
Sun Java System Access Manager
Policy Agent 2.2 Guide for
Apache Tomcat 6.0

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–4802–11
March 13, 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java et Solaris sont des marques de fabrique ou des marques déposées, de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU
IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

090313@21990

Contents

Preface ...9

1 Introduction to J2EE Agents for Policy Agent 2.2 .. 17
Uses of J2EE Agents .. 18

J2EE Agents and an Online Auction Application .. 18
J2EE Agents and a Web-Based Commerce Application ... 19
J2EE Agents and a Content-Based Web Application .. 19

How J2EE Agents Work .. 20
What’s New About J2EE Agents .. 20

Removal of J2EE Agent Dependency on LDAP and on Administrative Accounts 21
Enhanced J2EE Agent Installation Process ... 22
J2EE Agent Coexistence With Access Manager ... 23
J2EE Agent Support for Client Identification Based on Custom HTTP Headers 24
J2EE Agent Specific Application for Housekeeping Tasks .. 24
J2EE Agent URL Policy Enhancements ... 25
J2EE Agent Support for Flexible User Mapping Mechanisms .. 26
J2EE Agent Support for Fetching User Session Attributes .. 27
J2EE Agent Support for Version Checking ... 27
J2EE Agent Support for Not-Enforced IP List .. 27
J2EE Agent Support for Custom Response Headers .. 28
J2EE Agent Support for Application Logout Integration .. 28
J2EE Agent Support for Application Specific Agent Filter Operation Modes 29
J2EE Agent Support for Affinity-Based Login URL Selection .. 29
J2EE Agent Support for a Sample Application ... 29
J2EE Agent Backward Compatibility With Access Manager 6.3 .. 30

Information About Using J2EE Agents in Policy Agent 2.2 ... 30
Enhanced Installation Process for J2EE Agents in Policy Agent 2.2 31
Increased Functionality of the agentadmin Program for J2EE Agents in Policy Agent

3

2.2 ... 31
The Sample Application .. 31

2 Vital Installation Information for a J2EE Agent in Policy Agent 2.2 ..33
Format of the Distribution Files for a J2EE Agent Installation in Policy Agent 2.2 34

▼ To Unpack a .zip Compressed file of a J2EE Agent in Policy Agent 2.2 34
Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2 .. 34

agentadmin --install ...35
agentadmin --uninstall ...37
agentadmin --listAgents ...38
agentadmin --agentInfo ...39
agentadmin --version ...40
agentadmin --encrypt ...41
agentadmin --getEncryptKey ..42
agentadmin --uninstallAll ...43
agentadmin --getUuid ...43
agentadmin --usage ...45
agentadmin --help ...46

J2EE Agent Directory Structure in Policy Agent 2.2 ... 46
Location of the J2EE Agent Base Directory in Policy Agent 2.2 ... 46
Inside the J2EE Agent Base Directory in Policy Agent 2.2 .. 47

Installing and Configuring the Apache Tomcat 6.0 Agent With Access Manager 6.3 51
▼ To Install and Configure the Tomcat 6.0 Agent With Access Manager 6.3 51

Creating a J2EE Agent Profile .. 52
▼ To Create an Agent Profile .. 52

3 Installing Policy Agent 2.2 for Apache Tomcat 6.0 .. 55
Installation Related Information About Agent for Apache Tomcat 6.0 56

Supported Platforms and Compatibility of Agent for Apache Tomcat 6.0 56
Preparing to Install Agent for Apache Tomcat 6.0 .. 57

▼ To Prepare to Install Agent for Apache Tomcat 6.0 ... 57
▼ (Conditional) To Use the .exe Version of Apache Tomcat 6.0 Server 59

Launching the Installation Program of Agent for Apache Tomcat 6.0 ... 60
▼ To Launch the Installation Program of Agent for Apache Tomcat 6.0 60

Using the Installation Program of Agent for Apache Tomcat 6.0 ... 61

Contents

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 20094

About Installation Prompts in Agent for Apache Tomcat 6.0 .. 61
Example of Installation Program Interaction in Agent for Apache Tomcat 6.0 63
Implications of Specific Deployment Scenarios in Agent for Apache Tomcat 6.0 66
Summary of a J2EE Agent Installation in Policy Agent 2.2 ... 66

4 Post-Installation Tasks of Policy Agent 2.2 for Apache Tomcat 6.0 ...69
Common Post-Installation Steps for All J2EE Agents in Policy Agent 2.2 69

Updating the Agent Profile for J2EE Agents in Policy Agent 2.2 ... 69
Deploying the Agent Application for J2EE Agents in Policy Agent 2.2 70

Post-Installation Steps Specific to Agent for Apache Tomcat 6.0 .. 71
Installing the Agent Filter for the Deployed Application on Agent for Apache Tomcat
6.0 ... 71

Conditional Post-Installation Steps for J2EE Agents in Policy Agent 2.2 73
Configuring J2EE Declarative Security for Apache Tomcat 6.0 Related Web
Applications .. 73

▼ To Create and Assign Access Manager Roles ... 74
▼ To Allow Access Manager Users to Access the Manager Web Application 74
▼ To Allow Access Manager Users to Access the Administration Web Application 76
▼ To Allow Access Manager Users to Access the Host Manager Web Application 78

Creating the Necessary URL Policies ... 78

5 Managing Policy Agent 2.2 for Apache Tomcat 6.0 ... 81
Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File .. 81

Hot-Swap Mechanism in J2EE Agents .. 82
List Constructs in the J2EE AMAgent.properties Configuration File 83
Map Constructs in the J2EE AMAgent.properties Configuration File 84
J2EE Property Configuration: Application Specific or Global ... 85
J2EE Agent Filter Modes ... 86
Enabling Web-Tier Declarative Security in J2EE Agents .. 88
Enabling Failover in J2EE Agents .. 93
Login Attempt Limit in J2EE Agents ... 95
Redirect Attempt Limit in J2EE Agents ... 96
Not-Enforced URI List in J2EE Agents ... 96
Fetching Attributes in J2EE Agents ... 97
Configuring FQDN Handling in J2EE Agents ... 102

Contents

5

Using Cookie Reset Functionality in J2EE Agents ... 103
Enabling Port Check Functionality in J2EE Agents ... 104

Key Features and Tasks Performed With the J2EE agentadmin Program 105
Key Features and Tasks Performed With the J2EE Agent API ... 106

Class AmFilterManager .. 106
Interface IAmSSOCache .. 107
Class AmSSOCache ... 107
Usage of New J2EE Agent API in Policy Agent 2.2 .. 108

6 Uninstalling Policy Agent 2.2 for Apache Tomcat 6.0 ... 109
Preparing to Uninstall Agent for Apache Tomcat 6.0 ... 109

▼ To Prepare to Uninstall Agent for Apache Tomcat 6.0 ... 109
Uninstalling Agent for Apache Tomcat 6.0 .. 110

Launching the Uninstallation Program of Agent for Apache Tomcat 6.0 110
Using the Uninstallation Program of Agent for Apache Tomcat 6.0 111

A Silent Installation and Uninstallation of a J2EE Agent in Policy Agent 2.2113
About Silent Installation and Uninstallation of a J2EE Agent in Policy Agent 2.2 113

Generating a State File for a J2EE Agent Installation ... 113
Using a State File for a J2EE Agent Silent Installation ... 114
Generating a State File for a J2EE Agent Uninstallation ... 115
Using a State File for a J2EE Agent Silent Uninstallation .. 116

B J2EE Agent AMAgent.propertiesConfiguration File in Policy Agent 2.2117
Location of the J2EE AMAgent.properties Configuration File .. 118
List of Properties in the J2EE AMAgent.properties Configuration File 118
Description of Properties in the J2EE AMAgent.properties Configuration File 123

Filter Operation Mode Property .. 124
User Mapping Properties .. 124
Client Identification Properties .. 125
Configuration Reload Interval Property ... 126
Locale Identification Properties ... 126
Organization Name Property ... 126
Audit Log Properties .. 126

Contents

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 20096

Web Service Processing Properties .. 128
Access Denied URI Property .. 129
Form Login Processing Properties ... 129
Local Authentication Processing Properties ... 130
Goto Parameter Name Property ... 131
Login URL Property .. 131
Login URL Prioritized Flag Property ... 131
Agent Server Properties ... 132
Login Attempt Limit Property .. 133
URL Decode SSO Token Flag Property ... 133
SSO Cache Enable Property .. 133
Cookie Reset Processing Properties ... 133
CDSSO Processing Properties .. 134
Logout Processing Properties ... 135
FQDN Processing Properties ... 136
Legacy User Agent Processing Properties ... 137
Custom Response Headers Property ... 137
Redirect Attempt Limit Property ... 138
Port Check Processing Properties .. 138
Not-Enforced URI Processing Properties ... 138
Not-Enforced Client IP Processing Properties ... 139
Common Attribute Fetch Processing Properties ... 140
Profile Attribute Processing Properties ... 141
Session Attribute Processing Properties .. 142
Response Attribute Processing Properties .. 142
Bypass Principal List Property .. 143
Privileged Attribute Processing Properties ... 143
Service Resolver Property ... 144
Agent Username and Password Properties ... 144
Encryption Key Properties .. 145
Debug Service Properties .. 145
SSO Token Cookie Name Property ... 146
Naming Service URL Property ... 146
Session Client Properties ... 146
Encryption Provider Property .. 147
User Data Cache Update Time Property ... 147

Contents

7

Service Data Cache Update Time Property .. 147
SAML Service Properties .. 148
Authentication Service Properties ... 148
Policy Client Properties ... 149

C Troubleshooting a J2EE Agent Deployment in Policy Agent 2.2 ..151
J2EE Agent Troubleshooting Instructions ... 151

Index ... 157

Contents

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 20098

Preface

This Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 is a Java 2
Platform Enterprise Edition (J2EE) agent guide. Therefore, it provides general information
about J2EE agents in the Sun JavaTM System Access Manager Policy Agent 2.2 software set. This
guide also provides specific information about Sun Java System Access Manager Policy Agent
for Apache Tomcat 6.0.

For more support and compatibility information specific to this J2EE agent, see “Supported
Platforms and Compatibility of Agent for Apache Tomcat 6.0” on page 56.

Included in this guide is information about installing, configuring, uninstalling, and
troubleshooting J2EE agents, again with the focus being on Agent for Apache Tomcat 6.0.

Who Should Use This Book
This Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 is intended
for use by IT professionals who manage access to their network using Sun Java System servers
and software. Administrators should understand the following technologies:

■ Directory technologies
■ JavaServer PagesTM (JSP) technology
■ HyperText Transfer Protocol (HTTP)
■ HyperText Markup Language (HTML)
■ eXtensible Markup Language (XML)
■ J2EE technologies
■ Enterprise Java Beans (EJB)

Before You Read This Book
Sun Java System Policy Agent software works with Sun Java System Access Manager. Both
products work with Sun Java Enterprise System, a software infrastructure that supports
enterprise applications distributed across a network or Internet environment. Furthermore,
Sun Java System Directory Server is a necessary component in a new Access Manager
deployment since it is used as the data store. To understand how these products interact and to
understand this book, you should be familiar with the following documentation:

9

■ Sun Java Enterprise System documentation set, which can be accessed online at
http://docs.sun.com. All Sun technical documentation is available online through this
web site, including the other documentation sets referred to in this list.
You can browse the documentation archive or search for a specific book title, part number,
or subject.

■ Sun Java System Directory Server documentation set.
■ Sun Java System Access Manager documentation set, which is explained in more detail

subsequently in this chapter.
■ Sun Java System Access Manager Policy Agent 2.2 documentation set, which is explained in

more detail subsequently in this chapter.

How This Book Is Organized
This book is organized in the following manner:

Preface, this chapter, provides information about this book to help you use the book to your
best advantage.

Chapter 1, “Introduction to J2EE Agents for Policy Agent 2.2,” introduces J2EE agents in Policy
Agent 2.2, focusing on what all J2EE agents have in common in this release.

Chapter 2, “Vital Installation Information for a J2EE Agent in Policy Agent 2.2,” provides
information to prepare for the installation of J2EE agents in the Policy Agent 2.2 software set
and, after installation, to locate J2EE agent files required to configure J2EE agents and to
perform other tasks.

Chapter 3, “Installing Policy Agent 2.2 for Apache Tomcat 6.0,” provides instructions for
installing Policy Agent 2.2 for Apache Tomcat 6.0.

Chapter 4, “Post-Installation Tasks of Policy Agent 2.2 for Apache Tomcat 6.0,” provides
information about J2EE agent configuration that is required for Policy Agent 2.2 for agents to
function as intended.

Chapter 5, “Managing Policy Agent 2.2 for Apache Tomcat 6.0,” provides information about the
methods available for managing Policy Agent 2.2 for Apache Tomcat 6.0, with most of the
information being applicable to all J2EE agents in the Policy Agent 2.2 software set.

Chapter 6, “Uninstalling Policy Agent 2.2 for Apache Tomcat 6.0,” provides instructions for
uninstalling Policy Agent 2.2 for Apache Tomcat 6.0.

Appendix A, “Silent Installation and Uninstallation of a J2EE Agent in Policy Agent 2.2,”
provides instructions for creating and using a script for automatic installation or uninstallation
of a J2EE agent in the Policy Agent 2.2 software set.

Preface

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200910

http://docs.sun.com

Appendix B, “J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2,”
provides a list of the properties in the J2EE agent AMAgent.properties configuration file for
Policy Agent 2.2 for Apache Tomcat 6.0 with most properties being applicable to all the J2EE
agents in the Policy Agent 2.2 software set.

Appendix C, “Troubleshooting a J2EE Agent Deployment in Policy Agent 2.2,” provides
troubleshooting information about Sun Java System Policy Agent 2.2 for Apache Tomcat 6.0
that includes potential symptoms, causes, and solutions.

Related Books
Sun Microsystems server documentation sets, some of which are mentioned in this preface, are
available at http://docs.sun.com. These documentation sets provide information that can be
helpful for a deployment that includes Policy Agent.

Access Manager Documentation Set
Policy Agent2.2 was first introduced with Access Manager 7, but now also supports Access
Manager 7.1. The information in the table that follows specifies documents in the Access
Manager 7 documentation set, which is available at the following location:

http://docs.sun.com/app/docs/coll/1292.1

The Access Manager 7.1 documentation set is available at this location:

http://docs.sun.com/app/docs/coll/1292.2

TABLE P–1 Access Manager 7 2005Q4 Documentation Set

Title Description

Sun Java System Access Manager 7 2005Q4 Release
Notes

Available after the product is released. Contains
last-minute information, including a description of
what is new in this current release, known problems
and limitations, installation notes, and how to report
issues with the software or the documentation.

Sun Java System Access Manager 7 2005Q4 Technical
Overview

Provides an overview of how Access Manager
components work together to consolidate identity
management and to protect enterprise assets and
web-based applications. Explains basic Access
Manager concepts and terminology

Preface

11

http://docs.sun.com
http://docs.sun.com/app/docs/coll/1292.1
http://docs.sun.com/app/docs/coll/1292.2
http://docs.sun.com/doc/819-2134
http://docs.sun.com/doc/819-2134
http://docs.sun.com/doc/819-2135
http://docs.sun.com/doc/819-2135

TABLE P–1 Access Manager 7 2005Q4 Documentation Set (Continued)
Title Description

Sun Java System Access Manager 7 2005Q4
Deployment Planning Guide

Provides information about planning a deployment
within an existing information technology
infrastructure

Sun Java System Access Manager 7 2005Q4
Performance Tuning Guide

Describes how to tune Access Manager and its related
components.

Sun Java System Access Manager 7 2005Q4
Administration Guide

Describes how to use Access Manager Console as well
as how to manage user and service data via the
command line.

Sun Java System Access Manager 7 2005Q4 Federation
and SAML Administration Guide

Provides information about the features in Access
Manager that are based on the Liberty Alliance Project
and SAML specifications. It includes information on
the integrated services based on these specifications,
instructions for enabling a Liberty-based environment,
and summaries of the application programming
interface (API) for extending the framework.

Sun Java System Access Manager 7 2005Q4 Developer’s
Guide

Offers information on how to customize Access
Manager and integrate its functionality into an
organization’s current technical infrastructure.
Contains details about the programmatic aspects of the
product and its API.

Sun Java System Access Manager 7 2005Q4 C API
Reference

Provides summaries of data types, structures, and
functions that make up the Access Manager public C
APIs.

Sun Java System Access Manager 7 2005Q4 Java API
Reference

Are generated from Java code using the JavaDoc tool.
The pages provide information on the implementation
of the Java packages in Access Manager.

Sun Java System Access Manager Policy Agent 2.2
User’s Guide

Provides an overview of Policy Agent software,
introducing web and J2EE agents. Also provides a list
of web and J2EE agents currently available.

Updates to the Release Notes and links to modifications of the core documentation can be found
on the Access Manager page at the Sun Java System 2005Q4 documentation web site. Updated
documents are marked with a revision date.

Preface

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200912

http://docs.sun.com/doc/819-2136
http://docs.sun.com/doc/819-2136
http://docs.sun.com/doc/819-2138
http://docs.sun.com/doc/819-2138
http://docs.sun.com/doc/819-2137
http://docs.sun.com/doc/819-2137
http://docs.sun.com/doc/819-2142
http://docs.sun.com/doc/819-2142
http://docs.sun.com/doc/819-2139
http://docs.sun.com/doc/819-2139
http://docs.sun.com/doc/819-2140
http://docs.sun.com/doc/819-2140
http://docs.sun.com/doc/819-2141
http://docs.sun.com/doc/819-2141
http://docs.sun.com/doc/819-2143
http://docs.sun.com/doc/819-2143

Policy Agent 2.2 Documentation Set
Other Policy Agent guides, besides this guide, are available as described in the following
sections:
■ “Sun Java System Access Manager Policy Agent 2.2 User's Guide” on page 13
■ “Other Individual Agent Guides” on page 13
■ “Release Notes” on page 14

Sun Java System Access Manager Policy Agent 2.2 User's
Guide
The Sun Java System Access Manager Policy Agent 2.2 User's Guide is available in two
documentation sets: the Access Manager documentation set as described in Table P–1 and in
the Policy Agent 2.2 documentation set as described in this section.

Other Individual Agent Guides
The individual agents in the Policy Agent 2.2 software set, of which this book is an example, are
available on a different schedule than Access Manager itself. Therefore, documentation for
Access Manager and Policy Agent are available in separate sets, except for the Sun Java System
Access Manager Policy Agent 2.2 User's Guide, which is available in both documentation sets.

The documentation for the individual agents is divided into two subsets: a web agent subset and
a J2EE agent subset.

Each web agent guide in the Policy Agent 2.2 software set provides general information about
web agents and installation, configuration, and uninstallation information for a specific web
agent.

Each J2EE agent guide in the Policy Agent 2.2 software set provides general information about
J2EE agents and installation, configuration, and uninstallation information for a specific J2EE
agent.

The individual agent guides are listed along with supported server information in the following
chapters of the Sun Java System Access Manager Policy Agent 2.2 User's Guide:

Web Agents Chapter 2, “Access Manager Policy Agent 2.2 Web Agents: Compatibility,
Supported Servers, and Documentation,” in Sun Java System Access Manager
Policy Agent 2.2 User’s Guide

J2EE Agents Chapter 3, “Access Manager Policy Agent 2.2 J2EE Agents: Compatibility,
Supported Servers, and Documentation,” in Sun Java System Access Manager
Policy Agent 2.2 User’s Guide

Preface

13

http://docs.sun.com/doc/819-2143/adlbb?a=view
http://docs.sun.com/doc/819-2143/adlbb?a=view
http://docs.sun.com/doc/819-2143/adlbb?a=view
http://docs.sun.com/doc/819-2143/adlbd?a=view
http://docs.sun.com/doc/819-2143/adlbd?a=view
http://docs.sun.com/doc/819-2143/adlbd?a=view

Release Notes
The Sun Java System Access Manager Policy Agent 2.2 Release Notes are available online after an
agent or set of agents is released. The release notes include a description of what is new in the
current release, known problems and limitations, installation notes, and how to report issues
with the software or the documentation.

Sun Java Enterprise System Product Documentation
For useful information for related products, see the following documentation collections on the
Sun Java Enterprise System documentation web site
(http://docs.sun.com/prod/entsys.05q4)

■ Sun Java System Directory Server:
http://docs.sun.com/coll/1316.1

■ Sun Java System Web Server:
http://docs.sun.com/coll/1308.1

■ Sun Java System Application Server:
http://docs.sun.com/coll/1310.1

■ Sun Java System Message Queue:
http://docs.sun.com/coll/1307.1

■ Sun Java System Web Proxy Server:
http://docs.sun.com/coll/1311.1

Accessing Sun Resources Online
For product downloads, professional services, patches and support, and additional developer
information, go to the following:

Download Center
http://wwws.sun.com/software/download

Sun Java System Services Suite
http://www.sun.com/service/sunps/sunone/index.html

Sun Enterprise Services, Solaris Patches, and Support
http://sunsolve.sun.com/

Developer Information
http://developers.sun.com/prodtech/index.html

Preface

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200914

http://docs.sun.com/doc/819-2796
http://docs.sun.com/prod/entsys.05q4
http://docs.sun.com/coll/1316.1
http://docs.sun.com/coll/1308.1
http://docs.sun.com/coll/1310.1
http://docs.sun.com/coll/1307.1
http://docs.sun.com/coll/1311.1
http://wwws.sun.com/software/download
http://www.sun.com/service/sunps/sunone/index.html
http://sunsolve.sun.com/
http://developers.sun.com/prodtech/index.html

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in the product
documentation, go to:

http://www.sun.com/service/contacting

Related Third-Party Web Site References
Sun is not responsible for the availability of third-party web sites mentioned in this document.
Sun does not endorse and is not responsible or liable for any content, advertising, products, or
other materials that are available on or through such sites or resources. Sun will not be
responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by or
in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In the online
form, provide the document title and part number. The part number is a seven-digit or
nine-digit number that can be found on the title page of the guide or at the top of the document.

For example, the title of this guide is Sun Java System Access Manager Policy Agent 2.2 Guide for
Apache Tomcat 6.0, and the part number is 820-4802.

Documentation, Support, and Training

Sun Function URL Description

Documentation http://www.sun.com/documentation/ Download PDF and HTML
documents, and order printed
documents

Support and
Training

http://www.sun.com/training/ Obtain technical support,
download patches, and learn
about Sun courses

Preface

15

http://www.sun.com/service/contacting
http://docs.sun.com
http://www.sun.com/documentation/
http://www.sun.com/training/

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized items
appear bold online.]

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–3 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200916

Introduction to J2EE Agents for Policy Agent 2.2

The Sun JavaTM System Access Manager Policy Agent 2.2 software set includes web agents and
Java 2 Platform Enterprise Edition (J2EE) agents. This guide discusses J2EE agents, the
functionality of which has increased for this release. This chapter provides a brief overview of
J2EE agents in the 2.2 release as well as some concepts you need to understand before
proceeding with a J2EE agent deployment. For a general introduction of agents, both J2EE
agents and web agents, see Sun Java System Access Manager Policy Agent 2.2 User’s Guide.

Deployment container:
This term is used throughout this book to refer to a J2EE-compliant container that is either
an application server or a portal server.

As was true in previous releases, J2EE agents enable deployment containers to enforce
authentication and authorization using Sun Java System Access Manager services. To ensure
secure client access to hosted J2EE applications, J2EE agents enforce the following:

■ J2EE Declarative and Programmatic Security (defined in the deployment descriptor of
individual applications)

■ URL Policies (defined in Access Manager)
■ Single sign-on (SSO)

This chapter provides information about J2EE agents for the 2.2 release of Policy Agent as
follows:

■ “Uses of J2EE Agents” on page 18
■ “How J2EE Agents Work” on page 20
■ “What’s New About J2EE Agents” on page 20
■ “Information About Using J2EE Agents in Policy Agent 2.2” on page 30

1C H A P T E R 1

17

http://docs.sun.com/doc/819-2143

Uses of J2EE Agents
J2EE agents can protect a variety of hosted J2EE applications, which can in turn require policy
implementation that varies greatly from application to application. The security infrastructure
of J2EE provides declarative as well as programmatic security that is platform-independent and
is supported by all the J2EE-compliant deployment containers. For details on how to use the
declarative and programmatic security of the J2EE platform, refer to J2EE documentation,
available at http://java.sun.com/j2ee

The way J2EE agents are used has not changed significantly in the 2.2 release. The agents
perform more effectively and efficiently in this release, but the basic functions are the same.

J2EE agents help enable role-to-principal mapping for protected J2EE applications with Access
Manager principals. Thus at runtime, when a J2EE policy is evaluated, it is done against the
information available in Access Manager. Using this functionality, administrators can
configure their hosted J2EE applications to be protected by the agent, which provides real
security services and also other key features such as single sign-on. Apart from enabling the
J2EE security for hosted applications, the J2EE agents also provide complete support for Access
Manager based URL policies for enforcing access control over web resources hosted in the
deployment container.

The following examples demonstrate how the J2EE agents can be put to use:

J2EE Agents and an Online Auction Application
Consider a web-based application that facilitates the auction of various kinds of merchandise
between interested parties. A simple implementation for such an application will require the
users to be in one of three abstract roles, namely Buyer, Seller, or Administrator. Buyers in this
application will have access to web pages that display the listed auction items, whereas the
Sellers may have access to web pages that allow them to list their merchandise for new auctions.
The Administrators may have access to yet another set of web pages that allow them to finalize
or cancel existing auctions in whatever state they may be in. Using the deployment descriptors,
the application developer can express this intent by protecting such components using abstract
security role names. These abstract role names in turn can be mapped to real principals in a
J2EE agent. For example, the role Buyer may be mapped to an Access Manager role called
Employee, the role Seller to an Access Manager role called Vendor, and the role Administrator
to an Access Manager role called Admin. The abstract role names used by the application
developer can be used to protect the necessary web pages and any specialized Enterprise
JavaBeans (EJB) components from unauthorized access by using declarative as well as
programmatic security. Once this application is deployed and configured, the agent will ensure
that only the authorized personnel get access to these protected resources. For example, access
to the pages meant for Sellers to list their merchandise for auctions will be granted to user
Deepak only if this user belongs to the Access Manager role called Vendor. Similarly, users Scott

Uses of J2EE Agents

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200918

http://java.sun.com/j2ee

and Gina can place bids on this listed item only if they belong to the role called Buyer. Once the
auction period expires, the auction can be finalized by user Krishnendu only if he is in the role
called Admin.

J2EE Agents and a Web-Based Commerce Application
A web-based commerce application may have a variety of specialized EJB components that
offer a spectrum of services to clients. For instance, there could be a specialized component that
enables the creation of purchase orders. Similarly, there could be a specialized component that
allows the approval of purchase orders. While such components provide the basic business
services for the application to function, the very nature of tasks that they accomplish requires a
security policy to enforce appropriate use of such services. Using the deployment descriptors,
the application vendor or developer can express this intent by protecting such components
using abstract security role names. For example, a developer can create a role called Buyer to
protect the component that allows the creation of a purchase order and a role called Approver
to protect the component that enables the approval of a purchase order. While these roles
convey the intent of an application developer to enforce such security policies, they will not be
useful unless these abstract role names are mapped to real life principals such as actual users or
actual roles that reside in Access Manager. The J2EE agent enables the container to enforce such
a runtime linkage of abstract security roles to real life principals. Once the agent is installed and
configured, the application security roles can be mapped to real principals. For example, the
role Buyer is mapped to an Access Manager role called Staff, and the role Approver is mapped to
an Access Manager role called Manager. Thus when user Arvind tries to access the application's
protected resources to create a purchase order, the agent allows this access only if this user is a
member of the mapped role Staff. Similarly, a user Jamie may wish to approve this purchase
order, which will be allowed by the agent only if this user is a member of the mapped role
Manager.

J2EE Agents and a Content-Based Web Application
A content-based web application can offer pay per-view services. The application may be
partitioned into two domains: the public domain that is accessible to anonymous users, and the
private domain that is accessible only to the subscribers of this particular service. Furthermore,
the protected domain of this application can also be subject to strict conditions based on how
the user has authenticated, the time of day, IP address-based conditions and so on. Using
Access Manager based URL policies for web resources, an administrator specifies such complex
policies for the application resources, which are evaluated by the agent in order to ensure that
access to these resources is granted only when all conditions are satisfied. An administrator can
set policies that govern access to these resources at any level of granularity, such as that for a
single user or for an entire organization. For example, one such policy may govern access to
certain resources in such a manner that the user must belong to a particular LDAP Group called
Customer and that the time of the day be between 9:00 am and 5:00 p.m. Thus, if user Rajeev

Uses of J2EE Agents

Chapter 1 • Introduction to J2EE Agents for Policy Agent 2.2 19

attempts to access this resource, the agent allows access only if this user is a member of the
LDAP Group Customer, and if the time of day is between 9:00 am and 5:00 p.m.

How J2EE Agents Work
All J2EE agents communicate with Access Manager by XML over HTTP. J2EE agents contain
two main components: The agent realm and the agent filter. Together, these two components
affect the operation of the deployment container and the behavior of protected applications on
the deployment container.

■ Agent Realm
The agent realm, which is installed as a deployment container-specific platform component,
enables the deployment container to interact with principals stored in Access Manager. The
deployment container then communicates with Access Manager about user profile
information. The agent realm needs to be configured correctly for the agent to enforce J2EE
security policies for protected applications.

■ Agent Filter
The agent filter is installed within the protected application and facilitates the enforcement
of the security policies, governing the access to all resources within the protected
application. Every application protected by the agent must have its deployment descriptors
changed to reflect that it is configured to use the agent filter. Applications that do not have
this setting are not protected by the agent and might malfunction or become unusable if
deployed on a deployment container where the agent realm is installed.
The agent realm and agent filter work in tandem with Access Manager to enforce J2EE
security policies as well as Access Manager based URL policies for authentication and
authorization of clients attempting to access protected J2EE applications.
The agent provides a fully configured and ready-to-use client installation of Access Manager
SDK for the deployment container. This SDK offers a rich set of APIs supported by Access
Manager that can be used to create security-aware applications that are tailored to work in
the security framework offered by Access Manager. For more information on how to use
Access Manager SDK, see Sun Java System Access Manager 7 2005Q4 Developer’s Guide.

What’s New About J2EE Agents
J2EE agents offer greater functionality in the 2.2 release. Several important new features have
been added as follows:

■ “Removal of J2EE Agent Dependency on LDAP and on Administrative Accounts” on
page 21

■ “Enhanced J2EE Agent Installation Process” on page 22
■ “J2EE Agent Coexistence With Access Manager” on page 23

How J2EE Agents Work

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200920

http://docs.sun.com/doc/819-2139

■ “J2EE Agent Support for Client Identification Based on Custom HTTP Headers” on page 24
■ “J2EE Agent Specific Application for Housekeeping Tasks” on page 24
■ “J2EE Agent URL Policy Enhancements” on page 25
■ “J2EE Agent Support for Flexible User Mapping Mechanisms” on page 26
■ “J2EE Agent Support for Fetching User Session Attributes” on page 27
■ “J2EE Agent Support for Version Checking” on page 27
■ “J2EE Agent Support for Not-Enforced IP List” on page 27
■ “J2EE Agent Support for Custom Response Headers” on page 28
■ “J2EE Agent Support for Application Logout Integration” on page 28
■ “J2EE Agent Support for Application Specific Agent Filter Operation Modes” on page 29
■ “J2EE Agent Support for Affinity-Based Login URL Selection” on page 29
■ “J2EE Agent Support for a Sample Application” on page 29
■ “J2EE Agent Backward Compatibility With Access Manager 6.3” on page 30

Removal of J2EE Agent Dependency on LDAP and on
Administrative Accounts
In the 2.2 release, certain restrictions have been removed as follows:

■ “Removal of J2EE Agent Dependency on LDAP” on page 21
■ “Removal of J2EE Agent Dependency on Administrative Accounts” on page 22

Removal of J2EE Agent Dependency on LDAP
Unlike previous releases, J2EE agents in the Policy Agent 2.2 release do not use a direct LDAP
connection. Instead, J2EE agents obtain support for their entire functionality by
communicating with Access Manager solely with XML over HTTP.

Benefit - Removal of Dependency on LDAP: The benefit of not having an LDAP dependency
includes greater flexibility and scalability of deployments. Since J2EE agents no longer depend
on LDAP connections, they do not require the opening of LDAP communication ports in
firewalls, which was a requirement with certain deployment scenarios in prior J2EE agent
releases. With the LDAP dependency removed, the 2.2 release of J2EE agents requires fewer
configuration changes during installation in protected regions, such as in a demilitarized zone
(DMZ), giving more deployment flexibility and easing administrative overhead. Removal of the
LDAP dependency also ensures that LDAP server resources are focused to support Access
Manager instances. A focus on Access Manager instances facilitates the sizing process by
eliminating considerations about the load that an agent would require. This makes the
deployment easily scalable and more flexible and provides the optimal utilization of deployed
resources.

What’s New About J2EE Agents

Chapter 1 • Introduction to J2EE Agents for Policy Agent 2.2 21

Removal of J2EE Agent Dependency on Administrative Accounts
With the authorization of administrators now being handled by an agent profile account, the
dependence on two administrative accounts, the amAdmin account and the amldapuser account,
has been removed. Now, during installation, the agent installer prompts you for the agent
profile account.

Benefit - Removal of Dependency on Administrative Accounts: The benefit of not using the
amAdmin or amldapuser administrative accounts is greater security. The 2.2 release of J2EE
agents depends solely on a limited agent profile. This dependence does not rely on the existence
of sensitive account information in the agent deployment configuration.

Enhanced J2EE Agent Installation Process
Starting with this release of J2EE agents, the installation process includes the following features
that allow for a smoother, less restrictive, more secure installation process and deployment:
■ “J2EE Agent Support for Installation Using Non-Administrative User Accounts” on page 22
■ “Secure Handling of Sensitive Information by J2EE Agents” on page 22
■ “Self-Contained Installation of J2EE Agents” on page 23
■ “J2EE Agent Support for Multiple Physical Installations” on page 23

J2EE Agent Support for Installation Using Non-Administrative User
Accounts
The requirement in prior agent releases that the installation user have root (or Administrator)
privileges has been removed. The agent can now be installed by any user regardless of access
privileges.

Benefit - Support for Installation Using Non-Administrative User Accounts: The benefit of
this feature is that it contributes to a more flexible installation process. Because privileged user
accounts are not required, you can install agents in any directory location based on user
preferences.

Secure Handling of Sensitive Information by J2EE Agents
All sensitive information, such as passwords, is now read from files. This information is not
typed in clear text during an interactive session. Therefore, it is never displayed on the
command line or in any logs. See “Using the Installation Program of Agent for Apache Tomcat
6.0” on page 61 for information about creating and using a password file during the agent
installation process.

Benefit - Secure Handling of Sensitive Information: The benefit of this feature is increased
security. With the use of this feature in the new installation process, the need for typing
passwords in clear text on the console has been eliminated, thereby making the installation
process less vulnerable to password theft.

What’s New About J2EE Agents

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200922

Self-Contained Installation of J2EE Agents
All J2EE agent configuration and log files are generated and maintained within an agent’s
installation directory. This installation directory is referred to as the Policy Agent base
directory. In code examples this directory is listed as such, PolicyAgent-base. For more
information about the Policy Agent base directory, see “J2EE Agent Directory Structure in
Policy Agent 2.2” on page 46. The distribution files for the 2.2 release of J2EE agents are
provided to you in three formats. You can choose the format that best fits your needs: zip
format, tar format, or a package format. The files are small in size since the installer for this
release uses a simple configuration mechanism. In summary, when you unpack the binaries, the
configuration and log files remain within the installation directory.

Benefit - Self-Contained Installation: This feature contributes to a more flexible installation
process. The fact that an installation is self-contained facilitates the installation process and the
subsequent administration process.

J2EE Agent Support for Multiple Physical Installations
There is no longer any restriction on using multiple different binaries of the same agent on the
same machine.

Benefit - Support for Multiple Physical Installations: This feature contributes to a more
flexible installation process. The fact that multiple binaries of the same agent can co-exist on the
same machine allows for flexibility in securing complex environments where more than one
server is installed on the same machine. Typically such environments are used for development
purposes or for production using high capacity hardware systems.

J2EE Agent Coexistence With Access Manager
Starting with this release, you can deploy a J2EE agent on an instance of a deployment container
where Access Manager has already been installed. This situation only applies when the J2EE
agent and Access Manager both support the deployment container.

Note that Access Manager should be installed prior to the agent being installed.

Benefit - Coexistence With Access Manager: Certain situations benefit from having a J2EE
agent and Access Manager on one machine, which is commonly desired for development
environments and for environments where the deployment container is installed on a high
capacity system which can support customer applications along with the Access Manager
deployment.

What’s New About J2EE Agents

Chapter 1 • Introduction to J2EE Agents for Policy Agent 2.2 23

J2EE Agent Support for Client Identification Based on
Custom HTTP Headers
Starting with this release, J2EE agents can be configured to use custom HTTP headers to
identify the remote client IP address and host name. This client IP address is used to validate an
Access Manager session or to evaluate applicable policies.

Benefit - Support for Client Identification Based on Custom HTTP Headers: This feature is
specially useful in situations where a proxy server exists between the remote client and the
agent-protected server. In such situations a problem occurs in that the client address
information carried within the request is replaced by the address information of the proxy
server. This address replacement adversely affects session validations and policy evaluations,
which depend upon the correct address information. However, when proxy servers can be
configured to send the actual client address information in separate headers, then J2EE agents
in the 2.2 release can use that information. In summary, this feature allows agents to use the
actual client address information in this type of deployment as if the request were never
intercepted by an intermediate proxy server.

J2EE Agent Specific Application for Housekeeping
Tasks
Starting with this release of J2EE agents, a bundled application is available to perform
housekeeping tasks on the deployment container.

This bundled application, when deployed on an agent-protected deployment container
instance, expands the agent’s functionality. For example, this bundled application allows the
agent to receive notifications and to support cross-domain single sign-on. In previous releases,
this functionality was tied to an application referred to as the primary application, which was
secured by the agent.

Benefit - Agent Specific Application for Housekeeping Tasks: The benefit of including this
application with J2EE agents is that previously imposed restrictions have been removed from
the primary application. In prior releases of J2EE agents, the primary application had to support
such housekeeping tasks, often requiring additional configuration. For instance, in prior
releases, deploying the primary application with blind web-tier declarative security required
changes to the agent configuration to ensure that the agent would function properly. This
additional configuration is not necessary with the current release since the agent-specific
application for housekeeping tasks takes care of all such functionality.

What’s New About J2EE Agents

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200924

J2EE Agent URL Policy Enhancements
Starting with this release of J2EE agents, the following features are available that enhance
Uniform Resource Locator (URL) policy:

■ “Remote Policy Evaluation Failover in J2EE Agents” on page 25
■ “Configurable Policy Evaluation Mechanism in J2EE Agents” on page 25
■ “Composite Advice in J2EE Agents” on page 26
■ “Policy Based Response Attributes in J2EE Agents” on page 26

The aforementioned features affect how agents enforce policy decisions. These features are
described in the following paragraphs.

Remote Policy Evaluation Failover in J2EE Agents
J2EE agents can now leverage session failover functionality to ensure that remote policy
evaluation failover can occur if an Access Manager instance becomes unavailable.

Benefit - Remote Policy Evaluation Failover: The benefit of this feature is the potential for a
seamless user experience in the event of a failure or maintenance related outage of various
servers within the Access Manager deployment.

Configurable Policy Evaluation Mechanism in J2EE Agents
Starting with this release, J2EE agents can be configured to use two different mechanisms to
remotely evaluate policies as follows:

■ The agent remotely requests policy evaluation for all resources applicable to a user within
the agent’s scope of protection.

■ The agent remotely requests policy evaluation for the resource accessed by the user and not
any other resources that the user might access later.

Benefit - Configurable Policy Evaluation Mechanism: The configurable policy evaluation
mechanism has a variety of benefits depending on the situation. The very fact that you can
configure the policy evaluation mechanism is beneficial in that it enables you to choose the
mechanism that best fits your needs. Moreover, each mechanism has its advantages and
disadvantages.

When configured to perform policy evaluation for all resources within an agent’s scope of
protection the first request is, by design, time consuming while subsequent requests are faster
since the results get cached locally by the agent.

For the second mechanism, the first request is no slower or faster than subsequent requests. All
requests are processed relatively quickly. However, this mechanism increases network
communication between the agent and Access Manager. Furthermore, the two mechanism can
produce different types of cache growth in agent memory and thus need to be evaluated closely

What’s New About J2EE Agents

Chapter 1 • Introduction to J2EE Agents for Policy Agent 2.2 25

to select the best option for your deployment. Key factors that could affect such a decision
include the number of possible distinct resources and the number of policies applicable to an
average user.

Composite Advice in J2EE Agents
In the 2.2 release, J2EE agents provide a composite advice feature. This feature allows the policy
and authentication services of Access Manager to decouple the advice handling mechanism of
the agents. This allows you to introduce and manage custom advices by solely writing Access
Manager side plug-ins. Starting with this release, you are not required to make changes on the
agent side. Such advices are honored automatically by the composite advice handling
mechanism.

Benefit - Composite Advice: A benefit of composite advice is that you can incorporate a
custom advice type without having to make changes to an agent deployment.

Policy Based Response Attributes in J2EE Agents
The policy-based response attribute feature allows the policy service to provide static and
dynamic attributes based on the resource accessed by the user. These attributes can be made
available to the agent protected application as HTTP headers, request attributes, or cookies.

Benefit - Policy Based Response Attributes: A benefit of the policy-based response attribute
feature is that it provides more flexible support for application-specific agent customizations
compared to prior Policy Agent releases, which only allowed for static profile attributes to be
fetched.

J2EE Agent Support for Flexible User Mapping
Mechanisms
Starting with this release, J2EE agents provide support for user mapping modes that have
flexibility in the user names they choose. In prior releases, a user name had to be an Access
Manager user ID. Now, user names can be chosen from a few different sources as long as the
names are for authenticated users who have trusted identities. A trusted identity can be
established on the agent-protected server for a security principal (or for an equivalent trusted
identity of the user). This mechanism allows the agent to choose a user ID for the authenticated
user from the user’s profile attributes, the user’s session properties, or an HTTP header
accompanying the user request.

Benefit - Support for Flexible User Mapping Mechanisms: The main benefit of this feature is
that it enables a J2EE agent to integrate with a greater number of applications. Some
applications do not accept Access Manager user IDs as user names. J2EE agents can now
integrate with those applications since Policy Agent 2.2 can be configured to provide different
types of user names.

What’s New About J2EE Agents

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200926

J2EE Agent Support for Fetching User Session
Attributes
Before this release of J2EE agents, information for HTTP headers, request attributes, or cookies
was retrieved, or sourced, solely from profile attributes. Now, this information can also be
sourced from session properties.

Benefit - Support for Fetching User Session Attributes: The benefit of this feature is that
session properties can be more effective for transferring information, especially dynamic
information. Prior to this release, agents could only fetch users’ profile attributes, which tend to
be static attributes. However, session attributes allow applications to obtain dynamic user
information when necessary.

J2EE Agent Support for Version Checking
Starting with this release of J2EE agents, you can easily check the exact version of the agent you
are using, including build date, build number, and client SDK version. Prior to this release,
administrators could not easily identify the build date of the agent they were using. Since code
changes occur between build dates, identifying the exact build can be useful. For the details on
how to check the version of an agent instance, see “agentadmin --version” on page 40.

Benefit - Support for Version Checking: The benefit of this feature is that it allows you to
quickly check the version of the J2EE agent you are using, enabling you to determine which
features and bug fixes are included.

J2EE Agent Support for Not-Enforced IP List
Starting with this release, J2EE agents support not-enforced IP lists. This new feature is similar to
a pre-existing Policy Agent feature that also concerns not-enforced lists, specifically
not-enforced URI lists.

The two features share similarities, but are really quite different. Again, the pre-existing feature
supports not-enforced URI lists. With that feature, an agent always grants access to a URI that
appears on a specified list in the J2EE agent AMAgent.properties configuration file. On the
other hand, the new feature supports not-enforced IP lists. With this feature, an agent always
grants access to resources when the request comes from a machine with an IP address that
appears on a specified list in the J2EE agent AMAgent.properties configuration file.

With the new feature, when a request is made to access a resource, a J2EE agent determines the
IP address of the machine where the request originated. The agent compares that IP address to
all the addresses on the not-enforced IP list. If that address is on the list, then that request and all
subsequent requests from that IP address are treated as if the resources requested are not
enforced.

What’s New About J2EE Agents

Chapter 1 • Introduction to J2EE Agents for Policy Agent 2.2 27

The not-enforced IP list can include exact IP addresses and IP addresses that use the asterisk, *,
wildcard character to represent one or more characters.

Benefit - Support for Not-Enforced IP Lists: The benefit of this feature is that it allows clients
on the not-enforced IP list to by-pass authentication and authorization requirements. This
feature can be employed for administrative, troubleshooting, and testing purposes, too.

J2EE Agent Support for Custom Response Headers
Starting with this release, J2EE agents provide support for custom response headers. The agent
can be configured so that custom response headers are set on every request. Such headers are
defined statically in the J2EE agent AMAgent.properties configuration file and are honored on
all enforced web resources as identified by the agent.

Benefit - Support for Custom Response Headers: The benefit of this feature is that it enables
instructions, by way of custom response headers, to be sent to a client or any intermediate entity
between the agent-protected server and the client browser. For example, a custom response
header could be sent instructing an intermediate proxy server not to cache server responses to
client requests.

J2EE Agent Support for Application Logout
Integration
Starting with this release, J2EE agents can be configured to identify an application logout event
and to synchronize the event with the Access Manager logout. The agent can identify the logout
of an application based on preconfigured information sent with a request as follows:

■ The request URI
■ A query parameter sent with the request
■ A request parameter sent within the request body

Benefit - Support for Application Logout Integration: The benefit of this logout integration
feature is that end users can potentially perform a global log out by simply logging out of an
application. Also, J2EE agents, starting with the 2.2 release, are very flexible in terms of the
variety of ways they can identify the log out of an application. This flexibility facilitates the
integration between J2EE agents and applications since applications will rarely need any
modifications to enable them to match any requirements of the agent.

What’s New About J2EE Agents

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200928

J2EE Agent Support for Application Specific Agent
Filter Operation Modes
The application-specific filter operation mode mechanism allows different applications to use
different levels of protection as necessary. Different filter operation modes provide different
levels of functionality, thus enabling the selection of the best mode for each protected
application.

Benefit - Support for Application Specific Agent Filter Operation Modes: This feature
provides customized protection for every application. For example, if two applications are
deployed where one uses J2EE policies and the other does not, the agent can be configured to
use different filter modes for each application. The agent will provide support for J2EE policies,
but only for the application that has such policies. The results is the optimal use of system
resources since the agent does not enforce the evaluation of J2EE policies for the application
that does not have any J2EE policies.

J2EE Agent Support for Affinity-Based Login URL
Selection
Starting with this release, J2EE agents support a prioritized (or an affinity-based) selection of
login URLs for authenticating users. End users are directed to the URL highest on the list if it is
available. If not, the second URL on the list is targeted. If a URL higher on the list becomes
available again, the agent switches to that URL.

You can disable this affinity-based selection process if desired, which would allow you to use a
round-robin selection scheme.

Benefit - Support for Affinity-Based Login URL Selection: This feature is used when two or
more Access Manager instances are deployed in geographically distant locations. To best
manage the authentication process, you can give the highest priority to URLs of locally available
Access Manager instances, resulting in faster response times.

J2EE Agent Support for a Sample Application
Starting with this release, the J2EE agents provide a bundled sample application to demonstrate
the key features and functionality of the agent. Some of the features demonstrated are:

■ J2EE declarative security
■ J2EE programmatic security
■ URL policy-based access control deployed on an agent-protected deployment container

What’s New About J2EE Agents

Chapter 1 • Introduction to J2EE Agents for Policy Agent 2.2 29

For more information about the sample application, see “The Sample Application” on page 31
and see the list following Table 2–2 for information about locating the sampleapp directory
within the J2EE agent base directory. The sampleapp directory includes instructions on how to
use the sample application.

Benefit - Support for a Sample Application: The sample application illustrates how
applications need to be configured to take advantage of the protection that agents provide. The
sample application also demonstrates how key functionality, such as support for J2EE security
and Access Manager based URL policies, can be used.

J2EE Agent Backward Compatibility With Access
Manager 6.3
Policy Agent 2.2 is backward compatible with Access Manager 6.3 Patch 1 or greater.

Note – Policy Agent 2.2 is only compatible with Access Manager 6.3 when the Access Manager
patch has been applied.

By default, J2EE agents in the Policy Agent 2.2 release work with Access Manager 7. While the
2.2 release of Policy Agent requires some configuration to work with Access Manager 6.3 Patch
1 or greater, the amount of configuration required is relatively limited. For more information,
see “Installing and Configuring the Apache Tomcat 6.0 Agent With Access Manager 6.3” on
page 51.

Be aware that Policy Agent 2.2 takes advantage of certain features that exist in Access Manager 7
that do not exist in Access Manager 6.3, such as “composite advices,” “policy-based response
attributes,” and others.

Information About Using J2EE Agents in Policy Agent 2.2
This section provides information about J2EE agents in Policy Agent 2.2 that will help you
install and get accustomed to the product. J2EE agents have undergone some major changes for
the 2.2 release that affect how you interact with them. Read the following subsections to
understand the more significant ways that changes made in the 2.2 release affect the manner in
which you use a J2EE agent.

Information About Using J2EE Agents in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200930

Enhanced Installation Process for J2EE Agents in
Policy Agent 2.2
The installation process for J2EE agents is quite different for the 2.2 release. This guide provides
you with a chapter that explains all the details necessary for understanding this process, from
unpacking the J2EE agent binaries to installation related commands, to the directory structure
of J2EE agents once the binaries are unpacked. See Chapter 2, “Vital Installation Information
for a J2EE Agent in Policy Agent 2.2.”

Increased Functionality of the agentadminProgram
for J2EE Agents in Policy Agent 2.2
The agentadmin program is a required tool for the 2.2 release of J2EE agents. The functionality
has increased significantly. The most basic of tasks, such as installation and uninstallation can
only be performed with this tool.

For detailed information on installation related tasks performed with this program, see “Role of
the agentadmin Program in a J2EE Agent for Policy Agent 2.2” on page 34.

For information on all the tasks performed with this program, see “Key Features and Tasks
Performed With the J2EE agentadmin Program” on page 105.

The Sample Application
Deploy, and interact with the sample application included with Policy Agent 2.2. Interacting
with the sample application is perhaps the best way available to you to learn how J2EE agents
work. The sample application is deployed at URI/sampleapp. The sample application
demonstrates agent configuration options and features. With this application, you can view
agent configuration examples and you can test if an agent was deployed successfully. To learn
more about this application, read about the sampleapp directory explained in the list following
Table 2–2. Moreover, the sampleapp directory includes a README.TXT explaining how to build
and deploy the sample application. While you can build the sample application if you desire,
this step is not required. When you unpack the J2EE agent distribution, a sample application
named agentsample.ear is created for you. The full path to this application is as follows:

PolicyAgent-base/sampleapp/dist/agentsample.ear

Information About Using J2EE Agents in Policy Agent 2.2

Chapter 1 • Introduction to J2EE Agents for Policy Agent 2.2 31

32

Vital Installation Information for a J2EE Agent in
Policy Agent 2.2

To make the installation process of a J2EE agent in Policy Agent 2.2 simple, essential
information needed for the installation is provided in this chapter.

This chapter applies to all the J2EE agents in the Policy Agent 2.2 release. However, throughout
this chapter, when a specific J2EE agent is used for example purposes, such as in a command,
only one J2EE agent is shown, Policy Agent 2.2 for Sun Java System Application Server 8.1.
These examples are provided to illustrate general format. Replace J2EE agent specific
information where necessary.

When you are comfortable with the information presented in this chapter, move on to the
installation as described in Chapter 3, “Installing Policy Agent 2.2 for Apache Tomcat 6.0.”

In simple terms, this chapter provides information to help you with the following:

❒ Getting the J2EE agent distribution files on the machine that hosts the deployment
container. The J2EE agent is going to protect the content on that deployment container.

❒ Issuing install-related commands using the agentadmin program. The agentadmin program
is a command-line utility that you will use to install and configure the agent. You should
know the supported command options besides the more common --install option.

❒ Locating the various J2EE agent files after you get them onto the deployment container.
❒ Configuring the J2EE agent with Access Manager 6.3 Patch 1 or greater, if such backward

compatibility is desired.
❒ Creating a J2EE agent profile.

The information referred to in the preceding list is described in the following sections of this
chapter:

■ “Format of the Distribution Files for a J2EE Agent Installation in Policy Agent 2.2” on
page 34

■ “Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2” on page 34
■ “J2EE Agent Directory Structure in Policy Agent 2.2” on page 46

2C H A P T E R 2

33

■ “Installing and Configuring the Apache Tomcat 6.0 Agent With Access Manager 6.3” on
page 51

■ “Creating a J2EE Agent Profile” on page 52

Format of the Distribution Files for a J2EE Agent Installation
in Policy Agent 2.2

The distribution files for a J2EE agent in Policy Agent 2.2 are provided to you in .zip archive.
For example

appserver_version_agent.zip

where appserver_version is a place holder that represents the specific deployment container and
deployment container version you are unpacking.

▼ To Unpack a .zipCompressed file of a J2EE Agent in
Policy Agent 2.2
The instructions in this task are not specific to the J2EE agent described in this guide. For the
specific instructions, see “To Prepare to Install Agent for Apache Tomcat 6.0” on page 57.

Unzip the .zipfile using the appropriate utility or command for your platform. For example, on
Solaris systems, issue the following command:
unzip appserver_version_agent_2.2.zip

Role of the agentadminProgram in a J2EE Agent for Policy
Agent 2.2

The agentadmin program is a required install and configuration tool for the 2.2 release of J2EE
agents. The most basic of tasks, such as installation and uninstallation can only be performed
with this tool.

The location of the agentadmin program is as follows:

PolicyAgent-base/bin

The following information about agentadmin program demonstrates the scope of this utility:

■ All agent installation and uninstallation is achieved with the agentadmin command.

●

Format of the Distribution Files for a J2EE Agent Installation in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200934

■ All tasks performed by the agentadmin program, except those involving uninstallation,
require the acceptance of a license agreement. This agreement is only presented the first
time you use the program.

■ The following table lists options that can be used with the agentadmin command and gives a
brief description of the specific task performed with each option.
A detailed explanation of each option follows the table.

Note – In this section, the options described are the agentadmin program options that apply to
all J2EE agents. Options that only apply to specific J2EE agents are relatively uncommon and
are described where necessary within the corresponding J2EE agent guide.

TABLE 2–1 The agentadminProgram: Supported Options

Option Task Performed

--install Installs a new agent instance

--uninstall Uninstalls an existing Agent instance

--listAgents Displays details of all the configured agents

--agentInfo Displays details of the agent corresponding to the specified agent
IDs

--version Displays the version information

--encrypt Encrypts a given string

--getEncryptKey Generates an Agent Encryption key

--uninstallAll Uninstalls all agent instances

--getUuid Retrieves a universal ID for valid identity types

--usage Displays the usage message

--help Displays a brief help message

agentadmin --install

This section demonstrates the format and use of the agentadmin command with the --install
option.

EXAMPLE 2–1 Command Format: agentadmin --install

The following example illustrates the format of the agentadmin command with the --install
option:

./agentadmin --install [--useResponse] [--saveResponse] filename

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Chapter 2 • Vital Installation Information for a J2EE Agent in Policy Agent 2.2 35

EXAMPLE 2–1 Command Format: agentadmin --install (Continued)

The following arguments are supported with the agentadmin command when using the
--install option:

--saveResponse Use this argument to save all supplied responses to a state file, or response
file, represented as filename in command examples. The response file, or
state file, can then be used for silent installations.

--useResponse Use this argument to install a J2EE agent in silent mode as all installer
prompts are answered with responses previously saved to a response file,
represented as filename in command examples. When this argument is
used, the installer runs in non-interactive mode. At which time, user
interaction is not required.

filename Use this argument to specify the name of a file that will be created as part
of the processing of this command. This file stores your responses when
this argument is used in conjunction with the --saveResponse argument
and provides your responses when this argument is used in conjunction
with the --useResponse argument.

EXAMPLE 2–2 Command Usage: agentadmin --install

When you issue the agentadmin command, you can choose the --install option. With the
--install option, you can choose the --saveResponse argument, which requires a file name
be provided. The following example illustrates this command when the file name is myfile:

./agentadmin --install --saveResponse myfile

Once the installer has executed the preceding command successfully, the responses are stored
in a state file that can be used for later runs of the installer.

If desired, you can modify the state file and configure the second installation with a different set
of configuration parameters.

Then you can issue another command that uses the ./agentadmin --install command and
the name of the file that you just created with the --saveResponse argument. The difference
between the previous command and this command is that this command uses the
--useResponse argument instead of the --saveResponse argument. The following example
illustrates this command:

./agentadmin --install --useResponse myfile

With this command, the installation prompts run the installer in silent mode, registering all
debug messages in the install logs directory.

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200936

agentadmin --uninstall

This section demonstrates the format and use of the agentadmin command with the
--uninstall option.

EXAMPLE 2–3 Command Format: agentadmin --uninstall

The following example illustrates the format of the agentadmin command with the
--uninstall option:

./agentadmin --uninstall [--useResponse] [--saveResponse] filename

The following arguments are supported with the agentadmin command when using the
--uninstall option:

--saveResponse Use this argument to save all supplied responses to a state file, or response
file, represented as filename in command examples. The response file, or
state file, can then be used for silent uninstallations.

--useResponse Use this argument to uninstall a J2EE agent in silent mode as all
uninstaller prompts are answered with responses previously saved to a
response file, represented as filename in command examples. When this
argument is used, the uninstaller runs in non-interactive mode. At which
time, user interaction is not required.

filename Use this argument to specify the name of a file that will be created as part
of the processing of this command. This file stores your responses when
this argument is used in conjunction with the --saveResponse argument
and provides your responses when this argument is used in conjunction
with the --useResponse argument.

EXAMPLE 2–4 Command Usage: agentadmin --uninstall

When you issue the agentadmin command, you can choose the --uninstall option. With the
--uninstall option, you can choose the --saveResponse argument, which requires a file name
be provided. The following example illustrates this command where the file name is myfile:

./agentadmin --uninstall --saveResponse myfile

Once the uninstaller has executed the preceding command successfully, the responses are
stored in a state file that can be used for later runs of the uninstaller.

If desired, you can modify the state file and configure the second uninstallation with a different
set of configuration parameters.

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Chapter 2 • Vital Installation Information for a J2EE Agent in Policy Agent 2.2 37

EXAMPLE 2–4 Command Usage: agentadmin --uninstall (Continued)

Then you can issue another command that uses the ./agentadmin --uninstall command and
the name of the file that you just created with the --saveResponse argument. The difference
between the previous command and this command is that this command uses the
--useResponse argument instead of the --saveResponse argument. The following example
illustrates this command:

./agentadmin --uninstall --useResponse myfile

With this command, the uninstallation prompts run the uninstaller in silent mode, registering
all debug messages in the install logs directory.

agentadmin --listAgents

This section demonstrates the format and use of the agentadmin command with the
--listAgents option.

EXAMPLE 2–5 Command Format: agentadmin --listAgents

The following example illustrates the format of the agentadmin command with the
--listAgents option:

./agentadmin --listAgents

No arguments are currently supported with the agentadmin command when using the
--listAgents option.

EXAMPLE 2–6 Command Usage: agentadmin --listAgents

Issuing the agentadmin command with the --listAgents option provides you with
information about all the configured J2EE agents on that machine. For example, if two J2EE
agents were configured on Sun Java System Application Server 8.1, the following text
demonstrates the type of output that would result from issuing this command:

The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-

Application Server Config Directory:

/var/opt/SUNWappserver/domains/domain1/config

Application Server Instance name: server1

The following are the details for agent Agent_002 :-

Application Server Config Directory:

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200938

EXAMPLE 2–6 Command Usage: agentadmin --listAgents (Continued)

/var/opt/SUNWappserver/domains/domain1/config

Application Server Instance name: server2

This example shows that two instances of the agent are configured: one for server1 and one for
server2. Notice that the agentadmin program provides unique names, such as Agent_001 and
Agent_002, to all the J2EE agents that protect the same instance of a deployment container, in
this case Application Server 8.1. Each name uniquely identifies the J2EE agent instance.

agentadmin --agentInfo

This section demonstrates the format and use of the agentadmin command with the
--agentInfo option.

EXAMPLE 2–7 Command Format: agentadmin --agentInfo

The following example illustrates the format of the agentadmin command with the
--agentInfo option:

./agentadmin --agentInfo AgentInstance-Dir

The following argument is supported with the agentadmin command when using the
--agentInfo option:

AgentInstance-Dir Use this option to specify which agent instance directory, therefore
which agent instance such as Agent_002, you are requesting information
about.

EXAMPLE 2–8 Command Usage: agentadmin --agentInfo

Issuing the agentadmin command with the --agentInfo option provides you with information
on the J2EE agent instance that you name in the command. For example, if you want
information about a J2EE agent instance named Agent_002 configured on Sun Java System
Application Server 8.1, you can issue the command illustrated in the following example to
obtain the type of output that follows:

./agentadmin --agentInfo Agent_002

The following are the details for agent Agent_002 :-

Application Server Config Directory:

/var/opt/SUNWappserver/domains/domain1/config

Application Server Instance name: server2

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Chapter 2 • Vital Installation Information for a J2EE Agent in Policy Agent 2.2 39

EXAMPLE 2–8 Command Usage: agentadmin --agentInfo (Continued)

In the preceding example, notice that information is provided only for the agent instance,
Agent_002, named in the command.

agentadmin --version

This section demonstrates the format and use of the agentadmin command with the --version
option.

EXAMPLE 2–9 Command Format: agentadmin --version

The following example illustrates the format of the agentadmin command with the --version
option:

./agentadmin --version

No arguments are currently supported with the agentadmin command when using the
--version option.

EXAMPLE 2–10 Command Usage: agentadmin --version

Issuing the agentadmin command with the --version option provides you with version
information for the configured J2EE agents on that machine. For example, if a J2EE agent were
configured on Sun Java System Application Server 8.1, the following text demonstrates the type
of output that would result from issuing this command:

--

Sun Java(TM) System Access Manager Policy Agent for:

Sun Java(TM) System Application Server 8.1

--

Version: 2.2

Build Number: 05

AM 70 Client SDK Version: 20050810.2

AM 63 Client SDK Version: 20050914.1

Date: 2005-09-15 15:04 PDT

Build Platform: machinename

In the preceding example, notice that the Version field shows the major version number. The
Build Number shows the minor version number. The Date field provides the date and time the
agent was built, while the Build Platform field provides information about the platform on
which the agent was built. The Client SDK versions signify the Access Manager related client
SDK versions that were shipped with the agent.

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200940

agentadmin --encrypt

This section demonstrates the format and use of the agentadmin command with the --encrypt
option.

EXAMPLE 2–11 Command Format: agentadmin --encrypt

The following example illustrates the format of the agentadmin command with the --encrypt
option.

./agentadmin --encrypt AgentInstance-Dir fullpassfile

The following arguments are supported with the agentadmin command when using the
--encrypt option:

AgentInstance-Dir Use this option to specify which agent instance directory, therefore
which agent instance such as Agent_002, for which the given password
file will be encrypted. Encryption functionality requires that an
encryption key for a J2EE agent instance be present in the
AMAgent.properties configuration file of that specific J2EE agent
instance.

fullpassfile Use this option to specify the full path to the password file that will be
encrypted.

The password file should be created as a J2EE agent pre-installation task.
For more information, see “Preparing to Install Agent for Apache
Tomcat 6.0” on page 57

EXAMPLE 2–12 Command Usage: agentadmin --encrypt

Issuing the agentadmin command with the --encrypt option enables you to change the
password for an existing agent profile in Access Manager after the agent is installed.

For example, issuing the following command encrypts the password file, pwfile1 for the J2EE
agent instance directory Agent_001:

./agentadmin --encrypt Agent_001 pwfile1

The following is an example of an encrypted value:

ASEWEJIowNBJHTv1UGD324kmT==

Each agent uses a unique agent ID and password to communicate with Access Manager. Once
the agent profile for a specific agent has been created in Access Manager, the installer enters the
Policy Agent profile name and encrypted password in the respective J2EE agent

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Chapter 2 • Vital Installation Information for a J2EE Agent in Policy Agent 2.2 41

EXAMPLE 2–12 Command Usage: agentadmin --encrypt (Continued)

AMAgent.properties configuration file for the agent instance. If you choose a new password for
the Policy Agent profile, encrypt it and enter that encrypted password in the J2EE agent
AMAgent.properties configuration file with the following property:

com.iplanet.am.service.secret

agentadmin --getEncryptKey

This section demonstrates the format and use of the agentadmin command with the
--getEncryptKey option.

EXAMPLE 2–13 Command Format: agentadmin --getEncryptKey

The following example illustrates the format of the agentadmin command with the
--getEncryptKey option:

./agentadmin --getEncryptKey

No arguments are currently supported with the agentadmin command when using the
--getEncryptKey option.

EXAMPLE 2–14 Command Usage: agentadmin --getEncryptKey

This option may be used in conjunction with the --encrypt option to encrypt and decrypt
sensitive information in the J2EE agent AMAgent.properties configuration file. Issuing the
agentadmin command with the --getEncryptKey option generates a new encryption key for
the J2EE agent.

For example, the following text demonstrates the type of output that would result from issuing
this command:

./agentadmin -getEncryptKey

Agent Encryption Key : k1441g4EejuOgsPlFOSg+m6P5x7/G9rb

The encryption key is stored in the J2EE agent AMAgent.properties configuration file.
Therefore, once you generate a new encryption key, use it to replace the value of the property
that is currently used to store the encryption key. The following property in the J2EE agent
AMAgent.properties configuration file stores the encryption key:

com.sun.identity.client.encryptionKey

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200942

EXAMPLE 2–14 Command Usage: agentadmin --getEncryptKey (Continued)

For example, using the encryption key example provided previously, updating the encryption
key value in the J2EE agent AMAgent.properties configuration file could appear as follows:

com.sun.identity.client.encryptionKey = k1441g4EejuOgsPlFOSg+m6P5x7/G9rb

Once you have updated the J2EE agent AMAgent.properties configuration file with the new
encryption key, issue the agentadmin --encrypt command to actually encrypt a password.
The --encrypt option uses the encryption key in its processing.

agentadmin --uninstallAll

This section demonstrates the format and use of the agentadmin command with the
--uninstallAll option.

EXAMPLE 2–15 Command Format: agentadmin --uninstallAll

The following example illustrates the format of the agentadmin command with the
--uninstallAll option:

./agentadmin --uninstallAll

No arguments are currently supported with the agentadmin command when using the
--uninstallAll option.

EXAMPLE 2–16 Command Usage: agentadmin --uninstallAll

Issuing the agentadmin command with the --uninstallAll option runs the agent uninstaller
in an iterative mode, enabling you to remove select J2EE agent instances or all J2EE agent
instances. You can exit the recursive uninstallation process at any time.

The advantage of this option is that you do not have to remember the details of each
installation-related configuration. The agentadmin program provides you with an easy method
for displaying every instance of a J2EE agent. You can then decide, case by case, to remove a
J2EE agent instance or not.

agentadmin --getUuid

This section demonstrates the format and use of the agentadmin command with the --getUuid
option.

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Chapter 2 • Vital Installation Information for a J2EE Agent in Policy Agent 2.2 43

EXAMPLE 2–17 Command Format: agentadmin --getUuid

The following example illustrates the format of the agentadmin command with the --getUuid
option:

./agentadmin --getUuid userName IdType realmName

The following arguments are supported with the agentadmin command when using the
--getUuid option:

userName Use this first parameter of the --getUuid option to specify the name associated
with the identity type. The identity type is represented in this example as the
IdType parameter. Therefore, if the identity type is for a user, this userName
parameter would be the name of that user.

IdType Use this second parameter to specify a valid identity type. The following are
examples of valid identity types: user, role, group, filtered role, agent, and such.

realmName Use this third parameter to specify the name of the default organization of the
Access Manager installation.

For example, if the ID of the user is manager, the identity type is role, and the realm name is
dc=example,dc=com, the following would be the universal ID:

id=manager,ou=role,dc=example,dc=com

Caution – The universal ID concept is only valid starting with Access Manager 7. Do not use this
option with earlier versions of Access Manager, such as version 6.3. If the application is
deployed with Access Manager 6.3 principals or roles, replace the role-to-principal mappings
with the distinguished name (DN) of the user in Access Manager 6.3.

EXAMPLE 2–18 Command Usage: agentadmin --getUuid

In Access Manager 7, issuing the agentadmin command with the --getUuid option retrieves
the universal ID of any identity type in Access Manager 7.

If you run the agent in J2EE_POLICY mode, you must repackage the web applications with
Access Manager role-to-principal mappings. The universal identifier is a way to make the name
of the identity user unique.

Use the correct universal ID generated by this command in a deployment descriptor that is
application container specific.

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200944

agentadmin --usage

This section demonstrates the format and use of the agentadmin command with the --usage
option.

EXAMPLE 2–19 Command Format: agentadmin --usage

The following example illustrates the format of the agentadmin command with the --usage
option:

./agentadmin --usage

No arguments are currently supported with the agentadmin command when using the --usage
option.

EXAMPLE 2–20 Command Usage: agentadmin --usage

Issuing the agentadmin command with the --usage option provides you with a list of the
options available with the agentadmin program and a short explanation of each option. The
following text is the output you receive after issuing this command:

./agentadmin --usage

Usage: agentadmin <option> [<arguments>]

The available options are:

--install: Installs a new Agent instance.

--uninstall: Uninstalls an existing Agent instance.

--listAgents: Displays details of all the configured agents.

--agentInfo: Displays details of the agent corresponding to the specified agent ID.

--version: Displays the version information.

--encrypt: Encrypts a given string.

--getEncryptKey: Generates an Agent Encryption key.

--uninstallAll: Uninstalls all the agent instances.

--getUuid: Retrieves a universal ID for valid identity types.

--usage: Display the usage message.

--help: Displays a brief help message.

The preceding output serves as the content for the table of agentadmin options, introduced at
the beginning of this section.

Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2

Chapter 2 • Vital Installation Information for a J2EE Agent in Policy Agent 2.2 45

agentadmin --help

This section demonstrates the format and use of the agentadmin command with the --help
option.

EXAMPLE 2–21 Command Format: agentadmin --help

The following example illustrates the format of the agentadmin command with the --help
option:

./agentadmin --help

No arguments are currently supported with the agentadmin command when using the --help
option.

EXAMPLE 2–22 Command Usage: agentadmin --help

Issuing the agentadmin command with the --help option provides similar results to issuing the
agentadmin command with the --usage option. Both commands provide the same
explanations for the options they list. With the --usage option, all agentadmin command
options are explained. With the --help option, explanations are not provided for the --usage
option or for the --help option itself.

A another difference is that the --help option also provides information about the format of
each option while the --usage option does not.

J2EE Agent Directory Structure in Policy Agent 2.2
The Policy Agent installation directory is referred to as the Policy Agent base directory (or
PolicyAgent-base in code examples). The location of this directory and its internal structure are
important facts that are described in this section.

Location of the J2EE Agent Base Directory in Policy
Agent 2.2
Unpacking the J2EE agent binaries creates a directory named j2ee_agents, within which an
agent-specific directory is created. For example, if the J2EE agent being installed is Policy Agent
2.2 for Sun Java System Application Server 8.1, the directory created is named am_as81_agent.
For other J2EE agents, the directory name is slightly different, but the naming format is the
same. To see the preceding directory name specific to your J2EE agent, see Example 3–1.

J2EE Agent Directory Structure in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200946

This agent-specific directory is the Policy Agent base directory, referred to throughout this
guide as the PolicyAgent-base directory. For the full path to the PolicyAgent-base directory, see
Example 2–23. For information about choosing a directory in which to unpack the J2EE agent
binaries, see “Format of the Distribution Files for a J2EE Agent Installation in Policy Agent 2.2”
on page 34.

EXAMPLE 2–23 Policy Agent Base Directory

The directory you choose in which to unpack the J2EE agent binaries is referred to here as
Agent-HomeDirectory. The following path is an example of the location for the PolicyAgent-base
directory of Policy Agent 2.2 for Sun Java System Application Server 8.1:

Agent-HomeDirectory/j2ee_agents/am_as81_agent

For other J2EE agents, the directory names are different, but the naming format is the same. To
see the preceding path name specific to your J2EE agent, see Example 3–1. References in this
book to the PolicyAgent-base directory are references to the preceding path.

Inside the J2EE Agent Base Directory in Policy Agent
2.2
After you finish installing an agent by issuing the agentadmin ---install command and
interacting with the installer, you will need to access J2EE agent files in order to configure and
otherwise work with the product. Within the Policy Agent base directory are various
subdirectories that contain all agent configuration and log files. The structure of the Policy
Agent base directory for a J2EE agent is illustrated in Table 2–2.

The list that follows the table provides information about many of the items in the example
Policy Agent base directory. The Policy Agent base directory is represented in code examples as
PolicyAgent-base. The full path to any item in this directory is as follows:

PolicyAgent-base/item-name

where item-name represents the name of a file or subdirectory. For example, the full path to the
bin directory is as follows:

PolicyAgent-base/bin

TABLE 2–2 Example of Policy Agent Base Directory for a J2EE Agent

Directory Contents: Files and Subdirectories

LICENSE.TXT jce

J2EE Agent Directory Structure in Policy Agent 2.2

Chapter 2 • Vital Installation Information for a J2EE Agent in Policy Agent 2.2 47

TABLE 2–2 Example of Policy Agent Base Directory for a J2EE Agent (Continued)
Directory Contents: Files and Subdirectories

README.TXT jsse

THIRDPARTYLICENSEREADME.TXT lib

bin locale

config logs

data sampleapp

etc Agent_001

The preceding example of PolicyAgent-base lists files and directories you are likely to find in this
directory. The notable items in this directory are summarized in the list that follows:

sampleapp This directory contains the sample application included with Policy Agent 2.2.
This application is extremely useful. Not only does it demonstrate configuration
options and features, but the application can be used to test if an agent is
running.

Use the sample application that comes with the agent or build the application
from scratch. Find instructions for building, deploying, and running this
application at the following location:

PolicyAgent-base/sampleapp/readme.txt

The full path to the sample application is as follows:

PolicyAgent-base/sampleapp/dist/agentsample.ear

For more information about the sample application, see “The Sample
Application” on page 31.

bin This directory contains the agentadmin script for the agent bits. You will use
this script a great deal. For details about the tasks performed with this script, see
“Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2” on
page 34.

etc This directory contains the agentapp file (specifically, the agentapp.war or
agentapp.ear file), which has to be deployed after installation is complete. This
application helps the agent perform certain housekeeping tasks.

logs This directory contains various log files, including log files created when you
issue the agentadmin command.

J2EE Agent Directory Structure in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200948

This directory also contains the installation log file. For the 2.2 release of Policy
Agent, log information is stored in the installation log file after you install a J2EE
agent instance. The following is the location of this log file:

PolicyAgent-base/logs/audit/install.log

lib The lib directory has a list of all the agent libraries that are used by the installer
as well as the agent run time.

locale This directory has all the agent installer information as well as agent run time
specific locale information pertaining to the specific agent.

data This directory has all the installer specific data.

Caution – Do not edit any of the files in the data directory under any
circumstance. If this directory or any of its content loses data integrity, the
agentadmin program cannot function normally.

Agent_001 The full path for this directory is as follows:

PolicyAgent-base/AgentInstance-Dir

where AgentInstance-Dir refers to an agent instance directory, which in this case
is Agent_001.

Note – This directory does not exist until you successfully install the first instance
of a J2EE agent. Once you have successfully executed one run of the agentadmin
--install command, an agent specific directory, agent_00x is created in the
Policy Agent base directory. This directory is uniquely tied to an instance of the
deployment container, such as an application server instance. Depending on the
number of times the agentadmin --install command is run, the number that
replaces the x in the agent_00x directory name will vary.

After you successfully install the first instance of a J2EE agent, an agent instance
directory named Agent_001 appears in the Policy Agent base directory. The
path to this directory is as follows:

PolicyAgent-base/Agent_001

The next installation of the agent creates an agent instance directory named
Agent_002. The directories for uninstalled agents are not automatically
removed. Therefore, if Agent_001 and Agent_002 are uninstalled, the next agent
instance directory is agent_003.

J2EE Agent Directory Structure in Policy Agent 2.2

Chapter 2 • Vital Installation Information for a J2EE Agent in Policy Agent 2.2 49

Agent instance directories contain directories named config and logs.

Note – When a J2EE agent is uninstalled, the config directory is removed from
the agent instance directory but the logs directory still exists.

The following table is an example of the contents of an agent instance, such as
Agent_001, directory.

Example of an Agent Instance (Agent_001) Directory

logs

config

logs Two subdirectories exist within this directory as follows:

audit This directory contains the local audit trail for the agent
instance.

debug This directory has all the agent-specific debug
information. When the agent runs in full debug mode,
this directory stores all the debug files that are generated
by the agent code.

Note – Agent-specific debug information is not stored in
this directory when the J2EE agent and Access Manager
are installed on the same deployment container.
However, the J2EE agent and Access Manager must both
support the same deployment container for this
coexistence scenario to apply. When this coexistence
applies, the debug information is stored in the following
Access Manager directory:

/var/opt/SUNWam/debug

config This directory contains the J2EE agent AMAgent.properties
configuration file that is specific to the agent instance. Each J2EE
agent can be configured by a unique instance of the J2EE agent
AMAgent.properties configuration file. This file holds the key to
the agent behavior at runtime.

J2EE Agent Directory Structure in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200950

Installing and Configuring the Apache Tomcat 6.0 Agent With
Access Manager 6.3

Although the Tomcat 6.0 agent is intended to be used with Access Manager 7.1, you can
configure the agent to function with Access Manager 6 2005Q1 (6.3) patch 1 or later. However,
some of the Access Manager 7.1 features, such as composite advices and policy-based response
attributes, are not available in Access Manager 6.3.

Caution – For the Tomcat 6.0 agent to function properly with Access Manager 6.3, patch 1 or
greater must be applied to the Access Manager 6.3 instance.

▼ To Install and Configure the Tomcat 6.0 Agent With
Access Manager 6.3

Ensure that the Access Manager 6.3 instance has been updated with patch 1 or later.

Create an agent profile in the Access Manager 6.3 Console for the Tomcat 6.0 agent.
Save the agent profile information to use during agent installation in the next step. For
information about creating the agent profile in Access Manager 6.3, see Chapter 4, Identity
Management, in the Sun Java System Access Manager 6 2005Q1 Administration Guide.

Install the Tomcat 6.0 agent, providing details for the Access Manager 6.3 instance.
For more information, see Chapter 3, “Installing Policy Agent 2.2 for Apache Tomcat 6.0.”

Change to the PolicyAgent-base/libdirectory.

Download the amclientsdk63.jar and fmclientsdk.jar files to the PolicyAgent-base/lib
directory from the OpenSSO Project site:
https://opensso.dev.java.net/public/use/stablebuilds.html

Edit the classpath in the setAgentEnv_server-instance.shUNIX script or
setAgentEnv_server-instance.cmdWindows script to specify the files you downloaded in the
previous step.
Important: You must remove PolicyAgent-base/lib/openssoclientsdk.jar; from the
classpath.

1

2

3

4

5

6

Installing and Configuring the Apache Tomcat 6.0 Agent With Access Manager 6.3

Chapter 2 • Vital Installation Information for a J2EE Agent in Policy Agent 2.2 51

https://opensso.dev.java.net/public/use/stablebuilds.html

In the web.xmlfile of a application that needs to be protected by the agent, the roles should be
defined as "cn=role_name,dc=domain" instead of "id=role_name,ou=role,dc=domain".
For example: "cn=manager,dc=example,dc=com" instead of
"id=manager,ou=role,dc=example,dc=com".

Creating a J2EE Agent Profile

Caution – Creating a J2EE agent profile in Access Manager Console is a required task that you
should perform prior to installing the J2EE agent. Though the installation of the J2EE agent
actually succeeds without performing this task, the lack of a valid agent profile in Access
Manager prevents the J2EE agent from authenticating or having any further communication
with Access Manager.

J2EE agents work with Access Manager to protect resources. However, for security purposes
these two software pieces can only interact with each other to maintain a session after the J2EE
agent authenticates with Access Manager by supplying an agent profile name and password.
During the installation of the J2EE agent, you must provide a valid agent profile name and the
respective password to enable authentication attempts to succeed.

You create agent profiles in Access Manager Console, not by configuring J2EE agent software.
Creating the agent profile is a required security-related task.

The agent profile is created and modified in Access Manager Console. Therefore, tasks related
to the agent profile are discussed in Access Manager documentation. Nonetheless, tasks related
to the agent profile are also described in this Policy Agent guide, specifically in this section. For
related information about defining the Policy Agent profile in Access Manager Console, see the
following section of the respective document: “Agents” in Sun Java System Access
Manager 7 2005Q4 Administration Guide.

▼ To Create an Agent Profile
Perform the following tasks in Access Manager Console. The key steps of this task involve
creating an agent ID and an agent password.

With the Access Control tab selected click the name of the realm for which you would like to
create an agent profile.

Select the Subjects tab.

7

1

2

Creating a J2EE Agent Profile

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200952

http://docs.sun.com/doc/819-2137/gavwo?a=view
http://docs.sun.com/doc/819-2137/gavwo?a=view

Select the Agent tab.

Click New.

Enter values for the following fields:
ID. Enter the name or identity of the agent. This is the agent profile name, which is the name the
agent uses to log into Access Manager. Multi-byte names are not accepted.

Password. Enter the agent password. This password must be different than the password used
by the agent during LDAP authentication.

Password (confirm). Confirm the password.

Device Status. Select the device status of the agent. The default status is Active. If set to Active,
the agent will be able to authenticate to and communicate with Access Manager. If set to
Inactive, the agent will not be able to authenticate to Access Manager.

Click Create.
The list of agents appears.

(Optional) If you desire, add a description to your newly created agent profile:

a. Click the name of your newly created agent profile from the agent list.

b. In the Description field, enter a brief description of the agent.
For example, you can enter the agent instance name or the name of the application it is
protecting.

c. Click Save.

3

4

5

6

7

Creating a J2EE Agent Profile

Chapter 2 • Vital Installation Information for a J2EE Agent in Policy Agent 2.2 53

54

Installing Policy Agent 2.2 for Apache Tomcat
6.0

Sun JavaTM System Access Manager Policy Agent 2.2 for Apache Tomcat 6.0, as with all J2EE
agents in the 2.2 release of Policy Agent, is installed from the command line using the
agentadmin program. For more information about the tasks you can perform with the
agentadmin program, see “Role of the agentadmin Program in a J2EE Agent for Policy Agent
2.2” on page 34.

Before reading this chapter or performing any of the tasks described within, thoroughly review
Chapter 2, “Vital Installation Information for a J2EE Agent in Policy Agent 2.2,” since various
key concepts are introduced in that chapter.

This chapter is organized into the following sections:

■ “Installation Related Information About Agent for Apache Tomcat 6.0” on page 56
■ “Preparing to Install Agent for Apache Tomcat 6.0” on page 57
■ “Launching the Installation Program of Agent for Apache Tomcat 6.0” on page 60
■ “Using the Installation Program of Agent for Apache Tomcat 6.0” on page 61

Before describing any task, this chapter provides you with installation-related information
specific to Apache Tomcat 6.0. The subsequent sections lead you through the pre—installation
and installation steps and describe how to view the installation log files. First, perform the
pre-installation (preparation) steps. Then, perform the installation, itself. The installation
process has two phases. The first phase of the installation includes launching the installation
program, which requires a directory to already have been selected for the agent files. The second
phase of the installation involves interacting with the installation program. During this phase,
the program prompts you step by step to enter information. Accompanying the prompts, are
explanations of the type of information you need to enter. After you complete the installation,
you can look at the installation log files.

Once you have completed the steps described in this chapter, complete the applicable
post-installation tasks described in Chapter 4, “Post-Installation Tasks of Policy Agent 2.2 for
Apache Tomcat 6.0.”

3C H A P T E R 3

55

Installation Related Information About Agent for Apache
Tomcat 6.0

The following sections provide important information about Policy Agent 2.2 for Apache
Tomcat 6.0 needed before you install the agent.

Supported Platforms and Compatibility of Agent for
Apache Tomcat 6.0
The following sections provide information about the supported platforms of Policy Agent 2.2
for Apache Tomcat 6.0 as well as the compatibility of this agent with Access Manager.

Platform and Version Support of Agent for Apache Tomcat 6.0
The following table presents the platforms supported by Policy Agent 2.2 for Apache Tomcat
6.0.

TABLE 3–1 Platform and Version Support of Agent for Apache Tomcat 6.0

Agent for
Supported Policy
Agent Version

Supported Access Manager
Versions Supported Platforms

Apache Tomcat 6.0 Version 2.2 Version 6.3 Patch 1 or
greater

Version 7

Version 7.1

SolarisTM Operating System (OS) for
the SPARC® platform,
versions 9 and 10

Solaris (OS) for x86 platforms,
versions 9, and 10

Red Hat Enterprise Linux Advanced
Server 4.0 and 5.0

Windows 2003, Enterprise Edition

Windows 2003, Standard Edition

Compatibility of Agent for Apache Tomcat 6.0 With Access Manager

Compatibility of Policy Agent 2.2 With Access Manager 7 and Access Manager
7.1.

All agents in the Policy Agent 2.2 release are compatible with Access Manager 7 and Access
Manager 7.1. Compatibility applies to both of the available modes of Access Manager: Realm
Mode and Legacy Mode.

Installation Related Information About Agent for Apache Tomcat 6.0

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200956

Install the latest Access Manager patches to ensure that all enhancements and fixes are applied.
For an example of Access Manager patches that can be installed, see the compatibility
information discussed in Sun Java System Access Manager Policy Agent 2.2 Release Notes.

Compatibility of Policy Agent 2.2 With Access Manager 6.3

Most agents in Policy Agent 2.2 are also compatible with Access Manager 6.3 Patch 1 or greater.
However, certain limitations apply. For more information, see “J2EE Agent Backward
Compatibility With Access Manager 6.3” on page 30.

Preparing to Install Agent for Apache Tomcat 6.0
Follow the specific steps outlined in the following section before you install the agent to reduce
the chance of complications occurring during and after the installation.

▼ To Prepare to Install Agent for Apache Tomcat 6.0
Perform the following pre-installation steps:

Ensure that the agent distribution files are properly unzipped on the Apache Tomcat 6.0
instance as described in the substeps that follow:

a. Create a directory in which to download the tomcat_v6_agent.zip file.

For example:
Agent_Home

b. Download the tomcat_v6_agent.zip file to the newly created directory.

c. From the newly created directory, unzip the tomcat_v6_agent.zip file using the
appropriate utility or command for your platform.

For example, on Solaris systems, issue the following:

unzip tomcat_v6_agent.zip

Ensure that Policy Agent 2.2 for Apache Tomcat 6.0 is supported on the desired platform as
listed in “Supported Platforms and Compatibility of Agent for Apache Tomcat 6.0”on page 56.

Install Apache Tomcat 6.0 if not already installed.

1

2

3

Preparing to Install Agent for Apache Tomcat 6.0

Chapter 3 • Installing Policy Agent 2.2 for Apache Tomcat 6.0 57

http://docs.sun.com/doc/819-2796

Caution – While the present release of Agent for Apache Tomcat 6.0 supports the .exe extension
of the Apache Tomcat 6.0 bits, an extra task is required to make the installation work. For those
instructions, see “(Conditional) To Use the .exe Version of Apache Tomcat 6.0 Server” on
page 59.

The extra task is unnecessary if you use the .zip files or .gz files. For example, for version
6.0.14, you could download either of the following compressed files and perform the
installation without having to implement the extra task:

apache-tomcat-6.0.14.zip

apache-tomcat-6.0.14.tar.gz

Compressed files for Apache Tomcat 6.0 as well as installation-related documentation are
available at the Apache web site at http://apache.org/

(Conditional) If the Apache Tomcat 6.0 instance on which you are about to install the agent is
running, shut it down.

Create a valid agent profile in Access Manager Console if one has not already been created.

For information on how to create an agent profile, see “Creating a J2EE Agent Profile” on
page 52.

To avoid a misconfiguration of the agent, ensure that you know the exact ID and password used
to create the agent profile. You must enter the agent profile password correctly in the next step
and you must enter the agent profile ID correctly when installing the agent.

Create a text file and add the agent profile password to that file.

Ensure that this file is located in a secure directory of your choice. You will refer to this file
during the agent installation process.

With the agent profile password in this file, stored in a secure location, you do not need to enter
sensitive information in the console. A valid password file can have only one line that contains
the agent profile password.

(On Red Hat Enterprise Linux Advanced Server only) Ensure that the Sun Microsystems javafile
is configured to be retrieved instead of the Red Hat javafile.

You can achieve this using various methods. Pick the method of choice. The following is an
example of how you can accomplish this:

Set the JAVA_HOME environment variable to point to the Sun Microsystems java file. The
location varies, but the following example illustrates a feasible location for this file:
/share/builds/components/jdk/1.5.0_06/Linux

4

5

6

7

Preparing to Install Agent for Apache Tomcat 6.0

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200958

http://apache.org/

▼ (Conditional) To Use the .exeVersion of Apache
Tomcat 6.0 Server
As described in “To Prepare to Install Agent for Apache Tomcat 6.0” on page 57, you can install
Agent for Apache Tomcat 6.0 on a .exe version of Apache Tomcat 6.0. However, you must
implement the steps in this task prior to installing the agent for the deployment to work.

The Apache Tomcat 6.0 bits with the .exe extension do not contain certain files (scripts, JAR
files, etc.) required by the agent. Therefore, you must copy the required files from the .zip
bundle to the Apache Tomcat 6.0 installation base.

Download the .exe and the .zip versions of Apache Tomcat 6.0.
For example, you could download the two following Apache Tomcat 6.0 versions:

■ apache-tomcat-6.0.14.exe

■ apache-tomcat-6.0.14.zip

Install Apache Tomcat 6.0 using the .exe version.
If the version of Apache Tomcat 6.0 is indeed 6.0.14, the following would be a feasible location
for CATALINA_HOME:
/opt/apache-tomcat-6.0.14

In a directory separate from the .exedistribution, unzip the apache-tomcat-6.0.14.zip file.

Copy the following scripts from the unzipped bundle to the bin directory of the installation
(${CATALINA_HOME}/bin):
catalina-tasks.xml

catalina.bat

catalina.sh

commons-daemon.jar

cpappend.bat

digest.bat

digest.sh

jsvc.tar.gz

service.bat

setclasspath.bat

setclasspath.sh

shutdown.bat

shutdown.sh

startup.bat

startup.sh

tomcat-native.tar.gz

tool-wrapper.bat

tool-wrapper.sh

1

2

3

4

Preparing to Install Agent for Apache Tomcat 6.0

Chapter 3 • Installing Policy Agent 2.2 for Apache Tomcat 6.0 59

version.bat

version.sh

Note – After you have implemented this task, the best practice is to start and stop the Apache
Tomcat 6.0 instance using the command line since problems have occurred in this scenario
when attempting to stop and start the server via services.

At this point, you can install Agent for Apache Tomcat 6.0.

Launching the Installation Program of Agent for Apache
Tomcat 6.0

Once you have performed all the pre-installation steps, you can launch the installation program
as described in the following subsection.

▼ To Launch the Installation Program of Agent for
Apache Tomcat 6.0
To launch the installation program, perform the following steps:

Change to the following directory:
PolicyAgent-base/bin

This directory contains the agentadmin program, which is used for installing a J2EE agent and
for performing other tasks. For more information on the agentadmin program, see “Role of the
agentadmin Program in a J2EE Agent for Policy Agent 2.2” on page 34.

Issue the following command:
./agentadmin --install

(Conditional) If you receive license agreement information, accept or reject the agreement
prompts. If you reject any portion of the agreement, the program will end.
The license agreement is displayed only during the first run of the agentadmin program.

Next Steps

1

2

3

Launching the Installation Program of Agent for Apache Tomcat 6.0

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200960

Using the Installation Program of Agent for Apache Tomcat
6.0

After you issue the agentadmin command and accept the license agreement (if necessary) the
installation program appears, prompting you for information.

The steps in the installation program are displayed in this section in an example interaction.
Your answers to prompts can differ slightly or greatly from this example depending upon your
specific deployment. In the example, most of the defaults have been accepted. This example is
provided for your reference and does not necessarily indicate the precise information you
should enter.

The following bulleted list provides key points about the installation program.

■ Each step in the installation program includes an explanation that is followed by a more
succinct prompt.

■ For most of the steps you can type any of the following characters to get the results
described:

? Type the question mark to display Help information for that specific step.

< Type the left arrow symbol to go back to the previous interaction.

! Type the exclamation point to exit the program.
■ Most of the steps provide a default value that can be accepted or replaced. If a default value is

correct for your site, accept it. If it is not correct, enter the correct value.

About Installation Prompts in Agent for Apache
Tomcat 6.0
The following list provides information about specific prompts in the installation. Often the
prompt is self explanatory. However, at other times you might find the extra information
presented here to be very helpful. This extra information is often not obvious. Study this section
carefully before issuing the agentadmin --install command.

The Deployment URI for the Agent Application
The deployment URI for the agent application is required for the agent to perform necessary
housekeeping tasks such as registering policy and session notifications, legacy browser
support, and CDSSO support. Accept /agentapp as the default value for this interaction.
Once the installation is completed, browse the directory PolicyAgent-base/etc. Use the
agentapp.war file to deploy the agent application in the application container. Please note
that the deployment URI for agent application during install time should match the
deployment URI for the same application when deployed in the J2EE container.

Using the Installation Program of Agent for Apache Tomcat 6.0

Chapter 3 • Installing Policy Agent 2.2 for Apache Tomcat 6.0 61

The Encryption Key
This key is used to encrypt sensitive information such the passwords. The key should be at
least 12 characters long. A key is generated randomly and provided as the default. You can
accept the random key generated by the installer or create your own using the .agentadmin
--getEncryptKey command.

For information about creating a new encryption key, see “agentadmin --getEncryptKey”
on page 42.

The Agent Profile Name
An agent profile should have been created as a pre-installation step. The creation of the agent
profile is mentioned in that section. For the pre-installation steps, see “Preparing to Install
Agent for Apache Tomcat 6.0” on page 57. For the actual information on creating an agent
profile, see “Creating a J2EE Agent Profile” on page 52.

In summary, the J2EE agent communicates with Access Manager with a specific ID and
password created through an agent profile using Access Manager Console. For J2EE agents,
the creation of an agent profile is mandatory. Access Manager uses the agent profile to
authenticate an agent. This is part of the security infrastructure.

The J2EE Password File
The J2EE password file should have been created as a pre-installation step. For the
pre-installation steps, see “Preparing to Install Agent for Apache Tomcat 6.0” on page 57.

When the installation program prompts you for the password for the agent, enter the fully
qualified path to this password file.

After you have completed all the steps, a summary of your responses appears followed by
options that allow you to navigate through those responses to accept or reject them.

When the summary appears, note the agent instance name, such as agent-001. You might be
prompted for this name during the configuration process.

About the options, the default option is 1, Continue with Installation.

■ If you are satisfied with the summary, choose 1 (the default).
■ If you want to edit input from the last interaction, choose 2.
■ If you want to edit input starting at the beginning of the installation program, choose 3.
■ If you want to exit the installation program without installing, choose 4.

You can edit your responses as necessary, return to the options list, and choose option 1 to
finally process your responses.

Using the Installation Program of Agent for Apache Tomcat 6.0

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200962

Example of Installation Program Interaction in Agent
for Apache Tomcat 6.0
The following example is a sample installation snapshot of Policy Agent 2.2 for Apache Tomcat
6.0. By no means does this sample represent a real deployment scenario.

The section following this example, “Implications of Specific Deployment Scenarios in Agent
for Apache Tomcat 6.0” on page 66, provides a short explanation about installing a J2EE agent
on multiple Apache Tomcat 6.0 instances. If your deployment includes multiple instances of the
deployment container, you might want to review that section before proceeding with the agent
installation. See “Installing a J2EE Agent on Multiple Apache Tomcat 6.0 Instances” on
page 66.

**

Welcome to the Access Manager Policy Agent for Apache Tomcat 6.0 Servlet/JSP

Container

**

Enter the complete path to the directory which is used by Tomcat Server to

store its configuration Files. This directory uniquely identifies the

Tomcat Server instance that is secured by this Agent.

[? : Help, ! : Exit]

Enter the Tomcat Server Config Directory Path

[/opt/apache-tomcat-6.0.14/conf]:

Enter the fully qualified host name of the server where Access Manager

Services are installed.

[? : Help, < : Back, ! : Exit]

Access Manager Services Host: amHost.example.com

Enter the port number of the Server that runs Access Manager Services.

[? : Help, < : Back, ! : Exit]

Access Manager Services port [80]:

Enter http/https to specify the protocol used by the Server that runs Access

Manager services.

[? : Help, < : Back, ! : Exit]

Access Manager Services Protocol [http]:

Enter the Deployment URI for Access Manager Services.

[? : Help, < : Back, ! : Exit]

Using the Installation Program of Agent for Apache Tomcat 6.0

Chapter 3 • Installing Policy Agent 2.2 for Apache Tomcat 6.0 63

Access Manager Services Deployment URI [/amserver]:

Enter the fully qualified host name on which the Application Server

protected by the agent is installed.

[? : Help, < : Back, ! : Exit]

Enter the Agent Host name: agentHost.example.com

$CATALINA_HOME environment variable is the root of the tomcat

installation.

[? : Help, < : Back, ! : Exit]

Enter the $CATALINA_HOME environment variable: /opt/apache-tomcat-6.0.14/

Choose yes to deploy the policy agent in the global web.xml file.

[? : Help, < : Back, ! : Exit]

Install agent filter in global web.xml ? [true]:

Enter the preferred port number on which the application server provides its

services.

[? : Help, < : Back, ! : Exit]

Enter the port number for Application Server instance [80]:

Select http or https to specify the protocol used by the Application server

instance that will be protected by Access Manager Policy Agent.

[? : Help, < : Back, ! : Exit]

Enter the Preferred Protocol for Application Server instance [http]:

Enter the deployment URI for the Agent Application. This Application is used

by the agent for internal housekeeping.

[? : Help, < : Back, ! : Exit]

Enter the Deployment URI for the Agent Application [/agentapp]:

Enter a valid Encryption Key.

[? : Help, < : Back, ! : Exit]

Enter the Encryption Key [kPd9i5QsulOzHqOT9q1vvzuHC2RNo9Sx]:

Enter a valid Agent profile name. Before proceeding with the agent

installation, please ensure that a valid Agent profile exists in Access

Manager.

[? : Help, < : Back, ! : Exit]

Enter the Agent Profile name: MyAgent

Using the Installation Program of Agent for Apache Tomcat 6.0

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200964

Enter the path to a file that contains the password to be used for identifying

the Agent.

[? : Help, < : Back, ! : Exit]

Enter the path to the password file: /tmp/agentpass.txt

SUMMARY OF YOUR RESPONSES

Tomcat Server Config Directory : /opt/apache-tomcat-6.0.14/conf

Access Manager Services Host : amHost.example.com

Access Manager Services Port : 80

Access Manager Services Protocol : http

Access Manager Services Deployment URI : /amserver

Agent Host name : nicp226.india.sun.com

$CATALINA_HOME environment variable : /opt/apache-tomcat-6.0.14/

Tomcat global web.xml filter install : true

Application Server Instance Port number : 80

Protocol for Application Server instance : http

Deployment URI for the Agent Application : /agentapp

Encryption Key : kPd9i5QsulOzHqOT9q1vvzuHC2RNo9Sx

Agent Profile name : MyAgent

Agent Profile Password file name : /tmp/agentpass.txt

Verify your settings above and decide from the choices below.

1. Continue with Installation

2. Back to the last interaction

3. Start Over

4. Exit

Please make your selection [1]: 1

Updating the /opt/apache-tomcat-6.0.14/bin/setclasspath.sh script with

the Agent classpath ...DONE.

Creating directory layout and configuring Agent file for Agent_001

instance ...DONE.

Reading data from file /tmp/agentpass.txt and encrypting it ...DONE.

Generating audit log file name ...DONE.

Creating tag swapped AMAgent.properties file for instance Agent_001 ...DONE.

Creating a backup for file /opt/apache-tomcat-6.0.14/conf/server.xml ...DONE.

Creating a backup for file /opt/apache-tomcat-6.0.14/conf/web.xml ...DONE.

Using the Installation Program of Agent for Apache Tomcat 6.0

Chapter 3 • Installing Policy Agent 2.2 for Apache Tomcat 6.0 65

Adding SJS Tomcat Agent Realm to Server XML file :

/opt/apache-tomcat-6.0.14/conf/server.xml ...DONE.

Adding filter to Global deployment descriptor file :

/opt/apache-tomcat-6.0.14/conf/web.xml ...DONE.

Adding SJS Tomcat Agent Filter and Form login authentication to selected Web

applications ...DONE

Implications of Specific Deployment Scenarios in
Agent for Apache Tomcat 6.0
The following section refers to a specific deployment scenario involving Policy Agent 2.2 for
Apache Tomcat 6.0.

Installing a J2EE Agent on Multiple Apache Tomcat 6.0 Instances
Once a J2EE agent is installed for a particular Apache Tomcat 6.0 instance, you can install the
agent on another instance on the same machine by running the agentadmin --install
command. Once prompted to enter the appropriate server instance name, enter the server
configuration directory and unique instance name that will enable the agent to distinguish the
first instance from consecutive instances.

Summary of a J2EE Agent Installation in Policy Agent
2.2
At the end of the installation process, the installation program prints the status of the
installation along with the installed J2EE agent information. The information that the program
displays can be very useful. For example, the program displays the agent instance name, which
is needed when configuring a remote instance. The program also displays the location of
specific files, which can be of great importance. In fact, you might want to view the installation
log file once the installation is complete, before performing the post-installation steps as
described in Chapter 4, “Post-Installation Tasks of Policy Agent 2.2 for Apache Tomcat 6.0.”

The location of directories displayed by the installer are specific. However, throughout this
guide and specifically in Summary of Agent Installation shown in this section, PolicyAgent-base
is used to describe the directory where the distribution files are stored for a specific J2EE agent.

The following example serves as a quick description of the location of the J2EE agent base
directory (PolicyAgent-base) of Policy Agent 2.2 for Apache Tomcat 6.0.

Using the Installation Program of Agent for Apache Tomcat 6.0

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200966

EXAMPLE 3–1 Policy Agent Base Directory of Agent for Apache Tomcat 6.0

The following directory represents PolicyAgent-base of Agent for Apache Tomcat 6.0:

Agent-HomeDirectory/j2ee_agents/am_tomcat_agent

where Agent-HomeDirectory is the directory you choose in which to unpack the J2EE agent
binaries.

Information regarding the location of the J2EE agent base directory is explained in detail in
“Location of the J2EE Agent Base Directory in Policy Agent 2.2” on page 46.

The following type of information is printed by the installer:

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001

Agent Configuration file location:

PolicyAgent-base/Agent_001/config/AMAgent.properties
Agent Audit directory location:

PolicyAgent-base/Agent_001/logs/audit
Agent Debug directory location:

PolicyAgent-base/Agent_001/logs/debug

Install log file location:

PolicyAgent-base/logs/audit/install.log

Thank you for using Access Manager Policy Agent

Once the agent is installed, the directories shown in the preceding example are created in the
agent_00x directory, which for this example is specifically Agent_001. Those directories and
files are briefly described in the following paragraphs.

PolicyAgent-base/Agent_001/config/AMAgent.properties
Location of the J2EE agent AMAgent.properties configuration file for the agent instance.
Every instance of a J2EE agent has a unique copy of this file. You can configure this file to
meet your site's requirements. For more information, see the following sections:
■ Appendix B, “J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2”
■ “Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration

File” on page 81

PolicyAgent-base/Agent_001/logs/audit
Location of the J2EE agent local audit trail.

PolicyAgent-base/Agent_001/logs/debug
Location of all debug files required to debug an agent installation or configuration issue.

Using the Installation Program of Agent for Apache Tomcat 6.0

Chapter 3 • Installing Policy Agent 2.2 for Apache Tomcat 6.0 67

PolicyAgent-base/logs/audit/install.log
Location of the file that has the agent install file location. If the installation failed for any
reason, you can look at this file to diagnose the issue.

Using the Installation Program of Agent for Apache Tomcat 6.0

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200968

Post-Installation Tasks of Policy Agent 2.2 for
Apache Tomcat 6.0

This chapter provides information about configuration and other post-installation
considerations and tasks as follows:
■ “Common Post-Installation Steps for All J2EE Agents in Policy Agent 2.2” on page 69
■ “Post-Installation Steps Specific to Agent for Apache Tomcat 6.0” on page 71
■ “Conditional Post-Installation Steps for J2EE Agents in Policy Agent 2.2” on page 73

After completing the applicable tasks described in this chapter, perform the tasks to configure
the agent to your site's specific needs as explained in Chapter 5, “Managing Policy Agent 2.2 for
Apache Tomcat 6.0.”

Common Post-Installation Steps for All J2EE Agents in Policy
Agent 2.2

The tasks described in this section apply to all J2EE agent installations.

Updating the Agent Profile for J2EE Agents in Policy
Agent 2.2
This procedure is not required. The agent profile is created and updated in Access Manager
Console. The agent profile should originally be created prior to installing an agent. However,
after you install a J2EE agent, you can update the agent profile at anytime. If you do update the
agent profile in Access Manager Console, you must then configure the J2EE agent accordingly
as described in this section.

▼ To Update the Agent Profile for J2EE Agents in Policy Agent 2.2
Change the agent profile in Access Manager using Access Manager Console. For more
information about the agent profile, see “Creating a J2EE Agent Profile” on page 52.

4C H A P T E R 4

Before You Begin

69

Change the password in the password file to match the new password you just created in Access
Manager Console as a part of the agent profile.
The password file should originally have been created as a J2EE agent pre-installation task. For
more information about pre-installation, see“Preparing to Install Agent for Apache Tomcat
6.0” on page 57.

In the command line, issue the agentadmin --encrypt command to encrypt the new password.
For more information on this command, see “agentadmin --encrypt” on page 41.

Access the J2EE agent AMAgent.properties configuration file at the following location:
PolicyAgent-base/AgentInstance-Dir/config

In this configuration file, edit the property for the agent ID to match the new ID in the agent
profile as follows:
com.sun.identity.agents.app.username = agentID

where agentID represents the new agent ID that you created for the agent profile in Access
Manager Console.

Edit the property for the agent password as follows:
com.iplanet.am.service.secret = encryptedPassword

where encryptedPassword represents the new encrypted password you created when you issued
the agentadmin --encrypt command.

Restart the J2EE agent container.
The container needs to be restarted because neither property that you edited in this task is
hot-swap enabled.

Deploying the Agent Application for J2EE Agents in
Policy Agent 2.2
The task described in this section is required. Deploy the URI for the agent application using the
deployment container. The agent application is a housekeeping application used by the agent
for notifications and other internal functionality. This application is bundled with the agent
binaries and can be found at the following location:

PolicyAgent-base/etc/agentapp.extension

where extension refers to the .war extension or the .ear extension. The extension varies
depending on the deployment container.

For more information about the Policy Agent base directory (PolicyAgent-base), see “J2EE
Agent Directory Structure in Policy Agent 2.2” on page 46.

1

2

3

4

5

6

Common Post-Installation Steps for All J2EE Agents in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200970

The agentapp application has to be deployed as a post installation step. In order for the agent to
function correctly, this application must be deployed on the agent-protected deployment
container instance using the same URI that was supplied during the agent installation process
(optionally, you can add a hyper link to and from the relevant prompt). For example during the
installation process, if you entered /agentapp as the deployment URI for the agent application,
then use that same context path to deploy the .war or .ear file in the deployment container.

Using the administration console or command-line utilities of your deployment container,
deploy this application using Application Context Path as the URI specified during agent
installation.

Post-Installation Steps Specific to Agent for Apache Tomcat
6.0

Once you have installed Policy Agent 2.2 for Apache Tomcat 6.0 and you have performed the
post-installation steps that apply to all J2EE agents in the Policy Agent 2.2 release, complete the
following agent-specific steps.

Installing the Agent Filter for the Deployed
Application on Agent for Apache Tomcat 6.0
The agent filter can be installed by modifying the deployment descriptor of the application that
needs to be protected.

▼ To Install the Agent Filter for the Deployed Application on Agent for
Apache Tomcat 6.0

Note – By default, only the Manager web application and the administration web application are
protected when the agent filter is in the J2EE_POLICY mode.

The following steps explain how to install the agent filter for the application you want the agent
to protect:

To install the agent filter, ensure that the application is not currently deployed on Apache
Tomcat 6.0.
If it is currently deployed, remove it before proceeding any further.

Create the necessary backup files for the deployed application's deployment descriptors.
Since you will modify the deployment descriptor in the next step, creating backup files at this
point is important.

1

2

Post-Installation Steps Specific to Agent for Apache Tomcat 6.0

Chapter 4 • Post-Installation Tasks of Policy Agent 2.2 for Apache Tomcat 6.0 71

(Conditional) If the agent filter is not deployed in the global deployment descriptor, modify the
deployed application's deployment descriptor by editing the application's web.xmldescriptor.

a. Add the <filter> element by adding the following lines:
<filter>

<filter-name>Agent</filter-name>

<display-name>Agent</display-name>

<description>Identity Server Policy Agent Filter</description>

<filter-class>com.sun.identity.agents.filter.AmAgentFilter</filter-class>

</filter>

b. Add the <filter-mapping> element by adding the following lines:
<filter-mapping>

<filter-name>Agent</filter-name>

<url-pattern>/*</url-pattern>

<dispatcher>REQUEST</dispatcher>

<dispatcher>INCLUDE</dispatcher>

<dispatcher>FORWARD</dispatcher>

<dispatcher>ERROR</dispatcher>

</filter-mapping>

If you want to protect your application with J2EE declarative security, you must first perform
the tasks described in “Configuring J2EE Declarative Security for Apache Tomcat 6.0 Related
Web Applications” on page 73. You can also access the sample application in the
PolicyAgentBase/sampleapp directory to learn how to build and deploy an application. The
sampleapp directory is by no means a full fledged J2EE application. Rather it is a simple
application that provides you with a quick reference to application specific deployment
descriptors and various deployment modes of a J2EE agent. Once you successfully deploy the
sampleapp and test all of its features, you can use it as a reference to other applications that will
be protected by the J2EE agent.

Once the web.xml deployment descriptor is modified to reflect the new <DOCTYPE> and
<filter> elements, the agent filter is added to the application. You can now redeploy your
application on Apache Tomcat 6.0.

Note – Ensure that role-to-principal mappings in container specific deployment descriptors are
replaced with Access Manager roles or principals. You can retrieve Access Manager roles or
principals for Access Manager 7 by issuing the agentadmin --getUuid command. For more
information on the agentadmin --getUuid command, see “agentadmin --getUuid” on
page 43.

You can also retrieve the universal ID for the user (UUID) using Access Manager 7 Console to
browse the user profile.

3

Next Steps

Post-Installation Steps Specific to Agent for Apache Tomcat 6.0

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200972

Conditional Post-Installation Steps for J2EE Agents in Policy
Agent 2.2

Steps described in this section might be required, depending on your site's specific deployment.

Configuring J2EE Declarative Security for Apache
Tomcat 6.0 Related Web Applications
The role-to-principal mappings in Apache Tomcat 6.0 deployment descriptors must be
replaced with Access Manager roles or principals. The tasks described in this section include
steps for changing the deployment descriptors of the Manager web application, the
administration web application, and the host manager web application, thereby configuring
J2EE declarative security for these applications.

■ “To Create and Assign Access Manager Roles” on page 74
■ “To Allow Access Manager Users to Access the Manager Web Application” on page 74
■ “To Allow Access Manager Users to Access the Administration Web Application” on

page 76
■ “To Allow Access Manager Users to Access the Host Manager Web Application” on page 78

By default, Agent for Apache Tomcat 6.0 protects the Manager web application, the
administration web application, and the host manager web application with J2EE security. This
default configuration is established by the J2EE agent installer, which sets the agent filter mode
to J2EE_POLICY in the J2EE agent AMAgent.properties configuration file as follows:

com.sun.identity.agents.config.Filter.mode = J2EE_POLICY

To protect the Manager web application, the administration web application, and the host
manager web application with a filter mode other than J2EE_POLICY, change or add to the
preceding setting accordingly in order to change the filter mode for these applications to
URL_POLICY mode or ALL mode. The following example demonstrates these three
applications set to specific filter modes. The administration web application is set to
URL_POLICY mode while the Manager web application and the host manager web application
are set to ALL mode.

com.sun.identity.agents.config.Filter.mode[admin] = URL_POLICY

com.sun.identity.agents.config.Filter.mode[manager] = ALL

com.sun.identity.agents.config.Filter.mode[host-manager] = ALL

After you have set the filter mode for each of these applications to the mode that best suits your
site's deployment, perform the steps detailed in the following task descriptions.

Conditional Post-Installation Steps for J2EE Agents in Policy Agent 2.2

Chapter 4 • Post-Installation Tasks of Policy Agent 2.2 for Apache Tomcat 6.0 73

▼ To Create and Assign Access Manager Roles
Using Access Manager Console, create Administrator users and Manager users as outlined in
this task. For detailed information about Access Manager users and roles, see Sun Java System
Access Manager 7 2005Q4 Administration Guide.

Create the following roles: an administer role named admin and a manager role named manager.
The tasks that follow explain how to edit the appropriate web.xml files in Apache Tomcat 6.0 to
add these role names. If the role names in Access Manager do not match role names in the
respective web.xml files, the result is that access is denied to the respective Apache Tomcat 6.0
application.

Create and assign users to the newly created roles.
Users assigned to the admin role can log in to the administration web application and the host
manager web application. Users assigned the manager role can log in to the Manager web
application.

▼ To Allow Access Manager Users to Access the Manager
Web Application
Using the Apache Tomcat 6.0 instance, add the appropriate users and roles to the Manager web
application's web.xml file as described in this task. The method for adding users to the web.xml
file is not the same for Access Manager 7 and Access Manager 6.3. The differences relate to how
user and role information is retrieved. Access Manager 7 takes advantage of a universal ID
(UUID) system of identification while Access Manager 6.3 uses the distinguished name (DN) of
users. Universal ID retrieval is achieved with the agentadmin program. For more information
about the specific agentadmin commands to use, see “agentadmin --getUuid” on page 43.

Change to the following directory:
$CATALINA_HOME/server/webapps/manager/WEB-INF

Open the web.xmlfile.

Retrieve user and role information for the Manager role using the appropriate method
according to the version of Access Manager you are configuring as follows:
Access Manager 7 Use Universal ID for identification information.

Access Manager 6.3 Patch 1 or Greater Use DN for identification information.

Delete the Manager security role.
This role is defined in the <role-name> element under the <security-role> element.

1

2

1

2

3

4

Conditional Post-Installation Steps for J2EE Agents in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200974

http://docs.sun.com/doc/819-2137
http://docs.sun.com/doc/819-2137

Create a new Manager security role using the user and role information created previously in
Access Manager as described in “To Create and Assign Access Manager Roles”on page 74.
The following examples demonstrate how to create a new Manager security role for Access
Manager 7 and Access Manager 6.3 Patch 1 or greater.

■ Security Role Element for Access Manager 7
For this example, the following values apply to the universal ID for the Manager role in
Access Manager 7, where realmName is a representation of organization name:

userName id=manager

IdType ou=role

realmName dc=subexample,dc=example,dc=com

The preceding values are used in the following example of a universal ID for the Manager
role in Access Manager 7:

id=manager,ou=role,dc=subexample,dc=example,dc=com

The following is an example of a security role element, given the preceding universal ID
information for the Manager role in Access Manager 7:

<security-role>

<role-name>id=manager,ou=role,dc=subexample,dc=example,dc=com</role-name>

</security-role>

■ Security Role Element for Access Manager 6.3 Patch 1 or Greater
The following is an example of a role DN for the Manager role in Access Manager 6.3 where
the organization is represented by dc=subexample,dc=example,dc=com:

cn=manager,ou=groups,dc=subexample,dc=example,dc=com

The following is an example of a security role element, given the preceding DN information
for the Manager role in Access Manager 6.3:

<security-role>

<role-name>cn=manager,ou=groups,dc=subexample,dc=

example,dc=com</role-name></security-role>

Replace the Manager role defined in the <role-name> element under the <auth-constraint>
element.
This Manager role should be replaced with the contents of the <role-name> element as
described in the previous step and demonstrated as follows:

■ Manager Role for Access Manager 7

5

6

Conditional Post-Installation Steps for J2EE Agents in Policy Agent 2.2

Chapter 4 • Post-Installation Tasks of Policy Agent 2.2 for Apache Tomcat 6.0 75

After the Manager role definition has been replaced, the <auth-constraint> element for
the Manager role in Access Manager 7 for the dc=subexample,dc=example,dc=com realm
would appear as such:

<auth-constraint>

<role-name>id=manager,ou=role,dc=subexample,dc=example,dc=com</role-name>

</auth-constraint>

■ Manager Role for Access Manager 6.3 Patch 1 or Greater
After the Manager role definition has been replaced, the <auth-constraint> element for
the Manager role in Access Manager 6.3 for the dc=subexample,dc=example,dc=com
organization would appear as such:

<auth-constraint>

<role-name>cn=manager,ou=groups,dc=subexample,dc=example,dc=com</role-name>

</auth-constraint>

▼ To Allow Access Manager Users to Access the
Administration Web Application
In the Apache Tomcat 6.0 instance, add the appropriate users and roles to the administration
web application's web.xml file as described in this task. This task is similar to the preceding task
in that the two tasks both apply to Access Manager 6.3 Patch 1 or greater and Access Manager 7.
Use the information in this task that applies to your site's deployment.

Change to the following directory:
$CATALINA_HOME/server/webapps/admin/WEB-INF

Open the web.xmlfile.

Retrieve user and role information for the Administrator role using the appropriate method
according to the version of Access Manager you are configuring:
Access Manager 7 Use Universal ID for identification information.

Access Manager 6.3 Patch 1 or Greater Use DN for identification information.

Delete the Administrator security role.
This role is defined in the <role-name> element under the <security-role> element.

1

2

3

4

Conditional Post-Installation Steps for J2EE Agents in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200976

Create a new Administrator security role using the user and role information created previously
in Access Manager as described in “To Create and Assign Access Manager Roles”on page 74.
The following examples demonstrate how to create a new Administrator security role for
Access Manager 7 and Access Manager 6.3 Patch 1 or greater.

■ Security Role Element for Access Manager 7
For this example, the following values apply to the universal ID for the Administrator role in
Access Manager 7, where realmName is a representation of organization name:

userName id=admin

IdType ou=role

realmName dc=subexample,dc=example,dc=com

The preceding values are used in the following example of a universal ID for the
Administrator role in Access Manager 7:

id=admin,ou=role,dc=subexample,dc=example,dc=com

The following is an example of a security role element, given the preceding universal ID
information for the Administrator role in Access Manager 7:

<security-role>

<role-name>id=admin,ou=role,dc=subexample,dc=example,dc=com</role-name>

</security-role>

■ Security Role Element for Access Manager 6.3 Patch 1 or Greater
The following is an example of a role DN for the Administrator role in Access Manager 6.3
where the organization is represented by dc=subexample,dc=example,dc=com:

cn=admin,ou=groups,dc=subexample,dc=example,dc=com

The following is an example of a security role element given the preceding DN information
for the Administrator role in Access Manager 6.3:

<security-role>

<role-name>cn=admin,ou=groups,dc=subexample,dc=

example,dc=com</role-name></security-role>

Replace the Administrator role defined in the <role-name> element under the
<auth-constraint> element.
This Administrator role should be replaced with the contents of the <role-name> element as
described in the previous step and demonstrated as follows:

■ Administrator Role for Access Manager 7

5

6

Conditional Post-Installation Steps for J2EE Agents in Policy Agent 2.2

Chapter 4 • Post-Installation Tasks of Policy Agent 2.2 for Apache Tomcat 6.0 77

After the Administrator role definition has been replaced, the <auth-constraint> element
for the Administrator role in Access Manager 7 for the
dc=subexample,dc=example,dc=com realm would appear as such:

<auth-constraint>

<role-name>id=admin,ou=role,dc=subexample,dc=example,dc=com</role-name>

</auth-constraint>

■ Administrator Role for Access Manager 6.3 Patch 1 or Greater
After the Administrator role definition has been replaced, the <auth-constraint> element
for the Administrator role in Access Manager 6.3 for the
dc=subexample,dc=example,dc=com organization would appear as such:

<auth-constraint>

<role-name>cn=admin,ou=groups,dc=subexample,dc=example,dc=com</role-name>

</auth-constraint>

▼ To Allow Access Manager Users to Access the Host
Manager Web Application

Follow similar steps to those described in “To Allow Access Manager Users to Access the
Administration Web Application”on page 76 by editing the web.xmlfile of the host manager
web application at the following location:
$CATALINA_HOME/server/webapps/host-manager/WEB-INF

All the remaining steps for configuring the host manager web application with declarative
security are the same as for the administration web application.

Since both applications are accessible by users assigned to the role admin, the web.xml files for
both applications must be edited in the same manner.

Creating the Necessary URL Policies
If the agent is installed and configured to operate in the URL_POLICY mode or ALL mode, the
appropriate URL policies must be created. For instance, if Apache Tomcat 6.0 is available on
port 8080 using HTTP protocol, at least a policy must be created to allow access to the following
resource:

http://myhost.mydomain.com:8080/sampleApp/

where sampleApp is the context URI for the sample application.

●

Conditional Post-Installation Steps for J2EE Agents in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200978

If no policies are defined and the agent is configured to operate in the URL_POLICY mode or
ALL mode, then no user is allowed access to Apache Tomcat 6.0 resources. See Sun Java System
Access Manager 7 2005Q4 Administration Guide to learn how to create these policies using the
Access Manager Console or command-line utilities.

Conditional Post-Installation Steps for J2EE Agents in Policy Agent 2.2

Chapter 4 • Post-Installation Tasks of Policy Agent 2.2 for Apache Tomcat 6.0 79

http://docs.sun.com/doc/819-2137
http://docs.sun.com/doc/819-2137

80

Managing Policy Agent 2.2 for Apache Tomcat
6.0

After installing Policy Agent 2.2 for Apache Tomcat 6.0 and performing the required
post-installation steps, you must adjust the agent configuration to your site's specific
deployment. This chapter describes how to modify the agent accordingly.

This chapter focuses on methods available for managing this J2EE agent, specifying the features
you can configure and the tasks you can perform using each method as follows:

■ “Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File”
on page 81

■ “Key Features and Tasks Performed With the J2EE agentadmin Program” on page 105
■ “Key Features and Tasks Performed With the J2EE Agent API” on page 106

Key Features and Tasks Performed With the J2EE
AMAgent.propertiesConfiguration File

The J2EE agent AMAgent.properties configuration file is a text file of configuration properties
that you can modify to change J2EE agent behavior.

Caution – The content of the J2EE agent AMAgent.properties configuration file is very sensitive.
Changes made can result in changes in how the agent works. Errors made can cause the agent to
malfunction.

This section describes the most important details of the J2EE agent AMAgent.properties
configuration file, such as how specific properties can be modified to produce specific results.
The topics described are typically those of greatest interest in real-world deployment scenarios.
This section does not cover every property in the file. For a list and description of every
property, see Appendix B, “J2EE Agent AMAgent.properties Configuration File in Policy
Agent 2.2.”

5C H A P T E R 5

81

The following is the location of the AMAgent.properties file;

PolicyAgent-base/AgentInstance-Dir/config

For more information about the Policy Agent 2.2 directory structure, see “J2EE Agent Directory
Structure in Policy Agent 2.2” on page 46.

■ “Hot-Swap Mechanism in J2EE Agents” on page 82
■ “List Constructs in the J2EE AMAgent.properties Configuration File” on page 83
■ “Map Constructs in the J2EE AMAgent.properties Configuration File” on page 84
■ “J2EE Property Configuration: Application Specific or Global” on page 85
■ “J2EE Agent Filter Modes” on page 86
■ “Enabling Web-Tier Declarative Security in J2EE Agents” on page 88
■ “Enabling Failover in J2EE Agents” on page 93
■ “Login Attempt Limit in J2EE Agents” on page 95
■ “Redirect Attempt Limit in J2EE Agents” on page 96
■ “Not-Enforced URI List in J2EE Agents” on page 96
■ “Fetching Attributes in J2EE Agents” on page 97
■ “Configuring FQDN Handling in J2EE Agents” on page 102
■ “Using Cookie Reset Functionality in J2EE Agents” on page 103
■ “Enabling Port Check Functionality in J2EE Agents” on page 104

Hot-Swap Mechanism in J2EE Agents
Certain property keys in the J2EE agent AMAgent.properties configuration file are hot-swap
enabled. The value for these keys, when altered, are dynamically loaded by the agent such that it
is not necessary to restart the deployment container for these changes to take effect. However, in
cases where the property is explicitly identified as not enabled for hot-swap or in cases when the
hot-swap mechanism is disabled on the system, the deployment container must be restarted for
the changes to take effect.

When the agent is deployed on a deployment container where Access Manager has been
configured, the hot-swap mechanism is disabled by default and cannot be used.

The hot-swap mechanism is controlled by the following configuration property:

com.sun.am.policy.config.load.interval

The valid values for this property is any unsigned integer including 0, which indicates the
amount of time in seconds after which the agent will check for changes to the configuration. A
setting of 0 disables the mechanism. By default, this mechanism is set to 0 and is, therefore,
disabled.

This mechanism is primarily provided to facilitate the development and testing of your
application in a controlled development or test environment. It is strongly recommended that

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200982

this feature be disabled for production systems to ensure optimal utilization of system
resources. Also, in a production system by disabling this feature, any accidental changes to the
agent configuration will not take effect until the deployment container has been restarted.

The property that controls the hot-swap mechanism itself is hot-swap enabled. This means that
if the hot-swap mechanism is enabled and you change the value of this property, the new value
will take effect after the last hot-swap load interval expires. This can be therefore used to
dynamically disable the entire hot-swap system. For example consider the following situation:

■ The deployment container is started with the load interval set to 10 seconds. Therefore,
changes made to the agent configuration are picked up by the agent every 10 seconds.

■ If you modify the load interval value while the deployment container is running and set it to
0, when the last load interval completes, the agent will pick up this new value. Since the value
is set to 0 the agent will disable the hot-swap mechanism for the entire system.

■ Once disabled, the configuration changes made in the J2EE agent AMAgent.properties
configuration file will not be sensed by the agent. Therefore, even if you reset the value of
this property now to any other number, it will not enable the hot-swap mechanism unless
the deployment container is restarted.

When the value of the load interval is set to 0 during the startup of the deployment container,
the hot-swap mechanism will be disabled and cannot be enabled without restarting the server
and ensuring that this value is set to a value greater than 0.

List Constructs in the J2EE AMAgent.properties
Configuration File
Certain property keys in the J2EE agent AMAgent.properties configuration file are specified as
lists. A list construct has the following format:

<key>[<index>] = <value>

key The configuration key (name of the configuration property)

index A positive number starting from 0 that increments by 1 for every value specified in
this list.

value One of the values specified in this list

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 83

Note – Properties that are specified in this manner must follow the preceding format, otherwise
they will be treated as invalid or missing properties.

More than one property can be specified for this key by changing the value of <index>. This
value must start from the number 0 and increment by 1 for each entry added to this list.

If certain indices are missing, those indices are ignored and the rest of the specified values are
loaded at adjusted list positions.

Duplicate index values result in only one value being loaded in the indexed or adjusted indexed
position.

EXAMPLE 5–1 Example of List Constructs in J2EE AMAgent.properties File

com.sun.am.policy.example.list[0] = value0

com.sun.am.policy.example.list[1] = value1

com.sun.am.policy.example.list[2] = value2

Map Constructs in the J2EE AMAgent.properties
Configuration File
Certain property keys in the J2EE agent are specified as maps. A map construct has the
following format:

<key>[<name>]=<value>

key The configuration key (name of the configuration property)

name A string that forms the lookup key as available in the map

value The value associated with the name in the map

Note – Properties that are specified in this manner must follow the preceding format, otherwise
they will be treated as invalid or missing properties.

For a given <name>, there may only be one entry in the configuration for a given configuration
key (<key>). If multiple entries with the same <name> for a given configuration key are present,
only one of the values will be loaded in the system and the other values will be discarded.

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200984

EXAMPLE 5–2 Example of Map Constructs in J2EE AMAgent.properties File

com.sun.am.policy.example.map[AL] = ALABAMA

com.sun.am.policy.example.map [AK] = ALASKA

com.sun.am.policy.example.map [AZ] = ARIZONA

J2EE Property Configuration: Application Specific or
Global
Certain property keys in the J2EE agent AMAgent.properties configuration file can be
configured for specific applications. Therefore, the agent can use different values of the same
property for different applications as defined in the configuration file. Properties that are not
configured for specific applications apply to all the applications on that deployment container.
Such properties are called global properties. An application specific property has the following
format:

<key>[<appname>]=<value>

key The configuration key (name of the configuration property)

appname The application name to which this configuration belongs. The application name
is the context path of the application without the leading forward slash character.
In case when the application has been deployed at the root-context of the server,
the application name should be specified as DefaultWebApp.

value The value used by the agent to protect the application identified by the given
application name

Note – When an application specific configuration is not present, the agent uses different
mechanisms to identify a default value. Configurations are possible where the default value is
used as the value specified for the same key without any application specific suffix
[<appname>]. The following settings for a single property serve as an example:

com.sun.identity.agents.config.example[Portal] = value1

com.sun.identity.agents.config.example[DefaultWebApp] = value2

com.sun.identity.agents.config.example = value3

The preceding example illustrates that for applications other than the ones deployed on the root
context and the context /Portal, the value of the property defaults to value3.

Application Specific configuration properties must follow the rules and syntax of the map
construct of configuration entries.

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 85

EXAMPLE 5–3 Example of Application Specific and Global Configuration

com.sun.identity.agents.config.example[Portal] = value1

com.sun.identity.agents.config.example[BankApp] = value2

com.sun.identity.agents.config.example[DefaultWebApp] = value3

J2EE Agent Filter Modes
The agent installation program and the J2EE agent AMAgent.properties configuration file
allow you to set the agent filter in one of the five available modes of operation. Depending upon
your security requirements, choose the mode that best suits your site's deployment. The
following configuration property is used to control the mode of the agent filter:

com.sun.identity.agents.config.filter.mode

The value for this property can be one of the following:

■ NONE

■ SSO_ONLY

■ J2EE_POLICY

■ URL_POLICY

■ ALL

Regardless of what mode the agent filter is operating in, the agent realm will continue to
function, if configured. This can therefore lead to a situation where the agent realm component
may malfunction or may result in the negative evaluation of J2EE security policies configured in
the application's deployment descriptors or being used through the J2EE programmatic
security API. To avoid this, you may disable the agent realm component, if necessary. The
sections that follow describe the different agent filter modes.

J2EE Agent Filter Mode-NONE
This mode of operation effectively disables the agent filter. When operating in this mode, the
agent filter allows all requests to pass through. However, if the logging is enabled, the agent filter
will still log all the requests that it intercepts.

Note – This mode is provided to facilitate development and testing efforts in a controlled
development or test environment. Do not to use this mode of operation in a production
environment at any time.

When the agent filter is operating in this mode, any declarative J2EE security policy or
programmatic J2EE security API calls will return a negative result regardless of the user.

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200986

J2EE Agent Filter Mode - SSO_ONLY
This is the least restrictive mode of operation for the agent filter. In this mode, the agent simply
ensures that all users who try to access protected web resources are authenticated using Access
Manager Authentication Service. In this mode of operation the agent realm is not used.

Note – When operating in this mode, any declarative J2EE security policy or programmatic J2EE
security API calls evaluated for the application will result in negative evaluation.

J2EE Agent Filter Mode - J2EE_POLICY
In this mode, the agent filter and agent realm work together with variousAccess Manager
services to ensure the correct evaluation of J2EE policies. These policies may be configured
using the declarative security in the application's deployment descriptors, or may be implicit in
the code of the application in the cases where it uses the J2EE programmatic security APIs. No
URL policies defined in Access Manager take effect in this mode of filter operation. When the
deployed application uses declarative security in the web-tier, you must configure the agent to
enable this feature. See “Enabling Web-Tier Declarative Security in J2EE Agents” on page 88
for more information on how to enable this feature. When running in the J2EE_POLICY mode,
the agent ensures that the security principal is set in the system for every authorized user access.
In the J2EE_POLICY mode, the agent will not enforce any applicable URL policies as defined in
Access Manager.

J2EE Agent Filter Mode - URL_POLICY
In this mode, the agent filter is used to enforce various URL policies that may be defined in
Access Manager. This mode does not require the agent realm to be functional.

Note – When the agent filter is in the URL_POLICY mode, the agent does not enforce any
applicable J2EE declarative security policies. Such policies along with any calls to J2EE
programmatic security API return negative results.

J2EE Agent Filter Mode - ALL
This is the most restrictive mode of the agent filter. In this mode, the filter enforces both J2EE
policies and URL policies as defined in Access Manager. This mode of operation requires that
the agent realm be configured in the deployment container. When running in the ALL mode,
the agent ensures that the security principal is set in the system for every authorized access.

This mode of operation is, with very few exceptions, the preferred mode for deployed
production systems.

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 87

Enabling Web-Tier Declarative Security in J2EE Agents
Certain applications might require the use of web-tier declarative security that enforces
role-based access control over web resources such as Servlets, JSPs, HTML files and any other
resource that can be represented as a URI. This type of security is enforced by adding
security-constraint elements to the deployed application’s web.xml deployment descriptor.

Typically security-constraint elements are tied with auth-constraint elements that
identify the role membership that will be enforced when a request for a protected resource is
made by the client browser. The following example illustrates this idea:

<security-constraint>

<web-resource-collection>

<web-resource-name>Report Servlet</web-resource-name>

<url-pattern>/ReportGenServlet</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>MANAGER</role-name>

</auth-constraint>

</security-constraint>

This fragment of deployment descriptor can be used to ensure that access to the report
generation servlet is allowed only to those users who are members of the role called Manager.

In order for such a construct to work, you must make the necessary modifications in the J2EE
agent AMAgent.properties configuration file to ensure it can identify and handle such
requests.

▼ To Enable J2EE Agents to Handle Security Constraint Settings

Ensure that a login-config element is specified for the web application that is being protected
and that the login-config element has the auth-method set to FORM.
The supporting form-login-config element is also required.

The form-login-page element of form-login-config should be added as one of the values for
the following property in the J2EE agent AMAgent.properties configuration file:
com.sun.identity.agents.config.login.form

As an example, consider the following login-config element of a protected application:
<login-config>

<auth-method>FORM</auth-method>

<form-login-config>

<form-login-page>/jsp/login.jsp</form-login-page>

1

2

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200988

<form-error-page>/block.html</form-error-page>

</form-login-config>

</login-config>

Notice how the form-login-page is specified for the supporting form-login-config element.
This value must be set for the following property in the J2EE agent AMAgent.properties
configuration file as shown:

com.sun.identity.agents.config.login.form[0] = /Portal/jsp/login.jsp

Notice that the value of the form-login-page as specified in the deployment descriptor is not
the same as what is specified in the J2EE agent AMAgent.properties configuration file. The
difference being that when you enter this value in the configuration file, you must prefix it with
the context path for the application on which this form-login-page is going to be used. In this
particular example, the context path of the application is “/Portal.”

Similarly, if you have more than one application deployed that require web-tier declarative
security, you must add their respective form-login-pages to the J2EE agent
AMAgent.properties configuration file. For example, other entries could be:

com.sun.identity.agents.config.login.error.uri[1] = /BankApp/SignOn

com.sun.identity.agents.config.login.error.uri[2] = /ERP/LoginServlet

Please ensure that each such element added to this list has a unique index entry. Having
duplicate index entries can result in the loss of data and consequently result in the malfunction
of the application.

Once you have configured the web application’s deployment descriptor to use the form-login
mechanism for web-tier declarative security and have added the full URI of the form-login-page
for each such application in the J2EE agent AMAgent.properties configuration file, the
web-tier declarative security is enabled for these applications.

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 89

Note –

■ When a protected application is configured for web-tier declarative security handling by the
agent, it must be redeployed with a form-login configuration as described in this section.
This configuration requires that two application resources be specified in the application’s
web.xml deployment descriptor: one for the form-login-page and the other for the
form-error-page. Regardless of whether the resource corresponding to the
form-login-page exists in the application or not (this depends on how the agent is
configured to handle the form-login requests), the resource corresponding to the
form-error-page must be present in the application. This resource is directly invoked by
the deployment container to indicate authentication failures and, optionally, authorization
failures. If the application does not contain a valid form-error-page matching the URI
specified in this deployment descriptor, it could result in HTTP 404 errors when the
container chooses to display this error page.

■ For applications that do not contain a form-login-page, you can specify any URI as long as
that URI does not conflict with any application resource and the matching value has been
added to the configuration property com.sun.identity.agents.config.login.form.

■ By default, the agent is configured to intercept all form-login requests and handle them
without invoking the actual form-login-page resource as specified in the web.xml of the
protected application. Thus, when using a default installation of the agent, the application is
not required to have a resource corresponding to the form-login-page element specified in
web.xml. This allows for the configuration of web-tier declarative security for applications
that were not designed to use the form-login mechanism and instead relied on other login
schemes available in J2EE specification. This behavior of the agent can be changed so that it
allows the form-login requests to be handled by actual resources that exist within the
application by changing the agent configuration properties as applicable. For details on how
this can be done, please refer to the section “Customizing Agent Response for Form Login”
on page 91.

■ If the agent filter is operating in the URL_POLICY mode, any necessary URL policies to
allow access to the form-error-page resource must be created for all users.

To further customize the behavior of the application when using web-tier declarative security,
see “Web-Tier Security Details” on page 90.

Web-Tier Security Details
When the deployment container gets a request for a resource that is protected by the web-tier
declarative security-constraint, it must evaluate the credentials of the user against the agent
realm to ensure that only authorized requests go through. In order to process such a request, the
deployment container requires the user to sign on using the specified form login page as
mentioned in the form-login-config element of the web.xml descriptor. Based on the
specification of the FORM authentication mechanism, it is required that the user submits a valid

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200990

user name as j_username and a valid password as j_password to the special URI
j_security_check using the HTTP POST method of form submission.

The agent, once configured to support web-tier declarative security for the given application
can isolate the request for accessing form-login-page and instead can stream out some data to
the client browser. This data contains the user’s login name and temporary encrypted password,
which in turn uses Javascript to do automatic form submission as required. This gives the user a
seamless single sign-on experience since the user does not have to re-login in order to access the
protected resources for a deployed application that uses web-tier declarative security.

By default, the content that the agent sends to the client browser on intercepting a request for
the form login page is read from the file called FormLoginContent.txt located in the locale
directory of the agent installation. This file contains the following HTML code:

<html>

<head>

<title>Security Check</title>

</head>

<body onLoad="document.security_check_form.submit()">
<form name="security_check_form" action="j_security_check" method="POST">

<input type="hidden" value="am.filter.j_username" name="j_username">
<input type="hidden" value="am.filter.j_password" name="j_password">

</form>

</body>

</html>

Before the agent streams out the contents of this file, it replaces all occurrences of the string
am.filter.j_username by the appropriate user name. Similarly, all occurrences of the string
am.filter.j_password are replaced by a temporary encrypted string that acts as a one-time
password for the user.

Customizing Agent Response for Form Login
The J2EE agent AMAgent.properties configuration file allows you to completely control the
content that is sent out to the user when the deployment container requires a form login from
the user.

Note – The ability to customize the agent response form login is not a feature whose purpose is
to change the form login page nor is the purpose of this feature to bypass the default Access
Manager login page.

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 91

Using the J2EE agent AMAgent.properties configuration file, you can customize the agent
response in the following ways:

▼ To Customize the Agent Response to Form Login

Modify the content of the FormLoginContent.txt file to suit your UI requirements as necessary.
Ensure that regardless of the modifications you make, the final file submits the j_username and
j_password to the action j_security_check via HTTP POST method.

(Conditional) You can specify the name of a different file using the property
com.sun.identity.agents.config.login.content.file in the J2EE agent
AMAgent.properties configuration file.
If you specify the file name, you must ensure that it exists within the locale directory of the
agent installation.

If you wish that this file be used from another directory, you can simply specify the full path to
this new file.

Ensure that regardless of the modifications you make, the final file submits the j_username and
j_password to the action j_security_check via HTTP POST method.

(Conditional) If you have more than one application and would like to have an
application-specific response to the form login requests, instruct the agent to allow the form
login request to proceed to the actual form login page.
This can be done by setting the value of the configuration property as
follows:com.sun.identity.agents.config.login.use.internal as false.

In this situation, you must ensure that the resource that receives this request extracts the
am.filter.j_username and am.filter.j_password from the HttpServletRequest as
attributes and uses that to ensure that eventually a submit of these values as j_username and
j_password is done to the action j_security_check via HTTP POST method.

The following JSP fragment demonstrates how this can be done:
<form action="j_security_check" method="POST">
<%

String user = (String) request.getAttribute("am.filter.j_username");
String password = (String) request.getAttribute("am.filter.j_password");

%>

Your username for login is: <%=user%>

Your password for login is: <%=password%>

<input type=hidden name="j_username" value="<%=user%>">
<input type=hidden name="j_password" value="<%=password%>">
<input type="submit" name="submit" value="CONTINUE">

1

2

3

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200992

</form>

This mechanism would therefore allow you to have an application-specific form-login handling
mechanism.

Enabling Failover in J2EE Agents
The agent allows basic failover capabilities. This helps you ensure that if the primary Access
Manager instance for which the agent has been configured becomes unavailable, the agent will
switch to the next Access Manager instance as specified in the J2EE agent AMAgent.properties
configuration file. This setup can be achieved by implementing the following steps.

▼ To Enable Failover in J2EE Agents

Provide a list of Access Manager authentication services URLs that may be used by the agent to
authenticate users who do not have sufficient credentials to access the protected resources.
Configure the following property to create the list:

com.sun.identity.agents.config.login.url

You may specify more than one login URL as follows:

com.sun.identity.agents.config.login.url[0] = primary-AM-server

com.sun.identity.agents.config.login.url[1] = failover-AM-server1

com.sun.identity.agents.config.login.url[2] = failover-AM-server2
primary-AM-server Represents the URL of the primary Access Manager instance to which

users are redirected for authentication.

failover-AM-server1 Represents the URL of the Access Manager instance to which users are
redirected for authentication if the primary Access Manager instance
fails.

failover-AM-server2 Represents the URL of the Access Manager instance to which users are
redirected for authentication if the primary Access Manager instance
fails and the first failover Access Manager instance fails.

If a URL list is provided to this property, com.sun.identity.agents.config.login.url, the
agent first tries to establish a connection to the first server (primary-AM-server) specified in the
URL list. If the agent is successful in establishing this connection, it redirects the user to the
Access Manager instance for authentication.

1

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 93

(Optional) Turn prioritization on for the failover lists by setting the following property to true:
com.sun.identity.agents.config.login.url.prioritized

Note – Setting this property to true turns prioritization on for the login URL list and the CDSSO
URL list. The two cases shown in this step specifically mention the login URL list. However, this
explanation of prioritization is exactly the same for the CDSSO URL list. The final step in this
procedure describes how to create the CDSSO URL list in case such a scenario applies to your
site's deployment.

The following cases describe the behavior of the agent in different situations: when you turn on
prioritization and when you do not turn on prioritization for the login URL list.

Case 1: com.sun.identity.agents.config.login.url.prioritized = true

A value of true means that priority is established for the login URL list described in Step 1. The
list was created by configuring the following property:

com.sun.identity.agents.config.login.url

Therefore, the first URL on the list, which is abbreviated here as .url[0], has a higher priority
than .url[1] and .url[1] has higher priority than.url[2] and so on. If the server
(primary-AM-server) specified in this example as the value for .url[0] is running, the agent
sends all requests to this server only. However, if primary-AM-server fails, from that point on,
subsequent requests are sent to the server (failover-AM-server1) associated with .url[1].
Furthermore, if at some point primary-AM-server comes back, then the subsequent requests
from that point on are sent to primary-AM-server, since it takes priority over
failover-AM-server1. This mechanism always fails back to the highest priority Access Manager
instance among the Access Manager instances that are running at the point in time the agent
must redirect requests to an Access Manager instance.

Case 2: com.sun.identity.agents.config.login.url.prioritized = false

In this case, no server takes priority over another. Failover occurs in a round-robin fashion. If all
the servers are running, the agent sends requests to the server (primary-AM-server) associated
with .url[0]. If primary-AM-server goes down then all subsequent requests are sent to the
server (failover-AM-server1) associated with .url[1]. The agent keeps sending the requests to
failover-AM-server1 unless that server goes down. If failover-AM-server1 does go down then the
agent routes all the subsequent requests to the server (failover-AM-server2) associated with
.url[2] until it goes down. If it goes down, the agent tries to connect to primary-AM-server
once again. Assuming that by then the primary-AM-server is running, all the subsequent
requests from then on are sent to primary-AM-server. This is a simple round-robin mechanism
without any priority involved.

2

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200994

Provide a list of Access Manager Naming Service URLs that may be used by the agent to get
access to the various other service URLs that may be needed to serve the logged on user.
This can be done by using the following property:

com.iplanet.am.naming.url

More than one naming service URL may be specified as a space delimited list of URLs. The
following example illustrates this idea:

com.iplanet.am.naming.url = primary-AM-server failover-AM-server1

(Conditional) If the deployment consists of an agent instance that is on a different domain than
multiple Access Manager instances for which you want to enable failover, provide a URL list of
the remote Access Manager instances.
Configure the following property to create the list:

com.sun.identity.agents.config.cdsso.cdcservlet.url[]

Specify more than one CDSSO URL in the following manner:

com.sun.identity.agents.config.cdsso.cdcservlet.url[0] = primary-remoteAM-server

com.sun.identity.agents.config.cdsso.cdcservlet.url[1] = failover-remoteAM-server1

com.sun.identity.agents.config.cdsso.cdcservlet.url[2] = failover-remoteAM-server2

Login Attempt Limit in J2EE Agents
When a user tries to access a protected resource without having authenticated with Access
Manager Authentication Services, the request is treated as a request with insufficient
credentials. The default action taken by the agent when it encounters such a request is to
redirect the user to the next available Login URL as configured in the J2EE agent
AMAgent.properties configuration file.

Despite the repeated redirects performed by the agent, the user could still be unable to furnish
the necessary credentials. In such a case, the agent can be directed to block such a request. This
is configured using the Login Attempt Limit configuration property. The configuration
property that controls this behavior is as follows:

com.sun.identity.agents.config.login.attempt.limit

If a non-zero positive value is specified for this property in the J2EE agent AMAgent.properties
configuration file, the agent will only allow that many attempts before it blocks the access
request without the necessary credentials. When set to a value of zero, this feature is disabled.

To guard against potential denial-of-service attacks on your system, enable this feature.

3

4

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 95

Redirect Attempt Limit in J2EE Agents
The processing of requests by the agent can result in redirects for the client browser. Such
redirects can happen when the user has not authenticated with Access Manager Authentication
Service, lacks the sufficient credentials necessary to access a protected resource, and a variety of
other reasons.

While the agent ensures that only the authenticated and authorized users get access to the
protected resources, there is a remote possibility that due to misconfiguration of the system, the
client browser may be put into an infinite redirection loop.

The Redirect Attempt Limit configuration property allows you to guard against such potential
situations by ensuring that after a given number of consecutive requests from a particular user
that result in the same exact redirect, the agent blocks the user request. This blocking of the
request is only temporary and is removed the moment the user makes a request that does not
result in the same redirect or results in access being granted to the protected resource. The
configuration property that controls this feature is:

com.sun.identity.agents.config.redirect.attempt.limit

If a non-zero positive integer is specified as the value of this property, the agent will break the
redirection loop after the specified number of requests result in the same redirects. When its
value is set to zero, this feature is disabled.

To protect the system from such situations, enable this feature. Furthermore, enabling this
feature can help in breaking potential denial of service attacks.

Not-Enforced URI List in J2EE Agents
The J2EE agent AMAgent.properties configuration file allows you to specify a list of URIs that
are treated as not-enforced. Access to these resources is always granted by the agent. The
configuration property that controls this list is as follows:

com.sun.identity.agents.config.notenforced.uri

It is recommended that if your deployed application has pages that use a bulk of graphics that
do not need the agent protection, such content be added to the agent’s not-enforced list to
ensure the optimal utilization of the system resources. Following is an example of the entries
that you may specify in the not-enforced list:

com.sun.identity.agents.config.notenforced.uri[0] = /images/*

com.sun.identity.agents.config.notenforced.uri[1] = /public/*.html

com.sun.identity.agents.config.notenforced.uri[2] = /registration/*

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200996

This enables the agent to focus on enforcing access control only over requests that do not match
these given URI patterns. The use of a wildcard (*) is allowed to indicate the presence of one or
more characters in the URI pattern being specified.

Inverting the Not-Enforced URI List
In situations where only a small portion of the deployed application needs protection, you can
configure the agent to do just that by inverting the not-enforced list. This results in the agent
enforcing access control over the entries that are specified in the not-enforced list and allowing
access to all other resources on the system. This feature is controlled by the following property:

com.sun.identity.agents.config.notenforced.uri.invert

When you set the value to true for this property, it makes the entries specified in the
not-enforced list as enforced entries and the rest of the application resources are treated as
not-enforced.

Caution – When the not-enforced list is inverted, the number of resources for which the agent
will not enforce access control is potentially very large. The use of this feature should therefore
be used with extreme caution and only after extensive evaluation of the security requirements of
the deployed applications.

Note –

■ When an Access Denied URI is specified, it is never enforced by the agent regardless of the
configuration of the not-enforced list. This is necessary to ensure that the agent can use the
Access Denied URI to block any unauthorized access for protected system resources.

■ When configuring access denied URIs within the deployment descriptor of the web
application, you must ensure that these values are added to the not-enforced list of the
agent. Failing to do so can result in application resources becoming inaccessible by the user.

■ Any resource that has been added to the not-enforced list must not access any protected
resource. If it does so, it can result in unauthorized access to protected system resources. For
example, if a servlet that has been added to the not-enforced list, in turn sends the request to
another servlet, which is protected, it can potentially lead to unauthorized access to the
protected servlet.

Fetching Attributes in J2EE Agents
Certain applications rely on the presence of user-specific profile information in some form in
order to process the user requests appropriately. J2EE agents provide the functionality that can

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 97

help such applications by making these attributes from the user's profile available in various
forms. Policy Agent 2.2 allows the following attribute types to be fetched using the
corresponding property from the J2EE agent AMAgent.properties configuration file:

Profile Attributes
com.sun.identity.agents.config.profile.attribute.fetch.mode

Session Attributes
com.sun.identity.agents.config.session.attribute.fetch.mode

Policy Response Attributes
com.sun.identity.agents.config.response.attribute.fetch.mode

The following values are possible for these three properties:

■ NONE

■ HEADER

■ REQUEST_ATTRIBUTE

■ COOKIE

The default value for these properties is NONE, which specifies that that particular attribute type
(profile attribute, session attribute, or policy response attribute) is not fetched. The other
possible values (HEADER, REQUEST_ATTRIBUTE, or COOKIE) that can be used with these properties
specify which method will be used to fetch a given attribute type. For more information, see
“Methods for Fetching Attributes in J2EE Agents” on page 100.

Depending upon how these values are set, the agent retrieves the necessary attributes available
for the logged on user and makes them available to the application.

The final subsection in this section describes other properties in the J2EE agent
AMAgent.properties configuration file that can influence the attribute fetching process, see
“Common Attribute Fetch Processing Related Properties” on page 101.

The following subsections provide information about how to set the type of attribute that is
fetched.

Fetching Profile Attributes in J2EE Agents
To obtain user-specific information by fetching profile attributes, assign a mode to the profile
attribute property and map the profile attributes to be populated under specific names for the
currently authenticated user. The following example first demonstrates how to assign the
REQUEST_ATTRIBUTE mode for fetching profile attributes and then demonstrates a way to map
those attributes:

Assigning a Mode to Profile Attributes

com.sun.identity.agents.config.profile.attribute.fetch.mode =

REQUEST_ATTRIBUTE

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 200998

The key is the profile attribute name and the value is the name under which that attribute will
be made available.

Mapping Profile Attributes

com.sun.identity.agents.config.profile.attribute.mapping[cn]=CUSTOM-

Common-Name

com.sun.identity.agents.config.profile.attribute.mapping[mail]=CUSTOM-

Email

com.sun.identity.agents.config.profile.attribute.fetch.mode =

REQUEST_ATTRIBUTE

com.sun.identity.agents.config.profile.attribute.mapping[] =

Fetching Session Attributes in J2EE Agents
To obtain user-specific information by fetching profile attributes, assign a mode to the session
attribute property and map the session attributes to be populated under specific names for the
currently authenticated user. The following example first demonstrates how to assign the
REQUEST_ATTRIBUTE mode for fetching session attributes and then demonstrates a way to map
those attributes:

Assigning a Mode to Session Attributes

com.sun.identity.agents.config.session.attribute.fetch.mode =

REQUEST_ATTRIBUTE

The key is the session attribute name and the value is the name under which that attribute
will be made available.

Mapping Session Attributes

com.sun.identity.agents.config.session.attribute.mapping[UserToken]=

CUSTOM-userid

com.sun.identity.agents.config.session.attribute.fetch.mode =

REQUEST_ATTRIBUTE

com.sun.identity.agents.config.session.attribute.mapping[] =

Fetching Policy Response Attributes in J2EE Agents
To obtain user-specific information by fetching policy response attributes, assign a mode to the
policy response attribute property and map the policy response attributes to be populated
under specific names for the currently authenticated user. The following example first
demonstrates how to assign the REQUEST_ATTRIBUTE mode for fetching policy response
attributes and then demonstrates a way to map those attributes:

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 99

Assigning a Mode to Policy Response Attributes

com.sun.identity.agents.config.response.attribute.fetch.mode =

REQUEST_ATTRIBUTE

The key is the policy response attribute name and the value is the name under which that
attribute will be made available.

Mapping Policy Response Attributes

com.sun.identity.agents.config.response.attribute.mapping

com.sun.identity.agents.config.response.attribute.fetch.mode =

REQUEST_ATTRIBUTE

com.sun.identity.agents.config.response.attribute.mapping[] =

Using this property for mapping policy response attributes, you can specify any number of
attributes that are required by the protected application. For example, if the application
requires the attributes cn and mail, and it expects these attributes to be available under the
names COMMON_NAME and EMAIL_ADDR, then your configuration setting would be as follows:

com.sun.identity.agents.config.response.attribute.mapping[cn] = COMMON_NAME

com.sun.identity.agents.config.response.attribute.mapping[mail] = EMAIL_ADDR

Methods for Fetching Attributes in J2EE Agents
The attribute types can be fetched by different methods as follows:

■ HTTP Headers
■ Request Attributes
■ Cookies

Fetching Attributes as HTTP Headers

When the agent is configured to provide the LDAP attributes as HTTP headers, these attributes
can be retrieved using the following methods on the
javax.servlet.http.HttpServletRequest interface:

long getDateHeader(java.lang.String name)

java.lang.String getHeader(java.lang.String name)

java.util.Enumeration getHeaderNames()

java.util.Enumeration getHeaders(java.lang.String name)

int getIntHeader(java.lang.String name)

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009100

The property that controls the parsing of a date value from an appropriate string as set in the
LDAP attribute is the following:

com.sun.identity.agents.config.attribute.date.format

This property defaults to the value EEE, d MMM yyyy hh:mm:ss z and should be changed as
necessary.

Multi-valued attributes can be retrieved as an instance of java.util.Enumeration from the
following method:

java.util.Enumeration getHeaders(java.lang.String name)

Fetching Attributes as Request Attributes

When the agent is configured to provide the LDAP attributes as request attributes, the agent
populates these attribute values into the HttpServletRequest as attributes that can later be
used by the application as necessary. These attributes are populated as java.util.Set objects,
which must be cast to this type before they can be successfully used.

Fetching Attributes as Cookies

When the agent is configured to provide the LDAP attributes as cookies, the necessary values
are set as server specific cookies by the agent with the path specified as “/.”

Multi-valued attributes are set as a single cookie value in a manner that all values of the attribute
are concatenated into a single string using a separator character that can be specified by the
following configuration entry:

com.sun.identity.agents.config.attribute.cookie.separator

One of the tasks of the application is to parse this value back into the individual values to ensure
the correct interpretation of the multi-valued LDAP attributes for the logged on user.

When you are fetching attributes as cookies, also use the cookie reset functionality to ensure
that these cookies get cleaned up from the client browser when the client browser’s session
expires. For more information, see “Using Cookie Reset Functionality in J2EE Agents” on
page 103.

Common Attribute Fetch Processing Related Properties
This section lists the most common configuration properties that are used to influence attribute
fetching.

com.sun.identity.agents.config.attribute.cookie.separator

This property allows you to assign a character to be used to separate multiple values of the
same attribute when it is being set as a cookie. This property is set in the following manner:

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 101

com.sun.identity.agents.config.attribute.cookie.separator = |

com.sun.identity.agents.config.attribute.cookie.encode

This property is a flag that indicates if the value of the attribute should be URL encoded
before being set as a cookie. This property is set in the following manner:

com.sun.identity.agents.config.attribute.cookie.encode = true

com.sun.identity.agents.config.attribute.date.format

This property allows you to set the format of date attribute values to be used when the
attribute is set to HTTP header. This format is based on the definition as provided in
java.text.SimpleDateFormat. This property is set in the following manner:

com.sun.identity.agents.config.attribute.date.format = EEE, d MMM yyyy hh:mm:ss z

Configuring FQDN Handling in J2EE Agents
To ensure appropriate user experience, the use of valid URLs by users to access resources
protected by the agent must be enforced. This functionality is controlled by three separate
properties:

com.sun.identity.agents.config.fqdn.check.enable

Enables FQDN

com.sun.identity.agents.config.fqdn.default

Stores the default FQDN value

com.sun.identity.agents.config.fqdn.mapping[]

Sets FQDN mapping

The configuration property for the default FQDN provides the necessary information needed
by the agent to identify if the user is using a valid URL to access the protected resource. If the
agent determines that the incoming request does not have a valid hostname in the URL, it
redirects the user to the corresponding URL with a valid hostname. The difference between the
redirect URL and the URL originally used by the user is only the hostname, which is now
changed by the agent to a fully qualified domain name (FQDN) as per the value specified in this
property.

The property FQDN Map provides another way by which the agent can resolve malformed
access URLs used by the users and take corrective action. The agent gives precedence to entries
defined in this property over the value defined in the default FQDN property. If none of the
entries in this property matches the hostname specified in the user request, the agent uses the
value specified for default FQDN property to take the necessary corrective action.

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009102

The FQDN Map property can be used for creating a mapping for more than one hostname. This
can be done when the deployment container protected by this agent can be accessed using more
than one hostname. As an example, consider a protected deployment container that can be
accessed using the following host names:

■ www.externalhostname.com

■ internalhostname.interndomain.com

■ IP address

In this case, assuming that www.externalhostname.com is the default FQDN, then the FQDN
Map can be configured as follows to allow access to the application for users who will use the
hostname internalhostname.interndomain.com or the raw IP address, say 192.101.98.45:

com.sun.identity.agents.config.fqdn.mapping [internalhostname.interndomain.com] =

internalhostname.interndomain.com

com.sun.identity.agents.config.fqdn.mapping [192.101.98.45] = 192.101.98.45

Using Cookie Reset Functionality in J2EE Agents
The agent allows you to reset certain cookies that may be present in the user’s browser session if
the user’s Access Manager session has expired. This feature is controlled by the following
configuration properties:

com.sun.identity.agents.config.cookie.reset.enable = false

com.sun.identity.agents.config.cookie.reset.name[0] =

com.sun.identity.agents.config.cookie.reset.domain[] =

com.sun.identity.agents.config.cookie.reset.path[] =

The preceding four properties can be used to specify the exact details of the cookie that should
be reset by the agent when a protected resource is accessed without a valid session.

The com.sun.identity.agents.config.cookie.reset.name property specifies a list of
cookie names that will be reset by the agent when necessary. Each entry in this list can
correspond to a maximum of one entry in the
com.sun.identity.agents.config.cookie.reset.domain property and the
com.sun.identity.agents.config.cookie.reset.path property, both of which are used to
define the cookie attributes - the domain on which a particular cookie should be set and the
path on which it will be set.

When using this feature, ensure that the correct values of the domain and path are specified for
every cookie entry in the cookie list. If these values are inappropriate, the result might be that
the cookie is not reset in the client browser.

When a cookie entry does not have an associated domain specified in the domain map, it is
handled as a server cookie. Similarly, when a cookie entry does not have a corresponding path
entry specified, the anticipated cookie path is “/.”

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 103

Enabling Port Check Functionality in J2EE Agents
In situations when Access Manager and the deployment container are installed on the same
system but on different ports, certain browsers may not send the HOST header correctly to the
agent in situations where there are redirects involved between Access Manager Authentication
Service and the agent. In such situations, the agent, relying on the availability of the port
number from the deployment container, might misread the port number that the user is trying
to access.

When this scenario occurs, it can have a severe impact on the system since the agent now
detects a resource access that in reality did not occur and consequently the subsequent redirects
as well as any policy evaluations may fail thereby making the protected application inaccessible
to the end user.

This situation can be controlled by enabling port check functionality on the agent. This is
controlled by the following configuration property:

com.sun.identity.agents.config.port.check.enable

When this property is set to true, the agent verifies the correctness of the port number read
from the request against its configuration. The configuration that provides the reference for this
checking is set by the following property:

com.sun.identity.agents.config.port.check.setting

This property allows the agent to store a map of various ports and their corresponding
protocols. When the agent is installed, this map is populated by the preferred port and protocol
of the agent server as specified during the installation. However, if the same agent is protecting
more than one HTTP listeners, you must add that information to the map accordingly.

When the agent discovers an invalid port in the request, it takes corrective action by sending
some HTML data to break the redirection chain so that the browser can reset its HOST header
on the subsequent request. This content is read from the file that resides in the locale directory
of agent installation. The name of the file is controlled by the following property:

com.sun.identity.agents.config.port.check.file

This property can also be used to specify the complete path to the file that may be used to
achieve this functionality. This file contains special HTML that uses a META-EQUIV REFRESH tag
in order to allow the browser to continue automatically when the redirect chain is broken.
Along with this HTML, this file must contain the string am.filter.request.url, which is
dynamically replaced by the actual request URL by the agent.

You can modify the contents of this file or specify a different file to be used, if necessary, so long
as it contains the am.filter.request.url string that the agent can substitute in order to
construct the true request URL with the correct port. The contents of this file should be such
that it should either allow the user to automatically be sent to this corrected location or let the
user click on a link or a button to achieve the same result.

Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009104

Key Features and Tasks Performed With the J2EE agentadmin
Program

The agentadmin program is a utility used to perform a variety of tasks from required tasks, such
as installation to optional tasks, such as displaying version information. This section
summarizes the tasks that can be performed with the agentadmin program. Many of the tasks
performed with this program are related to installation or uninstallation. For detailed
information about the options available with this program, see “Role of the agentadmin
Program in a J2EE Agent for Policy Agent 2.2” on page 34.

In this section, the options are listed for your quick review to help you get a sense of how the
agentadmin program fits in with the other methods of managing J2EE agents, which are all
discussed in this chapter.

The location of the agentadmin program is as follows:

PolicyAgent-base/bin

The following table lists options that can be used with the agentadmin command and gives a
brief description of the specific task performed with each option.

Note – In this section, the options described are the agentadmin program options that apply to
all J2EE agents. Options that only apply to specific J2EE agents are relatively uncommon and
are described where necessary within the corresponding J2EE agent guide.

TABLE 5–1 The agentadminProgram: Supported Options

Option Task Performed

--install Installs a new agent instance

--uninstall Uninstalls an existing Agent instance

--listAgents Displays details of all the configured agents

--agentInfo Displays details of the agent corresponding to the specified agent
IDs

--version Displays the version information

--encrypt Encrypts a given string

--getEncryptKey Generates an Agent Encryption key

--uninstallAll Uninstalls all agent instances

--getUuid Retrieves a universal ID for valid identity types

Key Features and Tasks Performed With the J2EE agentadmin Program

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 105

TABLE 5–1 The agentadmin Program: Supported Options (Continued)
Option Task Performed

--usage Displays the usage message

--help Displays a brief help message

Key Features and Tasks Performed With the J2EE Agent API
The agent runtime provides access to all the Access Manager application program interfaces
(API) that can be used to further enhance the security of your application. Besides the Access
Manager API, the agent also provides a set of API that allow the application to find the SSO
token string associated with the logged-in user. These API can be used from within the web
container or the EJB container of the deployment container. These are agent utility API.
However, an equally viable option is to use client SDK public API directly to fetch the SSO
token.

Note – Certain containers, such as Apache Tomcat Servlet/JSP Container do not have an EJB
container. Hence, the EJB related agent API would not be applicable for such containers.

The subsections that follow illustrate the available agent API that can be used from within an
application. The J2EE agent API have changed in Policy Agent 2.2 as explained in this section.
This section includes an example of the new API in use, see “Usage of New J2EE Agent API in
Policy Agent 2.2” on page 108.

Class AmFilterManager
com.sun.identity.agents.filter.AmFilterManager

Available API for Class AmFilterManager
■ public static com.sun.identity.agents.filter.AmSSOCache

getAmSSOCacheInstance() throws com.sun.identity.agents.arch.AgentException

Note – Deprecated: This method has been deprecated. The best practice is not to use this
method, but to use the new public API for this AmFilterManager class as follows:

public static com.sun.identity.agents.filter.IAmSSOCache getAmSSOCache()

This method returns an instance of Class AmSSOCache, which can be used to retrieve the
SSO token for the logged-in user. This method can throw AgentException if an error occurs
while processing this request.

Key Features and Tasks Performed With the J2EE Agent API

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009106

■ public static com.sun.identity.agents.filter.IAmSSOCache getAmSSOCache()

This method returns an instance of IAmSSOCache interface, which can be used to retrieve the
SSO token for the logged-in user.

Interface IAmSSOCache
com.sun.identity.agents.filter.IAmSSOCache

Available API for Interface IAmSSOCache
public String getSSOTokenForUser(Object ejbContextOrServletRequest)

This method can be used to retrieve the SSO token for the logged-in user. If called from the web
tier, this method passes an instance of javax.servlet.http.HttpServletRequest as an
argument. If called from the EJB tier, this method passes an instance of javax.ejb.EJBContext
as an argument. This method eradicates the need to use two separate methods in AmSSOCache to
retrieve the SSO token.

Class AmSSOCache
com.sun.identity.agents.filter.AmSSOCache

Note – Deprecated: This class and its methods have been deprecated. The best practice is not to
use the methods in this class, but to use the unified API in
com.sun.identity.agents.filter.IAmSSOCache.

Available API for Class AmSSOCache
■ public java.lang.String

getSSOTokenForUser(javax.servlet.http.HttpServletRequest request)

Note – Deprecated: This method has been deprecated as explained in the Note in “Class
AmSSOCache” on page 107.

This method returns the SSO token for the logged-in user whose request is currently being
processed in the web container within the deployment container. This method can return
null if the requested token is not available at the time of this call.

■ public java.lang.String getSSOTokenForUser(javax.ejb.EJBContext context)

Key Features and Tasks Performed With the J2EE Agent API

Chapter 5 • Managing Policy Agent 2.2 for Apache Tomcat 6.0 107

Note – Deprecated: This method has been deprecated as explained in the Note in “Class
AmSSOCache” on page 107.

This method returns the SSO token for the logged on user whose request is currently being
processed in the deployment container’s EJB tier. This method can return null if the
requested token is not available at the time of this call.

Note – The API getSSOTokenForUser(javax.ejb.EJBContext) can be used only when the
agent operation mode is either J2EE_POLICY or ALL.

Usage of New J2EE Agent API in Policy Agent 2.2
The following example demonstrates the new J2EE agent API in use.

EXAMPLE 5–4 Usage of New J2EE Agent API
■ Web Tier Use Case:

String ssotoken =

AmFilterManager.getAmSSOCache().getSSOTokenForUser(HTTPRequest);

■ EJB Tier Use Case:

String ssotoken =

AmFilterManager.getAmSSOCache().getSSOTokenForUser(EJBContext);

Caution – This public API can only retrieve the SSOToken object in EJB context if the value of the
following property in the J2EE agent AMAgent.properties file is set to true as shown:

com.sun.identity.agents.config.user.principal = true

Key Features and Tasks Performed With the J2EE Agent API

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009108

Uninstalling Policy Agent 2.2 for Apache
Tomcat 6.0

The agentadmin program is used for initiating the installation and uninstallation programs of
Policy Agent 2.2 for Apache Tomcat 6.0. The difference is that the installation program is
started with the --install option while the uninstallation program is started with the
--uninstall option. For more information about the agentadmin program, see “Key Features
and Tasks Performed With the J2EE agentadmin Program” on page 105. The uninstallation
program is similar to the installation program in that it provides step by step explanations of the
information you need to enter. However, the uninstallation program has fewer and simpler
steps.

The uninstallation process follows a series of tasks similar to the installation process. First,
perform the pre-uninstallation (preparation) steps. Then, perform the uninstallation, itself.

The first phase of uninstallation is the launching of the uninstallation program. The second
phase of uninstallation involves interacting with the uninstallation program. During this phase,
the program prompts you step by step to enter specific information while providing you with
explanations about that information.

You must access the PolicyAgent-base directory for uninstallation-related tasks. For more
information about this directory, see “J2EE Agent Directory Structure in Policy Agent 2.2” on
page 46.

Preparing to Uninstall Agent for Apache Tomcat 6.0
Perform the pre-uninstallation (preparation) steps outlined in this section before uninstalling
Policy Agent 2.2 for Apache Tomcat 6.0.

▼ To Prepare to Uninstall Agent for Apache Tomcat 6.0
To prepare for the uninstallation of Policy Agent 2.2 for Apache Tomcat 6.0, perform the
following steps:

6C H A P T E R 6

109

Undeploy any protected applications from Apache Tomcat 6.0.
Refer to the Apache Tomcat 6.0 documentation for more information.

Restore the deployment descriptors of these applications to their original deployment
descriptors.

Ensure that the Apache Tomcat 6.0 instance from which you are about to uninstall the agent is
not running.

Undeploy the agent application.
The agent application must be undeployed from Apache Tomcat 6.0 before the agent is
uninstalled.

The agent application was installed during the post-installation steps. For more information
about the installation of this application see Chapter 3, “Installing Policy Agent 2.2 for Apache
Tomcat 6.0.”

Uninstalling Agent for Apache Tomcat 6.0
This uninstallation process involves two phases as described in the following subsections.

Launching the Uninstallation Program of Agent for
Apache Tomcat 6.0
Perform the steps outlined in this section to launch the uninstallation program of Policy Agent
2.2 for Apache Tomcat 6.0.

▼ To Launch the Uninstallation Program of Agent for Apache Tomcat 6.0
To launch the uninstallation program, perform the following steps:

Change to the following directory:
PolicyAgent-base/bin

This directory contains the agentadmin program, which is used for uninstalling a J2EE agent
and for performing other tasks. For more information on the agentadmin program, see “Key
Features and Tasks Performed With the J2EE agentadmin Program” on page 105.

Issue one of the following commands:
./agentadmin --uninstall

1

2

3

4

1

2

Uninstalling Agent for Apache Tomcat 6.0

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009110

or

./agentadmin --uninstallAll

These two commands are different in that the --uninstallAll option removes all configured
instances of the agent.

After you issue one of the preceding commands, the uninstallation program launches and
presents you with the first prompt as illustrated in the following section.

Using the Uninstallation Program of Agent for Apache
Tomcat 6.0
The steps in the uninstallation program are displayed in the following example. The interaction
process of this uninstallation program is similar to that of the installation program. One
difference is that the uninstallation program does not present a license agreement. For a more
detailed explanation of the interaction process, see “Using the Installation Program of Agent for
Apache Tomcat 6.0” on page 61.

Example of Uninstallation Program Interaction in Agent for Apache
Tomcat 6.0
**

Welcome to the Access Manager Policy Agent for Apache Tomcat 6.0 Servlet/JSP

Container

**

Enter the complete path to the directory which is used by Tomcat Server to

store its configuration Files. This directory uniquely identifies the

Tomcat Server instance that is secured by this Agent.

[? : Help, ! : Exit]

Enter the Tomcat Server Config Directory Path

[/opt/apache-tomcat-6.0.14/conf]:

SUMMARY OF YOUR RESPONSES

Tomcat Server Config Directory :

/opt/apache-tomcat-6.0.14/conf

Verify your settings above and decide from the choices below.

1. Continue with Uninstallation

2. Back to the last interaction

3. Start Over

4. Exit

Uninstalling Agent for Apache Tomcat 6.0

Chapter 6 • Uninstalling Policy Agent 2.2 for Apache Tomcat 6.0 111

Please make your selection [1]:

Removing the agent classpath from

/opt/apache-tomcat-6.0.14/bin/setclasspath.sh script ...DONE.

Deleting the config directory

Agent-HomeDirectory/j2ee_agents/tomcat_v6_agent/Agent_001/config

...DONE.

Removing SJS Tomcat Agent Realm from Server XML file :

/opt/apache-tomcat-6.0.14/conf/server.xml ...DONE.

Removing filter from Global deployment descriptor file :

/opt/apache-tomcat-6.0.14/conf/web.xml ...DONE.

Removing SJS Tomcat Agent Filter and Form login authentication from Web

applications ...DONE.

Uninstall log file location:

Agent-HomeDirectory/j2ee_agents/tomcat_v6_agent/logs/audit/uninstall.log

Thank you for using Access Manager Policy Agent

Uninstalling Agent for Apache Tomcat 6.0

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009112

Silent Installation and Uninstallation of a J2EE
Agent in Policy Agent 2.2

In addition to a standard installation and uninstallation of J2EE agents, you can perform a silent
installation or uninstallation as described in this appendix.

About Silent Installation and Uninstallation of a J2EE Agent in
Policy Agent 2.2

A silent installation or uninstallation refers to installing or uninstalling a program by
implementing a script. The script is part of a state file. The script provides all the answers that
you would normally supply to the installation or uninstallation program interactively. Running
the script saves time and is useful when you want to install or uninstall multiple instances of
Policy Agent using the same parameters in each instance.

Silent installation is a simple two-step process of generating a state file and then using that state
file. To generate a state file, you record the installation or uninstallation process, entering all the
required information that you would enter during a standard installation or uninstallation.
Then you run the installation or uninstallation program with the state file as the input source.

Generating a State File for a J2EE Agent Installation
This section describes how to generate a state file for installing a J2EE agent. This task requires
you to issue a command that records the information you will enter as you follow the agent
installation steps. Enter all the necessary installation information in order to create a complete
state file.

AA P P E N D I X A

113

▼ To Generate a State File for a J2EE Agent Installation
To generate a state file for a J2EE agent installation , perform the following:

Change to the following directory:
PolicyAgent-base/bin

This directory contains the agentadmin program, which is used for installing a J2EE agent and
for performing other tasks. For more information on the agentadmin program, see “Key
Features and Tasks Performed With the J2EE agentadmin Program” on page 105.

Issue the following command:
./agentadmin --install --saveResponse filename

-saveResponse An option that saves all of your responses to installation prompts in a state
file.

filename Represents the name that you choose for the state file.

Perform the installation as described in Chapter 3,“Installing Policy Agent 2.2 for Apache
Tomcat 6.0”
Your answers to the prompts are recorded in the state file. When the installation is complete,
the state file is created in the same directory where the installation program is located.

Note – When generated, a state file will have read permissions for all users. However, because
the state file contains clear text passwords, it is recommended that you change the file
permissions to restrict read and write access to the user root.

Using a State File for a J2EE Agent Silent Installation
The installation program does not validate inputs or the state in the silent installation. Ensure
that the proper environment exists before performing a silent installation.

▼ To Install a J2EE Agent Using a State File
To perform a silent installation of a J2EE agent using a state file, perform the following:

Change to the following directory:
PolicyAgent-base/bin

At this point, this bin directory should contain the agentadmin program and the J2EE agent
installation state file.

1

2

3

1

About Silent Installation and Uninstallation of a J2EE Agent in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009114

Issue the following command:
./agentadmin --install --useResponse filename

-useResponse An option that directs the installer to run in non-interactive mode as it
obtains all responses to prompts from the named state file.

filename Represents the name of the state file from which the installer obtains all
responses.

The installation takes place hidden from view. After completion, the program exits
automatically and displays the prompt.

Generating a State File for a J2EE Agent Uninstallation
This section describes how to generate a state file for uninstalling a J2EE agent. This task
requires you to issue a command that records the information you will enter as you follow the
agent uninstallation steps. Enter all the necessary uninstallation information in order to create a
complete state file.

▼ To Generate a State File for a J2EE Agent Uninstallation
To generate a state file for uninstallation of a J2EE agent, perform the following:

Change to the following directory:
PolicyAgent-base/bin

This directory contains the agentadmin program, which is used for uninstalling a J2EE agent
and for performing other tasks. For more information on the agentadmin program, see “Key
Features and Tasks Performed With the J2EE agentadmin Program” on page 105.

Issue the following command:
./agentadmin --uninstall --saveResponse filename

-saveResponse An option that saves all of your responses to uninstallation prompts in a
state file.

filename Represents the name that you choose for the state file.

Perform the uninstallation as explained in Chapter 6,“Uninstalling Policy Agent 2.2 for Apache
Tomcat 6.0.”
Your answers to the prompts are recorded in the state file. When uninstallation is complete, the
state file is created in the same directory where the uninstallation program is located.

2

1

2

3

About Silent Installation and Uninstallation of a J2EE Agent in Policy Agent 2.2

Appendix A • Silent Installation and Uninstallation of a J2EE Agent in Policy Agent 2.2 115

Note – When generated, a state file will have read permissions for all users. However, because
the state file contains clear text passwords, it is recommended that you change the file
permissions to restrict read and writeaccess to the user root.

Using a State File for a J2EE Agent Silent
Uninstallation
The uninstallation program does not validate inputs or the state in the silent installation.
Ensure that the proper environment exists before performing a silent uninstallation.

▼ To Uninstall a J2EE Agent Using a State File
To perform a silent uninstallation of a J2EE agent using a state file, perform the following:

Change to the following directory:
PolicyAgent-base/bin

At this point, this bin directory should contain the agentadmin program and the J2EE
uninstallation state file.

Issue the following command:
./agentadmin --uninstall --useResponse filename

-useResponse An option that runs the uninstallation process in non-interactive mode as all
responses to prompts are obtained from the named state file.

filename Represents the name of the state file from which the installer obtains all
responses.

The uninstallation takes place hidden from view. After completion, the program exits
automatically and displays the prompt.

1

2

About Silent Installation and Uninstallation of a J2EE Agent in Policy Agent 2.2

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009116

J2EE Agent AMAgent.properties
Configuration File in Policy Agent 2.2

The J2EE AMAgent.properties configuration file contains the necessary configuration
properties needed for the agent to function properly. It also contains the necessary information
needed for the Sun Java System Access Manager SDK to function properly in a client
installation mode as used by the agent.

Caution – The content of the J2EE agent AMAgent.properties configuration file is very sensitive.
Changes made can result in changes in how the agent works. Errors made can cause the agent to
malfunction.

This appendix provides basic information about the J2EE AMAgent.properties configuration
file. Specifically, this appendix describes where the configuration is located, provides a quick list
of the properties, and provides the same list but with a simple description of each property. This
appendix organizes the information as follows:

■ “Location of the J2EE AMAgent.properties Configuration File” on page 118
■ “List of Properties in the J2EE AMAgent.properties Configuration File” on page 118
■ “Description of Properties in the J2EE AMAgent.properties Configuration File” on page 123

Each property is described in more detail in the actual J2EE AMAgent.properties configuration
file. Furthermore, for an explanation of key features of this configuration file and tasks that you
can accomplish with it, see “Key Features and Tasks Performed With the J2EE
AMAgent.properties Configuration File” on page 81.

BA P P E N D I X B

117

Location of the J2EE AMAgent.propertiesConfiguration File
The following is the location of the J2EE AMAgent.properties configuration file:

PolicyAgent-base/AgentInstance-Dir/config

For more information about the Policy Agent 2.2 directory structure, see “J2EE Agent Directory
Structure in Policy Agent 2.2” on page 46.

List of Properties in the J2EE AMAgent.properties
Configuration File

This section provides a list of all the J2EE agent properties in the AMAgent.properties
configuration file. The properties are divided into categories according to the aspect of Policy
Agent that each property enables you to modify.

Filter Operation Mode Property
com.sun.identity.agents.config.filter.mode

User Mapping Properties
com.sun.identity.agents.config.user.mapping.mode[]

com.sun.identity.agents.config.user.attribute.name

com.sun.identity.agents.config.user.principal

com.sun.identity.agents.config.user.token

Client Identification Properties
com.sun.identity.agents.config.client.ip.header

com.sun.identity.agents.config.client.hostname.header

Configuration Reload Interval Property
com.sun.identity.agents.config.load.interval

Local Identification Properties
com.sun.identity.agents.config.locale.language

com.sun.identity.agents.config.locale.country

Organization Name Property
com.sun.identity.agents.config.organization.name

Location of the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009118

Audit Log Properties
com.sun.identity.agents.config.audit.accesstype

com.sun.identity.agents.config.log.disposition

com.sun.identity.agents.config.remote.logfile

com.sun.identity.agents.config.local.logfile

com.sun.identity.agents.config.local.log.rotate

com.sun.identity.agents.config.local.log.size

Web Service Processing Properties
com.sun.identity.agents.config.webservice.enable

com.sun.identity.agents.config.webservice.endpoint[]

com.sun.identity.agents.config.webservice.process.get.enable

com.sun.identity.agents.config.webservice.authenticator

com.sun.identity.agents.config.webservice.internalerror.content

com.sun.identity.agents.config.webservice.autherror.content

Access Denied URI Property
com.sun.identity.agents.config.access.denied.uri

Form Login Processing Properties
com.sun.identity.agents.config.login.form[]

com.sun.identity.agents.config.login.error.uri[]

com.sun.identity.agents.config.login.use.internal

com.sun.identity.agents.config.login.content.file

Local Authentication Processing Properties
com.sun.identity.agents.config.auth.handler[]

com.sun.identity.agents.config.logout.handler[]

com.sun.identity.agents.config.verification.handler[]

Goto Parameter Name Property
com.sun.identity.agents.config.redirect.param

Login URL Property
com.sun.identity.agents.config.login.url[]

Login URL Prioritized Flag Property
com.sun.identity.agents.config.login.url.prioritized

Agent Server Properties

List of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 119

com.sun.identity.agents.config.agent.host

com.sun.identity.agents.config.agent.port

com.sun.identity.agents.config.agent.protocol

Login Attempt Limit Property
com.sun.identity.agents.config.login.attempt.limit

URL Decode SSO Token Property
com.sun.identity.agents.config.sso.decode

SSO Cache Enable Property
com.sun.identity.agents.config.amsso.cache.enable

Cookie Reset Processing Properties
com.sun.identity.agents.config.cookie.reset.enable

com.sun.identity.agents.config.cookie.reset.name[]

com.sun.identity.agents.config.cookie.reset.domain[]

com.sun.identity.agents.config.cookie.reset.path[]

CDSSO Processing Properties
com.sun.identity.agents.config.cdsso.enable

com.sun.identity.agents.config.cdsso.redirect.uri

com.sun.identity.agents.config.cdsso.cdcservlet.url[]

com.sun.identity.agents.config.cdsso.clock.skew

com.sun.identity.agents.config.cdsso.trusted.id.provider[]

Logout Processing Properties
com.sun.identity.agents.config.logout.application.handler[]

com.sun.identity.agents.config.logout.uri[]

com.sun.identity.agents.config.logout.request.param[]

com.sun.identity.agents.config.logout.introspect.enabled

com.sun.identity.agents.config.logout.entry.uri[]

FQDN Processing Properties
com.sun.identity.agents.config.fqdn.check.enable

com.sun.identity.agents.config.fqdn.default

com.sun.identity.agents.config.fqdn.mapping[]

Legacy User Agent Processing Properties
com.sun.identity.agents.config.legacy.support.enable

List of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009120

com.sun.identity.agents.config.legacy.user.agent[]

com.sun.identity.agents.config.legacy.redirect.uri

Custom Response Headers Property
com.sun.identity.agents.config.response.header[]

Redirect Attempt Limit Property
com.sun.identity.agents.config.redirect.attempt.limit

Port Check Processing Properties
com.sun.identity.agents.config.port.check.enable

com.sun.identity.agents.config.port.check.file

com.sun.identity.agents.config.port.check.setting[]

Not-Enforced URI Processing Properties
com.sun.identity.agents.config.notenforced.uri[]

com.sun.identity.agents.config.notenforced.uri.invert

com.sun.identity.agents.config.notenforced.uri.cache.enable

com.sun.identity.agents.config.notenforced.uri.cache.size

Not-Enforced Client IP Processing Properties
com.sun.identity.agents.config.notenforced.ip[]

com.sun.identity.agents.config.notenforced.ip.invert

com.sun.identity.agents.config.notenforced.ip.cache.enable

com.sun.identity.agents.config.notenforced.ip.cache.size

Common Attribute Fetch Processing Properties
com.sun.identity.agents.config.attribute.cookie.separator

com.sun.identity.agents.config.attribute.date.format

com.sun.identity.agents.config.attribute.cookie.encode

Profile Attribute Processing Properties
com.sun.identity.agents.config.profile.attribute.fetch.mode

com.sun.identity.agents.config.profile.attribute.mapping[]

Session Attribute Processing Properties
com.sun.identity.agents.config.session.attribute.fetch.mode

com.sun.identity.agents.config.session.attribute.mapping[]

List of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 121

Response Attribute Processing Properties
com.sun.identity.agents.config.response.attribute.fetch.mode

com.sun.identity.agents.config.response.attribute.mapping[]

Bypass Principal List Property
com.sun.identity.agents.config.bypass.principal[]

Privileged Attribute Processing Properties
com.sun.identity.agents.config.default.privileged.attribute[]

com.sun.identity.agents.config.privileged.attribute.type[]

com.sun.identity.agents.config.privileged.attribute.tolowercase[]

com.sun.identity.agents.config.privileged.session.attribute[]

Service Resolver Property
com.sun.identity.agents.config.service.resolver

Agent Username and Password Properties
com.sun.identity.agents.app.username

com.iplanet.am.service.secret

Encryption Key Properties
am.encryption.pwd

com.sun.identity.client.encryptionKey

Debug Service Properties
com.iplanet.services.debug.level

com.iplanet.services.debug.directory

SSO Token Cookie Name Property
com.iplanet.am.cookie.name

Naming Service URL Property
com.iplanet.am.naming.url

Session Client Properties
com.iplanet.am.notification.url

com.iplanet.am.session.client.polling.enable

com.iplanet.am.session.client.polling.period

List of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009122

Encryption Provider Property
com.iplanet.security.encryptor

User Data Cache Update Time Property
com.iplanet.am.sdk.remote.pollingTime

Service Data Cache Update Time Property
com.sun.identity.sm.cacheTime

SAML Service Properties
com.iplanet.am.localserver.protocol

com.iplanet.am.localserver.host

com.iplanet.am.localserver.port

Authentication Service Properties
com.iplanet.am.server.protocol

com.iplanet.am.server.host

com.iplanet.am.server.port

Policy Client Properties
com.sun.identity.agents.server.log.file.name

com.sun.identity.agents.logging.level

com.sun.identity.agents.notification.enabled

com.sun.identity.agents.notification.url

com.sun.identity.agents.polling.interval

com.sun.identity.policy.client.cacheMode

com.sun.identity.policy.client.booleanActionValues

com.sun.identity.policy.client.resourceComparators

com.sun.identity.policy.client.clockSkew

Description of Properties in the J2EE AMAgent.properties
Configuration File

This section provides a brief description of all the J2EE agent properties in the
AMAgent.properties configuration file. The properties are divided into categories according to
the aspect of Policy Agent that each property enables you to modify.

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 123

Filter Operation Mode Property
• com.sun.identity.agents.config.filter.mode

Hot-swap enabled: No

This property specifies the mode of operation of the filter. The following are valid values for this
property:

NONE

SSO_ONLY

URL_POLICY

J2EE_POLICY

ALL

This property can also be specified as an application specific property. However, the global
property must be overwritten.

User Mapping Properties
com.sun.identity.agents.config.user.mapping.mode[]

com.sun.identity.agents.config.user.attribute.name

com.sun.identity.agents.config.user.principal

com.sun.identity.agents.config.user.token

• com.sun.identity.agents.config.user.mapping.mode[]

Hot-swap enabled: No

This property specifies the mechanism by which the user ID used on the protected server for the
authenticated user is determined by the J2EE agent. The following are valid values for this
property:

USER_ID

PROFILE_ATTRIBUTE

HTTP_HEADER

SESSION_PROPERTY

• com.sun.identity.agents.config.user.attribute.name

Hot-swap enabled: No

This property specifies the name of the profile attribute, HTTP header, or session property that
contains the user ID used on the protected server for the authenticated user.

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009124

Key Properties Affecting This Property

This property is not used when the following property is set as shown:

com.sun.identity.agents.config.user.mapping.mode = USER_ID

• com.sun.identity.agents.config.user.principal

Hot-swap enabled: No

This property is a flag that indicates how the user is authenticated on the protected server.
When this property is set to true, the principal of the authenticated user, not simply the user
ID, is used for authentication purposes.

Key Properties Affecting This Property

This property is only used when the following property is set as shown:

com.sun.identity.agents.config.user.mapping.mode = USER_ID

• com.sun.identity.agents.config.user.token

Hot-swap enabled: No

This property specifies a session property name which contains the user ID of the authenticated
user in session.

Key Properties Affecting This Property

This property is only used when the following properties are set as shown:

com.sun.identity.agents.config.user.mapping.mode = USER_ID

com.sun.identity.agents.config.user.principal = false

Client Identification Properties
com.sun.identity.agents.config.client.ip.header

com.sun.identity.agents.config.client.hostname.header

• com.sun.identity.agents.config.client.ip.header

Hot-swap enabled: No

This property specifies an HTTP header name that holds the IP address of the client. If you will
not employ this property, leave it blank.

• com.sun.identity.agents.config.client.hostname.header

Hot-swap enabled: No

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 125

This property specifies an HTTP header name that holds the hostname of the client. If you do
not use this property, leave it blank.

Configuration Reload Interval Property
• com.sun.identity.agents.config.load.interval

Hot-swap enabled: Yes

This property specifies the interval in seconds between configuration reloads. When this
property is set to 0, the hot-swap mechanism is disabled.

Locale Identification Properties
com.sun.identity.agents.config.locale.language

com.sun.identity.agents.config.locale.country

• com.sun.identity.agents.config.locale.language

Hot-swap enabled: No

This property specifies the language code, such as en for English, for identifying the locale in
which the site operates.

• com.sun.identity.agents.config.locale.country

Hot-swap enabled: No

This property specifies the country code for identifying the locale in which the site operates.

Organization Name Property
• com.sun.identity.agents.config.organization.name

Hot-swap enabled: No

This property specifies the organization or realm name used to authenticate the agent during
runtime. The default value “/” identifies the root organization or realm.

Audit Log Properties
com.sun.identity.agents.config.audit.accesstype

com.sun.identity.agents.config.log.disposition

com.sun.identity.agents.config.remote.logfile

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009126

com.sun.identity.agents.config.local.logfile

com.sun.identity.agents.config.local.log.rotate

com.sun.identity.agents.config.local.log.size

• com.sun.identity.agents.config.audit.accesstype

Hot-swap enabled: No

This property specifies the access type or access types logged by the agent. The following are
valid values for this property:

LOG_NONE

LOG_ALLOW

LOG_DENY

LOG_BOTH

• com.sun.identity.agents.config.log.disposition

Hot-swap enabled: Yes

This property specifies the audit log mode that the agent uses when writing audit log messages.
The following are valid values for this property:

LOCAL

REMOTE

ALL

Key Properties Affecting This Property

This property is not used when the following property is set as shown:

com.sun.identity.agents.config.audit.accesstype = LOG_NONE

• com.sun.identity.agents.config.remote.logfile

Hot-swap enabled: Yes

This property specifies the file name used on the remote server.

Key Properties Affecting This Property

This property is not used when the following property is set as shown:

com.sun.identity.agents.config.log.disposition = LOCAL

• com.sun.identity.agents.config.local.logfile

Hot-swap enabled: Yes

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 127

This property specifies the complete path to the local audit log file to be used by the agent.

Key Properties Affecting This Property

This property is only used when the following property is set as shown:

com.sun.identity.agents.config.log.disposition = LOCAL

• com.sun.identity.agents.config.local.log.rotate

Hot-swap enabled: Yes

This property is a flag that indicates whether the rotation of audit log local file is enabled or
disabled.

Key Properties Affecting This Property

This property is only used when the following property is set as shown:

com.sun.identity.agents.config.log.disposition = LOCAL

• com.sun.identity.agents.config.local.log.size

Hot-swap enabled: Yes

This property specifies the size in bytes of the local audit log file, beyond which the agent rotates
the log file.

Key Properties Affecting This Property

This property is only used when the following property is set as shown:

com.sun.identity.agents.config.log.disposition = LOCAL

Web Service Processing Properties
com.sun.identity.agents.config.webservice.enable

com.sun.identity.agents.config.webservice.endpoint[]

com.sun.identity.agents.config.webservice.process.get.enable

com.sun.identity.agents.config.webservice.authenticator

com.sun.identity.agents.config.webservice.internalerror.content

com.sun.identity.agents.config.webservice.autherror.content

• com.sun.identity.agents.config.webservice.enable

Hot-swap enabled: Yes

This property is a flag that indicates whether web service processing is enabled or disabled.

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009128

• com.sun.identity.agents.config.webservice.endpoint[]

Hot-swap enabled: Yes

This property is a list construct for listing web application end points that represent web
services.

• com.sun.identity.agents.config.webservice.process.get.enable

Hot-swap enabled: Yes

This property is a flag that indicates whether the processing of HTTP GET requests for web
service endpoints is enabled or disabled.

• com.sun.identity.agents.config.webservice.authenticator

Hot-swap enabled: Yes

This property specifies an implementation class that can be used to authenticate web-service
requests.

• com.sun.identity.agents.config.webservice.internalerror.content

Hot-swap enabled: Yes

This property specifies the name of a file that contains content used by the agent to generate an
internal error fault for clients.

• com.sun.identity.agents.config.webservice.autherror.content

Hot-swap enabled: Yes

This property specifies the name of a file that contains content used by the agent to generate an
authorization error fault for clients.

Access Denied URI Property
• com.sun.identity.agents.config.access.denied.uri

Hot-swap enabled: Yes

This property specifies the URI used by the agent to block unauthorized access requests. If you
will not employ this property, leave it blank.

Form Login Processing Properties
com.sun.identity.agents.config.login.form[]

com.sun.identity.agents.config.login.error.uri[]

com.sun.identity.agents.config.login.use.internal

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 129

com.sun.identity.agents.config.login.content.file

• com.sun.identity.agents.config.login.form[]

Hot-swap enabled: Yes

This property is a list construct. This property is used by the agent to identify login requests and
to take appropriate action. Each entry in the list should be the absolute URI of the resource
specified in the web.xml deployment descriptor of the protected application in the element
form-login-page.

• com.sun.identity.agents.config.login.error.uri[]

Hot-swap enabled: Yes

This property is a list construct. This property is used by the agent to identify error page
requests and to take appropriate action. Each entry in the list should be the absolute URI of the
resource specified in the web.xml deployment descriptor of the protected application in the
element form-error-page.

• com.sun.identity.agents.config.login.use.internal

Hot-swap enabled: Yes

This property is a flag that specifies whether the agent should use internal content for handling
form login requests.

• com.sun.identity.agents.config.login.content.file

Hot-swap enabled: Yes

This property specifies the name or complete path of the file used by the agent for handling
form login requests.

Key Properties Affecting This Property

This property is only used when the following property is set as shown:

com.sun.identity.agents.config.login.use.internal = true

Local Authentication Processing Properties
com.sun.identity.agents.config.auth.handler[]

com.sun.identity.agents.config.logout.handler[]

com.sun.identity.agents.config.verification.handler[]

• com.sun.identity.agents.config.auth.handler[]

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009130

Hot-swap enabled: Yes

This property is a map construct that specifies the application specific authentication handler
used by the agent to authenticate the logged on user with the deployment container for the
particular application.

• com.sun.identity.agents.config.logout.handler[]

Hot-swap enabled: Yes

This property is a map construct that specifies the application specific logout handler used by
the agent to log out the logged on user within the deployment container for the particular
application.

• com.sun.identity.agents.config.verification.handler[]

Hot-swap enabled: Yes

This property is a map construct that specifies the application specific local verification handler
used by the agent to validate the user credentials with the local repository.

Goto Parameter Name Property
• com.sun.identity.agents.config.redirect.param

Hot-swap enabled: Yes

This property specifies the parameter name used by the agent when redirecting the user to the
appropriate authentication service. The value of this parameter is used by the authentication
service to redirect the user to the original requested destination.

Login URL Property
• com.sun.identity.agents.config.login.url[]

Hot-swap enabled: Yes

This property is a list construct for listing the login URL (one or more) to be used by the agent
to redirect incoming users without sufficient credentials to the Access Manager authentication
service.

Login URL Prioritized Flag Property
• com.sun.identity.agents.config.login.url.prioritized

Hot-swap enabled: Yes

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 131

This property is a flag that specifies if the failover sequence for the login URL list and the
CDSSO URL list is prioritized. The URL associated with the lowest index, [0], has the highest
priority. When set to true, this property turns on prioritization for both the login URL list and
the CDSSO URL list, assuming each list exists. The following properties are used to create these
two URL lists:

Login URL List com.sun.identity.agents.config.login.url[]

CDSSO URL List com.sun.identity.agents.config.cdsso.cdcservlet.url[]

For more information about enabling failover, see “Enabling Failover in J2EE Agents” on
page 93.

Agent Server Properties
com.sun.identity.agents.config.agent.host

com.sun.identity.agents.config.agent.port

com.sun.identity.agents.config.agent.protocol

• com.sun.identity.agents.config.agent.host

Hot-swap enabled: Yes

This property specifies the host name that identifies the agent protected server to client
browsers if the host name is different from the actual host name. If you will not employ this
property, leave it blank.

• com.sun.identity.agents.config.agent.port

Hot-swap enabled: Yes

This property specifies the port number that identifies the agent protected server listening port
to client browsers if the port number is different from the actual listening port. If you will not
employ this property, leave it blank.

• com.sun.identity.agents.config.agent.protocol

Hot-swap enabled: Yes

The property specifies the protocol, HTTP or HTTPS , used by client browsers to communicate
with the agent protected server if the protocol is different from the actual protocol used by the
server.

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009132

Login Attempt Limit Property
• com.sun.identity.agents.config.login.attempt.limit

Hot-swap enabled: Yes

This property specifies the number of unsuccessful login attempts users are allowed to make
during a single browser session before such attempts trigger a block on further requests. Setting
the value of this property to 0 disables this feature.

URL Decode SSO Token Flag Property
• com.sun.identity.agents.config.sso.decode

Hot-swap enabled: Yes

This property is a flag that specifies whether the SSO Token needs to be URL decoded by the
agent before it can be used.

SSO Cache Enable Property
• com.sun.identity.agents.config.amsso.cache.enable

Hot-swap enabled: Yes

This property is a flag that specifies whether the SSO cache is active for the agent. This cache is
used through public API exposed by the agent SDK.

Cookie Reset Processing Properties
com.sun.identity.agents.config.cookie.reset.enable

com.sun.identity.agents.config.cookie.reset.name[]

com.sun.identity.agents.config.cookie.reset.domain[]

com.sun.identity.agents.config.cookie.reset.path[]

• com.sun.identity.agents.config.cookie.reset.enable

Hot-swap enabled: Yes

This property is a flag that specifies whether cookie reset processing is enabled or disabled.

• com.sun.identity.agents.config.cookie.reset.name[]

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 133

Hot-swap enabled: Yes

This property is a list construct for listing cookie names that are reset by the agent

Key Properties Affecting This Property

This property is only used when the following property is set as shown:

com.sun.identity.agents.config.cookie.reset.enable = true

• com.sun.identity.agents.config.cookie.reset.domain[]

Hot-swap enabled: Yes

This property is a map construct. The key for this map construct is a cookie name and the value
for this map construct is the domain of that cookie.

Key Properties Affecting This Property

This property is used when one of the cookies listed in following property matches the key for
this property:

com.sun.identity.agents.config.cookie.reset.name[]

• com.sun.identity.agents.config.cookie.reset.path[]

Hot-swap enabled: Yes

This property is a map construct. The key for this map construct is a cookie name and the value
for this map construct is the path of that cookie.

Key Properties Affecting This Property

This property is used when one of the path names listed in following property matches the key
for this property:

com.sun.identity.agents.config.cookie.reset.name[]

CDSSO Processing Properties
com.sun.identity.agents.config.cdsso.enable

com.sun.identity.agents.config.cdsso.redirect.uri

com.sun.identity.agents.config.cdsso.cdcservlet.url[]

com.sun.identity.agents.config.cdsso.clock.skew

com.sun.identity.agents.config.cdsso.trusted.id.provider[]

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009134

• com.sun.identity.agents.config.cdsso.enable

Hot-swap enabled: Yes

This property is a flag that specifies whether CDSSO processing is enabled or disabled.

• com.sun.identity.agents.config.cdsso.redirect.uri

Hot-swap enabled: Yes

This property specifies an intermediate URI that is used by the agent for processing CDSSO
requests.

• com.sun.identity.agents.config.cdsso.cdcservlet.url[]

Hot-swap enabled: Yes

This property is a list construct for listing the URL of the available CDSSO controllers that can
be used by the agent for CDSSO processing.

• com.sun.identity.agents.config.cdsso.clock.skew

Hot-swap enabled: Yes

This property specifies a time in seconds that is used by the agent to determine the validity of
the CDSSO AuthnResponse assertion.

• com.sun.identity.agents.config.cdsso.trusted.id.provider[]

Hot-swap enabled: Yes

This property is a list construct for listing the Access Manager server providers, ID providers, or
both to be trusted by the agent during the evaluation process.

Logout Processing Properties
com.sun.identity.agents.config.logout.application.handler[]

com.sun.identity.agents.config.logout.uri[]

com.sun.identity.agents.config.logout.request.param[]

com.sun.identity.agents.config.logout.introspect.enabled

com.sun.identity.agents.config.logout.entry.uri[]

• com.sun.identity.agents.config.logout.application.handler[]

Hot-swap enabled: Yes

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 135

This property is a map construct that is application specific. It identifies a handler to be used for
logout processing.

• com.sun.identity.agents.config.logout.uri[]

Hot-swap enabled: Yes

This property is a map construct that is application specific. It identifies a request URI which
indicates a logout event.

• com.sun.identity.agents.config.logout.request.param[]

Hot-swap enabled: Yes

This property is a map construct that is application specific. It identifies a parameter which
when present in the HTTP request indicates a logout event.

• com.sun.identity.agents.config.logout.introspect.enabled

Hot-swap enabled: Yes

This property is a flag that allows the agent to search an HTTP request body for a logout
parameter.

• com.sun.identity.agents.config.logout.entry.uri[]

Hot-swap enabled: Yes

This property is a map construct that is application specific. It identifies a URI to be used as an
entry point after successful logout and subsequent to successful authentication if applicable.

FQDN Processing Properties
com.sun.identity.agents.config.fqdn.check.enable

com.sun.identity.agents.config.fqdn.default

com.sun.identity.agents.config.fqdn.mapping[]

• com.sun.identity.agents.config.fqdn.check.enable

Hot-swap enabled: Yes

This property is a flag that indicates whether FQDN checking is enabled or disabled.

• com.sun.identity.agents.config.fqdn.default

Hot-swap enabled: Yes

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009136

This property specifies a hostname that represents the default FQDN to be used by the agent
when necessary.

• com.sun.identity.agents.config.fqdn.mapping[]

Hot-swap enabled: Yes

This property is a map construct that specifies a mapping from the key, which is an invalid
FQDN entry to its value, which is a valid FQDN entry.

Legacy User Agent Processing Properties
com.sun.identity.agents.config.legacy.support.enable

com.sun.identity.agents.config.legacy.user.agent[]

com.sun.identity.agents.config.legacy.redirect.uri

• com.sun.identity.agents.config.legacy.support.enable

Hot-swap enabled: Yes

This property is a flag that specifies whether legacy user agent support is enabled or disabled.

• com.sun.identity.agents.config.legacy.user.agent[]

Hot-swap enabled: Yes

This property is a list construct for listing user agent header values. These values identify legacy
browsers. Entries in this list can contain the wild card character “*.”

• com.sun.identity.agents.config.legacy.redirect.uri

Hot-swap enabled: Yes

This property specifies an intermediate URI used by the agent to redirect legacy user agent
requests.

Custom Response Headers Property
• com.sun.identity.agents.config.response.header[]

Hot-swap enabled: Yes

This property is a map construct that specifies the custom headers that are set by the agent on
the client browser. The key is the header name while the value represents the header value.

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 137

Redirect Attempt Limit Property
• com.sun.identity.agents.config.redirect.attempt.limit

Hot-swap enabled: Yes

This property specifies the number of successive single point redirects that users are allowed
during a single browser session before such redirects trigger a block of the user request. Setting
the value of this property to 0 disables this feature.

Port Check Processing Properties
com.sun.identity.agents.config.port.check.enable

com.sun.identity.agents.config.port.check.file

com.sun.identity.agents.config.port.check.setting[]

• com.sun.identity.agents.config.port.check.enable

Hot-swap enabled: Yes

This property is a flag that indicates whether port check functionality is enabled or disabled.

• com.sun.identity.agents.config.port.check.file

Hot-swap enabled: Yes

This property specifies the name or complete path of a file that has the content required to
process requests that call for port correction.

• com.sun.identity.agents.config.port.check.setting[]

Hot-swap enabled: Yes

This property is a map construct of port versus protocol entries where the key is the listening
port number and the value is the listening protocol used by the agent to identify requests with
invalid port numbers.

Not-Enforced URI Processing Properties
com.sun.identity.agents.config.notenforced.uri[]

com.sun.identity.agents.config.notenforced.uri.invert

com.sun.identity.agents.config.notenforced.uri.cache.enable

com.sun.identity.agents.config.notenforced.uri.cache.size

• com.sun.identity.agents.config.notenforced.uri[]

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009138

Hot-swap enabled: Yes

This property is a list construct for listing URI for which protection is not enforced by the agent.

• com.sun.identity.agents.config.notenforced.uri.invert

Hot-swap enabled: Yes

This property is a flag that specifies whether to invert the list of URI on the not-enforced list. A
value of true directs the agent to deny access (enforce protection) to URI on the list and to
allow access (not enforce protection) to URI that are not on the list. Entries on this list can
contain the wild card character “*.”

Key Properties Affecting This Property

This property enforces URI on the not-enforced list, which is the list assigned to the following
property:

com.sun.identity.agents.config.notenforced.uri[]

• com.sun.identity.agents.config.notenforced.uri.cache.enable

Hot-swap enabled: Yes

This property is a flag that specifies whether the caching of the not-enforced URI list evaluation
results is enabled or disabled.

• com.sun.identity.agents.config.notenforced.uri.cache.size

Hot-swap enabled: Yes

This property specifies the size of the cache to be used if caching of not-enforced URI list
evaluation results is enabled.

Key Properties Affecting This Property

This property is only used when the following property is set as shown:

com.sun.identity.agents.config.notenforced.uri.cache.enable = true

Not-Enforced Client IP Processing Properties
com.sun.identity.agents.config.notenforced.ip[]

com.sun.identity.agents.config.notenforced.ip.invert

com.sun.identity.agents.config.notenforced.ip.cache.enable

com.sun.identity.agents.config.notenforced.ip.cache.size

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 139

• com.sun.identity.agents.config.notenforced.ip[]

Hot-swap enabled: Yes

This property is a list construct for listing client IP addresses for which protection is not
enforced by the agent.

• com.sun.identity.agents.config.notenforced.ip.invert

Hot-swap enabled: Yes

This property is a flag that specifies whether to invert the not-enforced client IP address list. A
value of true directs the agent to deny access (enforce protection) to client IP addresses on the
list and to allow access (not enforce protection) for all other client IP addresses. Entries on this
list can contain the wild card character “*.”

Key Properties Affecting This Property

This property enforces URI on the not-enforced IP list, which is the list assigned to the
following property:

com.sun.identity.agents.config.notenforced.ip[]

• com.sun.identity.agents.config.notenforced.ip.cache.enable

Hot-swap enabled: Yes

A flag that specifies whether the caching of not-enforced IP list evaluation results is enabled or
disabled.

• com.sun.identity.agents.config.notenforced.ip.cache.size

Hot-swap enabled: Yes

This property specifies the size of the cache to be used if caching of not-enforced IP list
evaluation results is enabled.

Key Properties Affecting This Property

This property is only used when the following property is set as shown:

com.sun.identity.agents.config.notenforced.ip.cache.enable = true

Common Attribute Fetch Processing Properties
com.sun.identity.agents.config.attribute.cookie.separator

com.sun.identity.agents.config.attribute.date.format

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009140

com.sun.identity.agents.config.attribute.cookie.encode

• com.sun.identity.agents.config.attribute.cookie.separator

Hot-swap enabled: Yes

This property specifies that a character be used to separate multiple values of the same attribute
when it is being set as a cookie.

• com.sun.identity.agents.config.attribute.cookie.encode

Hot-swap enabled: Yes

This property is a flag that indicates whether the value of the attribute should be URL encoded
before being set as a cookie.

• com.sun.identity.agents.config.attribute.date.format

Hot-swap enabled: Yes

This property specifies the format of date attribute values used when the attribute is set as an
HTTP header. This format is based on the definition provided in
java.text.SimpleDateFormat.

Profile Attribute Processing Properties
com.sun.identity.agents.config.profile.attribute.fetch.mode

com.sun.identity.agents.config.profile.attribute.mapping[]

• com.sun.identity.agents.config.profile.attribute.fetch.mode

Hot-swap enabled: Yes

This property specifies the mode used to fetch profile attributes. The following are valid values
for this property:

NONE

HTTP_HEADER

REQUEST_ATTRIBUTE

HTTP_COOKIE

• com.sun.identity.agents.config.profile.attribute.mapping[]

Hot-swap enabled: Yes

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 141

This property is a map construct that specifies the profile attributes populated under specific
names for the currently authenticated user. The key for this map construct is the profile
attribute name and the value is the name under which that attribute is made available.

Session Attribute Processing Properties
com.sun.identity.agents.config.session.attribute.fetch.mode

com.sun.identity.agents.config.session.attribute.mapping[]

• com.sun.identity.agents.config.session.attribute.fetch.mode

Hot-swap enabled: Yes

This property specifies the mode used to fetch session attributes. The following are valid values
for this property:

NONE

HTTP_HEADER

REQUEST_ATTRIBUTE

HTTP_COOKIE

• com.sun.identity.agents.config.session.attribute.mapping[]

Hot-swap enabled: Yes

This property is a map construct that specifies the session attributes populated under specific
names for the currently authenticated user. The key for this map construct is the session
attribute name and the value is the name under which that attribute is made available.

Response Attribute Processing Properties
com.sun.identity.agents.config.response.attribute.fetch.mode

com.sun.identity.agents.config.response.attribute.mapping[]

• com.sun.identity.agents.config.response.attribute.fetch.mode

Hot-swap enabled: Yes

This property specifies the mode used to fetch policy response attributes. The following are
valid values for this property:

NONE

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009142

HTTP_HEADER

REQUEST_ATTRIBUTE

HTTP_COOKIE

• com.sun.identity.agents.config.response.attribute.mapping[]

Hot-swap enabled: Yes

This property is a map construct that specifies the policy response attributes to be populated
under specific names for the currently authenticated user. The key for this map construct is the
policy response attribute name and the value is the name under which that attribute is made
available.

Bypass Principal List Property
• com.sun.identity.agents.config.bypass.principal[]

Hot-swap enabled: No

This property is a list construct for listing principals that are to be bypassed by the agent for
authentication and search purposes.

Privileged Attribute Processing Properties
com.sun.identity.agents.config.default.privileged.attribute[]

com.sun.identity.agents.config.privileged.attribute.type[]

com.sun.identity.agents.config.privileged.attribute.tolowercase[]

com.sun.identity.agents.config.privileged.session.attribute[]

• com.sun.identity.agents.config.default.privileged.attribute[]

Hot-swap enabled: No

This property is a list construct for listing privileged attributes to be granted to all users who
have a valid Access Manager session.

• com.sun.identity.agents.config.privileged.attribute.type[]

Hot-swap enabled: No

This property is a list construct for listing privileged attribute types to be fetched for each user.

• com.sun.identity.agents.config.privileged.attribute.tolowercase[]

Hot-swap enabled: No

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 143

This property is a map construct that specifies whether the privileged attribute types are
converted to lowercase.

Key Properties Affecting This Property

This property converts the attribute types assigned to the following property to lower case:

com.sun.identity.agents.config.privileged.attribute.type[]

• com.sun.identity.agents.config.privileged.session.attribute[]

Hot-swap enabled: No

This property is a list construct for listing session property names that hold privileged attributes
for the authenticated user.

Service Resolver Property
• com.sun.identity.agents.config.service.resolver

Hot-swap enabled: No

This property specifies the service resolver used by this agent.

Agent Username and Password Properties
com.sun.identity.agents.app.username

com.iplanet.am.service.secret

• com.sun.identity.agents.app.username

Hot-swap enabled: No

This property specifies the user name used by the agent to identify and authenticate itself to
Access Manager before requesting any services that require such agent authentication.

• com.iplanet.am.service.secret

Hot-swap enabled: No

This property specifies the password used by the agent to identify and authenticate itself to
Access Managerbefore requesting any services that require such agent authentication.

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009144

Encryption Key Properties
am.encryption.pwd

com.sun.identity.client.encryptionKey

• am.encryption.pwd

Hot-swap enabled: No

This property specifies a global encryption key used when applications use client SDK API. This
encryption key is used to secure data globally by all Access Manager server instances and by
clients.

• com.sun.identity.client.encryptionKey

Hot-swap enabled: No

This property specifies the encryption key used to encrypt the agent profile password as it is
stored in the J2EE agent. The agent profile password is encrypted in a different manner in
Access Manager. This encryption key is not shared with Access Manager or with other clients.

Debug Service Properties
com.iplanet.services.debug.level

com.iplanet.services.debug.directory

• com.iplanet.services.debug.level

Hot-swap enabled: No

This property specifies the debug level to be used. The following are valid values for this
property:

off

error

warning

message

• com.iplanet.services.debug.directory

Hot-swap enabled: No

This property specifies the complete path to the directory where debug files are to be stored by
the agent.

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 145

SSO Token Cookie Name Property
• com.iplanet.am.cookie.name

Hot-swap enabled: No

This property specifies the name of the SSO token cookie used betweenAccess Manager and the
agent.

Naming Service URL Property
• com.iplanet.am.naming.url

Hot-swap enabled: No

This property specifies the naming service URL (one or more) that can be used by the system for
naming lookups. Multiple URL can be specified for this property as a string. URL are separated
from one another in the string by a single space character.

Session Client Properties
com.iplanet.am.notification.url

com.iplanet.am.session.client.polling.enable

com.iplanet.am.session.client.polling.period

• com.iplanet.am.notification.url

Hot-swap enabled: No

This property specifies the notification URL to be used by the agent to receive session
notifications.

• com.iplanet.am.session.client.polling.enable

Hot-swap enabled: No

This property is a flag that specifies whether the session client uses polling for updating session
information instead of depending upon server notifications.

• com.iplanet.am.session.client.polling.period

Hot-swap enabled: No

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009146

This property specifies the time in seconds after which the session client requests an update of
cached session information from the server.

Encryption Provider Property
• com.iplanet.security.encryptor

Hot-swap enabled: No

This property specifies the encryption provider implementation to be used by the agent.

User Data Cache Update Time Property
• com.iplanet.am.sdk.remote.pollingTime

Hot-swap enabled: No

This property specifies the cache update time in minutes for user management data if a
notification URL is not provided.

Key Properties Affecting This Property

This property is used if a notification URL is not specified with the following property:

com.iplanet.am.notification.url

Service Data Cache Update Time Property
• com.sun.identity.sm.cacheTime

Hot-swap enabled: No

This property specifies the cache update time in minutes for service configuration data if a
notification URL is not provided.

Key Properties Affecting This Property

This property is used if a notification URL is not specified with the following property:

com.iplanet.am.notification.url

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 147

SAML Service Properties
com.iplanet.am.localserver.protocol

com.iplanet.am.localserver.host

com.iplanet.am.localserver.port

• com.iplanet.am.localserver.protocol

Hot-swap enabled: No

This property specifies the server protocol to be used for SAML service.

• com.iplanet.am.localserver.host

Hot-swap enabled: No

This property specifies the server host to be used for SAML service.

• com.iplanet.am.localserver.port

Hot-swap enabled: No

This property specifies the server port to be used for SAML service.

Authentication Service Properties
com.iplanet.am.server.protocol

com.iplanet.am.server.host

com.iplanet.am.server.port

• com.iplanet.am.server.protocol

Hot-swap enabled: No

This property specifies the protocol to be used by Authentication Service.

• com.iplanet.am.server.host

Hot-swap enabled: No

This property specifies the host to be used by Authentication Service.

• com.iplanet.am.server.port

Hot-swap enabled: No

This property specifies the port to be used by Authentication Service.

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009148

Policy Client Properties
com.sun.identity.agents.server.log.file.name

com.sun.identity.agents.logging.level

com.sun.identity.agents.notification.enabled

com.sun.identity.agents.notification.url

com.sun.identity.agents.polling.interval

com.sun.identity.policy.client.cacheMode

com.sun.identity.policy.client.booleanActionValues

com.sun.identity.policy.client.resourceComparators

com.sun.identity.policy.client.clockSkew

• com.sun.identity.agents.server.log.file.name

Hot-swap enabled: No

This property specifies the name of the log file for logging messages to Access Manager.

• com.sun.identity.agents.logging.level

Hot-swap enabled: No

This property specifies the level of remote policy logging. The following are valid values for this
property:

ALLOW

DENY

BOTH

NONE

• com.sun.identity.agents.notification.enabled

Hot-swap enabled: No

This property is a flag that specifies whether notifications are enabled or disabled for the remote
policy client.

• com.sun.identity.agents.notification.url

Hot-swap enabled: No

This property specifies the notification URL for the remote policy client.

Key Properties Affecting This Property

Description of Properties in the J2EE AMAgent.properties Configuration File

Appendix B • J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2 149

This property is used if notification is enabled for a remote policy client property, which occurs
when the following property is set as shown:

com.sun.identity.agents.notification.enabled = true

• com.sun.identity.agents.polling.interval

Hot-swap enabled: No

This property specifies the duration in minutes after which the cached entries are refreshed by
the remote policy client.

• com.sun.identity.policy.client.cacheMode

Hot-swap enabled: No

This property specifies the mode of caching to be used by the remote policy client. The
following are valid values for this property:

subtree

self

The subtree value is preferable for a small number of policy rules. In all other cases, the self
value is preferable.

• com.sun.identity.policy.client.booleanActionValues

Hot-swap enabled: No

This property specifies boolean action values for policy action names. Assign values to this
property using the following format:

serviceName|actionName|trueValue|falseValue

• com.sun.identity.policy.client.resourceComparators

Hot-swap enabled: No

This property specifies resource comparators to be used for different service names.

• com.sun.identity.policy.client.clockSkew

Hot-swap enabled: No

This property specifies the time in seconds which is allowed to accommodate the time
difference between the Access Manager machine and the remote policy client machine.

Description of Properties in the J2EE AMAgent.properties Configuration File

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009150

Troubleshooting a J2EE Agent Deployment in
Policy Agent 2.2

This appendix explains how you can resolve problems that you might encounter while
deploying or using J2EE agents.

Be sure to also check the Sun Java System Access Manager Policy Agent 2.2 Release Notes, to see if
the problem that you encounter is a known limitation of the agent. If workarounds are available
for such problems, they are provided in the release notes.

J2EE Agent Troubleshooting Instructions
This section includes various symptoms. Each symptom is accompanied by one or more
possible causes. Each possible cause is accompanied by a troubleshooting solution.

1. Symptom: The agent does not require users to login before access is granted to the application.

Possible Cause Troubleshooting Solution

1–1) The application has not been
configured to use the agent.

1–1) For information about deploying the agent application, see
Chapter 4, “Post-Installation Tasks of Policy Agent 2.2 for Apache
Tomcat 6.0.”

1–2) The application fails to create an
SSO token because a valid agent profile
does not exist. J2EE agents authenticate
with Access Manager using an agent
profile, which is created in Access
Manager Console.

1–2) Using Access Manager Console, ensure that a valid agent
profile exists. Using the command line, encrypt the agent profile
password with the agentadmin --encrypt command. In the J2EE
AMAgent.properties configuration file, ensure that the following
properties have the updated agent profile name and password:

com.sun.identity.agents.app.username =

com.iplanet.am.service.secret=

1–3) The resources match entries in the
not-enforced list.

1–3) Make sure that the resources being accessed do not match the
entries in the not-enforced list, and ensure that the list is not empty
or inverted.

CA P P E N D I X C

151

http://docs.sun.com/doc/819-2796

1. Symptom: The agent does not require users to login before access is granted to the application.

Possible Cause Troubleshooting Solution

1–4) The agent filter mode is set to NONE. 1–4) Change the agent filter mode to ALL or J2EE_POLICY as
necessary.

2. Symptom: The agent denies access to all requests.

Possible Cause Troubleshooting Solution

2–1) The agent and Access Manager
have been installed on the same
machine and the browser might not be
setting the HOST header correctly when
redirected from Access Manager to the
agent.

2–1) Enable port check functionality. For information about
enabling port check functionality, see “Enabling Port Check
Functionality in J2EE Agents” on page 104.

2–2) The deployment container is
running as a user who does not have
write privileges to the audit log
directory of the agent.

2–2) Refer to the path specified in the J2EE agent
AMAgent.properties configuration file for the agent’s local audit file
and grant the necessary write permissions for the user of the
deployment container process.

2–3) The agent filter is configured for a
mode that enforces URL policies and no
applicable URL policies have yet been
defined in Access Manager.

2–3) Define the appropriate URL policies in Access Manager.

2–4) The agent filter is configured for a
mode that enforces URL polices and the
system time on the agent machine is not
in sync with the system time on the
Access Manager machine.

2–4) Synchronize the time on the agent machine with the time on
the Access Manager machine.

2–5) The agent filter is configured for a
mode that does not support J2EE polices
and the resources being accessed are
protected by declarative security
constraints.

2–5) Change the agent filter mode to a mode that supports J2EE
policy such as ALL or J2EE_POLICY.

2–6) The agent filter is configured for a
mode that supports J2EE polices but
they are being negatively evaluated by
the agent.

2–6) Change the agent filter mode to a mode that supports J2EE
policy such as ALL or J2EE_POLICY.

2–7) The agent is unable to validate
user’s session token issued by Access
Manager.

2–7) Ensure that the agent is installed on the same domain that is
specified as the cookie domain in Access Manager. If not, enable
CDSSO functionality. If that is not the case, try changing the value of
the following property:
com.sun.identity.agents.config.sso.decode

J2EE Agent Troubleshooting Instructions

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009152

2. Symptom: The agent denies access to all requests.

Possible Cause Troubleshooting Solution

2–8) The agent is configured for CDSSO
and the validity time of the
authorization response is smaller than
the processing time required by the
agent.

2–8) Set an appropriate value for the following property:
com.sun.identity.agents.config.cdsso.clock.skew

2–9) The Login URL specified in the
J2EE agent AMAgent.properties
configuration file is not reachable by the
agent.

2–9) Ensure that the Access Manager Login URL is reachable from
the machine where the agent is installed.

2–10) The Access Manager is installed
with SSL and the agent cannot
communicate with it correctly.

2–10) Install the appropriate root CA certificate in the keystore used
by the deployment container on which the agent is installed.

3) Symptom: The agent fails to evaluate J2EE declarative security policies or J2EE programmatic security API for the protected
applications.

Possible Cause Troubleshooting Solution

3–1) The protected application does not
have the agent filter installed.

3–1) Redeploy the application with the agent filter installed and the
log-in configuration added. For more information, see Chapter 4,
“Post-Installation Tasks of Policy Agent 2.2 for Apache Tomcat 6.0.”

3–2) The agent filter is operating in a
mode that does not support J2EE
policies.

3–2) Change the agent filter mode to either ALL or J2EE_POLICY.

3–3) An invalid password was specified
for the agent profile user during the
agent installation. J2EE agents
authenticate with Access Manager using
an agent profile, which is created in
Access Manager Console.

3–3) Using Access Manager Console, ensure that a valid agent
profile exists. Using the command line, encrypt the agent profile
password with the agentadmin --encrypt command. In the J2EE
AMAgent.properties configuration file, ensure that the following
properties have the updated agent profile name and password:

com.sun.identity.agents.app.username =

com.iplanet.am.service.secret=

3–4) The specified role-to-principal
mapping is incorrect.

3–4) Ensure that the specified role-to-principal mapping for the
protected application is correct and maps to actual users, actual
roles, or both as they exist in Access Manager.

4) Symptom: Accessing a protected resource results in an HTTP 404 not found error.

Possible Cause Troubleshooting Solution

4–1) The agent and Access Manager
have been installed on the same
machine and the browser being used
might not be setting the HOST header
correctly when redirected from Access
Manager to the agent.

4–1) Enable Port Check Functionality. For more information about
performing this task, see “Enabling Port Check Functionality in
J2EE Agents” on page 104.

J2EE Agent Troubleshooting Instructions

Appendix C • Troubleshooting a J2EE Agent Deployment in Policy Agent 2.2 153

4) Symptom: Accessing a protected resource results in an HTTP 404 not found error.

Possible Cause Troubleshooting Solution

4–2) The resource is protected by a J2EE
declarative security constraint which is
not being evaluated correctly and the
server is trying to display
form-error-page, which does not exist
within the application.

4–2) Make sure that the resource specified by form-error-page in
the web application’s web.xml deployment descriptor actually exists
within the application.

4–3) The resource is being accessed by a
legacy browser such as Netscape 4.x and
during the installation of the agent no
valid value was entered for agent
application URI field.

4–3) Reinstall the agent and specify a valid agent application URI
value.

4–4) The agent is operating in the
CDSSO mode and no valid value was
entered for the primary application
context path field during agent
installation.

4–4) Reinstall the agent and specify a valid primary application
context path.

5) Symptom: When Access Manager is SSL Enabled, the agent denies access to all resources.

Possible Cause Troubleshooting Solution

5–1) The agent does not have the root
CA certificate of the signer of the
certificate used by Access Manager.

5–1) Install the appropriate root CA certificate in the keystore used
by the deployment container on which the agent is installed.

6) Symptom: An access denied message is issued when the agent is in J2EE_Policy mode.

Possible Cause Troubleshooting Solution

6–1) The requested resource that
expects to use the attributes is in the
not-enforced list of the agent.

6–1) Change the not-enforced list so that the requested resource is
enforced. The agent does not provide support for LDAP attributes
for resources that are not-enforced.

6–2) The agent is unable to fetch user
roles from Access Manager.

6–2) Ensure that the following property is set correctly in the J2EE
agent AMAgent.properties configuration file:

com.sun.identity.agents.config.organization.name

7) Symptom: The Access Manager logs indicate that Access Manager is unable to send notifications to the deployment container
protected by the agent.

Possible Cause Troubleshooting Solution

7–1) The agent is installed on a server
with the preferred listening protocol set
to HTTPS and the root CA certificate
for the signer of the agent’s server
certificate is not available in the keystore
used by Access Manager.

7–1) Add the root CA certificate for the signer of agent’s server
certificate to the keystore used by Access Manager.

J2EE Agent Troubleshooting Instructions

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009154

7) Symptom: The Access Manager logs indicate that Access Manager is unable to send notifications to the deployment container
protected by the agent.

Possible Cause Troubleshooting Solution

7–2) No valid value was entered for
agent application URI during agent
installation.

7–2) Reinstall the agent and specify a valid agent application URI.
For example, /agentapp. The same URI should be used as a context
root for deploying the agent application through the administration
console of the container.

8) Symptom: The following warning messages appear on the console window from which the deployment container is started or in the
deployment container logs:

Bad level value for property: com.iplanet.services.debug.level

Bad level value for property: com.sun.identity.agents.logging.level

Possible Cause Troubleshooting Solution

8–1) These messages are logged by the
JDK 1.4 logging framework in use,
which treats the J2EE agent
AMAgent.properties configuration file
as the logging configuration file.

8–1) These messages are harmless and can be safely ignored.

J2EE Agent Troubleshooting Instructions

Appendix C • Troubleshooting a J2EE Agent Deployment in Policy Agent 2.2 155

156

Index

A
Access Manager

agent profile
and agent installation prompts, 61-62
and agentadmin --encrypt, 41-42
creating, 52-53
pre-installation step, 57-60
updating, 69-70

logout
synchronization with, 28

modes, 56
version 6.3

compatibility, 30
configuration, 51-52

advice, composite, 26
agent profile

and administrative accounts, 22
and agent installation prompts, 61-62
and agentadmin --encrypt, 41-42
creating, 52-53
pre-installation step, 57-60
updating, 69-70

agentadmin command, 31, 34-46
--agentInfo, 39-40
--encrypt, 41-42
--getEncryptKey, 42-43
--getUuid, 43-44
--help, 46
--install, 35-36
--listAgents, 38-39
--uninstall, 37-38
--uninstallAll, 43

agentadmin command (Continued)
--usage, 45
--version, 40

agentadmin program, 31, 34-46

B
backward compatibility, Access Manager 6.3, 30

C
Class AmFilterManager, 106-107
Class AmSSOCache, 107-108
composite, advice, 26
creating

agent profile, 52-53
password file, 58
URL policies, 78-79

D
deployment container, definition, 17

F
form login, customizing the agent response, 91-93

157

G
generating

state file
installation, 113-114

I
installation

silent, 113-116
using state file, 114-115

Interface IAmSSOCache, 107
inverting

not-enforced
URI list, 97

L
LDAP

attributes
as cookies, 101
as HTTP headers, 100-101
as request attributes, 101

dependency
removal of, 21

Legacy Mode, 56

N
not-enforced

IP list, 27-28
URI list, 96-97

inverting, 97

P
password file

and agent installation prompts, 61-62
and agentadmin --encrypt, 41-42
and updating agent profile, 69-70
creating, 58
pre-installation step, 57-60

policy evaluation, remote, 25

R
Realm Mode, 56
remote, policy evaluation, 25

S
silent

installation, 113-116
uninstallation, 113-116

state file
for installation, 114-115
for uninstallation, 116
generating, 113-114

uninstallation, 115-116

U
uninstallation

silent, 113-116
using state file, 115-116, 116

updating, agent profile, 69-70
URL policies, creating, 78-79

W
web tier declarative security, 88-93

Index

Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0 • March 13, 2009158

	Sun Java System Access Manager Policy Agent 2.2 Guide for Apache Tomcat 6.0
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Access Manager Documentation Set
	Policy Agent 2.2 Documentation Set
	Sun Java System Access Manager Policy Agent 2.2 User's Guide
	Other Individual Agent Guides
	Release Notes

	Sun Java Enterprise System Product Documentation
	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction to J2EE Agents for Policy Agent 2.2
	Uses of J2EE Agents
	J2EE Agents and an Online Auction Application
	J2EE Agents and a Web-Based Commerce Application
	J2EE Agents and a Content-Based Web Application

	How J2EE Agents Work
	What’s New About J2EE Agents
	Removal of J2EE Agent Dependency on LDAP and on Administrative Accounts
	Removal of J2EE Agent Dependency on LDAP
	Removal of J2EE Agent Dependency on Administrative Accounts

	Enhanced J2EE Agent Installation Process
	J2EE Agent Support for Installation Using Non-Administrative User Accounts
	Secure Handling of Sensitive Information by J2EE Agents
	Self-Contained Installation of J2EE Agents
	J2EE Agent Support for Multiple Physical Installations

	J2EE Agent Coexistence With Access Manager
	J2EE Agent Support for Client Identification Based on Custom HTTP Headers
	J2EE Agent Specific Application for Housekeeping Tasks
	J2EE Agent URL Policy Enhancements
	Remote Policy Evaluation Failover in J2EE Agents
	Configurable Policy Evaluation Mechanism in J2EE Agents
	Composite Advice in J2EE Agents
	Policy Based Response Attributes in J2EE Agents

	J2EE Agent Support for Flexible User Mapping Mechanisms
	J2EE Agent Support for Fetching User Session Attributes
	J2EE Agent Support for Version Checking
	J2EE Agent Support for Not-Enforced IP List
	J2EE Agent Support for Custom Response Headers
	J2EE Agent Support for Application Logout Integration
	J2EE Agent Support for Application Specific Agent Filter Operation Modes
	J2EE Agent Support for Affinity-Based Login URL Selection
	J2EE Agent Support for a Sample Application
	J2EE Agent Backward Compatibility With Access Manager 6.3

	Information About Using J2EE Agents in Policy Agent 2.2
	Enhanced Installation Process for J2EE Agents in Policy Agent 2.2
	Increased Functionality of the agentadmin Program for J2EE Agents in Policy Agent 2.2
	The Sample Application

	Vital Installation Information for a J2EE Agent in Policy Agent 2.2
	Format of the Distribution Files for a J2EE Agent Installation in Policy Agent 2.2
	To Unpack a .zip Compressed file of a J2EE Agent in Policy Agent 2.2

	Role of the agentadmin Program in a J2EE Agent for Policy Agent 2.2
	agentadmin --install
	agentadmin --uninstall
	agentadmin --listAgents
	agentadmin --agentInfo
	agentadmin --version
	agentadmin --encrypt
	agentadmin --getEncryptKey
	agentadmin --uninstallAll
	agentadmin --getUuid
	agentadmin --usage
	agentadmin --help

	J2EE Agent Directory Structure in Policy Agent 2.2
	Location of the J2EE Agent Base Directory in Policy Agent 2.2
	Inside the J2EE Agent Base Directory in Policy Agent 2.2

	Installing and Configuring the Apache Tomcat 6.0 Agent With Access Manager 6.3
	To Install and Configure the Tomcat 6.0 Agent With Access Manager 6.3

	Creating a J2EE Agent Profile
	To Create an Agent Profile

	Installing Policy Agent 2.2 for Apache Tomcat 6.0
	Installation Related Information About Agent for Apache Tomcat 6.0
	Supported Platforms and Compatibility of Agent for Apache Tomcat 6.0
	Platform and Version Support of Agent for Apache Tomcat 6.0
	Compatibility of Agent for Apache Tomcat 6.0 With Access Manager
	Compatibility of Policy Agent 2.2 With Access Manager 7 and Access Manager 7.1.
	Compatibility of Policy Agent 2.2 With Access Manager 6.3

	Preparing to Install Agent for Apache Tomcat 6.0
	To Prepare to Install Agent for Apache Tomcat 6.0
	(Conditional) To Use the .exe Version of Apache Tomcat 6.0 Server

	Launching the Installation Program of Agent for Apache Tomcat 6.0
	To Launch the Installation Program of Agent for Apache Tomcat 6.0

	Using the Installation Program of Agent for Apache Tomcat 6.0
	About Installation Prompts in Agent for Apache Tomcat 6.0
	Example of Installation Program Interaction in Agent for Apache Tomcat 6.0
	Implications of Specific Deployment Scenarios in Agent for Apache Tomcat 6.0
	Installing a J2EE Agent on Multiple Apache Tomcat 6.0 Instances

	Summary of a J2EE Agent Installation in Policy Agent 2.2

	Post-Installation Tasks of Policy Agent 2.2 for Apache Tomcat 6.0
	Common Post-Installation Steps for All J2EE Agents in Policy Agent 2.2
	Updating the Agent Profile for J2EE Agents in Policy Agent 2.2
	To Update the Agent Profile for J2EE Agents in Policy Agent 2.2

	Deploying the Agent Application for J2EE Agents in Policy Agent 2.2

	Post-Installation Steps Specific to Agent for Apache Tomcat 6.0
	Installing the Agent Filter for the Deployed Application on Agent for Apache Tomcat 6.0
	To Install the Agent Filter for the Deployed Application on Agent for Apache Tomcat 6.0

	Conditional Post-Installation Steps for J2EE Agents in Policy Agent 2.2
	Configuring J2EE Declarative Security for Apache Tomcat 6.0 Related Web Applications
	To Create and Assign Access Manager Roles
	To Allow Access Manager Users to Access the Manager Web Application
	To Allow Access Manager Users to Access the Administration Web Application
	To Allow Access Manager Users to Access the Host Manager Web Application
	Creating the Necessary URL Policies

	Managing Policy Agent 2.2 for Apache Tomcat 6.0
	Key Features and Tasks Performed With the J2EE AMAgent.properties Configuration File
	Hot-Swap Mechanism in J2EE Agents
	List Constructs in the J2EE AMAgent.properties Configuration File
	Map Constructs in the J2EE AMAgent.properties Configuration File
	J2EE Property Configuration: Application Specific or Global
	J2EE Agent Filter Modes
	J2EE Agent Filter Mode-NONE
	J2EE Agent Filter Mode - SSO_ONLY
	J2EE Agent Filter Mode - J2EE_POLICY
	J2EE Agent Filter Mode - URL_POLICY
	J2EE Agent Filter Mode - ALL

	Enabling Web-Tier Declarative Security in J2EE Agents
	To Enable J2EE Agents to Handle Security Constraint Settings
	Web-Tier Security Details
	Customizing Agent Response for Form Login
	To Customize the Agent Response to Form Login

	Enabling Failover in J2EE Agents
	To Enable Failover in J2EE Agents

	Login Attempt Limit in J2EE Agents
	Redirect Attempt Limit in J2EE Agents
	Not-Enforced URI List in J2EE Agents
	Inverting the Not-Enforced URI List

	Fetching Attributes in J2EE Agents
	Fetching Profile Attributes in J2EE Agents
	Fetching Session Attributes in J2EE Agents
	Fetching Policy Response Attributes in J2EE Agents
	Methods for Fetching Attributes in J2EE Agents
	Fetching Attributes as HTTP Headers
	Fetching Attributes as Request Attributes
	Fetching Attributes as Cookies

	Common Attribute Fetch Processing Related Properties

	Configuring FQDN Handling in J2EE Agents
	Using Cookie Reset Functionality in J2EE Agents
	Enabling Port Check Functionality in J2EE Agents

	Key Features and Tasks Performed With the J2EE agentadmin Program
	Key Features and Tasks Performed With the J2EE Agent API
	Class AmFilterManager
	Available API for Class AmFilterManager

	Interface IAmSSOCache
	Available API for Interface IAmSSOCache

	Class AmSSOCache
	Available API for Class AmSSOCache

	Usage of New J2EE Agent API in Policy Agent 2.2

	Uninstalling Policy Agent 2.2 for Apache Tomcat 6.0
	Preparing to Uninstall Agent for Apache Tomcat 6.0
	To Prepare to Uninstall Agent for Apache Tomcat 6.0

	Uninstalling Agent for Apache Tomcat 6.0
	Launching the Uninstallation Program of Agent for Apache Tomcat 6.0
	To Launch the Uninstallation Program of Agent for Apache Tomcat 6.0

	Using the Uninstallation Program of Agent for Apache Tomcat 6.0
	Example of Uninstallation Program Interaction in Agent for Apache Tomcat 6.0

	Silent Installation and Uninstallation of a J2EE Agent in Policy Agent 2.2
	About Silent Installation and Uninstallation of a J2EE Agent in Policy Agent 2.2
	Generating a State File for a J2EE Agent Installation
	To Generate a State File for a J2EE Agent Installation

	Using a State File for a J2EE Agent Silent Installation
	To Install a J2EE Agent Using a State File

	Generating a State File for a J2EE Agent Uninstallation
	To Generate a State File for a J2EE Agent Uninstallation

	Using a State File for a J2EE Agent Silent Uninstallation
	To Uninstall a J2EE Agent Using a State File

	J2EE Agent AMAgent.properties Configuration File in Policy Agent 2.2
	Location of the J2EE AMAgent.properties Configuration File
	List of Properties in the J2EE AMAgent.properties Configuration File
	Description of Properties in the J2EE AMAgent.properties Configuration File
	Filter Operation Mode Property
	User Mapping Properties
	Client Identification Properties
	Configuration Reload Interval Property
	Locale Identification Properties
	Organization Name Property
	Audit Log Properties
	Web Service Processing Properties
	Access Denied URI Property
	Form Login Processing Properties
	Local Authentication Processing Properties
	Goto Parameter Name Property
	Login URL Property
	Login URL Prioritized Flag Property
	Agent Server Properties
	Login Attempt Limit Property
	URL Decode SSO Token Flag Property
	SSO Cache Enable Property
	Cookie Reset Processing Properties
	CDSSO Processing Properties
	Logout Processing Properties
	FQDN Processing Properties
	Legacy User Agent Processing Properties
	Custom Response Headers Property
	Redirect Attempt Limit Property
	Port Check Processing Properties
	Not-Enforced URI Processing Properties
	Not-Enforced Client IP Processing Properties
	Common Attribute Fetch Processing Properties
	Profile Attribute Processing Properties
	Session Attribute Processing Properties
	Response Attribute Processing Properties
	Bypass Principal List Property
	Privileged Attribute Processing Properties
	Service Resolver Property
	Agent Username and Password Properties
	Encryption Key Properties
	Debug Service Properties
	SSO Token Cookie Name Property
	Naming Service URL Property
	Session Client Properties
	Encryption Provider Property
	User Data Cache Update Time Property
	Service Data Cache Update Time Property
	SAML Service Properties
	Authentication Service Properties
	Policy Client Properties

	Troubleshooting a J2EE Agent Deployment in Policy Agent 2.2
	J2EE Agent Troubleshooting Instructions

	Index

