
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Linker and Libraries Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a
registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. The PowerPC
name is a trademark of International Business Machines Corporation.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN. THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xiii

1. Introduction . 1

Link-Editing . 2

Runtime Linking . 3

Dynamic Executables . 3

Shared Objects . 4

Related Topics . 4

Dynamic Linking . 4

Application Binary Interfaces. 5

Support Tools . 5

2. Link-Editor. 7

Overview. 7

Invoking the Link-Editor . 8

Direct Invocation . 9

Using a Compiler Driver . 9

iv Linker and Libraries Guide—November 1995

Specifying the Link-Editor Options. 10

Input File Processing . 11

Archive Processing . 12

Shared Object Processing . 13

Linking with Additional Libraries. 14

Initialization and Termination Sections 19

Symbol Processing . 21

Symbol Resolution. 21

Undefined Symbols . 27

Tentative Symbol Order Within the Output File 31

Defining Additional Symbols. 32

Reducing Symbol Scope . 37

Generating the Output Image . 42

Link-Editor Support Interface . 43

Invoking the Support Interface . 43

Support Interface Functions . 44

Support Interface Example . 46

Debugging Aids . 48

3. Runtime Linker . 53

Overview. 53

Locating Shared Object Dependencies . 54

Directories Searched by the Runtime Linker 55

Relocation Processing . 57

Symbol Lookup . 59

Contents v

When Relocations are Performed . 60

Relocation Errors . 61

Loading Additional Objects . 62

Initialization and Termination Routines 64

Security . 64

Runtime Linking Programming Interface. 65

Loading Additional Objects . 67

Relocation Processing . 69

Obtaining New Symbols. 73

Debugging Aids . 77

4. Shared Objects . 83

Overview. 83

Naming Conventions . 84

Recording a Shared Object Name . 86

Shared Objects with Dependencies . 89

Dependency Ordering. 90

Shared Objects as Filters . 91

Generating a Standard Filter . 92

Generating an Auxiliary Filter . 95

 Performance Considerations . 96

Useful Tools . 97

The Underlying System . 100

Position-Independent Code . 100

Maximizing Shareability. 102

vi Linker and Libraries Guide—November 1995

Minimizing Paging Activity . 105

Relocations . 106

Profiling Shared Objects . 111

5. Versioning . 115

Overview. 115

Interface Compatibility . 116

Internal Versioning . 117

Creating a Version Definition . 118

Binding to a Version Definition . 126

Specifying a Version Binding . 132

Relocatable Objects . 135

External Versioning . 135

Coordination of Versioned Filenames 136

6. Object Files . 139

Introduction . 139

File Format . 140

Data Representation . 141

ELF Header. 142

ELF Identification . 146

Sections . 148

Special Sections . 157

String Table . 161

Symbol Table . 162

Relocation . 167

Contents vii

Versioning Information . 181

Note Section . 187

Dynamic Linking . 189

Program Header . 189

Program Loading (Processor-Specific) 195

Runtime Linker . 205

Hash Table . 224

Initialization and Termination Functions 225

7. Mapfile Option . 227

Introduction . 227

Using the Mapfile Option . 228

Mapfile Structure and Syntax . 228

Segment Declarations . 229

Mapping Directives . 233

Size-Symbol Declarations . 236

File Control Directives . 236

Mapping Example . 236

Mapfile Option Defaults . 239

Internal Map Structure . 240

Error Messages . 243

Warnings . 243

Fatal Errors . 244

A. Link-Editor Quick Reference . 245

Static Mode . 245

viii Linker and Libraries Guide—November 1995

Building a Relocatable Object. 246

Building a Static Executable . 246

Dynamic Mode. 246

Building a Shared Object . 246

Building a Dynamic Executable. 248

B. Versioning Quick Reference . 249

Naming Conventions . 250

Defining a Shared Object’s Interface . 251

Versioning a Shared Object . 252

Versioning an Existing (Non-versioned) Shared Object . . . 253

Updating a Versioned Shared Object. 253

Adding New Symbols . 254

Internal Implementation Changes. 255

New Symbols and Internal Implementation Changes 255

Migrating Symbols to a Standard Interface 256

Index . 261

ix

Figures

Figure 1-1 Static or Dynamic Link-editing . 3

Figure 3-1 A Single dlopen(3X) Request . 70

Figure 3-2 Multiple dlopen(3X) Requests . 71

Figure 3-3 Multiple dlopen(3X) Requests With A Common Dependency 72

Figure 6-1 Object File Format . 140

Figure 6-2 Data Encoding ELFDATA2LSB . 148

Figure 6-3 Data Encoding ELFDATA2MSB . 148

Figure 6-4 String Table. 161

Figure 6-5 Note Information . 187

Figure 6-6 Example Note Segment . 188

Figure 6-13 Symbol Hash Table . 224

Figure 7-1 Simple Map Structure . 241

x Linker and Libraries Guide—November 1995

xi

Tables

Table 6-1 32-Bit Data Types. 141

Table 6-2 ELF File Identifiers . 143

Table 6-3 ELF Machines. 143

Table 6-4 ELF Versions . 144

Table 6-5 e_ident[] Identification Index . 146

Table 6-6 Magic Number . 146

Table 6-7 File Class . 147

Table 6-8 Data Encoding . 147

Table 6-9 Special Section Indexes . 149

Table 6-10 Section Types, sh_type . 152

Table 6-11 Section Header Table Entry: Index 0 . 155

Table 6-12 Section Attribute Flags . 155

Table 6-13 sh_link and sh_info Interpretation . 156

Table 6-14 Special Sections . 157

Table 6-15 String Table Indexes . 161

Table 6-16 Symbol Table Initial Entry . 162

xii Linker and Libraries Guide—November 1995

Table 6-17 Symbol Binding, ELF32_ST_BIND . 163

Table 6-18 Symbol Types, ELF32_ST_TYPE . 165

Table 6-19 Symbol Table Entry: Index 0 . 166

Table 6-20 SPARC Relocation Types . 173

Table 6-21 x86 Relocation Types. 176

Table 6-22 Relocation Types . 178

Table 6-25 Version Dependency Indexes . 184

Table 6-28 Segment Types, p_type. 191

Table 6-29 Segment Flag Bits, p_flags . 193

Table 6-30 Segment Permissions . 194

Table 6-34 Example SPARC Shared Object Segment Addresses. 203

Table 6-35 Example x86 Shared Object Segment Addresses 203

Table 6-36 Dynamic Array Tags, d_tag . 208

Table 7-1 Mapfile Segment Attributes . 230

Table 7-2 Section Attributes . 234

xiii

Preface

Solaris™ provides an environment in which application developers can build
applications and libraries using the link-editor ld(1) , and execute these
utilities with the aid of the runtime linker ld.so.1 . For many application
developers, the fact that the link-editor is called via the compilation system,
and that the runtime linker may play a part in the execution of their
application, is mildly interesting. This manual is for those who wish to
understand more fully the concepts involved.

About This Manual
This manual describes the operations of the Solaris link-editor and runtime
linker. Special emphasis is placed on the generation and use of shared objects
because of their importance in a dynamic runtime environment.

Intended Audience

This manual is intended for a range of programmers who are interested in the
Solaris linkers, from the curious beginner to the advanced user:

• Beginners learn the principle operations of the link-editor and runtime
linker.

• Intermediate programmers learn to build, and use, efficient custom libraries.

• Advanced programmers, such as language-tools developers, learn how to
interpret and generate object files.

xiv Linker and Libraries Guide—November 1995

Not many programmers should find it necessary to read this manual from
cover to cover.

Organization

Chapter 1, “Introduction”, gives an overview of the linking processes under
Solaris. This chapter is intended for all programmers.

Chapter 2, “Link-Editor”, describes the functions of the link-editor, its two
modes of linking (static and dynamic), scope and forms of input, and forms of
output. This chapter is intended for all programmers.

Chapter 3, “Runtime Linker”, describes the execution environment and
program-controlled runtime binding of code and data. This chapter is intended
for all programmers.

Chapter 4, “Shared Objects”, gives definitions of shared objects, describes their
mechanisms, and explains how to build and use them. This chapter is intended
for all programmers.

Chapter 5, “Versioning”, describes how to manage the evolution of an interface
provided by a dynamic object.

Chapter 6, “Object Files”, is a reference chapter on ELF files. This chapter is
intended for advanced programmers.

Chapter 7, “Mapfile Option”, describes the mapfile directives to the linker,
which specify the layout of the output file. This chapter is intended for
advanced programmers.

Appendix A, “Link-Editor Quick Reference”, gives an overview of the most
commonly used link-editor options, and is intended for all programmers.

Appendix B, “Versioning Quick Reference”, gives naming conventions and
guidelines for versioning shared objects, and is intended for all programmers.

Throughout this document, all command-line examples use sh(1) syntax, and
all programming examples are written in the C language.

1

Introduction 1

This manual describes the operations of the Solaris link-editor and runtime
linker, together with the objects on which they operate. The basic operation of
the Solaris linkers involves the combination of objects and the connection of
symbolic references from one object to the symbolic definitions within another.
This operation is often referred to as binding.

The main areas this manual expands upon are:

• The Link-Editor

The link-editor, ld(1) , concatenates one or more input files (either
relocatable objects, shared objects, or archive libraries) to produce one
output file (either a relocatable object, an executable application, or a shared
object). The link-editor is most commonly invoked as part of the
compilation environment (see cc(1)).

• The Runtime Linker

The runtime linker, ld.so.1 1, processes dynamic executables and shared
objects at runtime, and binds them to create a runable process.

1. ld.so.1 is a special case of a shared object and therefore allows itself to be versioned. Here a version number
of 1 is used, however later releases of Solaris might provide higher version numbers.

2 Linker and Libraries Guide—November 1995

1

• Shared Objects (sometimes referred to as Shared Libraries)

Shared objects are one form of output from the link-edit phase. However,
their importance in creating a powerful, flexible runtime environment
warrants a section of its own.

• Object Files

The Solaris linkers work with files that conform to the executable and linking
format (ELF).

These areas, although separable into individual topics, have a great deal of
overlap. While explaining each area, this document brings together the
connecting principles and designs.

Link-Editing
Link-editing takes a variety of input files, from cc(1) , as(1) or ld(1) , and
concatenates and interprets the data within these input files to form a single
output file. Although the link-editor provides numerous options, the output
file produced is one of four basic types:

• Relocatable object – a concatenation of input relocatable objects, which can be
used in subsequent link-edit phases.

• Static executable – a concatenation of input relocatable objects that has all
symbolic references bound to the executable, and thus represents a ready-to-
run process.

• Dynamic executable – a concatenation of input relocatable objects that
requires intervention by the runtime linker to produce a runable process. Its
symbolic references might still need to be bound at runtime, and it might
have one or more dependencies in the form of shared objects.

• Shared object – a concatenation of input relocatable objects that provides
services that might be bound to a dynamic executable at runtime. The
shared object might also have dependencies on other shared objects.

These output files, and the key link-editor options used to create them, are
shown in Figure 1-1 on page 3.

Dynamic executables and shared objects, are often referred to jointly as dynamic
objects, and are the main focus of this document.

Introduction 3

1

Figure 1-1 Static or Dynamic Link-editing

Runtime Linking
Runtime linking involves the binding of objects, usually generated from one or
more previous link-edits, to generate a runable process. During the generation
of these objects by the link-editor, the binding requirements are verified and
appropriate bookkeeping information is added to each object to allow the
runtime linker to map, relocate, and complete the binding process.

During the execution of the process, the facilities of the runtime linker are also
made available and can be used to extend the process’ address space by adding
additional shared objects on demand. The two most common components
involved in runtime linking are dynamic executables and shared objects.

Dynamic Executables

Dynamic executables are applications that are executed under the control of a
runtime linker. These applications usually have dependencies in the form of
shared objects, which are located and bound by the runtime linker to create a
runable process. Dynamic executables are the default output file generated by
the link-editor.

ld

-dn -dy

-r -G

Relocatable
object

Static
executable

Dynamic
executable

Shared
object

4 Linker and Libraries Guide—November 1995

1

Shared Objects

Shared objects provide the key building block to a dynamically linked system.
Basically, a shared object is similar to a dynamic executable, however shared
objects usually have no entry point and they have not yet been assigned a
virtual address.

Dynamic executables usually have dependencies on one or more shared
objects. That is, the shared object(s) must be bound to the dynamic executable
to produce a runable process. Because shared objects can be used by many
applications, aspects of their construction directly affect shareability,
versioning and performance.

It is useful to distinguish the processing of shared objects by either the link-
editor or the runtime linker by referring to the environments in which the
shared objects are being used:

• The compilation environment. Here, shared objects are processed by the
link-editor to generate dynamic executables or other shared objects. The
shared objects become dependencies of the output file being generated.

• The runtime environment. Here, shared objects are processed by the runtime
linker, together with a dynamic executable, to produce a runable process.

Related Topics

Dynamic Linking

Dynamic linking is a term often used to embrace those portions of the link-
editing process that generate dynamic executables and shared objects, together
with the runtime linking of these objects to generate a runable process.
Dynamic linking allows multiple applications to use the code provided by a
shared object by enabling the application to bind to the shared object at
runtime.

By separating an application from the services of standard libraries, dynamic
linking also increases the portability and extensibility of an application. This
separation between the interface of a service and its implementation enables the
system to evolve while maintaining application stability, and is a crucial factor
in providing an application binary interface (ABI). Dynamic linking is the
preferred compilation method for Solaris applications.

Introduction 5

1

Application Binary Interfaces

To enable the asynchronous evolution of system and application components,
binary interfaces between these facilities are defined. The Solaris linkers
operate upon these interfaces to assemble applications for execution. Although
all components handled by the Solaris linkers have binary interfaces, one
family of such interfaces of particular interest to applications writers is the
System V Application Binary Interface.

The System V Application Binary Interface, or ABI, defines a system interface for
compiled application programs. Its purpose is to document a standard binary
interface for application programs on systems that implement the System V
Interface Definition, Third Edition. Solaris provides for the generation and
execution of ABI-conformant applications. On SPARC systems, the ABI is
contained as a subset of the SPARC® Compliance Definition (SCD).

Many of the topics covered in the following chapters are influenced by the ABI.
For more detailed information see the appropriate ABI manuals.

Support Tools

Together with the objects mentioned in the previous sections come several
support tools and libraries. These tools provide for the analysis and inspection
of these objects and the linking processes. Among these tools are: nm(1) ,
dump(1) , ldd(1) , pvs(1), elf(3E) , and a linker debugging support library.
Throughout this document many discussions are augmented with examples of
these tools use.

6 Linker and Libraries Guide—November 1995

1

7

Link-Editor 2

Overview
The link-editing process builds an output file from one or more input files. The
building of the output file is directed by the options supplied to the link-editor
together with the input sections provided by the input files.

All files are represented in the executable and linking format (ELF). For a
complete description of the ELF format see Chapter 6, “Object Files”. For this
introduction, however, it is first necessary to introduce two ELF structures,
sections and segments.

Sections are the smallest indivisible units that can be processed within an ELF
file. Segments are a collection of sections that represent the smallest individual
units that can be mapped to a memory image by exec(2) or by the runtime
linker.

Although there are many types of ELF sections, they all fall into two categories
with respect to the link-editing phase:

• Sections that contain program data, whose interpretation is meaningful only
to the application itself (such as the program instructions .text and the
associated data .data and .bss).

• Sections that contain link-editing information (such as the symbol table
information found from .symtab and .strtab, and relocation information such
as .rela.text).

8 Linker and Libraries Guide—November 1995

2

Basically, the link-editor concatenates the program data sections into the output
file. The link-editing information sections are interpreted by the link-editor to
modify other sections or to generate new output information sections used in
later processing of the output file.

The following simple breakdown of link-editor functionality introduces the
topics covered in this chapter:

• It verifies and checks for consistency all the options passed to it.

• It concatenates sections of the same characteristics (for example, type,
attributes and name) from the input relocatable objects to form new sections
within the output file. These concatenated sections can in turn be associated
to output segments.

• It reads symbol table information from both relocatable objects and shared
objects to verify and unite references with definitions, and usually generates
a new symbol table, or tables, within the output file.

• It reads relocation information from the input relocatable objects and applies
this information to the output file by updating other input sections. In
addition, output relocation sections might be generated for use by the
runtime linker.

• It generates program headers that describe any segments created.

• It generates a dynamic linking information section if necessary, which
provides information such as shared object dependencies to the runtime
linker.

The process of concatenating like sections and associating sections to segments is
carried out using default information within the link-editor. The default section
and segment handling provided by the link-editor is usually sufficient for most
link-edits. However, these defaults can be manipulated using the -M option
with an associated mapfile (see Chapter 7, “Mapfile Option” for more
details).

Invoking the Link-Editor
You can either run the link-editor directly from the command-line or have a
compiler driver invoke it for you. In the following two sections both methods
are expanded upon. However, the latter is the preferred choice, as the
compilation environment is often the consequence of a complex and
occasionally changing series of operations known only to compiler drivers.

Link-Editor 9

2

Direct Invocation

When you invoke the link-editor directly, you have to supply every object file
and library required to build the intended output. The link-editor makes no
assumptions about the object modules or libraries you meant to use in building
the output. For example, when you issue the command:

the link-editor builds a dynamic executable named a.out using only the input
file test.o . For the a.out to be a useful executable, it should include start-up
and exit processing code. This code can be language or operating system
specific, and is usually provided through files supplied by the compiler
drivers.

Additionally, you can also supply your own initialization and termination
code. This code must be encapsulated and labeled correctly for it to be
correctly recognized and made available to the runtime linker. This
encapsulation and labeling is also provided through files supplied by the
compiler drivers.

In practice, there is little reason to invoke the link-editor directly.

Using a Compiler Driver

The conventional way to use the link-editor is through a language-specific
compiler driver. You supply the compiler driver,cc(1) , f77(1) , etc., with the
input files that make up your application, and the compiler driver adds
additional files and default libraries to complete the link-edit. These additional
files can be seen by expanding the compilation invocation, for example:

$ ld test.o

$ cc -# -o prog main.o
/usr/ccs/bin/ld -dy /opt/COMPILER/crti.o /opt/COMPILER/crt1.o \
/usr/ccs/lib/values-Xt.o -o prog main.o \
-YP,/opt/COMPILER/lib:/usr/ccs/lib:/usr/lib -Qy -lc \
/opt/COMPILER/crtn.o

10 Linker and Libraries Guide—November 1995

2

Note – This is an example; the actual files included by your compiler driver
and the mechanism used to display the link-editor invocation might differ.

Specifying the Link-Editor Options
Most options to the link-editor can be passed through the compiler driver
command-line. For the most part the compiler and the link-editor options do
not conflict. Where a conflict arises, the compiler drivers usually provide a
command-line syntax that allows you to pass specific options to the link-editor.
However, you can instead provide options to the link-editor by setting the
LD_OPTIONS environment variable. For example:

Here the -R and -L options will be interpreted by the link-editor and prepended
to any command-line options received from the compiler driver.

The link-editor parses the entire option list looking for any invalid options or
any options with invalid associated arguments. When either of these cases is
found, a suitable error message is generated, and when the error is deemed
fatal the link-edit terminates. For example:

Here the illegal option -X is identified, and the illegal argument to the -z
option is caught by the link-editor’s checking. If an option requiring an
associated argument is mistakenly specified twice the link-editor will provide a
suitable warning but will continue with the link-edit. For example:

$ LD_OPTIONS=“-R /home/me/libs -L /home/me/libs“ cc -o prog \
main.c -lfoo

$ ld -X -z sillydefs main.o
ld: illegal option -- X
ld: fatal: option -z has illegal argument ‘sillydefs’

$ ld -e foo -e bar main.o
ld: warning: option -e appears more than once, first setting taken

Link-Editor 11

2

The link-editor also checks the option list for any fatal inconsistences. For
example:

After processing all options, and if no fatal error conditions have been
detected, the link-editor proceeds to process the input files.

See Appendix A, “Link-Editor Quick Reference” for the most commonly used
link-editor options, and the ld(1) manual page for a complete description of
all link-editor options.

Input File Processing
The link-editor reads input files in the order in which they appear on the
command-line. Each file is opened and inspected to determine its ELF file type
and so determine how it must be processed. The file types applicable as input
for the link-edit are determined by the binding mode of the link-edit, either
static or dynamic.

Under static linking the link-editor will accept only relocatable objects or
archive libraries as input files. Under dynamic linking the link-editor will also
accept shared objects.

Relocatable objects represent the most basic input file type to the link-editing
process. The program data sections within these files are concatenated into the
output file image being generated. The link-edit information sections are
organized for later use, but will not become part of the output file image, as
new sections will be generated to take their places. Symbols are gathered into a
special internal symbol table that allows for their verification and resolution,
and eventually for the creation of one or more symbol tables in the output
image.

Although any input file can be specified directly on the link-edit command-
line, archive libraries and shared objects are commonly specified using the -l
option (see “Linking with Additional Libraries” on page 14 for coverage of this
mechanism and how it relates to the two different linking modes). However,
even though shared objects are often referred to as shared libraries, and both of

$ ld -dy -r main.o
ld: fatal: option -dy and -r are incompatible

12 Linker and Libraries Guide—November 1995

2

these objects can be specified using the same option, the interpretation of
shared objects and archive libraries is quite different. The next two sections
expand upon these differences.

Archive Processing

Archives are built using ar(1) , and usually consist of a collection of
relocatable objects with an archive symbol table. This symbol table provides an
association of symbol definitions with the objects that supply these definitions.
When the link-editor reads an archive, it uses information within the internal
symbol table it is creating to select only the objects from the archive it requires
to complete the binding process. To be more precise, the link-editor will extract
a relocatable object from an archive if:

• The archive contains a symbol definition that satisfies a symbol reference
(sometimes referred to as an undefined symbol) presently held in the
link-editor’s internal symbol table, or

• The archive contains a data symbol definition that satisfies a tentative symbol
definition presently held in the link-editor’s internal symbol table. An
example of this is a FORTRAN COMMON block definition which will cause
the extraction of a relocatable object that defines the same DATA symbol.

Note – A weak symbol reference will not cause the extraction of an object from
an archive. Weak symbols are expanded upon in section “Simple Resolutions”
on page 22.

The link-editor will make multiple passes through an archive extracting
relocatable objects as needed to satisfy the symbol information being
accumulated in the link-editor internal symbol table. Once the link-editor has
made a complete pass through the archive without extracting any relocatable
objects, it will move on to process the next input file. This mechanism of
extracting from the archive only the relocatable objects needed at the time the
archive was encountered means that the position of the archive within the
input file list can be significant (see “Position of an Archive on the Command-
Line” on page 16 for more details).

Note – Although the link-editor will make multiple passes through an archive
to resolve symbols, this mechanism can be quite costly for large archives
containing random organizations of relocatable objects. In these cases it is

Link-Editor 13

2

recommended that tools like lorder(1) and tsort(1) be used to order the
relocatable objects within the archive and so reduce the number of passes the
link-editor must carry out.

Shared Object Processing

Shared objects are indivisible, whole units that have been generated by a
previous link-edit of one or more input files. When the link-editor processes a
shared object the entire contents of the shared object become a logical part of
the resulting output file image. The shared object is not copied physically
during the link-edit as its actual inclusion is deferred until process execution.
This logical inclusion means that all symbol entries defined in the shared object
are made available to the link-editing process.

The shared object’s program data sections and most of the link-editing information
sections are unused by the link-editor, as these will be interpreted by the
runtime linker when the shared object is bound to generate a runable process.
However, the occurrence of a shared object will be remembered, and
information will be stored in the output file image to indicate that this object is
a dependency and must be made available at runtime.

If a shared object has dependencies on other shared objects, these too will be
processed. This processing will occur after all command-line input files have
been processed. These shared objects will be used to complete the symbol
resolution process, however their names will not be recorded as dependencies
in the output file image being generated.

Although the position of a shared object on the link-edit command-line has less
significance than it does for archive processing, it can have a global effect.
Multiple symbols of the same name are allowed to occur between relocatable
objects and shared objects, and between multiple shared objects (see “Symbol
Resolution” on page 21 for more details).

The order of shared objects processed by the link-editor is maintained in the
dependency information stored in the output file image. As the runtime linker
reads this information it will load the specified shared objects in the same
order. Therefore, the link-editor and the runtime linker will select the first
occurrence of a symbol of a multiply defined series of symbols.

14 Linker and Libraries Guide—November 1995

2

Note – Multiple symbol definitions, and thus the information to describe the
interposing of one definition of a symbol for another, are reported in the load
map output generated using the -m option.

Linking with Additional Libraries

Although the compiler drivers will often ensure that appropriate libraries are
specified to the link-editor, it is frequently necessary for you to supply your
own. Shared objects and archives can be specified by explicitly naming the
input files required to the link-editor, but a more common and more flexible
method involves using the link-editor’s -l option.

Library Naming Conventions

By convention, shared objects are usually designated by the prefix lib and the
suffix .so , and archives are designated by the prefix lib and the suffix .a . For
example, libc.so is the shared object version of the standard C library made
available to the compilation environment, and libc.a is its archive version.

These conventions are recognized by the -l option of the link-editor. This
option is commonly used to supply additional libraries to a link-edit. The
following example:

directs the link-editor to search for libfoo.so , and if it does not find it, to
search for libfoo.a , before moving on to the next directory to be searched.

Note – There is a naming convention regarding the compilation environment
and the runtime environment use of shared objects. The compilation
environment uses the simple .so suffix, whereas the runtime environment
commonly uses the suffix with an additional version number. See “Naming
Conventions” on page 84, and “Coordination of Versioned Filenames” on
page 136 for more details.

$ cc -o prog file1.c file2.c -lfoo

Link-Editor 15

2

When link-editing in dynamic mode, you can choose to link with a mix of
shared objects and archives. When link-editing in static mode, only archive
libraries are acceptable for input.

When in dynamic mode and using the -l option to enable a library search, the
link-editor will first search in a given directory for a shared object that matches
the specified name. If no match is found the link-editor will then look for an
archive library in the same directory. When in static mode and using the -l
option, only archive libraries will be sought.

Linking with a Mix of Shared Objects and Archives

Although the library search mechanism, in dynamic mode, searches a given
directory for a shared object, and then an archive library, finer control of the
type of search required can be achieved using the -B option.

By specifying the -Bdynamic and -Bstatic options on the command-line, as
many times as required, the library search can be toggled between shared
objects or archives respectively. For example, to link an application with the
archive libfoo.a and the shared object libbar.so , issue the following
command:

The -Bstatic and -Bdynamic keywords are not exactly symmetrical. When
you specify -Bstatic , the link-editor does not accept shared objects as input
until the next occurrence of -Bdynamic . However, when you specify
-Bdynamic , the link-editor will first look for shared objects and then archives
in any given directory.

In the previous example it is more precise to say that the link-editor first
searches for libfoo.a, and then for libbar.so , and if that fails, for
libbar.a . Finally, it will search for libc.so , and if that fails, libc.a .

Another example of using these options is in the creation of an ABI-
conforming application. For example:

$ cc -o prog main.o file1.c -Bstatic -lfoo -Bdynamic -lbar

$ cc -o prog main.c file1.c -lsys -Bstatic

16 Linker and Libraries Guide—November 1995

2

Here all the basic system routines defined in libsys.so will be bound to this
shared object. Because the compiler driver appends a -lc to the options
supplied to the link-editor, and because the -Bstatic has instructed the
link-editor to search for archive libraries only, any remaining undefined
symbols will be resolved by extracting the appropriate relocatable objects from
libc.a .

Position of an Archive on the Command-Line

The position of an archive on the command-line can affect the output file being
produced. The link-editor searches an archive only to resolve undefined or
tentative external references it has previously seen. Once this search is
completed and the required relocatable objects have been extracted, the archive
will not be available to resolve any new symbols obtained from the input files
that follow the archive on the command-line. For example, the command

directs the link-editor to search libfoo.a only to resolved symbol references
that have been obtained from file1.c; libfoo.a will not be available to
resolve symbol references from file2.c or file3.c .

Note – As a rule, it is best to specify any archives at the end of the command-
line unless multiple-definition conflicts require you to do otherwise.

Directories Searched by the Link-Editor

All previous examples assumed that the link-editor knows where to search for
the libraries listed on the command-line. By default the link-editor knows of
only two standard places to look for libraries, /usr/ccs/lib and /usr/lib .
All other directories to be searched must be added to the link-editor’s search
path explicitly.

There are two ways to change the link-editor search path: using a command-
line option, or using an environment variable.

$ cc -o prog file1.c -Bstatic -lfoo file2.c file3.c -Bdynamic

Link-Editor 17

2

Using a Command-Line Option
The -L option can be used to add a new pathname to the library search path.
This option affects the search path at the point it is encountered on the
command-line. For example, the command

searches path1 (then /usr/ccs/lib and /usr/lib) to find libfoo , but
searches path1 and then path2 (and then /usr/ccs/lib and /usr/lib) to
find libbar .

Pathnames defined using the -L option are used only by the link-editor. They
are not recorded in the output file image created for use by the runtime linker.

Note – You must specify -L if you want the link-editor to search for libraries in
your current directory. You can use a period (.) to represent the current
directory.

The -Y option can be used to change the default directories searched by the
link-editor. The argument supplied with this option takes the form of a colon
separated list of directories. For example, the command

searches for libfoo only in the directories /opt/COMPILER/lib and
/home/me/lib . The directories specified using the -Y option can be
supplemented by using the -L option.

Using an Environment Variable
You can also use the environment variable LD_LIBRARY_PATH, which takes a
colon-separated list of directories, to add to the link-editor’s library search
path. In its most general form, LD_LIBRARY_PATH takes two directory lists
separated by a semicolon. The first list is searched before the list(s) supplied on
the command-line, and the second list is searched after.

$ cc -o prog main.o -Lpath1 file1.c -lfoo file2.c -Lpath2 -lbar

$ cc -o prog main.c -YP,/opt/COMPILER/lib:/home/me/lib -lfoo

18 Linker and Libraries Guide—November 1995

2

Here is the combined effect of setting LD_LIBRARY_PATH and calling the
link-editor with several -L occurrences:

The effective search path will be dir1:dir2:path1:path2...
pathn:dir3:/usr/ccs/lib:/usr/lib .

If no semicolon is specified as part of the LD_LIBRARY_PATH definition the
specified directory list is interpreted after any -L options. For example:

Here the effective search path will be path1:path2...
pathn:dir1:dir2:/usr/ccs/lib:/usr/lib .

Note – This environment variable can also be used to augment the search path
of the runtime linker (see “Directories Searched by the Runtime Linker” on
page 55 for more details). To prevent this environment variable from
influencing the link-editor the -i option can be used.

Directories Searched by the Runtime Linker

The runtime linker knows of only one standard place to look for libraries,
/usr/lib . All other directories to be searched must be added to the runtime
linker’s search path explicitly.

When a dynamic executable or shared object is linked with additional shared
objects, these shared objects are recorded as dependencies that must be located
again during process execution by the runtime linker. During the link-edit, one
or more pathnames can be recorded in the output file. These pathnames will be
used by the runtime linker to search for any shared object dependencies. These
recorded pathnames are referred to as a runpath.

$ LD_LIBRARY_PATH=dir1:dir2;dir3
$ export LD_LIBRARY_PATH
$ cc -o prog main.c -Lpath1 ... -Lpath2 ... -Lpathn -lfoo

$ LD_LIBRARY_PATH=dir1:dir2
$ export LD_LIBRARY_PATH
$ cc -o prog main.c -Lpath1 ... -Lpath2 ... -Lpathn -lfoo

Link-Editor 19

2

Note – No matter how you modify the runtime linker’s library search path, its
last element is always /usr/lib .

The - R option, which takes a colon-separated list of directories, can be used to
record a runpath in a dynamic executable or shared library. For example:

will record the runpath /home/me/lib:/home/you/lib in the dynamic
executable prog . The runtime linker will use these paths, and then the default
location /usr/lib , to locate any shared object dependencies. In this case, this
runpath will be used to locate libfoo.so.1 and libbar.so.1 .

The link-editor accepts multiple -R options and will concatenate each of these
specifications, separated by a colon. Thus, the above example can also be
expressed as:

Note – A historic alternative to specifying the -R option is to set the
environment variable LD_RUN_PATH, and make this available to the
link-editor. The scope and function of LD_RUN_PATH and -R are identical, but
when both are specified, -R supersedes LD_RUN_PATH.

Initialization and Termination Sections

The .init and .fini section types provide for runtime initialization and
termination processing. These section types are concatenated from the input
relocatable objects like any other sections. However, the compiler drivers can
also supply .init and .fini sections as part of the additional files they add to the
beginning and end of the your input-file list.

These files have the effect of encapsulating the .init and .fini code into
individual functions that are identified by the reserved symbol names _init
and _fini respectively.

$ cc -o prog main.c -R/home/me/lib:/home/you/lib -Lpath1 \
- Lpath2 file1.c file2.c -lfoo -lbar

$ cc -o prog main.c -R/home/me/lib -Lpath1 \
-R/home/you/lib - Lpath2 file1.c file2.c -lfoo -lbar

20 Linker and Libraries Guide—November 1995

2

When building a dynamic executable or shared object, the link-editor records
these symbol addresses in the output file’s image so they can be called by the
runtime linker during initialization and termination processing. See
“Initialization and Termination Routines” on page 64 for more details on the
runtime processing of these sections.

The creation of .init and .fini sections can be carried out directly using an
assembler, or some compilers can offer special primitives to simplify their
declaration. For example, the following code segments result in a call to the
function foo being placed in an .init section, and a call to the function bar
being placed in a .fini section:

Care should be taken when designing initialization and termination code that
can be included in both a shared object and archive library. If this code is
spread throughout several relocatable objects within an archive library, then
the link-edit of an application using this archive can extract only a portion of
the modules, and therefore only a portion of the initialization and termination
code. At runtime, only this portion of code will be executed.

The same application built against the shared object will have all the
accumulated initialization and termination code executed at runtime when the
shared object is mapped in as one of the application’s dependencies.

#pragma init (foo)
#pragma fini (bar)

foo()
{
 /* Perform some initialization processing. */

}

bar()
{
 /* Perform some termination processing. */

}

Link-Editor 21

2

Symbol Processing
During input file processing, all local symbols from the input relocatable objects
are passed through to the output file image. All global symbols are accumulated
internally within the link-editor. This internal symbol table is searched for each
new global symbol entry processed to determine if a symbol with the same
name has already been encountered from a previous input file. If so, a symbol
resolution process is called to determine which of the two entries is to be kept.

On completion of input file processing, and providing no fatal error conditions
have been encountered during symbol resolution, the link-editor determines if
any unbound symbol references (undefined symbols) remain that will cause
the link-edit to fail.

Finally, the link-editor’s internal symbol table is added to the symbol table(s)
of the image being created.

The following sections expand upon symbol resolution and undefined symbol
processing.

Symbol Resolution

Symbol resolution runs the entire spectrum, from simple and intuitive to
complex and perplexing. Resolutions can be carried out silently by the
link-editor, be accompanied by warning diagnostics, or result in a fatal error
condition.

The resolution of two symbols depends on the symbols’ attributes, the type of
file providing the symbol and the type of file being generated. For a complete
description of symbol attributes see “Symbol Table” on page 162. For the
following discussions, however, it is worth identifying three basic symbol
types:

• Undefined symbols. These symbols have been referenced in a file but have
not been assigned a storage address.

• Tentative symbols. These symbols have been created within a file but have
not yet been sized or allocated in storage. They appear as uninitialized C
symbols, or FORTRAN COMMON blocks within the file.

• Defined symbols. These symbols have been created and assigned storage
addresses and space within the file.

22 Linker and Libraries Guide—November 1995

2

In its simplest form, symbol resolution involves the use of a precedence
relationship that has defined symbols dominating tentative symbols, which in
turn dominate undefined symbols.

The following C code example shows how these symbol types can be
generated (undefined symbols are prefixed with u_ , tentative symbols are
prefixed with t_ , and defined symbols are prefixed with d_):

Simple Resolutions

These symbol resolutions are by far the most common, and result when two
symbols with similar characteristics are detected, and one symbol takes
precedence over the other. This symbol resolution is carried out silently by the
link-editor. For example, for symbols with the same binding, a reference to an
undefined symbol from one file will be bound to, or satisfied by, a defined or
tentative symbol definition from another file. Or, a tentative symbol definition
from one file will be bound to a defined symbol definition from another file.

$ cat main.c
extern int u_bar;
extern int u_foo();

int t_bar;
int d_bar = 1;

d_foo()
{
 return (u_foo(u_bar, t_bar, d_bar));
}
$ cc -o main.o -c main.c
$ nm -x main.o

[Index] Value Size Type Bind Other Shndx Name
...............
[8] |0x00000000|0x00000000|NOTY |GLOB |0x0 |UNDEF |u_foo
[9] |0x00000000|0x00000040|FUNC |GLOB |0x0 |2 |d_foo
[10] |0x00000004|0x00000004|OBJT |GLOB |0x0 |COMMON |t_bar
[11] |0x00000000|0x00000000|NOTY |GLOB |0x0 |UNDEF |u_bar
[12] |0x00000000|0x00000004|OBJT |GLOB |0x0 |3 |d_bar

Link-Editor 23

2

Symbols that undergo resolution can have either a global or weak binding.
Weak bindings have less precedence than global binding, and so symbols with
different bindings are resolved according to a slight alteration of the simple
rules outlined above. But first, it is worth introducing how weak symbols can
be produced.

Weak symbols can be defined individually or as aliases to global symbols using
a pragma definition:

Notice that the weak alias foo is assigned the same attributes as the global
symbol _foo . This relationship will be maintained by the link-editor and will
result in the symbols being assigned the same value in the output image.

In symbol resolution, weak defined symbols will be silently overridden by any
global definition of the same name.

Another form of simple symbol resolution occurs between relocatable objects
and shared objects, or between multiple shared objects, and is termed
interposition. In these cases, if a symbol is multiply defined, the relocatable
object, or the first definition between multiple shared objects, will be silently
taken by the link-editor. The relocatable object’s definition, or the first shared

$ cat main.c
#pragma weak bar
#pragma weak foo = _foo

int bar = 1;

_foo()
{
 return (bar);
}
$ cc -o main.o -c main.c
$ nm -x main.o

[Index] Value Size Type Bind Other Shndx Name
...............
[7] |0x00000000|0x00000004|OBJT |WEAK |0x0 |3 |bar
[8] |0x00000000|0x00000028|FUNC |WEAK |0x0 |2 |foo
[9] |0x00000000|0x00000028|FUNC |GLOB |0x0 |2 |_foo

24 Linker and Libraries Guide—November 1995

2

object’s definition, is said to interpose on all other definitions. This interposition
can be used to override the functionality provided by one shared object by a
dynamic executable or another shared object.

The combination of weak symbols and interposition provides a very useful
programming technique. For example, the standard C library provides several
services that you are allowed to redefine. However, ANSI C defines a set of
standard services that must be present on the system and cannot be replaced in
a strictly conforming program.

The function fread(3S) , for example, is an ANSI C library function, whereas
the system function read(2) is not. A conforming ANSI C program must be
able to redefine read(2) , and still use fread(3S) in a predictable way.

The problem here is that read(2) underlies the fread(3S) implementation
in the standard C library, and so it would seem that a program that redefines
read(2) might confuse the fread(3S) implementation. To guard against
this, ANSI C states that an implementation cannot use a name that is not
reserved to it, and by using the pragma directive shown below:

you can define just such a reserved name, and from it generate an alias for the
function read(2) . Thus, you can quite freely define your own read()
function without compromising the fread(3S) implementation, which in turn
is implemented to use the _read() function.

The link-editor will not complain of your redefinition of read() , either when
linking against the shared object or archive version of the standard C library. In
the former case, interposition will take its course, whereas in the latter case, the
fact that the C library’s definition of read(2) is weak allows it to be quietly
overridden.

By using the link-editor’s -m option, a list of all interposed symbol references,
along with section load address information, is written to the standard output.

pragma weak read = _read

Link-Editor 25

2

Complex Resolutions

Complex resolutions occur when two symbols of the same name are found
with differing attributes. In these cases the link-editor will select the most
appropriate symbol and will generate a warning message indicating the
symbol, the attributes that conflict, and the identity of the file from which the
symbol definition is taken. For example:

Here, two files with a definition of the data item array have different size
requirements. A similar diagnostic is produced if the symbols’ alignment
requirements differed. In both of these cases the diagnostic can be suppressed
by using the link-editor’s -t option.

$ cat foo.c
int array[1];

$ cat bar.c
int array[2] = { 1, 2 };

$ cc -dn -r -o temp.o foo.c bar.c
ld: warning: symbol `array’ has differing sizes:
 (file foo.o value=0x4; file bar.o value=0x8);
 bar.o definition taken

26 Linker and Libraries Guide—November 1995

2

Another form of attribute difference is the symbol’s type. For example:

Here the symbol bar has been defined as both a data item and a function.

Note – types in this context are the symbol types that can be expressed in ELF.
They are not related to the data types as employed by the programming
language except in the crudest fashion.

In cases like this, the relocatable object definition will be taken when the
resolution occurs between a relocatable object and a shared object, or, the first
definition will be taken when the resolution occurs between two shared
objects. When such resolutions occur between symbols of different bindings
(weak or global), a warning will also be produced.

Inconsistences between symbol types are not suppressed by the link-editor’s
-t option.

Fatal Resolutions

Symbol conflicts that cannot be resolved result in a fatal error condition. In this
case an appropriate error message is provided indicating the symbol name
together with the names of the files that provided the symbols, and no output

$ cat foo.c
bar()
{
 return (0);
}
$ cc -o libfoo.so -G -K pic foo.c
$ cat main.c
int bar = 1;

main()
{
 return (bar);
}
$ cc -o main main.c -L. -lfoo
ld: warning: symbol `bar’ has differing types:
 (file main.o type=OBJT; file ./libfoo.so type=FUNC);
 main.o definition taken

Link-Editor 27

2

file will be generated. Although the fatal condition is sufficient to terminate the
link-edit, all input file processing will first be completed. In this manner all
fatal resolution errors can be identified.

The most common fatal error condition exists when two relocatable objects
both define symbols of the same name, and neither symbol is a weak
definition:

Here foo.c and bar.c have conflicting definitions for the symbol bar . Since
the link-editor cannot determine which should dominate, it will usually give
up. However, the link-editor’s -z muldefs option can be used to suppress
this error condition, and allows the first symbol definition to be taken.

Undefined Symbols

After all input files have been read and all symbol resolution is complete, the
link-editor will search the internal symbol table for any symbol references that
have not been bound to symbol definitions. These symbol references are
referred to as undefined symbols. The effect of these undefined symbols on the
link-edit process can vary according to the type of output file being generated,
and possibly the type of symbol.

$ cat foo.c
int bar = 1;

$ cat bar.c
bar()
{
 return (0);
}

$ cc -dn -r -o temp.o foo.c bar.c
ld: fatal: symbol `bar’ is multiply defined:
 (file foo.o and file bar.o);
ld: fatal: File processing errors. No output written to int.o

28 Linker and Libraries Guide—November 1995

2

Generating an Executable

When the link-editor is generating an executable output file, the link-editor’s
default behavior is to terminate the link-edit with an appropriate error
message should any symbols remain undefined. A symbol remains undefined
when a symbol reference in a relocatable object is never matched to a symbol
definition:

In a similar manner, a symbol reference within a shared object that is never
matched to a symbol definition when the shared object is being used to build a
dynamic executable, will also result in an undefined symbol:

$ cat main.c
extern int foo();
main()
{
 return (foo());
}

$ cc -o prog main.c
Undefined first referenced
 symbol in file
foo main.o
ld: fatal: Symbol referencing errors. No output written to prog

$ cat foo.c
extern int bar;
foo()
{
 return (bar);
}

$ cc -o libfoo.so -G -K pic foo.c
$ cc -o prog main.c -L. -lfoo
Undefined first referenced
 symbol in file
bar ./libfoo.so
ld: fatal: Symbol referencing errors. No output written to prog

Link-Editor 29

2

If you wish to allow undefined symbols, as in cases like the previous example,
then the default fatal error condition can be suppressed by using the
link-editor’s -z nodefs option.

Note – Care should be taken when using the -z nodefs option. If an
unavailable symbol reference is required during the execution of a process, a
fatal runtime relocation error will occur. Although this error can be detected
during the initial execution and testing of an application, more complex
execution paths can result in this error condition taking much longer to detect,
which can be time consuming and costly.

Symbols can also remain undefined when a symbol reference in a relocatable
object is bound to a symbol definition in an implicitly defined shared object. For
example, continuing with the files main.c and foo.c used in the previous
example:

Here prog is being built with an explicit reference to libbar.so , and because
libbar.so has a dependency on libfoo.so , an implicit reference to
libfoo.so from prog is established.

Because main.c made a specific reference to the interface provided by
libfoo.so , then prog really has a dependency on libfoo.so . However, only
explicit shared object dependencies are recorded in the output file being
generated. Thus, prog will fail to run if a new version of libbar.so is
developed that no longer has a dependency on libfoo.so .

$ cat bar.c
int bar = 1;

$ cc -o libbar.so -R. -G -K pic bar.c -L. -lfoo
$ ldd libbar.so
 libfoo.so => ./libfoo.so

$ cc -o prog main.c -L. -lbar
Undefined first referenced
 symbol in file
foo main.o (symbol belongs to
implicit dependency ./libfoo.so)
ld: fatal: Symbol referencing errors. No output written to prog

30 Linker and Libraries Guide—November 1995

2

For this reason, bindings of this type are deemed fatal, and the implicit
reference must be made explicit by referencing the library directly during the
link-edit of prog (the required reference is hinted at in the fatal error message
shown in this example).

Generating a Shared Object

When the link-editor is generating a shared object, it will by default allow
undefined symbols to remain at the end of the link-edit. This allows the shared
object to import symbols from either relocatable objects or other shared objects
when it is used to build a dynamic executable. The link-editor’s -z defs
option can be used to force a fatal error if any undefined symbols remain.

Weak Symbols

Weak symbol references that are not bound during a link-edit will not result in
a fatal error condition, no matter what output file type is being generated.

If a static executable is being generated, the symbol will be converted to an
absolute symbol and assigned a value of zero.

If a dynamic executable or shared object is being produced, the symbol will be
left as an undefined weak reference. During process execution, the runtime
linker will search for this symbol, and if it does not find a match, will bind the
reference to an address of zero instead of generating a fatal runtime relocation
error.

Link-Editor 31

2

Within the confines of position-independent code (see section “Position-
Independent Code” on page 100 for more information), these undefined weak
referenced symbols can provide a useful mechanism for testing for the
existence of functionality. For example, let’s take the following C code
fragment which exists in the shared object libfoo.so.1 :

When an application is built that references libfoo.so.1 , the link-edit will
successfully complete regardless of whether a definition for the symbol foo is
found. If, during execution of the application the function address tests
nonzero, the function will be called. However, if the symbol definition is not
found, the function address will test zero, and so will not be called.

Tentative Symbol Order Within the Output File

Contributions from input files usually appear in the output file in the order of
their contribution. An exception occurs when processing tentative symbols and
their associated storage. These symbols are not fully defined until their
resolution is complete. If the resolution occurs as a result of encountering a
defined symbol from a relocatable object, then the order of appearance will be
that which would have occurred for the definition.

#pragma weak foo

extern void foo(char *);

void
bar(char * path)
{
 void (* fptr)();

 if ((fptr = foo) != 0)
 (* fptr)(path);
}

32 Linker and Libraries Guide—November 1995

2

If it is desirable to control the ordering of a group of symbols, then any
tentative definition should be redefined to a zero-initialized data item. For
example, the following tentative definitions result in a reordering of the data
items within the output file compared to the original order described in the
source file foo.c :

By defining these symbols as initialized data items, the relative ordering of
these symbols within the input file is carried over to the output file:

Defining Additional Symbols

Besides the symbols provided from any input files, you can also supply
additional symbol references or definitions to a link-edit. In the simplest form,
symbol references can be generated using the link-editor’s -u option. Greater
flexibility is provided with the link-editor’s -M option and an associated
mapfile which allows you to define symbol references and a variety of
symbol definitions.

$ cat foo.c
char A_array[0x10];
char B_array[0x20];
char C_array[0x30];
$ cc -o prog main.c foo.c
$ nm -vx prog | grep array
[32] |0x00020754|0x00000010|OBJT |GLOB |0x0 |15 |A_array
[34] |0x00020764|0x00000030|OBJT |GLOB |0x0 |15 |C_array
[42] |0x00020794|0x00000020|OBJT |GLOB |0x0 |15 |B_array

$ cat foo.c
char A_array[0x10] = { 0 };
char B_array[0x20] = { 0 };
char C_array[0x30] = { 0 };
$ cc -o prog main.c foo.c
$ nm -vx prog | grep array
[32] |0x000206bc|0x00000010|OBJT |GLOB |0x0 |12 |A_array
[42] |0x000206cc|0x00000020|OBJT |GLOB |0x0 |12 |B_array
[34] |0x000206ec|0x00000030|OBJT |GLOB |0x0 |12 |C_array

Link-Editor 33

2

The -u option provides a mechanism for generating a symbol reference from
the link-edit command line. This option can be used to perform a link-edit
entirely from archives, or to provide additional flexibility in selecting the
objects to extract from multiple archives (see section “Archive Processing” on
page 12 for an overview of archive extraction).

For example, let’s take the generation of a dynamic executable from the
relocatable object main.o which makes reference to the symbols foo and bar .
You wish to obtain the symbol definition foo from the relocatable object
foo.o contained in lib1.a , and the symbol definition bar from the
relocatable object bar.o contained in lib2.a .

However, the archive lib1.a also contains a relocatable object defining the
symbol bar (presumably of differing functionality to that provided in
lib2.a). To specify the required archive extraction, the following link-edit can
be used:

Here, the -u option generates a reference to the symbol foo . This reference
will cause extraction of the relocatable object foo.o from the archive lib1.a .
As the first reference to the symbol bar occurs in main.o , which is
encountered after lib1.a has been processed, the relocatable object bar.o
will be obtained from the archive lib2.a .

Note – This simple example assumes that the relocatable object foo.o from
lib1.a does not directly, or indirectly, reference the symbol bar . If it did then
the relocatable object bar.o will also be extracted from lib1.a during its
processing (see section “Archive Processing” on page 12 for a discussion of the
link-editor’s multi-pass processing of an archive).

A more extensive set of symbol definitions can be provided using the
link-editor’s -M option and an associated mapfile . The syntax for these
mapfile entries is:

$ cc -o prog -L. -u foo -l1 main.o -l2

[name] {
 scope:
 symbol [= [type] [value] [size]];
};

34 Linker and Libraries Guide—November 1995

2

• name represents a label for this set of symbol definitions, and if present,
identifies a version definition within the image. See Chapter 5, “Versioning”
for more details.

• scope indicates the visibility of the symbols’ binding within the output file
being generated. This can have either the value local or global . All symbols
defined with a mapfile are treated as global in scope during the link-edit
process. That is, they will be resolved against any other symbols of the same
name obtained from any of the input files. However, symbols defined as
local scope will be reduced to symbols with a local binding within any
executable or shared object file being generated.

• symbol is the name of the symbol required. If the name is not followed by
any symbol attributes then the result will be the creation of a symbol
reference. This reference is exactly the same as would be generated using the
-u option discussed earlier in this section. If the symbol name is followed
by an optional “=” character then a symbol definition will be generated
using the associated attributes.

When in local scope, this symbol name can be defined as the special auto-
reduction directive “*”. This directive results in all global symbols, not
explicitly defined to be global in the mapfile , being given a local binding
within any executable or shared object file being generated.

• type indicates the symbols’ type attribute and can be either data , function or
common . The former two type attributes result in an absolute symbol
definition (see “Symbol Table” on page 162). The latter type attribute results
in a tentative symbol definition.

• value indicates the symbols’ value attribute and takes the form of Vnumber.

• size indicates the symbols’ size attribute and takes the form of Snumber.

If either a version definition or the auto-reduction directive is specified, then
versioning information is recorded in the image created. If this image is an
executable or shared object, then any symbol reduction is also applied.

If the image being created is a relocatable object, then by default no symbol
reduction is applied. In this case, any symbol reductions are recorded as part of
the versioning information, and these reductions will be applied when the
relocatable object is finally used to generate an executable or shared object.

A more detailed description of the versioning information is provided in
Chapter 5, “Versioning”.

Link-Editor 35

2

The remainder of this section presents several examples of using this mapfile
syntax.

The following example shows how three symbol references can be defined and
used to extract members of an archive. Although this archive extraction can be
achieved by specifying multiple -u options to the link-edit, this example also
shows how the eventual scope of a symbol can be reduced to local:

$ cat foo.c
foo()
{
 (void) printf(“foo: called from lib.a\n”);
}
$ cat bar.c
bar()
{
 (void) printf(“bar: called from lib.a\n”);
}
$ cat main.c
extern void foo(), bar();

main()
{
 foo();
 bar();
}
$ ar -rc lib.a foo.o bar.o main.o
$ cat mapfile
{
 local:
 foo;
 bar;
 global:
 main;
};
$ cc -o prog -M mapfile lib.a
$ prog
foo: called from lib.a
bar: called from lib.a
$ nm -x prog | egrep “main$|foo$|bar$”
[28] |0x00010604|0x00000024|FUNC |LOCL |0x0 |7 |foo
[30] |0x00010628|0x00000024|FUNC |LOCL |0x0 |7 |bar
[49] |0x0001064c|0x00000024|FUNC |GLOB |0x0 |7 |main

36 Linker and Libraries Guide—November 1995

2

The significance of reducing a symbol’s scope from global to local is covered in
more detail in the section “Reducing Symbol Scope” on page 38.

The following example shows how two absolute symbol definitions can be
defined and used to resolve the references from the input file main.c :

When obtained from an input file, symbol definitions for functions or data
items are usually associated with elements of data storage. As a mapfile
definition is insufficient to be able to construct this data storage, these symbols
must remain as absolute values.

However, a mapfile can also be used to define a common , or tentative,
symbol. Unlike other types of symbol definition, tentative symbols do not
occupy storage within a file, but define storage that must be allocated at run-
time. Therefore, symbol definitions of this kind can contribute to the storage
allocation of the output file being generated.

$ cat main.c
extern int foo();
extern int bar;

main()
{
 (void) printf(“&foo = %x\n”, &foo);
 (void) printf(“&bar = %x\n”, &bar);
}
$ cat mapfile
{
 global:
 foo = FUNCTION V0x400;
 bar = DATA V0x800;
};
$ cc -o prog -M mapfile main.c
$ prog
&foo = 400
&bar = 800
$ nm -x prog | egrep “foo$|bar$”
[37] |0x00000800|0x00000000|OBJT |GLOB |0x0 |ABS |bar
[42] |0x00000400|0x00000000|FUNC |GLOB |0x0 |ABS |foo

Link-Editor 37

2

A feature of tentative symbols, that differs from other symbol types, is that
their value attribute indicates their alignment requirement. A mapfile
definition can therefore be used to realign tentative definitions obtained from
the input files of a link-edit.

The following example shows the definition of two tentative symbols. The
symbol foo defines a new storage region whereas the symbol bar is actually
used to change the alignment of the same tentative definition within the file
main.c :

Note – The above symbol resolution diagnostic can be suppressed by using the
link-editor’s -t option.

$ cat main.c
extern int foo;
int bar[0x10];

main()
{
 (void) printf(“&foo = %x\n”, &foo);
 (void) printf(“&bar = %x\n”, &bar);
}
$ cat mapfile
{
 global:
 foo = COMMON V0x4 S0x200;
 bar = COMMON V0x100 S0x40;
};
$ cc -o prog -M mapfile main.c
ld: warning: symbol ‘bar’ has differing alignments:
 (file mapfile value=0x100; file main.o value=0x4);
 largest value applied
$ prog
&foo = 20940
&bar = 20900
$ nm -x prog | egrep “foo$|bar$”
[37] |0x00020900|0x00000040|OBJT |GLOB |0x0 |16 |bar
[42] |0x00020940|0x00000200|OBJT |GLOB |0x0 |16 |foo

38 Linker and Libraries Guide—November 1995

2

Reducing Symbol Scope

In the previous section it was shown how symbol definitions defined to have
local scope within a mapfile can be used to reduce the symbol’s eventual
binding. This mechanism can play an important role in reducing the symbol’s
visibility to future link-edits that use the generated file as part of their input. In
fact, this mechanism can provide for the precise definition of a file’s interface,
and so restrict the functionality made available to others.

For example, let’s take the generation of a simple shared object from the files
foo.c and bar.c . The file foo.c contains the global symbol foo which
provides the service that you wish to make available to others. The file bar.c
contains the symbols bar and str which provide the underlying
implementation of the shared object. A simple build of the shared object will
usually result in all three of these symbols having global scope:

You can now use the functionality offered by this shared object as part of the
link-edit of another application. References to the symbol foo will be bound to
the implementation provided by the shared object.

$ cat foo.c
extern const char * bar();

const char * foo()
{
 return (bar());
}
$ cat bar.c
const char * str = “returned from bar.c”;

const char * bar()
{
 return (str);
}
$ cc -o lib.so.1 -G foo.c bar.c
$ nm -x lib.so.1 | egrep “foo$|bar$|str$”
[29] |0x000104d0|0x00000004|OBJT |GLOB |0x0 |12 |str
[32] |0x00000418|0x00000028|FUNC |GLOB |0x0 |6 |bar
[33] |0x000003f0|0x00000028|FUNC |GLOB |0x0 |6 |foo

Link-Editor 39

2

However, because of their global binding, direct reference to the symbols bar
and str is also possible. This can have dangerous consequences, as the you
might later change the implementation underlying the function foo , and in so
doing unintentionally cause an existing application that had bound to bar or
str fail or misbehave.

Another consequence of the global binding of the symbols bar and str is that
they can be interposed upon by symbols of the same name (the interposition of
symbols within shared objects is covered in section “Simple Resolutions” on
page 22). This interposition can be intentional and be used as a means of
circumventing the intended functionality offered by the shared object. On the
other hand, this interposition can be unintentional, and simply be the result of
the application and the shared object using the same common symbol name.

When developing the shared object you can protect against this type of
scenario by reducing the scope of the symbols bar and str to a local binding,
for example:

Here the symbols bar and str are no longer available as part of the shared
objects interface. Thus these symbols cannot be referenced, or interposed upon,
by an external object. You have effectively defined an interface for the shared
object. This interface can be managed while hiding the details of the
underlying implementation.

This symbol scope reduction has an additional performance advantage. The
symbolic relocations against the symbols bar and str that would have been
necessary at runtime are now reduced to relative relocations. This reduces the
runtime overhead of initializing and processing the shared object (see section
“When Relocations are Performed” on page 106 for details of symbolic
relocation overhead).

$ cat mapfile
{
 local:
 bar;
 str;
};
$ cc -o lib.so.1 -M mapfile -G foo.c bar.c
$ nm -x lib.so.1 | egrep “foo$|bar$|str$”
[27] |0x000003dc|0x00000028|FUNC |LOCL |0x0 |6 |bar
[28] |0x00010494|0x00000004|OBJT |LOCL |0x0 |12 |str
[33] |0x000003b4|0x00000028|FUNC |GLOB |0x0 |6 |foo

40 Linker and Libraries Guide—November 1995

2

As the number of symbols processed during a link-edit gets large, the ability to
define each local scope reduction within a mapfile becomes harder to
maintain. An alternative, and more flexible mechanism, allows you to define
the shared objects interface in terms of the global symbols that should

be maintained, and instructs the link-editor to reduce all other symbols to local
binding. This mechanism is achieved using the special auto-reduction directive
“*”. For example, the previous mapfile definition can be rewritten to define
foo as the only global symbol required in the output file generated:

This example also defines a version name, lib.so.1.1 , as part of the
mapfile directive. This version name establishes an internal version definition
that defines the files symbolic interface. The creation of a version definition is
recommended, and forms the foundation of an internal versioning mechanism
that can be used throughout the evolution of the file. See Chapter 5,
“Versioning” for more details on this topic.

$ cat mapfile
lib.so.1.1 {
 global:
 foo;
 local:
 *;
};
$ cc -o lib.so.1 -M mapfile -G foo.c bar.c
$ nm -x lib.so.1 | egrep “foo$|bar$|str$”
[30] |0x00000370|0x00000028|FUNC |LOCL |0x0 |6 |bar
[31] |0x00010428|0x00000004|OBJT |LOCL |0x0 |12 |str
[35] |0x00000348|0x00000028|FUNC |GLOB |0x0 |6 |foo

Link-Editor 41

2

Whenever a version name is specified, all global symbols must be assigned to a
version definition. If any global symbols remain unassigned to a version
definition the link-editor will generate a fatal error condition:

When generating an executable or shared object, any symbol reduction results
in the recording of version definitions within the output image, together with
the reduction of the appropriate symbols. By default, when generating a
relocatable object, the version definitions are created, but the symbol
reductions are not processed. The result is that the symbol entries for any
symbol reductions will still remain global. For example, using the previous
mapfile and associated relocatable objects, an intermediate relocatable object
is created which shows no symbol reduction:

However, the version definitions created within this image record the fact that
symbol reductions are required. When the relocatable object is eventually used
to generate an executable or shared object, the symbol reductions will occur. In
other words, the link-editor reads and interprets symbol reduction information
contained in relocatable objects in the same manner as it can process the data
from a mapfile .

$ cat mapfile
lib.so.1.1 {
 global:
 foo;
};
$ cc -o lib.so.1 -M mapfile -G foo.c bar.c
Undefined first referenced
 symbol in file
str bar.o (symbol has no version assigned)
bar bar.o (symbol has no version assigned)
ld: fatal: Symbol referencing errors. No output written to
lib.so.1

$ ld -o lib.o -M mapfile -r foo.o bar.o
$ nm -x lib.o | egrep “foo$|bar$|str$”
[17] |0x00000000|0x00000004|OBJT |GLOB |0x0 |3 |str
[19] |0x00000028|0x00000028|FUNC |GLOB |0x0 |1 |bar
[20] |0x00000000|0x00000028|FUNC |GLOB |0x0 |1 |foo

42 Linker and Libraries Guide—November 1995

2

Thus, the intermediate relocatable object produced in the previous example can
now be used to generate a shared object:

Symbol reductions can be forced to occur when building a relocatable object by
using the link-editor’s -B reduce option:

Generating the Output Image
Once all input file processing and symbol resolution is completed with no fatal
errors, the link-editor will start generating the output file image.

The link-editor establishes what additional sections must be generated to
complete the output file image. These include the symbol tables that contain
local symbol definitions from the input files, together with the global and weak
symbol information that has been collected in its internal symbol table.

Also included are any output relocation and dynamic information sections
required by the runtime linker. Once all the output section information has
been established, the total output file size is calculated and the output file
image is created accordingly.

When building a dynamic executable or shared object, two symbol tables are
usually generated. The .dynsym, and its associated string table .dynstr, contain
only global, weak and section symbols. These sections become part of the text
segment which is mapped as part of the process image at runtime. This allows
the runtime linker to read these sections and perform any necessary
relocations.

$ cc -o lib.so.1 -G lib.o
$ nm -x lib.so.1 | egrep “foo$|bar$|str$”
[22] |0x000104a4|0x00000004|OBJT |LOCL |0x0 |14 |str
[24] |0x000003dc|0x00000028|FUNC |LOCL |0x0 |8 |bar
[36] |0x000003b4|0x00000028|FUNC |GLOB |0x0 |8 |foo

$ ld -o lib.o -M mapfile -B reduce -r foo.o bar.o
$ nm -x lib.o | egrep “foo$|bar$|str$”
[15] |0x00000000|0x00000004|OBJT |LOCL |0x0 |3 |str
[16] |0x00000028|0x00000028|FUNC |LOCL |0x0 |1 |bar
[20] |0x00000000|0x00000028|FUNC |GLOB |0x0 |1 |foo

Link-Editor 43

2

The .symtab, and its associated string table .strtab, contain all the symbols
collected from the input file processing. These sections are not mapped as part
of the process image, and can even be stripped from the image using the
link-editor’s -s option, or after the link-edit using strip(1) .

During the generation of the symbol tables reserved symbols are created. These
have special meaning to the linking process and should not be defined in your
code:

• _etext, the first location after the text segment.

• _edata, the first location after initialized data.

• _end, the first location after all data.

• _DYNAMIC, the address of the dynamic information section (the .dynamic
section).

• _GLOBAL_OFFSET_TABLE_, the position-independent reference to a
link-editor supplied table of addresses (the .got section). This table is
constructed from position-independent data references occurring in objects
that have been compiled with the -K pic option (see “Position-
Independent Code” on page 100 for more information).

• _PROCEDURE_LINKAGE_TABLE_, the position-independent reference to a
link-editor supplied table of addresses (the .plt section). This table is
constructed from position-independent function references occurring in
objects that have been compiled with the -K pic option (see “Position-
Independent Code” on page 100 for more information).

If the link-editor is generating an executable, it will look for additional symbols
to define the executable’s entry point. If a symbol was specified using the
link-editor’s -e option it will be used. Otherwise the link-editor will look for
the reserved symbol names _start , and then main . If none of these symbols
exists, the first address of the text segment will be used.

Having created the output file, all data sections from the input files are copied
to the new image. Any relocations specified in the input files are applied to the
output image. Any new relocation information that must be generated,
together with all the other link-editor generated information, is also written to
the new image.

44 Linker and Libraries Guide—November 1995

2

Link-Editor Support Interface
The link-editor provides a support library interface that allows information
regarding the link-edit to be obtained. This facility provides for input file
inspection, and to some degree, input file data modification of those files that
comprise a link-edit. You should be intimately familiar with the elf(3E)
structures and file format when using this interface.

Invoking the Support Interface

The link-editor will accept one or more support libraries provided by the
SGS_SUPPORT environment variable or with the link-editor’s -S option. The
environment variable consists of a colon separated list of support libraries:

The -S option specifies a single support library. Multiple -S options can be
specified:

Each support library represents a shared object. The link-editor performs a
dlopen(3X) on each shared object, in the order they are specified. If both the
environment variable and -S options are encountered then the shared objects
specified with the environment variable are processed first. Each support
library is then searched, using dlsym(3X) , for any support interface routines.
These support routines are then called at various stages of the link-editing
process.

By default, the Solaris support library libldstab.so.1 is used by the
link-editor to process compiler generated debugging information contained
within input relocatable objects. This default processing is suppressed if you
invoke the link-editor with any support libraries specified using the -S option.
If this default processing is required in addition to your support library
services, then libldstab.so.1 should be explicitly added to the list of
support libraries supplied to the link-editor.

$ SGS_SUPPORT=./support.so.1 cc ...

$ ld -S ./support.so.1 -S libldstab.so.1 ...

Link-Editor 45

2

Support Interface Functions

The following interface functions can be provided by a support library. These
interfaces are defined in the header file link.h . All interface arguments are
basic C types or ELF types (see elf(3E)). The ELF data types can be examined
with the elf access library libelf (see man Pages(3): Library Routines” for a
description of libelf contents).

The function ld_start() is called after the initial pass of the link-editor
command line. It indicates the output file that will be generated, and flags the
start of input file processing:

name is the output filename being created. etype is the output file type, which is
either ET_DYN, ET_REL, or ET_EXEC (as defined in sys/elf.h). caller is the
application calling the interface which in this case is ld .

The function ld_atexit() is called on completion of the link-edit:

status is the exit(2) code that will be returned by the link-editor and is either
EXIT_FAILURE , or EXIT_SUCCESS (as defined in stdlib.h).

The function ld_file() is called for each input file processed. The call is
made before any processing of the files data is carried out:

name is the input file about to be processed. kind indicates the input files’ type
which is either ELF_K_AR, or ELF_K_ELF (as defined in libelf.h). flags
provides more detailed information on how the link-editor came about
obtaining the file and can be either LD_SUP_DERIVED (the file name was
derived from a -l expansion), LD_SUP_INHERITED (the file was obtained as a
dependency of a command-line shared object), or LD_SUP_EXTRACTED (the file

void ld_start(const char * name, const Elf32_Half etype, const
 char * caller);

void ld_atexit(int status);

void ld_file(const char * name, const Elf_Kind kind, int flags,
 Elf * elf);

46 Linker and Libraries Guide—November 1995

2

was extracted from an archive). If no flags values are specified then the input
file has been explicitly named on the command-line. elf is a pointer to the files
ELF descriptor.

The function ld_section() is called for each section of the input file before
any processing of the sections data is carried out:

name is the input section name. shdr is a pointer to the associated section
header. sndx is the sections index within the input file. data is a pointer to the
associated data buffer. elf is a pointer to the files ELF descriptor.

Modification of the data is permitted by reallocating the data itself and
reassigning the Elf_Data buffers d_buf pointer. Any modification to the data
should insure the correct setting of the Elf_Data buffers d_size element. For
input sections that will become part of the output image, setting the d_size
element to zero will effectively remove the data from the output image.

Note – Any sections that are stripped by the use of the link-editors -s option
will not be reported to any ld_section() routines.

void ld_section(const char * name, Elf32_Shdr * shdr,
 Elf32_Word sndx, Elf_Data * data, Elf * elf);

Link-Editor 47

2

Support Interface Example

The following example creates a support library that prints the section names
of any relocatable object files processed as part of a link-edit.

$ cat support.c
#include <link.h>

static int indent = 0;

void
ld_start(const char * name, const Elf32_Half type,
 const char * caller)
{
 (void) printf(“output image: %s\n”, name);
}

void
ld_file(const char * name, const Elf_Kind kind, int flags,
 Elf * elf)
{
 if (flags & LD_SUP_EXTRACTED)
 indent += 2;
 else
 indent = 2;

 (void) printf(“%*sfile: %s\n”, indent, ““, name);
}

void
ld_section(const char * name, Elf32_Shdr * shdr, Elf32_Word sndx,
 Elf_Data * data, Elf * elf)
{
 Elf32_Ehdr * ehdr = elf32_getehdr(elf);

 if (ehdr->e_type == ET_REL)
 (void) printf(“%*s section [%ld]: %s\n”, indent,
 ““, sndx, name);
}

48 Linker and Libraries Guide—November 1995

2

This support library is dependent upon libelf to provide the ELF access
function elf32_getehdr(3E) which is used to determine the input file type:

The following link-edit shows the section diagnostics resulting from the
construction of a trivial application from a relocatable object and a local
archive library. The invocation of the support library, in addition to default
debugging information processing, is brought about by the -S option usage:

$ cc -o support.so.1 -G -K pic support.c -lelf

$ LD_OPTIONS=-S./support.so.1:libldstab.so.1 cc -o prog main.c \
 -L. -lfoo
output image: prog
 file: /opt/COMPILER/crti.o
 section [1]: .shstrtab
 section [2]: .text

 file: /opt/COMPILER/crt1.o
 section [1]: .shstrtab
 section [2]: .text

 file: /opt/COMPILER/values-xt.o
 section [1]: .shstrtab
 section [2]: .text

 file: main.o
 section [1]: .shstrtab
 section [2]: .text

 file: ./libfoo.a
 file: ./libfoo.a(foo.o)
 section [1]: .shstrtab
 section [2]: .text

 file: /usr/lib/libc.so
 file: /opt/COMPILER/crtn.o
 section [1]: .shstrtab
 section [2]: .text

 file: /usr/lib/libdl.so.1

Link-Editor 49

2

Note – The number of sections displayed in this example have been reduced to
simplify the output. Also, the files included by the compiler driver can vary.

Debugging Aids
Provided with the Solaris linkers is a debugging library that allows you to
trace the link-editing process in more detail. This library helps you understand,
or debug, the link-edit of your own applications or libraries. This is a visual
aid, and although the type of information displayed using this library is
expected to remain constant, the exact format of the information might change
slightly from release to release.

Some of the debugging output might be unfamiliar if you do not have an
intimate knowledge of ELF. However, many aspects can be of general interest
to you.

50 Linker and Libraries Guide—November 1995

2

Debugging is enabled by using the -D option, and all output produced is
directed to the standard error. This option must be augmented with one or
more tokens to indicate the type of debugging required. The tokens available
can be displayed by using -Dhelp . For example:

Note – The above is an example, and shows the options meaningful to the
link-editor. The exact options might differ from release to release.

As most compiler drivers will interpret the -D option during their
preprocessing phase, the LD_OPTIONS environment variable is a suitable
mechanism for passing this option to the link-editor.

$ ld -Dhelp
debug:
debug: For debugging the link-editing of an application:
debug: LD_OPTIONS=-Doption1,option2 cc -o prog ...
debug: or,
debug: ld -Doption1,option2 -o prog ...
debug: where placement of -D on the command line is significant
debug: and options can be switched off by prepending with `!’.
debug:
debug:
debug: args display input argument processing
debug: detail provide more information in conjunction with other
debug: options
debug: entry display entrance criteria descriptors
debug: files display input file processing (files and libraries)
debug: help display this help message
debug: libs display library search paths; detail flag shows actual
debug: library lookup (-l) processing
debug: map display map file processing
debug: reloc display relocation processing
debug: sections display input section processing
debug: segments display available output segments and address/offset
debug: processing; detail flag shows associated sections
debug: support display support library processing
debug: symbols display symbol table processing;
debug: detail flag shows resolution and linker table addition
debug: versions display version processing

Link-Editor 51

2

The following example shows how input files can be traced. This can be
especially useful in determining what libraries have been located, or what
relocatable objects have been extracted from an archive during a link-edit:

Here the member foo.o is extracted from the archive library libfoo.a to
satisfy the link-edit of prog . Notice that the archive is searched twice (again) to
verify that the extraction of foo.o did not warrant the extraction of additional
relocatable objects. More than one “again” display indicates that the archive is
a candidate for ordering using lorder(1) and tsort(1) .

By using the symbols token you can determine what symbol caused an
archive member to be extracted, and which object made the initial symbol
reference:

Here the symbol foo is referenced by main.o and is added to the link-editor’s
internal symbol table. This symbol reference causes the extraction of the
relocatable object foo.o from the archive libfoo.a .

Note – The above output has been simplified for this document.

$ LD_OPTIONS=-Dfiles cc -o prog main.o -L. -lfoo
............
debug: file=main.o [ET_REL]
debug: file=./libfoo.a [archive]
debug: file=./libfoo.a(foo.o) [ET_REL]
debug: file=./libfoo.a [archive] (again)
............

$ LD_OPTIONS=-Dsymbols cc -o prog main.o -L. -lfoo
............
debug: symbol table processing; input file=main.o [ET_REL]
............
debug: symbol[7]=foo (global); adding
debug:
debug: symbol table processing; input file=./libfoo.a [archive]
debug: archive[0]=bar
debug: archive[1]=foo (foo.o) resolves undefined or tentative symbol
debug:
debug: symbol table processing; input file=./libfoo(foo.o) [ET_REL]
.............

52 Linker and Libraries Guide—November 1995

2

By using the detail token together with the symbols token, the details of
symbol resolution during input file processing can be observed:

Here, the original undefined symbol foo from main.o has been overridden
with the symbol definition from the extracted archive member foo.o . The
detailed symbol information reflects the attributes of each symbol.

From the above example, it should be apparent that using some of the
debugging tokens can produce a wealth of output. In cases where are
interested only in the activity around a subset of the input files, the -D option
can be placed directly in the link-edit command-line, and toggled on and off.
For example:

Here the display of symbol processing will be switched on only during the
processing of the library libbar .

Note – To obtain the link-edit command-line it might be necessary to expand
the compilation line from any driver being used. See “Using a Compiler
Driver” on page 9 for more details.

$ LD_OPTIONS=-Dsymbols,detail cc -o prog main.o -L. -lfoo
............
debug: symbol table processing; input file=main.o [ET_REL]
............
debug: symbol[7]=foo (global); adding
debug: entered 0x000000 0x000000 NOTY GLOB UNDEF REF_REL_NEED
debug:
debug: symbol table processing; input file=./libfoo.a [archive]
debug: archive[0]=bar
debug: archive[1]=foo (foo.o) resolves undefined or tentative symbol
debug:
debug: symbol table processing; input file=./libfoo.a(foo.o) [ET_REL]
debug: symbol[1]=foo.c
.............
debug: symbol[7]=bar (global); adding
debug: entered 0x000000 0x000004 OBJT GLOB 3 REF_REL_NEED
debug: symbol[8]=foo (global); resolving [7][0]
debug: old 0x000000 0x000000 NOTY GLOB UNDEF main.o
debug: new 0x000000 0x000024 FUNC GLOB 2 ./libfoo.a(foo.o)
debug: resolved 0x000000 0x000024 FUNC GLOB 2 REF_REL_NEED

$ ld -o prog main.o -L. -Dsymbols -lbar -D!symbols

53

Runtime Linker 3

Overview
As part of the initialization and execution of a dynamic executable, an interpreter
is called to complete the binding of the application to its shared object
dependencies. In Solaris this interpreter is referred to as the runtime linker.

During the link-editing of a dynamic executable, a special .interp section,
together with an associated program header, are created. This section contains
a pathname specifying the program’s interpreter. The default name supplied
by the link-editor is that of the runtime linker - /usr/lib/ld.so.1 .

During the process of executing a dynamic executable (see exec(2)) the
kernel maps the file (see mmap(2)), and using the program header information
(see “Program Header” on page 189), locates the name of the required
interpreter. The kernel maps this interpreter and transfers control to it, passing
sufficient information to allow the interpreter to continue binding the
application and then run it.

In addition to initializing an application the runtime linker provides services
that allow the application to extend its address space by mapping additional
shared objects and binding to symbols within them.

The following is a simple breakdown of the runtime linkers functionality, and
introduces the topics covered in this chapter:

• It analyzes the executable’s dynamic information section (.dynamic) and
determines what shared object dependencies are required.

54 Linker and Libraries Guide—November 1995

3

• It locates and maps in these dependencies, and analyzes their dynamic
information sections to determine if any additional shared object
dependencies are required.

• Once all shared object dependencies are located and mapped, the runtime
linker performs any necessary relocations to bind these objects in
preparation for process execution.

• It calls any initialization functions provided by the shared object
dependencies.

• It passes control to the application.

• During the application’s execution, the runtime linker can be called upon to
perform any delayed function binding.

• The application can also call upon the runtime linker’s services to acquire
additional shared objects by dlopen(3X) , and bind to symbols within these
objects with dlsym(3X) .

Locating Shared Object Dependencies
Usually, during the link-edit of a dynamic executable, one or more shared
objects are explicitly referenced. These shared objects are recorded as
dependencies within the dynamic executable (see “Shared Object Processing”
on page 13 for more information).

The runtime linker first locates this dependency information and uses it to
locate and map the associated shared objects. These shared object
dependencies are processed in the same order as they were referenced during
the link-edit of the executable.

Once all the dynamic executable’s dependencies are mapped, they too are
inspected, in the order they are mapped, to locate any additional shared object
dependencies. This process continues until all dependent shared objects are
located and mapped. This technique results in a breadth-first ordering of all
dependent shared objects.

Runtime Linker 55

3

Directories Searched by the Runtime Linker

The runtime linker knows of only one standard place to look for shared object
dependencies, /usr/lib . Any dependency specified as a simple filename will
be prefixed with this default directory name and the resulting pathname will
be used to locate the actual file.

The actual shared object dependencies of any dynamic executable or shared
object can be displayed using ldd(1) . For example, the file /usr/bin/cat
has the following dependencies:

Here, the file /usr/bin/cat has a dependency, or needs, the files
libintl.so.1 , libw.so.1 , libc.so.1 and libdl.so.1 .

The shared object dependencies actually recorded in a file can be inspected by
using the dump(1) command to display the file’s .dynamic section, and
referencing any entries that have a NEEDED tag. For example:

Notice that the dependency libdl.so.1 , displayed in the previous ldd(1)
example, is not recorded in the file /usr/bin/cat . This is because ldd(1)
shows the total dependencies of the specified file, and libdl.so.1 is actually
a dependency of /usr/lib/libc.so.1 .

$ ldd /usr/bin/cat
 libintl.so.1 => /usr/lib/libintl.so.1
 libw.so.1 => /usr/lib/libw.so.1
 libc.so.1 => /usr/lib/libc.so.1
 libdl.so.1 => /usr/lib/libdl.so.1

$ dump -Lvp /usr/bin/cat

/usr/bin/cat:
[INDEX] Tag Value
[1] NEEDED libintl.so.1
[2] NEEDED libw.so.1
[3] NEEDED libc.so.1
.........

56 Linker and Libraries Guide—November 1995

3

In the previous dump(1) example the dependencies are expressed as simple
filenames - in other words there is no ‘/’ in the name. The use of a simple
filename requires the runtime linker to build the required pathname from a set
of rules. Filenames that contain an embedded ‘/’ will be used as-is.

The simple filename recording is the standard, most flexible mechanism of
recording dependencies, and is provided by using the -l option of the
link-editor (see “Linking with Additional Libraries” on page 14, and “Naming
Conventions” on page 84 for additional information on this topic).

Frequently, shared objects are distributed in a directory other than /usr/lib .
If a dynamic executable or shared object needs to locate dependencies in
another directory, the runtime linker must explicitly be told to search this
directory.

The recommended way to indicate additional search paths to the runtime
linker is to record a runpath during the link-edit of the dynamic executable or
shared object (see “Directories Searched by the Runtime Linker” on page 18 for
details on recording this information).

Any runpath recording can be displayed using dump(1) and referring to the
entry that has the RPATH tag. For example:

Here, prog has a dependency on libfoo.so.1 and requires the runtime
linker to search directories /home/me/lib and /home/you/lib before it
looks in the default location /usr/lib .

Another way to add to the runtime linker’s search path is to set the
environment variable LD_LIBRARY_PATH. This environment variable (which is
analyzed once at process startup) can be set to a colon-separated list of
directories, and these directories will be searched by the runtime linker before

$ dump -Lvp prog

prog:
[INDEX] Tag Value
[1] NEEDED libfoo.so.1
[2] NEEDED libc.so.1
[3] RPATH /home/me/lib:/home/you/lib
.........

Runtime Linker 57

3

any runpath specification or default directory. This environment variable is
well suited for debugging purposes such as forcing an application to bind to a
local shared object. For example:

Here the file prog from the previous example will be bound to libfoo.so.1
found in the present working directory.

Although useful as a temporary mechanism of influencing the runtime linker’s
search path, the use of this environment variable is strongly discouraged in
production software. Any dynamic executables that can reference this
environment variable will have their search paths augmented, which can result
in an overall degradation in performance. Also, as pointed out in “Using an
Environment Variable” on page 17, and “Directories Searched by the Runtime
Linker” on page 18, this environment variable affects the link-editor.

If a shared object dependency cannot be located, ldd(1) will indicate that the
object cannot be found, and any attempt to execute the application will result
in an appropriate error message from the runtime linker:

Note – Any runtime linker error that results from the failure of an underlying
system call will result in the system error code value being displayed as part of
the associated diagnostic message. This value can be interpreted more fully by
referencing /usr/include/sys/errno.h .

Relocation Processing
Once the runtime linker has located and mapped all the shared object
dependencies required by an application, it then processes each object and
performs any necessary relocations.

$ LD_LIBRARY_PATH=. prog

$ ldd prog
 libfoo.so.1 => (not found)
 libc.so.1 => /usr/lib/libc.so.1
 libdl.so.1 => /usr/lib/libdl.so.1
$ prog
ld.so.1: prog: fatal: libfoo.so.1: can’t open file: errno=2

58 Linker and Libraries Guide—November 1995

3

During the link-editing of an object, any relocation information supplied with
the input relocatable objects is applied to the output file. However, when
building a dynamic executable or shared object, many of the relocations cannot
be completed at link-edit time because they require logical addresses that are
known only when the objects are mapped into memory. In these cases the
link-editor generates new relocation records as part of the output file image,
and it is this information that the runtime linker must now process.

For a more detailed description of the many relocation types, see “Relocation
Types (Processor Specific)” on page 170. However, for the purposes of this
discussion it is convenient to categorize relocations into one of two types:

• Non-symbolic relocations.

• Symbolic relocations.

The relocation records for an object can be displayed by using dump(1) . For
example:

Here, the file libbar.so.1 contains two relocation records that indicate that
the global offset table (the .got section) must be updated.

The first relocation is a simple relative relocation that can be seen from its
relocation type and from the fact that the symbol index (Symndx) field is zero.
This relocation needs to use the base address at which the object was mapped
into memory to update the associated .got offset.

The second relocation requires the address of the symbol foo . To complete this
relocation the runtime linker must locate this symbol from the dynamic
executable or shared objects that have so far been mapped.

$ dump -rvp libbar.so.1

libbar.so.1:

.rela.got:
Offset Symndx Type Addend

0x10438 0 R_SPARC_RELATIVE 0
0x1043c foo R_SPARC_GLOB_DAT 0

Runtime Linker 59

3

Symbol Lookup

When the runtime linker looks up a symbol, it does so by searching in each
object, starting with the dynamic executable, and progressing through each
shared object in the same order in which the objects were mapped.

As discussed in previous sections, ldd(1) will list the shared object
dependencies of a dynamic executable in the order in which they are mapped.
Therefore, if the shared object libbar.so.1 requires the address of symbol
foo to complete its relocation, and this shared object is a dependency of the
dynamic executable prog:

Then, the runtime linker will first look for foo in the dynamic executable
prog , then in the shared object /home/me/lib/libfoo.so.1 , and finally in
the shared object /home/me/lib/libbar.so.1 .

Note – Symbol lookup can be an expensive operation, especially as the size of
symbol names increases, and the numbers of shared object dependencies
increase. This aspect of performance is discussed in more detail in
“Performance Considerations” on page 96.

Interposition

The runtime linkers mechanism of searching for a symbol first in the dynamic
executable and then in each of the shared object dependencies means that the
first occurrence of the required symbol will satisfy the search. Therefore, if
more than one instance of the same symbol exists, the first instance will
interpose on all others.

$ ldd prog
 libfoo.so.1 => /home/me/lib/libfoo.so.1
 libbar.so.1 => /home/me/lib/libbar.so.1

60 Linker and Libraries Guide—November 1995

3

When Relocations are Performed

Having briefly described the relocation process, together with the
simplification of relocations into the two types, non-symbolic and symbolic, it
is also useful to distinguish relocations by when they are performed. This
distinction arises due to the type of reference being made to the relocated offset,
and can be either:

• A data reference.

• A function reference.

A data reference refers to an address that is used as a data item by the
application code. The runtime linker has no knowledge of the application code,
and so does not know when this data item will be referenced. Therefore, all
data relocations must be carried out during process initialization, before the
application gains control.

A function reference refers to the address of a function that will be called by the
application code. During the compilation and link-editing of any dynamic
module, calls to global functions are relocated to become calls to a procedure
linkage table entry (these entries make up the .plt section).

These .plt entries are constructed so that when first called control is passed to
the runtime linker. The runtime linker will look up the required symbol and
rewrite information in the application so that any future calls to this .plt entry
will go directly to the function.This mechanism allows relocations of this type
to be deferred until the first instance of a function being called, a process that is
sometimes referred to as lazy binding.

The runtime linker’s default mode of performing lazy binding can be
overridden by setting the environment variable LD_BIND_NOW to any non-null
value. This environment variable setting causes the runtime linker to perform
both data reference and function reference relocations during process
initialization, before transferring control to the application. For example:

Here, all relocations within the file prog and within its shared object
dependencies will be processed before control is transferred to the application.

$ LD_BIND_NOW=yes prog

Runtime Linker 61

3

Relocation Errors

The most common relocation error occurs when a symbol cannot be found.
This condition will result in an appropriate runtime linker error message and
the termination of the application. For example:

Here the symbol bar , which is referenced in the file libfoo.so.1 , can not be
located.

Note – During the link-edit of a dynamic executable any potential relocation
errors of this sort will be flagged as fatal undefined symbols (see “Generating
an Executable” on page 28 for examples). This runtime relocation error can
occur if the link-edit of main used a different version of the shared object
libbar.so.1 that contained a symbol definition for bar , or if the -z nodefs
option was used as part of the link-edit.

If a relocation error of this type occurs because a symbol used as a data
reference cannot be located, the error condition will occur immediately during
process initialization. However, because of the default mode of lazy binding, if
a symbol used as a function reference cannot be found, the error condition will
occur after the application has gained control.

This latter case can take minutes or months, or might never occur, depending
on the execution paths exercised throughout the code. To guard against errors
of this kind, the relocation requirements of any dynamic executable or shared
object can be validated using ldd(1) .

$ ldd prog
 libfoo.so.1 => ./libfoo.so.1
 libc.so.1 => /usr/lib/libc.so.1
 libbar.so.1 => ./libbar.so.1
 libdl.so.1 => /usr/lib/libdl.so.1
$ prog
ld.so.1: prog: fatal: relocation error: symbol not found: bar: \
referenced in ./libfoo.so.1

62 Linker and Libraries Guide—November 1995

3

When the -d option is specified with ldd(1) , all shared object dependencies
will be printed and all data reference relocations will be processed. If a data
reference cannot be resolved, a diagnostic message will be produced. From the
previous example this reveals:

When the -r option is specified with ldd(1) , all data and function reference
relocations will be processed, and if either cannot be resolved a diagnostic
message will be produced.

Loading Additional Objects
The previous sections have described how the runtime linker initializes a
process from the dynamic executable and its shared object dependencies as
they were defined during the link-editing of each module. The runtime linker
also provides an additional level of flexibility by allowing you to introduce
new objects during process initialization.

The environment variable LD_PRELOAD can be initialized to a shared object or
relocatable object filename, or a string of filenames separated by white space.
These objects are mapped after the dynamic executable and before any shared
object dependencies. For example:

$ ldd -d prog
 libfoo.so.1 => ./libfoo.so.1
 libc.so.1 => /usr/lib/libc.so.1
 libbar.so.1 => ./libbar.so.1
 libdl.so.1 => /usr/lib/libdl.so.1
 symbol not found: bar (./libfoo.so.1)

$ LD_PRELOAD=./newstuff.so.1 prog

Runtime Linker 63

3

Here the dynamic executable prog will be mapped, followed by the shared
object newstuff.so.1 , and then by the shared object dependencies defined
within prog . The order in which these objects are processed can be displayed
using ldd(1) :

Another example is:

Here the preloading is a little more complex and time consuming. The runtime
linker first link-edits the relocatable objects foo.o and bar.o to generate a
shared object that is maintained in memory. This memory image is then
inserted between the dynamic executable and the normal shared object
dependencies in exactly the same manner as the shared object
newstuff.so.1 was preloaded in the previous example. Again, the order in
which these objects are processed can be displayed with ldd(1) :

These mechanisms of inserting a shared object after a dynamic executable take
the concept of interposition, introduced on page 59, to another level. Using these
mechanisms, it is possible to experiment with a new implementation of a
function that resides in a standard shared object. By preloading just that
function it will interpose on the original. Thus the old functionality can be
completely hidden with the new preloaded version.

Another use of preloading is to augment a function that resides in a standard
shared object. Here the intention is to have the new symbol interpose on the
original, allowing the new function to carry out some additional processing,
while still having it call through to the original function. This mechanism

$ LD_PRELOAD=./newstuff.so.1 ldd prog
 ./newstuff.so.1 => ./newstuff.so
 libc.so.1 => /usr/lib/libc.so.1

$ LD_PRELOAD=”./foo.o ./bar.o” prog

$ LD_PRELOAD=”./foo.o ./bar.o” ldd prog
 ./foo.o => ./foo.o
 ./bar.o => ./bar.o
 libc.so.1 => /usr/lib/libc.so.1

64 Linker and Libraries Guide—November 1995

3

requires either a symbol alias to be associated with the original function (see
“Simple Resolutions” on page 22), or the ability to look up the original
symbol’s address (see “Using Interposition” on page 75).

Initialization and Termination Routines
Before transferring control to the application, the runtime linker processes any
initialization (.init) and termination (.fini) sections found in any of the shared
object dependencies. These sections, and the symbols that describe them, were
created during the link-editing of the shared objects (see “Initialization and
Termination Sections” on page 19).

Any initialization routines for shared object dependencies are called in reverse
load order - in other words, the reverse order of the shared objects displayed
with ldd(1) .

Any termination routines for shared object dependencies are organized such
that they can be recorded by atexit(3C) . Termination routines are therefore
called in load order when the process calls exit(2) .

Although this initialization and termination calling sequence seems quite
straightforward, be careful about placing too much emphasis on this sequence,
as the ordering of shared objects can be affected by both shared object and
application development (see “Dependency Ordering” on page 90 for more
details).

Note – Any .init or .fini sections within the dynamic executable are called from
the application itself by the process start-up and termination mechanism
supplied by the compiler driver. The dynamic executable’s .init section is called
last, after all the shared object dependency’s .init sections are executed. The
dynamic executable’s .fini section is called first, before the shared object
dependency’s .fini sections are executed.

Security
Secure processes have some restrictions applied to the evaluation of their
dependencies to prevent malicious dependency substitution or symbol
interposition.

Runtime Linker 65

3

The runtime linker categorizes a process as secure if the user is not the root,
and either the real users and effective users identifiers are not equal (see
getuid(2) and geteuid(2)), or the real group and effective group
identifiers are not equal (see getgid(2) and getegid(2)).

If an LD_LIBRARY_PATH environment variable is in effect (see “Directories
Searched by the Runtime Linker” on page 55) for a secure process, then only
the trusted directories specified by this variable will be used to augment the
runtime linker’s search rules. Presently, the only trusted directory known to
the runtime linker is /usr/lib .

In a secure process, any runpath specifications provided by the application or
any of it’s dependencies (see “Directories Searched by the Runtime Linker” on
page 55), will be used provided they are full pathnames - in other words the
pathname starts with a ‘/’.

Additional objects may be loaded with a secure process using the LD_PRELOAD
environment variable (see “Loading Additional Objects” on page 67) provided
the objects are specified as simple filenames - in other words there is no ‘/’ in
the name. These objects will be located subject to the search path restrictions
previously described.

In a secure process, any dependencies that consist of simple filenames will be
processed using the pathname restrictions outlined above. Dependencies that
are expressed as full or relative pathnames will be used as is. Therefore, the
developer of a secure process should insure that the target directory referenced
as a full or relative pathname dependency is suitably protected from malicious
intrusion.

When creating a secure process, it is recommended that relative pathnames not
be used to express dependencies or to construct dlopen(3x) pathnames. This
restriction should be applied to the application and to all dependencies.

Runtime Linking Programming Interface
The previous discussions described how the shared object dependencies
specified during the link-edit of an application are processed by the runtime
linker during process initialization. In addition to this mechanism, the
application can extend its address space during its execution by binding to
additional shared objects. This extensibility is provided by allowing the

66 Linker and Libraries Guide—November 1995

3

application to request the same services of the runtime linker as used to
process the shared object’s dependencies specified during the link-edit of the
application.

This delayed object binding has several advantages:

• By processing a shared object when it is required rather than during the
initialization of an application, start-up time can be greatly reduced. In fact,
the shared object might not be required if its services are not needed during
a particular run of the application, such as for help or debugging
information.

• The application can choose between several different shared objects
depending on the exact services required, such as for a networking protocol.

• Any shared objects added to the process address space during execution can
be freed after use.

The following is a typical scenario that an application can perform to access an
additional shared object, and introduces the topics covered in the next sections:

• A shared object is located and added to the address space of a running
application using dlopen(3X) . Any dependencies this shared object has are
located and added at this time.

• The shared object(s) added are relocated, and any initialization sections
within the new shared object(s) are called.

• The application locates symbols within the added shared object(s) using
dlsym(3X) . The application can then reference the data or call the functions
defined by these new symbols.

• After the application has finished with the shared object(s) the address
space can be freed using dlclose(3X) . Any termination sections within
the shared object(s) being freed will be called at this time.

• Any error conditions that occur as a result of using these runtime linker
interface routines can be displayed using dlerror(3X) .

The services of the runtime linker are defined in the header file dlfcn.h and
are made available to an application by the shared object libdl.so.1 . For
example:

$ cc -o prog main.c -ldl

Runtime Linker 67

3

Here the file main.c can make reference to any of the dlopen(3X) family of
routines, and the application prog will be bound to these routines at runtime.

Loading Additional Objects

Additional shared objects can be added to a running process’s address space
using dlopen(3X) . This function takes a filename and a binding mode as
arguments, and returns a handle to the application. This handle can be used to
locate symbols for use by the application using dlsym(3X) .

If the filename is specified as a simple filename - in other words, there is no ‘/’
in the name, then the runtime linker will use a set of rules to build an
appropriate pathname. Filenames that contain a ‘/’ will be used as-is.

These search path rules are exactly the same as are used to locate any initial
shared object dependencies (see “Directories Searched by the Runtime Linker”
on page 55). For example, if the file main.c contains the following code
fragment:

then to locate the shared object foo.so.1 , the runtime linker will use any
LD_LIBRARY_PATH definition present at process initialization, followed by any
runpath specified during the link-edit of prog , and finally the default location
/usr/lib .

#include <stdio.h>
#include <dlfcn.h>

main(int argc, char ** argv)
{
 void * handle;

 if ((handle = dlopen(“foo.so.1”, RTLD_LAZY)) == NULL) {
 (void) printf(“dlopen: %s\n”, dlerror());
 exit (1);
 }

68 Linker and Libraries Guide—November 1995

3

If the filename is specified as:

then the runtime linker will search for the file only in the present working
directory.

Note – It is recommended that any shared object specified using dlopen(3X)
be referenced by its versioned filename (for more information on versioning see
“Coordination of Versioned Filenames” on page 136).

If the required shared object cannot be located, dlopen(3X) will return a
NULL handle. In this case dlerror(3X) can be used to display the true reason
for the failure. For example:

The errno value can be referenced in /usr/include/sys/errno.h .

If the shared object being added by dlopen(3X) has dependencies on other
shared objects, they too will be brought into the process’s address space.

If the shared object specified by dlopen(3X) , or any of its dependencies, are
already part of the process image, then the shared objects will not be processed
any further, but a valid handle will still be returned to the application. This
mechanism prevents the same shared object from being mapped more than
once, and allows an application to obtain a handle to itself. For example, if the
main.c example contained the following code:

then the handle returned from dlopen(3X) can be used to locate symbols
within the application itself, within any of the shared object dependencies
loaded as part of the process’s initialization, or within any objects added to the
process’s address space using a dlopen(3X) that specified the RTLD_GLOBAL
flag.

 if ((handle = dlopen(“./foo.so.1”, RTLD_LAZY)) == NULL) {

$ cc -o prog main.c -ldl
$ prog
dlopen: ld.so.1: prog: fatal: foo.so.1: can’t open file: errno=2

 if ((handle = dlopen((const char *)0, RTLD_LAZY)) == NULL) {

Runtime Linker 69

3

Relocation Processing

As described in “Relocation Processing” on page 57, after locating and
mapping any shared objects, the runtime linker must process each object and
perform any necessary relocations. Any shared objects brought into the
process’s address space with dlopen(3X) must also be relocated in the same
manner.

For simple applications this process might be quite uninteresting. However, for
users who have more complex applications with many dlopen(3X) calls
involving many shared objects, possibly with common dependencies, this topic
can be quite important.

Relocations can be categorized according to when they occur. The default
behavior of the runtime linker is to process all data reference relocations at
initialization and all function references during process execution, a
mechanism commonly referred to as lazy binding.

This same mechanism is applied to any shared objects added with
dlopen(3X) when the mode is defined as RTLD_LAZY. An alternative is to
require all relocations of a shared object to be performed immediately when
the shared object is added, and this can be achieved by using a mode of
RTLD_NOW.

Relocations can also be categorized into non-symbolic and symbolic. The
remainder of this section covers issues regarding symbolic relocations,
regardless of when these relocations occur, with a focus on some of the
subtleties of symbol lookup.

Symbol Lookup

If a shared object acquired by dlopen(3X) refers to a global symbol, the
runtime linker will locate this symbol in the same manner as any other symbol
lookup.

The runtime linker will first look in the dynamic executable, and then look in
each of the shared objects provided during the initialization of the process.
However, if the symbol is still not found, the runtime linker will continue the
search, looking in the shared object acquired through the dlopen(3X) and in
any of its dependencies.

70 Linker and Libraries Guide—November 1995

3

For example, let’s take the dynamic executable prog , and the shared object
B.so.1 , each of which has the following (simplified) dependencies:

If prog acquires the shared object B.so.1 by dlopen(3X) , then any symbol
required to relocate the shared objects B.so.1 and C.so.1 will first be looked
for in prog , followed by A.so.1 , followed by B.so.1 , and finally in C.so.1 .

In this simple case, it might be easier to think of the shared objects acquired
through the dlopen(3X) as if they had been added to the end of the original
link-edit of the application. For example, the objects referenced above can be
expressed diagrammatically:

Figure 3-1 A Single dlopen(3X) Request

Any symbol lookup required by the objects acquired from the dlopen(3X) ,
shown as shaded blocks, will proceed from the dynamic executable prog
through to the final shared object C.so.1 .

Note – Objects added to the process address space do not affect the normal
symbol lookup required by either the application or its initial shared object
dependencies. For example, if A.so.1 requires a function relocation after the
above dlopen(3X) has occurred, the runtime linker’s normal search for the
relocation symbol will be to look in prog and then A.so.1 , but not to follow
through and look in B.so.1 or C.so.1 .

$ ldd prog
 A.so.1 => ./A.so.1
$ ldd B.so.1
 C.so.1 => ./C.so.1

 prog A.so.1 B.so.1 C.so.1

Runtime Linker 71

3

This symbol lookup algorithm is established by assigning lookup scopes to each
object. These scopes maintain associations between objects based on their
introduction into the process address space, and on any dependency
relationships between the objects.

All objects obtained during the process’s initialization are assigned a global
scope. Any object within the global scope can be used by any other object to
provide symbols for relocation.

The shared objects associated with a given dlopen(3X) are assigned a unique
local scope that insures that only objects associated with the same dlopen(3X)
are allowed to look up symbols within themselves and their related
dependencies.

This concept of defining associations between objects becomes more clear in
applications that carry out more than one dlopen(3X) . For example, if the
shared object D.so.1 has the following dependency:

and the prog application was to dlopen(3X) this shared object in addition to the
shared object B.so.1 , then diagrammatically the symbol lookup relationship
between the objects can be represented as:

Figure 3-2 Multiple dlopen(3X) Requests

$ ldd D.so.1
 E.so.1 => ./E.so.1

prog A.so.1

C.so.1B.so.1

D.so.1 E.so.1

72 Linker and Libraries Guide—November 1995

3

If both B.so.1 and D.so.1 contain a definition for the symbol foo , and both
C.so.1 and E.so.1 contain a relocation that requires this symbol, then
because of the association of objects defined by the runtime linker, C.so.1 will
be bound to the definition in B.so.1 , and E.so.1 will be bound to the
definition in D.so.1 . This mechanism is intended to provide the most intuitive
binding of shared objects obtained from multiple calls to dlopen(3X) .

When shared objects are used in the scenarios that have so far been described,
the order in which each dlopen(3X) occurs has no effect on the resulting
symbol binding. However, when shared objects have common dependencies
the resultant bindings can be affected by the order in which the dlopen(3X)
calls are made.

Take for example the shared objects O.so.1 and P.so.1 , which have the same
common dependency:

In this example, the prog application will dlopen(3X) each of these shared
objects. Because the shared object Z.so.1 is a common dependency of both
O.so.1 and P.so.1 it will be assigned both of the local scopes that are associated
with the two dlopen(3X) calls. Diagrammatically this can be represented as:

Figure 3-3 Multiple dlopen(3X) Requests With A Common Dependency

$ ldd O.so.1
 Z.so.1 => ./Z.so.1
$ ldd P.so.1
 Z.so.1 => ./Z.so.1

 prog A.so.1

O.so.1

P.so.1

Z.so.1

Runtime Linker 73

3

The result is that Z.so.1 will be available for both O.so.1 and P.so.1 to
look up symbols, but more importantly, as far as dlopen(3X) ordering is
concerned, Z.so.1 will also be able to look up symbols in both O.so.1 and
P.so.1 .

Therefore, if both O.so.1 and P.so.1 contain a definition for the symbol foo
which is required for a Z.so.1 relocation, the actual binding that occurs is
unpredictable because it will be affected by the order of the dlopen(3X) calls.
If the functionality of symbol foo differs between the two shared objects in
which it is defined, the overall outcome of executing code within Z.so.1
might vary depending on the application’s dlopen(3x) ordering.

There is one final convolution involving the mode of a dlopen(3X) . All
previous examples have revolved around the shared objects obtained by a
dlopen(3X) each having a unique local scope, or a combination of local
scopes if a shared object is a common dependency. It is also possible to give a
shared object a global scope by augmenting the mode argument with the
RTLD_GLOBAL flag. Under this mode, any shared objects obtained through a
dlopen(3X) can be used by any other objects to locate symbols.

In addition, any object obtained by dlopen(3X) with the RTLD_GLOBAL flag
will also be available for symbol lookup using dlopen(0) (see “Loading
Additional Objects” on page 67).

Obtaining New Symbols

A process can obtain the address of a specific symbol using dlsym(3X) . This
function takes a handle and a symbol name, and returns the address of the
symbol to the caller. The handle directs the search for the symbol in the
following manner:

• The handle returned from a dlopen(3X) of a named shared object will allow
symbols to be obtained from that shared object, or from any of its
dependencies.

• The handle returned from a dlopen(3X) of a file whose value is 0 will allow
symbols to be obtained from the dynamic executable, from any of its
initialization dependencies, or from any object obtained by a dlopen(3X)
with the RTLD_GLOBAL mode.

• The special handle RTLD_NEXT will allow symbols to be obtained from the
next associated shared object.

74 Linker and Libraries Guide—November 1995

3

The first example is probably the most common. Here an application will add
additional shared objects to its address space and use dlsym(3X) to locate
function or data symbols. The application then uses these symbols to call upon
services provided in these new shared objects. For example, let’s take the file
main.c that contains the following code:

Here the symbols foo and bar will be searched for in the file foo.so.1
followed by any shared object dependencies that are associated with this file.
The function foo is then called with the single argument bar as part of the
return statement.

If the application prog is built using the above file main.c , and its initial
shared object dependencies are:

#include <stdio.h>
#include <dlfcn.h>

main()
{
 void * handle;
 int * dptr, (* fptr)();

 if ((handle = dlopen(“foo.so.1”, RTLD_LAZY)) == NULL) {
 (void) printf(“dlopen: %s\n”, dlerror());
 exit (1);
 }

 if (((fptr = (int (*)())dlsym(handle, “foo”)) == NULL) ||
 ((dptr = (int *)dlsym(handle, “bar”)) == NULL)) {
 (void) printf(“dlsym: %s\n”, dlerror());
 exit (1);
 }

 return ((*fptr)(*dptr));
}

$ ldd prog
 libdl.so.1 => /usr/lib/libdl.so.1
 libc.so.1 => /usr/lib/libc.so.1

Runtime Linker 75

3

then if the filename specified in the dlopen(3X) had the value 0, the symbols
foo and bar will be searched for in prog , followed by
/usr/lib/libdl.so.1 , and finally /usr/lib/libc.so.1 .

Once the handle has indicated the root at which to start a symbol search, the
search mechanism follows the same model as was described in “Symbol
Lookup” on page 59.

If the required symbol cannot be located, dlsym(3X) will return a NULL value.
In this case dlerror(3X) can be used to indicate the true reason for the
failure. For example;

Here the application prog was unable to locate the symbol bar .

Using Interposition

The special handle RTLD_NEXT allows an application to locate the next symbol
in a symbol scope. For example, if the application prog contained the
following code fragment:

then foo will be searched for in the shared objects associated with prog , in
this case, /usr/lib/libdl.so.1 and then /usr/lib/libc.so.1 . If this
code fragment was contained in the file B.so.1 from the example shown in
Figure 3-2 on page 71, then foo will be searched for in the associated shared
object C.so.1 only.

$ prog
dlsym: ld.so.1: main: fatal: dlsym: can’t find symbol bar

 if ((fptr = (int (*)())dlsym(RTLD_NEXT, “foo”)) == NULL) {
 (void) printf(“dlsym: %s\n”, dlerror());
 exit (1);
 }

 return ((*fptr)());

76 Linker and Libraries Guide—November 1995

3

Using RTLD_NEXT provides a means to exploit symbol interposition. For
example, a shared object function can be interposed upon by a preceding
shared object, which can then augment the processing of the original function.
If the following code fragment is placed in the shared object malloc.so.1 :

Then by interposing this shared object between the system library
/usr/lib/libc.so.1 where malloc(3C) usually resides, any calls to this
function will be interposed on before the original function is called to complete
the allocation:

#include <sys/types.h>
#include <dlfcn.h>
#include <stdio.h>

void *
malloc(size_t size)
{
 static void * (* fptr)() = 0;
 char buffer[50];

 if (fptr == 0) {
 fptr = (void * (*)())dlsym(RTLD_NEXT, “malloc”);
 if (fptr == NULL) {
 (void) printf(“dlopen: %s\n”, dlerror());
 return (0);
 }
 }

 (void) sprintf(buffer, “malloc: %#x bytes\n”, size);
 (void) write(1, buffer, strlen(buffer));
 return ((*fptr)(size));
}

$ cc -o malloc.so.1 -G -K pic malloc.c
$ cc -o prog file1.o file2.o -R. malloc.so.1
$ prog
malloc: 0x32 bytes
malloc: 0x14 bytes
..........

Runtime Linker 77

3

Alternatively, this same interposition can be achieved by:

Note – Users of any interposition technique must be careful to handle any
possibility of recursion. The previous example formats the diagnostic message
using sprintf(3S) , instead of using printf(3S) directly, to avoid any
recursion caused by printf(3S) ’s use of malloc(3C) .

The use of RTLD_NEXT within a dynamic executable or preloaded shared object
provides a predictable and useful interpositioning technique. However, care
should be taken when using this technique in a generic shared object
dependency, as the actual load order of shared objects is not always predictable
(see “Dependency Ordering” on page 90).

Debugging Aids
Provided with the Solaris linkers is a debugging library that allows you to
trace the runtime linking process in more detail. This library helps you
understand, or debug, the execution of applications or libraries. This is a visual
aid, and although the type of information displayed using this library is
expected to remain constant, the exact format of the information might change
slightly from release to release.

Some of the debugging output might be unfamiliar to those who do not have
an intimate knowledge of the runtime linker. However, many aspects can be of
general interest to you.

Debugging is enabled by using the environment variable LD_DEBUG. All
debugging output is prefixed with the process identifier and by default is
directed to the standard error. This environment variable must be augmented
with one or more tokens to indicate the type of debugging required.

$ cc -o malloc.so.1 -G -K pic malloc.c
$ cc -o prog main.c
$ LD_PRELOAD=./malloc.so.1 prog
malloc: 0x32 bytes
malloc: 0x14 bytes
..........

78 Linker and Libraries Guide—November 1995

3

The tokens available with this debugging option can be displayed by using
LD_DEBUG=help. Any dynamic executable can be used to solicit this
information, as the process itself will terminate following the display of the
information. For example:

Note – The above is an example, and shows the options meaningful to the
runtime linker. The exact options might differ from release to release.

The environment variable LD_DEBUG_OUTPUT can be used to specify an output
file for use instead of the standard error. The output file name will be suffixed
with the process identifier.

Debugging of secure applications is not allowed.

$ LD_DEBUG=help prog
11693:
11693: For debugging the run-time linking of an application:
11693: LD_DEBUG=option1,option2 prog
11693: enables diagnostics to the stderr. The additional
11693: option:
11693: LD_DEBUG_OUTPUT=file
11693: redirects the diagnostics to an output file created
11593: using the specified name and the process id as a
11693: suffix. All output is prepended with the process id.
11693:
11693:
11693: bindings display symbol binding; detail flag shows
11693: absolute:relative addresses
11693: detail provide more information in conjunction with other
11693: options
11693: files display input file processing (files and libraries)
11693: help display this help message
11693: libs display library search paths
11693: reloc display relocation processing
11693: symbols display symbol table processing;
11693: detail flag shows resolution and linker table addition
11693: versions display version processing

$

Runtime Linker 79

3

One of the most useful debugging options is to display the symbol bindings
that occur at runtime. For example, let’s take a very trivial dynamic executable
that has a dependency on two local shared objects:

The runtime symbol bindings can be displayed by setting
LD_DEBUG=bindings :

Here, the symbol bar , which is required by a data relocation, is bound before
the application gains control. Whereas the symbol foo , which is required by a
function relocation, is bound after the application gains control when the

$ cat bar.c
int bar = 10;
$ cc -o bar.so.1 -Kpic -G bar.c

$ cat foo.c
foo(int data)
{
 return (data);
}
$ cc -o foo.so.1 -Kpic -G foo.c

$ cat main.c
extern int foo();
extern int bar;

main()
{
 return (foo(bar));
}
$ cc -o prog main.c -R/tmp:. foo.so.1 bar.so.1

$ LD_DEBUG=bindings prog
11753:
11753: binding file=prog to file=./bar.so.1: symbol bar
11753:
11753: transferring control: prog
11753:
11753: binding file=prog to file=./foo.so.1: symbol foo
11753:

80 Linker and Libraries Guide—November 1995

3

function is first called. This demonstrates the default mode of lazy binding. If
the environment variable LD_BIND_NOW is set, all symbol bindings will occur
before the application gains control.

Additional information regarding the real, and relative addresses of the actual
binding locations can be obtained by setting LD_DEBUG=bindings,detail .

When the runtime linker performs a function relocation it rewrites the .plt
entry associated with the function so that any subsequent calls will go directly
to the function. The environment variable LD_BIND_NOT can be set to any
value to prevent this .plt update. By using this variable together with the
debugging request for detailed bindings, you can get a complete runtime
account of all function binding. The output from this combination can be
excessive, and the performance of the application will be degraded.

Another aspect of the runtime environment that can be displayed involves the
various search paths used. For example, the search path mechanism used to
locate any shared library dependencies can be displayed by setting
LD_DEBUG=libs :

Here, the runpath recorded in the application prog affects the search for the
two dependencies foo.so.1 and bar.so.1 .

$ LD_DEBUG=libs prog
11775:
11775: find library=foo.so.1; searching
11775: search path=/tmp:. (RPATH from file prog)
11775: trying path=/tmp/foo.so.1
11775: trying path=./foo.so.1
11775:
11775: find library=bar.so.1; searching
11775: search path=/tmp:. (RPATH from file prog)
11775: trying path=/tmp/bar.so.1
11775: trying path=./bar.so.1
11775:

Runtime Linker 81

3

In a similar manner, the search paths of each symbol lookup can be displayed
by setting LD_DEBUG=symbols. If this is combined with a bindings request,
a complete picture of the symbol relocation process can be obtained:

Note – In the previous example the symbol bar is not searched for in the
application prog . This is due to an optimization used when processing copy
relocations (see “Profiling Shared Objects” on page 111 for more details of this
relocation type).

$ LD_DEBUG=bindings,symbols
11782:
11782: symbol=bar; lookup in file=./foo.so.1 [ELF]
11782: symbol=bar; lookup in file=./bar.so.1 [ELF]
11782: binding file=prog to file=./bar.so.1: symbol bar
11782:
11782: transferring control: prog
11782:
11782: symbol=foo; lookup in file=prog [ELF]
11782: symbol=foo; lookup in file=./foo.so.1 [ELF]
11782: binding file=prog to file=./foo.so.1: symbol foo
11782:

82 Linker and Libraries Guide—November 1995

3

83

Shared Objects 4

Overview
Shared objects are one form of output created by the link-editor, and are
generated by specifying the -G option. For example:

Here the shared object libfoo.so.1 is generated from the input file foo.c .

Note – This is a simplified example of generating a shared object. Usually,
additional options are recommended, and these will be discussed in
subsequent sections of this chapter.

A shared object is an indivisible unit generated from one or more relocatable
objects. Shared objects can be bound with dynamic executables to form a
runable process. As their name implies, shared objects can be shared by more
than one application. Because of this potentially far-reaching effect, this
chapter describes this form of link-editor output in greater depth than has been
covered in previous chapters.

$ cc -o libfoo.so.1 -G -K pic foo.c

84 Linker and Libraries Guide—November 1995

4

For a shared object to be bound to a dynamic executable or another shared
object, it must first be available to the link-edit of the required output file.
During this link-edit, any input shared objects are interpreted as if they had
been added to the logical address space of the output file being produced. That
is, all the functionality of the shared object is made available to the output file.

These shared objects become dependencies of this output file. A small amount of
bookkeeping information is maintained within the output file to describe these
dependencies. The runtime linker interprets this information and completes
the processing of these shared objects as part of creating a runable process.

The following sections expand upon the use of shared objects within the
compilation and runtime environments (these environments are introduced in
“Shared Objects” on page 4). Issues that complement and help coordinate the
use of shared objects within these environments are covered, together with
techniques that maximize the efficiency of shared objects.

Naming Conventions
Neither the link-editor, nor the runtime linker, interprets any file by virtue of
its filename. All files are inspected to determine their ELF type (see “ELF
Header” on page 142). From this information the processing requirements of
the file are deduced. However, shared objects usually follow one of two
naming conventions depending on whether they are being used as part of the
compilation environment or the run-time environment.

When used as part of the compilation environment, shared objects are read and
processed by the link-editor. Although these shared objects can be specified by
explicit filenames as part of the command-line passed to the link-editor, it is
more common that the -l option be used to take advantage of the link-editor’s
library search capabilities (see “Shared Object Processing” on page 13).

For a shared object to be applicable to this link-editor processing it should be
designated with the prefix lib and the suffix .so . For example,
/usr/lib/libc.so is the shared object representation of the standard C
library made available to the compilation environment.

When used as part of the runtime environment, shared objects are read and
processed by the runtime linker. Here it might be necessary to allow for change
in the exported interface of the shared object over a series of software releases.
This interface change can be anticipated and supported by providing the
shared object as a versioned filename.

Shared Objects 85

4

A versioned filename commonly takes the form of a .so suffix followed by a
version number. For example, /usr/lib/libc.so.1 is the shared object
representation of version one of the standard C library made available to the
runtime environment.

If a shared object is never intended for use within a compilation environment
its name might drop the conventional lib prefix. Examples of shared objects
that fall into this category are those used solely with dlopen(3X) . A suffix of
.so is still recommended to indicate the actual file type, and a version number
is strongly recommended to provide for the correct binding of the shared object
across a series of software releases.

Note – The shared object name used in a dlopen(3X) is usually represented
as a simple filename - in other words there is no ‘/’ in the name. This
convention provides flexibility by allowing the runtime linker to use a set of
rules to locate the actual file (see “Loading Additional Objects” on page 62 for
more details).

In Chapter 5, “Versioning”, the concept of versioning a shared objects interface
over a series of software releases is described in more detail. In addition, a
mechanism for coordinating the naming conventions between shared objects
used in both the compilation and runtime environments is presented. But first,
a mechanism that allows a shared object to record its own runtime name is
described.

86 Linker and Libraries Guide—November 1995

4

Recording a Shared Object Name

The recording of a dependency in a dynamic executable or shared object will, by
default, be the filename of the associated shared object as it is referenced by the
link-editor. For example, the following dynamic executables, built against the
same shared object libfoo.so , result in different interpretations of the same
dependency:

As these examples show, this mechanism of recording dependencies can result
in inconsistencies due to different compilation techniques. Also, the location of
a shared object as referenced during the link-edit might differ from the
eventual location of the shared object on an installed system.

To provide a more consistent means of specifying dependencies, shared objects
can record within themselves the filename by which they should be referenced
at runtime.

During the link-edit of a shared object, its runtime name can be recorded
within the shared object itself by using the -h option. For example:

$ cc -o ../tmp/libfoo.so -G foo.o
$ cc -o prog main.o -L../tmp -lfoo
$ dump -Lv prog | grep NEEDED
[1] NEEDED libfoo.so

$ cc -o prog main.o ../tmp/libfoo.so
$ dump -Lv prog | grep NEEDED
[1] NEEDED ../tmp/libfoo.so

$ cc -o prog main.o /usr/tmp/libfoo.so
$ dump -Lv prog | grep NEEDED
[1] NEEDED /usr/tmp/libfoo.so

$ cc -o ../tmp/libfoo.so -G -K pic -h libfoo.so.1 foo.c

Shared Objects 87

4

Here, the shared object’s runtime name libfoo.so.1 , is recorded within the
file itself. This identification is known as an soname, and its recording can be
displayed using dump(1) and referring to the entry that has the SONAME tag.
For example:

When the link-editor processes a shared object that contains an soname, it is this
name that is recorded as a dependency within the output file being generated.

Therefore, if this new version of libfoo.so is used during the creation of the
dynamic executable prog from the previous example, all three methods of
building the executable result in the same dependency recording:

In the examples shown above, the -h option is used to specify a simple
filename - in other words there is no ‘/’ in the name. This convention is
recommended, as it provides flexibility by allowing the runtime linker to use a
set of rules to locate the actual file (see “Locating Shared Object Dependencies”
on page 54 for more details).

$ dump -Lvp ../tmp/libfoo.so

../tmp/libfoo.so:
[INDEX] Tag Value
[1] SONAME libfoo.so.1
.........

$ cc -o prog main.o -L../tmp -lfoo
$ dump -Lv prog | grep NEEDED
[1] NEEDED libfoo.so.1

$ cc -o prog main.o ../tmp/libfoo.so
$ dump -Lv prog | grep NEEDED
[1] NEEDED libfoo.so.1

$ cc -o prog main.o /usr/tmp/libfoo.so
$ dump -Lv prog | grep NEEDED
[1] NEEDED libfoo.so.1

88 Linker and Libraries Guide—November 1995

4

Inclusion of Shared Objects in Archives

The mechanism of recording an soname within a shared object is essential if the
shared object is ever processed from an archive library.

An archive can be built from one or more shared objects and then used to
generate a dynamic executable or shared object. Shared objects can be extracted
from the archive to satisfy the requirements of the link-edit (see “Archive
Processing” on page 12 for more details on the criteria for archive extraction).
However, unlike the processing of relocatable objects, which are concatenated
to the output file being created, any shared objects extracted from the archive
will be recorded as dependencies.

The name of an archive member is constructed by the link-editor and is a
concatenation of the archive name and the object within the archive. For
example:

As it is highly unlikely that a file with this concatenated name will exist at
runtime, providing an soname within the shared object is the only means of
generating a meaningful runtime filename for the dependency.

Note – The run-time linker does not extract objects from archives. Therefore, in
the above example it will be necessary for the required shared object
dependencies to be extracted from the archive and made available to the
runtime environment.

Recorded Name Conflicts

When shared objects are used to build a dynamic executable or another shared
object, the link-editor performs several consistency checks to insure that any
dependency names that will be recorded in the output file are unique.

$ cc -o libfoo.so.1 -G -K pic foo.c
$ ar -r libfoo.a libfoo.so.1
$ cc -o main main.o libfoo.a
$ dump -Lv main | grep NEEDED
[1] NEEDED libfoo.a(libfoo.so.1)

Shared Objects 89

4

Conflicts in dependency names can occur if two shared objects used as input
files to a link-edit both contain the same soname. For example:

A similar error condition will occur if the filename of a shared object that does
not have a recorded soname matches the soname of another shared object used
during the same link-edit.

If the runtime name of a shared object being generated matches one of its
dependencies the link-editor will also report a name conflict. For example:

Shared Objects with Dependencies
Although most of the examples presented in this chapter so far have shown
how shared object dependencies are maintained in dynamic executables, it is
quite common for shared objects to have their own dependencies (this was
introduced in “Shared Object Processing” on page 13).

In “Directories Searched by the Runtime Linker” on page 55, the search rules
used by the runtime linker to locate shared object dependencies are covered. If
a shared object does not reside in the default directory /usr/lib , then the

$ cc -o libfoo.so -G -K pic -h libsame.so.1 foo.c
$ cc -o libbar.so -G -K pic -h libsame.so.1 bar.c
$ cc -o prog main.o -L. -lfoo -lbar
ld: fatal: file ./libbar.so: recording name `libsame.so.1’ \
 matches that provided by file ./libfoo.so
ld: fatal: File processing errors. No output written to prog

$ cc -o libbar.so -G -K pic -h libsame.so.1 bar.c -L. -lfoo
ld: fatal: file ./libfoo.so: recording name `libsame.so.1’ \
 matches that supplied with -h option
ld: fatal: File processing errors. No output written to libfoo.so

90 Linker and Libraries Guide—November 1995

4

runtime linker must explicitly be told where to look. The preferred mechanism
of indicating any requirement of this kind is to record a runpath in the object
that has the dependencies by using the link-editor’s -R option. For example:

Here, the shared object libfoo.so has a dependency on libbar.so , which is
expected to reside in the directory /home/me/lib at runtime.

It is the responsibility of the shared object to specify any runpath required to
locate its dependencies. Any runpath specified in the dynamic executable will
only be used to locate the dependencies of the dynamic executable, it will not
be used to locate any dependencies of the shared objects.

However, the environment variable LD_LIBRARY_PATH has a more global
scope, and any pathnames specified using this variable will be used by the
runtime linker to search for any shared object dependencies. Although useful
as a temporary mechanism of influencing the runtime linker’s search path, the
use of this environment variable is strongly discouraged in production
software (see “Directories Searched by the Runtime Linker” on page 55 for a
more extensive discussion).

Dependency Ordering
In most of the examples in this document, dependencies of dynamic
executables and shared objects are portrayed as unique and relatively simple
(the breadth-first ordering of dependent shared objects is described in
“Locating Shared Object Dependencies” on page 54). From these examples, the
ordering of shared objects as they are brought into the process address space
might seem very intuitive and predictable.

$ cc -o libbar.so -G -K pic bar.c
$ cc -o libfoo.so -G -K pic foo.c -R/home/me/lib -L. -lbar
$ dump -Lv libfoo.so

libfoo.so:

 **** DYNAMIC SECTION INFORMATION ****
.dynamic :
[INDEX] Tag Value
[1] NEEDED libbar.so
[2] RPATH /home/me/lib
.........

Shared Objects 91

4

However, when dynamic executables and shared objects have dependencies on
the same common shared objects, the order in which the objects are processed
can become less predictable.

For example, assume a shared object developer generates libfoo.so.1 with
the following dependencies:

If you create a dynamic executable, prog , using this shared object, and also
define an explicit dependency on libC.so.1 , then the resulting shared object
order will be:

Therefore, had the developer of the shared object libfoo.so.1 placed a
requirement on the order of processing of its dependencies, this requirement
will be compromised by the construction of the dynamic executable prog .

Developers who place special emphasis on symbol interposition (see “Symbol
Lookup” on page 59, “Symbol Lookup” on page 69 and “Using Interposition”
on page 75), and .init section processing (see “Initialization and Termination
Routines” on page 64), should be aware of this potential change in shared
object processing order.

Shared Objects as Filters
A filter is a special form of shared object used to provide indirection to an
alternative shared object. Two forms of shared object filter exist:

• a standard filter

• an auxiliary filter

$ ldd libfoo.so.1
 libA.so.1 => ./libA.so.1
 libB.so.1 => ./libB.so.1
 libC.so.1 => ./libC.so.1

$ cc -o prog main.c -R. -L.-lC -lfoo
$ ldd prog
 libC.so.1 => ./libC.so.1
 libfoo.so.1 => ./libfoo.so.1
 libA.so.1 => ./libA.so.1
 libB.so.1 => ./libB.so.1

92 Linker and Libraries Guide—November 1995

4

A standard filter, in essence, consists solely of a symbol table, and provides a
mechanism of abstracting the compilation environment from the runtime
environment. A link-edit using the filter will reference the symbols provided
by the filter itself, however the implementation to which the symbol references
is provided from an alternative source at runtime.

Standard filters are identified using the link-edit’s -F flag. This flag takes an
associated filename indicating the shared object to be used to supply symbols
at runtime. This shared object is referred to as the filtee.

If the filtee cannot be processed at runtime, or any symbol defined by the filter
cannot be located within the filtee, a fatal runtime error will occur.

An auxiliary filter has a similar mechanism, however the filter itself contains an
implementation corresponding to its symbols. A link-edit using the filter will
reference the symbols provided by the filter itself, however the implementation
can be provided from an alternative source at runtime.

Auxiliary filters are identified during the link-edit’s -f flag. This flag takes an
associated filename indicating the shared object which might be used to supply
symbols at runtime. This shared object is referred to as the filtee

If the filtee cannot be processed at runtime, or any symbol defined by the filter
cannot be located within the filtee, the value of the filter will be used.

Generating a Standard Filter

First let’s define a filtee, libbar.so.1 , on which this filter technology will be
applied. This filtee might be built from several relocatable objects. One of these
objects originates from the file bar.c , and supplies the symbols foo and bar :

$ cat bar.c
char * bar = “bar”;

char * foo()
{
 return(“defined in bar.c”);
}
$ cc -o libbar.so.1 -G -K pic bar.c

Shared Objects 93

4

A standard filter, libfoo.so.1 , is generated for the symbols foo and bar ,
and indicates the association to the filtee libbar.so.1 . For example:

Note – Here the environment variable LD_OPTIONS is used to circumvent this
compiler driver from interpreting the -F option as one of its own.

If the link-editor references the standard filter libfoo.so.1 to build a
dynamic executable or shared object, it will use the information from the filters
symbol table during symbol resolution (see “Symbol Resolution” on page 21
for more details).

At runtime, any reference to the symbols of the filter will result in the
additional loading of the filtee libbar.so.1 . The runtime linker will use this
filtee to resolve any symbols defined by libfoo.so.1 .

For example, the following dynamic executable, prog , references the symbols
foo and bar which are resolved during link-edit from the filter libfoo.so.1 :

$ cat foo.c
char * bar = 0;

char * foo(){}

$ LD_OPTIONS=”-F libbar.so.1” \
 cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c
$ ln -s libfoo.so.1 libfoo.so
$ dump -Lv libfoo.so.1 | egrep “SONAME|FILTER”
[1] SONAME libfoo.so.1
[2] FILTER libbar.so.1

$ cat main.c
extern char * bar, * foo();

main(){
 (void) printf(“foo() is %s: bar=%s\n”, foo(), bar);
}
$ cc -o prog main.c -R. -L. -lfoo
$ prog
foo() is defined in bar.c: bar=bar

94 Linker and Libraries Guide—November 1995

4

The execution of the dynamic executable prog results in the function foo() ,
and the data item bar , being obtained from the filtee libbar.so.1 , not from
the filter libfoo.so.1 .

Note – In this example, the filtee libbar.so.1 is uniquely associated to the
filter libfoo.so.1 and is not available to satisfy symbol lookup from any
other objects that might be loaded as a consequence of executing prog .

Standard filters provide a mechanism for defining a subset interface of an
existing shared object. This mechanism is used in Solaris to create the shared
objects /usr/lib/libsys.so.1 and /usr/lib/libdl.so.1 . The former
provides a subset of the standard C library /usr/lib/libc.so.1 . This
subset represents the ABI-conforming functions and data items that reside in
the C library that must be imported by a conforming application.

The latter defines the user interface to the runtime linker itself. This interface
provides an abstraction between the symbols referenced in a compilation
environment (from libdl.so.1) and the actual implementation binding
produced within the runtime environment (from ld.so.1).

As the code in a standard filter is never referenced at runtime, there is no point
in adding content to any functions defined within the filter. Any filter code
might require relocations, which will result in an unnecessary overhead when
processing the filter at runtime. Functions are best defined as empty routines.

Care should also be taken when generating the data symbols within a filter.
Data items should always be initialized to insure that they result in references
from dynamic executables. Some of the more complex symbol resolutions
carried out by the link-editor require knowledge of a symbol’s attributes,
including the symbols size (see “Symbol Resolution” on page 21 for more
details).

Therefore, it is recommended that the symbols in the filter be generated so that
their attributes match those of the symbols in the filtee. This insures that the
link-editing process will analyze the filter in a manner compatible with the
symbol definitions used at runtime.

Shared Objects 95

4

Generating an Auxiliary Filter

The creation of an auxiliary filter is essentially the same as for a standard filter
(see “Generating a Standard Filter” on page 92 for more details). First let’s
define a filtee, libbar.so.1 , on which this filter technology will be applied.
This filtee might be built from several relocatable objects. One of these objects
originates from the file bar.c , and supplies the symbol foo :

A standard filter, libfoo.so.1 , is generated for the symbols foo and bar ,
and indicates the association to the filtee libbar.so.1 . For example:

Note – Here the environment variable LD_OPTIONS is used to circumvent this
compiler driver from interpreting the -f option as one of its own.

If the link-editor references the auxiliary filter libfoo.so.1 to build a
dynamic executable or shared object, it will use the information from the filters
symbol table during symbol resolution (see “Symbol Resolution” on page 21
for more details).

$ cat bar.c
char * foo()
{
 return(“defined in bar.c”);
}
$ cc -o libbar.so.1 -G -K pic bar.c

$ cat foo.c
char * bar = “foo”;

char * foo()
{
 return (“defined in foo.c”);
}
$ LD_OPTIONS=”-f libbar.so.1” \
 cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c
$ ln -s libfoo.so.1 libfoo.so
$ dump -Lv libfoo.so.1 | egrep “SONAME|AUXILIARY”
[1] SONAME libfoo.so.1
[2] AUXILIARY libbar.so.1

96 Linker and Libraries Guide—November 1995

4

At runtime, any reference to the symbols of the filter will result in a search for
the filtee libbar.so.1 . If this filtee is found the runtime linker will use this
filtee to resolve any symbols defined by libfoo.so.1 . If the filtee was not
found, or a symbol from the filter is not found in the filtee, then the original
value of the symbol within the filter is used.

For example, the following dynamic executable, prog , references the symbols
foo and bar which are resolved during link-edit from the filter libfoo.so.1 :

The execution of the dynamic executable prog results in the function foo()
being obtained from the filtee libbar.so.1 , not from the filter libfoo.so.1 .
However, the data item bar is obtained from the filter libfoo.so.1 , as this
symbol has no alternative definition in the filtee libbar.so.1 .

Auxiliary filters provide a mechanism for defining an alternative interface of
an existing shared object. This mechanism is used in Solaris to provide
optimized functionality within platform specific shared objects.

Performance Considerations
A shared object can be used by multiple applications within the same system.
The performance of a shared object therefore can have far reaching effects, not
only on the applications that use it, but on the system as a whole.

Although the actual code within a shared object will directly affect the
performance of a running process, the performance issues focused upon here
target the runtime processing of the shared object itself. The following sections
investigate this processing in more detail by looking at aspects such as text size
and purity, together with relocation overhead.

$ cat main.c
extern char * bar, * foo();

main(){
 (void) printf(“foo() is %s: bar=%s\n”, foo(), bar);
}
$ cc -o prog main.c -R. -L. -lfoo
$ prog
foo() is defined in bar.c: bar=foo

Shared Objects 97

4

Useful Tools

Before discussing performance it is useful to be aware of some available tools
and their use in analyzing the contents of an ELF file.

Frequently reference is made to the size of either the sections or the segments
that are defined within an ELF file (for a complete description of the ELF
format see Chapter 6, “Object Files”). The size of a file can be displayed using
the size(1) command. For example:

The first example indicates the size of the shared objects text, data and bss, a
categorization that has traditionally been used throughout previous releases of
the SunOS operating system. The ELF format provides a finer granularity for
expressing data within a file by organizing the data into sections. The second
example displays the size of each of the file’s loadable sections.

Sections are allocated to units known as segments, some of which describe how
portions of a file will be mapped into memory. These loadable segments can be
displayed by using the dump(1) command and examining the LOAD entries.
For example:

$ size -x libfoo.so.1
59c + 10c + 20 = 0x6c8

$ size -xf libfoo.so.1
..... + 1c(.init) + ac(.text) + c(.fini) + 4(.rodata) + \
..... + 18(.data) + 20(.bss)

$ dump -ov libfoo.so.1

libfoo.so.1:
 ***** PROGRAM EXECUTION HEADER *****
Type Offset Vaddr Paddr
Filesz Memsz Flags Align

LOAD 0x94 0x94 0x0
0x59c 0x59c r-x 0x10000

LOAD 0x630 0x10630 0x0
0x10c 0x12c rwx 0x10000

98 Linker and Libraries Guide—November 1995

4

Here, there are two segments in the shared object libfoo.so.1 , commonly
referred to as the text and data segments. The text segment is mapped to allow
reading and execution of its contents (r-x), whereas the data segment is
mapped to allow its contents to be modified (rwx). Notice that the memory
size (Memsz) of the data segment differs from the file size (Filesz). This
difference accounts for the .bss section, which is actually part of the data
segment.

Programmers however, usually think of a file in terms of the symbols that
define the functions and data elements within their code. These symbols can be
displayed using nm(1) . For example:

$ nm -x libfoo.so.1

[Index] Value Size Type Bind Other Shndx Name
.........
[39] |0x00000538|0x00000000|FUNC |GLOB |0x0 |7 |_init
[40] |0x00000588|0x00000034|FUNC |GLOB |0x0 |8 |foo
[41] |0x00000600|0x00000000|FUNC |GLOB |0x0 |9 |_fini
[42] |0x00010688|0x00000010|OBJT |GLOB |0x0 |13 |data
[43] |0x0001073c|0x00000020|OBJT |GLOB |0x0 |16 |bss
.........

Shared Objects 99

4

The section that contains a symbol can be determined by referencing the
section index (Shndx) field from the symbol table and by using dump(1) to
display the sections within the file. For example:

Using the output from both the previous nm(1) and dump(1) examples, the
association of the functions _init , foo and _fini to the sections .init, .text
and .fini can be seen. These sections, because of their read-only nature, are part
of the text segment.

Similarly, it can be seen that the data arrays data and bss are associated with
the sections .data and .bss respectively. These sections, because of their writable
nature, are part of the data segment.

Note – The previous dump(1) display has been simplified for this example.

Armed with this tool information, you can analyze the location of code and
data within any ELF file you generate. This knowledge will be useful when
following the discussions in later sections.

$ dump -hv libfoo.so.1

libfoo.so.1:
 **** SECTION HEADER TABLE ****
[No] Type Flags Addr Offset Size Name
.........
[7] PBIT -AI 0x538 0x538 0x1c .init

[8] PBIT -AI 0x554 0x554 0xac .text

[9] PBIT -AI 0x600 0x600 0xc .fini
.........
[13] PBIT WA- 0x10688 0x688 0x18 .data

[16] NOBI WA- 0x1073c 0x73c 0x20 .bss
.........

100 Linker and Libraries Guide—November 1995

4

The Underlying System

When an application is built using a shared object, the entire loadable contents
of the object are mapped into the virtual address space of that process at run
time. Each process that uses a shared object starts by referencing a single copy
of the shared object in memory.

Relocations within the shared object are processed to bind symbolic references
to their appropriate definitions. This results in the calculation of true virtual
addresses which could not be derived at the time the shared object was
generated by the link-editor. These relocations usually result in updates to
entries within the process’s data segment(s).

The memory management scheme underlying the dynamic linking of shared
object’s share memory among processes at the granularity of a page. Memory
pages can be shared as long as they are not modified at runtime. If a process
writes to a page of a shared object when writing a data item, or relocating a
reference to a shared object, it generates a private copy of that page. This
private copy will have no effect on other users of the shared object, however,
this page will have lost any benefit of sharing between other processes. Text
pages that become modified in this manner are referred to as impure.

The segments of a shared object that are mapped into memory fall into two
basic categories; the text segment, which is read-only, and the data segment
which is read-write (see “Useful Tools” on page 97 on how to obtain this
information from an ELF file). An overriding goal when developing a shared
object is to maximize the text segment and minimize the data segment. This
optimizes the amount of code sharing while reducing the amount of processing
needed to initialize and use a shared object. The following sections present
mechanisms that can help achieve this goal.

Position-Independent Code

To create programs that require the smallest amount of page modification at
run time, the compiler will generate position-independent code under the
-K pic option. Whereas the code within a dynamic executable is usually tied
to a fixed address in memory, position-independent code can be loaded
anywhere in the address space of a process. Because the code is not tied to a
specific address, it will execute correctly without page modification at a
different address in each process that uses it.

Shared Objects 101

4

When you use position-independent code, relocatable references are generated
in the form of an indirection which will use data in the shared object’s data
segment. The result is that the text segment code will remain read-only, and all
relocation updates will be applied to corresponding entries within the data
segment. See “Global Offset Table (Processor-Specific)” on page 213,
“Procedure Linkage Table” on page 215 and “Procedure Linkage Table” on
page 218 for more details on the use of these two sections.

If a shared object is built from code that is not position-independent, the text
segment will usually require a large number of relocations to be performed at
runtime. Although the runtime linker is equipped to handle this, the system
overhead this creates can cause serious performance degradation.

A shared object that requires relocations against its text segment can be
identified by using dump(1) and inspecting the output for any TEXTREL entry.
For example:

Note – The value of the TEXTREL entry is irrelevant, its presence in a shared
object indicates that text relocations exist.

A recommended practice to prevent the creation of a shared object that
contains text relocations is to use the link-editor’s -z text flag. This flag
causes the link-editor to generate diagnostics indicating the source of any non
position-independent code used as input, and results in a failure to generate
the intended shared object. For example:

$ cc -o libfoo.so.1 -G -R. foo.c
$ dump -Lv libfoo.so.1 | grep TEXTREL
[9] TEXTREL 0

$ cc -o libfoo.so.1 -z text -G -R. foo.c
Text relocation remains referenced
 against symbol offset in file
foo 0x0 foo.o
bar 0x8 foo.o
ld: fatal: relocations remain against allocatable but non-
writable sections

102 Linker and Libraries Guide—November 1995

4

Here, two relocations are generated against the text segment because of the
non-position-independent code generated from the file foo.o . Where possible,
these diagnostics will indicate any symbolic references that are required to
carry out the relocations. In this case the relocations are against the symbols
foo and bar .

Besides not using the -K pic option, the most common cause of creating text
relocations when generating a shared object is by including hand written
assembler code that has not been coded with the appropriate position-
independent prototypes.

Note – By using the compiler’s ability to generate an intermediate assembler
file, the coding techniques used to enable position-independence can usually
be revealed by experimenting with some simple test case source files.

A second form of the position-independence flag, -K PIC , is also available on
some processors, and provides for a larger number of relocations to be
processed at the cost of some additional code overhead (see cc(1) for more
details).

Maximizing Shareability

As mentioned in “The Underlying System” on page 100, only a shared object’s
text segment is shared by all processes that use it, its data segment typically is
not. Each process that uses a shared object usually generates a private memory
copy of its entire data segment as data items within the segment are written to.
A goal is to reduce the data segment, either by moving data elements that will
never be written to the text segment, or by removing the data items completely.

The following sections cover several mechanisms that can be used to reduce
the size of the data segment.

Shared Objects 103

4

Move Read-Only Data to Text

Any data elements that are read-only should be moved into the text segment.
This can be achieved using const declarations. For example, the following
character string will reside in the .data section, which is part of the writable
data segment:

whereas, the following character string will reside in the .rodata section, which
is the read-only data section contained within the text segment:

Although reducing the data segment by moving read-only elements into the
text segment is an admirable goal, moving data elements that require
relocations can be counter productive. For example, given the array of strings:

it might at first seem that a better definition is:

thereby insuring that the strings and the array of pointers to these strings are
placed in a .rodata section. The problem with this definition is that even though
the user perceives the array of addresses as read-only, these addresses must be
relocated at runtime. This definition will therefore result in the creation of text
relocations. This definition is best represented as:

so that the array strings are maintained in the read-only text segment, but the
array pointers are maintained in the writable data segment where they can be
safely relocated.

char * rdstr = "this is a read-only string";

const char * rdstr = "this is a read-only string";

char * rdstrs[] = { "this is a read-only string",
 "this is another read-only string" };

const char * const rdstrs[] = { };

const char * rdstrs[] = { };

104 Linker and Libraries Guide—November 1995

4

Note – Some compilers, when generating position-independent code, can
detect read-only assignments that will result in runtime relocations, and will
arrange for placing such items in writable segments (for example .picdata).

Collapse Multiply-Defined Data

Data can be reduced by collapsing multiply-defined data. A program with
multiple occurrences of the same error messages can be better off by defining
one global datum, and have all other instances reference this. For example:

The main candidates for this sort of data reduction are strings. String usage in
a shared object can be investigated using strings(1) . For example:

will generate a sorted list of the data strings within the file libfoo.so.1 .
Each entry in the list is prefixed with the number of occurrences of the string.

Use Automatic Variables

Permanent storage for data items can be removed entirely if the associated
functionality can be designed to use automatic (stack) variables. Any removal
of permanent storage will usually result in a corresponding reduction in the
number of runtime relocations required.

const char * Errmsg = "prog: error encountered: %d";

foo()
{

 (void) fprintf(stderr, Errmsg, error);

$ strings -10 libfoo.so.1 | sort | uniq -c | sort -rn

Shared Objects 105

4

Allocate Buffers Dynamically

Large data buffers should usually be allocated dynamically rather than being
defined using permanent storage. Often this will result in an overall saving in
memory, as only those buffers needed by the present invocation of an
application will be allocated. Dynamic allocation also provides greater
flexibility by allowing the buffer’s size to change without effecting
compatibility.

Minimizing Paging Activity

Many of the mechanisms discussed in the previous section “Maximizing
Shareability” on page 102 will help reduce the amount of paging encountered
when using shared objects. Here some additional generic software
performance considerations are covered.

Any process that accesses a new page will cause a page fault. As this is an
expensive operation, and because shared objects can be used by many
processes, any reduction in the number of page faults generated by accessing a
shared object will benefit the process and the system as a whole.

Organizing frequently used routines and their data to an adjacent set of pages
will frequently improve performance because it improves the locality of
reference. When a process calls one of these functions it might already be in
memory because of its proximity to the other frequently used functions.
Similarly, grouping interrelated functions will improve locality of references.
For example, if every call to the function foo() results in a call to the function
bar() , place these functions on the same page. Tools like cflow(1) ,
tcov(1) , prof(1) and gprof(1) are useful in determining code coverage
and profiling.

It is also advisable to isolate related functionality to its own shared object. The
standard C library has historically been built containing many unrelated
functions, and only rarely, for example, will any single executable use
everything in this library. Because of its widespread use, it is also somewhat
difficult to determine what set of functions are really the most frequently used.
In contrast, when designing a shared object from scratch it is better to maintain
only related functions within the shared object. This will improve locality of
reference and usually has the side effect of reducing the object’s overall size.

106 Linker and Libraries Guide—November 1995

4

Relocations

In “Relocation Processing” on page 57 the mechanisms by which the runtime
linker relocates dynamic executables and shared objects to create a runable
process was covered. “Symbol Lookup” on page 59, and “When Relocations
are Performed” on page 60 categorized this relocation processing into two
areas to simplify and help illustrate the mechanisms involved. These same two
categorizations are also ideally suited for considering the performance impact
of relocations.

Symbol Lookup

When the runtime linker needs to look up a symbol, it does so by searching in
each object, starting with the dynamic executable, and progressing through
each shared object in the same order that the objects are mapped. In many
instances the shared object that requires a symbolic relocation will turn out to
be the provider of the symbol definition.

If this is the case, and the symbol used for this relocation is not required as part
of the shared object’s interface, then this symbol is a strong candidate for
conversion to a static or automatic variable. A symbol reduction can also be
applied to removed symbols from a shared objects interface (see “Reducing
Symbol Scope” on page 38 for more details). By making these conversions the
link-editor will incur the expense of processing any symbolic relocation against
these symbols during the shared object’s creation.

The only global data items that should be visible from a shared object are those
that contribute to its user interface. However, frequently this is a hard goal to
accomplish, as global data are often defined to allow reference from two or
more functions located in different source files. Nevertheless, any reduction in
the number of global symbols exported from a shared object will result in
lower relocation costs and an overall performance improvement.

When Relocations are Performed

All data reference relocations must be carried out during process initialization
before the application gains control, whereas any function reference relocations
can be deferred until the first instance of a function being called. By reducing
the number of data relocations, the runtime initialization of a process will be
reduced.

Shared Objects 107

4

Initialization relocation costs can also be deferred by converting data
relocations into function relocations, for example, by returning data items by a
functional interface. This conversion usually results in a perceived
performance improvement as the initialization relocation costs are effectively
spread throughout the process’s lifetime. It is also possible that some of the
functional interfaces will never be called by a particular invocation of a
process, thus removing their relocation overhead altogether.

The advantage of using a functional interface can be seen in the next section
“Copy Relocations”. This section examines a special, and somewhat expensive,
relocation mechanism employed between dynamic executables and shared
objects, and provides an example of how this relocation overhead can be
avoided.

Copy Relocations

Shared objects are usually built with position-independent code. References to
external data items from code of this type employs indirect addressing through
a set of tables (see “Position-Independent Code” on page 100 for more details).
These tables are updated at runtime with the real address of the data items,
which allows access to the data without the code itself being modified.

Dynamic executables however, are generally not created from position-
independent code. Therefore it would seem that any references to external data
they make can only be achieved at runtime by modifying the code that makes
the reference. Modifying any text segment is something to be avoided, and so a
relocation technique is employed to solve this reference which is known as a
copy relocation.

When the link-editor is used to build a dynamic executable, and a reference to
a data item is found to reside in one of the dependent shared objects, space is
allocated in the dynamic executable’s .bss, equivalent in size to the data item
found in the shared object. This space is also assigned the same symbolic name
as defined in the shared object. Along with this data allocation, the link-editor
generates a special copy relocation record that will instruct the runtime linker
to copy the data from the shared object to this allocated space within the
dynamic executable.

108 Linker and Libraries Guide—November 1995

4

Because the symbol assigned to this space is global, it will be used to satisfy
any references from any shared objects. The effect of this is that the dynamic
executable inherits the data item, and any other objects within the process that
make reference to this item will be bound to this copy. The original data from
which the copy is made effectively becomes unused.

This mechanism is best explained with an example. This example uses an array
of system error messages that is maintained within the standard C library. In
previous SunOS operating system releases, the interface to this information
was provided by two global variables, sys_errlist[] , and sys_nerr . The
first variable provided the array of error message strings, while the second
conveyed the size of the array itself. These variables were commonly used
within an application in the following manner:

Here the application is using the function error to provide a focal point to
obtain the system error message associated with the number errnumb .

$ cat foo.c
extern int sys_nerr;
extern char * sys_errlist[];

char *
error(int errnumb)
{
 if ((errnumb < 0) || (errnumb >= sys_nerr))
 return (0);
 return (sys_errlist[errnumb]);
}

Shared Objects 109

4

Examining a dynamic executable built using this code shows the
implementation of the copy relocation in more detail:

Here the link-editor has allocated space in the dynamic executable’s .bss to
receive the data represented by sys_errlist and sys_nerr . These data will
be copied from the C library by the runtime linker at process initialization.
Thus, each application that uses these data will get a private copy of the data
in its own data segment.

There are actually two downsides to this technique. First, each application pays
a performance penalty for the overhead of copying the data at run time.
Secondly, the size of the data array sys_errlist has now become part of the
C library’s interface. If the size of this array were to change, presumably as
new error messages are added, any dynamic executables that reference this
array have to undergo a new link-edit to be able to access any of the new error
messages. Without this new link-edit, the allocated space within the dynamic
executable is insufficient to hold the new data.

$ cc -o prog main.c foo.c
$ nm -x prog | grep sys_
[36] |0x00020910|0x00000260|OBJT |WEAK |0x0 |16 |sys_errlist
[37] |0x0002090c|0x00000004|OBJT |WEAK |0x0 |16 |sys_nerr
$ dump -hv prog | grep bss
[16] NOBI WA- 0x20908 0x908 0x268 .bss
$ dump -rv prog

 **** RELOCATION INFORMATION ****

.rela.bss:
Offset Symndx Type Addend

0x2090c sys_nerr R_SPARC_COPY 0
0x20910 sys_errlist R_SPARC_COPY 0
..........

110 Linker and Libraries Guide—November 1995

4

These drawbacks can be eliminated if the data required by a dynamic
executable are provided by a functional interface. The ANSI C function
strerror(3C) illustrates this point. This function is implemented such that it
will return a pointer to the appropriate error string based on the error number
supplied to it. One implementation of this function might be:

The error routine in foo.c can now be simplified to use this functional
interface, which in turn will remove any need to perform the original copy
relocations at process initialization.

Additionally, because the data are now local to the shared object the data are
no longer part of its interface, which allows the shared object the flexibility of
changing the data without adversely effecting any dynamic executables that
use it. Eliminating data items from a shared object’s interface will generally
improve performance while making the shared object’s interface and code
easier to maintain.

Although copy relocations should be avoided, ldd(1) , when used with either
the -d or -r options, can be used to verify any that exist within a dynamic
executable.

$ cat strerror.c
static const char * sys_errlist[] = {
 “Error 0”,
 “Not owner”,
 “No such file or directory”,

};
static const int sys_nerr =
 sizeof (sys_errlist) / sizeof (char *);

char *
strerror(int errnum)
{
 if ((errnum < 0) || (errnum >= sys_nerr))
 return (0);
 return ((char *)sys_errlist[errnum]);
}

Shared Objects 111

4

For example, if the dynamic executable prog had originally been built against
the shared object libfoo.so.1 such that the following two copy relocations
had been recorded:

and a new version of this shared object is supplied which contains different
data sizes for these symbols:

then running ldd(1) against the dynamic executable will reveal:

Here ldd(1) informs us that the dynamic executable will copy as much data
as the shared object has to offer, but only accepts as much as its allocated space
allows.

Profiling Shared Objects

The runtime linker is capable of generating profiling information for any
shared objects processed during the running of an application. This is possible
because the runtime linker is responsible for binding shared objects to an

$ nm -x prog | grep _size_
[36] |0x000207d8|0x40|OBJT |GLOB |15 |_size_gets_smaller
[39] |0x00020818|0x40|OBJT |GLOB |15 |_size_gets_larger
$ dump -rv size | grep _size_
0x207d8 _size_gets_smaller R_SPARC_COPY 0
0x20818 _size_gets_larger R_SPARC_COPY 0

$ nm -x libfoo.so.1 | grep _size_
[26] |0x00010378|0x10|OBJT |GLOB |8 |_size_gets_smaller
[28] |0x00010388|0x80|OBJT |GLOB |8 |_size_gets_larger

$ ldd -d prog
 libfoo.so.1 => ./libfoo.so.1

 copy relocation sizes differ: _size_gets_smaller
 (file prog size=40; file ./libfoo.so.1 size=10);
 ./libfoo.so.1 size used; possible insufficient data copied
 copy relocation sizes differ: _size_gets_larger
 (file prog size=40; file ./libfoo.so.1 size=80);
 ./prog size used; possible data truncation

112 Linker and Libraries Guide—November 1995

4

application and is therefore able to intercept any global function bindings (these
bindings take place through .plt entries - see “When Relocations are
Performed” on page 60 for details of this mechanism).

The profiling of a shared object is enabled by specifying its name with the
LD_PROFILE environment variable. You can analyze one shared object at a
time using this environment variable. However, the setting of the environment
variable can be used to analyze one or more applications use of the shared
object. In the following example the use of libc by the single invocation of the
command ls(1) is analyzed:

In the following example the environment variable setting will cause any
applications use of libc to accumulate the analyzed information for the
duration that the environment variable is set:

When profiling is enabled, a profile data file is created, if it doesn’t already
exist, and is mapped by the runtime linker. In the above examples this data file
is /var/tmp/libc.so.1.profile . You can also specify an alternative
directory to store the profile data using the LD_PROFILE_OUTPUT environment
variable.

This profile data file is used to deposit profil(2) data and call count
information related to the specified shared objects use. This profiled data can
be directly examined with gprof(1) .

Note – gprof(1) is most commonly used to analyze the gmon.out profile
data created by an executable that has been compiled with the -xpg option of
cc(1) . The runtime linkers profile analysis does not require any code to be
compiled with this option. Applications whose dependent shared objects are
being profiled should not make calls to profil(2) , because this system call
does not provide for multiple invocations within the same process. For the

$ LD_PROFILE=libc.so.1 ls -l

$ LD_PROFILE=libc.so.1; export LD_PROFILE
$ ls -l
$ make
$...

Shared Objects 113

4

same reason, these applications must not be compiled with the -xpg option of
cc(1) , as this compiler generated mechanism of profiling is also built on top
of profil(2) .

One of the most powerful features of this profiling mechanism is to allow the
analysis of a shared object as used by multiple applications. Frequently
profiling analysis is carried out using one or two applications. However, a
shared object, by its very nature, can be used by a multitude of applications.
Analyzing how these applications use the shared object can offer insights into
where energy might be spent to improvement the overall performance of the
shared object.

114 Linker and Libraries Guide—November 1995

4

The following example shows a performance analysis of libc over a build of
several applications within a source hierarchy:

The special name <external> indicates a reference from outside of the address
range of the shared object being profiled. Thus, in the above example, 1634
calls to the function open(2) within libc occurred from the dynamic
executables, or from other shared objects, bound with libc while the profiling
analysis was in progress.

Note – The profiling of shared objects is multi-threaded safe except in the case
where one thread calls fork(2) while another thread is updating the profile
data information. The use of fork1(2) removes this restriction.

$ LD_PROFILE=libc.so.1 ; export LD_PROFILE
$ make
......
$ gprof -b /usr/lib/libc.so.1 /var/tmp/libc.so.1.profile

granularity: each sample hit covers 4 byte(s)

 called/total parents
index %time self descendents called+self name index
 called/total children
.....

 0.33 0.00 52/29381 _gettxt [96]
 1.12 0.00 174/29381 _tzload [54]
 10.50 0.00 1634/29381 <external>
 16.14 0.00 2512/29381 _opendir [15]
 160.65 0.00 25009/29381 _endopen [3]
[2] 35.0 188.74 0.00 29381 _open [2]

.....
granularity: each sample hit covers 4 byte(s)

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 35.0 188.74 188.74 29381 6.42 6.42 _open [2]
 13.0 258.80 70.06 12094 5.79 5.79 _write [4]
 9.9 312.32 53.52 34303 1.56 1.56 _read [6]
 7.1 350.53 38.21 1177 32.46 32.46 _fork [9]

115

Versioning 5

Overview
ELF objects processed by the link-editors provide many global symbols to
which other objects can bind. These symbols describe the object’s application
binary interface (ABI). During the evolution of an object this interface can
change due to the addition or deletion of global symbols. In addition, the
objects evolution can involve internal implementation changes.

Versioning refers to several techniques that can be applied to an object to
indicate interface and implementation changes. These techniques provide for
the objects controlled evolution while maintaining backward compatibility.

This chapter describes how an object’s ABI can be defined, classifies how
changes to this interface can affect backward compatibility, and presents
models by which interface and implementation changes can be incorporated
into new releases of the object.

The focus of this chapter is the runtime interfaces of dynamic executables and
shared objects. The techniques used to describe and manage changes within
these dynamic objects are presented in generic terms. A common set of naming
conventions and versioning scenarios, as applied to shared objects, can be
found in Appendix B, “Versioning Quick Reference.

It is important that developers of dynamic objects be aware of the ramifications
of an interface change, and understand how such changes can be managed,
especially in regards to maintaining backward compatibility with previously
shipped objects.

116 Linker and Libraries Guide—November 1995

5

The global symbols made available by any dynamic object represent the
object’s public interface. Frequently, the number of global symbols remaining in
an object at the end of a link-edit are more than you would like to make public.
These global symbols derive from the interrelationships required between the
relocatable objects used to build the object, and represent private interfaces
within the object itself.

A precursor to defining an object’s binary interface is to first define only those
global symbols you wish to make publicly available from the object being
created. These public symbols can be established using the link-editor’s -M
option and an associated mapfile as part of the final link-edit. This technique
is introduced in “Reducing Symbol Scope” on page 38. This public interface
establishes one or more version definitions within the object being created, and
forms the foundation for the addition of new interfaces as the object evolves.

The following sections build upon this initial public interface. First though, it is
useful to understand how various changes to an interface can be categorized so
that they can be managed appropriately.

Interface Compatibility
There are many types of change that can be made to an object. In their simplest
terms these changes can be categorized into one of two groups:

• compatible updates. These updates are additive, in that all previously
available interfaces remain intact.

• incompatible updates. These updates have changed the existing interface in
such a way that existing users of the interface can fail or behave incorrectly.

The following list attempts to clarify some common object changes into one of
the above categorizations:

• the addition of a symbol - a compatible update.

• the removal of a symbol - an incompatible update.

• the addition of an argument to a non-varargs(5) function - an incompatible
change.

• the removal of an argument from a function - an incompatible update.

• the change of size, or content, of a data item to a function or as an external
definition - an incompatible change.

Versioning 117

5

• a bug fix, or internal enhancement to a function - a compatible change
providing the semantic properties of the object remain unchanged,
otherwise, this is an incompatible change.

Note – It is possible, because of interposition, that the addition of a symbol can
constitute an incompatible update, such that the new symbol might conflict with
an applications use of that symbol. However, this does seem rare in practice as
source level name space management is commonly used.

Compatible updates can be accommodated by maintaining version definitions
internal to the object being generated. Incompatible updates can be
accommodated by producing a new object with a new external versioned name.
Both of these versioning techniques allow for the selective binding of
applications as well as verification of correct version binding at runtime. These
two techniques are explored in more detail in the following sections.

Internal Versioning
A dynamic object can have associated with it one or more internal version
definitions. Each version definition is commonly associated with one or more
symbol names. A symbol name can only be associated with one version
definition, however a version definition can inherit the symbols from other
version definitions. Thus, a structure exists to define one or more independent,
or related, version definitions within the object being created. As new changes
are made to the object, new version definitions can be added to express these
changes.

There are two consequences of providing version definitions within a shared
object:

• Dynamic objects that are built against this shared object can record their
dependency on the version definitions they bind to. These version
dependencies will be verified at runtime to insure that the appropriate
interfaces, or functionality, are available for the correct execution of an
application.

• Dynamic objects can select only those version definitions of a shared object
that they wish to bind to during their link-edit. This mechanism allows
developers to control their dependency on a shared object to the interfaces,
or functionality, that provide the most flexibility.

118 Linker and Libraries Guide—November 1995

5

Creating a Version Definition

Version definitions commonly consist of an association of symbol names to a
unique version name. These associations are established within a mapfile and
supplied to the final link-edit of an object using the link-editor’s -M option
(this technique was introduced in the section “Reducing Symbol Scope” on
page 38).

A version definition is established whenever a version name is specified as
part of the mapfile directive. In the following example two source files are
combined, together with mapfile directives, to produce an object with a
defined public interface:

Here, the symbol foo1 is the only global symbol defined to provide the shared
object’s public interface. The special auto-reduction directive “*” causes the
reduction of all other global symbols to have local binding within the object
being generated (this directive is introduced in “Defining Additional Symbols”

$ cat foo.c
extern const char * _foo1;

void foo1()
{
 (void) printf(_foo1);
}

$ cat data.c
const char * _foo1 = “string used by foo1()\n”;

$ cat mapfile
SUNW_1.1 { # Release X
 global:
 foo1;
 local:
 *;
};
$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o
$ nm -x libfoo.so.1 | grep “foo.$”
[33] |0x0001058c|0x00000004|OBJT |LOCL |0x0 |17 |_foo1
[35] |0x00000454|0x00000034|FUNC |GLOB |0x0 |9 |foo1

Versioning 119

5

on page 32). The associated version name, SUNW_1.1, causes the generation of
a version definition. Thus, the shared object’s public interface consists of the
internal version definition SUNW_1.1, associated with the global symbol foo1 .

Whenever a version definition, or the auto-reduction directive, are used to
generate an object, a base version definition is also created. This base version is
defined using the name of the file itself, and is used to associate any reserved
symbols generated by the link-editor (see “Generating the Output Image” on
page 42 for a list of these reserved symbols).

The version definitions contained within an object can be displayed using
pvs(1) with the -d option:

Here, the object libfoo.so.1 has an internal version definition named
SUNW_1.1, together with a base version definition libfoo.so.1 .

Note – The link-editor’s -z noversion option allows mapfile directed
symbol reduction to be performed but suppresses the creation of version
definitions.

$ pvs -d libfoo.so.1
 libfoo.so.1;
 SUNW_1.1;

120 Linker and Libraries Guide—November 1995

5

Starting with this initial version definition, it is possible for the object to evolve
by adding new interfaces and updated functionality. For example, a new
function, foo2 , together with its supporting data structures, can be added to
the object by updating the source files foo.c and data.c :

A new version definition, SUNW_1.2, can be created to define a new interface
representing the symbol foo2 . In addition, this new interface can be defined to
inherit the original version definition SUNW_1.1.

The creation of this new interface is important as it identifies the evolution of
the object and enables users to verify and select the interfaces to which they
bind. These concepts are covered in more detail in “Binding to a Version
Definition” on page 126 and in “Specifying a Version Binding” on page 132.

$ cat foo.c
extern const char * _foo1;
extern const char * _foo2;

void foo1()
{
 (void) printf(_foo1);
}

void foo2()
{
 (void) printf(_foo2);
}

$ cat data.c
const char * _foo1 = “string used by foo1()\n”;
const char * _foo2 = “string used by foo2()\n”;

Versioning 121

5

The following example shows the mapfile directives that create these two
interfaces:

Here, the symbols foo1 and foo2 are both defined to be part of the shared
object’s public interface. However, each of these symbols is assigned to a
different version definition; foo1 is assigned to SUNW_1.1, and foo2 is
assigned to SUNW_1.2.

$ cat mapfile
SUNW_1.1 { # Release X
 global:
 foo1;
 local:
 *;
};

SUNW_1.2 { # Release X+1
 global:
 foo2;
} SUNW_1.1;

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o
$ nm -x libfoo.so.1 | grep “foo.$”
[33] |0x00010644|0x00000004|OBJT |LOCL |0x0 |17 |_foo1
[34] |0x00010648|0x00000004|OBJT |LOCL |0x0 |17 |_foo2
[36] |0x000004bc|0x00000034|FUNC |GLOB |0x0 |9 |foo1
[37] |0x000004f0|0x00000034|FUNC |GLOB |0x0 |9 |foo2

122 Linker and Libraries Guide—November 1995

5

These version definitions, their inheritance, and their symbol association can
be displayed using pvs(1) together with the -d , -v and -s options:

Here, the version definition SUNW_1.2 has a dependency on the version
definition SUNW_1.1.

The inheritance of one version definition by another is a useful technique that
reduces the version information that will eventually be recorded by any object
that binds to a version dependency. Version inheritance is covered in more
detail in the section “Binding to a Version Definition” on page 126.

Any internal version definition will have an associated version definition symbol
created. As shown in the previous pvs(1) example, these symbols are
displayed when using the -v option. The use of these symbols will be covered
in the section “Binding to a Weak Version Definition” on page 130.

Creating a Weak Version Definition

Internal changes to an object that do not require the introduction of a new
interface definition, can be defined by creating a weak version definition.
Examples of such changes are bug fixes or performance improvements.

Such a version definition is empty, in that it has no global interface symbols
associated with it.

$ pvs -dsv libfoo.so.1
 libfoo.so.1:
 _end;
 _GLOBAL_OFFSET_TABLE_;
 _DYNAMIC;
 _edata;
 _PROCEDURE_LINKAGE_TABLE_;
 _etext;
 SUNW_1.1:
 foo1;
 SUNW_1.1;
 SUNW_1.2: {SUNW_1.1}:
 foo2;
 SUNW_1.2

Versioning 123

5

For example, if the data file data.c , used in the previous examples, is
updated to provide more detailed string definitions:

then a weak version definition can be introduced to identify this change:

Here, the empty version definition is signified by the weak label. These weak
version definitions allow applications to verify the existence of a particular
implementation by binding to the version definition associated with that
functionality. The section, “Binding to a Version Definition” on page 126,
illustrates how these definitions can be used in more detail.

$ cat data.c
const char * _foo1 = “string used by function foo1()\n”;
const char * _foo2 = “string used by function foo2()\n”;

$ cat mapfile
SUNW_1.1 { # Release X
 global:
 foo1;
 local:
 *;
};

SUNW_1.2 { # Release X+1
 global:
 foo2;
} SUNW_1.1;

SUNW_1.2.1 { } SUNW_1.2; # Release X+2

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o
$ pvs -dv libfoo.so.1
 libfoo.so.1;
 SUNW_1.1;
 SUNW_1.2: {SUNW_1.1};
 SUNW_1.2.1 [WEAK]: {SUNW_1.2};

124 Linker and Libraries Guide—November 1995

5

Defining Unrelated Interfaces

The previous examples have shown how new version definitions added to an
object have inherited any existing version definitions. It is also possible to
create version definitions that are unique and independent. In the following
example, two new files, bar1.c and bar2.c , are added to the object
libfoo.so.1 . These files contribute two new symbols, bar1 and bar2 ,
respectively:

These two symbols are intended to define two new public interfaces. Neither of
these new interfaces are related to each other, however each expresses a
dependency on the original SUNW_1.2 interface.

$ cat bar1.c
extern void foo1();

void bar1()
{
 foo1();
}
$ cat bar2.c
extern void foo2();

void bar2()
{
 foo2();
}

Versioning 125

5

The following mapfile definition creates this required association:

Again, the version definitions created in libfoo.so.1 using this mapfile ,
and their related dependencies, can be inspected using pvs(1) :

The following sections explore how these version definition recordings can be
used to verify runtime binding requirements and control the binding
requirements of an object during its creation.

$ cat mapfile
SUNW_1.1 { # Release X
 global:
 foo1;
 local:
 *;
};

SUNW_1.2 { # Release X+1
 global:
 foo2;
} SUNW_1.1;

SUNW_1.2.1 { } SUNW_1.2; # Release X+2

SUNW_1.3a { # Release X+3
 global:
 bar1;
} SUNW_1.2;

SUNW_1.3b { # Release X+3
 global:
 bar2;
} SUNW_1.2;

$ cc -o libfoo.so.1 -M mapfile -G foo.o bar.o data.o
$ pvs -dv libfoo.so.1
 libfoo.so.1;
 SUNW_1.1;
 SUNW_1.2: {SUNW_1.1};
 SUNW_1.2.1 [WEAK]: {SUNW_1.2};
 SUNW_1.3a: {SUNW_1.2};
 SUNW_1.3b: {SUNW_1.2};

126 Linker and Libraries Guide—November 1995

5

Binding to a Version Definition

When a dynamic executable or shared object is built against other shared
objects, these dependencies are recorded in the resulting object (see “Shared
Object Processing” on page 13 and “Recording a Shared Object Name” on
page 86 for more details). If these shared object dependencies also contain
version definitions then an associated version dependency will be recorded in the
resulting object.

The following example takes the data files from the previous section and
generates a shared object suitable for a compile time environment. This shared
object, libfoo.so.1 , will be used in following binding examples:

In effect, there are six public interfaces being offered by this shared object. Four
of these interfaces (SUNW_1.1, SUNW_1.2, SUNW_1.3a and SUNW_1.3b)
define a set of functions, one interface (SUNW_1.2.1) describes an internal

$ cc -o libfoo.so.1 -h libfoo.so.1 -M mapfile -G foo.o bar.o \
data.o
$ ln -s libfoo.so.1 libfoo.so
$ pvs -dsv libfoo.so.1
 libfoo.so.1:
 _end;
 _GLOBAL_OFFSET_TABLE_;
 _DYNAMIC;
 _edata;
 _PROCEDURE_LINKAGE_TABLE_;
 _etext;
 SUNW_1.1:
 foo1;
 SUNW_1.1;
 SUNW_1.2: {SUNW_1.1}:
 foo2;
 SUNW_1.2;
 SUNW_1.2.1 [WEAK]: {SUNW_1.2}:
 SUNW_1.2.1;
 SUNW_1.3a: {SUNW_1.2}:
 bar1;
 SUNW_1.3a;
 SUNW_1.3b: {SUNW_1.2}:
 bar2;
 SUNW_1.3b

Versioning 127

5

implementation change to the shared object, and one interface (libfoo.so.1)
defines several reserved labels. Dynamic objects that build with this object will
record which of these interfaces they bind to.

The following example builds an application that references both symbols
foo1 and foo2 . The versioning dependency information recorded in the
application can be examined using pvs(1) with the -r option:

In this example, the application prog has really bound to the two interfaces
SUNW_1.1 and SUNW_1.2, as these interfaces have provided the global
symbols foo1 and foo2 respectively.

However, since version definition SUNW_1.1 is defined within libfoo.so.1
as being inherited by the version definition SUNW_1.2, it is only necessary to
record the latter version dependency. This normalization of version definition
dependencies reduces the amount of version information that must be
maintained within an object and processed at runtime.

Since the application prog was built against the shared object’s
implementation containing the weak version definition SUNW_1.2.1 , this
dependency is also recorded. Even though this version definition is defined to
inherit the version definition SUNW_1.2, the version’s weak nature precludes
its normalization with SUNW_1.1, and results in a separate dependency
recording.

Had there been multiple weak version definitions that inherit from each other
then these definitions will be normalized in the same manner as non-weak
version definitions are.

$ cat prog.c
extern void foo1();
extern void foo2();

main()
{
 foo1();
 foo2();
}
$ cc -o prog prog.c -L. -R. -lfoo
$ pvs -r prog
 libfoo.so.1 (SUNW_1.2, SUNW_1.2.1);

128 Linker and Libraries Guide—November 1995

5

Note – The recording of a version dependency can be suppressed by the
link-editor’s -z noversion option.

Having recorded these version definition dependencies, the runtime linker
validates the existence of the required version definitions in the objects bound
to when the application is executed. This validation can be displayed using
ldd(1) with the -v option. For example, by running ldd(1) on the
application prog , the version definition dependencies are shown to be found
correctly in the shared object libfoo.so.1 :

Note – ldd(1) with the -v option implies verbose output, in that a recursive
list of all dependencies, together with all versioning requirements, will be
generated.

If a non-weak version definition dependency cannot be found, a fatal error will
occur during application initialization. Any weak version definition
dependency that cannot be found is silently ignored. For example, if the
application prog was run in an environment in which libfoo.so.1 only
contained the version definition SUNW_1.1, then the following fatal error will
occur:

$ ldd -v prog

 find library=libfoo.so.1; required by prog
 libfoo.so.1 => ./libfoo.so.1
 find version=libfoo.so.1;
 libfoo.so.1 (SUNW_1.2) => ./libfoo.so.1
 libfoo.so.1 (SUNW_1.2.1) => ./libfoo.so.1

$ pvs -dv libfoo.so.1
 libfoo.so.1;
 SUNW_1.1;
$ prog
ld.so.1: prog: fatal: libfoo.so.1: version ‘SUNW_1.2’ not \
found (required by file prog)

Versioning 129

5

Had the application prog not recorded any version definition dependencies,
the nonexistence of the required interface symbol foo2 will have manifested
itself sometime during the execution of the application as a fatal relocation
error (see “Relocation Errors” on page 61). This relocation error might occur at
process initialization, during process execution, or might not occur at all if the
execution path of the application did not call the function foo2 .

Recording version definition dependencies provides an alternative, and
immediate indication of the availability of the interfaces required by the
application.

If the application prog was run in an environment in which libfoo.so.1
only contained the version definitions SUNW_1.1 and SUNW_1.2, then all non-
weak version definition requirements will be satisfied. The absence of the weak
version definition SUNW_1.2.1 is deemed nonfatal, and so no runtime error
condition will be generated. However, ldd(1) can be used to display all
version definitions that cannot be found:

Note – If an object requires a version definition from a given dependency, and
at runtime an implementation of that dependency is found that contains no
version definition information, the version verification of the dependency will
be silently ignored. This policy provides a level of backward compatibility as
the transition from non-versioned to versioned shared objects is taken. ldd(1)
however, can still be used to display any version requirement discrepancies.

$ pvs -dv libfoo.so.1
 libfoo.so.1;
 SUNW_1.1;
 SUNW_1.2: {SUNW_1.1};
$ prog
string used by foo1()
string used by foo2()
$ ldd prog
 libfoo.so.1 => ./libfoo.so.1
 libfoo.so.1 (SUNW_1.2.1) => (version not found)

130 Linker and Libraries Guide—November 1995

5

Binding to a Weak Version Definition

Recall that weak version definitions are used to mark an internal
implementation change, and are well suited to indicating bug fixes and
performance improvements made to an object. If you require the existence of a
weak version definition for the correct execution of an application, then an
explicit dependency on this version definition can be generated.

Establishing such a dependency can be important when a bug fix, or
performance improvement, become critical for the application to function
correctly.

Each version definition maintained within an object has an absolute version
definition symbol associated with it. For example, the shared object
libfoo.so.1 containing the version definitions shown in previous examples
has the following version definition symbols:

By making explicit reference to a version definition’s symbol, an explicit
dependency on that version definition is created. This explicit reference also
causes the version definition to be promoted from a weak to a strong
dependency.

$ pvs -dsv libfoo.so.1 | fgrep SUNW_1
 SUNW_1.1:
 SUNW_1.1;
 SUNW_1.2: {SUNW_1.1}:
 SUNW_1.2;
 SUNW_1.2.1 [WEAK]: {SUNW_1.2}:
 SUNW_1.2.1;
 SUNW_1.3a: {SUNW_1.2}:
 SUNW_1.3a;
 SUNW_1.3b: {SUNW_1.2}:
 SUNW_1.3b;

Versioning 131

5

Therefore, the application prog can be built to enforce the requirement that the
SUNW_1.2.1 interface be made available at runtime. A reference to the version
definition can be generated using the link-editor’s -u option:

Here, prog has been built with an explicit dependency on the interfaces
SUNW_1.1, SUNW_1.2, and SUNW_1.2.1 . Because the version definition
SUNW_1.2.1 is promoted to a strong version, it is also normalized with its
dependency SUNW_1.2. At runtime, if the version definition SUNW_1.2.1
cannot be found, a fatal error will be generated.

Verifying Versions in Additional Objects

Version definition symbols also provide a mechanism for verifying the version
requirements of an object obtained by dlopen(3X) . Any object added to the
process’s address space using this function will have no automatic version
dependency verification carried out by the runtime linker. Thus, it is the
responsibility of the caller of this function to verify that any versioning
requirements are met.

$ cat prog
extern void foo1();
extern void foo2();

main()
{
 foo1();
 foo2();
}
$ cc -u SUNW_1.2.1 -o prog prog.c -L. -R. -lfoo
$ pvs -r prog
 libfoo.so.1 (SUNW_1.2.1);

132 Linker and Libraries Guide—November 1995

5

The presence of a required version definition can be verified by looking up the
associated version definition symbol using dlsym(3X) . The following example
shows the shared object libfoo.so.1 being added to a process by
dlopen(3X) and verified to insure that the interface SUNW_1.2 is available:

Specifying a Version Binding

When building a dynamic object against a shared object containing version
definitions, it is possible to instruct the link-editor to limit the binding to
specific version definitions. Effectively, the link-editor allows you to control an
object’s binding to specific interfaces.

An object’s binding requirements can be controlled using a file control directive.
This directive is supplied using the link-editor’s -M option and an associated
mapfile . The syntax for these version control mapfile directives is shown
below:

#include <stdio.h>
#include <dlfcn.h>

main()
{
 void * handle;
 const char * file = “libfoo.so.1”;
 const char * vers = “SUNW_1.2”;

 if ((handle = dlopen(file, RTLD_LAZY)) == NULL) {
 (void) printf(“dlopen: %s\n”, dlerror());
 exit (1);
 }

 if (dlsym(handle, vers) == NULL) {
 (void) printf(“fatal: %s: version ‘%s’ not found\n”,
 file, vers);
 exit (1);
 }

name - version [version ...] ;

Versioning 133

5

• name - represents the name of the shared object dependency. This name
should match the shared object’s compilation environment name as used by
the link-editor (see “Library Naming Conventions” on page 14).

• version - represents the version definition name within the shared object that
should be made available for binding. Multiple version definitions can be
specified.

There are a couple of scenarios where this binding control can be useful:

• If a shared object has been versioned to define unique and independent
versions, possibly defining different standards interfaces, then the
application can insure that its bindings meet the requirements of a specific
interface.

• If a shared object has been versioned over several software releases,
application developers can restrict themselves to the interfaces that were
available in a previous software release. Thus, an application can be built
using the latest release of the shared object in the knowledge that the
application’s interface requirements can be met by a previous release of the
shared object.

The following is an example of using the version control mechanism. This
example continues to use the shared object libfoo.so.1 containing the
following version interface definitions:

$ pvs -ds libfoo.so.1
 libfoo.so.1:
 _end;
 _GLOBAL_OFFSET_TABLE_;
 _DYNAMIC;
 _edata;
 _PROCEDURE_LINKAGE_TABLE_;
 _etext;
 SUNW_1.1:
 foo1;
 SUNW_1.2:
 foo2;

134 Linker and Libraries Guide—November 1995

5

The version definitions SUNW_1.1 and SUNW_1.2 represent interfaces within
libfoo.so.1 that were made available in software Release X and
Release X+1 respectively. An application can be built to bind only to the
interfaces available in Release X by using the following version control
mapfile directive:

For example, if you develope an application, prog , and wish to insure that the
application will run on Release X , then the application can only use the
interfaces available in that release. If the application mistakenly references the
symbol foo2 , then the application’s noncompliance to the required interface
will be signalled by the link-editor as an undefined symbol error:

To be compliant with the SUNW_1.1 interface, you must remove the reference to
foo2 . This can be achieved either by reworking the application to remove the
requirement on foo2 , or by adding an implementation of foo2 to the build of
the application.

$ cat mapfile
libfoo.so - SUNW_1.1;

$ cat prog.c
extern void foo1();
extern void foo2();

main()
{
 foo1();
 foo2();
}
$ cc -o prog prog.c -M mapfile -L. -R. -lfoo
Undefined first referenced
 symbol in file
foo2 prog.o (symbol belongs to \
unavailable version ./libfoo.so (SUNW_1.2))
ld: fatal: Symbol referencing errors. No output written to prog

Versioning 135

5

Relocatable Objects

The preceding sections have described how version information can be
recorded and used within dynamic objects. Relocatable objects can maintain
versioning information in a similar manner, however there are one or two
subtle differences in how this information is used.

Any version definitions supplied to the link-edit of a relocatable object are
recorded in exactly the same format as has been described in previous
examples. However, by default, symbol reduction is not carried out on the
object being created. Instead, when the relocatable object is finally used as
input to the generation of a dynamic object, the version recording itself will be
used to determine the symbol reductions to apply.

In addition, any version definitions found in relocatable objects will be
propagated to the dynamic object. For an example of version processing in
relocatable objects see “Reducing Symbol Scope” on page 38.

External Versioning
Runtime references to a shared object should always refer to the files version
filename. Commonly this is expressed as a filename suffixed with a version
number. When a shared object’s interface changes in an incompatible manner -
such that it will break old applications - a new shared object should be
distributed with a new versioned filename. In addition, the original versioned
filename must still be distributed to provide the interfaces required by the old
applications.

By providing shared objects as separate versioned filenames within the
runtime environment, applications built over a series of software releases can
be guaranteed that the interface against which they were built is available for
them to bind during their execution.

The following section describes how to coordinate the binding of an interface
between the compilation and runtime environments.

136 Linker and Libraries Guide—November 1995

5

Coordination of Versioned Filenames

In the section “Naming Conventions” on page 84 it was stated that during a
link-edit the most common method to input shared objects was to use the -l
option. This option will use the link-editor’s library search mechanism to
locate shared objects that are prefixed with lib and suffixed with .so .

However, at runtime any shared object dependencies should exist in their
versioned name form. Instead of maintaining two distinct shared objects that
follow these naming conventions, the most common mechanism of
coordinating these objects involves creating file system links between the two
filenames.

To make the runtime shared object libfoo.so.1 available to the compilation
environment it is necessary to provide a symbolic link from the compilation
filename to the runtime filename. For example:

Note – Either a symbolic or hard link can be used. However, as a
documentation and diagnostic aid, symbolic links are more useful.

Here, the shared object libfoo.so.1 has been generated for the runtime
environment. Generating a symbolic link libfoo.so , has also enabled this
file’s use in a compilation environment. For example:

Here the link-editor will process the relocatable object main.o with the
interface described by the shared object libfoo.so.1 which it will find by
following the symbolic link libfoo.so .

$ cc -o libfoo.so.1 -G -K pic foo.c
$ ln -s libfoo.so.1 libfoo.so
$ ls -l libfoo*
lrwxrwxrwx 1 usr grp 11 1991 libfoo.so -> libfoo.so.1
-rwxrwxr-x 1 usr grp 3136 1991 libfoo.so.1

$ cc -o prog main.o -L. -lfoo

Versioning 137

5

If over a series of software releases, new versions of this shared object are
distributed with changed interfaces, the compilation environment can be
constructed to use the interface that is applicable by changing the symbolic
link. For example:

Here, three major versions of the shared object are available. Two of these
shared objects, libfoo.so.1 and libfoo.so.2 , provide the dependencies
for existing applications. libfoo.so.3 offers the latest major release for
building and running new applications.

Using this symbolic link mechanism itself is insufficient to coordinate the
correct binding of a shared object from its use in the compilation environment
to its requirement in the runtime environment. As the example presently
stands, the link-editor will record in the dynamic executable prog the filename
of the shared object it has processed, which in this case will be the compilation
environment filename:

This means that when the application prog is executed, the runtime linker will
search for the dependency libfoo.so , and consequently this will bind to
whichever file this symbolic link is pointing.

To provide the correct runtime name to be recorded as a dependency, the
shared object libfoo.so.1 should be built with an soname definition. This
definition identifies the shared objects runtime name, and is used as the

$ ls -l libfoo*
lrwxrwxrwx 1 usr grp 11 1993 libfoo.so -> libfoo.so.3
-rwxrwxr-x 1 usr grp 3136 1991 libfoo.so.1
-rwxrwxr-x 1 usr grp 3237 1992 libfoo.so.2
-rwxrwxr-x 1 usr grp 3554 1993 libfoo.so.3

$ dump -Lv prog

prog:
 **** DYNAMIC SECTION INFORMATION ****
.dynamic:
[INDEX] Tag Value
[1] NEEDED libfoo.so
.........

138 Linker and Libraries Guide—November 1995

5

dependency name by any object that links against this shared object. This
definition can be provided using the -h option during the link-edit of the
shared object itself. For example:

This symbolic link and the soname mechanism has established a robust
coordination between the shared object naming conventions of the compilation
and runtime environments, one in which the interface processed during the
link-edit is accurately recorded in the output file generated. This recording
ensures that the intended interface will be furnished at runtime.

$ cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 foo.c
$ ln -s libfoo.so.1 libfoo.so
$ cc -o prog main.o -L. -lfoo
$ dump -Lv prog

prog:
 **** DYNAMIC SECTION INFORMATION ****
.dynamic:
[INDEX] Tag Value
[1] NEEDED libfoo.so.1
.........

139

Object Files 6

Introduction
This chapter describes the executable and linking format (ELF) of the object
files produced by the assembler and link-editor. There are three main types of
object files:

• A relocatable file holds code and data suitable to be linked with other object
files to create an executable or shared object file, or another relocatable
object.

• An executable file holds a program that is ready to execute. The file specifies
how exec(2) creates a program’s process image.

• A shared object file holds code and data suitable to be linked in two
contexts. First, the link-editor can process it with other relocatable and
shared object files to create other object files. Second, the runtime linker
combines it with a dynamic executable file and other shared objects to create
a process image.

The first section in this chapter, “File Format” on page 140, focuses on the
format of object files and how that pertains to building programs. The second
section, “Dynamic Linking” on page 189, focuses on how the format pertains to
loading programs.

Programs manipulate object files with the functions contained in the ELF
access library, libelf . Refer to man Pages(3): Library Routines” for a
description of libelf contents.

140 Linker and Libraries Guide—November 1995

6

File Format
As indicated, object files participate in both program linking and program
execution. For convenience and efficiency, the object file format provides
parallel views of a file’s contents, reflecting the differing needs of these
activities. Figure 6-1 shows an object file’s organization.

Figure 6-1 Object File Format

An ELF header resides at the beginning of an object file and holds a road map
describing the file’s organization.

Sections represent the smallest indivisible units that may be processed within
an ELF file. Segments are a collection of sections that represent the smallest
individual units that may be mapped to a memory image by exec(2) or by
the runtime linker.

Sections hold the bulk of object file information for the linking view:
instructions, data, symbol table, relocation information, and so on.
Descriptions of sections appear in the first part of this chapter. The second part
of this chapter discusses segments and the program execution view of the file.

Linking view

ELF header

Program header table
optional

Section 1

. . .

Section n

. . .

. . .

Section header table

Execution view

ELF header

Program header table

Segment 1

Segment 2

. . .

Section header table
optional

Object Files 141

6

A program header table, if present, tells the system how to create a process
image. Files used to build a process image (executables and shared objects)
must have a program header table; relocatable objects do not need one.

A section header table contains information describing the file’s sections. Every
section has an entry in the table; each entry gives information such as the
section name, the section size, and so forth. Files used in link-editing must
have a section header table; other object files may or may not have one.

Note – Although the figure shows the program header table immediately after
the ELF header, and the section header table following the sections; actual files
may differ. Moreover, sections and segments have no specified order. Only the
ELF header has a fixed position in the file.

Data Representation

As described here, the object file format supports various processors with 8-bit
bytes and 32-bit architectures. Nevertheless, it is intended to be extensible to
larger (or smaller) architectures.

Object files therefore represent some control data with a machine-independent
format, making it possible to identify object files and interpret their contents in
a common way. Remaining data in an object file use the encoding of the target
processor, regardless of the machine on which the file was created.

All data structures that the object file format defines follow the natural size and
alignment guidelines for the relevant class. If necessary, data structures contain
explicit padding to ensure 4-byte alignment for 4-byte objects, to force

Table 6-1 32-Bit Data Types

Name Size Alignment Purpose

Elf32_Addr 4 4 Unsigned program address

Elf32_Half 2 2 Unsigned medium integer

Elf32_Off 4 4 Unsigned file offset

Elf32_Sword 4 4 Signed large integer

Elf32_Word 4 4 Unsigned large integer

unsigned char 1 1 Unsigned small integer

142 Linker and Libraries Guide—November 1995

6

structure sizes to a multiple of 4, and so forth. Data also have suitable
alignment from the beginning of the file. Thus, for example, a structure
containing an Elf32_Addr member will be aligned on a 4-byte boundary
within the file.

Note – For portability, ELF uses no bit-fields.

ELF Header

Some object file control structures can grow, because the ELF header contains
their actual sizes. If the object file format changes, a program may encounter
control structures that are larger or smaller than expected. Programs might
therefore ignore extra information. The treatment of missing information
depends on context and will be specified if and when extensions are defined.

The ELF header has the following structure (defined in sys/elf.h):

e_ident
The initial bytes mark the file as an object file and provide machine-
independent data with which to decode and interpret the file’s contents.
Complete descriptions appear in “ELF Identification” on page 146.

#define EI_NIDENT 16

typedef struct {
 unsigned char e_ident[EI_NIDENT];
 Elf32_Half e_type;
 Elf32_Half e_machine;
 Elf32_Word e_version;
 Elf32_Addr e_entry;
 Elf32_Off e_phoff;
 Elf32_Off e_shoff;
 Elf32_Word e_flags;
 Elf32_Half e_ehsize;
 Elf32_Half e_phentsize;
 Elf32_Half e_phnum;
 Elf32_Half e_shentsize;
 Elf32_Half e_shnum;
 Elf32_Half e_shstrndx;
} Elf32_Ehdr;

Object Files 143

6

e_type
This member identifies the object file type.

Although the core file contents are unspecified, type ET_CORE is reserved to
mark the file. Values from ET_LOPROC through ET_HIPROC (inclusive) are
reserved for processor-specific semantics. Other values are reserved and will
be assigned to new object file types as necessary.

e_machine
This member’s value specifies the required architecture for an individual
file.

Table 6-2 ELF File Identifiers

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Relocatable file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOPROC 0xff00 Processor-specific

ET_HIPROC 0xffff Processor-specific

Table 6-3 ELF Machines

Name Value Meaning

EM_NONE 0 No machine

EM_M32 1 AT&T WE 32100

EM_SPARC 2 SPARC

EM_386 3 Intel 80386

EM_68K 4 Motorola 68000

EM_88K 5 Motorola 88000

EM_486 6 Intel 80486

EM_860 7 Intel 80860

EM_MIPS 8 MIPS RS3000 Big-Endian

144 Linker and Libraries Guide—November 1995

6

Other values are reserved and will be assigned to new machines as
necessary. Processor-specific ELF names use the machine name to
distinguish them. For example, the flags mentioned below use the prefix
EF_; a flag named WIDGET for the EM_XYZ machine would be called
EF_XYZ_WIDGET.

e_version
This member identifies the object file version.

The value 1 signifies the original file format; extensions will create new
versions with higher numbers. The value of EV_CURRENT changes as
necessary to reflect the current version number.

e_entry
This member gives the virtual address to which the system first transfers
control, thus starting the process. If the file has no associated entry point,
this member holds zero.

e_phoff
This member holds the program header table’s file offset in bytes. If the file
has no program header table, this member holds zero.

EM_MIPS_RS3_LE 10 MIPS RS3000 Little-Endian

EM_RS6000 11 RS6000

EM_PA_RISC 15 PA-RISC

EM_nCUBE 16 nCUBE

EM_VPP500 17 Fujitsu VPP500

EM_SPARC32PLUS 18 Sun SPARC 32+

EM_PPC 20 PowerPC

Table 6-4 ELF Versions

Name Value Meaning

EV_NONE 0 Invalid version

EV_CURRENT >=1 Current version

Table 6-3 ELF Machines

Name Value Meaning

Object Files 145

6

e_shoff
This member holds the section header table’s file offset in bytes. If the file
has no section header table, this member holds zero.

e_flags
This member holds processor-specific flags associated with the file. Flag
names take the form EF_machine _flag . This member is presently zero for
SPARC, x86, and PowerPC.

e_ehsize
This member holds the ELF header’s size in bytes.

e_phentsize
This member holds the size in bytes of one entry in the file’s program
header table; all entries are the same size.

e_phnum
This member holds the number of entries in the program header table. Thus
the product of e_phentsize and e_phnum gives the table’s size in bytes. If
a file has no program header table, e_phnum holds the value zero.

e_shentsize
This member holds a section header’s size in bytes. A section header is one
entry in the section header table; all entries are the same size.

e_shnum
This member holds the number of entries in the section header table. Thus
the product of e_shentsize and e_shnum gives the section header table’s
size in bytes. If a file has no section header table, e_shnum holds the value
zero.

e_shstrndx
This member holds the section header table index of the entry associated
with the section name string table. If the file has no section name string
table, this member holds the value SHN_UNDEF. See “Sections” on page 148
and “String Table” on page 161 for more information.

146 Linker and Libraries Guide—November 1995

6

ELF Identification

As mentioned above, ELF provides an object file framework to support
multiple processors, multiple data encodings, and multiple classes of
machines. To support this object file family, the initial bytes of the file specify
how to interpret the file, independent of the processor on which the inquiry is
made and independent of the file’s remaining contents.

The initial bytes of an ELF header (and an object file) correspond to the
e_ident member.

These indexes access bytes that hold the following values:

EI_MAG0 - EI_MAG3
A file’s first 4 bytes hold a magic number, identifying the file as an ELF object
file.

Table 6-5 e_ident[] Identification Index

Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1 File identification

EI_MAG2 2 File identification

EI_MAG3 3 File identification

EI_CLASS 4 File class

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_PAD 7 Start of padding bytes

EI_NIDENT 16 Size of e_ident[]

Table 6-6 Magic Number

Name Value Position

ELFMAG0 0x7f e_ident[EI_MAG0]

ELFMAG1 ’E’ e_ident[EI_MAG1]

ELFMAG2 ’L’ e_ident[EI_MAG2]

ELFMAG3 ’F’ e_ident[EI_MAG3]

Object Files 147

6

EI_CLASS
The next byte, e_ident[EI_CLASS] , identifies the file’s class, or capacity.

The file format is designed to be portable among machines of various sizes,
without imposing the sizes of the largest machine on the smallest. Class
ELFCLASS32 supports machines with files and virtual address spaces up to
4 gigabytes; it uses the basic types defined above.

Class ELFCLASS64 is reserved for 64-bit architectures. Its appearance here
shows how the object file may change, but the 64-bit format is otherwise
unspecified. Other classes will be defined as necessary, with different basic
types and sizes for object file data.

EI_DATA
Byte e_ident[EI_DATA] specifies the data encoding of the processor-
specific data in the object file. The following encodings are currently
defined.

More information on these encodings appears below. Other values are
reserved and will be assigned to new encodings as necessary.

EI_VERSION
Byte e_ident[EI_VERSION] specifies the ELF header version number.
Currently, this value must be EV_CURRENT, as explained in Table 6-4 on
page 144 for e_version .

Table 6-7 File Class

Name Value Meaning

ELFCLASSNONE 0 Invalid class

ELFCLASS32 1 32-bit objects

ELFCLASS64 2 64-bit objects

Table 6-8 Data Encoding

Name Value Meaning

ELFDATANONE 0 Invalid data encoding

ELFDATA2LSB 1 See below

ELFDATA2MSB 2 See below

148 Linker and Libraries Guide—November 1995

6

EI_PAD
This value marks the beginning of the unused bytes in e_ident . These
bytes are reserved and set to zero; programs that read object files should
ignore them. The value of EI_PAD will change in the future if currently
unused bytes are given meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. As
described above, class ELFCLASS32 files use objects that occupy 1, 2, and 4
bytes. Under the defined encodings, objects are represented as shown below.
Byte numbers appear in the upper left corners.

Encoding ELFDATA2LSB specifies 2’s complement values, with the least
significant byte occupying the lowest address.

Figure 6-2 Data Encoding ELFDATA2LSB

Encoding ELFDATA2MSB specifies 2’s complement values, with the most
significant byte occupying the lowest address.

Figure 6-3 Data Encoding ELFDATA2MSB

Sections

An object file’s section header table lets you locate all file’s sections. The
section header table is an array of Elf32_Shdr structures as described below.
A section header table index is a subscript into this array. The ELF header’s

0x01 01
0

0x0102 02 01
0 1

0x01020304 04 03 02 01
0 1 2 3

0x01 01
0

0x0102 01 02
0 1

0x01020304 01 02 03 04
0 1 2 3

Object Files 149

6

e_shoff member gives the byte offset from the beginning of the file to the
section header table; e_shnum tells how many entries the section header table
contains; e_shentsize gives the size in bytes of each entry.

Some section header table indexes are reserved; an object file does not have
sections for these special indexes.

SHN_UNDEF
This value marks an undefined, missing, irrelevant, or otherwise
meaningless section reference. For example, a symbol defined relative to
section number SHN_UNDEF is an undefined symbol.

Note – Although index 0 is reserved as the undefined value, the section header
table contains an entry for index 0. That is, if the e_shnum member of the ELF
header says a file has 6 entries in the section header table, they have the
indexes 0 through 5. The contents of the initial entry are specified later in this
section.

SHN_LORESERVE
This value specifies the lower bound of the range of reserved indexes.

SHN_LOPROC - SHN_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHN_ABS
This value specifies absolute values for the corresponding reference. For
example, symbols defined relative to section number SHN_ABS have
absolute values and are not affected by relocation.

Table 6-9 Special Section Indexes

Name Value

SHN_UNDEF 0

SHN_LORESERVE 0xff00

SHN_LOPROC 0xff00

SHN_HIPROC 0xff1f

SHN_ABS 0xfff1

SHN_COMMON 0xfff2

SHN_HIRESERVE 0xffff

150 Linker and Libraries Guide—November 1995

6

SHN_COMMON
Symbols defined relative to this section are common symbols, such as
FORTRAN COMMON or unallocated C external variables. These symbols are
sometimes referred to as tentative.

SHN_HIRESERVE
This value specifies the upper bound of the range of reserved indexes. The
system reserves indexes between SHN_LORESERVE and SHN_HIRESERVE,
inclusive; the values do not reference the section header table. That is, the
section header table does not contain entries for the reserved indexes.

Sections contain all information in an object file except the ELF header, the
program header table, and the section header table. Moreover, object files’
sections satisfy several conditions:

• Every section in an object file has exactly one section header describing it.
Section headers may exist that do not have a section.

• Each section occupies one contiguous (possibly empty) sequence of bytes
within a file.

• Sections in a file may not overlap. No byte in a file resides in more than one
section.

• An object file may have inactive space. The various headers and the sections
might not cover every byte in an object file. The contents of the inactive data
are unspecified.

A section header has the following structure (defined in sys/elf.h):

typedef struct {
 Elf32_Word sh_name;
 Elf32_Word sh_type;
 Elf32_Word sh_flags;
 Elf32_Addr sh_addr;
 Elf32_Off sh_offset;
 Elf32_Word sh_size;
 Elf32_Word sh_link;
 Elf32_Word sh_info;
 Elf32_Word sh_addralign;
 Elf32_Word sh_entsize;
} Elf32_Shdr;

Object Files 151

6

sh_name
This member specifies the name of the section. Its value is an index into the
section header string table section (see “String Table” on page 161), giving
the location of a null-terminated string. Section names and their descriptions
are in Table 6-14 on page 157.

sh_type
This member categorizes the section’s contents and semantics. Section types
and their descriptions are in Table 6-10 on page 152.

sh_flags
Sections support 1-bit flags that describe miscellaneous attributes. Flag
definitions are inTable 6-12 on page 155.

sh_addr
If the section is to appear in the memory image of a process, this member
gives the address at which the section’s first byte should reside. Otherwise,
the member contains 0.

sh_offset
This member gives the byte offset from the beginning of the file to the first
byte in the section. Section type SHT_NOBITS, described below, occupies no
space in the file, and its sh_offset member locates the conceptual
placement in the file.

sh_size
This member gives the section’s size in bytes. Unless the section type is
SHT_NOBITS, the section occupies sh_size bytes in the file. A section of
type SHT_NOBITS may have a nonzero size, but it occupies no space in the
file.

sh_link
This member holds a section header table index link, whose interpretation
depends on the section type. Table 6-13 on page 156 describes the values.

sh_info
This member holds extra information, whose interpretation depends on the
section type. Table 6-13 on page 156 below describes the values.

sh_addralign
Some sections have address alignment constraints. For example, if a section
holds a double-word, the system must ensure double-word alignment for
the entire section. That is, the value of sh_addr must be congruent to 0,

152 Linker and Libraries Guide—November 1995

6

modulo the value of sh_addralign . Currently, only 0 and positive integral
powers of two are allowed. Values 0 and 1 mean the section has no
alignment constraints.

sh_entsize
Some sections hold a table of fixed-size entries, such as a symbol table. For
such a section, this member gives the size in bytes of each entry. The
member contains 0 if the section does not hold a table of fixed-size entries.

A section header’s sh_type member specifies the section’s semantics:

Table 6-10 Section Types, sh_type

Name Value

SHT_NULL 0

SHT_PROGBITS 1

SHT_SYMTAB 2

SHT_STRTAB 3

SHT_RELA 4

SHT_HASH 5

SHT_DYNAMIC 6

SHT_NOTE 7

SHT_NOBITS 8

SHT_REL 9

SHT_SHLIB 10

SHT_DYNSYM 11

SHT_SUNW_verdef 0x6ffffffd

SHT_SUNW_verneed 0x6ffffffe

SHT_SUNW_versym 0x6fffffff

SHT_LOPROC 0x70000000

SHT_HIPROC 0x7fffffff

SHT_LOUSER 0x80000000

SHT_HIUSER 0xffffffff

Object Files 153

6

SHT_NULL
This value marks the section header as inactive; it does not have an
associated section. Other members of the section header have undefined
values.

SHT_PROGBITS
The section holds information defined by the program, whose format and
meaning are determined solely by the program.

SHT_SYMTAB, SHT_DYNSYM
These sections hold a symbol table. Typically a SHT_SYMTAB section
provides symbols for link-editing. As a complete symbol table, it may
contain many symbols unnecessary for dynamic linking. Consequently, an
object file may also contain a SHT_DYNSYM section, which holds a minimal
set of dynamic linking symbols, to save space. See “Symbol Table” on
page 162 for details.

SHT_STRTAB, SHT_DYNSTR
These sections hold a string table. An object file may have multiple string
table sections. See “String Table” on page 161 for details.

SHT_RELA
The section holds relocation entries with explicit addends, such as type
Elf32_Rela for the 32-bit class of object files. An object file may have
multiple relocation sections. See “Relocation” on page 167 for details.

SHT_HASH
The section holds a symbol hash table. All dynamically linked object files
must contain a symbol hash table. Currently, an object file may have only
one hash table, but this restriction may be relaxed in the future. See “Hash
Table” on page 224 for details.

SHT_DYNAMIC
The section holds information for dynamic linking. Currently, an object file
may have only one dynamic section, but this restriction may be relaxed in
the future. See “Dynamic Section” on page 207 for details.

SHT_NOTE
The section holds information that marks the file in some way. See “Note
Section” on page 187 for details.

154 Linker and Libraries Guide—November 1995

6

SHT_NOBITS
A section of this type occupies no space in the file but otherwise resembles
SHT_PROGBITS. Although this section contains no bytes, the sh_offset
member contains the conceptual file offset.

SHT_REL
The section holds relocation entries without explicit addends, such as type
Elf32_Rel for the 32-bit class of object files. An object file may have
multiple relocation sections. See “Relocation” on page 167 for details.

SHT_SHLIB
This section type is reserved but has unspecified semantics. Programs that
contain a section of this type do not conform to the ABI.

SHT_SUNW_verdef
The section contains definitions of fine-grained versions defined by this file.

SHT_SUNW_verneed
The section contains descriptions of fine-grained dependencies required for
the execution of an image.

SHT_SUNW_versym
The section contains a table describing the relationship of symbols to the
version definitions offered by the file.

SHT_LOPROC - SHT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHT_LOUSER
This value specifies the lower bound of the range of indexes reserved for
application programs.

SHT_HIUSER
This value specifies the upper bound of the range of indexes reserved for
application programs. Section types between SHT_LOUSER and
SHT_HIUSER may be used by the application, without conflicting with
current or future system-defined section types.

Object Files 155

6

Other section type values are reserved. As mentioned before, the section
header for index 0 (SHN_UNDEF) exists, even though the index marks
undefined section references. This entry holds the following:

A section header’s sh_flags member holds 1-bit flags that describe the
section’s attributes:

If a flag bit is set in sh_flags , the attribute is on for the section. Otherwise,
the attribute is off or does not apply. Undefined attributes are reserved and set
to zero.

SHF_WRITE
The section contains data that should be writable during process execution.

Table 6-11 Section Header Table Entry: Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address

sh_offset 0 No file offset

sh_size 0 No size

sh_link SHN_UNDEF No link information

sh_info 0 No auxiliary information

sh_addralign 0 No alignment

sh_entsize 0 No entries

Table 6-12 Section Attribute Flags

Name Value

SHF_WRITE 0x1

SHF_ALLOC 0x2

SHF_EXECINSTR 0x4

SHF_MASKPROC 0xf0000000

156 Linker and Libraries Guide—November 1995

6

SHF_ALLOC
The section occupies memory during process execution. Some control
sections do not reside in the memory image of an object file; this attribute is
off for those sections.

SHF_EXECINSTR
The section contains executable machine instructions.

SHF_MASKPROC
All bits included in this mask are reserved for processor-specific semantics.

Two members in the section header, sh_link and sh_info , hold special
information, depending on section type.

Table 6-13 sh_link and sh_info Interpretation

sh_type sh_link sh_info

SHT_DYNAMIC The section header index of
the associated string table.

0

SHT_HASH The section header index of
the associated symbol table.

0

SHT_REL
SHT_RELA

The section header index of
the associated symbol table.

The section header index of
the section to which the
relocation applies.

SHT_SYMTAB
SHT_DYNSYM

The section header index of
the associated string table.

One greater than the symbol
table index of the last local
symbol (binding STB_LOCAL).

SHT_SUNW_verdef The section header index of
the associated string table.

The number of version
definitions within the section.

SHT_SUNW_verneed The section header index of
the associated string table.

The number of version
dependencies within the
section.

SHT_SUNW_versym The section header index of
the associated symbol table.

0

other SHN_UNDEF 0

Object Files 157

6

Special Sections

Various sections hold program and control information. Sections in the list
below are used by the system and have the indicated types and attributes.

Table 6-14 Special Sections (1 of 2)

Name Type Attribute

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.comment SHT_PROGBITS None

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.dynamic SHT_DYNAMIC SHF_ALLOC + SHF_WRITE

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

.fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.got SHT_PROGBITS See “.got” on page 158

.hash SHT_HASH SHF_ALLOC

.init SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.interp SHT_PROGBITS See “.interp” on page 159

.note SHT_NOTE None

.plt SHT_PROGBITS See “.plt” on page 159

.relname SHT_REL See “.relname, .relaname” on page 159

.relaname SHT_RELA See “.relname, .relaname” on page 159

.rodata SHT_PROGBITS SHF_ALLOC

.rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB None

.strtab SHT_STRTAB See “.strtab” on page 160

158 Linker and Libraries Guide—November 1995

6

.bss
This section holds uninitialized data that contribute to the program’s
memory image. By definition, the system initializes the data with zeros
when the program begins to run. The section occupies no file space, as
indicated by the section type, SHT_NOBITS.

.comment
This section holds comment information.

.data, .data1
These sections hold initialized data that contribute to the program’s
memory image.

.dynamic
This section holds dynamic linking information.

.dynstr
This section holds strings needed for dynamic linking, most commonly the
strings that represent the names associated with symbol table entries.

.dynsym
This section holds the dynamic linking symbol table. See “Symbol Table” on
page 162 for details.

.fini
This section holds executable instructions that contribute to the process
termination code. That is, when a program exits normally, the system
arranges to execute the code in this section.

.got
This section holds the global offset table. See “Global Offset Table
(Processor-Specific)” on page 213 for more information.

.symtab SHT_SYMTAB See “.symtab” on page 160

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.SUNW_version SHT_SUNW_verdef
SHT_SUNW_verneed
SHT_SUNW_versym

SHF_ALLOC

Table 6-14 Special Sections (2 of 2)

Name Type Attribute

Object Files 159

6

.hash
This section holds a symbol hash table. See “Hash Table” on page 224 for
more information.

.init
This section holds executable instructions that contribute to the process
initialization code. That is, when a program starts to run, the system
arranges to execute the code in this section before calling the program entry
point.

.interp
This section holds the path name of a program interpreter. See “Program
Interpreter” on page 204 for more information.

.note
This section holds information in the format that “Note Section” on
page 187 describes.

.plt
This section holds the procedure linkage table. For PowerPC only, the
SHT_NOBITS type may also be used. See “Procedure Linkage Table” on
page 215, “Procedure Linkage Table” on page 218, and “Procedure Linkage
Table” on page 221 for more information.

.rel name, .rela name
These sections hold relocation information, as “Relocation” on page 167
describes. If the file has a loadable segment that includes relocation, the
sections’ attributes will include the SHF_ALLOC bit; otherwise, that bit will
be off. Conventionally, name is supplied by the section to which the
relocations apply. Thus a relocation section for .text normally will have the
name .rel.text or .rela.text.

.rodata, .rodata1
These sections hold read-only data that typically contribute to a non-
writable segment in the process image. See “Program Header” on page 189
for more information.

.shstrtab
This section holds section names.

160 Linker and Libraries Guide—November 1995

6

.strtab
This section holds strings, most commonly the strings that represent the
names associated with symbol table entries. If the file has a loadable
segment that includes the symbol string table, the section’s attributes will
include the SHF_ALLOC bit; otherwise, that bit will be off.

.symtab
This section holds a symbol table, as “Symbol Table” on page 162 describes.
If the file has a loadable segment that includes the symbol table, the
section’s attributes will include the SHF_ALLOC bit; otherwise, that bit will
be off.

.text
This section holds the text or executable instructions of a program.

.SUNW_version
Sections of this name hold versioning information. See “Versioning
Information” on page 181 for more information.

Section names with a dot (.) prefix are reserved for the system, although
applications may use these sections if their existing meanings are satisfactory.
Applications may use names without the prefix to avoid conflicts with system
sections. The object file format lets one define sections not in the list above. An
object file may have more than one section with the same name.

Section names reserved for a processor architecture are formed by placing an
abbreviation of the architecture name ahead of the section name. The name
should be taken from the architecture names used for e_machine . For
example, .Foo.psect is the psect section defined by the FOO architecture.

Existing extensions use their historical names.

Preexisting Extensions:

.conflict .liblist .lit8 .sdata

.debug .line .reginfo .stab

.gptab .lit4 .sbss .tdesc

Object Files 161

6

String Table

String table sections hold null-terminated character sequences, commonly
called strings. The object file uses these strings to represent symbol and section
names. One references a string as an index into the string table section.

The first byte, which is index zero, is defined to hold a null character. Likewise,
a string table’s last byte is defined to hold a null character, ensuring null
termination for all strings. A string whose index is zero specifies either no
name or a null name, depending on the context.

An empty string table section is permitted; its section header’s sh_size
member will contain zero. Nonzero indexes are invalid for an empty string
table.

A section header’s sh_name member holds an index into the section header
string table section, as designated by the e_shstrndx member of the ELF
header. The following figures show a string table with 25 bytes and the strings
associated with various indexes.

Figure 6-4 String Table

The table below shows the strings of the string table above:

Table 6-15 String Table Indexes

Index String

0 none

1 name.

7 Variable

11 able

16 able

24 null string

0 \0 n a m e . \0 V a r

20 \0 \0 x x \0

10 i a b l e \0 a b l e

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

162 Linker and Libraries Guide—November 1995

6

As the example shows, a string table index may refer to any byte in the section.
A string may appear more than once; references to substrings may exist; and a
single string may be referenced multiple times. Unreferenced strings also are
allowed.

Symbol Table

An object file’s symbol table holds information needed to locate and relocate a
program’s symbolic definitions and references. A symbol table index is a
subscript into this array. Index 0 both designates the first entry in the table and
serves as the undefined symbol index. The contents of the initial entry are
specified later in this section.

A symbol table entry has the following format (defined in sys/elf.h):

st_name
This member holds an index into the object file’s symbol string table, which
holds the character representations of the symbol names. If the value is
nonzero, it represents a string table index that gives the symbol name.
Otherwise, the symbol table entry has no name.

Note – External C symbols have the same names in C and in object files’
symbol tables.

Table 6-16 Symbol Table Initial Entry

Name Value

STN_UNDEF 0

typedef struct {
 Elf32_Word st_name;
 Elf32_Addr st_value;
 Elf32_Word st_size;
 unsigned char st_info;
 unsigned char st_other;
 Elf32_Half st_shndx;
} Elf32_Sym;

Object Files 163

6

st_value
This member gives the value of the associated symbol. Depending on the
context, this may be an absolute value, an address, and so forth. See
“Symbol Values” on page 167.

st_size
Many symbols have associated sizes. For example, a data object’s size is the
number of bytes contained in the object. This member holds 0 if the symbol
has no size or an unknown size.

st_info
This member specifies the symbol’s type and binding attributes. A list of the
values and meanings appears below. The following code shows how to
manipulate the values (defined in sys/elf.h):

st_other
This member currently holds 0 and has no defined meaning.

st_shndx
Every symbol table entry is defined in relation to some section; this member
holds the relevant section header table index. Some section indexes indicate
special meanings. See Table 6-10 on page 152

A symbol’s binding determines the linkage visibility and behavior.

#define ELF32_ST_BIND(i) ((i) >> 4)
#define ELF32_ST_TYPE(i) ((i) & 0xf)
#define ELF32_ST_INFO(b, t) (((b)<<4)+((t)&0xf))

Table 6-17 Symbol Binding, ELF32_ST_BIND

Name Value

STB_LOCAL 0

STB_GLOBAL 1

STB_WEAK 2

STB_LOPROC 13

STB_HIPROC 15

164 Linker and Libraries Guide—November 1995

6

STB_LOCAL
Local symbols are not visible outside the object file containing their
definition. Local symbols of the same name may exist in multiple files
without interfering with each other.

STB_GLOBAL
Global symbols are visible to all object files being combined. One file’s
definition of a global symbol will satisfy another file’s undefined reference
to the same global symbol.

STB_WEAK
Weak symbols resemble global symbols, but their definitions have lower
precedence.

STB_LOPROC- STB_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Global and weak symbols differ in two major ways:

• When the link-editor combines several relocatable object files, it does not
allow multiple definitions of STB_GLOBAL symbols with the same name. On
the other hand, if a defined global symbol exists, the appearance of a weak
symbol with the same name will not cause an error. The link-editor honors
the global definition and ignores the weak ones. Similarly, if a common
symbol exists (that is, a symbol with the st_index field holding
SHN_COMMON), the appearance of a weak symbol with the same name does
not cause an error. The link-editor uses the common definition and ignores
the weak one.

• When the link-editor searches archive libraries (see “Archive Processing” on
page 12), it extracts archive members that contain definitions of undefined
or tentative, global symbols. The member’s definition may be either a global
or a weak symbol. The link-editor does not extract archive members to
resolve undefined weak symbols. Unresolved weak symbols have a zero
value.

In each symbol table, all symbols with STB_LOCAL binding precede the weak
and global symbols. As “Sections” on page 148 describes, a symbol table
section’s sh_info section header member holds the symbol table index for the
first non-local symbol.

Object Files 165

6

A symbol’s type provides a general classification for the associated entity.

STT_NOTYPE
The symbol type is not specified.

STT_OBJECT
The symbol is associated with a data object, such as a variable, an array, and
so forth.

STT_FUNC
The symbol is associated with a function or other executable code.

STT_SECTION
The symbol is associated with a section. Symbol table entries of this type
exist primarily for relocation and normally have STB_LOCAL binding.

STT_FILE
Conventionally, the symbol’s name gives the name of the source file
associated with the object file. A file symbol has STB_LOCAL binding, its
section index is SHN_ABS, and it precedes the other STB_LOCAL symbols for
the file, if it is present. Symbol index 1 of the SHT_SYMTAB is an STT_FILE
symbol representing the file itself. Conventionally, this is followed by the
files STT_SECTION symbols, and any global symbols that have been
reduced to locals (see “Reducing Symbol Scope” on page 38, and Chapter 5,
“Versioning” for more details).

STT_LOPROC- STT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Table 6-18 Symbol Types, ELF32_ST_TYPE

Name Value

STT_NOTYPE 0

STT_OBJECT 1

STT_FUNC 2

STT_SECTION 3

STT_FILE 4

STT_LOPROC 13

STT_HIPROC 15

166 Linker and Libraries Guide—November 1995

6

Function symbols (those with type STT_FUNC) in shared object files have
special significance. When another object file references a function from a
shared object, the link-editor automatically creates a procedure linkage table
entry for the referenced symbol. Shared object symbols with types other than
STT_FUNC will not be referenced automatically through the procedure linkage
table.

If a symbol’s value refers to a specific location within a section, its section
index member, st_shndx , holds an index into the section header table. As the
section moves during relocation, the symbol’s value changes as well, and
references to the symbol continue to point to the same location in the program.
Some special section index values give other semantics:

SHN_ABS
The symbol has an absolute value that will not change because of relocation.

SHN_COMMON
The symbol labels a common block that has not yet been allocated. The
symbol’s value gives alignment constraints, similar to a section’s
sh_addralign member. That is, the link-editor will allocate the storage for
the symbol at an address that is a multiple of st_value . The symbol’s size
tells how many bytes are required.

SHN_UNDEF
This section table index means the symbol is undefined. When the link-
editor combines this object file with another that defines the indicated
symbol, this file’s references to the symbol will be bound to the actual
definition.

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is
reserved; it holds the following:

Table 6-19 Symbol Table Entry: Index 0

Name Value Note

st_name 0 No name

st_value 0 Zero value

st_size 0 No size

Object Files 167

6

Symbol Values

Symbol table entries for different object file types have slightly different
interpretations for the st_value member.

• In relocatable files, st_value holds alignment constraints for a symbol
whose section index is SHN_COMMON.

• In relocatable files, st_value holds a section offset for a defined symbol.
That is, st_value is an offset from the beginning of the section that
st_shndx identifies.

• In executable and shared object files, st_value holds a virtual address. To
make these files’ symbols more useful for the runtime linker, the section
offset (file interpretation) gives way to a virtual address (memory
interpretation) for which the section number is irrelevant.

Although the symbol table values have similar meanings for different object
files, the data allow efficient access by the appropriate programs.

Relocation

Relocation is the process of connecting symbolic references with symbolic
definitions. For example, when a program calls a function, the associated call
instruction must transfer control to the proper destination address at
execution. In other words, relocatable files must have information that
describes how to modify their section contents, thus allowing executable and
shared object files to hold the right information for a process’s program image.
Relocation entries are these data.

st_info 0 No type, local binding

st_other 0

st_shndx SHN_UNDEF No section

Table 6-19 Symbol Table Entry: Index 0

Name Value Note

168 Linker and Libraries Guide—November 1995

6

Relocation entries can have the following structure (defined in sys/elf.h):

r_offset
This member gives the location at which to apply the relocation action. For
a relocatable file, the value is the byte offset from the beginning of the
section to the storage unit affected by the relocation. For an executable file
or a shared object, the value is the virtual address of the storage unit
affected by the relocation.

r_info
This member gives both the symbol table index with respect to which the
relocation must be made and the type of relocation to apply. For example, a
call instruction’s relocation entry will hold the symbol table index of the
function being called. If the index is STN_UNDEF, the undefined symbol
index, the relocation uses 0 as the symbol value. Relocation types are
processor-specific; descriptions of their behavior appear below. When the
text below refers to a relocation entry’s relocation type or symbol table
index, it means the result of applying ELF32_R_TYPE or ELF32_R_SYM,
respectively, to the entry’s r_info member:

r_addend
This member specifies a constant addend used to compute the value to be
stored into the relocatable field.

typedef struct {
 Elf32_Addr r_offset;
 Elf32_Word r_info;
} Elf32_Rel;

typedef struct {
 Elf32_Addr r_offset;
 Elf32_Word r_info;
 Elf32_Sword r_addend;
} Elf32_Rela;

#define ELF32_R_SYM(i) ((i)>>8)
#define ELF32_R_TYPE(i) ((unsigned char)(i))
#define ELF32_R_INFO(s, t) (((s)<<8)+(unsigned char)(t))

Object Files 169

6

As shown above, only Elf32_Rela entries contain an explicit addend. Entries
of type Elf32_Rel store an implicit addend in the location to be modified.
SPARC and PowerPC use Elf32_Rela entries and x86 uses Elf32_Rel
entries.

A relocation section references two other sections: a symbol table and a section
to modify. The section header’s sh_info and sh_link members, described in
“Sections” on page 148 earlier, specify these relationships. Relocation entries
for different object files have slightly different interpretations for the
r_offset member.

• In relocatable files, r_offset holds a section offset. That is, the relocation
section itself describes how to modify another section in the file; relocation
offsets designate a storage unit within the second section.

• In executable and shared object files, r_offset holds a virtual address. To
make these files’ relocation entries more useful for the runtime linker, the
section offset (file interpretation) gives way to a virtual address (memory
interpretation).

Although the interpretation of r_offset changes for different object files to
allow efficient access by the relevant programs, the relocation types’ meanings
stay the same.

170 Linker and Libraries Guide—November 1995

6

Relocation Types (Processor Specific)

On SPARC, relocation entries describe how to alter the following instruction
and data fields (bit numbers appear in the lower box corners):

byte8

half16

word32

disp30

disp22

imm22

7 0

15 0

31 0

31 29 0

0

0

31

31

21

21

simm13
031 12

simm11
031 10

simm10
031 9

disp19
031 19

disp14
031 21 19

d2
13

simm7
031 6

xword64
63 0

Object Files 171

6

On x86, relocation entries describe how to alter the following instruction and
data fields (bit numbers appear in the lower box corners):

word32 specifies a 32-bit field occupying 4 bytes with an arbitrary byte
alignment. These values use the same byte order as other word values in the
x86 architecture):

On PowerPC, relocation entries describe how to alter the following instruction
and data fields (bit numbers appear in the lower box corners)

Calculations below assume the actions are transforming a relocatable file into
either an executable or a shared object file. Conceptually, the link-editor merges
one or more relocatable files to form the output. It first decides how to combine
and locate the input files, then updates the symbol values, and finally performs
the relocation. Relocations applied to executable or shared object files are
similar and accomplish the same result. Descriptions below use the following
notation:

31 0

word32

31 0

3 2 1 0 0x0102030401 02 03 04

half16

word32

word30

15 0

31 0

31 29 0

low14
31 29 0

031 629
low24

16

172 Linker and Libraries Guide—November 1995

6

A
means the addend used to compute the value of the relocatable field.

B
means the base address at which a shared object is loaded into memory
during execution. Generally, a shared object file is built with a 0 base virtual
address, but the execution address is different. See “Program Header” on
page 189 for more information about the base address.

G
means the offset into the global offset table at which the address of the
relocation entry’s symbol resides during execution. See “Global Offset Table
(Processor-Specific)” on page 213 for more information.

GOT
means the address of the global offset table. See “Global Offset Table
(Processor-Specific)” on page 213 for more information.

L
means the place (section offset or address) of the procedure linkage table entry
for a symbol. A procedure linkage table entry redirects a function call to the
proper destination. The link-editor builds the initial procedure linkage table,
and the runtime linker modifies the entries during execution. See
“Procedure Linkage Table” on page 215, “Procedure Linkage Table” on
page 218, or “Procedure Linkage Table” on page 221 for more information.

P
means the place (section offset or address) of the storage unit being
relocated (computed using r_offset).

S
means the value of the symbol whose index resides in the relocation entry.

SPARC relocation entries apply to bytes (byte8), half-words (half16), or words
(the others). x86 relocation entries apply to words. PowerPC relocation entries
apply to half-words and to words. In any case, the r_offset value designates
the offset or virtual address of the first byte of the affected storage unit. The
relocation type specifies which bits to change and how to calculate their values.

Object Files 173

6

SPARC and PowerPC use only Elf32_Rela relocation entries with explicit
addends. Thus the r_addend member serves as the relocation addend. x86
uses only Elf32_Rel relocation entries, the field to be relocated holds the
addend. In all cases the addend and the computed result use the same byte
order.

SPARC: Relocation Types

Note – Field names in the following table tell whether the relocation type
checks for overflow . A calculated relocation value may be larger than the
intended field, and a relocation type may verify (V) the value fits or truncate
(T) the result. As an example, V-simm13 means that the computed value may
not have significant, nonzero bits outside the simm13 field.

Table 6-20 SPARC Relocation Types (1 of 2)

Name Value Field Calculation

R_SPARC_NONE 0 None None

R_SPARC_8 1 V-byte8 S + A

R_SPARC_16 2 V-half16 S + A

R_SPARC_32 3 V-word32 S + A

R_SPARC_DISP8 4 V-byte8 S + A - P

R_SPARC_DISP16 5 V-half16 S + A - P

R_SPARC_DISP32 6 V-disp32 S + A - P

R_SPARC_WDISP30 7 V-disp30 (S + A - P) >> 2

R_SPARC_WDISP22 8 V-disp22 (S + A - P) >> 2

R_SPARC_HI22 9 T-imm22 (S + A) >> 10

R_SPARC_22 10 V-imm22 S + A

R_SPARC_13 11 V-simm13 S + A

R_SPARC_LO10 12 T-simm13 (S + A) & 0x3ff

R_SPARC_GOT10 13 T-simm13 G & 0x3ff

R_SPARC_GOT13 14 V-simm13 G

R_SPARC_GOT22 15 T-simm22 G >> 10

R_SPARC_PC10 16 T-simm13 (S + A - P) & 0x3ff

174 Linker and Libraries Guide—November 1995

6

Some relocation types have semantics beyond simple calculation:

R_SPARC_GOT10
This relocation type resembles R_SPARC_LO10, except it refers to the
address of the symbol’s global offset table entry and additionally instructs
the link-editor to build a global offset table.

R_SPARC_PC22 17 V-disp22 (S + A - P) >> 10

R_SPARC_WPLT30 18 V-disp30 (L + A - P) >> 2

R_SPARC_COPY 19 None None

R_SPARC_GLOB_DAT 20 V-word32 S + A

R_SPARC_JMP_SLOT 21 None See below

R_SPARC_RELATIVE 22 V-word32 B + A

R_SPARC_UA32 23 V-word32 S + A

R_SPARC_PLT32 24 V-word32 L + A

R_SPARC_HIPLT22 25 T-imm22 (L + A) >> 10

R_SPARC_LOPLT10 26 T-simm13 (L + A) & 0x3ff

R_SPARC_PCPLT32 27 V-word32 L + A - P

R_SPARC_PCPLT22 28 V-disp22 (L + A - P) >> 10

R_SPARC_PCPLT10 29 V-simm12 (L + A - P) & 0x3ff

R_SPARC_10 30 V_simm10 S + A

R_SPARC_11 31 V_simm11 S + A

R_SPARC_WDISP16 40 V-d2/disp14 (S + A - P) >> 2

R_SPARC_WDISP19 41 V-disp19 (S + A - P) >> 2

R_SPARC_7 43 V-imm7 S + A

R_SPARC_5 44 V-imm5 S + A

R_SPARC_6 45 V-imm6 S + A

Table 6-20 SPARC Relocation Types (2 of 2)

Name Value Field Calculation

Object Files 175

6

R_SPARC_GOT13
This relocation type resembles R_SPARC_13, except it refers to the address
of the symbol’s global offset table entry and additionally instructs the link-
editor to build a global offset table.

R_SPARC_GOT22
This relocation type resembles R_SPARC_22, except it refers to the address
of the symbol’s global offset table entry and additionally instructs the link-
editor to build a global offset table.

R_SPARC_WPLT30
This relocation type resembles R_SPARC_WDISP30, except it refers to the
address of the symbol’s procedure linkage table entry and additionally
instructs the link-editor to build a procedure linkage table.

R_SPARC_COPY
The link-editor creates this relocation type for dynamic linking. Its offset
member refers to a location in a writable segment. The symbol table index
specifies a symbol that should exist both in the current object file and in a
shared object. During execution, the runtime linker copies data associated
with the shared object’s symbol to the location specified by the offset. See
“Copy Relocations” on page 107 for more details.

R_SPARC_GLOB_DAT
This relocation type resembles R_SPARC_32, except it sets a global offset
table entry to the address of the specified symbol. The special relocation
type allows you to determine the correspondence between symbols and
global offset table entries.

R_SPARC_JMP_SLOT
The link-editor creates this relocation type for dynamic linking. Its offset
member gives the location of a procedure linkage table entry. The runtime
linker modifies the procedure linkage table entry to transfer control to the
designated symbol address.

R_SPARC_RELATIVE
The link-editor creates this relocation type for dynamic linking. Its offset
member gives the location within a shared object that contains a value
representing a relative address. The runtime linker computes the
corresponding virtual address by adding the virtual address at which the
shared object is loaded to the relative address. Relocation entries for this
type must specify 0 for the symbol table index.

176 Linker and Libraries Guide—November 1995

6

R_SPARC_UA32
This relocation type resembles R_SPARC_32, except it refers to an unaligned
word. That is, the word to be relocated must be treated as four separate bytes
with arbitrary alignment, not as a word aligned according to the
architecture requirements.

x86: Relocation Types

Some relocation types have semantics beyond simple calculation:

R_386_GOT32
This relocation type computes the distance from the base of the global offset
table to the symbol’s global offset table entry. It also tells the link-editor to
build a global offset table.

R_386_PLT32
This relocation type computes the address of the symbol’s procedure
linkage table entry and tells the link-editor to build a procedure linkage
table.

R_386_COPY

Table 6-21 x86 Relocation Types

Name Value Field Calculation

R_386_NONE 0 none none

R_386_32 1 word32 S + A

R_386_PC32 2 word32 S + A - P

R_386_GOT32 3 word32 G + A

R_386_PLT32 4 word32 L + A - P

R_386_COPY 5 none none

R_386_GLOB_DAT 6 word32 S

R_386_JMP_SLOT 7 word32 S

R_386_RELATIVE 8 word32 B + A

R_386_GOTOFF 9 word32 S + A - GOT

R_386_GOTPC 10 word32 GOT + A - P

R_386_32PLT 11 word32 L + A

Object Files 177

6

The link-editor creates this relocation type for dynamic linking. Its offset
member refers to a location in a writable segment. The symbol table index
specifies a symbol that should exist both in the current object file and in a
shared object. During execution, the runtime linker copies data associated
with the shared object’s symbol to the location specified by the offset. See
“Copy Relocations” on page 107

R_386_GLOB_DAT
This relocation type is used to set a global offset table entry to the address of
the specified symbol. The special relocation type lets one determine the
correspondence between symbols and global offset table entries.

R_386_JMP_SLOT
The link-editor creates this relocation type for dynamic linking. Its offset
member gives the location of a procedure linkage table entry. The runtime
linker modifies the procedure linkage table entry to transfer control to the
designated symbol address.

R_386_RELATIVE
The link-editor creates this relocation type for dynamic linking. Its offset
member gives the location within a shared object that contains a value
representing a relative address. The runtime linker computes the
corresponding virtual address by adding the virtual address at which the
shared object is loaded to the relative address. Relocation entries for this
type must specify 0 for the symbol table index.

R_386_GOTOFF
This relocation type computes the difference between a symbol’s value and
the address of the global offset table. It also tells the link-editor to build the
global offset table.

R_386_GOTPC
This relocation type resembles R_386_PC32, except it uses the address of
the global offset table in its calculation. The symbol referenced in this
relocation normally is _GLOBAL_OFFSET_TABLE_, which also tells the link-
editor to build the global offset table.

PowerPC: Relocation Types
The following general rules apply to the interpretation of the relocation types
in Table 6-22:

178 Linker and Libraries Guide—November 1995

6

• "+" and "- " denote 32-bit modulus addition and subtraction, respectively.
">>" denotes arithmetic right shifting (shifting with sign copying) of the
value of the left operand by the number of bits given by the right operand.

• For relocation types in which the names contain the string 14 or the string
16 , the upper 17 bits of the value computed before shifting must all be the
same. For relocation types whose names contain the string 24 , the upper 7
bits of the value computed before shifting must all be the same. For
relocation types whose names contain the string 14 or the string 24 , the low
2 bits of the value computed before shifting must all be zero.

• #hi(value) and #lo(value) denote the most and least significant 16 bits,
respectively, of the indicated value. That is,

#lo(x) = (x & 0xFFFF) and #hi(x) = ((x >> 16)& 0xFFFF)

The “high adjusted” value, #ha(value), compensates for #lo() being treated
as a signed number.

#ha(x) = (((x >> 16) + ((x & 0x8000) ? 1 : 0)) & 0xFFFF).

• Reference in a calculation to the value G implicitly creates a GOT entry for
the indicated symbol.

Table 6-22 Relocation Types

Name Value Field Calculation

R_PPC_NONE 0 none none

R_PPC_ADDR32 1 word32 S + A

R_PPC_ADDR24 2 low24* (S + A) >> 2

R_PPC_ADDR16 3 half16* S + A

R_PPC_ADDR16_LO 4 half16 #lo(S + A)

R_PPC_ADDR16_HI 5 half16 #hi(S + A)

R_PPC_ADDR16_HA 6 half16 #ha(S + A)

R_PPC_ADDR14 7 low14* (S + A) >> 2

R_PPC_ADDR14_BRTAKEN 8 low14* (S + A) >> 2

R_PPC_ADDR14_BRNTAKEN 9 low14* (S + A) >> 2

R_PPC_REL24 10 low24* (S + A - P) >> 2

R_PPC_REL14 11 low14* (S + A - P) >> 2

Object Files 179

6

Relocation types with special semantics are described below. Relocation values
not in the above table and less than 101 or greater than 200 are reserved. Values
in the range 101-200 and names beginning with "R_PPC_EMB_" have been
assigned for embedded system use.

The relocation types whose Field column entry contains an asterisk are subject
to failure if the value computed does not fit in the allocated bits.

The relocation types in which the names include _BRTAKEN or _BRNTAKEN
specify whether the branch prediction bit (bit 10) should indicate that the
branch will be taken or not taken, respectively. For an unconditional branch,
the branch prediction bit must be 0.

R_PPC_GOT16*
These relocation types resemble the corresponding R_PPC_ADDR16* types,
except that they refer to the address of the symbol's global offset table entry
and additionally instruct the link-editor to build a global offset table.

R_PPC_PLTREL24

R_PPC_REL14_BRTAKEN 12 low14* (S + A - P) >> 2

R_PPC_REL14_BRNTAKEN 13 low14* (S + A - P) >> 2

R_PPC_GOT16 14 half16* G + A

R_PPC_GOT16_LO 15 half16 #lo(G + A)

R_PPC_GOT16_HI 16 half16 #hi(G + A)

R_PPC_GOT16_HA 17 half16 #ha(G + A)

R_PPC_PLTREL24 18 low24* (L + A - P) >> 2

R_PPC_COPY 19 none none

R_PPC_GLOB_DAT 20 word32 S + A

R_PPC_JMP_SLOT 21 none see below

R_PPC_RELATIVE 22 word32 B + A

R_PPC_LOCAL24PC 23 low24* see below

R_PPC_UADDR32 24 word32 S + A

R_PPC_UADDR16 25 half16* S + A

Table 6-22 Relocation Types (Continued)

Name Value Field Calculation

180 Linker and Libraries Guide—November 1995

6

This relocation type refers to the address of the symbol's procedure linkage
table entry and additionally instructs the link-editor to build a procedure
linkage table. There is an implicit assumption that the procedure linkage
table for a module will be within +/- 32 megabytes of an instruction that
branches to it, so that the R_PPC_PLTREL24 relocation type is the only one
needed for relocating branches to procedure linkage table entries.

R_PPC_COPY
The link-editor creates this relocation type for dynamic linking. Its offset
member refers to a location in a writable segment. The symbol table index
specifies a symbol that should exist both in the current object file and in a
shared object. During execution, the dynamic linker copies data associated
with the shared object's symbol to the location specified by the offset.

R_PPC_GLOB_DAT
This relocation type resembles R_PPC_ADDR32, except that it sets a global
offset table entry to the address of the specified symbol. The special
relocation type allows one to determine the correspondence between
symbols and global offset table entries.

R_PPC_JMP_SLOT
The link-editor creates this relocation type for dynamic linking. Its offset
member gives the location of a procedure linkage table entry. The dynamic
linker modifies the procedure linkage table entry to transfer control to the
designated symbol's address (see the section “Procedure Linkage Table” on
page 221).

R_PPC_LOCAL24PC
This relocation type resembles R_PPC_REL24, except that it uses the value
of the symbol within the object, not an interposed value, for S in its
calculation. The symbol referenced in this relocation normally is
_GLOBAL_OFFSET_TABLE_, which additionally instructs the link-editor to
build the global offset table.

R_PPC_RELATIVE
The link-editor creates this relocation type for dynamic linking. Its offset
member gives a location within a shared object that contains a value
representing a relative address. The dynamic linker computes the
corresponding virtual address by adding the virtual address at which the
shared object was loaded to the relative address. Relocation entries for this
type must specify 0 for the symbol table index.

Object Files 181

6

R_PPC_UADDR*
These relocation types are the same as the corresponding R_PPC_ADDR*
types, except that the datum to be relocated is allowed to be unaligned.

Versioning Information

Objects created by the link-editor may contain two types of versioning
information:

• version definitions provide associations of global symbols and are
implemented using sections of type SHT_SUNW_verdef and
SHT_SUNW_versym.

• version dependencies indicate the version definition requirements from other
object dependencies and are implemented using sections of type
SHT_SUNW_verneed.

The structures that form these sections are defined in sys/link.h . Sections
that contain versioning information are named .SUNW_version.

Version Definition Section

This section is defined by the type SHT_SUNW_verdef. If this section exists a
SHT_SUNW_versym section must also exist. Using these two structures an
association of symbols to version definitions is maintained within the file (see
“Creating a Version Definition” on page 118 for more details). Elements of this
section have the following structure:

typedef struct {
 Elf32_Half vd_version;
 Elf32_Half vd_flags;
 Elf32_Half vd_ndx;
 Elf32_Half vd_cnt;
 Elf32_Word vd_hash;
 Elf32_Word vd_aux;
 Elf32_Word vd_next;
} Elf32_Verdef;

typedef struct {
 Elf32_Addr vda_name;
 Elf32_Word vda_next;
} Elf32_Verdaux;

182 Linker and Libraries Guide—November 1995

6

vd_version
This member identifies the version of the structure itself.

The value 1 signifies the original section format; extensions will create new
versions with higher numbers. The value of VER_DEF_CURRENT changes as
necessary to reflect the current version number.

vd_flags
This member holds version definition specific information.

The base version definition is always present when version definitions, or
symbol auto-reduction has been applied to the file. The base version provides
a default version for the files reserved symbols (see “Generating the Output
Image” on page 42). A weak version definition has no symbols associated
with it (see “Creating a Weak Version Definition” on page 122 for more
details).

vd_ndx
This member holds the version index. Each version definition has a unique
index that is used to associate SHT_SUNW_versym entries to the appropriate
version definition.

vd_cnt
This member indicates the number of elements in the Elf32_Verdaux
array.

Table 6-23Version Definition Structure Versions

Name Value Meaning

VER_DEF_NONE 0 Invalid version

VER_DEF_CURRENT >=1 Current version

Table 6-24Version Definition Section Flags

Name Value Meaning

VER_FLG_BASE 0x1 Version definition of the file itself

VER_FLG_WEAK 0x2 Weak version identifier

Object Files 183

6

vd_hash
This member holds the hash value of the version definition name (this value
is generated using the same hashing function described in “Hash Table” on
page 224).

vd_aux
This member holds the byte offset, from the start of this Elf32_Verdef
entry, to the Elf32_Verdaux array of version definition names. The first
element of the array must exist and points to the version definition string
this structure defines. Additional elements may be present, the number
being indicated by the vd_cnt value. These elements represent the
dependencies of this version definition. Each of these dependencies will
have its own version definition structure.

vd_next
This member holds the byte offset, from the start of this Elf32_Verdef
structure, to the next Elf32_Verdef entry.

vda_name
This member holds a string table offset to a null-terminated string, giving
the name of the version definition.

vda_next
This member holds the byte offset, from the start of this Elf32_Verdaux
entry, to the next Elf32_Verdaux entry.

Version Symbol Section

This section is defined by the type SHT_SUNW_versym, and consists of an
array of elements having the following structure:

typedef Elf32_Half Elf32_Versym;

184 Linker and Libraries Guide—November 1995

6

The number of elements of the array must equal the number of symbol table
entries contained in the associated symbol table (determined by the sections
sh_link value). Each element of the array contains a single index that may
have the following values:

Any index values greater than VER_NDX_GLOBAL must correspond to the
vd_ndx value of an entry in the SHT_SUNW_verdef section. If no index values
greater than VER_NDX_GLOBAL exist then no SHT_SUNW_verdef section need
be present.

Table 6-25 Version Dependency Indexes

Name Value Meaning

VER_NDX_LOCAL 0 Symbol has local scope

VER_NDX_GLOBAL 1 Symbol has global scope (assigned to
base version definition)

>1 Symbol has global scope (assigned to
user-defined version definition)

Object Files 185

6

Version Dependency Section

This section is defined by the type SHT_SUNW_verneed. This section
compliments the dynamic dependency requirements of the file by indicating
the version definitions required from these dependencies. Only if a
dependency contains version definitions will a recording be made in this
section. Elements of this section have the following structure:

vn_version
This member identifies the version of the structure itself.

The value 1 signifies the original section format; extensions will create new
versions with higher numbers. The value of VER_NEED_CURRENT changes
as necessary to reflect the current version number.

vn_cnt
This member indicates the number of elements in the Elf32_Vernaux
array.

typedef struct {
 Elf32_Half vn_version;
 Elf32_Half vn_cnt;
 Elf32_Addr vn_file;
 Elf32_Word vn_aux;
 Elf32_Word vn_next;
} Elf32_Verneed;

typedef struct {
 Elf32_Word vna_hash;
 Elf32_Half vna_flags;
 Elf32_Half vna_other;
 Elf32_Addr vna_name;
 Elf32_Word vna_next;
} Elf32_Vernaux;

Table 6-26Version Dependency Structure Versions

Name Value Meaning

VER_NEED_NONE 0 Invalid version

VER_NEED_CURRENT >=1 Current version

186 Linker and Libraries Guide—November 1995

6

vn_file
This member holds a string table offset to a null-terminated string, giving
the filename having a version dependency. This name will match one of the
.dynamic dependencies (refer to “DT_NEEDED” on page 209) found in the
file.

vn_aux
This member holds the byte offset, from the start of this Elf32_Verneed
entry, to the Elf32_Vernaux array of version definitions required from the
associated file dependency. There must exist at least one version
dependency. Additional version dependencies may be present, the number
being indicated by the vn_cnt value.

vn_next
This member holds the byte offset, from the start of this Elf32_Verneed
entry, to the next Elf32_Verneed entry.

vna_hash
This member holds the hash value of the version dependency name (this
value is generated using the same hashing function described in “Hash
Table” on page 224).

vna_flags
This member holds version dependency specific information.

A weak version dependency indicates an original binding to a weak version
definition. See “Creating a Version Definition” on page 118 for more details.

vna_other
This member is presently unused.

vna_name
This member holds a string table offset to a null-terminated string, giving
the name of the version dependency.

vna_next
This member holds the byte offset, from the start of this Elf32_Vernaux
entry, to the next Elf32_Vernaux entry.

Table 6-27Version Dependency Structure Flags

Name Value Meaning

VER_FLG_WEAK 0x2 Weak version identifier

Object Files 187

6

Note Section

Sometimes a vendor or system builder needs to mark an object file with special
information that other programs will check for conformance, compatibility, and
so forth. Sections of type SHT_NOTE and program header elements of type
PT_NOTE can be used for this purpose.

The note information in sections and program header elements holds any
number of entries, each of which is an array of 4-byte words in the format of
the target processor. Labels are shown on Figure 5-7 to help explain note
information organization, but they are not part of the specification.

Figure 6-5 Note Information

namesz and name
The first namesz bytes in name contain a null-terminated character
representation of the entry’s owner or originator. There is no formal
mechanism for avoiding name conflicts. By convention, vendors use their
own name, such as “XYZ Computer Company,” as the identifier. If no name
is present, namesz contains 0. Padding is present, if necessary, to ensure 4-
byte alignment for the descriptor. Such padding is not included in namesz .

descsz and desc
The first descsz bytes in desc hold the note descriptor. If no descriptor is
present, descsz contains 0. Padding is present, if necessary, to ensure
4-byte alignment for the next note entry. Such padding is not included in
descsz .

namesz

descsz

type

name
. . .

desc
. . .

188 Linker and Libraries Guide—November 1995

6

type
This word gives the interpretation of the descriptor. Each originator controls
its own types; multiple interpretations of a single type value may exist.
Thus, a program must recognize both the name and the type to understand
a descriptor. Types currently must be nonnegative.

To illustrate, the following note segment holds two entries.

Figure 6-6 Example Note Segment

Note – The system reserves note information with no name (namesz==0) and
with a zero-length name (name[0]==’\0’) but currently defines no types. All
other names must have at least one non-null character.

X Y Z

\0 padC o

7

0

1

7

8

3

X

C

Y Z

\0o pad

word0

word1

namesz

descsz

type

namesz

descsz

type

name

desc

No descriptor

+0 +1 +2 +3

name

Object Files 189

6

Dynamic Linking
This section describes the object file information and system actions that create
running programs. Some information here applies to all systems; information
specific to one processor resides in sections marked accordingly.

Executable and shared object files statically represent programs. To execute
such programs, the system uses the files to create dynamic program
representations, or process images. A process image has segments that contain
its text, data, stack, and so on. The major subsections of this section are:

• “Program Header” describes object file structures that are directly involved
in program execution. The primary data structure, a program header table,
locates segment images in the file and contains other information needed to
create the memory image of the program.

• “Program Loading (Processor-Specific)” describes the information used to
load a program into memory.

• “Runtime Linker” describes the information used to specify and resolve
symbolic references among the object files of the process image.

Program Header

An executable or shared object file’s program header table is an array of
structures, each describing a segment or other information the system needs to
prepare the program for execution. An object file segment contains one or more
sections, as described in “Segment Contents” on page 194.

Program headers are meaningful only for executable and shared object files. A
file specifies its own program header size with the ELF header’s e_phentsize
and e_phnum members. See “ELF Header” on page 142 for more information.

190 Linker and Libraries Guide—November 1995

6

A program header has the following structure (defined in sys/elf.h):

p_type
This member tells what kind of segment this array element describes or how
to interpret the array element’s information. Type values and their meanings
are specified in Table 6-28 on page 191.

p_offset
This member gives the offset from the beginning of the file at which the first
byte of the segment resides.

p_vaddr
This member gives the virtual address at which the first byte of the segment
resides in memory.

p_paddr
On systems for which physical addressing is relevant, this member is
reserved for the segment’s physical address. Because the system ignores
physical addressing for application programs, this member has unspecified
contents for executable files and shared objects.

p_filesz
This member gives the number of bytes in the file image of the segment; it
may be zero.

p_memsz
This member gives the number of bytes in the memory image of the
segment; it may be zero.

p_flags
This member gives flags relevant to the segment. Defined flag values appear
below.

typedef struct {
 Elf32_Word p_type;
 Elf32_Off p_offset;
 Elf32_Addr p_vaddr;
 Elf32_Addr p_paddr;
 Elf32_Word p_filesz;
 Elf32_Word p_memsz;
 Elf32_Word p_flags;
 Elf32_Word p_align;
} Elf32_Phdr;

Object Files 191

6

p_align
As “Program Loading (Processor-Specific)” on page 195 describes, loadable
process segments must have congruent values for p_vaddr and p_offset ,
modulo the page size. This member gives the value to which the segments
are aligned in memory and in the file. Values 0 and 1 mean no alignment is
required. Otherwise, p_align should be a positive, integral power of 2, and
p_vaddr should equal p_offset , modulo p_align .

Some entries describe process segments; others give supplementary
information and do not contribute to the process image. Segment entries may
appear in any order, except as explicitly noted below. Defined type values
follow; other values are reserved for future use.

PT_NULL
The array element is unused; other members’ values are undefined. This
type lets the program header table contain ignored entries.

PT_LOAD
The array element specifies a loadable segment, described by p_filesz
and p_memsz. The bytes from the file are mapped to the beginning of the
memory segment. If the segment’s memory size (p_memsz) is larger than
the file size (p_filesz), the extra bytes are defined to hold the value 0 and

Table 6-28 Segment Types, p_type

Name Value

PT_NULL 0

PT_LOAD 1

PT_DYNAMIC 2

PT_INTERP 3

PT_NOTE 4

PT_SHLIB 5

PT_PHDR 6

PT_LOPROC 0x70000000

PT_HIPROC 0x7fffffff

192 Linker and Libraries Guide—November 1995

6

to follow the segment’s initialized area. The file size may not be larger than
the memory size. Loadable segment entries in the program header table
appear in ascending order, sorted on the p_vaddr member.

PT_DYNAMIC
The array element specifies dynamic linking information. See “Dynamic
Section” on page 207 for more information.

PT_INTERP
The array element specifies the location and size of a null-terminated path
name to invoke as an interpreter. This segment type is meaningful only for
executable files (though it may occur for shared objects); it may not occur
more than once in a file. If it is present, it must precede any loadable
segment entry. See “Program Interpreter” on page 204 for further
information.

PT_NOTE
The array element specifies the location and size of auxiliary information.
See “Note Section” on page 187 below for details.

PT_SHLIB
This segment type is reserved but has unspecified semantics.

PT_PHDR
The array element, if present, specifies the location and size of the program
header table itself, both in the file and in the memory image of the program.
This segment type may not occur more than once in a file. Moreover, it may
occur only if the program header table is part of the memory image of the
program. If it is present, it must precede any loadable segment entry. See
“Program Interpreter” on page 204 for further information.

PT_LOPROC- PT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Note – Unless specifically required elsewhere, all program header segment
types are optional. That is, a file’s program header table may contain only
those elements relevant to its contents.

Object Files 193

6

Base Address

Executable and shared object files have a base address, which is the lowest
virtual address associated with the memory image of the program’s object file.
One use of the base address is to relocate the memory image of the program
during dynamic linking.

An executable or shared object file’s base address is calculated during
execution from three values: the memory load address, the maximum page
size, and the lowest virtual address of a program’s loadable segment. As
“Program Loading (Processor-Specific)” on page 195 describes, the virtual
addresses in the program headers might not represent the actual virtual
addresses of the program’s memory image.

To compute the base address, you determine the memory address associated
with the lowest p_vaddr value for a PT_LOAD segment. You then obtain the
base address by truncating the memory address to the nearest multiple of the
maximum page size. Depending on the kind of file being loaded into memory,
the memory address might or might not match the p_vaddr values.

Segment Permissions

A program to be loaded by the system must have at least one loadable segment
(although this is not required by the file format). When the system creates
loadable segments’ memory images, it gives access permissions as specified in
the p_flags member. All bits included in the PF_MASKPROC mask are
reserved for processor-specific semantics.

If a permission bit is 0, that type of access is denied. Actual memory
permissions depend on the memory management unit, which may vary from
one system to another. Although all flag combinations are valid, the system

Table 6-29 Segment Flag Bits, p_flags

Name Value Meaning

PF_X 0x1 Execute

PF_W 0x2 Write

PF_R 0x4 Read

PF_MASKPROC 0xf0000000 Unspecified

194 Linker and Libraries Guide—November 1995

6

may grant more access than requested. In no case, however, will a segment
have write permission unless it is specified explicitly. The following figure
shows both the exact flag interpretation and the allowable flag interpretation.

For example, typical text segments have read and execute, but not write
permissions. Data segments normally have read, write, and execute
permissions.

Segment Contents

An object file segment comprises one or more sections, though this fact is
transparent to the program header. Whether the file segment holds one or
many sections also is immaterial to program loading. Nonetheless, various
data must be present for program execution, dynamic linking, and so on. The
diagrams below illustrate segment contents in general terms. The order and
membership of sections within a segment may vary; moreover, processor-
specific constraints may alter the examples below.

Text segments contain read-only instructions and data, in sections described
earlier in this chapter. Data segments contain writable data and instructions.
See “Special Sections” on page 157 for a list of all special sections. Use dump(1)
to see which sections are in a particular executable file.

Table 6-30 Segment Permissions

Flags Value Exact Allowable

None 0 All access denied All access denied

PF_X 1 Execute only Read, execute

PF_W 2 Write only Read, write, execute

PF_W + PF_X 3 Write, execute Read, write, execute

PF_R 4 Read only Read, execute

PF_R + PF_X 5 Read, execute Read, execute

PF_R + PF_W 6 Read, write Read, write, execute

PF_R + PF_W + PF_X 7 Read, write, execute Read, write, execute

Object Files 195

6

A PT_DYNAMIC program header element points at the .dynamic section, as
explained in “Dynamic Section” on page 207 later. The .got and .plt sections
also hold information related to position-independent code and dynamic
linking.

The .plt may reside in a text or a data segment, depending on the processor. See
“Global Offset Table (Processor-Specific)” on page 213, “Procedure Linkage
Table” on page 215, “Procedure Linkage Table” on page 218, and “Procedure
Linkage Table” on page 221 for details.

As previously described in “Section Header”, the .bss section has the type
SHT_NOBITS. Although it occupies no space in the file, it contributes to the
segment’s memory image. Normally, these uninitialized data reside at the end
of the segment, thereby making p_memsz larger than p_filesz in the
associated program header element.

Program Loading (Processor-Specific)

As the system creates or augments a process image, it logically copies a file’s
segment to a virtual memory segment. When, and if, the system physically
reads the file depends on the program’s execution behavior, system load, and
so forth.

A process does not require a physical page unless it references the logical page
during execution, and processes commonly leave many pages unreferenced.
Therefore delaying physical reads frequently obviates them, improving system
performance. To obtain this efficiency in practice, executable and shared object
files must have segment images whose file offsets and virtual addresses are
congruent, modulo the page size.

Virtual addresses and file offsets for SPARC and PowerPC segments are
congruent modulo 64K (0x10000). Virtual addresses and file offsets for x86
segments are congruent modulo 4K (0x1000). By aligning segments to the
maximum page size, the files are suitable for paging regardless of physical
page size.

196 Linker and Libraries Guide—November 1995

6

The following example presents the SPARC version.

Figure 6-7 SPARC: Executable File (64 K alignment)

Table 6-31 SPARC: Program Header Segments (64 K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x100 0x2bf00

p_vaddr 0x10100 0x4bf00

p_paddr Unspecified Unspecified

p_filesize 0x2be00 0x4e00

p_memsz 0x2be00 0x5e24

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x10000 0x10000

 File Virtual address File offset

 ELF header0

 Program header table

 Other information

0x100 Text segment 0x10100

 . . .

0x2be00 bytes 0x3beff

 0x2bf00 Data segment 0x4bf00

 . . .

0x4e00 bytes 0x50cff

 0x30d00 Other information

 . . .

Object Files 197

6

The following example presents the x86 version.

Figure 6-8 x86: Executable File (4 K alignment)

Table 6-32 x86: Program Header Segments (4 K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x100 0x2bf00

p_vaddr 0x8048100 0x8074f00

p_paddr Unspecified Unspecified

p_filesize 0x2be00 0x4e00

p_memsz 0x2be00 0x5e24

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x1000 0x1000

 File Virtual address File offset

 ELF header0

 Program header table

 Other information

0x100 Text segment 0x8048100

 . . .

0x2be00 bytes 0x8073eff

 0x2bf00 Data segment 0x8074f00

 . . .

0x4e00 bytes 0x8079cff

 0x30d00 Other information

 . . .

198 Linker and Libraries Guide—November 1995

6

The following example presents the PowerPC version.

Figure 6-9 PowerPC: Executable File (4 K alignment)

Although the example’s file offsets and virtual addresses are congruent
modulo the maximum page size for both text and data, up to four file pages
hold impure text or data (depending on page size and file system block size).

Table 6-33 PowerPC: Program Header Segments (4 K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x100 0x2bf00

p_vaddr 0x2048100 0x2074f00

p_paddr Unspecified Unspecified

p_filesize 0x2be00 0x4e00

p_memsz 0x2be00 0x5e24

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x1000 0x1000

 File Virtual address File offset

 ELF header0

 Program header table

 Other information

0x100 Text segment 0x2048100

 . . .

0x2be00 bytes 0x2073eff

 0x2bf00 Data segment 0x2074f00

 . . .

0x4e00 bytes 0x2079cff

 0x30d00 Other information

 . . .

Object Files 199

6

• The first text page contains the ELF header, the program header table, and
other information.

• The last text page holds a copy of the beginning of data.

• The first data page has a copy of the end of text.

• The last data page may contain file information not relevant to the running
process. Logically, the system enforces the memory permissions as if each
segment is complete and separate; segments’ addresses are adjusted to
ensure each logical page in the address space has a single set of permissions.
In the examples above, the region of the file holding the end of text and the
beginning of data will be mapped twice: at one virtual address for text and
at a different virtual address for data.

The end of the data segment requires special handling for uninitialized data,
which the system defines to begin with zero values. Thus, if a file’s last data
page includes information not in the logical memory page, the extraneous data
must be set to zero, not the unknown contents of the executable file.

Impurities in the other three pages are not logically part of the process image;
whether the system expunges them is unspecified. The memory image for this
program follows, assuming 4 Kilobyte (0x1000) pages. For simplicity, these
examples illustrates only one page size.

200 Linker and Libraries Guide—November 1995

6

Figure 6-10 SPARC: Process Image Segments

 Contents SegmentVirtual Address

Header Padding
 0x10000

0x100 bytes

 0x10100
 Text segment

Text . . .

0x2be00 bytes

 0x3bf00

 Data segment

 . . .

0x4e00 bytes

Data

 0x4b000

 Data Padding
0x100 bytes

 Text Padding
0x100 bytes

 0x4bf00

 0x50d00
 Uninitialized Data

0x1024 zero bytes

 0x51d24
 Page Padding

 0x2dc zero bytes

Object Files 201

6

Figure 6-11 x86: Process Image Segments

 Contents SegmentVirtual Address

Header Padding
 0x8048000

0x100 bytes

 0x8048100
 Text segment

Text . . .

0x2be00 bytes

 0x8073f00

 Data segment

 . . .

0x4e00 bytes

Data

 0x8074000

 Data Padding
0x100 bytes

 Text Padding
0x100 bytes

 0x8074f00

 0x8079d00
 Uninitialized Data

0x1024 zero bytes

 0x807ad24
 Page Padding

 0x2dc zero bytes

202 Linker and Libraries Guide—November 1995

6

Figure 6-12 PowerPC: Process Image Segments

One aspect of segment loading differs between executable files and shared
objects. Executable file segments typically contain absolute code. For the
process to execute correctly, the segments must reside at the virtual addresses
used to build the executable file. Thus the system uses the p_vaddr values
unchanged as virtual addresses.

 Contents SegmentVirtual Address

Header Padding
 0x2000000

0x100 bytes

 0x2000100
 Text segment

Text . . .

0x2be00 bytes

 0x202bf00

 Data segment

 . . .

0x4e00 bytes

Data

 0x202c000

 Data Padding
0x100 bytes

 Text Padding
0x100 bytes

 0x202cf00

 0x2031d00
 Uninitialized Data

0x1024 zero bytes

 0x2032d24
 Page Padding

 0x2dc zero bytes

Object Files 203

6

On the other hand, shared object segments typically contain position-
independent code. (For background, see “Link-Editor” on page 7.) This lets a
segment’s virtual address change from one process to another, without
invalidating execution behavior.

Though the system chooses virtual addresses for individual processes, it
maintains the segments’ relative positions. Because position-independent code
uses relative addressing between segments, the difference between virtual
addresses in memory must match the difference between virtual addresses in
the file.

The following tables show possible shared object virtual address assignments
for several processes, illustrating constant relative positioning. The table also
illustrates the base address computations.

Table 6-34 Example SPARC Shared Object Segment Addresses

Source Text Data Base Address

File 0x200 0x2a400 0x0

Process 1 0xc0000200 0xc002a400 0xc0000000

Process 2 0xc0010200 0xc003c400 0xc0010000

Process 3 0xd0020200 0xd004a400 0xd0020000

Process 4 0xd0030200 0xd005a400 0xd0030000

Table 6-35 Example x86 Shared Object Segment Addresses

Source Text Data Base Address

File 0x200 0x2a400 0x0

Process 1 0x80000200 0x8002a400 0x80000000

Process 2 0x80081200 0x800ab400 0x80081000

Process 3 0x900c0200 0x900ea400 0x900c0000

Process 4 0x900c6200 0x900f0400 0x900c6000

204 Linker and Libraries Guide—November 1995

6

Unlike the SPARC and x86, which load shared object segments in a single
region, the PowerPC can load shared object segments in two regions. The
PowerPC Application Binary Interface states that region 1 (0x10000 to
USRTEXT) and region 2 (user_stack_limit to program_break_address) can be
used for dynamic segments. Using the address space depicted by region 1 is an
optimization that causes the relative addresses to fall within a 32M range,
limited by the relative address branch instructions on PowerPC. The allocation
is done in the following order:

Region 1: 0x10000 to USERTEXT

Allocation is from high end to low end.

Region 2: program_break_address to user_stack_limit

Allocation is from high end to low end.

Program Interpreter

An executable file may have one PT_INTERP program header element. During
exec(2) , the system retrieves a path name from the PT_INTERP segment and
creates the initial process image from the interpreter file’s segments. That is,
instead of using segment images of the original executable files, the system
composes a memory image for the interpreter. It then is the interpreter’s
responsibility to receive control from the system and provide an environment
for the application program.

The interpreter receives control in one of two ways. First, it may receive a file
descriptor to read the executable file, positioned at the beginning. It can use
this file descriptor to read and/or map the executable file’s segments into
memory. Second, depending on the executable file format, the system may load
the executable file into memory instead of giving the interpreter an open file
descriptor.

With the possible exception of the file descriptor, the interpreter’s initial
process state matches what the executable file has received. The interpreter
itself may not require a second interpreter. An interpreter may be either a
shared object or an executable file.

Object Files 205

6

• A shared object (the normal case) is loaded as position-independent, with
addresses that may vary from one process to another; the system creates its
segments in the dynamic segment area used by mmap(2) and related
services. Consequently, a shared object interpreter typically will not conflict
with the original executable file’s original segment addresses.

• An executable file is loaded at fixed addresses; the system creates its
segments using the virtual addresses from the program header table.
Consequently, an executable file interpreter’s virtual addresses may collide
with the first executable file; the interpreter is responsible for resolving
conflicts.

Runtime Linker

When building an executable file that uses dynamic linking, the link-editor
adds a program header element of type PT_INTERP to an executable file,
telling the system to invoke the runtime linker as the program interpreter.
exec(2) and the runtime linker cooperate to create the process image for the
program, which entails the following actions:

• Adding the executable file’s memory segments to the process image;

• Adding shared object memory segments to the process image;

• Performing relocations for the executable file and its shared objects;

• Closing the file descriptor that was used to read the executable file, if one
was given to the runtime linker;

• Calling any .init section provided in the objects mapped; see “Initialization
and Termination Functions” on page 225

• Transferring control to the program, making it look as if the program had
received control directly from exec(2) .

The link-editor also constructs various data that assist the runtime linker for
executable and shared object files. As shown above in “Program Header,” these
data reside in loadable segments, making them available during execution.
(Once again, recall the exact segment contents are processor-specific.)

• A .dynamic section with type SHT_DYNAMIC holds various data. The
structure residing at the beginning of the section holds the addresses of
other dynamic linking information.

• The .hash section with type SHT_HASH holds a symbol hash table.

206 Linker and Libraries Guide—November 1995

6

• The .got and .plt sections with type SHT_PROGBITS hold two separate
tables: the global offset table and the procedure linkage table. Sections
below explain how the runtime linker uses and changes the tables to create
memory images for object files.

As explained in “Program Loading (Processor-Specific)” on page 195, shared
objects may occupy virtual memory addresses that are different from the
addresses recorded in the file’s program header table. The runtime linker
relocates the memory image, updating absolute addresses before the
application gains control. Although the absolute address values will be correct
if the library is loaded at the addresses specified in the program header table,
this normally is not the case.

If the process environment (see exec(2)) contains a variable named
LD_BIND_NOW with a non-null value, the runtime linker processes all
relocation before transferring control to the program. For example, each of the
environment entries

specifies this behavior. The runtime linker can evaluate procedure linkage table
entries lazily, so avoiding resolution and relocation overhead for functions that
are not called. See “Procedure Linkage Table” on page 215, “Procedure Linkage
Table” on page 218, and “Procedure Linkage Table” on page 221 for more
information.

LD_BIND_NOW=1
LD_BIND_NOW=on
LD_BIND_NOW=off

Object Files 207

6

Dynamic Section

If an object file participates in dynamic linking, its program header table will
have an element of type PT_DYNAMIC. This “segment” contains the .dynamic
section. A special symbol, _DYNAMIC, labels the section, which contains an
array of the following structures (defined in sys/link.h):

For each object with this type, d_tag controls the interpretation of d_un .

d_val
These Elf32_Word objects represent integer values with various
interpretations.

d_ptr
These Elf32_Addr objects represent program virtual addresses. As
mentioned previously, a file’s virtual addresses might not match the
memory virtual addresses during execution. When interpreting addresses
contained in the dynamic structure, the runtime linker computes actual
addresses, based on the original file value and the memory base address.
For consistency, files do not contain relocation entries to correct addresses in
the dynamic structure.

typedef struct {
 Elf32_Sword d_tag;
 union {
 Elf32_Word d_val;
 Elf32_Addr d_ptr;
 Elf32_Off d_off;
 } d_un;
} Elf32_Dyn;

208 Linker and Libraries Guide—November 1995

6

The following table summarizes the tag requirements for executable and
shared object files. If a tag is marked mandatory, then the dynamic linking array
must have an entry of that type. Likewise, optional means an entry for the tag
may appear but is not required.

Table 6-36 Dynamic Array Tags, d_tag (1 of 2)

Name Value d_un Executable Shared Object

DT_NULL 0 Ignored Mandatory Mandatory

DT_NEEDED 1 d_val Optional Optional

DT_PLTRELSZ 2 d_val Optional Optional

DT_PLTGOT 3 d_ptr Optional Optional

DT_HASH 4 d_ptr Mandatory Mandatory

DT_STRTAB 5 d_ptr Mandatory Mandatory

DT_SYMTAB 6 d_ptr Mandatory Mandatory

DT_RELA 7 d_ptr Mandatory Optional

DT_RELASZ 8 d_val Mandatory Optional

DT_RELAENT 9 d_val Mandatory Optional

DT_STRSZ 10 d_val Mandatory Mandatory

DT_SYMENT 11 d_val Mandatory Mandatory

DT_INIT 12 d_ptr Optional Optional

DT_FINI 13 d_ptr Optional Optional

DT_SONAME 14 d_val Ignored Optional

DT_RPATH 15 d_val Optional Ignored

DT_SYMBOLIC 16 Ignored Ignored Optional

DT_REL 17 d_ptr Mandatory Optional

DT_RELSZ 18 d_val Mandatory Optional

DT_RELENT 19 d_val Mandatory Optional

DT_PLTREL 20 d_val Optional Optional

DT_DEBUG 21 d_ptr Optional Ignored

DT_TEXTREL 22 Ignored Optional Optional

DT_JMPREL 23 d_ptr Optional Optional

Object Files 209

6

DT_NULL
An entry with a DT_NULL tag marks the end of the _DYNAMIC array.

DT_NEEDED
This element holds the string table offset of a null-terminated string, giving
the name of a needed dependency. The offset is an index into the table
recorded in the DT_STRTAB entry. See “Shared Object Dependencies” on
page 213 for more information about these names. The dynamic array may
contain multiple entries with this type. These entries’ relative order is
significant, though their relation to entries of other types is not.

DT_PLTRELSZ
This element holds the total size, in bytes, of the relocation entries
associated with the procedure linkage table. If an entry of type DT_JMPREL
is present, a DT_PLTRELSZ must accompany it.

DT_PLTGOT
This element holds an address associated with the procedure linkage table
and/or the global offset table.

DT_HASH
This element points to the symbol hash table, described in “Hash Table” on
page 224. This hash table refers to the symbol table indicated by the
DT_SYMTAB element.

DT_VERDEF 0x6ffffffc d_ptr Optional Optional

DT_VERDEFNUM 0x6ffffffd d_val Optional Optional

DT_VERNEED 0x6ffffffe d_ptr Optional Optional

DT_VERNEEDNUM 0x6fffffff d_val Optional Optional

DT_AUXILIARY 0x7ffffffd d_val Unspecified Optional

DT_USED 0x7ffffffe d_val Optional Optional

DT_FILTER 0x7fffffff d_val Unspecified Optional

DT_LOPROC 0x70000000 Unspecified Unspecified Unspecified

DT_HIPROC 0x7fffffff Unspecified Unspecified Unspecified

Table 6-36 Dynamic Array Tags, d_tag (2 of 2)

Name Value d_un Executable Shared Object

210 Linker and Libraries Guide—November 1995

6

DT_STRTAB
This element holds the address of the string table, described in the first part
of this chapter. Symbol names, dependency names, and other strings
required by the runtime linker reside in this table.

DT_SYMTAB
This element holds the address of the symbol table, described in the first
part of this chapter, with Elf32_Sym entries for the 32-bit class of files.

DT_RELA
This element holds the address of a relocation table, described in the first
part of this chapter. Entries in the table have explicit addends, such as
Elf32_Rela for the 32-bit file class.

An object file may have multiple relocation sections. When building the
relocation table for an executable or shared object file, the link-editor
catenates those sections to form a single table. Although the sections remain
independent in the object file, the runtime linker sees a single table. When
the runtime linker creates the process image for an executable file or adds a
shared object to the process image, it reads the relocation table and performs
the associated actions.

If this element is present, the dynamic structure must also have DT_RELASZ
and DT_RELAENT elements. When relocation is mandatory for a file, either
DT_RELA or DT_REL may occur (both are permitted but not required).

DT_RELASZ
This element holds the total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT
This element holds the size, in bytes, of the DT_RELA relocation entry.

DT_STRSZ
This element holds the size, in bytes, of the string table.

DT_SYMENT
This element holds the size, in bytes, of a symbol table entry.

DT_INIT
This element holds the address of the initialization function, discussed in
“Initialization and Termination Functions” on page 225 later.

Object Files 211

6

DT_FINI
This element holds the address of the termination function, discussed in
“Initialization and Termination Functions” on page 225 later.

DT_SONAME
This element holds the string table offset of a null-terminated string, giving
the name of the shared object. The offset is an index into the table recorded
in the DT_STRTAB entry. See Section , “Shared Object Dependencies,” on
page 213 for more information about these names.

DT_RPATH
This element holds the string table offset of a null-terminated search library
search path string, discussed in “Shared Objects with Dependencies” on
page 89. The offset is an index into the table recorded in the DT_STRTAB
entry.

DT_SYMBOLIC
This element’s presence in a shared object library alters the runtime linker’s
symbol resolution algorithm for references within the library. Instead of
starting a symbol search with the executable file, the runtime linker starts
from the shared object itself. If the shared object fails to supply the
referenced symbol, the runtime linker then searches the executable file and
other shared objects as usual.

DT_REL
This element is similar to DT_RELA, except its table has implicit addends,
such as Elf32_Rel for the 32-bit file class. If this element is present, the
dynamic structure must also have DT_RELSZ and DT_RELENT elements.

DT_RELSZ
This element holds the total size, in bytes, of the DT_REL relocation table.

DT_RELENT
This element holds the size, in bytes, of the DT_REL relocation entry.

DT_PLTREL
This member specifies the type of relocation entry to which the procedure
linkage table refers. The d_val member holds DT_REL or DT_RELA, as
appropriate. All relocations in a procedure linkage table must use the same
relocation.

DT_DEBUG
This member is used for debugging.

212 Linker and Libraries Guide—November 1995

6

DT_TEXTREL
This member’s absence signifies that no relocation entry should cause a
modification to a non-writable segment, as specified by the segment
permissions in the program header table. If this member is present, one or
more relocation entries might request modifications to a non-writable
segment, and the runtime linker can prepare accordingly.

DT_JMPREL
If present, this entry’s d_ptr member holds the address of relocation entries
associated solely with the procedure linkage table. Separating these
relocation entries lets the runtime linker ignore them during process
initialization, if lazy binding is enabled. If this entry is present, the related
entries of types DT_PLTRELSZ and DT_PLTREL must also be present.

DT_VERDEF
Holds the address of the version definition table, described in the first part
of this chapter, with Elf32_Verdef entries for the 32-bit class of files. See
section “Version Definition Section” on page 181 for more information.
Elements within these entries contain indexes into the table recorded in the
DT_STRTAB entry.

DT_VERDEFNUM
This element specifies the number of entries in the version definition table.

DT_VERNEED
Holds the address of the version dependency table, described in the first
part of this chapter, with Elf32_Verneed entries for the 32-bit class of files.
See section “Version Dependency Section” on page 185 for more
information. Elements within these entries contain indexes into the table
recorded in the DT_STRTAB entry.

DT_VERNEEDNUM
This element specifies the number of entries in the version dependency
table.

DT_AUXILIARY
Holds the string table offset of a null-terminated string that names an object.
The offset is an index into the table recorded in the DT_STRTAB entry.
Symbols in the auxiliary object will be used in preference to the symbols
within this object.

Object Files 213

6

DT_FILTER
Holds the string table offset of a null-terminated string that names an object.
The offset is an index into the table recorded in the DT_STRTAB entry. The
symbol table of this object acts as a filter for the symbol table of the named
object.

DT_LOPROC - DT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Except for the DT_NULL element at the end of the array and the relative order
of DT_NEEDED elements, entries may appear in any order. Tag values not
appearing in the table are reserved.

Shared Object Dependencies

When the runtime linker creates the memory segments for an object file, the
dependencies (recorded in DT_NEEDED entries of the dynamic structure) tell
what shared objects are needed to supply the program’s services. By
repeatedly connecting referenced shared objects and their dependencies, the
runtime linker builds a complete process image.

When resolving symbolic references, the runtime linker examines the symbol
tables with a breadth-first search. That is, it first looks at the symbol table of
the executable program itself, then at the symbol tables of the DT_NEEDED
entries (in order), then at the second level DT_NEEDED entries, and so on.

Note – Even when a shared object is referenced multiple times in the
dependency list, the runtime linker will connect the object only once to the
process.

Names in the dependency list are copies either of the DT_SONAME strings or
the path names of the shared objects used to build the object file.

Global Offset Table (Processor-Specific)

Position-independent code cannot, in general, contain absolute virtual
addresses. Global offset tables hold absolute addresses in private data, thus
making the addresses available without compromising the position-

214 Linker and Libraries Guide—November 1995

6

independence and shareability of a program’s text. A program references its
global offset table using position-independent addressing and extracts absolute
values, thus redirecting position-independent references to absolute locations.

Initially, the global offset table holds information as required by its relocation
entries (see “Relocation” on page 167 for more information). After the system
creates memory segments for a loadable object file, the runtime linker
processes the relocation entries, some of which will be type
R_SPARC_GLOB_DAT (for SPARC), R_386_GLOB_DAT (for x86), or
R_PPC_GLOB_DAT (for PowerPC) referring to the global offset table.

The runtime linker determines the associated symbol values, calculates their
absolute addresses, and sets the appropriate memory table entries to the
proper values. Although the absolute addresses are unknown when the link-
editor builds an object file, the runtime linker knows the addresses of all
memory segments and can thus calculate the absolute addresses of the symbols
contained therein.

If a program requires direct access to the absolute address of a symbol, that
symbol will have a global offset table entry. Because the executable file and
shared objects have separate global offset tables, a symbol’s address may
appear in several tables. The runtime linker processes all the global offset table
relocations before giving control to any code in the process image, thus
ensuring the absolute addresses are available during execution.

The table’s entry zero is reserved to hold the address of the dynamic structure,
referenced with the symbol _DYNAMIC. This allows a program, such as the
runtime linker, to find its own dynamic structure without having yet processed
its relocation entries. This is especially important for the runtime linker,
because it must initialize itself without relying on other programs to relocate
its memory image.

The system may choose different memory segment addresses for the same
shared object in different programs; it may even choose different library
addresses for different executions of the same program. Nonetheless, memory
segments do not change addresses once the process image is established. As
long as a process exists, its memory segments reside at fixed virtual addresses.

Object Files 215

6

A global offset table’s format and interpretation are processor-specific. For
SPARC, x86, and PowerPC processors, the symbol
__GLOBAL_OFFSET_TABLE_ may be used to access the table.

The symbol _GLOBAL_OFFSET_TABLE_ may reside in the middle of the .got
section, allowing both negative and nonnegative subscripts into the array of
addresses.

SPARC: Procedure Linkage Table

As the global offset table converts position-independent address calculations to
absolute locations, the procedure linkage table converts position-independent
function calls to absolute locations. The link-editor cannot resolve execution
transfers (such as function calls) from one executable or shared object to
another. So, the link-editor puts the program transfer control to entries in the
procedure linkage table.

On SPARC architectures, procedure linkage tables reside in private data. The
runtime linker determines the destinations’ absolute addresses and modifies
the procedure linkage table’s memory image accordingly. The runtime linker
thus redirects the entries without compromising the position-independence
and shareability of the program’s text. Executable files and shared object files
have separate procedure linkage tables.

The first four procedure linkage table entries are reserved. (The original
contents of these entries are unspecified, despite the example, below.) Each
entry in the table occupies 3 words (12 bytes), and the last table entry is
followed by a nop instruction.

A relocation table is associated with the procedure linkage table. The
DT_JMP_REL entry in the _DYNAMIC array gives the location of the first
relocation entry. The relocation table has one entry, in the same sequence, for
each procedure linkage table entry. Except the first four entries, the relocation
type is R_SPARC_JMP_SLOT, the relocation offset specifies the address of the
first byte of the associated procedure linkage table entry, and the symbol table
index refers to the appropriate symbol.

extern Elf32_Addr _GLOBAL_OFFSET_TABLE_[];

216 Linker and Libraries Guide—November 1995

6

To illustrate procedure linkage tables, the figure below shows four entries: two
of the four initial reserved entries, the third is a call to name1, and the fourth is
a call to name2. The example assumes the entry for name2 is the table’s last
entry and shows the following nop instruction. The left column shows the
instructions from the object file before dynamic linking. The right column
demonstrates a possible way the runtime linker might fix the procedure
linkage table entries.
Code Example 6-1 SPARC: Procedure Linkage Table Example

Following the steps below, the runtime linker and program jointly resolve the
symbolic references through the procedure linkage table. Again, the steps
described below are for explanation only. The precise execution-time behavior
of the runtime linker is not specified.

Object File Memory Segment

.PLT0:
unimp
unimp
unimp

.PLT1:
unimp
unimp
unimp
...

.PLT0:
save %sp,-64,%sp
call runtime-linker
nop

.PLT1:
.word identification
unimp
unimp
...

...
.PLT101:

sethi (.-.PLT0),%g1
ba,a .PLT0
nop

.PLT102:
sethi (.-.PLT0),%g1
ba,a .PLT0
nop

...
.PLT101:

sethi (.-.PLT0),%g1
sethi %hi(name1),%g1
jmp1 %g1+%lo(name1),%g0

.plt102:
sethi (.-.PLT0),%g1
sethi %hi(name2),%g1
jmp1 %g1+%lo(name2),%g0

nop nop

Object Files 217

6

1. When first creating the memory image of the program, the runtime linker
changes the initial procedure linkage table entries, making them transfer
control to one of the runtime linker’s own routines. It also stores a word of
identification information in the second entry. When it receives control, it can
examine this word to find what object called it.

2. All other procedure linkage table entries initially transfer to the first entry,
letting the runtime linker gain control at the first execution of each table
entry. For example, the program calls name1, which transfers control to the
label .PLT101 .

3. The sethi instruction computes the distance between the current and the
initial procedure linkage table entries, .PLT101 and .PLT0, respectively. This
value occupies the most significant 22 bits of the %g1 register. In this
example, &g1 contains 0x12f000 when the runtime linker receives control.

4. Next, the ba,a instruction jumps to .PLT0 , establishing a stack frame and
calls the runtime linker.

5. With the identification value, the runtime linker gets its data structures for
the object, including the relocation table.

6. By shifting the %g1 value and dividing by the size of the procedure linkage
table entries, the runtime linker calculates the index of the relocation entry
for name1. Relocation entry 101 has type R_SPARC_JMP_SLOT, its offset
specifies the address of .PLT101 , and its symbol table index refers to name1.
Thus, the runtime linker gets the symbol’s real value, unwinds the stack,
modifies the procedure linkage table entry, and transfers control to the
desired destination.

Although the runtime linker does not have to create the instruction sequences
under the Memory Segment column, it might. If it did, some points deserve
more explanation.

• To make the code reentrant, the procedure linkage table’s instructions are
changed in a particular sequence. If the runtime linker is fixing a function’s
procedure linkage table entry and a signal arrives, the signal handling code
must be able to call the original function with predictable (and correct)
results.

• The runtime linker changes two words to convert an entry. It updates each
word automatically. Reentrancy is achieved by first overwriting the nop
with the jmp1 instruction, and then patching the ba,a to be sethi . If a
reentrant function call happens between the two word updates, the jmp1

218 Linker and Libraries Guide—November 1995

6

resides in the delay slot of the ba,a instruction, and cancels the delay
instruction. So, the runtime linker gains control a second time. Although
both invocations of the runtime linker modify the same procedure linkage
table entry, their changes do not interfere with each other.

• The first sethi instruction of a procedure linkage table entry can fill the
delay slot of the previous entry’s jmp1 instruction. Although the sethi
changes the value of the %g1 register, the previous contents can be safely
discarded.

• After conversion, the last procedure linkage table entry (.PLT102 above)
needs a delay instruction for its jmp1 . The required, trailing nop fills this
delay slot.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If
its value is non-null, the runtime linker processes R_SPARC_JMP_SLOT
relocation entries (procedure linkage table entries) before transferring control
to the program. If LD_BIND_NOW is null, the runtime linker evaluates linkage
table entries on the first execution of each table entry.

x86: Procedure Linkage Table

As for SPARC, the procedure linkage table redirects position-independent
function calls to absolute locations. The link-editor cannot resolve execution
transfers (such as function calls) from one executable or shared object to
another. So, the link-editor has the program transfer control to entries in the
procedure linkage table.

On x86 architectures, procedure linkage tables reside in shared text, but they
use addresses in the private global offset table. The runtime linker determines
the destinations’ absolute addresses and modifies the global offset table’s
memory image accordingly. The runtime linker thus redirects the entries
without compromising the position-independence and shareability of the
program’s text. Executable files and shared object files have separate procedure
linkage tables.

Object Files 219

6

Code Example 6-2 x86: Procedure Linkage Table Example

Following the steps below, the runtime linker and program cooperate to
resolve the symbolic references through the procedure linkage table and the
global offset table.

1. When first creating the memory image of the program, the runtime linker
sets the second and third entries in the global offset table to special values.
Steps below explain these values.

2. If the procedure linkage table is position-independent, the address of the
global offset table must be in %ebx . Each shared object file in the process
image has its own procedure linkage table, and control transfers to a
procedure linkage table entry only from within the same object file. So, the
calling function must set the global offset table base register before it calls
the procedure linkage table entry.

.PLT0: pushl got_plus_4
jmp *got_plus_8
nop; nop
nop; nop

.PLT1: jmp *name1_in_GOT
pushl $offset
jmp .PLT0@PC

.PLT2: jmp *name2_in_GOT
pushl $offset
jmp .PLT0@PC
...

.PLT0: pushl 4(%ebx)
jmp *8(%ebx)
nop; nop
nop; nop

.PLT1: jmp *name1@GOT(%ebx)
pushl $offset
jmp .PLT0@PC

.PLT2: jmp *name2@GOT(%ebx)
pushl $offset
jmp .PLT0@PC
...

220 Linker and Libraries Guide—November 1995

6

3. For example, the program calls name1, which transfers control to the label
.PLT1 .

4. The first instruction jumps to the address in the global offset table entry for
name1. Initially, the global offset table holds the address of the following
pushl instruction, not the real address of name1.

5. So, the program pushes a relocation offset (offset) on the stack. The
relocation offset is a 32-bit, nonnegative byte offset into the relocation table.
the designated relocation entry has the type R_386_JMP_SLOT, and its
offset specifies the global offset table entry used in the previous jmp
instruction. The relocation entry also contains a symbol table index, which
the runtime linker uses to get the referenced symbol, name1.

6. After pushing the relocation offset, the program jumps to .PLT0 , the first
entry in the procedure linkage table. The pushl instruction pushes the
value of the second global offset table entry (got_plus_4 or 4(%ebx)) on
the stack, giving the runtime linker one word of identifying information.
The program then jumps to the address in the third global offset table entry
(got_plus_8 or 8(%ebx)), to jump to the runtime linker.

7. The runtime linker unwinds the stack, checks the designated relocation
entry, gets the symbol’s value, stores the actual address of name1 in its
global offset entry table, and jumps to the destination.

8. Subsequent executions of the procedure linkage table entry transfer directly
to name1, without calling the runtime linker again. This is because the jmp
instruction at .PLT1 jumps to name1 instead of falling through to the
pushl instruction.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If
its value is non-null, the runtime linker processes R_386_JMP_SLOT relocation
entries (procedure linkage table entries) before transferring control to the
program. If LD_BIND_NOW is null, the runtime linker evaluates linkage table
entries on the first execution of each table entry.

Object Files 221

6

PowerPC: Procedure Linkage Table

As for SPARC and Intel, the procedure linkage table redirects position-
independent function calls to absolute locations. The link editor cannot resolve
execution transfers (such as function calls) from one executable or shared
object to another. So, the link editor has the program transfer control to entries
in the procedure linkage table.

For the PowerPC, the procedure linkage table (the .plt section) is not
initialized in the executable or shared object file. Instead, the link editor simply
reserves space for it and the dynamic linker initializes it and manages it
according to its own, possibly implementation-dependent needs, subject to the
following constraints:

• The first 18 words (72 bytes) of the procedure linkage table are reserved for
use by the dynamic linker. There shall be no branches from the executable or
shared object into these first 18 words.

• If the executable or shared object requires N procedure linkage table entries,
the link editor reserves 3*N words (12*N bytes) following the 18 reserved
words. The first 2*N of these words are the procedure linkage table entries
themselves. The link-editor directs calls to bytes (72 + (i-1)*8), for i
between 1 and N inclusive. The remaining N words (4*N bytes) are reserved
for use by the dynamic linker.

As mentioned before, a relocation table is associated with the procedure
linkage table. The DT_JMPREL entry in the _DYNAMIC array gives the location
of the first relocation entry. The relocation table's entries parallel the procedure
linkage table entries in a one-to-one correspondence. That is, relocation table
entry 1 applies to procedure linkage table entry 1, and so on. The relocation
type for each entry shall be R_PPC_JMP_SLOT, the relocation offset shall
specify the address of the first byte of the associated procedure linkage table
entry, and the symbol table index shall reference the appropriate symbol.

To illustrate procedure linkage tables, “Procedure Linkage Table Example.” on
page 222 shows how the dynamic linker might initialize the procedure linkage
table when loading the executable or shared object.

222 Linker and Libraries Guide—November 1995

6

Code Example 6-3 PowerPCProcedure Linkage Table Example.

Following the steps below, the dynamic linker and the program cooperate to
resolve symbolic references through the procedure linkage table. Again, the
steps described below are for explanation only. The precise execution-time
behavior of the dynamic linker is not specified.

 .word 0 # tag word - no register saving
PLTresolve:
 addis r12,r0,dynamic_linker@ha
 addi r12,r12,dynamic_linker@l
 mtctr r12
 addis r12,r0,symtab_addr@ha
 addi r12,r12,symtab_addr@l
 bctr
.PLTcall:
 addis r11,r11,.PLTtable@ha
 lwz r11,.PLTtable@lo(r11
 mtctr r11)
 bctr
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
.PLT1:
 addi r11,r0,4*0
 b .PLTresolve
 . . .
.PLTi:
 addi r11,4*i
 b .PLTresolve
 . . .
.PLTN:
 addi r11,4*(N-1)
 b .PLTresolve

.PLTtable:
 <N word table begins here>

Object Files 223

6

1. As shown above, all procedure linkage table entries initially transfer to
.PLTresolve , allowing the dynamic linker to gain control at the first
execution of each table entry. For illustration, assume the program calls
name, which transfers control to the label .PLTi . The procedure linkage
table entry loads into r11 four times the index of the relocation entry for
.PLTi and branches to .PLTresolve , which then calls into the dynamic
linker with a pointer to the symbol table for the object in r12 .

2. The dynamic linker finds relocation entry i corresponding to the index in
r11 . It will have type R_PPC_JMP_SLOT, its offset will specify the address
of .PLTi , and its symbol table index will reference name.

3. Knowing this, the dynamic linker finds the symbol's “real” value. It then
modifies the code at .PLTi in one of two ways. If the target symbol is
reachable from .PLTi by a branch instruction, it overwrites the “li
r11,4*i” instruction at .PLTi with a branch to the target. On the other
hand, if the target symbol is not reachable from .PLTi , the dynamic linker
loads the target address into word
.PLTtable+4*(i-1) and overwrites the “b .PLTresolve” with a
“b .PLTcall” .

4. Subsequent executions of the procedure linkage table entry will transfer
control directly to the function, either directly or by using .PLTcall ,
without invoking the dynamic linker.

For PLT indexes greater than or equal to 2^14 , only the even indexes shall be
used and four words shall be allocated for each entry. If the above scheme is
used, this allows four instructions for loading the index and branching to
.PLTresolve or .PLTcall , instead of only two.

The LD_BIND_NOW environment variable can change dynamic linking
behavior. If its value is non-null, the dynamic linker resolves the function call
binding at load time, before transferring control to the program. That is, the
dynamic linker processes relocation entries of type R_PPC_JMP_SLOT during
process initialization. Otherwise, the dynamic linker evaluates procedure
linkage table entries lazily, delaying symbol resolution and relocation until the
first execution of a table entry.

224 Linker and Libraries Guide—November 1995

6

Hash Table

A hash table of Elf32_Word objects supports symbol table access. The symbol
table to which the hashing is associated is specified in the sh_link entry of
the hash table’s section header (refer to Table 6-13 on page 156). Labels appear
below to help explain the hash table organization, but they are not part of the
specification.

Figure 6-13 Symbol Hash Table

The bucket array contains nbucket entries, and the chain array contains
nchain entries; indexes start at 0. Both bucket and chain hold symbol table
indexes. Chain table entries parallel the symbol table. The number of symbol
table entries should equal nchain ; so, symbol table indexes also select chain
table entries.

A hashing function accepts a symbol name and returns a value that may be
used to compute a bucket index. Consequently, if the hashing function returns
the value x for some name, bucket [x%nbucket] gives an index y into both
the symbol table and the chain table. If the symbol table entry is not the one
desired, chain[y] gives the next symbol table entry with the same hash value.

One can follow the chain links until either the selected symbol table entry
holds the desired name or the chain entry contains the value STN_UNDEF.

nbucket

nchain

bucket [0]

. . .
bucket [nbucket - 1]

chain [0]

. . .
chain [nchain - 1]

Object Files 225

6

Initialization and Termination Functions

After the runtime linker has built the process image and performed the
relocations, each shared object gets the opportunity to execute some
initialization code. These initialization functions are called in the reverse of the
order at which they are encountered.

Similarly, shared objects may have termination functions, which are executed
with the atexit(3C) mechanism after the base process begins its termination
sequence. Refer to atexit(3C) for more information. These termination
functions are called in the order they are encountered.

Shared objects designate their initialization and termination functions through
the DT_INIT and DT_FINI entries in the dynamic structure, described in
“Dynamic Section” above. Typically, the code for these functions resides in the
.init and .fini sections, mentioned in “Sections” on page 148 earlier.

Note – Although the atexit(3C) termination processing normally will be
done, it is not guaranteed to have executed upon process death. In particular,
the process will not execute the termination processing if it calls _exit() or if
the process dies because it received a signal that it neither caught nor ignored.

unsigned long
elf_Hash(const unsigned char *name)
{

unsigned long h = 0, g;

while (*name)
{

h = (h << 4) + *name++;
if (g = h & 0xf0000000)

h ^= g >> 24;
h &= ~g;

}
return h;

226 Linker and Libraries Guide—November 1995

6

227

Mapfile Option 7

Introduction
The link-editor automatically and intelligently maps input sections from
relocatable objects to segments within the output file object. The -M option
with an associated mapfile allows you to change the default mapping
provided by the link-editor.

In particular, this mapfile option allows you to:

• Declare segments and specify values for segment attributes such as segment
type, permissions, addresses, length, and alignment.

• Control mapping of input sections to segments by specifying the attribute
values necessary in a section to map to a specific segment (the attributes are
section name, section type, and permissions) and by specifying which object
file(s) the input sections should be taken from, if necessary.

• Declare a global-absolute symbol that is assigned a value equal to the size of
a specified segment (by the link-editor) and that can be referenced from
object files.

The mapfile option allows users of ifiles (an option previously available to
ld(1) that used link-editor command language directives) to convert to
mapfiles . All other facilities previously available for ifiles, other than those
mentioned above, are not available with the mapfile option.

228 Linker and Libraries Guide—November 1995

7

Note – When using the mapfile option, be aware that you can easily create
a.out files that do not execute. The link-editor knows how to produce a
correct a.out without the use of the mapfile option. The mapfile option is
intended for system programming use, not application programming use.

Using the Mapfile Option
To use the mapfile option, you must:

• Enter the mapfile directives into a file, for example mapfile

• Supply the following option on the ld(1) command line:

-M mapfile

If the mapfile is not in your current directory, include the full path name; no
default search path exists.

Mapfile Structure and Syntax
You can enter four basic types of directives into a mapfile :

• Segment declarations.

• Mapping directives.

• Size-symbol declarations.

• File control directives.

Each directive can span more than one line and can have any amount of white
space (including new-lines) as long as it is followed by a semicolon. You can
enter zero or more directives in a mapfile . (Entering zero directives causes the
link-editor to ignore the mapfile and use its own defaults.)

Typically, segment declarations are followed by mapping directives, that is,
you declare a segment and then define the criteria by which a section becomes
part of that segment. If you enter a mapping directive or size-symbol
declaration without first declaring the segment to which you are mapping
(except for built-in segments, explained later), the segment is given default
attributes as explained below. Such segment is then an “implicitly declared
segment.”

Mapfile Option 229

7

Size-symbol declarations, and file control directives can appear anywhere in a
mapfile .

The following sections describe each directive type. For all syntax discussions,
the following notations apply:

• All entries in constant width , all colons, semicolons, equal signs, and at
(@) signs are typed in literally.

• All entries in italics are substitutable.

• { ... }* means “zero or more.”

• { ... }+ means “one or more.”

• [...] means “optional.”

• section_names and segment_names follow the same rules as C identifiers
where a period (.) is treated as a letter (for example, .bss is a legal name).

• section_names, segment_names, file_names, and symbol_names are case
sensitive; everything else is not case sensitive.

• Spaces (or new-lines) may appear anywhere except before a number or in the
middle of a name or value.

• Comments beginning with # and ending at a new-line may appear
anywhere that a space may appear.

Segment Declarations

A segment declaration creates a new segment in the a.out or changes the
attribute values of an existing segment. (An existing segment is one that you
previously defined or one of the three built-in segments described below.)

A segment declaration has the following syntax:

segment_name = {segment_attribute_value}*;

230 Linker and Libraries Guide—November 1995

7

For each segment_name, you can specify any number of segment_attribute_values
in any order, each separated by a space. (Only one attribute value is allowed
for each segment attribute.) The segment attributes and their valid values are
as follows:

There are three built-in segments with the following default attribute values:

• text (LOAD, ?RX, no virtual_address, physical_address, or length specified,
alignment values set to defaults per CPU type)

• data (LOAD, ?RWX, no virtual_address, physical_address, or length specified,
alignment values set to defaults per CPU type)

• note (NOTE)

The link-editor behaves as if these segments are declared before your mapfile
is read in. See “Mapfile Option Defaults” on page 239 for more information.

Note the following when entering segment declarations:

• A number can be hexadecimal, decimal, or octal, following the same rules as
in the C language.

• No space is allowed between the V, P, L, R, or A and the number.

• The segment_type value can be either LOAD or NOTE.

• The segment_type value defaults to LOAD.

Table 7-1 Mapfile Segment Attributes

Attribute Value

segment_type LOAD
NOTE

segment_flags ? [R] [W] [X] [O]

virtual_address Vnumber

physical_address Pnumber

length Lnumber

rounding Rnumber

alignment Anumber

Mapfile Option 231

7

• The segment_flags values are R for readable, W for writable, X for executable,
and O for order. No spaces are allowed between the question mark (?) and
the individual flags that make up the segment_flags value.

• The segment_flags value for a LOAD segment defaults to RWX.

• NOTE segments cannot be assigned any segment attribute value other than a
segment_type.

• Implicitly declared segments default to segment_type value LOAD,
segment_flags value RWX, a default virtual_address, physical_address, and
alignment value, and have no length limit.

Note – the link-editor calculates the addresses and length of the current
segment based on the previous segment’s attribute values. Also, even though
implicitly declared segments default to “no length limit,” machine memory
limitations still apply.

• LOAD segments can have an explicitly specified virtual_address value and/or
physical_address value, as well as a maximum segment length value.

• If a segment has a segment_flags value of ? with nothing following, the value
defaults to not readable, not writable, and not executable.

• The alignment value is used in calculating the virtual address of the
beginning of the segment. This alignment only affects the segment for which
it is specified; other segments still have the default alignment unless their
alignments are also changed.

• If any of the virtual_address, physical_address, or length attribute values are
not set, the link-editor calculates these values as it builds the a.out .

• If an alignment value is not specified for a segment, it is set to the built-in
default. (The default differs from one CPU to another and may even differ
between kernel versions. You should check the appropriate documentation
for these numbers).

• If both a virtual_address and an alignment value are specified for a segment,
the virtual_address value takes priority.

• If a virtual_address value is specified for a segment, the alignment field in the
program header contains the default alignment value.

232 Linker and Libraries Guide—November 1995

7

• If the rounding value is set for a segment, that segments virtual address will
be rounded to the next address that conforms to the value given. This value
only effects the segments that it is specified for. If no value is given no
rounding is performed.

The ?N flag lets you control whether the ELF header, and any program
headers, will be included as part of the first loadable segment. By default, the
ELF header and program headers are included with the first segment, as the
information in these headers is used within the mapped image (commonly by
the runtime linker). The use of the ?N option causes the virtual address
calculations for the image to start at the first section of the first segment.

The ?O flag lets you control the order of sections in the final relocatable object,
executable file or shared object. This flag is intended for use in conjunction
with the -xF option to the compiler(s). When a file is compiled with the -xF
option, each function in that file is placed in a separate section with the same
attributes as the .text section. These sections are now called
.text%function_name.

For example, a file containing three functions main() , foo() and bar() ,
when compiled with the -xF option, will yield an object file with text for the
three functions in sections called .text%main, .text%foo and .text%bar. Because
the -xF option forces one function per section, the use of the ?O flag to control
the order of sections in effect controls the order of functions.

Consider the following user-defined mapfile :

If the order of function definitions in the source file is main , foo and bar , then
the final executable will contain functions in the order foo , bar and main .

text = LOAD ?RXO;
text: .text%foo;
text: .text%bar;
text: .text%main;

Mapfile Option 233

7

For static functions with the same name the file names must also be used. The
?O flag forces the ordering of sections as requested in the mapfile . For
example, if a static function bar() exists in files a.o and b.o , and function
bar from file a.o is to be placed before function bar from file b.o , then the
mapfile entries should read:

Although the syntax allows for the entry:

this entry does not guarantee that function bar from file a.o will be placed
before function bar from file b.o . The second format is not recommended as
the results are not reliable.

Note – If a virtual_address value is specified, the segment is placed at that
virtual address. For the system kernel this creates a correct result. For files that
start via exec(2) , this method creates an incorrect a.out file because the
segments do not have correct offsets relative to their page boundaries.

Mapping Directives

A mapping directive tells the link-editor how to map input sections to output
segments. Basically, you name the segment that you are mapping to and
indicate what the attributes of a section must be in order to map into the
named segment. The set of section_attribute_values that a section must have to
map into a specific segment is called the “entrance criteria” for that segment.
In order to be placed in a specified segment of the a.out , a section must meet
the entrance criteria for a segment exactly.

A mapping directive has the following syntax:

text: .text%bar: a.o;
text: .text%bar: b.o;

text: .text%bar: a.o b.o;

segment_name : {section_attribute_value}* [: {file_name}+];

234 Linker and Libraries Guide—November 1995

7

For a segment_name, you specify any number of section_attribute_values in any
order, each separated by a space. (At most one section attribute value is
allowed for each section attribute.) You can also specify that the section must
come from a certain .o file(s) via the file_name substitutable. The section
attributes and their valid values are as follows:

Note the following when entering mapping directives:

• You must choose at most one section_type from the section_types listed above.
The section_types listed above are built-in types. For more information on
section_types, see “Sections” on page 148.

• The section_flags values are A for allocatable, W for writable, or X for
executable. If an individual flag is preceded by an exclamation mark (!), the
link-editor checks to make sure that the flag is not set. No spaces are
allowed between the question mark, exclamation mark(s), and the
individual flags that make up the section_flags value.

• file_name may be any legal file name and can be of the form
archive_name(component_name), for example,
/usr/lib/usr/libc.a(printf.o) . A file name may be of the form
*filename (see next bullet item). Note that the link-editor does not check
the syntax of file names.

• If a file_name is of the form *filename , the link-editor simulates a
basename(1) on the file name from the command line and uses that to
match against the specified filename . In other words, the filename from
the mapfile only needs to match the last part of the file name from the
command line. (See “Mapping Example” on page 236.)

Table 7-2 Section Attributes

Section Attribute Value

section_name: any valid section name

section_type: $PROGBITS
$SYMTAB
$STRTAB
$REL
$RELA
$NOTE
$NOBITS

section_flags: ? [[!]A] [[!]W] [[!]X]

Mapfile Option 235

7

• If you use the -l option during a link-edit, and the library after the -l
option is in the current directory, you must precede the library with ./ (or
the entire path name) in the mapfile in order to create a match.

• More than one directive line may appear for a particular output segment,
for example, the following set of directives is legal:

Entering more than one mapping directive line for a segment is the only way
to specify multiple values of a section attribute.

• A section can match more than one entrance criteria. In this case, the first
segment encountered in the mapfile with that entrance criteria is used, for
example, if a mapfile reads:

the $PROGBITS sections are mapped to segment S1.

Section-within-Segment Ordering

By using the following notation it is possible to specify the order that sections
will be placed within a segment:

The sections that are named in the above form will be placed before any
unnamed sections, and in the order they are listed in the mapfile .

S1 : $PROGBITS;
S1 : $NOBITS;

S1 : $PROGBITS;
S2 : $PROGBITS;

segment_name | section_name1;
segment_name | section_name2;
segment_name | section_name3;

236 Linker and Libraries Guide—November 1995

7

Size-Symbol Declarations

Size-symbol declarations let you define a new global-absolute symbol that
represents the size, in bytes, of the specified segment. This symbol can be
referenced in your object files. A size-symbol declaration has the following
syntax:

symbol_name can be any legal C identifier, although the link-editor does not
check the syntax of the symbol_name.

File Control Directives

File control directives allow users to specify which version definitions within
shared objects are to be made available during a link-edit. The file control
definition has the following syntax:

version_name is a version definition name contained within the specified
shared_object_name. For more information on version control see “Specifying a
Version Binding” on page 132.

Mapping Example
Following is an example of a user-defined mapfile . The numbers on the left
are included in the example for tutorial purposes. Only the information to the
right of the numbers actually appears in the mapfile .

segment_name @ symbol_name;

shared_object_name - version_name [version_name ...];

Mapfile Option 237

7

Code Example 7-1 User-Defined Mapfile

Four separate segments are manipulated in this example. The implicitly
declared segment elephant (line 1) receives all of the .data sections from the
files peanuts.o and popcorn.o . Note that *popcorn.o matches any
popcorn.o file that may be supplied to the link-edit; the file need not be in the
current directory. On the other hand, if /var/tmp/peanuts.o was supplied
to the link-edit, it will not match peanuts.o because it is not preceded by a * .

The implicitly declared segment monkey (line 2) receives all sections that are
both $PROGBITS and allocatable-executable (?AX), as well as all sections (not
already in the segment elephant) with the name .data (line 3). The .data
sections entering the monkey segment need not be $PROGBITS or allocatable-
executable because the section_type and section_flags values are entered on a
separate line from the section_name value. (An “and” relationship exists
between attributes on the same line as illustrated by $PROGBITS “and” ?AX on
line 2. An “or” relationship exists between attributes for the same segment that
span more than one line as illustrated by $PROGBITS ?AX on line 2 “or” .data
on line 3.)

The monkey segment is implicitly declared in line 2 with segment_type value
LOAD, segment_flags value RWX, and no virtual_address, physical_address, length or
alignment values specified (defaults are used). In line 4 the segment_type value
of monkey is set to LOAD (since the segment_type attribute value does not
change, no warning is issued), virtual_address value to 0x80000000 and
maximum length value to 0x4000.

Line 5 implicitly declares the donkey segment. The entrance criteria are
designed to route all .data sections to this segment. Actually, no sections fall
into this segment because the entrance criteria for monkey in line 3 capture all
of these sections. In line 6, the segment_flags value is set to ?RX and the
alignment value is set to 0x1000 (since both of these attribute values changed, a
warning is issued).

1. elephant : .data : peanuts.o *popcorn.o;
2. monkey : $PROGBITS ?AX;
3. monkey : .data;
4. monkey = LOAD V0x80000000 L0x4000;
5. donkey : .data;
6. donkey = ?RX A0x1000;
7. text = V0x80008000;

238 Linker and Libraries Guide—November 1995

7

Line 7 sets the virtual_address value of the text segment to 0x80008000.

The example of a user-defined mapfile is designed to cause warnings for
illustration purposes. If you want to change the order of the directives to avoid
warnings, use the following example:

The following mapfile example uses the segment within section ordering:

The text and data segments are manipulated in this example. Line 1 declares
the text segment to have a virtual_address of 0xf0004000 and to not include the
ELF header or any program headers as part of this segments address
calculations. Lines 2 and 3 turn on section-within-segment ordering and
specify that the .text and .rodata sections will be the first two sections in this
segment. The result is that the .text section will have a virtual address of
0xf0004000, and the .rodata section will immediately follow that.

Any other $PROGBITS section that make up the text segment will follow the
.rodata section. Line 5 declares the data segment and specifies that its virtual
address must begin on a 0x1000 byte boundary. The first section that
constitutes the data segment will also reside on a 0x1000 byte boundary
within the file image.

1. elephant : .data : peanuts.o *popcorn.o;
4. monkey = LOAD V0x80000000 L0x4000;
2. monkey : $PROGBITS ?AX;
3. monkey : .data;
6. donkey = ?RX A0x1000;
5. donkey : .data;
7. text = V0x80008000;

1. text = LOAD ?RXN V0xf0004000;
2. text | .text;
3. text | .rodata;
4. text : $PROGBITS ?A!W;
5. data = LOAD ?RWX R0x1000;

Mapfile Option 239

7

Mapfile Option Defaults
The link-editor defines three built-in segments (text , data , and note) with
default segment_attribute_values and corresponding default mapping directives
as described in “Segment Declarations” on page 229. Even though the
link-editor does not use an actual mapfile to provide the defaults, the model
of a default mapfile helps illustrate what happens when the link-editor
encounters your mapfile .

The example below shows how a mapfile would appear for the link-editor
defaults. The link-editor begins execution behaving as if the mapfile has
already been read in. Then the link-editor reads your mapfile and either
augments or makes changes to the defaults.

As each segment declaration in your mapfile is read in, it is compared to the
existing list of segment declarations as follows:

1. If the segment does not already exist in the mapfile , but another with the
same segment-type value exists, the segment is added before all of the
existing segments of the same segment_type.

2. If none of the segments in the existing mapfile has the same segment_type
value as the segment just read in, then the segment is added by segment_type
value to maintain the following order:

 INTERP

 LOAD

 DYNAMIC

 NOTE

text = LOAD ?RX;
text : ?A!W;
data = LOAD ?RWX;
data : ?AW;
note = NOTE;
note : $NOTE;

240 Linker and Libraries Guide—November 1995

7

3. If the segment is of segment_type LOAD and you have defined a
virtual_address value for this LOADable segment, the segment is placed before
any LOADable segments without a defined virtual_address value or with a
higher virtual_address value, but after any segments with a
virtual_address value that is lower.

As each mapping directive in a mapfile is read in, the directive is added after
any other mapping directives that you already specified for the same segment
but before the default mapping directives for that segment.

Internal Map Structure
One of the most important data structures in the ELF-based link-editor is the
map structure. A default map structure, corresponding to the model default
mapfile mentioned above, is used by the link-editor when the command is
executed. Then, if the mapfile option is used, the link-editor parses the
mapfile to augment and/or override certain values in the default map
structure.

A typical (although somewhat simplified) map structure is illustrated
in Figure6-1. The “Entrance Criteria” boxes correspond to the information in
the default mapping directives and the “Segment Attribute Descriptors” boxes
correspond to the information in the default segment declarations. The
“Output Section Descriptors” boxes give the detailed attributes of the sections
that fall under each segment. The sections themselves are in circles.

Mapfile Option 241

7

Figure 7-1 Simple Map Structure

The link-editor performs the following steps when mapping sections to
segments:

1. When a section is read in, the link-editor checks the list of Entrance Criteria
looking for a match. All specified criteria must be matched.

Entrance
criteria

$PROGBITS
?A!W

$PROGBITS
?AW

$NOGBITS
?AW $NOTE

NO MATCH -
appended to
end of a.out

Segment
attribute
descriptors

text
LOAD
?RX

data
LOAD
?RWX

note
NOTE

Output section
descriptors

.data
$PROGBITS

?AWX

.data1
$PROBITS

?AWX

.data2
$PROGBITS

?AWX

.bss
$NOBITS

?AWX

.data
from
fido.o

.data1
from
fido.o

.data2
from
fido.o

.bss
from

rover.o

.data1
from

rover.o

.data1
from

sam.o
Sections
placed in
segments

242 Linker and Libraries Guide—November 1995

7

In Figure 6-1, for a section to fall into the text segment it must have a
section_type value of $PROGBITS and have a section_flags value of ?A!W. It
need not have the name .text since no name is specified in the Entrance
Criteria. The section may be either X or !X (in the section_flags value) since
nothing was specified for the execute bit in the Entrance Criteria.

If no Entrance Criteria match is found, the section is placed at the end of the
a.out file after all other segments. (No program header entry is created for
this information. See “Program Header” on page 189 for more information.)

2. When the section falls into a segment, the link-editor checks the list of
existing Output Section Descriptors in that segment as follows:

If the section attribute values match those of an existing Output Section
Descriptor exactly, the section is placed at the end of the list of sections
associated with that Output Section Descriptor.

For instance, a section with a section_name value of .data1, a section_type
value of $PROGBITS, and a section_flags value of ?AWX falls into the second
Entrance Criteria box in Figure 6-1, placing it in the data segment. The
section matches the second Output Section Descriptor box exactly (.data1,
$PROGBITS, ?AWX) and is added to the end of the list associated with that
box. The .data1 sections from fido.o , rover.o , and sam.o illustrate this
point.

If no matching Output Section Descriptor is found, but other Output Section
Descriptors of the same section_type exist, a new Output Section Descriptor
is created with the same attribute values as the section and that section is
associated with the new Output Section Descriptor. The Output Section
Descriptor (and the section) are placed after the last Output Section
Descriptor of the same section_type. The .data2 section in Figure 6-1 was
placed in this manner.

If no other Output Section Descriptors of the indicated section_type exist, a
new Output Section Descriptor is created and the section is placed in that
section.

Note – If the input section has a user-defined section_type value (that is,
between SHT_LOUSER and SHT_HIUSER, as described in the “Sections” on
page 148) it is treated as a $PROGBITS section. Note that no method exists for

Mapfile Option 243

7

naming this section_type value in the mapfile , but these sections can be
redirected using the other attribute value specifications (section_flags,
section_name) in the entrance criteria.

3. If a segment contains no sections after all of the command line object files
and libraries are read in, no program header entry is produced for that
segment.

Note – Input sections of type $SYMTAB, $STRTAB, $REL, and $RELA are used
internally by the link-editor. Directives that refer to these section_types can only
map output sections produced by the link-editor to segments.

Error Messages

Warnings

Errors within this category do not stop execution of the link-editor nor do they
prevent the link-editor from producing a viable a.out . The following
conditions produce warnings:

• A physical_address or a virtual_address value or a length value appears for any
segment other than a LOAD segment. (The directive is ignored.)

• A second declaration line exists for the same segment that changes an
attribute value(s). (The second declaration overrides the original.)

• An attribute value(s) (segment_type and/or segment_flags for text and data ;
segment_type for note) was changed for one of the built-in segments

• An attribute value(s) (segment_type, segment_flags, length and/or alignment)
was changed for a segment created by an implicit declaration. If only the ?O
flag has been added then the change of attribute value warning will not be
generated.

• An entrance criteria was not met. If the ?O flag has been turned on and if
none of the input sections met an entrance criteria, the warning is generated.

244 Linker and Libraries Guide—November 1995

7

Fatal Errors

Errors within this category stop execution of the link-editor at the point the
fatal error occurred. The following conditions produce fatal errors:

• A mapfile cannot be opened or read.

• A syntax error is found in the mapfile .

Note – The link-editor does not return an error if a file_name, section_name,
segment_name or symbol_name does not conform to the rules under the “Mapfile
Structure and Syntax” section unless this condition produces a syntax error.
For instance, if a name begins with a special character and this name is at the
beginning of a directive line, the link-editor returns an error. If the name is a
section_name (appearing within the directive), the link-editor does not return an
error.

• More than one segment_type, segment_flags, virtual_address, physical_address,
length, or alignment value appears on a single declaration line.

• You attempt to manipulate either the interp segment or dynamic segment
in a mapfile .

Note – The interp and dynamic segments are special built-in segments that
you cannot change in any way.

• A segment grows larger than the size specified by a your length attribute
value.

• A user-defined virtual_address value causes a segment to overlap the
previous segment.

• More than one section_name, section_type, or section_flags value appears on a
single directive line.

• A flag and its complement (for example, A and !A) appear on a single
directive line.

245

Link-Editor Quick Reference A

The following sections provide a simple overview, or cheat sheet, of the most
commonly used link-editor scenarios (see “Link-Editing” on page 2 for an
introduction to the kinds of output modules generated by the link-editor).

The examples provided show the link-editor options as supplied to the
compiler driver cc(1) , this being the most common mechanism of invoking
the link-editor (see “Using a Compiler Driver” on page 9).

The link-editor places no meaning on the name of any input file. Each file is
opened and inspected to determine the type of processing it requires (see
“Input File Processing” on page 11).

Shared objects that follow a naming convention of lib x.so , and archive
libraries that follow a naming convention of lib x.a , can be input using the -l
option (see “Library Naming Conventions” on page 14). This provides
additional flexibility in allowing search paths to be specified using the -L
option (see “Directories Searched by the Link-Editor” on page 16).

The link-editor basically operates in one of two modes, static or dynamic.

Static Mode
This mode is selected when the -dn option is used, and allows for the creation
of relocatable objects and static executables. Under this mode only relocatable
objects and archive libraries are acceptable forms of input. Use of the -l option
will result in a search for archive libraries.

246 Linker and Libraries Guide—November 1995

A

Building a Relocatable Object
• Use the -dn and -r options:

Building a Static Executable

The use of static executables is limited. Static executables usually contain
platform specific implementation details which restricts the ability of the
executable to be run on an alternative platform. Also, many implementations
of Solaris libraries depend on dynamic linking capabilities such as
dlopen(3x) and dlsym(3x). (see “Loading Additional Objects” on page 67).
These capabilities are not available to static executables.

• Use the -dn option without the - r option:

Note – The -a option is available to indicate the creation of a static executable,
however, the use of -dn without a -r implies -a .

Dynamic Mode
This is the default mode of operation for the link-editor. It can be enforced by
specifying the -dy option, but is implied when not using the -dn option.

Under this mode, relocatable objects, shared objects and archive libraries are
acceptable forms of input. Use of the -l option will result in a directory search,
where each directory is searched for a shared object, and if none is found the
same directory is then searched for an archive library. A search for archive
libraries only, can be enforced by using the -B static option (see “Linking
with a Mix of Shared Objects and Archives” on page 15).

Building a Shared Object
• Use the -G option (-dy is optional as it is implied by default).

$ cc -dn -r -o temp.o file1.o file2.o file3.o

$ cc -dn -o prog file1.o file2.o file3.o

Link-Editor Quick Reference 247

A

• Input relocatable objects should be built from position-independent code.
Use the -z text option to enforce this requirement (see “Position-
Independent Code” on page 100).

• Establish the shared objects public interface by defining the global symbols
that should be visible from this shared object, and reducing any other global
symbols to local scope. This definition is provided by the -M option together
with an associated mapfile , and is covered in more detail inAppendix B,
“Versioning Quick Reference”.

• Use a versioned name for the shared object to allow for future upgrades (see
“Coordination of Versioned Filenames” on page 136).

• If the shared object being generated has dependencies on any other shared
objects, and these dependencies do not reside in /usr/lib , record their
pathname in the output file using the -R option (see “Shared Objects with
Dependencies” on page 89).

The following example combines the above points:

• If the shared object being generated will be used as input to another
link-edit, record within it the shared object’s runtime name using the -h
option (see “Recording a Shared Object Name” on page 86).

• Make the shared object available to the compilation environment by creating
a file system link to a non-versioned shared object name (see “Coordination
of Versioned Filenames” on page 136).

The following example combines the above points:

$ cc -c -o foo.o -Kpic foo.c
$ cc -M mapfile -G -o libfoo.so.1 -z text -R /home/lib \
foo.o -L. -lbar

$ cc -M mapfile -G -o libfoo.so.1 -z text -R /home/lib \
-h libfoo.so.1 foo.o
$ ln -s libfoo.so.1 libfoo.so

248 Linker and Libraries Guide—November 1995

A

• Consider the performance implications of the shared object; maximize
shareability (see page 102) and minimize paging activity (see page 105),
reduce relocation overhead, especially by minimizing symbolic relocations
(see “Profiling Shared Objects” on page 111), and allow access to data via
functional interfaces (see “Copy Relocations” on page 107).

Building a Dynamic Executable
• Don’t use the -G , or -dn options.

• If the dynamic executable being generated has dependencies on any other
shared objects, and these dependencies do not reside in /usr/lib , record
their pathname in the output file using the -R option (see “Directories
Searched by the Runtime Linker” on page 18).

The following example combines the above points:

$ cc -o prog -R /home/lib -L. -lfoo file1.o file2.o file3.o

249

Versioning Quick Reference B

ELF objects make available global symbols to which other objects can bind.
Some of these global symbols can be identified as providing the object’s public
interface. Other symbols are part of the objects internal implementation and are
not intended for external use. An objects interface can evolve from one
software release to another, and thus the ability to identify this evolution is
desirable.

In addition, identifying the internal implementation changes of an object from
one software release to another might be desirable.

Both interface and implementation identifications can be recorded within an
object by establishing internal version definitions (see “Overview” on page 115
for a more complete introduction to the concept of internal versioning).

Shared objects are prime candidates for internal versioning as this technique
defines their evolution, provides for interface validation during runtime
processing (see “Binding to a Version Definition” on page 126), and provides
for the selective binding of applications (see “Specifying a Version Binding” on
page 132). Shared objects will be used as the examples throughout this chapter.

The following sections provide a simple overview, or cheat sheet, of the internal
versioning mechanism provided by the link-editors as applied to shared
objects. The examples recommend conventions and mechanisms for versioning
shared objects, from their initial construction through several common update
scenarios.

250 Linker and Libraries Guide—November 1995

B

Naming Conventions
A shared object follows a naming convention that includes a major number file
suffix (see “Naming Conventions” on page 84). Within this shared object, one
or more version definitions can be created. Each version definition corresponds
to one of the following categories:

• It defines an industry standard interface (for example, the System V
Application Binary Interface).

• It defines a vendor specific public interface.

• It defines a vendor specific private interface.

• It defines a vendor specific change to the internal implementation of the
object.

The following version definition naming conventions help indicate which of
these categories the definition represents.

The first three of these categories indicate interface definitions. These
definitions consist of an association of the global symbol names that comprise
the interface, with a version definition name (see “Creating a Version
Definition” on page 118). Interface changes within a shared object are often
referred to as minor revisions. Therefore, version definitions of this type, are
suffixed with a minor version number which is based off of the filenames major
version number suffix.

The last category indicates a change having occurred within the object. This
definition consists of a version definition acting as a label and has no symbol
names associated with it. This definition is referred to as being a weak version
definition (see “Creating a Weak Version Definition” on page 122).
Implementation changes within a shared object are often referred to as micro
revisions. Therefore, version definitions of this type are suffixed with a micro
version number based off of the previous minor number to which the internal
changes have been applied.

Any industry standard interfaces should use a version definition name that
reflects the standard. Any vendor interfaces should use a version definition
name unique to that vendor (the company’s stock symbol is often appropriate).

Private version definitions indicate symbols that have restricted or
uncommitted use, and should have the word private clearly visible.

Versioning Quick Reference 251

B

All version definitions result in the creation of associated version symbol
names. Therefore, the use of unique names and the minor/micro suffix
convention reduce the chance of symbol collision within the object being built.

The following version definition examples show the use of these naming
conventions:

• SVABI.1 - defines the System V Application Binary Interface standards
interface.

• SUNW_1.1 - defines a SunSoft public interface.

• SUNWprivate_1.1 - defines a SunSoft private interface.

• SUNW_1.1.1 - defines a SunSoft internal implementation change.

Defining a Shared Object’s Interface
When establishing a shared object’s interface the first task is to determine
which global symbols provided by the shared object can be associated to one of
the three interface version definition categories:

• Industry standard interface symbols conventionally are defined in publicly
available header files and associated manual pages supplied by the vendor,
and are also documented in recognized standards literature.

• Vendor public interface symbols conventionally are defined in publicly
available header files and associated manual pages supplied by the vendor.

• Vendor private interface symbols can have little or no public definition.

By defining these interfaces, a vendor is indicating the commitment level of
each interface of the shared object. Industry standard and vendor public
interfaces remain stable from release to release. You are free to bind to these
interfaces safe in the knowledge that your application will continue to function
correctly from release to release.

Industry standard interfaces might be available on systems provided by other
vendors, and thus you can achieve a higher level of binary compatibility by
restricting your applications to use these interfaces.

Vendor public interfaces might not be available on systems provided by other
vendors, however these interfaces will remain stable during the evolution of
the system on which they are provided.

252 Linker and Libraries Guide—November 1995

B

Vendor private interfaces are very unstable, and can change, of even be
deleted, from release to release. These interfaces provide for uncommitted or
experimental functionality, or are intended to provide access for vendor
specific applications only. If you who wish to achieve any level of binary
compatibility you should avoid using these interfaces.

Any global symbols that do not fall into one of the above categories should be
reduced to local scope so that they are no longer visible for binding (see
“Reducing Symbol Scope” on page 38).

Versioning a Shared Object
Having determined a shared object’s available interfaces, the associated
version definitions are created using a mapfile and the link-editors -M option
(see “Defining Additional Symbols” on page 32 for an introduction of this
mapfile syntax).

The following example defines a vendor public interface in the shared object
libfoo.so.1 :

Here the global symbols foo1 and foo2 are assigned to the shared objects
public interface SUNW_1.1. Any other global symbols supplied from the input
files are reduced to local by the auto-reduction directive “*” (see “Reducing
Symbol Scope” on page 38).

Note – Each version definition mapfile entry should be accompanied by a
comment reflecting the release or date of the update. This information helps
coordinate multiple updates of a shared object, possibly by different
developers, into one version definition suitable for delivery of the shared
object as part of a software release.

$ cat mapfile
SUNW_1.1 { # Release X.
 global:
 foo2;
 foo1;
 local:
 *;
};
$ cc -G -o libfoo.so.1 -h libfoo.so.1 -z text -M mapfile foo.c

Versioning Quick Reference 253

B

Versioning an Existing (Non-versioned) Shared Object

Versioning an existing, non-versioned shared object requires extra care, as the
shared object delivered in a previous software release has made available all its
global symbols for others to bind with. Although it can be possible to
determine the shared objects intended interfaces, it can be the case that others
have discovered and bound to other symbols. Therefore, the removal of any
symbols might result in an applications failure on delivery of the new
versioned shared object.

The internal versioning of an existing, non-versioned shared object can be
achieved if the interfaces can be determined, and applied, without breaking
any existing applications. The runtime linker’s debugging capabilities can be
useful to help verify the binding requirements of various applications (see
“Debugging Aids” on page 77). However, this determination of existing
binding requirements assumes that all users of the shared object are known.

If the binding requirements of an existing, non-versioned shared object can not
be determined then it is necessary to create a new shared object file using a
new versioned name (see “Coordination of Versioned Filenames” on page 136).
In addition to this new shared object, the original shared object must also be
delivered so as to satisfy the dependencies of any existing applications.

If the implementation of the original shared object is to be frozen then
maintaining and delivering the shared object binary might be sufficient. If
however, the original shared object might require updating - for example,
through patches, or because its implementation must evolve to remain
compatible with new platforms - then an alternative source tree from which to
generate the shared object can be more applicable.

Updating a Versioned Shared Object
The only changes that can be made to a shared object that can be absorbed by
internal versioning are compatible changes (see “Interface Compatibility” on
page 116). Any incompatible changes require producing a new shared object
with a new external versioned name (see “Coordination of Versioned
Filenames” on page 136).

Compatible updates that can be accommodated by internal versioning fall into
three basic categories:

• adding new symbols.

254 Linker and Libraries Guide—November 1995

B

• creating new interfaces from existing symbols.

• internal implementation changes.

The first two categories are achieved by associating an interface version
definition with the appropriate symbols. The latter is achieved by creating a
weak version definition that has no associated symbols.

Adding New Symbols

Any compatible new release of a shared object that contains new global
symbols should assign these symbols to a new version definition. This new
version definition should inherit the previous version definition.

The following mapfile example assigns the new symbol foo3 to the new
interface version definition SUNW_1.2. This new interface inherits the original
interface SUNW_1.1:

The inheritance of version definitions reduces the amount of version
information that must be recorded in any user of the shared object.

$ cat mapfile
SUNW_1.2 { # Release X+1.
 global:
 foo3;
} SUNW_1.1;

SUNW_1.1 { # Release X.
 global:
 foo2;
 foo1;
 local:
 *;
};

Versioning Quick Reference 255

B

Internal Implementation Changes

Any compatible new release of the shared object that consists of an update to
the implementation of the object - for example, a bug fix or performance
improvement - should be accompanied by a weak version definition. This new
version definition should inherit the latest version definition present at the
time the update occurred.

The following mapfile example generates a weak version definition
SUNW_1.1.1 . This new interface indicates that the internal changes were made
to the implementation offered by the previous interface SUNW_1.1:

New Symbols and Internal Implementation Changes

If both internal changes and the addition of a new interface has occurred
during the same release, both a weak version and a interface version definition
should be created. The following example shows the addition of a version

$ cat mapfile
SUNW_1.1.1 { } SUNW_1.1; # Release X+1.

SUNW_1.1 { # Release X.
 global:
 foo2;
 foo1;
 local:
 *;
};

256 Linker and Libraries Guide—November 1995

B

definition SUNW_1.2 and an interface change SUNW_1.1.1 which are added
during the same release cycle. Both interfaces inherit the original interface
SUNW_1.1:

Note – The comments for the SUNW_1.1 and SUNW_1.1.1 version definitions
indicate that they have both been applied to the same release.

Migrating Symbols to a Standard Interface

Occasionally, symbols offered by a vendors interface become absorbed into a
new industry standard. When creating a new standard interface it is important
to maintain the original interface definitions provided by the shared object. To
accomplish this it is necessary to create intermediate version definitions on
which the new standard, and original interface definitions, can be built.

% cat mapfile
SUNW_1.2 { # Release X+1.
 global:
 foo3;
} SUNW_1.1;

SUNW_1.1.1 { } SUNW_1.1; # Release X+1.

SUNW_1.1 { # Release X.
 global:
 foo2;
 foo1;
 local:
 *;
};

Versioning Quick Reference 257

B

The following mapfile example shows the addition of a new industry
standard interface STAND.1. This interface contains the new symbol foo4 and
the existing symbols foo3 and foo1 which were originally offered through the
interfaces SUNW_1.2 and SUNW_1.1 respectively:

Here the symbols foo3 and foo1 are pulled into their own intermediate
interface definitions which are used to build the original and new interface
definitions.

$ cat mapfile
STAND.1 { # Release X+2.
 global:
 foo4;
} STAND.0.1 STAND.0.2;

SUNW_1.2 { # Release X+1.
 global:
 SUNW_1.2;
} STAND.0.1 SUNW_1.1;

SUNW_1.1.1 { } SUNW_1.1; # Release X+1.

SUNW_1.1 { # Release X.
 global:
 foo2;
 local:
 *;
} STAND.0.2;
 # Subversion - providing for
STAND.0.1 { # SUNW_1.2 and STAND.1 interfaces.
 global:
 foo3;
};
 # Subversion - providing for
STAND.0.2 { # SUNW_1.1 and STAND.1 interfaces.
 global:
 foo1;
};

258 Linker and Libraries Guide—November 1995

B

Note – The new definition of the SUNW_1.2 interface has referenced its own
version definition symbol. Without this reference the SUNW_1.2 interface
would have contained no immediate symbol references and hence would be
categorized as a weak version definition.

When migrating symbol definitions to a standards interface the requirement is
that any original interface definitions continue to represent the same symbol
list. This requirement can be validated using pvs(1) . The following example
shows the symbol list of the SUNW_1.2 interface as it existed in the software
release X+1:

Although the introduction of the new standards interface in software release
X+2 has changed the interface version definitions available, the list of symbols
provided by each of the original interfaces remains constant. The following
example shows that interface SUNW_1.2 still provides symbols foo1 , foo2
and foo3 :

It is possible that an application might only reference one of the new
subversions, in which case any attempt to run the application on a previous
release will result in a runtime versioning error (see “Binding to a Version
Definition” on page 126).

$ pvs -ds -N SUNW_1.2 libfoo.so.1
 SUNW_1.2:
 foo3;
 SUNW_1.1:
 foo2;
 foo1;

$ pvs -ds -N SUNW_1.2 libfoo.so.1
 SUNW_1.2:
 STAND.0.1:
 foo3;
 SUNW_1.1:
 foo2;
 STAND.0.2:
 foo1;

Versioning Quick Reference 259

B

In this case an applications version binding can be promoted by directly
referencing an existing version name (see “Binding to a Weak Version
Definition” on page 130).

For example, if an application only references the symbol foo1 from the
shared object libfoo.so.1 , then its version reference will be to STAND.0.2 .
To allow this application to be run on previous releases, the version binding
can be promoted to SUNW_1.1 using the link-editor’s -u option:

In practice it is rarely necessary to promote a version binding in this manner,
as the introduction of new standards binary interfaces is rare, and most
applications reference many symbols from an interface family.

% cat prog.c
extern void foo1();

main()
{
 foo1();
}
% cc -o prog prog.c -L. -R. -lfoo
% pvs -r prog
 libfoo.so.1 (STAND.0.2);

% cc -u SUNW_1.1 -o prog prog.c -L. -R. -lfoo
% pvs -r prog
 libfoo.so.1 (SUNW_1.1);

260 Linker and Libraries Guide—November 1995

B

261

Index

Symbols
/usr/lib , 18, 55, 56, 65, 67
/usr/lib/ld.so.1 , 53

A
ABI (see Application Binary Interface and

System V Application Binary
Interface)

Application Binary Interface, 4, 5, 94, 115
building a conforming

application, 15
ar(1), 12
archives, 14

inclusion of shared objects in, 88
link-editor processing, 12
multiple passes through, 12
naming conventions, 14

as(1), 2

B
base address, 193
binding, 1

dependency ordering, 90
lazy, 60
to shared object dependencies, 86,

126

to version definitions, 126
to weak version definitions, 130

C
cc(1), 1, 2, 9
COMMON, 21, 34, 36, 150, 166
compilation environment, 1, 4, 14, 84

D
data representation, 141
debugging aids

link-editing, 48
runtime linking, 77

dependency ordering, 90
dlclose(3X), 66
dlerror(3X), 66
dlfcn.h , 66
dlopen(3X), 54, 66, 67 to 73, 131

effects of ordering, 72
modes

RTLD_GLOBAL, 68, 73
RTLD_LAZY, 69
RTLD_NOW, 69

of a dynamic executable, 68, 73
shared object naming conventions, 85

dlsym(3X), 54, 66, 73 to 76, 132

262 Linker and Libraries Guide—November 1995

special handle (see RTLD_NEXT)
dump(1), 5, 55, 58, 99, 101
dynamic executables, 2, 3
dynamic information tags

NEEDED, 55, 86
RPATH, 56
SONAME, 87
TEXTREL, 101

dynamic linking, 4
implementation, 167 to 176, 199

E
ELF, 2, 7, 97

(see also object files), 139
elf(3E), 5
environment variables

LD_BIND_NOT, 80
LD_BIND_NOW, 60, 80, 206
LD_DEBUG, 77
LD_DEBUG_OUTPUT, 78
LD_LIBRARY_PATH, 17, 56, 65, 67, 90
LD_OPTIONS, 10, 49
LD_PRELOAD, 62, 65
LD_PROFILE, 112
LD_PROFILE_OUTPUT, 112
LD_RUN_PATH, 19
SGS_SUPPORT, 43

error messages
link-editor

illegal argument to option, 10
illegal option, 10
incompatible options, 11
multiple instances of an

option, 10
multiply defined symbols, 27
relocations against non-writable

sections, 101
shared object name conflicts, 88
soname conflicts, 89
symbol not assigned to

version, 40
symbol warnings, 25, 26
undefined symbols, 28

undefined symbols from an
implicit reference, 29

version unavailable, 134
runtime linker

copy relocation size
differences, 110

relocation errors, 61, 129
unable to find shared object, 57,

68
unable to find version

definition, 128
unable to locate symbol, 75

exec(2), 7, 53, 140
executable and linking format (see ELF)

F
f77(1), 9
filters

auxiliary, 91, 95
standard, 91, 92

G
generating a shared object, 30
generating an executable, 28
generating the output file image, 42
global offset table, 42, 58, 101, 175, 213 to

215
global symbols, 21, 116, 163 to 165

I
initialization and termination, 9, 19, 64
input file processing, 11
interface

private, 116
public, 116, 249

interposition, 23, 24, 39, 59, 63, 76, 117
interpreter (see also runtime linker)

L
lazy binding, 60
ld(1), 1, 2

Index 263

ld.so.1 (see also runtime linker), 1, 53
LD_BIND_NOT, 80
LD_BIND_NOW, 60, 80, 206
LD_DEBUG, 77
LD_DEBUG_OUTPUT, 78
LD_LIBRARY_PATH, 17, 56, 65, 67, 90
LD_OPTIONS, 10, 49
LD_PRELOAD, 62, 65
LD_PROFILE, 112
LD_PROFILE_OUTPUT, 112
LD_RUN_PATH, 19
ldd(1), 5, 55, 57, 59, 61, 128, 129
libld.so.1 , 66
libraries

archives, 14
naming conventions, 14
shared, 167, 176, 199

link-editing, 2, 162 to 176, 199
adding additional libraries, 14
archive processing, 12
binding to a version definition, 126,

132
dynamic, 167 to 176, 199
input file processing, 11
library input processing, 11
library linking options, 11
mixing shared objects and

archives, 15
multiply defined symbols, 164 to 165
position of files on command line, 16
search paths, 16, 17
shared object processing, 13

link-editor, 1, 7
debugging aids, 48
error messages (see error messages)
invoking directly, 8
invoking using compiler driver, 9
overview, 7
sections, 7
segments, 7
specifying options, 10

link-editor options
-a , 246

-B dynamic , 15
-B reduce , 41
-B static , 15, 246
-D , 49
-d , 245, 246
-e , 43
-F , 92
-f , 92
-G , 83
-h , 86, 138, 247
-i , 18
-L , 17, 245
-l , 11, 14, 56, 84, 136, 245
-M, 8, 32, 33, 116, 118, 132, 227, 247,

252
-m, 14, 24
-R , 19, 90, 247, 248
-r , 246
-S , 43
-s , 42
-t , 25, 26
-u , 32, 131
-Y , 17
-z defs , 30
-z muldefs , 27
-z nodefs , 28, 61
-z noversion , 119, 128
-z text , 101, 247

link-editor output
dynamic executables, 2
relocatable objects, 2
shared objects, 2
static executables, 2

link-editor support interface
ld_atexit() , 44
ld_file() , 45
ld_section() , 45
ld_start() , 44

local symbols, 21, 163 to 165
lorder(1), 13, 50

M
mapfiles, 227 to 244

defaults, 239

264 Linker and Libraries Guide—November 1995

error messages, 243
example, 236
map structure, 240
mapping directives, 233
segment declarations, 229
size-symbol declarations, 236
structure, 228
syntax, 228
usage, 228

mmap(2), 53
multiply defined symbols, 42, 163 to 165

N
naming conventions

archives, 14
libraries, 14
shared objects, 14, 84

NEEDED, 55, 86
nm(1), 5, 98

O
object files, 2

base address, 193
data representation, 141
global offset table (see global offset

table)
note section, 187 to 188
preloading at runtime, 62
procedure linkage table (see

procedure linkage table)
program header, 189 to 192
program interpretor, 204
program loading, 195
relocation, 167 to 176, 213
section alignment, 151
section attributes, 155 to 160
section header, 148 to 160
section names, 160
section types, 152 to 160
segment contents, 194 to 195
segment permissions, 193 to 194
segment types, 190 to 193
string table, 161 to 162

symbol table, 162 to 167

P
paging, 195 to 199
performance

allocating buffers dynamically, 105
collapsing multiple definitions, 104
improving locality of references, 106,

111
maximizing shareability, 102
minimizing data segment, 103
position-independent code (see

position-dependent code)
relocations, 106, 111
the underlying system, 100
using automatic variables, 104

position-independent code, 100, 203 to
213

preloading objects (see LD_PRELOAD
also), 62

procedure linkage table, 43, 60, 101, 175,
215, 218

profil(2), 112
program interpreter, 53, 204 to 205

(see also runtime linker)
pvs(1), 5, 119, 122, 125, 127

R
relocatable objects, 2
relocation, 57 to 62, 106 to 111, 167 to 176

copy, 107
data references, 60
function references, 60
non-symbolic, 58, 106
runtime linker

symbol lookup, 59, 60
symbolic, 58, 106

RPATH (see also runpath), 56
RTLD_GLOBAL, 68, 73
RTLD_LAZY, 69
RTLD_NEXT (see also dependency

ordering), 73

Index 265

RTLD_NOW, 69
runpath, 18, 56, 65, 67, 80, 90
runtime environment, 4, 14, 84
runtime linker, 1, 3, 53, 205

initialization and termination
routines, 64

lazy binding, 60
loading additional objects, 62
programming interface (see also

dlopen(3X) family of
routines), 65

relocation processing, 57
search paths, 18, 55
security, 64
shared object processing, 54
version definition verification, 128

runtime linking, 3

S
SCD (see SPARC Compliance Definition)
search paths

link-editing, 16
runtime linker, 18, 55

section types
.bss, 7, 104, 107
.data, 7, 103
.dynamic, 42, 53, 55
.dynstr, 42
.dynsym, 42
.fini, 19, 64
.got, 42, 58
.init, 19, 64
.interp, 53
.plt, 43, 60, 112
.rodata, 103
.strtab, 7, 42
.symtab, 7, 42
.text, 7

sections, 7, 97
(see also section types)

security, 64
segments, 7, 97

data, 98, 100

text, 98, 100
SGS_SUPPORT, 43
shared libraries (see shared objects)
shared objects, 2, 4, 54

as filters (see filters)
building (see also performance), 83
dependency ordering, 90
explicit definition, 29
implementation, 167 to 176, 199
implicit definition, 29
link-editor processing, 13
naming conventions, 14, 84
recording a runtime name, 86
with dependencies, 89

size(1), 97
SONAME, 87
SPARC Compliance Definition, 5
static executables, 2
strings(1), 104
strip(1), 42
symbol reserved names, 42

_DYNAMIC, 42
_edata , 42
_end , 42
_etext , 42
_fini , 19
_GLOBAL_OFFSET_TABLE_, 42, 215
_init , 19
_PROCEDURE_LINKAGE_TABLE_, 43
_start , 43
main , 43

symbol resolution, 21, 42
complex, 25
fatal, 26
interposition (see interposition)
multiple definitions, 13
simple, 22

symbols
absolute, 34, 149, 166
archive extraction, 12
auto-reduction, 34, 40, 118, 252
COMMON, 21, 34, 36, 150, 166
defined, 21
definition, 12, 27

266 Linker and Libraries Guide—November 1995

existance test, 30
global, 21, 23, 116, 163 to 165
local, 21, 163 to 165
private interface, 116
public interface, 116
reference, 12, 27
runtime lookup, 69 to 77

deferred, 60
scope, 69 to 73
tentative, 12, 21, 31, 34, 36, 150

ordering in the output file, 31
realignment, 36

undefined, 12, 21, 27, 28, 30
version definitions, 130
weak, 12, 23, 30, 164

System V Application Binary
Interface, 250

T
tentative symbols, 12, 21, 34, 36
TEXTREL, 101
tsort(1), 13, 50

U
undefined symbols, 27

V
versioning, 115

base version definition, 119
binding to a definition, 126, 132
defining a public interface, 40, 118
definitions, 116, 117, 126
external filename, 117, 253
generating definitions within an

image, 33, 40, 117
internal definitions, 117
normalization, 127
overview, 115
runtime verification, 128, 131
sections, 160
symbol definitions, 130

virtual addressing, 195

W
weak symbols, 23, 163 to 165

undefined, 30

Index 267

Copyright 1995 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs
de licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par
un ou plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, SunSoft, le logo SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+ et NFS
sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est une
marque enregistrée aux Etats- Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK
est une marque enregistrée de Novell, Inc. PostScript et Display PostScript sont des marques d’Adobe Systems, Inc. Le nom
PowerPC est une marque depose d’International Business Machines Corporation.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN
LOOK GUIs et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

