
Service Registry 3 2005Q4
Developer’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–2682–10
October 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, J2EE, and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, J2EE et Solaris sont des marques de fabrique ou des marques
déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques
de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

050926@13215

Contents

Preface 7

1 Overview of JAXR 15

About Registries and Repositories 15

About JAXR 16

JAXR Architecture 17

About the Examples 19

� To Edit the build.properties File 19

� To Edit the JAXRExamples.properties File 20

2 Setting Up a JAXR Client 21

Starting the Registry 21

Getting Access to the Registry 21

� To Create a Keystore for Your Certificate 22

� To Edit the Security Settings of the JAXRExamples.properties File 23

Establishing a Connection to the Registry 23

Creating or Looking Up a Connection Factory 23

Creating a Connection 24

Obtaining and Using a RegistryService Object 25

3 Querying a Registry 27

Basic Query Methods 27

JAXR Information Model Interfaces 28

Finding Objects by Unique Identifier 31

Finding Objects by Unique Identifier: Example 32

3

� To Run the JAXRSearchById Example 32
Finding Objects by Name 32

Finding Objects by Name: Example 34
� To Run the JAXRSearchByName Example 34

Finding Objects by Type 34
Finding Objects by Type: Example 34

� To Run the JAXRSearchByObjectType Example 35
Finding Objects by Classification 35

� To Run the JAXRGetCanonicalSchemes Example 38
Finding Objects by Classification: Examples 38

� To Run the JAXRSearchByClassification and
JAXRSearchByCountryClassification Examples 38

Finding Objects by External Identifier 39
Finding Objects by External Identifier: Example 39

� To Run the JAXRSearchByExternalIdentifier Example 39
Finding Objects by External Link 40

Finding Objects by External Link: Example 40
� To Run the JAXRSearchByExternalLink Example 40

Finding Objects You Published 41
Finding Objects You Published: Examples 41

� To Run the JAXRGetMyObjects and JAXRGetMyObjectsByType
Examples 41

Retrieving Information About an Object 42
Retrieving the Identifier Values for an Object 43
Retrieving the Name or Description of an Object 43
Retrieving the Type of an Object 43
Retrieving the Classifications for an Object 44
Retrieving the External Identifiers for an Object 44
Retrieving the External Links for an Object 45
Retrieving the Slots for an Object 45
Retrieving the Attributes of an Organization or User 46
Retrieving the Services and Service Bindings for an Organization 48
Retrieving an Organization Hierarchy 49
Retrieving the Audit Trail of an Object 50
Retrieving the Version of an Object 51

Using Declarative Queries 52
Using Declarative Queries: Example 53

� To Run the JAXRQueryDeclarative Example 53
Using Iterative Queries 53

4 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Using Iterative Queries: Example 54
� To Run the JAXRQueryIterative Example 54

Invoking Stored Queries 55
Invoking Stored Queries: Example 55

� To Run the JAXRQueryStoredExample 56
Querying a Registry Federation 56

Using Federated Queries: Example 57
� To Run the JAXRQueryFederationExample 57

4 Publishing Objects to the Registry 59

Authenticating with the Registry 60
Creating Objects 61

Using Create Methods for Objects 62
Adding Names and Descriptions to Objects 62
Identifying Objects 63
Creating and Using Classification Schemes and Concepts 63
Adding Classifications to Objects 65
Adding External Identifiers to Objects 66
Adding External Links to Objects 67
Adding Slots to Objects 68
Creating Organizations 68
Creating Users 70
Creating Services and Service Bindings 71

Saving Objects in the Registry 73

5 Managing Objects in the Registry 75

Creating Relationships Between Objects: Associations 75
Creating Associations: Example 77
� To Run the JAXRPublishAssociation Example 77

Storing Items in the Repository 78
Creating an Extrinsic Object 78
Using an Extrinsic Object in a Specification Link 79

Organizing Objects Within Registry Packages 81
Organizing Objects Within Registry Packages: Examples 82

� To Run the JAXRPublishPackage and JAXRSearchPackage
Examples 82

Changing the State of Objects in the Registry 82
Changing the State of Objects in the Registry: Examples 84

5

� To Run the JAXRApproveObject, JAXRDeprecateObject, and
JAXRUndeprecateObject Examples 84

Controlling Access to Objects 84

Removing Objects From the Registry and Repository 85

Removing Objects from the Registry: Example 86

� To Run the JAXRDelete Example 86

6 Developing Client Programs for the UDDI Interface 87

Creating Client Programs 87

A Canonical Constants 89

Constants for Classification Schemes 89

Constants for Association Type Concepts 90

Constants for Content Management Service Concepts 91

Constants for Data Type Concepts 91

Constants for Deletion Scope Type Concepts 92

Constants for Email Type Concepts 92

Constants for Error Handling Model Concepts 92

Constants for Error Severity Type Concepts 92

Constants for Event Type Concepts 93

Constants for Invocation Model Concepts 93

Constants for Node Type Concepts 93

Constants for Notification Option Type Concepts 94

Constants for Object Type Concepts 94

Constants for Phone Type Concepts 95

Constants for Query Language Concepts 95

Constants for Response Status Type Concepts 95

Constants for Stability Type Concepts 96

Constants for Status Type Concepts 96

Constants for Subject Role Concepts 96

Constant for Stored Query 96

Index 97

6 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Preface

The Service Registry 3 2005Q4 Developer’s Guide describes how to use the Java™ API for
XML Registries (JAXR) to query Service Registry (“the Registry”) and to publish
content to it.

Who Should Use This Book
The Developer’s Guide is intended for applications programmers who plan to develop
JAXR clients that search the Registry and that publish content to the Registry. This
guide assumes you are familiar with the following:

� The Java programming language
� The basic concepts of the ebXML Registry and Repository specifications

Before You Read This Book
You should be familiar with the basic concepts of these specifications:

� ebXML Registry Information Model Version 3.0
� ebXML Registry Services and Protocols Version 3.0

You can find the latest public versions of these specifications by going to the OASIS
web site (http://www.oasis-open.org/) and following the links to ebXML RIM
V3.0 and ebXML RS V3.0.

As you develop code, you can use the Web Console provided with the Service
Registry software to verify that your code is working correctly. Read the Service
Registry 3 2005Q4 User’s Guide to familiarize yourself with the Web Console.

7

http://www.oasis-open.org/
http://www.oasis-open.org/

Service Registry is available as part of the Java Web Services Developer Pack
(http://java.sun.com/webservices/jwsdp/) or as a component of Sun Java™
Enterprise System, a software infrastructure that supports enterprise applications
distributed across a network or Internet environment. If you purchased Service
Registry as a component of Java Enterprise System, you should be familiar with the
system documentation at http://docs.sun.com/coll/1286.1.

How This Book Is Organized
The contents of this book are as follows:

Chapter 1 provides a brief overview of JAXR.

Chapter 2 describes the first steps to follow to implement a JAXR client that can
perform queries and updates to the Service Registry.

Chapter 3 describes the interfaces and methods JAXR provides for querying a registry.

Chapter 4 describes how to publish objects to the Registry.

Chapter 5 describes how to perform operations on objects in the registry, such as
deleting objects and changing their state.

Chapter 6 describes how to develop Java client programs that enable you to use UDDI
queries to search the Registry.

Appendix A lists constants that you can use to search for objects by their unique
identifiers.

Service Registry Documentation Set
The Service Registry documentation set is available at
http://docs.sun.com/app/docs/coll/1314.1. To learn about Service Registry,
refer to the books listed in the following table.

8 Service Registry 3 2005Q4 Developer’s Guide • October 2005

http://java.sun.com/webservices/jwsdp/
http://docs.sun.com/coll/1286.1
http://docs.sun.com/app/docs/coll/1314.1

TABLE P–1 Service Registry Documentation

Document Title Contents

Service Registry 3 2005Q4 Release Notes Contains the latest information about Service
Registry, including known problems.

Service Registry 3 2005Q4 Administration Guide Describes how to configure Service Registry
after installation and how to use the
administration tool provided with the
Registry. It also describes how to perform
other administrative tasks.

Service Registry 3 2005Q4 User’s Guide Describes how to use the Service Registry Web
Console to search Service Registry and to
publish data to it.

Service Registry 3 2005Q4 Developer’s Guide Describes how to use the Java API for XML
Registries (JAXR) to search Service Registry
and to publish data to it.

Related Books
When you install Service Registry, it is deployed to the Sun Java System Application
Server. For information about administering Application Server, refer to Sun Java
System Application Server Enterprise Edition 8.1 2005Q2 Administration Guide.

The Java ES documentation set describes deployment planning and system
installation. The URL for system documentation is
http://docs.sun.com/coll/1286.1. For an introduction to Java ES, refer to the
books in the order in which they are listed in the following table.

TABLE P–2 Java Enterprise System Documentation

Document Title Contents

Sun Java Enterprise System 2005Q4
Release Notes

Contains the latest information about Java ES, including
known problems. In addition, components have their
own release notes.

Sun Java Enterprise System 2005Q4
Documentation Roadmap

Provides descriptions of all documentation related to
Java ES, both as a system and for the individual
components.

Sun Java Enterprise System 2005Q4
Technical Overview

Introduces the technical and conceptual foundations of
Java ES. Describes components, the architecture,
processes, and features.

9

http://docs.sun.com/coll/1286.1

TABLE P–2 Java Enterprise System Documentation (Continued)
Document Title Contents

Sun Java Enterprise System 2005Q4
Deployment Planning Guide

Provides an introduction to planning and designing
enterprise deployment solutions based on Java ES.
Presents basic concepts and principles of deployment
planning and design, discusses the solution life cycle,
and provides high-level examples and strategies to use
when planning solutions based on Java ES.

Sun Java Enterprise System 2005Q4
Installation Planning Guide

Helps you develop the implementation specifications
for the hardware, operating system, and network
aspects of your Java ES deployment. Describes issues
such as component dependencies to address in your
installation and configuration plan.

Sun Java Enterprise System 2005Q4
Installation Guide for UNIX

Guides you through the process of installing Java ES on
the Solaris Operating System or the Linux operating
system. Also shows how to configure components after
installation, and verify that they function properly.

Sun Java Enterprise System 2005Q4
Installation Reference

Gives additional information about configuration
parameters, provides worksheets to use in your
configuration planning, and lists reference material
such as default directories and port numbers.

Sun Java Enterprise System 2005Q1
Deployment Example Series: Evaluation
Scenario

Describes how to install Java ES on one system,
establish a set of core, shared, and networked services,
and set up user accounts that can access the services
that you establish.

Sun Java Enterprise System 2005Q4
Upgrade Guide

Provides instructions for upgrading Java ES on the
Solaris Operating System or the Linux operating
environment.

Sun Java Enterprise System Glossary Defines terms that are used in Java ES documentation.

The URL for all documentation about Java ES and its components is
http://docs.sun.com/prod/entsys.05q4.

Default Paths and File Names
The following table describes the default paths and file names that are used in this
book.

10 Service Registry 3 2005Q4 Developer’s Guide • October 2005

http://docs.sun.com/prod/entsys.05q4

TABLE P–3 Default Paths and File Names

Placeholder Description Default Value

ServiceRegistry-base Represents the base installation
directory for Service Registry.

Solaris systems:
/opt/SUNWsoar

Linux systems:
/opt/sun/SUNWsoar

RegistryDomain-base Represents the directory where
the Application Server domain
for Service Registry is located
and where the Service Registry
database is located.

Solaris systems:
/var/opt/SUNWsoar

Linux systems:
/var/opt/sun/SUNWsoar

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–4 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a
real name or value

The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to
be emphasized (note that some
emphasized items appear bold
online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

11

Shell Prompts in Command Examples
The following table shows default system prompts and superuser prompts.

TABLE P–5 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_name%

C shell superuser on UNIX and Linux systems machine_name#

Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Microsoft Windows command line C:\

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–6 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional
arguments and command
options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices
for a required command
option.

-d {y|n} The -d option requires that you
use either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while you
press the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it,
and then press the subsequent
keys.

12 Service Registry 3 2005Q4 Developer’s Guide • October 2005

TABLE P–6 Symbol Conventions (Continued)
Symbol Description Example Meaning

→ Indicates menu item
selection in a graphical
user interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Accessing Sun Resources Online
The docs.sun.comSM web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. Books are available as online files in PDF and HTML formats. Both formats are
readable by assistive technologies for users with disabilities.

To access the following Sun resources, go to http://www.sun.com:

� Downloads of Sun products
� Services and solutions
� Support (including patches and updates)
� Training
� Research
� Communities (for example, Sun Developer Network)

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related
information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in
this document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused or alleged to be caused by or in connection with use of or reliance on any
such content, goods, or services that are available on or through such sites or
resources.

13

http://docs.sun.com
http://www.sun.com

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send
Comments. In the online form, provide the full document title and part number. The
part number is a 7-digit or 9-digit number that can be found on the book’s title page or
in the document’s URL. For example, the part number of this book is 819-2682.

14 Service Registry 3 2005Q4 Developer’s Guide • October 2005

http://docs.sun.com

CHAPTER 1

Overview of JAXR

This section provides a brief overview of the Java™ API for XML Registries (JAXR).
The section covers the following topics:

� “About Registries and Repositories” on page 15
� “About JAXR” on page 16
� “JAXR Architecture” on page 17
� “About the Examples” on page 19

About Registries and Repositories
An XML registry is an infrastructure that enables the building, deployment, and
discovery of web services. It is a neutral third party that facilitates dynamic and
loosely coupled business-to-business (B2B) interactions. A registry is available to
organizations as a shared resource, normally in the form of a web-based service.

Currently, several specifications for XML registries exist. These specifications include

� The ebXML Registry and Repository standard, which is sponsored by the
Organization for the Advancement of Structured Information Standards (OASIS)
and the United Nations Centre for the Facilitation of Procedures and Practices in
Administration, Commerce and Transport (U.N./CEFACT). ebXML stands for
Electronic Business using eXtensible Markup Language.

� The Universal Description, Discovery, and Integration (UDDI) protocol, which is
developed by a vendor consortium.

A registry provider is an implementation of a registry that conforms to a specification
for XML registries.

15

While a UDDI registry stores information about businesses and the services they offer,
an ebXML registry has a much wider scope. It is a repository as well as a registry. A
repository stores arbitrary content as well as information about that content. In other
words, a repository stores data as well as metadata. The ebXML Registry standard
defines an interoperable Enterprise Content Management (ECM) API for web services.

An ebXML registry and repository is to the web what a relational database is to
enterprise applications: it provides a means for web services and web applications to
store and share content and metadata.

An ebXML registry can be part of a registry federation, an affiliated group of registries.
For example, the health ministry of a country in Europe could operate a registry, and
that registry could be part of a federation that included the registries of other
European health ministries.

Service Registry implements version 3.0 of the ebXML Registry and Repository
specification. The specification is in two parts:

� The ebXML Registry Services and Protocols Specification (“ebXML RS”) defines the
services and protocols for an ebXML Registry.

� The ebXML Registry Information Model Specification (“ebXML RIM”) defines the
types of metadata and content that can be stored in an ebXML Registry.

You can find the latest public versions of these specifications by going to the OASIS
web site (http://www.oasis-open.org/) and following the links to ebXML RIM
V3.0 and ebXML RS V3.0.

About JAXR
JAXR enables Java software programmers to use a single, easy-to-use abstraction API
to access a variety of XML registries. A unified JAXR information model describes
content and metadata within XML registries.

JAXR gives developers the ability to write registry client programs that are portable
across various target registries. JAXR also enables value-added capabilities beyond
those of the underlying registries.

The current version of the JAXR specification includes detailed bindings between the
JAXR information model and the ebXML Registry specifications. You can find the
latest version of the JAXR specification at
http://java.sun.com/xml/downloads/jaxr.html. The API documentation for
JAXR is part of the API documentation for Java 2 Platform, Enterprise Edition (J2EE
platform) (http://java.sun.com/j2ee/1.4/docs/api/index.html).

Service Registry includes a JAXR provider that implements the level 1 capability
profile, which allows full access to ebXML registries. The ebXML specifications and the
JAXR specification are not in perfect alignment, because the ebXML specifications

16 Service Registry 3 2005Q4 Developer’s Guide • October 2005

http://www.oasis-open.org/
http://www.oasis-open.org/
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/j2ee/1.4/docs/api/index.html
http://java.sun.com/j2ee/1.4/docs/api/index.html

have advanced beyond the JAXR specification. For this reason, the JAXR provider for
the Registry includes some additional implementation-specific methods that
implement the ebXML specifications. These additional methods are likely to be
included in the next version of the JAXR specification.

JAXR Architecture
The high-level architecture of JAXR consists of the following parts:

� A JAXR client: This is a client program that uses the JAXR API to access a registry
through a JAXR provider.

� A JAXR provider: This is an implementation of the JAXR API that provides access to
a specific registry provider or to a class of registry providers that are based on a
common specification. This guide does not describe how to implement a JAXR
provider.

A JAXR provider implements two main packages:

� javax.xml.registry, which consists of the API interfaces and classes that
define the registry access interface.

� javax.xml.registry.infomodel, which consists of interfaces that define the
information model for JAXR. These interfaces define the types of objects that reside
in a registry and how they relate to each other. The basic interface in this package is
the RegistryObject interface.

The most basic interfaces in the javax.xml.registry package are

� Connection. The Connection interface represents a client session with a registry
provider. The client must create a connection with the JAXR provider in order to
use a registry.

� RegistryService. The client obtains a RegistryService object from its
connection. The RegistryService object in turn enables the client to obtain the
interfaces it uses to access the registry.

The primary interfaces, also part of the javax.xml.registry package, are

� QueryManager and BusinessQueryManager, which allow the client to search a
registry for information in accordance with the
javax.xml.registry.infomodel interfaces. An optional interface,
DeclarativeQueryManager, allows the client to use SQL syntax for queries. The
ebXML provider for the Registry implements DeclarativeQueryManager.

� LifeCycleManager and BusinessLifeCycleManager, which allow the client
to modify the information in a registry by either saving the information (updating
it) or deleting it.

Chapter 1 • Overview of JAXR 17

For more details, and for a figure that illustrates the relationships among these
interfaces, see the API documentation for the javax.xml.registry package at
http://java.sun.com/
j2ee/1.4/docs/api/javax/xml/registry/package-summary.html.

When an error occurs, JAXR API methods throw a JAXRException or one of its
subclasses.

Many methods in the JAXR API use a Collection object as an argument or a
returned value. Use of a Collection object allows operations on several registry
objects at a time.

Figure 1–1 illustrates the architecture of JAXR. For the Registry, a JAXR client uses the
capability level 0 and level 1 interfaces of the JAXR API to access the JAXR provider,
which is an ebXML provider. The JAXR provider in turn accesses the Registry, an
ebXML registry.

UDDI

ebXML Provider UDDI Provider Other Provider

JAXR API
Capability-specific Interfaces

JAXR Client

Registry-specific
JAXR Provider

Diverse
Registries

UDDI/
SOAP

Other

???

ebXML

ebXML/
SOAP

FIGURE 1–1 JAXR Architecture

18 Service Registry 3 2005Q4 Developer’s Guide • October 2005

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/package-summary.html

About the Examples
Many sample client programs that demonstrate JAXR features are described in this
manual. To obtain these examples, go to the following URL:
http://www.sun.com/products/soa/registry/#faq/. A zip file that contains
the examples is available in the Resources section.

Download the zip file to any convenient location on your file system. After you unzip
the file, the example source code is in the directory <INSTALL>/registry/samples,
where <INSTALL> is the directory where you unzipped the examples.

Each example or group of examples has a build.xml file that allows you to compile
and run each example using the asant tool. Each build.xml file has a compile
target and one or more targets that run the example or examples. Some of the run
targets take command-line arguments.

The asant command is in the Sun Java System Application Server bin directory,
which is usually /opt/SUNWappserver/appserver/bin/ in the Solaris™
Operating System and /opt/sun/appserver/bin on Linux systems.

Before you run the examples, you must edit two files in the directory
<INSTALL>/registry/samples/common. The file build.properties is used by
the asant targets that run the programs. The file JAXRExamples.properties is a
resource bundle that is used by the programs themselves.

In addition, a targets.xml file in the <INSTALL>/registry/samples/common
directory defines the classpath for compiling and running the examples. It also
contains a clean target that deletes the build directory created when each example
is compiled. You do not need to edit this file.

� To Edit the build.properties File

1. Set the property container.home to the location of the container where the
Registry is deployed.

This is the location of your installation of the Sun Java System Application Server
Enterprise Edition 8.1. By default, this location is /opt/SUNWappserver on
Solaris systems and /opt/sun/appserver on Linux systems.

2. Set the property registry.home to the directory where the Registry is
installed.

This directory is /opt/SUNWsoar on Solaris systems and /opt/sun/SUNWsoar
on Linux systems.

Steps

Chapter 1 • Overview of JAXR 19

http://www.sun.com/products/soa/registry/#faq/

3. Set the property registry.domain.home to the directory where the Registry
domain is installed.

This directory is /var/opt/SUNWsoar/domains/registry on Solaris systems
and /var/opt/sun/SUNWsoar/domains/registry on Linux systems.

4. Set the property proxyHost to the name of the system through which you
access the Internet, if you are behind a firewall.

If you are not sure what the value should be, consult your system administrator or
another person with that information. The proxyPort value is set to 8080, the
typical value; change this value if necessary.

� To Edit the JAXRExamples.properties File

1. Edit the properties query.url and publish.url to specify the URL of the
Registry.

The file provides a default setting of localhost:6060 for the host and port.
Change this setting to another host or port if the Registry is installed on a remote
server or at a non-default port.

2. Edit security properties to specify the properties that are required for publishing
to the Registry. Make these edits after you use the User Registration Wizard of
the Web Console. See “Getting Access to the Registry” on page 21 for details.

3. Feel free to change any of the data in the remainder of the file as you experiment
with the examples.

The asant targets that run the client examples always use the latest version of the
file.

Steps

20 Service Registry 3 2005Q4 Developer’s Guide • October 2005

CHAPTER 2

Setting Up a JAXR Client

This section describes the first steps to follow to implement a JAXR client that can
perform queries and updates to Service Registry. A JAXR client is a client program that
uses the JAXR API to access registries. This section covers the following topics:

� “Starting the Registry” on page 21
� “Getting Access to the Registry” on page 21
� “Establishing a Connection to the Registry” on page 23
� “Obtaining and Using a RegistryService Object” on page 25

Starting the Registry
To start the Registry, you start the container where the Registry is installed, the Sun
Java System Application Server.

If the Registry is not already running, start it. See “To Stop and Restart the Application
Server Domain for the Registry” in Service Registry 3 2005Q4 Administration Guide for
instructions.

Getting Access to the Registry
Any user of a JAXR client can perform queries on the Registry for objects that are not
restricted by an access control policy. A user must, however, obtain permission from
the Registry for the following actions:

� To add data to the Registry
� To update Registry data

21

� To perform queries for restricted objects

The Registry uses client-certificate authentication for user access.

To create a user that can submit data to the Registry, use the User Registration Wizard
of the Web Console. The Web Console is part of the Registry software. For details on
using the wizard to obtain a user name and password as well as a certificate that
authorizes you to use the Registry, see “Creating a User Account” in Service
Registry 3 2005Q4 User’s Guide. You can also use an existing certificate that you
obtained from a certificate authority.

Before you can publish to the Registry, you must move the certificate from the .p12
file that you downloaded to a JKS keystore file. The keystore file must reside at the
following location in your home directory:
$HOME/soar/3.0/jaxr-ebxml/security/keystore.jks. The example
programs include an asant target that performs this task. For details, see “To Create a
Keystore for Your Certificate” on page 22.

After you create a user account and a keystore, edit the JAXRExamples.properties
file. See “To Edit the Security Settings of the JAXRExamples.properties File”
on page 23 for details.

� To Create a Keystore for Your Certificate
To create a JKS keystore for your certificate, you use the asant target
move-keystore, which is defined in the file
<INSTALL>/registry/samples/common/targets.xml. This targets file is used
by all the build.xml files in the example directories.

The move-keystore target uses a property named keystoreFile that is defined in
the file <INSTALL>/registry/samples/common/build.properties. Do not
change the definition of this property. The move-keystore target also specifies a
keystore password of ebxmlrr. This value is used in the security.storepass
property of the file JAXRExamples.properties.

1. Go to any of the example directories except common.

For example, you might use the following command:

cd registry/samples/query-id

2. Run the following command (all on one line):

asant move-keystore -Dp12path=path_of_p12_file -Dalias=your_user_name
-Dpassword=your_password

Use a command like the following:

asant move-keystore -Dp12path=/home/myname/testuser.p12 -Dalias=testuser
-Dpassword=testuser

Steps

22 Service Registry 3 2005Q4 Developer’s Guide • October 2005

To see a syntax reminder for this target, use the command asant -projecthelp.

� To Edit the Security Settings of the
JAXRExamples.properties File

1. Open the file
<INSTALL>/registry/samples/common/JAXRExamples.properties in a
text editor.

2. Find the following lines:

security.keystorePath=<home_dir>/soar/3.0/jaxr-ebxml/security/keystore.jks
security.storepass=ebxmlrr
security.alias=
security.keypass=

3. To specify the security.keystorePath property, replace <home_dir> with
the absolute path of your home directory (for example, /home/myname).

4. For the value of the security.alias property, specify the user name that you
provided to the User Registration Wizard.

5. For the value of the security.keypass property, specify the password that
you provided to the User Registration Wizard.

6. Save and close the file.

Establishing a Connection to the
Registry
The first task that a JAXR client must complete is to establish a connection to a
registry. Establishment of a connection involves the following tasks:

� “Creating or Looking Up a Connection Factory” on page 23
� “Creating a Connection” on page 24

Creating or Looking Up a Connection Factory
A client creates a connection from a connection factory. This section describes how to
obtain a connection factory in two ways:

� Obtaining a ConnectionFactory instance for use in stand-alone client programs

Steps

Chapter 2 • Setting Up a JAXR Client 23

� Looking up a connection factory for use in deployed Java™ 2 Platform, Enterprise
Edition (J2EE) applications

Obtaining a ConnectionFactory Instance
To use JAXR in a stand-alone client program, you must obtain an instance of the
abstract class ConnectionFactory. To do so, call the getConnectionFactory
method in the JAXR provider’s JAXRUtility class.

import org.freebxml.omar.client.xml.registry.util.JAXRUtility;
...
ConnectionFactory factory = JAXRUtility.getConnectionFactory();

Looking Up a Connection Factory
A JAXR provider can supply one or more preconfigured connection factories for use in
J2EE applications. To obtain these factories, clients look them up using the Java
Naming and Directory Interface (JNDI) API.

To use JAXR in a deployed J2EE application, you use a connection factory supplied by
the JAXR Resource Adapter (RA). To access the connection factory, you need to use a
connector resource whose JNDI name is eis/MYSOAR. The Registry configuration
process creates this resource. To look up the connection factory in a J2EE component,
use code like the following:

import javax.xml.registry.*;
import javax.naming.*;
...

Context context = new InitialContext();
ConnectionFactory connFactory = (ConnectionFactory)

context.lookup("java:comp/env/eis/MYSOAR");

Creating a Connection
To create a connection, a client first creates a set of properties that specify the URL or
URLs of the registry or registries to be accessed. The following code provides the
URLs of the query service and publishing service for the Registry if the Registry is
deployed on the local system. (The strings should have no line breaks.)

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",

"http://localhost:6060/soar/registry/soap");
props.setProperty("javax.xml.registry.lifeCycleManagerURL",

"http://localhost:6060/soar/registry/soap");

The client then obtains the connection factory as described in “Creating or Looking Up
a Connection Factory” on page 23, sets its properties, and creates the connection. The
following code fragment performs these tasks:

24 Service Registry 3 2005Q4 Developer’s Guide • October 2005

ConnectionFactory factory =
JAXRUtility.getConnectionFactory();

factory.setProperties(props);
Connection connection = factory.createConnection();

The makeConnection method in the sample programs shows the steps used to create
a JAXR connection.

“Creating a Connection” on page 24 lists and describes the two properties that you can
set on a connection. These properties are defined in the JAXR specification.

TABLE 2–1 Standard JAXR Connection Properties

Property Name and Description Data Type Default Value

javax.xml.registry.queryManagerURL

Specifies the URL of the query manager service within
the target registry provider.

String None

javax.xml.registry.lifeCycleManagerURL

Specifies the URL of the life-cycle manager service
within the target registry provider (for registry
updates).

String Same as the specified
queryManagerURL
value

Obtaining and Using a RegistryService
Object
After creating the connection, the client uses the connection to obtain a
RegistryService object and then the interface or interfaces that the client will use:

RegistryService rs = connection.getRegistryService();
DeclarativeQueryManager bqm = rs.getDeclarativeQueryManager();
LifeCycleManager blcm =

rs.getLifeCycleManager();

Typically, a client obtains two objects from the RegistryService object: a query
manager and a life cycle manager. The query manager is either a
DeclarativeQueryManager object or a BusinessQueryManager object. The life
cycle manager is either a LifeCycleManager object or a
BusinessLifeCycleManager object. If the client is using the Registry for simple
queries only, it might need to obtain only a query manager.

Chapter 2 • Setting Up a JAXR Client 25

26 Service Registry 3 2005Q4 Developer’s Guide • October 2005

CHAPTER 3

Querying a Registry

This section describes the interfaces and methods that JAXR provides for querying a
registry. The section covers the following topics:

� “Basic Query Methods” on page 27
� “JAXR Information Model Interfaces” on page 28
� “Finding Objects by Name” on page 32
� “Finding Objects by Type” on page 34
� “Finding Objects by Classification” on page 35
� “Finding Objects by External Identifier” on page 39
� “Finding Objects by External Link” on page 40
� “Finding Objects by Unique Identifier” on page 31
� “Finding Objects You Published” on page 41
� “Retrieving Information About an Object” on page 42
� “Using Declarative Queries” on page 52
� “Using Iterative Queries” on page 53
� “Invoking Stored Queries” on page 55
� “Querying a Registry Federation” on page 56

Basic Query Methods
The simplest way for a client to use a registry is to query the registry for information
about the objects and data it contains. The QueryManager,
BusinessQueryManager, and RegistryObject interfaces support a number of
finder and getter methods. These methods allow clients to search for data by using the
JAXR information model. Many of the finder methods return a BulkResponse. A
BulkResponse is a collection of objects that meets a set of criteria that are specified in
the method arguments. The most general of these methods are as follows:

� getRegistryObject and getRegistryObjects. When used with an
argument, these QueryManager methods return one or more objects based on
their object type or unique identifier. Without an argument, the

27

getRegistryObjects method returns the objects owned by the caller. For
information on unique identifiers, see “Finding Objects by Unique Identifier”
on page 31.

� findObjects, an implementation-specific BusinessQueryManager method
that returns a list of all objects of a specified type that meet the specified criteria.

Other finder methods allow you to find specific kinds of objects supported by the
JAXR information model. A UDDI registry supports a specific hierarchy of objects:
organizations, which contain users, services, and service bindings. In contrast, an
ebXML registry permits the storage of freestanding objects of various types that can be
linked to each other in various ways. Other objects are not freestanding but are always
attributes of another object.

The BusinessQueryManager finder methods are useful primarily for searching
UDDI registries. The more general findObjects method and the RegistryObject
getter methods are more appropriate for Service Registry.

To execute queries, you do not need to log in to the Registry. By default, an
unauthenticated user has the identity of the user named “Registry Guest.”

JAXR Information Model Interfaces
Table 3–1 lists the main interfaces supported by the JAXR information model. All these
interfaces extend the RegistryObject interface.

For more details, and for a figure that illustrates the relationships among these
interfaces, see the API documentation for the javax.xml.registry.infomodel
package at http://java.sun.com/
j2ee/1.4/docs/api/javax/xml/registry/infomodel/package-summary.html.

TABLE 3–1 JAXR RegistryObject Subinterfaces

Interface Name Description

Association Defines a relationship between two objects.

Getter and finder methods: RegistryObject.getAssociations,
BusinessQueryManager.findAssociations,
BusinessQueryManager.findCallerAssociations.

AuditableEvent Provides a record of a change to an object. A collection of
AuditableEvent objects constitutes an object’s audit trail.

Getter method: RegistryObject.getAuditTrail.

28 Service Registry 3 2005Q4 Developer’s Guide • October 2005

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/infomodel/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/infomodel/package-summary.html

TABLE 3–1 JAXR RegistryObject Subinterfaces (Continued)
Interface Name Description

Classification Classifies an object by using a ClassificationScheme.

Getter method: RegistryObject.getClassifications.

ClassificationScheme Represents a taxonomy used to classify objects. In an internal
ClassificationScheme, all taxonomy elements are defined in the
registry as Concept instances. In an external
ClassificationScheme, the values are not defined in the registry as
Concept instances but instead are referenced by their String
representations.

Finder methods:
BusinessQueryManager.findClassificationSchemes,
BusinessQueryManager.findClassificationSchemeByName.

Concept Represents a taxonomy element and its structural relationship with other
elements in an internal ClassificationScheme. Called a
ClassificationNode in the ebXML specifications.

Finder methods: BusinessQueryManager.findConcepts,
BusinessQueryManager.findConceptByPath.

ExternalIdentifier Provides additional information about an object by using String values
within an identification scheme (an external ClassificationScheme).
Examples of identification schemes are DUNS numbers and Social
Security numbers.

Getter method: RegistryObject.getExternalIdentifiers.

ExternalLink Provides a URI for content that resides outside the registry.

Getter method: RegistryObject.getExternalLinks.

ExtrinsicObject Provides metadata that describes submitted content whose type is not
intrinsically known to the registry and that therefore must be described
by means of additional attributes, such as MIME type.

No specific getter or finder methods.

Organization Provides information about an organization. May have a parent, and
may have one or more child organizations. Always has a User object as a
primary contact, and may offer Service objects.

Finder method: BusinessQueryManager.findOrganizations.

RegistryPackage Represents a logical grouping of registry objects. A RegistryPackage
may have any number of RegistryObjects.

Getter and finder methods:
RegistryObject.getRegistryPackages,
BusinessQueryManager.findRegistryPackages.

Chapter 3 • Querying a Registry 29

TABLE 3–1 JAXR RegistryObject Subinterfaces (Continued)
Interface Name Description

Service Provides information on a service. May have a set of ServiceBinding
objects.

Finder method: BusinessQueryManager.findServices.

ServiceBinding Represents technical information on how to access a Service.

Getter and finder methods: Service.getServiceBindings,
BusinessQueryManager.findServiceBindings.

Slot Provides a dynamic way to add arbitrary attributes to
RegistryObject instances.

Getter methods: RegistryObject.getSlot,
RegistryObject.getSlots.

SpecificationLink Provides the linkage between a ServiceBinding and a technical
specification that describes how to use the service by using the
ServiceBinding.

Getter method: ServiceBinding.getSpecificationLinks.

User Provide information about registered users within the registry. User
objects are affiliated with Organization objects.

Getter methods: Organization.getUsers,
Organization.getPrimaryContact.

Table 3–2 lists the other interfaces supported by the JAXR information model. These
interfaces provide attributes for the main registry objects. These interfaces do not
extend the RegistryObject interface.

TABLE 3–2 JAXR Information Model Interfaces Used as Attributes

Interface Name Description

EmailAddress Represents an email address. A User can have an
EmailAddress.

Getter method: User.getEmailAddresses.

InternationalString Represents a String that can be internationalized into
several locales. Contains a Collection of
LocalizedString objects. The name and description
of a RegistryObject are InternationalString
objects.

Getter methods: RegistryObject.getName,
RegistryObject.getDescription.

30 Service Registry 3 2005Q4 Developer’s Guide • October 2005

TABLE 3–2 JAXR Information Model Interfaces Used as Attributes (Continued)
Interface Name Description

Key An object that identifies a RegistryObject. Contains
a unique identifier value that must be a DCE 128 UUID
(Universal Unique IDentifier).

Getter method: RegistryObject.getKey.

LocalizedString A component of an InternationalString that
associates a String with its Locale.

Getter method:
InternationalString.getLocalizedStrings.

PersonName Represents a person’s name. A User has a
PersonName.

Getter method: User.getPersonName.

PostalAddress Represents a postal address. An Organization or
User can have one or more PostalAddress objects.

Getter methods:
Organization.getPostalAddress,
OrganizationImpl.getPostalAddresses
(implementation-specific),
User.getPostalAddresses.

TelephoneNumber Represents a telephone number. An Organization or
a User can have one or more TelephoneNumber
objects.

Getter methods:
Organization.getTelephoneNumbers,
User.getTelephoneNumbers.

Finding Objects by Unique Identifier
Every object in the Registry has two identifiers, a unique identifier (also called a Key)
and a logical identifier. Often, the unique identifier is the same as the logical identifier.
However, when an object exists in more than one version, the unique identifiers are
different for each version, but the logical identifier remains the same. (See “Retrieving
the Version of an Object” on page 51.)

If you know the value of the unique identifier for an object, you can retrieve the object
by calling the QueryManager.getRegistryObject method with the String value
as an argument. For example, if bqm is your BusinessQueryManager instance and
idString is the String value, the following line of code retrieves the object:

RegistryObject obj = bqm.getRegistryObject(idString);

Chapter 3 • Querying a Registry 31

After you have the object, you can obtain its type, name, description, and other
attributes.

Finding Objects by Unique Identifier: Example
For an example of finding objects by unique identifier, see JAXRSearchById.java in
the directory <INSTALL>/registry/samples/search-id/src, which searches for
objects that have a specified unique identifier.

� To Run the JAXRSearchById Example

1. Go to the directory <INSTALL>/registry/samples/search-id.

2. Type the following command:

asant run -Did=urn_value

For example, if you specify the following ID, you retrieve information on the
ObjectType classification scheme.

urn:oasis:names:tc:ebxml-regrep:classificationScheme:ObjectType

Finding Objects by Name
To search for objects by name, you normally use a combination of find qualifiers and
name patterns. Find qualifiers affect sorting and pattern matching. Name patterns
specify the strings to be searched. The
BusinessQueryManagerImpl.findObjects method takes a collection of
FindQualifier objects as its second argument and takes a collection of name
patterns as its third argument. The method signature is as follows:

public BulkResponse findObjects(java.lang.String objectType,
java.util.Collection findQualifiers,
java.util.Collection namePatterns,
java.util.Collection classifications,
java.util.Collection specifications,
java.util.Collection externalIdentifiers,
java.util.Collection externalLinks)

throws JAXRException

For the first argument, the object type, you normally specify one of a set of string
constants that are defined in the LifeCycleManager interface.

You can use wildcards in a name pattern. Use percent signs (%) to specify that the
search string occurs at the beginning, middle, or end of the object name. Here are
some examples:

Steps

32 Service Registry 3 2005Q4 Developer’s Guide • October 2005

� Specify nor% to return strings that start with Nor or nor, such as North and
northern.

� Specify %off% to return strings that contain the string off, such as Coffee.

� Specify %ica to return strings that end with ica, such as America.

You can also use an underscore (_) as a wildcard to match a single character. For
example, the search string _us_ would match objects named Aus1 and Bus3.

For example, the following code fragment finds all the organizations in the Registry
whose names begin with a specified string, searchString, and sorts them in
alphabetical order.

// Define find qualifiers and name patterns
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);
Collection namePatterns = new ArrayList();
namePatterns.add(searchString + "%");

// Find organizations with name that starts with searchString
BulkResponse response =

bqm.findObjects("Organization", findQualifiers,
namePatterns, null, null, null, null);

Collection orgs = response.getCollection();

The findObjects method is not case-sensitive, unless you specify
FindQualifier.CASE_SENSITIVE_MATCH. In the previous fragment, the first
argument could be either "Organization" or "organization", and the name
pattern matches names regardless of case.

The following code fragment performs a case-sensitive search for all registry objects
whose names contain the string searchString and sorts the objects in alphabetical
order.

Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);
Collection namePatterns = new ArrayList();
namePatterns.add("%" + searchString + "%");

// Find objects with name that contains searchString
BulkResponse response =

bqm.findObjects("RegistryObject", findQualifiers,
namePatterns, null, null, null, null);

Collection orgs = response.getCollection();

The percent sign matches any number of characters in the name. To match a single
character, use the underscore (_). For example, to match both “Arg1” and “Org2” you
would specify a name pattern of _rg_.

Chapter 3 • Querying a Registry 33

Finding Objects by Name: Example
For an example of finding objects by name, see JAXRSearchByName.java in the
directory <INSTALL>/registry/samples/search-name/src.

� To Run the JAXRSearchByName Example

1. Go to the directory <INSTALL>/registry/samples/search-name.

2. Type the following command, specifying a string value:

asant run -Dname=string

The program performs a case-insensitive search, returning all objects whose names
contain the specified string. The program also displays the object’s classifications,
external identifiers, external links, slots, and audit trail.

Finding Objects by Type
To find all objects of a specified type, specify only the first argument of the
BusinessQueryManagerImpl.findObjects method and, optionally, a collection
of FindQualifier objects. For example, if typeString is a string whose value is
either "Service" or "service", the following code fragment finds all services in
the Registry and sorts them in alphabetical order.

Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);

BulkResponse response = bqm.findObjects(typeString,
findQualifiers, null, null, null, null, null);

You cannot use wildcards in the first argument to findObjects.

Finding Objects by Type: Example
For an example of finding objects by type, see JAXRSearchByObjectType.java in
the directory <INSTALL>/registry/samples/search-object-type/src.

Steps

34 Service Registry 3 2005Q4 Developer’s Guide • October 2005

� To Run the JAXRSearchByObjectType Example

1. Go to the directory <INSTALL>/registry/samples/search-object-type.

2. Type the following command, specifying a string value:

asant run -Dtype=type_name

The program performs a case-insensitive search, returning all objects whose type is
type_name and displaying their names, descriptions, and unique identifiers. Specify
the exact name of the type, not a wildcard, as in the following command line:

asant run -Dtype=federation

Finding Objects by Classification
To find objects by classification, you first establish the classification within a particular
classification scheme. Then you specify the classification as an argument to the
BusinessQueryManagerImpl.findObjects method.

To establish the classification within a particular classification scheme, you first find
the classification scheme. Then you create a Classification object to be used as an
argument to the findObjects method or another finder method.

The following code fragment finds all organizations that correspond to a particular
classification within the ISO 3166 country codes classification system that is
maintained by the International Organization for Standardization (ISO). See
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html for
details. This classification scheme is provided in the sample database that is included
with the Registry.

ClassificationScheme cScheme =
bqm.findClassificationSchemeByName(null,

"iso-ch:3166:1999");

Classification classification =
blcm.createClassification(cScheme, "United States", "US");

Collection classifications = new ArrayList();
classifications.add(classification);
// perform search
BulkResponse response = bqm.findObjects("Organization", null,

null, classifications, null, null, null);
Collection orgs = response.getCollection();

The ebXML Registry Information Model Specification requires a set of canonical
classification schemes to be present in an ebXML registry. Each scheme also has a set
of required concepts (which are called ClassificationNode objects in the ebXML

Steps

Chapter 3 • Querying a Registry 35

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

specifications). The primary purpose of the canonical classification schemes is not to
classify objects but to provide enumerated types for object attributes. For example, the
EmailType classification scheme provides a set of values for the type attribute of an
EmailAddress object.

Table 3–3 lists and describes these canonical classification schemes.

TABLE 3–3 Canonical Classification Schemes

Classification Scheme Description

AssociationType Defines the types of associations between
RegistryObjects.

ContentManagementService Defines the types of content management services.

DataType Defines the data types for attributes in classes defined
by the specification.

DeletionScopeType Defines the values for the deletionScope attribute in
the RemoveObjectsRequest protocol message.

EmailType Defines the types of email addresses.

ErrorHandlingModel Defines the types of error handling models for content
management services.

ErrorSeverityType Defines the different error severity types encountered
by the registry during processing of protocol messages.

EventType Defines the types of events that can occur in a registry.

InvocationModel Defines the different ways that a content management
service may be invoked by the registry.

NodeType Defines the different ways in which a
ClassificationScheme may assign the value of the
code attribute for its ClassificationNodes.

NotificationOptionType Defines the different ways in which a client may be
notified by the registry of an event within a
Subscription.

ObjectType Defines the different types of RegistryObjects a
registry may support.

PhoneType Defines the types of telephone numbers.

QueryLanguage Defines the query languages supported by a registry.

ResponseStatusType Defines the different types of status for a
RegistryResponse.

StatusType Defines the different types of status for a
RegistryObject.

36 Service Registry 3 2005Q4 Developer’s Guide • October 2005

TABLE 3–3 Canonical Classification Schemes (Continued)
Classification Scheme Description

SubjectGroup Defines the groups that a User may belong to for
access control purposes.

SubjectRole Defines the roles that may be assigned to a User for
access control purposes.

To find objects that use the canonical classification schemes and their concepts, you
can look up the objects by using string constants that are defined in the package
org.freebxml.common.CanonicalConstants. The constants are listed in
“Constants for Classification Schemes” on page 89.

First, you look up the classification scheme by using the value of its unique identifier:

String schemeId =
CanonicalConstants.CANONICAL_CLASSIFICATION_SCHEME_ID_SubjectRole;

ClassificationScheme cScheme =
(ClassificationScheme) bqm.getRegistryObject(schemeId);

String schemeName = getName(cScheme);

Then you look up the concept in the same way and create a classification from it:

String concId =
CanonicalConstants.CANONICAL_SUBJECT_ROLE_ID_RegistryAdministrator;

Concept concept = (Concept) bqm.getRegistryObject(concId);
Classification classification =

blcm.createClassification(concept);

Finally, you search for objects in the same way you do with a non-canonical
classification scheme:

Collection classifications = new ArrayList();
classifications.add(classification);
BulkResponse response = bqm.findObjects("RegistryObject",

null, null, classifications, null, null, null);
Collection objects = response.getCollection();

For a sample program that displays all the canonical classification schemes and their
concepts, see JAXRGetCanonicalSchemes.java in the directory
<INSTALL>/registry/samples/classification-schemes/src.

Chapter 3 • Querying a Registry 37

� To Run the JAXRGetCanonicalSchemes
Example

1. Go to the directory
<INSTALL>/registry/samples/classification-schemes.

2. Type the following command:

asant get-schemes

Finding Objects by Classification: Examples
For examples of finding objects by classification, see
JAXRSearchByClassification.java and
JAXRSearchByCountryClassification.java in the directory
<INSTALL>/registry/samples/search-classification/src. The first
example searches for objects that use the canonical classification scheme
SubjectRole, while the other example searches for organizations that use a
geographical classification.

� To Run the JAXRSearchByClassification and
JAXRSearchByCountryClassification Examples
To obtain results from the JAXRSearchByCountryClassification example, you
must publish an object that uses the specified classifications. Run the example in either
“Adding Classifications: Example” on page 66 or “Creating an Organization:
Examples” on page 69 first.

1. Go to the directory
<INSTALL>/registry/samples/search-classification.

2. Type either of the following commands:

asant search-class
asant search-geo

The search-class target typically returns one result. The search-geo target
returns results if you have run the run target in “Adding Classifications: Example”
on page 66 or the pub-org target in “Creating an Organization: Examples”
on page 69.

Steps

Before You
Begin

Steps

38 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Finding Objects by External Identifier
Finding objects by external identifier is similar to finding objects by classification. You
first find the classification scheme, then create an ExternalIdentifier object to be
used as an argument to the BusinessQueryManagerImpl.findObjects method
or another finder method.

The following code fragment finds all registry objects that contain the Sun
Microsystems stock ticker symbol as an external identifier. You need to create an
external classification scheme named NASDAQ for this example to work. See “Adding
External Identifiers to Objects” on page 66 for details on how to perform this task.

The collection of external identifiers is supplied as the next-to-last argument of the
findObjects method.

ClassificationScheme cScheme = null;
cScheme =

bqm.findClassificationSchemeByName(null, "NASDAQ");

ExternalIdentifier extId =
blcm.createExternalIdentifier(cScheme, "%Sun%",

"SUNW");
Collection extIds = new ArrayList();
extIds.add(extId);
// perform search
BulkResponse response = bqm.findObjects("RegistryObject",

null, null, null, null, extIds, null);
Collection objects = response.getCollection();

Finding Objects by External Identifier: Example
For an example of finding objects by external identifier, see
JAXRSearchByExternalIdentifier.java in the directory
<INSTALL>/registry/samples/search-external-identifier/src, which
searches for objects that use the NASDAQ classification scheme.

� To Run the JAXRSearchByExternalIdentifier
Example
To obtain results from this example, first run the publish-object example
described in “Adding Classifications: Example” on page 66.

1. Go to the directory
<INSTALL>/registry/samples/search-external-identifier.

Before You
Begin

Steps

Chapter 3 • Querying a Registry 39

2. Type the following command:

asant run

Finding Objects by External Link
Finding objects by external link does not require the use of a classification scheme, but
it does require you to specify a valid URI. The arguments to the
createExternalLink method are a URI and a description.

If the link you specify is outside your firewall, you must also specify the system
properties http.proxyHost and http.proxyPort when you run the program so
that JAXR can determine the validity of the URI.

The following code fragment finds all organizations that have a specified
ExternalLink object.

ExternalLink extLink =
blcm.createExternalLink("http://java.sun.com/",

"Sun Java site");

Collection extLinks = new ArrayList();
extLinks.add(extLink);
BulkResponse response = bqm.findObjects("Organization",

null, null, null, null, null, extLinks);
Collection objects = response.getCollection();

Finding Objects by External Link: Example
For an example of finding objects by external link, see
JAXRSearchByExternalLink.java in the
directory<INSTALL>/registry/samples/search-external-link/src, which
searches for objects that have a specified external link. The http.proxyHost and
http.proxyPort properties are specified in the run target in the build.xml file.

� To Run the JAXRSearchByExternalLink Example
To obtain results from this example, first run the publish-object example
described in “Adding Classifications: Example” on page 66.

1. Go to the directory
<INSTALL>/registry/samples/search-external-link.

Before You
Begin

Steps

40 Service Registry 3 2005Q4 Developer’s Guide • October 2005

2. Type the following command:

asant run

Finding Objects You Published
You can retrieve all objects that you published to the Registry. Alternatively, can
narrow the search to retrieve only the objects that you published that are of a
particular object type. To retrieve all the objects that you have published, use the
no-argument version of the QueryManager.getRegistryObjects method. The
name of this method is misleading, because the method returns only objects that you
have published, not all registry objects.

For example, if bqm is your BusinessQueryManager instance, use the following line
of code:

BulkResponse response = bqm.getRegistryObjects();

To retrieve all the objects of a particular type that you published, use
QueryManager.getRegistryObjects with a String argument:

BulkResponse response = bqm.getRegistryObjects("Service");

This method is case-sensitive, so the object type must be capitalized.

The sample programs JAXRGetMyObjects and JAXRGetMyObjectsByType show
how to use these methods.

Finding Objects You Published: Examples
For examples of finding objects by classification, see JAXRGetMyObjects.java and
JAXRGetMyObjectsByType.java in the directory
<INSTALL>/registry/samples/get-objects/src. The first example,
JAXRGetMyObjects.java, retrieves all objects you have published. The second
example, JAXRGetMyObjectsByType.java, retrieves all the objects you have
published of a specified type.

� To Run the JAXRGetMyObjects and
JAXRGetMyObjectsByType Examples

1. Go to the directory <INSTALL>/registry/samples/get-objects.

2. To find all the objects that you have published, type the following command:

asant get-obj

Steps

Chapter 3 • Querying a Registry 41

3. To find all the objects that you have published of a specified type, type the
following command, where type_name is case-sensitive:

asant get-obj-type -Dtype=type_name

Retrieving Information About an Object
After you have retrieved the object or objects you are searching for, you can also
retrieve the object’s attributes and other objects that belong to it:

� Name
� Description
� Type
� Unique identifier and logical identifier
� Classifications
� External identifiers
� External links
� Slots

For an organization, you can also retrieve the following:

� The primary contact, which is a User object
� Postal address
� Telephone numbers
� Services

For a service, you can retrieve the service bindings.

For any object, you can also retrieve the audit trail, which contains the events that
have changed the object’s state, and the version. You can also retrieve an object’s
version number, which is updated whenever a change is made to one of the object’s
attributes.

This section covers the following topics:

� “Retrieving the Identifier Values for an Object” on page 43
� “Retrieving the Name or Description of an Object” on page 43
� “Retrieving the Type of an Object” on page 43
� “Retrieving the Classifications for an Object” on page 44
� “Retrieving the External Identifiers for an Object” on page 44
� “Retrieving the External Links for an Object” on page 45
� “Retrieving the Slots for an Object” on page 45
� “Retrieving the Attributes of an Organization or User” on page 46
� “Retrieving the Services and Service Bindings for an Organization” on page 48
� “Retrieving an Organization Hierarchy” on page 49
� “Retrieving the Audit Trail of an Object” on page 50

42 Service Registry 3 2005Q4 Developer’s Guide • October 2005

� “Retrieving the Version of an Object” on page 51

Retrieving the Identifier Values for an Object
The unique identifier for an object is contained in a Key object. A Key is a structure
that contains the identifier in the form of an id attribute that is a String value. To
retrieve the identifier, call the method RegistryObject.getKey().getId().

The JAXR provider also has an implementation-specific method for retrieving the
logical identifier, which is called a lid. The lid is a String attribute of a
RegistryObject. To retrieve the lid, call RegistryObjectImpl.getLid. The
method has the following signature:

public java.lang.String getLid()
throws JAXRException

For an example of the use of this method, see JAXRSearchOrg.java in the directory
<INSTALL>/registry/samples/organizations/src. For more information on
this example, see “Retrieving Organization Attributes: Example” on page 48.

Retrieving the Name or Description of an Object
The name and description of an object are both InternationalString objects. An
InternationalString object contains a set of LocalizedString objects. The
methods RegistryObject.getName and RegistryObject.getDescription
return the LocalizedString object for the default locale. You can then retrieve the
String value of the LocalizedString object. The following code fragment uses
these methods:

String name = ro.getName().getValue();
String description = ro.getDescription().getValue();

Call the getName or getDescription method with a Locale argument to retrieve
the value for a particular locale.

Many of the examples contain private utility methods that retrieve the name,
description, and unique identifier for an object. See, for example,
JAXRGetMyObjects.java in the directory
<INSTALL>/registry/samples/get-objects/src.

Retrieving the Type of an Object
If you have searched the Registry without specifying a particular object type, you can
retrieve the type of the objects returned by the search. Use the
RegistryObject.getObjectType method, which returns a Concept value. You
can then use the Concept.getValue method to obtain the String value of the
object type. The following code fragment uses these methods:

Chapter 3 • Querying a Registry 43

Concept objType = object.getObjectType();
System.out.println("Object type is " + objType.getValue());

The concept will be one of those in the canonical classification scheme ObjectType.
For an example of this code, see JAXRSearchByName.java in the directory
<INSTALL>/registry/samples/search-name/src.

Retrieving the Classifications for an Object
Use the RegistryObject.getClassifications method to retrieve a
Collection of the object’s classifications. For a classification, the important attributes
are its value and the classification scheme to which it belongs. Often, a classification
has no name or description. The following code fragment retrieves and displays an
object’s classifications.

Collection classifications = object.getClassifications();
Iterator classIter = classifications.iterator();
while (classIter.hasNext()) {

Classification classification =
(Classification) classIter.next();

String name = classification.getName().getValue();
System.out.println(" Classification name is " + name);
System.out.println(" Classification value is " +

classification.getValue());
ClassificationScheme scheme =

classification.getClassificationScheme();
System.out.println(" Classification scheme for " +

name + " is " + scheme.getName().getValue());
}

Some of the examples have a showClassifications method that uses code similar
to this. See, for example, JAXRSearchByName.java in the directory
<INSTALL>/registry/samples/search-name/src.

Retrieving the External Identifiers for an Object
Use the RegistryObject.getExternalIdentifiers method to retrieve a
Collection of the object’s external identifiers. For each identifier, you can retrieve its
name, value, and the classification scheme to which it belongs. For an external
identifier, the method that retrieves the classification scheme is
getIdentificationScheme. The following code fragment retrieves and displays
an object’s external identifiers.

Collection exIds = object.getExternalIdentifiers();
Iterator exIdIter = exIds.iterator();
while (exIdIter.hasNext()) {

ExternalIdentifier exId =
(ExternalIdentifier) exIdIter.next();

44 Service Registry 3 2005Q4 Developer’s Guide • October 2005

String name = exId.getName().getValue();
System.out.println(" External identifier name is " +

name);
String exIdValue = exId.getValue();
System.out.println(" External identifier value is " +

exIdValue);
ClassificationScheme scheme =

exId.getIdentificationScheme();
System.out.println(" External identifier " +

"classification scheme is " +
scheme.getName().getValue());

}

Some of the examples have a showExternalIdentifiers method that uses code
similar to this. See, for example, JAXRSearchByName.java in the directory
<INSTALL>/registry/samples/search-name/src.

Retrieving the External Links for an Object
Use the RegistryObject.getExternalLinks method to retrieve a Collection
of the object’s external links. For each external link, you can retrieve its name,
description, and value. For an external link, the name is optional. The following code
fragment retrieves and displays an object’s external links.

Collection exLinks = obj.getExternalLinks();
Iterator exLinkIter = exLinks.iterator();
while (exLinkIter.hasNext()) {

ExternalLink exLink = (ExternalLink) exLinkIter.next();
String name = exLink.getName().getValue();
if (name != null) {

System.out.println(" External link name is " + name);
}
String description = exLink.getDescription().getValue();
System.out.println(" External link description is " +

description);
String externalURI = exLink.getExternalURI();
System.out.println(" External link URI is " +

externalURI);
}

Some of the examples have a showExternalLinks method that uses code similar to
this. See, for example, JAXRSearchByName.java in the directory
<INSTALL>/registry/samples/search-name/src.

Retrieving the Slots for an Object
Slots are arbitrary attributes that you can create for an object. Use the
RegistryObject.getSlots method to retrieve a Collection of the object’s slots.
For each slot, you can retrieve its name, values, and type. The name of a Slot object is
a String, not an InternationalString, and a slot has a Collection of values.
The following fragment retrieves and displays an object’s slots:

Chapter 3 • Querying a Registry 45

Collection slots = object.getSlots();
Iterator slotIter = slots.iterator();
while (slotIter.hasNext()) {

Slot slot = (Slot) slotIter.next();
String name = slot.getName();
System.out.println(" Slot name is " + name);
Collection values = slot.getValues();
Iterator valIter = values.iterator();
int count = 1;
while (valIter.hasNext()) {

String value = (String) valIter.next();
System.out.println(" Slot value " + count++ +

": " + value);
}
String type = slot.getSlotType();
if (type != null) {

System.out.println(" Slot type is " + type);
}

Some of the examples have a showSlots method that uses this code. See, for
example, JAXRSearchByName.java in the directory
<INSTALL>/registry/samples/search-name/src.

Retrieving the Attributes of an Organization or
User
Every Organization object can have one postal address and multiple telephone
numbers in addition to the attributes that are available to all other objects. Every
organization also has a User object as a primary contact. The organization can have
additional affiliated User objects.

The attributes for a User object include a PersonName object, which has a different
format from the name of an object. A user can have multiple postal addresses as well
as multiple telephone numbers. A user can also have multiple email addresses.

To retrieve the postal address for an organization, call the
Organization.getPostalAddress method as follows (org is the organization):

PostalAddress pAd = org.getPostalAddress();

After you retrieve the address, you can retrieve the address attributes as follows:

System.out.println(" Postal Address:\n " +
pAd.getStreetNumber() + " " + pAd.getStreet() +
"\n " + pAd.getCity() + ", " +
pAd.getStateOrProvince() + " " +
pAd.getPostalCode() + "\n " + pAd.getCountry() +
"(" + pAd.getType() + ")");

To retrieve the primary contact for an organization, call the
Organization.getPrimaryContact method as follows (org is the organization):

46 Service Registry 3 2005Q4 Developer’s Guide • October 2005

User pc = org.getPrimaryContact();

To retrieve the postal addresses for a user, call the User.getPostalAddresses
method and extract the Collection values as follows (pc is the primary contact):

Collection pcpAddrs = pc.getPostalAddresses();
Iterator pcaddIter = pcpAddrs.iterator();
while (pcaddIter.hasNext()) {

PostalAddress pAd = (PostalAddress) pcaddIter.next();
/* retrieve attributes */

}

To retrieve the telephone numbers for either an organization or a user, call the
getTelephoneNumbers method. In the following code fragment, org is the
organization. The code retrieves the country code, area code, main number, and type
of the telephone number.

Collection orgphNums = org.getTelephoneNumbers(null);
Iterator orgphIter = orgphNums.iterator();
while (orgphIter.hasNext()) {

TelephoneNumber num = (TelephoneNumber) orgphIter.next();
System.out.println(" Phone number: " +

"+" + num.getCountryCode() + " " +
"(" + num.getAreaCode() + ") " +
num.getNumber() + " (" + num.getType() + ")");

}

A TelephoneNumber can also have an extension, retrievable through the
getExtension method. If the number can be dialed electronically, it can have a url
attribute, retrievable through the getUrl method.

To retrieve the name of a user, call the User.getPersonName method. A
PersonName has three attributes that correspond to the given name, middle name(s),
and surname of a user. In the following code fragment, pc is the primary contact.

PersonName pcName = pc.getPersonName();
System.out.println(" Contact name: " +

pcName.getFirstName() + " " +
pcName.getMiddleName() + " " +
pcName.getLastName());

To retrieve the email addresses for a user, call the User.getEmailAddresses
method. An EmailAddress has two attributes, the address and its type. In the
following code fragment, pc is the primary contact.

Collection eAddrs = pc.getEmailAddresses();
Iterator eaIter = eAddrs.iterator();
while (eaIter.hasNext()) {

EmailAddress eAd = (EmailAddress) eaIter.next();
System.out.println(" Email address: " +

eAd.getAddress() + " (" + eAd.getType() + ")");
}

Chapter 3 • Querying a Registry 47

The attributes for PostalAddress, TelephoneNumber, PersonName, and
EmailAddress objects are all String values. As noted in “JAXR Information Model
Interfaces” on page 28, these objects do not extend the RegistryObject interface, so
they do not have the attributes of other registry objects.

Retrieving Organization Attributes: Example
For an example of retrieving the attributes of an organization and the User that is its
primary contact, see JAXRSearchOrg.java in the directory
<INSTALL>/registry/samples/organizations/src, which displays
information about an organization whose name contains a specified string.

� To Run the JAXRSearchOrg Example

1. Go to the directory <INSTALL>/registry/samples/organizations.

2. Type the following command:

asant search-org -Dorg=string

Retrieving the Services and Service Bindings for an
Organization
Most organizations offer services. JAXR has methods that retrieve the services and
service bindings for an organization.

A Service object has all the attributes of other registry objects. In addition, it
normally has service bindings, which provide information about how to access the
service. A ServiceBinding object, along with its other attributes, normally has an
access URI and a specification link. The specification link provides the linkage
between a service binding and a technical specification that describes how to use the
service through the service binding. A specification link has the following attributes:

� A specification object, which is typically an ExtrinsicObject
� A usage description, which is an InternationalString object
� A Collection of usage parameters, which are String values

You can use the Service.getProvidingOrganization method to retrieve the
organization that provides a service, and you can use the
ServiceBinding.getService method to retrieve the service for a service binding.

The following code fragment retrieves the services for the organization org. Then it
retrieves the service bindings for each service and, for each service binding, its access
URI and specification links.

Steps

48 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Collection services = org.getServices();
Iterator svcIter = services.iterator();
while (svcIter.hasNext()) {

Service svc = (Service) svcIter.next();
System.out.println(" Service name: " + getName(svc));
System.out.println(" Service description: " +

getDescription(svc));

Collection serviceBindings = svc.getServiceBindings();
Iterator sbIter = serviceBindings.iterator();
while (sbIter.hasNext()) {

ServiceBinding sb = (ServiceBinding) sbIter.next();
System.out.println(" Binding name: " +

getName(sb));
System.out.println(" Binding description: " +

getDescription(sb));
System.out.println(" Access URI: " +

sb.getAccessURI());

Collection specLinks = sb.getSpecificationLinks();
Iterator slIter = specLinks.iterator();
while (slIter.hasNext()) {

SpecificationLink sl =
(SpecificationLink) slIter.next();

RegistryObject ro = sl.getSpecificationObject();
System.out.println("Specification link " +

"object of type " + ro.getObjectType());
System.out.println("Usage description: " +

sl.getUsageDescription().getValue());
Collection ups = sl.getUsageParameters();
Iterator upIter = ups.iterator();
while (upIter.hasNext()) {

String up = (String) upIter.next();
System.out.println("Usage parameter: " +

up);
}

}
}

}

The example “Retrieving Organization Attributes: Example” on page 48 also displays
the services and service bindings for the organizations it finds.

Services often exist independent of an organization. You can search for services
directly using the BusinessQueryManagerImpl.findObjects method.

Retrieving an Organization Hierarchy
JAXR allows you to group organizations into families. One organization can have
other organizations as its children. The child organizations can also have children.
Therefore, any given organization can have a parent, children, and descendants.

The Organization.getParentOrganization method retrieves an organization’s
parent. In the following fragment, chorg is a child organization.

Chapter 3 • Querying a Registry 49

Organization porg = chorg.getParentOrganization();

The Organization.getChildOrganizations method retrieves a Collection of
the organization’s children. In the following fragment, org is a parent organization.

Collection children = org.getChildOrganizations();

The Organization.getDescendantOrganizations method retrieves multiple
generations of descendants, while the Organization.getRootOrganization
method retrieves the parentless ancestor of any descendant.

For an example of retrieving an organization hierarchy, see “Creating and Retrieving
an Organization Hierarchy: Examples” on page 70.

Retrieving the Audit Trail of an Object
Whenever an object is published to the Registry, and whenever it is modified in any
way, the JAXR provider creates another object, called an AuditableEvent. The JAXR
provider adds the AuditableEvent object to the audit trail for the published object.
The audit trail contains a list of all the events for that object. To retrieve the audit trail,
call RegistryObject.getAuditTrail. You can also retrieve the individual events
in the audit trail and find out their event types. JAXR supports the event types listed
in “Retrieving the Audit Trail of an Object” on page 50.

TABLE 3–4 AuditableEvent Types

Event Type Description

EVENT_TYPE_CREATED Object was created and was published to the registry.

EVENT_TYPE_DELETED Object was deleted using one of the
LifeCycleManager or
BusinessLifeCycleManager deletion methods.

EVENT_TYPE_DEPRECATED Object was deprecated using the
LifeCycleManager.deprecateObjects method.

EVENT_TYPE_UNDEPRECATED Object was undeprecated using the
LifeCycleManager.unDeprecateObjects
method.

EVENT_TYPE_VERSIONED A new version of the object was created. This event
typically happens when any of the object’s attributes
changes.

EVENT_TYPE_UPDATED Object was updated.

EVENT_TYPE_APPROVED Object was approved using the
LifeCycleManagerImpl.approveObjects method
(implementation-specific).

50 Service Registry 3 2005Q4 Developer’s Guide • October 2005

TABLE 3–4 AuditableEvent Types (Continued)
Event Type Description

EVENT_TYPE_DOWNLOADED Object was downloaded (implementation-specific).

EVENT_TYPE_RELOCATED Object was relocated (implementation-specific).

The following code fragment retrieves the audit trail for a registry object, displaying
the type and timestamp of each event:

Collection events = obj.getAuditTrail();
String objName = obj.getName().getValue();
Iterator eventIter = events.iterator();
while (eventIter.hasNext()) {

AuditableEventImpl ae = (AuditableEventImpl) eventIter.next();
int eType = ae.getEventType();
if (eType == AuditableEvent.EVENT_TYPE_CREATED) {

System.out.print(objName + " created ");
} else if (eType == AuditableEvent.EVENT_TYPE_DELETED) {

System.out.print(objName + " deleted ");
} else if (eType == AuditableEvent.EVENT_TYPE_DEPRECATED) {

System.out.print(objName + " deprecated ");
} else if (eType == AuditableEvent.EVENT_TYPE_UNDEPRECATED) {

System.out.print(objName + " undeprecated ");
} else if (eType == AuditableEvent.EVENT_TYPE_UPDATED) {

System.out.print(objName + " updated ");
} else if (eType == AuditableEvent.EVENT_TYPE_VERSIONED) {

System.out.print(objName + " versioned ");
} else if (eType == AuditableEventImpl.EVENT_TYPE_APPROVED) {

System.out.print(objName + " approved ");
} else if (eType == AuditableEventImpl.EVENT_TYPE_DOWNLOADED) {

System.out.print(objName + " downloaded ");
} else if (eType == AuditableEventImpl.EVENT_TYPE_RELOCATED) {

System.out.print(objName + " relocated ");
} else {

System.out.print("Unknown event for " + objName + " ");
}System.out.println(ae.getTimestamp().toString());

}

Some of the examples have a showAuditTrail method that uses code similar to this.
See, for example, JAXRSearchByName.java in the directory
<INSTALL>/registry/samples/search-name/src.

See “Changing the State of Objects in the Registry” on page 82 for information on
how to change the state of registry objects.

Retrieving the Version of an Object
If you modify the attributes of a registry object, the Registry creates a new version of
the object. For details on how versioning happens, see “Changing the State of Objects
in the Registry” on page 82. When you first create an object, the object has a version
of 1.1.

Chapter 3 • Querying a Registry 51

To retrieve the version of an object, use the implementation-specific
getVersionInfo method for a registry object, which returns a VersionInfoType
object. The method has the following signature:

public VersionInfoType getVersionInfo()
throws JAXRException

For example, to retrieve the version number for the organization org, cast org to a
RegistryObjectImpl when you call the method. Then call the
VersionInfoType.getVersionName method, which returns a String.

import org.oasis.ebxml.registry.bindings.rim.VersionInfoType;
...
VersionInfoType vInfo =

((RegistryObjectImpl)org).getVersionInfo();
if (vInfo != null) {

System.out.println("Org version: " +
vInfo.getVersionName());

}

Some of the examples use code similar to this. See, for example,
JAXRSearchByName.java in the directory
<INSTALL>/registry/samples/search-name/src.

Using Declarative Queries
Instead of the BusinessQueryManager interface, you can use the
DeclarativeQueryManager interface to create and execute queries to the Registry.
If you are familiar with SQL, you might prefer to use declarative queries. The
DeclarativeQueryManager interface depends on another interface, Query.

The DeclarativeQueryManager interface has two methods, createQuery and
executeQuery. The createQuery method takes two arguments, a query type and a
string that contains the query. The following code fragment creates an SQL query that
asks for a list of all Service objects in the Registry. Here, rs is a RegistryService
object.

DeclarativeQueryManager qm = rs.getDeclarativeQueryManager();
String qString = "select s.* from Service s";
Query query = qm.createQuery(Query.QUERY_TYPE_SQL, qString);

After you create the query, you execute it as follows:

BulkResponse response = qm.executeQuery(query);
Collection objects = response.getCollection();

You then extract the objects from the response just as you do with ordinary queries.

For more information on SQL query syntax and for examples, see Chapter 6, “Query
Management Protocols,” of the ebRS 3.0 specification, especially Section 6.6.

52 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Using Declarative Queries: Example
For examples of the use of declarative queries, see JAXRQueryDeclarative.java
and JAXRGetAllSchemes.java in the directory
<INSTALL>/registry/samples/query-declarative/src. Both examples create
and execute a SQL query. The query strings are defined in the
JAXRExamples.properties file.

The SQL query string for JAXRQueryDeclarative is as follows (all on one line):

SELECT ro.* from RegistryObject ro, Name nm, Description d
WHERE upper(nm.value) LIKE upper(’%free%’) AND upper(d.value)
LIKE upper(’%free%’) AND (ro.id = nm.parent AND ro.id = d.parent)

This query finds all objects that have the string "free" in both the name and the
description attributes.

The SQL query string for JAXRGetAllSchemes is as follows:

SELECT * FROM ClassScheme s order by s.id

This query finds all the classification schemes in the Registry.

� To Run the JAXRQueryDeclarative Example

1. Go to the directory <INSTALL>/registry/samples/query-declarative.

2. To run the JAXRQueryDeclarative example, type the following command:

asant get-free

3. To run the JAXRGetAllSchemes example, type the following command:

asant get-schemes

Using Iterative Queries
If you expect a declarative query to return a very large result set, you can use the
implementation-specific iterative query feature. The
DeclarativeQueryManagerImpl.executeQuery method can take an argument
that specifies a set of parameters. This method has the following signature:

public BulkResponse executeQuery(Query query,
java.util.Map queryParams,
IterativeQueryParams iterativeParams)

throws JAXRException

Steps

Chapter 3 • Querying a Registry 53

You can specify parameters that cause each query to request a different subset of
results within the result set. Instead of making one query return the entire result set,
you can make each individual query return a manageable set of results.

Suppose you have a query string that you expect to return up to 100 results. You can
create a set of parameters that causes the query to return 10 results at a time. First, you
create an instance of the class IterativeQueryParams, which is defined in the
package org.freebxml.omar.common. The two fields of the class are startIndex,
the starting index of the array, and maxResults, the maximum number of results to
return. You specify the initial values for these fields in the constructor.

int maxResults = 10;
int startIndex = 0;
IterativeQueryParams iterativeQueryParams =

new IterativeQueryParams(startIndex, maxResults);

Execute the queries within a for loop that terminates with the highest number of
expected results and that advances by the maxResults value for the individual
queries. Increment the startIndex field at each loop iteration.

for (int i = 0; i < 100; i += maxResults) {
// Execute query with iterative query params
Query query = dqm.createQuery(Query.QUERY_TYPE_SQL,

queryStr);
iterativeQueryParams.startIndex = i;
BulkResponse br = dqm.executeQuery(query, null,

iterativeQueryParams);
Collection objects = br.getCollection();
// retrieve individual objects ...

}

The Registry is not required to maintain transactional consistency or state between
iterations of a query. New objects might be added to the complete result set between
iterations, or existing objects might be removed from the result set. Therefore, you
might notice that a result set element is skipped or duplicated between iterations.

Using Iterative Queries: Example
For an example of the use of an iterative query, see JAXRQueryIterative.java in
the directory <INSTALL>/registry/samples/query-iterative/src. This
program finds all registry objects whose names match a given string and then iterates
through the first 100 of them.

� To Run the JAXRQueryIterative Example

1. Go to the directory <INSTALL>/registry/samples/query-iterative.

2. Type the following command, specifying a string value:

asant run -Dname=string

Steps

54 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Invoking Stored Queries
The implementation-specific AdhocQueryImpl class, which extends
RegistryObjectImpl, allows you to invoke queries that are stored in the Registry.
The Registry has several default AdhocQueryImpl objects that you can invoke. The
most useful are named FindAllMyObjects and GetCallersUser:

� FindAllMyObjects is equivalent to the
QueryManager.getRegistryObjects() method, which is described in
“Finding Objects You Published” on page 41.

� GetCallersUser is equivalent to the question “Who am I?” This query returns
the User object that is associated with the client that executed the query. If the
caller is not logged in to the Registry, this query returns the user that is named
“Registry Guest”.

The simplest way to find a stored query is to look the query up by its unique
identifier. The GetCallersUser query has a canonical constant defined for it (see
“Constant for Stored Query” on page 96). You can use the string value of the unique
identifier to locate queries that do not have canonical constants.

String queryId =
CanonicalConstants.CANONICAL_QUERY_GetCallersUser;

AdhocQueryImpl aq =
(AdhocQueryImpl) bqm.getRegistryObject(queryId);

Then find the query string associated with the AdhocQuery and use the string to
create and execute a query, this time by using DeclarativeQueryManager
methods.

if (aq != null) {
int qType = aq.getType();

String qString = aq.toString();
Query query = dqm.createQuery(qType, qString);

BulkResponse br = dqm.executeQuery(query);
Collection objects = br.getCollection();
...

Invoking Stored Queries: Example
For an example of the use of a stored query, see JAXRQueryStored.java in the
directory <INSTALL>/registry/samples/query-stored/src. This example
authenticates the user, so it returns the user’s registry login name.

Chapter 3 • Querying a Registry 55

� To Run the JAXRQueryStoredExample

1. Go to the directory <INSTALL>/registry/samples/query-stored.

2. Type the following command:

asant run

Querying a Registry Federation
If the registry you are querying is part of one or more registry federations (see “About
Registries and Repositories” on page 15), you can perform declarative queries on all
registries in all federations of which your registry is a member, or on all the registries
in one federation.

To perform a query on all registries in all federations of which your registry is a
member, call the implementation-specific setFederated method on a QueryImpl
object. The method has the following signature:

public void setFederated(boolean federated)
throws JAXRException

You call the method as follows:

QueryImpl query = (QueryImpl)
dqm.createQuery(Query.QUERY_TYPE_SQL, qString);

query.setFederated(true);

If you know that your registry is a member of only one federation, this method is the
only one you need to call before you execute the query.

To limit your query to the registries in one federation, you need to call an additional
implementation-specific method, setFederation. This method takes as its argument
the unique identifier of the federation you want to query:

public void setFederation(java.lang.String federationId)
throws JAXRException

Therefore, before you can call this method, you must obtain the unique identifier
value. To do so, first call BusinessQueryManagerImpl.findObjects to locate the
federation by name. In this code, you would substitute the actual name of the
federation for the string "NameOfFederation".

Collection namePatterns = new ArrayList();
namePatterns.add("NameOfFederation");

// Find objects with name NameOfFederation
BulkResponse response =

Steps

56 Service Registry 3 2005Q4 Developer’s Guide • October 2005

bqm.findObjects("Federation", null, namePatterns,
null, null, null, null);

Then, iterate through the collection (which should have only one member) and
retrieve the key value:

String fedId = federation.getKey().getId();

Finally, create the query, call setFederated and setFederation, and execute the
query:

QueryImpl query = (QueryImpl)
dqm.createQuery(Query.QUERY_TYPE_SQL, qString);

query.setFederated(true);
query.setFederation(fedId);
response = dqm.executeQuery(query);

Using Federated Queries: Example
For an example of the use of a federated query, see JAXRQueryFederation.java in
the directory <INSTALL>/registry/samples/query-federation/src. This
example performs two queries, a declarative query and a stored query, on every
federation it finds (the database provided with the Registry contains only one).

The declarative query is the query that is performed in “Using Declarative Queries:
Example” on page 53. The stored query is the FindAllMyObjects query. Because
this example does not authenticate the user, the user that makes the query is
RegistryGuest. The user RegistryGuest owns only one object, itself. Therefore,
the FindAllMyObjects query returns only one result, the user RegistryGuest.

� To Run the JAXRQueryFederationExample

1. Go to the directory <INSTALL>/registry/samples/query-federation.

2. Type the following command:

asant run

Steps

Chapter 3 • Querying a Registry 57

58 Service Registry 3 2005Q4 Developer’s Guide • October 2005

CHAPTER 4

Publishing Objects to the Registry

If a client has authorization to do so, it can submit objects to Service Registry, modify
objects, and remove objects. A client uses the BusinessLifeCycleManager
interface to perform these tasks.

Registries usually allow a client to modify or remove objects only if the objects are
being modified or removed by the same user who first submitted them. Access
policies can control who is authorized to publish objects and to perform actions on
them.

Publishing registry objects involves the following tasks:

� “Authenticating with the Registry” on page 60
� “Creating Objects” on page 61
� “Saving Objects in the Registry” on page 73

Submitting objects is a multi-step task: you create the objects and populate them by
setting their attributes, then you save the objects. The objects appear in the registry
only after you save them.

You may remember that when you search for objects by classification, external
identifier, and the like, you create the classification or other object that you are using in
the search. (For an example, see “Finding Objects by Classification” on page 35.)
However, you do not save this object. You create the object only for the purposes of
the search, after which the object disappears. You do not need authorization from the
Registry to create an object, but you must have authorization to save it.

59

Authenticating with the Registry
The Registry uses certificate authentication, so to submit data to the Registry you must
have a certificate. You must also use the User Registration Wizard of the Web Console
to create a user who can submit data to the Registry. See “Getting Access to the
Registry” on page 21 for details.

Before a client can submit data, the client must send its certificate to the Registry in a
set of credentials. The following code fragment shows how to perform this task. You
need to specify the following required values to obtain credentials:

� The keystore path, the full path to the file, typically keystore.jks, in which the
certificate key is stored

� The keystore password, typically ebxmlrr

� The user name and password that you chose when you registered using the Wizard

Typically, you would retrieve the four required values from a resource bundle, and
you would encapsulate much of the code in a method.

String keystorePath = "myKeystorePath";
String storepass = "myStorepass";
String alias = "myAlias";
String keypass = myKeypass");

Set credentials = new HashSet();
KeyStore keyStore = KeyStore.getInstance("JKS");
keyStore.load(new BufferedInputStream(

new FileInputStream(keystorePath)),
storepass.toCharArray());

X509Certificate cert = (X509Certificate)
keyStore.getCertificate(alias);

PrivateKey privateKey =
(PrivateKey) keyStore.getKey(alias, keypass.toCharArray());

credentials.add(new X500PrivateCredential(cert, privateKey,
alias));

connection.setCredentials(credentials);

If the setCredentials method succeeds, you are logged in to the Registry and can
publish objects.

The sample programs that authenticate with the Registry all call a method named
getCredentialsFromKeystore that contains this code. The method is defined in
the file
<INSTALL>/registry/samples/common/src/RegistryCredentials.java.

60 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Creating Objects
A client creates an object and populates it with data before publishing it. You can
create and publish any of the following types of RegistryObject:

� AdhocQuery
� Association
� ClassificationScheme
� Concept
� ExternalLink
� ExtrinsicObject
� Federation
� Organization
� Person (implementation-specific)
� RegistryPackage
� Service
� Subscription
� User

The following types of RegistryObject cannot be published separately, but you can
create and save these objects as part of another object:

� Classification (any RegistryObject)
� ExternalIdentifier (any RegistryObject)
� ServiceBinding (Service)
� Slot (any RegistryObject)
� SpecificationLink (ServiceBinding)

Some objects fall into special categories:

� An AuditableEvent is published by the Registry when an object has a change in
state.

� A Notification is published by the Registry when an AuditableEvent that
matches a Subscription occurs.

� A Registry can be published only by a user with the role
RegistryAdministrator.

The subsections that follow describe first the tasks common to creating and saving all
registry objects. The subsections then describe some tasks specific to particular object
types.

� “Using Create Methods for Objects” on page 62
� “Adding Names and Descriptions to Objects” on page 62
� “Identifying Objects” on page 63
� “Creating and Using Classification Schemes and Concepts” on page 63
� “Adding Classifications to Objects” on page 65
� “Adding External Identifiers to Objects” on page 66

Chapter 4 • Publishing Objects to the Registry 61

� “Adding External Links to Objects” on page 67
� “Adding Slots to Objects” on page 68
� “Creating Organizations” on page 68
� “Creating Users” on page 70
� “Creating Services and Service Bindings” on page 71

Using Create Methods for Objects
The LifeCycleManager interface supports create methods for all types of
RegistryObject (except AuditableEvent and Notification, which can be
created only by the Registry itself).

In addition, you can use the LifeCycleManager.createObject factory method to
create an object of a particular type. This method takes a String argument consisting
of one of the static fields supported by the LifeCycleManager interface. In the
following code fragment, blcm is the BusinessLifeCycleManager object:

Organization org = (Organization)
blcm.createObject(blcm.ORGANIZATION);

The object-specific create methods usually take one or more parameters that set some
of the attributes of the object. For example, the createOrganization method sets
the name of the organization:

Organization org = blcm.createOrganization("MyOrgName");

On the other hand, the createExtrinsicObject method normally takes a
DataHandler argument that sets the repository item for the extrinsic object.

Adding Names and Descriptions to Objects
For all objects, you can set the name and description attributes by calling setter
methods. These attributes are of type InternationalString. An
InternationalString includes a set of LocalizedString objects that allow
users to display the name and description in one or more locales. By default, the
InternationalString value uses the default locale.

For example, the following fragment creates a description that uses two localized
strings. One string is in the language of the default locale. The other string is in
Canadian French.

InternationalString is =
blcm.createInternationalString("What We Do"));

Locale loc = new Locale("fr", "CA");
LocalizedString ls = blcm.createLocalizedString(loc,

"ce que nous faisons");
is.addLocalizedString(ls);
org.setDescription(is);

62 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Identifying Objects
As stated in “Finding Objects by Unique Identifier” on page 31, every object in the
Registry has two identifiers, a unique identifier and a logical identifier. If you do not
set these identifiers when you create the object, the Registry generates a unique value
and assigns that value to both the unique and the logical identifiers.

Whenever a new version of an object is created, the logical identifier remains the same
as the original one, but the Registry generates a new unique identifier by adding a
colon and the version number to the unique identifier. See “Retrieving the Version of
an Object” on page 51 and “Creating Relationships Between Objects: Associations”
on page 75 for more information.

If you plan to use your own identification scheme, you can use API methods to set
object identifiers.

In the JAXR API, the unique identifier is called a Key object. You can use the
LifeCycleManager.createKey method to create a unique identifier from a
String object. You can then use the RegistryObject.setKey method to set the
key.

The logical identifier is called a lid. The JAXR provider for the Registry has an
implementation-specific method, RegistryObjectImpl.setLid, which also takes a
String argument, for setting this identifier. The method has the following signature:

public void setLid(java.lang.String lid)
throws JAXRException

Any identifier that you specify must be a valid, globally unique URN (Uniform
Resource Name). When the JAXR API generates a key for an object, the key is in the
form of a DCE 128 UUID (Universal Unique IDentifier).

Creating and Using Classification Schemes and
Concepts
You can create your own classification schemes and concept hierarchies for classifying
registry objects. To do so, follow these steps:

1. Use the LifeCycleManager.createClassificationScheme method to
create the classification scheme.

2. Use the LifeCycleManager.createConcept method to create concepts.

3. Use the ClassificationScheme.addChildConcept method to add the
concepts to the classification scheme.

4. For a deeper hierarchy, use the Concept.addChildConcept method to add child
concepts to the concepts.

5. Save the classification scheme.

Chapter 4 • Publishing Objects to the Registry 63

The LifeCycleManager.createClassificationScheme method has several
forms. You can specify two arguments, a name and description, as either String or
InternationalString values. For example, to create a classification scheme to
describe how books are shelved in a library, you could use the following code
fragment:

ClassificationScheme cs =
blcm.createClassificationScheme("LibraryFloors",

"Scheme for Shelving Books");

An alternate form of the createClassificationScheme method takes one
argument, a Concept, and converts the concept to a ClassificationScheme.

The createConcept method takes three arguments: a parent, a name, and a value.
The parent can be either a ClassificationScheme or another Concept. You can
specify a value but no name.

The following code fragment creates a concept for each floor of the library by using a
static String array that contains the names of the floors. The code fragment then
adds the concept to the classification scheme.

for (int i = 0; i < floors.length; i++) {
Concept con = blcm.createConcept(cs, floors[i], floors[i]);
cs.addChildConcept(con);
...

For each concept, you can create more new concepts and call
Concept.addChildConcept to create another level of the hierarchy. When you save
the classification scheme, the entire concept hierarchy is also saved.

Creating and Displaying Classification Schemes: Examples
For an example of creating a classification scheme, see JAXRPublishScheme.java
in the directory
<INSTALL>/registry/samples/classification-schemes/src. This example
creates a classification scheme named LibraryFloors and a concept hierarchy that
includes each floor of the library and the subject areas that can be found there.

To display the concept hierarchy, use the program JAXRSearchScheme.java in the
same directory. This example displays the concept hierarchy for any classification
scheme you specify.

To delete the classification scheme and concepts, use the program
JAXRDeleteScheme.java in the same directory.

� To Run the JAXRPublishScheme Example

1. Go to the directory
<INSTALL>/registry/samples/classification-schemes.

Steps

64 Service Registry 3 2005Q4 Developer’s Guide • October 2005

2. Type the following command:

asant pub-scheme

� To Run the JAXRSearchScheme Example

1. Go to the directory
<INSTALL>/registry/samples/classification-schemes.

2. Type the following command:

asant search-scheme -Dname=LibraryFloors

� To Run the JAXRDeleteScheme Example

1. Go to the directory
<INSTALL>/registry/samples/classification-schemes.

2. Type the following command:

asant del-scheme -Dname=LibraryFloors

Adding Classifications to Objects
Objects can have one or more classifications based on one or more classification
schemes (taxonomies). To establish a classification for an object, the client first locates
the taxonomy. The client then creates a classification by using the classification scheme
and a concept (a taxonomy element) within the classification scheme.

For information on creating a new classification scheme with a hierarchy of concepts,
see “Creating Relationships Between Objects: Associations” on page 75. A
classification scheme with a concept hierarchy is called an internal classification scheme.

To add a classification that uses an existing classification scheme, you usually call the
BusinessQueryManager.findClassificationSchemeByName method. This
method takes two arguments, a Collection of FindQualifier objects and a
String that specifies a name pattern. It is an error for this method to return more
than one result, so you must define the search very precisely. For example, the
following code fragment searches for the classification scheme that is named
AssociationType:

String schemeName = "AssociationType";
ClassificationScheme cScheme =

bqm.findClassificationSchemeByName(null, schemeName);

After you locate the classification scheme, you call the
LifeCycleManager.createClassification method, specifying three
arguments: the classification scheme and the name and value of the concept.

Steps

Steps

Chapter 4 • Publishing Objects to the Registry 65

Classification classification =
blcm.createClassification(cScheme, "Extends", "Extends");

An alternative method is to call BusinessQueryManager.findConcepts (or
BusinessQueryManagerImpl.findObjects with a "Concept" argument) to
locate the concept you wish to use, and then to call another form of
createClassification, with the concept as the only argument:

Classification classification =
blcm.createClassification(concept);

After creating the classification, you call RegistryObject.addClassification to
add the classification to the object.

object.addClassification(classification);

To add multiple classifications, you can create a Collection, add the classification to
the Collection, and call RegistryObject.addClassifications to add the
Collection to the object.

Adding Classifications: Example
For an example of adding classifications to an object, see JAXRPublishObject.java
in the directory <INSTALL>/registry/samples/publish-object/src. This
example creates an organization and adds a number of objects to it.

� To Run the JAXRPublishObject Example

1. Go to the directory <INSTALL>/registry/samples/publish-object.

2. Type the following command:

asant run

Adding External Identifiers to Objects
To add an external identifier to an object, follow these steps:

1. Find or create the classification scheme to be used.
2. Create an external identifier using the classification scheme.

To create external identifiers, you use an external classification scheme, which is a
classification scheme without a concept hierarchy. You specify a name and value for
the external identifier.

The database that is supplied with the Registry does not include any external
classification schemes. Before you can use an external classification scheme, you must
create it, using code like the following:

Steps

66 Service Registry 3 2005Q4 Developer’s Guide • October 2005

ClassificationScheme extScheme =
blcm.createClassificationScheme("NASDAQ",

"OTC Stock Exchange");

To find an existing classification scheme, you typically call the
BusinessQueryManager.findClassificationSchemeByName method, as
described in “Adding Classifications to Objects” on page 65.

For example, the following code fragment finds the external classification scheme you
just created:

ClassificationScheme extScheme =
bqm.findClassificationSchemeByName(null,

"NASDAQ");

To add the external identifier, you call the
LifeCycleManager.createExternalIdentifier method, which takes three
arguments: the classification scheme and the name and value of the external identifier.
Then you add the external identifier to the object.

ExternalIdentifier extId =
blcm.createExternalIdentifier(extScheme, "Sun",

"SUNW);
object.addExternalIdentifier(extId);

The example
<INSTALL>/registry/samples/publish-object/src/JAXRPublishObject.java,
described in “Adding Classifications: Example” on page 66, also adds an external
identifier to an object.

Adding External Links to Objects
To add an external link to an object, you call the
LifeCycleManager.createExternalLink method, which takes two arguments:
the URI of the link, and a description of the link. Then you add the external link to the
object.

String eiURI = "http://java.sun.com/";
String eiDescription = "Java Technology";
ExternalLink extLink =

blcm.createExternalLink(eiURI, eiDescription);
object.addExternalLink(extLink);

The URI must be a valid URI, and the JAXR provider checks its validity. If the link that
you specify is outside your firewall, you need to specify the system properties
http.proxyHost and http.proxyPort when you run the program so that JAXR
can determine the validity of the URI.

To disable URI validation (for example, if you want to specify a link that is not
currently active), call the ExternalLink.setValidateURI method before you
create the link.

Chapter 4 • Publishing Objects to the Registry 67

extLink.setValidateURI(false);

The example
<INSTALL>/registry/samples/publish-object/src/JAXRPublishObject.java,
described in “Adding Classifications: Example” on page 66, also adds an external link
to an object. The build.xml file for this example specifies the system properties
http.proxyHost and http.proxyPort.

Adding Slots to Objects
Slots are arbitrary attributes, so the API provides maximum flexibility for you to create
them. You can provide a name, one or more values, and a type. The name and type are
String objects. The value or values are stored as a Collection of String objects,
but the LifeCycleManager.createSlot method has a form that allows you to
specify a single String value. For example, the following code fragment creates a slot
using a String value, then adds the slot to the object.

String slotName = "Branch";
String slotValue = "Paris";
String slotType = "City";
Slot slot = blcm.createSlot(slotName, slotValue, slotType);
org.addSlot(slot);

The example
<INSTALL>/registry/samples/publish-object/src/JAXRPublishObject.java,
described in “Adding Classifications: Example” on page 66, also adds a slot to an
object.

Creating Organizations
An Organization object is probably the most complex registry object. This object
normally includes the following attributes, in addition to those common to all objects:

� One or more PostalAddress objects.

� One or more TelephoneNumber objects.

� A PrimaryContact object, which is a User object. A User object normally
includes a PersonName object and collections of TelephoneNumber,
EmailAddress, and PostalAddress objects.

� One or more Service objects and their associated ServiceBinding objects.

An organization can also have one or more child organizations, which can in turn
have children, to form a hierarchy of organizations.

The following code fragment creates an organization and specifies its name,
description, postal address, and telephone number.

// Create organization name and description
Organization org =

68 Service Registry 3 2005Q4 Developer’s Guide • October 2005

blcm.createOrganization("The ebXML Coffee Break");
InternationalString is =

blcm.createInternationalString("Purveyor of " +
"the finest coffees. Established 1905");

org.setDescription(is);

// create postal address for organization
String streetNumber = "99";
String street = "Imaginary Ave. Suite 33";
String city = "Imaginary City";
String state = "NY");
String country = "USA");
String postalCode = "00000";
String type = "Type US";
PostalAddress postAddr =

blcm.createPostalAddress(streetNumber, street, city, state,
country, postalCode, type);

org.setPostalAddress(postAddr);

// create telephone number for organization
TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setCountryCode("1");
tNum.setAreaCode("100");
tNum.setNumber("100-1000");
tNum.setType("OfficePhone");
Collection tNums = new ArrayList();
tNums.add(tNum);
org.setTelephoneNumbers(tNums);

The telephone number type is the value of a concept in the PhoneType classification
scheme: "OfficePhone", "MobilePhone", "HomePhone", "FAX", or "Beeper".

To create a hierarchy of organizations, use the
Organization.addChildOrganization method to add one organization to
another, or use the Organization.addChildOrganizations method to add a
Collection of organizations to another.

Creating an Organization: Examples
For examples of creating an organization, see JAXRPublishOrg.java and
JAXRPublishOrgNoPC.java in the directory
<INSTALL>/registry/samples/organizations/src.

The JAXRPublishOrg example creates an organization, its primary contact, and a
service and service binding. The example displays the unique identifiers for the
organization, user, and service so that you can use the identifiers later when you
delete the objects. This example creates a fictitious User as the primary contact for the
organization.

The other example, JAXRPublishOrgNoPC.java, does not set a primary contact for
the organization. In this case, the primary contact by default is the User who is
authenticated when you run the program.

Chapter 4 • Publishing Objects to the Registry 69

� To Run the JAXRPublishOrg and
JAXRPublishOrgNoPC Examples

1. Go to the directory <INSTALL>/registry/samples/organizations.

2. Type the following commands:

asant pub-org
asant pub-org-nopc

Creating and Retrieving an Organization Hierarchy:
Examples
For examples of publishing and retrieving an organization hierarchy, see
JAXRPublishOrgFamily.java and JAXRSearchOrgFamily.java in the
directory<INSTALL>/registry/samples/organizations/src.

� To Run the JAXRPublishOrgFamily and
JAXRSearchOrgFamily Examples

1. Go to the directory <INSTALL>/registry/samples/organizations.

2. Type the following command to publish the organizations:

asant pub-fam

3. Type the following command to retrieve the organizations that you published:

asant search-fam

Creating Users
If you create an organization without specifying a primary contact, the default
primary contact is the User object that created the organization (that is, the user
whose credentials you set when you created the connection to the Registry). However,
you can specify a different user as the primary contact. A User is also a complex type
of registry object. It normally includes the following attributes, in addition to those
common to all objects:

� A PersonName object
� One or more PostalAddress objects
� One or more TelephoneNumber objects
� One or more EmailAddress objects

Steps

Steps

70 Service Registry 3 2005Q4 Developer’s Guide • October 2005

� One or more URL objects that represent the user’s home page

The following code fragment creates a User and then sets that User as the primary
contact for the organization. This User has a telephone number and email address but
no postal address.

// Create primary contact, set name
User primaryContact = blcm.createUser();
String userId = primaryContact.getKey().getId();
System.out.println("User URN is " + userId);
PersonName pName =

blcm.createPersonName("Jane", "M.", "Doe");
primaryContact.setPersonName(pName);

// Set primary contact phone number
TelephoneNumber pctNum = blcm.createTelephoneNumber();
pctNum.setCountryCode("1");
pctNum.setAreaCode("100");
pctNum.setNumber("100-1001");
pctNum.setType("MobilePhone");
Collection phoneNums = new ArrayList();
phoneNums.add(pctNum);
primaryContact.setTelephoneNumbers(phoneNums);

// Set primary contact email address
EmailAddress emailAddress =
blcm.createEmailAddress("jane.doe@TheCoffeeBreak.com");
emailAddress.setType("OfficeEmail"));
Collection emailAddresses = new ArrayList();
emailAddresses.add(emailAddress);
primaryContact.setEmailAddresses(emailAddresses);

URL pcUrl = new URL((bundle.getString("person.url"));
primaryContact.setUrl(pcUrl);

// Set primary contact for organization
org.setPrimaryContact(primaryContact);

The telephone number type for the primary contact is the value of a concept in the
PhoneType classification scheme: "OfficePhone", "MobilePhone",
"HomePhone", "FAX", or "Beeper". The email address type for the primary contact
is the value of a concept in the EmailType classification scheme: either
"OfficeEmail" or "HomeEmail".

Creating Services and Service Bindings
Most organizations publish themselves to a registry to offer services, so JAXR has
facilities to add services and service bindings to an organization.

You can also create services that are not attached to any organization.

Chapter 4 • Publishing Objects to the Registry 71

Like an Organization object, a Service object has a name, a description, and a
unique key that is generated by the Registry when the service is registered. A
Service object can also have classifications.

In addition to the attributes common to all objects, a service also commonly has service
bindings, which provide information about how to access the service. A
ServiceBinding object normally has a description, an access URI, and a
specification link. The specification link provides the linkage between a service
binding and a technical specification that describes how to use the service by using the
service binding.

The following code fragment shows how to create a collection of services, add service
bindings to a service, and then add the services to the organization. The code fragment
specifies an access URI but not a specification link. Because the access URI is not real
and because JAXR by default checks for the validity of any published URI, the binding
sets its validateURI attribute to false.

// Create services and service
Collection services = new ArrayList();
Service service = blcm.createService("My Service Name");
InternationalString is =

blcm.createInternationalString("My Service Description");
service.setDescription(is);

// Create service bindings
Collection serviceBindings = new ArrayList();
ServiceBinding binding =

blcm.createServiceBinding();
is = blcm.createInternationalString("My Service Binding " +

"Name"));
binding.setName(is);
is = blcm.createInternationalString("My Service Binding " +

"Description");
binding.setDescription(is);
// allow us to publish a fictitious URI without an error
binding.setValidateURI(false);
binding.setAccessURI("http://TheCoffeeBreak.com:8080/sb/");
...
serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

A service binding normally has a technical specification that describes how to access
the service. An example of such a specification is a WSDL document. To publish the
location of a service’s specification (if the specification is a WSDL document), you
create a SpecificationLink object that refers to an ExtrinsicObject. For
details, see “Storing Items in the Repository” on page 78.

72 Service Registry 3 2005Q4 Developer’s Guide • October 2005

(This mechanism is different from the way you publish a specification’s location to a
UDDI registry: for a UDDI registry you create a Concept object and then add the
URL of the WSDL document to the Concept object as an ExternalLink object.)

Saving Objects in the Registry
After you have created an object and set its attributes, you publish it to the Registry by
calling either the LifeCycleManager.saveObjects method or an object-specific
save method like BusinessLifeCycleManager.saveOrganizations or
BusinessLifeCycleManager.saveServices. You always publish a collection of
objects, not a single object. The save methods return a BulkResponse object that
contains the keys (that is, the unique identifiers) for the saved objects. The following
code fragment saves an organization and retrieves its key:

// Add organization and submit to registry
// Retrieve key if successful
Collection orgs = new ArrayList();
orgs.add(org);
BulkResponse response = blcm.saveOrganizations(orgs);
Collection exceptions = response.getExceptions();
if (exceptions == null) {

System.out.println("Organization saved");

Collection keys = response.getCollection();
Iterator keyIter = keys.iterator();
if (keyIter.hasNext()) {

javax.xml.registry.infomodel.Key orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();

String id = orgKey.getId();
System.out.println("Organization key is " + id);

}
}

If one of the objects exists but some of the data have changed, the save methods
update and replace the data. This normally results in the creation of a new version of
the object (see “Changing the State of Objects in the Registry” on page 82).

Chapter 4 • Publishing Objects to the Registry 73

74 Service Registry 3 2005Q4 Developer’s Guide • October 2005

CHAPTER 5

Managing Objects in the Registry

After you publish objects to Service Registry, you can perform operations on the
objects. This chapter describes these operations.

� “Creating Relationships Between Objects: Associations” on page 75
� “Storing Items in the Repository” on page 78
� “Organizing Objects Within Registry Packages” on page 81
� “Changing the State of Objects in the Registry” on page 82
� “Controlling Access to Objects” on page 84
� “Removing Objects From the Registry and Repository” on page 85

Creating Relationships Between Objects:
Associations
You can create an Association object and use it to specify a relationship between
any two objects. The ebXML specification specifies an AssociationType
classification scheme that contains a number of canonical concepts you can use when
you create an Association. You can also create your own concepts within the
AssociationType classification scheme.

The canonical association types are as follows:

� AccessControlPolicyFor

� AffiliatedWith, which has the subconcepts EmployeeOf and MemberOf

� Contains

� ContentManagementServiceFor

� EquivalentTo

� Extends

75

� ExternallyLinks

� HasFederationMember

� HasMember

� Implements

� InstanceOf

� InvocationControlFileFor, which has the subconcepts
CatalogingControlFileFor and ValidationControlFileFor

� OffersService

� OwnerOf

� RelatedTo

� Replaces

� ResponsibleFor

� SubmitterOf

� Supersedes

� Uses

The Registry uses some of these association types automatically. For example, when
you add a Service to an Organization, the Registry creates an OffersService
association with the Organization as the source and the Service as the target.

Associations are directional: each Association object has a source object and a target
object. Establishing an association between two objects is a three-step process:

1. Find the AssociationType concept that you want to use, or create one.

2. Use the LifeCycleManager.createAssociation method to create the
association. This method takes two arguments, the target object and the concept
that identifies the relationship.

3. Use the RegistryObject.addAssociation method to add the association to
the source object.

For example, suppose you have two objects, obj1 and obj2, and you want to
establish a RelatedTo relationship between them. (In this relationship, which object
is the source and which is the target is arbitrary.) First, locate the RelatedTo concept:

// Find RelatedTo concept for Association
String concString =

CanonicalConstants.CANONICAL_ASSOCIATION_TYPE_ID_RelatedTo;
Concept relConcept = (Concept) bqm.getRegistryObject(concString);

Create the association, specifying obj2 as the target:

Association relAssoc =
blcm.createAssociation(obj2, relConcept);

Add the association to the source object, obj1:

obj1.addAssociation(relAssoc);

76 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Finally, save the association:

Collection associations = new ArrayList();
associations.add(relAssoc1);
BulkResponse response = blcm.saveObjects(associations);

Associations can be of two types, intramural and extramural. You create an intramural
association when both the source and target object are owned by you. You create an
extramural association when at least one of these objects is not owned by you. The
owner of an object can use an access control policy to restrict the right to create an
extramural association with that object as a source or target.

Creating Associations: Example
For an example of creating an association, see JAXRPublishAssociation.java in
the directory <INSTALL>/registry/samples/publish-association/src/.
This example creates a RelatedTo association between any two objects whose unique
identifiers you specify. For example, you could specify the two child organizations
created in “Creating and Retrieving an Organization Hierarchy: Examples” on page
70.

� To Run the JAXRPublishAssociation Example

1. Go to the directory <INSTALL>/registry/samples/organizations.

2. Retrieve the organization hierarchy by running the following command:

asant search-fam

Notice the key ID strings of the two child organizations.

3. Go to the directory <INSTALL>/registry/samples/publish-association.

4. Type the following command:

asant run -Did1=string1 -Did2=string2

Replace string1 and string2 with the two child organization ID strings.

Whether the association is intramural or extramural depends upon who owns the
two objects. In this case, the association is intramural.

Steps

Chapter 5 • Managing Objects in the Registry 77

Storing Items in the Repository
As “About Registries and Repositories” on page 15 explains, the Registry includes a
repository in which you can store electronic content. For every item that you store in
the repository, you must first create an ExtrinsicObject. When you save the
ExtrinsicObject to the Registry, the associated repository item is also saved.

Creating an Extrinsic Object
To create an ExtrinsicObject, you first need to create a
javax.activation.DataHandler object for the repository item. The
LifeCycleManager.createExtrinsicObject method takes a DataHandler
argument.

Note – You can also use an implementation-specific form of the
createExtrinsicObject method that takes no arguments. If you use this form,
you can create the DataHandler object later and use the
ExtrinsicObject.setRepositoryItem method to specify the repository item.
You can also create extrinsic objects that have no associated repository items.

To store a file in the repository, for example, first create a java.io.File object. From
the File object, create a javax.activation.FileDataSource object, which you
use to instantiate the DataHandler object.

String filename = "./MyFile.xml";
File repositoryItemFile = new File(filename);
DataHandler repositoryItem =

new DataHandler(new FileDataSource(repositoryItemFile));

Next, call createExtrinsicObject with the DataHandler as argument:

ExtrinsicObject eo =
blcm.createExtrinsicObject(repositoryItem);

eo.setName("My Graphics File");

Set the MIME type of the object to make the object accessible. The default MIME type
is application/octet-stream. If the file is an XML file, set the MIME type as
follows:

eo.setMimeType("text/xml");

Finally, call the implementation-specific ExtrinsicObjectImpl.setObjectType
method to store the ExtrinsicObject in an appropriate area of the Registry. This
method has the following signature:

78 Service Registry 3 2005Q4 Developer’s Guide • October 2005

public void setObjectType(Concept objectType)
throws JAXRException

The easiest way to find the appropriate concept for a particular type of file is to use the
Explore feature of the Web Console. Look under the ObjectType classification
scheme for the various types of ExtrinsicObject concepts. Specify the ID for the
concept as the argument to getRegistryObject, then specify the concept as the
argument to setObjectType.

String conceptId =
"urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ExtrinsicObject:XML";
Concept objectTypeConcept =

(Concept) bqm.getRegistryObject(conceptId);
((ExtrinsicObjectImpl)eo).setObjectType(objectTypeConcept);

Finally, you save the ExtrinsicObject to the Registry.

Collection extobjs = new ArrayList();
extobjs.add(eo);
BulkResponse response = blcm.saveObjects(extobjs);

The ExtrinsicObject contains the metadata, and a copy of the file is stored in the
repository.

If the Registry does not have a concept for the kind of file that you want to store there,
you can create and save the concept yourself.

Creating an Extrinsic Object: Example
For an example of creating an extrinsic object, see
JAXRPublishExtrinsicObject.java in the directory
<INSTALL>/registry/samples/publish-extrinsic/src. This example
publishes an XML file to the Registry (its own build.xml file).

� To Run the JAXRPublishExtrinsicObject Example

1. Go to the directory <INSTALL>/registry/samples/publish-extrinsic.

2. Type the following command:

asant run

Using an Extrinsic Object in a Specification Link
You can publish an ExtrinsicObject by itself, but it is also a common practice to
create an ExtrinsicObject to use as the specificationObject attribute of a
SpecificationLink for a ServiceBinding object (see “Creating Services and
Service Bindings” on page 71). The ExtrinsicObject typically refers to a WSDL
file.

Steps

Chapter 5 • Managing Objects in the Registry 79

1. Create a SpecificationLink object.

2. Store the WSDL document in the repository and create an ExtrinsicObject that
refers to it. Set the extrinsic object’s type to WSDL and its MIME type to
text/xml.

3. Specify the extrinsic object as the specificationObject attribute of the
SpecificationLink object.

4. Add the SpecificationLink object to the ServiceBinding object.

5. Add the ServiceBinding object to the Service object.

6. Save the Service object.

After you create a Service and ServiceBinding, create a SpecificationLink:

SpecificationLink specLink = blcm.createSpecificationLink();
specLink.setName("Spec Link Name");
specLink.setDescription("Spec Link Description");

Create an ExtrinsicObject as described in “Creating an Extrinsic Object” on page
78. Use the ID for the WSDL concept and the text/xml MIME type.

String conceptId =
"urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:ExtrinsicObject:WSDL";
Concept objectTypeConcept =

(Concept) bqm.getRegistryObject(conceptId);
((ExtrinsicObjectImpl)eo).setObjectType(objectTypeConcept);
eo.setMimeType("text/xml");

Set the ExtrinsicObject as the specification object for the SpecificationLink:

specLink.setSpecificationObject(eo);

Add the SpecificationLink to the ServiceBinding, then add the objects to their
collections and save the services.

binding.addSpecificationLink(specLink);
serviceBindings.add(binding);
...

When you remove a service from the Registry, the service bindings and specification
links are also removed. However, the extrinsic objects associated with the specification
links are not removed.

Creating an Extrinsic Object for Use in a Specification
Link: Example
For an example of creating an extrinsic object to use in a specification link, see
JAXRPublishService.java in the directory
<INSTALL>/registry/samples/publish-service/src. This example publishes
a WSDL file to the Registry.

80 Service Registry 3 2005Q4 Developer’s Guide • October 2005

� To Run the JAXRPublishService Example

1. Go to the directory <INSTALL>/registry/samples/publish-service.

2. Type the following command:

asant run

Organizing Objects Within Registry
Packages
Registry packages allow you to group a number of logically related registry objects,
even if the individual member objects belong to different owners. A
RegistryPackage is analogous to a directory or folder in a file system, and the
registry objects it contains are analogous to the files in the directories or folders.

To create a RegistryPackage object, call the
LifeCycleManager.createRegistryPackage method, which takes a String or
InternationalString argument. Then call the
RegistryPackage.addRegistryObject or
RegistryPackage.addRegistryObjects method to add objects to the package.

For example, you could create a RegistryPackage object that is named
“SunPackage”:

RegistryPackage pkg =
blcm.createRegistryPackage("SunPackage");

Then, after finding all objects with the string "Sun" in their names, you could iterate
through the results and add each object to the package:

pkg.addRegistryObject(object);

A common use of packages is to organize a set of extrinsic objects. A registry
administrator can load a file system into the Registry, storing the directories as registry
packages and the files as the package contents. See the Administration Guide for more
information.

Steps

Chapter 5 • Managing Objects in the Registry 81

Organizing Objects Within Registry Packages:
Examples
For examples of using registry packages, see JAXRPublishPackage.java and
JAXRSearchPackage.java in the directory
<INSTALL>/registry/samples/packages/src. The first example publishes a
RegistryPackage object that includes all objects in the Registry whose names
contain the string "free". The second example searches for this package and displays
its contents.

� To Run the JAXRPublishPackage and
JAXRSearchPackage Examples

1. Go to the directory <INSTALL>/registry/samples/packages.

2. Type the following command:

asant pub-pkg

3. Type the following command:

asant search-pkg

Changing the State of Objects in the
Registry
You add an AuditableEvent object to the audit trail of an object when you publish
the object to the Registry or when you modify the object in any way. See “Retrieving
the Audit Trail of an Object” on page 50 for details on these events and on how to
obtain information about them. “Retrieving the Audit Trail of an Object” on page 50
describes the events and how they are created.

Many events are created as a side effect of some other action:

� Saving an object to the Registry creates an EVENT_TYPE_CREATED event.
� The following actions create an EVENT_TYPE_VERSIONED event:

� Changing an object’s name or description
� Adding, modifying, or removing a Classification,

ExternalIdentifier, or Slot
� For an Organization or User, adding, modifying, or removing a

PostalAddress or TelephoneNumber

Steps

82 Service Registry 3 2005Q4 Developer’s Guide • October 2005

You can retrieve version information for an object. See “Retrieving the Version
of an Object” on page 51 for details.

Note – Versioning of objects is enabled by default when you publish using the JAXR
API. Versioning is disabled by default when you publish using the Web Console.

You can also change the state of objects explicitly. This feature may be useful in a
production environment where different versions of objects exist and where you wish
to use some form of version control. For example, you can approve a version of an
object for general use and deprecate an obsolete version before you remove it. If you
change your mind after deprecating an object, you can undeprecate it. As a registered
user, you can perform these actions only on objects you own.

� You can approve objects by using the
LifeCycleManagerImpl.approveObjects method. This feature is
implementation-specific.

� You can deprecate objects by using the
LifeCycleManager.deprecateObjects method.

� You can undeprecate objects by using the
LifeCycleManager.unDeprecateObjects method.

The LifeCycleManagerImpl.approveObjects method has the following
signature:

public BulkResponse approveObjects(java.util.Collection keys)
throws JAXRException

The code to deprecate an object typically looks like this:

String id = id_string;
Key key = lcm.createKey(id);
Collection keys = new ArrayList();
keys.add(key);

// deprecate the object
lcm.deprecateObjects(keys);

It is possible to restrict access to these actions to specific users, user roles, and user
groups, such as registry administrators. See “Controlling Access to Objects” on page
84.

No AuditableEvent is created for actions that do not alter the state of a
RegistryObject. For example, queries do not generate an AuditableEvent, and
no AuditableEvent is generated for a RegistryObject when it is added to a
RegistryPackage or when you create an Association with the object as the
source or target.

Chapter 5 • Managing Objects in the Registry 83

Changing the State of Objects in the Registry:
Examples
For examples of approving, deprecating, undeprecating objects, see the examples in
<INSTALL>/registry/samples/auditable-events/src:
JAXRApproveObject.java, JAXRDeprecateObject.java, and
JAXRUndeprecateObject.java. Each example performs an action on an object
whose unique identifier you specify, then displays the object’s audit trail so that you
can see the effect of the example.

For all examples, the object that you specify must be one that you created.

� To Run the JAXRApproveObject,
JAXRDeprecateObject, and
JAXRUndeprecateObject Examples

1. Go to the directory <INSTALL>/registry/samples/auditable-events.

2. Type the following command:

asant approve-obj -Did=id_string

3. Type the following command:

asant deprecate-obj -Did=id_string

4. Type the following command:

asant undeprecate-obj -Did=id_string

Controlling Access to Objects
Access to objects in the Registry is set by access control policies (ACPs). The default
access control policy specifies the following:

� The predefined user Registry Guest can read any object. All users have this
identity when they are not logged in to the Registry.

� All registered users can create objects and can perform actions on objects they own.

� Any user classified as a RegistryAdministrator can perform actions on all
objects in the Registry. By default, only the predefined user Registry Operator
is classified as an administrator. Instructions on becoming an administrator are in
“Creating an Administrator” in Service Registry 3 2005Q4 Administration Guide.

Steps

84 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Very fine-grained access control on individual objects is possible through custom
ACPs. However, writing an ACP is currently a manual process that requires
knowledge of OASIS eXtensible Access Control Markup Language (XACML). For
details, refer to Chapter 9, “Access Control Information Model,” of ebXML RIM 3.0,
especially the examples in Sections 9.7.6 through 9.7.8.

Removing Objects From the Registry and
Repository
A registry allows you to remove from it any objects that you have submitted to it. You
use the object’s ID as an argument to the LifeCycleManager.deleteObjects
method.

The following code fragment deletes the object that corresponds to a specified key
string and then displays the key again so that you can confirm that it has deleted the
correct one.

String id = key.getId();
Collection keys = new ArrayList();
keys.add(key);
BulkResponse response = blcm.deleteObjects(keys);
Collection exceptions = response.getException();
if (exceptions == null) {

System.out.println("Objects deleted");
Collection retKeys = response.getCollection();
Iterator keyIter = retKeys.iterator();
javax.xml.registry.infomodel.Key orgKey = null;
if (keyIter.hasNext()) {

orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();

id = orgKey.getId();
System.out.println("Object key was " + id);

}
}

Deleting an Organization does not delete the Service and User objects that belong
to the Organization. You must delete those objects separately.

Deleting a Service object deletes the ServiceBinding objects that belong to it, and
also the SpecificationLink objects that belong to the ServiceBinding objects.
Deleting the SpecificationLink objects, however, does not delete the associated
ExtrinsicObject instances and their associated repository items. You must delete
the extrinsic objects separately.

AuditableEvent objects are not deleted when the objects associated with them are
deleted. You might find that as you use the Registry, a large number of these objects
accumulates.

Chapter 5 • Managing Objects in the Registry 85

Removing Objects from the Registry: Example
For an example of deleting an object from the Registry, see JAXRDelete.java in the
directory <INSTALL>/registry/samples/delete-object/src. This example
deletes the object whose unique identifier you specify.

� To Run the JAXRDelete Example

1. Go to the directory <INSTALL>/registry/samples/delete-object.

2. Type the following command:

asant run -Did=id_string

Steps

86 Service Registry 3 2005Q4 Developer’s Guide • October 2005

CHAPTER 6

Developing Client Programs for the
UDDI Interface

This chapter explains how to create client programs for the Universal Description,
Discovery and Integration (UDDI) interface to Service Registry.

Creating Client Programs
Client programs can access the UDDI interface to Service Registry by using the SOAP
1.1 protocol over HTTP. Client programs in any programming language can access the
UDDI interface service endpoint of Service Registry by using UDDI 3.0.2 Inquiry
protocols. The endpoint for the UDDI Inquiry interface is as follows:

http://host:port/soar/uddi/inquire

The UDDI interface to the Service Registry conforms to the UDDI 3.0.2 Inquiry API
WSDL as defined at the following URLs:

� UDDI API Binding: uddi_api_v3_binding.wsdl:
http://uddi.org/wsdl/uddi_api_v3_binding.wsdl

� UDDI API Port Type: uddi_api_v3_portType.wsdl:
http://uddi.org/wsdl/uddi_api_v3_portType.wsdl

You can develop a Java client program for the UDDI interface using JAX-RPC 1.1 by
generating the client stubs from the previously listed UDDI 3.0.2 WSDL files. For
details, see Chapter 8, “Building Web Services with JAX-RPC,” in the J2EE 1.4 Tutorial
(http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html).

Additions and changes to the UDDI 3.0.2 WSDL and schemas to enable a Java client to
be generated according to the requirements of the JAX-RPC 1.1 Specification are
described in the UDDI Spec TC Technical Note at the following
URL:http://www.oasis-open.org/
committees/uddi-spec/doc/tn/uddi-spec-tc-tn-jax-rpc-20050126.htm.

87

http://uddi.org/wsdl/uddi_api_v3_binding.wsdl
http://uddi.org/wsdl/uddi_api_v3_portType.wsdl
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-jax-rpc-20050126.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-jax-rpc-20050126.htm

The Java client program can then invoke methods on the UDDI Inquiry interface by
using the methods exposed by the client stub.

In the current release of Service Registry, the UDDI interface does not support the
UDDI 3.0.2 Publication, Security, Custody Transfer, or Subscription protocols. The
following UDDI 3.0.2 interfaces are implemented to return E_unsupported (10050)
error codes for every method:

http://host:port/soar/uddi/custody
http://host:port/soar/uddi/publish
http://host:port/soar/uddi/security
http://host:port/soar/uddi/subscription

The Inquiry interface implementation does not support authorization using
-authInfo arguments or requests for partial results using either -listHead or
-maxRows arguments.

Client programs that publish to the registry must use the JAXR API as described in
earlier sections.

88 Service Registry 3 2005Q4 Developer’s Guide • October 2005

APPENDIX A

Canonical Constants

This appendix lists the canonical constants for unique identifiers that are defined by
the ebXML Registry and Repository specification. The constants are defined in the
interface org.freebxml.omar.common.CanonicalConstants, which extends
org.freebxml.omar.common.CanonicalSchemes.

These constants define the unique identifier strings for known objects. Use the
constants to look up these objects by identifier.

The canonical constants for concepts defined in
org.freebxml.omar.common.CanonicalConstants also include constants for
the logical identifier (lid) of each concept and for the concept’s code, which is its
name. For example, the MemberOf concept has the following three constants:

� CANONICAL_ASSOCIATION_TYPE_ID_Uses, defined as
"urn:oasis:names:tc:ebxml-regrep:AssociationType:Uses"

� CANONICAL_ASSOCIATION_TYPE_LID_Uses, defined as
"urn:oasis:names:tc:ebxml-regrep:AssociationType:Uses"

� CANONICAL_ASSOCIATION_TYPE_CODE_Uses, defined as "Uses"

Classification schemes have constants for the unique identifier and the logical
identifier, but do not have a code constant.

This appendix lists only the unique identifier constants, but you can use the lid and
code constants where appropriate.

Constants for Classification Schemes
The constants for the unique identifiers of canonical classification schemes are as
follows:

89

� CANONICAL_CLASSIFICATION_SCHEME_ID_AssociationType
� CANONICAL_CLASSIFICATION_SCHEME_ID_ContentManagementService
� CANONICAL_CLASSIFICATION_SCHEME_ID_DataType
� CANONICAL_CLASSIFICATION_SCHEME_ID_DeletionScopeType
� CANONICAL_CLASSIFICATION_SCHEME_ID_EmailType
� CANONICAL_CLASSIFICATION_SCHEME_ID_ErrorHandlingModel
� CANONICAL_CLASSIFICATION_SCHEME_ID_ErrorSeverityType
� CANONICAL_CLASSIFICATION_SCHEME_ID_EventType
� CANONICAL_CLASSIFICATION_SCHEME_ID_InvocationModel
� CANONICAL_CLASSIFICATION_SCHEME_ID_NodeType
� CANONICAL_CLASSIFICATION_SCHEME_ID_NotificationOptionType
� CANONICAL_CLASSIFICATION_SCHEME_ID_ObjectType
� CANONICAL_CLASSIFICATION_SCHEME_ID_PhoneType
� CANONICAL_CLASSIFICATION_SCHEME_ID_QueryLanguage
� CANONICAL_CLASSIFICATION_SCHEME_ID_ResponseStatusType
� CANONICAL_CLASSIFICATION_SCHEME_ID_StabilityType
� CANONICAL_CLASSIFICATION_SCHEME_ID_StatusType
� CANONICAL_CLASSIFICATION_SCHEME_ID_SubjectGroup
� CANONICAL_CLASSIFICATION_SCHEME_ID_SubjectRole

Constants for Association Type Concepts
The constants for unique identifiers for the concepts that identify Association
objects are as follows:

� CANONICAL_ASSOCIATION_TYPE_ID_AccessControlPolicyFor
� CANONICAL_ASSOCIATION_TYPE_ID_AffiliatedWith
� CANONICAL_ASSOCIATION_TYPE_ID_CatalogingControlFileFor
� CANONICAL_ASSOCIATION_TYPE_ID_Contains
� CANONICAL_ASSOCIATION_TYPE_ID_ContentManagementServiceFor
� CANONICAL_ASSOCIATION_TYPE_ID_EmployeeOf
� CANONICAL_ASSOCIATION_TYPE_ID_EquivalentTo
� CANONICAL_ASSOCIATION_TYPE_ID_Extends
� CANONICAL_ASSOCIATION_TYPE_ID_ExternallyLinks
� CANONICAL_ASSOCIATION_TYPE_ID_HasFederationMember
� CANONICAL_ASSOCIATION_TYPE_ID_HasMember
� CANONICAL_ASSOCIATION_TYPE_ID_Implements
� CANONICAL_ASSOCIATION_TYPE_ID_InstanceOf
� CANONICAL_ASSOCIATION_TYPE_ID_InvocationControlFileFor
� CANONICAL_ASSOCIATION_TYPE_ID_MemberOf
� CANONICAL_ASSOCIATION_TYPE_ID_OffersService
� CANONICAL_ASSOCIATION_TYPE_ID_OwnerOf
� CANONICAL_ASSOCIATION_TYPE_ID_RelatedTo
� CANONICAL_ASSOCIATION_TYPE_ID_Replaces

90 Service Registry 3 2005Q4 Developer’s Guide • October 2005

� CANONICAL_ASSOCIATION_TYPE_ID_ResponsibleFor
� CANONICAL_ASSOCIATION_TYPE_ID_SubmitterOf
� CANONICAL_ASSOCIATION_TYPE_ID_Supersedes
� CANONICAL_ASSOCIATION_TYPE_ID_Uses
� CANONICAL_ASSOCIATION_TYPE_ID_ValidationControlFileFor

Constants for Content Management
Service Concepts
The constants for unique identifiers for the concepts that identify content management
services are as follows:

� CANONICAL_CONTENT_MANAGEMENT_SERVICE_ID_ContentCatalogingService
� CANONICAL_CONTENT_MANAGEMENT_SERVICE_ID_ContentValidationService

Constants for Data Type Concepts
The constants for unique identifiers for the concepts that identify data types are as
follows:

� CANONICAL_DATA_TYPE_ID_Boolean
� CANONICAL_DATA_TYPE_ID_Date
� CANONICAL_DATA_TYPE_ID_DateTime
� CANONICAL_DATA_TYPE_ID_Double
� CANONICAL_DATA_TYPE_ID_Duration
� CANONICAL_DATA_TYPE_ID_Float
� CANONICAL_DATA_TYPE_ID_Integer
� CANONICAL_DATA_TYPE_ID_ObjectRef
� CANONICAL_DATA_TYPE_ID_String
� CANONICAL_DATA_TYPE_ID_Time
� CANONICAL_DATA_TYPE_ID_URI

Appendix A • Canonical Constants 91

Constants for Deletion Scope Type
Concepts
The constants for unique identifiers for the concepts that identify deletion scope types
are as follows:

� CANONICAL_DELETION_SCOPE_TYPE_ID_DeleteAll
� CANONICAL_DELETION_SCOPE_TYPE_ID_DeleteRepositoryItemOnly

Constants for Email Type Concepts
The constants for unique identifiers for the concepts that identify email types are as
follows:

� CANONICAL_EMAIL_TYPE_ID_HomeEmail
� CANONICAL_EMAIL_TYPE_ID_OfficeEmail

Constants for Error Handling Model
Concepts
The constants for unique identifiers for the concepts that identify error handling
models are as follows:

� CANONICAL_ERROR_HANDLING_MODEL_ID_FailOnError
� CANONICAL_ERROR_HANDLING_MODEL_ID_LogErrorAndContinue

Constants for Error Severity Type
Concepts
The constants for unique identifiers for the concepts that identify error severity types
are as follows:

� CANONICAL_ERROR_SEVERITY_TYPE_ID_Error

92 Service Registry 3 2005Q4 Developer’s Guide • October 2005

� CANONICAL_ERROR_SEVERITY_TYPE_ID_Warning

Constants for Event Type Concepts
The constants for unique identifiers for the concepts that identify event types are as
follows:

� CANONICAL_EVENT_TYPE_ID_Approved
� CANONICAL_EVENT_TYPE_ID_Created
� CANONICAL_EVENT_TYPE_ID_Deleted
� CANONICAL_EVENT_TYPE_ID_Deprecated
� CANONICAL_EVENT_TYPE_ID_Downloaded
� CANONICAL_EVENT_TYPE_ID_Relocated
� CANONICAL_EVENT_TYPE_ID_Undeprecated
� CANONICAL_EVENT_TYPE_ID_Updated
� CANONICAL_EVENT_TYPE_ID_Versioned

Constants for Invocation Model
Concepts
The constants for unique identifiers for the concepts that identify invocation models
are as follows:

� CANONICAL_INVOCATION_MODEL_ID_Decoupled
� CANONICAL_INVOCATION_MODEL_ID_Inline

Constants for Node Type Concepts
The constants for unique identifiers for the concepts that identify node types are as
follows:

� CANONICAL_NODE_TYPE_ID_EmbeddedPath
� CANONICAL_NODE_TYPE_ID_NonUniqueCode
� CANONICAL_NODE_TYPE_ID_UniqueCode

Appendix A • Canonical Constants 93

Constants for Notification Option Type
Concepts
The constants for unique identifiers for the concepts that identify notification option
types are as follows:

� CANONICAL_NOTIFICATION_OPTION_TYPE_ID_ObjectRefs
� CANONICAL_NOTIFICATION_OPTION_TYPE_ID_Objects

Constants for Object Type Concepts
The constants for unique identifiers for the concepts that identify object types are as
follows:

� CANONICAL_OBJECT_TYPE_ID_AdhocQuery
� CANONICAL_OBJECT_TYPE_ID_Association
� CANONICAL_OBJECT_TYPE_ID_AuditableEvent
� CANONICAL_OBJECT_TYPE_ID_Classification
� CANONICAL_OBJECT_TYPE_ID_ClassificationNode
� CANONICAL_OBJECT_TYPE_ID_ClassificationScheme
� CANONICAL_OBJECT_TYPE_ID_ExternalIdentifier
� CANONICAL_OBJECT_TYPE_ID_ExternalLink
� CANONICAL_OBJECT_TYPE_ID_ExtrinsicObject
� CANONICAL_OBJECT_TYPE_ID_Federation
� CANONICAL_OBJECT_TYPE_ID_Notification
� CANONICAL_OBJECT_TYPE_ID_Organization
� CANONICAL_OBJECT_TYPE_ID_Person
� CANONICAL_OBJECT_TYPE_ID_Policy
� CANONICAL_OBJECT_TYPE_ID_PolicySet
� CANONICAL_OBJECT_TYPE_ID_Registry
� CANONICAL_OBJECT_TYPE_ID_RegistryObject
� CANONICAL_OBJECT_TYPE_ID_RegistryPackage
� CANONICAL_OBJECT_TYPE_ID_Service
� CANONICAL_OBJECT_TYPE_ID_ServiceBinding
� CANONICAL_OBJECT_TYPE_ID_SpecificationLink
� CANONICAL_OBJECT_TYPE_ID_Subscription
� CANONICAL_OBJECT_TYPE_ID_User
� CANONICAL_OBJECT_TYPE_ID_XACML
� CANONICAL_OBJECT_TYPE_ID_XForm
� CANONICAL_OBJECT_TYPE_ID_XHTML
� CANONICAL_OBJECT_TYPE_ID_XML

94 Service Registry 3 2005Q4 Developer’s Guide • October 2005

� CANONICAL_OBJECT_TYPE_ID_XMLSchema
� CANONICAL_OBJECT_TYPE_ID_XSLT

Constants for Phone Type Concepts
The constants for unique identifiers for the concepts that identify phone types are as
follows:

� CANONICAL_PHONE_TYPE_ID_Beeper
� CANONICAL_PHONE_TYPE_ID_FAX
� CANONICAL_PHONE_TYPE_ID_HomePhone
� CANONICAL_PHONE_TYPE_ID_MobilePhone
� CANONICAL_PHONE_TYPE_ID_OfficePhone

Constants for Query Language Concepts
The constants for unique identifiers for the concepts that identify query languages are
as follows:

� CANONICAL_QUERY_LANGUAGE_ID_ebRSFilterQuery
� CANONICAL_QUERY_LANGUAGE_ID_SQL_92
� CANONICAL_QUERY_LANGUAGE_ID_XPath
� CANONICAL_QUERY_LANGUAGE_ID_XQuery

Constants for Response Status Type
Concepts
The constants for unique identifiers for the concepts that identify response status types
are as follows:

� CANONICAL_RESPONSE_STATUS_TYPE_ID_Failure
� CANONICAL_RESPONSE_STATUS_TYPE_ID_Success
� CANONICAL_RESPONSE_STATUS_TYPE_ID_Unavailable

Appendix A • Canonical Constants 95

Constants for Stability Type Concepts
The constants for unique identifiers for the concepts that identify stability types are as
follows:

� CANONICAL_STABILITY_TYPE_ID_Dynamic
� CANONICAL_STABILITY_TYPE_ID_DynamicCompatible
� CANONICAL_STABILITY_TYPE_ID_Static

Constants for Status Type Concepts
The constants for unique identifiers for the concepts that identify status types are as
follows:

� CANONICAL_STATUS_TYPE_ID_Approved
� CANONICAL_STATUS_TYPE_ID_Deprecated
� CANONICAL_STATUS_TYPE_ID_Submitted
� CANONICAL_STATUS_TYPE_ID_Withdrawn

Constants for Subject Role Concepts
The constants for unique identifiers for the concepts that identify subject roles are as
follows:

� CANONICAL_SUBJECT_ROLE_ID_ContentOwner
� CANONICAL_SUBJECT_ROLE_ID_Intermediary
� CANONICAL_SUBJECT_ROLE_ID_RegistryAdministrator
� CANONICAL_SUBJECT_ROLE_ID_RegistryGuest

Constant for Stored Query
One constant is provided for a predefined query:

� CANONICAL_QUERY_GetCallersUser

96 Service Registry 3 2005Q4 Developer’s Guide • October 2005

Index

Numbers and Symbols
% (percent sign), wildcard in JAXR queries, 32
_ (underscore), wildcard in JAXR queries, 33

A
addAssociation method (RegistryObject

interface), 76
addChildConcept method

(ClassificationScheme interface), 63
addChildConcept method (Concept

interface), 63
addChildOrganization method (Organization

interface), 69
addChildOrganizations method (Organization

interface), 69
addClassification method (RegistryObject

interface), 66
addRegistryObject method (RegistryPackage

interface), 81
addRegistryObjects method (RegistryPackage

interface), 81
addServiceBindings method (Service

interface), 72
addServices method (Organization

interface), 72
addSpecificationLink method (ServiceBinding

interface), 80
AdhocQueryManagerImpl class, 55-56
approveObjects method (LifeCycleManagerImpl

class), 83
approving registry objects, 83

approving registry objects (Continued)
example, 84

asant command, using with JAXR
examples, 19-20

Association interface, 28
creating objects, 75-77, 87-88

AssociationType classification scheme, 36, 75
concepts, 75

audit trails
generating events, 82-84
retrieving, 50-51

AuditableEvent interface, 28
retrieving objects, 50-51

authentication, 60

B
build.properties file, JAXR examples, 19-20
BusinessLifeCycleManager interface, 17, 25, 59
BusinessQueryManager interface, 25

C
certificates, obtaining, 21-23
Classification interface, 29

adding objects, 65-66
retrieving objects, 44
using to find objects, 35-38

classification schemes
creating with JAXR, 63-65
ebXML specification, 35

97

ClassificationScheme interface, 29
clients, JAXR, 17

examples, 19-20
setting up, 21-25

Concept interface, 29
concepts, using to create classifications with

JAXR, 65-66
connection factories, JAXR

creating, 24
looking up, 24

Connection interface, 17, 24-25
connection properties, JAXR, examples, 24-25
ConnectionFactory class, 24
connections, JAXR

creating, 24-25
setting properties, 24-25

ContentManagementService classification
scheme, 36

createAssociation method (LifeCycleManager
interface), 76

createClassification method (LifeCycleManager
interface), 35, 65

createClassificationScheme method
(LifeCycleManager interface), 64

createConcept method (LifeCycleManager
interface), 64

createExternalIdentifier method
(LifeCycleManager interface), 39, 67

createExternalLink method (LifeCycleManager
interface), 40, 67

createExtrinsicObject method
(LifeCycleManager interface), 78

createInternationalString method
(LifeCycleManager interface), 62

createKey method (LifeCycleManager
interface), 63

createLocalizedString method
(LifeCycleManager interface), 62

createObject method (LifeCycleManager
interface), 62

createOrganization method (LifeCycleManager
interface), 68

createPersonName method (LifeCycleManager
interface), 71

createPostalAddress method (LifeCycleManager
interface), 68

createQuerymethod (DeclarativeQueryManager
interface), 52

createRegistryPackage method
(LifeCycleManager interface), 81

createService method (LifeCycleManager
interface), 72

createServiceBinding method
(LifeCycleManager interface), 72

createSlot method (LifeCycleManager
interface), 68

createSpecificationLink method
(LifeCycleManager interface), 80

createTelephoneNumber method
(LifeCycleManager interface), 68

createUser method (LifeCycleManager
interface), 71

D
DataType classification scheme, 36
DeclarativeQueryManager interface, 17, 52-53
DeclarativeQueryManagerImpl class, 53-54
deleteObjects method (LifeCycleManager

interface), 85
DeletionScopeType classification scheme, 36
deprecateObjects method (LifeCycleManager

interface), 83
deprecating registry objects, 83

example, 84

E
ebXML, registries, 15
EmailAddress interface, 30

retrieving objects, 46-48
EmailType classification scheme, 36
ErrorHandlingModel classification scheme, 36
ErrorSeverityType classification scheme, 36
EventType classification scheme, 36
examples

JAXR
adding classifications to objects, 66
adding external identifiers to objects, 67
adding external links to objects, 68
adding slots to objects, 68
changing the state of registry objects, 84
creating an extrinsic object as a

specification link, 80-81

98 Service Registry 3 2005Q4 Developer’s Guide • October 2005

examples, JAXR (Continued)
creating associations, 77
creating classification schemes, 64-65
creating extrinsic objects, 79
creating organization hierarchies, 70
creating organizations, 69-70
creating registry packages, 82
declarative queries, 53
deleting objects, 86
displaying classification schemes and

concepts, 37
federated queries, 57
finding objects by classification, 38
finding objects by external

identifier, 39-40
finding objects by external link, 40-41
finding objects by key, 32
finding objects by name, 34
finding objects by type, 34-35
finding objects by unique identifier, 32
finding objects you published, 41-42
introduction, 19-20
iterative queries, 54
publishing a service, 80-81
retrieving organization and user

attributes, 48
retrieving organization hierarchies, 70
stored queries, 55-56
storing items in the repository, 79

executeQuery method
(DeclarativeQueryManager interface), 52

executeQuery method
(DeclarativeQueryManagerImpl class), 53

external classification schemes, definition, 66
ExternalIdentifier interface, 29

adding objects, 66-67
retrieving objects, 44-45
using to find objects, 39-40

ExternalLink interface, 29
adding objects, 67-68
retrieving objects, 45
using to find objects, 40-41

extramural associations, definition, 77
ExtrinsicObject interface

creating objects, 78-79
deleting objects, 85
using objects as specification links, 79-81

ExtrinsicObject< interface, 29

F
federations, registry, querying, 56-57
FindAllMyObjects stored query, 55
findClassificationSchemeByName method

(BusinessQueryManager interface), 35, 65
findObjects method

(BusinessQueryManagerImpl class), 28, 32

G
getAccessURI method (ServiceBinding

interface), 49
getAddress method (EmailAddress

interface), 47
getAreaCode method (TelephoneNumber

interface), 47
getAuditTrail method (RegistryObject

interface), 50-51
GetCallersUser stored query, 55
getChildOrganizations method (Organization

interface), 50
getCity method (PostalAddress interface), 46
getClassifications method (RegistryObject

interface), 44
getConnectionFactory method (JAXRUtility

class), 24
getCountry< method (PostalAddress

interface), 46
getCountryCode method (TelephoneNumber

interface), 47
getDescendantOrganizations method

(Organization interface), 50
getDescription method (RegistryObject

interface), 43
getEmailAddresses method (User interface), 47
getEventType method (AuditableEvent

interface), 51
getExtension method (TelephoneNumber

interface), 47
getExternalIdentifiers method (RegistryObject

interface), 44-45
getExternalLinks method (RegistryObject

interface), 45
getFirstName method (PersonName

interface), 47
getId method (Key interface), 43

99

getIdentificationScheme method
(ExternalIdentifier interface), 44-45

getKey method (RegistryObject interface), 43
getLastName method (PersonName

interface), 47
getLid method (RegistryObjectImpl class), 43
getMiddleName method (PersonName

interface), 47
getName method (RegistryObject interface), 43
getNumber method (TelephoneNumber

interface), 47
getObjectType method (RegistryObject

interface), 43-44
getParentOrganization method (Organization

interface), 49
getPersonName method (User interface), 47
getPostalAddress method (Organization

interface), 46
getPostalAddresses method (User interface), 47
getPostalCode method (PostalAddress

interface), 46
getPrimaryContact method (Organization

interface), 46
getRegistryObject method (QueryManager

interface), 27, 31
getRegistryObjects method (QueryManager

interface), 27, 41
getRootOrganization method (Organization

interface), 50
getServiceBindings method (Service

interface), 49
getServices method (Organization interface), 49
getSlots method (RegistryObject

interface), 45-46
getSlotType method (Slot interface), 45-46
getSpecificationLinks method (ServiceBinding

interface), 49
getSpecificationObject method

(SpecificationLink interface), 49
getStateOrProvince method (PostalAddress

interface), 46
getStreet method (PostalAddress interface), 46
getStreetNumber method (PostalAddress

interface), 46
getTelephoneNumbers method (Organization

interface or User interface), 47
getTimeStamp method (AuditableEvent

interface), 51

getType method (EmailAddress interface), 47
getType method (PostalAddress interface), 46
getType method (TelephoneNumber

interface), 47
getUrl method (TelephoneNumber

interface), 47
getUsageDescription method (SpecificationLink

interface), 49
getUsageParameters method (SpecificationLink

interface), 49
getValues method (Slot interface), 45-46
getVersionInfo method (RegistryObjectImpl

class), 52
getVersionName method (VersionInfoType

interface), 52
Glossary, link to, 10

I
information model, JAXR, 16-17

interfaces, 28-31
internal classification schemes, definition, 65
InternationalString interface, 30
intramural associations, definition, 77
InvocationModel classification scheme, 36
IterativeQueryParams class, 54

J
javax.xml.registry.infomodel package, 17
javax.xml.registry package, 17
JAXR

architecture, 17-18
classification schemes, 35
clients, 17, 21-25
creating connections, 24-25
creating objects, 61-73
definition, 16-17
establishing security credentials, 60
information model, 16-17, 28-31
provider, 17
publishing objects to a registry, 59-73
querying a registry, 27-57
specification, 16-17

JAXRExamples.properties file, JAXR
examples, 20

100 Service Registry 3 2005Q4 Developer’s Guide • October 2005

K
Key interface, 31

using to find objects, 31-32

L
LifeCycleManager interface, 17, 25
LocalizedString interface, 31
logical identifiers, retrieving, 43

N
NodeType classification scheme, 36
NotificationOptionType classification

scheme, 36

O
ObjectType classification scheme, 36
Organization interface, 29

creating objects, 68-70
deleting objects, 85
retrieving object attributes, 46-48
retrieving parent and child objects, 49-50
retrieving services and service

bindings, 48-49

P
PersonName interface, 31
PhoneType classification scheme, 36
PostalAddress interface, 31

retrieving objects, 46-48
providers, JAXR, 17

Q
queries

basic methods, 27-28
by classification, 35-38
by external identifier, 39-40
by external link, 40-41
by name, 32-34

queries (Continued)
by type, 34-35
by unique identifier, 31-32
declarative, 52-53
federated, 56-57
iterative, 53-54
stored, 55-56

QueryLanguage classification scheme, 36
QueryManager interface, 17

R
registries

definition, 15
ebXML, 15
federations, 56-57
UDDI, 15

registry federations, definition, 16
registry objects

adding classifications, 65-66
adding external identifiers, 66-67
adding external links, 67-68
adding names and descriptions, 62
adding slots, 68
approving, deprecating, or

undeprecating, 83
creating, 61-73
creating associations, 75-77, 87-88
creating identifiers, 63
finding by classification, 35-38
finding by external identifier, 39-40
finding by external link, 40-41
finding by key, 31-32
finding by name, 32-34
finding by type, 34-35
finding by unique identifier, 31-32
finding objects you published, 41-42
finding with declarative queries, 52-53
finding with iterative queries, 53-54
finding with stored queries, 55-56
organizing as registry packages, 81-82
removing, 85-86
retrieving audit trail, 50-51
retrieving classifications, 44
retrieving external identifiers, 44-45
retrieving external links, 45
retrieving information about, 42-52

101

registry objects (Continued)
retrieving logical identifier, 43
retrieving name or description, 43
retrieving slots, 45-46
retrieving type, 43-44
retrieving unique identifier, 43
retrieving version information, 51-52
saving, 73
using create methods, 62

registry providers, definition, 15
RegistryObject interface, 17
RegistryPackage interface, 29

creating objects, 81-82
RegistryService interface, 17, 25
repositories

definition, 16
storing items in, 78-81

ResponseStatusType classification scheme, 36

S
saveObjects method (LifeCycleManager

interface), 73
saveOrganizations method

(BusinessLifeCycleManager interface), 73
saving registry objects, 73
security credentials for Registry, 60
service bindings, definition, 72
Service interface, 30

creating objects, 71-73
deleting objects, 85
retrieving objects, 48-49

Service Registry
changing the state of objects, 82-84
getting access, 21-23
obtaining authorization, 60
publishing objects with JAXR, 59-73
querying with JAXR, 27-57
removing objects, 85-86
saving objects, 73
starting, 21
storing items in the repository, 78-81

ServiceBinding interface, 30
creating objects, 71-73
retrieving objects, 48-49

ServiceBinding objects, using extrinsic objects as
specification links, 79-81

setAccessURI method (ServiceBinding
interface), 72

setAreaCode method (TelephoneNumber
interface), 68

setCountryCode method (TelephoneNumber
interface), 68

setDescription method (RegistryObject
interface), 68

setEmailAddresses method (User interface), 71
setFederated method (QueryImpl class), 56
setFederation method (QueryImpl class), 56
setKey method (RegistryObject interface), 63
setLid method (RegistryObjectImpl class), 63
setMimeType method (ExtrinsicObject

interface), 78, 80
setNumber method (TelephoneNumber

interface), 68
setObjectType method (ExtrinsicObjectImpl

class), 78, 80
setPersonName method (User interface), 71
setPostalAddress method (Organization

interface), 68
setSpecificationObject method

(SpecificationLink interface), 80
setTelephoneNumbers method (Organization

interface), 68
setTelephoneNumbers method (User

interface), 71
setType method (TelephoneNumber

interface), 68
setUrl method (User interface), 71
setValidateURI method (ExternalLink

interface), 67
setValidateURI method (ServiceBinding

interface), 72
Slot interface, 30

adding objects, 68
retrieving objects, 45-46

SpecificationLink interface, 30
using extrinsic objects, 79-81

StatusType classification scheme, 36
SubjectGroup classification scheme, 37
SubjectRole classification scheme, 37

T
targets.xml file, JAXR examples, 19

102 Service Registry 3 2005Q4 Developer’s Guide • October 2005

TelephoneNumber interface, 31
retrieving objects, 46-48

U
UDDI, registries, 15
unDeprecateObjects method (LifeCycleManager

interface), 83
undeprecating registry objects, 83

example, 84
unique identifiers

finding objects by, 31-32
retrieving, 43

User interface, 30
creating objects, 70-71
retrieving object attributes, 46-48

V
version information, retrieving, 51-52

W
wildcards, using in JAXR queries, 32
WSDL files, storing as extrinsic objects, 79-81

103

104 Service Registry 3 2005Q4 Developer’s Guide • October 2005

	Service Registry 3 2005Q4 Developer's Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Service Registry Documentation Set
	Related Books
	Default Paths and File Names
	Typographic Conventions
	Shell Prompts in Command Examples
	Symbol Conventions
	Accessing Sun Resources Online
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Overview of JAXR
	About Registries and Repositories
	About JAXR
	JAXR Architecture
	About the Examples
	To Edit the build.properties File
	To Edit the JAXRExamples.properties File

	Setting Up a JAXR Client
	Starting the Registry
	Getting Access to the Registry
	To Create a Keystore for Your Certificate
	To Edit the Security Settings of the JAXRExamples.properties File

	Establishing a Connection to the Registry
	Creating or Looking Up a Connection Factory
	Obtaining a ConnectionFactory Instance
	Looking Up a Connection Factory

	Creating a Connection

	Obtaining and Using a RegistryService Object

	Querying a Registry
	Basic Query Methods
	JAXR Information Model Interfaces
	Finding Objects by Unique Identifier
	Finding Objects by Unique Identifier: Example
	To Run the JAXRSearchById Example

	Finding Objects by Name
	Finding Objects by Name: Example
	To Run the JAXRSearchByName Example

	Finding Objects by Type
	Finding Objects by Type: Example
	To Run the JAXRSearchByObjectType Example

	Finding Objects by Classification
	To Run the JAXRGetCanonicalSchemes Example
	Finding Objects by Classification: Examples
	To Run the JAXRSearchByClassification and JAXRSearchByCountryClassification Examples

	Finding Objects by External Identifier
	Finding Objects by External Identifier: Example
	To Run the JAXRSearchByExternalIdentifier Example

	Finding Objects by External Link
	Finding Objects by External Link: Example
	To Run the JAXRSearchByExternalLink Example

	Finding Objects You Published
	Finding Objects You Published: Examples
	To Run the JAXRGetMyObjects and JAXRGetMyObjectsByType Examples

	Retrieving Information About an Object
	Retrieving the Identifier Values for an Object
	Retrieving the Name or Description of an Object
	Retrieving the Type of an Object
	Retrieving the Classifications for an Object
	Retrieving the External Identifiers for an Object
	Retrieving the External Links for an Object
	Retrieving the Slots for an Object
	Retrieving the Attributes of an Organization or User
	Retrieving Organization Attributes: Example
	To Run the JAXRSearchOrg Example

	Retrieving the Services and Service Bindings for an Organization
	Retrieving an Organization Hierarchy
	Retrieving the Audit Trail of an Object
	Retrieving the Version of an Object

	Using Declarative Queries
	Using Declarative Queries: Example
	To Run the JAXRQueryDeclarative Example

	Using Iterative Queries
	Using Iterative Queries: Example
	To Run the JAXRQueryIterative Example

	Invoking Stored Queries
	Invoking Stored Queries: Example
	To Run the JAXRQueryStoredExample

	Querying a Registry Federation
	Using Federated Queries: Example
	To Run the JAXRQueryFederationExample

	Publishing Objects to the Registry
	Authenticating with the Registry
	Creating Objects
	Using Create Methods for Objects
	Adding Names and Descriptions to Objects
	Identifying Objects
	Creating and Using Classification Schemes and Concepts
	Creating and Displaying Classification Schemes: Examples
	To Run the JAXRPublishScheme Example
	To Run the JAXRSearchScheme Example
	To Run the JAXRDeleteScheme Example

	Adding Classifications to Objects
	Adding Classifications: Example
	To Run the JAXRPublishObject Example

	Adding External Identifiers to Objects
	Adding External Links to Objects
	Adding Slots to Objects
	Creating Organizations
	Creating an Organization: Examples
	To Run the JAXRPublishOrg and JAXRPublishOrgNoPC Examples

	Creating and Retrieving an Organization Hierarchy: Examples
	To Run the JAXRPublishOrgFamily and JAXRSearchOrgFamily Examples

	Creating Users
	Creating Services and Service Bindings

	Saving Objects in the Registry

	Managing Objects in the Registry
	Creating Relationships Between Objects: Associations
	Creating Associations: Example
	To Run the JAXRPublishAssociation Example

	Storing Items in the Repository
	Creating an Extrinsic Object
	Creating an Extrinsic Object: Example
	To Run the JAXRPublishExtrinsicObject Example

	Using an Extrinsic Object in a Specification Link
	Creating an Extrinsic Object for Use in a Specification Link: Example
	To Run the JAXRPublishService Example

	Organizing Objects Within Registry Packages
	Organizing Objects Within Registry Packages: Examples
	To Run the JAXRPublishPackage and JAXRSearchPackage Examples

	Changing the State of Objects in the Registry
	Changing the State of Objects in the Registry: Examples
	To Run the JAXRApproveObject, JAXRDeprecateObject, and JAXRUndeprecateObject Examples

	Controlling Access to Objects
	Removing Objects From the Registry and Repository
	Removing Objects from the Registry: Example
	To Run the JAXRDelete Example

	Developing Client Programs for the UDDI Interface
	Creating Client Programs

	Canonical Constants
	Constants for Classification Schemes
	Constants for Association Type Concepts
	Constants for Content Management Service Concepts
	Constants for Data Type Concepts
	Constants for Deletion Scope Type Concepts
	Constants for Email Type Concepts
	Constants for Error Handling Model Concepts
	Constants for Error Severity Type Concepts
	Constants for Event Type Concepts
	Constants for Invocation Model Concepts
	Constants for Node Type Concepts
	Constants for Notification Option Type Concepts
	Constants for Object Type Concepts
	Constants for Phone Type Concepts
	Constants for Query Language Concepts
	Constants for Response Status Type Concepts
	Constants for Stability Type Concepts
	Constants for Status Type Concepts
	Constants for Subject Role Concepts
	Constant for Stored Query

	Index

