SDK does not know which channel queue to draw messages from. This
information can be provided implicitly with the PMDF_CHANNEL environment
variable, or explicitly by specifying the name of the MTA channel to process when
calling mtaDequeueStart().

57

The dequeue process is initiated by calling the routine mtaDequeueStart(). A key
piece of required information passed to mtaDequeueStart() is the address of a
caller-supplied routine designed to process a single message. This routine will be
repeatedly called by mtaDequeueStart() until there are no more queued messages
in need of processing. One call is made per message to be processed.

Unless otherwise instructed, mtaDequeueStart() will use multiple threads of
execution to process queued messages. Each thread of execution will repeatedly
invoke the caller-supplied routine, once for each message to be processed. Thus, by
default the caller-supplied routine is expected to be “thread-safe.” That is, it is
expected to support being called simultaneously by more than one thread of
execution. If the caller-supplied routine is not thread safe, then mtaDequeueStart()
can be instructed to use a single thread of execution, as illustrated in “A Complex
Dequeuing Example” on page 70.

Basic Dequeuing Steps
The following basic steps are necessary to dequeue messages:

1. Initialize SDK resources and data structures with mtaInit().

2. Call mtaDequeueStart(), passing it the address of the caller-supplied routine
that is to be used to process each message.

When mtaDequeueStart() is called, it does not return until all queued messages
requiring processing have been processed, thus blocking the thread calling it until
it is finished.

3. For each queued message requiring processing, an execution thread created by
mtaDequeueStart() calls the routine whose address was provided in Step 2.

Threads created by mtaDequeueStart() each sequentially process multiple
messages. That is, mtaDequeueStart() does not create a distinct thread for each
and every queued message to be processed.

For a list of the tasks the processing routine should do, see “Caller-Supplied
Processing Routine” on page 59.

Note – The mtaDequeueStart() routine will use one or more threads, with each
thread calling the message processing routine. The maximum number of threads
allowed can be set when calling mtaDequeueStart(). Consequently, a program
that does not support threading should specify a maximum of one thread when it
calls mtaDequeueStart.

For a list of the tasks the processing routine should do, see “Dequeue Message
Processing Routine Tasks” on page 59.

58 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

4. After mtaDequeueStart() returns, deallocate SDK resources and data structures
with a call to mtaDone().

Caller-Supplied Processing Routine
Channel programs typically perform some form of processing on each message they
dequeue. For instance, virus scanning, MMS conversion, decryption, delivery to a
proprietary messaging system, and so forth. When using the MTA SDK, channel
programs must provide a routine which initiates this processing on a per message
basis. That is, programs must supply a routine that to be called to process a single
queued message. Throughout the rest of this text, this caller-supplied routine will be
referred to as “the caller-supplied processing routine,” or, for short, “the processing
routine.”

When called by one of the mtaDequeueStart() execution threads, the processing
routine uses the SDK to access the message’s envelope, header, and any content. Upon
completion of processing, the message is then either removed from the MTA queues,
or, in the event of a temporary error, left in its queue for a later processing attempt.

Dequeue Message Processing Routine Tasks
The processing routine processes a single queued message per invocation. The specific
steps that a processing routine takes are:

1. Read the envelope recipient list with repeated calls to
mtaDequeueRecipientNext().

When mtaDequeueRecipient() returns the MTA_EOF status code, the list has
been exhausted and all envelope recipient addresses have been provided. All
queued messages are guaranteed by the MTA to always have at least one envelope
recipient address.

2. Read the message, both header and body, with repeated calls to
mtaDequeueLineNext().

When mtaDequeueLineNext() returns the MTA_EOF status code, the message
has been exhausted; that is, there is no more message text to retrieve. The message
will be an RFC 2822 conformant message. As such, the division between the
message’s header and content will be demarked by a blank line (a line with a
length of zero). A message may have no content; that is, a message may have just a
header.

3. Process the message.

The processing in this step could be almost anything, including possibly enqueuing
a new message or messages with the MTA SDK. The details of this step will
depend upon the purpose of the program itself. Programs needing to do MIME

Chapter 4 • Dequeuing Messages 59

parsing should consider using the mtaDecodeMessage() routine.

For further information about message processing threads and caller-supplied
message processing routines, see “Processing the Message Queue” on page 68.

4. Report the disposition of each envelope recipient with per recipient calls to
mtaDequeueRecipientDisposition(), or a single call to
mtaDequeueMessageFinish() with the MTA_DISP item code.

The following table lists the valid recipient dispositions:

Symbolic Name Description

MTA_DISP_DEFERRED Unable to process this recipient address.
Processing has failed owing to a temporary
problem, such as the network is down, a
remote host is unreachable, or a mailbox is
busy. Retry delivery for this recipient at a
later time as determined by the
configuration of the channel.

MTA_DISP_DELIVERED Recipient address successfully delivered.
Generate a delivery status notification if
required.

MTA_DISP_FAILED Unable to process this recipient address.
Processing has failed owing to a permanent
problem, such as an invalid recipient
address, or recipient over quota. No further
delivery attempts should be made for this
recipient. Generate a non-delivery
notification if required.

MTA_DISP_RELAYED Recipient address forwarded to another
address or sent into a non-RFC 1891
(NOTARY) mail system. The message’s
NOTARY information was, however,
preserved. There is no need to generate a
“relayed” notification message.

MTA_DISP_RELAYED_FOREIGN Recipient address forwarded to another
address or gatewayed to a non-RFC 1891
(NOTARY) mail system; the messages
NOTARY information was not preserved;
generate a relayed notification message if
required.

MTA_DISP_RETURN For this recipient, return the message as
undeliverable. Generate a non-delivery
notification if required. This disposition is
intended for use by queue management
utilities. It is not intended for channel
programs.

60 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Symbolic Name Description

MTA_DISP_TIMEDOUT Unable to process this recipient address.
Processing failed due to timing out. This
disposition is intended for use by the MTA
Return Job. Channel programs should not
use this disposition.

5. Dequeue the message with mtaDequeueMessageFinish().

The message is not actually removed from the channel queue until this final step.
This helps ensure that mail is not lost should the channel program fail
unexpectedly, or some other unexpected disaster occurs.

When this routine is called, the resulting processing depends on the disposition of
the envelope recipient addresses reported with
mtaDequeueRecipientDisposition() (see Step 4 in this task list).

If all recipients have a permanent disposition (all of the ones listed in the previous
table, except MTA_DISP_DEFERRED), then any required non-delivery notifications
are generated and the message is permanently removed from the MTA queue.

If all recipients are to be deferred (MTA_DISP_DEFERRED), then no notifications are
generated and the message is left in the queue for later delivery attempts.

If, however, some recipients have a permanent disposition and others are deferred,
then the following happens:

a. Notifications are generated for those recipients with permanent dispositions
that require notifications.

b. A new message is enqueued for just the deferred recipients.

c. The original message is removed from the queue.

Deferred messages will not be processed by this routine more than once, unless
another delivery attempt is made for the deferred message while the process is
still running. How long a message is deferred is configured as part of a
channel’s definition, using the backoff channel keyword.

6. When finished, the processing routine should return with a status code of zero (0)
to indicate a success, and an appropriate MTA_ status code in the event of an error.

If the processing routine returns before calling mtaDequeueFinish(), then the
message that was being handled is left in its queue for a subsequent processing
attempt. It will be as if the MTA_DISP_DEFFERED disposition was set for all of the
message’s recipients. This will be the case even if the processing routine returns a
success status code of zero.

In the event that the processing routine needs to abort processing of a single
message, it should call mtaDequeueMessageFinish() with the MTA_ABORT flag
set. If the processing routine returns with a status code of MTA_ABORT, then the
execution thread that called the processing routine will perform an orderly exit.
Consequently, the program can prematurely terminate itself in a graceful fashion
by causing its processing routine to begin returning the MTA_ABORT status code
each time it is called.

Chapter 4 • Dequeuing Messages 61

The process_message() Routine
This caller-supplied routine is invoked by the processing threads to do the actual
processing of the messages.

The following code example shows the required syntax for a process_message()
routine:

int process_message(void **ctx2, void *ctx1, mta_dq_t *dq_ctx,
const char *env_from, int env_from_len);

The following table lists the required arguments for a process_message routine,
and gives a description of each.

Arguments Description

ctx2 A writable pointer that the process_message() routine can use to store a
pointer to a per-thread context. See the description that follows for further
details.

ctx1 The caller-supplied private context passed as ctx1 to
mtaDequeueStart().

dq_ctx A dequeue context created by mtaDequeueStart() and representing the
message to be processed by this invocation of the process_message()
routine.

env_from A pointer to the envelope From: address for the message to be processed.
Since Internet messages are allowed to have zero length envelope From:
addresses, this address can have zero length. The address will be NULL
terminated.

env_from_len The length in bytes of the envelope From: string. This length does not
include any NULL terminator.

When a processing thread first begins running, it sets the value referenced by ctx2 to
NULL. This assignment is made only once per thread and is done before the first call
to the process_message() routine. Consequently, on the first call to the
process_message routine by a given execution thread, the following test is true:

*ctx2 == NULL

That test will remain true until such time that the process_message() routine itself
changes the value by making an assignment to *ctx2. If the process_message()
routine needs to maintain state across all calls to itself by the same processing thread,
it can allocate memory for a structure to store that state in, and then save a pointer to
that memory with ctx2. The following code snippet demonstrates this:

62 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

int process_message(void **ctx2, void *ctx1, const char *env_from,
size_t env_from_len)

{
struct our_state_t *state;

state = (our_state_t *)(*ctx2);
if (!state)
{

/*
* First call for this thread.
* Allocate a structure in which to store the state
* information
*/
state = (our_state_t *)calloc(1, sizeof(our_state_t));
if (!state) return(MTA_ABORT);
*ctx2 = (void *)state;

/*
* Set any appropriate initial values for the state
* structure
*/

...
}

...

For a sample process_message() routine, see the example code in the section that
follows.

A Simple Dequeuing Example
The program shown in Example 4–1 constitutes a simplified batch-SMTP channel that
reads messages from a message queue, converting each message to batch SMTP
format, and writes the result to stdout. If the conversion is successful, then the
message is dequeued, otherwise it is deferred.

Some lines of code are immediately preceded by a comment of the format:

/* See explanatory comment N */

where N is a number.

The numbers are links to some corresponding explanatory text in the section that
follows this code, see “Explanatory Text for Numbered Comments in the Simple
Dequeue Example” on page 66. Find the sample output in “Output from the Simple
Dequeue Example” on page 67.

Chapter 4 • Dequeuing Messages 63

EXAMPLE 4–1 Simple Dequeue Example

/* dequeue_simple.c -- A simple dequeue example: write BSMTP to stdout
*/
#include <stdio.h>
#include <stdlib.h>
#include "mtasdk.h"

static mta_dq_process_message_t process_message;

int main()
{

int ires;

/*
* Initialize the MTA SDK
*/
if ((ires = mtaInit(0)))
{

mtaLog(mtaInit() returned %d; %s\n, ires,
mtaStrError(ires, 0));

return(1);
}

/*
* Start the dequeue loop. Since this example uses stdout
* for output, we indicate that we only support a single
* thread:
* (MTA_THREAD_MAX_THREADS = 1).
*/
/* See explanatory comment 1 */
ires = mtaDequeueStart(NULL, process_message, NULL,

MTA_THREAD_MAX_THREADS, 1, 0);

/*
* Check the return status
*/
/* See explanatory comment 2 */
if (!ires)

/* Success */
return(0);

/*
* Print an error message to stderr
*/
/* See explanatory comment 3 */
mtaLog("mtaDequeueStart() returned %d; %s\n", ires,

ires, mtaStrError(ires, 0));

/* And exit with an error */
return(1);

}

/* See explanatory comment 4 */
static int process_message(void **my_ctx_2, void *my_ctx_1,

64 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 4–1 Simple Dequeue Example (Continued)

mta_dq_t *dq, const char *env_from,
size_t env_from_len)

{
int ires;
const char *to, *line;
size_t len;

/* See explanatory comment 5 */
if (!(*my_ctx_2))
{

*my_ctx_2 = (void *)1;
printf("HELO\n");

}
else

printf("RSET\n");

/* Output the command:
* MAIL FROM: <from-adr>
*/
printf("MAIL FROM:<%s>\n", env_from);

/*
* Output the command:
* RCPT TO: <to-adr>
* for each recipient address
*/
/* See explanatory comment 6 */
while (!(ires = mtaDequeueRecipientNext(dq, &to,

&len, 0)))
{

printf("RCPT TO:<%s>\n", to);
/* See explanatory comment 7 */
mtaDequeueRecipientDisposition(dq, to, len,

MTA_DISP_DELIVERED, 0);
}

/*
* If ires == MTA_EOF, then we exited the loop normally;
* otherwise, theres been an error of some sort.
*/
if (ires != MTA_EOF)

/* See explanatory comment 8 */
return(ires);

/*
* Now output the message itself
*/
printf("DATA\n");
/* See explanatory comment 9 */
while (!(ires = mtaDequeueLineNext(dq, &line, &len)))

/* See explanatory comment 10 */
printf("%.*s\n", len, line);

/*

Chapter 4 • Dequeuing Messages 65

EXAMPLE 4–1 Simple Dequeue Example (Continued)

* If ires == MTA_EOF, then we exited normally;
* otherwise, theres been an error of some sort.
*/
if (ires != MTA_EOF)

/* See explanatory comment 8 */
return(ires);

/*
* Output the . command to terminate this message
*/
printf(".\n");

/*
* And dequeue the message
*/
/* See explanatory comment 11 */
ires = mtaDequeueMessageFinish(dq, 0);

/*
* All done; return ires as our result
*/
/* See explanatory comment 12 */
return(ires);

}

Explanatory Text for Numbered Comments in the
Simple Dequeue Example
The numbered explanatory text that follows corresponds to the numbered comments
in Example 4–1:

1. To start the dequeue processing, mtaDequeueStart() is called, and it calls
process_message(), which processes each queued message. Since
process_message() uses stdout for its output, only one message can be
processed at a time. To effect that behavior, mtaDequeueStart() is called with
the MTA_THREAD_MAX_THREADS set to one.

2. If the call to mtaDequeueStart() succeeds, the program exits normally.

3. If the call to mtaDequeueStart() fails, a diagnostic error message is displayed
and the program exits with an error status.

4. process_message() is called by mtaDequeueStart() for each queued
message.

5. The private context in process_message() tracks whether or not this is the first
time the routine has been called. On the first call, the memory pointed at by
my_ctx_2 is guaranteed to be NULL.

6. The routine obtains each envelope recipient address, one at a time, using calls to
mtaDequeueRecipientNext().

66 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

7. Each recipient is marked as delivered using
mtaDequeueRecipientDispostion(). An actual channel program would
typically not make this call until after processing the message further.

8. If process_message() returns without first dequeuing the message,
mtaDequeueStart() defers the message for a later delivery attempt.

9. The routine calls mtaDequeueLineNext() to read the message header and body,
one line at a time. When there are no more lines to read,
mtaDequeueLineNext() returns a status of MTA_EOF. When a line is read
successfully, mtaDequeueLineNext() returns a status of MTA_OK.

10. The lines returned by mtaDequeueLineNext() might not be NULL terminated
because the returned line pointer might reference a line in a read-only,
memory-mapped file.

11. Once the message has been processed and all the disposition of all recipients set,
mtaDequeueMessageFinish() is called. This actually dequeues the message.

12. When all message processing is complete, process_message() exits. It is called
again for each additional message to be processed.

Output from the Simple Dequeue Example
HELO
MAIL FROM:<sue@siroe.com\>
RCPT TO:<dan@siroe.com\>
DATA
Received:from siroe.com by siroe.com (SunONE Messaging Server 6.0)id
<01GP37SOPRW0A9KZFV@siroe.com\>; Fri, 21 Mar 2003 09:07:32 -0800(PST)
Date: Fri, 21 Mar 2003 09:07:41 -0800 (PST)
From: postmaster@siroe.com
To: root@siroe.com
Subject: mtasdk_example1.c
Message-id: <01GP37SOPRW2A9KZFV@siroe.com\>
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT

Hello
world!

.
QUIT

Chapter 4 • Dequeuing Messages 67

Processing the Message Queue
This section describes the steps undertaken by each execution thread created by
mtaDequeueStart(). Each execution thread processes a subset of the channel’s
queued messages by repeatedly calling the caller-supplied processing routine,
process_message().

To process queued messages, a processing thread takes the following steps:

1. The thread sets ctx2 to have the value NULL:

ctx2 = NULL;

For information on the process_message() arguments, see “The
process_message() Routine” on page 62.

2. The execution thread communicates with the Job Controller to obtain a message
file to process. If there are no more message files to process, then go to Step 9.

3. For the message file, the execution thread creates a dequeue context that maintains
the dequeue processing state for that message file.

4. The execution thread then invokes the caller-supplied process_message()
routine, passing to it the dequeue context created in “Processing the Message
Queue” on page 68, as shown in the example that follows:

istat = process_message(&ctx2, ctx1, &dq_ctx, env_from,
env_from_len);

For information on the call arguments for process_message(), see “The
process_message() Routine” on page 62.

5. The process_message() routine then attempts to process the message,
ultimately removing it from the channel’s queue, or leaving the message file for a
later processing attempt.

6. If mtaDequeueMessageFinish() was not called before process_message()
returned, then the queued message is deferred. That is, its underlying message file
is left in the channel’s queue and a later processing attempt is scheduled.

7. The dequeue context is destroyed.

8. If the process_message() routine did not return the MTA_ABORT status code,
then repeat this cycle starting at Step 2.

9. If a caller-supplied process_done() routine was passed to
mtaDequeueStart(), it is called now, for example:

10. process_done(&ctx2, ctx1);

Through the process_done() routine, the program can perform any cleanup
necessary for the execution thread. For example, freeing up any private context and
associated resources stored in the ctx2 call argument.

For a description of the process_done() routine, see “The process_done()
Routine” on page 69, as well as “process_done() Routine” on page 189.

68 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

11. The thread exits.

For an example of how state (context) may be preserved within an execution
thread and across calls to process_message(), “A Complex Dequeuing
Example” on page 70.

The process_done() Routine
To assist in cleaning up state information for a thread, callers can provide a routine
pointed to by the process_done call argument of mtaDequeueStart().

The following code example shows the required syntax for a process_done()
routine.

void process_done(void *ctx2, void *ctx1)

The following table lists the arguments required for a process_done() routine, and
gives a description of each.

Required Arguments Description

ctx2 The value of the last pointer stored by process_message() in the
ctx2 call argument for this thread.

ctx1 The caller-supplied private context passed as ctx1 to
mtaDequeueStart().

The following code example demonstrates the type of actions taken by a
process_done routine.

void process_done(ctx2, ctx1)
{

struct our_state_t *state = (struct our_state_t *)ctx2;
if (!state)

return;
/*
* Take steps to undo the state
* (for example, close any sockets or files)
*/
...

/*
* Free the memory allocated by process_message()
* to store the state
*/
free(state)

}

Chapter 4 • Dequeuing Messages 69

A Complex Dequeuing Example
The program shown in Example 4–2 is a more complicated version of the simple
example (see “A Simple Dequeuing Example” on page 63). In this example, more than
one concurrent dequeue thread is permitted. Additionally, better use is made of the
context support provided by mtaDequeueStart(), and a procedure to clean up and
dispose of per-thread contexts is provided.

After the Messaging Server product is installed, these programs can be found in the
following location:

msg_server_base/examples/mtasdk/

Some lines of code are immediately preceded by a comment of the format:

/* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory text
in the section that follows this code, see “Explanatory Text for Numbered Comments
in the Complex Dequeue Example” on page 76.

For the output generated by this code, see “Output from the Complex Dequeue
Example” on page 78.

EXAMPLE 4–2 Complex Dequeue Example

/*
* dequeue_complex.c
*
* Dequeuing with more than one thread used.
*
*/
#include <stdio.h>
#include <stdlib.h>
#if !defined(_WIN32)
#include <unistd.h>
#endif
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include "mtasdk.h"

/* See explanatory comment 1 */
typedef struct {

int debug; /* Debug flag */
int max_count;/* Maximum. number of messages per BSMTP file */

} my_global_context_t;

70 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 4–2 Complex Dequeue Example (Continued)

/* See explanatory comment 2 */
typedef struct {

int id; /* Dequeue threads id */
FILE *fp; /* Dequeue threads current output file */
int count; /* Messages output by this dequeue thread */

} my_thread_context_t;

static const char *NotifyToStr(int ret_type, char *buf);
static const char *UniqueName(char *buf, size_t maxbuf,

const char *suffix);
static mta_dq_process_done_t process_done;
static mta_dq_process_message_t process_message;

int main()
{

my_global_context_t gctx;
int ires;

/*
* Initialize the MTA SDK
*/
if ((ires = mtaInit(0)))
{

mtaLog(mtaInit() returned %d; %s\n, ires,
mtaStrError(ires, 0));

return(1);
}

/*
* The global context is shared by all dequeue threads
* calling process_message() as a result of a given call
* to mtaDequeueStart(). The global context in this
* example provides process_message() with the following:
* (1) How many messages to put into a BSMTP file before
* closing it and starting a new one, and
* (2) Whether or not to produce diagnostic debug output.
*/
/* See explanatory comment 3 */
gctx.debug = 1;
gctx.max_count = 5;

/* Start the dequeue loop */
/* See explanatory comment 4 */
ires = mtaDequeueStart((void *)&gctx, process_message,

process_done, 0);

/* Check the return status */
/* See explanatory comment 5 */
if (!ires)

/* Success */
return(0);

/* Produce an error message */

Chapter 4 • Dequeuing Messages 71

EXAMPLE 4–2 Complex Dequeue Example (Continued)

/* See explanatory comment 6 */
mtaLog("mtaDequeueStart() returned %d; %s", ires,

mtaStrError(ires, 0));
/* And exit with an error */
returnh(1);

}

/* process_done() -- Called by mtaDequeueStart() to clean up
* and destroy a per-thread context created by process_message().
* See explanatory comment 7
*/
static void process_done(void *my_ctx_2, void *my_ctx_1)
{

my_global_context_t *gctx = (my_global_context_t *)my_ctx_1;
my_thread_context_t *tctx = (my_thread_context_t *)my_ctx_2;
if (!tctx)

return;

/* Generate any requested diagnostic output requested? */
/* See explanatory comment 8 */
if (gctx && gctx->debug)

mtaLog("Dequeue thread done: id=%d; context=%p; "
"messages=%d", tctx->id, tctx, tctx->count);

/* Now clean up and destroy the context */
if (tctx->fp)
{

fprintf(tctx->fp, "QUIT\n");
fclose(tctx->fp);

}
free(tctx);

}

/*
* process_message() -- Called by mtaDequeueStart() to process a
* single message.
* See explanatory comment 9
*/
static int process_message(void **my_ctx_2, void *my_ctx_1,

mta_dq_t *dq, const char *env_from,
size_t env_from_len)

{
my_global_context_t *gctx;
my_thread_context_t *tctx;
int ires, ret_type;
const char *to, *env_id, *line;
size_t len;
char notify_buf[100];

/* This should never happen, but just to be safe we check */
if (!my_ctx_1 || !my_ctx_2)

return(MTA_ABORT);

72 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 4–2 Complex Dequeue Example (Continued)

/* The pointer to our global context was passed as my_ctx_1 */
/* See explanatory comment 10 */
gctx = (my_global_context_t *)my_ctx_1;

/*
* In this example, we just use the per-thread context to:
* (1) Track the output file for this dequeue thread across
* repeated calls, and
* (2) to count how many messages have been output by this
* dequeue thread.
* See explanatory comment 11
*/
if (!(*my_ctx_2))
{

/* First call to process_message() by this dequeue thread.
* Store a pointer to our context.
*/
tctx = (my_thread_context_t *)

calloc(1, sizeof(my_thread_context_t));
if (!tctx)

/* Insufficient virtual memory; give up now */
return(MTA_ABORT);

*my_ctx_2 = (void *)tctx;

/* Debug output? */
if (gctx->debug)
{

tctx->id = mtaDequeueThreadId(dq);
mtaLog("Dequeue thread starting: id=%d; context=%p",

tctx->id, tctx);
}

}
else

/*
* This dequeue thread has already called
* process_message() previously.
*/
tctx = (my_thread_context_t *)(*my_ctx_2);

/* Send a HELO or a RSET? */
if (0 == (tctx->count % gctx->max_count))
{

char buf[1024];
int fd;

/* Need to send a HELO */

/* Send a QUIT if weve already sent a HELO previously */
if (tctx->count > 0 && tctx->fp)
{

fprintf(tctx->fp, "QUIT\n");
fclose(tctx->fp);
tctx->fp = NULL;

Chapter 4 • Dequeuing Messages 73

EXAMPLE 4–2 Complex Dequeue Example (Continued)

}

/* Now open a file */
fd = open(UniqueName(buf, sizeof(buf), ".bsmtp"),

O_WRONLY | O_CREAT | O_EXCL, 0770);

if (fd < 0 || !(tctx->fp = fdopen(fd, "w")))
return(MTA_ABORT);

/* Now send the HELO */
fprintf(tctx->fp, "HELO %s\n", mtaChannelToHost(NULL,

NULL, MTA_DQ_CONTEXT, dq, 0));
}
else
{

/*
* Weve already sent a HELO. Send a RSET to start a new
* message.
*/
fprintf(tctx->fp, "RSET\n");

}
tctx->count++;

/*
* Output the command
* MAIL FROM: <from-adr> RET=return-type ENVID=id
*/
env_id = NULL;
/* See explanatory comment 12 */
ret_type = MTA_NOTIFY_DEFAULT;
mtaDequeueInfo(dq, MTA_ENV_ID, &env_id, NULL,

MTA_NOTIFY_FLAGS, &ret_type, 0);
fprintf(tctx->fp, "MAIL FROM:<%s> RET=%s%s%s\n", env_from,

NotifyToStr(ret_type, NULL),
(env_id ? " ENVID=" : ""),(env_id ? env_id : ""));

/* Output the command
* RCPT TO: <to-adr> NOTIFY=notify-type
* for each recipient address
* See explanatory comment 13
*/

while (!(ires =
mtaDequeueRecipientNext(dq, &to, &len,

MTA_NOTIFY_FLAGS, &ret_type, 0)))
{

fprintf(tctx->fp, "RCPT TO:<%s> NOTIFY=%s\n", to,
NotifyToStr(ret_type, notify_buf));

/* Indicate that delivery to this recipient succeeded */
/* See explanatory comment 14 */
mtaDequeueRecipientDisposition(dq, to, len,

MTA_DISP_DELIVERED, 0);
}
/*

74 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 4–2 Complex Dequeue Example (Continued)

* If ires == MTA_EOF, then we exited the loop normally;
* otherwise, theres been an error of some sort.
* See explanatory comment 15
*/
if (ires != MTA_EOF)

return(ires);

/* Now output the message itself */
fprintf(tctx->fp, "DATA\n");
/* See explanatory comment 16 */
while (!(ires = mtaDequeueLineNext(dq, &line, &len)))
{

/* Check to see if we need to dot-stuff the link */
if (len == 1 && line[0] == .)
fprintf(tctx->fp, ".");

/* Now output the line */
/* See explanatory comment 17 */
fprintf(tctx->fp, "%.*s\n", len, line);

}

/*
* If ires == MTA_EOF, then we exited the loop normally;
* If ires == MTA_EOF, then we exited the loop normally;
* otherwise, theres been an error of some sort.
*/
if (ires != MTA_EOF)

return(ires);

/* Output the "." command to terminate this message */
fprintf(tctx->fp, ".\n");

/* And dequeue the message */
/* See explanatory comment 18 */
ires = mtaDequeueMessageFinish(dq, 0);

/* All done; might as well return ires as our result */
return(ires);

}

/*
* Convert a bitmask of MTA_NOTIFY_ flags to a readable string
*/
/* See explanatory comment 19 */
static const char *
NotifyToStr(int ret_type, char *buf)
{

if (!buf)
/* Doing a RET= parameter to a MAIL FROM command */

return((ret_type & MTA_NOTIFY_CONTENT_FULL) ?
"FULL" : "HDRS");

buf[0] = \0;

Chapter 4 • Dequeuing Messages 75

EXAMPLE 4–2 Complex Dequeue Example (Continued)

if (ret_type & MTA_NOTIFY_SUCCESS)
strcat(buf, "SUCCESS");

if (ret_type & MTA_NOTIFY_FAILURE)
{

if (buf[0])
strcat(buf, ",");

strcat(buf, "FAILURE");
}
if (ret_type & MTA_NOTIFY_DELAY)
{

if (buf[0])
strcat(buf, ",");

strcat(buf, "DELAY");
}

if (!buf[0])
strcat(buf, "NEVER");

return(buf);
}
/* Generate a unique string suitable for use as a file name */
/* See explanatory comment 20 */
static const char *
UniqueName(char *buf, size_t maxbuf, const char *suffix)
{

strcpy(buf, "/tmp");
mtaUniqueString(buf+5, NULL, maxbuf-5);
strcat(buf, suffix);
return(buf);

}

Explanatory Text for Numbered Comments in the
Complex Dequeue Example
The numbered list that follows has explanatory text that corresponds to the numbered
comments in Example 4–2:

1. The global context data structure for this example. This is passed to
mtaDequeueStart(), as the ctx1 call argument.

2. Per-thread data structure used by dequeue threads. While mtaDequeueStart()
creates each dequeue thread, it is up to the process_message() routine to
actually create any per-thread context it might need.

3. Initialize the global context before calling mtaDequeueStart().

4. Initiate dequeue processing by calling mtaDequeueStart(). The first call
argument is a pointer to the global context. Each time mtaDequeueStart() calls
process_message(), it passes in the global context pointer as the second

76 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

argument. In this example, mtaDequeueStart() is not told to limit the number
of dequeue threads it uses.

5. If the call to mtaDequeueStart() succeeds, the program exits normally.

6. If the call to mtaDequeueStart() fails, then a diagnostic error message is
displayed and the program exits with an error status.

7. Each dequeue thread calls process_done() as it exits. This program cleans up
and destroys any per-thread contexts created by the process_message()
routine.

8. The program generates optional diagnostic output. Calling mtaLog() directs the
output to the appropriate location: stdout if the program is run manually, and the
channel log file if the program is run by the Job Controller.

9. mtaDequeueStart() calls process_message() once for each queued message
to be processed. On the first call, the memory pointed at by my_ctx_2 is
guaranteed to be NULL. The value of the first call argument passed to
mtaDequeueStart() is passed to process_message() as the my_ctx_1 call
argument.

10. The global context contains information pertinent to all the dequeue threads
generated by the call mtaDequeueStart().

11. process_message() uses a per-thread context to save data across all calls to
itself by a single dequeue thread.

12. mtaDequeueInfo() is used to obtain the envelope ID and RFC 1891 notification
flags, if any, associated with the message being processed.

13. mtaDequeueRecipientNext() is used to obtain each envelope recipient
address, one address per call. When there are no more recipient addresses to
obtain, the routine returns the status MTA_EOF.

14. Each recipient is marked as delivered with a call to
mtaDequeueRecipientDisposition(). An actual channel program would
typically not make this call until after processing the message further.

15. If process_message() returns without dequeuing the message,
mtaDequeueStart() defers the message for a later delivery attempt.

16. The message header and body are read one line at a time with
mtaDequeueLineNext(). When there are no more lines to read, it returns a
status of MTA_EOF.

17. Lines returned by mtaDequeueLineNext() might not be NULL terminated
because the returned line pointer might point to a line in a read-only,
memory-mapped file.

18. mtaDequeueMessageFinish() is called once the message had been fully
processed and the disposition of all its recipients set with
mtaDequeueRecipientDisposition(). The message is not truly dequeued
until this happens.

19. The routine NotifyToStr() converts a bitmap encoded set of RFC 1891
notification flags to an ASCII text string.

Chapter 4 • Dequeuing Messages 77

20. The UniqueName() routine generates a unique string suitable for the use as a file
name. This is used to generate the unique portion of the file name. This routine can
be called concurrently by multiple threads and always generates a string unique
amongst all processes and threads on the system.

For information on how to run this sample program, see “Running Your Enqueue and
Dequeue Programs” on page 39.

Output from the Complex Dequeue Example
The output that follows shows the result of 100 queued messages processed with the
program in Example 4–2.

11:01:16.82: Dequeue thread starting: id=10; context=32360
11:01:16.87: Dequeue thread starting: id=1; context=32390
11:01:16.93: Dequeue thread starting: id=2; context=325e8
11:01:17.00: Dequeue thread starting: id=3; context=32600
11:01:17.04: Dequeue thread starting: id=4; context=32618
11:01:17.09: Dequeue thread starting: id=5; context=32630
11:01:17.14: Dequeue thread starting: id=6; context=78e50
11:01:17.19: Dequeue thread starting: id=7; context=88a18
11:01:17.23: Dequeue thread starting: id=9; context=8ab78
11:01:17.51: Dequeue thread starting: id=8; context=8ab60
11:01:19.96: Dequeue thread done: id=2; context=325e8; messages=12
11:01:19.96: Dequeue thread done: id=5; context=32630; messages=22
11:01:19.97: Dequeue thread done: id=6; context=78e50; messages=11
11:01:19.97: Dequeue thread done: id=4; context=32618; messages=5
11:01:19.98: Dequeue thread done: id=8; context=8ab60; messages=16
11:01:20.00: Dequeue thread done: id=9; context=8ab78; messages=5
11:01:20.00: Dequeue thread done: id=3; context=32600; messages=12
11:01:20.01: Dequeue thread done: id=1; context=32390; messages=7
11:01:20.02: Dequeue thread done: id=10; context=32360; messages=6
11:01:20.03: Dequeue thread done: id=7; context=88a18; messages=4

Intermediate processing channels
Special attention is warranted for intermediate processing channels. Intermediate
processing channels are channels which re-enqueue back to the MTA the mail they
dequeue from it. For example, a virus scanner or a conversion channel, which, after
scanning or converting a message, re-enqueues it back to the MTA for further routing
or delivery. Such channels should do the following:

� “Preserve Envelope Information” on page 79
� “Use MTA_ENV_TO” on page 79
� “Use Rewrite Rules to Prevent Message Loops” on page 79

The sample code, “Intermediate Channel Example” on page 80, illustrates the SDK
usage required to effect the first two preceding points.

78 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Preserve Envelope Information
All queued messages have envelope fields which are unique to the message. For
instance, a message will have the RFC 1891 envelope ID that was either assigned by
the MTA when the message was first enqueued, or was specified by a remote MTA
and transmitted over SMTP. The same applies to the RFC 1891 original recipient
address fields that specify the original form of each of the message’s envelope
recipient addresses. Furthermore, there may be other envelope fields which have
non-default settings such as notification handling flags. Whenever possible, this
information should be preserved as the message flows from MTA channel to MTA
channel. In order to preserve this information, it must be copied from the message
being dequeued to the new message being enqueued. This copying process is best
done using the MTA_DQ_CONTEXT item code in conjunction with the
mtaEnqueueStart() and mtaEnqueueTo() routines. When used with the former,
it causes per-message envelope information to be automatically copied from the
message being dequeued to the new message being enqueued. When used with the
latter, it causes per-recipient information to be automatically copied.

Channel programs should not attempt to explicitly copy envelope information other
than the envelope From: and envelope recipient addresses. The MTA_DQ_CONTEXT
item code should always be used to implicitly perform the copy. The reason for this is
straightforward: if a program attempts to do the copy explicitly by querying the fields
one by one from the message being dequeued, and then setting them one by one in the
message being enqueued, then any new envelope fields introduced in later versions of
Messaging Server will be lost unless the program is updated to explicitly know about
those new fields too.

Use MTA_ENV_TO
Intermediate processing channels should use the MTA_ENV_TO item code with
mtaEnqueueTo() rather than the MTA_TO, MTA_CC, and MTA_BCC item codes. This
tells the MTA that the recipient address being specified should be added to only the
message’s envelope and not also to a Resent-To:, Resent-Cc:, or Resent-Bcc:
header line. Example 4–3, and Example 5–2 illustrate the use of the MTA_ENV_TO item
code. Both of those examples represent intermediate processing channels which are
handling a previously constructed message. As such, they do not need to alter the
existing message header.

Use Rewrite Rules to Prevent Message Loops
Finally, intermediate processing channels often require special rewrite rules in order to
prevent message loops. Specifically, loops in which mail re-enqueued by the
intermediate processing channel is queued back to the intermediate processing
channel. See “Preventing Mail Loops when Re-enqueuing Mail” on page 44 for further
information on this topic.

Chapter 4 • Dequeuing Messages 79

Intermediate Channel Example
The sample program in this section, in Example 4–3, converts the body of each queued
message and then re-enqueues the converted messages back to the MTA. The
conversion process involves applying the “rot 13” encoding used by some news
readers to encode potentially offensive message content.

To configure the MTA to run this channel, see “Running Your Enqueue and Dequeue
Programs” on page 39. Also refer to “Preventing Mail Loops when Re-enqueuing
Mail” on page 44, which discusses configuring special rewrite rules for programs
re-enqueuing dequeued email.

Some lines of code in this example are immediately preceded by a comment of the
format:

/* See explanatory comment N */

where N is a number.

The numbers are links to some corresponding explanatory text found in “Explanatory
Text for Numbered Comments in the Intermediate Channel Example” on page 85.

EXAMPLE 4–3 Intermediate Channel Example

/* intermediate_channel.c
* A channel program that re-enqueues queued messages after first
* transforming their content with the "rot13" transformation.
*/
#include <stdio.h>
#include <stdlib.h>
#include "mtasdk.h"

typedef struct {
size_t maxlen;
char *buf;

} rot13_buf_t;

static mta_dq_process_done_t process_done;
static mta_dq_process_message_t process_message;
static char rot13(char c);
static const char *rot13str(rot13_buf_t **dst, const char *src,

size_t srclen);

int main()
{

int ires;

/*
* Initialize the MTA SDK
*/

80 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 4–3 Intermediate Channel Example (Continued)

if ((ires = mtaInit(0)))
{

mtaLog(mtaInit() returned %d; %s\n, ires,
mtaStrError(ires, 0));

return(1);
}

/*
* Start the dequeue loop
* See explanatory comment 1
*/
ires = mtaDequeueStart(NULL, process_message,

process_done, 0);

/*
* Check the return status
* See explanatory comment 2
*/
if (!ires)

/*
* Success
*/
return(0);

/*
* Produce an error message
* See explanatory comment 3 */
*/
mtaLog("mtaDequeueStart() returned %d; %s", ires,

mtaStrError(ires, 0));

/*
* And exit with an error
*/
return(1);

}

/*
* process_done -- Clean up the private context my_ctx_2 used by
* process_message.
* See explanatory comment 4
*/
static void process_done(void *my_ctx_2, void *my_ctx_1)
{

rot13_buf_t *rbuf;

if (!my_ctx_2)
return;

rbuf = (rot13_buf_t *)my_ctx_2;
if (rbuf->buf)

free(rbuf->buf);
free(rbuf);

}

Chapter 4 • Dequeuing Messages 81

EXAMPLE 4–3 Intermediate Channel Example (Continued)

/*
* process_message -- Process a single message by re-enqueuing but
* with its message body converted to the rot13
* set. The private my_ctx_1 context is not
* used. The private my_ctx_2 context is used
* for a rot13 translation context.
* See explanatory comment 5
*/

static int process_message(void **my_ctx_2, void *my_ctx_1,
mta_dq_t *dq,

{
size_t len;
const char *line, *to;
int in_header;
mta_nq_t *nq;

/*
* Start a message enqueue
*/
nq = NULL;
/* See explanatory comment 6 */
if (mtaEnqueueStart(&nq, env_from, env_from_len,

MTA_DQ_CONTEXT, dq, 0))
goto(defer);

/*
* Process the envelope recipient list
* See explanatory comment 7 */
*/
while (!mtaDequeueRecipientNext(dq, &to, &len, 0))

/* See explanatory comment 7 */
if (mtaEnqueueTo(nq, to, len, MTA_DQ_CONTEXT, dq,

MTA_ENV_TO, 0) ||
/* See explanatory comment 8 */
mtaDequeueRecipientDisposition(dq, to, len,

MTA_DISP_DELIVERED,0))
/* See explanatory comment 9 */
goto defer;

if (mta_errno != MTA_EOF)
goto defer;

/*
* First, get the messages header and write it
* unchanged to the new message being enqueued.
* See explanatory comment 10
*/
in_header = 1;
while (in_header && !mtaDequeueLineNext(dq, &line, &len))
{

if (mtaEnqueueWriteLine(nq, line, len, 0))
goto defer;

82 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 4–3 Intermediate Channel Example (Continued)

if (!len)
in_header = 0;

}

/*
* Determine why we exited the while loop
*/
if (in_header)
{

/*
* We exited before seeing the body of the message
* See explanatory comment 12
*/
if (mta_errno == MTA_EOF)

/*
* Message read completely: it must have no body
*/
goto done;

else
/*
* Error condition of some sort
*/
goto defer;

}

/*
* Now rot13 the body of the message
* See explanatory comment 13
*/
while (!mtaDequeueLineNext(dq, &line, &len))

if (mtaEnqueueWriteLine(nq,
rot13str((rot13_buf_t **)my_ctx_2,
line, len), len, 0))

goto defer;

/*
* If mta_errno == MTA_EOF, then we exited the loop
* normally; otherwise, theres been an error of some sort
*/
if (mta_errno != MTA_EOF)

goto defer;

/*
* All done, enqueue the new message
* See explanatory comment 14
*/

done:
if (!mtaEnqueueFinish(nq, 0) &&

!mtaDequeueMessageFinish(dq, 0))
return(0);

/*
* Fall through to defer the message
*/

Chapter 4 • Dequeuing Messages 83

EXAMPLE 4–3 Intermediate Channel Example (Continued)

nq = NULL;

/*
* A processing error of some sort has occurred: defer the
* message for a later delivery attempt
* See explanatory comment 15
*/

defer:
mtaDequeueMessageFinish(dq, MTA_ABORT, 0);
if (nq)

mtaEnqueueFinish(nq, MTA_ABORT, 0);
return(MTA_NO);

}

/*
* rot13 -- an implmentation of the rotate-by-13 translation
* See explanatory comment 16
*/
static char rot13(char c)
{

if (A <= c && c <= Z)
return (((c - A + 13) % 26) + A);

else if (a <= c && c <= z)
return (((c - a + 13) % 26) + a);

else return (c);
}

/*
* rot13str -- Perform a rot13 translation on a string of text
* See explanatory comment 17
*/
static const char *rot13str(rot13_buf_t **dst, const char *src,

size_t srclen)
{

size_t i;
char *ptr;
rot13_buf_t *rbuf = *dst;

/*
* First call? If so, then allocate a rot13_buf_t structure
*/
if (!rbuf)
{

rbuf = calloc(1, sizeof(rot13_buf_t));
if (!rbuf)

return(NULL);
*dst = rbuf;

}

/*
* Need a larger buffer?
* If so, then increase the length of rbuf->buf
*/

84 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 4–3 Intermediate Channel Example (Continued)

if (rbuf->maxlen < srclen || !rbuf->buf)
{

size_t l;
char *tmp;
/* Round size up to the nearest 2k */
l = 2048 * (int)((srclen + 2047) / 2048);
tmp = (char *)malloc(l);
if (!tmp)

return(NULL);
if (rbuf->buf)

free(rbuf->buf);
rbuf->buf = tmp;
rbuf->maxlen = l;

}
/*
* Now rot13 our input
*/
ptr = rbuf->buf;
for (i = 0; i < srclen; i++)

*ptr++ = rot13(*src++);

/*
* All done
*/
return(rbuf->buf);

}

Explanatory Text for Numbered Comments in the
Intermediate Channel Example
1. The dequeue processing is initiated by calling mtaDequeueStart(). In this

example, no global context is used; hence, the first call argument to
mtaDequeueStart() is NULL.

2. If the call to mtaDequeueStart() succeeds, then the program exits normally.

3. If the call to mtaDequeueStart() fails, a diagnostic error message is displayed
and the program exits with an error status.

4. Each dequeue thread calls process_done() as it exits. The intent is to allow the
program to clean up and destroy any per-thread contexts created by the
process_message() routine. In this case, the buffer used by rot13str() is
deallocated.

5. The mtaDequeueStart() routine calls process_message() once for each
queued message to be processed. On the first call by a dequeue thread, the memory
pointed at by my_ctx_2 is NULL.

6. A message enqueue starts. The dequeue context, dq, is provided so that
per-message envelope fields can be carried over to the new message from the
message being dequeued.

Chapter 4 • Dequeuing Messages 85

7. Each envelope recipient address is obtained, one at a time, with
mtaDequeueRecipientNext(). When there are no more recipient addresses to
obtain, mtaDequeueRecipientNext() returns the status MTA_EOF.

8. Each envelope recipient address is added to the recipient list for the new message
being enqueued. The MTA_ENV_TO option for mtaEnqueueTo() is specified so
that the address is to be added to the new message’s envelope only. It should not
also be added to the message’s RFC 822 header. The new message’s header will be
a copy of the header of the message being dequeued. This copy is performed at the
code location marked by comment 12.

9. Each recipient is marked as delivered with
mtaDequeueRecipientDisposition().

10. In the event of an error returned from either mtaEnqueueTo() or
mtaDequeueRecipientDisposition(), or an unexpected error return from
mtaDequeueRecipientNext(), the ongoing enqueue is cancelled and the
processing of the current message is deferred.

11. Each line of the current message is read and then copied to the new message being
enqueued. This copying continues until a blank line is read from the current
message. (A blank line signifies the end of the RFC 822 message header and the
start of the RFC 822 message content.)

12. The code here needs to determine why it exited the read loop: because of an error,
or because the transition from the message’s header to body was detected.

13. The remainder of the current message is read line by line and copied to the new
message being enqueued. However, the line enqueued is first transformed using
the “rot13” transformation. The per-thread context my_ctx_2 is used to hold an
output buffer used by the rot13str() routine.

14. The enqueue of the new message is finished. If that step succeeds, then the
message being dequeued is removed from the MTA queues.

15. In the event of an error, the new message enqueue is cancelled and the current
message left in the queues for later processing.

16. The rot13 character transformation.

17. A routine that applies the rot13 transformation to a character string.

Sample Input Message for the Intermediate Channel
Example
The example that follows is a sample input message from the queue to be processed
by the program found in Example 4–3.

Received: from frodo.west.siroe.com by frodo.west.siroe.com
(Sun Java System Messaging Server 6 2004Q2(built Mar 24 2004))id
<0HCH00301E6GO700@frodo.west.siroe.com\> for sue@sesta.com; Fri,
28 Mar 2003 14:51:52 -0800 (PST)
Date: Fri, 28 Mar 2003 14:51:52 -0800 (PST)
From: root@frodo.west.siroe.com

86 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Subject: Testing
To: sue@sesta.com
Message-id: <0HCH00303E6GO700@frodo.west.siroe.com\>
MIME-version: 1.0

This is a test message.

Output from the Intermediate Channel Example
This example shows the output generated by the dequeue and re-enqueue program
(Example 4–3).

Received: from sesta.com by frodo.west.siroe.com
(Sun Java System Messaging Server 6 2004Q2 (built Mar 24 2003))id
<0HCH00301E7DOH00@frodo.west.wiroe.com\> for sue@sesta.com; Fri,
28 Mar 2003 14:51:58 -0800 (PST)
Received: from frodo.west.siroe.com by frodo.west.siroe.com
(Sun Java System Messaging Server 6 2004Q2 (built Mar 24 2003))id
<0HCH00301E7DOH00@frodo.west.wiroe.com\> for sue@sesta.com; Fri,
28 Mar 2003 14:51:52 -0800 (PST)
Date: Fri, 28 Mar 2003 14:51:52 -0800 (PST)
From: root@frodo.west.siroe.com
Subject: Testing
To: sue@sesta.com
Message-id: <0HCH00303E6GO700@frodo.west.siroe.com\>
MIME-version: 1.0

Guvf vf n grfg zrffntr.

Thread Creation Loop in
mtaDequeueStart()
After mtaDequeueStart() performs any necessary initialization steps, it then starts
a loop whereby it communicates with the MTA Job Controller. Based upon
information from the Job Controller, it then creates zero or more execution threads to
process queued messages.

While any execution threads are running, the thread that invoked
mtaDequeueStart()(the primal thread) executes a loop containing a brief pause
(that is, a sleep request). Each time the primal thread awakens, it communicates with
the Job Controller to see if it should create more execution threads. In addition, the Job
Controller itself has logic to determine if more threads are needed in the currently
running channel program, or if it should create additional processes to run the same
channel program.

To demonstrate, the following code example shows pseudo-code of the
mtaDequeueStart() loop.

Chapter 4 • Dequeuing Messages 87

threads_running = 0
threads_max = MTA_THREAD_MAX_THREADS
attemtps = MTA_JBC_MAX_ATTEMPTS

LOOP:
while (threads_running < threads_max)
{

Go to DONE if a shut down has been requested

pending_messages = Ask the Job Controller how many
messsages there are to be processed

// If there are no pending messages
// then consider what to do next
if (pending_messages = 0)
{

// Continue to wait?
if (attempts <= 0)

go to DONE

// Decrement attempts and wait
attempts = attempts - 1;
go to SLEEP

}
// Reset the attempts counter
attempts = MTA_JBC_MAX_ATTEMPTS

threads_needed = Ask the Job Controller how many
processing threads are needed

// Cannot run more then threads_max threads per process
if (threads_needed \> threads_max)

threads_needed = threads_max

// Create additional threads if needed
if (threads_needed \> threads_running)
{

Create (threads_needed - threads_running) more threads
threads_running = threads_needed

}
}

SLEEP:
Sleep for MTA_JBC_RETRY_INTERVAL seconds
-- a shut down request will cancel the sleep
go to LOOP

DONE:
Wait up to MTA_THREAD_WAIT_TIMEOUT seconds
for all processing threads to exit

Return to the caller of mtaDequeueStart()

88 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Multiple Calls to mtaDequeueStart()
A channel program can call mtaDequeueStart() multiple times, either sequentially
or in parallel. In the latter case, the program would need to create threads so as to
effect multiple, simultaneous calls to mtaDequeueStart(). However, just because
this can be done does not mean that it is appropriate to do so. In the former case of
multiple sequential calls, there is no need to be making repeated calls. When
mtaDequeueStart() returns, the channel no longer needs immediate processing
and has been in that state for the number of seconds represented by the following
formula:

MTA_JBC_ATTEMPTS_MAX * MTA_JBC_RETRY_INTERVAL

Instead, the channel program should exit thereby freeing up system resources. The Job
Controller will start a new channel program running when there are more messages to
process.

In the latter case of multiple parallel calls, there is again no need to do so. If there is an
advantage to running more threads than a single call generates, then the channel’s
threaddepth channel keyword setting should be increased so that a single call does
generate more threads.

The only exception to either of these cases might be if the multiple calls are each for a
different channel. Even then, however, the advantage of so doing is dubious as the
same effect can be achieved through the use of multiple processes, one for each
channel.

Calling Order Dependencies
When you are constructing programs, there is a calling order for the MTA SDK
routines that must be observed; some routines must be called before others.

Figure 4–1 visually depicts the calling order dependency of the message dequeue
routines. To the right of each routine name appears a horizontal line segment, possibly
broken across a column, for example, mtaDequeueRecipientNext(). Routines for
which two horizontal line segments, one atop the other, appear are required routines;
that is, routines that must be called in order to successfully enqueue a message. The
required routines are mtaInit(), mtaDequeueStart(),
mtaDequeueRecipientNext(), and mtaDqueueMessageFinish().

To determine at which point a routine may be called, start in the leftmost column and
work towards the rightmost column. Any routine whose line segment lies in the first
(leftmost) column may be called first. Any routine whose line segment falls in the

Chapter 4 • Dequeuing Messages 89

second column may next be called, after which any routine whose line segment falls in
the third column may be called, and so forth. When more than one routine appears in
the same column, any or all of those routines may be called in any order. Progression
from left to right across the columns is mandated by the need to call the required
routines.

After calling “mtaDequeueRewind()” on page 180, the read point into the
underlying queued message file is reset to the start of the message’s outermost header;
that is, you’re back in the third column.

mtaInitmtaInit

mtaDenqueueStartmtaDenqueueStart

mtaDenqueueRecipientNextmtaDenqueueRecipientNext

mtaDenqueueRecipientDispositionmtaDenqueueRecipientDisposition

mtaDenqueueLineNextmtaDenqueueLineNext

mtaDenqueueRewindmtaDenqueueRewind

mtaEnqueueCopyMessagemtaEnqueueCopyMessage

mtaDenqueueInfomtaDenqueueInfo

mtaDenqueueThreadIdmtaDenqueueThreadId

mtaDenqueueMessageFinishmtaDenqueueMessageFinish

FIGURE 4–1 Calling Order Dependency for Message Dequeue Routines

90 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

CHAPTER 5

Decoding Messages

The MTA has facilities for parsing and decoding single and multipart messages
formatted using the MIME Internet messaging format. Additionally, these facilities can
convert messages with other formats to MIME. For example, messages with BINHEX
or UUENCODE data, the RFC 1154 format, and many other proprietary formats. The
mtaDecodeMessage() routine provides access to these facilities, parsing either a
queued message or a message from an arbitrary source such as a disk file or a data
stream.

This chapter discusses the following topics:

� “Usage Modes for mtaDecodeMessage()” on page 91
� “The Input Source” on page 93
� “The Inspection Routine” on page 94
� “A Simple Decoding Example” on page 94
� “The Output Destination” on page 99
� “Decode Contexts” on page 100
� “A Simple Virus Scanner Example” on page 101

Usage Modes for
mtaDecodeMessage()
There are two usage modes for mtaDecodeMessage(). In the first mode, messages
are simply parsed, any encoded content decoded, and each resulting, atomic message
part presented to an inspection routine. This mode of usage is primarily of use to
channels which interface the MTA to non-Internet mail systems such as SMS and
X.400. The second mode of operation allows the message to be rewritten after
inspection. The output destination for this rewriting may be either the MTA channel
queues, or an arbitrary destination via a caller-supplied output routine. During the
inspection process in this second usage mode, individual, atomic message parts may

91

be discarded or replaced with text. This operational mode is primarily of use to
intermediate processing channels which need to scan message content or perform
content conversions. For example, virus scanners and encryption software. “A Simple
Decoding Example” on page 94 illustrates the first usage mode, while “A Simple
Virus Scanner Example” on page 101 the second.

For the first usage mode, the calling routine must supply the following items:

1. An input source for the message.

2. An inspection routine which will be passed each atomic message part of the parsed
and decoded message.

For the second usage mode, the calling routine must supply the same two items as
listed for the first usage mode, and in addition a third item must be supplied:

3. An output destination to direct the resulting message to.

The input source can be either a queued message file, represented by a dequeue
context, or it can be provided by a caller-supplied input routine. Use the former when
processing queued messages and the latter when processing data from disk files, data
streams, or other arbitrary input sources. Since the parser and decoder require only a
single, sequential pass over its input data, it is possible to stream data to
mtaDecodeMessage().

The output destination can be a message being enqueued and represented either by an
enqueue context, or by a caller-supplied output routine. Use an enqueue context when
submitting the message to the MTA. In all other cases, use a caller-supplied output
routine.

The following are some common usage cases and their associated input sources and
output destinations.

� Send to the MTA (slave channel). For this case, a caller- supplied routine accepts
incoming messages from a source outside of the MTA and then enqueues it to the
MTA. The caller-supplied input routine is used in conjunction with an enqueue
context as the output source. Doing a MIME parse and decode isn’t usually called
for in this case. However, specialized services might be constructed this way. For
instance, a custom server that accepts MIME formatted messages, and strips a
control attachment before submitting the remainder of the message to the MTA.

� An intermediate processing channel. For this case, an example is a virus scanner
that scans queued mail messages, re-enqueuing them to the MTA for delivery. In
this case, a dequeue context is used as the input source and an enqueue context as
the output source.

� Send from the MTA (master channel). For this case, queued messages are
gatewayed to another mail system. A dequeue context is used for the input source
and an output destination is often not needed; the inspection routine usually
suffices. Channels of this sort are common place when interfacing Messaging
Server to systems that do not support MIME and for which conversion of MIME
formatted messages to other formats is required (for example, X.400 and SMS).

92 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

� A command line utility to parse a message. For this case, a caller-supplied input
routine is used. No output destination is needed; an inspection routine usually
suffices.

The Input Source
The message to be decoded is provided as either a dequeue context or a
caller-supplied routine.

Dequeue Context
When using a dequeue context, you must observe the following:

1. Pass the dequeue context from mtaDecodeStart() to mtaDecodeMessage()
along with the MTA_DECODE_DQ item code.

2. The recipient list of the message being dequeued must have already been read by
mtaDequeueRecipientNext() before calling mtaDecodeMessage().

3. mtaDequeueMessageFinish() must not yet have been called for the dequeue
context.

After using a dequeue context with mtaDecodeMessage(), further calls to
mtaDequeueRecipientNext() can’t be made. Calls to mtaDequeueLineNext()
can only be performed after a call to mtaDequeueRewind().

Caller-Supplied Input Routine
To use a caller-supplied input routine, pass the address of the input routine along with
the MTA_DECODE_PROC item code to mtaDecodeMessage(). In Example 5–1, the
caller supplied routine’s name is decode_read().

When using a caller-supplied input routine, each block of data returned by the routine
must be a single line of the message. This is the default expectation of
mtaDecodeMessage() and corresponds to the MTA_TERM_NONE item code. If,
instead, the MTA_TERM_CR, _CRLF, _LF, or _LFCR item code are specified, then the
block of data need not correspond to a single, complete line of message data; it may be
a portion of a line, multiple lines, or even the entire message.

On each successful call, the input routine should return a status code of zero
(MTA_OK). When there is no more message data to provide, then the input routine
should return MTA_EOF. The call that returns the last byte of data should return zero;
it is the subsequent call that must return MTA_EOF. In the event of an error, the input
routine should return a non-zero status code other than MTA_EOF (for example,
MTA_NO). This terminates the message parsing process and mtaDecodeMessage()
returns an error.

Chapter 5 • Decoding Messages 93

The Inspection Routine
Whenever mtaDecodeMessage() is called, an “inspection” routine must be supplied
by the caller. In Example 5–1, the inspection routine’s name is decode_inspect().

As the message is parsed and decoded, mtaDecodeMessage() presents each atomic
message part to the inspection routine one line at a time. The presentation begins with
the part’s header lines. Once all of the header lines have been presented, the lines of
content are presented.

So that the inspection routine can tell if it is being presented with a line from the
header or content of the message, a data type indicator is supplied to the inspection
routine each time it is called. In regards to lines of the message’s content, the data type
indicator discriminates between text and binary content. Text content is considered
any content with a MIME content type of text or message (for example,
text/plain, text/html, message/rfc822), while binary content is all other
MIME content types (application, image, and audio).

When writing an inspection routine for use with mtaDecodeMessage(), the
following points apply:

� Message parts need not have any content. A common case is a single part message
with no content for which the sender used the Subject: header line to express
their communique.

� In the case of a non-multipart message, the message has a single part. The header
for this sole part is the header for the message itself. As noted previously, there
may or may not be any content to this single part.

� In the case of a multipart message, individual parts need not have a part header. In
such cases, MIME’s defaults apply and imply that the content is text/plain
using the US-ASCII character set.

� Regardless of the value of the Content-transfer-encoding header line, the
content presented will no longer be encoded.

� In the case of a multipart message, the outermost header is not presented.
However, it may be inspected by means of an output routine (see “The Output
Destination” on page 99).

A Simple Decoding Example
This sample program found in Example 5–1 decodes a MIME formatted message
using mtaDecodeMessage(). This is not a channel program. The actual message to
be decoded is compiled into the program rather than being drawn from a channel
queue.

94 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

After the Messaging Server product is installed, these programs can be found in the
following location:

msg_server_base/examples/mtasdk/

Some lines of code are immediately preceded by a comment of the format:

/* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory text
in the section that follows this code, see “Explanatory Text for Numbered Comments
in the Simple Decoding Example” on page 98.

For the sample output generated by this program, see “MIME Message Decoding
Simple Example Output” on page 98.

EXAMPLE 5–1 Decoding MIME Messages Simple Example

/*
* decode_simple.c
*
* Decode a multipart MIME message.
*
*/
#include <stdio.h>
#include <string.h>
#include "mtasdk.h"

/*
* Inline data for a sample message to decode
* See explanatory comment 1
*/
static const char message[] =
"From: sue@siroe.com\n"
"Date: 31 Mar 2003 09:32:47 -0800\n"
"Subject: test message\n"
"Content-type: multipart/mixed; boundary=BoundaryMarker\n"
"\n\n"
"--BoundaryMarker\n"
"Content-type: text/plain; charset=us-ascii\n"
"Content-disposition: inline\n"
"\n"
"This is a\n"
" test message!\n"
"--BoundaryMarker\n"
"Content-type: application/postscript\n"
"Content-disposition: attachment; filename=’a.ps’\n"
"Content-transfer-encoding: base64\n"
"\n"
"IyFQUwoxMDAgMTAwIG1vdmV0byAzMDAgMzAwIGxpbmV0byBzdHJva2UKc2hv" "3Bh\n"
"Z2UK\n"
"--BoundaryMarker--\n";

static mta_decode_read_t decode_read;

Chapter 5 • Decoding Messages 95

EXAMPLE 5–1 Decoding MIME Messages Simple Example (Continued)

static mta_decode_inspect_t decode_inspect;
typedef struct {

const char *cur_position;
const char *end_position;

} position_t;

main()
{

position_t pos;

/*
* Initialize the MTA SDK
*/
if ((ires = mtaInit(0)))
{

mtaLog("mtaInit() returned %d; %s\n", ires,
mtaStrError(ires, 0));

return(1);
}

/*
* For a context to pass to mtaDecodeMessage(), we pass a
* pointer to the message data to be parsed. The
* decode_read() routine uses this information when
* supplying data to mtaDecodeMessage().
* See explanatory comment 2
*/
pos.cur_position = message;
pos.end_position = message + strlen(message);

/*
* Invoke mtaDecodeMessage():
* 1. Use decode_read() as the input routine to supply the
* message to be MIME decoded,
* 2. Use decode_inspect() as the routine to inspect each
* MIME decoded message part,
* 3. Do not specify an output routine to write the
* resulting, MIME message, and
* 4. Indicate that the input message source uses LF
* record terminators.
* See explanatory comment 3
*/
mtaDecodeMessage((void *)&pos, MTA_DECODE_PROC,

(void *)decode_read,
0, NULL, decode_inspect, MTA_TERM_LF, 0);

}

/*
* decode_read -- Provide message data to mtaDecodeMessage().
* The entire message could just as easily be
* given to mtaDecodeMessage()at once. However,
* for illustration purposes, the message is
* provided in 200 byte chunks.

96 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 5–1 Decoding MIME Messages Simple Example (Continued)

* See explanatory comment 4
*/
static int decode_read(void *ctx, const char **line, size_t

*line_len)
{

position_t *pos = (position_t *)ctx;

if (!pos)
return(MTA_NO);

else if (pos->cur_position >= pos->end_position)
return(MTA_EOF);

*line = pos->cur_position;
*line_len = ((pos->cur_position + 200) <

pos->end_position) ? 200 :
(pos->end_position - pos->cur_position);

pos->cur_position += *line_len;
return(MTA_OK);

}

/*
* decode_inspect -- Called by mtaDecodeMessage() to output a
* a line of the parsed message. The line is
* simply output with additional information
* indicating whether the line comes from a
* header, text part, or binary part.
* See explanatory comment 5
*/
static int decode_inspect (void *ctx, mta_decode_t *dctx, int

data_type, const char *data,
size_t data_len)

{
static const char *types[] = {"N", "H", "T", "B"};

/* See explanatory comment 6 */
if (data_type == MTA_DATA_NONE)

return(MTA_OK);

/* See explanatory comment 7 */
printf("%d%s: %.*s\n",

mtaDecodeMessageInfoInt(dctx,
MTA_DECODE_PART_NUMBER),
types[data_type], data_len,
data);

return(MTA_OK);

}

Chapter 5 • Decoding Messages 97

Explanatory Text for Numbered Comments in the
Simple Decoding Example
The following numbered explanatory text corresponds to the numbered comments in
Example 5–1.

1. The MIME message to be decoded. It is a multipart message with two parts. The
first part contains text, the second part a PostScript™ attachment.

2. The private context to be passed to mtaDecodeMessage() and, in turn, passed by
it to the supplied input routine, decode_read(). The input routine uses this
context to track how many bytes of the input message it has supplied to
mtaDecodeMessage().

3. The call to mtaDecodeMessage(). An input routine, decode_read(), is
supplied to provide the message to be decoded. Since the message source has each
record terminated by line feeds, the MTA_TERM_LF option is also specified. The
routine decode_inspect() is passed for use as an inspection routine.

4. The input routine, decode_read(). This routine provides the message to be
decoded 200 bytes at a time. Note that providing only 200 bytes at a time is
arbitrary: the routine could, if it chose, provide the entire message, or 2000 bytes at
a time, or a random number of bytes on each call. After the entire message has
been supplied, subsequent calls to decode_read() return the MTA_EOF status.

5. The inspection routine, decode_inspect(). For each atomic message part, this
routine is called repeatedly. The repeated calls provide, line by line, the part’s
header and decoded content.

6. For a given message part, the final call to decode_inspect() provides no part
data. This final call serves to give decode_inspect() a last chance to accept or
discard the part when outputting the final form of the message via an optional
output routine supplied to mtaDecodeMessage(). That optional routine is not
used here.

7. The part number for this message part is obtained with a call to
mtaDecodeMessageInfoInt().

MIME Message Decoding Simple Example Output
The following shows the output generated by the program in Example 5–1.

1H: Content-type: text/plain; charset=us-ascii
1H: Content-disposition: inline
1T: This is a
1T: test message!
2H: Content-type: application/postscript
2H: Content-transfer-encoding: base64
2H: Content-disposition: attachment; filename="a.ps"
2B: #!PS
100 100 moveto 300 300 lineto stroke
showpage

98 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

The Output Destination
When an optional output destination is supplied to mtaDecodeMessage(), the
processed input message is subsequently written to the output destination. When
conversion to MIME is requested, the output message will be the result of the
conversion. Additionally, the written message will reflect any changes made by the
inspection routine with mtaDecodeMessagePartDelete(). That routine may be
used to delete an atomic part or replace the part with new, caller-supplied content.

The output destination can be either a message submission to the MTA (that is, an
ongoing enqueue) or an arbitrary destination represented by a caller-supplied output
routine.

Enqueue Context
When using a message enqueue context, you must do the following:

1. Supply the enqueue context along with the MTA_DECODE_NQ item code.

2. Specification of the message’s recipient list must have already been completed with
mtaEnqueueTo() before calling mtaDecodeMessage().

3. mtaEnqueueFinish() must not yet have been called for the enqueue context.

After the call to mtaDecodeMessage() has completed successfully, complete the
message enqueue with mtaEnqueueFinish(). In the event of an error, the message
submission should be cancelled with mtaEnqueueFinish().
mtaDecodeMessage() writes the entire message header and content. There is no
need for the caller to write anything to the message’s header or content.

Caller-Supplied Output Routine
To use a caller-supplied output routine (for example, decode_write()), supply the
address of the output routine along with the MTA_DECODE_PROC item code to
mtaDecodeMessage().

Each line passed to the output routine represents a complete line of the message to be
output. The output routine must add to the line any line terminators required by the
output destination (for example, carriage return, line feed pairs if transmitting over
the SMTP protocol, line feed terminators if writing to a UNIX® text file, and so forth).

Chapter 5 • Decoding Messages 99

Decode Contexts
When mtaDecodeMessage() calls either a caller-supplied inspection or output
routine, it passes a decode context to those routines. Through SDK routine calls, this
decode context can be queried to obtain information about the message part currently
being processed, as shown in the following table:

Message Code Description

MTA_DECODE_CCHARSET The character set specified with the CHARSET parameter of the
part’s Content-type: header line. If the part lacks a CHARSET
specification, then the value us-ascii will be returned. Obtain
with “mtaDecodeMessageInfoString()” on page 156.

MTA_DECODE_CDISP Value of the Content-disposition: header line, less any
optional parameters. Will be a zero length string if the part lacks a
Content-disposition: header line. Obtain with
“mtaDecodeMessageInfoString()” on page 156.

MTA_DECODE_CDISP_PARAMSParameter list to the Content-disposition: header line, if any.
The parsed list is returned as a pointer to an option context. For
further information, see “mtaDecodeMessageInfoParams()”
on page 154.

MTA_DECODE_CSUBTYPE The content subtype specified with the part’s Content-type:
header line (for example, plain for text/plain, gif for
image/gif). Defaults to plain when the part lacks a
Content-type: header line.

Obtain with “mtaDecodeMessageInfoString()” on page 156.

MTA_DECODE_CTYPE The major content type specified with the part’s Content-type:
header line (for example, text for text/plain, image for
image/gif). Defaults to text when the part lacks a
Content-type: header line.

Obtain with “mtaDecodeMessageInfoString()” on page 156.

MTA_DECODE_CTYPE_PARAMSParameter list to the Content-type: header line, if any. The
parsed list is returned as a pointer to an option context. For further
information, see “mtaDecodeMessageInfoParams()” on page
154.

MTA_DECODE_DTYPE Data type associated with this part. Obtain with
“mtaDecodeMessageInfoInt()” on page 153.

MTA_DECODE_PART_NUMBERSequential part number for the current part. The first message part
is part 0, the second part is 1, the third part is 2, and so on. Obtain
with “mtaDecodeMessageInfoInt()” on page 153.

100 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

A Simple Virus Scanner Example
Example 5–2 that follows shows how to use the mtaDecodeMessage() routine to
write an intermediate processing channel that converts messages with formats other
than MIME, for example UUENCODE content, to MIME output. It then decodes the
MIME message, scanning it for potentially harmful attachments. (In this example, an
attachment is any message part.) Any harmful attachments are removed from the
message after which it is re-enqueued for delivery. The list of harmful MIME media
types and file name extensions is read from a channel option file. An example option
file for the channel is shown in “Example Option File” on page 112.

In this example, the MIME Content-type: and Content-disposition: header
lines are used to detect potentially harmful message attachments such as executable
files. This example could be extended to also scan the content of the attachments,
possibly passing the contents to a virus scanner. Further, the example could be
modified to return as undeliverable any messages containing harmful attachments.

Note – To configure the MTA to run this channel, see “Running Your Enqueue and
Dequeue Programs” on page 39. The PMDF_CHANNEL_OPTION environment variable
must give the absolute file path to the channel’s option file. Also, for a discussion on
configuring special rewrite rules for re-enqueuing dequeued mail, see “Preventing
Mail Loops when Re-enqueuing Mail” on page 44.

For the output generated by this sample program, see “Decoding MIME Messages
Complex Example Output” on page 114.

After the Messaging Server product is installed, these programs can be found in the
following location:

msg_server_base/examples/mtasdk/

Some lines of code are immediately preceded by a comment of the format:

/* See explanatory comment N */

where N is a number. The numbers are links to some corresponding explanatory text
in the section that follows this code, see “Explanatory Text for Numbered Comments
in the Decoding MIME Messages Complex Example” on page 113.

EXAMPLE 5–2 Decoding MIME Messages Complex Example

/*
* virus_scanner_simple.c
*
* Remove potentially harmful content from queued messages.

Chapter 5 • Decoding Messages 101

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

*
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "mtasdk.h"

/*
* A structure to store our channel options
*/
typedef struct {

/* Produce debug output? */
int debug;
/* Unwanted MIME content types */
char bad_mime_types[BIGALFA_SIZE+3];
/* Length of bmt string */
size_t bmt_len;
/* Unwanted file types */
char bad_file_types[BIGALFA_SIZE+3];
/* Length of bft string */
size_t bft_len;

} our_options_t;

/*
* Forward declarations
*/
static void error_exit(int ires, const char *msg);
static void error_report(our_options_t *options, int ires, const

char *func);
static int is_bad_mime_type(our_options_t *options, mta_decode_t

*dctx, char *buf, size_t maxbuflen);
static int is_bad_file_type(our_options_t *options, mta_opt_t

*params, const char *param_name,
char *buf, size_t maxbuflen);

static int load_options(our_options_t *options);

static mta_dq_process_message_t process_message;
static mta_decode_read_t decode_read;
static mta_decode_inspect_t decode_inspect;

/*
* main() -- Initialize the MTA SDK, load our options, and then
* start the message processing loop.
*/
int main()
{

int ires;
our_options_t options;

/*
* Initialize the MTA SDK

102 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

* See explanatory comment 1
*/
if ((ires = mtaInit(0)))

error_exit(ires, "Unable to initialize the MTA SDK");

/*
* Load our channel options
* See explanatory comment 2
*/
if ((ires = load_options(&options)))

error_exit(ires, "Unable to load our channel options");

/*
* Now process the queued messages. Be sure to indicate a
* thread stack size sufficient to accomodate message
* enqueue processing.
* See explanatory comment 3
*/
if ((ires = mtaDequeueStart((void *)&options,

process_message, NULL, 0)))
error_exit(ires, "Error during dequeue processing");

/*
* All done
*/
mtaDone();
return(0);

}

/*
* process_message() -- This routine is called by
* mtaDequeueStart() to process each queued
* message. We dont make use of ctx2, but
* ctx1 is a pointer to our channel options.
* See explanatory comment 4
*/
static int process_message(void **ctx2, void *ctx1, mta_dq_t *dq,

const char *env_from, size_t
env_from_len)

{
const char *adr;
int disp, ires;
size_t len;
mta_nq_t *nq;
our_options_t *options = (our_options_t *)ctx1;

/*
* Initializations
*/
nq = NULL;

/*
* A little macro to do error checking on mta*() calls

Chapter 5 • Decoding Messages 103

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

*/
#define CHECK(f,x) \

if ((ires = x)) { error_report(options, ires, f); goto \
done_bad; }

/*
* Start a message enqueue. Use the dequeue context to copy
* envelope flags fromt the current message to this new
* message being enqueued.
* See explanatory comment 5
*/
CHECK("mtaEnqueueStart",

mtaEnqueueStart(&nq, env_from, env_from_len,
MTA_DQ_CONTEXT, dq, 0));

/*
* Process the envelope recipient list
* See explanatory comment 6
*/
while (!(ires = mtaDequeueRecipientNext(dq, &adr, &len, 0)))
{

/*
* Add this envelope recipient address to the message
* being enqueued. Use the dequeue context to copy
* envelope flags for this recipient from the current
* message to the new message.
*/
ires = mtaEnqueueTo(nq, adr, len, MTA_DQ_CONTEXT,

dq, MTA_ENV_TO, 0);
/* See explanatory comment 7 */
disp = (ires) ? MTA_DISP_DEFERRED : MTA_DISP_RELAYED;
CHECK("mtaDequeueRecipientDisposition",

mtaDequeueRecipientDisposition(dq, adr, len,
disp, 0));

}

/*
* A normal exit from the loop occurs when
* mtaDequeueRecipientNext() returns an MTA_EOF status.
* Any other status signifies an error.
*/
if (ires != MTA_EOF)
{

error_report(options, ires, "mtaDequeueRecipientNext");
goto done_bad;

}

/*
* Begin the MIME decode of the message
* See explanatory comment 8
*/
CHECK("mtaDecodeMessage",

mtaDecodeMessage(

104 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

/* Private context is our options */
(void *)options,
/* Input is the message being dequeued */
MTA_DECODE_DQ, (void *)dq,
/* Output is the message being enqueued */
MTA_DECODE_NQ, (void *)nq,
/* Inspection routine */
decode_inspect,
/* Convert non-MIME formats to MIME */
MTA_DECODE_THURMAN, 0));

/*
* Finish the enqueue
* NOTE: ITS IMPORTANT TO DO THIS before DOING THE
* DEQUEUE. YOU WILL LOSE MAIL IF YOU DO THE DEQUEUE FIRST
* and then THE ENQUEUE FAILS.
* See explanatory text 9
*/
CHECK("mtaEnqueueFinish", mtaEnqueueFinish(nq, 0));
nq = NULL;

/*
* Finish the dequeue
*/
CHECK("mtaDequeueFinish", mtaDequeueMessageFinish(dq, 0));

/*
* All done with this message
*/
return(MTA_OK);

done_bad:
/*
* Abort any ongoing enqueue or dequeue
*/
if (nq)

mtaEnqueueFinish(nq, MTA_ABORT, 0);
if (dq)

mtaDequeueMessageFinish(dq, MTA_ABORT, 0);

/*
* And return our error status
*/
return(ires);

}

#undef CHECK

/*
* decode_inspect() -- This is the routine that inspects each
* message part, deciding whether to accept
* or reject it.
* See explanatory comment 10

Chapter 5 • Decoding Messages 105

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

*/
static int decode_inspect(void *ctx, mta_decode_t *dctx,

int data_type,const char *data,
size_t data_len)

{
char buf[BIGALFA_SIZE * 2 + 10];
int i;
our_options_t *options = (our_options_t *)ctx;

/*
* See if the part has:
*
* 1. A bad MIME content-type,
* 2. A bad file name extension in the (deprecated)
* NAME= content-type parameter, or
* 3. A bad file name extension in the
* FILENAME= content-disposition parameter.
*/
i = 0;
if ((i = is_bad_mime_type(ctx, dctx, buf, sizeof(buf))) ||

is_bad_file_type(ctx,
mtaDecodeMessageInfoParams(dctx,

MTA_DECODE_CTYPE_PARAMS, NULL),
"NAME", buf, sizeof(buf)) ||

is_bad_file_type(ctx,
mtaDecodeMessageInfoParams(dctx,

MTA_DECODE_CDISP_PARAMS, NULL),
"FILENAME", buf, sizeof(buf)))

{
char msg[BIGALFA_SIZE*4 + 10];

/*
* Replace this part with a text message indicating
* that the parts content has been deleted.
* See explanatory comment 11
*/
if (i)

i = sprintf(msg,
"The content of this message part has been removed.\n"
"It contained a potentially harmful media type of %.*s",

strlen(buf)-2, buf+1);

else
i = sprintf(msg,

"The content of this message part has been removed.\n"
"It contained a potentially harmful file named ’%s’", buf);

return(mtaDecodeMessagePartDelete(dctx,
MTA_REASON, msg, i,
MTA_DECODE_CTYPE, "text", 4,
MTA_DECODE_CSUBTYPE, "plain", 5,
MTA_DECODE_CCHARSET, "us-ascii", 8,
MTA_DECODE_CDISP, "inline", 6,
MTA_DECODE_CLANG, "en", 2, 0));

106 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

}
else

/*
* Keep the part
* See explanatory comment 12
*/
return(mtaDecodeMessagePartCopy(dctx, 0));

}

/*
* is_bad_mime_type() -- See if the parts media type is in our
* bad MIME content types, for example:
* application/vbscript
* See explanatory comment 13
*/
static int is_bad_mime_type(our_options_t *options,

mta_decode_t *dctx, char *buf,
size_t maxbuflen)

{
const char *csubtype, *ctype;
size_t i, len1, len2;
char *ptr;

/*
* Sanity checks
*/
if (!options || !options->bmt_len ||

!options->bad_mime_types[0] ||
!dctx)
return(0);

/*
* Get the MIME content type
*/
ctype = mtaDecodeMessageInfoString(dctx, MTA_DECODE_CTYPE,

NULL, &len1);
csubtype = mtaDecodeMessageInfoString(dctx,

MTA_DECODE_CSUBTYPE,
NULL, &len2);

/*
* Build the string: <0x01>type/subtype<0x01><0x00>
*/
ptr = buf;
*ptr++ = (char)0x01;
for (i = 0; i < len1; i++)

*ptr++ = tolower(*ctype++);
*ptr++ = /;
for (i = 0; i < len2; i++)

*ptr++ = tolower(*csubtype++);
*ptr++ = (char)0x01;
*ptr = \0;

Chapter 5 • Decoding Messages 107

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

/*
* Now see if the literal just built occurs in the list of
* bad MIME content types
*/
return((strstr(options->bad_mime_types, buf)) ? -1 : 0);

}

/*
* is_bad_file_type() -- See if the part has an associated file
* name whose file extension is in our list
* of bad file names, such as .vbs.
* See explanatory comment 14
*/
static int is_bad_file_type(our_options_t *options,

mta_opt_t *params,
const char *param_name, char *buf,
size_t maxbuflen)

{
const char *ptr1;
char fext[BIGALFA_SIZE+2], *ptr2;
size_t i, len;

/*
* Sanity checks
*/
if (!options || !options->bft_len || !params || !param_name)

return(0);

len = 0;
buf[0] = \0;
if (mtaOptionString(params, param_name, 0, buf, &len,

maxbuflen - 1) ||
!len || !buf[0])
/*
* No file name parameter specified
*/
return(0);

/*
* A file name parameter was specified. Parse it to
* extract the file extension portion, if any.
*/
ptr1 = strrchr(buf, .);
if (!ptr1)

/*
* No file extension specified
*/
return(0);

/*
* Now store the string created earlier in fext[]
* Note that we drop the . from the extension.
*/

108 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

ptr1++; /* Skip over the . */
ptr2 = fext;
*ptr2++ = (char)0x01;
len = len - (ptr1 - buf);
for (i = 0; i < len; i++)

*ptr2++ = tolower(*ptr1++);
*ptr2++ = (char)0x01;
*ptr2++ = \0;

/*
* Now return -1 if the string occurs in
* options->bad_file_types.
*/
return((strstr(options->bad_file_types, fext))

? -1 : 0);
}

/*
* load_options() -- Load our channel options from the channels
* option file
* See explanatory comment 15
*/
static int load_options(our_options_t *options)
{

char buf[BIGALFA_SIZE+1];
size_t buflen, i;
mta_opt_t *channel_opts;
int ires;
const char *ptr0;
char *ptr1;

/*
* Initialize the our private channel option structure
*/
memset(options, 0, sizeof(our_options_t));

/*
* Access the channels option file
* See explanatory comment 16
*/
channel_opts = NULL;
if ((ires = mtaOptionStart(&channel_opts, NULL, 0, 0)))
{

mtaLog("Unable to access our channel option file");
return(ires);

}

/*
* DEBUG=0|1
*/
options->debug = 0;
mtaOptionInt(channel_opts, "DEBUG", 0, &options->debug);
if (options->debug)

Chapter 5 • Decoding Messages 109

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

mtaDebug(MTA_DEBUG_SDK, 0);

/*
* BAD_MIME_TYPES=type1/subtype1[,type2/subtype2[,...]]
*/
buf[0] = \0;
mtaOptionString(channel_opts, "BAD_MIME_TYPES", 0, buf,

&buflen, sizeof(buf));

/*
* Now translate the comma separated list:
*
* Type1/Subtype1[,Type2/Subtype2[,...]]
*
* to
*
*<0x01>type1/subtype1[<0x01>type2/subtype2[<0x01>...]]<0x01>
*/

ptr0 = buf;
ptr1 = options->bad_mime_types;
*ptr1++ = (char)0x01;
for (i = 0; i < buflen; i++)
{

if (*ptr0 != ,)
*ptr1++ = tolower(*ptr0++);

else
{

*ptr1++ = (char)0x01;
ptr0++

}
}
*ptr1++ = (char)0x01;
*ptr1 = \0;
options->bmt_len = ptr1 - options->bad_mime_types;

/*
* BAD_FILE_TYPES=["."]Ext1[,["."]Ext2[,...]]
*/
buf[0] = \0;
buflen = 0;
mtaOptionString(channel_opts, "BAD_FILE_TYPES", 0, buf,

&buflen, sizeof(buf));

/*
* Now translate the comma separated list:
* ["."]Ext1[,["."]Ext2[,...]]
*
* to
*
* <0x01>ext1[<0x01>ext2[<0x01>...]]<0x01>
*/
ptr0 = buf;

110 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

ptr1 = options->bad_file_types;
*ptr1++ = (char)0x01;
for (i = 0; i < buflen; i++)
{

switch(*ptr0)
{
default : /* copy after translating to lower case */

*ptr1++ = tolower(*ptr0++);
break;

case . : /* discard */
break;

case , : /* end current type */
*ptr1++ = (char)0x01;
ptr0++;
break;

}
}
*ptr1++ = (char)0x01;
*ptr1 = \0;
options->bft_len = ptr1 - options->bad_file_types;

/*
* Dispose of the mta_opt_t context
* See explanatory comment 17
*/
mtaOptionFinish(channel_opts);
/*
* And return a success
*/

return(MTA_OK);
}

/*
* error_report() Report an error condition when debugging is
* enabled.
*/
static void error_report(our_options_t *options, int ires,

const char *func)
{

if (options->debug)
mtaLog("%s() returned %d; %s",

(func ? func : "?"), ires, mtaStrError(ires));
}

/*
* error_exit() -- Exit with an error status and error message.
*/
static void error_exit(int ires, const char *msg)
{

mtaLog("%s%s%s", (msg ? msg : ""), (msg ? "; " : ""),
mtaStrError(ires));

exit(1);

Chapter 5 • Decoding Messages 111

EXAMPLE 5–2 Decoding MIME Messages Complex Example (Continued)

}

Example Option File
This example lists the MIME media types and file extensions this program is to
consider potentially harmful.

DEBUG=1
BAD_MIME_TYPES=application/vbscript
BAD_FILE_TYPES=bat,com,dll,exe,vb,vbs

Sample Input Message
The example that follows is the text of a sample input message the program in
Example 5–2 is to process. The second message part is a file attachment. The attached
file name is trojan_horse.vbs. Consequently when this message is processed by
the channel, it should remove the attachment as the file extension .vbs is in the list of
harmful file extensions. The sample program replaces the attachment with a text
attachment indicating the content has been deleted.

Received: from [129.153.12.22] ([129.153.12.22])
by frodo.siroe.com (Sun Java System Messaging Server 6 2004Q2 (built Apr 7
2003)) with SMTP id <0HD7001023OYDA00@frodo.siroe.com\> for
for sue@sesta.com; Fri, 11 Apr 2003 13:03:23 -0700 (PDT)
Date: Fri, 11 Apr 2003 13:03:08 -0700
From: sue@sesta.com
Subject: test message
Message-id: <0HD7001033P1DA00@frodo.siroe.com\>
Content-type: multipart/mixed; boundary=BoundaryMarke

--BoundaryMarker
Content-type: text/plain; charset=us-ascii
Content-disposition: inline

This is a
test message!

--BoundaryMarker
Content-type: application/octet-stream
Content-disposition: attachment; filename="trojan_horse.vbs"
Content-transfer-encoding: base64

IyFQUwoxMDAgMTAwIG1vdmV0byAzMDAgMzAwIGxpbmV0byBzdHJva2UKc2hvd3Bh
Z2UK

--BoundaryMarker--

112 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Explanatory Text for Numbered Comments in the
Decoding MIME Messages Complex Example
1. The MTA SDK is explicitly initialized. This call is not really necessary as the MTA

SDK will implicitly initialize itself when mtaDequeueStart() is called. However,
for debugging purposes, it can be useful to make this call at the start of a program
so that an initialization failure will show clearly in the diagnostic output. If the call
is omitted, initialization failure will be less obvious. The failure will still be noted
in the diagnostic output, but it will be obscured through the routine call that
triggered implicit initialization.

2. Channel options are loaded via a call to the load_options() routine. That
routine is part of this example and, as discussed later, uses the SDK routines for
obtaining channel option values from the channel’s option file.

3. The message dequeue processing loop is initiated with a call to
mtaDequeueStart().

4. For each queued message to be processed, process_message() will be called by
mtaDequeueStart().

5. A message enqueue is started. This enqueue is used to re-enqueue the queued
message currently being processed. As the message is processed, its non-harmful
content will be copied to the new message being enqueued.

6. The envelope recipient list is copied from the queued message to the new message
being enqueued.

7. Since this is an intermediate channel, that is, it doesn’t effect final delivery of a
message, successful processing of a recipient address is associated with a
disposition of MTA_DISP_RELAYED.

8. After processing the message’s envelope, mtaDecodeMessage() is invoked to
decode the message, breaking it into individual MIME message parts.
mtaDecodeMessage() is told to use the current dequeue context as the input
source for the message to decode. This supplies the queued message being
processed as input to the MIME decoder. Further, the current enqueue context is
supplied as the output destination for the resulting message. This directs
mtaDecodeMessage() to output the resulting parsed message to the message
being enqueued, less any harmful attachments that are explicitly deleted by the
inspection routine. The routine decode_inspect() is supplied as the inspection
routine. If the call to mtaDecodeMessage() fails, the CHECK() macro causes the
queued message to be deferred and the message enqueue to be cancelled.

9. After a successful call to mtaDecodeMessage(), the message enqueue is
committed. It is important that this be done before committing the dequeue. If the
operation is done in the other order– dequeue finish followed by enqueue finish–
then mail may be lost. For example, the message would be lost if the dequeue
succeeds and then deletes the underlying message file before the enqueue, and
then the enqueue fails for some reason, such as insufficient disk space.

10. The inspection routine, decode_inspect(). This routine checks the MIME
header lines of each message part for indication that the part may contain harmful
content.

Chapter 5 • Decoding Messages 113

11. Message parts with harmful content are discarded with a call to
mtaDecodeMessagePartDelete(). The discarded message part is replaced with
a text message part containing a warning about the discarded harmful content.

12. Message parts with safe content are kept by copying them to the output message
with mtaDecodeMessagePartCopy().

13. Using the configured channel options, this routine determines if a message part’s
media type is in the list of harmful types.

14. Using the configured channel options, this routine determines if a filename
appearing in the MIME header lines has an extension considered harmful.

15. The load_options() routine is used to load the channel’s site-configured
options from a channel option file.

16. The channel option file, if any, is opened and read by mtaOptionStart(). Since
an explicit file path is not supplied, the file path specified with the
PMDF_CHANNEL_OPTION environment variable gives the name of the option file to
read.

17. After loading the channel’s options, the option file context is disposed of with a call
to mtaOptionFinish().

Decoding MIME Messages Complex Example Output
The example that follows shows the output generated by the MIME decoding
program found in Example 5–2.

Received: from sesta.com by frodo.siroe.com
Sun Java System Messaging Server Version 6 2004 Q2(built Apr 7 2003))
id <0HDE00C01BFK6500@frodo.siroe.com\> for sue@sesta.com; Tue, 11
Apr 2003 13:03:29 -0700 (PDT)
Received: from [129.153.12.22] ([129.153.12.22])
by frodo.siroe.com (Sun Java System Messaging Server 6 2004 Q2 (built Apr 7
2003)) with SMTP id <0HD7001023OYDA00@frodo.siroe.com\> for
sue@sesta.com; Fri, 11 Apr 2003 13:03:23 -0700 (PDT)
Date: Fri, 11 Apr 2003 13:03:08 -0700
From: sue@sesta.com
Subject: test message
To: sue@sesta.com
Message-id: <0HD7001033P1DA00@frodo.siroe.com\>
Content-type: multipart/mixed;
boundary="Boundary_(ID_XIIwKLBET2/DDbPzRI7yzQ)"

--Boundary_(ID_XIIwKLBET2/DDbPzRI7yzQ)
Content-type: text/plain; charset=us-ascii
Content-disposition: inline

This is a
test message!

--Boundary_(ID_XIIwKLBET2/DDbPzRI7yzQ)
Content-type: text/plain; charset=us-ascii

114 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Content-language: en
Content-disposition: inline

The content of this message part has been removed.
It contained a potentially harmful file named "trojan_horse.vbs"

--Boundary_(ID_XIIwKLBET2/DDbPzRI7yzQ)--

Chapter 5 • Decoding Messages 115

116 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

CHAPTER 6

MTA SDK Reference

The Sun Java System Messaging Server MTA SDK consists of numerous routines used
to facilitate the enqueuing and dequeuing of messages. This reference chapter contains
definitions of all of the SDK routines, and has the following sections:

� “Summary of SDK Routines” on page 117

This section contains a collection of tables, representing a logical grouping of the
routines. Each table lists the routines in that group.

� “MTA SDK Routines” on page 122

The actual reference material is organized in alphabetical order by routine name.

Summary of SDK Routines
This sections contains a series of tables, one for each of the following logical groups of
commands:

� “Address Parsing” on page 118
� “Dequeue” on page 118
� “Enqueue” on page 119
� “Error Handling” on page 119
� “Initialization” on page 119
� “Logging and Diagnostics” on page 120
� “MIME Parsing and Decoding” on page 120
� “Miscellaneous” on page 120
� “Option File Processing” on page 121

Each table lists the routines that comprise the group and gives a brief description of
each.

117

Address Parsing
Address parsing routines are used to parse and extract message addresses.

Routine Name Description

“mtaAddressFinish()”
on page 125

Dispose of an address context

“mtaAddressGetN()”
on page 126

Extract the Nth individual address from a list of parsed
addresses

“mtaAddressParse()”
on page 128

Parse a list of addresses, producing an address context

Dequeue
Dequeue routines are used for dequeuing messages.

Routine Name Description

“mtaDequeueInfo()” on page 164 Obtain information about a queued message

“mtaDequeueLineNext()”
on page 169

Obtain the next message line from a queued message

“mtaDequeueMessageFinish()”
on page 171

Complete or cancel a message dequeue

“mtaDequeueRecipientDisposition()”
on page 174

Set the disposition of a recipient address

“mtaDequeueRecipientNext()”
on page 178

Obtain the next recipient address from a queued
message

“mtaDequeueRewind()” on page
180

Move the read point for a queued message back to the
start of its outermost header

“mtaDequeueStart()” on page
181

Begin processing queued messages

“mtaDequeueThreadId()”
on page 191

Return the thread ID associated with the specified
dequeue context.

118 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Enqueue
Enqueue routines are used for enqueuing messages.

Routine Name Description

“mtaEnqueueCopyMessage()”
on page 193

Copy a message from a dequeue context

“mtaEnqueueFinish()” on page
196

Complete or cancel a message submission

“mtaEnqueueInfo()” on page
199

Obtain information about a message submission

“mtaEnqueueStart()” on page
203

Begin a message submission

“mtaEnqueueTo()” on page 211 Add recipients to a message

“mtaEnqueueWrite()” on page
216

Output a line to the message header or body

“mtaEnqueueWriteLine()”
on page 219

Output a line to the message header or body

Error Handling
Error handling routines used for error status retrieval.

Routine Name Description

“mtaErrno()” on page 221 Obtain the value of the last error status for this thread

“mtaStrError()”
on page 241

Map an error status code to a printable string

Initialization
These routines are used for initialization.

Routine Name Description

“mtaDone()” on page 192 Release resources used by the MTA SDK

“mtaInit()” on page 222 Initialize the MTA SDK

Chapter 6 • MTA SDK Reference 119

Logging and Diagnostics
Logging and diagnostics routines are used to write diagnostic messages to debug log
files.

Routine Name Description

“mtaDebug()” on page 140 Write internal diagnostic information to the debug log file

“mtaLog()” on page 226 Write to the debug log file

“mtaLogv()” on page 227 Write to the debug log file

MIME Parsing and Decoding
These routines are used to parse and decode a MIME formatted message.

Routine Name Description

“mtaDecodeMessage()” on page
143

Decode a MIME formatted message; can also convert
non-MIME formats to MIME

“mtaDecodeMessagePartCopy()”
on page 158

Copy a message part

“mtaDecodeMessagePartDelete()”
on page 160

Delete a message part

“mtaDecodeMessageInfoInt()”
on page 153

Obtain the value of an integer-valued parameter

“mtaDecodeMessageInfoString()”
on page 156

Obtain the value of a string-valued parameter

“mtaDecodeMessageInfoParams()”
on page 154

Obtain the Content-type or
Content-disposition parameter list

Miscellaneous
These routines are used for miscellaneous tasks.

Routine Name Description

“mtaAccountingLogClose()”
on page 124

Close the MTA accounting log file

120 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Routine Name Description

“mtaAddressToChannel()”
on page 131

Determine which channel an address rewrites to

“mtaBlockSize()”
on page 133

Obtain the value of the MTA BLOCK_SIZE option

“mtaChannelGetName()”
on page 134

Obtain the channel name for the running program

“mtaChannelToHost()”
on page 136

Determine the host name associated with a channel

“mtaDateTime()”
on page 138

Generate a date-time string for use in an RFC 822 Date: header
line

“mtaPostmasterAddress()”
on page 238

Obtain the postmaster’s address

“mtaStackSize()”
on page 240

Obtain the minimum thread stack size needed for arbitrary SDK
operations

“mtaUniqueString()”
on page 242

Generate a unique string

“mtaVersionMajor()”
on page 243

Obtain the major version number of the MTA SDK

“mtaVersionMinor()”
on page 244

Obtain the minor version number of the MTA SDK

“mtaVersionRevision()”
on page 245

Obtain the revision number of the MTA SDK

Option File Processing
The following table lists the routines used to process option files and gives a brief
description of each.

Routine Name Description

“mtaOptionStart()”
on page 233

Open and read a channel option file

“mtaOptionInt()”
on page 231

Obtain the value associated with an integer-valued option

“mtaOptionFloat()”
on page 229

Obtain the value associated with a real-valued option

Chapter 6 • MTA SDK Reference 121

Routine Name Description

“mtaOptionString()”
on page 236

Obtain the value associated with a string-valued option

“mtaOptionFinish()”
on page 228

Dispose of an option file context

MTA SDK Routines
This section describes each MTA SDK routine, including its syntax, arguments and
return values, and gives a description of the routine. The following table lists the
routines in alphabetical order, as they are found in this section:

Routine Name and Page

“mtaAccountingLogClose()” on page 124

“mtaAddressFinish()” on page 125

“mtaAddressGetN()” on page 126

“mtaAddressParse()” on page 128

“mtaAddressToChannel()” on page 131

“mtaBlockSize()” on page 133

“mtaChannelGetName()” on page 134

“mtaChannelToHost()” on page 136

“mtaDateTime()” on page 138

“mtaDebug()” on page 140

“mtaDecodeMessage()” on page 143

“mtaDecodeMessageInfoInt()” on page 153

“mtaDecodeMessageInfoParams()” on page 154

“mtaDecodeMessageInfoString()” on page 156

“mtaDecodeMessagePartCopy()” on page 158

“mtaDecodeMessagePartDelete()” on page 160

“mtaDequeueInfo()” on page 164

122 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Routine Name and Page

“mtaDequeueLineNext()” on page 169

“mtaDequeueMessageFinish()” on page 171

“mtaDequeueRecipientDisposition()” on page 174

“mtaDequeueRecipientNext()” on page 178

“mtaDequeueRewind()” on page 180

“mtaDequeueStart()” on page 181

“mtaDequeueThreadId()” on page 191

“mtaDone()” on page 192

“mtaEnqueueCopyMessage()” on page 193

“mtaEnqueueError()” on page 195

“mtaEnqueueFinish()” on page 196

“mtaEnqueueInfo()” on page 199

“mtaEnqueueStart()” on page 203

“mtaEnqueueTo()” on page 211

“mtaEnqueueWrite()” on page 216

“mtaEnqueueWriteLine()” on page 219

“mtaErrno()” on page 221

“mtaInit()” on page 222

“mtaLog()” on page 226

“mtaLogv()” on page 227

“mtaOptionFinish()” on page 228

“mtaOptionFloat()” on page 229

“mtaOptionInt()” on page 231

“mtaOptionStart()” on page 233

“mtaOptionString()” on page 236

“mtaPostmasterAddress()” on page 238

“mtaStackSize()” on page 240

“mtaStrError()” on page 241

“mtaUniqueString()” on page 242

Chapter 6 • MTA SDK Reference 123

Routine Name and Page

“mtaVersionMajor()” on page 243

“mtaVersionMinor()” on page 244

“mtaVersionRevision()” on page 245

mtaAccountingLogClose()
Close the MTA accounting log file, mail.log_current.

Syntax
void mtaAccountingClose(void)

Arguments
None

Description
Long running programs should periodically close the MTA accounting log file with
this routine. Interactive programs that use the MTA SDK should use the “mtaInit()”
on page 222 item code when initializing the SDK with “mtaInit()” on page 222.

Return Values
None

Example
None

124 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

mtaAddressFinish()
Dispose of an address context.

Syntax
void mtaAddressFinish(mta_adr_t *adr_ctx);

Arguments

Argument Description

adr_ctx An address context created by a previous call to mtaAddressParse().

Description
Address contexts created with mtaAddressParse() must be disposed of by calling
mtaAddressFinish(). Failure to do so will result in memory leaks.

Return Values
None

Example
None

Chapter 6 • MTA SDK Reference 125

mtaAddressGetN()
Extract an address from a list of parsed addresses.

Syntax
int mtaAddressGetN(mta_adr_t *adr_ctx,

size_t address_index,
const char **address,
size_t *address_len,
int elements);

Arguments

Arguments Description

adr_ctx An address context created by a previous call to mtaAddressParse().

address_index Index of the address to retrieve. It is an index into a list of addresses.
The first address has an index of 0.

address Pointer to receive the selected address (a pointer to a buffer within the
address context). The address will be NULL terminated. A NULL may
be passed for this call argument if you do not wish to receive the
pointer.

address_len The length in bytes of the selected address, not including any NULL
terminator. NULL may be passed for this call argument if you do not
wish to receive the length.

elements A bitmask indicating which RFC 822 mailbox elements of the address to
return, such as phrase, route, local-part, or domain. Any combination of
these elements may be returned.

Description
This routine retrieves the Nth address from a list of parsed addresses. The list of
addresses must first be parsed with mtaAddressParse().

Either the entire address or just a portion of it may be retrieved.

126 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Elements Argument
Using the nomenclature of RFC 822, an address has the following four-element format:

phrase <@route:local-part@domain>

Note – The @route: element is referred to as a source route and is rarely seen.

An example address with all four elements is:

Judy Smith <@siroe.com:judy.smith@email.siroe.com>

The elements argument is a bitmask indicating which of these elements to return.
The bitmask is formed by a logical OR of the following symbolic constants defined in
the mtasdk.h header file:

� MTA_ADDR_PHRASE– In the example, the phrase part is Judy Smith.
� MTA_ADDR_ROUTE– In the example, the route part is @siroe.com.
� MTA_ADDR_LOCAL– In the example, the local part is judy.smith.
� MTA_ADDR_DOMAIN– In the example, the domain part is email.siroe.com.

For example, to select just the local and domain parts, use the following value for the
elements argument:

MTA_ADDR_LOCAL | MTA_ADDR_DOMAIN

When a value of zero is supplied for elements the following default bitmask is
assumed:

MTA_ADDR_ROUTE | MTA_ADDR_LOCAL | MTA_ADDR_DOMAIN

Address Argument
This routine returns a pointer to the retrieved address and not the address itself. This
pointer is to a buffer within the address context. Each time the routine is called with
the same address context, that buffer is overwritten. Therefore, care must be taken
when specifying the address argument. The following code example correctly specifies
how the argument should be used when multiple calls are involved:

mtaAddressGetN(adr_ctx, 0, &ptr, NULL, MTA_ADDR_LOCAL);
strcpy(buf, ptr);
strcat(buf, "@");
mtaAddressGetN(adr_ctx, 0, &ptr, NULL, MTA_ADDR_DOMAIN);
strcat(buf, ptr);

Alternately, it could also be coded as shown in the following code fragment:

mtaAddressGetN(adr_ctx, 0, &ptr, NULL,
MTA_ADDR_LOCAL | MTA_ADDR_DOMAIN);

strcpy(buf, ptr);

Chapter 6 • MTA SDK Reference 127

However, since the pointer points to the same buffer for each call, and is overwritten
at each call, it would be incorrect to code it as shown in the following code example:

mtaAddressGetN(adr_ctx, 0, &local, NULL, MTA_ADDR_LOCAL);
mtaAddressGetN(adr_ctx, 0, &domain, NULL, MTA_ADDR_DOMAIN);
strcpy(buf, local);
strcat(buf, "@");
strcat(buf, domain);

Return Values

Return Value Description

0 Normal, successful completion

MTA_BADARGS One of the following conditions occurred:
1. A NULL value for the adr_content argument
2. An invalid address context
3. An invalid bitmask for elements

MTA_EOF The value supplied for the address_index is equal to or greater than
the number of addresses in the address list.

Example
The following is a code fragment that parses and displays the individual addresses
from a list of two addresses, using mtaAddressGetN():

ires = mtaAddressParse(&adr_ctx, &adr_count,
"Judy Public <judy.public@siroe.com\>, sue@siroe.com",
0, 0);

for (i = 0; i < adr_count; i++)
{

mtaAddressGetN(adr_ctx, i, &ptr, NULL,
MTA_ADDR_LOCAL | MTA_ADDR_DOMAIN);

printf("Address %d: %s\n", i, ptr);
}

mtaAddressParse()
Parse a list of comma separated RFC 822 addresses.

128 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Syntax
int mtaAddressParse(mta_adr_t **adr_ctx,

size_t *address_count,
const char *address_list,
size_t address_list_len,
int item_code, ...);

Arguments

Argument Description

adr_ctx The address context created for the parsed list of addresses.

address_count The number of addresses parsed.

address_list A character string containing the list of comma separated RFC 822
addresses to be parsed. The string must be NULL terminated if a
value of zero is passed for address_list_len.

address_list_len The length in bytes of the string of addresses to parse, not including
any NULL terminator. If a value of zero is passed for this argument,
then the length of address_list will automatically be determined.

item_code An optional list of item codes. The list must be terminated with an
integer argument with value 0.

Description
This routine parses a list of one or more comma separated RFC 822 addresses. The
input list can be of any arbitrary length. The result of the parse is represented by an
address context and a count of the parsed addresses. Each parsed address can then be
individually extracted from the parsed list with a call to mtaAddresGetN(). The
address context should be disposed of with a call to mtaAddressFinish(). When
there are no valid addresses in the input line, the returned context will be NULL and
the count zero.

Note – There are two item codes that can be used in the item_code argument. A
NULL value can be passed for either or both of the adr_ctx and address_count
arguments. When NULL is passed for both, all that is learned by calling the routine is
whether or not the address list is syntactically valid.

The following table lists the item codes for this routine, their additional required
arguments, and gives a description of each.

Chapter 6 • MTA SDK Reference 129

Item Codes Additional Arguments Description

MTA_DOMAIN const char
*domain

size_t domain_len

Specify a domain name to append to short-form
addresses, such as sue, in order to create a fully
qualified address, for example, sue@siroe.com.

It must be followed by two additional call
arguments: the domain name to use and the length
in bytes of that domain name. If a value of 0 is
passed for the length, then the domain name must
be NULL terminated.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The array
must be terminated with a final array entry with an
item code value of 0. For further information on
item lists, see “Item Codes and Item Lists” on page
35.

Return Values

Return Value Description

0 Normal, successful completion.

MTA_BADARGS A NULL value was supplied for the address_list argument or an
optional item code argument.

MTA_NO Unable to parse the address list. The likely cause is that one or more
addresses in the list is syntactically invalid.

MTA_NOMEM Insufficient virtual memory.

MTA_NOSUCHITEM An invalid item code was supplied.

MTA_STRTRUERR Item code string argument is too long.

Example
See the code example for “mtaAddressGetN()” on page 126 for a sample code
fragment that uses mtaAddressParse().

130 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

mtaAddressToChannel()
Determine which channel an address rewrites to.

Syntax
const char *mtaAddressToChannel(char *channel,

size_t *channel_len,
size_t channel_len_max,
const char *address,
size_t address_len,
int address_type,
int item_code, ...);

Arguments

Arguments Description

channel A pointer to a buffer to receive the NULL terminated channel name.
To avoid possible truncation of the channel name, this buffer must be
at least CHANLENGTH+1 bytes long.

channel_len An optional pointer to a size_t to receive the length in bytes of the
returned channel name. This length does not include the NULL
terminator that terminates the channel name.

channel_len_max The maximum size in bytes of the buffer pointed at by the channel
argument.

address The address to rewrite. The length of this address, not including any
NULL terminator, should not exceed ALFA_SIZE bytes. If a value of
0 is passed for the address_len argument, then this string must be
NULL terminated.

address_len The length in bytes of the address string, address. This length does
not include any NULL terminator. If a value of 0 is passed for this
argument, the address string must be NULL terminated.

address_type Indicates what type of address is being rewritten. There are two
types: envelope or header. In addition it can be either forward or
reverse pointing. See the description for a list of the possible values.

item_code Reserved for future use. Presently, a value of 0 must be supplied for
this argument.

Chapter 6 • MTA SDK Reference 131

Description
Use this routine to determine which channel an address rewrites to. The address to be
rewritten can be an envelope or header address, and can be forward or reverse
pointing. The nature of the address is specified with the address_type argument.
The following table lists the possible values for each combination: forward pointing
envelope, reversing pointing envelope, forward pointing header, reverse pointing
header:

Types of Address Value

Forward pointing envelope address 0, MTA_BCC, MTA_CC, MTA_ENV_TO, MTA_TO

Reverse pointing envelope address MTA_ENV_FROM

Forward pointing header address MTA_HDR_BCC, MTA_HDR_CC, MTA_HDR_TO

Reverse pointing header address MTA_HDR_FROM

In most cases, a value of MTA_ENV_TO is appropriate. Other values will typically give
the same result, unless the MTA configuration has rewrite rules that are sensitive to
the distinctions between the four types of addresses.

Return Values
On successful operation, the routine returns the value of the channel argument. In
the event of an error, the value returned is NULL and the mta_errno variable is set
with an error status code. The following table lists the error status codes and gives a
description of each.

Error Status Codes Description

MTA_BADARGS There are two reasons to get this return value:
1. A NULL value was supplied for the address argument.
2. An invalid value was supplied for the address_type.

MTA_FOPEN Unable to initialize the MTA SDK; can’t read one or more configuration
files. Issue the following command for further information:

imsimta test -rewrite

132 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Error Status Codes Description

MTA_NO There are two reasons to get this return value:
1. Unable to rewrite the supplied address. Either the address is

syntactically invalid, or it does not match any channel.
2. Unable to initialize the MTA_SDK. Issue the following command

for further information:
imsimta test -rewrite

MTA_NOSUCHITEM An invalid item code was specified.

MTA_STRTRUERR There are two reasons to get this return value:
1. Supplied address string is too long; length can not exceed

ALFA_SIZE bytes.
2. The supplied buffer to receive the channel name is too small.

Example
None

mtaBlockSize()
Obtain the size in bytes of an MTA block size unit.

Syntax
size_t mtaBlockSize(void);

Arguments
None

Description
The MTA measures message sizes in units of blocks. Units of blocks are used, for
instance, when logging message sizes, and for the MTA_FRAGMENT_BLOCKS item code
in the mtaEnqueueStart() routine. By default, a block is 1024 bytes. However, sites
can change this setting with the BLOCK_SIZE option in the option.dat file.

Chapter 6 • MTA SDK Reference 133

Programs using the SDK can translate units of bytes to blocks by dividing the number
of bytes by the value returned by mtaBlockSize(), that is:

bytes_per_block = mtaBlockSize();
block_limit = byte_limit / bytes_per_block;

Return Values
In the event of a failure, the routine returns the value zero and sets mta_errno with
an error status code. This routine only fails when initialization of the MTA SDK fails.
The following table lists the error status codes set in mta_errno when there is an
error returned by mtaBlockSize().

Error Status Codes Description

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more
configuration files. Issue the following command for further
information:

imsimta test -rewrite

MTA_NO Unable to initialize the MTA SDK. Issue the following command for
further information:

imsimta test -rewrite

Example
The following code fragment displays the MTA block size setting:

printf ("BLOCK_SIZE = %u\n", mtaBlockSize());

mtaChannelGetName()
Determine the channel name for the currently running program.

Syntax
const char *mtaChannelGetName(char *channel,

size_t *channel_len,
size_t channel_len_max);

134 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Arguments

Arguments Description

channel A pointer to a buffer to receive the NULL terminated channel name.
To avoid possible truncation of the channel name, this buffer must be
at least CHANLENGTH+1 bytes long.

channel_len An optional pointer to a size_t to receive the length in bytes of the
returned channel name. This length does not include the NULL
terminator that terminates the channel name.

channel_len_max The maximum size in bytes of the buffer pointed at by the channel
argument.

Description
A running program can discover its channel name with this routine. The channel
name is typically set using the PMDF_CHANNEL environment variable.

Return Values
In the event of an error, the routine returns NULL. The error status code is set in
mta_errno.

Error Status Codes Description

MTA_BADARGS A NULL value passed for the channel argument.

MTA_NO Unable to determine the channel name from the runtime
environment.

MTA_STRTRUERR Channel buffer too small to receive the channel name. The buffer
must be at least CHANLENGTH+1 bytes long.

Example
The following code fragment uses this routine to print the channel name.

char buf[CHANLENGTH+1];

printf("Channel name: %s\n",
mtaChannelGetName(buf, NULL, sizeof(buf)));

Chapter 6 • MTA SDK Reference 135

mtaChannelToHost()
Determine the host name associated with a channel.

Syntax
const char *mtaChannelToHost(char **host,

size_t *host_len,
int item_code, ...);

Arguments

Arguments Description

host A pointer to receive the host name. The host name will be NULL terminated.
NULL can be passed for this call argument.

host_len An optional pointer to a size_t to receive the length in bytes of the
returned host name. This length does not include the NULL terminator that
terminates the host name. A value of NULL can be passed for this call
argument.

item_code An optional list of item codes. The list must be terminated with an integer
argument with value 0.

Description
This routine is used to determine the host name associated with a particular channel.

The channel name can be specified in one of three ways:

� Implicitly specified. For this case, no item codes other than the terminating 0 are
specified and the channel name is the one for the running program. The channel
name is set using the PMDF_CHANNEL environment variable.

� Explicitly specified with the MTA_CHANNEL item code.

� Set using the MTA_DQ_CONTEXT item code, which is taken to be the channel name
associated with a specified dequeue context.

In all cases, the official host name of the selected channel is the host name that is
returned. The official host name for a channel is the one that appears on the second
line of the channel definition in the MTA configuration file, imta.conf.

136 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

The following table lists the item codes and any associated arguments:

Item Codes Additional Arguments Description

MTA_CHANNEL const char *channel

size_t channel_len

Explicitly specify a channel name for the official
host name. This item code must be followed by
the two additional call arguments, specifying:
1. The channel name.
2. The length in bytes of that channel name.

If a value of 0 is passed for the length, the
channel name must be NULL terminated.

MTA_DQ_CONTEXT mta_dq_t *dq_ctx Use the channel associated with the specified
dequeue context. This item code must be
followed by one additional call argument: a
pointer to a dequeue context generated by
mtaDequeueStart().

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array that is
terminated with a final array entry that has an
item code value of 0. For further information on
item lists, see “Item Codes and Item Lists”
on page 35.

When none of the above item codes are specified, the channel name is taken from the
runtime environment, using PMDF_CHANNEL environment variable.

On successful completion, the host name is stored in the buffer pointed at by the host
argument, and the value of the host argument is returned.

Return Values
In the event of an error, mtaChannelToHost() will return NULL, but will set
mta_errno. The following table lists the error status codes for this routine.

Error Status Codes Description

MTA_BADARGS A NULL value was supplied for either of these two argument:
1. The host argument in the routine call.
2. An argument to an item code.

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more
configuration files. Issue the following command for further
information:

imsimta test -rewrite

Chapter 6 • MTA SDK Reference 137

Error Status Codes Description

MTA_NO One of the following errors occurred:
1. Unable to determine the channel name from the runtime

environment.
2. Unable to initialize the MTA SDK. For further information, issue

the following command:
imsimta test -rewrite

MTA_NOSUCHCHAN The selected channel name does not appear in the MTA configuration
file, imta.cnf.

MTA_NOSUCHITEM An invalid item code was specified.

Example
printf("Host name: %s\n",

mtaChannelToHost(NULL, NULL, MTA_CHANNEL,
"tcp_local", 0, 0));

mtaDateTime()
Obtain the current date and time in an RFC 822 and RFC 1123 complaint format.

Syntax
const char *mtaDateTime(char *date,

size_t *date_len,
size_t date_len_max,
time_t time);

Arguments

Arguments Description

date A pointer to a buffer to receive the NULL terminated date and time
string. To avoid possible truncation of the string, this buffer should be at
least 81 bytes long.

138 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Arguments Description

date_len An optional pointer to a size_t to receive the length in bytes of the
returned date and time string. This length does not include the NULL
terminator that terminates the host name. A value of NULL can be passed
for this call argument.

date_len_max The maximum size in bytes of the buffer pointed at by the date
argument.

time The date and time for which to generate the string representation. To use
the current local time, pass a value of zero for this argument.

Description
This routine generates an RFC 2822 compliant date and time string suitable for use in
an RFC 822 Date: header line. To generate a date and time string for a specific time,
supply the time as the time argument. Otherwise, supply a value of 0 for the time
argument and a date and time string will be generated for the current local time.

On successful completion, the date and time string is stored in the buffer pointed at by
the date argument, and the value of the date argument is returned.

Return Values
In the event of an error, mtaDateTime() will return NULL. It will set the error status
code in mta_errno.

Error Status Codes Description

MTA_BADARGS A value of NULL was supplied for the date argument.

MTA_STRTRU The date buffer is too small; the returned value has been truncated to
fit.

Example
char buf[80+1];

printf("The current date and time is %s\n",
mtaDateTime(buf, NULL, sizeof(buf), (time_t)0);

Chapter 6 • MTA SDK Reference 139

mtaDebug()
Enable generation of MTA SDK diagnostic output.

Syntax
int mtaDebug(int item_code, ...);

Arguments

Arguments Description

item_code An optional list of item codes. The list must be terminated with an integer
argument with value 0.

Description
Many of the low-level MTA subroutine libraries can produce diagnostic output as can
the MTA SDK itself. This output, when enabled, is directed to stdout. When a
channel program is run by the Job Controller, stdout is directed to the channel’s
debug log file. Use this diagnostic output when developing programs.

Note – mtaDebug() may also be used in production programs; however, caution
should be used, as it can be quite verbose and voluminous, thereby degrading
performance and consuming disk space.

As described in the following table, item codes are used to select specific types of
diagnostic output.

140 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes Additional Arguments Description

MTA_DEBUG_DECODE None Enable diagnostic output from the low-level MIME
decoding routines. This might be helpful when
trying to understand MIME conversions that occur
either when enqueuing messages (and the
destination channel is configured to invoke MIME
conversions, for example, marked with channel
keywords such a thurman or inner), or when
using mtaDecodeMessage.()

MTA_DEBUG_DEQUEUENone Enable diagnostic output from low-level queue
processing routines. Use this when trying to
understand issues around reading and processing
of queued message files. This will not help
diagnose the selection of queued messages, which
is handled by the Job Controller.

Enabling this diagnostic output is the equivalent of
setting DEQUEUE_DEBUG=1 in the option file,
option.dat.

MTA_DEBUG_ENQUEUENone Enables output from low-level message enqueue
routines. Can be used to diagnose the address
rewriting process, destination channel selection,
header processing, and other types of processing
that occurs when a message is enqueued.

Enabling this diagnostic output is the equivalent of
setting MM_DEBUG=5 in the option.dat file.

MTA_DEBUG_MM size_t level Enable diagnostic output from the low-level
message enqueue routines. The item code must be
followed by one additional call argument: the
debug level to use. The value of level ranges from
0 to 20. Enqueue diagnostics can be used to
diagnose the address rewriting process,
destination channel selection, header processing
and other types of processing that occurs when a
message is enqueued.

Enabling this diagnostic output is equivalent to
setting DEQUEUE_DEBUG=level in the
option.dat file.

Chapter 6 • MTA SDK Reference 141

Item Codes Additional Arguments Description

MTA_DEBUG_OS None Enable diagnostic output from the low-level
operating system dependent routines. This output
is helpful when diagnosing problems associated
with creating, opening, writing, or reading files.
This typically happens when attempting to
enqueue messages, which requires permissions to
create and write messages in the MTA queues.

Enabling this output is equivalent to setting
OS_DEBUG=1 in the option.dat file.

MTA_DEBUG_SDK None Enable diagnostic output for the MTA SDK. When
this is enabled, diagnostic information will be
output whenever the SDK returns an error result.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list
array must be terminated with a final array entry
with an item code value of 0. For further
information on item lists, see “Item Codes and
Item Lists” on page 35.

Return Values

Return Values Description

0 Successful, normal completion.

MTA_BADARGS A NULL value was supplied for a pointer to an item list array.

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more
configuration files. For further information, issue the following
command:

imsimta test -rewrite

MTA_NO Unable to initialize the MTA SDK. For further information issue the
following command:

imsimta test -rewrite

MTA_NOSUCHITEM An invalid item code was specified.

Example
mtaDebug(MTA_DEBUG_SDK, MTA_MM_DEBUG, 8, 0);

142 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

mtaDecodeMessage()
Decode a MIME formatted message; optionally convert non-MIME formats to MIME.

Syntax
int mtaDecodeMessage(void *ctx,

int input_type,
void *input,
int output_type,
void *output,
mta_decode_inspect_t *inspect,
int item_code, ...);

Arguments

Arguments Description

ctx Optional pointer to a caller-supplied context or other data type. This
pointer will be passed as the ctx argument to any caller-supplied routines,
such as the one supplied as the inspect argument. A value of NULL can
be passed for this argument.

input_type Input type indicator describing the input source to use, either a dequeue
context or a caller-supplied routine. There are only two valid values:
MTA_DECODE_DQ, MTA_DECODE_PROC.

input For input_type=MTA_DECODE_DQ, input must be a pointer to a dequeue
context created by mtaDequeueStart().

For input_type=MTA_DECODE_PROC, input must be the address of a
routine of type mta_decode_read_t.

output_type Optional output type indicator describing the output destination to use,
either an enqueue context or a caller-supplied routine. Valid values are: 0,
MTA_DECODE_NQ, MTA_DECODE_PROC. When a value of 0 is supplied, the
output argument is ignored.

output For output_type=MTA_DECODE_NQ, output must be a pointer to an
enqueue context created with mtaEnqueueStart().

For output_type=MTA_DECODE_PROC, output must be the address of a
routine to type mta_decode_write_t. This argument is ignored when a
value of 0 is supplied for output_type.

Chapter 6 • MTA SDK Reference 143

Arguments Description

inspect The address of an inspection routine of type mta_decode_inspect_t.

item_code An optional list of item codes. The list must be terminated with an integer
argument with value 0.

Description
The MTA has powerful facilities for parsing and decoding single and multipart
messages formatted using the MIME Internet messaging format. Additionally, these
facilities can convert messages with other formats to MIME, for example, text parts
with BINHEX or UUENCODE data, the RFC 1154 format, and many other proprietary
formats. The mtaDecodeMessage() routine provides access to these facilities,
parsing either a queued message or a message from an arbitrary source such as a disk
file or a data stream.

There are two usage modes for mtaDecodeMessage(). In the first mode, messages
are simply parsed, any encoded content decoded, and each resulting, atomic message
part presented to an inspection routine. This mode of usage is primarily of use to
channels that interface the MTA to non-Internet mail systems such as SMS and X.400.
The second mode of operation allows the message to be rewritten after inspection by
an output routine. The output destination for this rewriting may be either the MTA
channel queues, or an arbitrary destination via a caller-supplied output routine.

During the inspection process in this second usage mode, individual, atomic message
parts may be discarded or replaced with text. This operational mode is primarily of
use to intermediate processing channels that need to scan message content or perform
content conversions, for example, virus scanners and encryption software.

Example 5–1 illustrates the first usage mode, while Example 5–2 illustrates the second.

Inspection Routine
Key to either usage mode for mtaDecodeMessage() is the inspection routine,
pointed to with the inspect argument. The mtaDecodeMessage() routine presents
each atomic message part to the inspection routine one line at a time. The presentation
begins with the part’s header lines. Once all of the header lines have been presented,
the lines of content are presented next. The following points should also be noted:

� Message parts need not have any content. A common example is a single part
message with no content for which the sender used the Subject: header line to
express their message.

� In the case of a non-multipart message, the message has a single part. The header
for this sole part is the header for the message itself. As noted previously, there
may or may not be any content to this single part.

144 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

� In the case of a multipart message, individual parts need not have a part header. In
such cases, MIME defaults apply and imply that the content is text/plain using
the US-ASCII character set.

� Regardless of the value of the Content-transfer-encoding: header line, the
content presented will no longer be encoded.

� In the case of a multipart message, the outermost header is not presented.
However, it may be inspected by means of an output routine. For a discussion of
the output routine, see “Output Routine” on page 146 that follows.

The following code fragment shows the required syntax of an inspection routine:

int inspection_routine(void *ctx,
mta_decode_t *dctx,
int data_type,
const char *data,
size_t data_len);

The following table lists each of the inspection routine’s arguments, and gives a
description of each.

Arguments Description

ctx The caller-supplied private context.

dctx A decode context created by mtaDecodeMessage(). This decode context
represents the current part being processed. This context is to be used with
calls to the other decode routines requiring a decode context. This context is
automatically disposed of by mtaDecodeMessage().

data_type The nature of the data being presented:
� For a header line: MTA_DATA_HEADER
� For a line of text-based content: MTA_DATA_TEXT
� For a line of binary content: MTA_DATA_BINARY
� No data at all: MTA_DATA_NONE.

Atomic part content with a MIME content type of text/* or
message/* is considered to be text-based. Such content is given the
data type MTA_DATA_TEXT. All other atomic part content (audio/*,
image/*, and application/*) is considered to be binary and
denoted by the data type MTA_DATA_BINARY. The data type
MTA_DATA_NONE is only presented when using an optional output
routine (supplied with the output argument in
mtaDecodeMessage()).

data A pointer to the data being presented. Message lines will not have
carriage-return or line-feed terminators, nor is the data itself NULL
terminated. (However, in the case of binary data, there may be carriage
returns, line feeds, or even NULLs embedded within the data itself.)

Chapter 6 • MTA SDK Reference 145

Arguments Description

data_len The length in bytes of the data being presented. This length may be 0, which
indicates a blank line and not the absence of any data (MTA_DATA_NONE).

Output Routine
When an output routine is not used, the inspection routine can detect the transition
from one message part to another by observing the part number on each call. The part
number is obtained by calling “mtaDecodeMessageInfoString()” on page 156
with an item value of MTA_DECODE_PART_NUMBER.

When the optional output routine (pointed to by the output argument) is used, an
additional data type, MTA_DATA_NONE, is presented to the inspection routine. It is
presented to the inspection routine after the part’s header and entire content have
been presented. However, no data is actually presented for the MTA_DATA_NONE type.
As such, this data type merely serves to (1) let the inspection routine know that the
entire part has now been presented, and (2) allows the inspection routine a final
chance to delete the part from the data being output to the output routine. For
example, it allows a virus scanner to be activated and a judgment passed. Based upon
the result of the virus scan, the part can then either be copied to the output or not.

If it is not copying the part to the output, the inspection routine must call
mtaDecodeMessagePartDelete(). That call will either delete the part entirely, or
optionally replace it with caller-supplied content. Calling
mtaDecodeMessagePartCopy() makes the copy operation explicit; if neither
routine is called, then the part will be implicitly copied to the message being output.

When using an output routine, the inspection routine may call
mtaDecodeMessagePartDelete() or mtaDecodeMessagePartCopy() at any
time. It is not necessary to wait until the inspection routine is called with a data type
of MTA_DATA_NONE. For instance, a virus scanner may want to discard a part when it
sees that the part’s content type indicates an executable program. However, once
either of these routines is called, the inspection routine will not be called any further
for that message part.

Dequeue Context
The message to be decoded is supplied by either a dequeue context or a
caller-supplied input routine. When using a dequeue context, observe the following
points:

� Specify MTA_DECODE_DQ for the input_type call argument.

� Pass the dequeue context from mtaDequeueStart() as the input argument.

� The recipient list of the message being dequeued must have already been read by
mtaDequeueRecipientNext() before calling mtaDecodeMessage().

146 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

� mtaDequeueMessageFinish() must not yet have been called for the dequeue
context.

� After using a dequeue context with mtaDecodeMessage(), no further calls to
mtaDequeueRecipientNext() can be made.

� Calls to mtaDequeueLineNext() can only be performed after a call to
mtaDequeueRewind().

Caller-Supplied Input Routine
When using a caller-supplied input routine to supply the message to be decoded,
specify MTA_DECODE_PROC for the input_type argument, and pass the address of
the input routine as the input argument.

The following code fragment shows the syntax of a caller-supplied input routine:

int input_routine(void * ctx,
const char **line,
size_t * line_len);

The following table lists the arguments for a caller-supplied input routine, and gives a
description of each.

Arguments Description

ctx The caller-supplied private context.

line A pointer to the start of the next line or section of data to return. The line or
data does not need to be NULL terminated.

line_len The length in bytes of the line or block of data being returned. A zero length
signifies zero bytes of data. That is, a zero length does not cause
mtaMessageDecode() to automatically determine the length by searching
for a NULL terminator.

On each successful call, the input routine should return a status code of 0 (MTA_OK).
When there is no more message data to provide, then the input routine should return
MTA_EOF. The call that returns the last byte of data should return 0; it is the
subsequent call that must return MTA_EOF. In the event of an error, the input routine
should return a non-zero status code other than MTA_EOF, such as MTA_NO. This will
terminate the message parsing process and mtaDecodeMessage() will return an
error.

Chapter 6 • MTA SDK Reference 147

Note – By default, each block of data must be a single line of the message. This
corresponds to the MTA_TERM_NONE item code. If the MTA_TERM_CR,
MTA_TERM_CRLF, MTA_TERM_LF, or MTA_TERM_LFCR item code is specified, then the
block of data need not correspond to a single, complete line of message data It may be
a portion of a line, multiple lines, or even the entire message. See “Item Codes”
on page 150 for information about mtaDecodeMessage() item codes.

Enqueue Context
The parsed message may be output either as a message enqueue or written to an
arbitrary destination via a caller-supplied output routine. When using a message
enqueue context, observe the following points:

� Specify MTA_DECODE_NQ for the output_type call argument.

� Pass the enqueue context from mtaEnqueueStart() as the output.

� Specification of the message’s recipient list must have already been completed with
mtaEnqueueTo() before calling mtaDecodeMessage().

� mtaEnqueueFinish() must not yet have been called for the enqueue context.

� After the call to mtaDecodeMessage() has completed successfully, complete the
message enqueue with mtaEnqueueFinish().

� In the event of an error, the message submission should be cancelled, with
mtaEnqueueFinish().

� mtaDecodeMessage() will write the entire message header and content. There is
no need for the caller to write anything to the message’s header or content.

Caller-Supplied Output Routine
To use a caller-supplied output routine, specify the MTA_DECODE_PROC for the
output_type call argument, and pass the address of the output routine as the
output argument.

This code fragment shows the syntax of a caller-supplied output routine.

int output_routine(void *ctx,
mta_decode_t *dctx,
const char **line,
size_t *line_len);

The following table lists the arguments for a caller-supplied output routine, and gives
a description of each.

148 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Arguments Description

ctx The caller-supplied private context passed as ctx to
mtaDecodeMessage().

dctx A decode context created by mtaDecodeMessage(). This decode context
should be used with calls to the other decode routines requiring a decode
context. This context is automatically disposed of by
mtaDecodeMessage().

line Pointer to a line of the message to output. This line is not NULL terminated.
The line will also lack any carriage return or line feed record terminators.

line_len The length in bytes of the message line to output. A length of 0 indicates a
blank line. The maximum line length presented will be BIGALFA_SIZE
bytes (1024 bytes).

Each line passed to the output routine represents a complete line of the message to be
output. The output routine must add to the line any line terminators required by the
output destination (for example, carriage return, line feed pairs if transmitting over
the SMTP protocol, or line feed terminators if writing to a UNIX® text file). Supplying
a value of zero for the output_type call argument, causes the output argument to be
ignored. In this case no output routine will be used.

Decode Context Queries
When mtaDecodeMessage() calls either a caller-supplied inspection or output
routine, it passes to those routines a decode context. Through various SDK routine
calls, this decode context may be queried to obtain information about the message part
currently being processed.

The following table lists the informational message codes that can be obtained about a
message part being processed, and gives a description of each, including the SDK
routine used to obtain it.

Message Code Description

MTA_DECODE_CCHARSET The character set specified with the CHARSET parameter of the
part’s Content-type: header line. If the part lacks a CHARSET
specification, then the value us-ascii will be returned. Obtain
with “mtaDecodeMessageInfoString()” on page 156.

MTA_DECODE_CDISP Value of the Content-disposition: header line, less any
optional parameters. Will be a zero length string if the part lacks
a Content-disposition: header line. Obtain with
“mtaDecodeMessageInfoString()” on page 156.

Chapter 6 • MTA SDK Reference 149

Message Code Description

MTA_DECODE_CDISP_PARAMSParameter list to the Content-disposition: header line, if
any. The parsed list is returned as a pointer to an option context.
For further information, see
“mtaDecodeMessageInfoParams()” on page 154.

MTA_DECODE_CSUBTYPE The content subtype specified with the part’s Content-type:
header line (for example, plain for text/plain, gif for
image/gif). Defaults to plain when the part lacks a
Content-type: header line.

Obtain with “mtaDecodeMessageInfoString()” on page
156.

MTA_DECODE_CTYPE The major content type specified with the part’s
Content-type: header line (for example, text for
text/plain, image for image/gif). Defaults to text when
the part lacks a Content-type: header line.

Obtain with “mtaDecodeMessageInfoString()” on page
156.

MTA_DECODE_CTYPE_PARAMSParameter list to the Content-type: header line, if any. The
parsed list is returned as a pointer to an option context. For
further information, see “mtaDecodeMessageInfoParams()”
on page 154.

MTA_DECODE_DTYPE Data type associated with this part. Obtain with
“mtaDecodeMessageInfoInt()” on page 153.

MTA_DECODE_PART_NUMBERSequential part number for the current part. The first message
part is part 0, the second part is 1, the third part is 2, and so on.
Obtain with “mtaDecodeMessageInfoInt()” on page 153.

Item Codes
The table that follows lists the item codes for the item_code argument passed to
mtaDecodeMessage(). The list of item codes must be terminated with an item code
with a value of 0.

150 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes Additional Arguments Description

MTA_DECODE_LEVELS_MAXmax_levels Place an upper limit on the depth of nested
MIME multiparts that will be parsed. When
this limit is reached no further parsing of
deeper, nested multiparts is performed and
the parts handed over for inspection include
as text content these deeper, nested
multiparts. By default, no limit is imposed.
When dealing with looping notification
messages, it is possible for the looping
message to become deeply nested.

This item code must be followed by one
additional call argument whose value is the
integer-valued upper limit to impose:
max_levels.

MTA_DECODE_PARTS_MAX max_parts Place an upper limit on the total number of
message parts that will be parsed. When this
limit is reached, no further parsing of parts is
performed. By default, no limit is imposed.

This item code must be followed by one
additional call argument whose value is the
integer-valued part limit to impose:
max_parts.

MTA_DECODE_THRURMAN None When specified, the MIME parser will first
translate non-MIME formatted data to MIME.
By default this translation is not performed.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The
item list array must be terminated with a final
array entry with an item code value of 0. For
further information on item lists, see “Item
Codes and Item Lists” on page 35.

MTA_TERM_CR None Data supplied by the input routine, pointed
to by the input argument, uses a single byte
carriage return terminator to terminate each
line of message data. This option is ignored
when input_type has the value
MTA_DECODE_DQ.

MTA_TERM_CRLF None Data supplied by the input routine, pointed
to by the input argument, uses a two byte
carriage-return line-feed terminator to
terminate each line of message data. This
option is ignored when input_type has the
value MTA_DECODE_DQ.

Chapter 6 • MTA SDK Reference 151

Item Codes Additional Arguments Description

MTA_TERM_LF None Data supplied by the input routine, pointed
to by the input argument, uses a single byte
line-feed terminator to terminate each line of
message data. This option is ignored when
input_type has the value MTA_DECODE_DQ.

MTA_TERM_LFCR None Data supplied by the input routine, pointed
to by the input argument, uses a two byte
line-feed carriage-return terminator to
terminate each line of message data. This
option is ignored when input_type has the
value MTA_DECODE_DQ.

MTA_TERM_NONE None Data supplied by the input routine, pointed
to by the input argument, uses no line
terminators. Each call to the input routine
returns a single, complete line of message
data. This option is ignored when
input_type has the value MTA_DECODE_DQ.

Return Values

Return Values Description

0 Successful, normal completion.

MTA_BADARGS Two conditions cause this error:
1. A NULL value was supplied for input, output (when output_type is

non-zero), or a required argument to an item code.
2. An invalid value supplied for either input_type or

output_type.

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more
configuration files. For further information issue the following
command:imsimta text -rewrite

MTA_NO Can be sent for one of three reasons:
1. Error parsing the supplied message.
2. An error reading from the queued message file when

MTA_DECODE_DQ is supplied for input_type.
3. Unable to initialize the MTA SDK. In this case, issue the command:

imsimta test -rewrite

MTA_NOMEM Insufficient virtual memory.

MTA_NOSUCHITEM An invalid item code was specified.

152 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Example
For examples of using mtaDecodeMessage, see Example 5–1 and Example 5–2.

mtaDecodeMessageInfoInt()
Obtain integer-valued information relating to the current message part.

Syntax
int mtaDecodeMessageInfoInt(mta_decode_t *dctx,

int item);

Arguments

Arguments Description

dctx A decode context created by mtaMessageDecode().

item Item identifier specifying which value to return. See the description that
follows for the list of permitted values for this argument.

Description
This routine is used to obtain integer-valued information about the current message
part. (When mtaDecodeMessage() calls either a user-supplied inspection or output
routine, it provides a decode context describing the current message part being
processed.)

The following table lists the values for the item argument, and gives a description of
each.

Chapter 6 • MTA SDK Reference 153

Values Description

MTA_DECODE_DTYPE Data type associated with this part. The returned values will
be MTA_DATA_NONE, MTA_DATA_HEADER,
MTA_DATA_TEXT, or MTA_DATA_BINARY.

MTA_DECODE_PART_NUMBER Sequential part number for the current part. The first
message part is part 0, the second part is 1, the third part is
2, and so on.

Return Values
Upon normal, successful completion the value of the requested item is returned. In the
event of an error, a value of -1 is returned and mta_errno is set to indicate the error
status code. The following table lists the error status codes for this routine, and gives
an example of each.

Error Status Codes Description

MTA_BADARGS A NULL value was supplied for the dctx call argument.

MTA_NOSUCHITEM An invalid value was supplied for the item call argument.

Example
part_number = mtaDecodeMessageInfoInt(dctx, MTA_PART_NUMBER);

mtaDecodeMessageInfoParams()
Obtain an option context describing the current message part’s content parameters.

Syntax
mta_opt_t *mtaDecodeMessageInfoParams(mta_decode_t *dctx,

int item,
mta_opt_t **params);

154 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Arguments

Arguments Description

dctx A decode context created by mtaMessageDecode().

item Item identifier specifying which content parameter list to return. See the
description that follows for the list of permitted values for this argument.

params An optional pointer to receive the address of the option context describing the
requested parameter list.

Description
This routine returns the parameter lists for either the Content-type: or
Content-disposition: header lines. (When mtaDecodeMessage() calls either a
user-supplied inspection or output routine, it provides a decode context describing the
current part being processed.)

The following table lists the values for the item argument, and gives a description of
each.

Values Description

MTA_DECODE_CDISP_PARAMS Parameters associated with the Content-disposition:
header line, if any.

MTA_DECODE_CTYPE_PARAMS Parameters associated with the Content-type: header
line, if any.

The option context returned upon normal completion does not need to be disposed of
with mtaOptionFinish(). It will automatically be disposed of by
mtaDecodeMessage(). The values of individual parameters can be queried using
mtaOptionString(), mtaOptionInt(), and mtaOptionFloat(). Program code
need not worry about whether the underlying header line exists in the parts header. If
it does not, then calls to obtain individual parameter values will succeed, but return
no value.

Note – If the Content-type: header line is not present, mtaOptionString()
returns an empty string. This is in contrast to what happens when
mtaDecodeMessageInfoString() is used. It always returns a value for the
CHARSET parameter of the Content-type: header line. If the Content-type:
header line is not present, it returns the MIME default value us-ascii.

Chapter 6 • MTA SDK Reference 155

It is important to note that the option contexts returned by this routine are only valid
during the lifetime of the associated decode context. They are not valid after
inspection or output of a new message part begins, nor are they valid after
mtaDecodeMessage() returns.

Return Values
Upon normal, successful completion, a pointer to an option context is returned. In the
event of an error, a NULL value is returned, and mta_errno is set to indicate the
error status code. The following table lists the error status codes, and gives a
description of each:

Error Status Codes Description

MTA_BADARGS A NULL value was supplied for the dctx call argument, or an invalid
decode context was supplied for dctx.

MTA_NOSUCHITEM An invalid value was supplied for the item call argument.

Example
char buf[64];

strcpy(buf, "us-ascii");
mtaOptionString(

mtaDecodeMessageInfoParams(dctx, MTA_DECODE_CTYPE_PARAMS,
NULL), "charset", 0, buf, NULL, sizeof(buf));

printf("Message part’s character set is %s\n", buf);

mtaDecodeMessageInfoString()
Obtain string-valued information relating to the current message part.

Syntax
const char *mtaDecodeMessageInfoString(mta_decode_t *dctx,

int item,
const char **str,
size_t *len);

156 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Arguments

Arguments Description

dctx A decode context created by mtaMessageDecode().

item Item identifier specifying which string-value item to return. See the
description that follows for the list of permitted values for this argument.

str An optional pointer to receive the address of the requested string. The string
will be NULL terminated. A value of NULL may be passed for this
argument.

len An optional pointer to receive the length of the requested string. This length
is measured in bytes and does not include the NULL terminator at the end
of the string. A value of NULL may be passed for this argument.

Description
This routine is used to obtain string-valued information about the current message
part. (When mtaDecodeMessage() calls either a user-supplied inspection or output
routine, it provides a decode context describing the current message part being
processed.)

The following table lists the values for the item call argument, and gives a description
of each.

Values Description

MTA_DECODE_CCHARSET The character set specified with the CHARSET parameter of the
part’s Content-type: header line. If the part lacks a CHARSET
specification, then the value us-ascii will be returned.

MTA_DECODE_CDISP Value of the Content-disposition: header line, less any
optional parameters. If the part lacks a
Content-disposition: header line, the returned value will
be a zero length string.

MTA_DECODE_CSUBTYPE The content subtype specified with the part’s Content-type:
header line (for example, plain for text/plain, gif for
image/gif). Defaults to plain when the part lacks a
Content-type: header line.

MTA_DECODE_CTYPE The major content type specified with the part’s
Content-type: header line (for example, text for
text/plain, image for image/gif). Defaults to text when
the part lacks a Content-type: header line.

Chapter 6 • MTA SDK Reference 157

Return Values
mtaDecodeMessageInfoString() always returns a value for the CHARSET
parameter of the Content-type: header line. When the Content-type: header
line is not present, it returns the MIME default value, us-ascii.

Upon normal, successful completion a pointer to the requested string is returned. In
addition, if pointers were provided in the str and len call arguments, the address of
the string and its length are returned.

In the event of an error, a NULL value is returned and mta_errno is set to indicate
the error status code. The following table lists the error status codes, and gives a
description of each.

Error Status Codes Description

MTA_BADARGS A NULL value was supplied for the dctx call argument, or an invalid
decode context was supplied for dctx.

MTA_NOSUCHITEM An invalid value was supplied for the item call argument.

Example
printf("The message part’s character set is %s\n",

mtaDecodeMessageInfoString(dctx, MTA_DECODE_CCHARSET,
NULL, NULL));

mtaDecodeMessagePartCopy()
Explicitly copy a message part to the message being written.

Syntax
int mtaDecodeMessagePartCopy(mta_decode_t *dctx,

int item_code, ...);

158 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Arguments

Arguments Description

dctx A decode context created by mtaMessageDecode().

item_code Reserved for future use. A value of zero must be supplied for this
argument.

Description

When an output routine is used in conjunction with “mtaDecodeMessage()”
on page 143, the inspection routine can explicitly request that the current message part
be copied to the output destination. After the inspection routine calls
mtaDecodeMessagePartCopy(), it will no longer be called for that message part.

If the inspection routine is called with a data type of MTA_DATA_NONE, the message
part copy is implicitly done, even if the inspection routine does not call either
mtaDecodeMessagePartCopy() or “mtaDecodeMessagePartDelete()”
on page 160. Therefore, the only advantage to making an explicit call to
mtaDecodeMessagePartCopy() is that once that call is made, the inspection
routine will no longer be called for that particular message part.

Return Values

Values Description

0 Normal, successful completion.

MTA_BADARGS A NULL value was supplied for the dctx call argument, or an invalid
decode context was supplied for dctx.

MTA_NO Invalid call to this routine. Either no output routine is being used, or the
call was made from the output routine itself.

Output errors encountered while attempting to write the output may also
result in this error.

Example
This routine is used in Example 5–2.

Chapter 6 • MTA SDK Reference 159

mtaDecodeMessagePartDelete()
Prevent a message part from being written or replace it with a text part.

Syntax
int mtaDecodeMessagePartDelete(mta_decode_t *dctx,

int item_code, ...);

Arguments

Arguments Description

dctx A decode context created by mtaMessageDecode().

item_code An optional list of item codes. See the description section that follows for a
list of item codes. The list must be terminated with an integer argument
with value 0.

Description
When an output routine is used in conjunction with “mtaDecodeMessage()”
on page 143, the inspection routine may discard the current message part by calling
this routine. As an alternative to discarding the part, it may be replaced with a part
containing caller-supplied data such as a warning message. This replacement is
achieved through the use of item codes.

Once mtaDecodeMessagePartDelete() has been called, the inspection routine
will no longer be called for that message part. As such, calling the routine is final and
cannot be undone short of cancelling the entire message decode operation itself (for
example, by having the caller-supplied read routine return an error, or after
mtaDecodeMessage() completes, cancelling the dequeue and enqueue operations
with mtaDequeueMessageFinish() and mtaEnqueueFinish()).

The following table lists the item codes for this routine, any additional item code
arguments each item code requires, and gives a description of each.

160 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes Additional Arguments Description

MTA_DECODE_CCHARSETconst char *charset

size_t charset_len

Specify the character set used for the
message part (for example, us-ascii,
iso-8859-1). This item code must be
followed by two additional call
arguments:
1. The name of the character set
2. The length in bytes of that name

If a value of zero is passed for the
length, then the name must be
NULL terminated.

MTA_DECODE_CDISP const char
*disposition

size_t
disposition_len

Specify the content disposition for the
message part (for example, inline,
attachment; filename=a.doc). This
disposition information will be placed
in a Content-disposition: header
line. The item code must be followed
by two additional call arguments:
1. The disposition string
2. The length in bytes of that string

If a value of zero is passed for the
length, then the disposition string
must be NULL terminated.

MTA_DECODE_CLANG, const char *language

size_t language_len

Specify the language used for the
message part (for example, en, fr).
This language information will be
placed in a Content-language:
header line. The item code must be
followed by two additional call
arguments:
1. The language string
2. The length in bytes of that string.

If a value of zero is passed for the
length, then the string must be
NULL terminated.

Chapter 6 • MTA SDK Reference 161

Item Codes Additional Arguments Description

MTA_DECODE_CSUBTYPEconst char *subtype

size_t subtype_len

Specify the content subtype for the
message part (for example, plain or
html for text/plain or text/html).
This subtype information will be
combined with the type and charset
information and placed in a
Content-type: header line. The item
code must be followed by two
additional call arguments:
1. The language string
2. The length in bytes of that string.

If a value of zero is passed for the
length, then the string must be
NULL terminated.

MTA_DECODE_CTYPE const char *type

size_t type_len

Specify the major content type for the
message part (for example, text for
text/plain or text/html). This
major type information will be
combined with the subtype and charset
information and placed in a
Content-type: header line. The item
code must be followed by two
additional call arguments:
1. The language string
2. The length in bytes of that string.

If a value of zero is passed for the
length, then the string must be
NULL terminated.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array.
The item list array must be terminated
with a final array entry with an item
code value of 0. For further information
on item lists, see “Item Codes and Item
Lists” on page 35.

MTA_REASON const char *text

size_t text_len

Specifies the content and length of
caller-supplied text or data used to
replace the deleted message part.

The item code must be followed by two
additional call arguments:
1. The language string
2. The length in bytes of that string.

If a value of zero is passed for the
length, then the string must be
NULL terminated.

162 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS Returned for one of two reasons:
1. A NULL value was supplied for the dctx call argument, an invalid

decode context was supplied for dctx.
2. A required argument to an item code was NULL.

MTA_NO Returned for one of two reasons:
1. Invalid call. Either no output routine is being used, or the call was

made from the output routine itself.
2. Output errors encountered while attempting to write the output.

MTA_NOSUCHITEM An invalid item code was specified.

Example
The following code fragment shows how the routine is used to discard the message
part:

mtaDecodeMessagePartDelete(dctx, 0);

The following code fragment shows how to replace the message part with a text
warning:

mtaDecodeMessagePartDelete(dctx,
MTA_REASON, "Warning: virus infected message part was

discarded.", 0,”
MTA_DECODE_CLANG, "en", 2,
MTA_DECODE_CCHARSET, "us-ascii", 8, 0);

The following code fragment shows the output generated by the preceding code
example.

Content-type: text/plain; charset=us-ascii
Content-language: en

Warning: virus infected message part was discarded.

See also Example 5–2.

Chapter 6 • MTA SDK Reference 163

mtaDequeueInfo()
Obtain information associated with an ongoing message dequeue.

Syntax
int mtaDequeueInfo(mta_dq_t *dq_ctx,

int item_code, ...);

Arguments

Arguments Description

dq_ctx A dequeue context created by mtaDequeueStart().

item_code An optional list of item codes. See the description section that follows for a
list of item codes. The list must be terminated with an integer argument with
value 0.

Description
Information associated with an ongoing message dequeue may be obtained with
mtaDequeueInfo(). The information to obtain is specified through the use of item
codes.

Note – The pointers returned by mtaDequeueInfo() are only valid during the life of
the dequeue context. Once the dequeue has been completed for that particular
message, the pointers are no longer valid.

164 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes Additional Arguments Description

MTA_CHANNEL const char **channel

size_t *channel_len

Obtain the name of the channel for which
messages are being dequeued. The
channel name will be NULL terminated.

This item code must be followed by two
additional call arguments:
1. the address of a pointer to receive the

address of the NULL terminated
channel name.

2. The address of a size_t to receive
the length of the channel name.
A NULL value may be passed for the
channel_len argument.

MTA_DELIVERY_FLAGSsize_t *dflags Return the envelope delivery flags for
either the entire message or for a
particular recipient. If called before the
first call to
mtaDequeueRecipientNext(), then
the delivery flags for the entire message
are returned. If called after the first call to
mtaDequeueRecipientNext(), then
the delivery flags are returned for the
most recently reported envelope recipient
address. The value of the delivery flags is
a logical OR of the deliveryflags
channel keyword values on each channel
the message has been enqueued to as it
flows through the MTA.

This item code must be followed by one
additional call argument, the address of a
size_t to receive the delivery flag
setting.

Chapter 6 • MTA SDK Reference 165

Item Codes Additional Arguments Description

MTA_DOMAIN const char **domain

size_t *domain_len

Retrieve the destination domain name, if
any, the Job Controller has associated
with this dequeue thread. When the
channel is marked with the single_sys
channel keyword, then the Job Controller
tries to give each dequeue thread for that
channel all messages destined for the
same host as determined by the domain
name in the recipient envelope addresses.

This item code must be followed by two
additional call arguments:
1. The address of a pointer to receive the

address of the NULL terminated
destination domain name.

2. The address of a size_t to receive
the length of that domain name.
A NULL value may be passed for the
domain_len argument.

MTA_ENV_ID const char **env_id

size_t *env_id_len

Obtain the envelope ID associated with
this message. If the message was
submitted to the MTA using the SMTP
NOTARY extension (RFC 1891), then this
will be the value of the ENVID parameter
supplied with the SMTP MAIL FROM
command. In all other cases, it will be an
envelope ID assigned by the MTA.

This item code must be followed by two
additional call arguments:
1. The address of a pointer to receive the

address of the NULL terminated
envelope ID.

2. The address of a size_t to receive
the length of that envelope id.
A NULL value may be passed for the
env_id_len argument.

166 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes Additional Arguments Description

MTA_ENV_TO const char **env_to

size_t *env_to_len

Return the envelope recipient address last
returned by
mtaDequeueRecipientNext(). If that
routine has not yet been called for the
dequeue context, then an MTA_NO error
code will be returned.

This item code must be followed by two
additional call arguments:
1. The address of a pointer to receive the

address of the NULL terminated
recipient address.

2. The address of a size_t to receive
the length of that address.
A NULL value can be passed for the
env_to_len argument.

MTA_ENV_FROM const char
**env_from

size_t *env_from_len

Obtain the envelope From: address for
the message. It is possible for this to be an
empty string (that is, a string of zero
length). This is not uncommon and is
mandated by Internet standards for
automatically generated notification
addresses. Notifications must never be
sent for messages with an empty
envelope From: address. The MTA SDK
adheres to this rule when generating any
requested notification messages.

This item code must be followed by two
additional call arguments:
1. The address of a pointer to receive the

address of the NULL terminated
envelope From: address.

2. The address of a size_t to receive
the length of that address.
A NULL value can be passed for the
env_from_len argument.

Chapter 6 • MTA SDK Reference 167

Item Codes Additional Arguments Description

MTA_IRCPT_TO const char
**ircpt_to

size_t *ircpt_to_len

Return the intermediate form of the last
envelope recipient address returned by
mtaDequeueRecipientNext(). If that
routine has not yet been called for the
dequeue context, then an MTA_NO error
code will be returned.

This item code must be followed by two
additional call arguments:
1. The address of a pointer to receive the

address of the NULL terminated
intermediate recipient address

2. The address of a size_t to receive
the length of that address.
A NULL value can be passed for the
ircpt_to_len argument.

MTA_ITEM_LIST mta_item_list_t*item_listSpecify a pointer to an item list array. The
item list array must be terminated with a
final array entry with an item code value
of zero. For further information on item
list usage, see “Item Codes and Item
Lists” on page 35.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS Received for one of three reasons:
1. A NULL value was supplied for the dq_ctx call argument
2. An invalid dequeue context was supplied for dq_ctx
3. A required argument to an item code was NULL.

MTA_NO An attempt was made to retrieve recipient information before calling
mtaDequeueRecipientNext().

MTA_NOSUCHITEM An invalid item code was specified.

MTA_THREAD The MTA SDK detected simultaneous use of the dequeue context by
two different threads.

Example
The following code fragment illustrates how this routine is used to retrieve the
delivery flags and intermediate recipient address for each recipient address.

168 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

int dflags, istat;
const char *to, *ito;

while (!(istat = mtaDequeueRecipientNext(dq, &to, NULL, 0)))
{

mtaDequeueInfo(dq, MTA_DELIVERY_FLAGS, &dflags,
MTA_IRCPT_TO, &ito, NULL, 0);

printf("Delivery flags: %d\n"
"Intermediate recipient address: %s\n", dflags, ito);

}
if (istat != MTA_EOF)

printf("An error occured; %s\n", mtaStrError(istat));

mtaDequeueLineNext()
Read the next line of the message from the queued message file.

Syntax
int mtaDequeueLineNext(mta_dq_t *dq_ctx,

const char **line,
size_t *len);

Arguments

Arguments Description

dq_ctx A dequeue context created by mtaDequeueStart().

line Optional address of a pointer to receive the address of the next line of the
message. The line will not be NULL terminated. A value of NULL may be
passed for this argument.

len Optional address of a size_t to receive the length of the returned line. A
value of NULL may be passed for this argument.

Description
After exhausting a message’s list of envelope recipients by repeated calls to
mtaDequeueRecipientNext(), begin reading the message’s header and content
with mtaDequeueLineNext(). Each call will return one line of the message, with
the first call returning the first line of the message, the second call the second line, and
so on. Once the message has been completely read, the status code MTA_EOF will be
returned.

Chapter 6 • MTA SDK Reference 169

The returned lines of the message will not be NULL terminated. This is because the
underlying message file is often mapped into memory. When that is the case, then the
returned pointer is a pointer into that memory map. Since the message files
themselves do not contain NULL terminators and the file is mapped read-only, it is not
possible for the SDK to add a NULL terminator to the end of the line without copying
it first to a writable portion of memory.

The returned lines of the message will not have any line terminators such as a line
feed or a carriage return. It is up to the calling routine to supply whatever line
terminators might be appropriate (for example, adding a carriage-return line-feed pair
when transmitting the line over SMTP.)

It is possible to call mtaDequeueLineNext() with NULL values for both the line
and len call arguments. But this is of limited use; one example is when writing a
channel that deletes all queued messages after first counting the number of lines in
each message for accounting purposes. More typical of such a channel would be to
supply NULL for the line argument but pass a non-zero address for the len
argument. That would then allow the channel to count up the number of bytes in the
deleted message.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS A NULL value was supplied for the dq_ctx call argument, or an invalid
dequeue context was supplied for dq_ctx.

MTA_EOF Message file has been completely read; no further lines to return.

Example
int istat;
const char *line;
size_t len;

while (!(istat = mtaDequeueLineNext(dq_ctx, &line, &len)))
printf("%.*s\n", len, line);

if (istat != MTA_EOF)
printf("An error occured; %s\n", mtaStrError(istat));

170 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

mtaDequeueMessageFinish()
Complete a message dequeue or defer a message for later processing.

Syntax
int mtaDequeueMessageFinish(mta_dq_t *dq_ctx,

int item_code, ...);

Arguments

Arguments Description

dq_ctx A dequeue context created by mtaDequeueStart().

item_code An optional list of item codes. See the description section the follows for a
list of item codes. The list must be terminated with an integer argument
with value 0.

Description
Before completing processing of a queued message, the disposition of each envelope
recipient must be set either by repeated calls to
mtaDequeueRecipientDisposition(), or by means of the MTA_DISP item code
for mtaDequeueMessageFinish(). For the former, a call should be made for each
envelope recipient address. For the latter, the disposition set with MTA_DISP applies
to all envelope recipients, overriding any previous settings made with
mtaDequeueRecipientDisposition(). It is important that the dispositions be set
correctly because they influence whether or not the message is deleted from the
channel’s queue by mtaDequeueMessageFinish(). Incorrectly setting the
dispositions can lead to duplicate message delivery, or, worse yet, lost mail.

To complete processing of a queued message, call mtaDequeueMessageFinish().
Upon being called, the routine performs one of three possible actions:

� If all recipients have a disposition indicating successful processing or a permanent
failure, then the underlying message file is deleted from the channel’s queue and
any necessary notification messages are sent. This corresponds to the dispositions:
MTA_DISP_DELIVERED, MTA_DISP_FAILED, MTA_DISP_RELAYED,
MTA_DISP_RELAYED_FOREIGN, MTA_DISP_RETURN, and MTA_DISP_TIMEDOUT.

Chapter 6 • MTA SDK Reference 171

� If all recipients have a disposition indicating a temporary processing problem or if
the MTA_ABORT item code is specified, then the message file is left in the channel’s
queue and a subsequent processing attempt is scheduled. The
MTA_DISP_DEFERRED disposition is the only disposition that indicates a
temporary processing problem. Generation of delay notifications is handled by a
special MTA process referred to as the return job. Generation of delay notifications
is not handled by mtaDequeueMessageFinish().

� If only a subset of the recipients have a disposition indicating a temporary
processing problem, then a new message is placed in the channel’s queue. This
new message is identical to the current message being processed except that its
envelope recipient list contains just those recipients whose disposition indicates a
temporary processing problem. The current message being processed is then
removed from the channel’s queue and any necessary notifications are sent for the
recipients that had dispositions indicating successful processing or a permanent
failure.

After mtaDequeueMessageFinish() is called, the dequeue context passed to it is
no longer valid, regardless of the status it returns. When it returns an error status, it
also defers the message and all of its recipients for later processing. This is done
regardless of the disposition of the recipients. Doing otherwise could potentially lead
to lost mail.

Internet standards require that notifications concerning a message be directed to the
message’s envelope From: address. In addition, the following two rules apply:

� Automatically generated notification messages themselves must have an empty
envelope From: address.

� Notifications must not be sent for messages with an empty envelope From:
address.

These two rules combine to prevent certain broad classes of message loops. The MTA
SDK strictly adheres to these Internet requirements.

Whenever a temporary processing error occurs and the channel can no longer process
a queued message, processing of the message should be deferred until a later time.
Processing for all recipients is deferred regardless of any prior disposition settings.
Temporary processing errors include such errors as: insufficient virtual memory,
network problems, disk errors, and other unexpected processing errors.

The following table lists the item codes for this routine, the additional arguments they
take, and gives a description of each one.

172 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes Additional Arguments Description

MTA_ABORT None When this item code is specified, processing of
the message is deferred for all recipients of the
message. The message is left in the channel’s
queue and a later processing attempt is
scheduled.

MTA_DISP size_t disposition Use the MTA_DISP item code to set the
disposition for all recipients of the message.
This disposition will override any prior
disposition settings.

This item code must be followed by one
additional call argument: the disposition value
to set. See the description of
mtaDequeueRecipientDisposition() for a
discussion of the disposition settings.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item
list array must be terminated with a final array
entry with an item code value of zero. For
further information on item list usage, see “Item
Codes and Item Lists” on page 35.

MTA_REASON const char *reason

size_t reason_len

When deferring processing of a message, the
reason for the deferral may be saved as part of
the messages delivery history. This delivery
history may be viewed by system managers
with the MTA qm utility. It may also be reported
in delay notifications.

This item code must be followed by two
additional call arguments:
1. The address of the string containing the

reason text.
2. The length in bytes of the reason text. If a

value of zero is passed for the length, then
the reason text must be NULL terminated.

Return Values

Return Values Description

0 Normal, successful completion.

Chapter 6 • MTA SDK Reference 173

Return Values Description

MTA_BADARGS Received for one of two reasons:
1. A NULL value was supplied for the dq_ctx call argument, an

invalid dequeue context was supplied for dq_ctx.
2. A required argument to an item code was NULL.

MTA_NO Unable to dequeue the message. This error can result from an attempt
to enqueue a new message to a subset of recipients.

MTA_NOSUCHITEM An invalid item code was specified.

MTA_ORDER Call made out of sequence. The call was made either before the
recipient list has been exhausted with
mtaDequeueRecipientNext(), or after the message had been
dequeued or deferred with mtaDequeueMessageFinish().

MTA_THREAD The MTA SDK detected simultaneous use of the dequeue context by
two different threads.

Example
There are three code examples, each showing variations on deferring a message.

The following code fragment shows how to use this routine to defer processing of a
message until a later time by calling the routine with the MTA_ABORT item code:

mtaDequeueMessageFinish(dq_ctx, MTA_ABORT, 0);

The following code fragment shows how to use this routine to defer processing of a
message and setting the disposition:

mtaDequeueMessageFinish(dq_ctx, MTA_DISP, MTA_DISP_DEFERRED, 0);

The following code fragment shows how to use this routine to defer processing of a
message with a text string explaining the reason for the deferral:

mtaDequeueMessageFinish(dq_ctx, MTA_ABORT, MTA_REASON,
"Temporary network error", 0, 0);

mtaDequeueRecipientDisposition()
Specify the delivery status (disposition) of an envelope recipient address.

174 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Syntax
int mtaDequeueRecipientDisposition(mta_dq_t *dq_ctx,

const char *env_to,
size_t env_to_len,
size_t disposition,
int item_code, ...);

Arguments

Arguments Description

dq_ctx A dequeue context created by mtaDequeueStart().

env_to The recipient address to effect the setting for. This must be the recipient’s
envelope To: address as returned by mtaDequeueRecipientNext()
and not some transformation of that address. If a value of zero is passed
for the env_to_len argument, then this string must be NULL
terminated.

env_to_len The length in bytes of the recipient address, env_to. This length does not
include any NULL terminator. If a value of zero is passed for this
argument, then the recipient address string must be NULL terminated.

disposition The delivery status disposition to set for this recipient address. See the
description section that follows for further details.

item_code An optional list of item codes. See the description section that follows for
a list of item codes. The list must be terminated with an integer argument
with value 0.

Description
Before completing processing of a queued message, the disposition of each envelope
recipient must be set either by repeated calls to
mtaDequeueRecipientDisposition(), or by means of the MTA_DISP item code
for mtaDequeueMessageFinish(). For the former, a call should be made for each
envelope recipient address. For the latter, the disposition set with MTA_DISP applies
to all envelope recipients, overriding any previous settings made with
mtaDequeueRecipientDisposition(). The delivery status dispositions, and their
descriptions are listed in the table that follows. Pass one of these values for the
disposition argument.

Chapter 6 • MTA SDK Reference 175

Delivery Status Dispositions Description

MTA_DISP_DEFERRED Processing for this recipient has experienced a temporary
failure (for example, the network is temporarily down, the disk
is currently full, the recipient is presently over quota). Schedule
a later processing attempt for this recipient.

MTA_DISP_DELIVERED Final delivery has been effected for this recipient address. Any
required delivery notifications should be generated.
Intermediate processing channels should use
MTA_DISP_RELAYED rather than MTA_DISP_DELIVERED. Use
of MTA_DISP_DELIVERED by an intermediate processing
channel might incorrectly generate a delivery status
notification when final delivery has not yet been effected.

MTA_DISP_FAILED Processing for this recipient has experienced a permanent
failure. The message is and will remain undeliverable for this
recipient. No further delivery attempts are to be made for this
recipient. Any required non-delivery notifications should be
generated.

MTA_DISP_RELAYED The message has been successfully processed for this recipient.
No further processing by this channel is needed for this
recipient address. No delivery status notification is generated
as final delivery will be effected by another entity capable of
generating any needed notification messages. This disposition
should be used by intermediate processing channels. It should
also be used by gateways that transfer the message to other
mail systems capable of generating the necessary notification
messages.

MTA_DISP_RELAYED_FOREIGNThe message has been successfully processed for this recipient.
No further processing by this channel is needed for this
recipient address; however, a relayed delivery status
notification should be generated if delivery notification was
requested for this recipient. This disposition should be used by
gateways that transfer the message to other mail systems
incapable of generating the necessary notification messages.

MTA_DISP_RETURN Generate a postmaster non-delivery notification for this
recipient and, for this recipient, remove the message from the
channel’s queue. This disposition is not intended for use by
channels. Instead, it should be used by postmaster utilities that
allow the postmaster to manually return mail messages.

MTA_DISP_TIMEDOUT Generate a timed-out non-delivery notification indicating that
the message has been undeliverable for too long and no further
delivery attempts will be made. This disposition is not
intended for use by channels. Instead, it is meant for use by the
MTA return job that scans the MTA queues, returning old,
undeliverable messages to their originators.

176 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

This table lists the item codes for this routine, and the additional required arguments,
and gives a description of each.

Item Codes Additional Arguments Description

MTA_DISP size_t
disposition

Use the MTA_DISP item code to set the disposition
for all recipients of the message. This disposition
will override any prior disposition settings. This
item code must be followed by one additional call
argument: the disposition value to set. See the
description of
mtaDequeueRecipientDisposition() for a
discussion of the disposition settings.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list
array must be terminated with a final array entry
with an item code value of zero. For further
information on item list usage, see “Item Codes and
Item Lists” on page 35.

MTA_REASON const char
*reason

size_t
reason_len

The reason for ascribing the disposition to this
recipient address. This reason might then appear in
any delivery or non-delivery status notification for
that recipient.

This item code must be followed by two additional
call arguments:
1. the address of the string containing the reason

text.
2. The length in bytes of the reason text. If a value

of zero is passed for the length, then the reason
text must be NULL terminated.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value was returned for one of the following reasons:
1. A NULL value was supplied for the dq_ctx call argument.
2. An invalid dequeue context was supplied for dq_ctx.
3. A required argument to an item code was NULL.

MTA_NOSUCHITEM An invalid item code was specified.

MTA_THREAD The MTA SDK detected simultaneous use of the dequeue context by
two different threads.

Chapter 6 • MTA SDK Reference 177

Example
This code fragment assumes a condition in which the recipient address is invalid. It
returns a disposition of MTA_DISP_FAILED with an explanation.

mtaDequeueRecipientDisposition(
dq_ctx, "sue@siroe.com", 0, MTA_DISP_FAILED,
MTA_REASON, "Invalid recipient address: no such user", 0, 0);

mtaDequeueRecipientNext()
Obtain the next envelope recipient address for the queued message file.

Syntax
int mtaDequeueRecipientNext(mta_dq_t *dq_ctx,

const char **env_to,
size_t *env_to_len,
int item code, ...);

Arguments

Argument Description

dq_ctx A dequeue context created by mtaDequeueStart().

env_to Optional address of a pointer to receive the memory address of the next
envelope recipient address. The recipient address will not be NULL
terminated.

env_to_len Optional address of a size_t to receive the length of the returned recipient
address. A value of NULL may be passed for this argument.

item_code An optional list of item codes. See the description section that follows for a
list of item codes. The list must be terminated with an integer argument
with value 0.

178 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Description
The first step in processing a queued message is to retrieve its list of envelope
recipient addresses. This is done by repeatedly calling
mtaDequeueRecipientNext() until a status code of MTA_EOF is returned. Note
that each call that returns a recipient address will return a status code of 0 (MTA_OK).
The final call, which returns MTA_EOF, will not return a recipient address.

The processing of the list of envelope recipient addresses will, in general, be unique to
each channel. Intermediate processing channels should simply re-enqueue a new
message and copy the envelope recipient list verbatim over to the new message being
enqueued, being sure to specify the MTA_ENV_TO and MTA_DQ_CONTEXT item codes
to mtaEnqueueTo(). The envelope recipient list must be read in its entirety before
attempting to read the message itself with mtaDequeueLineNext(). Failure to do so
will result in an MTA_ORDER error being returned by mtaDequeueLineNext().

This routine accepts the same item codes as “mtaDequeueInfo()” on page 164. The
code fragments are equivalent also, (compare the examples). Consequently, the
mtaDequeueInfo() routine might appear superfluous. However, it also serves as a
means of obtaining, in a single, non-repeated call, information about the overall
message itself, such as the message’s envelope ID.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value was returned for one of the following reasons:
1. A NULL value was supplied for the dq_ctx call argument.
2. An invalid dequeue context was supplied for dq_ctx.
3. A NULL value was supplied for a required item code argument.

MTA_NOMEM Insufficient virtual memory.

MTA_EOF The recipient list has been completely read; there are no further
recipient addresses to return.

MTA_THREAD Concurrent use of the dequeue context by two different threads has
been detected.

Example
This code fragment illustrates an intermediate processing channel using this routine to
fetch recipient addresses.

int dflags, istat;
const char *to, *ito;

Chapter 6 • MTA SDK Reference 179

while (!(istat = mtaDequeueRecipientNext(dq, &to, NULL,
MTA_DELIVERY_FLAGS, &dflags,
MTA_IRCPT_TO, &ito, NULL, 0)))

printf("Delivery flags: %d\n"
"Intermediate recipient address: %s\n", dflags, ito);

if (istat != MTA_EOF)
printf("An error occured; %s\n", mtaStrError(istat));

mtaDequeueRewind()
Reset the read point to the start of the message.

Syntax
int mtaDequeueLineNext(mta_dq_t *dq_ctx);

Arguments

Arguments Description

dq_ctx A dequeue context created by mtaDequeueStart().

Description
Repositions the read point back to the start of the message.

After obtaining a message’s recipient list by repeated calls to
mtaDequeueRecipientNext(), the read point into the underlying message file is
positioned at the start of the actual message. Specifically, at the start of the message’s
outermost header. Calling mtaDequeueLineNext() advances this read point, with
each call moving it towards the end of the message. To reposition the read point back
to the start of the message (that is, to the start of the message’s outermost header), call
mtaDequeueRewind(). Use this call if a program needs to make a second pass
through a message. For example, a program might scan a message’s content before
actually processing it.

180 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS A NULL value was supplied for the dq_ctx call argument, or an invalid
dequeue context was supplied for dq_ctx.

MTA_ORDER Call made out of sequence. The call was made either before the recipient
list has been exhausted with mtaDequeueRecipientNext(), or after the
message had been dequeued or deferred with
mtaDequeueMessageFinish().

MTA_THREAD The MTA SDK detected simultaneous use of the dequeue context by two
different threads.

Example
None

mtaDequeueStart()
Initiate message dequeue processing.

Syntax
int mtaDequeueStart(void *ctx1,

mta_dq_process_message_t *process_message,
mta_dq_process_done_t *process_done,
int item_code, ...);

Chapter 6 • MTA SDK Reference 181

Arguments

Arguments Description

ctx1 Optional pointer to a caller-supplied context or other data type. This
pointer will be passed as the ctx1 argument to the caller-supplied
routines process_message and process_done. A value of NULL
may be passed for this argument.

process_message The address of a caller-supplied routine to process each message.

process_done Optional address of a caller-supplied clean up routine. A NULL
value may be passed for this argument.

item_code An optional list of item codes. See the description section that follow
for a list of item codes. The list must be terminated with an integer
argument with value 0.

Description
The mtaDequeueStart() routine initiates processing of messages queued to a
specific channel. By default, the channel serviced will be determined from the
PMDF_CHANNEL environment variable. However, a channel name can be explicitly
specified with the MTA_CHANNEL item code.

All of the item codes, their additional arguments, and a description of each are
included in the table that follows.

Item Codes Additional Arguments Description

MTA_CHANNEL const char
*channel

size_t
channel_len

Explicitly specify the name of the
channel name to perform dequeue
processing for. This item code must be
followed by two additional call
arguments: the name of the channel
and the length in bytes of that channel
name. If a value of zero is passed for
the length, then the channel name must
be NULL terminated.

When this item code is not specified,
the name of the channel to process
queued messages for is taken from the
PMDF_CHANNEL environment variable.

182 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes Additional Arguments Description

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array.
The item list array must be terminated
with a final array entry with an item
code value of zero. For further
information on item list usage, see
“Item Codes and Item Lists” on page
35.

MTA_JBC_MAX_ATTEMPTS size_t attempts Specify the maximum number of
contiguous attempts that will be made
to sleep and then re-query the Job
Controller for work after being told by
the Job Controller that there are no
more messages to process. The default
value for this setting is 5 attempts. If an
attempt succeeds in providing
additional work, the count of attempts
is reset to zero. (The duration of each
sleep may be specified with the
MTA_JBC_RETRY_INTERVAL item
code.)

This item code must be followed by an
additional argument: the maximum
number of contiguous attempts to
make.

MTA_JBC_RETRY_INTERVAL size_t seconds Set the number of seconds
mtaDequeueMessage() sleeps before
again querying the Job Controller for
additional work. When not specified, a
value of 10 seconds is used. This item
code must be followed by one
additional argument: the number of
seconds to sleep for.

MTA_THREAD_MAX_THREADS size_t threads Specify the maximum number of
processing threads to run concurrently.
If not specified, then a limit of 20
threads is assumed.

This item code must be followed by one
additional argument: the maximum
number of concurrent threads to
permit.

Chapter 6 • MTA SDK Reference 183

Item Codes Additional Arguments Description

MTA_THREAD_STACK_SIZE size_t bytes By default, the processing threads will
have a stack whose size is sufficient for
MTA SDK operations. This is the size
returned by the mtaStackSize()
routine. To request a larger size, use
this item code to specify the desired
size. Note that specification of a smaller
size is ignored:
mtaDequeueMessage() will never
use a stack size smaller than that
returned by mtaStackSize().

This item code must be followed by one
additional argument: the minimum size
in bytes for each thread’s stack.

MTA_THREAD_MAX_MESSAGESsize_t messages The number of messages to allocate per
processing thread. The channel
program will aim to run N processing
threads where N is computed as
follows: N = (count of pending queued
messages) /
MTA_THREAD_MAX_MESSAGES. For
example, if there are 100 queued
messages and
MTA_THREAD_MAX_MESSAGES has its
default value of 20 messages, then 5
processing threads are started.

This value does not control the total
number of messages presented to a
single processing thread.

This item code must be followed by one
additional argument: the number of
messages for each processing thread.

MTA_THREAD_WAIT_TIMEOUTsize_t seconds Once mtaDequeueMessage()
determines that there are no more
messages to process, it waits for all
processing threads to complete their
work and exit. By default,
mtaDequeueMessage() will wait no
longer than 1800 seconds (30 minutes).

This item code must be followed by one
additional argument: the maximum
number of seconds to wait.

184 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of following reasons:
1. A NULL value was supplied for the dq_ctx call argument.
2. An invalid dequeue context was supplied for dq_ctx.
3. A NULL value was specified for the process_message routine.
4. A NULL value was supplied for a required item code argument.

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more
configuration files.

For further information, issue the following command:

imsimta test -rewrite

MTA_NETWORK Error communicating with the Job Controller.

MTA_NO Unable to initialize the MTA SDK.

For further information, issue the following command:

imsimta test -rewrite

MTA_NOMEM Insufficient virtual memory.

MTA_NOSUCHCHAN Specified channel is not defined in the MTA configuration file. If no
channel was explicitly specified, then the channel name specified with
the PMDF_CHANNEL environment variable is not defined in the MTA
configuration file. This error may also be returned when the Job
Controller’s configuration file lacks a CHANNEL section matching the
specified channel.

MTA_NOSUCHITEM An invalid item code was specified.

Example
For an example of mtaDequeueStart(), see Example 5–2

Other Considerations for
mtaDequeueStart()
This section contains supplementary information concerning mtaDequeueStart().
It covers the following topics:

Chapter 6 • MTA SDK Reference 185

� “Multiple Calls to mtaDequeueStart()” on page 186
� “Message Processing” on page 186
� “Message Processing Procedure” on page 186
� “process_message() Routine” on page 187
� “process_done() Routine” on page 189
� “Thread Creation Loop” on page 190

Multiple Calls to mtaDequeueStart()
A channel program can call mtaDequeueStart() multiple times: either sequentially
or in parallel. In the latter case, the program would need to create threads so as to
effect multiple, simultaneous calls to mtaDequeueStart(). However, just because
this can be done does not mean that it is appropriate to do so. In the former case of
multiple sequential calls, there’s no need to be making repeated calls. When
mtaDequeueStart() returns, the channel no longer needs immediate processing
and has been in that state for

MTA_JBC_ATTEMPTS_MAX * MTA_JBC_RETRY_INTERVAL

seconds. Instead, the channel program should exit thereby freeing up system
resources. The Job Controller will start a new channel program running when there
are more messages to process. In the latter case of multiple parallel calls, there is again
no need to do so. If there is an advantage to running more threads than a single call
generates, then the channel’s threaddepth channel keyword setting should be
increased so that a single call does generate more threads. The only exception to either
of these cases might be if the multiple calls are each for a different channel. Even then,
however, the advantage of so doing is dubious as the same effect can be achieved
through the use of multiple processes, one for each channel.

Message Processing
When mtaDequeueStart() is called, a communication path with the MTA Job
Controller is established. The Job Controller is then asked if there are messages to be
processed for the channel. Typically there will be messages to process since it is the Job
Controller that normally starts channel programs, and it does so when there are
queued messages in need of processing. Based upon information obtained from the
Job Controller, mtaDequeueStart() will then begin to create non-joinable
processing threads. Each processing thread immediately begins processing the queued
messages.

Message Processing Procedure
To process queued messages, a processing thread takes the following steps:

1. The thread sets ctx2 to have the value NULL:

ctx2 = NULL;

186 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

For information on the process_message arguments, see
“process_message() Routine” on page 187

2. The thread communicates with the Job Controller to obtain a message file to
process. If there are no more message files to process, then go to “Message
Processing Procedure” on page 186.

3. For the message file, the thread creates a dequeue context that maintains the
dequeue processing state for that message file.

4. The thread then invokes the caller-supplied process_message routine, passing
to it the dequeue context created in “Message Processing Procedure” on page 186,
for example:

istat = process_message(&ctx2, ctx1, &dq_ctx, env_from,
env_from_len);

For a description of the process_message routine, see “process_message()
Routine” on page 187

5. The process_message routine then attempts to process the message, ultimately
removing it from the channel’s queues or leaving the message file for a later
processing attempt.

6. If mtaDequeueMessageFinish() was not called before the process_message
routine returned, then the queued message is deferred. That is, its underlying
message file is left in the channel’s queue and a later processing attempt is
scheduled.

7. The dequeue context is destroyed.

8. If the process_message routine did not return the MTA_ABORT status code, then
repeat this cycle starting at “Message Processing Procedure” on page 186.

9. The caller-supplied process_done routine is called, for example:

process_done(&ctx2, ctx1);

For a description of the process_done routine, see “process_done() Routine”
on page 189

10. The thread exits.

process_message() Routine
This caller-supplied routine is invoked by the processing threads to do the actual
processing of the messages.

The following code fragment shows the required syntax for a process_message
routine.

int process_message(void **ctx2,
void *ctx1,
mta_dq_t *dq_ctx,
const char *env_from,
int env_from_len);

Chapter 6 • MTA SDK Reference 187

The following table lists the required arguments for a process_message routine,
and gives a description of each.

Arguments Description

ctx2 A writable pointer that the process_message routine can use to store a
pointer to a per-thread context. See the description that follows for
further details.

ctx1 The caller-supplied private context passed as ctx1 to
mtaDequeueStart().

dq_ctx A dequeue context created by mtaDequeueStart() and representing
the message to be processed by this invocation of the process_message
routine.

env_from A pointer to the envelope From: address for the message to be processed.
Since Internet messages are allowed to have zero length envelope From:
addresses, this address can have zero length. The address will be NULL
terminated.

env_from_len The length in bytes of the envelope From: string. This length does not
include any NULL terminator.

When a processing thread first begins running, it sets the value referenced by ctx2 to
NULL. This assignment is made only once per thread and is done before the first call
to the process_message routine. Consequently, on the first call to the
process_message routine, the following test is true:

*ctx2 == NULL

That test will remain true until such time that the process_message routine itself
changes the value by making an assignment to *ctx2. As demonstrated in the
following code fragment, if the process_message routine needs to maintain state
across calls to itself by the same processing thread, it can allocate memory for a
structure to store that state in, and then save a pointer to that memory with ctx2.

int process_message(void **ctx2, void *ctx1,
const char *env_from, size_t env_from_len)

{
struct our_state_t *state;

state = (our_state_t *)(*ctx2);
if (!state)
{

/*
* First call for this thread.
* Allocate a structure in which to store the state
* information
*/
state = (our_state_t *)calloc(1, sizeof(our_state_t));
if (!state) return(MTA_ABORT);

188 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

*ctx2 = (void *)state;

/*
* Set any appropriate initial values for the state
* structure
*/

...
}

...

For a sample process_message routine, see Example 5–2.

process_done() Routine
To assist in cleaning up state information for a thread, callers can provide a routine
pointed to by the process_done argument.

The following code fragment shows the required syntax for a process_done()
routine.

void process_done(void *ctx2,
void *ctx1);

The following table lists the arguments required for a process_done routine, and
gives a description of each.

Required Arguments Description

ctx2 The value of the last pointer stored by process_message in the
ctx2 call argument for this thread.

ctx1 The caller-supplied private context passed as ctx1 to
mtaDequeueStart().

The following code fragment demonstrates the type of actions taken by a
process_done routine.

void process_done(ctx2, ctx1)
{

struct our_state_t *state = (our_state_t *)ctx2;
if (!state)

return;
/*
* Take steps to undo the state
* (for example, close any sockets or files)
*/
...

/*
* Free the memory allocated by process_message()
* to store the state

Chapter 6 • MTA SDK Reference 189

*/
free(state)

}

Thread Creation Loop
While the processing threads are running, the thread that invoked
mtaDequeueStart() executes a loop containing a brief pause (that is, a sleep
request). Each time the mtaDequeueStart() thread awakens, it communicates with
the Job Controller to see if it should create more processing threads. In addition, the
Job Controller itself has logic to determine if more threads are needed in the currently
running channel program, or if it should create additional processes to run the same
channel program.

To demonstrate, the following code fragment shows pseudo code of the
mtaDequeueStart() loop.

threads_running = 0
threads_max = MTA_THREAD_MAX_THREADS
attemtps = MTA_JBC_MAX_ATTEMPTS

LOOP:
while (threads_running < threads_max)
{

Go to DONE if a shut down has been requested

pending_messages = Ask the Job Controller how many
messsages there are to be processed

// If there are no pending messages
// then consider what to do next
if (pending_messages = 0)
{

// Continue to wait?
if (attempts <= 0)

go to DONE

// Decrement attempts and wait
attempts = attempts - 1;
go to SLEEP

}
// Reset the attempts counter
attempts = MTA_JBC_MAX_ATTEMPTS

threads_needed = Ask the Job Controller how many
processing threads are needed

// Cannot run more then threads_max threads per process
if (threads_needed \> threads_max)

threads_needed = threads_max

190 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

// Create additional threads if needed
if (threads_needed \> threads_running)
{

Create (threads_needed - threads_running) more threads
threads_running = threads_needed

}
}

SLEEP:
Sleep for MTA_JBC_RETRY_INTERVAL seconds
-- a shut down request will cancel the sleep
go to LOOP

DONE:
Wait up to MTA_THREAD_WAIT_TIMEOUT seconds
for all processing threads to exit

Return to the caller of mtaDequeueStart()

mtaDequeueThreadId()
Return the thread ID associated with the specified dequeue context.

Syntax
int mtaDequeueThreadId(mta_dq_t *dq_ctx);

Arguments

Arguments Description

dq_ctx A dequeue context created by mtaDequeueStart().

Description
Each processing thread is assigned a unique integer identifier referred to as a thread
ID. This thread ID is intended as a diagnostic aid when debugging channel programs.
Showing it with diagnostic messages helps to differentiate the work of one thread
from another in the channel’s debug log file.

Chapter 6 • MTA SDK Reference 191

The thread ID can also be obtained with mtaDequeueInfo().

Return Values
In the event of an error, the value -1 is returned and mta_errno is set to indicate the
error status code.

Error Status Code Description

MTA_BADARGS A NULL value was supplied for the dq_ctx call argument, or an
invalid dequeue context was supplied for dq_ctx.

Example
mtaLog("%08d: process_message() called with dq_ctx=%p",

mtaDequeueThreadId(dq_ctx), dq_ctx);

mtaDone()
Release resources used by the MTA SDK.

Syntax
void mtaDone(void);

Arguments
None

Description
Once use of the MTA SDK has been finished, mtaDone() should be called to release
any resources used by the MTA SDK. The routine should be called while the calling
process is single threaded.

192 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values
None

Example
mtaDone();

mtaEnqueueCopyMessage()
Copy a queued message to a new message being enqueued.

Syntax
int mtaEnqueueCopyMessage(mta_nq_t *nq_ctx,

mta_dq_t *dq_ctx,
int rewind);

Arguments

Arguments Description

nq_ctx Message submission to copy the message data to. nq_ctx must be an
enqueue context created by mtaEnqueueStart().

dq_ctx Queued message to copy the message data from. Must be a a dequeue context
created by mtaDequeueStart().

rewind Supply a value of 1 to move the read point in the queued message file to the
start of the message before commencing the copy operation. Supply a value of
zero to leave the message read point unchanged before copying.

Description
Intermediate processing channels often need to copy verbatim a message from a
channel queue to a new message being enqueued. That is, intermediate processing
channels often re-enqueue an existing, queued message. This verbatim copy can be
accomplished with mtaEnqueueCopyMessage(). Using this routine is significantly
faster than using mtaDequeueLineNext() and mtaEnqueueWriteLine() in a
read and write loop.

Chapter 6 • MTA SDK Reference 193

When mtaEnqueueCopyMessage() is called, the copy begins at the current read
point of the queued message file associated with the supplied dequeue context,
dq_ctx. The message file from that point to its end is copied to the new message
being enqueued. To start at the beginning of the queued message (that is, to start at the
beginning of its outermost header), specify a value of 1 for the rewind call argument.
So doing is equivalent to first calling mtaDequeueRewind() before
mtaEnqueueCopyMessage().

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:
1. A NULL value was supplied for either the nq_ctx or dq_ctx call

arguments.
2. Invalid contexts were passed for either or both of those call arguments.

MTA_FCREATE Unable to create a temporary file to hold data for the new message being
enqueued.

MTA_FIO An I/O error occurred while attempting to write data to a message file.

MTA_ORDER Call made out of order. Either no recipients have yet been specified for the
new message with mtaEnqueueTo(), or the recipient list of the queued
message has not been completely read with
mtaDequeueRecipientNext().

MTA_THREAD Simultaneous use of either the enqueue or dequeue context by two
different threads was detected.

Example
The following code fragment specifies starting at the beginning of the queued message
by using the rewind call argument.

mtaEnqueueMessageCopy(nq_ctx, dq_ctx, 1);

The code fragment that follows illustrates a second, less efficient way of copying the
message.

mtaDequeueRewind(dq_ctx)
while (!mtaDequeueLineNext(dq_ctx, &line, &len))

mtaEnqueueWriteLine(nq_ctx, line, len, NULL);

194 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

mtaEnqueueError()
Retrieve an extended error message.

Syntax
const char *mtaEnqueueError(mta_nq_t *nq_ctx, const char **message,

size_t *message_len,
int item_code);

Arguments

Arguments Description

nq_ctx An enqueue context created by mtaEnqueueStart().

message Optional address of a pointer to receive the address of the NULL terminated
error message text. A NULL value may be supplied for this argument.

message_len Optional address of a size_t to receive the length in bytes of the error
message text. A NULL value may be supplied for this argument.

item_code Reserved for future use. A value of zero must be supplied for this call
argument.

Description
When mtaEnqueueTo() returns an MTA_NO error message, there is often extended
error information available, which takes the form of a text string suitable for writing as
diagnostic output. To retrieve this information, issue mtaEnqueueError()
immediately after receiving an MTA_NO error return from mtaEnqueueTo().

Return Values
In the event of an error from mtaEnqueueError(), a NULL value will be returned
and mta_errno is set to indicate the error status code. The following table lists the
error status codes, and gives a description of them.

Chapter 6 • MTA SDK Reference 195

Error Status Codes Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:
1. A NULL value was supplied for the nq_ctx call argument.
2. An invalid context was passed for nq_ctx.

MTA_THREAD Simultaneous use of the enqueue context by two different threads was
detected.

Example
None

mtaEnqueueFinish()
Complete or cancel a message enqueue operation.

Syntax
int mtaEnqueueFinish(mta_nq_t *nq_ctx,

int item_code, ...);

Arguments

Arguments Description

nq_ctx An enqueue context created by mtaEnqueueStart().

item_code An optional list of item codes. See the description section that follows for a
list of item codes. The list must be terminated with an integer argument
with value 0.

Description
Call mtaEnqueueFinish() to complete an enqueue operation, submitting a new
message to the MTA for transport and delivery. Alternatively, call
mtaEnqueueFinish() with the MTA_ABORT item code to cancel an enqueue

196 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

operation without submitting a new message. In either case, when
mtaEnqueueFinish() is called the enqueue context passed to it, nq_ctx, is
disposed of and may no longer be used regardless of whether a success or error status
code is returned.

When completing an enqueue operation, the MTA does much of the actual enqueue
work, such as, performing any configured header rewriting, content transformation,
and actually writing the message copy or copies to the MTA channel queues.
Consequently, errors returned by this routine are typically caused by either site
imposed limits (that is, the message size exceeds a site configured limit), or file system
related problems (for example, the disk is full, write errors to the disk).

When mtaEnqueueFinish() returns an MTA_NO error message, there is often
extended error information available. This information may be retrieved with the
MTA_REASON item code. This extended error information takes the form of a text
string suitable for writing as diagnostic output.

Before calling mtaEnqueueFinish() to complete an enqueue operation, be sure that
the envelope recipient list has been specified with mtaEnqueueTo() and any header
lines and content have been written with mtaEnqueueWrite() or
mtaEnqueueWriteLine().

When cancelling an enqueue operation, no message is submitted to the MTA, and any
temporary files that may have been created are disposed of. To cancel an enqueue
operation, specify the MTA_ABORT item code.

The following table lists the item codes for this routine, their additional arguments,
and gives a description of each.

Item Codes Additional Arguments Description

MTA_ABORT None Cancel the current enqueue operation. The
message represented by the enqueue context will
not be enqueued to the MTA.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list
array must be terminated with a final array entry
with an item code value of zero. For further
information on item list usage, see “Item Codes
and Item Lists” on page 35.

Chapter 6 • MTA SDK Reference 197

Item Codes Additional Arguments Description

MTA_REASON const char
**errmsg

size_t *errmsg_len

Provide the address of a string pointer to receive
any extended error message information. In the
event of an error associated with submitting the
message to the MTA, then the MTA may return
additional information. By providing this pointer,
that additional information may be obtained for
diagnostic purposes.

This item code should be followed by two
additional item codes:
1. The address of a pointer to receive the address

of the NULL terminated error text.
2. The address of a size_t to receive the length

of that error text.
A value of NULL may be passed for the
errmsg_len argument.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:
1. A NULL value was supplied for the nq_ctx call argument.
2. An invalid enqueue context was supplied for nq_ctx.
3. A required argument to an item code was NULL.

MTA_FCREATE Insufficient disk space or other I/O error encountered while
attempting to create or close a message file or a temporary file.

MTA_FIO An I/O error occurred while writing message files to the MTA channel
queues or while reading from a temporary file.

MTA_NO Error terminating the message temporary file, there appears to be
insufficient disk space to write the message copies, or there is a
problem with a configured content scanner (for example, a virus or
spam filter).

MTA_NOSUCHITEM An invalid item code was supplied.

MTA_ORDER The call was made out of order. Either no envelope recipient addresses
have been specified or no message content has been provided.

MTA_THREAD Simultaneous use of the enqueue context by two different threads was
detected.

198 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Note – In case of an error, the MTA_REASON item code can be used to receive extended
error message information

As shown in the preceding table, in the case of an error, the MTA_REASON item code
can be used to receive extended error message information

Example
See “A Simple Example of Enqueuing a Message” on page 51.

mtaEnqueueInfo()
Obtain information associated with an ongoing message enqueue.

Syntax
int mtaEnqueueInfo(mta_nq_t *nq_ctx,

int item_code, ...);

int mtaEnqueueInfo(mta_nq_t *nq_ctx,

Arguments

Arguments Description

nq_ctx An enqueue context created by mtaEnqueueStart().

item_code An optional list of item codes. See the description section that follows for a list
of item codes. The list must be terminated with an integer argument with
value 0.

Description
Information associated with an ongoing message enqueue operation may be obtained
with mtaEnqueueInfo(). The information to obtain is specified through the use of
item codes. Arguments to the item codes provide memory addresses through which to
return the requested data.

Chapter 6 • MTA SDK Reference 199

String pointers returned by mtaEnqueueInfo() are only valid during the life of the
enqueue context. Once the enqueue has been completed, the associated pointers are no
longer valid.

The following table lists the item codes for this routine, their additional arguments,
and gives a description of each.

Item Codes Additional Arguments Description

MTA_ALIAS_EXPAND size_t *value Return the setting of the alias expansion flag.
Normally, this flag has a nonzero value that
indicates that alias expansion should be done
for all envelope recipient addresses. When the
flag has a value of zero, alias expansion will
not be performed. The value of the flag is set
with the mtaEnqueueStart() routine.

This item code must be followed by one
additional argument: the address of size_t to
store the setting’s value in.

MTA_ADR_SORT size_t *value Obtain the setting of the address sorting flag.
Normally, this flag has a non-zero value that
indicates that the list of envelope recipients
written to each message copy in the MTA
channel queues are to be sorted in ascending
order based upon US-ASCII ordinal values.
When this flag has a value of zero, the list of
envelope recipient addresses will not be
sorted. This item code must be followed by
one additional argument: the address of
size_t to store the setting’s value in.

MTA_CHANNEL char **channel

size_t
*channel_len

Obtain the name of the channel that this
message is being enqueued by.

This item code must be followed by two
additional call arguments:
1. The address of a pointer to receive the

address of the NULL terminated channel
name.

2. The address of a size_t to receive the
length of the channel name. A NULL value
may be passed for the channel_len
argument.

200 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes Additional Arguments Description

MTA_DELIVERY_FLAGSsize_t *dflags Return the envelope delivery flags set for the
entire message by mtaEnqueueStart().

This item code must be followed by one
additional call argument: the address of a
size_t to receive the delivery flag setting.

MTA_ENV_FROM const char
**env_from

size_t
*env_from_len

Retrieve the envelope From: address specified
when the enqueue was started with
mtaEnqueueStart().

This item code must be followed by two
additional call arguments:
1. The address of a pointer to receive the

address of the NULL terminated envelope
From: address.

2. The address of a size_t to receive the
length of that address. A NULL value may
be passed for the env_from_len
argument.

MTA_ENV_ID const char
**env_id

size_t
*env_id_len

Obtain the envelope ID specified with
mtaEnqueueStart().

This item code must be followed by two
additional call arguments:
1. The address of a pointer to receive the

address of the NULL terminated envelope
ID.

2. The address of a size_t to receive the
length of that envelope ID. A NULL value
may be passed for the env_id_len
argument.

MTA_EXPAND_LIMIT size_t *value Retrieve the expand limit setting specified
with mtaEnqueueStart(). The returned
value will be a positive integer value. When
no expand limit has been set, the returned
value will be a large integer value (for
example, 2,147,483,647 on 32-bit processors).

This item code must be followed by one
additional argument: the address of a size_t
to store the setting’s value in.

Chapter 6 • MTA SDK Reference 201

Item Codes Additional Arguments Description

MTA_FRAGMENT_BLOCKSsize_t *value Obtain the value, if any, specified for the
MTA_FRAGMENT_BLOCKS setting when the
message enqueue was initiated. The returned
value will be a positive integer value. When
no value was set, the returned value will be a
large integer value (for example, 2,147,483,647
on 32-bit processors).

This item code must be followed by one
additional argument: the address of a size_t
to store the setting’s value in.

MTA_FRAGMENT_LINESsize_t *value Obtain the value specified for the
MTA_FRAGMENT_LINES setting when the
message enqueue was initiated. The returned
value will be a positive integer value. When
no value was set, the returned value will be a
large integer value (for example, 2,147,483,647
on 32-bit processors).

This item code must be followed by one
additional argument: the address of a size_t
to store the setting’s value in.

MTA_NOTIFY_FLAGS size_t *nflags Return the delivery status notification flags set
for the entire message when the enqueue was
started. The returned value is a bit map
constructed using the MTA_NOTIFY_ constants
defined in mtasdk.h. If no setting was
effected with mtaEnqueueStart(), then the
returned value will be the MTA default of:
MTA_NOTIFY_DELAY |
MTA_NOTIFY_FAILURE |
MTA_NOTIFY_CONTENT_FULL

This item code must be followed by one
additional call argument: the address of a
size_t to receive the setting of the delivery
status notification flags.

Return Values

Return Values Description

0 Normal, successful completion.

202 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values Description

MTA_BADARGS This value is returned for one of the following reasons:
1. A NULL value was supplied for the nq_ctx call argument.
2. An invalid enqueue context was supplied for nq_ctx.
3. A required argument to an item code was NULL.

MTA_NOSUCHITEM An invalid item code was specified.

MTA_THREAD Simultaneous use of the enqueue context by two different threads was
detected.

Example
The following code fragment obtains the name of the channel used as the source
channel for the enqueue.

mta_nq_t *nq;
const char *channel;

mtaEnqueueStart(&nq, "sue@siroe.com", 0, 0);
mtaEnqueueInfo(nq, MTA_CHANNEL, &channel, NULL, 0);
printf("Source channel = %s\n", channel);

mtaEnqueueStart()
Initiate a message submission.

Syntax
int mtaEnqueueStart(mta_nq_t **nq,

const char *env_from,
size_t env_from_len,
int item_code, ...);

Chapter 6 • MTA SDK Reference 203

Arguments

Arguments Description

nq_ctx On a successful return, a pointer to an enqueue context created by
mtaEnqueueStart(). This enqueue context represents the message
enqueue operation initiated by the call.

env_from Optional pointer to the address to use as the envelope From: address for
the message being submitted. The address must be compliant with RFC
2822. When used as an envelope address, the MTA will reduce it to an
RFC 2821 compliant transport address. The string must be NULL
terminated if a value of zero is passed for env_from_len. The length of
this string, not including any NULL terminator, may not exceed
ALFA_SIZE bytes.

A value of NULL may be supplied for this argument. When that is done,
the env_from_len argument is ignored and an empty envelope From:
address is used for the message submission.

env_from_len The length in bytes, not including any NULL terminator, of the envelope
From: address supplied with env_from. If a value of zero is passed for
this argument, then the envelope From: address string must be NULL
terminated.

item_code An optional list of item codes. See the description section that follows for
a list of item codes. The list must be terminated with an integer argument
with value 0.

Description
To submit a message to the MTA for delivery, an enqueue operation must be initiated.
This is achieved by calling mtaEnqueueStart(). When the call is successful, an
enqueue context representing the enqueue operation will be created and a pointer to
the context returned via the nq_ctx call argument. This context must then be used to
specify the message’s envelope recipient list and content, both header and body. Once
the recipient list and content have been specified, the submission may be completed
with mtaEnqueueFinish(). That same routine is also used to cancel an enqueue
operation. For further information on message enqueue processing, see “Basic Steps to
Enqueue Messages” on page 50.

Enqueue contexts are disposed of with mtaEnqueueFinish(), either as part of
completing or cancelling a message enqueue operation.

When initiating an enqueue operation, the envelope From: address for the message
should be specified with the env_from and env_from_len call arguments, or
through use of a dequeue context with the MTA_DQ_CONTEXT item code. In either
case, it is important to keep in mind the usage of the envelope From: address. MTAs
transporting the message use it as a return path, that is, the address to which

204 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

notifications about the message should be returned. Specifically, it is the address to
which the message will be returned in the form of a non-delivery notification (NDN)
should the message prove undeliverable. It is also the address to which any delivery
status notifications (DSNs) will be sent. As such, the envelope From: address specified
should be an address suitable for receiving such notifications.

Note – Automatically generated messages such as NDNs and DSNs are required to
have an empty envelope From: address, that is, a zero length address. These rules are
mandated by Internet standards so as to prevent broad classes of looping messages. It
is imperative that they be observed; failure to do so may result in exponentially
growing mail loops that affect not only your own mail system but possibly mail
systems of other sites with which you exchange mail.

When explicitly specifying the envelope From: address via the env_from and
env_from_len call arguments, note the following points:

� The length of the address may not exceed 256 bytes. This is the length limit
imposed by RFCs 2821 and 2822. It is also the size denoted by the ALFA_SIZE
constant.

� Older MTAs may not support envelope addresses of lengths exceeding 129 bytes.
This is the length limit imposed by RFC 821.

� To specify an empty envelope From: address, supply an empty string for
env_from and a length of zero for env_from_len, or supply a value of NULL for
env_from and any value for env_from_len.

When using a dequeue context to supply the envelope From: address, simply supply
a value of NULL and zero for, respectively, the env_from and env_from_len call
arguments. Be sure to also supply the dequeue context with the MTA_DQ_CONTEXT
item code. For example:

ires = mtaEnqueueStart(&nq, NULL, 0, MTA_DQ_CONTEXT, dq, 0);

If the submitted message lacks a From: header line, then the address supplied as the
envelope From: address will also be used to generate a From: header line. This is the
reason why mtaEnqueueStart() allows an RFC 2822 compliant address to be
supplied for the envelope From: address. When placing the supplied address into the
envelope, the MTA reduces it to an RFC 2821 compliant address (for example, removes
any RFC 2822 phrases or comment fields).

When submitting a message, the MTA requires a source channel to associate with the
enqueue operation. By default, the name of the source channel will be derived from
the PMDF_CHANNEL environment variable. However, this may be overridden one of
two ways: by supplying a dequeue context with the MTA_DQ_CONTEXT item code, or
by explicitly specifying the channel name with the MTA_CHANNEL item code. Use of a
dequeue context implicitly specifies the source channel name to be the name of the
channel associated with the dequeue context.

Chapter 6 • MTA SDK Reference 205

Note – An explicitly specified channel name will take precedence over a channel name
specified with a dequeue context.

As part of initiating a message submission, item codes may be used to specify
additional envelope information for the message as well as select non-default values
for MTA parameters that influence message enqueue processing.

The following table lists the items codes for this routine, their additional arguments,
and gives a description of each.

Item Codes
Additional
Arguments Description

MTA_ALIAS_EXPAND None When this item code is specified, each envelope
recipient address is allowed to undergo alias
expansion (for example, mailing list expansion).
This is the default behavior.

MTA_ALIAS_NOEXPAND None Use of this item code inhibits alias expansion for
the envelope recipient addresses. The default
behavior is to permit alias expansion.

MTA_ADR_NOSORT None Inhibit sorting of the envelope recipient list in the
message copies written to the MTA channel
queues. By default, the envelope recipient address
list is sorted. Use this option if it is imperative that
the envelope recipients be processed in some
specific order. Maintaining the order requires
control of all MTA channels that the message will
pass through.

MTA_ADR_SORT None Allow the envelope recipient list to be sorted in
the message copies written to the MTA channel
queues. This is the default behavior.

206 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes
Additional
Arguments Description

MTA_CHANNEL char
*channel

size_t
channel_len

Explicitly specify the name of the channel under
which to enqueue this message. That is, explicitly
specify the name of the source channel to use for
this message submission. The name specified will
override any name implicitly specified with the
MTA_DQ_CONTEXT item code.

This item code must be followed by two
additional call arguments:
1. The address of the string containing the

channel name.
2. The length in bytes of that channel name. If a

value of zero is specified for the length, then
the channel name string must be NULL
terminated.

MTA_DELIVERY_FLAGS size_t
dflags

Specify additional envelope delivery flags to set
for this message. The logical OR of any existing
setting and the value here supplied will be used
for the message’s delivery flag setting. In general,
the delivery flag setting associated with a message
will be the logical OR of the values set by each
channel a message has travelled through. Note
that channels also can set this value with the
deliveryflags channel keyword. When this
item code is not used, the delivery flags inherited
from a supplied dequeue context will be used. If
no dequeue context is supplied, then the value of
the delivery flags will be set to zero.

This item code should be followed by an
additional call argument: the value to combine
with any existing setting.

MTA_DELIVERY_FLAGS_ABSsize_t
dflags

Ignore any previous envelope delivery flag setting
for the message and replace the setting with the
value specified with this item code.

This item code should be followed by an
additional call argument: the delivery flag setting
to effect.

Chapter 6 • MTA SDK Reference 207

Item Codes
Additional
Arguments Description

MTA_DQ_CONTEXT mta_dq_t
*dq_ctx

When a dequeue context is supplied with this item
code, the message submission will take all of its
envelope fields, except for the recipient list, from
the envelope of the queued message represented
by the dequeue context, including the envelope
From: field. These assumed settings can then be
overridden on an individual basis through the use
of other item codes, and the env_from and
env_from_len call arguments.

Use of this item code changes the defaults for the
envelope fields from the MTA defaults to the
values used in the dequeue context.

Intermediate processing channels are strongly
encouraged to use this item code. Use of this
feature allows envelope information to be
automatically copied from the queued message
being processed to the new message that will be
enqueued as a result.

This item code must be followed by one additional
argument: the pointer to the dequeue context to
use.

MTA_ENV_ID const char
*env_id

size_t
env_id_len

Explicitly specify an envelope ID string for the
message. The supplied value must conform to the
syntax of an xtext object in RFC 1891 and may
not have a length exceeding 100 bytes. The value
specified with this item code will override any
value implicitly specified with the
MTA_DQ_CONTEXT item code. If no value is
supplied either explicitly or implicitly, then the
MTA will generate a unique envelope ID for the
message.

This item code must be followed by two
additional call arguments:
1. The address of the envelope ID string.
2. The length in bytes of that string. If a value of

zero is supplied for the length, then the string
must be NULL terminated.

208 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes
Additional
Arguments Description

MTA_EXPAND_LIMIT size_t limit If the message has more envelope recipients than
the specified limit, then processing of the recipient
list (that is, alias expansion) will be deferred. This
deferral is performed by enqueuing the message
to the reprocess channel. At a later time, and
running in a separate process, the reprocess
channel will complete the processing of the
envelope recipient list.

This item code must be followed by one additional
argument: the limit to impose. By default, no limit
is imposed.

MTA_FRAGMENT_BLOCKSsize_t
blocks

A large enqueued message may automatically be
fragmented into several, smaller messages using
MIME’s message/partial content type. At the
destination MTA system, these smaller messages
may automatically be re-assembled back into one
single message. The MTA_FRAGMENT_BLOCKS
item code allows specification of a size threshold
for which messages larger than the threshold will
automatically be fragmented. The limit specified is
measured in units of blocks. (By default, a block is
1024 bytes.) However, sites may change that size
with the MTA BLOCK_SIZE option. Consequently,
code using this option should use the
mtaBlockSize() option should they need to
convert some other unit to blocks.

This item code must be followed by one additional
argument: the block size threshold to impose. By
default, no threshold is imposed.

MTA_FRAGMENT_LINES size_t lines A large enqueued message can be automatically
fragmented into several, smaller messages using
the MIME content type message/partial. At
the destination MTA system, these smaller
messages can be automatically re-assembled back
into one single message. The
MTA_FRAGMENT_LINES item code allows
specification of a line count threshold for which
messages exceeding the threshold will
automatically be fragmented.

This item code must be followed by one additional
argument: the line count threshold to impose. By
default, no threshold is imposed.

Chapter 6 • MTA SDK Reference 209

Item Codes
Additional
Arguments Description

MTA_NOTIFY_FLAGS size_t
nflags

Specify the delivery status notification flags to be
set for the entire message. The specified value is a
bit map constructed using the MTA_NOTIFY_
constants defined in mtasdk.h. If no setting is
made, then the value from a supplied dequeue
context will be used. If no dequeue context is
supplied, then the MTA default value is used. The
default value is:

MTA_NOTIFY_DELAY | MTA_NOTIFY_FAILURE
| MTA_NOTIFY_CONTENT_FULL

Flags for individual recipient address may be
specified when mtaEnqueueTo() is called.

This item code must be followed by one additional
call argument: the address of an integer to receive
the setting of the delivery status notification flags.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:
1. A NULL value was supplied for the nq_ctx call argument.
2. An invalid enqueue context was supplied for nq_ctx.
3. A required argument to an item code was NULL.

MTA_NO Unable to determine the channel name from the PMDF_CHANNEL
environment variable,

MTA_NOMEM Insufficient virtual memory.

MTA_NOSUCHCHAN Specified channel name does not exist in the MTA configuration.

MTA_NOSUCHITEM An invalid item code was specified.

MTA_STRTRUERR The supplied envelope From: address is too long; it may not exceed a
length of ALFA_SIZE bytes. Or the supplied channel name has a
length exceeding CHANLENGTH bytes.

Example
This routine is used as part of Example 5–2.

210 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

mtaEnqueueTo()
Add an envelope recipient to a message being submitted.

Syntax
int mtaEnqueueTo(mta_nq_t *nq_ctx,

const char *to_adr,
size_t to_adr_len,
int item_code, ...);

Arguments

Arguments Description

nq_ctx Pointer to an enqueue context created with mtaEnqueueStart().

to_adr An address to add to the message being enqueued. The address must be
compliant with RFC 2822. When used as an envelope address, the MTA
will reduce it to an RFC 2821 compliant transport address. If a value of
zero is passed for to_adr_len the address string must be NULL
terminated. The length of this string, not including any NULL terminator,
may not exceed ALFA_SIZE bytes.

to_adr_len The length in bytes, not including any NULL terminator, of the address
supplied with to_adr. If a value of zero is passed for this argument, then
the address string must be NULL terminated.

item_code An optional list of item codes. See the description section below for a list
of item codes. The list must be terminated with an integer argument with
value 0.

Description
After initiating a message enqueue operation with mtaEnqueueStart(), the
envelope recipient list for the message must to be constructed. This list is the actual list
of recipients to which the message is to be delivered. A message must have at least one
envelope recipient address; otherwise, there is no one to deliver the message to. In the
envelope there is no distinction between To:, Cc:, or Bcc: addressees. Additionally,
the list of addressees appearing in the message’s header need not be the same as those
appearing in the envelope. This is the case with list-oriented mail. The address in the
message’s header is often the list’s mail address; whereas, the addresses in the
envelope are the those of the list’s individual members.

Chapter 6 • MTA SDK Reference 211

By default, when an address is added to a message with mtaEnqueueTo(), it is
added as both an envelope recipient address as well as a To: addressee in the
message’s To: header line. The address is therefore considered to be an active
transport address as well as a header address. This case corresponds to the MTA_TO
item code. To instead mark an active transport address for addition to either a Cc: or
Bcc: header line, use the MTA_CC or MTA_BCC item code.

Addresses that only appear in the message’s header are sometimes referred to as
inactive addresses. Such addresses added with mtaEnqueueTo() may be noted as
such with the MTA_HDR_TO, MTA_HDR_CC, and MTA_HDR_BCC item codes. They can
also be manually added by constructing the To:, Cc:, or Bcc: header lines with
mtaEnqueueWrite() or mtaEnqueueWriteLine().

Note – The MTA SDK will automatically generate multiple message copies when Bcc:
recipients exist for the message. Specifically, when a message has N envelope recipient
addresses which are Bcc: recipients, the MTA SDK will automatically generate N+1
message copies: one copy for each of the Bcc: recipients and an additional copy for
the remaining, non-Bcc: recipients. Each copy for a Bcc: recipient will only disclose
that Bcc: recipient in the message’s header. The message copy for all of the non-Bcc:
recipients will disclose none of the Bcc: recipients in its header

An address may be added as only an active transport address without addition to any
header line. This is done with the MTA_ENV_TO item code. This item code should be
used by intermediate processing channels that copy verbatim the outer message
header from the old message to the new, which prevents duplication of addresses in
the new message’s header.

When an active transport address is added to a message, it is possible that the MTA
will reject the address. For example, the address can be rejected when there is a
mapping table, such as the SEND_ACCESS mapping table. When an address is rejected
by the MTA, extended error text is made available by the MTA. This extended
information can be captured through use of the MTA_REASON item code.

The following table lists the item codes for this routine, their additional arguments,
and gives a description of each.

Item Codes Additional Arguments Description

MTA_BCC None The address is an active transport
address that should also appear in a
Bcc: header line. The address will be
added to both the envelope recipient list
as well as the message’s header. For
further information about Bcc:, see the
note under “Description” on page 211.

212 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes Additional Arguments Description

MTA_CC None The address is an active transport
address that should also appear in a Cc:
header line. As such, the address will be
added to both the envelope recipient list
as well as the message’s header.

MTA_DELIVERY_FLAGS size_t dflags Specify additional envelope delivery
flags to set for this recipient. The logical
OR of any existing setting for the
recipient and the value here supplied
will be used for the recipient’s delivery
flag setting. The existing setting for the
recipient will be either the message’s
setting, which was set with
mtaEnqueueStart(), or any setting
copied over from the dequeue context
for this recipient with the
MTA_DQ_CONTEXT item code.

This item code should be followed by
one additional call argument: the value
to combine with any existing setting.

MTA_DELIVERY_FLAGS_ABSsize_t dflags Ignore any previous envelope delivery
flag setting for the recipient and replace
the setting with the value specified with
this item code.

This item code should be followed by
one additional call argument: the
delivery flag setting to effect.

MTA_DQ_CONTEXT mta_dq_t *dq_ctx When a dequeue context is supplied
using this item code, the specified
envelope recipient address is compared
to the envelope recipient list for the
queued message represented by the
dequeue context. If a match is found,
envelope fields for the recipient are
copied from the queued message to the
new message being enqueued. If no
match is found, an MTA_NO error status
is returned.

This item code must be followed by one
additional argument: the pointer to the
dequeue context to use.

Chapter 6 • MTA SDK Reference 213

Item Codes Additional Arguments Description

MTA_ENV_TO None The address is an active transport
address; add it to the envelope recipient
list. Do not add it to any header lines.
This designation is often used by
intermediate processing channels.

MTA_HDR_BCC None The address is not an active transport
address; do not add it to the envelope
recipient list. The address should,
however, be added to a Bcc: header
line. Note that since a Bcc: header line
is usually only placed in the message
copy destined to the Bcc: recipient, use
of this item code only arises when the
Bcc: recipient’s header address differs
from their transport address and,
consequently, the two need to be added
with separate calls to
mtaEnqueueTo().

MTA_HDR_CC None The address is not an active transport
address; do not add it to the envelope
recipient list. The address should,
however, be added to a Cc: header line.

MTA_HDR_TO None The address is not an active transport
address; do not add it to the envelope
recipient list. The address should,
however, be added to a To: header line.

MTA_NOTIFY_FLAGS size_t nflags Delivery status notification flags specific
to this envelope recipient address. A
value specified with this item code
overrides any setting made for the
message itself when the enqueue context
was created. It also overrides any value
inherited from a dequeue context. Note
that this item code has no effect when
MTA_HDR_BCC, MTA_HDR_CC, or
MTA_HDR_TO is specified; notification
flags only apply to active transport
addresses. For further details, see the
description of this item code for
“mtaEnqueueStart()” on page 203.

This item code must be followed by one
additional call argument: the address of
an integer to receive the setting of the
delivery status notification flags.

214 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Codes Additional Arguments Description

MTA_ORCPT_TO const char *orcpt

size_t orcpt_len

Specify the original envelope recipient
address in RFC 1891 original-recipient
address format (for example,
rfc822;sue@siroe.com for
sue@siroe.com).

This item code must be followed by two
additional arguments:
1. The pointer to the original recipient

address.
2. The length in bytes of that address. If

a value of zero is supplied for the
length, then the address string must
be NULL terminated.

MTA_REASON const char
**errmsg

size_t *errmsg_len

Provide the address of a string pointer to
receive any extended error message
information. In the event of an error
associated with submitting the recipient
to the MTA, then the MTA may return
additional information. By providing
this pointer, that additional information
may be obtained for diagnostic
purposes.

This item code should be followed by
two additional item codes:
1. The address of a pointer to receive

the address of the NULL terminated
error text.

2. The address of a size_t to receive
the length of that error text. A value
of NULL can be passed for the
errmsg_len argument.

MTA_TO None The address is an active transport
address that should also appear in a To:
header line. This is the default
interpretation of addresses added with
mtaEnqueueTo().

Return Values

Return Values Description

0 Normal, successful completion.

Chapter 6 • MTA SDK Reference 215

Return Values Description

MTA_BADARGS This value is returned for one of the following reasons:
1. A NULL value was supplied for the nq_ctx call argument.
2. An invalid enqueue context was supplied for nq_ctx.
3. A required argument to an item code was NULL.

MTA_NO If MTA_DQ_CONTEXT was specified, then the supplied envelope To:
address does not match any envelope recipient address in the queued
message represented by the supplied dequeue context. Otherwise, the
MTA rejected the envelope recipient address. It could be syntactically
invalid, refused by a mapping table, such as SEND_ACCESS. Consider
using the MTA_REASON item code.

MTA_NOSUCHITEM An invalid item code was specified.

MTA_ORDER The call was made out of order: the message’s envelope recipient list
has already been terminated by a call to mtaEnqueueWrite() or
mtaEnqueueWriteLine().

MTA_STRTRUERR The supplied envelope To: address or original envelope To: address is
too long. Neither may exceed a length of ALFA_SIZE bytes.

Example
This routine is used in Example 5–2.

mtaEnqueueWrite()
Write message data to the message being submitted.

Syntax
int mtaEnqueueWrite(mta_nq_t *nq_ctx,

const char *str1,
size_t len1,
const char *str2, ...);

Zero or more string pointer-length pairs can be supplied to this routine. The list of
pairs must be terminated by a NULL call argument.

216 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Arguments

Arguments Description

nq_ctx Pointer to an enqueue context created with mtaEnqueueStart().

str1 Pointer to a string of text to write to the message. The string must be NULL
terminated if a value of zero is passed for len1.

len1 The length in bytes, not including any NULL terminator, of the string str1.
If a value of zero is passed for this argument, then the string str1 must be
NULL terminated.

str2 Pointer to a second string of text to write to the message. The string must be
NULL terminated if a value of zero is passed for len2. If only supplying a
single string, then pass a NULL value for this argument.

Description
After a message’s list of envelope recipient addresses has been supplied with
mtaEnqueueTo(), the message itself must be supplied. This is done by repeatedly
calling mtaEnqueueWrite(). First the message’s header should be supplied,
followed by a blank line, followed by any message content. Each line of message data
must be terminated by a US-ASCII line-feed character (0x0A). Each call to
mtaEnqueueWrite() can supply one or more bytes of the message’s data. Unlike
mtaEnqueueWriteLine(), a single call to mtaEnqueueWrite() does not
necessarily correspond to a single, complete line of message data; it could correspond
to a partial line, a complete line, multiple lines, or even one or more complete lines
plus a partial line. This flexibility with mtaEnqueueWrite() exists because it is up to
the caller to supply the message line terminators. Calling either
mtaEnqueueWrite() or mtaEnqueueWriteLine() terminates the message’s
envelope recipient list. Once either of these routines have been called,
mtaEnqueueTo() can no longer be called for the same enqueue context.

Return Values

Return Values Description

0 Normal, successful completion.

Chapter 6 • MTA SDK Reference 217

Return Values Description

MTA_BADARGS This value is returned for one of the following reasons:
1. A NULL value was supplied for the nq_ctx call argument.
2. An invalid enqueue context was supplied for nq_ctx, or a required

argument to an item code was NULL.

MTA_FCREATE Unable to create a disk file.

MTA_FIO Error writing to a disk.

MTA_ORDER Call made out of order. No envelope recipient addresses have been
supplied.

MTA_THREAD Simultaneous use of the enqueue context by two different threads was
detected.

Example
The code fragment that follows shows two ways to produce the same results. They
both write two header lines to the message:

mtaEnqueueWrite(nq, "From: sue@siroe.com\n", 0, NULL);
mtaEnqueueWrite(nq, "Subject: test\n", 0, NULL);

mtaEnqueueWrite(nq, "From: sue@siroe.com\nSubject: test\n", 0,
NULL);

The following code fragment shows the two header lines output by each code
fragment in the preceding code example.

From: sue@siroe.com
Subject: test

This code fragment demonstrates how to terminate the message header by writing a
blank line.

mtaEnqueueWrite(nq, "\n", 0, NULL);

The following code fragment shows a single call to mtaEnqueueWrite()that writes
out an entire header, including the terminating blank line.

mtaEnqueueWrite(nq, "Date: today\nFrom: sue@siroe.com\n"
"To: bob@siroe.com\nSubject: test\n\n", 0,
NULL);

The following code example shows an alternate way of writing the routine call, but
with one pair per line.

mtaEnqueueWrite(nq, "Date: today\n", 0,
"From: sue@siroe.com\n", 0,
"To: bob@siroe.com\n", 0,

218 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

"Subject: test\n", 0,
"\n", 0,
NULL);

mtaEnqueueWriteLine()
Write a complete, single line of message data to the message being submitted.

Syntax
int mtaEnqueueWrite(mta_nq_t *nq_ctx,

const char *str1,
size_t len1,
const char *str2, ...);

Zero or more string pointer-length pairs can be supplied to this routine. The list of
pairs must be terminated by a NULL call argument.

Arguments

Arguments Description

nq_ctx Pointer to an enqueue context created with mtaEnqueueStart().

str1 Pointer to a string of text to write to the message. The string must be NULL
terminated if a value of zero is passed for len1.

len1 The length in bytes, not including any NULL terminator, of the string str1.
If a value of zero is passed for this argument, then the string str1 must be
NULL terminated.

str2 Pointer to a second string of text to write to the message. The string must be
NULL terminated if a value of zero is passed for len2. If only supplying a
single string, then pass a NULL value for this argument.

Description
After a message’s list of envelope recipient addresses has been supplied with
mtaEnqueueTo(), the message itself must be supplied. This can be done by
repeatedly calling mtaEnqueueWriteLine(). First the message’s header should be

Chapter 6 • MTA SDK Reference 219

supplied, followed by a blank line, followed by any message content. Each call to this
routine must supply a single, complete line of the message. The line should not
include a line-feed terminator as mtaEnqueueWriteLine() will supply the
terminator automatically.

Calling mtaEnqueueWriteLine() terminates the message’s envelope recipient list.
Once the routine is called, mtaEnqueueTo() can no longer be called for the same
enqueue context.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS This value is returned for one of the following reasons:
1. A NULL value was supplied for the nq_ctx call argument.
2. An invalid enqueue context was supplied for nq_ctx, or a required

argument to an item code was NULL.

MTA_FCREATE Unable to create a disk file.

MTA_FIO Error writing to a disk.

MTA_ORDER Call made out of order. No envelope recipient addresses have been
supplied.

MTA_THREAD Simultaneous use of the enqueue context by two different threads was
detected.

Example
This code fragment writes out two header lines.

mtaEnqueueWriteLine(nq, "From: sue@siroe.com", 0, NULL);
mtaEnqueueWriteLine(nq, "Subject: test", 0, NULL);

This code fragment shows the header output as a result of the preceding code
example.

From: sue@siroe.com
Subject: test

The following code fragment shows how to terminate the header by writing a blank
line.

mtaEnqueueWriteLine(nq, "", 0, NULL);

The following code fragment that produces a Date: header line.

char buf[64];

mtaEnqueueWriteLine(nq,

220 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

"Date: ", 0,
mtaDateTime(buf, NULL, sizeof(buf), 0), 0,
NULL);

mtaErrno()
Obtain the last returned error status for the calling thread.

Syntax
int mtaErrno(void);

Arguments
None

Description
When an MTA SDK routine is called by a processing thread and returns an error status
code, the SDK saves that status code in thread-specific data. The same processing
thread can obtain the most recently saved status code for its own thread of execution
by calling mtaErrno().

For convenience purposes, the mtasdk.h header file also defines mta_errno as a
macro that calls mtaErrno(). Specifically:

#define mta_errno mtaErrno()

Return Values
The last error return status code returned by an MTA SDK routine called by this
processing thread.

For a description of the MTA SDK error status codes, see Chapter 9

Example
The following code fragment demonstrates how to obtain the most recent error status
code for its own thread.

Chapter 6 • MTA SDK Reference 221

if (!mtaEnqueueStart(&nq, from_adr, 0, 0))
printf("Error returned: %d\n", mtaErrno());

mtaInit()
Initialize the MTA SDK.

Syntax
int mtaInit(int item_code, ...);

Arguments

Arguments Description

item_code An optional list of item codes. See the description section that
follows for a list of item codes. The list must be terminated with
an integer argument with value 0.

Description
Call the mtaInit() routine to initialize the MTA SDK. As part of the initialization
process, the SDK will load the MTA configuration. This loading process will be the
typical cause of initialization failures; either there’s an error in a configuration file, a
missing but required configuration file, or a configuration file can’t be accessed for
reading. To prevent that last error case, ensure that your programs run under a UID
that has read access to the MTA configuration files, especially the compiled
configuration file produced by the imsimta cnbuild utility.

While there is no benefit to doing so, it is safe to call mtaInit() multiple times, either
before or after calling mtaDone(). (To de-initialize the SDK, use mtaDone().)

Although the MTA SDK is self-initializing, the initialization must occur while the
process is single-threaded. As such, multi-threaded programs must call mtaInit()
and must do so while still single threaded.

When the SDK is initialized, the SDK can be told using an item code whether or not
the calling program will be functioning as an interactive utility or not. When being
used by an interactive utility, such as a management utility or a user agent, the SDK
ensures that accounting files are closed after every operation that records accounting

222 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

information. This prevents the accounting file from being left open by a single process
for long periods of time. To specify that the SDK will be used by an interactive utility,
specify the MTA_INTERACTIVE item code. By default, the SDK assumes that it will be
run by a channel program or other program that wishes to achieve maximum
performance while using the SDK. This corresponds to the MTA_CHANNEL item code.
Also, when the SDK self-initializes itself, it assumes MTA_CHANNEL and not
MTA_INTERACTIVE. As part of initializing the SDK, a number of diagnostic facilities
can be enabled. These are enabled using the MTA_DEBUG_ item codes described in the
following table. These diagnostic facilities may also be enabled at any time using the
mtaDebug() routine.

Item Code
Additional
Arguments Description

MTA_CHANNEL None Indicate that the SDK is being used by a channel
program or other non-interactive program. By default
this is the assumed usage. Interactive programs
should use the MTA_INTERACTIVE item code.

MTA_DEBUG_DECODE None Enable diagnostic output from the low-level MIME
decoding routines used by the MTA SDK. This
diagnostic output may prove helpful when
attempting to understand any MIME conversions that
occur either when enqueuing messages to the MTA
and the destination channel is configured to invoke
MIME conversions (for example, marked with
channel keywords such as thurman or inner), or
when using the SDK message decoding routine,
mtaDecodeMessage.()

MTA_DEBUG_DEQUEUENone Enable diagnostic output from the low-level queue
processing routines used by the MTA SDK. Use this
diagnostic output when attempting to understand
issues surrounding reading and processing of queued
message files. This diagnostic output will not help
diagnose the selection of queued messages as that is
handled by a separate process: the MTA Job
Controller.

Enabling this diagnostic output is equivalent to
setting DEQUEUE_DEBUG=1 in the MTA option file,
option.dat.

Chapter 6 • MTA SDK Reference 223

Item Code
Additional
Arguments Description

MTA_DEBUG_ENQUEUENone Enable diagnostic output from the low-level message
enqueue routines used by the MTA SDK. Enqueue
diagnostics can be used to diagnose the address
rewriting process, destination channel selection,
header processing, and other types of processing that
occurs when a message is enqueued to the MTA.

Enabling this diagnostic output is equivalent to
setting MM_DEBUG=5 in the MTA option file.

MTA_DEBUG_MM size_t level Enable diagnostic output from the low-level message
enqueue routines used by the MTA SDK.

This item code must be followed by one additional
call argument: the debug level to use.

The debug level is an integer value in the range
0-20. Enqueue diagnostics may be used to diagnose
the address rewriting process, destination channel
selection, header processing, and other types of
processing that occurs when a message is enqueued
to the MTA.

Enabling this diagnostic output is equivalent to
setting DEQUEUE_DEBUG=level in the MTA option
file.

MTA_DEBUG_OS None Enable diagnostic output from the low-level
operating system dependent routines used by the
MTA SDK. Use of this diagnostic output is helpful
when diagnosing problems associated with creating,
opening, writing, or reading files. Such problems
typically arise when attempting to enqueue messages
to the MTA, a process that requires permissions to
create and write messages in the MTA queues.

Enabling this diagnostic output is equivalent to
setting OS_DEBUG=1 in the MTA option file.

MTA_DEBUG_SDK None Enable diagnostic output for the MTA SDK. When
this output is enabled, diagnostic information will be
output whenever the SDK returns an error result.

MTA_ITEM_LIST mta_item_list_t
*item_list

Specify a pointer to an item list array. The item list
array must be terminated with a final array entry
with an item code value of zero. For further
information on item list usage, see “Item Codes and
Item Lists” on page 35.

224 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Item Code
Additional
Arguments Description

MTA_INTERACTIVE None Indicate that the SDK will be used by an interactive
program. In an interactive scenario, the SDK manages
some of the MTA resources differently than when
running as a channel program. For instance, closing
the MTA log file after every completed message
submission or dequeue operation.

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS A required argument to an item code was NULL.

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more
configuration files. Issue the following command for further
information:

imsimta test -rewrite

MTA_NO Unable to initialize the MTA SDK. Issue the following command for
further information:

imsimta test -rewrite

MTA_NOSUCHITEM An invalid item code was specified.

Example
For normal use:

mtaInit(0);

To select SDK diagnostics:

mtaInit(MTA_DEBUG_SDK, 0);

Chapter 6 • MTA SDK Reference 225

mtaLog()
Write diagnostic output to the channel’s log file.

Syntax
void mtaLog(const char *fmt, ...);

Arguments

Arguments Description

fmt Pointer to a printf() formatting string. The string must be NULL terminated.
See your platform’s C run-time library documentation for information on the
formatting substitutions accepted by printf().

Description
Programs that wish to write diagnostic output should use mtaLog() and
“mtaLogv()” on page 227. These two routines ensure that diagnostic output is
directed to the same output stream as other diagnostic information generated by the
MTA SDK. With one exception, consider a call to mtaLog() as being identical to
calling the C run-time library routine printf(). The call arguments for the two
routines are identical, including the formatting argument, fmt. The single exception is
that, unlike printf(), a call to mtaLog() always produces a single line of output to
the channel’s log file. Consequently, do not attempt to write either partial or multiple
lines with a single call to mtaLog().

Do not include a terminating line feed or other record terminator in the output. That
is, do not put a \n at the end of the formatting string.

A time stamp with a resolution of hundredths of a second prefaces each line of
diagnostic output generated with mtaLog(). The time stamp uses the system clock
and is reported in the local time zone.

Return Values
None

226 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Example
char buf[64];

mtaLog("Version: %d.%d-%d",
mtaVersionMajor(), mtaVersionMinor(),
mtaVersionRevision());

mtaLog("Date/time: %s",
mtaDateTime(buf, NULL, sizeof(buf), 0));

mtaLog("Postmaster address: %s",
mtaPostmasterAddress(NULL, NULL));

The following output is generated by the preceding code example.

12:43:24.62: Version: 6.0-0
12:43:24.62: Date/time: Thu, 01 May 2003 12:43:24 -0700
12:43:24.63: Postmaster address: postman@mailhub.siroe.com

mtaLogv()
Write diagnostic output to the channel’s log file.

Syntax
void mtaLogv(const char *fmt

va_list ap);

Arguments

Arguments Description

fmt Pointer to a printf() formatting string. The string must be NULL
terminated. See your platform’s C run-time library documentation for
information on the formatting substitutions accepted by printf().

ap A va_list structure as defined by the system stdarg.h header file.

Description
The mtaLogv() routine is provided for programs that either need to provide a
diagnostic interface accepting a va_list() argument, or want to provide some
generalization of mtaLog(). Use of mtaLogv() ensures that diagnostic output is
directed to the same output stream as other diagnostic information generated by the
MTA SDK.

Chapter 6 • MTA SDK Reference 227

With one exception, consider a call to mtaLogv() as being identical to calling the C
run-time library routine vprintf(). The call arguments for the two routines are
identical including the formatting argument, fmt. The single exception is that, unlike
vprintf(), a call to mtaLogv() always produces a single line of output to the
channel’s log file. Consequently, do not attempt to write either partial or multiple lines
with a single call to mtaLogv().

Do not include a terminating line feed or other record terminator in the output. That
is, do not put a \n at the end of the formatting string.

Return Values
None

Example
The following code fragment demonstrates a way to provide a generalization of
mtaLog() using mtaLogv().

#include <stdarg.h>

void ourLog(our_context_t *ctx, const char *fmt, ...)
{

char new_fmt[10240];
va_list ap;

/*
* Genrate a new formatting string that includes as a prefix
* the value of ctx-\>id then followed by the contents of the
* supplied formatting string.
*/
snprintf(new_fmt, sizeof(new_fmt),

"id=%d; %s", ctx-\>id, fmt);
va_start(ap, fmt);
mtaLogv(new_fmt, ap);
va_end(ap);

}

mtaOptionFinish()
Dispose of an option context.

Syntax
void mtaOptionFinish(mta_opt_t *opt_ctx);

228 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Arguments

Arguments Description

opt_ctx An option context created by mtaOptionStart().

Description
Option contexts should be disposed of with a call to mtaOptionFinish(). The one
exception to this rule are option contexts returned by
mtaDecodeMessageInfoParams(). While those contexts may be passed to
mtaOptionFinish(), they do not need to be because mtaDecodeMessage() will
automatically dispose of them.

Return Values
None

Example
mtaOptionFinish(opt);

mtaOptionFloat()
Interpret and return an option’s value as a floating point number.

Syntax
int mtaOptionFloat(mta_opt_t *opt_ctx,

const char *name,
size_t len,
double *val);

Chapter 6 • MTA SDK Reference 229

Arguments

Arguments Description

opt_ctx An option context created by mtaOptionStart(). A NULL value is permitted
for this argument. When a NULL is passed, then no option value is returned.

name Name of the option to obtain the value for. The length of this string should not
exceed ALFA_SIZE bytes. This string must be NULL terminated if a value of
zero is passed for len.

len Length in bytes, not including any NULL terminator, of the option name
supplied with name. If a value of zero is supplied, then the option name string
must be NULL terminated.

val Pointer to a floating point of type double to receive the option’s value. If the
option was not specified in the option file, then the value referenced by this
pointer will be left unchanged.

Description
Use mtaOptionFloat() to retrieve the value of an option, interpreting its value as a
floating point number. If the option is specified in the option file and its value is a
valid floating point number, then its value will be returned using the val call
argument. If the option is not specified or its value does not correctly specify a floating
point number, then no value is returned and the memory pointed at by val is left
unchanged.

The mtaOptionFloat()routine can be called with a NULL value for the opt_ctx
argument. When this is done, mtaOptionFloat() immediately returns with a status
code of zero and no value is returned.

This routine does not provide an indication of whether or not the option was specified
in the option file. If it is important to know whether or not the option was specified,
then use “mtaOptionString()” on page 236 to test to see if the option was
specified.

Return Values

Return Values Description

0 Normal, successful completion.

230 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values Description

MTA_STRTRUERR The supplied option name is too long. Its length must not exceed
ALFA_SIZE bytes.

Example
The following code example retrieves the value of an option named aspect_ratio.
Before calling mtaOptionFloat(), a default value is set for the variable to receive
the value of the option. If the option was not specified in the option file, then the
variable will retain that default setting. If the option was specified, then the variable
will assume the value set in the file.

ratio = 1.0;
mtaOptionFloat(opt, "aspect_ratio", 0, &ratio);

If it is important to know whether or not the option was specified, then use
mtaOptionString() to test to see if the option was specified as shown in the
following code example. In this example, when the routine returns, the code
determines that the option was specified by whether or not the value of the buflen
variable has changed.

char buf[1];
size_t buflen;

buflen = 0xffffffff;
mtaOptionString(opt, "aspect_ratio", 0, buf, &buflen,

sizeof(buf));
ratio_specified = (buflen != 0xffffffff) ? 1 : 0;

mtaOptionInt()
Interpret and return an option’s value as an integer number.

Syntax
int mtaOptionInt(mta_opt_t *opt_ctx,

const char *name,
size_t len,
int *val);

Chapter 6 • MTA SDK Reference 231

Arguments

Arguments Description

opt_ctx An option context created by mtaOptionStart(). A NULL value is
permitted for this argument. When a NULL is passed, then no option value is
returned.

name Name of the option to obtain the value for. The length of this string should not
exceed ALFA_SIZE bytes. This string must be NULL terminated if a value of
zero is passed for len.

len Length in bytes, not including any NULL terminator, of the option name
supplied with name. If a value of zero is supplied, then the option name string
must be NULL terminated.

val Pointer to an integer of type int to receive the option’s value. If the option
was not specified in the option file, then the value referenced by this pointer
will be left unchanged.

Description
Use mtaOptionInt() to retrieve the value of an option, interpreting its value as an
integer-valued number. If the option is specified in the option file and its value is a
valid integer, then its value will be returned using the val call argument. If the option
is not specified or its value does not correctly specify an integer, then no value is
returned and the memory pointed at by val is left unchanged.

The routine can be called with a NULL value for the opt_ctx argument. When this is
done, mtaOptionInt() immediately returns with a status code of zero and no value
is returned.

This routine does not provide an indication of whether or not the option was specified
in the option file. If it is important to know whether or not the option was specified,
then use mtaOptionString() to test to see if the option was specified as shown in
the code example.

Return Values

Return Values Description

0 Normal, successful completion.

232 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values Description

MTA_STRTRUERR The supplied option name is too long. Its length must not exceed
ALFA_SIZE bytes.

Example
In the following code example, the value of an option named max_blocks is
retrieved. Before calling mtaOptionInt(), a default value is set for the variable to
receive the value of the option. If the option was not specified in the option file, then
the variable will retain that default setting. If the option was specified, then the
variable will assume the value set in the file.

blocks = 1024;
mtaOptionInt(opt, "max_blocks", 0, &blocks);

The following code example illustrates how upon return from mtaOptionString(),
the code determines that the option was specified by whether or not the value of the
buflen variable has changed.

char buf[1];
size_t buflen;

buflen = 0xffffffff;
mtaOptionString(opt, "max_blocks", 0, buf, &buflen, sizeof(buf));
blocks_specified = (buflen != 0xffffffff) ? 1 : 0;

mtaOptionStart()
Open, parse, and load into memory an MTA option file.

Syntax
int mtaOptionStart(mta_opt_t **opt_ctx,

const char *path,
size_t len,
int item_code);

Chapter 6 • MTA SDK Reference 233

Arguments

Arguments Description

opt_ctx On successful return, a pointer to an option context created by
mtaOptionStart(). This option context represents the options read from
the option file.

path Optional file path to the option file to read. If not specified, then the path
specified by the PMDF_CHANNEL_OPTION environment variable will be
used. If a value of zero is supplied for len, and there is a non-NULL value
for path, the value must be NULL terminated. The length of the file path,
not including any NULL terminator, may not exceed ALFA_SIZE bytes.

len Length in bytes, not including any NULL terminator, of the file path. This
argument is ignored when a NULL is passed for path. When path is
non-NULL and a value of zero is supplied for len, then the file path string
must be NULL terminated.

item_code Reserved for future use. A value of zero must be supplied for this call
argument.

Description
MTA option files such as channel option files may be read, parsed, and loaded into
memory with mtaOptionStart(). Once loaded into memory, the values of
individual options may be retrieved with the routines shown in the table that follows:

Routine Names Description

mtaOptionFloat() Retrieve the value of a floating point valued option.

mtaOptionInt() Retrieve the value of an integer valued option.

mtaOptionString() Retrieve the string representation of an options value.

These routines are designed such that if the requested option does not exist, then no
value is returned. This allows code to assign to a variable an option’s default value,
then attempt to retrieve an explicitly set value from the option file. During the
retrieval, the address of the variable can be passed. If the option is specified in the
option file, then the value of the variable will be replaced with the value from the
option file. If the option is not specified, then the default value stored in the variable is
left unchanged. Code examples of such usage are provided in the individual routine
descriptions.

Once finished obtaining the values of any options, unload the options from memory
and dispose of the option context with mtaOptionFinish().

234 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

When the underlying option file does not exist, mtaOptionStart() still returns a
success status code. However, a NULL value is returned for the pointer to the option
context. The other option routines accept a NULL value for an option context pointer
and will behave as though the requested option is not specified in the option file. This
behavior reflects the fact that MTA option files are considered optional. If a channel’s
option file does not exist, then the channel is supposed to use its default settings for its
options. This also simplifies coding, allowing programs not to have to worry about
whether or not the option file exists and whether or not the option context pointer is
NULL. If, however, the existence of an option file is mandatory, then a program can
detect that the file does not exist by seeing if the returned value for the option context
pointer is NULL as shown in the code example section that follows.

If an explicit option file path is specified with the path call argument, then the path
can be a relative file path or an absolute file path. File paths can be prefixed with any
of the symbolic MTA directory names specified in the imta_tailor file. For example,
the entry shown in the following code fragment specifies a file named
mmsc_gateway.cnf located in the nmsc subdirectory of the MTA configuration
directory. Note that a colon separates the symbolic name from the remainder of the
path.

IMTA_TABLE:/mmsc/mmsc_gateway.cnf

If no file path is specified, then the file specified with the PMDF_CHANNEL_OPTION
environment variable will be opened and read. That environment variable is
established by the Job Controller for the channel programs that it runs. It will always
have the following format:

IMTA_TABLE:channel-name_option

where channel-name is the name of the channel being run. The following example
demonstrates how the environment variable settings are effected for tcp_local
channel:

PMDF_CHANNEL=tcp_local
PMDF_CHANNEL_OPTION=IMTA_TABLE:tcp_local_option

Return Values

Return Values Description

0 Normal, successful completion.

MTA_BADARGS A NULL value was supplied for the opt_ctx call argument.

MTA_FOPEN Unable to open the option file. File access permissions are the likely
cause for this error.

MTA_NO An error occurred while reading or parsing the option file.

Chapter 6 • MTA SDK Reference 235

Return Values Description

MTA_NOMEM Insufficient virtual memory.

MTA_STRTRUERR The supplied file path is too long. Its length must not exceed
ALFA_SIZE bytes.

Example
opt_ctx = NULL;
if (mtaOptionStart(&opt_ctx, NULL, 0, 0))

/*
* Error loading the option file
*/

else if (!opt_ctx)
/*
* Option file did not exist
*/

mtaOptionString()
Return an option’s value as a string.

Syntax
int mtaOptionString(mta_opt_t *opt_ctx,

const char *name,
size_t len,
const char *str,
size_t *str_len,
size_t str_len_max);

236 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Arguments

Arguments Description

opt_ctx An option context created by mtaOptionStart(). A NULL value is
permitted for this argument. When a NULL is passed, then no option
value is returned.

name Name of the option to obtain the value for. The length of this string
should not exceed ALFA_SIZE bytes. This string must be NULL
terminated if a value of zero is passed for len.

len Length in bytes, not including any NULL terminator, of the option name
supplied with name. If a value of zero is supplied, then the option name
string must be NULL terminated.

str A pointer to a buffer to receive the NULL terminated value of the
specified option. The MTA allows channel options to have a maximum
length of BIGALFA_SIZE bytes. As a result, this buffer should in general
have a length of at least BIGALFA_SIZE+1 bytes. If the option was not
specified in the option file, then the contents of the buffer is left
untouched.

str_len An optional pointer to a size_t to receive the length in bytes of the
returned option value string, str. A value of NULL may be passed for
this call argument.

str_len_max The maximum size in bytes of the buffer pointed at by str.

Description
Use mtaOptionString() to retrieve the string representation of an option’s value. If
the option is specified in the option file, then its value and length will be returned via
the str and str_len call arguments. If the option is not specified then no value is
returned and the memory pointed at by str and str_len are left unchanged. This
routine can be called with a NULL value for the opt_ctx argument. When this is
done, mtaOptionString() immediately returns with a status code of zero and no
option value is returned.

Return Values

Return Values Description

0 Normal, successful completion.

Chapter 6 • MTA SDK Reference 237

Return Values Description

MTA_STRTRU Supplied buffer pointed at by buf is too small. The returned value has
been truncated to fit. Truncated value is NULL terminated. The buffer
should have a length of at least BIGALFA_SIZE+1 bytes.

MTA_STRTRUERR The supplied option name is too long. Its length must not exceed
ALFA_SIZE bytes.

Example
In the code example that follows, the value of an option named mail_url is
retrieved. Before calling mtaOptionString(), a default value is set for the variable
to receive the value of the option. If the option was not specified, then the variable will
retain that default setting. If the option was specified, then the variable will assume
the value set by that specification.

char url[1024];

strcpy(url, "mail_to:webmaster@siroe.com");
mtaOptionString(opt, "mail_url", 0, url, NULL, sizeof(url));

mtaPostmasterAddress()
Obtain the MTA local postmaster address.

Syntax
const char *mtaPostmasterAddress(const char **address,

size_t *len,
int item code, ...)

238 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Arguments

Arguments Description

address Optional pointer to receive the memory address of the string buffer containing
the MTA local postmaster address. The string will be NULL terminated. A
value of NULL may be passed for this argument.

len Optional address of a size_t to receive the length in bytes of the postmaster
address. A value of NULL may be passed for this argument.

item code Reserved for future use. A value of zero (0) must be passed for this argument.

Description
This routine returns a pointer to a NULL terminated string containing the MTA local
postmaster address. This address is suitable, for instance, for inclusion in the From:
header line of notification messages as shown in the code example for this routine.

It is usually not a good idea for programs to send mail to the postmaster’s address. In
many situations, sending mail to the postmaster when failures occur can lead to mail
loops if the mail sent to the postmaster itself fails, and generates a message to the
postmaster, which then fails, and generates yet another message to the postmaster, and
so on.

On a successful completion, the address of the string buffer containing the
postmaster’s address is returned using the address call argument. That same address
is also returned as the return status.

Return Values
In the event of an error, a value of NULL is returned as the status and mta_errno is
set with a status code indicating the underlying error.

Error Status Codes Description

MTA_FOPEN Unable to initialize the MTA SDK. Unable to read one or more
configuration files. For further information, issue the following
command:

imsimta test -rewrite

Chapter 6 • MTA SDK Reference 239

Error Status Codes Description

MTA_NO Unable to initialize the MTA SDK. For further information, issue the
following command:

imsimta test -rewrite

Example
The following example shows how to use this routine to include the postmaster
address in the From: header line of a notification message:

mtaEnqueueWriteLine(nq, "From: Postmaster <", 0,
mtaPostmasterAddress(NULL, NULL, 0), 0,
"\>", 0, NULL);

mtaStackSize()
Obtain the minimum thread stack size required when using the MTA SDK.

Syntax
size_t mtaStackSize(void);

Arguments
None

Description
A number of the run-time libraries used by the MTA SDK make intensive use of stack
variables. As a result, some MTA SDK operations can require a larger than usual
thread stack size. The minimum thread stack size required for typical MTA SDK
operations, such as message dequeue and enqueue operations, can be obtained with
mtaStackSize(). When writing multi-threaded code, ensure that any threads that
will be calling SDK routines have a stack size at least as large as the value returned by
mtaStackSize(). Failure to do may result in abnormal process terminations when a
thread overruns its stack.

240 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values
The minimum thread stack size required for MTA SDK operations.

Example
None

mtaStrError()
Obtain a text description of an error status code.

Syntax
const char *mtaStrError(int code,

int item_code);

Arguments

Arguments Description

code The MTA SDK error status to obtain a text description for.

item_code Reserved for future use. A value of zero must be supplied for this call
argument.

Description
Use mtaStrError() to obtain English language descriptions of MTA SDK error
codes. These descriptions are intended solely for use in fine-grained diagnostic output.
They are not intended for reading by end users of programs written using the MTA
SDK.

Return Values
A pointer to a NULL terminated string containing the error code description.

Chapter 6 • MTA SDK Reference 241

Example
ires = mtaEnqueueStart(&nq, from, 0, 0);
if (ires)

printf("mtaEnqueueStart() returned %d; %s\n",
ires, mtaStrError(ires, 0));

mtaUniqueString()
Generate a system-wide unique string.

Syntax
const char *mtaUniqueString(char *buf,

size_t *len,
size_t max_len);

Arguments

Arguments Description

buf A pointer to a buffer to receive the NULL terminated unique string. The buffer
should be at least 20 bytes long.

len An optional pointer to a size_t to receive the length in bytes of the returned
unique string. This length does not include the NULL terminator that
terminates the returned unique string. A value of NULL can be passed for this
call argument.

len_max The maximum size in bytes of the buffer pointed at by buf.

Description
The mtaUniqueString() routine may be used to generate a system-wide unique
string. The strings generated are suitable for use as MIME boundary markers and file
names. On a successful completion, the unique string is stored in the buffer pointed at
by the buf argument. Additionally, the value of the buf argument is returned as the
routines return status.

242 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Values
In the event of an error, mtaUniqueString() will return NULL. The error status
code may be obtained by examining the value of mta_errno.

Error Status Codes Description

MTA_BADARGS A value of NULL was supplied for the buf argument.

MTA_STRTRUERR The buf buffer is too small.

Example
This routine is used in Example 5–2.

mtaVersionMajor()
Obtain the major version number associated with the MTA SDK library.

Syntax
int mtaVersionMajor(void);

Arguments
None

Description
Return the major version number associated with the MTA SDK library.

Return Values
The SDK major version number.

Chapter 6 • MTA SDK Reference 243

Example
printf("MTA SDK Version %d.%d-%d\n"

mtaVersionMajor(), mtaVersionMinor(),
mtaVersionRevision())

mtaVersionMinor()
Obtain the minor version number associated with the MTA SDK library.

Syntax
int mtaVersionMinor(void);

Arguments
None

Description
Return the minor version number associated with the MTA SDK library.

Return Values
The SDK minor version number.

Example
printf("MTA SDK Version %d.%d-%d\n"

mtaVersionMajor(), mtaVersionMinor(),
mtaVersionRevision());

244 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

mtaVersionRevision()
Obtain the revision level associated with the MTA SDK library.

Syntax
int mtaVersionRevision(void);

Arguments
None

Description
Return the revision level associated with the MTA SDK library.

Return Values
The SDK revision level.

Example
printf("MTA SDK Version %d.%d-%d\n"
mtaVersionMajor(), mtaVersionMinor(), mtaVersionRevision());

Chapter 6 • MTA SDK Reference 245

246 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

CHAPTER 7

Using Callable Send mtaSend()

The Sun Java System Messaging Server MTA Callable Send facility, mtaSend(), is a
single procedure that is used to send (enqueue) mail messages of local origin; that is,
to originate mail from the local host. Because the mtaSend() routine is not as flexible
as the SDK routines and will take possibly undesirable, but necessary, authentication
steps (such as, the addition of a Sender: header line), the MTA SDK routines should
generally be used by programs that need to resend, forward, send through a gateway,
or otherwise route mail messages.

The mtaSend() routine may be used simultaneously with the MTA SDK routines.

This chapter covers the following topics:

� “Sending a Message” on page 247
� “Envelope and Header From Addresses” on page 248
� “To, Cc, and Bcc Addresses” on page 249
� “Message Headers and Content” on page 250
� “Required Privileges for mtaSend()” on page 251
� “mtaSendDispose()” on page 251
� “Compiling and Linking Programs” on page 252
� “Examples of Using mtaSend()” on page 253

Sending a Message
Each message sent with mtaSend() must have a corresponding item list describing
the message. The entries in this item list specify the message’s From: and To:
addresses as well as input sources for the content of the message.

The basic steps in sending a message with mtaSend() are:

1. Build an item list to pass to mtaSend().

247

To build an item list, complete the following steps:

a. Specify any special processing options, such as “MTA_BLANK” on page 264, or
“MTA_IGNORE_ERRORS” on page 272.

b. Specify the message’s envelope From: address with the “MTA_USER” on page
275 item.

c. Specify the message’s To:, Cc:, and Bcc: addresses with the “MTA_TO”
on page 275, “MTA_CC” on page 264, and “MTA_BCC” on page 264 items.

d. Specify an initial message header in one of two ways:

� Specify an input source that supplies each of the initial message header lines
(“MTA_HDR_FILE” on page 270, “MTA_HDR_PROC” on page 270).

� Specify the content of individual message header lines with individual item
codes (“MTA_SUBJECT” on page 274, “MTA_HDR_LINE” on page 270).

e. Specify the input sources for the message body with the “MTA_MSG_FILE”
on page 273 or “MTA_MSG_PROC” on page 273 items.

f. Terminate the item list with an item code of value 0 (“MTA_END_LIST”
on page 267).

2. Pass the item list to mtaSend().

3. Check the return status from mtaSend().

For a description of all item codes and their return status values, see Chapter 8.

To enqueue additional messages, simply repeat these steps.

Envelope and Header From Addresses
The envelope From: address for a message should be specified with the “MTA_USER”
on page 275 item code. With this item code, only the local part of a mail address may
be specified, that is, the user name. The mtaSend() routine will automatically append
the official local host name to the user name so as to produce a valid mail address.

The “MTA_ENV_FROM” on page 268 item code may be used to explicitly specify a
complete envelope From: address but this is usually not necessary. Applications that
enqueue nonlocal mail should probably be using the SDK routines rather than
mtaSend().

If neither MTA_USER nor MTA_ENV_FROM are specified, then the user name associated
with the current process will be used for the envelope From: address. When
MTA_USER is used, the From: header line will be derived from the envelope From:
address. When MTA_ENV_FROM is used, the From: header line will be derived from
the user name of the current process. In either case, if a From: header line is supplied
in an initial header, then a Sender: header line will be added to the message header.

248 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

The initial From: header line will be left intact and the address specified, and
Sender: address will be derived from either the envelope From: address
(MTA_USER) or from the user name of the current process, that is, from
MTA_ENV_FROM.

Only privileged users may use MTA_USER to specify a user name different than that of
the current process. To be considered a “privileged” process on UNIX® systems, the
process must have the same (real) user ID (UID) as either the root or Messaging
Server account.

To, Cc, and Bcc Addresses
The list of To:, Cc:, and Bcc: addresses to send a message to is built up, one address
at a time, with item-list entries. Each item-list entry specifies the type of address (To:,
Cc:, or Bcc:) and a string containing the address.

The type of address is denoted by the item code, MTA_TO, MTA_CC, or MTA_BCC,
associated with the item-list entry. The mtaSend() routine uses this information to
build the message envelope To: address list and To:, Cc:, and Bcc: header.

To specify an envelope-only address that should not appear in the message header (for
example, an active transport address), use “MTA_ENV_TO” on page 268. Likewise, to
specify a header-only address that should not appear in the envelope, such as, an
inactive address, use “MTA_HDR_TO” on page 271, “MTA_HDR_CC” on page 269, or
“MTA_HDR_BCC” on page 269, as appropriate.

When one or more of the To:, Cc:, or Bcc: addresses is illegal, the mtaSend()
routine will not, by default, indicate which addresses were in error. However, the
differentiation can be achieved by using the “MTA_ADR_STATUS” on page 263 item
code. When this item code is used, the item_status field associated with an address
will be set either to zero (0) if the address was accepted, or to a non-zero value if there
was an error processing the address.

When item_status is zero, item_smessage points to a NULL terminated string
containing the rewritten form of the address. When item_status has a non-zero
value, item_smessage points to a NULL terminated string containing an error
message suitable for printing for diagnostic purposes.

Chapter 7 • Using Callable Send mtaSend() 249

Message Headers and Content
The body of a message, that is, the message content, is built up from zero or more
input files or procedures. The input files and procedures are read or invoked in the
order specified in the item list passed to the mtaSend() routine. The message body is
built up by appending the next input source to the end of the previous input source. A
blank line will be inserted in the message as a separator between input sources if the
“MTA_BLANK” on page 264 item is requested in the item list. The “MTA_MSG_FILE”
on page 273 and “MTA_MSG_PROC” on page 273 item codes are used to specify the
name or address of input files or procedures.

An initial message header may be supplied from either an input file or procedure. The
message header will then be modified as needed when the message is enqueued. The
“MTA_HDR_FILE” on page 270 and “MTA_HDR_PROC” on page 270 items are used to
specify the name or address of an input file or procedure. If an initial message header
is to be supplied, it must appear in the item list before any MTA_MSG_FILE or
MTA_MSG_PROC items. A blank line must be supplied at the end of the message
header, or at the start of the first message-body input source. This blank line will
automatically be supplied when the MTA_BLANK item code is specified in the item list.

The MTA_MODE_ and MTA_ENC_ items control the access mode and encodings applied
to message body input sources. These items set the current access mode and encoding
to be applied to all subsequent input sources that appear in the item list. The default
access mode is “MTA_MODE_TEXT” on page 272, which uses text mode access. The
default encoding is “MTA_ENC_UNKNOWN” on page 267, which results in no encoding
of the data.

The binary access mode will not be applied to input procedures. The access mode and
encoding item codes do not apply to input sources for an initial message header,
which is always accessed using the default access mode and never encoded.

Input procedures use the following calling format:

ssize_t proc(const char **bufadr)

where const char **bufadr is the address of pointer to the starting memory
location of the next piece of input data.

The return value is ssize_t, which gives the length of the input data. A value that is
equal to or greater than zero (0) indicates success. A value of minus one (-1) indicates
that there is no further data to return (EOF). Any other negative value indicates an
error for which processing should be aborted.

The procedure will be repeatedly called until a negative value is returned, which
indicates all input data has been retrieved or an error occurred.

250 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Required Privileges for mtaSend()
Like the MTA SDK routines, privileges are required in order to use mtaSend().
Enqueuing messages requires privileges sufficient to create, open, read from, and write
to the MTA message queue directories. On UNIX, this is accomplished by having your
executable program owned and run by the MTA account or, alternatively, owned by
the MTA and have the setuid attribute set.

In order to submit mail under a user name that differs from that of the calling process,
privileges are required. On UNIX platforms, the process must have the same (real)
UID as either the root or Messaging Server account.

In some applications, it is important to keep strict control over when privileges are
enabled and disabled. To this end, the “MTA_PRIV_ENABLE_PROC” on page 274 and
“MTA_PRIV_DISABLE_PROC” on page 274 item codes may be used to specify the
addresses of two procedures to call immediately prior to and immediately after
enqueuing a message. This allows the required privileges to be enabled only when
they are needed, that is, when the message is enqueued, and to remain disabled at all
other times.

The mtaSend() routine does not use a condition handler, so if a fatal error occurs
while enqueuing a message, it is up to the calling program to trap the error and, if
necessary, disable any privileges that should be disabled. These procedures, if
specified, should accept no arguments and return no function result (return value).

The privileges to be enabled must either be granted to the program using mtaSend()
(for example, the program may have been installed with privileges), or the process
running the program must have the requisite privileges. The mtaSend() routine and
the MTA do not provide these privileges.

mtaSendDispose()
For each call to mtaSend() where MTA_ADR_STATUS is used, there should be a
subsequent call to mtaSendDispose().

Syntax
void mtaSendDispose(mta_item_list_t *item_list)

Chapter 7 • Using Callable Send mtaSend() 251

Arguments

Argument Description

item_list Pointer to an array with elements of type mta_item_list_t.
This should be an array previously passed to mtaSend().

Description
Each call to this routine disposes of virtual memory allocated by mtaSend() for
returning address status information requested with the MTA_ADR_STATUS item code.

Return Values
None

Example
...
item_list[index++].item_code=MTA_ADR_STATUS;
item_list[index++].item_code=MTA_ITEM_END;
istat=mtaSend(item_list);
...
mtaSendDispose(item_list);

Compiling and Linking Programs
Programs that use mtaSend() are linked using the same steps as the MTA SDK
routines. For details, see Chapter 2.

252 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Examples of Using mtaSend()
Several example programs, written in C, are provided in this section:

� “Sending a Simple Message” on page 253
� “Example 2 Specifying an Initial Message Header” on page 254
� “Example 3 Sending a Message to Multiple Recipients” on page 255
� “Example 4 Using an Input Procedure to Generate the Message Body” on page 257

The example routines shown in this section may be found in the examples/mta/sdk
directory.

Sending a Simple Message
The program shown in Example 7–1 demonstrates how to send a simple message to
the root account. The source code itself is used as the input source for the body of the
message to be sent. The From: address associated with the message is that of the
process running the program. Comments in the program example explain the sample
output line they generate.

EXAMPLE 7–1 Send a Simple Message

/* send_simple.c Send a simple message */
#include <string.h\>
#include "mtasdk.h"

/* Push an entry onto the item list */
#define ITEM(item,adr) item_list[index].item_code = item;\
item_list[index].item_address = adr;\
item_list[index].item_length = adr ? strlen(adr) : 0; \
item_list[index].item_status = 0;\
item_list[index++].item_smessage = NULL

main ()
{
mta_item_list_t item_list[4];
int index = 0;

ITEM(MTA_TO, "root"); /* Becomes the To: line in the output */
ITEM(MTA_SUBJECT, "send_simple.c");
ITEM(MTA_MSG_FILE, __FILE__);/* Becomes the Subject: line */
ITEM(MTA_END_LIST, 0);
exit(mtaSend(item_list));

}

Output for Example 1 Sending a Simple Message
Date: 04 Oct 1992 22:24:07 -0700 (PDT)
From: jdoe@sesta.com

Chapter 7 • Using Callable Send mtaSend() 253

Subject: send_simple.c
To: root@sesta.com
Message-id: <01GPKF10JIB89LV1WX@sesta.com\>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT

/* send_simple.c -- Send a simple message */
#include <string.h\>
#include "mtasdk.h"

...

Example 2 Specifying an Initial Message Header
The program shown in Example 7–2 illustrates the use of the MTA_HDRMSG_FILE and
MTA_HDR_ADRS item codes to enqueue a message that has already been composed,
including the headers, and stored in a file. The input file is given in the “Input File for
Example 2 Specifying an Initial Message Header” on page 255. The resulting message
is shown in “Output for Example 2 Specifying an Initial Message Header” on page
255.

When the entire message, header and body, is contained in a single file, use the
MTA_HDRMSG_FILE item code in place of the MTA_HDR_FILE and MTA_MSG_FILE
item codes.

EXAMPLE 7–2 Specify an Initial Message Header

/* send_header.c -- Send a message with initial header */
#include <string.h\>
#include "mtasdk.h"

/* Push an entry onto the item list */
#define ITEM(item,adr) item_list[index].item_code = item;\
item_list[index].item_address = adr;\
item_list[index].item_length = adr ? strlen(adr) : 0;\
item_list[index].item_status = 0;\
item_list[index++].item_smessage = NULL

main ()
{
MTA_item_list_t item_list[3];
int index = 0;

ITEM(MTA_HDR_ADRS, 0);
ITEM(MTA_HDRMSG_FILE, "send_header.txt");
ITEM(MTA_END_LIST, 0);
exit(mtaSend(item_list));

}

254 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Input File for Example 2 Specifying an Initial Message
Header
Subject: MTA SDK callable Send example
To: root@sesta.com
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT
Comments: Ignore this message -- it’s just a test

This is a test of the emergency broadcasting system!

1234567890123456789012345678901234567890123456789012345678901234
5678901234567890

0000000001111111111222222222233333333334444444444555555555566666
6666677777777778

Output for Example 2 Specifying an Initial Message
Header
Date: 04 Jan 2003 22:42:25 -0800 (PST)
From: system@sesta.com
Subject: MTA SDK callable Send example
To: system@sesta.com
Message-id: <01GPKFNPUQF89LV1WX@sesta.com\>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT
Comments: Ignore this message -- it’s just a test

This is a test of the emergency broadcasting system!

1234567890123456789012345678901234567890123456789012345678901234
5678901234567890

0000000001111111111222222222233333333334444444444555555555566666
6666677777777778

Example 3 Sending a Message to Multiple
Recipients
The program given in Example 7–3 demonstrates the following points:

� Sending a message to multiple recipients.
� Obtaining the status (legal, illegal) of each envelope recipient address (that is,

active transport address).

The message is sent to one To: address, a Cc: address, and a Bcc: address. After
mtaSend() is called, any status message associated with each address is displayed.

Chapter 7 • Using Callable Send mtaSend() 255

The log output produced by running the program is shown in “Output for Example 3
Sending a Message to Multiple Recipients” on page 257.

The following items of note are identified in the comments in the program:

� Instruct mtaSend() to return a status message for each envelope recipient
address.

� Specify some To:, Cc:, and Bcc: addresses.

� Send the message.

� Display any returned status messages.

EXAMPLE 7–3 Sending a Message to Multiple Recipients

/* send_multi.c -- Send a message to multiple recipients */
#include <stdio.h\>
#include <string.h\>
#include "mtasdk.h"

#define ITEM(item,adr) item_list[index].item_code = item;\
item_list[index].item_address = adr;\
item_list[index].item_length = adr ? strlen(adr) : 0;\
item_list[index].item_status = 0;\
item_list[index++].item_smessage = NULL

main ()
{
int index = 0, istat, i;
mta_item_list_t item_list[7];

/* Specify the Subject: header line and message input source */
ITEM(MTA_SUBJECT, "send_multi.c");
ITEM(MTA_MSG_FILE, __FILE__);

/* Return per address status/error messages */
ITEM(MTA_ADR_STATUS, 0); /* Instructs mtaSend() to return a */

/* status message for each envelope */
/* recipient address */

/* Specify regular Bcc:, To:, and Cc: addresses */
ITEM(MTA_BCC, "root");
ITEM(MTA_TO, "abuse@sample.com");
ITEM(MTA_CC, "postmaster@sample.com");

/* Now terminate the item list */
ITEM(MTA_END_LIST, 0);

/* And send the message */
istat = mtaSend(item_list);/* Sends the message. */

/* Display the address status messages provided that no */
/* error other than MTA_HOST has occurred */

256 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

EXAMPLE 7–3 Sending a Message to Multiple Recipients (Continued)

for (i = 0; i < index; i++) /* Display any returned status */
/* messages */

if (item_list[i].item_smessage)
printf ("%s: %s - %s\n",

(const char *)item_list[i].item_address,
item_list[i].item_status ? "Failed" :

"Succeeded",
item_list[i].item_smessage);

/* Dispose of status messages */
mtaSendDispose(item_list);
exit(istat);

}

Output for Example 3 Sending a Message to Multiple
Recipients
Succeeded: root@sample.com
Succeeded: abuse@sample.com
Succeeded: postmaster@sample.com

Example 4 Using an Input Procedure to Generate
the Message Body
The program shown in Example 7–4 uses an input procedure as the source for the
body of a message to be sent. In the program, the input procedure msg_proc will
read input until the runtime library routine fgets() signals an EOF condition, for
example, a control-D has been input. The address of the procedure msg_proc is
passed to mtaSend() using a MTA_MSG_PROC item code. The mtaSend() routine
repeatedly calls the msg_proc procedure, until a negative value is returned by the
procedure.

EXAMPLE 7–4 Using an Input Procedure to Generate the Message Body

/* send_input.c -- Demonstrate the use of MTA_MSG_PROC */
#include <stdio.h\>
#include <stdlib.h\>
#include <string.h\>
#include "mtasdk.h"
#ifdef _WIN32
typedef long ssize_t;
#endif

/* Push an entry onto the item list */
#define ITEM(item,adr) item_list[index].item_code = item;\

Chapter 7 • Using Callable Send mtaSend() 257

EXAMPLE 7–4 Using an Input Procedure to Generate the Message Body (Continued)

item_list[index].item_address = adr;\
item_list[index].item_length = 0;\
item_list[index].item_status = 0;\
item_list[index++].item_smessage = NULL

ssize_t msg_proc(const char **bufadr)
{
static char buf[1024];

if (!bufadr)
return(-2); /* Call error; abort */

printf("input: ");
if (fgets(buf, sizeof(buf), stdin))
{
*bufadr = buf;
buflen = strlen(buf);
if (buf[buflen-1] == ’\n’)
buflen -= 1;

return(buflen);
}
else
return(-1); /* EOF */

}

main ()
{
int istat, index = 0;
mta_item_list_t item_list[4];

STRITEM(MTA_SUBJECT, "send_input.c");
STRITEM(MTA_TO, "root");
ITEM(MTA_MSG_PROC, msg_proc);
ITEM(MTA_END_LIST, 0);
exit(mtaSend(item_list));

}

258 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

CHAPTER 8

mtaSend() Routine Specification

This chapter contains the functional specification of the mtaSend() routine. It
includes the following sections:

� mtaSend() Syntax
� Item Codes

List of Item Codes

“MTA_ADR_NOSTATUS” on page 263

“MTA_ADR_STATUS” on page 263

“MTA_BCC” on page 264

“MTA_BLANK” on page 264

“MTA_CC” on page 264

“MTA_CHANNEL” on page 264

“MTA_CFILENAME” on page 265

“MTA_CFILENAME_NONE” on page 265

“MTA_CTYPE” on page 265

“MTA_ENC_BASE64” on page 265

“MTA_ENC_BASE85” on page 265

“MTA_ENC_BINHEX” on page 266

259

“MTA_ENC_BTOA” on page

“MTA_ENC_COMPRESSED_BASE64” on page 266

“MTA_ENC_COMPRESSED_BINARY” on page 266

“MTA_ENC_COMPRESSED_UUENCODE” on page 266

“MTA_ENC_HEXADECIMAL” on page 266

“MTA_ENC_NONE” on page 267

“MTA_ENC_PATHWORKS” on page 267

“MTA_ENC_QUOTED_PRINTABLE” on page 267

“MTA_ENC_UNKNOWN” on page 267

“MTA_ENC_UUENCODE” on page 267

“MTA_END_LIST” on page 267

“MTA_ENV_FROM” on page 268

“MTA_FRAGMENT_BLOCKS” on page 268

“MTA_FRAGMENT_LINES” on page 269

“MTA_ENV_TO” on page 268

“MTA_FROM” on page 269

“MTA_HDR_ADRS” on page 269

“MTA_HDR_BCC” on page 269

“MTA_HDR_CC” on page 269

“MTA_HDR_FILE” on page 270

“MTA_HDR_LINE” on page 270

“MTA_HDR_NOADRS” on page 270

“MTA_HDR_NORESENT” on page 270

“MTA_HDR_PROC” on page 270

“MTA_HDR_RESENT” on page 271

“MTA_HDR_TO” on page 271

“MTA_HDRMSG_FILE” on page 271

“MTA_HDRMSG_PROC” on page 271

“MTA_IGNORE_ERRORS” on page 272

“MTA_INTERACTIVE” on page 272

260 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

“MTA_ITEM_LIST” on page

“MTA_MAX_TO” on page 272

“MTA_MODE_BINARY” on page 272

“MTA_MODE_TEXT” on page 272

“MTA_MSG_FILE” on page 273

“MTA_MSG_PROC” on page 273

“MTA_NOBLANK” on page 273

“MTA_NOIGNORE_ERRORS” on page 273

“MTA_PRIV_DISABLE_PROC” on page 274

“MTA_PRIV_ENABLE_PROC” on page 274

“MTA_SUBADDRESS” on page 274

“MTA_SUBJECT” on page 274

“MTA_TO” on page 275

“MTA_USER” on page 275

mtaSend() Syntax

Syntax
int mtaSend(mta_item_list_t *item_list)

Arguments

item_list
The mtaSend() routine takes only one argument, item_list, which is a pointer to
an array of item descriptors. Each item descriptor specifies an action to be taken, and
provides the information needed to perform that action.

Chapter 8 • mtaSend() Routine Specification 261

The list of item descriptors is terminated with an entry containing the MTA_END_LIST
(0) item code.

Each item descriptor has the following C-style structure declaration:

struct {
int item_code;
const void *item_address;
int item_length;
int item_status;
const char *item_smessage;

} mta_item_list_t;

Item Descriptor Fields

item_code
Integer item code specifying an action to be taken by mtaSend(). The include file
described in Chapter 1 defines these codes. Each item code is described later in this
chapter, starting at “Item Codes” on page 263.

item_address
The caller-supplied address of data to be used in conjunction with the action specified
by the item_code field. Not all actions require that an item_address be supplied.

item_length
When the item code has an associated string value, this field optionally provides the
length in bytes of the string, not including any NULL terminator. If a value of zero (0)
is supplied, then the string pointed to by item_address must be NULL terminated,
so that mtaSend() can automatically determine the string’s length.

When the item code has an associated integer value, this field supplies that value.

item_status
When the item code MTA_ADR_STATUS is specified, this field will contain processing
status for the associated envelope recipient address.

262 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

item_smessage
When the item code MTA_ADR_STATUS is specified, this field will contain the
rewritten form of the envelope recipient address when the returned value of
item_status is zero, or a textual error message when the returned value of
item_status is non-zero.

Description
Use mtaSend() to send a message. The routine performs the processing carried out to
address the message, generate the message’s header and body, and enqueue the
message as specified with the item_list argument. For instructions on how to use
mtaSend(), see Chapter 7.

Item Codes

MTA_ADR_NOSTATUS
Do not return status messages for To:, Cc:, and Bcc: addresses. This is the default
setting.

The item_address and item_length fields are ignored for this item code.

MTA_ADR_STATUS
Return textual status messages for each envelope recipient address (that is, an active
transport address) specified with any of these item codes: MTA_TO, MTA_CC, MTA_BCC,
MTA_HDR_TO, MTA_HDR_CC, or MTA_HDR_BCC. When a recipient address is
successfully processed, the value of the associated item_status field will be zero
and item_smessage will be a pointer to a NULL terminated string containing the
rewritten form of the address. When a recipient address fails to be processed
successfully, the value of the associated item_status field will be non-zero and
item_smessage will be a pointer to a NULL terminated error message string.

After calling mtaSend() with MTA_ADR_STATUS, call the mtaSendDispose()
function to dispose of any dynamic memory allocated by mtaSend().

Chapter 8 • mtaSend() Routine Specification 263

The item_address and item_length fields are ignored for this item code.

MTA_BCC
Specify a blind carbon copy (Bcc:) address. The item_address and item_length
fields specify the address and length of a string containing a Bcc: address. The length
of the address may not exceed ALFA_SIZE bytes.

MTA_BCC is used to specify a Bcc: address that should appear in both the message’s
header and envelope.

MTA_BLANK
When processing multiple input sources, insert a blank line between the input from
each source. Ordinarily, the input files are appended one after the other with no
delimiters or separators. This is the action selected with the MTA_NOBLANK item code.
By specifying the MTA_BLANK action, mtaSend() inserts a blank line between each
input file. This is especially useful when the first input file is to be treated as a source
of header information and the second as the message body or part thereof. This
produces the requisite blank line between the message header and body.

The item_address and item_length fields are ignored for this item code.

MTA_CC
Specify a carbon copy (Cc:) address. The item_address and item_length fields
specify the address and length of a string containing a Cc: address. The length of the
address may not exceed ALFA_SIZE bytes.

MTA_CC is used to specify a Cc: address that should appear in both the message’s
header and envelope.

MTA_CHANNEL
Specify the channel to act as, when enqueuing the message. If not specified, then mail
will be enqueued as though sent from the local, l, channel. The item_address and
item_length fields specify the address and length of a text string containing the
name of the channel to act as. The length of the string may not exceed
CHANLENGTH bytes.

264 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

MTA_CFILENAME
When MTA_CFILENAME is specified, the name of the message input file will be
included as a parameter in the MIME Content-type: header line. This action, when
specified, will hold for all subsequent input files until an MTA_CFILENAME_NONE
action is seen in the same item list.

MTA_FILENAME_NONE is the default.

MTA_CFILENAME_NONE
The default action for including or not including the name of the message input file as
a parameter in the MIME Content-type: header line. This item code specifies that
no input file is to be included.

When MTA_CFILENAME has been specified, it will hold for all subsequent input files
until an MTA_CFILENAME_NONE action is seen in the same item list.

The item_address and item_length fields are ignored for this item code.

MTA_CTYPE
Specify the body of a Content-type: header line. The item_address and
item_length fields specify the address and length of a text string to place in the
body of a Content-type: header line. The length of the string may not exceed
ALFA_SIZE bytes. Only one Content-type: body may be specified.

MTA_ENC_BASE64
Encode data from all subsequent input sources using MIME’s BASE64 encoding. This
setting may be changed with any of the other MTA_ENC_ item codes. The default
encoding is MTA_ENC_UNKNOWN. The item_address and item_length fields are
ignored for this item code.

MTA_ENC_BASE85
Encode data from all subsequent input sources using Adobe’s ASCII85 encoding
(BASE85). This setting may be changed with any of the other MTA_ENC_ item codes.
The default encoding is MTA_ENC_UNKNOWN. The item_address and item_length
fields are ignored for this item code.

Chapter 8 • mtaSend() Routine Specification 265

MTA_ENC_BINHEX
Encode data from all subsequent input sources using the BINHEX encoding. This
setting may be changed with any of the other MTA_ENC_ item codes. The default
encoding is MTA_ENC_UNKNOWN. The item_address and item_length fields are
ignored for this item code.

MTA_ENC_BTOA
Encode data from all subsequent input sources using the UNIX® binary-to-ASCII
(BTOA) encoding. This setting may be changed with any of the other MTA_ENC_ item
codes. The default encoding is MTA_ENC_UNKNOWN. The item_address and
item_length fields are ignored for this item code.

MTA_ENC_COMPRESSED_BASE64
Encodes data from all subsequent input sources using MIME’s BASE64 encoding after
first compressing it using Gnu zip. This setting may be changed with any of the other
MTA_ENC_ item codes. The default encoding is MTA_ENC_UNKNOWN. The
item_address and item_length fields are ignored for this item code.

MTA_ENC_COMPRESSED_BINARY
Compress the data with Gnu zip. No other encoding of the data will be done. This
setting may be changed with any of the other MTA_ENC_ item codes. The default
encoding is MTA_ENC_UNKNOWN. The item_address and item_length fields are
ignored for this item code.

MTA_ENC_COMPRESSED_UUENCODE
Encode data from all subsequent input sources using UUENCODE, after first
compressing the data with Gnu zip. This setting may be changed with any of the other
MTA_ENC_ item codes. The default encoding is MTA_ENC_UNKNOWN. The
item_address and item_length fields are ignored for this item code.

MTA_ENC_HEXADECIMAL
Encode data from all subsequent input sources using a hexadecimal encoding. This
setting may be changed with any of the other MTA_ENC_ item codes. The default
encoding is MTA_ENC_UNKNOWN. The item_address and item_length fields are
ignored for this item code.

266 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

MTA_ENC_NONE
Data from all subsequent input sources is left unencoded (that is, not encoded). This
setting may be changed with any of the other MTA_ENC_ item codes. The default
encoding is MTA_ENC_UNKNOWN. The item_address and item_length fields are
ignored for this item code.

MTA_ENC_PATHWORKS
Encodes multipart and binary message contents using the OpenVMS Pathworks
format. This setting may be changed with any of the other MTA_ENC_ item codes. The
default encoding is MTA_ENC_UNKNOWN. The item_address and item_length
fields are ignored for this item code.

MTA_ENC_QUOTED_PRINTABLE
Encode data from all subsequent input sources using MIME’s quoted printable
encoding. This setting may be changed with any of the other MTA_ENC_ item codes.
The default encoding is MTA_ENC_UNKNOWN. The item_address and item_length
fields are ignored for this item code.

MTA_ENC_UNKNOWN
Data from all subsequent input sources is left unencoded (that is, not encoded). This
setting may be changed with any of the other MTA_ENC_ item codes. The default
encoding is MTA_ENC_UNKNOWN. The item_address and item_length fields are
ignored for this item code.

MTA_ENC_UUENCODE
Encode data from all subsequent input sources using UUENCODE. This setting may
be changed with any of the other MTA_ENC_ item codes. The default encoding is
MTA_ENC_UNKNOWN. The item_address and item_length fields are ignored for
this item code.

MTA_END_LIST
Terminate an item list. This item code, when encountered, signals the end of the item
list. The item_address and item_length fields are ignored for this item code.

Chapter 8 • mtaSend() Routine Specification 267

MTA_ENV_FROM
Specify the envelope From: address to associate with a message. The item_address
and item_length fields specify the address and length of a text string containing the
envelope From: address to use for the message submission. The length of the string
may not exceed ALFA_SIZE bytes. Only one envelope From: address may be
specified.

The MTA_ENV_FROM action should be used when the envelope From: address is not a
local address. When the address is a local address, then only the user name should be
specified using the MTA_USER action.

If this action and the MTA_USER actions are not specified, then the user name
associated with the current process will be used.

Do not use this item code in conjunction with the MTA_USER or MTA_SUB_USER item
codes.

MTA_ENV_TO
Specify an envelope-only To: address (that is, an active recipient), which should not
appear in the message’s header. The item_address and item_length fields specify
the address and length of a string containing a To: address. The length of the address
may not exceed ALFA_SIZE bytes.

MTA_FRAGMENT_BLOCKS
Specify the maximum number of blocks per message. If, when the message is
enqueued, the message size exceeds this limit, then the message will be fragmented
into smaller messages, each fragment no larger than the specified block size. The
individual fragments are MIME compliant messages that use MIME’s
message/partial content type. MIME compliant mailers or user agents that receive
the fragments may automatically reassemble the fragmented message. (MTA channels
must be marked with the defragment keyword in order for automatic message
reassembly to occur.)

The size of a block may vary from site to site. Sites can change this value from its
default value of 1,024 bytes. Use the MTA SDK routine mtaBLOCK_SIZE to determine
the size in bytes of a block.

The item_length field specifies the maximum block size per message or message
fragment. By default, no limit is imposed.

268 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

MTA_FRAGMENT_LINES
Specify the maximum number of message lines per message. If, when the message is
enqueued, the number of message lines exceeds this limit, then the message will be
fragmented into smaller messages, each fragment with no more than the specified
number of lines. The individual fragments are MIME compliant messages that use
MIME’s message/partial content type. MIME compliant mailers or user agents
that receive the fragments may automatically reassemble the fragmented message.
(MTA channels must be marked with the defragment keyword in order for
automatic message reassembly to occur.)

The item_length field specifies the maximum number of message lines per message
or message fragment. By default, no limit is imposed.

MTA_FROM
Specify the address to use in the message header’s From: header line. The
item_address and item_length fields specify the address and length of a text
string containing the From: address. The length of the string may not exceed
ALFA_SIZE bytes. Only one From: address may be specified.

If this action is not used, then the From: header line will be derived from the
envelope From: address.

MTA_HDR_ADRS
Specify MTA_HDR_ADRS to request that the message also be sent to recipient addresses
found in any input header files. The item_address and item_length fields are
ignored for this item code.

MTA_HDR_BCC
Specify a header-only Bcc: address (that is, an inactive recipient), which should only
appear in the message’s header. The item_address and item_length fields specify
the address and length of a string containing a Bcc: address. The length of the
address may not exceed ALFA_SIZE bytes.

MTA_HDR_CC
Specify a header-only carbon copy (Cc:) address (that is, an inactive recipient), which
should only appear in the message’s header. The item_address and item_length
fields specify the address and length of a string containing a Cc: address. The length
of the address may not exceed ALFA_SIZE bytes.

Chapter 8 • mtaSend() Routine Specification 269

MTA_HDR_FILE
Specify the name of an input file containing message header lines. The first input file
may be a file containing a message header. In this case, it should be specified using
this item code rather than MTA_MSG_FILE. This will ensure that the input file receives
the proper processing (such as, is not encoded, accessed using text mode access). The
mtaSend() routine uses the header lines from the input file to form an initial message
header. This initial header is then modified as necessary. This functionality is useful
when forwarding mail.

Note that any recipient addresses in the header file will be ignored unless
MTA_HDR_ADRS is also specified.

The item_address and item_length fields specify the address and length of a text
string containing the input file’s name. The length of the string may not exceed
ALFA_SIZE bytes.

MTA_HDR_LINE
Specify an additional header line to include in the message header. The
item_address and item_length fields specify the address and length of the
header line (field name and body) to place in the message header. The length of the
string may not exceed ALFA_SIZE bytes. Any number of header lines may be added.
Use one item list entry per header line.

MTA_HDR_NOADRS
Recipient addresses must be explicitly specified and any addresses in an input header
file will be ignored (but will still appear in the message header). The item_address
and item_length fields are ignored for this item code.

This is the default action for recipient addresses found in input header files.

MTA_HDR_NORESENT
Specify MTA_HDR_NORESENT to cause additional addresses to be added to existing
header lines rather than through the introduction of Resent- header lines.

The item_address and item_length fields are ignored for this item code.

MTA_HDR_PROC
Specify the address of a procedure that will return, one line at a time, header lines for
the message header. The item_address field specifies the address of the procedure
to invoke. The item_length field is ignored.

270 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

The calling format that must be used by the procedure is given in “Message Headers
and Content” on page 250.

MTA_HDR_RESENT
The MTA_HDR_RESENT action selects the default behavior whereby Resent- header
lines are added as necessary to the message header when the associated header line
appears in any input header files. For instance, a Resent-to: header line will be
added if a To: header line already appears. The item_address and item_length
fields are ignored for this item code.

MTA_HDR_TO
Specify a header-only To: address (that is, an inactive recipient), which should only
appear in the message’s header. The item_address and item_length fields specify
the address and length of a string containing a To: address. The length of the address
may not exceed ALFA_SIZE bytes.

MTA_HDRMSG_FILE
Specify the name of an input file containing both the message header and message
body. The content of the file represents an RFC 2822 formatted message with at least
one blank line separating the RFC 2822 header from the message body. The
mtaSend() routine uses the header lines from the input file to form an initial message
header. This initial header is then modified as necessary.

The item_address and item_length fields specify the address and length of a text
string containing the input file’s name. The length of the string may not exceed
ALFA_SIZE bytes.

MTA_HDRMSG_PROC
Specify the address of a procedure that will return, one line at a time, each line of an
RFC 822 formatted message. The RFC 822 header must come first, followed by at least
one blank line, followed by the message body. The item_address field specifies the
address of the procedure to invoke. The calling format that must be used by the
procedure is given in “Message Headers and Content” on page 250.

Chapter 8 • mtaSend() Routine Specification 271

MTA_IGNORE_ERRORS
Send the message as long as at least one To: address was okay and at least one input
source was okay. By default, the message will not be sent if any of the To: addresses
are illegal (such as, bad syntax, restricted, unknown host), or if any of the input
sources proved to be bad (such as, could not open an input file). The item_address
and item_length fields are ignored for this item code.

MTA_INTERACTIVE
Do not ignore user-to-channel access checks when enqueuing mail. This should, in
general, be used by programs such as user agents that enqueue mail for users.

The item_address and item_length fields are ignored for this item code.

MTA_ITEM_LIST
The mtaSend() routine immediately begins processing the list of item descriptors
pointed at by item_address. This new list will be used immediately; any remaining
items in the current list will be ignored.

The item_length field is ignored for this item code.

MTA_MAX_TO
Specify the maximum number of envelope To: addresses per message copy. If, when
the message is enqueued, the number of envelope To: addresses for the message
exceeds this limit, then the message will be broken into multiple copies, each copy
with no more than the specified number of envelope To: addresses.

The item_length field specifies the maximum number of envelope To: addresses
per message copy. By default, no limit is imposed.

MTA_MODE_BINARY
Read subsequent input files as raw binary files. This setting may be changed with the
MTA_MODE_TEXT item code. The default access mode is MTA_MODE_TEXT.

The item_address and item_length fields are ignored for this item code.

MTA_MODE_TEXT
Read subsequent input files as record-oriented text files. This setting may be changed
with the MTA_MODE_BINARY item code. The default access mode is MTA_MODE_TEXT.

272 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

The item_address and item_length fields are ignored for this item code.

MTA_MSG_FILE
Specify an input file to read and include in the message body. The file will be read
using the current access mode and encoded using the current encoding as specified by
MTA_MODE_ and MTA_ENC_ item codes.

The item_address and item_length fields specify the address and length of a text
string containing the name of the input file. The length of the string may not exceed
ALFA_SIZE bytes.

MTA_MSG_PROC
Specify the address of a procedure that will return, one line at a time, data for the
message body. Each line of input obtained from the procedure will be treated using
the current access mode and encoded using the current encoding as specified by
MTA_MODE_ and MTA_ENC_ item codes. Note, however, that the block access mode
will not be applied to input procedures.

The item_address field specifies the address of the procedure to invoke. The
item_length field is ignored.

The calling format that must be used by the procedure is given in “Message Headers
and Content” on page 250.

MTA_NOBLANK
When processing multiple input source, do not insert a blank line between the input
from one source and the next. This is the default behavior. The input from each input
source is appended one after the other with no delimiters or separators marking the
transition between sources.

The item_address and item_length fields are ignored for this item code.

MTA_NOIGNORE_ERRORS
Send the message only if all To: addresses are okay and all input sources are okay.
This is the default.

The item_address and item_length fields are ignored for this item code.

Chapter 8 • mtaSend() Routine Specification 273

MTA_PRIV_DISABLE_PROC
The address of a procedure to invoke immediately after enqueuing a message so as to
disable process privileges. See the description of MTA_PRIV_ENABLE_PROC for details
on the use of this item code.

This item code must be used in conjunction with MTA_PRIV_ENABLE_PROC item.

The item_length field is ignored for this item code.

MTA_PRIV_ENABLE_PROC
The address of a procedure to invoke immediately before enqueuing a message so as
to enable process privileges.

Privileges are required to enqueue messages. It is possible to provide mtaSend()
with the address of two procedures to call. One procedure is called immediately prior
to enqueuing a message thereby allowing process privileges to be enabled. The second
procedure is then called immediately after the message has been enqueued thereby
allowing process privileges to be disabled.

For further details on the use of this item code, see “Required Privileges for
mtaSend()” on page 251.

This item code must be used in conjunction with MTA_PRIV_DISABLE_PROC.

The item_length field is ignored for this item code.

MTA_SUBADDRESS
Specify a subaddress to use when generating a return address from a user name
specified with the MTA_USER item code. The item_address and item_length
fields specify the address and length of a text string containing the subaddress. The
length of the string may not exceed ALFA_SIZE bytes. Only one subaddress may be
specified per message.

The MTA_USER action must be used in conjunction with this item code.

MTA_SUBJECT
Specify the body of a Subject: header line. The item_address and item_length
fields specify the address and length of a text string to place in the body of a
Subject: header line. The length of the string may not exceed ALFA_SIZE bytes.
Only one Subject: body may be specified.

274 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

MTA_TO
Specify a To: address that should appear in both the message’s header and envelope.
The item_address and item_length fields specify the address and length of a
string containing a To: address. The length of the address may not exceed
ALFA_SIZE bytes.

MTA_USER
Specify the user name to use for the envelope From: and header line From:
addresses. The item_address and item_length fields specify the address and
length of a text string containing the user name.

Use this item code when the envelope From: address is a local address.

If the envelope From: address is not a local address, then the MTA_ENV_FROM
action should be used.

If this action and the MTA_ENV_FROM actions are not specified, then the user name
associated with the current process will be used.

On UNIX, the process must have the same (real) UID as the root or mta account. If
the process lacks sufficient privileges, the MTA_ACCESS error will be returned.

Do not use this item code in conjunction with the MTA_ENV_FROM item code.

Chapter 8 • mtaSend() Routine Specification 275

276 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

CHAPTER 9

Error Status Codes Summary

This appendix describes the error status codes returned by the MTA SDK and
mtaSend().

Error Status Codes
The following table lists the error status codes, with a generic interpretation of each.
For usage-specific interpretations, refer to the specific MTA SDK routine descriptions
in Chapter 6, and the mtaSend() item code descriptions in Chapter 8.

Return Code
Numeric
Value Description

MTA_OK 0 Normal, successful completion.

MTA_ACCESS 1 This error typically indicates that a site-supplied access
mapping table has refused an envelope recipient address with a
permanent error. These access mapping tables include:
SEND_ACCESS, ORIG_SEND_ACCESS, MAIL_ACCESS, and
ORIG_MAIL_ACCESS.

This error may also result when a mailing list has access
controls which do not allow the attempted message submission
to the list.

277

Return Code
Numeric
Value Description

MTA_AGAIN 2 A temporary processing error has occurred. A number of
conditions may generate this error including connectivity
problems to LDAP servers, virus scanners, spam scanners, as
well as quota problems.

When the error is the result of an attempt to add an envelope
recipient address or to complete a message enqueue, additional
information may be obtained by either enabling SDK
diagnostics with mtaDebug() or using the MTA_REASON item
code of mtaEnqueueTo() or mtaEnqueueFinish(). In the
case of mtaEnqueueTo(), mtaEnqueueError() may also be
used to obtain the extended information returned with the
MTA_REASON item code.

MTA_BADARGS 3 Bad call arguments supplied to the called routine. Typically,
this will be the result of passing an invalid context or a NULL
value for a required parameter.

MTA_EOF 4 End of data reached. When returned by
mtaDequeueLineNext() or
mtaDequeueRecipientNext(), this value does not indicate
an error, but rather that there are, respectively, no more
message lines or recipients to return.

MTA_FCREATE 5 Unable to create a disk file. Typically, this will be the result of
insufficient disk space, insufficient access rights to the channel
queue directories, or a file system error of some sort. The MTA
SDK creates both temporary files and message files in the
channel queue directories. The temporary files result when a
message being submitted exceeds in size the value of the MTA
option: MAX_INTERNAL_BLOCKS.

MTA_FIO 6 An error occurred while writing to a disk file. Typically, this
will be the result of insufficient disk space or a file system error.
This error is only reported when writing message files, either
temporary files, or writing them in the channel queue
directories.

MTA_OPEN 7 An error occurred while attempting to open a disk file. In
regards to channel option files, this indicates that the channel
option file exists but cannot be opened. Usually this is caused
by insufficient access rights or a file system error.

This error may also be returned when the MTA SDK is
initialized and an MTA configuration file cannot be opened.
Again, this usually indicates a problem with permissions or the
file system. Use the imsimta test -rewrite utility to obtain
additional diagnostic information. That utility often reports the
name of the underlying configuration file associated with the
error.

278 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Return Code
Numeric
Value Description

MTA_NETWORK 8 A network read or write error has occurred. This error is
associated with message dequeue processing and indicates that
a communication error has occurred while attempting to
contact or exchange information with the MTA Job Controller.
Ensure that the Job Controller is running.

MTA_NO 9 Generic error message. This error message is issued in a variety
of situations. In all cases, it indicates that the attempted call has
failed. Consult the routine’s description for an interpretation
specific to the called routine. Also, consider enabling MTA SDK
diagnostics with mtaDebug().

MTA_NOMEM 10 Insufficient virtual memory; cannot perform the requested
operation.

MTA_NOOP 11 This error code is not presently used by the MTA SDK. In
general, it is used to indicate that the requested operation was
completed by doing nothing (for example, a message enqueued
to zero envelope recipients is simply deleted).

MTA_NOSUCHCHAN 12 The specified channel name does not exist in the MTA
configuration. The channel name may have been specified
explicitly with a supplied call argument or implicitly with the
PMDF_CHANNEL environment variable.

MTA_NOSUCHHOST 13 The MTA configuration lacks the necessary information to route
the specified envelope recipient address. This error typically
comes up when an unrecognized, top-level domain name is
used. As such, this usually indicates a syntactically valid
recipient address which specifies an invalid top-level domain
name (for example, sue@siroe.siroe). Other addressing
errors, including syntax errors, may elicit this status code.

MTA_NOSUCHITEM 14 An invalid item code was supplied. Either the supplied item
code value does not represent a known item code or it is not an
item code supported by the called routine.

MTA_ORDER 15 Routine called out of order. For example, an attempt to read the
text of a queued message file was made before first reading the
message’s entire recipient list. Or, an attempt was made to write
the content of a message being submitted before first specifying
the message’s recipients. Refer to the call order diagrams in for
further details.

MTA_SIZE 16 The message being submitted cannot be enqueued: its size
exceeds a site-configured size limit. Such limits are configured
with a variety of options, including the MTA options
BLOCK_LIMIT and LINE_LIMIT, as well as the channel
keywords blocklimit and linelimit.

Chapter 9 • Error Status Codes Summary 279

Return Code
Numeric
Value Description

MTA_STRTRU 17 The supplied buffer was not large enough to receive the result
string. The result string was truncated to fit. The result string is
nonetheless NULL terminated.

MTA_STRTRUERR 18 The supplied buffer was not larger enough to receive the result
string. Truncating the result is not meaningful or has potential
for causing problems or both. Alternatively, a supplied string
was too long.

MTA_THREAD 19 Threading error detected. Specifically, the MTA SDK detected
the simultaneous use of a single SDK context by two or more
processing threads. This is not permitted.

MTA_TIMEDOUT 20 This error code is not presently used by the MTA SDK. In
general, it is used to indicate a timeout related error.

280 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

Index

A
aborting

dequeuing messages, 59-61, 171-174
enqueue, 196-199
message submission (enqueue), 50

access rights
callable send, 251
configuration, 41

accessing queued messages, 57-90
address parsing routines

mtaAddressFinish(), 125
mtaAddressGetN(), 126-128
mtaAddressParse(), 128-130

addresses
bcc, 212
cc, 213
from, 203-210
mapping to channel, 131-133
parsing, 125, 126-128, 128-130
postmaster, 238-240
to, 215

ALFA_SIZE=256, defined, 34-35
aliases, inhibiting, 206

B
bcc addresses, 212, 249
BIGALFA_SIZE=1024, defined, 34-35
block size, 133-134
body, 31-32

C
callable send

access privileges, 251
basic steps for sending a message, 247
bcc, 249
cc, 249
compiling and linking programs, 252
envelope addresses, 248
example

sending a message to multiple
recipients, 255-257

sending a simple message, 253-254
specifying an initial message

header, 254-255
using an input procedure to generate the

message body, 257-258
header from addresses, 248
message content (body), 250
message header, 250
to, 249

caller-supplied routines
decode_inspect(), 94
decode_read(), 93
decode_write(), 99
process_done(), 69
process_message(), 62-63

calling order
dependencies, 89-90
routines, 56

cc addresses, 213, 249
CHANLENGTH=32, defined, 34-35
channel configuration, message deferral, 59-61

281

channels
backoff keyword, 59-61
channel definition, 46
channel name, 33-34
channel program, 29, 46
channel programs, 29
channel queue, defined, 29
intermediate, 29
log file, 46
logging keyword, 40-41
master, 29
message queue, 29
name determination, 39-40
naming conventions, 33-34
slave, 29

compiling, mtaSend() programs, 252
compiling programs, MTA SDK, 42
configuration

access rights, 41
refreshing stale, 46

contexts
defined, 30
dequeue, 32-33, 34
enqueue, 32
threads, 30

D
date, 138-139
debugging

enabling, 140-142
errno, 221-222
SDK diagnostic facility, 40-41
writing debug output, 226-227, 227-228

decode context, 100-101
decode_inspect() routine, 94
decode_read() routine, 93
decode_write() routine, 99
decoding caller-supplied routines

decode_inspect(), 94
decode_read(), 93
decode_write(), 99

decoding messages
contexts, 100-101
input sources, 93
MIME format, 91-115
output destination, 99

decoding messages (Continued)
simple sample decoding program, 94-98
simple virus scanner sample

program, 101-115
decoding routines

mtaDecodeMessage(), 143-153
mtaDecodeMessageInfoInt(), 153-154
mtaDecodeMessageInfoParams(), 154-156
mtaDecodeMessageInfoString(), 156-158
mtaDecodeMessagePartCopy(), 158-159
mtaDecodeMessagePartDelete(), 160-163

deferred messages
channel configuration, 59-61
definition, 59-61
disposition, 60
notifications, 59-61

deferring recipients, 59-61
delivery receipts, 210, 214
dequeue context, 32-33, 34
dequeuing caller-supplied routines

process_done(), 69
process_message(), 62-63

dequeuing messages
aborting, 59-61, 171-174
accessing queued messages, 57-90
basic steps, 58-59
calling order, 89-90
complex dequeuing sample program, 70-78
ending, 171-174
envelope fields, 164-169
intermediate channel sample program, 80-87
intermediate channels, 78-79
Job Controller, 34
processing routine tasks, 59-61
pseudo-code thread creation loop, 87-88
re-reading, 180-181
reading, 169-170
recipient disposition, 174-178
recipients, 178-180
removing messages, 33-34
rewinding, 180-181
sample program, 63
starting, 181-185
threads, 34

dequeuing routines
mtaDequeueInfo(), 164-169
mtaDequeueLineNext(), 169-170
mtaDequeueMessageFinish(), 171-174

282 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

dequeuing routines (Continued)
mtaDequeueRecipientDisposition(), 174-178
mtaDequeueRecipientNext(), 178-180
mtaDequeueRewind(), 180-181
mtaDequeueStart(), 181-185
mtaDequeueThreadId(), 191-192

diagnostic facility, enabling, 40-41

E
enqueue context, 32
enqueuing messages

aborting, 50, 196-199
basic steps, 50
bcc, 211-216
body, 31-32
calling dependencies, 56
cc, 211-216
completing, 196-199
components, 30-33
copying, 193-194
delivery receipts, 210, 214
envelope, 31
envelope fields, 55, 199-203
error reporting, 195-196
example, 31-32, 32
finishing, 196-199
from address, 203-210
headers, 31
intermediate channel sample program, 80-87
intermediate channels, 54
intermediate processing channels, 78-79
recipients, 211-216
sample program, 51-53
starting, 203-210
threads, 32
to, 211-216
writing, 216-219, 219-221

enqueuing routines
mtaEnqueueCopyMessage(), 193-194
mtaEnqueueError(), 195-196
mtaEnqueueFinish(), 196-199
mtaEnqueueInfo(), 199-203
mtaEnqueueStart(), 203-210
mtaEnqueueTo(), 211-216
mtaEnqueueWrite(), 216-219
mtaEnqueueWriteLine(), 219-221

envelope
fields for enqueuing, 55
message component, 31
recipient disposition, 59-61

error codes, retrieving, 45
error handling routines

mtaErrno(), 221-222
mtaStrError(), 241-242

examples
complex dequeuing program, 70-78
intermediate processing channel, 80-87
pseudo-code thread creation loop, 87-88
simple decoding program, 94-98
simple dequeuing program, 63
simple enqueuing program, 51-53
simple virus scanner program, 101-115

executing programs, 39-40, 42-44

H
headers, deriving, 31

I
initial message header example, 254-255
initialization routines

mtaDone(), 192-193
mtaInit, 222-225

input routine, decode_read(), 93
inspection routine. decode_inspect(), 94
intermediate channels

defined, 29
re-enqueuing, 78-79
sample enqueuing and dequeuing

program, 80-87
item codes, 35-37
item list, defined, 35-37

J
Job Controller, 34

283

K
keywords

backoff, 59-61
logging, 40-41

L
linking instructions

MTA SDK, 42
mtaSend(), 252

list of MTA SDK routines, 122-124
log file, mail.log_current, 46-47
logging and diagnostic routines

mtaDebug(), 140-142
mtaLog(), 226-227
mtaLogv(), 227-228

loop, message, 44-45

M
mail.log_current, 46-47
mail loops, 44-45
manually running programs, 39-40
master channels, defined, 29
message components

body, 30-32
envelope, 30-32
header, 30-32

message loop, avoiding, 44-45
message processing

procedure, 68-69
process_done() routine, 69
syntax and arguments, 62-63

messages
dequeuing tasks, 59-61
enqueuing, 30-33
locking, 33-34

MIME decoding routines
mtaDecodeMessageInfoInt(), 153-154
mtaDecodeMessageInfoParams(), 154-156
mtaDecodeMessageInfoString(), 156-158
mtaDecodeMessagePartCopy(), 158-159
mtaDecodeMessagePartDelete(), 160-163

MIME parsing, 91-115
miscellaneous routines

mtaAccountingLogClose(), 124

miscellaneous routines (Continued)
mtaAddressToChannel(), 131-133
mtaBlockSize(), 133-134
mtaChannelGetName(), 134-135
mtaChannelToHost(), 136-138
mtaDateTime(), 138-139
mtaPostmasterAddress(), 238-240
mtaStackSize(), 240-241
mtaUniqueString(), 242-243
mtaVersionMajor(), 243-244
mtaVersionMinor(), 244
mtaVersionRevision(), 245

mtaAccountingLogClose, 124
mtaAddaressParse(), 118
mtaAddressFinish(), 118
mtaAddressGetN(), 118, 126-128
mtaAddressParse(), 128-130
mtaAddressToChannel(), 131-133
mtaBlockSize(), 133-134
mtaChannelGetName(), 134-135
mtaChannelToHost(), 136-138
mtaDateTime(), 138-139
mtaDebug(), 120, 140-142
mtaDecodeMessage(), 120, 143-153
mtaDecodeMessageInfoInt(), 120, 153-154
mtaDecodeMessageInfoParams(), 120,

154-156
mtaDecodeMessageInfoString(), 120,

156-158
mtaDecodeMessagePartCopy(), 120,

158-159
mtaDecodeMessagePartDelete(), 120,

160-163
mtaDequeueInfo(), 118-119, 164-169
mtaDequeueLineNext(), 118-119, 169-170
mtaDequeueMessageFinish(), 118-119,

171-174
mtaDequeueRecipientDisposition(), 118-119,

174-178
mtaDequeueRecipientNext(), 118-119,

178-180
mtaDequeueRewind(), 118-119, 180-181
mtaDequeueStart(), 118-119, 181-185
mtaDequeueStart(), multiple calls to, 89
mtaDequeueThreadId(), 191-192
mtaDone(), 119-120, 192-193
mtaEnqueueCopyMessage(), 119, 193-194
mtaEnqueueError(), 195-196

284 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

mtaEnqueueFinish(), 119, 196-199
mtaEnqueueInfo(), 119, 199-203
mtaEnqueueStart(), 119, 203-210
mtaEnqueueTo(), 119, 211-216
mtaEnqueueWrite(), 119, 216-219
mtaEnqueueWriteLine(), 119, 219-221
mtaErrno(), 119, 221-222
mtaInit(), 119-120, 222-225
mtaLog(), 120, 226-227
mtaLog() vs. MTA log file, 46-47
mtaLogv(), 120, 227-228
mtaOptionFinish(), 121-122, 228-229
mtaOptionFloat(), 121-122, 229-231
mtaOptionInt(), 121-122, 231-233
mtaOptionStart(), 121-122, 233-236
mtaOptionString(), 121-122, 236-238
mtaPostmasterAddress(), 238-240
mtaSend()

access privileges, 251
basic steps for sending a message, 247
compiling and linking programs, 252
envelope addresses, 248
header from addresses, 248
message content (body), 250
message header, 250
sample programs

input procedure generates message
body, 257-258

sending a message to multiple
recipients, 255-257

sending a simple message, 253-254
specifying an initial message

header, 254-255
mtaSend, to, cc, and bcc addresses, 249
mtaStackSize(), 240-241
mtaStrError(), 119, 241-242
mtaUniqueString(), 242-243
mtaVersionMajor(), 120-121, 243-244
mtaVersionMinor(), 120-121, 244
mtaVersionRevision(), 120-121, 245

O
option processing

finishing, 228-229
floating point values, 229-231
integer values, 231-233

option processing (Continued)
reading an option file, 233-236
starting, 233-236
string values, 236-238

option processing routines
mtaOptionFinish(), 228-229
mtaOptionFloat(), 229-231
mtaOptionInt(), 231-233
mtaOptionStart(), 233-236
mtaOptionString(), 236-238

output, channel program, 46
output routine, decode_write(), 99

P
persistent programs

considerations, 46-47
log file considerations, 46-47
refreshing, 46

postmaster address, 238-240
privileges, required, 41, 251
process_done() routine, 69
process_message() routine, 62-63
processing messages

Job Controller, 34
queued, 68-69

processing routine tasks, 59-61
production, running programs, 39-40
programming considerations, 45

R
recipient disposition

deferred, 60
delivered, 60
dequeued messages, 59-61
failed, 60
mtaDequeueRecipientDisposition(), 174-178
relayed, 60
relayed foreign, 60
returned, 60
timed out, 61

rewrite rules, preventing message loops, 45
root, running as, 41
running test programs

in a messaging environment, 42-44

285

running test programs (Continued)
manually, 42-44, 44

runtime considerations, 39-40

S
sample programs

complex dequeuing program, 70-78
intermediate channel program, 80-87
mtaSend(), sending a message to multiple

recipients, 255-257
mtaSend(), sending a simple

message, 253-254
mtaSend(), specifying an initial message

header, 254-255
mtaSend(), using an input procedure to

generate the message body, 257-258
pseudo-code thread creation loop, 87-88
simple decoding program, 94-98
simple dequeuing program, 63
simple enqueuing program, 51-53
simple virus scanner program, 101-115

SDK routines
address parsing

mtaAddressFinish(), 118, 125
mtaAddressGetN(), 118, 126-128
mtaAddressParse(), 118, 128-130

dequeuing
mtaDequeueInfo(), 118-119, 164-169
mtaDequeueLineNext(), 169-170
mtaDequeueMessageFinish(), 118-119,

171-174
mtaDequeueRecipientDisposition(), 174-178
mtaDequeueRecipientNext(), 118-119,

178-180
mtaDequeueRewind(), 118-119, 180-181
mtaDequeueStart(), 118-119, 181-185
mtaDequeueThreadId(), 191-192

enqueuing
mtaEnqueueCopyMessage(), 119,

193-194
mtaEnqueueError(), 195-196
mtaEnqueueFinish(), 119, 196-199
mtaEnqueueInfo(), 119, 199-203
mtaEnqueueStart(), 119, 203-210
mtaEnqueueTo(), 119, 211-216
mtaEnqueueWrite(), 119, 216-219

SDK routines, enqueuing (Continued)
mtaEnqueueWriteLine(), 119, 219-221

error handling
mtaErrno(), 119, 221-222
mtaStrError(), 119, 241-242

initialization
mtaDone(), 119-120, 192-193
mtaInit(), 119-120, 222-225

list of, 122-124
logging and diagnostic

mtaDebug(), 140-142
mtaLog(), 226-227
mtaLogv(), 227-228

logging and diagnostics
mtaDebug(), 120
mtaLog(), 120
mtaLogv(), 120

MIME decoding
mtaDecodeMessage(), 120, 143-153
mtaDecodeMessageInfoInt(), 120,

153-154
mtaDecodeMessageInfoParams(), 120,

154-156
mtaDecodeMessageInfoString(), 120,

156-158
mtaDecodeMessagePartCopy(), 120,

158-159
mtaDecodeMessagePartDelete(), 120,

160-163
miscellaneous

mtaAccountingLogClose(), 120-121,
124

mtaAddressToChannel(), 120-121,
131-133

mtaBlockSize(), 120-121, 133-134
mtaChannelGetName(), 120-121,

134-135
mtaChannelToHost(), 120-121, 136-138
mtaDateTime(), 120-121, 138-139
mtaPostmasterAddress(), 120-121,

238-240
mtaStackSize(), 120-121, 240-241
mtaUniqueString(), 120-121, 242-243
mtaVersionMajor(), 120-121, 243-244
mtaVersionMinor(), 244
mtaVersionRevision(), 245

option processing
mtaOptionFinish(), 121-122, 228-229

286 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

SDK routines, option processing (Continued)
mtaOptionFloat(), 121-122, 229-231
mtaOptionInt(), 121-122, 231-233
mtaOptionStart(), 121-122, 233-236
mtaOptionString(), 121-122, 236-238

slave channels, defined, 29
stack size, 240-241
state information management, 30
stdout and other generic I/O destinations, 46
string call arguments, 34-35
string size constants, 34-35

T
test programs, steps for running manually, 44
threads

contexts, 30
dequeue contexts, 34
enqueuing messages, 32
stack size, 240-241
thread creation loop, 87-88

time, 138-139
to addresses, 215, 249

V
version routines

mtaVersionMajor(), 243-244
mtaVersionMinor(), 244
mtaVersionRevision(), 245

virus scanner example, 101-115

W
writing output, use of stdout, 46

287

288 Sun Java System Messaging Server 6 2005Q4 MTA Developer’s Reference • October 2005

	Sun Java System Messaging Server 6 2005Q4 MTA Developer's Reference
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Messaging Server Documentation Set
	Related Books
	Default Paths and File Names
	Typographic Conventions
	Shell Prompts in Command Examples
	Symbol Conventions
	Accessing Sun Resources Online
	Third-Party Web Site References
	Sun Welcomes Your Comments

	MTA SDK Concepts and Overview
	Channel Programs and Message Queuing
	Managing Multiple Threads Using Contexts
	Enqueuing Messages
	Message Components
	Envelope
	Header
	Body

	Threads and Enqueue Contexts
	Enqueuing Dequeued Mail

	Dequeuing Messages
	Threads and Dequeue Contexts
	Message Processing Threads

	String-valued Call Arguments
	Item Codes and Item Lists

	MTA SDK Programming Considerations
	Running Your Enqueue and Dequeue Programs
	Debugging Programs and Logging Diagnostics
	Required Privileges
	Compiling and Linking Programs
	Compiling
	Linking Instructions for Solaris

	Running Your Test Programs
	To Run Test Programs in a Messaging Environment
	To Manually Run Your Test Programs

	Preventing Mail Loops when Re-enqueuing Mail
	Miscellaneous Programming Considerations
	Retrieving Error Codes
	Writing Output From a Channel Program
	Considerations for Persistent Programs
	Refreshing Stale Configuration Information
	Keeping the Log File Available For Update

	Enqueuing Messages
	Basic Steps to Enqueue Messages
	Originating Messages
	A Simple Example of Enqueuing a Message
	Enqueuing a Message Example Output

	Transferring Messages into the MTA
	Intermediate Processing Channels
	Delivery Processing Options (Envelope Fields)
	Order Dependencies

	Dequeuing Messages
	How Dequeuing Works
	Basic Dequeuing Steps
	Caller-Supplied Processing Routine
	Dequeue Message Processing Routine Tasks

	The process_message() Routine
	A Simple Dequeuing Example
	Explanatory Text for Numbered Comments in the Simple Dequeue Example
	Output from the Simple Dequeue Example

	Processing the Message Queue
	The process_done() Routine
	A Complex Dequeuing Example
	Explanatory Text for Numbered Comments in the Complex Dequeue Example
	Output from the Complex Dequeue Example

	Intermediate processing channels
	Preserve Envelope Information
	Use MTA_ENV_TO
	Use Rewrite Rules to Prevent Message Loops

	Intermediate Channel Example
	Explanatory Text for Numbered Comments in the Intermediate Channel Example
	Sample Input Message for the Intermediate Channel Example
	Output from the Intermediate Channel Example

	Thread Creation Loop in mtaDequeueStart()
	Multiple Calls to mtaDequeueStart()
	Calling Order Dependencies

	Decoding Messages
	Usage Modes for mtaDecodeMessage()
	The Input Source
	Dequeue Context
	Caller-Supplied Input Routine

	The Inspection Routine
	A Simple Decoding Example
	Explanatory Text for Numbered Comments in the Simple Decoding Example
	MIME Message Decoding Simple Example Output

	The Output Destination
	Enqueue Context
	Caller-Supplied Output Routine

	Decode Contexts
	A Simple Virus Scanner Example
	Example Option File
	Sample Input Message
	Explanatory Text for Numbered Comments in the Decoding MIME Messages Complex Example
	Decoding MIME Messages Complex Example Output

	MTA SDK Reference
	Summary of SDK Routines
	Address Parsing
	Dequeue
	Enqueue
	Error Handling
	Initialization
	Logging and Diagnostics
	MIME Parsing and Decoding
	Miscellaneous
	Option File Processing

	MTA SDK Routines
	mtaAccountingLogClose()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaAddressFinish()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaAddressGetN()
	Syntax
	Arguments
	Description
	Elements Argument
	Address Argument
	Return Values
	Example

	mtaAddressParse()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaAddressToChannel()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaBlockSize()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaChannelGetName()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaChannelToHost()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDateTime()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDebug()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDecodeMessage()
	Syntax
	Arguments
	Description
	Inspection Routine
	Output Routine
	Dequeue Context
	Caller-Supplied Input Routine
	Enqueue Context
	Caller-Supplied Output Routine
	Decode Context Queries
	Item Codes

	Return Values
	Example

	mtaDecodeMessageInfoInt()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDecodeMessageInfoParams()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDecodeMessageInfoString()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDecodeMessagePartCopy()
	Syntax
	Arguments
	Return Values
	Example

	mtaDecodeMessagePartDelete()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDequeueInfo()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDequeueLineNext()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDequeueMessageFinish()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDequeueRecipientDisposition()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDequeueRecipientNext()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDequeueRewind()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDequeueStart()
	Syntax
	Arguments
	Description
	Return Values
	Example

	Other Considerations for mtaDequeueStart()
	Multiple Calls to mtaDequeueStart()
	Message Processing
	Message Processing Procedure
	process_message() Routine
	process_done() Routine
	Thread Creation Loop

	mtaDequeueThreadId()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaDone()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaEnqueueCopyMessage()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaEnqueueError()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaEnqueueFinish()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaEnqueueInfo()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaEnqueueStart()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaEnqueueTo()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaEnqueueWrite()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaEnqueueWriteLine()
	Syntax
	Arguments
	Description
	Example

	mtaErrno()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaInit()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaLog()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaLogv()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaOptionFinish()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaOptionFloat()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaOptionInt()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaOptionStart()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaOptionString()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaPostmasterAddress()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaStackSize()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaStrError()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaUniqueString()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaVersionMajor()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaVersionMinor()
	Syntax
	Arguments
	Description
	Return Values
	Example

	mtaVersionRevision()
	Syntax
	Arguments
	Description
	Return Values
	Example

	Using Callable Send mtaSend()
	Sending a Message
	Envelope and Header From Addresses
	To, Cc, and Bcc Addresses
	Message Headers and Content
	Required Privileges for mtaSend()
	mtaSendDispose()
	Syntax
	Arguments
	Description
	Return Values
	Example

	Compiling and Linking Programs
	Examples of Using mtaSend()
	Sending a Simple Message
	Output for Example 1 Sending a Simple Message

	Example 2 Specifying an Initial Message Header
	Input File for Example 2 Specifying an Initial Message Header
	Output for Example 2 Specifying an Initial Message Header

	Example 3 Sending a Message to Multiple Recipients
	Output for Example 3 Sending a Message to Multiple Recipients

	Example 4 Using an Input Procedure to Generate the Message Body

	mtaSend() Routine Specification
	List of Item Codes
	mtaSend() Syntax
	Syntax

	Arguments
	item_list

	Item Descriptor Fields
	item_code
	item_address
	item_length
	item_status
	item_smessage

	Description
	Item Codes
	MTA_ADR_NOSTATUS
	MTA_ADR_STATUS
	MTA_BCC
	MTA_BLANK
	MTA_CC
	MTA_CHANNEL
	MTA_CFILENAME
	MTA_CFILENAME_NONE
	MTA_CTYPE
	MTA_ENC_BASE64
	MTA_ENC_BASE85
	MTA_ENC_BINHEX
	MTA_ENC_BTOA
	MTA_ENC_COMPRESSED_BASE64
	MTA_ENC_COMPRESSED_BINARY
	MTA_ENC_COMPRESSED_UUENCODE
	MTA_ENC_HEXADECIMAL
	MTA_ENC_NONE
	MTA_ENC_PATHWORKS
	MTA_ENC_QUOTED_PRINTABLE
	MTA_ENC_UNKNOWN
	MTA_ENC_UUENCODE
	MTA_END_LIST
	MTA_ENV_FROM
	MTA_ENV_TO
	MTA_FRAGMENT_BLOCKS
	MTA_FRAGMENT_LINES
	MTA_FROM
	MTA_HDR_ADRS
	MTA_HDR_BCC
	MTA_HDR_CC
	MTA_HDR_FILE
	MTA_HDR_LINE
	MTA_HDR_NOADRS
	MTA_HDR_NORESENT
	MTA_HDR_PROC
	MTA_HDR_RESENT
	MTA_HDR_TO
	MTA_HDRMSG_FILE
	MTA_HDRMSG_PROC
	MTA_IGNORE_ERRORS
	MTA_INTERACTIVE
	MTA_ITEM_LIST
	MTA_MAX_TO
	MTA_MODE_BINARY
	MTA_MODE_TEXT
	MTA_MSG_FILE
	MTA_MSG_PROC
	MTA_NOBLANK
	MTA_NOIGNORE_ERRORS
	MTA_PRIV_DISABLE_PROC
	MTA_PRIV_ENABLE_PROC
	MTA_SUBADDRESS
	MTA_SUBJECT
	MTA_TO
	MTA_USER

	Error Status Codes Summary
	Error Status Codes

	Index

