Sun Java™ System

Web Proxy Server 4.0.1
NSAPI Developer’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-3652-10

2005Q4

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http: // waw sun. con pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.

The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs & la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
al'adresse http: // waww sun. con pat ents et un ou des brevets supplémentaires ou des applications de brevet en attente aux Etats - Unis et dans
les autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit peuvent étre dérivées des systemes Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.

L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.

Les produits qui font I'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents

Contents

AbOoUt This GUIAE e e e e 13
Who Should Use ThiS GUIE o e e 13
How This Guide ISOrganized i e 14
Documentation CONVENTIONS ittt e ettt 15
Using the DOCUMENTAtION e e e e e 15
Contacting Sun Technical SUPPOIt e 16
Third-Party Web Site References 17
Feedback o 17
Chapter 1 Creating Custom SAFS e 19
Future Compatibility ISSUES o 20
The SAF INTerface e 20
SAF ParameterS . . oo 20
pb (parameter BIOCK) 21

SN (SESSION) ittt e 21

PO (FBOUESE) ottt ettt e e e e 22
RESUIT COOBS . .ottt e e e e e e 23
Creating and Using CUStOmM SAFS ... i e e e 24
Write the SOUFCE COOE ... it e e e e e 24
Compile and LinK 25
Include Directoryand nsapi.h File 26

I o] =g 1 26
Linker Commands and Options for Generating a Shared Object 26
Additional Linker Flagso e 27
Compiler Flags 27

Load and Initialize the SAF o 28
Instruct the Server to Call the SAFS 29

Contents 3

REStArt the SEIVer . . . o 30

Testthe SAF o 30
Overview of NSAPI C FUNCLIONS oo e e 31
Parameter Block Manipulation ROULINES e 31
Protocol Utilities for Service SAFSo e 32
Memory Management e 32
File 1O o 32
NEtWOIK 1/ O 33
TRrEadS . o 33
UtIIEIES .o 34
Required Behavior of SAFs for Each Directive e 35
It S A RS o 36
AUTNTIANS SAFS . o 36
NaMETraNS SAFS . o 36
PathCNeCK SAFS . . 37
Ol TY P SAFS . .t 37
INPUE SA RS . 37
OULPUL SA RS . . e e e 37
SEIVICE SA RS . 38
B Or SA RS o 38
AdALOG SAFS . . 38
L0 o] o =T 0! 39
DN S o 39
FIIEr 39
ROUTE .o 39
Chapter 2 Creating Custom Filters e 41
Future Compatibility ISSUES o e 41
The NSAPI Filter INterface 42
Filter Methodso 42
C Prototypes for Filter Methods 42
1 1S7=T o P 43
FEIMIOVE o ottt ettt e e e e e 44
FIUSI o 44
- Lo 44
WVETEE L ottt e e 45
WVE BBV L ottt e e e 45
SENATIlE 45
Position of Filters inthe Filter Stack e 46
Filters that Alter Content-Length e 48
Creating and Using Custom Filters e 49
Write the Source Code 49
Compile and Link 50

4 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Load and Initialize the Filter 50

Instruct the Server to Insertthe Filter 51
Restart the SerVer 52
Testthe Filter 52
Overview of NSAPI Functions for Filter Development 52
Chapter 3 Examples of Custom SAFs and Filters 53
Examplesinthe Build e 54
AUNTrans EXamIPleo 55
Installing the EXample 55
SOUNCE GO . .ot e 56
NameTrans EXample 57
Installing the EXample 58
SOUNCE GO . . ittt e 58
PathCheck EXamPle e e e 61
Installing the EXample 61
SOUNCE GO . .ttt e 62
ObjectType EXampleo 64
Installing the EXample 65
SOUNCE GO . .t 65
OULPUL EXamMIPle .. 66
Installing the EXample 67
SOUNCE GO . . it 67
SerVICe EXample .. 73
Installing the EXample 74
SOUNCE GO . .t 74
More Complex Service Example 76
AddLOg EXample .. 76
Installing the EXample 77
SOUNCE GO . .ot 77
Chapter 4 NSAPI Function Reference e 81
NSAPI Functions (in Alphabetical Order) i e 81
C o 82
CaChE _dIgESt ..o 82
cache filename 82
cache fN 0 dig 83
CALLOC o 83
C BB o 84
Ce 0OKUP ..o 84
CIf WIITE NIy o 85
CINTO _fiNd L 86

Contents 5

6

CONAVAN NIt .o e e e 86

condVar_NOITY . ..o 87
conAvar_terMINGALE 87
CONAVAN WALot e e e e e e e 88
(00 1 R 01T 88
O BXIt oo 89
I It 89
CHit teBrMINGAtEo 90
.. 90
daemon_atrestart 90
ANS_Set NOSTENt . .. o 91
... 92
FC ClOSE o 92
FC 0PN 92
filebuf bUf2sd e 93
fllebUT ClOSE ..o e e e 94
FHlebUT _getC .. o 94
fllebUT _OpeN .. 95
filebuf_open_nostat 96
I T Create ..o e 96
fiter fiNd o e 98
I T INSEIt .o e e 98
L =T g =Y 99
I A . 99
IO FemMOVE ... e e 100
FIUSH 100
FREE o 101
TS BIK SIZE .o e e e 102
fs bIKS avail e e e 102
FUNC BXEC . ottt e e e 103
UNC fINd .o e 103
FUNC INSBIt L. 104
.. 105
1 1S7=T o 105
.. 106
oo = o e 106
... 107
MAgNUS_AtreSTarto e 107
M A L L O C .. 107
... 108
Net fIUSH .o e 108
Nt IP2N0St . . . 109
) A =T o 109

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Net_SeNdfileo 110

LT ALY 1 112
netbuf bUT2Sd e 112
NEtDUT ClOSE . .. 113
NE DU QLT . ..o 113
NE DU grabh . .. 114
NE DU 0PN . 114
Nsapi_module NIt 115
NSAPI_RUNTIME_VERSION e e 115
NSAPI _VERSION . 116
.. 117
PAFAM _CIEALE . . ottt ettt e e e e e e 117
[V t= V0 T = 117
POIOCK _COPY . ..o 118
POIOCK _Create .. e 118
POIOCK _dUP .. 119
POIOCK _fiNd e 119
pblock_fiNdIONg oo 120
pblock_findval 120
POIOCK e . 121
POIOCK _NIINSEIt . . 122
POIOCK _NNINSEIT . . . e 122
POIOCK _NVINSEIt .. e 123
POIOCK _PD2enV . . 123
pblock_pbloCK2Str 124
POIOCK _PINSEIT . 124
POIOCK _FEMIOVE . . . 125
PblocK_replace_Name e 125
pblock_str2pblock 126
PERM _CALLO C . 127
PERM _FREE . . 127
PERM_MALLOC ... e e 128
PERM _REALLOC ... e 129
PERM _STRDUP . e e 129
prepare_nsapi_thread 130
Protocol_dUmMPB22 . . . 131
protocol_finish_request e 131
protocol_handle_session 132
Protocol_parse _FeQUESE e 132
protocol_scan_headers i 133
protocol_set_finfo 133
ProtoCol_Start FeSPONSE e 134
ProtoCOl_StatUS o 135

Contents 7

8

ProtoCOl U 2UNT . . e 136

protocol_uri2url_dynamic e 136
.. 137
== T 137
REALLO C . . 138
FEIMOVE . . .ottt ettt et e e e e e 139
FEOUEST CrBALEottt e e e e e e e 139
FEgUEST e . 140
FeQUEST NBAEY . . . e 140
.. 141
SN _grAD . o 141
1= 0 0 T 142
SBIM TBIEASE . . oo e e e e 142
SBM I MINALE . . o e 143
SEM_tgral . . 143
SENATIlE o 144
RS IS] (o] I (= L (= P 144
SESSION NS .ttt e e 145
SESSION _fTEE .. o e e 146
SESSION MAXANS . . ottt e e 146
SNEX P GBI . . . ottt e 147
SOOI . 147
ShEXPD _MaAtCh . 148
SheXp_Valid . .o 149
Shmem _alloC e e 149
SNMEM _frEE . o e e 150
STRDUP o 151
SYSTEIM_BITINIST . . ot ittt e et e e et et e e e e e e e e e 151
SYStEM_fClOSEo 152
system_floCK 153
System_fOPENRO 153
SYSteM_fOPENRWV . . 154
SYStEM_fOPEN VA 154
SYSteM_fread o 155
SY S M W . L. 156
system_fwrite_atomiC 156
SY M _gMEIMIE .. oo 157
SyStem_l0Caltime 158
SY S _ISEEK 158
SYSTEIM _TBNAIMIE « . . ottt ettt e e e e e e 159
SYStem _UIOCK ... 159
System_UNiIX210cal 160
systhread_attach 160

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

SYSthread _CUITENt e e e 161

systhread_getdata it 161
Systhread _INit 162
Systhread _NeWKEY 162
systhread_setdata i 163
SYSthread _SIEED .. o 163
SYSthread _Start 164
systhread_terminate i 164
SySthread _tIMerSet 165
... 166
USE_NSAPI VERSION ... e e 166
UL G BXEC . . oottt e 167
UtIl_chdir2path 168
util_cookie fiNd 168
ULIl_dOBS_ProCeSS XIStt e 169
UL BNV CrBALE . ..ttt e e et e e e 169
UL enV fiNd ..o 170
UL BNV frBE oo e 170
ULIL BNV _replace o 171
UL BNV St Lo e e 171
ULIL_get CUMTeNt gt e e e e e e 172
util_get_int_from_aux_file 172
util_get_int_from_file 173
util_get_long_from_aux_file 173
util_get_long_from_file 174
util_get_string_from_aux_file 174
util_get_string_from_file e 175
UL _getling ... 176
UL NOSENAME . . o e e e 176
UL IS MOzZIlla ... e e 177
UL IS UMl o e e 177
UL TE0@ . o e 178
Ut ater than ... e 178
util_make filename 179
Ut make gmt . 179
util_make local e e 180
UL MOVE il .. e e 180
UL MOVE File . . e 181
Util_parse http time e 181
util_put_int_to_file 182
util_put_long_to file 182
util_put_string_to_aux_file 183
util_put_string_to_file e 183

Contents 9

UL Bt I ... e 184

UL SN B8P . it 184
UL SNt e 185
UL SPIINt e 186
UL ST CaSE M oo 186
UL St time . 187
UL SIINCaSE M .o e e 188
UL U _CNECK . . e 188
UL U B8P .« oottt e e e e 189
UL UN IS VIl . 189
UL U ParSE .. 190
UL U _UNBSCAPE . . . ettt ettt e e e e e e e e e e e e e e 190
UL UN M 191
Ut Url fiX_hOSt Namie ... e e 191
UL UKL has FODN ... e e e e 192
UL VSNPIINt L 192
UL VSNt 193
N 194
WVETEE L ot e e 194
WVE I BV L ottt e e e 195
Chapter 5 Data Structure Reference 197
Privatization of Some Data SIFUCLUIeSt 198
ST ES1 [o 199
POIOCK . e 199
P BN Y o e 200
P ParAM o 200
SESSION-SCHENT . . oo 200
REGUESE . o 201
SEat . o 201
SIS . oo 202
CINTO L L 202
sendfiledata 203
BT o e 203
eI CONTEXE . oo e 204
I Y O . 204
FIlterMethods o 204
The CacheEntry Data SIrUCtUre e e 205
The CacheState Data StrUCLUIE e e 206
The ConnectMode Data STrUCtUIE e 207

10 Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer’'s Guide

Chapter 6 Using Wildcard Patterns e 209

Wildcard Patterns 209
Wildcard EXamples oo 210
Chapter 7 Time FOrmats e e 213
Chapter 8 Hypertext Transfer Protocol i 215
COMPIIANCE oo 215
REOUESES .ot 216
Request Method, URI, and Protocol Versiont 216
ReqUEST HEAEIS ... i 216
REQUEST Data . . . oottt 217
RPN S . . ottt 217
HTTP Protocol Version, Status Code, and Reason Phrase, 217
RESPONSE HEAErS . . o e 218
RESPONSE DaAla . .o\ttt 219
BUFfered Streams . .. oo 219
Appendix A Alphabetical List of NSAPI Functions and Macros 223
IO X Lo e e 233

Contents 11

12 Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer’'s Guide

About This Guide

This guide describes how to configure and administer the Sun Java™ System Web
Proxy Server 4, formerly known as Sun ONE Web Proxy Server and iPlanet™ Web
Proxy Server (and hereafter referred to as Sun™ Java System Web Proxy Server or
just Proxy Server).

This guide provides a reference of the NSAPI functions you can use to define new
plugins.

This preface contains information about the following topics:
= Who Should Use This Guide

< How This Guide Is Organized

< Documentation Conventions

= Using the Documentation

= Contacting Sun Technical Support

< Third-Party Web Site References

= Feedback

Who Should Use This Guide

The intended audience for this guide is the person who develops, assembles, and
deploys NSAPI plugins in a corporate enterprise. This guide assumes you are
familiar with the following topics:

- HTTP
- HTML

13

How This Guide Is Organized

= NSAPI

e C programming

= Software development processes, including debugging and source code

control

How This Guide Is Organized

The guide is divided into parts, each of which addresses specific areas and tasks.
The following table lists the parts of the guide and their contents .

Table 1 Guide Organization

Chapter

Description

Chapter 1, “Creating Custom SAFs”

Chapter 2, “Creating Custom Filters”

Chapter 3, “Examples of Custom
SAFs and Filters”

Chapter 4, “NSAPI Function
Reference”

Chapter 5, “Data Structure
Reference”

Chapter 6, “Using Wildcard Patterns”

Chapter 7, “Time Formats”

Chapter 8, “Hypertext Transfer
Protocol”

Appendix A, “Alphabetical List of
NSAPI Functions and Macros”

This chapter discusses how to create your own plugins
that define new SAFs to modify or extend the way the
server handles requests.

This chapter discusses how to create your own custom
filters that you can use to intercept, and potentially
modify, incoming content presented to or generated by
another function.

This chapter describes examples of custom SAFs to use
at each stage in the request-handling process.

This chapter presents a reference of the NSAPI
functions. You use NSAPI functions to define SAFs.

This chapter discusses some of the commonly used
NSAPI data structures.

This chapter lists the wildcard patterns you can use when
specifying values in obj.conf and various predefined
SAFs.

This chapter lists time formats.

This chapter gives an overview of HTTP.

This appendix provides an alphabetical list of NSAPI
functions and macros.

14 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Documentation Conventions

Documentation Conventions

The following table lists the documentation conventions used in this guide.

Table 2 Documentation Conventions

Element Usage

File and directory paths Given in UNIX® format, with forward slashes separating
directory names

Installation root directories Indicated asi nstal | _dir.

Italic text Titles, emphasis, terms

nonospace text Code examples, file names, path names, command

names, programming language keywords, properties

iitalic nmonospace text Variable path names, environment variables in paths

Using the Documentation

The Sun Java System Web Proxy Server 4.0.1 documentation is available in PDF
and HTML formats at:
http://docs.sun.com/app/docs/coll/1311.1

The following table lists the tasks and concepts described in guide..

Table 3 Proxy Server Documentation

For Information About See

Late-breaking information about the software Release Notes
and documentation

Performing installation and migration tasks: Installation and Migration Guide
e Supported platforms and environments

¢ Installing Sun Java System Web Proxy
Server

« Migrating from version 3.6 to version 4

About This Guide 15

http://docs.sun.com/app/docs/coll/1311.1

Contacting Sun Technical Support

Table 3 Proxy Server Documentation

For Information About

See

Performing administration and management
tasks:

Creating custom Netscape Server Application

Using the Administration and
command-line interfaces

Configuring server preferences
Managing users and groups
Monitoring and logging server activity

Using certificates and public key
cryptography to secure the server

Controlling server access
Proxying and routing URLs
Caching

Filtering content

Using a reverse proxy
Using SOCKS

Tuning the Proxy Server to optimize
performance

Programmer’s Interface (NSAPI) plugins

Editing configuration files

Administration Guide
(and the online Help included with the product)

NSAPI Developer's Guide

Configuration File Reference

Contacting Sun Technical Support

For technical questions about this product not answered in the product
documentation, go to:
http://www.sun.com/service/contacting

16 Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer’'s Guide

http://www.sun.com/service/contacting

Third-Party Web Site References

Third-Party Web Site References

Sun is not responsible for the availability of third-party Web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or

resources.

Feedback

Sun is interested in improving its documentation and welcomes your comments
and suggestions. To share your comments, go to http://docs.sun.com and click
"Send comments." Be sure to provide the document title and part number in the

online form.

About This Guide 17

http://docs.sun.com

Feedback

18 Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Chapter 1

Creating Custom SAFs

This chapter describes how to write your own NSAPI plugins that define custom
Server Application Functions (SAFs). Creating plugins allows you to modify or
extend the Sun Java System Web Proxy Server’s built-in functionality. For example,
you can modify the server to handle user authorization in a special way.

This chapter has the following sections:

= For a complete list of the NSAPI routines for implementing custom SAFs, see
“NSAPI Function Reference.” Future Compatibility Issues

= The SAF Interface

= SAF Parameters

= Result Codes

= Creating and Using Custom SAFs

= Overview of NSAPI C Functions

= Required Behavior of SAFs for Each Directive

Before writing custom SAFs, you should familiarize yourself with the
request-handling process, as described in general in the Sun Java System Web
Proxy Server 4.0.1 Configuration File Reference. Also, before writing a custom SAF,
check to see if a built-in SAF already accomplishes the tasks you have in mind.

For information about predefined SAFs used in the obj . conf file, see the Sun Java
System Web Proxy Server 4.0.1 Configuration File Reference.

For a complete list of the NSAPI routines for implementing custom SAFs, see
Chapter 4, “NSAPI Function Reference.”

19

Future Compatibility Issues

Future Compatibility Issues

The NSAPI interface may change in a future version of Sun Java System Web Proxy
Server. To keep your custom plugins upgradeable, do the following:

= Make sure plugin users know how to edit the configuration files (such as
magnus. conf and obj . conf) manually. The plugin installation software should
not be used to edit these configuration files.

= Keep the source code so you can recompile the plugin.

The SAF Interface

All SAFs (custom and built-in) have the same C interface regardless of the
request-handling step for which they are written. They are small functions
designed for a specific purpose within a specific request-response step. They
receive parameters from the directive that invokes them in the obj . conf file, from
the server, and from previous SAFs.

Here is the C interface for a SAF:
int function(pblock *pb, Session *sn, Request *rq);
The next section discusses the parameters in detail.

The SAF returns a result code that indicates whether and how it succeeded. The
server uses the result code from each function to determine how to proceed with
processing the request. See , for details of the result codes.

SAF Parameters

20

This section discusses the SAF parameters in detail. The parameters are:

e pb (parareter bl ock) -- contains the parameters from the directive that
invokes the SAF in the obj . conf file.

= sn (session) -- contains information relating to a single TCP/IP session.

= rq (request) -- contains information relating to the current request.

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

SAF Parameters

pb (parameter block)

The pb parameter is a pointer to a pbl ock data structure that contains values
specified by the directive that invokes the SAF. A pbl ock data structure contains a
series of name-value pairs.

For example, a directive that invokes the basi c- nsca function might look like:

Aut hTrans fn=basi c-ncsa aut h-type=basic
dbn¥/ <I nstal | _Root >/ <I nstance_Di rect ory>/ userdb/rs

In this case, the pb parameter passed to basi c- ncsa contains name-value pairs that
correspond to aut h-t ype=basi ¢ and
dbme/ <Instal | _Root >/ <I nstance_Directory>/ userdb/rs.

NSAPI provides a set of functions for working with pbl ock data structures. For
example, pbl ock_fi ndval () returns the value for a given name in a pbl ock. See
“Parameter Block Manipulation Routines” on page 31, for a summary of the most
commonly used functions for working with parameter blocks.

sn (session)

The sn parameter is a pointer to a sessi on data structure. This parameter contains
variables related to an entire session (that is, the time between the opening and
closing of the TCP/IP connection between the client and the server). The same sn
pointer is passed to each SAF called within each request for an entire session. The
following list describes the most important fields in this data structure (see
Chapter 4, “NSAPI Function Reference,” for information about NSAPI routines for
manipulating the sessi on data structure).

e sn->client

Pointer to a pbl ock containing information about the client such as its IP
address, DNS name, or certificate. If the client does not have a DNS name or if
it cannot be found, it will be set to - none.

e sn->csd

Platform-independent client socket descriptor. You will pass this to the
routines for reading from and writing to the client.

Chapter 1 Creating Custom SAFs 21

SAF Parameters

rq (request)

The r g parameter is a pointer to ar equest data structure. This parameter contains
variables related to the current request, such as the request headers, URI, and local
file system path. The same r equest pointer is passed to each SAF called in the
request-response process for an HTTP request.

The following list describes the most important fields in this data structure (see
Chapter 4, “NSAPI Function Reference,” for information about NSAPI routines for
manipulating the r equest data structure).

e rg->vars

Pointer to a pbl ock containing the server’s “working” variables. This includes
anything not specifically found in the following three pbl ocks. The contents of
this pbl ock vary depending on the specific request and the type of SAF. For
example, an Aut hTr ans SAF may insert an aut h- user parameter into

r g- >var s which can be used subsequently by a Pat hCheck SAF.

e rg->reqpb

Pointer to a pbl ock containing elements of the HTTP request. This includes the
HTTP method (GET, POST, and so on), the URI, the protocol (normally
HTTP/1.0), and the query string. This pbl ock does not normally change
throughout the request-response process.

e rg->headers

Pointer to a pbl ock containing all of the request headers (such as User - Agent ,
I f- Modi fi ed- Si nce, and so on) received from the client in the HTTP request.
See Chapter 8, “Hypertext Transfer Protocol,” for more information about
request headers. This pbl ock does not normally change throughout the
request-response process.

e rg->srvhdrs

Pointer to a pbl ock containing the response headers (such as Server, Dat e,
Cont ent - Type, Cont ent - Lengt h, and so on) to be sent to the client in the
HTTP response. See Chapter 8, “Hypertext Transfer Protocol,” for more
information about response headers.

22 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Result Codes

The r g parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, r g contains whatever
values were inserted or modified by previously executed SAFs. On output, r g
contains any modifications or additional information inserted by the SAF. Some
SAFs depend on the existence of specific information provided at an earlier step in
the process. For example, a Pat hCheck SAF retrieves values inr g- >var s that were
previously inserted by an Aut hTr ans SAF.

Result Codes

Upon completion, a SAF returns a result code. The result code indicates what the
server should do next. The result codes are:

REQ PROCEED

Indicates that the SAF achieved its objective. For some request-response steps
(Aut hTrans, NaneTr ans, Servi ce, and Error), this tells the server to proceed to the
next request-response step, skipping any other SAFs in the current step. For
the other request-response steps (Pat hCheck, Qbj ect Type, and AddLog), the
server proceeds to the next SAF in the current step.

REQ_NCACTI ON

Indicates that the SAF took no action. The server continues with the next SAF
in the current server step.

REQ_ABCORTED

Indicates that an error occurred and an HTTP response should be sent to the
client to indicate the cause of the error. A SAF returning REQ ABORTED should
also set the HTTP response status code. If the server finds an Err or directive
matching the status code or reason phrase, it executes the SAF specified. If not,
the server sends a default HTTP response with the status code and reason
phrase plus a short HTML page reflecting the status code and reason phrase
for the user. The server then goes to the first AddLog directive.

REQ EXI T

Indicates the connection to the client was lost. This should be returned when
the SAF fails in reading or writing to the client. The server then goes to the first
AddLog directive.

Chapter 1 Creating Custom SAFs 23

Creating and Using Custom SAFs

Creating and Using Custom SAFs

24

Custom SAFs are functions in shared libraries that are loaded and called by the
server. Follow these steps to create a custom SAF:

1. Write the Source Code using the NSAPI functions. Each SAF is written for a
specific directive.

2. Compile and Link the source code to create a shared library (. so,. sl ,or.dl |)
file.

3. Load and Initialize the SAF by editing the magnus. conf file to:
o Load the shared library file containing your custom SAF(s)
o Initialize the SAF if necessary

4. Instruct the Server to Call the SAFs by editing obj . conf to call your custom
SAF(s) at the appropriate time.

5. Restart the Server.

6. Test the SAF by accessing your server from a browser with a URL that triggers
your function.

The following sections describe these steps in greater detail.

Write the Source Code

Write your custom SAFs using NSAPI functions. For a summary of some of the
most commonly used NSAPI functions, see “Overview of NSAPI C Functions” on
page 31. For information about available routines, see Chapter 4, “NSAPI Function
Reference.”

For examples of custom SAFs, see nsapi / exanpl es/ in the server root directory,
and also see Chapter 3, “Examples of Custom SAFs and Filters.”

The signature for all SAFs is:
int function(pblock *ph, Session *sn, Request *rg);
For more details on the parameters, see “SAF Parameters” on page 20.

The Sun Java System Web Proxy Server runs as a multi-threaded single process. On
UNIX platforms there are actually two processes (a parent and a child), for
historical reasons. The parent process performs some initialization and forks the
child process. The child process performs further initialization and handles all of
the HTTP requests.

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Creating and Using Custom SAFs

Keep the following in mind when writing your SAF:

= Write thread-safe code

= Blocking may affect performance

= Write small functions with parameters and configure them in obj . conf

= Carefully check and handle all errors (and log them so you can determine the
source of problems and fix them)

If necessary, write an initialization function that performs initialization tasks
required by your new SAFs. The initialization function has the same signature as
other SAFs:

int function(pblock *pb, Session *sn, Request *rq);

SAFs expect to be able to obtain certain types of information from their parameters.
In most cases, parameter block (pbl ock) data structures provide the fundamental
storage mechanism for these parameters. A pbl ock maintains its data as a
collection of name-value pairs. For a summary of the most commonly used
functions for working with pbl ock structures, see “Parameter Block Manipulation
Routines” on page 31.

When defining a SAF, you do not specifically state which directive it is written for.
However, each SAF must be written for a specific directive (such as Aut hTr ans,
Ser vi ce, and so on). Each directive expects its SAFs to behave in particular ways,
and your SAF must conform to the expectations of the directive for which it was
written. For details of what each directive expects of its SAFs, see “Required
Behavior of SAFs for Each Directive” on page 35.

Compile and Link

Compile and link your code with the native compiler for the target platform. For
UNIX, use the gmake command. For Windows, use the nmake command. For
Windows, use Microsoft Visual C++ 6.0 or newer. You must have an import list
that specifies all global variables and functions to access from the server binary.
Use the correct compiler and linker flags for your platform. Refer to the example
Makefile in the server_root/ pl ugi ns/ nsapi / exanpl es directory.

Adhere to the following guidelines for compiling and linking.
Include Directory and nsapi.h File

Add the server_root/ pl ugi ns/ i ncl ude (UNIX) or server_root\ pl ugi ns\i ncl ude
(Windows) directory to your makefile to include the nsapi . h file.

Chapter 1 Creating Custom SAFs 25

Creating and Using Custom SAFs

26

Libraries

Add the server_root/ bi n/ htt ps/ i b (UNIX) or server_root\ bi n\ ht t ps\ bi n (Windows)
library directory to your linker command.

The following table lists the library that you need to link to.

Table 1-1 Libraries

Platform Library

Windows ns-httpd40.dl1 (in addition to the standard Windows
libraries)

HP-UX |'i bns- ht t pd40. sl

All other UNIX platforms I'i bns- htt pd40. so

Linker Commands and Options for Generating a Shared Object

To generate a shared library, use the commands and options listed in the following
table.

Table 1-2 Linker Commands and Options

Platform Options

Solaris™ Operating Id -Gorcc -G
System (SPARC®
Platform Edition)

Windows link -LD

HP-UX cc +Z -b -W,+s -W, -B, synbolic

AIX cc -p 0 -berok -blibpath: $(LD _RPATH)
Linux gcc -shared

Additional Linker Flags

Use the linker flags in the following table to specify which directories should be
searched for shared objects during runtime to resolve symbols.

Table 1-3 Linker Flags

Platform Flags

Solaris SPARC -R dir: dir

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Creating and Using Custom SAFs

Table 1-3 Linker Flags

Platform Flags

Windows (no flags, but the ns- ht t pd40. dl | file must be in the system
PATH variable)

HP-UX -W, +b, dir, dir

AIX -bl i bpat h: dir: dir

Compaq -rpath dir: dir

Linux -W, -rpat h, dir: dir

IRIX -W, -rpat h, dir: dir

On UNIX, you can also set the library search path using the LD_LI BRARY_PATH
environment variable, which must be set when you start the server.

Compiler Flags
The following table lists the flags and defines you need to use for compilation of

your source code.

Table 1-4 Compiler Flags and Defines

Parameter Description

Solaris SPARC -DXP_UN X - D_REENTRANT - KPI C - DSOLAR S
Windows -DXP_WN32 -DWN32 /MD

HP-UX -DXP_UN X - D REENTRANT - DHPUX

AIX -DXP_UN X - D_REENTRANT - DAl X $(DEBUG)
Compaq -DXP_UNI X -KPIC

Linux -DLINUX - D REENTRANT -fPIC

IRIX -032 -exceptions -DXP_UNIX -KPIC

All platforms - MCC_HTTPD - NET_SSL

The following table lists the optional flags and defines you can use.

Chapter 1 Creating Custom SAFs 27

Creating and Using Custom SAFs

28

Table 1-5 Optional Flags and Defines

Flag/Define Platforms Description

- DSPAPI 20 All Needed for the proxy utilities function
include file putil . h

Load and Initialize the SAF

For each shared library (plugin) containing custom SAFs to be loaded into the Sun
Java System Web Proxy Server, add an | ni t directive that invokes the
| oad- nodul es SAF to obj . conf.

The syntax for a directive that calls | oad- nodul es is:
Init fn=load-modul es shli b=[path] sharedlibname funcs="SAFL1,...SAFn"
= shlibisthe local file system path to the shared library (plugin).

 funcs is a comma-separated list of function names to be loaded from the
shared library. Function names are case-sensitive. You may use dash a (-) in
place of an underscore () in function names. There should be no spaces in the
function name list.

If the new SAFs require initialization, be sure that the initialization function is
included in the f uncs list.

For example, if you created a shared library ani mat i ons. so that defines two SAFs
do_smal | _ani m() and do_bi g_ani m() and also defines the initialization function
i nit_my_ani mati ons, you would add the following directive to load the plugin:

Init fn=l oad-nodul es shlib=ani nations. so
funcs="do_smal | _animdo_big_animinit_ny_ani nati ons"

If necessary, also add an I ni t directive that calls the initialization function for the
newly loaded plugin. For example, if you defined the function

i nit_my_new SAF() to perform an operation on the maxAni nLoop parameter, you
would add a directive such as the following to nagnus. conf :

Init fn=init_ny_animations maxAni nLoop=5

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Creating and Using Custom SAFs

Instruct the Server to Call the SAFs

Next, add directives to obj . conf to instruct the server to call each custom SAF at
the appropriate time. The syntax for directives is:

Directive f n=function-name [namel="valuel"] ... [nameN="valueN"]
« Directive is one of the server directives, such as Aut hTr ans, Ser vi ce, and so on.
= function-name is the name of the SAF to execute.

< nameN="valueN" are the names and values of parameters which are passed to
the SAF.

Depending on what your new SAF does, you might need to add just one directive
to obj . conf, or you might need to add more than one directive to provide
complete instructions for invoking the new SAF.

For example, if you define a new Aut hTr ans or Pat hCheck SAF, you could just add
an appropriate directive in the default object. However, if you define a new

Ser vi ce SAF to be invoked only when the requested resource is in a particular
directory or has a new kind of file extension, you would need to take extra steps.

If your new Ser vi ce SAF is to be invoked only when the requested resource has a
new kind of file extension, you might need to add an entry to the MIME types file
so that the t ype value gets set properly during the Obj ect Type stage. Then you
could add a Ser vi ce directive to the default object that specifies the desired t ype
value.

If your new Ser vi ce SAF is to be invoked only when the requested resource is in a
particular directory, you might need to define a NanmeTr ans directive that generates
a nane or ppat h value that matches another object, and then in the new object you
could invoke the new Ser vi ce function.

For example, suppose your plugin defines two new SAFs, do_smal | _ani n() and
do_bi g_ani (), which both take speed parameters. These functions run
animations. All files to be treated as small animations reside in the directory

D /<lInstal | _Root >/ <l nstance_Di rect or y>/ docs/ ani mat i ons/ smal I, while all files to be
treated as full-screen animations reside in the directory

D./<Instal | _Root >/ <I nstance_Di rect ory>/ docs/ ani mati ons/ ful | screen.

To ensure that the new animation functions are invoked whenever a client sends a
request for either a small or full-screen animation, you would add NaneTr ans
directives to the default object to translate the appropriate URLSs to the
corresponding path names and also assign a name to the request.

Chapter 1 Creating Custom SAFs 29

Creating and Using Custom SAFs

30

NarmeTrans fn=pfx2dir from="/ani mations/small"

dir="/<lInstall_Root >/ <l nstance_Directory>/docs/ ani mati ons/smal |
name="smal | _ani nt

NameTrans fn=pfx2dir fron"/ani mations/fullscreen"

dir="<Instal |l _Root >/ <l nstance_Di rect ory>docs/ ani mati ons/ f ul | screen"
name="ful | screen_ani nt

You also need to define objects that contain the Ser vi ce directives that run the
animations and specify the speed parameter.

<Chj ect nane="snal | _ani n{ >
Service fn=do_snal | _ani m speed=40
</ (oj ect >

<Chj ect nanme="ful | screen_ani n' >
Servi ce fn=do_bi g_ani m speed=20
</ hj ect >

Restart the Server

After modifying obj . conf, you need to restart the server. A restart is required for all
plugins that implement SAFs and/or filters.

Test the SAF

Test your SAF by accessing your server from a browser with a URL that triggers
your function. For example, if your new SAF is triggered by requests to resources
in http://server-name/ ani mat i ons/ snal | , try requesting a valid resource that starts
with that URI.

You should disable caching in your browser so that the server is sure to be
accessed. In Netscape Navigator you may hold the shift key while clicking the
Reload button to ensure that the cache is not used. (Note that the shift-reload trick
does not always force the client to fetch images from source if the images are
already in the cache.)

You may also wish to disable the server cache using the cache-i nit SAF.

Examine the access log and error log to help with debugging.

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Overview of NSAPI C Functions

Overview of NSAPI C Functions

NSAPI provides a set of C functions that are used to implement SAFs. They serve
several purposes. They provide platform independence across Sun Java System
Web Proxy Server operating system and hardware platforms. They provide
improved performance. They are thread-safe which is a requirement for SAFs.
They prevent memory leaks. And they provide functionality necessary for
implementing SAFs. You should always use these NSAPI routines when defining
new SAFs.

This section provides an overview of the function categories available and some of
the more commonly used routines. All of the public routines are detailed in
Chapter 4, “NSAPI Function Reference.”

The main categories of NSAPI functions are:
= Parameter Block Manipulation Routines
= Protocol Utilities for Service SAFs

< Memory Management

e Filel/O

< Network 170

= Threads

= Utilities

Parameter Block Manipulation Routines

The parameter block manipulation functions provide routines for locating, adding,
and removing entries in a pbl ock data structure:

= pblock _findval returns the value for a given name in a pbl ock.
e pblock _nvinsert addsanew name-value entry to a pbl ock.

« pbl ock_renove removes a pbl ock entry by name from a pbl ock. The entry is
not disposed. Use par am fr ee to free the memory used by the entry.

= paramfree freesthe memory for the given pbl ock entry.

= pbl ock_pbl ock2str creates a new string containing all of the name-value pairs
from a pbl ock in the form “name=value name=value.” This can be a useful
function for debugging.

Chapter 1 Creating Custom SAFs 31

Overview of NSAPI C Functions

Protocol Utilities for Service SAFs

Protocol utilities provide functionality necessary to implement Servi ce SAFs:

= request_header returns the value for a given request header name, reading
the headers if necessary. This function must be used when requesting entries
from the browser header pbl ock (r g- >header s).

= protocol _status setsthe HTTP response status code and reason phrase.

e protocol start response sendsthe HTTP response and all HTTP headers to
the browser.

Memory Management

Memory management routines provide fast, platform-independent versions of the
standard memory management routines. They also prevent memory leaks by
allocating from a temporary memory (called “pooled” memory) for each request,
and then disposing the entire pool after each request. There are wrappers for
standard memory routines for using permanent memory.

- MALLCC

- FREE

- PERV STRDUP
- REALLCC

- CALLCC

- PERV MALLCC
- PERMV FREE

- PERM STROUP
- PERV REALLCC
- PERV CALLCC

File 1/0O

The file 170 functions provide platform-independent, thread-safe file 1/0 routines.

= system fopenRO opens a file for read-only access.

32 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Overview of NSAPI C Functions

= system fopenRW opens a file for read-write access, creating the file if
necessary.

< system fopenWA opens a file for write-append access, creating the file if
necessary.

< systemfclose closes afile.
< systemfread reads from afile.
e systemfwite writesto afile.

e systemfwite_ atonic locks the given file before writing to it. This avoids
interference between simultaneous writes by multiple threads.

Network I/O

Network 170 functions provide platform-independent, thread-safe network 1/0
routines. These routines work with SSL when it’s enabled.

< netbuf _grab reads from a network buffer’s socket into the network buffer.
< netbuf getc getsa character from a network buffer.

e net_flush flushes buffered data.

= net_read reads bytes from a specified socket into a specified buffer.

< net_sendfil e sends the contents of a specified file to a specified a socket.

e net_wite writes to the network socket.

Threads

Thread functions include functions for creating your own threads that are
compatible with the server’s threads. There are also routines for critical sections
and condition variables.

e systhread _start createsa new thread.

= systhread_sl eep puts athread to sleep for a given time.
e crit_init createsa new critical section variable.

e crit_enter gainsownership of a critical section.

e crit_exit surrenders ownership of a critical section.

Chapter 1 Creating Custom SAFs 33

Overview of NSAPI C Functions

34

crit_term nate disposes of a critical section variable.

condvar _init creates a new condition variable.

condvar _notify awakens any threads blocked on a condition variable.
condvar_wait blocks on a condition variable.

condvar _term nate disposes of a condition variable.

prepare_nsapi _thread allows threads that are not created by the server to act
like server-created threads.

Utilities
Utility functions include platform-independent, thread-safe versions of many

standard library functions (such as string manipulation), as well as new utilities
useful for NSAPI.

daenmon_atrestart (UNIX only) registers a user function to be called when the
server is sent a restart signal (HUP) or at shutdown.

condvar _init gets the next line (up to a LF or CRLF) from a buffer.

util _host nane gets the local host name as a fully qualified domain name.
util _later_than compares two dates.

util_snprintf isthe same as the standard library routine sprintf ().
util _strftime isthe same as the standard library routine strftine().

util _uri_escape converts the special characters in a string into URI-escaped
format.

util _uri_unescape converts the URI-escaped characters in a string back into
special characters.

NOTE You cannot use an embedded null in a string, because NSAPI

functions assume that a null is the end of the string. Therefore,
passing unicode-encoded content through an NSAPI plugin
doesn’t work.

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Required Behavior of SAFs for Each Directive

Required Behavior of SAFs for Each Directive

When writing a new SAF, you should define it to do certain things, depending on
which stage of the request-handling process will invoke it. For example, SAFs to be
invoked during the | ni t stage must conform to different requirements than SAFs
to be invoked during the Ser vi ce stage.

The r g parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, r g contains whatever
values were inserted or modified by previously executed SAFs. On output, r g
contains any modifications or additional information inserted by the SAF. Some
SAFs depend on the existence of specific information provided at an earlier step in
the process. For example, a Pat hCheck SAF retrieves values inr g- >var s that were
previously inserted by an Aut hTr ans SAF.

This section outlines the expected behavior of SAFs used at each stage in the
request-handling process.

= Init SAFs

= AuthTrans SAFs
= NameTrans SAFs
= PathCheck SAFs
= ObjectType SAFs
= Input SAFs

= Output SAFs

= Service SAFs

= AddLog SAFs

= Error SAFs

= Connect SAFs

= DNSSAFs

= Filter SAFs

= Route SAFs

For more detailed information about these SAFs, see the Sun Java System Web
Proxy Server 4 Configuration File Reference.

Chapter 1 Creating Custom SAFs 35

Required Behavior of SAFs for Each Directive

36

Init SAFs

= Purpose: Initialize at startup.

= Called at server startup and restart.

e rgandsnare NULL.

< Initialize any shared resources such as files and global variables.

= Can register callback function with daenon_atrestart () to clean up.

= Onerror, insert err or parameter into pb describing the error and return
REQ ABCRTED.

e If successful, return REQ PROCEED.

AuthTrans SAFs

= Purpose: Verify any authorization information. Only basic authorization is
currently defined in the HTTP/1.0 specification.

= Check for Aut hori zat i on header in r g- >header s that contains the
authorization type and uu-encoded user and password information. If header
was not sent, return REQ NQACTI ON.

= If header exists, check authenticity of user and password.

= If authentic, create aut h-t ype, plus aut h- user and/or aut h- gr oup parameter
inrqg->vars to be used later by Pat hCheck SAFs.

= Return REQ PROCEED if the user was successfully authenticated, REQ NOACTI ON
otherwise.

NameTrans SAFs

= Purpose: Convert logical URI to physical path.

= Perform operations on logical path (ppat h in r g- >var s) to convert it into a full
local file system path.

e Return REQ PROCEEDif ppat h in r g- >var s contains the full local file system
path, or REQ NOACTI ONif not.

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Required Behavior of SAFs for Each Directive

= To redirect the client to another site, change ppat h inrg->vars to/ URL. Add
url torqg->vars with full URL (for example, http://home. net scape. con).
Return REQ PROCEED.

PathCheck SAFs

= Purpose: Check path validity and user’s access rights.
e Check aut h-type, aut h-user, and/or aut h-group inrg->vars.

e Return REQ PROCEED if user (and group) is authorized for this area (ppat h in
rg->vars).

= If not authorized, insert Pr oxy- Aut hent i cat e to r g- >sr vhdr s with a value
such as: Basi c; Real n¥\"Qur private area\". Call protocol _status() toset
HTTP response status to PROTOCOL_PROXY_UNAUTHORI ZED. Return REQ ABORTED.

ObjectType SAFs

« Purpose: Determine cont ent - t ype of data.
e [Ifcontent-typeinrg->srvhdrs already exists, return REQ NOACTI ON.
« Determine the MIME type and create cont ent -t ype inrg->srvhdrs

= Return REQ PRCCEEDif cont ent - t ype is created, REQ NOACTI ON otherwise.

Input SAFs

= Purpose: Insert filters that process incoming (client-to-server) data.

= I nput SAFs are executed when a plugin or the server first attempts to read
entity body data from the client.

= I nput SAFs are executed at most once per request.

< Return REQ PROCEEDto indicate success, or REQ NOACTI ONto indicate it
performed no action.

Output SAFs

= Purpose: Insert filters that process outgoing (server-to-client) data.

Chapter 1 Creating Custom SAFs 37

Required Behavior of SAFs for Each Directive

= (Qut put SAFs are executed when a plugin or the server first attempts to write
entity body data from the client.

= (Qut put SAFs are executed at most once per request.

= Return REQ PROCCEEDto indicate success, or REQ NOACTI ONto indicate it
performed no action.

Service SAFs

= Purpose: Generate and send the response to the client.

= A Service SAFis only called if each of the optional parameters t ype, net hod,
and query specified in the directive in obj . conf match the request.

= Remove existing cont ent - t ype fromr g- >sr vhdr s. Insert correct cont ent - t ype
inrq->srvhdrs.

= Create any other headers in r g- >srvhdrs.

e Callprotocol _set finfotoset HTTP response status.

e Callprotocol _start_response tosend HTTP response and headers.
= Generate and send data to the client using net_wite .

< Return REQ PROCEED if successful, REQ EXI T on write error, REQ ABORTED on
other failures.

Error SAFs

= Purpose: Respond to an HTTP status error condition.

e TheError SAF is only called if each of the optional parameters code and
r eason specified in the directive in obj . conf match the current error.

e Error SAFs do the same as Ser vi ce SAFs, but only in response to an HTTP
status error condition.

AddLog SAFs

= Purpose: Log the transaction to a log file.

< AddLog SAFs can use any data available in pb, sn, or r q to log this transaction.

38 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Required Behavior of SAFs for Each Directive

Return REQ_PRCCEED.

Connect

Purpose: Call the connect function you specify.

Only the first applicable Connect function is called, starting from the most
restrictive object. Occasionally it is desirable to call multiple functions (until a
connection is established). The function returns REQ_NOACTION if the next
function should be called. If it fails to connect, the return value is
REQ_ABORT. If it connects successfully, the connected socket descriptor will
be returned.

DNS

Purpose: Calls either the dns- conf i g built-in function or a DNS function that
you specify.

Filter

Purpose: The built-in SAFfilter-htm can be used to filter HTML tags and
filter-ct can be used to block response content that matches a certain MIME
type.. The pre-filter SAF can be used to run arbitray external filter programs
created by users to filter content before returning to client.

Route

Purpose: Specify information about where the proxy server should route
requests.

Chapter 1 Creating Custom SAFs 39

Required Behavior of SAFs for Each Directive

40 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Chapter 2

Creating Custom Filters

This chapter describes how to create custom filters that can be used to intercept
and possibly modify the content presented to or generated by another function.

This chapter has the following sections:

Future Compatibility Issues

The NSAPI Filter Interface

= Filter Methods

= Position of Filters in the Filter Stack
= Filters that Alter Content-Length

= Creating and Using Custom Filters

= Overview of NSAPI Functions for Filter Development

Future Compatibility Issues

The NSAPI interface may change in a future version of Sun Java System Web Proxy
Server. To keep your custom plugins upgradeable, do the following:

= Make sure plugin users know how to edit the configuration files (such as
magnus. conf and obj . conf) manually. The plugin installation software
should not be used to edit these configuration files.

= Keep the source code so you can recompile the plugin.

41

The NSAPI Filter Interface

The NSAPI Filter Interface

Sun Java System Web Proxy Server 4 extends NSAPI by introducing a new filter
interface that complements the existing Server Application Function (SAF)
interface. Filters make it possible to intercept and possibly modify data sent to and
from the server. The server communicates with a filter by calling the filter's filter
methods. Each filter implements one or more filter methods. A filter method isa C
function that performs a specific operation, such as processing data sent by the
server.

Filter Methods

This section describes the filter methods that a filter can implement. To create a
filter, a filter developer implements one or more of these methods. This section
describes the following filter methods:

e insert
e renove
e flush
e read

- wite
e Wwitev

e sendfile

For more information about these methods, see Chapter 4, “NSAPI Function
Reference.”

C Prototypes for Filter Methods

Following is a list of C prototypes for the filter methods:

int insert(FilterLayer *layer, pblock *pb);

voi d remove(FilterLayer *layer);

int flush(FilterlLayer *layer);

int read(FilterLayer *layer, void *buf, int amount, int tineout);

int wite(FilterlLayer *layer, const void *buf, int amount);

int witev(FilterLayer *layer, const struct iovec *iov, int iov_size);
int sendfile(FilterLayer *layer, sendfiledata *sfd);

42 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Filter Methods

The | ayer parameter is a pointer to a Fi | t er Layer data structure, which contains
variables related to a particular instance of a filter. Following is a list of the most
important fields in the Fi | t er Layer data structure:

= cont ext - >sn: Contains information relating to a single TCP/IP session (the
same sn pointer that’s passed to SAFs).

= cont ext - >rg: Contains information relating to the current request (the samerq
pointer that’s passed to SAFs).

= cont ext - >dat a: Pointer to filter-specific data.

= | ower: A platform-independent socket descriptor used to communicate with
the next filter in the stack.

The meaning of the cont ext - >dat a field is defined by the filter developer. Filters
that must maintain state information across filter method calls can use
cont ext - >dat a to store that information.

For more information about Fi | t er Layer, see “FilterLayer” on page 204.

insert

Theinsert filter method is called when an SAF such asinsert-filter callsthe
filter_insert function to request that a specific filter be inserted into the filter
stack. Each filter must implement the i nsert filter method.

When i nsert is called, the filter can determine whether it should be inserted into
the filter stack. For example, the filter could inspect the Cont ent - Type header in the
rg- >srvhdr s pblock to determine whether it is interested in the type of data that
will be transmitted. If the filter should not be inserted, the i nsert filter method
should indicate this by returning REQ NOACTI ON.

If the filter should be inserted, the i nsert filter method provides an opportunity to
initialize this particular instance of the filter. For example, the i nsert method
could allocate a buffer with MALLOC and store a pointer to that buffer in

| ayer - >cont ext - >dat a.

The filter is not part of the filter stack until after i nsert returns. As a result, the
i nsert method should not attempt to read from, write to, or otherwise interact
with the filter stack.

See Also
insert in Chapter 4, “NSAPI Function Reference.”

Chapter 2 Creating Custom Filters 43

Filter Methods

remove

The r emove filter method is called when a filter stack is destroyed (that is, when the
corresponding socket descriptor is closed), when the server finishes processing the
request the filter was associated with, or when an SAF such as renove-filter calls
thefilter_renove function. The r emove filter method is optional.

The remove method can be used to clean up any data the filter allocated in i nsert
and to pass any buffered data to the next filter by calling
net_wite(layer->lower, ...).

See Also
remove in Chapter 4, “NSAPI Function Reference.”

flush

The f | ush filter method is called when a filter or SAF calls the net _f| ush function.
The f 1 ush method should pass any buffered data to the next filter by calling
net_wite(layer->lower, ...).Theflush method is optional, but it should be
implemented by any filter that buffers outgoing data.

See Also
flush in Chapter 4, “NSAPI Function Reference.”

read

The r ead filter method is called when a filter or SAF calls the net _read function.
Filters that are interested in incoming data (data sent from a client to the server)
implement the r ead filter method.

Typically, the r ead method will attempt to obtain data from the next filter by
calling net _read(| ayer->l ower, ...).Theread method may then modify the
received data before returning it to its caller.

See Also
read in Chapter 4, “NSAPI Function Reference.”

44 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Filter Methods

write

The w it e filter method is called when a filter or SAF calls the net _wri t e function.
Filters that are interested in outgoing data (data sent from the server to a client)
implement the wri t e filter method.

Typically, the wi t e method will pass data to the next filter by calling
net_wite(layer->lower, ...).Thewite method may modify the data before
calling net _write. For example, the htt p- conpr essi on filter compresses data
before passing it on to the next filter.

If a filter implements the wr i t e filter method but does not pass the data to the next
layer before returning to its caller (that is, if the filter buffers outgoing data), the
filter should also implement the f | ush method.

See Also
write in Chapter 4, “NSAPI Function Reference.”

writev

The wri t ev filter method performs the same function as the wri t e filter method,
but the format of its parameters is different. It is not necessary to implement the
wri t ev filter method; if a filter implements the wri t e filter method but not the
w i t ev filter method, the server uses the w i t e method instead of the w i t ev
method. A filter should not implement the wr i t ev method unless it also
implements the w i t e method.

Under some circumstances, the server may run slightly faster when filters that
implement the wri t e filter method also implement the wri t ev filter method.

See Also
writev in Chapter 4, “NSAPI Function Reference.”

sendfile

The sendfi | e filter method performs a function similar to the wri t ev filter method,
but it sends a file directly instead of first copying the contents of the file into a
buffer. It is not necessary to implement the sendf i | e filter method; if a filter
implements the wri t e filter method but not the sendfi | e filter method, the server
will use the wri t e method instead of the sendfi | e method. A filter should not
implement the sendf i | e method unless it also implements the wite method.

Chapter 2 Creating Custom Filters 45

Position of Filters in the Filter Stack

Under some circumstances, the server may run slightly faster when filters that
implement the wri t e filter method also implement the sendfi | e filter method.

See Also
sendfile in Chapter 4, “NSAPI Function Reference.”

Position of Filters in the Filter Stack

46

All data sent to the server (such as the result of an HTML form) or sent from the
server (such as the output of a JSP page) is passed through a set of filters known as
a filter stack. The server creates a separate filter stack for each connection. While
processing a request, individual filters can be inserted into and removed from the
stack.

Different types of filters occupy different positions within a filter stack. Filters that
deal with application-level content (such filters that translates a page from XHTML
to HTML) occupy a higher position than filters that deal with protocol-level issues
(such as filters that format HTTP responses). When two or more filters are defined
to occupy the same position in the filter stack, filters that were inserted later will
appear higher than filters that were inserted earlier.

Filters positioned higher in the filter stack are given an earlier opportunity to
process outgoing data, while filters positioned lower in the stack are given an
earlier opportunity to process incoming data. For example, in the following figure,
the xm -t o- xht nd filter is given an earlier opportunity to process outgoing data than
the xhtni -to-htm filter.

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Figure 2-1 Position of Filters in the Filter Stack

Service fn="send-file”

1r <L —

Position of Filters in the Filter Stack

Hllzgill?:ft Zml-to-xhtml }
Content
{? {L \- Translation
Filters
whtml-to-html }
i JL =
N
Lowest Con?ent
Filter http-compression }-C_Ddlng
Filter

4T

Incoming Outgoing
Request Response
Data Data

When you create a filter with the fi | t er _cr eat e function, you specify what

position your filter should occupy in the stack. You can

also use the

init-filter-order Init SAF to control the position of specific filters within filter
stacks. For example, init-filter-order can be used to ensure that a filter that

converts outgoing XML to XHTML is inserted above a f
XHTML to HTML.

For more information, see “filter_create” on page 96

ilter that converts outgoing

Chapter 2 Creating Custom Filters 47

Filters that Alter Content-Length

Filters that Alter Content-Length

48

Filters that can alter the length of an incoming request body or outgoing response
body must take special steps to ensure interoperability with other filters and SAFs.

Filters that process incoming data are referred to as input filters. If an input filter
can alter the length of the incoming request body (for example, if a filter
decompresses incoming data) and there is a Cont ent - Lengt h header in the

r g- >header s pblock, the filter's i nsert filter method should remove the

Cont ent - Lengt h header and replace it with a Transf er- encodi ng: identity
header as follows:

pb_par am *pp;

pp = pbl ock_remove("content-|ength", |ayer->context->rqg->headers);
if (pp = NAL) {

param free(pp);

pbl ock_nvi nsert ("transfer-encoding", "identity",
| ayer - >cont ext - >r g- >header s) ;

}

Because some SAFs expect a Cont ent - Lengt h header when a request body is
present, before calling the first Servi ce SAF the server will insert all relevant
filters, read the entire request body, and compute the length of the request body
after it has been passed through all input filters. However, by default, the server
will read at most 8192 bytes of request body data. If the request body exceeds 8192
bytes after being passed through the relevant input filters, the request will be
cancelled. For more information, see the description of ChunkedRequest Buf f er Si ze
in the "Syntax and Use of magnus.conf" chapter in the Sun Java System Web Proxy
Server 4.0.1 Configuration File Reference.

Filters that process outgoing data are referred to as output filters. If an output filter
can alter the length of the outgoing response body (for example, if the filter
compresses outgoing data), the filter'si nsert filter method should remove the
Cont ent - Lengt h header from r g- >sr vhdr s as follows:

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Creating and Using Custom Filters

pb_param *pp;

pp = pbl ock_remove("content-1ength", |ayer->context->rg->srvhdrs);
if (pp !'= NULL)
param free(pp);

Creating and Using Custom Filters

Custom filters are defined in shared libraries that are loaded and called by the
server. The general steps for creating a custom filter are as follows:

1. Write the Source Code using the NSAPI functions.

2. Compile and Link the source code to create a shared library (. so,.sl,or.dl)
file.

3. Load and Initialize the Filter by editing the magnus. conf file.

4. Instruct the Server to Insert the Filter by editing the obj . conf file to insert your
custom filter(s) at the appropriate time.

5. Restart the Server.

6. Test the Filter by accessing your server from a browser with a URL that
triggers your filter.

These steps are described in greater detail in the following sections.

Write the Source Code

Write your custom filter methods using NSAPI functions. For a summary of the
NSAPI functions specific to filter development, see “Overview of NSAPI Functions
for Filter Development” on page 52. For a summary of general purpose NSAPI
functions, see Chapter 4, “NSAPI Function Reference.” Each filter method must be
implemented as a separate function. See “Filter Methods” on page 42for the filter
method prototypes.

The filter must be created by a call to fi | ter _create. Typically, each plugin
defines an nsapi _nodul e_i nit function that is used to call fi |l ter_create and
perform any other initialization tasks. See nsapi _nodul e_init andfilter _create
for more information.

Chapter 2 Creating Custom Filters 49

Creating and Using Custom Filters

50

Filter methods are invoked whenever the server or an SAF calls certain NSAPI
functionssuchasnet_witeorfilter_insert. Asa result, filter methods can be
invoked from any thread and should only block using NSAPI functions (for
example, crit_enter and net _r ead). If a filter method blocks using other functions
(for example, the Windows Vi t For Mul ti pl eChj ect s and ReadFi | e functions), the
server may hang. Also, shared objects that define filters should be loaded with the
Nat i veThr ead="no" flag, as described in “Load and Initialize the Filter” on page 50

Ifafilter method must block using a non-NSAPI function, Ker nel Threads 1
should be set in nmagnus. conf . For more information about Ker nel Thr eads, see the
description in the chapter "Syntax and Use of magnus.conf" in the Sun Java System
Web Proxy Server 4.0.1 Configuration File Reference.

Keep the following in mind when writing your filter:
= Write thread-safe code

< |0 should only be performed using the NSAPI functions documented in “File
I/0” on page 32 and “Network 1/0” on page 33.

= Thread synchronization should only be performed using NSAPI functions
documented in “Threads” on page 33.

= Blocking may affect performance.
e Carefully check and handle all errors.

For examples of custom filters, see server_root/ pl ugi ns/ nsapi / exanpl es and also
Chapter 3, “Examples of Custom SAFs and Filters.”

Compile and Link

Filters are compiled and linked in the same way as SAFs. See “Compile and Link”
on page 25, for more information.

Load and Initialize the Filter

For each shared library (plugin) containing custom SAFs to be loaded into the Sun
Java System Web Proxy Server, add an I ni t directive that invokes the | oad- nodul es
SAF to obj . conf. The syntax for a directive that loads a filter plugin is:

Init fn=load-nodul es shlib=[path]sharedlibnare NativeThread="no"

= shlibisthe local file system path to the shared library (plugin).

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Creating and Using Custom Filters

= NativeThread indicates whether the plugin requires native threads. Filters
should be written to run on any type of thread (see “Write the Source Code” on
page 24).

When the server encounters such a directive, it calls the plugin's nsapi _modul e_i ni t
function to initialize the filter.

Instruct the Server to Insert the Filter

Add an I nput or Qut put directive to obj . conf to instruct the server to insert your
filter into the filter stack. The format of the directive is as follows:

Directive fn=insert-filter filter="filter-name" [namel="valuel™]...
[nameN="valueN"]

< Directive is I nput or Qut put .
= filter-name is the name of the filter, as passed to fil ter_create, to insert.

< nameN="valueN" are the names and values of parameters that are passed to the
filter'sinsert filter method.

Filters that process incoming data should be inserted using an I nput directive.
Filters that process outgoing data should be inserted using an Qut put directive.

To ensure that your filter is inserted whenever a client sends a request, add the

I nput or Qut put directive to the default object. For example, the following portion of
obj . conf instructs the server to insert a filter named exanpl e- r epl ace and pass it two
parameters, fromand t o:

<Chj ect nane="defaul t">

Qutput fn=insert-filter
filter="exanpl e-repl ace"
from"dd String"
to="New String"

</ (oj ect >

Restart the Server

For the server to load your plugin, you must restart the server. A restart is required
for all plugins that implement SAFs and/or filters.

Chapter 2 Creating Custom Filters 51

Overview of NSAPI Functions for Filter Development

Test the Filter

Test your SAF by accessing your server from a browser. You should disable
caching in your browser so that the server is sure to be accessed. In Netscape
Navigator, you can hold the shift key while clicking the Reload button to ensure
that the cache is not used. (Note that the shift-reload trick does not always force the
client to fetch images from source if the images are already in the cache.) Examine
the access and error logs to help with debugging.

Overview of NSAPI Functions for Filter
Development

52

NSAPI provides a set of C functions that are used to implement SAFs and filters.
This section lists the functions that are specific to the development of filters. All of
the public routines are described in detail in Chapter 4, “NSAPI Function
Reference” on page 81.

The NSAPI functions specific to the development of filters are:

= filter_create createsanew filter

e filter_insert insertsthe specified filter into a filter stack

e filter_renove removes the specified filter from a filter stack
< filter_nane returns the name of the specified filter

< filter_find finds an existing filter given a filter name

= filter_|layer returnsthe layer in afilter stack that corresponds to the
specified filter

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Chapter 3

Examples of Custom SAFs and
Filters

This chapter provides examples of custom Sever Application Functions (SAFs) and
filters for each directive in the request-response process. You may wish to use these
examples as the basis for implementing your own custom SAFs and filters. For
more information about creating your own custom SAFs, see Chapter 2, “Creating
Custom Filters.”

Before writing custom SAFs, you should be familiar with the request-response
process and the role of the configuration file obj . conf (this file is discussed in the
Sun Java System Web Proxy Server 4.0.1 Configuration File Reference).

Before writing your own SAF, check to see if an existing SAF serves your purpose.
The predefined SAFs are discussed in the Sun Java System Web Server 4.0.1
Configuration File Reference.

For a list of the NSAPI functions for creating new SAFs, see Chapter 4, “NSAPI
Function Reference.”

This chapter has the following sections;
= Examples in the Build

= AuthTrans Example

< NameTrans Example

= PathCheck Example

« ObjectType Example

e Output Example

= Service Example

< AddLog Example

53

Examples in the Build

Examples in the Build

The pl ugi ns/ nsapi / exanpl es subdirectory within the server installation directory
contains examples of source code for SAFs.

You can use the exanpl e. mak makefile in the same directory to compile the
examples and create a library containing the functions in all of the example files.

To test an example, load the exanpl es shared library into the Sun Java System Web
Proxy Server by adding the following directive in the I ni t section of obj . conf:

Init fn=l oad- nodul es shlib=exanpl es. so/ dl |
f uncs=functionl,function2,function3

The funcs parameter specifies the functions to load from the shared library.

If the example uses an initialization function, be sure to specify the initialization
function in the funcs argument to | oad- nodul es, and also add an I ni t directive to
call the initialization function.

For example, the Pat hCheck example implements the restri ct - by-acf function,
which is initialized by the acf-init function. The following directive loads both
these functions:

Init fn=l oad-nodul es yourlibrary funcs=acf-init,restrict-by-acf

The following directive calls the acf -i ni t function during server initialization:
Init fn=acf-init fil e=extra-arg

To invoke the new SAF at the appropriate step in the response handling process,
add an appropriate directive in the object to which it applies, for example:

Pat hCheck fn=restri ct-by-acf

After adding new I ni t directives to obj . conf, you always need to restart the Sun
Java System Web Proxy Server to load the changes, since I nit directives are only
applied during server initialization.

54 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

AuthTrans Example

AuthTrans Example

This simple example of an Aut hTr ans function demonstrates how to use your own
custom ways of verifying that the user name and password that a remote client
provided is accurate. This program uses a hard-coded table of user names and
passwords and checks a given user's password against the one in the static data
array. The userdb parameter is not used in this function.

Aut hTr ans directives work in conjunction with Pat hCheck directives. Generally, an
Aut hTrans function checks if the user name and password associated with the
request are acceptable, but it does not allow or deny access to the request; it leaves
that to a Pat hCheck function.

Aut hTrans functions get the user name and password from the headers associated
with the request. When a client initially makes a request, the user name and
password are unknown so the Aut hTrans function and Pat hCheck function work
together to reject the request, since they can’t validate the user name and
password. When the client receives the rejection, the usual response is for it to
present a dialog box asking the user for their user name and password, and then
the client submits the request again, this time including the user name and
password in the headers.

In this example, the har dcoded- aut h function, which is invoked during the Aut hTr ans
step, checks if the user name and password correspond to an entry in the
hard-coded table of users and passwords.

Installing the Example

To install the function on the Sun Java System Web Proxy Server, add the following
I'nit directive to obj . conf to load the compiled function:

Init fn=l oad- nodul es shli b=yourlibrary funcs=hardcoded- auth

Inside the default object in obj . conf, add the following Aut hTr ans directive:

Aut hTrans fn=basi c-auth auth-type="basic" userfn=hardcoded-auth
user db=unused

Chapter 3 Examples of Custom SAFs and Filters 55

AuthTrans Example

Note that this function does not actually enforce authorization requirements, it
only takes given information and tells the server if it's correct or not. The Pat hCheck
function r equi r e- aut h performs the enforcement, so add the following Pat hCheck
directive as well:

Pat hCheck fn=require-auth real m="test realnf auth-type="basic"

Source Code

The source code for this example is in the aut h. ¢ file in the nsapi / exanpl es/ or
pl ugi ns/ nsapi / exanpl es subdirectory of the server root directory.

#i ncl ude "nsapi.h"

typedef struct {
char *nane;
char *pw;

} user_s;

static user_s user_set[] = {
{"joe", "shnoe"},
{"suzy", "creantheese"},
{NULL, NULL}

}s

#i ncl ude "frane/l og. h"

#i fdef __cplusplus

extern "C'

#endi f

NSAPI _PUBLI C i nt hardcoded_aut h(pbl ock *param Session *sn, Request
*rq)

{

/* Paraneters given to us by auth-basic */

char *pwfile = pblock_findval ("userdb", param;
char *user = pbl ock_findval ("user", param;
char *pw = pbl ock_findval ("pw', param;

/* Tenp variables */
register int x;

for(x = 0; user_set[x].nane !'= NULL; ++x) {
/* 1f this isn't the user we want, keep going */
if(strcnp(user, user_set[x].nane) != 0) continue

56 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

*/

NameTrans Example

/* Verify password */
if(strcmp(pw, user_set[x].pw)) {
| og_error (LOG SECURI TY, "hardcoded-auth", sn, rq,
"user % entered wong password", user);
/* This will cause the enforcenent function to ask */
/* user again */
return REQ NOACTI ON;
}

/* 1f we return REQ PROCEED, the usernane will be accepted

return REQ_PROCEED;

}

/* No match, have it ask them again */

|l og_error(LOG SECURI TY, "hardcoded-auth", sn, rq,
"unknown user %", user);

return REQ _NOACTI ON;

NameTrans Example

The ntrans. ¢ file in the pl ugi ns/ nsapi / exanpl es subdirectory of the server root
directory contains source code for two example NameTr ans functions:

explicit_pathinfo
This example allows the use of explicit extra path information in a URL.
htt ps_redirect

This example redirects the URL if the client is a particular version of Netscape
Navigator.

This section discusses the first example. Look at the source code in ntrans. ¢ for the
second example.

NOTE A NaneTrans function is used primarily to convert the logical URL in

ppath inrg->vars to a physical path name. However, the example
discussed here, expl i ci t _pat hi nf o, does not translate the URL into a
physical path name; it changes the value of the requested URL. See
the second example, htt ps_redi rect, in ntrans. ¢ for an example of a
NaneTr ans function that converts the value of ppat h inrg->vars from
a URL to a physical path name.

Chapter 3 Examples of Custom SAFs and Filters 57

NameTrans Example

The explici t _pat hi nf o example allows URLSs to explicitly include extra path
information for use by a CGI program. The extra path information is delimited
from the main URL by a specified separator, such as a comma.

For example:
ht't p: // server-name/ cgi / mar keti ng, / j an/ r el eases/ har dwar e

In this case, the URL of the requested resource (which would be a CGI program) is
htt p: // server-name/ cgi / mar ket i ng, and the extra path information to give to the CGI
program is/j an/ rel eases/ har dvar e.

When choosing a separator, be sure to pick a character that will never be used as
part of the real URL.

The expl i ci t _pat hi nf o function reads the URL, strips out everything following the
comma, and puts it in the pat h-i nf o field of the vars field in the request object
(rg->vars). CGI programs can access this information through the PATH | NFO
environment variable.

One side effect of expl i cit_pat hi nf o is that the SCRI PT_NAME CGI environment
variable has the separator character tacked onto the end.

NaneTr ans directives usually return REQ PROCEED when they change the path, so that
the server does not process any more NameTr ans directives. However, in this case we
want name translation to continue after we have extracted the path info, since we
have not yet translated the URL to a physical path name.

Installing the Example

To install the function on the Sun Java System Web Proxy Server, add the following
Init directive to obj . conf to load the compiled function:

Init fn=l oad- nodul es shli b=yourlibrary funcs=expli cit-pathinfo
Inside the default object in obj . conf, add the following NaneTr ans directive:
NarmeTrans fn=explicit-pathinfo separator=","

This NameTr ans directive should appear before other NaneTr ans directives in the
default object.

Source Code

This example is in the ntrans. ¢ file in the pl ugi ns/ nsapi / exanpl es subdirectory of
the server root directory.

58 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

NameTrans Example

#i ncl ude "nsapi.h"

#include <string. h> /* strchr */

#i ncl ude "frane/l og. h" /* log_error */

#i fdef __cplusplus

extern "C'

#endi f

NSAPI _PUBLI C i nt explicit_pathinfo(pblock *pb, Session *sn, Request
*ra)

{

/* Paraneter: The character to split the path by */
char *sep = pbl ock_findval ("separator", pb);

/* Server variables */
char *ppath = pbl ock_findval ("ppath", rg->vars);

/* Temp var */
char *t;

/* Verify correct usage */
if(!sep) {
| og_error(LOG M SCONFI G "explicit-pathinfo", sn, rq,
"m ssing paraneter (need root)");
/* When we abort, the default status code is 500 Server
Error */
return REQ _ABORTED;

}

/* Check for separator. If not there, don't do anything */
t = strchr(ppath, sep[0]);
f(lt)

return REQ NOACTI ON

/* Truncate path at the separator */

*t++ = "\0";

/* Assign path information */

pbl ock_nvinsert ("path-info", t, rqg->vars);

/* Normally NaneTrans functions return REQ PROCEED when t hey
change the path. However, we want nane translation to
continue after we're done. */

return REQ _NCACTI ON,

}

#i ncl ude "base/util.h" /* is_nmozilla */

#i ncl ude "frame/ protocol.h" /* protocol _status */
#i ncl ude "base/ shexp. h" /* shexp_cmp */

Chapter 3 Examples of Custom SAFs and Filters

59

NameTrans Example

#i fdef __cpluspl us

extern "C'

#endi f

NSAPI _PUBLIC int https_redirect(pblock *pb, Session *sn, Request
*rq)

{

/* Server Variable */

char *ppath = pbl ock_findval ("ppath", rg->vars);
/* Paraneters */

char *from = pbl ock_findval ("from, pb);

char *url = pblock_findval ("url", pb);

char *alt = pblock_findval ("alt", pb);

/* Work vars */

char *ua;

/* Check usage */
if((!from || (turl)) {
|l og_error(LOG M SCONFIG "https-redirect", sn, rq,
"m ssing paraneter (need from wurl)");
return REQ ABORTED;
}
/* Use wildcard match to see if this path is one we should
redirect */
f (shexp_cnp(ppath, fron) !'= 0)
return REQ _NOACTI O\ /* no match */

/* Sigh. The only way to check for SSL capability is to
check UA */

i f(request _header ("user-agent", &ua, sn, rq) == REQ ABORTED)
return REQ ABORTED;

/* The is_nozilla function checks for Mzilla version 0.96
or greater */
if(util _is_mozilla(ua, "0", "96")) {
/* Set the return code to 302 Redirect */
protocol _status(sn, rq, PROTOCOL_REDI RECT, NULL);
/* The error handling functions use this to set the
Location: */
pbl ock_nvinsert("url", url, rqg->vars);
return REQ ABORTED;
}

/* No match. Od client. */

/* If there is an alternate docunent specified, use it. */
if(alt) {

pb_param *pp = pbl ock_find("ppath", rqg->vars);

/* Trash the old value */

FREE(pp- >val ue) ;

60 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

PathCheck Example

/* W must dup it because the library will later free
this pblock */

pp- >val ue = STRDUP(alt);

return REQ PROCEED;

}
/* Else do nothing */
return REQ NOACTI ON,

PathCheck Example

The example in this section demonstrates how to implement a custom SAF for
performing path checks. This example simply checks if the requesting host is on a
list of allowed hosts.

The Init function acf-init loads a file containing a list of allowable IP addresses
with one IP address per line. The Pat hCheck function restrict _by_acf gets the IP
address of the host that is making the request and checks if it is on the list. If the
host is on the list, it is allowed access; otherwise, access is denied.

For simplicity, the stdio library is used to scan the IP addresses from the file.

Installing the Example

To load the shared object containing your functions, add the following line in the
I nit section of the obj . conf file:

Init fn=l oad-nodul es yourlibrary funcs=acf-init,restrict-by-acf

To call acf-init to read the list of allowable hosts, add the following line to the I ni t
section in obj . conf. (This line must come after the one that loads the library
containing acf-init).

Init fn=acf-init file=fileContainingHostsList

To execute your custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file:

Pat hCheck fn=restri ct-by-acf

Chapter 3 Examples of Custom SAFs and Filters 61

PathCheck Example

Source Code

The source code for this example is in pcheck. ¢ in the pl ugi ns/ nsapi / exanpl es
subdirectory within the server root directory.

#i ncl ude "nsapi . h"

/* Set to NULL to prevent problens with people not calling
acf-init */
static char **hosts = NULL;

#i ncl ude <stdio. h>

#i ncl ude "base/ daenon. h"

#i ncl ude "base/ util.h" [* util _sprintf */
#include "frane/l og. h" /* log_error */
#include "frane/ protocol .h" /* protocol _status */

/* The longest Iine we'll allowin an access control file */
#define MAX_ACF_LI NE 256

/* Used to free static array on restart */
#i fdef __cplusplus

extern "C'

#endi f

NSAPI _PUBLI C voi d acf _free(voi d *unused)
{

register int x;

for(x = 0; hosts[x]; ++x)
FREE(host s[x]) ;

FREE(host s) ;

hosts = NULL;

}

#i fdef __cplusplus
extern "C'
#endi f

NSAPI _PUBLI C int acf_init(pblock *pb, Session *sn, Request *rq)
{

[* Parameter */

char *acf_file = pblock_findval ("file", pb);

[* Wrking variables */

int numhosts;

FILE *f;

char err[MAGNUS_ERRCOR LEN;
char buf [MAX_ACF_LI NE];

62 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

/* Check usage. Note that Init functions have speci al
error 1ogging */

if(lacf _file) {
util_sprintf(err, "mssing parameter to acf_init
(need file)");

pbl ock_nvinsert("error", err, pb);
return REQ ABCRTED,

}
f = fopen(acf_file, "r");
/* Ddwe open it? */

if(If) {

PathCheck Example

util _sprintf(err, "can't open access control file % (9%)",

acf _file, systemerrnsg());
pbl ock_nvinsert("error", err, pb);
return REQ ABORTED;

}

/* Initialize hosts array */

num hosts = 0;

hosts = (char **) MALLOC(1 * sizeof (char *));
hosts[0] = NULL;

whi | e(fgets(buf, MAX ACF_LINE, f)) {

/* Blast linefeed that stdio helpfully |eaves on there */

buf[strlen(buf) - 1] ="\0";
hosts = (char **) REALLOC(hosts, (numhosts + 2) *
si zeof (char *));
host s[num host s++] = STRDUP(buf);
host s[num hosts] = NULL;
}

fclose(f);

/* At restart, free hosts array */
daenon_atrestart (acf _free, NULL);

return REQ PROCEED

}

#i fdef __cplusplus
extern "C'

#endi f

NSAPI _PUBLIC int restrict_by acf(pblock *pb, Session *sn, Request *rq)

{

/* No parameters */

Chapter 3 Examples of Custom SAFs and Filters 63

ObjectType Example

/* \Wrking variables */
char *remp = pblock_findval ("ip", sn->client);
register int x;

i f(!'hosts) {
| og_error(LOG M SCONFI G "restrict-by-acf", sn, rq,
“restrict-by-acf called without call to acf-init");
/* When we abort, the default status code is 500 Server
Error */
return REQ ABCRTED,

}

for(x = 0; hosts[x] != NULL; ++x) {
/* 1f they're on the list, they're allowed */
if(!strcnp(remp, hosts[x]))
return REQ NOACTI O\

}

/* Set response code to forbidden and return an error. */
protocol _status(sn, rg, PROTOCOL_FCRBI DDEN, NULL);
return REQ ABCORTED,

ObjectType Example

The example in this section demonstrates how to implement ht m 2sht ni , a custom
SAF that instructs the server to treata . htnl fileasa.shtni fileifa.shtm version of
the requested file exists.

A well-behaved Obj ect Type function checks if the content type is already set, and if
so, does nothing except return REQ NOACTI ON.

i f(pbl ock_findval ("content-type", rg->srvhdrs))

return REQ NQOACTI QN

The primary task an Obj ect Type directive needs to perform is to set the content type
(if it is not already set). This example sets it to magnus-i nt er nal / par sed- ht ni in the
following lines:

64 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

ObjectType Example

/* Set the content-type to magnus-internal /parsed-htm */
pbl ock_nvi nsert ("content-type", "magnus-internal/parsed-htm",
rg->srvhdrs);

The htnl 2sht i function looks at the requested file name. If it ends with . ht i, the

function looks for a file with the same base name, but with the extension . sht m

instead. If it finds one, it uses that path and informs the server that the file is parsed
HTML instead of regular HTML. Note that this requires an extra st at call for every

HTML file accessed.

Installing the Example

To load the shared object containing your function, add the following line in the
I nit section of the obj . conf file:

Init fn=l oad-nodul es shli b=yourlibrary funcs=htni 2shtni

To execute the custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file:

oj ect Type fn=htn 2sht m

Source Code

The source code for this example is in ot ype. ¢ in the nsapi / exanpl es/ or
pl ugi ns/ nsapi / exanpl es subdirectory within the server root directory.

#i ncl ude "nsapi.h"

#i ncl ude <string. h> [* strncpy */
#include "base/util.h"

#i fdef _ cplusplus

extern "C'

#endi f

NSAPI _PUBLI C int htni 2shtm (pbl ock *pb, Session *sn, Request *rq)

{

/* No parareters */

/[* Wrk variables */

Chapter 3 Examples of Custom SAFs and Filters

65

Output Example

pb_param *path = pbl ock_find("path", rg->vars);
struct stat finfo;

char *npat h;

int basel en;

[* If the type has already been set, don't do anything */
i f(pbl ock_findval ("content-type", rg->srvhdrs))
return REQ NCACTI ON

[* If path does not end in .htm, |et normal object types do
* their job */
basel en = strlen(path->val ue) - 5;
i f(strcasecnp(&pat h->val ue[baselen], ".htm") 1= 0)
return REQ NOACTI O\

/* 1 = Roomto convert html to shtm */

npath = (char *) MALLOJ((baselen + 5) + 1 + 1);
strncpy(npath, path->val ue, baselen);
strcpy(&npat h[basel en], ".shtm");

[* If it's not there, don't do anything */
if(stat(npath, & info) == -1) {
FREE(npat h) ;
return REQ NOACTI O\
}
/[* Cot it, do the switch */
FREE(pat h- >val ue) ;
pat h->val ue = npat h;

/* The server caches the stat() of the current path. Update it. */
(void) request_stat_path(NULL, rq);

pbl ock_nvi nsert ("content-type", "magnus-internal/parsed-htm",

rg->srvhdrs);
return REQ PROCEED,

Output Example

This section describes an example NSAPI filter named exanpl e-repl ace, which
examines outgoing data and substitutes one string for another. It shows how you
can create a filter that intercepts and modifies outgoing data.

66 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Output Example

Installing the Example

To load the filter, add the following line in the I nit section of the obj . conf file:

Init fn="1oad- nodul es" shlib="<path>/repl ace.ext" NativeThread="no"

To execute the filter during the request-response process for some object, add the
following line to that object in the obj . conf file:

Qutput fn="insert-filter" type="text/*" filter="exanpl e-repl ace"
from="i Pl anet" to="Sun ONE'

Source Code

The source code for this example is in the repl ace. ¢ file in the
pl ugi ns/ nsapi / exanpl es subdirectory of the server root directory.

#i fdef XP_WN32

#define NSAPI _PUBLI C _ decl spec(dl | export)
#el se /* I XP_WN32 */

#def i ne NSAPI _PUBLI C

#endif /* I XP_WN32 */

/*

* nsapi.h declares the NSAPI interface.
*/

#i ncl ude "nsapi.h"

/*

* Exanpl eRepl aceData will be used to store information between

* filter method invocations. Each instance of the exanple-replace
* filter will have its own Exanpl eRepl aceDat a obj ect.

*/

typedef struct Exanpl eRepl aceDat a Exanpl eRepl aceDat a;

Chapter 3 Examples of Custom SAFs and Filters 67

Output Example

68

struct Exanpl eRepl aceData {

char *from /* the string to replace */

int fromen; /* length of "from' */

char *to; /* the string to replace "from! with */
int tolen; /* length of "to" */

int matched; /* nunber of "from chars matched */

b

[e exanpl e_replace_insert ------------------------ */
/*

* exanpl e_repl ace_insert inplements the exanpl e-replace filter's

* insert nethod. The insert filter nethod is called before the

* server adds the filter to the filter stack.

*|

#i fdef _ cplusplus

extern "C'

#endi f

int exanpl e_replace_insert(FilterLayer *layer, pblock *pb)

{

const char *from
const char *to;
Exanpl eRepl aceDat a *dat &;

/*
* Look for the string to replace, "front, and the string to
* replace it with, "to". Both values are required.
*/
from= pbl ock_findval ("front, pb);
to = pblock_findval ("to", pb);
if (from== NUL || to == NULL || strlien(from < 1) {
| og_error (LOG M SCONFI G "exanpl e-repl ace-insert",
| ayer - >cont ext - >sn, | ayer->context->rq,
"m ssing paraneter (need fromand to)");
return REQ ABORTED, /* error preparing for insertion */
}

/*

* Allocate an Exanpl eRepl aceData object that will store

* configuration and state information.

*/
data = (Exanpl eRepl aceDat a *) MALLO(si zeof (Exanpl eRepl aceDat a)) ;

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

/*

*

Output Example

if (data == NULL)
return REQ ABORTED, /* error preparing for insertion */

/* Initialize the Exanpl eRepl aceData */
dat a- >f rom = STRDUP(fron);
data->fronlen = strlen(from;

data->to = STRDUP(t0);

data->tolen = strlen(to);

dat a- >mat ched = 0;

/* Check for out of nenory errors */
if (data->from== NULL || data->to == NULL) {

FREE(dat a- >from) ;

FREE(dat a- >t 0) ;

FREE(dat a) ;

return REQ ABORTED; /* error preparing for insertion */
}

/*

* Store a pointer to the Exanpl eRepl aceData object in the

* FilterLayer. This information can then be accessed from ot her
* filter nethods.

*/

| ayer - >cont ext - >data = dat a;

/* Renmove the Content-length: header if we might change the
* body length */
if (data->tolen != data->fromen) {

pb_par am *pp;

pp = pbl ock_renove("content-length", |ayer->context->rg->srvhdrs);

if (pp)
param free(pp);

}

return REQ PROCEED, /* insert filter */

exanpl e_repl ace_renove inplenents the exanpl e-replace filter's
renove nethod. The renove filter nmethod is called before the

* server renoves the filter fromthe filter stack.

*/

Chapter 3 Examples of Custom SAFs and Filters

69

Output Example

#ifdef _ cplusplus

extern "C'

#endi f

voi d exanpl e_repl ace_renmove(FilterLayer *layer)

{
Exanpl eRepl aceDat a *dat a;

/* Access the Exanpl eRepl aceData we al | ocated i n exanpl e_repl ace_i nsert

*/
data = (Exanpl eRepl aceData *)I ayer - >cont ext - >dat a;
/* Send any partial "from' match */
if (data->matched > 0)
net_write(layer->l ower, data->from data->natched);
/* Destroy the Exanpl eRepl aceData obj ect */
FREE(dat a- >fron) ;
FREE(dat a- >t 0) ;
FREE(dat a) ;
}
[* e exanpl e_replace_wite ------------------------- */
/*

* exanpl e_replace_wite inplenents the exanple-replace filter's

* wite method. The wite filter method is called when there is data
* to be sent to the client.

*|

#i fdef _ cplusplus
extern "C'
#endi f
int exanple_replace wite(FilterLayer *layer, const void *buf, int amount)
{
Exanpl eRepl aceDat a *dat a;
const char *buffer;
int consuned;
int i;
i nt unsent;
int rv;

/* Access the Exanpl eRepl aceDat a we al | ocated i n exanpl e_repl ace_i nsert
*/

70 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Output Example

data = (Exanpl eRepl aceData *)I ayer - >cont ext - >dat a;

/* Check for "fronmf matches in the caller's buffer */
buf fer = (const char *)buf;
consuned = 0;
for (i =0; i <amount; i++) {
[* Check whether this character matches */
if (buffer[i] == data->fronfdata->matched]) {
/* Matched a(nother) character */
dat a- >mat ched++;

[* 1f we've now matched all of "fronm... */
if (data->matched == data->fronien) {
/* Send any data that preceded the match */
unsent =i + 1 - consuned - data->matched,;
if (unsent > 0) {
rv = net_wite(layer->l ower, &buffer[consuned],
unsent);
if (rv != unsent)
return | O ERRCR,
}

/* Send "to" in place of "fromi */
rv = net_wite(layer->lower, data->to, data->tolen);
if (rv != data->tolen)

return 1 O ERRCR

/* W've handled up to and including buffer[i] */
consuned =i + 1;

/* Start looking for the next "from match fromscratch */
dat a- >mat ched = 0;

}

} else if (data->matched > 0) {
[* This match didn't pan out, we need to backtrack */
int j;
int backtrack
dat a- >mat ched

= dat a- >nat ched,
= 0;
/* Check for other potential "from' natches
* preceding buffer[i] */
for (j =1; j < backtrack; j++) {
/* Check whether this character matches */
if (data->fronfj] == data->fronfdata->nmatched]) {

Chapter 3 Examples of Custom SAFs and Filters 71

Output Example

/* Matched a(nother) character */
dat a- >mat ched++;

} else if (data->matched > 0) {
/* This match didn't pan out, we need to
* packtrack */
j -= data->mat ched;
dat a- >mat ched = 0;

}

[* If the failed (partial) match begins before the buffer...

unsent = backtrack - dat a->mat ched;
if (unsent > i) {
/* Send the failed (partial) match */
rv = net_wite(layer->l ower, data->from unsent);
if (rv != unsent)
return | O ERRCR,

/* W've handl ed up to, but not including,
* buffer[i] */
consunmed = i;

}

/* W're not done with buffer[i] yet */
i--;

}

/* Send any data we know won't be part of a future
* "from match */
unsent = anount - consuned - data->mat ched,;
if (unsent > 0) {
rv = net_wite(layer->l ower, &buffer[consuned], unsent);
if (rv = unsent)
return |1 O ERROR,

}

return anmount;
}
A LR nsapi _modul e_init ---------mmmmia o */
/*

72 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

*/

Service Example

* This is the module initialization entry point for this NSAPI
* plugin. The server calls this entry point in response to the
* Init fn="Ioad-nodul es" line in magnus. conf.

*/

NSAPI _PUBLI C nsapi _nodul e_i ni t (pbl ock *pb, Session *sn, Request *rq)
{

Fi | ter Met hods nethods = FI LTER METHCDS | NI Tl ALI ZER

const Filter *filter;

/
Create the exanpl e-replace filter. The exanple-replace filter
has order FILTER CONTENT_TRANSLATION, neaning it transforms
content (entity body data) fromone formto another. The
exanpl e-replace filter inplenents the wite filter nethod,
meaning it is interested in outgoing data.

>* * * * * *

*/
met hods. i nsert = &exanpl e_repl ace_i nsert;
net hods. renove = &exanpl e_repl ace_r enove;
nmet hods. wite = &xanpl e_repl ace_wite;
filter = filter_create("exanpl e-repl ace",
FI LTER_CONTENT_TRANSLATI N,
&met hods) ;
if (filter == NULL) {
pbl ock_nvinsert("error", systemerrnsg(), pb);
return REQ ABCRTED; /* error initializing plugin */
}

return REQ PROCEED, /* success */

Service Example

This section discusses a very simple Ser vi ce function called si npl e_servi ce. All this
function does is send a message in response to a client request. The message is
initialized by the i ni t _si npl e_ser vi ce function during server initialization.

For a more complex example, see the file servi ce. ¢ in the exanpl es directory, which
is discussed in Chapter 3, “Examples of Custom SAFs and Filters.”

Chapter 3 ~ Examples of Custom SAFs and Filters 73

Service Example

Installing the Example

To load the shared object containing your functions, add the following line in the
I nit section of the obj . conf file:

Init fn=load-nodul es shlib=yourlibrary
funcs=si npl e-servi ce-init, sinple-service

To call the si npl e-servi ce-i ni t function to initialize the message representing the
generated output, add the following line to the I ni t section in obj . conf. (This line
must come after the one that loads the library containing si npl e-service-init.)

Init fn=sinple-service-init
gener at ed- out put =" <HL>Generated output msg</ HL>"

To execute the custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file:

Service type="text/htm" fn=sinple-service

The type="text/htn" argument indicates that this function is invoked during the
Servi ce stage only if the content -t ype has been setto text/htm .

Source Code

#i ncl ude <nsapi . h>
static char *sinple_nsg = "default custom zed content";

/* This is the initialization function.

* |t gets the value of the generated-output paraneter

* gpecified inthe Init directive in magnus. conf

*/

NSAPI _PUBLI C int init-sinple-service(pblock *pb, Session *sn,
Request *rq)

/* Cet the nessage fromthe parameter in the directive in

74 Web Proxy Server 4.0.1 2005Q4 NSAPI Developer's Guide

Service Example

* magnus. conf

*/

sinpl e_nsg = pbl ock_findval ("generat ed-out put”, pb);
return REQ PROCEED,

}

/* This is the custonized Service SAF.
* |t sends the "generated-output" nessage to the client.
*/
NSAPI _PUBLI C int sinpl e-service(pbl ock *pb, Session *sn, Request *rq)
{
int return_val ue;
char nmsg_l ength[8];

/* Use the protocol status function to set the status of the
* response before calling protocol _start_response.

*/

protocol _status(sn, rg, PROTOOOL_OK, NULL);

/* A though we woul d expect the ChjectType stage to

* set the content-type, set it here just to be

* conpletely sure that it gets set to text/htni.

*/

par am f r ee(pbl ock_renove("content-type", rg->srvhdrs));

pbl ock_nvinsert ("content-type", "text/htm", rq->srvhdrs);

/* 1f you want to use keepalive, need to set content-length header.
* The util _itoa function converts a specified integer to a

* string, and returns the length of the string. Use this

* function to create a textual representation of a nunber.

*/

util_itoa(strlen(sinple_nsg), nsg_length);
pbl ock_nvinsert("content-length", msg_length, rg->srvhdrs);

/* Send the headers to the client*/
return_val ue = protocol _start_response(sn, rq);
if (return_value == REQ NOACTIQN) {

[* HTTP HEAD instead of GET */

return REQ PROCEED,

}

/* Wite the output using net_wite*/
return_val ue = net_wite(sn->csd, sinple_nsg,
strlen(sinple_nsg));
if (return_value == 10 ERROR {
return REQ EXIT;
}

Chapter 3 ~ Examples of Custom SAFs and Filters 75

AddLog Example

return REQ PROCEED

More Complex Service Example

The send- i mages function is a custom SAF that replaces the doi t. cgi demonstration
available on the iPlanet home pages. When a file is accessed as

/dir1/dir2/sonet hi ng. pi cgroup, the send-i mages function checks if the file is being
accessed by a Mozilla/1.1 browser. If not, it sends a short error message. The file
somet hi ng. pi cgroup contains a list of lines, each of which specifies a file name
followed by a cont ent - t ype (for example, one. gi f i mage/ gi f).

To load the shared object containing your function, add the following line at the
beginning of the obj . conf file:

Init fn=l oad- nodul es shli b=yourlibrary funcs=send-i mages
Also, add the following line to the ni ne. t ypes file:
t ype=magnus- i nt er nal / pi cgroup ext s=pi cgroup

To execute the custom SAF during the request-response process for some object,
add the following line to that object in the obj . conf file (send-i mages takes an
optional parameter, del ay, which is not used for this example):

Servi ce net hod=(GET| HEAD) type=magnus-i nternal/pi cgroup fn=send-i mages

The source code is in servi ce. ¢ in the pl ugi ns/ nsapi / exanpl es subdirectory within
the server root directory.

AddLog Example

The example in this section demonstrates how to implement bri ef -1 og, a custom
SAF for logging only three items of information about a request: the IP address, the
method, and the URI (for example, 198. 93. 95. 99 GET

/j ocel yn/ dogs/ honesneeded. ht n).

76 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

AddLog Example

Installing the Example

To load the shared object containing your functions, add the following line in the
I ni t section of the magnus. conf file:

Init fn=l oad- nodul es shli b=yourlibrary f uncs=brief-init,brief-1og

To call brief-init to open the log file, add the following line to the I ni t section in
obj . conf. (This line must come after the one that loads the library containing
brief-init.)

Init fn=brief-init file=/tnp/brief.log

To execute your custom SAF during the AddLog stage for some object, add the
following line to that object in the obj . conf file:

AddLog fn=brief-Iog

Source Code

The source code is in addl og. c is in the pl ugi ns/ nsapi / exanpl es subdirectory within
the server root directory.

#i ncl ude "nsapi . h"

#i ncl ude "base/ daenon. h" /* daenon_atrestart */

#include "base/file.h" [* systemfopenWA systemfclose */
#include "base/util.h" [* sprintf */

/* File descriptor to be shared between the processes */

static SYS FILE logfd = SYS ERROR FD

#ifdef __cplusplus

extern "C'

#endi f

NSAPI _PUBLI C voi d brief_termnate(void *pararmeter)
{

system fcl ose(l ogfd);
l ogfd = SYS ERRCR FD;

}

#i fdef _ cplusplus
extern "C'

#endi f

Chapter 3 Examples of Custom SAFs and Filters 77

AddLog Example

NSAPI _PUBLIC int brief_init(pblock *pb, Session *sn, Request *rq)
{

/* Parameter */
char *fn = pblock _findval ("file", pb);

if(1fn) {

pbl ock_nvinsert("error", "brief-init: please supply a file name",
pb);

}
l ogf d = system fopenWA(fn);
if(logfd == SYS ERROR FD) {
pbl ock_nvinsert("error", "brief-init: please supply a file name",

return REQ ABORTED,

pb) ;

}

/* Close log file when server is restarted */
daenon_atrestart (brief _termnate, NULL);
return REQ PROCEED,

return REQ ABORTED;

}

#i fdef _ cplusplus
extern "C'

#endi f

NSAPI _PUBLI C int brief_| og(pbl ock *pb, Session *sn, Request *rq)
{

/* No parareters */

/* Server data */

char *method = pbl ock_findval ("method", rqg->reqpb);
char *uri = pblock_findval ("uri", rg->reqpb);

char *ip = pblock_findval ("ip", sn->client);

/* Tenp vars */
char *| ognsg;
int |en;

| ognsg = (char *)

MALLOC(strlen(ip) + 1 + strlen(nethod) + 1 + strlen(uri) + 1 + 1);
len = util _sprintf(logmsg, "% % %\n", ip, nethod, uri);
/* The atom c version uses |ocking to prevent interference */
systemfwite_atom c(logfd, |ognsg, |en);

78 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

AddLog Example

FREE(| ognsg) ;

return REQ PROCEED,

Chapter 3 Examples of Custom SAFs and Filters 79

AddLog Example

80 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Chapter 4

NSAPI Function Reference

This chapter lists all of the public C functions and macros of the Netscape Server
Applications Programming Interface (NSAPI) in alphabetic order. These are the
functions you use when writing your own Server Application Functions (SAFs).

For information about the predefined SAFs used in obj . conf, see the Sun Java
System Web Proxy Server 4.0.1 Configuration File Reference.

Each function provides the name, syntax, parameters, return value, a description of
what the function does, and sometimes an example of its use and a list of related
functions.

For more information on data structures, see Chapter 5, “Data Structure
Reference,”and also look in the nsapi . h header file in the i ncl ude directory in the
build for Sun Java System Web Proxy Server 4.

NSAPI Functions (in Alphabetical Order)

For an alphabetical list of function names, see Appendix A, “Alphabetical List of
NSAPI Functions and Macros.”

C D F 1] L M N P R S U W

81

cache_digest

The cache_di gest function calculates the MD5 signature of a specified URL and
stores the signature in a digest variable.

Syntax
#i ncl ude <li bproxy/ cache. h>
voi d cache_di gest (char *url, unsigned char digest[16]));

Returns
voi d

Parameters
char *url is a string containing the cache filename of a URL.

nane *digest is an array to store the MD5 signature of the URL.

See also
cache fn to dig

cache_filename

The cache_fi | enane function returns the cache filename for a given URL, specified
by MD?5 signature.

Syntax

#incl ude <libproxy/cutil.h>
char *cache_fil enane(unsi gned char digest] 16]);

Returns
A new string containing the cache filename.
Parameters

char *digest is an array containing the MD5 signature of a URL.

See also
cache fn_to dig

82 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

cache fn_to dig

The cache_fn_t o_di g function converts a cache filename of a URL into a partial
MD?5 digest.

Syntax
#i ncl ude <libproxy/cutil.h>
voi d *cache_fn_to_dig(char *name, unsigned char digest[16]));

Returns
voi d

Parameters
char *name is a string containing the cache filename of a URL.

nane *digest is an array to receive first 8 bits of the signature of the URL.

CALLOC

The CALLOC macro is a platform-independent substitute for the C library routine
cal I oc. It allocates nunisi ze bytes from the request’s memory pool. If pooled
memory has been disabled in the configuration file (with the pool -i ni t built-in
SAF), PERM CALLCC and CALLCC both obtain their memory from the system heap.

Syntax
voi d *CALLOQ(int size)

Returns
A void pointer to a block of memory.

Parameters
int size isthe size in bytes of each element.

Example
char *nane;
name = (char *) CALLOC(100);

See Also

FREE, REALLOCC, STRDUP, PERVMI MALLOC, PERM FREE, PERM REALLCC
PERM STRDUP

Chapter 4 NSAPI Function Reference

83

84

ce free

The ce_free function releases memory allocated by the ce_| ookup function.

Syntax
#i ncl ude <lIi bproxy/ cache. h>
voi d cd_free(CacheEntry *ce);

Returns
voi d

Parameters
CacheEnt ry *ce is a cache entry structure to be destroyed.

See also
ce_| ookup

ce_lookup

The ce_| ookup cache entry lookup function looks up a cache entry for a specified
URL.

Syntax
#i ncl ude <l i bproxy/ cache. h>
CacheEntry *ce_| ookup(Session *sn, Request *rg, char *url, time_t imsc);

Returns
= NULL if caching is not enabled

< A newly allocated CacheEnt ry structure, whether or not a copy existed in the
cache. Within that structure, the ce->st at e field reports about the existence:

CACHE_NO signals that the document is not and will not be cached; other
fields in the cache structure may be NULL

CACHE_CREATE signals that the cache file doesn’t exist but may be created
once the remote server is contacted. However, during the retrieval it may turn
out that the document is not cacheable.

CACHE_REFRESH signals that the cache file exists, but it needs to be
refreshed (an up-to-date check must be made) before it’s used; note that the
data may still be up-to-date, but the remote server needs to be contacted to find
that out. If not, the cache file will be replaced with the new document version
sent by the remote origin server.

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

CACHE_RETURN_FROM_CACHE signals that the cache file exists and is
up-to-date based on the configuration and current parameters controlling what
is considered fresh.

CACHE_RETURN_ERROR is a signal that happens only if the proxy is set to
no-network mode (connect-Modenese), and the document does not exist in the
cache.

Parameters
Sessi on *sn identifies the Session structure.

Request *rq identifies the Request structure.
char *url contains the name of the URL for which the cache is being sought.

ti me- out misc. is the if-modified-since time.

See also
ce free

cif_write_entry

Thecif_wite_entry function writes a CIF entry for a specified CacheEnt ry
structure. The CIF entry is stored in the cache file itself.

Syntax
#i ncl ude <lIibproxy/cif.h>
int cif_ wite_entry(CacheEntry *ce, int new cachefile)

Returns
e nonzero if the write was successful

e 0 if the write was unsuccessful

Parameters
CacheEnt ry *ce is a cache entry structure to be written to the . ci f file.

int new cachefile The valuesare 1 or 0.
1ifitis a new cache file;

0 if the file exists and the CIF entry is to be modified

Chapter 4 NSAPI Function Reference 85

86

cinfo_find

The cinfo_find() function uses the MIME types information to find the type,
encoding, and/or language based on the extension(s) of the Universal Resource
Identifier (URI) or local file name. Use this information to send headers
(rg->srvhdr s) to the client indicating the cont ent - t ype, cont ent - encodi ng, and
cont ent - | anguage of the data it will be receiving from the server.

The name used is everything after the last slash (/) or the whole string if no slash is
found. File name extensions are not case-sensitive. The name may contain multiple
extensions separated by period (.) to indicate type, encoding, or language. For
example, the URI a/ b/ fil enane. j p. txt. zi p could represent a Japanese language,
text/plain type, zip encoded file.

Syntax
cinfo *cinfo_find(char *uri);

Returns
A pointer to a newly allocated ci nf o structure if content info was found, or NULL if
no content was found.

The ci nf o structure that is allocated and returned contains pointers to the

cont ent -t ype, cont ent - encodi ng, and cont ent - | anguage, if found. Each is a pointer
into static data in the types database, or NULL if not found. Do not free these
pointers. You should free the ci nf o structure when you are done using it.

Parameters
char *uri is a Universal Resource Identifier (URI) or local file name. Multiple file
name extensions should be separated by periods (.).

condvar_init

The condvar _i ni t function is a critical-section function that initializes and returns a
new condition variable associated with a specified critical-section variable. You can
use the condition variable to prevent interference between two threads of
execution.

Syntax
CONDVAR condvar _init (CRITICAL id);

Returns
A newly allocated condition variable (CONDVAR).

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Parameters
CRITICAL id is a critical-section variable.

See Also
condvar_notify, condvar_terninate, condvar wait, crit_init, crit_enter,
crit_exit, crit_termnate

condvar_notify

The condvar _noti fy function is a critical-section function that awakens any threads
that are blocked on the given critical-section variable. Use this function to awaken
threads of execution of a given critical section. First, use crit_enter to gain
ownership of the critical section. Then use the returned critical-section variable to
call condvar _not i fy to awaken the threads. Finally, when condvar _noti fy returns,
call crit_exit to surrender ownership of the critical section.

Syntax
voi d condvar _not i fy(CONDVAR cv);

Returns
voi d

Parameters
CONDVAR cv is a condition variable.

See Also

condvar _init, condvar _ternminate, condvar wait, crit_init, crit_enter,
crit_exit, crit_terninate

condvar_terminate

The condvar _terninate function is a critical-section function that frees a condition
variable. Use this function to free a previously allocated condition variable.

Warning
Terminating a condition variable that is in use can lead to unpredictable results.

Syntax
voi d condvar _term nat e(CONDVAR cv) ;

Chapter 4 NSAPI Function Reference 87

88

Returns
voi d

Parameters
CONDVAR cv is a condition variable.

See Also
condvar _init, condvar_notify, condvar_wait, crit_init, crit_enter,
crit_exit, crit_termnate

condvar_wait

The condvar _wai t function is a critical-section function that blocks on a given
condition variable. Use this function to wait for a critical section (specified by a
condition variable argument) to become available. The calling thread is blocked
until another thread calls condvar _noti fy with the same condition variable
argument. The caller must have entered the critical section associated with this
condition variable before calling condvar_wai t .

Syntax
voi d condvar _wai t (CONDVAR cv);

Returns
voi d

Parameters
CONDVAR cv is a condition variable.

See Also
condvar _init, condvar_terninate, condvar_notify, crit_init, crit_enter,
crit_exit, crit_terninate

crit_enter

Thecrit_enter function is a critical-section function that attempts to enter a critical
section. Use this function to gain ownership of a critical section. If another thread
already owns the section, the calling thread is blocked until the first thread
surrenders ownership by calling crit_exit.

Syntax
void crit_enter(CRITICAL crvar);

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Returns
voi d

Parameters
CRITI CAL crvar is a critical-section variable.

See Also
crit_init, crit_exit, crit_termnate

crit_exit

Thecrit_exit function is a critical-section function that surrenders ownership of a
critical section. Use this function to surrender ownership of a critical section. If
another thread is blocked waiting for the section, the block will be removed and the
waiting thread will be given ownership of the section.

Syntax
void crit_exit(CRITICAL crvar);

Returns
voi d

Parameters
CRITI CAL crvar is a critical-section variable.

See Also
crit_init, crit_enter, crit_termnate

crit_init

Thecrit_init function is a critical-section function that creates and returns a new
critical-section variable (a variable of type CRI Tl CAL). Use this function to obtain a
new instance of a variable of type CR Tl CAL (a critical-section variable) to be used in

managing the prevention of interference between two threads of execution. At the
time of its creation, no thread owns the critical section.

Warning

Threads must not own or be waiting for the critical section whencrit_terninate is
called.

Chapter 4 NSAPI Function Reference 89

90

Syntax
CRITICAL crit_init(void);

Returns
A newly allocated critical-section variable (CR Tl CAL).

Parameters
none

See Also
crit_enter, crit_exit, crit_termnate

crit_terminate

The crit_term nate function is a critical-section function that removes a previously
allocated critical-section variable (a variable of type CR Tl CAL). Use this function to
release a critical-section variable previously obtained by acall tocrit_init.

Syntax
void crit_terninate(CRITICAL crvar);

Returns
voi d

Parameters
CRITICAL crvar is a critical-section variable.

See Also
crit_init, crit_enter, crit_exit

daemon_atrestart

The daenon_at restart function lets you register a callback function named by fn to
be used when the server terminates. Use this function when you need a callback
function to deallocate resources allocated by an initialization function. The
daermon_atrest art function is a generalization of the nagnus_atrestart function.

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

The magnus. conf directives Ter m nat eTi neout and Chi | dRest art Cal | back also affect
the callback of NSAPI functions.

Syntax
voi d daenon_atrestart(void (*fn)(void *), void *data);

Returns
voi d

Parameters
void (* fn) (void *) isthe callback function.

voi d *dat a is the parameter passed to the callback function when the server is
restarted.

Example

/* Register the log_close function, passing it NULL */
/* to close *a log file when the server is */

/* restarted or shutdown. */

daenon_atrestart (1 og_close, NUL);

NSAPI _PUBLI C voi d | og_cl ose(void *paraneter)

{

system fcl ose(gl obal _| ogfd);

}

dns_set_hostent

The dns_set_hostent function sets the DNS host entry information in the request.If
this is set, the proxy won’t try to resolve host information by itself, but instead it
will just use this host information which was already resolved within custom DNS
resolution SAF.

Syntax
int dns_set_hostent (struct hostent *hostent, Session *sn, Request *rq);

Returns
REQ_PROCEED on success or REQ ABORTED on error.

Parameters
struct hostent *hostent isa pointer to the host entry structure.

Sessi on *sn is the Session

Request *rq is the Request

Chapter 4 NSAPI Function Reference 91

92

Example
int nmy_dns_func(pbl ock *pb, Session *sn, Request *rq)

{
char *host = pblock_findval ("dns-host", rg->vars);
struct hostent *hostent;

hostent = get host bynane(host); // replace with custom DNS
i npl enent ati on

dns_set _hostent (hostent, sn, rq);

return REQ PROCEED,

fc_close

The fc_cl ose function closes a file opened using f ¢_open. This function should only
be called with files opened using f c_open.

Syntax
voi d fc_cl ose(PRFi | eDesc *fd, FcHdl *hD ;

Returns
voi d

Parameters
PRFi | eDesc *fd is a valid pointer returned from a prior call to f c_open.

FcHdl *hD is a valid pointer to a structure of type FcHdl . This pointer must have
been initialized by a prior call to f c_open.

fc_open

The f c_open function returns a pointer to PRFi | eDesc that refers to an open file

(fil eNane). The fi | eNane must be the full path name of an existing file. The file is
opened in read mode only. The application calling this function should not modify
the currency of the file pointed to by the PRFi | eDesc * unless the DUP_FI LE_DESCis

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

also passed to this function. In other words, the application (at minimum) should
not issue a read operation based on this pointer that would modify the currency for
the PRFi | eDesc *. If such a read operation is required (that may change the currency
for the PRFi | eDesc *), then the application should call this function with the
argument DUP_FI LE_DESC.

On a successful call to this function, a valid pointer to PRFi | eDesc is returned and
the handle 'FcHdl ' is properly initialized. The size information for the file is stored
in the 'fi | eSi ze' member of the handle.

Syntax
PRFi | eDesc *fc_open(const char *fileNane, FcHdl *hD , PRU nt32 flags,
Session *sn, Request *rq);

Returns
Pointer to PRFi | eDesc, or NULL on failure.

Parameters
const char *fileNane is the full path name of the file to be opened.

FcHdl *hD is a valid pointer to a structure of type FcHdl .
PRU nt 32 flags can be 0 or DUP_FI LE_DESC.
Sessi on *sn is a pointer to the session.

Request *rq is a pointer to the request.

filebuf buf2sd

The fil ebuf _buf 2sd function sends a file buffer to a socket (descriptor) and returns
the number of bytes sent.

Use this function to send the contents of an entire file to the client.

Syntax
int filebuf_buf2sd(filebuf *buf, SYS NETFD sd);

Returns
The number of bytes sent to the socket if successful, or the constant | O ERRCORif the
file buffer could not be sent.

Parameters
filebuf *buf is the file buffer that must already have been opened.

Chapter 4 NSAPI Function Reference 93

94

SYS NETFDsd is the platform-independent socket descriptor. Normally this will be
obtained from the csd (client socket descriptor) field of the sn (sessi on) structure.

Example
if (filebuf_buf2sd(buf, sn->csd) == 10 ERROR)
return(REQ EXIT);

See Also
filebuf _close, filebuf open, filebuf open nostat, filebuf getc

filebuf close

The fil ebuf _cl ose function deallocates a file buffer and closes its associated file.

Generally, use fi | ebuf _open first to open a file buffer, and then il ebuf _get ¢ to
access the information in the file. After you have finished using the file buffer, use
filebuf_cl ose to close it.

Syntax
void filebuf_close(filebuf *buf);

Returns
voi d

Parameters
filebuf *buf is the file buffer previously opened with fi | ebuf _open.

Example
filebuf _close(buf);

See Also
filebuf _open, filebuf open_nostat, filebuf buf2sd, filebuf getc

filebuf _getc

The filebuf _getc function retrieves a character from the current file position and
returns it as an integer. It then increments the current file position.

Use fi | ebuf _get ¢ to sequentially read characters from a buffered file.

Syntax
filebuf_getc(filebuf b);

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Returns
An integer containing the character retrieved, or the constant | O ECF or | O ERRCR
upon an end of file or error.

Parameters
filebuf bisthe name of the file buffer.

See Also
filebuf_close, filebuf_buf2sd, filebuf_open, filter_create

filebuf_open

The fil ebuf _open function opens a new file buffer for a previously opened file. It
returns a new buffer structure. Buffered files provide more efficient file access by
guaranteeing the use of buffered file 1/0 in environments where it is not
supported by the operating system.

Syntax
filebuf *filebuf_open(SYS FILE fd, int sz);

Returns
A pointer to a new buffer structure to hold the data if successful, or NULL if ho
buffer could be opened.

Parameters
SYS_FI LE fd is the platform-independent file descriptor of the file which has
already been opened.

int sz isthe size, in bytes, to be used for the buffer.

Example
filebuf *buf = filebuf _open(fd, FILE BUFFERSIZE);
if ('buf) {
system fcl ose(fd);
}
See Also

filebuf _getc, filebuf_buf2sd, filebuf close, filebuf_open_nostat

Chapter 4 NSAPI Function Reference 95

96

filebuf_open_nostat

The fil ebuf _open_nostat function opens a new file buffer for a previously opened
file. It returns a new buffer structure. Buffered files provide more efficient file
access by guaranteeing the use of buffered file /0O in environments where it is not
supported by the operating system.

This function is the same fi | ebuf _open, but is more efficient, since it does not need
to call the request _stat _path function. It requires that the stat information be
passed in.

Syntax
filebuf* filebuf_open_nostat(SYS FILE fd, int sz,
struct stat *finfo);

Returns
A pointer to a new buffer structure to hold the data if successful, or NULL if nho
buffer could be opened.

Parameters
SYS FILE fd is the platform-independent file descriptor of the file that has already
been opened.

int sz isthe size, in bytes, to be used for the buffer.

struct stat *finfo is the file information of the file. Before calling the
filebuf _open_nostat function, you must call the request _st at _pat h function to
retrieve the file information.

Example
filebuf *buf = filebuf _open_nostat(fd, FILE BUFERSIZE, &finfo);
if ('buf) {
system fclose(fd);
}
See Also

filebuf _close, filebuf open, filebuf _getc, filebuf_buf2sd

filter_create

Thefilter_create function defines a new filter.

The name parameter specifies a unique name for the filter. If a filter with the
specified name already exists, it will be replaced.

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Names beginning with nagnus- or server- are reserved by the server.

The order parameter indicates the position of the filter in the filter stack by
specifying what class of functionality the filter implements.

The following table describes parameters allowed order constants and their
associated meanings for the filter_create function. The left column lists the name
of the constant, the middle column describes the functionality the filter
implements, and the right column lists the position the filter occupies in the filter
stack.

Table 4-1 filter-create constants
Constant Functionality Filter Implements Position in Filter Stack
FI LTER_CONTENT_TRANSLATI ON Translates content from one form to Top
another (for example, XSLT)
FI LTER_CONTENT_CCDI NG Encodes content (for example, Middle
HTTP gzip compression)
FI LTER_TRANSFER_CCDI NG Encodes entity bodies for Bottom

transmission (for example, HTTP
chunking)

The methods parameter specifies a pointer to a Fi | ter et hods structure. Before
callingfilter_create, you mustfirst initialize the Fi | t er Met hods structure using the
FI LTER_METHODS_| NI TI ALI ZER macro, and then assign function pointers to the
individual Fi | t er Met hods members (for example, i nsert, read, wite, and so on) that
correspond to the filter methods the filter will support.

filter_create returnsconst Filter *,a pointer to an opaque representation of the
filter. This value may be passed to filter_insert to insert the filter in a particular
filter stack.

Syntax
const Filter *filter_create(const char *name, int order, const
Fi |t er Met hods *net hods) ;

Returns
The const Filter * that identifies the filter or NULL if an error occurred.

Parameters
const char *nane is the name of the filter.

int order is one of the order constants above.

Chapter 4 NSAPI Function Reference 97

98

const FilterMethods *nethods contains pointers to the filter methods the filter
supports.

Example

Fi | ter Met hods met hods = FI LTER METHCODS | NTI ALI ZER,

const Filter *filter;

/* This filter will only support the "read" filter method */

met hods. read = ny_input_filter_read,

/* Create the filter */

filter = filter_create("ny-input-filter", FILTER CONTENT_TRANSLATI ON,
&mret hods) ;

filter_find
The filter_find function finds the filter with the specified name.

Syntax
const Filter *filter_find(const char *name);

Returns
The const Filter * thatidentifies the filter, or NULL if the specified filter does not
exist.

Parameters
const char *nane is the name of the filter of interest.

filter_insert

Thefilter_insert function inserts a filter into a filter stack, creating a new filter
layer and installing the filter at that layer. The filter layer's position in the stack is
determined by the order value specified when filter_create was called, and any
explicit ordering configured by i nit-fil ter-order. If afilter layer with the same
order value already exists in the stack, the new layer is inserted above that layer.

Parameters may be passed to the filter using the pb and data parameters. The
semantics of the data parameter are defined by individual filters. However, all
filters must be able to handle a data parameter of NULL.

When possible, plugin developers should avoid calling fil ter_insert directly, and
instead use theinsert-filter SAF (applicable in | nput -class directives).

Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Syntax
int filter_insert(SYS_NETFD sd, pblock *pb, Session *sn, Request *rq, void
*data, const Filter *filter);

Returns

Returns REQ PROCEED if the specified filter was inserted successfully, or REQ NOACTI ON
if the specified filter was not inserted because it was not required. Any other return
value indicates an error.

Parameters
SYS NETFD sd is NULL (reserved for future use).

pbl ock *pb is a set of parameters to pass to the specified filter's init method.
Sessi on *sn is the Session.

Request *rq is the Request.

voi d *data is filter-defined private data.

const Filter *filter isthe filter toinsert.

filter _layer

Thefilter_layer function returns the layer in a filter stack that corresponds to the
specified filter.

Syntax
FilterLayer *filter_layer(SYS NETFD sd, const Filter *filter);

Returns
The topmost Fi | terLayer * associated with the specified filter, or NULL if the
specified filter is not part of the specified filter stack.

Parameters
SYS_NETFD sd is the filter stack to inspect.

const Filter *filter isthe filter of interest.

filter _name

The filter_name function returns the name of the specified filter. The caller should
not free the returned string.

Chapter 4 NSAPI Function Reference 99

100

Syntax
const char *filter_name(const Filter *filter);

Returns
The name of the specified filter, or NULL if an error occurred.

Parameters
const Filter *filter is the filter of interest.

filter_remove

The filter_remove function removes the specified filter from the specified filter
stack, destroying a filter layer. If the specified filter was inserted into the filter stack
multiple times, only that filter's topmost filter layer is destroyed.

When possible, plugin developers should avoid calling fi | ter _renove directly, and
instead use the remove-filter SAF (applicable in I nput -, Qut put -, Ser vi ce-, and
Error -class directives).

Syntax
int filter_remove(SYS NETFD sd, const Filter *filter);

Returns

Returns REQ PROCEED if the specified filter was removed successfully or

REQ NOACTI ON if the specified filter was not part of the filter stack. Any other return
value indicates an error.

Parameters
SYS _NETFD sd is the filter stack, sn- >csd.

const Filter *filter isthe filter to remove.

flush

The f1 ush filter method is called when buffered data should be sent. Filters that
buffer outgoing data should implement the f I ush filter method.

Upon receiving control, a f I ush implementation must write any buffered data to
the filter layer immediately below it. Before returning success, a f | ush
implementation must successfully call the net _f1ush function:

net _flush(l ayer->l over).

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Syntax
int flush(FilterlLayer *layer);

Returns
0 on success or -1 if an error occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

Example
int nyfilter_flush(FilterLayer *|ayer)
{
M/FilterContext context = (MyFilterContext *)layer->context->data;
if (context->buf.count) {
int rv;
rv = net_wite(layer->l ower, context->buf.data, context->buf.count);
if (rv !'= context->buf.count)
return -1; /* failed to flush data */
cont ext - >buf . count = 0;

}

return net _flush(layer->lower);

}

See Also
net flush

FREE

The FREE macro is a platform-independent substitute for the C library routine free.
It deallocates the space previously allocated by MALLCC, CALLCC, or STRDUP from the
request’s memory pool.

Syntax
FREE(voi d *ptr);

Returns
voi d

Parameters

void *ptr isa(void *) pointer to a block of memory. If the pointer is not one
created by MALLOC, CALLCC, or STRDUP, the behavior is undefined.

Chapter 4 NSAPI Function Reference 101

Example
char *nane;
nane = (char *) MALLOQ(256);

FREE(narre) ;

See Also
CALLOC, REALLCC, STRDUP, PERM MALLOC, PERM FREE, PERM REALLCC,
PERM STRDUP

fs_blk_size

The f s_bl k_si ze function returns the block size of the disk partition on which a
specified directory resides.

Syntax
#i ncl ude <lIibproxy/fs.h>
long fs_blk_size(char *root);

Returns
the block size, in bytes

Parameters
char *root is the name of the directory.

See also
fs_bl ks_avail

fs_blks_avail

The fs_bl ks_avai| function returns the number of disk blocks available on the
disk partition on which a specified directory resides.

Syntax
#incl ude <lIibproxy/fs.h>
I ong fs_blks_avail (char *root);

Returns
The number of available disk blocks

102 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Parameters
char *root is the name of the directory.

See also
fs_blk _size
func_exec

The func_exec function executes the function named by the f n entry in a specified
pbl ock. If the function name is not found, it logs the error and returns REQ ABCRTED.

You can use this function to execute a built-in Server Application Function (SAF)
by identifying it in the pbl ock.

Syntax
int func_exec(pbl ock *pb, Session *sn, Request *rq);

Returns
The value returned by the executed function, or the constant REQ ABCRTED if no
function was executed.

Parameters
pbl ock pb is the pbl ock containing the function name (f n) and parameters.

Sessi on *sn is the Session.
Request *rq is the Request.

The Sessi on and Request parameters are the same as the ones passed into your SAF.

See Also
| og_error

func_find

The func_find function returns a pointer to the function specified by nare. If the
function does not exist, it returns NULL.

Syntax
FuncPtr func_find(char *nane);

Chapter 4 NSAPI Function Reference 103

104

Returns
A pointer to the chosen function, suitable for dereferencing, or NULL if the
function could not be found.

Parameters
char *nane is the name of the function.

Example
/* this block of code does the same thing as func_exec */
char *afunc = pbl ock_findval ("afunction", pb);
FuncPtr afnptr = func_find(afunc);
if (afnptr)
return (afnptr)(pb, sn, rq);

See Also
func_exec

func_insert

The func_insert function dynamically inserts a named function into the server's
table of functions. This function should only be called during the I ni t stage.

Syntax
FuncStruct *func_insert(char *name, FuncPtr fn);

Returns
Returns the FuncStruct structure that identifies the newly inserted function. The
caller should not modify the contents of the FuncSt ruct structure.

Parameters
char *nane is the name of the function.

FuncPtr fn is the pointer to the function.

Example
func_insert ("ny-service-saf", &nmy_service_saf);

See Also
func_exec, func_find

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

insert

Theinsert filter method is called when a filter is inserted into a filter stack by the
filter_insert functionorinsert-filter SAF (applicable in Input-class directives).

Syntax
int insert(FilterLayer *layer, pblock *pb);

Returns

Returns REQ PROCEED if the filter should be inserted into the filter stack, REQ NOACTI ON
if the filter should not be inserted because it is not required, or REQ ABCRTED if the
filter should not be inserted because of an error.

Parameters
FilterLayer *layer is the filter layer at which the filter is being inserted.

pbl ock *pb is the set of parameters passed to filter_insert or specified by the
fn="insert-filter" directive.

Example
FilterMethods nyfilter_methods = FI LTER METHCDS | NI Tl ALI ZER;
const Filter *nyfilter;
int nyfilter_insert(FilterLayer *layer, pblock *pb)
{
if (pblock_findval ("dont-insert-filter", pb))
return REQ NOACTI ON
return REQ PROCEED,

}

nyfilter_nethods.insert = &myfilter_insert;
nyfilter = filter_create("nyfilter", &myfilter_nethods);

Chapter 4 NSAPI Function Reference 105

log_error

The 1 og_error function creates an entry in an error log, recording the date, the
severity, and a specified text.

Syntax
int log_error(int degree, char *func, Session *sn, Request *rq, char *fnt,

s

Returns
0 if the log entry was created, or - 1 if the log entry was not created.

Parameters
int degree specifies the severity of the error. It must be one of the following
constants:

LOG WARN -- warning

LOG M SCONFI G-- a syntax error or permission violation

LOG SECURI TY -- an authentication failure or 403 error from a host
LOG FAl LURE -- an internal problem

LOG CATASTROPHE -- a nonrecoverable server error

LOG | NFORM-- an informational message

char *func is the name of the function where the error has occurred.

Sessi on *sn is the Session.

Request *rq is the Request.

The Sessi on and Request parameters are the same as the ones passed into your SAF.
char *fnt specifies the format for the printf function that delivers the message.

. represents a sequence of parameters for the printf function.
Example
| og_error (LOG WARN, "send-file", sn, rq,

“error opening buffer from% (%)"), path,
systemerrnsg(fd));

See Also
func_exec

106 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

magnus_atrestart

NOTE Use the daenon- atrestart function in place of the obsolete
magnus_at restart function.

The magnus_at rest art function lets you register a callback function named by fn to
be used when the server receives a restart signal. Use this function when you need
a callback function to deallocate resources allocated by an initialization function.

Syntax
#incl ude <netsite.h>
voi d magnus_atrestart(void (*fn)(void *), void *data);

Returns
voi d

Parameters
voi d (* fn) (void *) is the callback function.

voi d *data is the parameter passed to the callback function when the server is
restarted.

Example

/* Cose log file when server is restarted */
magnus_atrestart(brief _termnate, NULL);
return REQPRCOCEED,

MALLOC

The MALLCC macro is a platform-independent substitute for the C library routine
mal | oc. It normally allocates from the request’s memory pool. If pooled memory
has been disabled in the configuration file (with the pool -i ni t built-in SAF),
PERM MALLOC and MALLCC both obtain their memory from the system heap.

Syntax
voi d *MALLOQ(i nt size)

Chapter 4 NSAPI Function Reference 107

108

Returns
A void pointer to a block of memory.

Parameters
int size isthe number of bytes to allocate.

Example

/* Alocate 256 bytes for a name */
char *nane;

name = (char *) MALLOQ(256);

See Also
FREE, CALLCC, REALLQOC, STRDUP, PERM MALLCC, PERM FREE, PERM CALLCC,
PERM REALLCC, PERM STRDUP

net_flush

The net _f1 ush function flushes any buffered data. If you require that data be sent
immediately, call net _fl ush after calling network output functions such as
net_wite ornet_sendfile.

Syntax
int net_flush(SYS _NETFD sd);

Returns
0 on success, or a negative value if an error occurred.

Parameters
SYS NETFD sd is the socket to flush.

Example

net_wite(sn->csd, "Please wait... ", 15);
net _flush(sn->csd);

/* Performsone tine-intensive operation */

net_wite(sn->csd, "Thank you.\n", 11);

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

See Also
net_wite, net_sendfile

net_ip2host

The net _i p2host function transforms a textual IP address into a fully-qualified
domain name and returns it.

NOTE This function works only if the DNS directive is enabled in the
obj . conf file. For more information, see Sun Java System Web Proxy
Server 4.0.1 Configuration File Reference.

Syntax
char *net _i p2host (char *ip, int verify);

Returns
A new string containing the fully-qualified domain name if the transformation was
accomplished, or NULL if the transformation was not accomplished.

Parameters
char *ip isthe IP address as a character string in dotted-decimal notation:
nnn. nnn. nnn. nnn

int verify, if nonzero, specifies that the function should verify the fully-qualified
domain name. Though this requires an extra query, you should use it when
checking access control.

net_read

The net _read function reads bytes from a specified socket into a specified buffer.
The function waits to receive data from the socket until either at least one byte is
available in the socket or the specified time has elapsed.

Syntax
int net_read (SYS_NETFD sd, char *buf, int sz, int tineout);

Returns

The number of bytes read, which will not exceed the maximum size, sz. A negative
value is returned if an error has occurred, in which case errno is set to the constant
ETI MEDQUT if the operation did not complete before ti neout seconds elapsed.

Chapter 4 NSAPI Function Reference 109

110

Parameters
SYS_NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer to receive the bytes.
int sz isthe maximum number of bytes to read.

int tineout isthe number of seconds to allow for the read operation before
returning. The purpose of ti neout is not to return because not enough bytes were
read in the given time, but to limit the amount of time devoted to waiting until
some data arrives.

See Also
net_wite

net_sendfile

The net _sendfil e function sends the contents of a specified file to a specified a
socket. Either the whole file or a fraction may be sent, and the contents of the file
may optionally be preceded and/or followed by caller-specified data.

Parameters are passed to net _sendfil e in the sendfil edat a structure. Before
invoking net _sendfi | e, the caller must initialize every sendfi | edat a structure
member.

Syntax
int net_sendfil e(SYS NETFD sd, const sendfiledata *sfd);

Returns
A positive number indicates the number of bytes successfully written, including
the headers, file contents, and trailers. A negative value indicates an error.

Parameters
SYS_NETFD sd is the socket to write to.

const sendfil edata *sfd identifies the data to send.

Example
The following Servi ce SAF sends a file bracketed by the strings "begin" and "end."

#include <string. h>
#i ncl ude "nsapi . h"

NSAPI _PUBLI C int service_net_sendfil e(pblock *pb, Session *sn, Request *rq)
{

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

char *path;

SYS FILE fd;

struct sendfiledata sfd;
int rv;

path = pbl ock_findval ("path", rg->vars);
fd = system fopenR] path);
if ('fd) {
| og_error (LOG_ M SCONFI G "service-net-sendfile", sn, rq,
"Error opening % (%)", path, systemerrnsg());
return REQ ABORTED;

}

sfd. fd = fd; /* file to send */

sfd.offset = 0; /* start sending fromthe
begi nni ng */

sfd.len = 0; /* send the whole file */

sfd. header = "begin"; /* header data to send before the
file */

sfd. hlen = strlen(sfd. header); /* length of header data */

sfd.trailer = "end"; /* trailer data to send after the
file */

sfd.tlen = strlen(sfd.trailer); /* length of trailer data */

/* send the headers, file, and trailers to the client */
rv = net_sendfil e(sn->csd, &sfd);

system fcl ose(fd);

if (rv <0) {
| og_error (LOG | NFORM "service-net-sendfile", sn, rqg,"Error sending
% (%)", path, systemerrnsg());
return REQ ABORTED,
}

return REQ PROCEED,
}

See Also
net flush

Chapter 4 NSAPI Function Reference 111

112

net_write

The net _write function writes a specified number of bytes to a specified socket
from a specified buffer.

Syntax
int net_wite(SYS _NETFD sd, char *buf, int sz);

Returns
The number of bytes written, which may be less than the requested size if an error
occurred.

Parameters
SYS NETFDsd is the platform-independent socket descriptor.

char *buf is the buffer containing the bytes.

int sz isthe number of bytes to write.

Example
if (net_wite(sn->csd, FIRSTMSG strlen(FI RSTMSG) == | O ERROR)
return REQ EXIT,;

See Also
net read

netbuf buf2sd

The net buf _buf 2sd function sends a buffer to a socket. You can use this function to
send data from IPC pipes to the client.

Syntax
i nt netbuf _buf2sd(netbuf *buf, SYS NETFD sd, int len);

Returns
The number of bytes transferred to the socket, if successful, or the constant
I O_ ERRCR if unsuccessful.

Parameters
net buf *buf is the buffer to send.

SYS NETFDsd is the platform-independent identifier of the socket.

int |en isthe length of the buffer.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

See Also
net buf _cl ose, netbuf_getc, netbuf_grab, netbuf_open

netbuf close

The net buf _cl ose function deallocates a network buffer and closes its associated
files. Use this function when you need to deallocate the network buffer and close
the socket.

You should never close the net buf parameter in a sessi on structure.

Syntax
voi d netbuf _cl ose(net buf *buf);

Returns
voi d

Parameters
net buf *buf is the buffer to close.

See Also
net buf buf2sd, netbuf getc, netbuf grab, netbuf open

netbuf getc

The net buf _get ¢ function retrieves a character from the cursor position of the
network buffer specified by b.

Syntax
net buf _get c(net buf b);

Returns
The integer representing the character if one was retrieved, or the constant | O EQF
or | O ERRCR for end of file or error.

Parameters
net buf b is the buffer from which to retrieve one character.

See Also
net buf _buf 2sd, netbuf_cl ose, netbuf_grab, netbuf_open

Chapter 4 NSAPI Function Reference 113

114

netbuf grab

The net buf _grab function reads sz number of bytes from the network buffer’s (buf)
socket into the network buffer. If the buffer is not large enough it is resized. The
data can be retrieved from buf - >i nbuf on success.

This function is used by the function net buf _buf 2sd.

Syntax
int netbuf_grab(netbuf *buf, int sz);

Returns
The number of bytes actually read (between 1 and sz) if the operation was
successful, or the constant | O ECF or | O ERRCR for end of file or error.

Parameters
net buf *buf is the buffer to read into.

int sz isthe number of bytes to read.

See Also
net buf _buf2sd, netbuf cl ose, netbuf _grab, netbuf open

netbuf _open

The net buf _open function opens a new network buffer and returns it. You can use
net buf _open to create a net buf structure and start using buffered 1/0 on a socket.

Syntax
net buf * net buf _open(SYS_NETFD sd, int sz);

Returns
A pointer to a new net buf structure (network buffer).

Parameters
SYS NETFD sd is the platform-independent identifier of the socket.

int sz isthe number of characters to allocate for the network buffer.

See Also
net buf _buf 2sd, netbuf cl ose, netbuf getc, netbuf grab

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

nsapi_module_init

Plugin developers may define an nsapi _modul e_i nit function, which is a module
initialization entry point that enables a plugin to create filters when it is loaded.
When an NSAPI module contains an nsapi _nodul e_i nit function, the server will
call that function immediately after loading the module. The nsapi _modul e_i ni t
presents the same interface as an I nit SAF, and it must follow the same rules.

The nsapi _nodul e_i nit function may be used to register SAFs with func_i nsert, and
create filters with filter_create.

Syntax
int nsapi _nmodul e_init(pblock *pb, Session *sn, Request *rq);

Returns
REQ PROCEED on success, or REQ ABCRTED on error.

Parameters
pbl ock *pb is a set of parameters specified by the f n="1 oad- nodul es" directive.

Sessi on *sn (the Session) is NULL.
Request *rq (the Request) is NULL.

NSAPI_RUNTIME_VERSION

The NSAPI _RUNTI ME_VERSI ON macro defines the NSAPI version available at runtime.
This is the same as the highest NSAPI version supported by the server the plugin is
running in. The NSAPI version is encoded as in USE_NSAPI _VERSI O\

The value returned by the NSAPI _RUNTI ME_VERSI ON macro is valid only in iPlanet™
Web Server 6.0, Netscape Enterprise Server 6.0, Sun Java System Web Server 6.1,
and Sun Java System Web Proxy Server 4 and higher. That is, the server must
support NSAPI 3.1 for this macro to return a valid value. Additionally, to use
NSAPI _RUNTI ME_VERSI O\, you must compile against an nsapi . h header file that
supports NSAPI 3.2 or higher.

Plugin developers should not attempt to set the value of the NSAPI _RUNTI ME_VERSI ON
macro directly. Instead, see the USE_NSAPI _VERSI ON macro.

Syntax
i nt NSAPI _RUNTI ME_VERSI ON

Chapter 4 NSAPI Function Reference 115

116

Example
NSAPI _PUBLI Cint | og_nsapi_runtinme_version(pbl ock *pb, Session *sn, Request
“ra) {
| og_error (LOG I NFORM "l og-nsapi - runti me-version", sn, rq,
"Server supports NSAPlI version %l. %\ n",
NSAPI _RUNTI ME_VERSI ON / 100,
NSAPI _RUNTI ME_VERSI ON % 100) ;
return REQ PROCEED,

}

See Also
NSAPI _VERSI ON, USE_NSAPI _VERSI ON

NSAPI_VERSION

The NSAPI _VERSI ON macro defines the NSAPI version used at compile time. This
value is determined by the value of the USE_NSAPI _VERSI ON macro, or, if the plugin
developer did not define USE_NSAPI _VERSI ON, by the highest NSAPI version
supported by the nsapi . h header the plugin was compiled against. The NSAPI
version is encoded as in USE_NSAPI _VERSI ON

Plugin developers should not attempt to set the value of the NSAPI _VERSI ON macro
directly. Instead, see the USE NSAPI _VERSI ON macro..

Syntax
int NSAPI _VERSI ON

Example

Example

NSAPI _PUBLI C int | og_nsapi _conpile_time_version(pblock *pb, Session *sn,

Request *rq) {

| og_error(LOG I NFORM "I og- nsapi - conpi | e-ti me-version", sn, rq,

"Plugin conpil ed agai nst NSAPI version %l. %\ n",
NSAPI _VERSI ON / 100,
NSAPI _VERSI ON % 100) ;

return REQ PROCEED;

}

See Also
NSAPI _RUNTI ME_VERSI ON, USE_NSAPI _VERSI ON

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

param_create

The par am cr eat e function creates a pb_par amstructure containing a specified name
and value. The name and value are copied. Use this function to prepare a pb_param
structure to be used in calls to pbl ock routines such as pbl ock_pi nsert.

Syntax
pb_param *param cr eat e(char *name, char *val ue);

Returns
A pointer to a new pb_par amstructure.

Parameters
char *nane is the string containing the name.

char *val ue is the string containing the value.
Example

pb_param *newpp = param create("content-type",
pbl ock_pi nsert (newpp, rg->srvhdrs);

text/plain");

See Also
param free, pblock pinsert, pblock renmove

param_free

The param free function frees the pb_par amstructure specified by pp and its
associated structures. Use the param free function to dispose a pb_par amafter
removing it from a pblock with pbl ock_r emove.

Syntax
int paramfree(pb_param *pp);

Returns
1 if the parameter was freed or 0 if the parameter was NULL.

Parameters
pb_param *pp is the name-value pair stored in a pblock.

Chapter 4 NSAPI Function Reference 117

118

Example
i f (paramfree(pbl ock_remove("content-type", rg-srvhdrs)))
return; /* we renoved it */

See Also
paramcreate, pblock pinsert, pblock renmove

pblock copy

The pbl ock_copy function copies the entries of the source pbl ock and adds them into
the destination pbl ock. Any previous entries in the destination pbl ock are left intact.

Syntax
voi d pbl ock_copy(pbl ock *src, pblock *dst);

Returns
voi d

Parameters
pbl ock *src is the source pblock.
pbl ock *dst is the destination pblock.

Names and values are newly allocated so that the original pbl ock may be freed, or
the new pbl ock changed without affecting the original pbl ock.

See Also
pbl ock create, pblock dup, pblock free, pblock find, pblock findval,
pbl ock_renove, pbl ock_nvinsert

pblock create

The pbl ock_cr eat e function creates a new pblock. The pblock maintains an internal
hash table for fast name-value pair lookups.

Syntax
pbl ock *pbl ock_create(int n);

Returns
A pointer to a newly allocated pbl ock.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Parameters
int n is the size of the hash table (number of name-value pairs) for the pblock.

See Also
pbl ock_copy, pbl ock_dup, pblock_find, pblock_findval, pblock_free,
pbl ock_nvi nsert, pbl ock_remove

pblock dup

The pbl ock_dup function duplicates a pblock. It is equivalent to a sequence of
pbl ock_creat e and pbl ock_copy.

Syntax
pbl ock *pbl ock_dup(pbl ock *src);

Returns
A pointer to a newly allocated pbl ock.

Parameters
pbl ock *src is the source pblock.

See Also
pbl ock_create, pblock find, pblock findval, pblock free,
pbl ock_nvi nsert, pbl ock_renove

pblock_find

The pbl ock_fi nd function finds a specified name-value pair entry in a pblock, and
returns the pb_par amstructure. If you only want the value associated with the
name, use the pbl ock_findval function.

This function is implemented as a macro.

Syntax
pb_param *pbl ock_find(char *nane, pblock *pb);

Returns
A pointer to the pb_par amstructure if one was found, or NULL if name was not
found.

Chapter 4 NSAPI Function Reference 119

120

Parameters
char *nane is the name of a name-value pair.

pbl ock *pb is the pbl ock to be searched.

See Also
pbl ock_copy, pblock_dup, pblock findval, pblock free, pblock_nvinsert,
pbl ock_r enmove

pblock_findlong

The pbl ock_fi ndl ong function finds a specified name-value pair entry in a
parameter block, and retrieves the name and structure of the parameter block. Use
pbl ock_fi ndl ong if you want to retrieve the name, structure, and value of the
parameter block. However, if you want only the name and structure of the
parameter block, use the pbl ock_fi nd function. Do not use these two functions in
conjunction.

Syntax
#include <libproxy/util.h>
I ong pbl ock_findl ong(char *name, pbl ock *pb);

Returns
= Al ong containing the value associated with the name

e -1 if no match was found

Parameters
char *name is the name of a name-value pair.

pbl ock *pb is the parameter block to be searched.

See also
pblock_nlinsert

pblock_findval

The pbl ock_findval function finds the value of a specified hame in a pblock. If you
just want the pb_par amstructure of the pblock, use the pbl ock_fi nd function.

The pointer returned is a pointer into the pblock. Do not FREE it. If you want to
modify it, do a STROUP and modify the copy.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Syntax
char *pbl ock_findval (char *nane, pblock *pb);

Returns
A string containing the value associated with the name or NULL if no match was
found.

Parameters
char *nane is the name of a name-value pair.

pbl ock *pb is the pblock to be searched.

Example
see pbl ock_nvi nsert.

See Also
pbl ock_create, pblock_copy, pblock find, pblock free, pblock_nvinsert,
pbl ock_renove, request_header

pblock_free

The pbl ock_free function frees a specified pbl ock and any entries inside it. If you
want to save a variable in the pbl ock, remove the variable using the function
pbl ock_r enove and save the resulting pointer.

Syntax
voi d pbl ock_free(pbl ock *pb);

Returns
voi d

Parameters
pbl ock *pb is the pbl ock to be freed.

See Also

pbl ock_copy, pblock _create, pblock dup, pblock find, pblock findval,
pbl ock_nvi nsert, pblock_renove

Chapter 4 NSAPI Function Reference 121

122

pblock _nlinsert

The pbl ock_nl i nsert function creates a new parameter structure with a given
name and long numeric value and inserts it into a specified parameter block. The
name and value parameters are also newly allocated.

Syntax
#include <libproxy/util.h>
pb_param *pbl ock_nl i nsert (char *name, |ong valug, pbl ock *pb);

Returns
The newly allocated parameter block structure

Parameters
char *name is the name by which the name-value pair is stored.

| ong value is the long (or integer) value being inserted into the parameter block.

pbl ock *pb is the parameter block into which the insertion occurs.

See also
pbl ock_fi ndl ong

pblock nninsert

The pbl ock_nni nsert function creates a new entry with a given name and a numeric
value in the specified pbl ock. The numeric value is first converted into a string. The
name and value parameters are copied.

Syntax
pb_param *pbl ock_nni nsert (char *nare, int val ue, pblock *pb);

Returns
A pointer to the new pb_par amstructure.

Parameters
char *nane is the name of the new entry.

int val ue is the numeric value being inserted into the pbl ock. This parameter must
be an integer. If the value you assign is not a number, then instead use the function
pbl ock_nvi nsert to create the parameter.

pbl ock *pb is the pbl ock into which the insertion occurs.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

See Also
pbl ock_copy, pblock_create, pblock_find, pblock free, pblock_nvinsert,
pbl ock_renmove, pbl ock_str2pbl ock

pblock_nvinsert

The pbl ock_nvi nsert function creates a new entry with a given name and character
value in the specified pbl ock. The name and value parameters are copied.

Syntax
pb_param *pbl ock_nvi nsert (char *name, char *val ue, pbl ock *pb);

Returns
A pointer to the newly allocated pb_par amstructure.

Parameters
char *nane is the name of the new entry.

char *val ue is the string value of the new entry.

pbl ock *pb is the pbl ock into which the insertion occurs.

Example
pbl ock_nvinsert("content-type", "text/htm", rg->srvhdrs);

See Also
pbl ock_copy, pblock create, pblock find, pblock free, pblock nninsert,
pbl ock_renove, pblock_str2pbl ock

pblock pb2env

The pbl ock_pb2env function copies a specified pbl ock into a specified environment.
The function creates one new environment entry for each name-value pair in the
pbl ock. Use this function to send pbl ock entries to a program that you are going to
execute.

Syntax
char **pbl ock_pb2env(pbl ock *pb, char **env);

Returns
A pointer to the environment.

Chapter 4 NSAPI Function Reference 123

124

Parameters
pbl ock *pb is the pbl ock to be copied.

char **env is the environment into which the pbl ock is to be copied.

See Also
pbl ock_copy, pblock _create, pblock find, pblock free, pblock_nvinsert,
pbl ock_remove, pbl ock_str2pbl ock

pblock_pblock2str

The pbl ock_pbl ock2st r function copies all parameters of a specified pbl ock into a
specified string. The function allocates additional nonheap space for the string if
needed.

Use this function to stream the pbl ock for archival and other purposes.

Syntax
char *pbl ock_pbl ock2str (pbl ock *pb, char *str);

Returns

The new version of the str parameter. If str is NULL, this is a new string;
otherwise, it is a reallocated string. In either case, it is allocated from the request’s
memory pool.

Parameters
pbl ock *pb is the pbl ock to be copied.

char *str is the string into which the pbl ock is to be copied. It must have been
allocated by MALLOC or REALLCC, not by PERM MALLCC or PERM REALLCC (which allocate
from the system heap).

Each name-value pair in the string is separated from its neighbor pair by a space,
and is in the format name="value."

See Also

pbl ock_copy, pblock_create, pblock find, pblock free, pblock_nvinsert,
pbl ock_remove, pbl ock_str2pbl ock

pblock_pinsert

The function pbl ock_pi nsert inserts a pb_par amstructure into a pbl ock.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Syntax
voi d pbl ock_pi nsert (pb_param *pp, pblock *pb);

Returns
voi d

Parameters
pb_param *pp is the pb_par amstructure to insert.

pbl ock *pb is the pbl ock.

See Also
pbl ock_copy, pblock_create, pblock find, pblock free, pblock_nvinsert,
pbl ock_remove, pbl ock_str2pbl ock

pblock_remove

The pbl ock_r emove function removes a specified name-value entry from a specified
pbl ock. If you use this function, you should eventually call param free to deallocate
the memory used by the pb_par amstructure.

Syntax
pb_param *pbl ock_renove(char *nane, pblock *pb);

Returns
A pointer to the named pb_par amstructure if it was found, or NULL if the named
pb_par amwas not found.

Parameters
char *nane is the name of the pb_par amto be removed.

pbl ock *pb is the pbl ock from which the name-value entry is to be removed.

See Also
pbl ock_copy, pblock create, pblock find, pblock free, pblock nvinsert,
param create, paramfree

pblock replace name

The pbl ock_r epl ace_nane function replaces the name of a name-value pair,
retaining the value.

Chapter 4 NSAPI Function Reference 125

126

Syntax
#include <libproxy/util.h>
voi d pbl ock_repl ace_nane(char *oname, char *nname, pbl ock *pb);

Returns
voi d

Parameters
char *oname is the old name of a name-value pair.
char *nname is the new name for the name-value pair.

pbl ock *pb is the parameter block to be searched.

See also
pbl ock_r emove

pblock_str2pblock

The pbl ock_st r 2pbl ock function scans a string for parameter pairs, adds them to a
pbl ock, and returns the number of parameters added.

Syntax
int pblock_str2pbl ock(char *str, pblock *pb);

Returns
The number of parameter pairs added to the pbl ock, if any, or - 1 if an error
occurred.

Parameters
char *str is the string to be scanned.

The name-value pairs in the string can have the format name=value or name="value."

All backslashes (\) must be followed by a literal character. If string values are
found with no unescaped = signs (no narme=), it assumes the names 1, 2, 3, and so on,
depending on the string position. For example, if pbl ock_st r 2pbl ock finds " sone
strings together," the function treats the strings as if they appeared in name-value
pairs as 1="some" 2="strings" 3="toget her."

pbl ock *pb is the pbl ock into which the name-value pairs are stored.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

See Also
pbl ock_copy, pblock_create, pblock_find, pblock free, pblock_nvinsert,
pbl ock_renove, pbl ock_pbl ock2str

PERM_CALLOC

The PERM CALLOC macro is a platform-independent substitute for the C library
routine cal | oc. It allocates int si ze bytes of memory that persist after the request
that is being processed has been completed. If pooled memory has been disabled in
the configuration file (with the pool -i ni t built-in SAF), PERM CALLOCand CALLCCboth
obtain their memory from the system heap.

Syntax
voi d *PERM CALLOC(i nt si ze)

Returns
A void pointer to a block of memory.

Parameters
int size isthe size in bytes of each element.

Example
char **nang;
name = (char **) PERM CALLOC(100);

See Also
PERM FREE, PERM STRDUP, PERM MALLCOC, PERM REALLCC, MALLOC, FREE,
CALLCC, STRDUP, REALLCC

PERM_FREE

The PERM FREE macro is a platform-independent substitute for the C library routine
free. It deallocates the persistent space previously allocated by PERM MALLCC,

PERM CALLQC, or PERM STRDUP. If pooled memory has been disabled in the
configuration file (with the pool -i ni t built-in SAF), PERM FREE and FREE both
deallocate memory in the system heap.

Syntax
PERM FREE(voi d *ptr);

Chapter 4 NSAPI Function Reference 127

128

Returns
voi d

Parameters
void *ptr isa(void *) pointer to block of memory. If the pointer is not one created
by PERM MALLOC, PERM CALLQC, or PERM STRDUP, the behavior is undefined.

Example
char *narre;
name = (char *) PERM MALLOC(256);

PERM FREE(nane) ;

See Also
FREE, MALLOC, CALLOC, REALLCC, STRDUP, PERM MALLOC, PERM CALLCC,
PERM REALLCC, PERM STRDUP

PERM_MALLOC

The PERV MALLOC macro is a platform-independent substitute for the C library
routine nal | oc. It provides allocation of memory that persists after the request that
is being processed has been completed. If pooled memory has been disabled in the
configuration file (with the pool -i nit built-in SAF), PERM MALLOC and MALLCC both
obtain their memory from the system heap.

Syntax
voi d *PERM MALLOC(i nt si ze)

Returns
A void pointer to a block of memory.

Parameters
int size isthe number of bytes to allocate.

Example

/* Alocate 256 bytes for a name */
char *narre;

name = (char *) PERM MALLOC(256);

See Also
PERM FREE, PERM STRDUP, PERM CALLOC, PERM REALLCC, MALLOC, FREE,
CALLCC, STRDUP, REALLCC

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

PERM_REALLOC

The PERV REALLOC macro is a platform-independent substitute for the C library
routine real | oc. It changes the size of a specified memory block that was originally
created by MALLOC, CALLCC, or STRDUP. The contents of the object remains unchanged
up to the lesser of the old and new sizes. If the new size is larger, the new space is
uninitialized.

Warning
Calling PERM REALLCC for a block that was allocated with MALLOC, CALLCC, or STRDUP
will not work.

Syntax
voi d *PERM REALLOC(vod *ptr, int size)

Returns
A void pointer to a block of memory.

Parameters
void *ptr avoid pointer to a block of memory created by PERM MALLOC, PERM CALLCC,
or PERM _STRDUP.

int size isthe number of bytes to which the memory block should be resized.

Example
char *narre;
name = (char *) PERM MALLOC(256);
i f (Not Bi gEnough())
nane = (char *) PERM REALLOC(512);

See Also
PERM MALLOC, PERM FREE, PERM CALLOC, PERM STRDUP, MALLOC, FREE, STRDUP,
CALLCC, REALLCC

PERM_STRDUP

The PERM STRDUP macro is a platform-independent substitute for the C library
routine st rdup. It creates a new copy of a string in memory that persists after the
request that is being processed has been completed. If pooled memory has been
disabled in the configuration file (with the pool -i ni t built-in SAF), PERM STRDUP and
STRDUP both obtain their memory from the system heap.

The PERM STRDUP routine is functionally equivalent to:

Chapter 4 NSAPI Function Reference 129

130

newstr = (char *) PERM MALLOC(strlen(str) + 1);
strepy(newstr, str);

A string created with PERM STRDUP should be disposed with PERV FREE.

Syntax
char *PERM STRDUP(char *ptr);

Returns
A pointer to the new string.

Parameters
char *ptr isa pointer to a string.

See Also
PERM MALLQOC, PERM FREE, PERM CALLCC, PERM REALLCC, NMALLOC, FREE, STRDUP,
CALLCC, REALLCC

prepare_nsapi_thread

The prepare_nsapi _t hr ead function allows threads that are not created by the server
to act like server-created threads. This function must be called before any NSAPI
functions are called from a thread that is not server-created.

Syntax
voi d prepare_nsapi _thread(Request *rg, Session *sn);

Returns
voi d

Parameters
Request *rq is the Request.
Sessi on *sn is the Session.

The Request and Session parameters are the same as the ones passed into your
SAF.

See Also
protocol _start_response

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

protocol _dump822

The prot ocol _dunp822 function prints headers from a specified pbl ock into a specific
buffer, with a specified size and position. Use this function to serialize the headers
so that they can be sent, for example, in a mail message.

Syntax
char *protocol _dump822(pbl ock *pb, char *t, int *pos, int tsz);

Returns
A pointer to the buffer, which will be reallocated if necessary.

The function also modifies *pos to the end of the headers in the buffer.

Parameters
pbl ock *pb is the pbl ock structure.

char *t is the buffer, allocated with MALLOC, CALLCC, or STRDUP.
int *pos is the position within the buffer at which the headers are to be dumped.

int tsz is the size of the buffer.

See Also
protocol start _response, protocol status

protocol_finish_request

The prot ocol _fini sh_request function finishes a specified request. For HTTP, the
function just closes the socket.

Syntax
#i ncl ude <frane/ protocol . h>
voi d protocol _finish_request(Session *sn, Request *rq);

Returns
voi d

Parameters
Sessi on *sn is the Session that generated the request.

Request *rq is the Request to be finished.

Chapter 4 NSAPI Function Reference 131

132

See also
protocol_handle_session, protocol_scan_headers, protocol_start_response, protocol_status

protocol _handle session

The prot ocol _handl e_sessi on function processes each request generated by a
specified session.

Syntax
#i ncl ude <frane/ protocol . h>
voi d protocol _handl e_sessi on(Sessi on *sn);

Parameters
Sessi on *sn is the that generated the requests.

See also
protocol_scan_headers, protocol_start_response, protocol_status

protocol_parse_request

Parses the first line of an HTTP request.

Syntax
#i ncl ude <frane/ protocol . h>
int protocol parse_request(char *t, Request *rg, Session *sn);

Returns
« The constant REQ PROCEED if the operation succeeded

= The constant REQ ABCRTED if the operation did not succeed

Parameters
char *t defines a string of length REQ_MAX_LINE. This is an optimization for the
internal code to reduce usage of runtime stack.

Request *rq is the request to be parsed.

Sessi on *sn is the session that generated the request.

See also
protocol _scan_headers, prot ocol _start_response, prot ocol _stat us

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

protocol_scan_headers

Scans HTTP headers from a specified network buffer, and places them in a
specified parameter block.

Folded lines are joined and the linefeeds are removed (but not the whitespace). If
there are any repeat headers, they are joined and the two field bodies are separated
by a comma and space. For example, multiple mail headers are combined into one
header and a comma is used to separate the field bodies.

Syntax
#i ncl ude <frane/ protocol . h>
int protocol _scan_headers(Session *sn, netbuf *buf, char *t, pbl ock *headers);

Returns
= The constant REQ PROCEED if the operation succeeded

= The constant REQ ABCRTED if the operation did not succeed

Parameters

Sessi on *sn is the session that generated the request. The structure named by sn
contains a pointer to a netbuf called inbuf. If the parameter buf is NULL, the
function automatically uses inbuf.

Note that sn is an optional parameter that is used for error logs. Use NULL if you
wish.

net buf *buf is the network buffer to be scanned for HTTP headers.

char *t defines a string of length REQ MAX LI NE. This is an optimization for the
internal code to reduce usage of runtime stack.

pbl ock *headers is the parameter block to receive the headers.

See also
prot ocol _handl e_sessi on, protocol _start_response, prot ocol _st at us

protocol_set_finfo

The protocol _set_finfo function retrieves the content -1 ength and | ast - modi fi ed
date from a specified st at structure and adds them to the response headers
(rg->srvhdrs). Call protocol _set_fi nf o before calling protocol _start_response.

Chapter 4 NSAPI Function Reference 133

134

Syntax
int protocol _set finfo(Session *sn, Request *rq, struct stat *finfo);

Returns

The constant REQ PROCEED if the request can proceed normally, or the constant
REQ ABCRTED if the function should treat the request normally but not send any
output to the client.

Parameters
Session *sn is the Session.

Request *rq is the Request.
The Sessi on and Request parameters are the same as the ones passed into your SAF.
stat *finfo isthestat structure for the file.

The stat structure contains the information about the file from the file system. You
can get the stat structure info using request _stat_pat h.

See Also
protocol start response, protocol status

protocol_start_response

The protocol _start_response function initiates the HTTP response for a specified
session and request. If the protocol version is HTTP/0.9, the function does nothing,
because that version has no concept of status. If the protocol version is HTTP/1.0,
the function sends a status line followed by the response headers. Use this function
to set up HTTP and prepare the client and server to receive the body (or data) of
the response.

Syntax
int protocol _start_response(Session *sn, Request *rq);

Returns
The constant REQ PROCEED if the operation succeeded, in which case you should
send the data you were preparing to send.

The constant REQ NOACTI ON if the operation succeeded but the request method was
HEAD, in which case no data should be sent to the client.

The constant REQ ABORTED if the operation did not succeed.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Parameters
Sessi on *sn is the Session.

Request *rq is the Request.

The Sessi on and Request parameters are the same as the ones passed into your SAF.

Example
/* A noaction response fromthis function means the request was HEAD */
if (protocol _start_response(sn, rqg) == REQ NOACTION) {
filebuf_close(groupbuf); /* close our file*/
return REQ PROCEED,

}

See Also
protocol _status

protocol_status

The protocol _status function sets the session status to indicate whether an error
condition occurred. If the reason string is NULL, the server attempts to find a
reason string for the given status code. If it finds none, it returns “Unknown reason. ”
The reason string is sent to the client in the HTTP response line. Use this function
to set the status of the response before calling the function prot ocol _start _response.

For the complete list of valid status code constants, please refer to the file "nsapi . h"
in the server distribution.

Syntax
voi d protocol _status(Session *sn, Request *rqg, int n, char *r);

Returns
voi d, but it sets values in the Session/Request designated by sn/r q for the status
code and the reason string.

Parameters
Session *sn is the Session.

Request *rq is the Request.
The Sessi on and Request parameters are the same as the ones passed into your SAF.
int n is one of the status code constants above.

char *r is the reason string.

Chapter 4 NSAPI Function Reference 135

136

Example
/* if we find extra path-info, the URL was bad so tell the */
/* browser it was not found */
if (t = pblock_findval ("path-info", rg->vars)) {
protocol _status(sn, rg, PROTOCOL_NOT_FOUND, NULL);
l og_error(LOG WARN, "function-name", sn, rqg, "% not found",
pat h);
return REQ ABORTED,
}

See Also
protocol _start_response

protocol_uri2url

The protocol _uri 2url function takes strings containing the given URI prefix and
URI suffix, and creates a newly allocated, fully qualified URL in the form
http://(server):(port)(prefix)(suffix).Seeprotocol uri2url_dynamc.

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the
value for either parameter.

Syntax
char *protocol _uri2url (char *prefix, char *suffix);

Returns
A new string containing the URL.

Parameters
char *prefix isthe prefix.

char *suffix is the suffix.

See Also
protocol _start_response, protocol status, pblock_nvinsert,
protocol _uri2url _dynam c

protocol_uri2url_dynamic

The protocol _uri 2url function takes strings containing the given URI prefix and
URI suffix, and creates a newly allocated, fully qualified URL in the form
http://(server): (port)(prefix)(suffix).

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the
value for either parameter.

The protocol _uri2url _dynani ¢ function is similar to the protocol _uri 2url function,
but should be used whenever the sessi on and r equest structures are available. This
ensures that the URL it constructs refers to the host that the client specified.

Syntax
char *protocol _uri2url (char *prefix, char *suffix, Session *sn,
Request *rq);

Returns
A new string containing the URL.

Parameters
char *prefix isthe prefix.

char *suffix is the suffix.
Session *sn is the Session.
Request *rq is the Request.

The Sessi on and Request parameters are the same as the ones passed into your SAF.

See Also
protocol start response, protocol status, protocol uri2url_dynanic

read

Theread filter method is called when input data is required. Filters that modify or
consume incoming data should implement the read filter method.

Upon receiving control, a read implementation should fill buf with up to anount
bytes of input data. This data may be obtained by calling the net _read function, as
shown in the example below.

Syntax
int read(FilterLayer *layer, void *buf, int amount, int tineout);

Chapter 4 NSAPI Function Reference 137

138

Returns
The number of bytes placed in buf on success, 0 if no data is available, or a negative
value if an error occurred.

Parameters
FilterLayer *layer is the filter layer in which the filter is installed.

voi d *buf is the buffer in which data should be placed.
int anount is the maximum number of bytes that should be placed in the buffer.

int tineout isthe number of seconds to allow for the read operation before
returning. The purpose of ti neout is not to return because not enough bytes were
read in the given time, but to limit the amount of time devoted to waiting until
some data arrives.

Example
int nyfilter_read(FilterLayer *layer, void *buf, int amount, int
ti meout)
{
return net_read(l ayer->l ower, buf, amount, timeout);
}
See Also
net read

REALLOC

The REALLOC macro is a platform-independent substitute for the C library routine
real | oc. It changes the size of a specified memory block that was originally created
by MALLOC, CALLCC, or STRDUP. The contents of the object remains unchanged up to the
lesser of the old and new sizes. If the new size is larger, the new space is
uninitialized.

Warning
Calling REALLCC for a block that was allocated with PERM MALLOC, PERM CALLCC, or
PERM STRDUP will not work.

Syntax
voi d *REALLOC(void *ptr, int size);

Returns
A pointer to the new space if the request could be satisfied.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Parameters
void *ptr isa (void *) pointer to a block of memory. If the pointer is not one created
by MALLOC, CALLCC, or STRDUP, the behavior is undefined.

i nt size is the number of bytes to allocate.

Example
char *narre;
nane = (char *) MALLOQ(256);
i f (NotBi genough())
name = (char *) REALLOC(512);

See Also
MALLOC, FREE, STRDUP, CALLOC, PERM MALLOC, PERM FREE, PERM REALLCC,
PERM CALLOC, PERM STRDUP

remove

The renove filter method is called when the filter stack is destroyed, or when a filter
is removed from a filter stack by the filter_remove function orrenove-filter SAF
(applicable in I nput -, Qut put -, Servi ce-, and Error -class directives).

Note that it may be too late to flush buffered data when the renove method is
invoked. For this reason, filters that buffer outgoing data should implement the
f1 ush filter method.

Syntax
voi d renove(FilterLayer *layer);

Returns
voi d

Parameters
FilterLayer *layer isthe filter layer the filter is installed in.

See Also
flush

request create

The request _creat e function is a utility function that creates a new request
structure.

Chapter 4 NSAPI Function Reference 139

140

Syntax
#incl ude <frame/req. h>
Request *request _create(void);

Returns
A Request structure

Parameters
No parameter is required.

See also
request_free, request _header

request_free

The request _free function frees a specified request structure.

Syntax
#i ncl ude <frane/req. h>
voi d request _free(Request *req);

Returns
voi d

Parameters
Request *rq is the Request structure to be freed.

See also
request _header

request_header

The request _header function finds an entry in the pbl ock containing the client’s
HTTP request headers (r g- >header s). You must use this function rather than
pbl ock_fi ndval when accessing the client headers, since the server may begin
processing the request before the headers have been completely read.

Syntax
int request _header(char *name, char **val ue, Session *sn, Request *rq);

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Returns
A result code, REQ PROCEED if the header was found, REQ ABCRTED if the header was
not found, REQ EXI T if there was an error reading from the client.

Parameters
char *nane is the name of the header.

char **val ue is the address where the function will place the value of the specified
header. If none is found, the function stores a NULL.

Session *sn is the Session.
Request *rq is the Request.

The Sessi on and Request parameters are the same as the ones passed into your SAF.

See Also
request create, request free

sem_grab

The sem gr ab function requests exclusive access to a specified semaphore. If
exclusive access is unavailable, the caller blocks execution until exclusive access
becomes available. Use this function to ensure that only one server processor
thread performs an action at a time.

Syntax
#i ncl ude <base/ sem h>
int sem grab(SEMAPHORE id) ;

Returns
e -1ifanerror occurred

« (tosignal success

Parameters
SEMAPHCRE id is the unique identification number of the requested semaphore.

See also
seminit,semrel ease, semterninate, semtgrab

Chapter 4 NSAPI Function Reference 141

142

sem_init

The sem i ni t function creates a semaphore with a specified name and unique
identification number. Use this function to allocate a new semaphore that will be
used with the functions sem grab and sem r el ease. Call seminit fromaninit
class function to initialize a static or global variable that the other classes will later
use.

Syntax
#i ncl ude <base/sem h>
SEMAPHORE sem i nit(char *name, int number);

Returns
The constant SEM_ERROR if an error occurred.

Parameters
SEMAPHCRE *name is the name for the requested semaphore. The filename of the
semaphore should be a file accessible to the process.

i nt number is the unique identification number for the requested semaphore.

See also
sem grab, semrel ease, sem terninate

sem_release

The sem r el ease function releases the process's exclusive control over a specified
semaphore. Use this function to release exclusive control over a semaphore created
with the function sem gr ab.

Syntax
#i ncl ude <base/ sem h>
int semrel ease(SEMAPHORE id);

Returns
e -1ifanerror occurred

e Qifnoerror occurred
Parameters

SEMAPHCRE id is the unique identification number of the semaphore.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

See also
semgrab,seminit,semterninate

sem_terminate

The sem t er ni nat e function deallocates the semaphore specified by id. You can
use this function to deallocate a semaphore that was previously allocated with the
function sem.init.

Syntax
#i ncl ude <base/ sem h>
voi d sem t er m nat e(SEMAPHORE id) ;

Returns
voi d

Parameters
SEMAPHCRE id is the unique identification number of the semaphore.

See also
semgrab, seminit,semrel ease

sem_tgrab

The sem tgrab function tests and requests exclusive use of a semaphore. Unlike
the somewhat similar sem grab function, if exclusive access is unavailable the
caller is not blocked but receives a return value of -1. Use this function to ensure
that only one server processor thread performs an action at a time.

Syntax
#i ncl ude <base/ sem h>
int sem grab(SEMAPHORE id) ;

Returns
e -1ifanerror occurred or if exclusive access was not available

e 0 exclusive access was granted

Parameters
SEMAPHCRE id is the unique identification number of the semaphore.

Chapter 4 NSAPI Function Reference 143

144

See also
semgrab,seminit,semrel ease, semterninate

sendfile

The sendfil e filter method is called when the contents of a file are to be sent. Filters
that modify or consume outgoing data may choose to implement the sendfi | e filter
method.

If a filter implements thewite filter method but not the sendfi | e filter method, the
server will automatically translate net _sendfil e calls to net_write calls. As a result,
filters interested in the outgoing data stream do not need to implement the

sendfil e filter method. However, for performance reasons, it is beneficial for filters
that implement the wite filter method to also implement the sendfil e filter
method.

Syntax
int sendfile(FilterLayer *layer, const sendfiledata *data);

Returns
The number of bytes consumed, which may be less than the requested amount if an
error occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

const sendfiledata *sfd identifies the data to send.

Example
int nyfilter_sendfile(FilterLayer *layer, const sendfiledata *sfd)

{
}

return net_sendfile(layer->l ower, sfd);

See Also
net _sendfile

session_create

The sessi on_cr eat e function creates a new Session structure for the client with a
specified socket descriptor and a specified socket address. It returns a pointer to
that structure.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Syntax
#i ncl ude <base/ sessi on. h>
Sessi on *session_creat e(SYS_NETFD csd, struct sockaddr_in *sac);

Returns
« A pointer to the new Session if one was created

e NULL if no new Session was created

Parameters
SYS_NETFD csd is the platform-independent socket descriptor.

sockaddr _i n *sac is the socket address.

See also
sessi on_naxdns

session_dns

The sessi on_dns function resolves the IP address of the client associated with a
specified session into its DNS name. It returns a newly allocated string. You can
use sessi on_dns to change the numeric IP address into something more readable.

The sessi on_naxdns function verifies that the client is who it claims to be; the
sessi on_dns function does not perform this verification.

NOTE This function works only if the DNS directive is enabled in the
obj . conf file. For more information, see Sun Java System Web Proxy
Server 4.0.1 Configuration File Reference.

Syntax
char *session_dns(Session *sn);

Returns
A string containing the host name, or NULL if the DNS name cannot be found for
the IP address.

Parameters
Session *sn is the Session.

The Sessi on is the same as the one passed to your SAF.

Chapter 4 NSAPI Function Reference 145

146

session_free

The sessi on_f r ee function frees a specified Session structure. The sessi on_free
function does not close the client socket descriptor associated with the Session.

Syntax
#i ncl ude <base/ sessi on. h>
voi d session_free(Session *sn);

Returns
voi d

Parameters
Sessi on *sn is the Session to be freed.

See also
sessi on_creat e, sessi on_naxdns

session_maxdns

The sessi on_naxdns function resolves the IP address of the client associated with a
specified session into its DNS name. It returns a newly allocated string. You can
use sessi on_naxdns to change the numeric IP address into something more
readable.

NOTE This function works only if the DNS directive is enabled in the
obj . conf file. For more information, see Sun Java System Web Proxy
Server 4.0.1 Configuration File Reference

Syntax
char *sessi on_maxdns(Sessi on *sn);

Returns
A string containing the host name, or NULL if the DNS name cannot be found for
the IP address.

Parameters
Session *sn is the Session.

The Sessi on is the same as the one passed to your SAF.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

shexp_casecmp

The shexp_casecnp function validates a specified shell expression and compares it
with a specified string. It returns one of three possible values representing match,
no match, and invalid comparison. The comparison (in contrast to that of the
shexp_cnp function) is not case-sensitive.

Use this function if you have a shell expression like *. net scape. comand you want to
make sure that a string matches it, such as f oo. net scape. com

Syntax
int shexp_casecnp(char *str, char *exp);

Returns
0 if a match was found.

1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters
char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

See Also
shexp_cnp, shexp_match, shexp valid

shexp_cmp

The shexp_casecnp function validates a specified shell expression and compares it
with a specified string. It returns one of three possible values representing match,
no match, and invalid comparison. The comparison (in contrast to that of the
shexp_casecnp function) is case-sensitive.

Use this function if you have a shell expression like *. net scape. comand you want to
make sure that a string matches it, such as f oo. net scape. com

Syntax
int shexp_cnp(char *str, char *exp);

Returns
0 if a match was found.

Chapter 4 NSAPI Function Reference 147

148

1 if no match was found.

- 1 if the comparison resulted in an invalid expression.

Parameters
char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

Example
/* Use wildcard match to see if this path is one we want */
char *path;
char *match = "/usr/netscape/*";
if (shexp_cnp(path, match) !'= 0)
return REQ NOACTI O\ /* no match */

See Also
shexp_casecnp, shexp_match, shexp valid

shexp_match

The shexp_nat ch function compares a specified prevalidated shell expression
against a specified string. It returns one of three possible values representing
match, no match, and invalid comparison. The comparison (in contrast to that of
the shexp_casecnp function) is case-sensitive.

The shexp_mat ch function doesn’t perform validation of the shell expression;
instead the function assumes that you have already called shexp_val i d.

Use this function if you have a shell expression such as *. net scape. com and you
want to make sure that a string matches it, such as f 0o. net scape. com

Syntax
int shexp_match(char *str, char *exp);

Returns
0 if a match was found.

1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters
char *str is the string to be compared.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

char *exp is the prevalidated shell expression (wildcard pattern) to compare
against.

See Also
shexp_casecnp, shexp_cnp, shexp_valid

shexp valid

The shexp_val i d function validates a specified shell expression named by exp. Use
this function to validate a shell expression before using the function shexp_mat ch to
compare the expression with a string.

Syntax
int shexp_valid(char *exp);

Returns
The constant NON_SXP if exp is a standard string.

The constant | NVALI D_SXP if exp is a shell expression, but invalid.

The constant VALI D_SXP if exp is a valid shell expression.

Parameters
char *exp is the shell expression (wildcard pattern) to be validated.

See Also
shexp_casecnp, shexp_match, shexp_cnp

shmem_alloc

The shrrem al | oc function allocates a region of shared memory of the given size,
using the given name to avoid conflicts between multiple regions in the program.
The size of the region will not be automatically increased if its boundaries are
overrun; use the shmem r eal | oc function for that.

This function must be called before any daemon workers are spawned in order for
the handle to the shared region to be inherited by the children.

Because of the requirement that the region must be inherited by the children, the
region cannot be reallocated with a larger size when necessary.

Chapter 4 NSAPI Function Reference 149

150

Syntax
#i ncl ude <base/ shnmem h>
shnem s *shnmem al | oc(char *name, int size, int expose);

Returns
A pointer to a new shared memory region.

Parameters

char *name is the name for the region of shared memory being created. The value of
name must be unique to the program that calls the shmem_alloc function or
conflicts will occur.

i nt size is the number of characters of memory to be allocated for the shared
memory.

i nt expose is either zero or nonzero. If nonzero, then on systems that support it, the
file that is used to create the shared memory becomes visible to other processes
running on the system.

See also
shmem free

shmem_free

The shrem f r ee function deallocates (frees) the specified region of memory.

Syntax
#i ncl ude <base/ shnem h>
voi d *shnmem free(shmems *region) ;

Returns
voi d

Parameters
shnem s *region is a shared memory region to be released.

See also
shnmem al | oc

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

STRDUP

The STRDUP macro is a platform-independent substitute for the C library routine
st rdup. It creates a new copy of a string in the request’s memory pool.

The STRDUP routine is functionally equivalent to:

newstr = (char *) MALLOQ(strlen(str) + 1);
strcpy(newstr, str);

A string created with STRDUP should be disposed with FREE.

Syntax
char *STRDUP(char *ptr);

Returns
A pointer to the new string.

Parameters
char *ptr isa pointer to a string.

Example

char *nanmel = "M/Name";

char *pame2 = STRDUP(nanel);
See Also

MALLOC, FREE, CALLOC, REALLCC, PERM MALLCC, PERM FREE, PERM CALLCC,
PERM REALLCC, PERM STRDUP

system_errmsg

The system errnsg function returns the last error that occurred from the most
recent system call. This function is implemented as a macro that returns an entry
from the global array sys_errlist. Use this macro to help with 170 error
diagnostics.

Syntax
char *systemerrnsg(int parand);

Chapter 4 NSAPI Function Reference 151

152

Returns
A string containing the text of the latest error message that resulted from a system
call. Do not FREE this string.

Parameters
int parani is reserved, and should always have the value 0.

See Also

system fopenRO, system fopenRW system fopenWA, system | seek,
systemfread, systemfwite, systemfwite atomc, systemflock,
systemul ock, system fcl ose

system_fclose

The system fcl ose function closes a specified file descriptor. The system fcl ose
function must be called for every file descriptor opened by any of the syst em f open
functions.

Syntax
int systemfclose(SYS FILE fd);

Returns
0 if the close succeeded, or the constant | O ERRCRif the close failed.

Parameters
SYS_FI LE fd is the platform-independent file descriptor.

Example
SYS_FI LE | ogf d;
system fcl ose(l ogfd);

See Also

system errnsg, system fopenRO system fopenRW system fopenWA
system | seek, systemfread, systemfwite, systemfwite_atonic,
system fl ock, system ul ock

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

system_flock

The system fl ock function locks the specified file against interference from other
processes. Use system f | ock if you do not want other processes to use the file you
currently have open. Overusing file locking can cause performance degradation
and possibly lead to deadlocks.

Syntax
int systemflock(SYS_FILE fd);

Returns
The constant | O OKAY if the lock succeeded, or the constant | O ERRCRif the lock
failed.

Parameters
SYS FILE fd is the platform-independent file descriptor.

See Also

system errnsg, system fopenRO system fopenRW system fopenWA
system | seek, systemfread, systemfwite, systemfwite_ atomc,
system ul ock, system fclose

system_fopenRO

The system f openROfunction opens the file identified by pat h in read-only mode
and returns a valid file descriptor. Use this function to open files that will not be
modified by your program. In addition, you can use syst em f openROto open a new
file buffer structure using fi | ebuf _open.

Syntax
SYS FI LE system fopenRQ(char *path);

Returns
The system-independent file descriptor (SYS_FI LE) if the open succeeded, or 0 if the
open failed.

Parameters
char *path is the file name.

Chapter 4 NSAPI Function Reference 153

154

See Also

system errnsg, system fopenRO system fopenWA, system | seek,
systemfread, systemfwite, systemfwite atomc, systemflock,
systemul ock, system fcl ose

system_fopenRW

The syst em f openRWfunction opens the file identified by pat h in read-write mode
and returns a valid file descriptor. If the file already exists, syst em f openRWdoes not
truncate it. Use this function to open files that will be read from and written to by
your program.

Syntax
SYS FI LE system fopenRN char *path);

Returns
The system-independent file descriptor (SYS_FI LE) if the open succeeded, or 0 if the
open failed.

Parameters
char *path is the file name.

Example
SYS FILE fd;
fd = system fopenRQ(pat hnane) ;
if (fd == SYS_ERROR FD)
br eak;

See Also

system errnsg, system fopenRO system fopenWA, system | seek,
systemfread, systemfwite, systemfwite atonic, systemflock,
system ul ock, system fclose

system_fopenWA

The system f openWA function opens the file identified by pat h in write-append
mode and returns a valid file descriptor. Use this function to open those files to
which your program will append data.

Syntax
SYS FI LE system fopenWA(char *path);

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Returns
The system-independent file descriptor (SYS_FI LE) if the open succeeded, or 0 if the
open failed.

Parameters
char *path is the file name.

See Also

system errnsg, system fopenRO systemfopenRW system | seek,
systemfread, systemfwite, systemfwite atomc, systemflock,
systemul ock, system fcl ose

system_fread

The system fread function reads a specified number of bytes from a specified file
into a specified buffer. It returns the number of bytes read. Before syst em fread can
be used, you must open the file using any of the syst em f open functions (except
syst em f openWA) .

Syntax
int systemfread(SYS_FILE fd, char *buf, int sz);

Returns

The number of bytes read, which may be less than the requested size if an error
occurred or the end of the file was reached before that number of characters were
obtained.

Parameters
SYS_FI LE fd is the platform-independent file descriptor.

char *buf is the buffer to receive the bytes.

int sz isthe number of bytes to read.
See Also
systemerrnsg, system fopenRQ system fopenRW system fopenWA,

system | seek, systemfwite, systemfwite atonic, systemflock,
system ul ock, system fclose

Chapter 4 NSAPI Function Reference 155

156

system_ fwrite

The system fwrite function writes a specified number of bytes from a specified
buffer into a specified file.

Before system fwri te can be used, you must open the file using any of the
syst em f open functions (except syst em f openRO).

Syntax
int systemfwite(SYS FILE fd, char *buf, int sz);

Returns
The constant | O OKAY if the write succeeded, or the constant | O ERRCR if the write
failed.

Parameters
SYS FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz isthe number of bytes to write to the file.

See Also

systemerrnsg, system fopenRQ system fopenRW system fopenWA
system | seek, systemfread, systemfwite atomc, system fl ock,
system ul ock, system fclose

system_fwrite_atomic

The system fwrite_atonic function writes a specified number of bytes from a
specified buffer into a specified file. The function also locks the file prior to
performing the write, and then unlocks it when done, thereby avoiding
interference between simultaneous write actions. Before system fwrite_at onic can
be used, you must open the file using any of the syst em f open functions, except
syst em f openRO.

Syntax
int systemfwite_atomc(SYS FILE fd, char *buf, int sz);

Returns
The constant | O OKAY if the write/lock succeeded, or the constant | O ERRCRif the
write/lock failed.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Parameters
SYS FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz isthe number of bytes to write to the file.

Example

SYS_FI LE | ogf d;

char *lognsg = "An error occurred.”;
systemfwite_ atom c(logfd, |ognmsg, strlen(lognsg));

See Also

system errnsg, system fopenRO system fopenRW system fopenWA
system | seek, systemfread, systemfwite, systemflock, system ul ock,
system f cl ose

system_gmtime

The system gnti me function is a thread-safe version of the standard gnt i ne function.
It returns the current time adjusted to Greenwich Mean Time.

Syntax
struct tm*systemgminme(const time_t *tp, const struct tm*res);

Returns

A pointer to a calendar time (t nj structure containing the GMT time. Depending on
your system, the pointer may point to the data item represented by the second
parameter, or it may point to a statically-allocated item. For portability, do not
assume either situation.

Parameters
time_t *tp isan arithmetic time.

tm *res is a pointer to a calendar time (t nj structure.

Example

time_t tp;

struct tmres, *resp;

tp = time(NULL);

resp = systemgmime(&p, &es);

See Also
systemlocaltine, util _strftine

Chapter 4 NSAPI Function Reference 157

system_localtime

The system | ocal ti me function is a thread-safe version of the standard | ocal ti ne
function. It returns the current time in the local time zone.

Syntax
struct tm*system]|ocaltine(const time_t *tp, const struct tm*res);

Returns

A pointer to a calendar time (t) structure containing the local time. Depending on
your system, the pointer may point to the data item represented by the second
parameter, or it may point to a statically-allocated item. For portability, do not
assume either situation.

Parameters
tinme_t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (t n) structure.

See Also
systemgntime, util_strftime

system_Iseek

The system | seek function sets the file position of a file. This affects where data
from system fread or system fwite is read or written.

Syntax
int systeml|seek(SYS FILE fd, int offset, int whence);

Returns
The offset, in bytes, of the new position from the beginning of the file if the
operation succeeded, or - 1 if the operation failed.

Parameters
SYS FILE fd is the platform-independent file descriptor.

int of fset isa number of bytes relative to whence. It may be negative.
i nt whence is one of the following constants:
SEEK_SET, from the beginning of the file.

SEEK_CUR, from the current file position.

158 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

SEEK_END, from the end of the file.

See Also

system errnsg, system fopenRO system fopenRW system fopenWA
systemfread, systemfwite, systemfwite atomc, systemflock,
systemul ock, system fcl ose

system_rename

The system renane function renames a file. It may not work on directories if the old
and new directories are on different file systems.

Syntax
int systemrename(char *old, char *new;

Returns
0 if the operation succeeded, or - 1 if the operation failed.

Parameters
char *ol d is the old name of the file.

char *new is the new name for the file.

system_ulock

The system ul ock function unlocks the specified file that has been locked by the
function syst em | ock. For more information about locking, see syst em f I ock.

Syntax
int systemul ock(SYS_FILE fd);

Returns
The constant | O OKAY if the operation succeeded, or the constant | O ERRCR if the
operation failed.

Parameters
SYS FILE fd is the platform-independent file descriptor.

Chapter 4 NSAPI Function Reference 159

160

See Also

systemerrnsg, systemfopenRO system fopenRW system fopenWA
systemfread, systemfwite, systemfwite atomc, systemflock,
system fcl ose

system errnsg, system fopenRO system fopenRW system fopenWA
systemfread, systemfwite, systemfwite atonic, systemflock,
system fcl ose

system_unix2local

The system uni x2| ocal function converts a specified UNIX-style path name to a
local file system path name. Use this function when you have a file name in the
UNIX format (such as one containing forward slashes), and you need to access a
file on another system such as Windows. You can use syst em uni x2| ocal to convert
the UNIX file name into the format that Windows accepts. In the UNIX
environment this function does nothing, but may be called for portability.

Syntax
char *systemuni x2l ocal (char *path, char *Ip);

Returns
A pointer to the local file system path string.

Parameters
char *path is the UNIX-style path name to be converted.

char *Ip is the local path name.

You must allocate the parameter | p, and it must contain enough space to hold the
local path name.

See Also
system fcl ose, systemflock, system fopenRO system fopenRW
system fopenWA, systemfwite

systhread_attach

The systhread_attach function makes an existing thread into a
platform-independent thread.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Syntax
SYS THREAD syst hread_attach(voi d);

Returns
A SYS _THREAD pointer to the platform-independent thread.

Parameters
none

See Also
systhread current, systhread getdata, systhread init, systhread newkey,
systhread_setdata, systhread sleep, systhread start, systhread tinerset

systhread_current

The systhread_current function returns a pointer to the current thread.

Syntax
SYS THREAD syst hread_current (voi d);

Returns
A SYS_THREAD pointer to the current thread.

Parameters
none

See Also

systhread_get data, systhread newkey, systhread_setdata,
systhread_sl eep, systhread start, systhread_timerset

systhread getdata

The systhread_getdata function gets data that is associated with a specified key in
the current thread.

Syntax
voi d *systhread_getdata(int key);

Chapter 4 NSAPI Function Reference 161

162

Returns

A pointer to the data that was earlier used with the syst hr ead_set key function from
the current thread, using the same value of key if the call succeeds. Returns NULL if
the call did not succeed; for example, if the syst hr ead_set key function was never
called with the specified key during this session.

Parameters
int key is the value associated with the stored data by a syst hread_set data
function. Keys are assigned by the syst hr ead_newkey function.

See Also
systhread_current, systhread _newkey, systhread_setdata,
systhread_sl eep, systhread_start, systhread_timnerset

systhread_init
The syst hread_i ni t function initializes the threading system.

Syntax
#i ncl ude <base/systhr. h>
voi d systhread_i nit(char *name);

Returns
void

Parameters
char *name is a name to be assigned to the program for debugging purposes.

See also

systhread_attach, systhread_current, systhread_getdata, systhread_newkey,
systhread_setdata, systhread_sleep,systhread_start, systhread_terminate, systhread
timerset

systhread newkey

The systhread_newkey function allocates a new integer key (identifier) for
thread-private data. Use this key to identify a variable that you want to localize to
the current thread, then use the syst hread_set dat a function to associate a value
with the key.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Syntax
int systhread_newkey(void);

Returns
An integer key.

Parameters
none

See Also
systhread current, systhread getdata, systhread setdata,
systhread_sl eep, systhread start, systhread tinerset

systhread_setdata

The syst hread_set data function associates data with a specified key number for
the current thread. Keys are assigned by the syst hr ead_newkey function.

Syntax
voi d systhread_setdata(int key, void *data);

Returns
voi d

Parameters
int key isthe priority of the thread.

voi d *dat a is the pointer to the string of data to be associated with the value of key.
See Also

systhread_current, systhread getdata, systhread_newkey,
systhread_sl eep, systhread start, systhread tinerset

systhread_sleep

The syst hread_sl eep function puts the calling thread to sleep for a given time.

Syntax
voi d systhread_sleep(int mlliseconds);

Chapter 4 NSAPI Function Reference 163

164

Returns
voi d

Parameters
int nilliseconds isthe number of milliseconds the thread is to sleep.

See Also
systhread _current, systhread getdata, systhread newkey,
systhread_setdata, systhread start, systhread tinerset

systhread_start

The systhread_start function creates a thread with the given priority, allocates a
stack of a specified number of bytes, and calls a specified function with a specified
argument.

Syntax
SYS THREAD systhread_start(int prio, int stksz,
void (*fn)(void *), void *arg);

Returns
A new SYS_THREAD pointer if the call succeeded, or the constant SYS_THREAD ERRCRif
the call did not succeed.

Parameters
int prio isthe priority of the thread. Priorities are system-dependent.

i nt stksz is the stack size in bytes. If st ksz is zero (0), the function allocates a default
size.

void (*fn)(void *) is the function to call.
voi d *arg is the argument for the f n function.
See Also

systhread _current, systhread getdata, systhread newkey,
systhread_setdata, systhread sleep, systhread tinerset

systhread_terminate

The syst hread_t er ni nat e function terminates a specified thread.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Syntax
#i ncl ude <base/systhr. h>
voi d systhread_t erm nat e(SYS_THREAD thr);

Returns
void

Parameters
SYS_THREADthr is the thread to terminate.

See also
systhread _current, systhread getdata, systhread newkey,
systhread_setdata, systhread sleep, systhread start, systhread tinerset

systhread_timerset

The systhread_timerset function starts or resets the interrupt timer interval for a
thread system.

Because most systems don’t allow the timer interval to be changed, this should be
considered a suggestion, rather than a command.

Syntax
voi d systhread_tinerset(int usec);

Returns
voi d

Parameters
i nt usec is the time, in microseconds

See Also
systhread _current, systhread getdata, systhread_newkey,
systhread_setdata, systhread sleep, systhread start

Chapter 4 NSAPI Function Reference 165

166

USE_NSAPI_VERSION

Plugin developers can define the USE_NSAPI _VERSI ON macro before including the
nsapi . h header file to request a particular version of NSAPI. The requested NSAPI
version is encoded by multiplying the major version number by 100 and then
adding this to the minor version number. For example, the following code requests
NSAPI 3.2 features:

#define USE_NSAPI _VERSION 302 /* W want NSAPI 3.2 (Wb Server 6.1) */
#i ncl ude "nsapi . h"

To develop a plugin that is compatible across multiple server versions, define
USE_NSAPI _VERSI ON to the highest NSAPI version supported by all of the target
server versions.

The following table lists server versions and the highest NSAPI version supported
by each:

Table 4-2 NSAPI Versions Supported by Different Servers

Server Version NSAPI Version
iPlanet Web Server 4.1 3.0
iPlanet Web Server 6.0 3.1
Netscape Enterprise Server 6.0 3.1
Netscape Enterprise Server 6.1 3.1
Sun ONE Application Server 7.0 3.1
Sun Java System Web Server 6.1 3.2
Sun Java System Web Proxy Server 4 3.3

It is an error to request a version of NSAPI higher than the highest version
supported by the nsapi . h header that the plugin is being compiled against.
Additionally, to use USE_NSAPI VERSI ON, you must compile against an nsapi . h
header file that supports NSAPI 3.3 or higher.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Syntax
int USE NSAPI _VERSI ON

Example
The following code can be used when building a plugin designed to work with Sun
Java System Web Proxy Server 4;

#define USE NSAPI _VERSI ON 303 /* W& want NSAPI 3.3 (Proxy Server 4) */
#i ncl ude "nsapi. h"

See Also
NSAPI _RUNTI ME_VERSI ON, NSAPI _VERSI ON

util_can_exec

UNIX Only

The util _can_exec function checks that a specified file can be executed, returning
either a 1 (executable) or a 0. The function checks if the file can be executed by the
user with the given user and group ID.

Use this function before executing a program using the exec system call.

Syntax
int util_can_exec(struct stat *finfo, uid_t uid, gid_t gid);

Returns
1 if the file is executable, or 0 if the file is not executable.

Parameters
stat *finfo isthe stat structure associated with a file.

uid_t uid isthe UNIX user id.

gid_t gid isthe UNIX group id. Together with ui d, this determines the permissions
of the UNIX user.

See Also
util _env_create, util _getline, util_hostnane

Chapter 4 NSAPI Function Reference 167

168

util_chdir2path

The util _chdir2pat h function changes the current directory to a specified
directory, where you will access a file.

When running under Windows, use a critical section to ensure that more than one
thread does not call this function at the same time.

Use uti | _chdi r2pat h when you want to make file access a little quicker, because
you do not need to use a full path.

Syntax
int util_chdir2path(char *path);

Returns
0 if the directory was changed, or - 1 if the directory could not be changed.

Parameters
char *path is the name of a directory.

The parameter must be a writable string because it isn’t permanently modified.

util_cookie_find

The util_cooki e_find function finds a specific cookie in a cookie string and returns
its value.

Syntax
char *util _cookie_find(char *cookie, char *nane);

Returns

If successful, returns a pointer to the NULL-terminated value of the cookie.
Otherwise, returns NULL. This function modifies the cookie string parameter by
null-terminating the name and value.

Parameters
char *cooki e is the value of the Cooki e: request header.

char *nane is the name of the cookie whose value is to be retrieved.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

util_does process_exist

Theutil _does_process_exi st function verifies that a given process ID is that of
an executing process.

Syntax
#include <libproxy/util.h>
int util_does_process_exist (int pid)

Returns
= nonzero if the pid represents an executing process

= 0 if the pid does not represent an executing process

Parameters
i nt pid is the process ID to be tested.

See also
util _url _fix _host nane,util _uri_check

util_env_create

Theutil _env_creat e function creates and allocates the environment specified by
env, returning a pointer to the environment. If the parameter env is NULL, the
function allocates a new environment. Use uti| _env_creat e to create an
environment when executing a new program.

Syntax
#i ncl ude <base/util.h>
char **util _env_create(char **env, int n, int *pos);

Returns
A pointer to an environment.

Parameters
char **env is the existing environment or NULL.

i nt nisthe maximum number of environment entries that you want in the
environment.

i nt *pos is an integer that keeps track of the number of entries used in the
environment.

Chapter 4 NSAPI Function Reference 169

See also
util_env_replace,util _env_str ,util _env_free,util_env_find

util_env_find

The util _env_find function locates the string denoted by a name in a specified
environment and returns the associated value. Use this function to find an entry in
an environment.

Syntax
char *util _env_find(char **env, char *name);

Returns
The value of the environment variable if it is found, or NULL if the string was not
found.

Parameters
char **env is the environment.

char *nane is the name of an environment variable in env.

See Also
util_env_replace,util_env_str ,util_env_free,util_env_create

util_env_free

The util _env_free function frees a specified environment. Use this function to
deallocate an environment you created using the function util _env_create.

Syntax
void util_env_free(char **env);

Returns
voi d

Parameters
char **env is the environment to be freed.

See Also
util_env_replace,util_env_str ,util_env_create,util_env_find

170 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

util_env_replace

The util_env_repl ace function replaces the occurrence of the variable denoted by a
name in a specified environment with a specified value. Use this function to
change the value of a setting in an environment.

Syntax
void util_env_replace(char **env, char *name, char *val ue);

Returns
voi d

Parameters
char **env is the environment.
char *nane is the name of a name-value pair.

char *val ue is the new value to be stored.

See Also
util_env_str,util_env_free,util_env_find, util_env_create

util_env_str

The util _env_str function creates an environment entry and returns it. This
function does not check for nonalphanumeric symbols in the name (such as the
equal sign “="). You can use this function to create a new environment entry.

Syntax
char *util _env_str(char *nane, char *val ue);

Returns
A newly allocated string containing the name-value pair.

Parameters
char *nane is the name of a name-value pair.

char *val ue is the new value to be stored.

See Also
util_env_replace,util_env_free,util_env_create,util_env_find

Chapter 4 NSAPI Function Reference 171

util_get current_gmt

Theutil_get_current_gnt function obtains the current time, represented in terms
of GMT (Greenwich Mean Time).

Syntax
#include <libproxy/util.h>
time_t util_get_current_gm(void);

Returns
the current GMT

Parameters
No parameter is required.

See also
util_make_| ocal

util_get_int_from_aux_file

Theutil _get _int_fromaux_file function is used to get a single line from a
specified file and return it in the form of an integer. This is a utility for storing
single numbers in afile.

Syntax

#incl ude <libproxy/cutil.h>
int util_get_int_fromfile(char *root, char *name);

Returns

an integer from the file.

Parameters

char *root is the name of the directory containing the file to be read.

char *name is the name of the file to be read.

See also

util_get long fromaux file,util _get string fromaux file,

util_get int fromfile,util _get long fromfile,

util_get string_fromfile,util_put_int to file,util_put long to file,
util_put_string_to_aux _file,util _put_string to file

172 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

util_get_int_from_file

Theutil _get_int_fromfil e function is used to get a single line from a specified
file and return it in the form of an integer. This is a utility for storing single
numbers in afile.

Syntax
#i ncl ude <libproxy/cutil.h>
int util_get_int_fromfile(char *filename);

Returns
< an integer from the file.

e -1if novalue was obtained from the file.

Parameters
char *filename is the name of the file to be read.

See also
util_get long fromfile,util_get string fromfile,util_put_int_to file,
util_put _long_to file,util_put_string to file

util_get_long_from_aux_file

Theutil _get long fromfil e function is used to get a single line from a specified
file and return it in the form of a long number. This is a utility for storing single
long numbers in a file.

Syntax
#incl ude <libproxy/cutil.h>
long util_get _long_fromfile(char *root, char *name);

Returns
a long integer from the file.

Parameters
char *root is the name of the directory containing the file to be read.

char *name is the name of the file to be read.

Chapter 4 NSAPI Function Reference 173

174

See also

util _get _int_fromaux file,util_get string fromaux file,

util _get int_ fromfile,util_get long fromfile,

util_get _string_fromfile,util_put_int_to file,util_put _long_to file,
util_put_string_to_aux_file,util_put_string_to file

util_get _long_from_file

Theutil _get_long_fromfilefunction is used to get a single line from a specified
file and return it in the form of a long number. This is a utility for storing single
long numbers in a file.

Syntax
#i ncl ude <libproxy/cutil.h>
long util_get_long fromfile(char *filename);

Returns
= along integer from the file.

e -1if novalue was obtained from the file.

Parameters
char *file is the name of the file to be read.

See also
util_get_int_fromfile util_get_string_fromfile,util_put_int_to file,
util_put _long to file,util_put_string to file

util_get_string_from_aux_file

Theutil _get _string_fromaux_file function is used to get a single line from a
specified file and return it in the form of a word. This is a utility for storing single
words in afile.

Syntax

#incl ude <libproxy/cutil.h>

char *util _get_string_fromfile(char *root, char *name, char *buf,
i nt maxsize) ;

Returns
a string containing the next line from the file.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Parameters
char *root is the name of the directory containing the file to be read.

char *name is the name of the file to be read.
char *buf is the string to use as the file buffer.

i nt maxsize is the maximum size for the file buffer.

See also

util_get_int_fromaux_file,util_get_long_fromaux_file,
util_get_int_fromfile util_get_long_fromfile,
util_get_string_fromfile,util_put_int_to file,util_put_long_to_file,
util _put_string_to aux file,util _put_string to file

util_get_string_from_file

Theutil _get _string_fromfile function is used to get a single line from a
specified file and return it in the form of a word. This is a utility for storing single
words in afile.

Syntax
#incl ude <libproxy/cutil.h>
char *util _get_string_fromfile(char *filename, char *buf, int maxsize);

Returns
e astring containing the next line from the file.

< NULL if no string was obtained.

Parameters
char *file is the name of the file to be read.

char *buf is the string to use as the file buffer.
i nt maxsize is the maximum size for the file buffer.
See also

util _get int fromfile,util _get long fromfile util _put_int _to file,
util_put _long to file,util_put_string to file

Chapter 4 NSAPI Function Reference 175

176

util_getline

The util _getline function scans the specified file buffer to find a line feed or
carriage return/line feed terminated string. The string is copied into the specified
buffer, and NULL-terminates it. The function returns a value that indicates
whether the operation stored a string in the buffer, encountered an error, or
reached the end of the file.

Use this function to scan lines out of a text file, such as a configuration file.

Syntax
int util_getline(filebuf *buf, int lineno, int maxlen, char *line);

Returns
0 if successful; I i ne contains the string.

1 if the end of file was reached; | i ne contains the string.

-1 if an error occurred; | i ne contains a description of the error.

Parameters
filebuf *buf isthe file buffer to be scanned.

int lineno is used to include the line number in the error message when an error
occurs. The caller is responsible for making sure the line number is accurate.

int maxl en is the maximum number of characters that can be written into | .

char *I is the buffer in which to store the string. The user is responsible for
allocating and deallocating | i ne.

See Also
util_can_exec, util _env_create, util_hostname

util_hostname

The uti| _host nane function retrieves the local host name and returns it as a string.
If the function cannot find a fully-qualified domain name, it returns NULL. You
may reallocate or free this string. Use this function to determine the name of the
system you are on.

Syntax
char *util _host name(void);

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Returns
If a fully-qualified domain name was found, returns a string containing that name;
otherwise, returns NULL if the fully-qualified domain name was not found.

Parameters
none

util_is_mozilla

The util _is_mozilla function checks whether a specified user-agent header string
is a Netscape browser of at least a specified revision level, returning a 1 if it is, and
0 otherwise. It uses strings to specify the revision level to avoid ambiguities such as
1.56>1.5.

Syntax
int util_is_nozilla(char *ua, char *major, char *ninor);

Returns
1 if the user-agent is a Netscape browser, or 0 if the user-agent is not a Netscape
browser.

Parameters
char *ua is the user-agent string from the request headers.

char *maj or is the major release number (to the left of the decimal point).

char *ninor isthe minor release number (to the right of the decimal point).

See Also
util_is_url, util_later_than

util_is_url

Theutil _is_url function checks whether a string is a URL, returning 1 if it is and 0
otherwise. The string is a URL if it begins with alphabetic characters followed by a
colon (3).

Syntax
int util_is_url(char *url);

Chapter 4 NSAPI Function Reference 177

178

Returns
1 if the string specified by ur| is a URL, or 0 if the string specified by url is not a
URL.

Parameters
char *url is the string to be examined.

See Also
util_is_mozilla, util_later_than

util_itoa

The util _itoa function converts a specified integer to a string, and returns the
length of the string. Use this function to create a textual representation of a
number.

Syntax
int util_itoa(int i, char *a);

Returns
The length of the string created.

Parameters
int i istheinteger to be converted.

char *a is the ASCII string that represents the value. The user is responsible for the
allocation and deallocation of a, and it should be at least 32 bytes long.

util_later_than

The util _later_t han function compares the date specified in a time structure
against a date specified in a string. If the date in the string is later than or equal to
the one in the time structure, the function returns 1. Use this function to handle
RFC 822, RFC 850, and ctime formats.

Syntax
int util_later_than(struct tm*Ins, char *ims);

Returns
1 if the date represented by i ns is the same as or later than that represented by the
I s, or 0 if the date represented by i ms is earlier than that represented by the | ns.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Parameters
tm*| ns is the time structure containing a date.

char *ins is the string containing a date.

See Also
util_strftime

util_make_filename

Theutil _nake filename function concatenates a directory name and a filename
into a newly created string. This can be handy when you are dealing with a
number of files that all go to the same directory.

Syntax
#incl ude <libproxy/cutil.h>
char *util _make_fil ename(char *root, char *name);

Returns
A new string containing the directory name concatenated with the filename.

Parameters
char *root is a string containing the directory name.

char *name is a string containing the filename.

util_make gmt

Theutil _make_gnt function converts a given local time to GMT (Greenwich Mean
Time), or obtains the current GMT.

Syntax
#include <libproxy/util.h>
time_t util_make gm(time_t t);

Returns
= the GMT equivalent to the local time t, if t is not 0

e thecurrent GMT iftis0

Parameters
time_t tisatime.

Chapter 4 NSAPI Function Reference 179

See also
util_make_| ocal

util_make_local

The util _make_l ocal function converts a given GMT to local time.
Syntax

#include <libproxy/util.h>
time_t util_make_local (time_t t);

Returns
the local equivalent to the GMT t
Parameters

time_ttisatime.

See also
util_make gm

util._move_dir

Theutil _nove_dir function moves a directory, preserving permissions, creation
times, and last-access times. It attempts to do this by renaming, but if that fails (for
example, if the source and destination are on two different file systems), it copies
the directory.

Syntax
#include <libproxy/util.h>
int util_nove_dir (char *src, char *dst);

Returns
e (if the move failed

= nonzero if the move succeeded

Parameters
char *src is the fully qualified name of the source directory.

char *dst is the fully qualified name of the destination directory.

180 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

See also
util _nove file

util_move_file

Theutil _nove_dir function moves a file, preserving permissions, creation time,
and last-access time. It attempts to do this by renaming, but if that fails (for
example, if the source and destination are on two different file systems), it copies
the file.

Syntax
#include <libproxy/util.h>
int util_nove_file (char *src, char *dst);

Returns
e (0if the move failed

e nonzero if the move succeeded

Parameters
char *src is the fully qualified name of the source file.

char *dst is the fully qualified name of the destination file.

See also
util _move dir

util_parse_http_time

Theutil _parse_http_time function converts a given HTTP time stringto ti me_t
format.

Syntax
#include <libproxy/util.h>
time_t util_parse http_time(char *date_string);

Returns
thetime_t equivalent to the GMT t

Parameters

time_t tisatime.

Chapter 4 NSAPI Function Reference 181

182

See also
util_make gmt

util_put_int_to_file

Theutil _put_int_to_file function writes a single line containing an integer to a
specified file.

Syntax
#i ncl ude <libproxy/cutil.h>
int util_put_int_to file(char *filename, int i);

Returns
= nonzero if the operation succeeded

= 0if the operation failed

Parameters
char *file is the name of the file to be written.

i nt iisthe integer to write.

See also
util _get int fromfile,util _get long fromfile,util _put long to file,
util _put _string to file

util_put_long_to file

Theutil _put_long_to file function writes a single line containing a long integer
to a specified file.

Syntax
#i ncl ude <libproxy/cutil.h>
ing util_put_long_to_file(char *filename, long I);

Returns
= nonzero if the operation succeeded

= (if the operation failed

Parameters
char *file is the name of the file to be written.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

| ong | is the long integer to write.

See also
util_get_int_fromfile,util_get long_fromfile,util_put_int_to_ file,
util_put_string_to file

util_put_string_to_aux_file

Theutil _put_string_to_aux_fil e function writes a single line containing a
string to a file specified by directory name and file name.

Syntax
#i ncl ude <libproxy/cutil.h>
int util_put_string_to_aux_file(char *root, char *name, char *str);

Returns
= non-zero if the operation succeeded

= 0if the operation failed

Parameters
char *root is the name of the directory where the file is to be written.

char *name is the name of the file is to be written.

char *str is the string to write.

See also
util _get int fromfile,util _get long fromfile,util _put_int to file,
util _put _long to file,util _put_string to file

util_put_string_to_file

Theutil _put_string_to filefunction writes a single line containing a string to a
specified file.

Syntax
#i ncl ude <libproxy/cutil.h>
int util_put_string_to_file(char *filename, char *str);

Returns
= nonzero if the operation succeeded

Chapter 4 NSAPI Function Reference 183

184

= 0 if the operation failed

Parameters
char *file is the name of the file to be read.

char *str is the string to write.

See also
util_get int fromfile,util_get long fromfile,util _put_int _to file,
util_put _long to file

util_sect_id
Theutil _sect id function creates a section ID from the section dim and an index.

Syntax
#incl ude <libproxy/cutil.h>
void util_sect_id(int dim, int idx, char *buf);

Returns
= nonzero if the operation succeeded

< 0 if the operation failed

Parameters
i nt dim is the section dim.

i nt idx is the index.

char *buf is the buffer to receive the section ID.

util_sh_escape

The util _sh_escape function parses a specified string and places a backslash (\) in
front of any shell-special characters, returning the resultant string. Use this
function to ensure that strings from clients won’t cause a shell to do anything
unexpected.

The shell-special characters are the space plus the following characters:

& [~<>M() [1{} S\

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Syntax
char *util_sh_escape(char *s);

Returns
A newly allocated string.

Parameters
char *s is the string to be parsed.

See Also
util _uri_escape

util_snprintf

The util _snprintf function formats a specified string, using a specified format,
into a specified buffer using the pri nt f -style syntax and performs bounds checking.
It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
runtime library of your compiler.

Syntax
int util_snprintf(char *s, int n, char *fnt, ...);

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

int n is the maximum number of bytes allowed to be copied.

char *fnt isthe format string. The function handles only % and % strings; it does
not handle any width or precision strings.

. represents a sequence of parameters for the printf function.

See Also
util _sprintf, util _vsnprintf, util_vsprintf

Chapter 4 NSAPI Function Reference 185

186

util_sprintf

The util _sprintf function formats a specified string, using a specified format, into
a specified buffer, using the pri nt f -style syntax without bounds checking. It
returns the number of characters in the formatted buffer.

Because util _sprintf doesn’t perform bounds checking, use this function only if
you are certain that the string fits the buffer. Otherwise, use the function
util_snprintf.For more information, see the documentation on the printf function
for the runtime library of your compiler.

Syntax
int util_sprintf(char *s, char *fnt, ...);

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

char *fnt isthe format string. The function handles only % and % strings; it does
not handle any width or precision strings.

. represents a sequence of parameters for the printf function.

Example

char *I ognsg;

int len;

| ognsg = (char *) MALLOC(256);

len = util_sprintf(logmsg, "% % %\n", ip, nmethod, uri);

See Also
util_snprintf, util_vsnprintf, util _vsprintf

util_strcasecmp

The util _strcasecnp function performs a comparison of two alphanumeric strings
and returns a - 1, 0, or 1 to signal which is larger or that they are identical.

The comparison is not case-sensitive.

Syntax
int util_strcasecnp(const char *s1, const char *s2);

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Returns
1ifslis greater than s2.

0 if sl isequal to s2.

-1ifslisless than s2.

Parameters
char *s1 is the first string.

char *s2 is the second string.

See Also
util _strncasecnp

util_strftime

The util _strftime function translates a t mstructure, which is a structure
describing a system time, into a textual representation. It is a thread-safe version of
the standard strfti ne function

Syntax
int util_strftime(char *s, const char *format, const struct tm*t);

Returns
The number of characters placed into s, not counting the terminating NULL
character.

Parameters
char *s is the string buffer to put the text into. There is no bounds checking, so you
must make sure that your buffer is large enough for the text of the date.

const char *format is a format string, a bit like a printf string in that it consists of
text with certain % substrings. You may use the constant HTTP_DATE_FM to create
date strings in the standard Internet format. For more information, see the
documentation on the printf function for the runtime library of your compiler.
Refer to Time FormatsChapter 7, “Time Formats,” for details on time formats.

const struct tm*t isa pointer to a calendar time (t n) structure, usually created by
the function system | ocal ti e or system gnti ne.

See Also
system | ocal tine, systemgntine

Chapter 4 NSAPI Function Reference 187

188

util_strncasecmp

The util _strncasecnp function performs a comparison of the first n characters in
the alphanumeric strings and returns a - 1, 0, or 1 to signal which is larger or that
they are identical.

The function’s comparison is not case-sensitive.

Syntax
int util_strncasecnp(const char *sl, const char *s2, int n);

Returns
1if s1is greater than s2.

0 if s1isequal to s2.

-1ifslisless than s2.

Parameters
char *sl is the first string.

char *s2 is the second string.

int n is the number of initial characters to compare.

See Also
util _strcasecnp

util_uri_check

The uti |l _uri_check function checks that a URI has a format conforming to the
standard.

At present, the only URI it checks for is a URL. The standard format for a URL is
protocol: / / user: password@ost: port/ url-path

where user:password, :password. :port, or Zurl-path can be omitted.

Syntax

#include <libproxy/util.h>
int util_uri_check (char *uri);

Returns

= 0 if the URI does not have the proper form.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

= nonzero if the URI has the proper form.
Parameters

char *uri is the URI to be tested.

util_uri_escape

The util _uri_escape function converts any special characters in the URI into the
URI format (%X, where XX is the hexadecimal equivalent of the ASCII character),
and returns the escaped string. The special characters are %@#: +& " <>, space,
carriage return, and line feed.

Use util _uri_escape before sending a URI back to the client.

Syntax
char *util _uri_escape(char *d, char *s);

Returns
The string (possibly newly allocated) with escaped characters replaced.

Parameters

char *d isastring. If d is not NULL, the function copies the formatted string into d
and returns it. If d is NULL, the function allocates a properly sized string and
copies the formatted special characters into the new string, then returns it.

The util _uri_escape function does not check bounds for the parameter d.
Therefore, if d is not NULL, it should be at least three times as large as the string s.

char *s is the string containing the original unescaped URI.

See Also
util _uri_is_evil, util _uri_parse, util_uri_unescape

util_uri_is_evil

The util _uri_is_evil function checks a specified URI for insecure path characters.
Insecure path charactersinclude//,/./,/../ and/.,/.. (also for Windows. /) at the
end of the URI. Use this function to see if a URI requested by the client is insecure.

Syntax
int util_uri_is_evil(char *t);

Chapter 4 NSAPI Function Reference 189

Returns
1 if the URI is insecure, or 0 if the URI is OK.

Parameters
char *t isthe URI to be checked.

See Also
util _uri_escape, util _uri_parse

util_uri_parse

The util _uri_parse function converts//,/./,and/*/../ into/ in the specified URI
(where * is any character other than /). You can use this function to convert a URI’s
bad sequences into valid ones. First use the function uti| _uri _is_evil to determine
whether the function has a bad sequence.

Syntax
void util _uri_parse(char *uri);

Returns
voi d

Parameters
char *uri isthe URI to be converted.

See Also
util _uri_is_evil, util _uri_unescape

util_uri_unescape

The util _uri_unescape function converts the encoded characters of a URI into their
ASCII equivalents. Encoded characters appear as %X, where XX is a hexadecimal
equivalent of the character.

NOTE You cannot use an embedded null in a string, because NSAPI
functions assume that a null is the end of the string. Therefore,
passing unicode-encoded content through an NSAPI plugin
doesn’t work.

190 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Syntax
voi d util_uri_unescape(char *uri);

Returns
voi d

Parameters
char *uri isthe URI to be converted.

See Also
util _uri_escape, util _uri_is evil, util _uri_parse

util_url_cmp

Theutil _url _cnp function compares two URLSs. It is analogous to the strcmp()
library function of C.

Syntax
#include <libproxy/util.h>
int util_url_cnp (char *sl1, char *s2);

Returns
e -1ifthe first URL, s1, is less than the second, s2

« 0ifthey are identical

= 1lifthe first URL, s1, is greater than the second, s2

Parameters
char *sl is the first URL to be tested.

char *s2 is the second URL to be tested.

See also
util _url _fix_host name,util _uri_check

util_url_fix_host name

Theutil _url _fix_host nane function converts the host name in a URL to
lowercase and removes redundant port numbers.

Chapter 4 NSAPI Function Reference 191

192

Syntax
#include <libproxy/util.h>
void util_url_fix_host name(char *url);

Returns
voi d (but changes the value of its parameter string)

The protocol specifier and the host name in the parameter string are changed to
lowercase. The function also removes redundant port numbers, such as 80 for
HTTP, 70 for gopher, and 21 for FTP.

Parameters
char *url is the URL to be converted.

See also
util _url _cnp,util _uri_check

util_url_has FQDN

The util _url _has_FQNfunction returns a value to indicate whether a specified
URL references a fully qualified domain name.

Syntax
#include <libproxy/util.h>
int util_url_has_FQDN(char *url);

Returns
= 1ifthe URL has a fully qualified domain name

= 0if the URL does not have a fully qualified domain name

Parameters
char *url is the URL to be examined.

util_vsnprintf

The util _vsnprintf function formats a specified string, using a specified format,
into a specified buffer using the vpri nt f -style syntax and performs bounds
checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
runtime library of your compiler.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Syntax
int util_vsnprintf(char *s, int n, register char *fnt, va_list args);

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

int n isthe maximum number of bytes allowed to be copied.

register char *fnt isthe format string. The function handles only % and %
strings; it does not handle any width or precision strings.

va_list args isan STD argument variable obtained from a previous call to
va_start.

See Also
util_snprintf, util_vsprintf

util_vsprintf

The util _vsprintf function formats a specified string, using a specified format,
into a specified buffer using the vpri nt f -style syntax without bounds checking. It
returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
runtime library of your compiler.

Syntax
int util_vsprintf(char *s, register char *fnt, va_list args);

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

register char *fnt isthe format string. The function handles only % and %
strings; it does not handle any width or precision strings.

va_list args isan STD argument variable obtained from a previous call to
va_start.

Chapter 4 NSAPI Function Reference 193

194

See Also
util_snprintf, util_vsnprintf

write

Thewite filter method is called when output data is to be sent. Filters that modify
or consume outgoing data should implement the wi te filter method.

Upon receiving control, a write implementation should first process the data as
necessary, and then pass it on to the next filter layer; for example, by calling
net_write(layer->lower, ...,).If the filter buffers outgoing data, it should
implement the f1 ush filter method.

Syntax
int wite(FilterlLayer *layer, const void *buf, int amunt);

Returns
The number of bytes consumed, which may be less than the requested amount if an
error occurred.

Parameters
FilterLayer *layer isthe filter layer in which the filter is installed.

const void *buf is the buffer that contains the outgoing data.
int anount is the number of bytes in the buffer.
Example

int nyfilter_wite(FilterLayer *layer, const void *buf, int amount)

{

}
See A so

return net_wite(layer->l ower, buf, anmount);

flush, net_ wite, witev

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

writev

Thewitev filter method is called when multiple buffers of output data are to be
sent. Filters that modify or consume outgoing data may choose to implement the
witev filter method.

If a filter implements the wite filter method but not the witev filter method, the
server automatically translates net_witev callstonet_wite calls. As aresult,
filters interested in the outgoing data stream do not need to implement the wi tev
filter method. However, for performance reasons, it is beneficial for filters that
implement the wite filter method to also implement the writev filter method.

Syntax
int witev(FilterLayer *layer, const struct iovec *iov, int iov_size);

Returns
The number of bytes consumed, which may be less than the requested amount if an
error occurred.

Parameters
FilterLayer *layer isthe filter layer the filter is installed in.

const struct iovec *iov isan array of i ovec structures, each of which contains
outgoing data.

int iov_size isthe number of i ovec structures in the i ov array.

Example
int nyfilter_witev(FilterLayer *layer, const struct iovec *iov, int
i ov_si ze)
{
return net_witev(layer->lower, iov, iov_size);
}
See Also

flush, net_ wite, wite

Chapter 4 NSAPI Function Reference 195

196 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Chapter 5

Data Structure Reference

NSAPI uses many data structures that are defined in the nsapi . h header file, which
is in the directory server-root/ pl ugi ns/ i ncl ude.

The NSAPI functions described in Chapter 4, “NSAPI Function Reference,”
provide access to most of the data structures and data fields. Before directly
accessing a data structure in naspi . h, check to see if an accessor function exists for
it.

For information about the privatization of some data structures in Sun Java System
Web Proxy Server 4, see “Privatization of Some Data Structures” on page 198

The rest of this chapter describes public data structures in nsapi . h. Note that data
structures in nsapi . h that are not described in this chapter are considered private
and may change incompatibly in future releases.

This chapter has the following sections;

= Privatization of Some Data Structures

e Session
< pblock
e pb_entry

e pb_param

= Session->client
= Request

e stat

e shmem_s

e cinfo

197

Privatization of Some Data Structures

= sendfiledata

= Filter

= FilterContext

= FilterLayer

= FilterMethods

e The CacheEntry Data Structure
= The CacheState Data Structure

e The ConnectMode Data Structure

Privatization of Some Data Structures

198

The data structures in nsapi _pvt . h are now considered to be private data structures,
and you should not write code that accesses them directly. Instead, use accessor
functions. We expect that very few people have written plugins that access these
data structures directly, so this change should have very little impact on
customer-defined plugins. Look in nsapi _pvt . h to see which data structures have
been removed from the public domain, and to see the accessor functions you can
use to access them from now on.

Plugins written for Enterprise Server 3.x that access contents of data structures
defined in nsapi _pvt. h will not be source compatible with Sun Java System Web
Proxy Server 4, that is, it will be necessary to #i ncl ude "nsapi _pvt. h" to build such
plugins from source. There is also a small chance that these programs will not be
binary compatible with Sun Java System Web Proxy Server 4, because some of the
data structures in nsapi _pvt. h have changed size. In particular, the di recti ve
structure is larger, which means that a plugin that indexes through the directives in
a dt abl e will not work without being rebuilt (with nsapi _pvt. h included).

We hope that the majority of plugins do not reference the internals of data
structures in nsapi _pvt. h, and therefore that most existing NSAPI plugins will be
both binary and source compatible with Sun Java System Web Proxy Server 4.

Plugins written for iPlanet Web Proxy Server 3.6 will not be binary compatible
with Proxy Server 4. These plugins will have to be recompiled and relinked using
Web Proxy Server 4’'s NSAPI header files and libraries.

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

Session

pblock

Session

A session is the time between the opening and closing of the connection between
the client and the server. The sessi on data structure holds variables that apply
session wide, regardless of the requests being sent, as shown here:

typedef struct {
/* Information about the renote client */
pbl ock *client;

/* The socket descriptor to the renote client */
SYS_NETFD csd;

/* The input buffer for that socket descriptor */
net buf *i nbuf ;

/* Raw socket information about the remote */
/* client (for internal use) */
struct in_addr iaddr;

} Session;

The parameter block is the hash table that holds pb_ent ry structures. Its contents
are transparent to most code. This data structure is frequently used in NSAPI; it
provides the basic mechanism for packaging up parameters and values. There are
many functions for creating and managing parameter blocks, and for extracting,
adding, and deleting entries. See the functions whose names start with pbl ock_in
Chapter 4, “NSAPI Function Reference” on page 81. You should not need to write
code that accesses pbl ock data fields directly.

typedef struct {

int hsize;

struct pb_entry **ht;
} pbl ock;

Chapter 5 Data Structure Reference 199

pb_entry

pb_entry

The pb_entry is a single element in the parameter block.

struct pb_entry {
pb_par am *par am
struct pb_entry *next;

b

pb_param

The pb_par amrepresents a name-value pair, as stored in a pb_entry.

typedef struct {
char *nane, *val ue;
} pb_param

Session->client

The Sessi on->cl i ent parameter block structure contains two entries:
< Theipentry is the IP address of the client machine.

= The dns entry is the DNS name of the remote machine. This member must be
accessed through the sessi on_dns function call:

/*

* session_dns returns the DNS host nane of the client for this
* session and inserts it into the client pblock. Returns NULL if
* unavai | abl e.

*/

char *sessi on_dns(Session *sn);

200 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

Request

Request

Under HTTP protocol, there is only one request per session. The request structure
contains the variables that apply to the request in that session (for example, the
variables include the client’s HTTP headers).

typedef struct {
/* Server working variables */
pbl ock *vars;

/* The nethod, UR, and protocol revision of this request */
bl ock *reqpb;

/* Protocol specific headers */
int | oadhdrs;
pbl ock *headers;

/* Server’s response headers */
int senthdrs;
pbl ock *srvhdrs;

/* The object set constructed to fulfill this request */
htt pd_obj set *os;
} Request;

Stat

When a program calls the stat () function for a given file, the system returns a
structure that provides information about the file. The specific details of the
structure should be obtained from your platform’s implementation, but the basic
outline of the structure is as follows:

Chapter 5 Data Structure Reference 201

shmem_s

struct stat {
dev_t st _dev; [* device of inode */
i not _t st _ino; /* inode nunber */
short st _node; /* node bhits */
short st_nlink; /* nunber of links to file /*
short st _uid; /* owner’s user id */
short st_gid; /* owner’s group id */
dev_t st _rdev; [* for special files */
of f _t st _si ze; [* file size in characters */
time t st_atinme; /* time last accessed */
tinme_t st_nmtineg; [* time last nodified */
tine_t st_ctineg; [* time inode |ast changed*/
}

The elements that are most significant for server plugin API activities are st _si ze,
st_atine,st_ntine, and st _ctine.

shmem_s

typedef struct {
voi d *data; /* the data */
HANDLE f dmap;
i nt si ze; [* the maxi mum | ength of the data */
char *nane; [* internal use: filename to unlink if exposed */
SYS FILE fd; [* internal use: file descriptor for region */
} shnems;

cinfo

The ci nf o data structure records the content information for a file.

202 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

sendfiledata

typedef struct {
char *type;
/* ldentifies what kind of data is in the file*/
char *encodi ng;
/* encoding identifies any conpression or other /*
/* content-independent transformation that's been /*
/* applied to the file, such as uuencode)*/
char *| anguage;
/* ldentifies the | anguage a text document is in. */
} cinfo;

sendfiledata

The sendfil edat a data structure is used to pass parameters to the net _sendfil e
function. It is also passed to the sendfi | e method in an installed filter in response to
anet_sendfile call.

typedef struct {
SYS FILE fd; /* file to send */
size_t offset; /* offset infile to start sending from*/
size t len; /* nunber of bytes to send fromfile */
const void *header; /* data to send before file */
int hlen; /* nunber of bytes to send before file */
const void *trailer; /* data to send after file */
int tlen; /* nunber of bytes to send after file */
} sendfil edat a;

Filter

TheFilter data structure is an opaque representation of a filter. AFilter structure
is created by calling filter_create.

typedef struct Filter Filter;

Chapter 5 Data Structure Reference 203

FilterContext

FilterContext

The Fil ter Context data structure stores context associated with a particular filter
layer. Filter layers are created by calling filter_insert.

Filter developers may use the data member to store filter-specific context
information.

typedef struct {
pool _handl e_t *pool; /* pool context was allocated from*/

Sessi on *sn; /* session being processed */
Request *rq; /* request being processed */
voi d *dat a; /* filter-defined private data */

} FilterContext;

FilterLayer

The Fil terLayer data structure represents one layer in a filter stack. The
FilterLayer structure identifies the filter installed at that layer and provides
pointers to layer-specific context and a filter stack that represents the layer
immediately below it in the filter stack.

typedef struct {
Filter *filter; /* the filter at this layer in the filter stack */
FilterContext *context; /* context for the filter */
SYS _NETFD lower; /* access to the next filter layer in the stack */
} FilterLayer;

FilterMethods

The Fil ter Met hods data structure is passed to filter_create to define the filter
methods a filter supports. Each new Fi | t er Met hods instance must be initialized
with the FI LTER METHODS | NI TI ALI ZER macro. For each filter method a filter
supports, the corresponding Fi | t er et hods member should point to a function that
implements that filter method.

204 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

The CacheEntry Data Structure

typedef struct {
size_t size;
Filterlnsert Func *insert;
Fi | t er RenoveFunc *renove;
FilterFl ushFunc *fl ush;
Fi | ter ReadFunc *read;
FilterWiteFunc *wite;
FilterWitevFunc *witev;
FilterSendfil eFunc *sendfil e;
} FilterMethods;

The CacheEntry Data Structure

The CacheEntry data structure holds all the information about one cache entry. It is
created by the ce_| ookup function and destroyed by the ce_f ree function. It is
defined in the | i bproxy/ cache. h file.

typedef struct _CacheEntry {
CacheState state;/* state of the cache file; DO NOT refer to any
* of the other fields in this Cstruct if state
* is other than

* CACHE_REFRESH or
* CACHE_RETURN_FROM CACHE
x|

SYS FI LE fd_in;/* do not use: open cache file for reading */
int fd_out;/* do not use: open (locked) cache file for witing */
struct stat finfo;/* stat info for the cache file */

unsi gned char digest[CACHE_ DI GEST_LEN;/* MXb for the URL */
char * url _dig; /* URL used to for digest; field #8 in G F */
char * url _cif; /* URL read fromQF file */

char * fil name; /* Rel ative cache file name */

char * dirnane; /* Absol ute cache directory name */

char * absnane; /* Absol ute cache file path */

char * |cknane; /* Absol ute | ocked cache file path */

char * cifnane; /* Absolute A F path */

int sect _idx; [/* Cache section index */

i nt part _idx; /* Cache partition index */

CSect * section; /* Cache section that this file belongs to */
CPart *partition; /* Cache partition that this file belongs to */
int xfer time;, /* secs */ /* Field #2 in CAF */

time t last _nodified;/* GVl *//* Field #3 in AF */

time_t expires; [* QT */ [* Field #4 in AF */

Chapter 5 Data Structure Reference 205

The CacheState Data Structure

time_t last_checked;/* GMI *//* Field #5 in AF */

long content_length; [* Field #6 in AF */

char * content_type; [* Field #7 in AF */

i nt is_auth; /* Authenticated data -- always do recheck */
int auth_sent; /* dient did send the Authorization header */
| ongm n_si ze; /* Mn size for a cache file (in KB) */

| ongmax_si ze; /* Max size for a cache file (in KB) */

time_t l|ast_accessed;/* GWI for proxy, local for gc */

time_t created; /* localtime (only used by gc, st_ntime) */
i nt renoved, /* gc only; file was removed fromdisk */
long Dbytes; /* fromstat(), using this we get hdr len */
long bytes_witten;/* Nunber of bytes witten to disk */
long bytes_in_nedia;/* real fs size taken up */

long Dblks; /* size in 512 byte bl ocks */

int category; /* Value category; bigger is better */

i nt cif_entry ok;/* AF entry found and ok */

time_t ins_c; /* QWI; dient -> proxy if-nodified-since */
time_t start_tine;/* Transfer start time */

i nt i nhi bit_caching;/* Bad expires/other reason not to cache */

int corrupt_cache file;/* Cache file gone corrupt => renove */

int wite_aborted;/* True if the cache file wite was aborted */

int batch_update;/* W' re doing batch update (no real user) */

char * cache_exclude;/* Hdrs not to wite to cache (RE) */

char * cache_replace;/* Hdrs to replace with fresh ones from 304 response
(RE) */

char * cache_norerge;/* Hdrs not to nerge with the cached ones (RE) */
Session * sn;

Request * rq;

} CacheEntry;

The CacheState Data Structure

206

The CacheState data structure is actually an enumerated list of constants. Aways
use their names because values are subject to implementation change.

typedef enum {
CACHE EXISTS NOT = 0,/* Internal flag -- do not use! */

CACHE_EXI STS, /* Internal flag -- do not use! */
CACHE_NO /* No caching: don't read, don't wite cache */
CACHE_CREATE, /* Oreate cache; don't read */

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

The ConnectMode Data Structure

CACHE_REFRESH, /* Refresh cache; read if not nodified */
CACHE_RETURN FROM CACHE, /* Return directly, no check */
CACHE_RETURN ERRCR/* Wth connect - node=never when not in cache */
} CacheState;

The ConnectMode Data Structure

The ConnectMode data structure is actually an enumerated list of constants.
Aways use their names because values are subject to implementation change.

typedef enum {

CMNCRVAL = 0,/* normal -- retrieve/refresh when necessary */
COM FAST DEMD /* fast -- retrieve only if not in cache already */
CM NEVER /* never -- never connect to network */

} Connect Mode;

Chapter 5 Data Structure Reference 207

The ConnectMode Data Structure

208 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Chapter 6

Using Wildcard Patterns

This chapter describes the format of wildcard patterns used by the Sun Java System
Web Proxy Server. These wildcards are used in:

= Directives in the configuration file obj . conf (see the Sun Java System Web
Proxy Server 4.0.1 Configuration File Reference for detailed information about
obj . conf).

= Various built-in SAFs (see the Sun Java System Web Proxy Server 4.0.1
Configuration File Reference for more information about these predefined SAFs).

= Some NSAPI functions.

Wildcard patterns use special characters. If you want to use one of these characters
without the special meaning, precede it with a backslash (\) character.

This chapter has the following sections:
< Wildcard Patterns

< Wildcard Examples

Wildcard Patterns

The following table describes wildcard patterns, listing the pattern and its use.

Table 6-1 Wildcard Patterns

Pattern Use

* Match zero or more characters.

? Match exactly one occurrence of any character.

209

Wildcard Examples

Table 6-1 Wildcard Patterns

Pattern

Use

[abc]

[a-7]

["az]

An or expression. The substrings used with this operator can contain
other special characters such as * or $. The substrings must be
enclosed in parentheses, for example, (alb|c), but the parentheses
cannot be nested.

Match the end of the string. This is useful in or expressions.

Match one occurrence of the characters a, b, or c. Within these
expressions, the only character that needs to be treated as a special
character is]; all others are not special.

Match one occurrence of a character between a and z.
Match any character except a or z.

This expression, followed by another expression, removes any pattern
matching the second expression.

Match zero or more characters.

Wildcard Examples

The following table provides wildcard examples, listing the pattern and the result.

Table 6-2 Wildcard Examples

Pattern

Result

*. net scape. com
(quark| ener gy) . net scape. com

198.93. 9[23] . ?2?

* %

*~net scape- *

*. net scape. com-gquar k. net scape. com

*. net scape. com~(quar k| ener gy
| neut ri no) . net scape. com

. com-. net scape. com

Matches any string ending with the characters . net scape. com
Matches either quar k. net scape. comor ener gy. net scape. com

Matches a numeric string starting with either 198. 93. 92 or 198. 93. 93
and ending with any 3 characters.

Matches any string with a period in it.
Matches any string except those starting with net scape- .

Matches any host from domain net scape. comexcept for a single host
quar k. net scape. com

Matches any host from domain .net scape. comexcept for hosts
quar k. net scape. com ener gy. net scape. com and
neut rino. net scape. com

Matches any host from domain . comexcept for hosts from subdomain
net scape. com

210 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer’'s Guide

Wildcard Examples

Table 6-2 Wildcard Examples

Pattern Result

t ype=*~magnus-i nternal / * Matches any type that does not start with magnus-internal /.
This wildcard pattern is used in the file obj . conf in the catch-all Servi ce
directive.

Chapter 6 Using Wildcard Patterns 211

Wildcard Examples

212 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer's Guide

Chapter 7

Time Formats

This chapter describes the format strings used for dates and times. These formats
are used by the NSAPI function uti | _strfti ne, by some built-in SAFs such as
append-trail er, and by server-parsed HTML (par se- ht m). The formats are
similar to those used by the strfti me C library routine, but not identical.

The following table describes the formats, listing the symbols and their meanings.

Table 7-1 ~ Time Formats

Symbol Meaning

%a Abbreviated weekday name (3 chars)
%d Day of month as decimal number (01-31)
%S Second as decimal number (00-59)

%M Minute as decimal number (00-59)

%H Hour in 24-hour format (00-23)

%Y Year with century, as decimal number, up to 2099
%b Abbreviated month name (3 chars)

%h Abbreviated month name (3 chars)

%T Time "HH:MM:SS"

%X Time "HH:MM:SS"

%A Full weekday name

%B Full month name

%C "%a %b %e %H:%M:%S %Y"

%c Date & time "%m/%d/%y %H:%M:%S"
%D Date "%m/%d/%y"

213

Table 7-1 Time Formats

Symbol Meaning

%e Day of month as decimal number (1-31) without leading zeros

%I Hour in 12-hour format (01-12)

%)j Day of year as decimal number (001-366)

%k Hour in 24-hour format (0-23) without leading zeros

%I Hour in 12-hour format (1-12) without leading zeros

%m Month as decimal number (01-12)

%n line feed

%p A.M./P.M. indicator for 12-hour clock

%R Time "%H:%M"

%r Time "%I1:%M:%S %p"

%t tab

%U Week of year as decimal number, with Sunday as first day of week
(00-51)

%w Weekday as decimal number (0-6; Sunday is 0)

%W Week of year as decimal number, with Monday as first day of week
(00-51)

%X Date "%m/%d/%y"

%y Year without century, as decimal number (00-99)

%% Percent sign

214 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer’'s Guide

Chapter 8

Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol (a set of rules that describes
how information is exchanged) that allows a client (such as a web browser) and a
web proxy server to communicate with each other.

HTTP is based on a request-response model. The browser opens a connection to
the server and sends a request to the server. The server processes the request and
generates a response, which it sends to the browser. The server then closes the
connection.

This chapter provides a short introduction to a few HTTP basics. For more
information on HTTP, see the IETF home page at:

http://wmw. ietf.org/home. htm
This chapter has the following sections:
< Compliance
= Requests
< Responses

= Buffered Streams

Compliance

Sun Java System Web Proxy Server 4 supports HTTP/1.1. The server is
conditionally compliant with the HTTP/1.1 proposed standard, as approved by
the Internet Engineering Steering Group (IESG), and the Internet Engineering Task
Force (IETF) HTTP working group.

For more information on the criteria for being conditionally compliant, see the
Hypertext Transfer Protocol -- HTTP/1.1 specification (RFC 2068) at:

215

Requests

http://wa ietf.org/rfc/rfc2068.txt ?nunber =2068

Reqguests

A request from a browser to a server includes the following information:
< Request Method, URI, and Protocol Version
< Request Headers

= Request Data

Request Method, URI, and Protocol Version

A browser can request information using a number of methods. The commonly
used methods include the following:

= (&ET -- Requests the specified resource (such as a document or image)
= HEAD-- Requests only the header information for the document

e POST -- Requests that the server accept some data from the browser, such as
form input for a CGI program

= PUT -- Replaces the contents of a server’s document with data from the browser

Request Headers

The browser can send headers to the server. Most are optional.

The following table lists some of the commonly used request headers.

Table 8-1 Common Request Headers

Request Header Description
Accept File types the browser can accept.
Aut hori zation Used if the browser wants to authenticate itself with a server;

information such as the user name and password are included.

User - Agent Name and version of the browser software.
Ref erer URL of the document where the user clicked on the link.
Host Internet host and port number of the resource being requested.

216 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer’'s Guide

Responses

Request Data

If the browser has made a PCST or PUT request, it sends data after the blank line
following the request headers. If the browser sends a GET or HEAD request, there is no
data to send.

Responses

The server’s response includes the following:
= HTTP Protocol Version, Status Code, and Reason Phrase
= Response Headers

= Response Data

HTTP Protocol Version, Status Code, and
Reason Phrase

The server sends back a status code, which is a three-digit numeric code. The five
categories of status codes are:

= 100- 199 a provisional response.

= 200-299 a successful transaction.

= 300- 399 the requested resource should be retrieved from a different location.
= 400- 499 an error was caused by the browser.

= 500-599 a serious error occurred in the server.

The following table lists some common status codes.

Table 8-2 Common HTTP Status Codes

Status Code Meaning

200 OK; request has succeeded for the method used (GET, POST, HEAD).

201 The request has resulted in the creation of a new resource reference by the
returned URI.

206 The server has sent a response to byte range requests.

Chapter 8 Hypertext Transfer Protocol 217

Responses

Table 8-2 Common HTTP Status Codes

Status Code Meaning

302 Found. Redirection to a new URL. The original URL has moved. This is not an
error; most browsers will get the new page.

304 Use a local copy. If a browser already has a page in its cache, and the page is
requested again, some browsers (such as Netscape Navigator) relay to the web
server the “last-modified” timestamp on the browser’s cached copy. If the copy
on the server is not newer than the browser’s copy, the server returns a 304
code instead of returning the page, reducing unnecessary network traffic. This is
not an error.

400 Sent if the request is not a valid HTTP/1.0 or HTTP/1.1 request. For example
HTTP/1.1 requires a host to be specified either in the Host header or as part of
the URI on the request line.

401 Unauthorized. The user requested a document but didn’t provide a valid user
name or password.

403 Forbidden. Access to this URL is forbidden.

404 Not found. The document requested isn't on the server. This code can also be

sent if the server has been told to protect the document by telling unauthorized
people that it doesn't exist.

408 If the client starts a request but does not complete it within the keep-alive timeout
configured in the server, then this response will be sent and the connection
closed. The request can be repeated with another open connection.

411 The client submitted a POST request with chunked encoding, which is of variable
length. However, the resource or application on the server requires a fixed length
- a Cont ent - Lengt h header to be present. This code tells the client to resubmit its
request with content-length.

413 Some applications (e.g., certain NSAPI plugins) cannot handle very large
amounts of data, so they will return this code.

414 The URI is longer than the maximum the web server is willing to serve.

416 Data was requested outside the range of a file.

500 Server error. A server-related error occurred. The server administrator should

check the server’s error log to see what happened.

503 Sent if the quality of service mechanism was enabled and bandwidth or
connection limits were attained. The server will then serve requests with that
code. See the "quality of service" section.

Response Headers

The response headers contain information about the server and the response data.

218 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer's Guide

Buffered Streams

The following table lists some common response headers.

Table 8-3 Common Response Headers

Response Header Description

Ser ver Name and version of the web server.

Dat e Current date (in Greenwich Mean Time).

Last - Modi fi ed Date when the document was last modified.

Expi res Date when the document expires.

Content - Lengt h Length of the data that follows (in bytes).

Cont ent - Type MIME type of the following data.

WY Aut hent i cat e Used during authentication and includes information that tells the

browser software what is necessary for authentication (such as
user name and password).

Response Data

The server sends a blank line after the last header. It then sends the response data
such as an image or an HTML page.

Buffered Streams

Buffered streams improve the efficiency of network I/0 (for example, the exchange
of HTTP requests and responses), especially for dynamic content generation.
Buffered streams are implemented as transparent NSPR 1/0 layers, which means
even existing NSAPI modules can use them without any change.

The buffered streams layer adds the following features to the Sun Java System Web
Proxy Server:

= Enhanced keep-alive support: When the response is smaller than the buffer
size, the buffering layer generates the Cont ent - Lengt h header so that the client
can detect the end of the response and reuse the connection for subsequent
requests.

Chapter 8 Hypertext Transfer Protocol 219

Buffered Streams

= Response length determination: If the buffering layer cannot determine the
length of the response, it uses HTTP/1.1 chunked encoding instead of the
Cont ent - Lengt h header to convey the delineation information. If the client only
understands HTTP/1.0, the server must close the connection to indicate the
end of the response.

= Deferred header writing: Response headers are written out as late as possible
to give the servlets a chance to generate their own headers (for example, the
session management header set - cooki e).

= Ability to understand request entity bodies with chunked encoding: Though
popular clients do not use chunked encoding for sending POST request data,
this feature is mandatory for HTTP/1.1 compliance.

The improved connection handling and response length header generation
provided by buffered streams also addresses the HTTP/1.1 protocol compliance
issues, where absence of the response length headers is regarded as a category 1
failure. In previous Enterprise Server versions, it was the responsibility of the
dynamic content generation programs to send the length headers. If a CGI script
did not generate the Cont ent - Lengt h header, the server had to close the connection
to indicate the end of the response, breaking the keep-alive mechanism. However,
it is often very inconvenient to keep track of response length in CGI scripts or
servlets, and as an application platform provider, the web server is expected to
handle such low-level protocol issues.

Output buffering has been built in to the functions that transmit data, such as
net_write (see Chapter 4, “NSAPI Function Reference”). You can specify the
following Ser vi ce SAF parameters that affect stream buffering, which are described
in detail in the chapter “Syntax and Use of magnus.conf” in the Sun Java System
Web Proxy Server 4.0.1 Configuration File Reference.

e UseQut put StreanSi ze
e ChunkedRequest Buf f er Si ze
e ChunkedRequest Ti neout

The UseQut put Streansi ze, ChunkedRequest Buf f er Si ze, and ChunkedRequest Ti meout
parameters also have equivalent nagnus. conf directives; see “Chunked Encoding”
in the chapter “Syntax and Use of magnus.conf” in the Sun Java System Web Proxy
Server 4.0.1 Configuration File Reference. The obj . conf parameters override the
magnus. conf directives.

220 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer’'s Guide

Buffered Streams

NOTE The UseQut put St reanti ze parameter can be set to zero (0) in the
obj . conf file to disable output stream buffering. For the nagnus. conf
file, setting UseQut put St reansi ze to zero has no effect.

To override the default behavior when invoking an SAF that uses one of the
functions net _read or net buf _grab, you can specify the value of the parameter in
obj . conf, for example:

Service fn="ny-service-saf" type=perf UseQutput Streanti ze=8192

Chapter 8 Hypertext Transfer Protocol 221

Buffered Streams

222 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer's Guide

Appendix A

Alphabetical List of NSAPI Functions

and Macros

This appendix provides an alphabetical list for the easy lookup of NSAPI functions

and macros.

C

cache_digest
cache_filename
cache_fn_to_dig
CALLOC
ce_free
ce_lookup
cif_write_entry
cinfo_find
condvar_init
condvar_notify
condvar_terminate
condvar_wait
crit_enter
crit_exit

crit_init

223

crit_terminate

D

daemon_atrestart

dns_set_hostent

F

fc_close
fc_open
filebuf_buf2sd
filebuf close
filebuf _getc
filebuf_open
filebuf_open_nostat
filter_create
filter_find
filter_insert
filter_layer
filter_name
filter_remove
flush

FREE
fs_blk_size
fs_blks_avail
func_exec
func_find

func_insert

224 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer’'s Guide

insert

L

log_error

M

magnus_atrestart

MALLOC

N

net_flush
net_ip2host
net_read
net_sendfile
net_write

netbuf buf2sd
netbuf close
netbuf_getc
netbuf_grab
netbuf_open
nsapi_module_init
NSAPI_RUNTIME_VERSION
NSAPI_VERSION

Appendix A Alphabetical List of NSAPI Functions and Macros

225

P

param_create
param_free
pblock_copy
pblock_create
pblock_dup
pblock_find
pblock_findlong
pblock_findval
pblock_free
pblock_nlinsert
pblock_nninsert
pblock_nvinsert
pblock_pb2env
pblock_pblock2str
pblock_pinsert
pblock_remove
pblock_replace_name
pblock_str2pblock
PERM_CALLOC
PERM_FREE
PERM_MALLOC
PERM_REALLOC
PERM_STRDUP
prepare_nsapi_thread
protocol_dump822

protocol_finish_request

226 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer’'s Guide

protocol_handle_session
protocol_parse_request
protocol_scan_headers
protocol_set_finfo
protocol_start_response
protocol_status
protocol_uri2url

protocol_uri2url_dynamic

R

read
REALLOC
remove
request_create
request_free

request_header

S

sem_grab
sem_init
sem_release
sem_terminate
sem_tgrab
sendfile
session_create
session_dns

session_free

Appendix A

Alphabetical List of NSAPI Functions and Macros

227

session_maxdns
shexp_casecmp
shexp_cmp
shexp_match
shexp_valid
shmem_alloc
shmem_free
STRDUP
system_errmsg
system_fclose
system_flock
system_fopenRO
system_fopenRW
system_fopenWA
system_fread
system_fwrite
system_fwrite_atomic
system_gmtime
system_localtime
system_Iseek
system_rename
system_ulock
system_unix2local
systhread_attach
systhread_current
systhread_getdata
systhread_init

228 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer's Guide

systhread_newkey
systhread_setdata
systhread_sleep
systhread_start
systhread_terminate

systhread_timerset

U

USE_NSAPI_VERSION
util_can_exec
util_chdir2path
util_cookie_find
util_does_process_exist
util_env_create
util_env_find

util_env_free
util_env_replace
util_env_str
util_get_current_gmt
util_get_int_from_aux_file
util_get_int_from_file
util_get_long_from_aux_file
util_get_long_from_file
util_get_string_from_aux_file
util_get_string_from_file
util_getline

util_hostname

Appendix A

Alphabetical List of NSAPI Functions and Macros

229

util_is_mozilla
util_is_url

util_itoa
util_later_than
util_make_filename
util_make_gmt
util_make_local
util_move_dir
util_move_file
util_parse_http_time
util_put_int_to file
util_put_long_to_file
util_put_string_to_aux_file
util_put_string_to_file
util_sect _id
util_sh_escape
util_snprintf
util_sprintf
util_strcasecmp
util_strftime
util_strncasecmp
util_uri_check
util_uri_escape
util_uri_is_evil
util_uri_parse
util_uri_unescape

util_url_cmp

230 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer’'s Guide

util_url_fix_host name
util_url_has FQDN
util_vsnprintf

util_vsprintf

W

write

writev

Appendix A Alphabetical List of NSAPI Functions and Macros

231

232 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

A

AddLog
example of custom SAF 76
requirements for SAFs 35, 38

API funct 147

API functions
cache_digest 82
cache_filename 82
cache_fn_to_dig 83
CALLOC 83
ce_free 84
ce_lookup 84
cif_write_entry 85
cinfo_find 86
condvar_init 86
condvar_notify 87
condvar_terminate 87
condvar_wait 88
crit_enter 88
crit_exit 89
crit_init 89
crit_terminate 90
daemon_atrestart 90
fc_close 92
filebuf_buf2sd 92, 93
filebuf_close 94
filebuf_getc 94
filebuf_open 95
filebuf_open_nostat 96
filter_create 96
filter_find 98
filter_insert 98
filter_layer 99

Index

filter_name 99
filter_remove 100
flush 100

FREE 101

fs_blk size 102
fs_blks_available 102
func_exec 103
func_find 103
func_insert 104
insert 105

log_error 106
magnus_atrestart 107
MALLOC 107
net_ip2host 109
net_read 109
net_write 112
netbuf buf2sd 112
netbuf close 113
netbuf_getc 113
netbuf grab 114
netbuf_open 114
param_create 117
param_free 117
pblock _copy 118
pblock_create 118
pblock_dup 119
pblock_find 119
pblock_findlong 120
pblock_findval 120
pblock free 121
pblock_nlinsert 122
pblock_nninsert 122
pblock_nvinsert 123
pblock_pb2env 123

233

Sec

234

tion A

pblock_pblock2str 124
pblock_pinsert 124
pblock_remove 125
pblock_replace_name 125
pblock_str2pblock 126
PERM_FREE 127

PERM_MALLOC 127,128, 129

PERM_STRDUP 129
prepare_nsapi_thread 130
protocol_dump822 131
protocol_set_finfo 133
protocol_start_response 134
protocol_status 135
protocol_uri2url 136
read 137

REALLOC 138
remove 139
request_create 139
request_free 140
request_header 140
sem_grab 141
sem_init 142
sem_release 142
sem_terminate 143
sem_tgrab 143
sendfile 144
session_create 144
session_dns 145
session_free 146
session_maxdns 146
shem_alloc 149
shexp_cmp 147
shexp_match 148
shexp_valid 149
shmem_free 150
STRDUP 151
system_errmsg 151
system_fclose 152
system_flock 153
system_fopenRO 153
system_fopenRW 154
system_fopenWA 154
system_fread 155
system_fwrite 156
system_fwrite_atomic 156
system_gmtime 157
system_localtime 158

Web Proxy Server 4.0.1 2005Q4 + NSAPI Developer's Guide

system_lIseek 158
system_rename 159
system_ulock 158, 159
system_unix2local 160
systhread_attach 160
systhread_current 161
systhread_getdata 161
systhread_newkey 151, 162
systhread_setdata 163
systhread_sleep 163
systhread_start 164
systhread_terminate 164
systhread_timerset 151, 165
util_can_exec 167
util_chdir2path 168
util_cookie_find 168
util_env_create 169
util_env_find 170
util_env_free 170
util_env_replace 171
util_env_str 171
util_get_current_gmt 172
util_get_int_from_file 175
util_get_long_from_file 174
util_get_string_from_file 175
util_getline 176
util_hostname 176
util_is_mozilla 177
util_is_url 177

util_itoa 178
util_later_than 178
util_make_filename 179
util_make_gmt 179
util_make_local 180
util_move_dir 180
util_move_file 181
util_parse_http_time 181
util_put_int_to_file 182
util_put_long_to_file 182
util_put_string_to_file 183
util_sect_id 184
util_sh_escape 184
util_snprintf 185
util_strcasecmp 186
util_strftime 187
util_strncasecmp 188
util_uri_escape 189

util_uri_is_evil 189
util_uri_parse 190
util_uri_unescape 190
util_url_fix_hosthame 191, 192
util_vsnprintf 192
util_vsprintf 193
util-cookie_find 168
util-does_process_exist 169
util-sprintf 186
write 194
writev 195

AuthTrans
example of custom SAF 55
requirements for SAFs 35, 36

B

buffered streams 219

C

cache_digest
API function 82

cache_filename

API function 82
cache_fn_to_dig

API function 83
CALLOC API function 83
ce 84

ce_free
API function 84

ce_lookup
API function 84

chunked encoding 219, 220
cif_write_entry

API function 85
cinfo NSAPI data structure 202
cinfo_find API function 86

client
field in session parameter 21
getting DNS name for 200

Section B

getting IP address for 200

sessions and 199
compatibility issues 20, 198
compiling custom SAFs 25
condvar_init API function 86
condvar_notify API function 87
condvar_terminate API function 87
condvar_wait API function 88
context->data 43
context->rq 43
context->sn 43
creating

custom filters 49

custom NSAPI plugins 16
crit_enter API function 88
crit_exit API function 89
crit_init API function 89
crit_terminate API function 90
csd field in session parameter 21
custom

NSAPI plugins 16

D

daemon_atrestart API function 90
data structures
cinfo 202
compatibility issues 198
Filter 203
FilterContext 204
FilterLayer 204
FilterMethods 204
nsapi.h header file 197
nsapi_pvt.h 198
pb_entry 200
pb_param 200
pblock 199
privatization of 198
removed from nsapi.h 198
request 201
sendfiledata 203
session 199
Session->client 200

Index

235

Section E

shmem_s 202
stat 201
day of month 213
DNS names
getting clients 200

E

Error directive
requirements for SAFs 35, 38
errors
finding most recent system error 151
examples
location in the build 54
of custom SAFs in the build 54
wildcard patterns 210

F

fc_close API function 92
file descriptor

closing 152

locking 153

opening read-only 153

opening read-write 154

opening write-append 154

reading into a buffer 155

unlocking 158, 159

writing from a buffer 156

writing without interruption 156
file 1/0 routines 32
filebuf_buf2sd API function 92, 93
filebuf_close API function 94
filebuf_getc API function 94
filebuf_open API function 95
filebuf_open_nostat API function 96
filter methods 42

C prototypes for 42

FilterLayer data structure 43

flush 44

insert 43

236 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer's Guide

remove 44

sendfile 45

write 45

writev 45
Filter NSAPI data structure 203
filter_create API function 96
filter_find API function 98
filter_insert API function 98
filter_layer API function 99
filter_name API function 99
filter_remove API function 100
FilterContext NSAPI data structure 204
FilterLayer NSAPI data structure 43, 204

context->data 43

context->rq 43

context->sn 43

lower 43
FilterMethods NSAPI data structure 204
filters

altering Content-length 48

functions used to implement 52

input 48

interface 42

methods 42

NSAPI function overview 52

output 48

stack position 46

using 49
flush API function 44, 100
FREE API function 101
fs_blk_size

API function 102
fs_blks_available

API function 102
func_exec API function 103
func_find API function 103
func_insert API function 104
funcs parameter 28

G

GMT time

getting thread-safe value 157

H

headers
field in request parameter 22
request 216
response 218

HTTP
buffered streams 219
compliance with HTTP/1.1 215
HTTP/1.1 specification 215
overview 215
requests 216
responses 217
status codes 217

IETF home page 215

include directory
for SAFs 26

Init SAFs in magnus.conf
requirements for SAFs 35, 36
initializing
plugins 28
SAFs 28
Input
requirements for SAFs 35, 37
input filters 48
insert API function 43, 105

IP address
getting client’s 200

L

layer parameter 43
linking SAFs 25
loading

Section H

custom SAFs 28

plugins 28

SAFs 28
load-modules function

example 28
localtime

getting thread-safe value 158
log_error API function 106

M

magnus_atrestart
API function 107

MALLOC API function 107
matching

special characters 209
memory management routines 32
month name 213

N

NameTrans

example of custom SAF 57

requirements for SAFs 35, 36
net_ip2host API function 109
net_read API function 109
net_write API function 112
netbuf _buf2sd API function 112
netbuf close API function 113
netbuf_getc API function 113
netbuf_grab API function 114
netbuf_open API function 114
network 170 routines 33

NSAPI
filter interface 42
function overview 31

NSAPI filters
interface 42
methods 42

NSAPI plugins, custom 16

Index

237

Section O

nsapi.h 197
nsapi_pvt.h 198

O

obj.conf

adding directives for new SAFs 29
ObijectType

example of custom SAF 64

requirements for SAFs 35, 37
order

of filters in filter stack 46

Output
example of custom SAF 66
requirements for SAFs 35, 37

output filters 48

P

param_create API function 117
param_free API function 117

parameter block
manipulation routines 31
SAF parameter 21

parameters
for SAFs 20

path name
converting UNIX-style to local 160

PathCheck
example of custom SAF 61
requirements for SAFs 35, 37

pb SAF parameter 21
pb_entry NSAPI data structure 200
pb_param NSAPI data structure 200
pblock

NSAPI data structure 199
pblock_copy API function 118
pblock_create API function 118
pblock_dup API function 119
pblock_find API function 119

238 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer’'s Guide

pblock_findlong
API function 120

pblock_findval API function 120
pblock_free API function 121

pblock_nlinsert
API function 122

pblock_nninsert API function 122
pblock_nvinsert API function 123
pblock_pb2env API function 123
pblock_pblock2str API function 124
pblock_pinsert API function 124
pblock_remove API function 125

pblock_replace_name
API function 125

pblock_str2pblock API function 126
PERM_FREE API function 127

PERM_MALLOC API function 127, 128, 129

PERM_STRDUP API function 129
plugins

compatibility issues 20, 198

creating 19

instructing the server to use 29

loading and initializing 28

private data structures 198
prepare_nsapi_thread API function 130
private data structures 198
protocol utility routines 32
protocol_dump822 API function 131
protocol_set_finfo API function 133
protocol_start_response API function 134
protocol_status API function 135
protocol_uri2url API function 136

R

read API function 44, 137
REALLOC API function 138
remove API function 44, 139
replace.c 67

REQ_ABORTED response code 23
REQ_EXIT response code 23

REQ_NOACTION response code 23
REQ_PROCEED response code 23
regpb

field in request parameter 22
request

NSAPI data structure 201

SAF parameter 22
request headers 216

request_create
API function 139

request_free
API function 140

request_header API function 140
request-handling process 35
request-response model 215

requests
HTTP 216

requirements for SAFs 35
AddLog 38
AuthTrans 36
Error directive 38
Init 36
Input 37
NameTrans 36
ObjectType 37
Output 37
PathCheck 37
Service 38

response headers 218

responses
HTTP 217

result codes 23

rq SAF parameter 22
rg->headers 22
rg->reqpb 22
rg->srvhdrs 22
rg->vars 22

S

SAFs
compiling and linking 25

Section S

include directory 26
interface 20
loading and initializing 28
parameters 20
result codes 23
return values 23
signature 20
testing 30
sem_grab
API function 141
sem_init
API function 142
sem_release
API function 142
sem_terminate
API function 143
sem_tgrab
API function 143
semaphore
creating 142
deallocating 143
gaining exclusive access 141
releasing 142
testing for exclusive access 143
sendfile APl function 45, 144
sendfiledata NSAPI data structure 203
server
instructions for using plugins 29
Service
directives for new SAFs (plugins) 30
example of custom SAF 73
requirements for SAFs 35, 38
session
defined 199
NSAPI data structure 199
resolving the IP address of 145, 146
session SAF parameter 21
session structure
creating 144
freeing 146
Session->client NSAPI data structure 200
session_create
API function 144
session_dns API function 145
session_free

Index

239

Section T

API function 146
session_maxdns API function 146
shared memory

allocating 149

freeing 150

shell expression
comparing (case-sensitive) to a string 147, 148
validating 149

shexp_casecmp API function 147
shexp_cmp API function 147
shexp_match API function 148
shexp_valid API function 149
shlib parameter 28

shmem_alloc
API function 149

shmem_free

API function 150
shmem_s NSAPI data structure 202
sn SAF parameter 21
sn->client 21
sn->csd 21
socket

closing 113

reading from 109

sending a buffer to 112

sending file buffer to 93

writing to 112
sprintf, see util_sprintf 186
srvhdrs

field in request parameter 22
stat NSAPI data structure 201
status codes 217
STRDUP API function 151
streams

buffered 219
string

creating a copy of 151
system_errmsg API function 151
system_fclose API function 152
system_flock API function 153
system_fopenRO API function 153
system_fopenRW API function 154
system_fopenWA API function 154

240 Web Proxy Server 4.0.1 2005Q4 < NSAPI Developer’s Guide

system_fread API function 155
system_fwrite API function 156

system_fwrite_atomic API function 156

system_gmtime API function 157
system_localtime API function 158
system_lIseek API function 158
system_rename API function 159
system_ulock API function 158, 159
system_unix2local API function 160
systhread_attach API function 160
systhread_current API function 161
systhread_getdata API function 161
systhread_newkey

API function 151
systhread_newkey API function 162
systhread_setdata API function 163
systhread_sleep API function 163
systhread_start API function 164
systhread_terminate

API function 164
systhread_timerset

API function 151
systhread_timerset API function 165

T

testing custom SAFs 30

thread
allocating a key for 151, 162
creating 164
getting a pointer to 161
getting data belonging to 161
putting to sleep 163
setting data belonging to 163
setting interrupt timer 151, 165
terminating 164

thread routines 33

U

unicode 34, 190

util_can_exec API function 167
util_chdir2path API function 168
util_cookie_find API function 168

util_does_process_exist
API function 169

util_env_create
API function 169

util_env_find API function 170
util_env_free API function 170
util_env_replace API function 171
util_env_str API function 171

util_get_current_gmt
API function 172

util_get_int_from_file

API function 175
util_get_long_from_file

API function 174
util_get_string_from_file

API function 175
util_getline API function 176
util_hostname API function 176
util_is_mozilla API function 177
util_is_url API function 177
util_itoa API function 178
util_later_than API function 178
util_make_filename

API function 179
util_make_gmt

API function 179
util_make_local

API function 180
util_move_dir

API function 180
util_move_file

API function 181
util_parse_http_time

API function 181
util_put_int_to_file

API function 182
util_put_long_to_file

API function 182

Section U

util_put_string_to_file

API function 183
util_sect_id

API function 184
util_sh_escape API function 184
util_snprintf API function 185
util_sprintf API function 186
util_strcasecmp API function 186
util_strftime API function 187, 213
util_strncasecmp API function 188
util_uri_escape API function 189
util_uri_is_evil API function 189
util_uri_parse API function 190
util_uri_unescape API function 190

util_url_fix_hostname
API function 191, 192

util_vsnprintf API function 192
util_vsprintf API function 193
utility routines 34

V

vars

field in request parameter 22
vsnprintf, see util_vsnprintf 192
vsprintf, see util_vsprintf 193

W

weekday 213
write APl function 45, 194
writev API function 45, 195

Index

241

Section W

242 Web Proxy Server 4.0.1 2005Q4 « NSAPI Developer's Guide

	Web Proxy Server 4.0.1 NSAPI Developer’s Guide
	Contents
	About This Guide
	Who Should Use This Guide
	How This Guide Is Organized
	Documentation Conventions
	Using the Documentation
	Contacting Sun Technical Support
	Third-Party Web Site References
	Feedback

	Creating Custom SAFs
	Future Compatibility Issues
	The SAF Interface
	SAF Parameters
	pb (parameter block)
	sn (session)
	rq (request)

	Result Codes
	Creating and Using Custom SAFs
	Write the Source Code
	Compile and Link
	Include Directory and nsapi.h File
	Libraries
	Linker Commands and Options for Generating a Shared Object
	Additional Linker Flags
	Compiler Flags

	Load and Initialize the SAF
	Instruct the Server to Call the SAFs
	Restart the Server
	Test the SAF

	Overview of NSAPI C Functions
	Parameter Block Manipulation Routines
	Protocol Utilities for Service SAFs
	Memory Management
	File I/O
	Network I/O
	Threads
	Utilities

	Required Behavior of SAFs for Each Directive
	Init SAFs
	AuthTrans SAFs
	NameTrans SAFs
	PathCheck SAFs
	ObjectType SAFs
	Input SAFs
	Output SAFs
	Service SAFs
	Error SAFs
	AddLog SAFs
	Connect
	DNS
	Filter
	Route

	Creating Custom Filters
	Future Compatibility Issues
	The NSAPI Filter Interface
	Filter Methods
	C Prototypes for Filter Methods
	insert
	remove
	flush
	read
	write
	writev
	sendfile

	Position of Filters in the Filter Stack
	Filters that Alter Content-Length
	Creating and Using Custom Filters
	Write the Source Code
	Compile and Link
	Load and Initialize the Filter
	Instruct the Server to Insert the Filter
	Restart the Server
	Test the Filter

	Overview of NSAPI Functions for Filter Development

	Examples of Custom SAFs and Filters
	Examples in the Build
	AuthTrans Example
	Installing the Example
	Source Code

	NameTrans Example
	Installing the Example
	Source Code

	PathCheck Example
	Installing the Example
	Source Code

	ObjectType Example
	Installing the Example
	Source Code

	Output Example
	Installing the Example
	Source Code

	Service Example
	Installing the Example
	Source Code
	More Complex Service Example

	AddLog Example
	Installing the Example
	Source Code

	NSAPI Function Reference
	NSAPI Functions (in Alphabetical Order)
	C
	cache_digest
	cache_filename
	cache_fn_to_dig
	CALLOC
	ce_free
	ce_lookup
	cif_write_entry
	cinfo_find
	condvar_init
	condvar_notify
	condvar_terminate
	condvar_wait
	crit_enter
	crit_exit
	crit_init
	crit_terminate

	D
	daemon_atrestart
	dns_set_hostent

	F
	fc_close
	fc_open
	filebuf_buf2sd
	filebuf_close
	filebuf_getc
	filebuf_open
	filebuf_open_nostat
	filter_create
	filter_find
	filter_insert
	filter_layer
	filter_name
	filter_remove
	flush
	FREE
	fs_blk_size
	fs_blks_avail
	func_exec
	func_find
	func_insert

	I
	insert

	L
	log_error

	M
	magnus_atrestart
	MALLOC

	N
	net_flush
	net_ip2host
	net_read
	net_sendfile
	net_write
	netbuf_buf2sd
	netbuf_close
	netbuf_getc
	netbuf_grab
	netbuf_open
	nsapi_module_init
	NSAPI_RUNTIME_VERSION
	NSAPI_VERSION

	P
	param_create
	param_free
	pblock_copy
	pblock_create
	pblock_dup
	pblock_find
	pblock_findlong
	pblock_findval
	pblock_free
	pblock_nlinsert
	pblock_nninsert
	pblock_nvinsert
	pblock_pb2env
	pblock_pblock2str
	pblock_pinsert
	pblock_remove
	pblock_replace_name
	pblock_str2pblock
	PERM_CALLOC
	PERM_FREE
	PERM_MALLOC
	PERM_REALLOC
	PERM_STRDUP
	prepare_nsapi_thread
	protocol_dump822
	protocol_finish_request
	protocol_handle_session
	protocol_parse_request
	protocol_scan_headers
	protocol_set_finfo
	protocol_start_response
	protocol_status
	protocol_uri2url
	protocol_uri2url_dynamic

	R
	read
	REALLOC
	remove
	request_create
	request_free
	request_header

	S
	sem_grab
	sem_init
	sem_release
	sem_terminate
	sem_tgrab
	sendfile
	session_create
	session_dns
	session_free
	session_maxdns
	shexp_casecmp
	shexp_cmp
	shexp_match
	shexp_valid
	shmem_alloc
	shmem_free
	STRDUP
	system_errmsg
	system_fclose
	system_flock
	system_fopenRO
	system_fopenRW
	system_fopenWA
	system_fread
	system_fwrite
	system_fwrite_atomic
	system_gmtime
	system_localtime
	system_lseek
	system_rename
	system_ulock
	system_unix2local
	systhread_attach
	systhread_current
	systhread_getdata
	systhread_init
	systhread_newkey
	systhread_setdata
	systhread_sleep
	systhread_start
	systhread_terminate
	systhread_timerset

	U
	USE_NSAPI_VERSION
	util_can_exec
	util_chdir2path
	util_cookie_find
	util_does_process_exist
	util_env_create
	util_env_find
	util_env_free
	util_env_replace
	util_env_str
	util_get_current_gmt
	util_get_int_from_aux_file
	util_get_int_from_file
	util_get_long_from_aux_file
	util_get_long_from_file
	util_get_string_from_aux_file
	util_get_string_from_file
	util_getline
	util_hostname
	util_is_mozilla
	util_is_url
	util_itoa
	util_later_than
	util_make_filename
	util_make_gmt
	util_make_local
	util_move_dir
	util_move_file
	util_parse_http_time
	util_put_int_to_file
	util_put_long_to_file
	util_put_string_to_aux_file
	util_put_string_to_file
	util_sect_id
	util_sh_escape
	util_snprintf
	util_sprintf
	util_strcasecmp
	util_strftime
	util_strncasecmp
	util_uri_check
	util_uri_escape
	util_uri_is_evil
	util_uri_parse
	util_uri_unescape
	util_url_cmp
	util_url_fix_host name
	util_url_has_FQDN
	util_vsnprintf
	util_vsprintf

	W
	write
	writev

	Data Structure Reference
	Privatization of Some Data Structures
	Session
	pblock
	pb_entry
	pb_param
	Session->client
	Request
	stat
	shmem_s
	cinfo
	sendfiledata
	Filter
	FilterContext
	FilterLayer
	FilterMethods
	The CacheEntry Data Structure
	The CacheState Data Structure
	The ConnectMode Data Structure

	Using Wildcard Patterns
	Wildcard Patterns
	Wildcard Examples

	Time Formats
	Hypertext Transfer Protocol
	Compliance
	Requests
	Request Method, URI, and Protocol Version
	Request Headers
	Request Data

	Responses
	HTTP Protocol Version, Status Code, and Reason Phrase
	Response Headers
	Response Data

	Buffered Streams

	Alphabetical List of NSAPI Functions and Macros
	Index

