
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Federated Naming Service Guide

Part No: 802-1999-10
Revision A, November 1995

A Sun Microsystems, Inc. Business

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX Systems Laboratories, Inc., a wholly
owned subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, Solstice,
AdminTools, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe
Systems, Inc.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUI’s and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN, THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Part 1 —Introduction

1. Introduction to the Federated Naming Service (FNS) 3

What Is FNS? . 4

What Is XFN? . 5

Why FNS? . 5

Uniform Naming Interface . 5

Uniform Means of Composing Names 6

Coherence in Naming . 7

FNS in the Solaris Environment . 8

FNS and NIS+. 8

FNS and DNS . 9

FNS and X.500 . 9

FNS-based File Naming . 9

FNS-based Printer Naming . 9

FNS and Applications . 10

iv Federated Naming Service Guide—November 1995

2. The XFN Model . 11

XFN Architectural Model . 11

References . 11

Contexts . 12

Attributes . 13

Compound Names. 13

Composite Names . 15

XFN Links . 15

 Initial Context . 16

 User’s View . 17

File System View . 18

Application View . 19

API Usage Model . 22

Part 2 —FNS Policies

3. Introduction to FNS Policies . 25

Policy Overview. 26

What FNS Policies Specify . 26

What FNS Policies Do Not Specify . 26

What FNS Enterprise Policies Arrange 28

Examples of Composite Names . 29

How FNS Policies Relate to NIS+ . 30

NIS+ Domains and FNS Organizational Units 30

NIS+ Users and FNS Users . 31

NIS+ Hosts and FNS Hosts. 32

Contents v

Target Client Applications of FNS Policies 32

Example Application: Calendar Service 33

4. Policies for the Enterprise Namespace 37

Namespaces in the Enterprise . 37

Organizational Unit Namespace . 38

Site Namespace . 38

User Namespace . 39

Host Namespace . 39

Service Namespace . 39

Printer Namespace . 40

File Namespace . 40

 Namespace Identifiers . 41

Structure of the Enterprise Namespace. 42

Enterprise Root . 45

Organizational Units . 46

Sites . 47

Users . 49

Hosts . 50

Services . 51

Files . 52

Printers . 53

Initial Context Bindings for Naming Within the Enterprise. . . 54

User-related Bindings . 56

Host-related Bindings . 58

vi Federated Naming Service Guide—November 1995

“Shorthand” Bindings . 59

5. Policies for the Global Namespace . 61

The Global Namespace . 61

 Initial Context Bindings for Global Naming 62

Federating DNS . 62

Federating X.500. 63

Part 3 —Administration

6. Administering FNS on NIS+. 69

Setting Up FNS. 70

Estimating Resource Requirements . 70

Setting Up NIS+ Service for FNS . 70

Setting Up the FNS Namespace . 71

Replicating FNS Service . 72

Creating FNS Contexts Individually . 73

Organization Context . 75

All Hosts Context. 76

Single Host Context . 76

All–Users Context . 77

Single User Context . 78

Service Context . 79

Printer Context . 80

Generic Context . 80

Site Context. 81

File Context. 82

Contents vii

Namespace Identifier Context . 82

Managing and Examining FNS Contexts 83

Displaying the Binding . 83

Listing the Context . 85

Binding a Composite Name to a Reference 89

Removing a Composite Name . 91

Renaming an Existing Binding. 91

Destroying the Named Context . 92

Managing and Examining FNS Attributes 92

Adding an Attribute . 92

Deleting an Attribute. 93

Listing an Attribute . 93

Modifying an Attribute . 94

Other Options. 94

Maintaining Consistency Between NIS+ and FNS 94

Checking Naming Inconsistencies. 95

Advanced FNS and NIS+ Issues . 96

Mapping FNS Contexts to NIS+ Objects. 96

Browsing FNS Structures Using NIS+ Commands 97

Checking Access Control . 98

Significance of Double Slashes . 99

Significance of Trailing Slash . 100

Error Messages . 100

FNS Message Descriptions . 101

viii Federated Naming Service Guide—November 1995

Troubleshooting . 104

Cannot Obtain Initial Context . 104

Nothing in Initial Context. 105

“No Permission” Messages . 105

fnlist Does Not List Suborganizations 106

Cannot Create Host- or User-related Contexts. 107

Cannot Remove a Context I Created 107

“Name in Use” With fnunbind . 108

“Name in Use” With fnbind /fncreate -s 108

fndestroy /fnunbind Does Not Return “Operation Failed”
. 109

7. Federating NIS+ With Global Naming Systems 111

Obtaining the NIS+ Root Reference. 111

Federating NIS+ Under DNS . 112

Federating NIS+ Under X.500 . 114

8. Administering the File System Namespace 117

The FNS File System Namespace. 117

NFS File Servers . 118

The Automounter . 119

Creating File Contexts . 120

Creating the Input File . 121

Using Command-line Input . 123

Advanced Input Formats . 124

Backward Compatibility Input Format 125

Contents ix

Administering File Contexts. 126

9. Administering the Printer Namespace 127

The Printer Namespace . 127

Administering Printer Contexts . 128

Using Files . 128

Using NIS . 129

Using NIS+ . 129

Part 4 —Application Programming

10. Interfaces for Writing XFN Applications 133

XFN Interface Overview . 133

Interface Conventions . 134

Usage . 134

Abstract Data Types. 134

Memory–Management Policies . 135

The Base Context Interface . 135

Names in Context Operations . 136

Requirements for Supporting the Context Operations 136

Status Objects . 137

Getting Context Handles . 137

Lookup and List Contexts. 138

Updating Bindings. 140

Managing Contexts . 141

Other Context Operations. 142

The Base Attribute Interface . 143

x Federated Naming Service Guide—November 1995

XFN Attribute Model . 143

Relationship to Naming Operations 144

Status Objects . 145

Single-Attribute Operations . 145

Multiple-Attribute Operations . 147

Status Objects and Status Codes . 150

Parameters Used in the Interface . 153

Composite Names . 153

References and Addresses . 153

Identifiers . 154

Strings . 155

Attributes and Attribute Values. 155

Attribute Sets . 155

Attribute-Modification Lists . 155

Parsing Compound Names. 156

Syntax Attributes . 156

XFN Standard Syntax Model . 156

11. XFN Composite Names . 159

Syntax . 159

Composite Name and Naming System Boundaries 161

Strong Separation. 161

Weak Separation . 162

Composite Name Resolution . 163

Explicit NNSPs: Junctions. 163

Contents xi

Implicit NNSPs . 164

Coexistence of Explicit and Implicit NNSPs 165

XFN Links . 165

12. XFN Programming Examples . 167

Namespace Browser Example . 168

Compiling and Executing Browser Example 175

Commands . 175

Sample Output . 176

Printer Programming Example . 178

Client . 179

Server. 181

A. XFN Composite Names Syntax. 185

Composite Name Encoding . 185

Backus-Naur Form (BNF) . 186

Decomposing the Composite Name String. 187

Composing the Composite Name String 189

B. DNS Text Record Format for XFN References 191

C. X.500 Attribute Syntax for XFN References 195

Object Classes . 195

Glossary . 201

Index . 207

xii Federated Naming Service Guide—November 1995

xiii

Tables

Table 4-1 Namespace Identifiers in the Enterprise 41

Table 4-2 Policies for the Federated Enterprise Namespace 43

Table 4-3 Initial Context Bindings for Naming Within the Enterprise . . 55

Table 5-1 Policies for the Federated Global Namespace. 61

Table 5-2 Initial Context Bindings for Global Naming 62

Table 6-1 fncreate Command Options . 74

Table 6-2 fnlookup Command Options . 83

Table 6-3 fnlist Command Options. 85

Table 6-4 fnbind Command Options. 89

Table 6-5 fncheck Command Options . 95

Table 7-1 NIS+ Root Reference . 112

Table 8-1 fncreate_fs Command Options. 121

Table 10-1 XFN Attribute -Modification Operations. 146

Table 10-2 Status Object . 150

Table 10-3 Status Codes . 151

Table 10-4 XFN Identifier Formats. 154

xiv Federated Naming Service Guide—November 1995

Table 10-5 XFN Syntax Attributes . 158

Table 11-1 String and Structural Forms of XFN Composite Names 160

Table 12-1 Namespace Browser Commands . 175

Table 12-2 Backus-Naur Notation . 186

Table 12-3 XFN Composite Name Syntax Using BNF 186

xv

Figures

Figure 1-1 Naming Is an Integral Part of Existing Services 4

Figure 1-2 A Federated Naming System. 7

Figure 2-1 An XFN Context. 12

Figure 2-2 Hierarchical Naming System With Compound Names 14

Figure 2-3 Federated Naming System With Composite Names 16

Figure 2-4 User View of XFN . 17

Figure 2-5 User Interaction With XFN. 18

Figure 2-6 Client Application Interaction With XFN 19

Figure 2-7 Details Beneath XFN API . 20

Figure 2-8 XFN Implementation Examples . 21

Figure 3-1 Different Levels of Name Services . 27

Figure 3-2 What FNS Policies Arrange . 28

Figure 4-1 Example of an Enterprise Namespace . 44

Figure 4-2 Example of Enterprise Bindings in the Initial Context 54

Figure 5-1 Example of an X.500 Directory Information Base. 64

Figure 8-1 NFS File System—Simple Case . 118

xvi Federated Naming Service Guide—November 1995

Figure 8-2 NFS File System—Multiple Servers . 119

Figure 12-1 Diagram of fnbrowse Program . 167

xvii

Preface

The Federated Naming Service (FNS) is new to the Solaris™ product family.
FNS is a set of application programming interfaces and policies that allow
applications to use a common set of names and policies over different name
services.

FNS is not a replacement for NIS+, the network name service included in the
Solaris software environment. Rather, FNS is implemented on top of NIS+ and
allows you to use a set of common names with desktop applications. SunSoft
Inc.’s implementation of FNS conforms to the X/Open™ federated naming
(XFN) specification.

Who Should Use This Book
The primary audience of Federated Naming Service Guide is software developers
who write distributed applications. Use of this guide assumes basic
competence in programming, a working familiarity with the C programming
language, and a working familiarity with the UNIX® operating system.
Developers should read all four parts of this manual.

The secondary audiences are system and network administrators and
application users. All should read Part 1 to get an overview of FNS.
Administrators should also read Part 2 and, especially, Part 3 to set up and
administer FNS. This manual does not cover NIS+ or the Domain Name
System (DNS) except as they relate to FNS.

xviii Federated Naming Service Guide—November 1995

How This Book Is Organized

Part 1—Introduction
Chapter 1, “Introduction to the Federated Naming Service (FNS),” is a high-
level overview of what FNS is and the problems it addresses.

Chapter 2, “The XFN Model,” depicts the architectural model of federated
naming from the application, API, and end-user’s views.

Part 2—FNS Policies
Chapter 3, “Introduction to FNS Policies,” introduces FNS enterprise and
global policies.

Chapter 4, “Policies for the Enterprise Namespace,” explains the policies for
naming objects within an enterprise and how applications can use these
policies.

Chapter 5, “Policies for the Global Namespace,” describes naming objects in
global namespaces.

Part 3—Administration
Chapter 6, “Administering FNS on NIS+,” is a reference for system
administrators who need to administer FNS in an NIS+ environment.

Chapter 7, “Federating NIS+ With Global Naming Systems,”describes the
procedures for federating NIS+ with DNS and X.500.

Chapter 8, “Administering the File System Namespace,” describes the setup
and administration of the file system namespace.

Chapter 9, “Administering the Printer Namespace,” describes the setup and
administration of the printer namespace.

Part 4—Application Programming
Chapter 10, “Interfaces for Writing XFN Applications,” defines the client
programming interfaces.

Chapter 11, “XFN Composite Names,” describes the XFN composite name
string syntax and the resolution techniques for composite names.

Preface xix

Chapter 12, “XFN Programming Examples,” presents self-contained
executable programs for a namespace browser and a printer client and server.

Appendixes
Appendix A, “XFN Composite Names Syntax,” gives supplemental
information about composite name syntax.

Appendix B, “DNS Text Record Format for XFN References,“ gives
supplemental information about FNS in a DNS environment.

Appendix C, “X.500 Attribute Syntax for XFN References,” gives
supplemental information about FNS in a X.500 environment.

Related Books
With the exception of the XFN specification, these books do not specifically
cover FNS but they provide a good background on how name services work in
client-server computing:

• Distributed Computing—Implementation and Strategy by Raman Khanna
(Prentice Hall, 1993)

• Distributed Systems edited by Sape J. Mullender (ACM Press, 1990)

• DNS and BIND by P. Albitz and C. Liu (O‘Reilly, 1992)

• Managing the X.500 Client Toolkit (SunSoft Inc., 1995)

• X/Open Preliminary Specifications, Federated Naming: The XFN Specifications,
X/Open Document #P403, ISBN: 1-85912-045-8 (X/Open, July 1994)

You may also want to reference the following AnswerBook® on-line
documentation:

• Solaris 2.5 Reference Manual AnswerBook
• Solaris 2.5 Software Developer AnswerBook
• Solaris 2.5 System Administrator AnswerBook

xx Federated Naming Service Guide—November 1995

What Typographic Changes and Symbols Mean
The following table describes the typographic changes used in this book.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Table P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#

Part 1 — Introduction

This part of the manual is an overview of FNS and its naming model.

Introduction to the Federated Naming Service (FNS) page 3

The XFN Model page 11

3

 Introduction to the Federated
Naming Service (FNS) 1

This chapter is a high-level overview of the Federated Naming Service (FNS).

Name services are fundamental to any computing system. Among other
features, a name service provides functionality that

• Associates names with objects (binds)
• Resolves names to objects
• Removes bindings
• Lists names
• Renames

Name services are often embedded in many different applications and services
in a computing environment, as shown in Figure 1-1 on page 4. Working with
different name services presents significant difficulties to the application
developer. Most applications are designed to use a single name service and
have very limited access to objects in a distributed computing environment.
Moreover, different applications use different name services and expect names
to be composed differently. They often use different names for what the user
considers very similar objects. For example, you may be able to send mail to

What Is FNS? page 4

What Is XFN? page 5

Why FNS? page 5

FNS in the Solaris Environment page 8

4 Federated Naming Service Guide—November 1995

1

your friend Joan using her name joan@admin , but be required to use another
name, jsmith@hal , to access her calendar. FNS allows the user to name
objects such as users in a uniform way.

Figure 1-1 Naming Is an Integral Part of Existing Services

What Is FNS?
FNS provides a method for federating multiple name services under a single,
simple uniform interface for the basic naming operations. The service supports
resolution of composite names—names that span multiple name systems—
through the naming interface. Each member of a federation has autonomy in
its choice of naming conventions, administrative interfaces, and its particular
set of operations other than name resolution.

In the Solaris environment, the FNS implementation consists of a set of
enterprise-level name services with specific policies and conventions for
naming organizations, users, hosts, sites, and services as well as support for
global name services such as DNS and X.500.

Directory
Services

File
Services

Name
Service

Desktop

Database

Spreadsheet

Introduction to the Federated Naming Service (FNS) 5

1

What Is XFN?
XFN is X/Open Federated Naming. XFN is a standard actively supported by
organizations such as SunSoft, Inc., IBM, Hewlett-Packard, DEC, Siemens, and
OSF. FNS, the Solaris implementation, is compliant with the X/Open Preliminary
Specification for Federated Naming (July 1994). Applications that use FNS are
portable across platforms because the interface exported by FNS is XFN, a
public, open interface endorsed by other vendors and X/Open. The X/Open
Co. Ltd. is an international standards organization committed to defining
computing standards that are endorsed and adhered to by the major computer
vendors.

Note – In this manual it is important to distinguish between XFN and FNS.
For example, the FNS policies include some extensions to XFN policies, and
these are explicitly defined with notes. Objects belonging to the XFN
programming interface are designated as XFN objects in order to avoid
confusion with other programming interfaces.

Why FNS?
FNS is useful for the following reasons:

• A single uniform naming interface is provided to clients for accessing
different name services. As a consequence, the addition of new name
services does not require changes to applications or to existing member
name services.

• Names can be composed in a uniform way, and the resulting composite
names can have any number of components.

• Coherent naming is encouraged through the use of shared contexts and
shared names.

The following subsections expand on these reasons.

Uniform Naming Interface

Within the Solaris environment, name services are integrated into other
services such as the file system, the network information service, the mail
system, and the calendar service. For example, the file system includes a

6 Federated Naming Service Guide—November 1995

1

naming system for files and directories; NIS+ service combines a naming
system with a specialized information service; a spreadsheet application names
cells and macros. An application in the Solaris environment must often deal
with this diversity of name service interfaces. In addition, the application may
be exposed to a great variety of often incompatible naming systems external to
the Solaris environment. Local- and wide-area networks connect a
heterogeneous array of hardware and operating systems, increasing the variety
of potential interfaces. Not only do these naming interfaces differ widely, but
the essential naming operations are often obscure.

A standard interface that provides the basic naming functions greatly
simplifies the naming aspect of applications for developers because now a
single interface to name different types of objects can be used. Changes to the
underlying name service and adding new name services can be applied
without requiring changes to the applications.

Uniform Means of Composing Names

Historically, a small percentage of applications use composite names to access
objects in the Solaris environment. The commands mail and rcp are examples
of such applications. rcp uses composite names such as
sylvan:/usr/jsmith/memo , which has two components: the host name
sylvan and the file name (path) /usr/jsmith/memo. The mail program
uses composite names such as jsmith@hal , which has two components: the
user name jsmith and the host name hal . Each application defines its own
composition rule for names, parses the composite names, and resolves
composite names. Composition rules often differ from one application to
another.

The user must remember which applications permit composite naming and
which do not. For example, the composite name sylvan:/tmp/foo is
accepted by the rcp command, but not by the cp command. The user must
also remember the different composition rules used among different
applications. Applications that support composite names on their own can use
only a small and specific set of naming systems, and must be changed
whenever a new type of naming system is added.

Incorporating a uniform policy for composite naming into the computing
platform permits any application to support composite names in a uniform
way.

Introduction to the Federated Naming Service (FNS) 7

1

Figure 1-2 shows an example of a federated naming system consisting of two
component naming systems: a host naming system and a file naming system.
When the name jurassic /usr/games/bin/pirates.exe is passed to the
federated naming system, the host part of the name, jurassic , is resolved by
the host naming system, while the file part of the name,
/usr/games/bin/pirates.exe , is resolved by the file naming system. The
important point to note is that the application passes one name to one interface.

Figure 1-2 A Federated Naming System

Coherence in Naming

At present, users of the Solaris environment must use different, inconsistent
names to refer to objects. To expand on an earlier example: you may use the
name jsmith@admin to send mail to Joan, the name jsmith@hal to access
her calendar, and the name /home/jsmith/.cshrc to reach a file in her
home directory. This disparity makes it hard for users to formulate names and
hard for applications to automatically generate names on behalf of users. FNS
policies define a coherent way for naming these objects.

The following principles were used to arrive at FNS policies:

• When it is natural to name other objects relative to a certain object, that object
should provide a naming context. For example, because it is natural to want to
name various things relative to a user, a user object should be a naming
context.

Host Naming System

Federated Naming System

File Naming System

jurassic /usr/games/bin/pirates.exe

8 Federated Naming Service Guide—November 1995

1

• It should be possible to compose names using common components. This reduces
the number of names that users need to remember and makes it easier for
applications and users to construct names based on their knowledge of
common constituents and how they can be logically composed.

• Names should be intuitive and self-evident. For example, the calendar name
jsmith@hal names the host where the calendar service is being provided.
To the user, there is no obvious connection between the user’s calendar and
a host. The host name is extraneous and difficult to discover and remember.

• Never use two contexts when one context will do. In the example above, we
would like to name a mail address, a calendar, and a file’s directory relative
to the user jsmith . Sharing contexts and their names make naming more
coherent and simplifies administration.

FNS in the Solaris Environment
In the Solaris environment, the FNS implementation currently consists of a set
of enterprise-level name services implemented on top of NIS+, global-level
naming systems using DNS and X.500, file naming, and support for printer
naming. FNS will become increasingly more visible to the Solaris user as more
applications and systems use FNS.

FNS and NIS+

NIS+ is the enterprise-wide information service in the Solaris environment. It
is an information-retrieval system for well-known UNIX databases, such as the
password tables, host tables, and mail aliases tables. It also supports Solaris-
specific databases such as the automount maps and the credentials tables. It
partitions an enterprise into organizational units that are arranged into a tree
and assigned hierarchical domain names.

FNS federates NIS+ in order to support enterprise-level naming policies in the
Solaris environment. To do this, FNS provides the XFN interface for
performing naming operations on organization, site, user, and host objects. It
implements these operations using the NIS+ programming interface for
accessing NIS+ directories and tables. It stores bindings for enterprise-level
objects in NIS+ and uses them in conjunction with the standard NIS+ tables for
passwords and hosts.

Introduction to the Federated Naming Service (FNS) 9

1

FNS and DNS

The Internet Domain Name System (DNS) is a hierarchical collection of name
servers that provide the Internet community with host and domain name
resolution. FNS uses DNS to name entities globally. Names can be constructed
for any enterprise that is accessible on the Internet; consequently, names can
also be constructed for objects exported by these enterprises. For more
information about FNS and DNS, see “Federating DNS” on page 62.

FNS and X.500

X.500 is a global directory service. Its components cooperate to manage
information about objects in a worldwide scope. Such objects include
countries, organizations, people, and machines. FNS federates X.500 in order to
enable global access to enterprise name services. For more information about
FNS and X.500, see “Federating X.500” on page 63.

FNS-based File Naming

FNS-based file naming integrates FNS naming into the Solaris file service.
FNS-based file naming enables files to be named relative to users, hosts, sites,
and organizations, using the FNS policies shared with other non-file
applications. FNS-based file naming gives clients a common view of the global
and enterprise-wide file namespaces. Solaris applications that access the file
system will, without modification, have access to the file namespaces
supported by FNS.

FNS-based Printer Naming

FNS-based printer naming provides the basic naming support for the
unbundled SunSoft Print Client (SSPC). FNS-based printer naming enables
printers to be named relative to users, hosts, sites, and organizations, using the
FNS policies shared with other non-printing-related applications. FNS-based
printer naming gives clients a common view of the global and enterprise-wide
printer namespaces and allows centralized administration of the printer
namespaces.

10 Federated Naming Service Guide—November 1995

1

FNS and Applications

Applications that are aware of FNS can expect the namespace to be arranged
according to the FNS policies, and applications that bind names in the FNS
namespace are expected to follow these policies.

There are three ways for applications to use FNS:

• Applications could be direct clients of the XFN interface and
policies. Application-level utilities such as the file system, the printing
service, and the desktop tools (calendar manager, file manager) are
examples of clients that use the XFN interface directly.

• Applications can use FNS through existing interfaces. A significant proportion
of FNS use will be through existing application programming interfaces. For
example, consider a UNIX application that obtains a file name that it later
supplies to the UNIX open() function. With FNS support for resolution of
file names, the application need not be aware that the strings it deals with
are composite names rather than the traditional local path names. Many
applications can thereby support the use of composite names without
modification.

• Systems can export the XFN interface. Naming systems, such as DNS and
X.500, and naming systems embedded in other services, like the file system
and printing service, are examples of naming systems that export the XFN
interface.

11

The XFN Model 2

This chapter describes the XFN naming model from several perspectives. Some
aspects are graphically presented as a way of helping you visualize XFN
concepts.

XFN Architectural Model
The primary services provided by a federated naming system are mapping a
composite name to a reference and providing access to attributes associated
with a named object. This section defines the elements of the XFN naming
model.

References

A reference is the information on how to reach an object. It contains a list of
addresses. An address identifies a communication endpoint. Multiple
addresses identify multiple communication endpoints for a single conceptual
object or service. For example, a list of addresses may be required because the
object is distributed or because the object can be accessed through more than
one communication mechanism.

XFN Architectural Model page 11

User’s View page 17

Application View page 19

API Usage Model page 22

12 Federated Naming Service Guide—November 1995

2

Note – XFN cannot guarantee specific properties of addresses such as their
stability, validity, or reachability. A client may be able to look up a name but
not be able to use the returned reference because the client may not have
support for any of the necessary communication mechanisms or may lack the
necessary network connectivity to reach the address. Further, the address may
be invalid from that origin or stale; these issues are the province of convention
between the name's binder, the clients, and the service provider specified in the
address.

Contexts

An XFN context is an object that exports the XFN base context programming
interface. A context contains a list of atomic names bound to references, as
shown in Figure 2-1. An atomic name may have zero or more attributes.
Contexts are at the heart of the lookup and binding operations, described
extensively in Chapter 10, “Interfaces for Writing XFN Applications.”

Figure 2-1 An XFN Context

Name A

A Context

Ref

Name B Ref

Name C Ref

Attr

Attr

Attr

Attr

Attr

Attr

The XFN Model 13

2

Attributes

Each named object is associated with zero or more attributes. Thus, attributes
are optional, as shown by the dotted lines in Figure 2-1 on page 12. Each
attribute has a unique attribute identifier, an attribute syntax, and a set of zero
or more distinct attribute values. XFN defines the base attribute interface for
examining and modifying the values of attributes associated with existing
named objects. These objects may be contexts or any other types of objects.
Associated with a context are syntax attributes that describe how the context
parses compound names.

Compound Names

A compound name is a sequence of one or more atomic names. An atomic
name in one context object can be bound to a reference to another context
object of the same type, called a subcontext. Objects in the subcontext are
named using a compound name. Compound names are resolved by looking up
each successive atomic name in each successive context.

A familiar analogy for UNIX users is the file naming model, where directories
are analogous to contexts, and path names serve as compound names.
Furthermore, contexts can be arranged in a “tree” structure, just as directories
are, with the compound names forming a hierarchical namespace.

• UNIX example: usr/local/bin . UNIX atomic names are ordered from left
to right and are delimited by slash (/) characters. The name usr is bound to
a context in which local is bound. The name local is bound to a context
in which bin is bound.

• DNS example: sales .Wiz.COM. DNS atomic names are ordered from right
to left, and are delimited by dot (.) characters. The domain name COM is
bound to a context in which Wiz is bound. Wiz is bound to a context in
which sales is bound.

• X.500 example: c=us/o=wiz/ou=sales . An X.500 atomic name comprises
an attribute type and an attribute value. Atomic names are known as relative
distinguished names in X.500. In this string representation X.500 atomic names
are ordered from left to right, and are delimited by slash (/) characters. An
attribute type is separated from an attribute value by an equal sign (=)
character. Abbreviations are defined for commonly used attribute types (for

14 Federated Naming Service Guide—November 1995

2

example, “c” represents country name). The country name US is bound to a
context in which wiz is bound. The organization name wiz is bound to a
context in which the organizational unit name sales is bound.

Figure 2-2 shows an example of a hierarchical naming system with compound
names.

Figure 2-2 Hierarchical Naming System With Compound Names

COM

Context 1

Ref

B Ref

C Ref
wiz

Context 2

Ref

Y Ref

Z Ref

Compound Names: wiz.COM, Y.COM, Z.COM

The XFN Model 15

2

Composite Names

A composite name is a name that spans multiple naming systems. It consists of
an ordered list of zero or more components. Each component is a name from
the namespace of a single naming system. Composite name resolution is the
process of resolving a name that spans multiple naming systems. Chapter 11,
“XFN Composite Names,” and Appendix A, “XFN Composite Names Syntax,”
supply more detail about composite names.

Components are slash-separated (/) and ordered from left to right, according
to XFN composite name syntax. For example, the composite name

sales.Wiz.COM/usr/local/bin

has two components, a DNS name (sales.Wiz.COM) and a UNIX path name
(usr/local/bin).

Figure 2-3 on page 16 shows an example of a federated naming system with
composite names. Note that the position of the name within a context has no
inherent significance in this illustration.

XFN Links

An XFN link is a special form of a reference that is bound to an atomic name in
a context. Instead of an address, a link contains a composite name. Many
naming systems support a native notion of link that may be used within the
naming system itself. XFN does not specify whether there is any relationship
between such native links and XFN links.

“XFN Links” on page 165 describes links in detail.

16 Federated Naming Service Guide—November 1995

2

Figure 2-3 Federated Naming System With Composite Names

 Initial Context

Every XFN name is interpreted relative to some context, and every XFN
naming operation is performed on a context object. The initial context object
provides a starting point for the resolution of composite names. The XFN
interface provides a function that allows the client to obtain an initial context.

The policies described in Part 2 of this guide specify a set of names that the
client can expect to find in this context and the semantics of their bindings.
This provides the initial pathway to other XFN contexts.

Context 1

Name Ref

COM

Context 2

Context 3

Naming System

Composite name: sales.wiz.com, usr/local/bin

wiz

sales

Context 1

usr

Another Naming System

Context 2

Context 3

local

bin

The XFN Model 17

2

 User’s View
Users experience federated naming through applications, as shown in
Figure 2-4. The user can interact with XFN-aware applications in a simple,
intuitive, and consistent manner. Typically, the user does not need to compose
or know the full composite name of the objects because the application takes
care of constructing the composite names.

Figure 2-4 User View of XFN

For example, if the application is expecting you to type a user name, the
application may include the user/ string in front of names that you enter.
Furthermore, if the application needs to name one of the user’s services, such
as the user’s default fax machine, it can append the rest of the name,
/service/fax , to the input supplied. Hence, a fax tool may take as input
jsmith and compose the name user/jsmith/service/fax for the default
fax of the user jsmith . Policies such as user/ and service/ are described in
Part 2, “FNS Policies.”

Calendar
Tool

Printer
Tool

File
Tool

18 Federated Naming Service Guide—November 1995

2

Similarly, to access a person’s calendar, you just need to type the person’s user
name. The application takes the input, jsmith , and uses it to construct the
composite name of the object, in this case,
user/jsmith/service/calendar , as shown in Figure 2-5.

Figure 2-5 User Interaction With XFN

File System View
Users and applications also experience federated naming through the file
system. The initial context is located under /xfn in the root directory. For
example, user jsmith ’s to_do file has the XFN name,
user/jsmith/fs/to_do . To read this file, you could type:

Applications access the files under /xfn just as they do any other files.
Applications do not need to be modified in any way, nor do they need to use
the XFN API.

% cat /xfn/user/jsmith/fs/to_do

user/jsmith/service/calendar

jsmith

XFN API

End-user input

Application

Federation of
naming
systems

The XFN Model 19

2

Application View
The way that client applications interact with XFN to access different naming
systems is illustrated in a series of figures. Figure 2-6 shows an application that
uses the XFN API and library.

Figure 2-6 Client Application Interaction With XFN

Client Application

XFN API

XFN Client
Library

20 Federated Naming Service Guide—November 1995

2

Figure 2-7 shows the details beneath the API. A name service that is federated
is accessed through the XFN client library and a context shared object module.
This module translates the XFN calls into name service–specific calls.

Figure 2-7 Details Beneath XFN API

Client Application

XFN API

XFN
Client Library

Context
Implementation

Name Service Interface

Library

Protocol

Server

The XFN Model 21

2

X.500, DNS, and NIS+ are the name services that have been federated in the
example shown in Figure 2-8.

As resolution of a composite name proceeds, it may cause these different
modules to be linked in, depending on the types of contexts referenced in the
name.

Figure 2-8 XFN Implementation Examples

Client Application

XFN API

XFN Client Library

libresolv

DNS server

Resolver API

RFC 1035

DUA

DSA

XDS API

X.500 DAP

libnsl/nis

NIS+ server

NIS+ API

NIS+ protocol

Composite names

Context shared object
modules for specific
name services

22 Federated Naming Service Guide—November 1995

2

API Usage Model
Many clients of the XFN interface are only interested in lookups. Their usage of
the interface amounts to:

• Obtaining the initial context
• Looking up one or more names relative to the initial context

Once the client obtains a desired reference from the lookup operation, it
constructs a client-side representation of the object from the reference. This
need not be code within the application layer but may be code inside the
service layer. For example, RPC services can provide clients with a means of
constructing client-side handles from a composite name for the service or from
a reference containing an RPC address for the service. After getting this
handle, the client performs all further operations on the object or service by
supplying the handle.

This is the basic model of how the XFN interface is expected to be used. The
enterprise policies presented in Chapter 4 further encourage a bind/lookup
model for how services and clients may rendezvous through the use of the
name service.

Part 2 — FNS Policies

These three chapters examine the FNS naming policies that are integral to
using FNS.

Introduction to FNS Policies page 25

Policies for the Enterprise Namespace page 37

Policies for the Global Namespace page 61

25

Introduction to FNS Policies 3

This chapter introduces FNS policies.

XFN defines policies for naming objects in the federated namespace. The goals
of these policies are

• To allow easy and uniform composition of names

• To promote coherence in naming across applications and services

• To provide a simple, yet sufficiently rich, set of policies so that applications
need not invent and implement ad hoc policies for specific environments

• To enhance an application’s portability

• To promote cross-platform interoperability in heterogeneous computing
environments

FNS policies contain all the XFN policies as well as extensions for the Solaris
environment.

Policy Overview page 26

Examples of Composite Names page 29

How FNS Policies Relate to NIS+ page 30

Target Client Applications of FNS Policies page 32

26 Federated Naming Service Guide—November 1995

3

Policy Overview
Computing environments now offer worldwide scope and a large range of
services. Users expect to have access to services at every level of the computing
environment. Figure 3-1 on page 27 shows that FNS policies provide a common
framework for the three levels of services: global, enterprise, and application.

What FNS Policies Specify

FNS provides applications with a set of policies on how name services are
arranged and used at the enterprise level:

• Name services for enterprise objects: organizations, hosts, users, sites, and
services. (these name services support contexts that allow other objects to be
named relative to these objects)

• The relationships among the organization, host, user, site, and service name
services, and the names used to refer to these name services

• The syntax of names in these name services

• How to federate the enterprise namespace so that it is accessible in the
global namespace

• Names and bindings present in the initial context of every process

What FNS Policies Do Not Specify

The FNS policies do not specify the specific names used within name services.
In addition, naming within the application is left to individual applications or
groups of related applications.

Introduction to FNS Policies 27

3

Figure 3-1 Different Levels of Name Services

Global

Enterprise

Application

28 Federated Naming Service Guide—November 1995

3

What FNS Enterprise Policies Arrange

The FNS enterprise policies deal with the arrangement of objects within the
enterprise namespace. This section introduces the types of objects named
within an enterprise and how they are arranged, as shown in Figure 3-2. These
entities are described in greater detail in Chapter 4, “Policies for the Enterprise
Namespace.” The policies are summarized in Table 4-2 on page 43.

• Organization – Entities such as departments, centers, and divisions. Sites,
hosts, users, and services can be named relative to an organization. The XFN
term for organization is organizational unit.

• Site – Physical locations, such as buildings, machines in buildings, and
conference rooms within buildings. Sites may have files and services
associated with them.

• Host – Computers. Hosts may have files and services associated with them.

• User – Human users. Users may have files and services associated with
them.

• Service – Services such as printers, faxes, mail, and electronic calendars.

• File – Files within a file system.

Figure 3-2 What FNS Policies Arrange

org

service

application
specific

application
specific

application
specific

application
specific

user

file

file service

site

service

file

host

file

service

Introduction to FNS Policies 29

3

Examples of Composite Names
This section shows examples of names that follow FNS policies. The specific
choices of organization names, site names, user names, host names, file names,
and service names (such as “calendar” and “printer”) are illustrative only;
these names are not specified by FNS policy.

Composing Names Relative to Organizations

The naming systems to be found under an organization are: user , host ,
service , fs , and site .

org/csl.parc/site/videoconference.northwing
names a conference room videoconference located in the north wing
of the site associated with the organization csl.parc .

org/csl.parc/user/mjones
names a user mjones in the organization csl.parc .

org/csl.parc/host/inmail
names a machine inmail belonging to the organization csl.parc .

org/csl.parc/fs/pub/blue-and-whites/CSL92-124
names a file pub/blue-and-whites/CSL92-124 belonging to the
organization csl.parc .

org/csl.parc/service/calendar
names the calendar service for the organization csl.parc . This might
manage the meeting schedules for the organization.

Composing Names Relative to Users

The naming systems associated with users are service and fs .

user/jsmith/service/calendar
names the calendar service of the user jsmith .

user/jsmith/fs/bin/games/riddles
names the file bin/games/riddles under the home directory of the
user jsmith .

30 Federated Naming Service Guide—November 1995

3

Composing Names Relative to Hosts

The naming systems associated with hosts are service and fs .

host/mailhop/service/mailbox
names the mailbox service associated with the machine mailhop .

host/mailhop/fs/pub/saf/archives.91
names the directory pub/saf/archives.91 found under the root
directory of the file system exported by the machine mailhop .

Composing Names Relative to Sites

The naming systems associated with sites are service and fs .

site/B5.MountainView/service/printer/speedy
names a printer speedy in the B5.MountainView site.

site/B5.MountainView/fs/usr/dist
names a file directory usr/dist available in the B5.MountainView
site.

How FNS Policies Relate to NIS+
If you are not familiar with NIS+ and its terminology, refer to
NIS+ and DNS Setup and Configuration Guide. You will find it helpful to be
familiar with the structure of a typical NIS+ environment.

NIS+ Domains and FNS Organizational Units

FNS names organization, user, and host objects within the Solaris enterprise
naming system, NIS+. An NIS+ domain is comprised of logical collections of
users and machines and information about them, arranged to reflect some form
of hierarchical organizational structure within an enterprise.

FNS is implemented on NIS+ by mapping NIS+ domains to FNS organizations.
An organizational unit name corresponds to a NIS+ domain name and is
identified using the fully qualified form of its NIS+ domain name, or its NIS+
domain name relative to the NIS+ root. The top of the FNS organizational
namespace is mapped to the NIS+ root domain and is accessed using the name
org / from the initial context.

Introduction to FNS Policies 31

3

In NIS+, users and hosts have a notion of a home domain. It is the primary NIS+
domain that maintains information associated with them. A user or host’s
home domain can be determined directly using its NIS+ principal name. An
NIS+ principal name is composed of the atomic user (login) name or the
atomic host name and the name of the NIS+ home domain. For example, user
jsmith with home domain wiz.com. has an NIS+ principal name
jsmith.wiz.com.

A user’s NIS+ home domain corresponds to the user’s FNS organizational
unit. Similarly, a host’s home domain corresponds to its FNS organizational
unit.

Trailing Dot in Organization Names

The trailing dot in an organization name indicates that the name is a fully
qualified NIS+ domain name. Without the trailing dot, the organization name
is an NIS+ domain name to be resolved relative to the NIS+ root domain.

For example, if the NIS+ root domain is wiz.com. , with subdomains
eng.wiz.com. and sales.wiz.com. , the following pairs of names refer to
the same organization:

org/ org/wiz.com.

org/eng org/eng.wiz.com.

org/sales org/sales.wiz.com.

The name org/eng. (with trailing dot) would not be found, because there is
no NIS+ domain with the eng . name.

NIS+ Users and FNS Users

Users in the NIS+ namespace are found in the passwd.org_dir table of a
domain. Users in an FNS organization correspond to the users in the
passwd.org_dir table of the corresponding NIS+ domain. FNS provides a
context for each user in the passwd table.

32 Federated Naming Service Guide—November 1995

3

NIS+ Hosts and FNS Hosts

Hosts in the NIS+ namespace are found in the hosts.org_dir table of a
domain. Hosts in an FNS organization correspond to the hosts in the
hosts.org_dir table of the corresponding NIS+ domain. FNS provides a
context for each host in the hosts table.

Target Client Applications of FNS Policies
One goal of the FNS policies is to address coherence across the most commonly
used tools, including the file system, the DeskSet™ tools, such as Calendar
Manager, Print Tool, File Manager, and Mail Tool, and services that support
these tools, such as RPC, email, and print subsystems.

Note – Some of these examples are not currently implemented in the Solaris
environment. They are listed here as a way of illustrating how FNS may be
used.

• Calendars – Instead of using names of the form username@hostname to
access someone’s calendar, you would simply supply a user’s name, in most
cases. You should also be able to use composite names to name calendars.
For example, names of the following form would be accepted by calendar
manager:

jsmith
user/mjones
site/clarke.b5.mtv (calendar for Clarke conference room)

• Printing – Instead of naming a specific printer by its name, you should be
able to name a printer relative to a user, site, or organization. For example:

jsmith (jsmith ’s default printer)
org/dct (an organization’s default printer)
site/clarke.b5.mtv (printer in the Clarke conference room)

• File access – You should be able to use composite names to name file
systems and files. The automounter should use FNS to make resolution of
composite names possible. For example, you should be able to use a file
name like /xfn/user/mbrown/fs/.cshrc to reference the.cshrc file for
user mbrown.

Introduction to FNS Policies 33

3

• RPC – Instead of addressing services by their host name, program, and
version numbers, you should be able to name the service using a composite
name. For example, you should be able to name an RPC service relative to a
user or an organization.

• Mail – Similarly, composite names can be used to name mail destinations.
You should be able to use names such as the following:

jsmith
user/jsmith
org/dct (an organization’s mailing list)
site/clarke.b5.mtv (mailbox of the conference room coordinator)

• Other desktop applications – You should be able to pass composite names
to other desktop applications such as spreadsheets, document preparation
tools, fax tools, and so on. Some of these applications would attach their
own namespace to the service namespace, thus becoming part of the FNS
federation.

Example Application: Calendar Service

This is a description of how one application, a calendar service, could be
modified to use FNS policies. This example illustrates how FNS composite
names might be presented to and accepted from users.

The DeskSet’s calendar service is typical of client-server applications.
Calendar servers runs on some set of machines and maintain the users’
calendars. Calendar Manager (cm) runs on the desktop and contacts the
appropriate server to obtain the calendars of interest.

The calendar service could benefit from FNS using a simple registry/lookup
model as follows:

• Binding – Upon startup, the server registers the calendars that it manages
by binding a reference containing its own ONC+ RPC address (host, program,
version) to the composite name for each calendar it manages, such as
user/jsmith/service/calendar .

• Lookup – When using cm, the user specifies another user’s calendar simply
by entering the user’s name (for example, jsmith) or selecting it from a list
of names previously entered. Given the user name jsmith , cm composes

34 Federated Naming Service Guide—November 1995

3

the composite name user/jsmith/service/calendar and uses this to
look up the RPC address that it needs to communicate with the server that
manages that calendar.

In the previous example, we used the name “calendar ” to denote a calendar
binding. The developers of the calendar service should register the name
“calendar ” with the FNS administrator, much as RPC programs are
registered with the RPC administrator. Refer to “Service Name and Reference
Registration” on page 40.

Note – The name “calendar ” used here is an example. FNS policy does not
specify the names of specific services.

The calendar service could take further advantage of FNS policy by allowing
calendars to be associated with sites, organizations, and hosts, while still
naming them in a uniform way. For example, by allowing calendars to be
associated with a conference room (a site), the service can be used to
“multibrowse” the conference room’s calendar as well as a set of user
calendars to find an available time for a meeting in that room. Similarly,
calendars can be associated with organizations for group meetings and hosts
for keeping maintenance schedules.

cm could simplify what the user needs to specify by following some simple
steps.

1. cm uses a tool for accepting composite names from the user and
constructing the name of the object whose calendar is of interest.
The object would be the name of a user, a site, a host, or an organization. For
example, the user might enter the name mjones and the calendar manager
would generate the composite name user/mjones . This tool could be
shared amongst a group of DeskSet applications.

2. cm uses the XFN interface to compose this name with the suffix
/service/calendar to obtain the name of the calendar.

Introduction to FNS Policies 35

3

3. This calendar name is then resolved relative to the process’s initial context.
Continuing with the example, this would result in the resolution of the
name user/mjones/service/calendar . Similarly, if the user enters the
name of a site, clarke.B5.mtv , cm would generate the name
site/clarke.B5.mtv/service/calendar for resolution.

Other services such as printing and mail could take advantage of the FNS
policies in a similar way.

36 Federated Naming Service Guide—November 1995

3

37

Policies for the Enterprise
Namespace 4

FNS policies specify the types and arrangement of namespaces within an
enterprise and how such namespaces can be used by applications. This chapter
describes these policies.

FNS policies described in this chapter include some extensions to XFN policy.
These are explicitly defined with notes.

Namespaces in the Enterprise
This section introduces the types of namespaces within an enterprise:

• Organizational units
• Sites (an extension to the XFN policy)
• Hosts
• Users
• Services
• Files
• Printers (an extension to the XFN policy)

Namespaces in the Enterprise page 37

Namespace Identifiers page 41

Structure of the Enterprise Namespace page 42

Initial Context Bindings for Naming Within the Enterprise page 54

38 Federated Naming Service Guide—November 1995

4

Some of these namespaces, such as users and hosts, can appear more than once
in a federated namespace.

Organizational Unit Namespace

The organizational unit namespace provides a hierarchical namespace for
naming subunits of an enterprise. Each organizational unit name is bound to
an organizational unit context that represents the organizational unit.

In the Solaris environment, organizational units correspond to NIS+ domains
and are named using dot-separated right-to-left compound names, where each
atomic part names an organizational unit within a larger unit. For example, the
name dct.eng names an organizational unit dct within a larger unit named
eng .

Organizational unit names can be either fully qualified NIS+ domain names or
relatively named NIS+ domain names. Fully qualified names have a terminal
dot; relative names do not. If a terminal dot is present in the organization
name, the name is treated as a fully qualified NIS+ domain name. If there is no
terminal dot, the organization name is resolved relative to the top of the
organizational hierarchy. For example, if the top organization corresponds to
the NIS+ root domain wiz.com. (the trailing dot is significant) and if dct.eng
is one of its suborganizations, the organization names dct.eng and
dct.eng.wiz.com. (the trailing dot is significant) are equivalent.

Site Namespace

The site namespace provides a geographic namespace for naming objects that
are naturally identified with their physical locations. These objects may be, for
example, buildings on a campus, machines and printers in a building,
conference rooms in a building and their schedules, and users in a particular
quadrant of a building.

In the Solaris environment, sites are named using compound names, where
each atomic part names a site within a larger site. The syntax of site names is
dot-separated right-to-left, with components arranged from the most general to
the most specific location description. For example, clarke.b5.mtv names
the Clarke conference room in building 5 on the Mountain View campus of
some enterprise.

Policies for the Enterprise Namespace 39

4

User Namespace

The user namespace provides a namespace for naming human users in a
computing environment.

Users are named in username contexts. The username context has a single-level
namespace and contains bindings of user names to user contexts. A user
context allows you to name objects relative to a user, such as files, services, or
resources associated with the user.

In the Solaris environment, user names correspond to Solaris login user names.

Host Namespace

The host namespace provides a namespace for naming computers.

Hosts are named in hostname contexts. The hostname context has a flat
namespace and contains bindings of host names to host contexts. A host context
allows you to name objects relative to a host, such as files and printers found at
that host.

In the Solaris environment, host names correspond to Solaris host names. Alias
names for a single machine share the same context.

Service Namespace

The service namespace provides a namespace for services used by or
associated with objects within an enterprise. Examples of such services are
electronic calendars, faxes, mail, and printing.

In the Solaris environment, the service namespace is hierarchical. Service
names are slash-separated (/) left-to-right compound names. An application
that uses the service namespace can make use of this hierarchical property to
reserve a subtree for that application. For example, the printer service reserves
the subtree printer in the service namespace.

FNS does not specify how service names or reference types are chosen. These
are determined by service providers that share the service namespace. For
example, the calendar service uses the name calendar in the service context
to name the calendar service and what is bound to the name calendar is
determined by the calendar service.

40 Federated Naming Service Guide—November 1995

4

Service Name and Reference Registration

SunSoft, Inc., maintains a registry of the names bound in the first level of the
service namespace. To register a name, send an email request to
fns-register@sun.com , or write to:

FNS Registration
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043

Please include a brief description of the intended use of the name and a
description of the format of the reference that can be bound to that name. See
“References and Addresses” on page 153 for details on reference formats.

Printer Namespace

The printer namespace provides a namespace for naming printers. The printer
namespace and context is described in more detail in Chapter 9,
“Administering the Printer Namespace.”

File Namespace

A file naming system (or file system) provides a namespace for naming files.
The file context and namespace is described in more detail in Chapter 8,
“Administering the File System Namespace.”

Policies for the Enterprise Namespace 41

4

 Namespace Identifiers

The organizational unit namespace, site namespace (an extension to XFN
policies), user namespace, host namespace, service namespace, and file
namespace are referred to by the atomic names _orgunit , _site , _host ,
_user , _service, and _fs , respectively, in the federated enterprise
namespace. These atomic names are called namespace identifiers.

In addition, FNS also supports the use of these names without the leading
underscore (“_”) character (orgunit , site , host , user , service , and fs ,
respectively) as namespace identifiers for these namespaces. These names
without the underscore are extensions to the XFN policies. The site and
printer contexts are extensions to the XFN policies.

Table 4-1 Namespace Identifiers in the Enterprise

Namespace Identifier Resolves to

orgunit
_orgunit

Context for naming organizational units

site
_site

Context for naming sites

host
_host

Context for naming hosts

user
_user

Context for naming users

fs
_fs

Context for naming files

service
_service

Context for naming services

printer Context for naming printers

42 Federated Naming Service Guide—November 1995

4

Note – In XFN terminology, the names with the leading underscore are the
canonical namespace identifiers. The names without the underscore are the
Solaris customized namespace identifiers. Solaris customized namespace
identifiers, with the addition of printer , may not necessarily be recognized in
non-Solaris environments. The canonical namespace identifiers are always
recognized and, hence, portable to other environments.

The XFN component separator (/) is used to delimit namespace identifiers. For
example, composing the namespace identifier orgunit with the
organizational unit name accountspayable.finance gives the composite
name, orgunit/accountspayable.finance .

Composing the namespace identifier user with the user name jsmith gives
the composite name, user/jsmith.

FNS reserves the use of all atomic names in Table 4-1 as namespace identifiers
in contexts in which namespace identifiers can appear, as defined by the
arrangement of naming systems in “Structure of the Enterprise Namespace.”
FNS does not otherwise restrict the use of these atomic names in other
contexts. For example, the atomic name service is used as a namespace
identifier relative to a user name, as in user/jsmith/service/calendar , to
mean the root of user jsmith 's service namespace. This does not preclude a
system from using the name service as a user name, as in user/service ,
because FNS specifies that the context to which the name user/ is bound is for
user names and not for namespace identifiers. Thus, in this case, service is
unambiguously interpreted as a user name.

Structure of the Enterprise Namespace
FNS defines the structure of the enterprise namespace. The goal of this
structure is to allow easy and uniform composition of names. This structure
has two main rules: (1) objects with narrower scopes are named relative to
objects with wider scopes, and (2) namespace identifiers are used to denote the

Policies for the Enterprise Namespace 43

4

transition from one namespace to the next. Table 4-2 is a summary of FNS
policy for arranging the enterprise namespace. Figure 4-1 on page 44 shows an
example of a namespace layout that follows FNS policy.

Table 4-2 Policies for the Federated Enterprise Namespace

Namespace
Identifiers

Name
Service Type

Subordinate
Context

Parent
Context

Namespace
Organization Syntax

orgunit

_orgunit

Organiza-
tional unit

Site,
user,
host,
file system,
service

Enterprise root Hierarchical NIS+ domain
name

Dot-separated,
right-to-left

site

_site

Site Service,
file system

Enterprise root,
organizational unit

Hierarchical Dot-separated,
right-to-left

user

_user

User Service,
file system

Enterprise root,
organizational unit,

Flat Solaris login
name

host

_host

Host Service,
file system

Enterprise root,
organizational unit,

Flat Solaris
host name

service

_service

Service Application-
specific

Enterprise root,
organizational unit,
site,
user,
host

Hierarchical / separated,
left-to-right

fs

_fs

File system None Enterprise root,
organizational unit,
site,
user,
host

Hierarchical / separated,
left-to-right

printer Printer None Service Hierarchical / separated,
left-to-right

44 Federated Naming Service Guide—November 1995

4

Figure 4-1 Example of an Enterprise Namespace

The namespace of an enterprise is structured around the hierarchical structure
of organizational units of an enterprise. Names of sites, hosts, users, files, and
services may be named relative to names of organizational units by composing
the organizational unit name with the appropriate namespace identifier and
object name.

In Figure 4-1, a user jsmith in the engineering organization of an enterprise is
named using the name

orgunit/desktop.sw.eng/user/jsmith

orgunit site

eng corp east west

sw hw chelmsford

desktop b21

service host user service

jsmithjoe rlee
printer

laser colorscarabease abc

user host

Policies for the Enterprise Namespace 45

4

Note the use of the namespace identifier user to denote the transition from the
orgunit namespace to the user namespace. In a similar fashion (with the use
of appropriate namespace identifiers), names of files and services may also be
named relative to names of sites, users, or hosts. Names of sites may be named
relative to organizational unit names.

The goal of easy and uniform composibility of names is met using this
structure. For example, once you know the name for an organizational unit
within an enterprise (for example, orgunit/sw), you can name a user relative
to it by composing it with the user namespace identifier and the user’s login
name to yield a name such as

orgunit/sw/user/joe

To name a file in this user’s file system, you can use a name like

orgunit/sw/user/joe/fs/notes

Double Slashes in Organization Name

orgunit// names the context of namespace identifiers associated with the
root organizational unit, as in orgunit//service/printer . See
“Significance of Double Slashes” on page 99 for more details on the
significance of double slashes.

Enterprise Root

The root context of an enterprise, referred to as the enterprise root, is a context
for naming objects found at the root of the enterprise namespace.

Parent Context

Enterprise roots are bound in the global namespace.

Subordinate Contexts

The following objects can be named relative to the enterprise root:

• Organizational units in that enterprise
• Sites in the top organizational unit of the enterprise (an extension to XFN

policies)

46 Federated Naming Service Guide—November 1995

4

• Users in the top organizational unit of the enterprise
• Hosts in the top organizational unit of the enterprise
• Services for the top organizational unit of the enterprise
• File service for the top organizational unit of the enterprise

These objects are named by composing with the namespace identifier of the
target object’s namespace and the name of the target object.

For example, if .../wiz.com 1 is the name of an enterprise, the root of the
context for naming organizational units is

.../wiz.com/orgunit/

and an organizational unit in that enterprise would be named using a name
like

.../wiz.com/orgunit/finance

Sites in that enterprise would be named using a name starting with

.../wiz.com/site/

Organizational Units

Parent Context

Organizational units may be named relative to the enterprise root.

Given an organization name, you can compose a name for its organizational
unit context by using one of the namespace identifiers, orgunit or
_orgunit . For example, if .../wiz.com is the name of an enterprise, the root
of the context for naming organizational units is

.../wiz.com/orgunit/

and an organizational unit in that enterprise would be named using a name
like

.../wiz.com/orgunit/finance

1. The atomic name “...” (three dots) appears in the initial context to mean the global context. See Chapter 5,
“Policies for the Global Namespace” for a description of the global context.

Policies for the Enterprise Namespace 47

4

Subordinate Contexts

The following objects can be named relative to an organizational unit name:

• Sites for that organizational unit (an extension to the XFN policies)
• Hosts in that organizational unit
• Users in that organizational unit
• Services for that organization unit
• File service for that organizational unit

These objects are named by composing the organizational unit’s name with the
namespace identifier of the target object’s namespace and the name of the
target object. For example, the name

orgunit/sales/service/calendar

names the calendar service of the sales organizational unit. Similar, the name

orgunit/sales/user/jpeters

names a user jpeters in the sales organizational unit.

To name an organizational unit’s subunit, you use the organizational unit
namespace’s syntax to compose the subunit's name. For example, a subunit
accountspayable of the organizational unit finance is named using the
name

orgunit/accountspayable.finance

whereas user jsmith in the finance organizational unit is named using the
name

orgunit/finance/user/jsmith

Sites

Sites are an extension to the XFN policies.

Parent Contexts

Sites may be named relative to

• The enterprise root
• An organizational unit

48 Federated Naming Service Guide—November 1995

4

Sites named relative to the enterprise root are the same as sites named relative
to the top organizational unit. Given an organization name, you can compose a
name for its site context by using one of the namespace identifiers, site or
_site . For example, if .../wiz.com is the name of an enterprise, the root of
the context for naming sites is

.../wiz.com/site

which is equivalent to

.../wiz.com/orgunit//site

 A site in that enterprise would be named using a name like

.../wiz.com/site/OceanSide

In another example, the name

orgunit/eng/site/

names the root of the site namespace for the organizational unit orgunit/eng ,
while the name

orgunit/eng/site/b5.mtv

names a location within that site; in this example, building 5 in Mountain View.

Subordinate Contexts

The following objects can be named relative to a site name:

• Services at the site, such as the site schedule or calendar, printers, and faxes
• The file service available at the site

These objects are named by composing the site name with the namespace
identifier of the target object’s namespace and the name of the target object.

For example, the name

site/Clark.b5.mtv/service/calendar

names the calendar service of the conference room Clark.b5.mtv and is
obtained by composing the site name site/Clark.b5.mtv with the service
name service/calendar . To name a subunit of a site, you use the site
namespace syntax. For example, the name

Policies for the Enterprise Namespace 49

4

site/b5.mtv

names building 5, on the Mountain View campus of some enterprise while the
name

site/mtv/service/calendar

names the calendar service for the Mountain View site.

Users

Parent Contexts

Users can be named relative to

• An organizational unit
• The enterprise root

Users named relative to the enterprise root are the same as users named
relative to the top organizational unit. Given an organization name, you can
compose a name for its username context by using one of the namespace
identifiers, user or _user . Thus, if orgunit/dct.eng names an
organization, then

orgunit/dct.eng/user /

names the username context of dct.eng . The username context contains
bindings of user names to user contexts.

Continuing with the above example, the name

orgunit/dct.eng/user/jsmith

names a user jsmith in the dct.eng organizational unit.

Subordinate Contexts

The following objects can be named relative to a user name:

• Services associated with the user
• The user’s files

50 Federated Naming Service Guide—November 1995

4

These objects are named by composing the user’s name with the namespace
identifier of the target object’s namespace and the name of the target object. For
example, the name

user/jjones/service/calendar

names the calendar for the user jjones .

Hosts

Parent Contexts

Hosts can be named relative to

• An organizational unit
• The enterprise root

Hosts named relative to the enterprise root are the same as hosts named
relative to the top organizational unit. Given an organization name, you can
compose a name for its hostname context by appending one of the namespace
identifiers, host or _host . Thus if orgunit/dct.eng names an organization,
then

org/dct.eng/host/

names the hostname context of dct.eng . The hostname context contains
bindings of host names to host contexts. Continuing with the above example,
the name

org/dct.eng/host/silver

names a machine silver in the dct.eng organizational unit.

Subordinate Contexts

The following objects can be named relative to a host name:

• Services associated with the host
• Files exported by the host

Policies for the Enterprise Namespace 51

4

These objects are named by composing the host name with the namespace
identifier of the target object’s namespace and the name of the target object. For
example, the name

host/silver/fs/release

names the file directory release being exported by the machine silver .

Typically, resources should not be named relative to hosts but relative to more
intuitive entities such as organizations, users, or sites. Dependence on host
names forces the user to remember information that is often obscure and
sometimes not very stable. For example, a user’s files may move from one host
to another, because of hardware changes, file space usage, users who share the
same file server, network reconfigurations, and so on. Yet if the files were
named relative to the user, such changes would not affect how the files are
named. There may be a few cases in which the use of host names is
appropriate. For example, if a resource is available only on a particular
machine and is tied to the existence of that machine, and there is no other
logical way to name the resource relative to other entities, then it may make
sense to name the resource relative to the host.

Services

Service names should be registered with SunSoft, Inc., as directed in “Service
Name and Reference Registration” on page 40.

Parent Contexts

A service can be named relative to

• An organizational unit
• The enterprise root
• A user
• A host
• A site

Services named relative to the enterprise root are the same as services named
relative to the top organizational unit.

52 Federated Naming Service Guide—November 1995

4

The parent contexts allow services, such as Calendar Manager or printers, to be
named relative to the parent object. A service context is named by using the
namespace identifiers service or _service , relative to the organization, site,
user, or host with which it is associated. For example, if
orgunit/accountspayable.finance names an organizational unit, then

orgunit/accountspayable.finance/service/calendar

names the calendar service of the organizational unit
accountspayable.finance .

Subordinate Contexts

FNS does not restrict the types of bindings in the service namespace.
Applications may create contexts of a type other than service contexts and bind
them in the service namespace.

FNS supports the creation of generic contexts in the service context. A generic
context is similar to a service context except that a generic context has an
application-determined reference type. All other properties of a generic context
are the same as a service context.

For example, a company, World Intrinsic Designs Corp (WIDC), reserves the
name extcomm in the service namespace to refer to a generic context for
adding bindings related to its external communications line of products. The
context bound to extcomm is a generic context, with reference type
WIDC_comm. The only difference between this context and a service context is
that this context has a different reference type.

Files

Parent Contexts

A file namespace can be named relative to

• The enterprise root
• An organizational unit
• A user
• A host
• A site

Policies for the Enterprise Namespace 53

4

Files named relative to the enterprise root are the same as files named relative
to the top organizational unit. A file context is named by using the namespace
identifiers fs or _fs , relative to the organization, site, user, or host with which
it is associated. For example, if orgunit/accountspayable.finance names
an organizational unit, then

orgunit/accountspayable.finance/fs/

names the file service of the organizational unit accountspayable.finance .
In another example, if user/jsmith names a user jsmith , the name

user/jsmith/fs/highlights95.mif

names her file highlights95.mif . The file service of the user defaults to her
home directory, as specified in the NIS+ passwd table.

Subordinate Contexts

There can be no other type of context subordinate to a file system.

Printers

The printer context is an extension of XFN policies.

Parent Contexts

A printer namespace can be named in the service context.

A printer context is named by using the namespace identifier, printer , in the
service context relative to

• An organizational unit
• A user
• A host
• A site

For example, if orgunit/accountspayable.finance names an
organizational unit, then

orgunit/accountspayable.finance/service/printer

names the printer service of the organizational unit
accountspayable.finance .

54 Federated Naming Service Guide—November 1995

4

Subordinate Contexts

There can be no other type of context subordinate to a printer.

Initial Context Bindings for Naming Within the Enterprise
The XFN API provides a function, fn_ctx_handle_from_initial() , that
allows the client to obtain an initial context object as a starting point for name
resolution. The initial context contains bindings that allow the client
application to (eventually) name any object in the enterprise
namespace.Figure 4-2 on page 54 shows the same naming system as the one
shown in Figure 4-1 on page 44, except that the initial context bindings are
shaded and shown in italics.

Figure 4-2 Example of Enterprise Bindings in the Initial Context

thisens
myens

orgunit site

org site

eng corp east west

sw hw chelmsford

desktop
thisorgunit
myorgunit b21

user host service host user service

jsmith

joe rlee myself
printer

laser color

scarab

ease abc thishost

user

Bound in
the initial context

host

Policies for the Enterprise Namespace 55

4

The initial context has a flat namespace for namespace identifiers. The bindings
of these namespace identifiers are summarized in Table 4-3 on page 55 and are
described in more detail in subsequent sections. There are three categories of
bindings:

• User-related bindings
• Host-related bindings
• “Shorthand” bindings

In Table 4-3, the user to which the bindings are related is denoted by U, and
the host to which the bindings are related is denoted by H. Not all of these
names need to appear in all initial contexts. For example, when a program is
invoked by the superuser, none of the user-related bindings appears in the
initial context. These bindings are described in more detail in the following
sections.

Table 4-3 Initial Context Bindings for Naming Within the Enterprise

Namespace
Identifier Binding

myself
_myself
thisuser

U’s user context

myens
_myens

The enterprise root of U

myorgunit
_myorgunit

U’s distinguished organizational unit context; in the Solaris
environment, the distinguished organizational unit is U’s NIS+
home domain

thishost
_thishost

H’s host context

thisens
_thisens

The enterprise root of H

thisorgunit
_thisorgunit

H’s distinguished organizational unit context; in the Solaris
environment, the distinguished organizational unit is H’s NIS+
home domain

user
_user

The context in which users in the same organizational unit as
H are named

host
_host

The context in which hosts in the same organizational unit as
H are named

org
orgunit
_orgunit

The root context of the organizational unit namespace in H’s
enterprise; in the Solaris environment, this corresponds to the
NIS+ root domain

56 Federated Naming Service Guide—November 1995

4

In XFN terminology, the names with the leading underscore prefix are the
canonical namespace identifiers. The names without the leading underscore,
with the additions of org and thisuser , are Solaris customizations. Solaris
customized namespace identifiers are not guaranteed to be recognized in other,
non-Solaris environments. The canonical namespace identifiers are always
recognized and, hence, portable to other environments.

Note – The current implementations of FNS does not support the addition or
modification of names and bindings in the initial context.

User-related Bindings

FNS assumes that there is a user associated with a process when
fn_ctx_handle_from_initial() is invoked. This association is based on
the effective user ID (euid) of the process. Although the association of user to
process may change during the life of the process, the original context handle
does not change.

In the following sections the user is denoted by “U.” FNS defines the following
bindings in the initial context that are related to U.

myself

The namespace identifier myself (or either synonym _myself or
thisuser) in the initial context resolves to the user context of U. For example,
if U is jsmith , the name myself resolves in the initial context to jsmith ’s
user context, and the name

myself/fs/.cshrc

names the file .cshrc of jsmith .

site
_site

The root context of the site namespace at the top
organizational unit if the site namespace has been configured

Table 4-3 Initial Context Bindings for Naming Within the Enterprise (Continued)

Namespace
Identifier Binding

Policies for the Enterprise Namespace 57

4

myorgunit

FNS assumes that each user is affiliated with an organizational unit of an
enterprise. A user may be affiliated with multiple organizational units, but
there must be one that is distinguished, perhaps by its position in the
organizational namespace or by the user’s role in the organization. In NIS+
terminology, this organizational unit corresponds to the user’s home domain.

The namespace identifier myorgunit (or synonym _myorgunit) resolves in
the initial context to the context of U’s distinguished organizational unit. For
example, if U is the user jsmith , and jsmith ’s home domain is
accountspayable.finance , then myorgunit resolves in the initial context
to the organizational unit context for accounts_payable.finance , and the
name

myorgunit/service/calendar

resolves to the calendar service of accounts_payable.finance .

myens

FNS assumes that there is an association of a user to an enterprise. This
corresponds to the NIS+ hierarchy that holds myorgunit .

The namespace identifier myens (and synonym _myens) resolves in the initial
context to the enterprise root of the enterprise to which U belongs. For
example, assume that U is jsmith and jsmith ’s NIS+ home domain is
accountspayable.finance , which in turn is in the NIS+ hierarchy with root
domain name wiz.com. The name

myens/orgunit/

 resolves to the top organizational unit of wiz.com .

Note – Writers of set-user-ID programs need to be careful when using user-
related composite names, such as myorgunit or myself/service , because
these bindings depend on the effective user ID of a process. In cases where
programs have a set-user-ID of root in order to access system resources on
behalf of the caller, it will generally be desirable to call seteuid(getuid())
before calling fn_ctx_handle_from_initial() .

58 Federated Naming Service Guide—November 1995

4

Host-related Bindings

A process is running on a particular host when
fn_ctx_handle_from_initial() is invoked. In the following discussion
this host is denoted by “H.” FNS defines the following bindings in the initial
context that are related to H.

thishost

The namespace identifier thishost (or its synonym _thishost) is bound to
the host context of H. For example, if the process is running on the machine
gofer , thishost would be bound to the host context of gofer , and the name

thishost/service/calendar

would refer to the calendar service of gofer .

thisorgunit

FNS assumes that there is an association of a host to an organizational unit.
A host may be associated with multiple organizational units, but there must be
one that is distinguished. In NIS+ terminology, this organizational unit
corresponds to the host’s home domain.

The namespace identifier thisorgunit (or its synonym _thisorgunit)
resolves to H’s distinguished organizational unit. For example, if H is the
machine gofer , and gofer ’s NIS+ home domain is desktop.engineering,
thisorgunit resolves to the organizational unit context for
desktop.engineering and the name

thisorgunit/service/fax

refers to the fax service of the organizational unit desktop.engineering.

thisens

FNS assumes that there is an association of a host to an enterprise. This
corresponds to the NIS+ hierarchy that holds thisorgunit .

The namespace identifier thisens (or its synonym _thisens) resolves to
the enterprise root of H. For example, assume that H is the machine gofer and
gofer ’s NIS+ home domain is desktop.engineering , which in turn is in
the NIS+ hierarchy with root domain name wiz.com. The name

Policies for the Enterprise Namespace 59

4

thisens/site/

resolves to the root of the site namespace of wiz.com.

“Shorthand” Bindings

FNS defines the following “shorthand” bindings in the initial context to enable
the use of shorter names to refer to objects in certain commonly referenced
namespaces.

user

The namespace identifier user (or its synonym _user) is bound in the initial
context to the username context in H’s organizational unit. This allows other
users in the same organizational unit as H to be named from this context.

From the initial context, the names user and thisorgunit/user resolve to
the same context. For example, if H is the machine gofer and gofer is in the
desktop.engineering organizational unit, the name user/mjones names
the user mjones in desktop.engineering .

host

The namespace identifier host (or its synonym _host) is bound in the initial
context to the hostname context in H’s organizational unit. This allows other
hosts in the same organizational unit as H to be named from this context.

From the initial context, the names host and thisorgunit/host resolve to
the same context. For example, if H is the machine gofer and gofer is in the
desktop.engineering organizational unit, the name host/bigbig names
the machine bigbig in the organizational unit desktop.engineering .

org

The namespace identifier org (or its synonyms orgunit, _orgunit) is
bound in the initial context to the root context of the organization naming
system of the enterprise to which H belongs.

From the initial context, the names org and thisens/orgunit resolve to the
same context. For example, if H is the machine gofer and gofer is in the
enterprise wiz.com ., the name

org/accountspayable.finance

60 Federated Naming Service Guide—November 1995

4

names the organizational unit accountspayable.finance in wiz.com.

site

The namespace identifier site (or its synonym _site) is bound in the initial
context to the root of the site naming system of the top organizational unit of
the enterprise to which H belongs.

From the initial context, the names site and thisens/site resolve to the
same context. For example, if H is the machine gofer and gofer is in the
enterprise wiz.com ., the name

site/clarke.b5.mtv

names a conference room, clarke in building 5 on the Mountain View campus
of wiz.com.

61

Policies for the Global Namespace 5

This chapter describes the policies for naming objects that use global naming
systems.

The Global Namespace

Global name services have worldwide scope. An enterprise “hooks up” to the
federated global namespace by binding the root of the enterprise in the global
namespace. This enables applications and users outside the enterprise to name
objects within that enterprise. For example, a user within an enterprise can
give out the global name of a file to a colleague in another enterprise to use.

DNS and X.500 contexts provide global-level name service for naming
enterprises. FNS provides support for both DNS and X.500 contexts.

The Global Namespace page 61

Initial Context Bindings for Global Naming page 62

Federating DNS page 62

Federating X.500 page 63

Table 5-1 Policies for the Federated Global Namespace

Namespace
Identifier

Name
Service Type Subcontexts

Parent
Context

Namespace
Organization Syntax

... Global Enterprise root None Hierarchical DNS or X.500

62 Federated Naming Service Guide—November 1995

5

 Initial Context Bindings for Global Naming

The atomic name ”... ” (three dots) appears in the initial context of every FNS
client. The atomic name “... ” is bound to a context from which global names
can be resolved.

Global names can be either fully qualified Internet domain names or X.500
distinguished names.

• Internet domain names appear in the syntax specified by Internet RFC
1035.

• X.500 names appear in the syntax determined by the X/Open DCE
Directory.

For example, .../wiz.com specifies a name to be resolved by DNS,
whereas.../c=us/o=wiz specifies a name to be resolved by X.500.

The names “... ” and “/... ” are equivalent when resolved in the initial
context. For example, the names /.../c=us/o=wiz and.../c=us/o=wiz
resolve in the initial context to the same object.

Federating DNS
When a DNS name is encountered in the global namespace, it is resolved using
the DNS name-resolution mechanism, the resolver library. The name typically
resolves to an Internet host address or DNS domain records. Any fully
qualified DNS names may be used in the global context. When the global
context detects a DNS name, the name is passed to the DNS resolver for
resolution. The result is converted into an XFN reference structure and
returned to the caller.

The contents of DNS domains may be listed. However, the listing operations
may be limited by practical considerations such as connectivity and security on
the Internet. For example, listing the global root of the DNS domain is
generally not supported by the root DNS servers. Most entities below the root,
however, do support the list operation.

Table 5-2 Initial Context Bindings for Global Naming

Atomic Name Binding

... Global context for resolving DNS or X.500 names

/... Synonym for three dots

Policies for the Global Namespace 63

5

DNS hosts and domains are distinguished by the presence or absence of name
service (NS) resource records associated with DNS resource names. If an NS
record exists for a resource name, then that name is considered to be the name
of the domain, and the returned reference is of type inet_domain . Otherwise,
the returned reference is of type inet_host .

DNS may be used to federate other naming systems by functioning as a
nonterminal naming system. For example, an enterprise naming system may
be bound to wiz.com in DNS such that the FNS name .../wiz.com/ refers
to the root of that enterprise’s FNS namespace. The enterprise naming system
is bound to a DNS domain by adding the appropriate text (TXT) records to the
DNS map for that domain. When the FNS name for that domain includes a
trailing slash (/), the TXT resource records are used to construct a reference to
the enterprise naming system. Procedural information for federating an NIS+
domain under FNS is provided in “Federating NIS+ Under DNS” on page 112.

For general information about DNS, see in.named(1M) or the DNS chapters
in NIS+ and DNS Setup and Configuration Guide.

Federating X.500
X.500 is a global directory service. It stores information and provides the
capability to look up information by name as well as to browse and search for
information. The information is held in a directory information base (DIB).
Entries in the DIB are arranged in a tree structure. Each entry is a named object
and comprises a defined set of attributes. Each attribute has a defined attribute
type and one or more values.

An entry is unambiguously identified by a distinguished name that is the
concatenation of selected attributes from each entry in the tree along a path
leading from the root down to the named entry. For example, using the DIB
shown in Figure 5-1 on page 64,

c=us/o=wiz

is a distinguished name of the wiz organization in the U.S. Users of the X.500
directory may interrogate and modify the entries and attributes in the DIB.

64 Federated Naming Service Guide—November 1995

5

Figure 5-1 Example of an X.500 Directory Information Base

FNS federates X.500 by supplying the necessary support to permit namespaces
to appear to be seamlessly attached below the global X.500 namespace.

For example, FNS facilitates “hooking” the enterprise naming system for the
wiz organization below X.500. Starting from the initial context, an FNS name
to identify the sales organizational unit of the wiz organization might be

 .../c=us/o=wiz/orgunit/sales

The name within the enterprise is simply concatenated onto the global X.500
name. (Note that FNS names use the name ”...” in the initial context to
indicate that a global name follows.)

Name resolution of FNS names takes place as follows. When an X.500 name is
encountered in the global namespace, it is resolved using the X.500 name-
resolution mechanism. One of three outcomes is possible:

• The full name resolves to an X.500 entry. This indicates that the entry is held
in X.500. The requested FNS operation is then performed on that entry.

• A prefix of the full name resolves to an X.500 entry. This indicates that the
remainder of the name belongs to a subordinate naming system.

Country

Organization

wizOrganizationName=wiz

USCountryName=US

Policies for the Global Namespace 65

5

The next naming system pointer (NNSP) to the subordinate naming system
is examined to return the XFN reference. Name resolution then continues in
the subordinate naming system. NNSP is discussed in “Composite Name
Resolution” on page 163.

• An error is reported.

X.500 entries may be examined and modified using FNS operations (subject to
access controls). However, it is not currently possible to list the subordinate
entries under the root of the X.500 namespace by using FNS.

66 Federated Naming Service Guide—November 1995

5

Part 3 — Administration

These chapters describe the administration tasks for setting up and
maintaining FNS in different namespaces.

Administering FNS on NIS+ page 69

Federating NIS+ With Global Naming Systems page 111

Administering the File System Namespace page 117

Administering the Printer Namespace page 127

69

Administering FNS on NIS+ 6

This chapter describes the setup and administration of the FNS
implementation on top of the NIS+ environment. Use the following procedures
for a standard setup (in which contexts are created automatically for you). If
you wish to set up contexts individually, then specific procedures in “Creating
FNS Contexts Individually” on page 73 will apply.

The following sections contain information to aid you in administering the
FNS namespace after it has been set up.

Estimating Resource Requirements page 70

Setting Up NIS+ Service for FNS page 70

Setting Up the FNS Namespace page 71

Replicating FNS Service page 72

Managing and Examining FNS Contexts page 83

Managing and Examining FNS Attributes page 92

Maintaining Consistency Between NIS+ and FNS page 94

Mapping FNS Contexts to NIS+ Objects page 96

Browsing FNS Structures Using NIS+ Commands page 97

Checking Access Control page 98

Error Messages page 100

Troubleshooting page 104

70 Federated Naming Service Guide—November 1995

6

Setting Up FNS
Setting up FNS involves preparing the NIS+ environment that FNS will use
and then creating FNS contexts for organizations, users, hosts, services, and
sites. Depending on the size of the organization, you should allow several
hours for the FNS setup to be completed, not including the required hardware
and software preparation or any NIS+ preparation.

Estimating Resource Requirements

Before proceeding with any installation procedure, you must first ensure that
the machines on which NIS+ servers for supporting FNS will run have
sufficient memory and disk storage.

For example, to support an FNS environment with 1200 users and hosts, you
will need

• A minimum of 20 Mbytes of disk space beyond the space needed for NIS+

• An additional 40 Mbytes of swap space

Setting Up NIS+ Service for FNS

It is recommended, though not required, that NIS+ objects used by FNS and
standard NIS+ domain information be supported on separate sets of servers.
This avoids placing additional loads on the standard NIS+ service. It also
allows you to keep the administration of FNS’s use of NIS+ and the standard
NIS+ service separate.

All NIS+ objects used by FNS are kept under the ctx_dir directory of an
NIS+ domain, at the same level as the domain’s org_dir directory. The NIS+
domain must be already set up before setting up FNS. That is, NIS+ domain
tables, such as hosts and passwd, must already exist and be populated.

Before setting up the FNS namespace, do the following:

1. Set the NIS_GROUP environment variable to the name of the group that
will be administering the FNS objects.
In fact, the fncreate command will not let you complete the FNS setup
without setting the variable first. In this example, NIS_GROUP is set to
fns_admins.wiz.com . When fncreate creates user and host contexts,
they will be owned by those hosts and users, and not by the administrator

Administering FNS on NIS+ 71

6

who executed the command. Setting NIS_GROUP allows the administrators
who are members of the group to subsequently modify these contexts even
thought they do not own the objects.

2. To set up separate servers, create the ctx_dir directory for the NIS+
domain. Assign a master server to service it with the NIS+ command
nismkdir .
The example shows how nismkdir creates the ctx_dir directory and
assigns the machine fns_mserver as the master server for that directory.
Include the trailing dot as shown.

3. Use the nisls command to verify that the ctx_dir directory has been
created.

Setting Up the FNS Namespace

The FNS namespace is created by the fncreate command. This command
creates the contexts for the specified organization and all its subcontexts,
including contexts for users and hosts in the NIS+ domain corresponding to
the organization.

set NIS_GROUP=fns_admins.wiz.com;export NIS_GROUP

nismkdir -m fns_mserver ctx_dir.wiz.com.

nisls wiz.com.
ctx_dir
groups_dir
org_dir

72 Federated Naming Service Guide—November 1995

6

1. For a standard setup, use the syntax of fncreate as shown.
This creates the organization context for the root NIS+ domain, wiz.com. ,
contexts for all users found in the passwd.org_dir table, and contexts for
all hosts found in the hosts.org_dir table in the wiz.com NIS+ domain.

After setting up the FNS namespace, you should checkpoint the ctx_dir
directory before performing other FNS operations.

2. Use nisping to checkpoint the ctx_dir directory:

For an organization with a few thousand users and hosts, the initial fncreate
for an organization will typically take several hours; the subsequent
checkpoint will also typically take several hours.

Replicating FNS Service

Additional replicas should be added to serve the ctx_dir directory after the
FNS namespace has been set up on the master server. Replicas enhance
availability and read performance of the servers.

1. Use the nismkdir -s command to add a replica fns_rserver for the
ctx_dir directory and send the contents of the directory to the replica.

2. Checkpoint the ctx_dir directory periodically with the nisping
command.
The recommended period is every few days. The period you choose
depends on how frequently changes are made to the FNS namespace.

At this point, you are done with the initial FNS setup.

fncreate -t org org/wiz.com./

/usr/lib/nis/nisping -C ctx_dir.wiz.com.

nismkdir -s fns_rserver ctx_dir.wiz.com.

/usr/lib/nis/nisping -C ctx_dir.wiz.com.

Administering FNS on NIS+ 73

6

Creating FNS Contexts Individually
FNS contexts are created using the fncreate(1M) command. This section
describes the fncreate command and its other options. Use this section to
create FNS contexts individually rather than for the entire organization as
described in “Setting Up the FNS Namespace” on page 71.

The fncreate command has the following syntax,

where context_type specifies one of the following: org , hostname , username ,
host , user , service , site , nsid , generic , or fs .

fncreate creates a context of the specified type and binds it to the given
composite name. It also creates subcontexts for the context.

fncreate -t context_type [-f input_file] [-o][-r reference_type][-s][-v] [-D] composite_name

74 Federated Naming Service Guide—November 1995

6

When creating contexts bound to namespace identifiers, the name without the
underscore (for example, user) is used to create the context and the name with
the underscore (for example, _user) is then bound to the reference of the
newly created context. The is done regardless of whether the name with or
without the underscore is specified in the command line.

For example, the command

creates a context for org/sales/user and adds a binding for
org/sales/_user to the context of org/sales/user .

1. The org context is the exception where the contexts for hostname, username, and service are created but not
populated.

Table 6-1 fncreate Command Options

Option Description

-t Specifies the type of context to create.

-f Creates a context for every host or user listed in input_file. This option can
only be used with the -t username or -t hostname option and is
useful for creating contexts for a subset of users and hosts found in the
corresponding NIS+ passwd and hosts tables, respectively.

-o Creates only the context specified1. Without the -o option, subcontexts are
created according to the FNS policies.

-r Specifies the reference_type of the generic context being created.
It can only be used with the -t generic option.

-s Creates new contexts for composite names already in use. Otherwise, no
new contexts are created for names already bound.

-D Displays information about the NIS+ object associated with a context each
time a context is created. This option is useful for debugging.

-v Displays information about the creation as each context is created.

fncreate -t username org/sales/_user

Administering FNS on NIS+ 75

6

Organization Context

Use the org type to create an organization context. The composite name must
be that of an existing NIS+ domain. An NIS+ domain is an NIS+ directory with
an org_dir subdirectory. Associated host and passwd tables for the domain
must also exist.

Assume the root NIS+ domain is wiz.com . In the example

there must be an NIS+ domain named sales . When the new context is
created, a ctx_dir directory, if it does not already exist, is created under the
directory of the domain, sales.wiz.com . The previous example created an
organization context for the composite name org/sales/ and, in addition,
created hostname , username , and service subcontexts for it, which in turn,
created host and user contexts, and service subcontexts for hosts and
users.

Effectively, the following commands are run:

When fncreate -o -t org is used, only the org context is created. The
hostname , username , and service contexts are also created but not
populated with host and user contexts.

The org context is owned by the administrator who executed the fncreate
command, as are the hostname , username , and service subcontexts. The
host and user contexts, however, and their subcontexts are owned by the
hosts or users for which the contexts were created. In order for the
administrator to subsequently manipulate host and user contexts, the
NIS_GROUP environment variable must have been set accordingly at the time
fncreate is executed. See “Setting Up NIS+ Service for FNS” on page 70 for
instructions.

fncreate -t org org/sales/

fncreate -t hostname org/sales/host/
fncreate -t username org/sales/user/
fncreate -t service org/sales/service/

76 Federated Naming Service Guide—November 1995

6

All Hosts Context

The hostname type creates a hostname context in which host contexts can be
created and bound. Host contexts and their subcontexts are created for each
host name found in the NIS+ hosts.org_dir table unless the -o option is
used. When the -o option is used, only the hostname context is created.

For example, running the command

creates the hostname context and effectively runs the command

for each host name, hname, found in the hosts.org_dir table. It also adds a
binding for org/sales/_host/ that is bound to the reference of
org/sales/host/ .

The hostname context is owned by the administrator who executed the
fncreate command. A host context and its subcontexts are owned by the host
for which the contexts were created. That is, each host owns its own host
context and subcontexts.

The -f option can be used to create contexts for a subset of the hosts found in
the NIS+ table hosts.org_dir . It creates contexts for those hosts listed in the
given input file.

Single Host Context

The host type creates the context and subcontexts for a host. The command
automatically creates a service context for the host and a binding for fs
unless the -o option is used. When the -o option is used, only the host
context is created.

For example, the command

fncreate -t hostname org/sales/host/

fncreate -t hostname org/sales/host/ hname/

fncreate -t host org/sales/host/capsule/

Administering FNS on NIS+ 77

6

creates a context for the host named capsule and effectively runs the
commands

The host context and its subcontexts are owned by the host. In the above
example, the host capsule , with NIS+ principal name
capsule.sales.wiz.com , owns the contexts org/sales/host/capsule/ ,
org/sales/host/capsule/service/ , and
org/sales/host/capsule/fs .

The hostname context (org/sales/host in the above example) to which the
host belongs must already exist. The host name supplied should already exist
in the NIS+ hosts.org_dir table.

Host Aliases

Alias host names may exist in an NIS+ hosts.org_dir table. These appear in
the table as a set of hosts with the same canonical name but different alias
names.

In FNS, a single host with multiple alias names has a single host context. Alias
names for that host in the hostname context are bound to the reference of that
host context.

All–Users Context

The username type creates a username context in which user contexts can be
created and bound. User contexts and their subcontexts are created for each
user name found in the NIS+ passwd.org_dir table unless the -o option is
used. When the -o option is used, only the username context is created.

For example, running the command

fncreate -t service org/sales/host/capsule/service/
fncreate -t fs org/sales/host/capsule/fs/

fncreate -t username org/sales/user/

78 Federated Naming Service Guide—November 1995

6

creates the username context and effectively runs the command

for each user, uname, that appears in the passwd.org_dir table. It also adds a
binding for org/sales/_user/ that is bound to the reference of
org/sales/user/ .

The username context is owned by the administrator who executed the
fncreate command. A user context and its subcontexts are owned by the user
for which the contexts were created. Each user owns his or her own user
context and subcontexts.

The -f option can be used to create contexts for a subset of the users found in
the NIS+ table passwd.org_dir . It creates contexts for those users listed in
the given input file.

Single User Context

The user type creates the user context and subcontexts for a user. A service
subcontext and a binding for fs are created under the user context unless the
-o option is used. When the -o option is used, only the user context is
created.

For example, the command

creates the user context for the user named jjones and effectively runs the
commands

The user context and its subcontexts are owned by the user for whom the
contexts were created. In the above example, the contexts created are owned by
the user jjones with NIS+ principal name jjones.sales.wiz.com .

fncreate -t user org/sales/user/ uname/

fncreate -t user org/sales/user/jjones/

fncreate -t service org/sales/user/jjones/service/
fncreate -t fs org/sales/user/jjones/fs/

Administering FNS on NIS+ 79

6

The username context (org/sales/user in the above example) to which the
user belongs must already exist. The user name supplied should already exist
in the NIS+ passwd.org_dir table.

Service Context

The service type creates the service context in which service names can be
bound. There is no restriction on what type of references may be bound in a
service context. The policies depend on the applications that use the service
context. For example, a group of desktop applications may bind references for
a calendar, a telephone directory, a fax service, and a printer in a service
context.

For example, the command

creates a service context for the organization sales . Because the terminal
atomic name is a namespace identifier, fncreate also adds a binding for
org/sales/_service/ that is bound to the reference of
org/sales/service/ . After executing this command, names such as
org/sales/service/calendar and org/sales/service/fax can then
be bound in this service context.

The service context supports a hierarchical namespace, with slash-separated
left-to-right names. The service namespace can be partitioned for different
services. Continuing with the desktop applications example, a group of
plotters may be named under the service context after the creation of the
plotter context.

Names such as org/sales/service/plotter/speedy and
org/sales/service/plotter/production could then be bound under the
service context.

Note – Because the terminal atomic name is not a namespace identifier, no
additional binding is added (as was the case with service and _service).

fncreate -t service org/sales/service/

fncreate -t service org/sales/service/plotter

80 Federated Naming Service Guide—November 1995

6

The service context created is owned by the administrator who ran the
fncreate command.

Printer Context

The printer context is created under the service context of the respective
composite name. Refer to Chapter 9, “Administering the Printer Namespace,”
for more information.

Generic Context

The generic type creates a context for binding names used by applications.

A generic context is similar to a service context except it can have a different
reference type. The -r option is used to specify the reference type for the
generic context being created. If it is omitted, the reference type is inherited
from its parent generic context or, if the parent context is not a generic context,
the reference type used is a default generic reference type.

Like a service context, there is no restriction on what type of references may be
bound in a generic context. The policies depend on the applications that use
the generic context.

For example, the command

creates a generic context with the WIDC_comm reference type under the
service context of the organization sales . Names such as
org/sales/service/extcomm/modem can then be bound in this generic
context.

The generic context supports a hierarchical namespace, with slash-separated
left-to-right names, which allows an application to partition its namespace for
different services. Continuing with the example above, a generic subcontext
for modem can be created running the command

fncreate -t generic -r WIDC_comm org/sales/service/extcomm

fncreate -t generic org/sales/service/extcomm/modem

Administering FNS on NIS+ 81

6

Names such as org/sales/service/extcomm/modem/secure and
org/sales/service/extcomm/modem/public could then be bound under
the modem context.

The generic context created is owned by the administrator who ran the
fncreate command.

Site Context

The site type creates contexts in which site names can be bound.

For example, the command

creates a site context. Because the terminal atomic name is a namespace
identifier, fncreate also adds a binding for org/sales/_site/ that is
bound to the reference of org/sales/site/ .

The site context supports a hierarchial namespace, with dot-separated right-
to-left names, which allows sites to be partitioned by their geographical
coverage relationships.

For example, the commands

create a site context east and a site subcontext maynard.east for it.

Note – Because these terminal atomic names are not namespace identifiers, no
additional binding are added (as was the case with site and _site).

The site context created is owned by the administrator who ran the
fncreate command.

fncreate -t site org/sales/site/

fncreate -t site org/sales/site/east
fncreate -t site org/sales/site/maynard.east

82 Federated Naming Service Guide—November 1995

6

File Context

The fs type creates a file system context (or file context) for a user or a host.
For example, the command

creates the fs context for user jjones . Because the terminal atomic name is a
namespace identifier, fncreate also adds a binding for
org/sales/user/jjones/_fs/ that is bound to the reference of
org/sales/user/jjones/fs/ .

The fs context of a user is the user’s home directory as it is stored in the NIS+
passwd.org_dir table. The fs context of a host is the set of NFS file systems
that the host exports (see NFS Administration Guide).

Use the fncreate_fs command to create file contexts for organizations and
sites or to create file contexts other than the defaults for users and hosts. See
Chapter 8, “Administering the File System Namespace,” for details.

The fs context created is owned by the administrator who ran the fncreate
command.

Namespace Identifier Context

The nsid (namespace identifier) type creates a context in which namespace
identifiers can be bound.

For example, the command

creates the nsid context for the site maynard.east and permits the creation
of subcontexts such as service/ . Continuing with this example, you could
then execute the command

to create the service context for maynard.east .

fncreate -t fs org/sales/user/jjones/fs/

fncreate -t nsid org/sales/site/maynard.east/

fncreate -t service org/sales/site/maynard.east/service/

Administering FNS on NIS+ 83

6

The nsid context created is owned by the administrator who ran the
fncreate command.

Managing and Examining FNS Contexts
A number of tools are provided for examining and managing FNS contexts.
The commands and their syntax are shown as follows. For additional
information, see the man page for the tool. Note that fnbind has two usages.

Displaying the Binding

fnlookup displays the binding of the given composite name.

fnlookup [-v][-L] composite_name

fnlist [-l][-v] [composite_name]

fnbind [-s][-v][-L] name new_name

fnbind -r [-s] [-v] new_name [-O | -U] ref_type {[-O | -U] | address_type [-c|-x] address_contents}+

fnunbind composite_name

fnrename [-sv] context_name old_atomic_name new_atomic_name

fndestroy composite_name

Table 6-2 fnlookup Command Options

Option Description

-v Displays the binding in more detail

-L Displays the reference to which the XFN link is bound

84 Federated Naming Service Guide—November 1995

6

For example, the command

shows the binding of the user jjones .

Suppose user/James.Jones is linked to user/jjones . The first command
in the following example shows what user/James.Jones is bound to (an
XFN link). The second command follows the XFN link, user/jjones , and
shows what user/jjones is bound to (the user context).

fnlookup user/jjones/
Reference type: onc_fn_user
Address type: onc_fn_nisplus
 context type: user

fnlookup -v user/jjones/
Reference type: onc_fn_user
Address type: onc_fn_nisplus
 length: 52
 context type: user
 representation: normal
 version: 0
 internal name: fns_user_jjones.ctx_dir.sales.wiz.com.

fnlookup user/James.Jones
Reference type: fn_link_ref
Address type: fn_link_addr
 Link name: user/jjones

fnlookup -L user/James.Jones
Reference type: onc_fn_user
Address type: onc_fn_nisplus
 context type: user

Administering FNS on NIS+ 85

6

Listing the Context

fnlist lists the contents of the context identified by the given name.

For example, the command

shows the bindings under the user context.

Table 6-3 fnlist Command Options

Option Description

-v Displays the binding in more detail

-l Displays the bindings of the names bound in the named context

fnlist user/
Listing 'user/':
jjones
mladd
jsmith
James.Jones

86 Federated Naming Service Guide—November 1995

6

If no name is given, the command lists the contents of the initial context.

fnlist
Listing '':
_myorgunit
...
_myself
thishost
myself
_orgunit
_host
_thisens
myens
thisens
org
orgunit
thisuser
_thishost
myorgunit
_user
thisorgunit
host
_thisorgunit
_myens
user

Administering FNS on NIS+ 87

6

When the -l option is given, the bindings of the names bound in the named
context are displayed.

fnlist -l user/
Listing bindings 'user/':
name: mladd
Reference type: onc_fn_user
Address type: onc_fn_nisplus
 context type: user
name: jsmith
Reference type: onc_fn_user
Address type: onc_fn_nisplus
 context type: user
name: James.Jones
Reference type: fn_link_ref
Address type: fn_link_addr
 Link name: user/jjones
name: jjones
Reference type: onc_fn_user
Address type: onc_fn_nisplus
 context type: user

88 Federated Naming Service Guide—November 1995

6

When the -v option is given in conjunction with the -l option, the bindings
are displayed in detail.

fnlist -lv user/
Listing bindings 'user/':
name: mladd
Reference type: onc_fn_user
Address type: onc_fn_nisplus
 length: 52
 context type: user
 representation: normal
 version: 0
 internal name: fns_user_mladd.ctx_dir.sales.wiz.com.
name: jsmith
Reference type: onc_fn_user
Address type: onc_fn_nisplus
 length: 52
 context type: user
 representation: normal
 version: 0
 internal name: fns_user_jsmith.ctx_dir.sales.wiz.com.
name: James.Jones
Reference type: fn_link_ref
Address type: fn_link_addr
 length: 11
 data: 0x75 0x73 0x65 0x72 0x2f 0x6a 0x6a 0x6f 0x6e 0x65
user/jjones
name: jjones
Reference type: onc_fn_user
Address type: onc_fn_nisplus
 length: 52
 context type: user
 representation: normal
 version: 0
 internal name: fns_user_jjones.ctx_dir.sales.wiz.com.

Administering FNS on NIS+ 89

6

Binding a Composite Name to a Reference

fnbind allows you to bind a composite name to a reference. There are two
uses of this command. The first usage allows the user to bind the reference of
an existing name to a new name. The second usage allows the user to bind a
reference constructed using arguments in the command line to a name.

The first usage of fnbind is

For example, the command

binds the name user/mladd/service/printer to the reference of
myorgunit/service/printer .

If the given new_name is already bound, fnbind -s must be used or the
operation will fail. In the above example, if user/mladd/service/printer
is already bound, the -s option must be used to overwrite the existing binding
with that of myorgunit/service/printer .

Table 6-4 fnbind Command Options

Option Description

-s Supersedes any existing binding of the original composite name

-v Prints out the reference used for the binding

-L Creates an XFN link using name and binding it to new_name

-c Stores address contents without XDR encoding

-x Interprets address contents as a hexadecimal input string and store it as is

-r Creates a reference with a specified type and bind the reference to a name
specified on the command line

-O Interprets and stores type string as ASN.1 dot-separated integer list

-U Interprets and stores type string as a DCE UUID

fnbind [-s][-v][-L] name new_name

fnbind myorgunit/service/printer user/mladd/service/printer

fnbind -s myorgunit/service/printer user/mladd/service/printer

90 Federated Naming Service Guide—November 1995

6

The -v option prints out the reference used for the binding.

The following command constructs an XFN link out of user/jjones and
binds it to the name user/James.Jones

Similarly, the following creates a link from user/mladd/service/printer
to myorgunit/service/printer .

The second usage of fnbind constructs a reference using arguments in the
command line and binds it to the given name.

For example

binds the name thisorgunit/service/calendar to the reference with type
onc_calendar and address type onc_cal_str and address contents of
staff@exodus .

By default, the address contents supplied in the command line is XDR-encoded
before being stored in the reference. If the -c option is given, the address
contents are stored in the clear, not as an XDR-encoded string. If the -x option
is given, the address contents supplied in the command line are interpreted as
a hexadecimal string and stored (and not XDR-encoded).

fnbind -v myorgunit/service/printer user/mladd/service/printer
Reference type: onc_printers
Address type: onc_fn_printer_nisplus

fnbind -L user/jjones user/James.Jones

fnbind -sL myorgunit/service/printer user/mlad/service/printer

fnbind -r [-s] [-v] new_name [-O | -U] ref_type {[-O | -U] | address_type [-c|-x] address_contents}+

fnbind -r thisorgunit/service/calendar onc_calendar onc_cal_str staff@exodus

Administering FNS on NIS+ 91

6

By default, the reference and address types of the reference to be constructed
uses the FN_ID_STRING identifier format. If the -O option is given, the
identifier format is FN_ID_ISO_OID_STRING , an ASN.11 dot-separated integer
list string. If the -U option is given, the identifier format is FN_ID_DCE_UUID,
a DCE UUID2 in string form. For example, the following command binds to
the name thisorgunit/service/nx a reference with OIDs as reference and
address types and a hexadecimal string as the address contents.

Removing a Composite Name

fnunbind removes the given composite name from the namespace. Note that
this does not remove the object associated with the name; it only unbinds the
name from the object. For example, the command

removes the binding associated with the name
user/jjones/service/printer/color.

Renaming an Existing Binding

fnrename renames an existing binding. The following example renames the
binding of clndr to calendar , in the context named by
user/jjones/service/ .

The -s option is used to overwrite any binding to new_atomic_name.

1. See ISO 8824: 1990, Information Technology — Open Systems Interconnection — Specification of Abstract
Syntax Notation One (ASN.1)

2. See X/Open Preliminary Specification, October 1993, X/Open DCE: Remote Procedure Call (ISBN: 1-
872630-95-2)

fnbind -r thisorgunit/service/nx -O 1.2.99.6.2.1 -O 1.2.99.6.2.3 -x ef12eab67290

fnunbind user/jjones/service/printer/color

fnrename user/jjones/service/ clndr calendar

92 Federated Naming Service Guide—November 1995

6

Destroying the Named Context

fndestroy removes the given composite name from the namespace and
destroys the context named by the composite name.

 For example, the command

unbinds the name user/jones / from the namespace and destroys the context
named by user/jjones /.

If the composite name identifies a context to be removed, the command fails if
the context contains subcontexts.

Managing and Examining FNS Attributes
The fnattr command lets you update and examine attributes associated with
FNS named objects. The four main options are for adding, deleting, listing, and
modifying an attribute. In each of these cases, the identifier format is
FN_ID_STRING, unless the option -O or -U is used.

Adding an Attribute

The -a option is for adding an attribute or adding a value to an attribute.
You need to specify the composite name the attribute is associated with,
the attribute identifier, and the values to add.

The following example adds the attribute identifier model and the value
hplaser to thisorgunit/service/printer .

fndestroy user/jjones/

fnattr -a [-s] composite_name [-O | -U] identifier value1 [value2+]

fnattr -a thisorgunit/service/printer model hplaser

Administering FNS on NIS+ 93

6

The -s option means “add in supersede” mode. If an attribute with the
specified identifier already exists, -s removes all of its values and replaces
them with the values added. If this option is omitted, the resulting values for
the specified attribute includes the existing values and the new values added.

The example above will first remove any existing values associated with
model and add hplaser as the value.

Deleting an Attribute

To delete an attribute associated with an FNS named object, use the -d option.
You can control what to delete:

• If an identifier is not specified, all the attributes associated with the named
object are removed.

• If an identifier is specified, but without values, the entire attribute identified
by identifier is removed.

• If individual values are specified, then only those values are removed from
the attribute. Removal of the last value of an attribute is the same as
removing the attribute itself.

The following command deletes all the attributes associated with
thisorgunit/service/printer .

Listing an Attribute

The -l option is for listing attributes and their values. The command syntax is

fnattr -as thisorgunit/service/printer model hplaser

fnattr -d composite_name [[-O | -U] identifier value1 [value2+]]]

fnattr -d thisorgunit/service/printer

fnattr -l composite_name [[-O | -U] identifier]

94 Federated Naming Service Guide—November 1995

6

The following example lists the values of the model attribute of
thisorgunit/service/printer .

If an identifier is not specified, all the attributes associated with the named
object are displayed.

Modifying an Attribute

The -m option lets you modify an attribute value. The command syntax is

For example,

replaces the value postscript with laser . Other attributes and values
associated with thisorgunit/service/printer are not affected.

Other Options

The -O option assumes the format of the attribute identifier is an ASN.1 dot-
separated integer string list (FN_ID_ISO_OID_STRING).

The -U option assumes the format of the attribute identifier is a DCE UUID
string form (FN_ID_DCE_UUID).

Maintaining Consistency Between NIS+ and FNS
A key task of the system administrator is to maintain consistency between FNS
and NIS+ by ensuring that the contents of FNS contexts and NIS+ tables
correspond. This correspondence is initially accomplished by the fncreate
command, which ensures that FNS contexts are correctly created and

fnattr -l thisorgunit/service/printer model
laser
postscript

fnattr -m composite_name [-O | -U] identifier old_value new_value

fnattr -m thisorgunit/service/printer model postscript laser

Administering FNS on NIS+ 95

6

populated and are consistent with NIS+ domain and table information. After
the FNS contexts have been set up, the correspondence needs to be maintained
as new users and hosts are added to and removed from the system.

The Solstice™ AdminTools™ product that adds user and host information to
NIS+ also updates FNS. When updates to FNS or NIS+ are made independent
of the Solstice AdminTools product, the resulting inconsistencies can be
resolved by the use of the FNS tool, fncheck . fncheck checks for
inconsistencies between user and host names in FNS, and user and host names
in NIS+.

Checking Naming Inconsistencies

The fncheck command checks for naming inconsistences between the
hostname and username contexts, and the NIS+ standard system tables
hosts.org_dir and passwd.org_dir , respectively. fncheck lists host and
user names that are in the FNS namespace but not in the NIS+ standard system
tables. It also lists host or user names that are in the NIS+ standard system
tables but not in the FNS namespace.

The command syntax is

The -t option is used to specify the contexts to check. For the -t hostname
option, the hostname context associated with the organization is checked
against the NIS+ hosts.org_dir table of the same organization. For the -t
username option, the username context associated with the organization is

fncheck[-r][-s][-u][-t hostname|username][domain_name]

Table 6-5 fncheck Command Options

Option Description

-t Specifies the type of context to check

-s Lists host or user names from the NIS+ standard system tables that are not
in the FNS namespace

-r Lists host or user names from the FNS namespace that do not have entries
in the corresponding NIS+ standard system tables

-u Updates the FNS namespace based on information in the relevant NIS+
standard system tables

96 Federated Naming Service Guide—November 1995

6

checked against the NIS+ passwd.org_dir table in the same organization.
When the -t option is omitted, both the hostname and username contexts are
checked.

When the -r option is used in conjunction with the -u option, items that
appear only in the FNS context are removed from the FNS context. When the
-s option is used in conjunction with the -u option, items that appear only in
the NIS+ standard system tables are added to the FNS context. If neither -r or
-s are specified, items are added and removed from the FNS context to make
it consistent with the corresponding NIS+ table.

Advanced FNS and NIS+ Issues
This section provides detailed information on the relationship between NIS+
objects and FNS objects. This information is useful when you must change the
access control of FNS objects.

Mapping FNS Contexts to NIS+ Objects

FNS contexts are stored as NIS+ objects. All contexts associated with an
organization are stored under the ctx_dir directory of the associated NIS+
domain, which resides at the same level as the org_dir directory of the same
domain.

Use the -v option for the fnlookup or fnlist command to see the detailed
description of references. The internal name field displays the name of the
corresponding NIS+ object.

Administering FNS on NIS+ 97

6

Browsing FNS Structures Using NIS+ Commands

The NIS+ command, nisls , can be used to list the NIS+ objects used by FNS.
For example, the following commands list the contents of the NIS+ domain
directory and its ctx_dir subdirectory.

Use the niscat command to list the contents of the fns_hosts table.

nisls wiz.com.
wiz.com.:
eng
sales
org_dir
ctx_dir

nisls ctx_dir.wiz.com.
ctx_dir_Wiz.COM.:
fns
fns_user
fns_host
fns_host_alto
fns_host_mladd
fns_host_elvira
fns_user_jjones
fns_user_jsmith
fns_user_aw

niscat fns_host.ctx_dir
alto *BINARY* *BINARY*
mladd *BINARY* *BINARY*
elvira *BINARY* *BINARY*

98 Federated Naming Service Guide—November 1995

6

Checking Access Control

Use niscat -o to see the access control of a context.

niscat -o fns_host.ctx_dir
Object Name:fns_host
Owner: alto.wiz.com.
Group: admin.wiz.com.
Domain: ctx_dir.wiz.com.
Access Rights:r-c-rmcdrmcdr-c-
Time to Live:53:0:56
Object Type:TABLE
Table Type:H
Number of Columns:3
Character Separator:
Search Path:
Columns:
[0] Name: atomicname

Attributes:(SEARCHABLE, TEXTUAL DATA,CASE INSENSITIVE)
Access Rights:r-c-rmcdrmcdr-c-

[1] Name: reference
Attributes:(BINARY DATA)
Access Rights:r-c-rmcdrmcdr-c-

[2] Name: flags
Attributes:(BINARY DATA)
Access Rights:r-c-rmcdrmcdr-c-

Administering FNS on NIS+ 99

6

To see the access control of a particular binding, use the name of the binding
entry in the parent context’s binding table (that is, the name displayed in the
internal name field in the output of fnlookup -v and fnlist -v):

To change the access control or ownership of a particular context, use the
commands

• nischown
• nischmod
• nischgrp

and give as an argument either the binding entry or the bindings table,
depending on the object the operation is to affect.

Significance of Double Slashes
In the name, org// , the double slashes identifies the context of namespace
identifiers associated with the root organizational name, as in
org//service/printer .

In contrast, org/ points to the root of an organizational context. Each
organizational context has suborganizations as well as a pointer to the context
that contains namespace identifiers such as service , user , and host . org/
names the root organizational context in which you can name
suborganizations, as in org/sales.finance .

niscat -o "[atomicname=alto],fns_host.ctx_dir"
Object Name:fns_host
Owner: alto.wiz.com.
Group: admin.wiz.com.
Domain: ctx_dir.wiz.com.
Access Rights:r-c-rmcdrmcdr-c-
Time to Live:12:0:0
Object Type:ENTRY
 Entry data of type H
 [1] - [5 bytes] 'alto'
 [2] - [104 bytes] '0x00 ...'
 [3] - [1 bytes] 0x01

100 Federated Naming Service Guide—November 1995

6

Significance of Trailing Slash
The trailing / names objects in the next naming system. You need it whenever
you are going from one naming system to another. For example, the name,
org/sales.finance names the context for naming suborganizations of the
sales.finance organization, as in org/audit.sales.finance.

On the other hand, org/sales.finance/ names the context for naming
namespace identifiers of the sales.finance organization, as in
org/sales.finance/service/printer .

Error Messages
When an error occurs, FNS commands print out the remaining part of the
name on which the operation failed. The part of the name that has not been
printed has been processed successfully.

For example, a user attempted to create a context for
org//service/trading/bb . The name org//service/ was resolved
successfully, but trading was not found in the context named by
org//service/ . Thus, trading/bb is displayed as the part of the name that
remains when the operation failed:

In another example, a user attempted to destroy the context
org//service/dictionary/english , but could not carry out the operation
because the context named was not empty. The pair of single quotes ('')
indicates that FNS was able to resolve the complete name given, but could not
complete the operation as requested:

Error in creating 'org//service/trading/bb': Name Not Found:
'trading/bb'

Error in destroying 'org//service/dictionary/english': Context
Not Empty: ''

Administering FNS on NIS+ 101

6

FNS Message Descriptions

The FNS messages and their descriptions are as follows. These messages are
encoded in the FN_status_t object as status codes. See either Table 10-3 on
page 151 or the FN_status_t(3) man page for the corresponding status
codes.

attribute no permission

The caller did not have permission to perform the attempted attribute
operation.

attribute value required

The operation attempted to create an attribute without a value, and the
specific naming system does not allow this.

authentication failure

The operation could not be completed because the principal making the
request cannot be authenticated with the name service involved. If the
service is NIS+, check that you are identified as the correct principal (run
the command nisdefaults) and that your machine has specified the
correct source for public keys. Check that the /etc/nsswitch.conf file
has the entry, publickey : nisplus .

bad reference

FNS could not interpret the contents of the reference. This may result if the
contents of the reference has been corrupted or when the reference identifies
itself as an FNS reference, but FNS doesn’t know how to decode it.

communication failure

FNS could not communicate with the name service to complete the
operation.

configuration error

An error resulted because of configuration problems. Examples: (1) the
bindings table are removed out-of-band (outside of FNS), (2) and a host is in
the NIS+ hosts table but does not have a corresponding FNS host context.

102 Federated Naming Service Guide—November 1995

6

context not empty

An attempt has been made to remove a context that still contains bindings.

continue operation using status values

The operation should be continued using the remaining name and the
resolved reference returned in the status.

error

An error that cannot be classified as one of the other errors listed above
occurred while processing the request. Check the status of the name services
involved in the operation and see whether any of them are experiencing
extraordinary problems.

illegal name

The name supplied is not a legal name.

incompatible code sets

The operation involved character strings from incompatible code sets, or the
supplied code set is not supported by the implementation.

insufficient resources

The name service used by FNS does not have sufficient resources to
complete the request. Check memory and disk availability on the name
servers involved.

invalid attribute identifier

The attribute identifier is in a format not acceptable to the naming system,
or its contents are not valid for the format specified for the identifier.

invalid attribute value

The value supplied is not in the correct form for the given attribute.

invalid enumeration handle

The enumeration handle supplied is invalid. The handle could have been
from another enumeration, an update operation may have occurred during
the enumeration, or there may have been some other reason.

Administering FNS on NIS+ 103

6

invalid syntax attributes

The syntax attributes supplied are invalid or insufficient to fully specify the
syntax.

link error

An error occurred while resolving an XFN link with the supplied name.

link loop limit reached

A nonterminating loop was detected due to XFN links encountered during
composite name resolution, or the implementation-defined limit was
exceeded on the number of XFN links allowed for a single operation.

malformed link

A malformed link reference was found during an fn_ctx_lookup_link()
operation. The name supplied resolved to a reference that was not a link.

name in use

The name supplied is already bound in the context.

name not found

The name supplied was not found.

no permission

The operation failed because of access control problems.

no such attribute

The object did not have an attribute with the given identifier.

no supported address

No shared library could be found under the /usr/lib/fn directory for any
of the address types found in the reference bound to the FNS name. Shared
libraries for an address type are named according to this convention:
fn_ctx_ address_type.so .

For example, a reference with address type onc_fn_nisplus would have a
shared library in the path name:
/usr/lib/fn/fn_ctx_onc_fn_nisplus.so.

104 Federated Naming Service Guide—November 1995

6

not a context

The reference does not correspond to a valid context.

operation not supported

The operation is not supported by the context. For example, trying to
destroy an organization is not supported.

partial result returned

The operation returned a partial result.

success

Operation succeeded.

syntax not supported

The syntax type is not supported.

too many attribute values

The operation attempted to associate more values with an attribute than the
naming system supports.

unavailable

The name service upon which the operation depends is unavailable.

Troubleshooting
This section presents problem scenarios with a description of probable causes,
diagnoses, and solutions.

Cannot Obtain Initial Context

Symptom
 I get the message “Cannot obtain initial context.”

Possible Cause
This is caused by an installation problem.

Administering FNS on NIS+ 105

6

Diagnosis
Check that FNS has been installed properly by looking for the file,
/usr/lib/fn/fn_ctx_initial.so .

Solution
Install the fn_ctx_initial.so library.

Nothing in Initial Context

Symptom
I run fnlist to look at what is in the initial context but see nothing.

Possible Cause
This is caused by an NIS+ configuration problem. The organization associated
with the user and machine running the fn* commands do not have an
associated ctx_dir directory.

Diagnosis
Use the nisls command to see whether there is a ctx_dir directory.

Solution
If there is no ctx_dir directory, run fncreate -t org/ nis+_domain_name/
to create the ctx_dir directory.

“No Permission” Messages

Symptom
I get “no permission” messages.

Possible Cause
“No permission” messages mean that you do not have access to perform the
command.

106 Federated Naming Service Guide—November 1995

6

Diagnosis
Check permission using the appropriate NIS+ commands, described in
“Advanced FNS and NIS+ Issues” on page 96. Use the nisdefaults
command to determine your NIS+ principal name.

Another area to check is whether you are using the right name. For example,
org/ / names the context of the root organization. Make sure you have
permission to manipulate the root organization. Or maybe you meant to
specify myorgunit/ , instead.

Solution
If you do have permission, then the appropriate credentials probably have not
been acquired.

This could be caused by the following:

• A keylogin has not been performed (defaults to NIS+ principal nobody).

• A keylogin was made to a source other than NIS+.
• Check that the /etc/nsswitch.conf file has a publickey: nisplus

entry.
• This might manifest itself as an authentication error.

fnlist Does Not List Suborganizations

Symptom
I run fnlist with an organization name, expecting to see suborganizations,
but instead see nothing.

Possible Cause
This is caused by an NIS+ configuration problem. Suborganizations must be
NIS+ domains. By definition, an NIS+ domain must have a subdirectory
named org_dir .

Diagnosis
Use the nisls command to see what subdirectories exist. Run nisls on each
subdirectory to verify which subdirectories have an org_dir . The
subdirectories with an org_dir are suborganizations.

Administering FNS on NIS+ 107

6

Solution
Not applicable.

Cannot Create Host- or User-related Contexts

Symptom
When I run fncreate -t for the user , username , host , or hostname
contexts, nothing happens.

Possible Cause
You have not set the NIS_GROUP environment variable. When you create a
user or host context it is owned by the host or user, and not by the
administrator who set up the namespace. Therefore, fncreate requires that
the NIS_GROUP variable be set to enable the administrators who are part of
that group to subsequently manipulate the contexts.

Diagnosis
Check the NIS_GROUP environment variable.

Solution
The NIS_GROUP environment variable should be set to the group name of the
administrators who will administer the contexts.

Cannot Remove a Context I Created

Symptom
When I run fndestroy on the host or user context the context is not
removed.

Possible Cause
You do not own the host or user context. When you create a user or host
context it is owned by the host or user, and not by the administrator who set
up the namespace.

108 Federated Naming Service Guide—November 1995

6

Diagnosis
Check the NIS_GROUP environment variable.

Solution
The NIS_GROUP environment variable needs to be set to the group name of the
administrator who will administer the contexts.

“Name in Use” With fnunbind

Symptom
I get “name in use” when trying to remove bindings. It works for certain
names but not for others.

Possible Cause
You cannot unbind the name of a context. This restriction is in place to avoid
leaving behind contexts that have no name (“orphaned contexts”).

Diagnosis
Run the fnlist command on the name to verify that it is a context.

Solution
If the name is a context, use the fndestroy command to destroy the context.

“Name in Use” With fnbind /fncreate -s

Symptom
I use the -s option with fnbind and fncreate , but for certain names I get
“name in use.”

Possible Cause
fnbind -s and fncreate -s overwrite the existing binding if it already
exists; but if the old binding is one that must be kept to avoid orphaned
contexts, the operation fails with a “name in use” error because the binding
could not be removed. This is done to avoid orphaned contexts.

Administering FNS on NIS+ 109

6

Diagnosis
Run the fnlist command on the name to verify that it is a context.

Solution
Run the fndestroy command to remove the context before running fnbind or
fncreate on the same name.

fndestroy /fnunbind Does Not Return “Operation Failed”

Symptom
When I do an fndestroy or fnunbind on certain names that I know do not
exist, I receive no indication that the operation failed.

Possible Cause
The operation did not fail. The semantics of fndestroy and fnunbind are
that if the terminal name is not bound, the operation returns success.

Diagnosis
Run the fnlookup command on the name. You should receive the message,
“name not found.”

Solution
Not applicable.

110 Federated Naming Service Guide—November 1995

6

111

Federating NIS+ With Global
Naming Systems 7

FNS supports federation of enterprise naming systems implemented using
NIS+ into the global naming systems, DNS and X.500. This chapter describes
the procedures for federating NIS+ with DNS and X.500. In general, the
procedures involve

• Determining the NIS+ root reference for your NIS+ hierarchy
• Adding this information in the format required by the global naming system

Obtaining the NIS+ Root Reference
To federate NIS+ under DNS or X.500, information must be added to these
respective naming systems to enable access to an NIS+ hierarchy from outside
of the NIS+ hierarchy. This information comes from the NIS+ root reference,
which consists of network address information describing how to reach the top
of a particular NIS+ hierarchy.

The NIS+ root reference consists of a single address. The address has an
address type of onc_fn_nisplus_root and contains a single, XDR-encoded
string. The three items in the network address are separated by white spaces:

nis+_root_domain nis+_server [server_IP_address]

112 Federated Naming Service Guide—November 1995

7

Table 7-1 is a description of the NIS+ root reference.

In the following example,

the address indicates that name of the NIS+ root domain is wiz.com. (trailing
dot is significant), and that it can be reached using the host
wiz-nis-master.wiz.com . The IP address of the server is not given because
it is expected to be available through other means.

In another example,

indicates that the name of the NIS+ root domain is woz.com . (trailing dot is
significant) and that it can be reached using the host wozwoz, with the IP
address 133.33.33.33 .

Federating NIS+ Under DNS
This section describes the steps required to add TXT (text) records for a
subordinate enterprise naming system implemented with NIS+. To federate a
subordinate naming system in DNS, you need to add reference information
into DNS describing how to reach the subordinate naming system.

Table 7-1 NIS+ Root Reference

Address Element Description

nis+_root_domain The fully qualified name of the NIS+ root domain (trailing
dot required)

nis+_server The host name of one of the servers serving
nis+_root_domain

server_IP_address The IP address of nis+_server. This is optional if the address
of nis+_server is expected to be known. This means it
should be available through one of the name services listed
in the /etc/nsswitch.conf file. Refer to the
nsswitch.conf(4) man page for information.

wiz.com. wiz-nis-master.wiz.com

woz.com. wozwoz 133.33.33.33

Federating NIS+ With Global Naming Systems 113

7

1. Obtain the NIS+ root reference for your NIS+ hierarchy, see “Obtaining
the NIS+ Root Reference” on page 111.

2. Edit the DNS table (/etc/named.local is the default file name) and add
a TXT record with the following format.

For more information about DNS tables, see NIS+ and DNS Setup and
Configuration Guide.

The following are examples of two records that convey the same information.

TXT "XFNNISPLUS wiz.com. nis-master.wiz.com"

TXT XFNNISPLUS\ wiz.com.\ nis-master.wiz.com

The TXT record must be associated with a DNS domain that includes an NS
(name server) record entry. The following is an example of a DNS table with
reference information for NIS+ bound in it.

TXT "XFNNISPLUS nis+_root_domain nis+_server [server_IP_address]"

$ORIGIN Wiz.com
@ IN SOA foo bar.eng.Wiz.com
 (
 100 ;; Serial
 3600 ;; Refresh
 3600 ;; Retry
 3600 ;; Expire
 3600 ;; Minimum
)
 NS nshost
 TXT "XFNNISPLUS wiz.com. wiz-nis-master 133.33.33.33"

nshost IN A 133.33.33.34

114 Federated Naming Service Guide—November 1995

7

3. After adding the TXT record into the DNS table, either restart the DNS
server or send it a signal to reread the table.

For further information on how DNS TXT records are used for XFN
references, see Appendix B.

Federating NIS+ Under X.500
In order to federate a subordinate naming system in X.500, reference
information must be added into X.500 describing how to reach that
subordinate naming system. This section describes the steps for adding XFN
reference information to the X.500 entry that will be the parent of the
subordinate naming system.

Note – An X.500 client is required in order to access X.500 using FNS. The
X.500 client must export the XDS/XOM APIs from the
/opt/SUNWxds/lib/libxomxds.so shared object. Consult “Getting started
with the SunLink X.500 Client Toolkit” for details on SunSoft's X.500 product.

1. Obtain the NIS+ root reference for your NIS+ hierarchy.
 See “Obtaining the NIS+ Root Reference” on page 111.

2. Create an X.500 entry that supports XFN reference attributes.
For example, the following command creates a new X.500 entry called
c=us/o=wiz with the object classes top , organization , and XFN-
supplement (1.2.840.113536.25). The XFN-supplement object class allows
the c=us/o=wiz entry to store reference information for a subordinate
naming system.

If the X.500 entry already existed and was not defined with the XFN-
supplement object class, it must be removed and re-created with the
additional object class. Otherwise, it will not be able to hold reference
information about the subordinate naming system.

kill -HUP pid–of–in.named

fnattr -a .../c=us/o=wiz object-class top organization XFN-supplement

Federating NIS+ With Global Naming Systems 115

7

3. Add the reference information about the subordinate NIS+ system to the
entry.
After creating the X.500 entry, you can then add information about the
subordinate NIS+ system by binding the appropriate NIS+ root reference to
the named entry:

This example binds the reference for the NIS+ hierarchy with the root
domain name wiz.com , served by the machine bigbig , to the next naming
system pointer (NNSP) of the X.500 entry c=us/o=wiz , thus linking the
X.500 namespace with the wiz.com . NIS+ namespace hierarchy.

The address format used is that of the NIS+ root reference described earlier.
Note the use of the trailing slash in the name argument to fnbind ,
.../c=us/o=wiz/ , to signify that the reference is being bound to the
NNSP of the entry, rather than to the entry itself.

For further information on X.500 entries and XFN references, see Appendix C,
“X.500 Attribute Syntax for XFN References.”

fnbind -r .../c=us/o=wiz/ onc_fn_enterprise onc_fn_nisplus_root "wiz.com. bigbig"

116 Federated Naming Service Guide—November 1995

7

117

Administering the File System
Namespace 8

This chapter describes the file system namespace and the procedures for
creating file contexts.

The FNS File System Namespace
Files may be named relative to users, hosts, organizations, and sites in FNS by
appending the fs namespace identifier to the name of the object, and
following this with the name of the file. For example, an engineering
organization’s tools directory might be named org/engineering/fs/tools .

The initial context is located under /xfn in the file system’s root directory.
Thus a user might access the tools directory by typing

Existing applications can access this directory just as they would any other
directory. Applications do not need to be modified in any way or use the XFN
API.

The FNS File System Namespace page 117

Creating File Contexts page 120

Administering File Contexts page 126

% cd /xfn/org/engineering/fs/tools

118 Federated Naming Service Guide—November 1995

8

NFS File Servers

NFS is Sun’s distributed file system. The files associated with an object will
generally reside on one or more remote NFS file servers. In the simplest case,
the namespace identifier fs corresponds to the root of an exported NFS file
system, as shown in Figure 8-1.

Figure 8-1 NFS File System—Simple Case

In contrast, an object’s file system may be composed of multiple—and possibly
overlapping—remote mounts, woven together into a “virtual” directory
structure managed by FNS.

user

jsmith

fs
= NFS file system

Administering the File System Namespace 119

8

Figure 8-2 illustrates how this capability might be used to piece together an
organization's file system from three separate file servers. The project
directory, along with its lib subdirectory, resides on one file server, while the
src subdirectory resides on another. Users and applications need not be aware
of the use of multiple servers; they see a single, seamless namespace.

Figure 8-2 NFS File System—Multiple Servers

The Automounter

For efficiency, the automounter (see NFS Administration Guide) is used to mount
FNS directories on demand. The default /etc/auto_master configuration
file contains the line:

which tells the automounter that the FNS namespace is “mounted” under
/xfn , as specified by XFN.

/xfn -xfn

= NFS file system

org

engineering

fs

tools project

db lib src

120 Federated Naming Service Guide—November 1995

8

Since the automounter is used to mount directories named through FNS, the
subdirectories of an FNS directory cannot be listed until they have been
mounted. For example, suppose the file system of the sales organization is
composed of multiple NFS file systems. The following ls command shows
only two file systems that have been visited recently and are currently
mounted:

To see the entire listing, use the fnlist(1) command.:

Creating File Contexts
The fncreate_fs(1M) command creates file contexts for organizations and
sites. It may also be used to override the default file contexts for users and
hosts that are created by the fncreate(1M) command. See “File Context” on
page 82.

There are two methods of using the fncreate_fs command. The context
bindings may be provided by an input file (See “Creating the Input File” on
page 121) or on the command line (See “Using Command-line Input” on
page 123).

The two methods of fncreate_fs have the following syntax:

% ls /xfn/org/sales/fs
customers products

% fnlist org/sales/fs
Listing ‘org/sales/fs’:
products
goals
customers
incentives

fncreate_fs [-v] [-r] -f input_file composite_name
fncreate_fs [-v] [-r] composite_name [mount_options][mount_location...]

Administering the File System Namespace 121

8

The fncreate_fs options -v and -r are described in Table 8-1.

The fncreate_fs command manipulates FNS contexts and bindings of the
onc_fn_fs reference type. It uses an address of type onc_fn_fs_mount to
represent each remote mount point. The data associated with an address of this
type are the corresponding mount options and locations in a single, XDR-
encoded string.

Creating the Input File

The input file supplies the names and values to be bound in the context of
composite_name. Its format is based upon and similar, but not identical, to the
format of indirect automount maps (see NFS Administration Guide). The input
file contains an entry with the form:

For each entry a reference to the mount locations and the corresponding mount
options is bound to the name composite_name/name.

The name field may be a simple atomic name or a slash-separated hierarchical
name. It may also be “. ” (dot), in which case the reference is bound directly to
composite_name.

The mount_location field specifies the host or hosts that serve the files for
composite_name/name. In a simple NFS mount, mount_location takes the form:

Table 8-1 fncreate_fs Command Options

Option Description

-v Sets verbose output, displaying information about the contexts being
created and modified.

-r Replaces the bindings in the context named by composite_name—and all of
its subcontexts—with only those specified in the input. This is equivalent
to destroying the context (and, recursively, its subcontexts), and then
running fncreate_fs without this option. The -r option should be used
with care.

name [mount_options] [mount_location...]

host: path

122 Federated Naming Service Guide—November 1995

8

where host is the name of the server from which to mount the file system and
path is the path name of the directory to mount.

The mount_options field begins with a hyphen (“–”). This is followed by a
comma-separated list (with no spaces) of the mount options to use when
mounting the directory. These options also apply to any subcontexts of
composite_name/name that do not specify mount options of their own.

If mount_options and mount_location are both omitted, then no reference is
bound to composite_name/name. Any existing reference is unbound.

Using the example from Figure 8-1 on page 118, suppose you want jsmith ’s
file system to be an NFS mount of the directory /export/home/jsmith from
host svr1 . The command would be run as follows:

with infile containing

To set up the file system illustrated in Figure 8-2 on page 119, run the
command

with infile containing

% fncreate_fs -f infile user/jsmith/fs

. svr1:/export/home/jsmith

% fncreate_fs -f infile org/engineering/fs

tools/db svr1:/export/db
project svr1:/export/proj
project/src svr2:/export/src

Administering the File System Namespace 123

8

To change the NFS mounts for project and its subcontext src to be read-
only, you can change infile as follows:

The -ro is unnecessary in the third line. Since src is a subcontext of project ,
it will inherit the -ro mount option from above.

The following input file would make all of the mounts read-only except for
org/engineering/fs/project/src .

Using Command-line Input

The fncreate_fs(1M) command also allows the binding description to be
provided on the command line:

This is equivalent to using the first form of the command and providing a one-
line input file containing ”. ” in the name field, and the given mount options
and locations. The previous example in which jsmith ’s file system was set
could be set from the command line as follows:

tools/db svr1:/export/db
project -ro svr1:/export/proj
project/src svr2:/export/src

. -ro
tools/db svr1:/export/db
project svr1:/export/proj
project/src -rw svr2:/export/src

fncreate_fs composite_name [mount_options] [mount_location ...]

% fncreate_fs user/jsmith/fs svr1:/export/home/jsmith

124 Federated Naming Service Guide—November 1995

8

Similarly, the hierarchy in Figure 8-2 on page 119 could have been set up by
running the sequence of commands:

To make all three of the mounts read-only, you would run this command:

Advanced Input Formats

The following two sections apply to both input file and command-line input
formats.

Multiple Mount Locations

Multiple mount_location fields may be specified for NFS file systems that are
exported from multiple, functionally equivalent locations:

The automounter will attempt to choose the best server from among the
alternatives provided. If several locations in the list share the same path name,
they may be combined using a comma-separated list of host names:

The hosts may be weighted, with the weighting factor appended to the host
name as a nonnegative integer in parentheses: the lower the number, the more
desirable the server. The default weighting factor is zero (most desirable).

% fncreate_fs org/engineering/fs/tools/db svr1:/export/db
% fncreate_fs org/engineering/fs/project svr1:/export/proj
% fncreate_fs org/engineering/fs/project/src svr2:/export/src

% fncreate_fs org/engineering/fs -ro

% fncreate_fs org/sales/fs svr1:/sales svr2:/sales

% fncreate_fs org/sales/fs svr1,svr2:/sales

Administering the File System Namespace 125

8

The following example illustrates one way to indicate that svr2 is the
preferred server:

See NFS Administration Guide for additional information on how the
automounter interprets the mount_location field.

Variable Substitution

Variable names, prefixed by $, may be used in the mount_options or
mount_location fields of fncreate_fs . For example, a mount location may be
given as

The automounter will substitute client-specific values for these variables when
mounting the corresponding file systems. In the above example, $CPU is
replaced by the output of uname -p ; for example, sparc .

See NFS Administration Guide for additional information on how the
automounter treats variables substitution.

Backward Compatibility Input Format

For additional compatibility with automount maps, the following input file
format is also accepted by fncreate_fs :

% fncreate_fs org/sales/fs svr1(2),svr2(1):/sales

svr1:/export/$CPU

name [mount_options] [mount_location ...] \
 / offset1 [mount_options1] mount_location1 ... \
 / offset2 [mount_options2] mount_location2 ... \
 ...

126 Federated Naming Service Guide—November 1995

8

where each offset field is a slash-separated hierarchy. The backslash (\)
indicates the continuation of a single long line. This is interpreted as being
equivalent to

The first line is omitted if both mount_options and mount_location are omitted.
This format is for compatibility only. It provides no additional functionality,
and its use is discouraged.

Administering File Contexts
File contexts may be inspected using the fnlist(1) and fnlookup(1)
commands, and may be pruned or destroyed using fnunbind(1) and
fndestroy(1M) . These commands and sample output are described in
Chapter 6, “Administering FNS on NIS+.” Refer also to the man page for each
command.

name [mount_options] [mount_location ...]
name/ offset1 [mount_options1] mount_location1 ...
name/ offset2 [mount_options2] mount_location2 ...
...

127

Administering the Printer
Namespace 9

This chapter describes the administration of the printer namespace. The
printer context is not part of the XFN policies. It is provided in FNS in order
to store printer bindings.

The Printer Namespace
FNS provides the capability to store printer bindings in the FNS namespace.
This gives print servers the means to advertise their services and allow users to
browse and choose amongst the available printers without client side
administration.

Printer bindings are stored in printer contexts, which are associated with
organizations, users, hosts, and sites. Hence, each organization, user, host, and
site has its own printer context.

The printer context is created under the service context of the respective
composite name. For example, the composite name shown below has the
following printer context:

org/wiz.com./service/printer

128 Federated Naming Service Guide—November 1995

9

The name of a printer for a host, labpc , with a printer context might look like
this:

Administering Printer Contexts
Currently, printer contexts are supported for name service of files, NIS, and
NIS+. The manner in which the bindings are stored in the printer context
varies according to the underlying name service used for implementing FNS.
For NIS and files, printer bindings are only associated with organizations and
all the bindings exist in one printer context. NIS+, however, stores the printer
bindings in the printer context, which allows the printer namespace to be
arranged hierarchically and be associated with the org , host , user , and site
contexts.

Using Files

Files are used as the default name service if neither NIS nor NIS+ is present.
The printer bindings are stored in the /etc/printers.conf file, which is the
printer configuration database used to describe printers. Each printer binding
requires its own entry in this file. For example, if you have a printer named
printer1 , with the alias ps , you would add an entry to the printers.conf
file in this format:

In this example, when a lookup is performed on and address containing
printer1 , the address type of onc_printers_bsdaddr is returned. For
more information about the required file format in printers.conf , see the
printers.conf(4) man page.

host/labpc/service/printer/laser

printer1|ps:bsdaddr= server_name,printer_name

Administering the Printer Namespace 129

9

Using NIS

If NIS is the underlying name service, the NIS map that is used to store the
printer configuration is called printers.conf.byname . Each printer binding
has an entry in this file. For example, if you have a printer named printer2 ,
with the alias lp , you would add an entry to the printers.conf .byname file
in this format:

For more information about the syntax required, see the
printers.conf.byname(4) man page.

When you list or look up the available printers (using lpstat (1), fnlist (3N)
or fn_ctx_lookup() for example), the results are created by merging the list
of printers included in the files name service (/etc/printers.conf) with
the list of printers included in the NIS name service map
(/etc/printers.conf.byname).

Using NIS+

If NIS+ is the underlying name service for FNS, administering printer contexts
is simplified by the fncreate_printer command, which creates the
printer context for organization, users, hosts, and sites.

The fncreate_printer command takes the following arguments:

where printer_address is in the form addresstype=address. In the next example,
the printer_address is bsdaddr=labpc,laser-jet . For more information, see
the fncreate_printer(1) man page.

In this example, a printer binding for the printer laser-jet for the user
jsmith is created:.

printer2|lp:bsdaddr= server_name,printer_name

fncreate_printer composite_name printer_name printer_address

% fncreate_printer user/jsmith laser-jet bsdaddr=labpc,laser-jet

130 Federated Naming Service Guide—November 1995

9

The new binding, user/jsmith/service/printer/laser-jet , has the
address type onc_printers_bsdaddr , and the address labpc,laser-jet .
FNS adds the prefix onc_printers_ to the address type.

In NIS+, it is possible to organize printers hierarchically. For example, printers
can be listed under the printer context, as shown by the following
commands:

The fncreate command added the printer bindings for the printers, lpq ,
laser , and inkj to the context color present under the printer context.
The result looks like this:

Similarly, color printers, green , red , and blue for user jsmith can be
organized as follows:

Printer bindings (contexts) in NIS+ can be removed using the fndestroy
command. For example, to remove the printer context in this example, use
the command:

When you list or look up the available printers (using lpstat (1), fnlist (3N)
or fn_ctx_lookup() for example), the results are created by merging the list
of printers included in the files name service (/etc/printers.conf) with the
list of printers included in the NIS+ tables generated by fncreate (1) or
fncreate_printer (1).

% fncreate_printer org/wiz.com. color/lpq bsdaddr=colorful,lpq
% fncreate_printer org/wiz.com. color/laser bsdaddr=colorprt,laser
% fncreate_printer org/wiz.com. color/inkj bsdaddr=colorjet,inkj

org/wiz.com./service/printer/color/lpq
org/wiz.com./service/printer/color/laser
org/wiz.com./service/printer/color/inkj

user/jsmith/service/printer/color/green
user/jsmith/service/printer/color/red
user/jsmith/service/printer/color/blue

% fndestroy user/jsmith/service/printer/laser-jet

Part 4 — Application Programming

These chapters present information for the application developer.

Interfaces for Writing XFN Applications page 133

XFN Composite Names page 159

XFN Programming Examples page 167

133

Interfaces for Writing XFN
Applications 10

This chapter describes the client programming interfaces for XFN. Additional
information on the XFN interfaces is available in the man pages.

XFN Interface Overview
The XFN client interface consists of the base context interface, the base
attribute interface, and a number of supporting interfaces. The base context
interface provides the basic operations for naming, such as binding a name to a
reference, looking up the reference bound to a name, and unbinding a name.
The base attribute interface provides operations to examine and modify
attributes associated with named objects. The supporting interfaces contain

• Operations on the status object and status codes used in the context and
attribute operations.

• A number of abstract data types defined to represent objects passed to and
returned from the context and attribute operations, such as composite
names, references, and attributes.

The Base Context Interface page 135

The Base Attribute Interface page 143

Status Objects and Status Codes page 150

Parameters Used in the Interface page 153

Parsing Compound Names page 156

134 Federated Naming Service Guide—November 1995

10

• A standard model and operations for parsing compound names, whose
syntax is specific to a naming system. These are of primary interest to
service implementers.

“API Usage Model” on page 22 summarizes how an application typically uses
the programming interface.

Interface Conventions

The XFN interface is presented in ISO standard C, which is equivalent to ANSI
standard C. The symbols defined by the interface are prefixed by fn or FN, for
federated naming.

• The FN_ prefix is used for both data types and predefined constants.
In addition, data types have a _t suffix, such as FN_ref_t . Predefined
constants appear in all–uppercase characters, such as FN_ID_STRING.

• The fn_ prefix is used for function names. Names of functions in the base
context interface have the prefix fn_ctx_ , such as fn_ctx_lookup . Names
of functions in the base attribute interface have the prefix fn_attr _, such as
fn_attr_get .

Usage

The XFN header file must be included in code as shown for compilation.

The XFN library must be included in the link line as shown.

Abstract Data Types

Except for FN_attrvalue_t and FN_identifier_t , the types defined in
the interface hide their actual data representation from the client. The client
performs every operation on an object of one of these types through a well-
defined interface for that data type.

#include <xfn/xfn.h>

cc -o program_name file1.c file2.c -lxfn

Interfaces for Writing XFN Applications 135

10

When the client accesses these objects, the client refers to the objects solely
through a handle to an object. Operations are provided to create objects of each
type and to destroy them. The creation operation returns a handle to the new
object. The destroy operation releases all resources associated with the object.
The only information about this handle revealed to the client is that it is a
pointer type. The client cannot assume what this handle points to. In
particular, the handle may not point directly to the memory containing the
object’s actual state.

The value 0 is defined for all pointer types. The functions that return handles
in the interface return the value 0 as an indication of failure. The values 0 and
NULL are equivalent.

Memory–Management Policies

The following memory–management policies are used for all client interfaces
described in this chapter:

• When a function returns a non-const pointer to an object, the client “owns”
the object. The client may alter the object and is responsible for freeing the
space allocated to it when the object is no longer required.

• When a function returns a const pointer to an object, the service “owns”
the object. The client must neither modify the object in any way, nor free the
space allocated to it. If the client needs to control a copy, it must make one
for itself.

• When a function takes a non-const parameter that is passed by reference,
the service “borrows” the object during the period of the function’s
execution. It may modify the object during this period, but it does not retain
any reference to the object passed in beyond this period.

• When a function takes a const parameter that is passed by reference, the
service reads but does not modify the object. The service does not keep any
reference to the object beyond the period of the function’s execution.

The Base Context Interface
This section describes the operations in the base context interface. The
interfaces to the objects used in the operations are described in “Parameters
Used in the Interface” on page 153.

136 Federated Naming Service Guide—November 1995

10

Names in Context Operations

In most of the operations of the base context interface, the caller supplies a
context and a composite name argument. The supplied composite name is
always interpreted relative to the supplied context.

The operation may eventually be effected on a different context called the
operation's target context. Each operation has an initial resolution phase that
conveys the operation to its target context, following which the operation is
applied. The effect (but not necessarily the implementation) is that of

• Doing a lookup on that portion of the name that represents the target
context, and then

• Invoking the operation on the target context.

The contexts involved only in the resolution phase are called intermediate
contexts. Normal resolution of names in context operations always follows XFN
links, which are defined in “XFN Links” on page 15.

Requirements for Supporting the Context Operations

The lookup operation fn_ctx_lookup() must be supported by all contexts.
Contexts may indicate that they do not support other operations by returning
an FN_E_OPERATION_NOT_SUPPORTED status code (see Table 10-3 on
page 151).

XFN contexts are required to support the resolution phase of every operation
in the base context and attribute interface when involved in the operation as
intermediate contexts. That is, each intermediate context must participate in
the process of conveying the operation to the target context, even if it does
not support that operation itself. For example, not all contexts need allow
binding and listing names. However, all contexts must fully support the
resolution phase of these operations.

Composite names are passed to an XFN context implementation in a structural
form as an ordered sequence of components. When resolving a name the
context implementation is responsible for

• Determining which set of leading components it must resolve
• Resolving that portion to a reference
• Returning a status object containing this reference and the portion of the

name unresolved

Interfaces for Writing XFN Applications 137

10

Composite name resolution is further discussed in “Composite Name
Resolution” on page 163.

Status Objects

In each context operation, the caller supplies an FN_status_t parameter. The
called function sets this status object as described in “Status Objects and Status
Codes” on page 150. All status objects are handled in this manner for each
operation in the base context interface; this will not be restated in the
individual operation descriptions.

Getting Context Handles

All operations on a context require a context handle. There are two ways of
obtaining a context handle. If you have a reference, you can use it to construct
a context handle. Otherwise, you must call
fn_ctx_handle_from_initial() to get a handle to the initial context.

Construct Handle to Initial Context
FN_ctx_t *fn_ctx_handle_from_initial(FN_status_t * status);

This operation returns a handle to the caller's initial context. On successful
return, the context handle points to a context containing the bindings described
in “Initial Context Bindings for Naming Within the Enterprise” on page 54 and
“Initial Context Bindings for Global Naming” on page 62.

Construct Context Handle From Reference
FN_ctx_t *fn_ctx_handle_from_ref(

const FN_ref_t * ref,
FN_status_t * status);

This operation returns a handle to an FN_ctx_t object given a reference, ref,
for that context.

138 Federated Naming Service Guide—November 1995

10

Lookup and List Contexts

Lookup
FN_ref_t *fn_ctx_lookup(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

This operation returns the reference bound to name relative to the context ctx.

List Names
FN_nameslist_t* fn_ctx_list_names(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

FN_string_t *fn_namelist_next(
FN_namelist_t * nl,
FN_status_t * status);

void fn_namelist_destroy(
FN_namelist_t * nl,
FN_status_t * status);

This set of operations is used to list the set of names bound in the context
named name relative to the context ctx. name must name a context. If the intent
is to list the contents of ctx, name should be an empty composite name.

The call to fn_ctx_list_names() initiates the enumeration process for the
target context. It returns an FN_nameslist_t object that can be used for the
enumeration.

The operation fn_namelist_next() returns the next name in the
enumeration identified by nl and updates nl to indicate the state of the
enumeration marker. Successive calls to fn_namelist_next() using nl
return successive names and further update the state of the enumeration.
fn_namelist_next() returns a NULL pointer when the enumeration has
been completed.

fn_namelist_destroy() is used to release resources used during the
enumeration. This may be invoked at any time to terminate the enumeration.

Interfaces for Writing XFN Applications 139

10

The names enumerated using the list names operations are not ordered in any
way. There is no guaranteed relation between the order in which names are
added to a context and the order names are obtained by enumeration. There is
no guarantee that any two enumerations will return the names in the same
order.

When a name is added to or removed from the context, this may not
necessarily invalidate the enumeration handle that the client holds for that
context. If the enumeration handle remains valid, the update may or may not
be visible to the client.

List Bindings
FN_bindinglist_t* fn_ctx_list_bindings(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

FN_string_t *fn_bindinglist_next(
FN_bindinglist_t * bl,
FN_ref_t ** ref,
FN_status_t * status);

void fn_bindinglist_destroy(
FN_bindinglist_t * bl,
FN_status_t * status);

This set of operations is used to list the set of names and bindings in the
context named by name, relative to the context ctx. name must name a context.
If the intent is to list the contents of ctx, name should be an empty composite
name.

The semantics of these operations are similar to those for listing names. In
addition to a name string being returned, fn_bindinglist_next() also
returns the reference of the binding for each member of the enumeration.

Lookup Link
FN_ref_t *fn_ctx_lookup_link(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

This operation returns the XFN link bound to name. The terminal atomic part
of name must be bound to an XFN link.

140 Federated Naming Service Guide—November 1995

10

The normal fn_ctx_lookup() operation follows all XFN links encountered,
including any bound to the terminal atomic part of name. This operation differs
from the normal lookup in that when the terminal atomic part of name is an
XFN link, this last link is not followed, and the operation returns the link.

Updating Bindings

Bindings can be added, overwritten, removed, or renamed.

Bind
int fn_ctx_bind(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_ref_t * ref,
unsigned int exclusive,
FN_status_t * status);

This operation binds the supplied reference ref to the supplied composite name
name, taken relative to ctx. The binding is made in the target context—that
named by all but the terminal atomic part of name. The operation binds the
terminal atomic name to the supplied reference in the target context. The target
context must already exist.

The value of exclusive determines what happens if the terminal atomic part of
the name is already bound in the target context. If exclusive is nonzero and
name is already bound, the operation fails. If exclusive is zero, the new binding
replaces any existing binding.

The value of ref cannot be NULL. If the intent is to reserve a name using the
fn_ctx_bind() operation, a reference containing no address should be
bound. This reference may be naming service-specific or it may be the
conventional NULL reference.

Unbind
int fn_ctx_unbind(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

This operation removes the terminal atomic name in name from the target
context—that named by all but the terminal atomic part of name.

Interfaces for Writing XFN Applications 141

10

This operation is successful even if the terminal atomic name was not bound in
target context, but fails if any of the intermediate names are not bound.
fn_ctx_unbind() operations are idempotent.

Rename
int fn_ctx_rename(

FN_ctx_t * ctx,
const FN_composite_name_t * oldname,
const FN_composite_name_t * newname,
unsigned int exclusive,
FN_status_t * status);

This operation binds the reference currently bound to oldname, resolved
relative to ctx to newname, and unbinds oldname. The newname is resolved
relative to the target context—that named by all but the terminal atomic part of
oldname.

If exclusive is zero, this operation overwrites any old binding of newname.
If exclusive is nonzero, the operation fails if newname is already bound.

The only restriction that XFN places on newname is that it be resolved relative
to the target context. For example, in some implementations, newname might be
restricted to be a name in the same naming system as the terminal component
of oldname. In another implementation, newname might be restricted to an
atomic name.

Managing Contexts

Contexts can be created or destroyed.

Create Subcontext
FN_ref_t *fn_ctx_create_subcontext(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

This operation creates a new context of the same type as the target
context—that named by all but the terminal atomic part of name—and binds it
to the composite name name resolved relative to the context ctx, and returns a
reference to the newly created context.

142 Federated Naming Service Guide—November 1995

10

As with the bind operation, the target context must already exist. The new
context is created and bound in the target context using the terminal atomic
name in name.

The operation fails if the terminal atomic name already exists in the target
context.

The new subcontext exports the context interface and is created in the same
naming system as the target context. XFN does not specify any further
properties of the new subcontext. Other properties of the subcontext are
determined by the target context and its naming system.

Destroy Subcontext
int fn_ctx_destroy_subcontext(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

This operation destroys the subcontext named by name, interpreted relative to
ctx, and unbinds the name.

As with the unbind operation, the operation succeeds if the terminal atomic
name is not bound in the target context—that named by all but the terminal
atomic part of name.

Some aspects of this operation are determined by the target context and its
naming system. For example, XFN does not specify what happens if the named
subcontext is not empty when the operation is invoked.

Other Context Operations

Get Reference to Context
FN_ref_t *fn_ctx_get_ref(

const FN_ctx_t * ctx,
FN_status_t * status);

This operation returns a reference to the supplied context object.

Interfaces for Writing XFN Applications 143

10

Get Syntax Attributes of Context
FN_attrset_t *fn_ctx_get_syntax_attrs(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

This operation returns the syntax attributes associated with the context named
by name, relative to the context ctx.

This operation is different from other XFN attribute operations in that these
syntax attributes could be obtained directly from the context. Attributes
obtained through other XFN attribute operations may not necessarily be
associated with the context; they may be associated with the reference of the
context, rather than the context itself (see “Relationship to Naming
Operations” on page 144).

Destroy Context Handle
void fn_ctx_handle_destroy(FN_ctx_t * ctx);

This operation destroys the context handle ctx and allows the implementation
to free resources associated with the context handle. This operation does not
affect the state of the context itself.

The Base Attribute Interface
This section describes the operations in the base attribute interface. The
interfaces to the objects used in operations in this interface are described in
“Parameters Used in the Interface” on page 153.

XFN Attribute Model

In the XFN attribute model, a set of zero or more attributes can be associated
with a named object. Each attribute in the set has a unique attribute identifier,
an attribute syntax, and a set of zero or more distinct attribute values. Each
attribute value has an opaque data type. The attribute identifier serves as a
name for the attribute. The attribute syntax indicates how the attribute values
are encoded.

144 Federated Naming Service Guide—November 1995

10

The operations in the base attribute interface may be used to examine and
modify the settings of attributes associated with existing named objects. These
objects may be contexts or other types of objects. The attribute operations do
not create names or remove names in contexts.

The range of support for attribute operations may vary widely. Some naming
systems may not support any attribute operations. Other naming systems may
support only read operations or operations on attributes whose identifiers are
in some fixed set. A naming system may limit attributes to have a single value
or may require at least one value. Some naming systems may only associate
attributes with context objects, while others may allow associating attributes
with noncontext objects.

Typically, attributes of an object are manipulated through operations that
operate on a single attribute, such as reading or updating a single attribute.
Moreover, the client is typically expected to be able to read all attribute values
of a single attribute in one call. However, sometimes there is a requirement
to manipulate several attributes of a single object or to obtain individual
attribute values of a single attribute from the name service. To address these
requirements, two kinds of attribute operations are defined:

• Single-attribute operations
• Multiple-value and multiple-attribute operations

Relationship to Naming Operations

An XFN attribute operation may not necessarily be equivalently expressed as
an independent fn_ctx_lookup() operation followed by an attribute
operation in which the caller supplies the resulting reference and an empty
name. The reason is that in some attribute models, attributes are associated
with a named object in the context in which the object is named. In others an
object's attributes are stored in the object itself. XFN accommodates both these
models.

Note – Invoking an attribute operation using the target context and the
terminal atomic name accesses either the attributes that are associated with the
terminal name or the object named by the terminal name—this is dependent
upon the underlying attribute model. This document uses the term “attributes
associated with a named object” to refer to all of these cases.

Interfaces for Writing XFN Applications 145

10

XFN does not provide any guarantee about the relationship between the
attributes and the reference associated with a given name. Some naming
systems may store the reference bound to a name in one or more attributes
associated with a name. Attribute operations might affect the information used
to construct a reference.

To avoid undefined results, programmers must use the operations in the
context interface and not the attribute operations when manipulating
references. Applications should avoid the use of specific knowledge about how
an XFN context implementation over a particular naming system constructs
references.

Status Objects

In each attribute operation, the caller supplies an FN_status_t parameter.
The called function sets this status object as described in “Status Objects and
Status Codes” on page 150. All status objects are handled in this manner for
each operation in the base attribute interface; this will not be restated in the
individual operation descriptions.

Single-Attribute Operations

Each of these operations takes as arguments a context and composite name
relative to this context and manipulates the attributes associated with the
named object. Each operation sets a status object to describe the status of the
operation.

Get Attribute
FN_attribute_t *fn_attr_get(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_identifier_t * attribute_id,
FN_status_t * status);

This operation returns the identifier, syntax, and values of a specified attribute,
attribute_id, for the object named name relative to the context ctx. If name is
empty, the attribute associated with ctx is returned.

146 Federated Naming Service Guide—November 1995

10

fn_attr_get_values() and its related functions are for getting individual
values of an attribute and should be used if the combined size of all the values
are expected to be too large to be returned in a single invocation of
fn_attr_get() .

Modify Attribute
int fn_attr_modify(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
unsigned int mod_op,
const FN_attribute_t * attr,
FN_status_t * status);

This operation modifies according to mod_op the attribute attr associated with
the object named name, relative to ctx. If name is empty, the attribute associated
with ctx is modified.

Table 10-1 XFN Attribute -Modification Operations

 Operation Code Meaning

FN_ATTR_OP_ADD Add an attribute with given attribute identifier and set of values. If an
attribute with this identifier exists already, replace the set of values with
those in the given set. The set of values may be empty if the target naming
system permits.

FN_ATTR_OP_ADD_EXCLUSIVE Add an attribute with the given attribute identifier and set of values. The
operation fails if an attribute with this identifier exists already. The set of
values may be empty if the target naming system permits.

FN_ATTR_OP_ADD_VALUES Add the given values to those of the given attribute (resulting in the
attribute having the union of its prior value set with the set given). Create
the attribute if it does not exist already. The set of values may be empty if
the target naming system permits.

FN_ATTR_OP_REMOVE Remove the attribute with the given attribute identifier and all its values.
The operation succeeds even if the attribute does not exist. The values of
the attribute supplied with this operation are ignored.

FN_ATTR_OP_REMOVE_VALUES Remove the given values from those of the given attribute (resulting in the
attribute having the set difference of its prior value set and the set given).
This succeeds even if some of the given values are not in the set of values
that the attribute has. In naming systems that require an attribute to have at
least one value, removing the last value will remove the attribute as well.

Interfaces for Writing XFN Applications 147

10

Get Attribute Values
This set of operations allows the caller to obtain attribute values associated
with a single attribute individually.

FN_valuelist_t *fn_attr_get_values(
FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_identifier_t * attribute_id,
FN_status_t * status);

FN_attrvalue_t *fn_valuelist_next(
FN_valuelist_t, * vl
FN_identifier_t ** attr_syntax,
FN_status_t * status);

void fn_valuelist_destroy(
FN_valuelist_t * vl,
FN_status_t * status);

This set of operations is used to obtain the set of values of a single attribute,
identified by attribute_id, associated with name, relative to ctx. If name is empty,
the attribute associated with ctx are obtained.

This interface should be used instead of fn_attr_get() if the combined size
of the all the values is expected to be too large to be returned by
fn_attr_get() .

The operation fn_attr_get_values() initiates the enumeration process. It
returns a handle to an FN_valuelist_t object that can be used for
subsequent fn_valuelist_next() calls to enumerate the values requested.

The operation fn_valuelist_next() returns the next attribute value in the
enumeration and updates vl to indicate the state of the enumeration.

The operation fn_valuelist_destroy() frees the resources associated with
the enumeration. This may be invoked at any time in order to terminate the
enumeration.

Multiple-Attribute Operations

These operations allow the caller to specify an operation that operates on
multiple attributes using one or more calls.

148 Federated Naming Service Guide—November 1995

10

The failure semantics may vary widely across naming systems. In some
systems the single function call may comprise multiple individual naming
system operations, with no guarantees of atomicity.

Get Attribute Identifiers
FN_attrset_t *fn_attr_get_ids(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
FN_status_t * status);

This operation gets a list of all the attribute identifiers that are associated with
the object named name relative to the context ctx. If name is empty, the attribute
identifiers associated with ctx are returned.

Get Multiple Attributes
FN_multigetlist_t *fn_attr_multiget(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_attrset_t * attr_ids,
FN_status_t * status);

FN_attribute_t *fn_multigetlist_next(
FN_multigetlist_t * ml,
FN_status_t * status);

void fn_multigetlist_destroy(
FN_multigetlist_t * ml,
FN_status_t * status);

This set of operations gets one or more attributes associated with the object
named name relative to the context ctx. If name is empty, the attributes
associated with ctx are returned.

The attributes returned are those specified in attr_ids. If the value of attr_ids is
0, all attributes associated with the named object are returned. Any attribute
values in attr_ids provided by the caller are ignored; only the identifiers are
relevant for this operation. Each attribute (identifier, syntax, and values) is
returned one at a time using an enumeration scheme similar to that for listing
a context. fn_attr_multi_get() initiates the enumeration process. It
returns a handle to an FN_multigetlist_t object that can be used for
subsequent fn_multigetlist_next() calls to enumerate the attributes
requested.

Interfaces for Writing XFN Applications 149

10

The operation fn_multigetlist_next() returns the next attribute
(identifier, syntax, and values) in the enumeration and updates ml to indicate
the state of the enumeration. Successive calls to fn_multigetlist_next ()
using ml return successive attributes in the enumeration and further update the
state of the enumeration.

The operation fn_multigetlist_destroy() frees the resources used
during the enumeration. This may be invoked at any time to terminate the
enumeration.

Implementations are not required to returned all attributes requested by
attr_ids. Some may choose to return only the attributes found successfully;
such implementations may not necessarily return identifiers for attributes that
could not be read.

Modify Multiple Attributes
int fn_attr_multi_modify(

FN_ctx_t * ctx,
const FN_composite_name_t * name,
const FN_attrmodlist_t * mods,
FN_attrmodlist_t **unexecuted_mods,
FN_status_t * status);

This operation modifies the attributes associated with the object named name,
relative to ctx.

In the mods parameter, the caller specifies a sequence of modifications that are
to be done in order on the attributes. Each modification in the sequence
specifies a modification operation code (shown in Table 10-1 on page 146) and
an attribute on which to operate.

If all the modifications were performed successfully, unexecuted_mods is a
NULL pointer.

If an error is encountered while performing the list of modifications, status
indicates the type of error and unexecuted_mods is set to point to a list of
unexecuted modifications. The contents of unexecuted_mods do not share any
state with mods; items in unexecuted_mods are copies of items in mods and
appear in the same order in which they were originally supplied in mods. The
first operation in unexecuted_mods is the first one that failed, and the code in
status applies to this modification operation in particular. If status indicates a
failure and a NULL pointer is returned in unexecuted_mods, that indicates no
modifications were executed.

150 Federated Naming Service Guide—November 1995

10

Status Objects and Status Codes
The result status of operations in the context interface and the attribute
interface is encapsulated in an FN_status_t object. This object contains
information about how the operation completed: whether an error occurred in
performing the operation, the nature of the error, and information that helps
locate where the error occurred. If the error occurred while resolving an XFN
link, the status object contains additional information about that error.

The status object consists of several items of information.

Table 10-2 Status Object

Information Type Description

Primary status code An unsigned int code describing the disposition of the operation.

Resolved name In the case of a failure during the resolution phase of the operation, this
is the leading portion of the name that was resolved successfully.
Resolution may have been successful beyond this point, but the error
might not be pinpointed further.

Resolved reference The reference to which the resolved name is bound.

Remaining name The remaining unresolved portion of the name.

Diagnostic message Any diagnostic message returned by the context implementation.

Link status code If an error occurs while resolving an XFN link, the primary status code
has the value FN_E_LINK_ERROR, and this code describes the error that
occurred while resolving the XFN link.

Resolved link name In the case of a link error, this contains the resolved portion of the name
in the XFN link.

Resolved link reference In the case of a link error, this contains the reference to which the
resolved link name is bound.

Remaining link name In the case of a link error, this contains the remaining resolved portion
of the name in the XFN link.

Link diagnostic message Any diagnostic message related to the resolution of the link.

Interfaces for Writing XFN Applications 151

10

Both the primary status code and the link status code are values of type
unsigned int that are drawn from the same set of meaningful values.
XFN reserves the values 0 through 127 for standard meanings. Currently
values and interpretations for the codes in Table 10-3 are determined by XFN.

Table 10-3 Status Codes

Code Meaning

FN_SUCCESS The operation succeeded.

FN_E_ATTR_NO_PERMISSION The caller did not have permission to perform the attempted attribute
operation.

FN_E_ATTR_VALUE_REQUIRED The operation attempted to create an attribute without a value, and the
specific naming system does not allow this.

FN_E_AUTHENTICATION_FAILURE The identity of the client principal could not be verified.

FN_E_COMMUNICATION_FAILURE An error occurred in communicating with one of the contexts involved
in the operation.

FN_E_CONFIGURATION_ERROR A problem was detected that indicated an error in the installation of the
XFN interfaces.

FN_E_CONTINUE The operation should be continued using the remaining name and the
resolved reference returned in the status.

FN_E_CTX_NO_PERMISSION The client did not have permission to perform the operation.

FN_E_CTX_NOT_EMPTY Applies only to fn_ctx_destroy_subcontext() . The naming system
required that the context be empty before its destruction, and it was not
empty.

FN_E_CTX_UNAVAILABLE Service could not be obtained from one of the contexts involved in the
operation. This may be because the naming system is busy or is not
providing service. In some implementations this may not be
distinguished from a communication failure.

FN_E_ILLEGAL_NAME The name supplied to the operation was not a well-formed composite
name, or one of the component names was not well formed according to
the syntax of the naming systems involved in its resolution.

FN_E_INCOMPATIBLE_CODE_SETS The operation involved character strings of incompatible code sets or
the supplied code set is not supported by the implementation.

FN_E_INSUFFICIENT_RESOURCES Either the client or one of the involved contexts could not obtain
sufficient resources (on memory, file descriptors, communication ports,
stable media space, for example) to complete the operation successfully.

152 Federated Naming Service Guide—November 1995

10

FN_E_INVALID_ATTR_VALUE One of the values supplied was not in the appropriate form for the
given attribute.

FN_E_INVALID_ENUM_HANDLE The enumeration handle supplied was invalid, either because it was
from another enumeration, because an update operation occurred
during the enumeration, or for some other reason.

FN_E_INVALID_SYNTAX_ATTRS The syntax attributes supplied are invalid or insufficient to fully specify
the syntax.

FN_E_LINK_ERROR An error occurred while resolving an XFN link encountered during
resolution of the supplied name.

FN_E_LINK_LOOP_LIMIT A nonterminating loop (cycle) in the resolution is suspected. This arises
due to XFN links encountered during the resolution of a supplied
composite name. This code indicates either the definite detection of such
a cycle, or that resolution exceeded an implementation-defined limit on
the number of XFN links allowed for a single operation invoked by the
caller (and thus a cycle is suspected).

FN_E_MALFORMED_LINK A malformed link reference was encountered.
For fn_ctx_lookup_link() , the name supplied resolved to a
reference that was not a link.

FN_E_MALFORMED_REFERENCE A context object could not be constructed from the supplied reference
because the reference was not properly formed.

FN_E_NAME_IN_USE (Only for operations that bind names.) The supplied name was already
in use.

FN_E_NAME_NOT_FOUND Resolution of the supplied composite name proceeded to a context in
which the next atomic component of the name was not bound.

FN_E_NO_SUCH_ATTRIBUTE The object does not have an attribute with the given identifier.

FN_E_NO_SUPPORTED_ADDRESS A context object could not be constructed from a particular reference.
The reference contained no address type over which the context
interface was supported.

FN_E_NOT_A_CONTEXT Either one of the intermediate atomic names did not name a context,
and resolution could not proceed beyond this point, or the operation
required that the caller supply the name of a context, and the name did
not resolve to a reference for a context

FN_E_OPERATION_NOT_SUPPORTED The operation attempted is not supported.

FN_E_PARTIAL_RESULT The operation attempted is returning a partial result.

Table 10-3 Status Codes (Continued)

Code Meaning

Interfaces for Writing XFN Applications 153

10

Parameters Used in the Interface
This section gives an overview of the types of parameters that are passed and
returned by operations in the base context and attribute interfaces.
Manipulation of these objects using their corresponding interfaces does not
affect their representation in the underlying naming system. Changes to objects
in the underlying naming system can only be effected through the use of the
interfaces described in “The Base Context Interface” on page 135 and “The
Base Attribute Interface” on page 143.

Composite Names

A composite name is represented by an object of type
FN_composite_name_t . A composite name is a sequence of components,
where each component is a string (of type FN_string_t) intended to contain
a name from a single naming system. (See “Syntax” on page 159 for a
description of composite name syntax and structure.) Operations are provided
to iterate over this sequence, modify it, and compare two composite names.

References and Addresses

A reference is represented by the type FN_ref_t . An object of this type
contains a reference type and a list of addresses. The ordering in this list at the
time of binding might not be preserved when the reference is returned upon
lookup.

The reference type is represented by an object of type FN_identifier_t . The
reference type is intended to identify the class of object referenced, but XFN
does not dictate its precise use.

FN_E_SYNTAX_NOT_SUPPORTED The syntax type specified is not supported.

FN_E_TOO_MANY_ATTR_VALUES The operation attempted to associate more values with an attribute than
the naming system supported.

FN_E_UNSPECIFIED_ERROR An error occurred that could not be classified by any of the other error
codes.

Table 10-3 Status Codes (Continued)

Code Meaning

154 Federated Naming Service Guide—November 1995

10

Each address in a reference is represented by an object of type
FN_ref_addr_t . An address consists of an opaque data buffer and a type
field, again of type FN_identifier_t . The address type is intended to
identify the mechanism that should be used to reach the object using that
address. Multiple addresses in a single reference are intended to identify
multiple communication endpoints for the same conceptual object. Multiple
addresses may arise for various reasons; for example, because the object offers
interfaces over more than one communication mechanism.

The client process must interpret the contents of the opaque buffers based on
the type of the address and on the type of the reference. However, this
interpretation is intended to occur below the application layer. Most
applications developers should not have to manipulate the contents of either
address or reference objects themselves. These interfaces would generally be
used within service libraries.

Identifiers

Identifiers are used to identify reference types and address types in the
reference and to identify attributes and their syntax in the attribute
operations.

The FN_identifier_t type is used to represent an identifier. It consists of an
unsigned integer, which determines the format of identifier, and the actual
identifier, which is expressed as a sequence of octets.

XFN defines a small number of standard forms for identifiers, as shown in
Table 10-4.

Table 10-4 XFN Identifier Formats

Identifier Format Description

FN_ID_STRING The identifier is an ASCII string (ISO 646).

FN_ID_DCE_UUID The identifier is an OSF DCE UUID in string
representation. See the X/Open DCE RPC
(ISBN 1-872630-95-2).

FN_ID_ISO_OID_STRING The identifier is an ISO OID in ASN.1 dot-separated
integer list string format. See the ISO ASN.1 (ISO 8824).

FN_ID_ISO_OID_BER The identifier is an ISO OID in ASN.1 Basic Encoding
Rules (BER) format. See the ISO BER (ISO 8825).

Interfaces for Writing XFN Applications 155

10

Strings

The FN_string_t type is used to represent character strings in the XFN
interface. It provides a layer of insulation from specific string representations.
The FN_string_t operations contain operations for string comparison,
substring searches, and manipulation. The FN_string_t type supports
multiple code sets. In Solaris 2.5, FNS supports ISO 646.

Attributes and Attribute Values

An attribute has an attribute identifier, a syntax, and a set of distinct values.
An attribute is represented by the FN_attribute_t type. The attribute
identifier and its syntax are specified using an FN_identifier_t . Each value
is a sequence of octets, represented by the FN_attrvalue_t type.

There are operations to allow the construction, destruction, and manipulation
of an attribute.

Attribute Sets

An attribute set is a set of attribute objects with distinct attribute identifiers.
Attribute sets are represented by the FN_attrset_t type.

There are operations to allow the construction, destruction, and manipulation
of an attribute set.

Attribute-Modification Lists

An attribute-modification list allows you to specify multiple modification
operations to be performed on the attributes associated with a single named
object. An attribute-modification list is represented by the
FN_attrmodlist_t type. It consists of an ordered list of attribute-
modification specifiers. An attribute-modification specifier consists of an
operation and an attribute object. The attribute’s identifier indicates the
attribute that is to be operated upon. The attribute's values are used in a
manner depending on the operation. The operation specifier is one of the
values described in Table 10-1 on page 146. The operations are to be done in
the order in which they appear in the list.

156 Federated Naming Service Guide—November 1995

10

Parsing Compound Names
Most applications treat names as opaque data; therefore, the majority of clients
of the XFN interface will not need to parse compound names from specific
naming systems. Some applications, however, such as browsers, need such
capabilities. For these applications, XFN provides support in the form of the
FN_compound_name_t object.

Syntax Attributes

Each context has an associated set of syntax-related attributes. The attribute
fn_syntax_type (FN_ID_STRING format) identifies the naming syntax
supported by the context. The value “standard” (ASCII attribute syntax) in the
fn_syntax_type attribute specifies that the context supports the XFN
standard syntax model that is by default supported by the
FN_compound_name_t object.

Implementations may choose to support other syntax types in addition to or in
place of the XFN standard syntax model, in which case the value of the
fn_syntax_type attribute would be set to an implementation-specific string
and different or additional syntax attributes would be in the set.

Syntax attributes of a context may be generated automatically by a context, in
response to fn_ctx_get_syntax_attrs() , or may be created and updated
using the attribute operations. This is implementation dependent.

XFN Standard Syntax Model

Each naming system in an XFN federation has a naming convention. XFN
defines a standard model of expressing compound name syntax that covers a
large number of specific name syntaxes. This model is expressed in terms of
syntax properties of the naming convention and it uses XFN attributes to
describe properties of the syntax.

Unless otherwise qualified, the syntax attributes described in this section have
attribute identifiers that use the FN_ID_STRING format. This does not
specify or restrict the use of other formats for identifiers of additional syntax
attributes supported by specific implementations.

In the XFN standard syntax model these attributes are interpreted according to
the following rules:

Interfaces for Writing XFN Applications 157

10

• In a string without quotes or escapes, any instance of the separator string
delimits two atomic names.

• A separator, quotation mark, or escape string is escaped if preceded
immediately (on the left) by the escape string.

• A non-escaped begin-quote that precedes a component must be matched by
a non-escaped end-quote at the end of the component. Quotes
embedded in nonquoted names are treated as simple characters and do not
need to be matched. An unmatched quotation fails with the status code
FN_E_ILLEGAL_NAME.

• If there are multiple values for begin-quote and end-quote, a specific begin-
quote value must be matched with its corresponding end-quote value.

• When the separator appears between a (nonescaped) begin-quote and the
end-quote, it is ignored.

• When the separator is escaped, it is not treated as a separator. An escaped
begin-quote or end-quote string is not treated as a quotation mark. An
escaped escape string is not treated as an escape string.

• A non-escaped escape string appearing within quotes is interpreted as an
escape string. This can be used to embed an end-quote within a
quoted string.

After constructing a compound name from a string, the resulting component
atoms have one level of escape strings and quotations interpreted and
consumed.

Code set mismatches that occur during the construction of the compound
name’s string form are resolved in an implementation-dependent way. When
an implementation discovers that a compound name has components with
incompatible code sets, it returns the error code
FN_E_INCOMPATIBLE_CODE_SETS.

158 Federated Naming Service Guide—November 1995

10

Table 10-5 lists all the XFN standard syntax model attributes.

Table 10-5 XFN Syntax Attributes

Attribute Identifier Attribute Value

fn_syntax_type Its value is the ASCII string ”standard” if the context supports the XFN
standard syntax model. Its value is an implementation-specific value if
another syntax model is supported.

fn_syntax_direction Its value is an ASCII string, one of “left-to-right,” “right-to-left,” or
“flat.” This determines whether the order of components in a compound
name string goes from left-to-right, right-to-left, or whether the
namespace is flat (that is, not hierarchical, with all names atomic)

fn_std_syntax_separator Its value is the separator string for this name syntax. This attribute is
required unless the fn_syntax_direction is flat.

fn_std_syntax_escape If present, its value is the escape string for this name syntax.

fn_std_syntax_case_insensitive If present, it indicates that names that differ only in case are considered
identical. If this attribute is absent, it indicates that case is significant. If
a value is present, it is ignored.

fn_std_syntax_begin_quote If present, its value is the begin-quote string for this syntax.

fn_std_syntax_end_quote If present, its value is the end-quote string for this syntax.

fn_std_syntax_ava_separator If present, its value is the attribute-value assertion separator string for
this syntax.

fn_std_syntax_typeval_separator If present, its value is the attribute type-value separator string for this
syntax.

fn_std_syntax_code_sets If present, its value identifies the code sets of the string representation
for this syntax. Its value consists of a structure containing an array of
code sets supported by the context; the first member of the array is the
preferred code set of the context. The values for the code sets are
defined in the X/Open code set registry currently defined in DCE RFC
40.1. If this attribute is not present, or if the value is empty, the default
code set is ISO 646 (same encoding as ASCII).

fn_std_syntax_locale_info If present, its value identifies locale information, such as character set
information, of the string representation for this syntax. The
interpretation of its value is implementation dependent.

159

XFN Composite Names 11

This chapter describes XFN composite names in detail.

Syntax
The standard string form for XFN composite names is the concatenation of the
components of a composite name from left to right, with the XFN component
separator character (/) separating each component. Components can be quoted
using either double-quote ("") or single-quote ('') pairs. The XFN component
separator or quote characters may be escaped using a backslash character (\) if
the intention is for these characters not to behave as separators or quotes. Note
that quotation marks and escape characters are interpreted as such only when
they appear in places that need quotes or escapes. For example, a quote
appearing in an unquoted component is not interpreted as a quote.

Syntax page 159

Composite Name and Naming System Boundaries page 161

Composite Name Resolution page 163

Strong Separation page 161

Weak Separation page 162

Explicit NNSPs: Junctions page 163

Implicit NNSPs page 164

XFN Links page 165

160 Federated Naming Service Guide—November 1995

11

XFN defines an abstract data type, FN_composite_name_t , for representing
the structural form of a composite name. XFN also defines the syntax of how
component string names are composed into an XFN composite name and the
corresponding rules for converting an XFN composite name to its structural
form from its string form, and vice versa. The XFN client interface includes
operations that perform these conversions.

Table 11-1 contains some examples of how the string form of XFN composite
names are decomposed into components according to the syntax of XFN
composite names. See also Appendix A, “XFN Composite Names Syntax,” for
more information.

Table 11-1 String and Structural Forms of XFN Composite Names

String form
Components in
FN_composite_name_t

a a

a/b/c a, b, c

a/ a, ""

/a "", a

a// a, "", ""

a//b a, "", b

"" ""

/ "", ""

// "", "", ""

"a/b/c"/d a/b/c, d

"a.b.c"/d a.b.c, d

a.b.c/d a.b.c, d

a"b/c a"b, c

a'b/c a'b, c

"a/b/c illegal name

\"a/b/c "a, b, c

a\b\c/d a\b\c, d

a\b\/c a\b/c

XFN Composite Names 161

11

Composite Name and Naming System Boundaries
There may not be a one-to-one correspondence between component separators
and naming system boundaries if a composite name contains names from
naming systems that use the same character as the XFN component separator
to separate their atomic names. Consequently, a component of a composite
name may represent an atomic name from a hierarchical naming system that
uses the XFN component separator or a compound name. Strong separation and
weak separation refer to whether a context always treats the XFN component
separator as a naming system boundary.

Strong Separation

An XFN context that treats the XFN component separator as a naming system
boundary supports strong separation. An XFN component separator that
appears within a component to be resolved by the context must be escaped or
quoted.

Support for strong separation is a property of a context. A context that
supports strong separation expects to receive the name that it is going to
resolve entirely in one component of the composite name structure. When a
composite name is supplied to such a context, it consumes the leading
component of the name; any remaining components are left to be
resolved by subordinate naming systems.

An XFN context with a name syntax that is either flat or hierarchical, and does
not use the XFN component separator as its atomic separator, supports strong
separation. Examples of naming systems that support strong separation are

"a\"b"/c a"b, c

'"a/b/c"' "a/b/c"

'a\/b'/c a\/b, c

a\\b/c a\b, c

a/\"b a, "b

Table 11-1 String and Structural Forms of XFN Composite Names (Continued)

String form
Components in
FN_composite_name_t

162 Federated Naming Service Guide—November 1995

11

DNS and NIS+, both of which have right-to-left dot-separated names. The
following are examples of names with DNS and NIS+ components,
respectively.

.../ wiz.com /orgunit/ppt

orgunit/ accountspayable.finance /user/jsmith

Weak Separation

An XFN context that does not always treat the XFN component separator as a
naming system boundary supports weak separation. This arises when the
component naming system associated with the context uses the same character
as the XFN component separator as its atomic component separator, and the
context allows its atomic separator to appear unescaped and unquoted in its
compound names when they occur in composite names. This means that an
XFN component separator may not necessarily signify a naming system
boundary.

Support for weak separation is a property of a context. A context that supports
weak separation expects to receive its atomic names in separate components of
the composite name structure. When a composite name is supplied to a context
that supports weak separation, the context consumes the leading components
of the name (and treats them as atomic components); any remaining
components are resolved by subordinate naming systems. The number of
components consumed is determined either syntactically or
dynamically.

CDS names and X.500 names are examples of names that use the XFN
component separator as their atomic name separator. X.500 supports weak
separation using a syntactic method (by scanning for typed names) while CDS
supports weak separation by determining the naming system boundary
dynamically.

The following example shows a composite name with an X.500 component.

.../ c=us / o=wiz.com /orgunit/ppt

Note – An XFN context that supports weak separation using only syntax-
specific discovery of its naming system boundary may not always be able to be
federated with arbitrary subordinate naming systems. If the subordinate

XFN Composite Names 163

11

naming system has a naming syntax that is indistinguishable from that of the
superior naming system, the superior naming system would not be able to
identify the naming system boundary.

Naming systems that use the same character as the XFN component separator
as their atomic separator, and which cannot support weak separation because
it cannot use a syntactic or dynamic method to determine the naming system
boundary, must provide context implementations that support strong
separation. This means that occurrences of atomic separators must be quoted
or escaped when they appear in compound names within composite names.

Composite Name Resolution
Composite name resolution combines resolution in each component naming
system and resolution across federated naming system boundaries. There are
several techniques for resolving an XFN composite name in the underlying
federation of naming systems.

This section describes two implementation techniques for composite name
resolution across a naming system boundary. One technique uses an explicit
next naming system pointer (NNSP) to resolve across a naming system
boundary. The other uses an implicit NNSP to resolve across a naming system
boundary.

An NNSP is the XFN reference of an XFN context in which composite name
components from subordinate naming systems are to be resolved. NNSPs are
entities that “tie” naming systems together into a federated system. NNSPs can
be bound to names, in which case they are explicit NNSPs or junctions. NNSPs
can also be nameless, in which case they are implicit NNSPs.

Explicit NNSPs: Junctions

A junction is an atomic name that is bound to an NNSP. It is a terminal name
in the superior naming system. There is no limit on the number of junctions
bound in a single context, except that imposed by the context. A context may
reserve certain names for use as junctions or have other policies for selecting
names for use as junction. The conventions used for identifying junctions and
their references are context-specific.

164 Federated Naming Service Guide—November 1995

11

Composite name resolution involving junctions proceeds as follows,
depending on whether the context supports strong or weak separation.

A context that supports strong separation and junctions consumes the first
component of the composite name supplied to it. The last atomic name of the
first component must be a junction. Any remaining components are resolved in
the context named by the junction.

A context that supports weak separation and junctions resolves a composite
name by consuming leading components until a junction is reached, at which
point resolution of any remaining components is continued in the context
resolved to by the junction. Determination of whether a component is a
junction can be done statically using a syntactic policy or dynamically during
resolution.

Implicit NNSPs

When a context does not want to use part of its namespace for junctions, it uses
implicit NNSPs for federating subordinate naming systems. An implicit NNSP
is named using the XFN component separator. For example, the name
wiz.com/ names the implicit NNSP of wiz.com . Each context can have one
implicit NNSP.

Composite name resolution involving implicit NNSPs proceeds as follows,
depending on whether the context supports strong or weak separation.

A context that supports strong separation and resolves composite names using
an implicit NNSP consumes the first component of the composite name
supplied to it. Any remaining components are resolved in the context pointed
to by the implicit NNSP of the first component.

A context that supports weak separation and implicit NNSPs in its
implementation needs to distinguish the use of the XFN component separator
character as an XFN component separator or an atomic separator. This means
that such a context needs to know when to exit the current (native) naming
system and follow the NNSP. This can be achieved using a static, syntactic
policy or a dynamic, resolution-based policy.

With the syntactic policy, a context syntactically discovers where the boundary
between its naming system and the subordinate naming system lies. This may
impose certain restrictions on the syntax of subordinate naming systems.
Subordinate naming systems must not permit as valid top-level names that are

XFN Composite Names 165

11

syntactically indistinguishable from names allowed in the superior naming
system. For example, assume the superior naming system has a name syntax
whose distinguishing feature is that each atomic part must have an equal sign
(=). The superior naming system might impose as a policy that subordinate
naming systems must not have top-level names that have an equal sign in
them. Resolution in the superior naming system continues until all leading
components of the supplied composite name fitting the syntactic rule are
consumed. Any remaining components are resolved in the context of the NNSP
of the last component fitting the syntactic rule.

If a context is not able to syntactically differentiate between atomic
components and composite name components, or does not want to impose any
syntactic restrictions, it may be able to determine the naming system boundary
at runtime during resolution. The policy is to continue resolution in the current
naming system until resolution fails, at which point the implicit NNSP
associated with the last context at which resolution succeeded is used to
continue the resolution. A conflict arises if the same atomic name is bound
both in the last context and the context pointed to by the last context’s implicit
NNSP. In this case, the binding in the last context takes precedence. Note that
this way of supporting weak separation requires the context to have the
capability of returning remaining unresolved parts of a given name.

Coexistence of Explicit and Implicit NNSPs

Naming systems that implement either technique may coexist in a federation.
A naming system that supports composite name resolution using junctions can
be federated with one that supports implicit NNSPs, and vice versa.

XFN Links

An XFN link affects name resolution in the following way. Suppose lname is a
link bound to the atomic name aname in the context ctx. If at some point
resolution of a composite name cname reaches the context ctx and the next
atomic name is aname, resolution of aname results in the resolution of the link
name lname. This is termed “following the link.” If the first component of the
link lname is the atomic name “., ” the remaining components of lname are
resolved relative to ctx; otherwise, lname is resolved from the initial context.
The resolution of any remaining portion of the name cname proceeds from the
reference that results by resolving lname.

166 Federated Naming Service Guide—November 1995

11

The link name may itself cause resolution to resolve through other links. This
gives rise to the possibility of a cycle of links whose resolution could
not terminate normally. As a simple means to avoid such nonterminating
resolutions, implementations may define limits on the number of XFN links
that may be resolved in any single operation invoked by the caller.

167

XFN Programming Examples 12

This chapter presents self-contained executable programs for a namespace
browser and a printer client and server.

168 Federated Naming Service Guide—November 1995

12

Namespace Browser Example

Figure 12-1 Diagram of fnbrowse Program

The first example is a browser that lists all names that it finds in the
namespace. When the program is invoked, the browser is set at the initial
context or the composite name given on the command line.

Figure 12-1 illustrates the XFN APIs that are used by the browser application.

See “Commands” on page 175” and “Sample Output” on page 176”.

Code Example 12-1 fnbrowse Source Code

*
* fnbrowse.c -- FNS namespace browser.
*
* To keep this example program relatively short, limited error
* checking is done.
*/

Start

FN_ctx_t

Namespace Browser Application

FN_string_t

fn_ctx_list_names() fn_ctx_lookup()

fn_ctx_handle_from_initial()

fn_ctx_handle_from_ref()

FN_ref_t

XFN Programming Examples 169

12

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xfn/xfn.h>

#define LINELEN 128 /* maximum length of input line */

typedef enum {CMD_DOWN, CMD_UP, CMD_LIST, CMD_SHOW, CMD_QUIT}
command;

FN_status_t *status;

/* Look up a context named relative to the initial context. */
FN_ctx_t *lookup(const FN_composite_name_t *name);

/* Set the browser's focus to the given context. */
void browse(FN_ctx_t *ctx);

/* Set the browser's focus to a subcontext of the given context. */
void cmd_down(FN_ctx_t *ctx, const FN_composite_name_t *child);

/* Print the names bound within a context. */
void cmd_list(FN_ctx_t *ctx);

/*
 * Print a description of the reference bound to "child" in the given
 * context or, if "child" is the empty string, the reference of the
 * context itself.
 */
void cmd_show(FN_ctx_t *ctx, const FN_composite_name_t *child);

/*
 * Read and parse the next command typed by the user. If the command
 * has an argument, set *argp to point to the argument.

 */

command read_command(FN_string_t **argp);

/* Print an error message and the status description */
void error(const char *msg);

170 Federated Naming Service Guide—November 1995

12

int
main(int argc, char *argv[])
{

FN_string_t *arg;

switch (argc) {
case 1:

arg = fn_string_create();
break;

case 2:

arg = fn_string_from_str((unsigned char *)argv[1]);
break;

default:

fprintf(stderr, "Usage: %s [<composite_name>]\n", argv[0]);
return (1);

}

status = fn_status_create();

browse(lookup(fn_composite_name_from_string(arg)));
return (0);

}

FN_ctx_t *
lookup(const FN_composite_name_t *name)
{

FN_ctx_t *ctx;
FN_ref_t *ref;
ctx = fn_ctx_handle_from_initial(status);
if (ctx == NULL) {

error("Could not construct initial context");
exit(1);

}

if (fn_composite_name_is_empty(name)) {
return (ctx);

}

ref = fn_ctx_lookup(ctx, name, status);
fn_ctx_handle_destroy(ctx);
if (ref == NULL) {

error("Lookup failed");
exit(1);

}

XFN Programming Examples 171

12

ctx = fn_ctx_handle_from_ref(ref, status);
fn_ref_destroy(ref);
if (ctx == NULL) {

error("Could not construct context handle");
exit(1);

}

return (ctx);
}

void
browse(FN_ctx_t *ctx)
{

FN_string_t *arg;
FN_composite_name_t*child;

while (1) {
switch (read_command(&arg)) {
case CMD_DOWN:

child = fn_composite_name_from_string(arg);
fn_string_destroy(arg);
cmd_down(ctx, child);
fn_composite_name_destroy(child);
break;

case CMD_UP:
return;

case CMD_LIST:
cmd_list(ctx);
break;

case CMD_SHOW:
child = fn_composite_name_from_string(arg);
fn_string_destroy(arg);
cmd_show(ctx, child);
fn_composite_name_destroy(child);
break;

case CMD_QUIT:
exit(0);

}
}

}

void

172 Federated Naming Service Guide—November 1995

12

cmd_down(FN_ctx_t *ctx, const FN_composite_name_t *child)
{

FN_ref_t *ref;
FN_ctx_t *subctx;

ref = fn_ctx_lookup(ctx, child, status);
if (ref == NULL) {

error("Lookup failed");
return;

}

subctx = fn_ctx_handle_from_ref(ref, status);
fn_ref_destroy(ref);
if (subctx == NULL) {

error("Could not construct context handle");
return;

}

browse(subctx);
fn_ctx_handle_destroy(subctx);

}

void
cmd_list(FN_ctx_t *ctx)
{

FN_string_t *empty_string = fn_string_create();
FN_composite_name_t *empty_name;
FN_namelist_t *children;
FN_string_t *child;
unsigned int statcode;
int has_children = 0;

empty_name = fn_composite_name_from_string(empty_string);
fn_string_destroy(empty_string);

children = fn_ctx_list_names(ctx, empty_name, status);
fn_composite_name_destroy(empty_name);

if (children == NULL) {
error("Could not list names");
return;

}

XFN Programming Examples 173

12

while ((child = fn_namelist_next(children, status)) != NULL) {
has_children = 1;
printf("%s ", fn_string_str(child, &statcode));
fn_string_destroy(child);

}

if (has_children) {
printf("\n");

}

fn_namelist_destroy(children, status);
}

void
cmd_show(FN_ctx_t *ctx, const FN_composite_name_t *child)
{

FN_string_t *desc;
FN_ref_t *ref;
unsigned int statcode;

ref = fn_ctx_lookup(ctx, child, status);
if (ref == NULL) {

error("Lookup failed");
return;

}

desc = fn_ref_description(ref, 2, NULL);
fn_ref_destroy(ref);
if (desc != NULL) {

printf("%s", fn_string_str(desc, &statcode));
fn_string_destroy(desc);

} else {
printf("[No description]\n");

}
}

command
read_command(FN_string_t **argp)
{

char buf[LINELEN + 1];
char *cmd;
char *child;

174 Federated Naming Service Guide—November 1995

12

while (printf("\n> "), fflush(stdout), gets(buf) != NULL) {
cmd = strtok(buf, " \t");
if (cmd == NULL) {

continue;
}
if (strcmp(cmd, "down") == 0) {

child = strtok(NULL, " \t");
if (child != NULL) {

*argp =
 fn_string_from_str((unsigned char *)child);
return (CMD_DOWN);

}
}
if (strcmp(cmd, "up") == 0) {

return (CMD_UP);
}
if (strcmp(cmd, "list") == 0) {

return (CMD_LIST);
}
if (strcmp(cmd, "show") == 0) {

child = strtok(NULL, " \t");
*argp = (child != NULL)
 ? fn_string_from_str((unsigned char *)child)
 : fn_string_create();
return (CMD_SHOW);

}
if (strcmp(cmd, "quit") == 0) {

return (CMD_QUIT);
}
fprintf(stderr, "Valid commands are: "

"down <child>, up, list, show [<child>], quit\n");
}
return (CMD_QUIT);/* EOF */

}

void
error(const char *msg)
{

FN_string_t *reason;
unsigned int statcode;
fprintf(stderr, "%s", msg);
reason = fn_status_description(status, 0, NULL);
if (reason != NULL) {

fprintf(stderr, ": %s",

XFN Programming Examples 175

12

(const char *)fn_string_str(reason, &statcode));
fn_string_destroy(reason);

}
fprintf(stderr, "\n");

}

Compiling and Executing Browser Example

To compile Code Example 12-1, type:

To browse the namespace starting from the initial context, the program is
invoked as

Or to browse a composite name and its descendents, type

Commands

The commands supported by the fnbrowse program are summarized in
Table 12-1.

% cc -o fnbrowse fnbrowse.c -lxfn

% fnbrowse

% fnbrowse composite_name

Table 12-1 Namespace Browser Commands

Command Usage

down child Sets the browser at the subcontext of the child

up Sets the browser at one level higher than the current context

list Lists the names bound within the current context

show Prints the reference of the current context

show child Prints the reference of the current context’s child

quit Exits the browser

176 Federated Naming Service Guide—November 1995

12

Sample Output

Sample output for navigating the entire namespace is displayed here.

Note the following:

• The first list command shows the initial context bindings.

• The fnbrowse program lists all names it finds in the namespace, including
names with underscores. These names are explained in “Initial Context
Bindings for Naming Within the Enterprise” on page 54.

• The three dots (...) represent the global namespace.

Navigating the namespace is accomplished with the up and down commands.
In the following output, the down command brings the focus of the browser to
the enterprise root of the namespace, thisens (can also be myens). The show
command displays information about the reference and address type for
thisens .

% fnbrowse
> list
_myorgunit ... _myself thishost myself _orgunit _host
_thisens myens thisens org orgunit thisuser _thishost
myorgunit _user thisorgunit host _thisorgunit _myens user

> down thisens
> show
Reference type: onc_fn_enterprise
Address type: on_fn_nisplus
 length: 20
 context type: enterprise root
 representation: normal
 version: 0
 internal name: eng.wiz.com

> up
> down thisorgunit

XFN Programming Examples 177

12

Continuing with the example, this list command shows the contexts for
thisorgunit .

The list command shows the printer names that are bound in the printer
context. The show command displays the reference for the child, colorful .

> list
service _fs _host _service _site site _user host fs user

> down usr
Lookup failed: Name Not Found: 'usr'

> down service
> list
printer

> down printer

> list
celeste _default color colorful quartz nuttree puffin

> show colorful
printer
Reference type: onc_printers
Address type: onc_printers_bsdaddr
 length: 12
 data: 0x00 0x00 0x00 0x08 0x62 0x6c 0x61 0x63 0x6b 0x63
....blackc 0x61 0x74 at

> down colorful
Could not construct context handle: No Supported Address
> quit
%

178 Federated Naming Service Guide—November 1995

12

Printer Programming Example
Printer client and server software can take advantage of FNS to advertise and
to browse the printers available with respect to organizations, sites, users and
hosts. The APIs used by the server and the client are XFN APIs, thereby
ensuring that the application will be portable across the different naming
services used for storing printer bindings.

The programming example in this section shows how printer clients and
servers obtain and store printer bindings. Users can then make use of the FNS
commands, fnlist and fnlookup , to browse the printer context.

For example, use fnlist to look at the user printer context for jsmith :

Similarly, you can look at the organization’s printers:

Alternatively, you can type

You can look at the printers at a specific site, for example, the printers in the
MTV site:

% fnlist user/jsmith/service/printer
celeste
lp
_default
myprinter

% fnlist org/wiz.com/service/printer
sales_printer
mktg_printer
eng_printer

% fnlist thisorgunit/service/printer

% fnlist thisorgunit/site/MTV/service/printer
b1_printer
b2_printer

XFN Programming Examples 179

12

Client

The scenario for Code Example 12-2 is a user who would like to print to a
printer named colorful in his organization’s context,
thisorgunit/service/printer/colorful . The example printer client
illustrates how the bindings for a specific printer are obtained.

The variable printer_binding contains the reference (the binding information) of
the named printer. Using the binding information, the printer client can
connect to the server and send the printer request. Note that the
fn_ctx_lookup() function can be replaced by fn_ctx_list_name() or
fn_ctx_list_bindings() to list all the names and their bindings.

Code Example 12-2 Printer Client

#include <stdio.h>
#include <xfn/xfn.h>
#include <string.h>
#include <stdlib.h>

/* Routine to obtain the address of a specific printer */

/* This routine takes the printer name and the address type
 as the input arguments and returns the address of the requested
 printer */

char *

get_address_of_printer(const char *printer_name,
const char *address_type)

{

/* Variable list */
FN_string_t *printer_name_string;
FN_composite_name_t *printer_name_comp;
FN_status_t *status;
FN_ctx_t *initial_context;
FN_ref_t *printer_ref;
const FN_identifier_t *addr_id;
const FN_ref_addr_t *address;
char *addr_data; /* Return value */
void *ip;
size_t address_type_len, addr_len;

/* Convert the printer name to a composite name */
printer_name_string =

fn_string_from_str((unsigned char *) printer_name);

180 Federated Naming Service Guide—November 1995

12

printer_name_comp =
fn_composite_name_from_string(printer_name_string);

fn_string_destroy(printer_name_string);

/* Get the initial context */
status = fn_status_create();
initial_context = fn_ctx_handle_from_initial(status);
/* Check status for any error messages */
if (!fn_status_is_success(status)){

fprintf(stderr, "Unable to obtain the initial context\n");
return (0);

}

/* Perform a lookup for the printer name */
printer_ref = fn_ctx_lookup(initial_context,

printer_name_comp, status);
/* Check status for any error messages */
if (!fn_status_is_success(status)){

fprintf(stderr, "Lookup failed on: %s\n",
printer_name);

return (0);
}

fn_ctx_handle_destroy(initial_context);
fn_composite_name_destroy(printer_name_comp);
address_type_len = strlen(address_type);

/* Obtain the requested address from the address type */
for (address = fn_ref_first(printer_ref, &ip);

address != NULL;
address = fn_ref_next(printer_ref, &ip)) {

addr_id = fn_ref_addr_type(address);
if (addr_id->length == address_type_len &&

strncmp(address_type, (char *)addr_id->contents,
address_type_len) == 0)

break;

}

if (address == NULL)
return (0);

addr_len = fn_ref_addr_length(address);
addr_data = (char *)(malloc(addr_len + 1));
strncpy(addr_data,(char*)(fn_ref_addr_data(address)),

addr_len);
addr_data[addr_len] = '\0';

XFN Programming Examples 181

12

fn_ref_destroy(printer_ref);
return (addr_data);

}

Calling the Printer Client Function

The following code could be used to call the get_address_of_printer()
routine shown above.

char* printer_server;

printer_server = get_address_of_printer(
"thisorgunit/service/printer/colorful",
"onc_bsdaddr");

Server

Using the XFN APIs, print servers can advertise their services.
Code Example 12-3 illustrates a host, labpc , that would like to advertise the
binding for the color printer colorful . The FNS name for this printer is
thisorgunit/service/printer/colorful .

The main tasks are to obtain the composite name for the printer name, to
generate the binding (reference) for the printer, and to bind the name and
references to the FNS namespace.

Code Example 12-3 Printer Server

#include <stdio.h>
#include <xfn/xfn.h>
#include <string.h>

/* Routine to export the printer binding to the FNS name space */

/* This routine takes the printer name along with its reference type,

 address type, and address. Returns the status. */

int
export_printer_to_fns(const char *printer_name,

 const char *reference_type,
 const char *address_type,
 const char *address_data)

{
/* Variable list */

182 Federated Naming Service Guide—November 1995

12

int return_status;
FN_string_t *printer_name_string;
FN_composite_name_t *printer_name_comp;
FN_identifier_t ref_id, addr_id;
FN_status_t *status;
FN_ref_t *printer_ref;
FN_ref_addr_t *address;
FN_ctx_t *initial_context;

/* Obtain the initial context */
status = fn_status_create();
initial_context = fn_ctx_handle_from_initial(status);
/* Check status for any error messages */
if ((return_status = fn_status_code(status)) != FN_SUCCESS) {

fprintf(stderr, "Unable to obtain the initial context\n");
return (return_status);

}

/* Construct the composite name for the printer name */
printer_name_string =

fn_string_from_str((unsigned char *) printer_name);
printer_name_comp =

fn_composite_name_from_string(printer_name_string);
fn_string_destroy(printer_name_string);

/* Construct the printer address */
addr_id.format = FN_ID_STRING;
addr_id.length = strlen(address_type);
addr_id.contents = (void *) address_type;
address = fn_ref_addr_create(&addr_id,

strlen(address_data), (const void *) address_data);

/* Construct the printer reference */
ref_id.format = FN_ID_STRING;
ref_id.length = strlen(reference_type);
ref_id.contents = (void *) reference_type;
printer_ref = fn_ref_create(&ref_id);

/* Add the printer address to the printer reference */

fn_ref_append_addr(printer_ref, address);

/* Bind the reference to the context */

XFN Programming Examples 183

12

fn_ctx_bind(initial_context, printer_name_comp, printer_ref, 0,
 status);

/* Check the error status and return */
return_status = fn_status_code(status);
fn_composite_name_destroy(printer_name_comp);
fn_ref_addr_destroy(address);
fn_ref_destroy(printer_ref);
fn_status_destroy(status);
fn_ctx_handle_destroy(initial_context);
return (return_status);

}

Calling the Printer Server Function

The following code could be used to call the export_printer_to_fns
routine shown above.

export_printer_to_fns(
"thisorgunit/service/printer/colorful",
"onc_printers",
"onc_bsdaddr",
"labpc");

184 Federated Naming Service Guide—November 1995

12

185

XFN Composite Names Syntax A

This appendix provides supplemental information about XFN composite name
syntax.

Composite Name Encoding
All XFN implementations are required to support the ISO 646 portable
representation (same encoding as ASCII) for XFN composite names. All other
representations are optional.

All characters of the string form of an XFN composite name use a single
encoding. There cannot be characters with different encodings in the same
name string. This does not preclude component names of a composite name in
its structural form from having different encodings. Code set mismatches that
occur during the process of converting a composite name structure to its string
form are resolved in an implementation-dependent way. Strings with code sets
that are determined by the implementation to be compatible are converted
without loss of information into a single representation, which is also
determined by the implementation. When an implementation discovers that a
composite name has components with incompatible code sets, it returns the
error code FN_E_INCOMPATIBLE_CODE_SETS.

Composite Name Encoding page 185

Backus-Naur Form (BNF) page 186

Decomposing the Composite Name String page 187

Composing the Composite Name String page 189

186 Federated Naming Service Guide—November 1995

A

Backus-Naur Form (BNF)
The following defines the standard string form of XFN composite names in
Backus-Naur Form (BNF). Note that all the characters of the string
representation of one name must uniformly use the same encoding and locale
information. The notations used are as follows:

The XFN composite name syntax in BNF is as follows.

Table 12-2 Backus-Naur Notation

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal element

‘’ ‘’ Literal expression

* The preceding syntactic unit can appear 0 or more times.

+ The preceding syntactic unit can appear 1 or more times.

{} The enclosed syntactic units are grouped as a single
syntactic unit (can be nested).

Table 12-3 XFN Composite Name Syntax Using BNF

XFN Composite Name BNF Syntax

NULL ::= // Empty set

<PCS> ::= // Portable Character Set
The set consists of the glyphs:
//!"#$%&'()*+,\0123456789:;<=>?
//@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_’
//abcdefghijklmnopqrstuvwxyz{|}~

<CharSet> ::= <PCS>
| Characters from the repertoire of a string representation

<EscapeChar> ::= \

<ComponentSep>::= /

<Quote1>::= "

<Quote2> ::= ‘

XFN Composite Names Syntax 187

A

Decomposing the Composite Name String
The function fn_composite_name_from_string() returns an XFN
composite name in its structural form, FN_composite_name_t , given the
composite name’s string representation. The syntax rules used by
fn_composite_name_from_string () are as follows.

An XFN composite name is decomposed into an ordered set of components
(<Component>). Each component represents a compound name, or a single
atomic name of a compound name if the compound name's syntax uses the
XFN component separator (/) as a separator for its atomic parts and the
compound name is not quoted.

The following are the rules for parsing a composite name.

1. Any <ComponentSep> character that is neither escaped nor enclosed in
quoted strings is considered to be a component separator.

2. Any string enclosed by component separators is a component
(<Component>).

<MetaChar> ::= <EscapeChar> | <ComponentSep>

<SimpleChar> ::= // any character from <CharSet> with <MetaChar>, <Quote1>,
// and <Quote2> excluded. An<EscapeChar> <MetaChar>, or
// <EscapeChar> <Quote1>, or <EscapeChar> <Quote2> is equivalent to
// <SimpleChar>.

 <Component> ::= <SimpleChar>*
| <SimpleChar>+ {<Quote1> | <Quote2> | <SimpleChar>}*
| <Quote1> <CharSet>* {<EscapeChar> <Quote1>}* <Quote1>
 // <CharSet> must not contain unescaped <Quote1>
 // (note that <Quote2> can appear unescaped)
| <Quote2> <CharSet>* {<EscapeChar> <Quote2>}* <Quote2>
 // <CharSet> must not contain unescaped <Quote2>
 // (note that <Quote1> can appear unescaped)

<CompositeName> ::= NULL
| <Component> {<ComponentSep> <Component>}*

Table 12-3 XFN Composite Name Syntax Using BNF (Continued)

XFN Composite Name BNF Syntax

188 Federated Naming Service Guide—November 1995

A

3. A composite name is parsed and decomposed into components from left to
right:

a. The first component is the string preceding the first occurrence of a
component separator.

b. Empty components are processed as follows:

i. A leading component separator (the composite name begins with a
component separator) means a leading null component.

ii. A trailing component separator (the composite name ends with a
component separator) means a trailing null component.

c. Two consecutive component separators mean a null component.

d. The name string that immediately follows the last component separator
of the composite name is the final component.

4. A component string is evaluated from left to right and converted into its
standard form according to the following rules:

a. A component string is considered to be quoted if it is enclosed in a pair
of matching unescaped quote characters (either a <Quote1> or a
<Quote2> pair). The quoted string must represent the full component;
that is, a begin quote must immediately be preceded by a component
separator or no character, and the end quote must immediately be
followed by a component separator or no character.

b. If a component does not contain a valid begin quote (a <Quote1> or
<Quote2>immediately preceded by either a component separator or no
character), any occurrence of <Quote1> or <Quote2> within that
component is treated just as any other <SimpleChar>.

c. An unmatched begin quote (missing or misplaced end quote) fails with
an FN_E_ILLEGAL_NAME status.

d. Quotes are considered to be escaped in quoted strings if a matching
quote character is preceded immediately by the unescaped
<EscapeChar>.

e. Quoted components are resolved by eliminating the quote characters
from the component name and substituting possibly escaped quotes by
simple quote characters. <MetaChar>s and the nonmatching quote
characters enclosed in quoted strings are treated just as any other
<SimpleChar>.

XFN Composite Names Syntax 189

A

f. Any of the defined metacharacters (<ComponentSep> and
<EscapeChar>) is considered to be escaped in an unquoted component
name string if preceded immediately by the unescaped <EscapeChar>
(for instance, the sequence <EscapeChar> <EscapeChar>
<ComponentSep> denotes an escaped <EscapeChar> but an unescaped
<ComponentSep>).

g. <Quote1> and <Quote2> are considered to be escaped in an unquoted
component if and only if <EscapeChar> is preceded by a
component separator (that is, sequences <ComponentSep>
<EscapeChar> <Quote1> or <ComponentSep> <EscapeChar>
<Quote2>). Other occurrences of <Quote1> and <Quote2> in an
unquoted component are treated just as any other <SimpleChar>.

h. Any occurrence of escaped <MetaChar>, escaped <Quote1>, or escaped
<Quote2> in unquoted components is substituted by the corresponding
unescaped character.

i. No substitution is done for <EscapeChar> <SimpleChar>. <EscapeChar>
<SimpleChar> simply maps to <EscapeChar> <SimpleChar>.

Composing the Composite Name String
The function fn_string_from_composite_name () returns the string
representation of an XFN composite name given its structural form
(FN_composite_name_t). The following are the rules used by
fn_string_from_composite_name ().

1. The components are added to the composite name string in left to right
order (that is, rightmost is the tail).

2. Successive components are separated by the component separator
(<ComponentSep>).

3. Empty components are handled in the following way:

a. A leading empty component is represented by a leading
<ComponentSep>.

b. A trailing empty component is represented by a trailing
<ComponentSep>.

c. An empty component occurring within a composite name is represented
by two consecutive <ComponentSep>s.

190 Federated Naming Service Guide—November 1995

A

4. A composite name denoting a single non-empty component does not
contain any unescaped component separator.

5. Any occurrence of <ComponentSep> in a component is escaped by
inserting <EscapeChar> immediately preceding <ComponentSep>.

6. If the first character of a component is either <Quote1> or <Quote2>, it will
be escaped by inserting <EscapeChar> immediately preceding the quote.

7. Any occurrence of <EscapeChar> before <ComponentSep> in a component
is escaped by inserting <EscapeChar> immediately preceding the
<EscapeChar>.

8. Any occurrence of <EscapeChar> as the first character of a component with
<Quote1> or <Quote2> as the second character in a component is escaped
by inserting <EscapeChar> immediately preceding the <EscapeChar>.
Subsequent <EscapeChar> occurring before any matching quote character is
also escaped by inserting <EscapeChar> immediately preceding the
<EscapeChar>.

191

DNS Text Record Format for XFN
References B

This appendix contains supplemental information about the use of DNS text
(TXT) records in XFN references. The required procedures for federating DNS
are contained in Chapter 7, “Federating NIS+ With Global Naming Systems.”

The Solaris environment conforms to the XFN specification for federating
global naming systems within DNS. In order to federate a naming system
under DNS, you will need to enter information into DNS TXT resource records.
This information will then be used to construct an XFN reference for that
subordinate naming system. This appendix describes the format of these DNS
TXT records. For details on how to manipulate records in DNS in general, see
DNS and BIND in a Nutshell by Paul Albitz and Crickett Liu (O'Reilly and
Associates, 1992).

The reference type of an XFN reference is constructed from a TXT record that
begins with the XFNREF tag. It has the following format:

If spaces occur within the string appearing after TXT, such spaces must be
escaped, or the entire string must be enclosed within double quotation marks.
The three fields, XFNREF, rformat and reftype, are separated using space (spaces
and tabs). rformat specifies format of the reference type identifier. It can be one
of

• STRING – Maps to FN_ID_STRING format
• OID – Maps to FN_ID_ISO_OID_STRING format

TXT "XFNREF rformat reftype"

192 Federated Naming Service Guide—November 1995

B

• UUID – Maps FN_ID_DCE_UUID format

reftype specifies the contents of the reference type identifier.

If no XFNREF TXT record exists, the reference type defaults to an identifier
XFN_SERVICE, with an FN_ID_STRING format. If more than one XFNREF TXT
record exists, the handling of the record is undefined. The following TXT
record is equivalent to the default XFNREF:

The address information for an XFN reference is constructed using TXT records
with tags prefixed with the XFN string. Multiple addresses may be specified for
a single reference. Records with the same tag are grouped and passed to the
handler for each group. Each handler generates zero or more addresses from
its group of TXT records and appends the addresses to the reference. The
XFNREF tag is special in that it is used only to construct the reference type and
thus, it is excluded from the address-construction process.

The syntax of address TXT records is as follows:

The two fields, XFN_address_type_tag and address_specific_data, are separated using
space (spaces and tabs). address_type_tag specifies the handler to be used for
address_specific_data.

TXT records have a limitation of 2Kbytes of characters per record. If the
address-specific data is too long to be stored in a single TXT record, multiple
TXT records may be used, as shown:

When the tag-specific handler is called, both records are passed to it. The
handler is responsible for determining the order in which these two lines need
to be interpreted.

TXT "XFNREF STRING XFN_SERVICE"

XFNaddress_type_tag address_specific_data

TXT "XFN address_type_tag address_specific_data1"
TXT "XFN address_type_tag address_specific_data2"

DNS Text Record Format for XFN References 193

B

The order in which TXT records appear is not significant. If lines with different
tags are present, lines with the same tag are grouped together before the tag-
specific handler is called. In the following example, the handler for tag1 will be
called with two text lines, and the handler for tag2 will be called with three text
lines.

Here are some examples of TXT records that can be used for XFN references.

Example 1

Example 2

TXT " XFNtag1 address_specific_data1"
TXT " XFNtag2 address_specific_data2"
TXT " XFNtag1 address_specific_data3"
TXT " XFNtag2 address_specific_data4"
TXT " XFNtag2 address_specific_data5"

TXT "XFNREF STRING XFN_SERVICE"
TXT "XFNNISPLUS wiz.com. nis_master 129.144.40.23"

TXT "XFNREF OID 1.3.22.1.6.1.3"
TXT "XFNDCE (1 fd33328c4-2a4b-11ca-af85-09002b1c89bb...)"

194 Federated Naming Service Guide—November 1995

B

The following is an example of a DNS table with a subordinate naming system
bound in it.

$ORIGIN test.sun.com
@ IN SOA foo root.eng.sun.com
 (
 100 ;; Serial
 3600 ;; Refresh
 3600 ;; Retry
 3600 ;; Expire
 3600 ;; Minimum
)
 NS nshost
 TXT "XFNREF STRING XFN_SERVICE"
 TXT "XFNNISPLUS wiz.com. nis_master 129.144.40.23"

nshost IN A 129.144.40.21

195

X.500 Attribute Syntax for XFN
References C

This appendix contains supplemental information about the use of X.500
attributes for XFN references. The required procedures for federating X.500 are
contained in Chapter 7, “Federating NIS+ With Global Naming Systems.”

In order to permit an XFN reference to be stored as an attribute in X.500,
the directory schema must be modified to support the object classes and
attributes defined in this appendix. Managing the X.500 Client Toolkit includes
information about modifying the X.500 directory schema.

Object Classes
Two new object classes, XFN and XFN-supplement, are introduced to support
XFN references. The XFN object class is not relevant in FNS since SunSoft’s
X.500 directory product cannot support the introduction of new compound
ASN.1 syntaxes. Instead, FNS uses the XFN-supplement object class.

196 Federated Naming Service Guide—November 1995

C

The two new object classes are defined in ASN.1 as follows:

The XFN-supplement object class is defined as an auxiliary object class so that
it may be inherited by all X.500 object classes. It is defined with two optional
attributes:

• objectReferenceString is used to hold an XFN reference to the object
itself.

• nNSReferenceString is used to hold an XFN reference to a next naming
system.

 xFN OBJECT-CLASS ::= {
 SUBCLASS OF { top }
 KIND auxiliary
 MAY CONTAIN { objectReferenceId |
 objectReference |
 nNSReferenceId |
 nNSReference }
 ID id-oc-xFN
 }

 id-oc-xFN OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) ansi(840) sun(113536)
 ds-oc-xFN(24)
 }

 xFNSupplement OBJECT-CLASS ::= {
 SUBCLASS OF { top }
 KIND auxiliary
 MAY CONTAIN { objectReferenceString |
 nNSReferenceString }
 ID id-oc-xFNSupplement
 }

 id-oc-xFNSupplement OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) ansi(840) sun(113536)
 ds-oc-xFNSupplement(25)
 }

X.500 Attribute Syntax for XFN References 197

C

Both attributes are defined in ASN.1 as follows:

 objectReferenceString ATTRIBUTE ::= {
 WITH SYNTAX OCTET STRING
 EQUALITY MATCHING RULE octetStringMatch
 SINGLE VALUE TRUE
 ID { id-at-objectReferenceString }
 }

 id-at-objectReferenceString OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) ansi(840) sun(113536)
 ds-at-objectReferenceString(30)
 }

 nNSReferenceString ATTRIBUTE ::= {
 WITH SYNTAX OCTET STRING
 EQUALITY MATCHING RULE octetStringMatch
 SINGLE VALUE TRUE
 ID { id-at-nNSReferenceString }
 }

 id-at-nNSReferenceString OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) ansi(840) sun(113536)
 ds-at-nNSReferenceString(31)
 }

198 Federated Naming Service Guide—November 1995

C

Both objectReferenceString and nNSReferenceString store XFN
references in a string form. Their octet string syntax is further constrained to
conform to the following BNF definition:

The following example is a string form XFN reference:

 <ref> ::= <id> '$' <ref-addr-set>
 <ref-addr-set> ::= <ref-addr> | <ref-addr> '$' <ref-addr-set>
 <ref-addr> ::= <id> '$' <addr-set>
 <addr> ::= <hex-string>

 <id> ::= 'id' '$' <string> |
 'uuid' '$' <uuid-string> |
 'oid' '$' <oid-string>

 <string> ::= <char> | <char> <string>
 <char> ::= <PCS> | '\' <PCS>
 <PCS> ::= // Portable Character Set:
 // !"#$%&'()*+,-./0123456789:;<=>?
 // @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
 // ‘abcdefghijklmnopqrstuvwxyz{|}~

 <uuid-string> ::= <uuid-char> | <uuid-char> <uuid-string>
 <uuid-char> ::= <hex-digit> | '-'

 <oid-string> ::= <oid-char> | <oid-char> <oid-string>
 <oid-char> ::= <digit> | '.'

 <hex-string> ::= <hex-octet> | <hex-octet> <hex-string>
 <hex-octet> ::= <hex-digit> <hex-digit>
 <hex-digit> ::= <digit> |
 'a' | 'b' | 'c' | 'd' | 'e' | 'f' |
 'A' | 'B' | 'C' | 'D' | 'E' | 'F'
 <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' |
 '6' | '7' | '8' | '9'

id$onc_fn_enterprise$id$onc_fn_nisplus_root$0000000f77697a2e636fd2e2062696762696700

X.500 Attribute Syntax for XFN References 199

C

The example uses an XFN reference of type onc_fn_enterprise . It contains
the address type onc_fn_nisplus_root and a single address value. The
address value is an XDR-encoded string, comprising the domain name,
wiz.com , followed by the host name, bigbig .

An XFN reference may be added to an X.500 entry by using the FNS command
fnattr, as in this example:

creates a new entry called c=us/o=wiz and adds an object class attribute with
the values top , organization , and XFN-supplement .

The FNS command fnbind binds the NIS+ reference to the named entry and
links X.500 to the root of the NIS+ namespace. (Note the use of a trailing slash
in the name argument to fnbind .)

fnattr -a .../c=us/o=wiz object-class top organization xfn-supplement

fnbind -r .../c=us/o=wiz/ onc_fn_enterprise onc_fn_nisplus_root "wiz.com. bigbig"

200 Federated Naming Service Guide—November 1995

C

201

Glossary

application-level name service
Application-level name services are incorporated in applications offering
services such as files, mail, and printing. Application-level name services are
bound below enterprise-level name services. The enterprise-level name
services provide contexts in which contexts of application-level name services
can be bound.

atomic name
An indivisible component of a name as defined by the naming convention.

attribute
Each named object is associated with a set of zero or more attributes. Each
attribute in the set has a unique attribute identifier, an attribute syntax, and a
set of zero or more distinct attribute values.

binding
The association of an atomic name with an object reference. For simplicity, an
object reference and the object it refers to are used interchangeably in this
guide.

BNF
Backus-Naur Form.

composite name
A name that spans multiple naming systems. It consists of an ordered list of
zero or more components. Each component is a name from the namespace of a
single naming system. Composite name resolution is the process of resolving a
name that spans multiple naming systems.

202 Federated Naming Service Guide—November 1995

compound name
A sequence of atomic names composed according to the naming convention of
a naming system.

context
An object whose state is a set of bindings with distinct atomic names. Every
context has an associated naming convention. A context provides a lookup
(resolution) operation, which returns the reference, and may provide
operations such as binding names, unbinding names, and listing bound names.

DNS
Domain Name System. A system that provides the naming policy and
mechanisms for mapping domain and machine names to addresses on the
Internet.

enterprise-level name service
A name service that names objects within an enterprise. The types of objects
named are organizational units, sites, users, hosts, and files. Enterprise-level
name services are bound below global name services. Global name services
provide contexts in which the root contexts of enterprise-level naming systems
can be bound.

enterprise root
The root context of an enterprise. A context for naming objects found at the
root of the enterprise namespace.

federated naming service
The service offered by a federated naming system.

federated naming system
An aggregation of autonomous naming systems that cooperate to support
name resolution of composite names through a standard interface. Each
member of a federation has autonomy in its choice of operations other than
name resolution.

federated namespace
The set of all possible names generated according to the policies that govern
the relationships among member naming systems and their respective
namespaces.

generic context
A context for binding names used in applications.

Glossary 203

global context
A context for naming objects that have global names (currently, DNS and X.500
are the only global naming systems specified by XFN).

global name service
A name service that has worldwide scope, such as Internet DNS and X.500.
The types of entities named at this global level are typically countries, states,
provinces, cities, companies, universities, institutions, and government
departments and ministries. Each of these entities can be an enterprise.

host context
A context for naming objects related to a computer.

implicit naming system pointer
An unnamed reference that points to a context in another naming system.

initial context
Every XFN name is interpreted relative to some context, and every XFN
naming operation is performed on a context object. The XFN interface provides
a function that allows the client to obtain an initial context object that provides
a starting point for resolution of composite names.

junction
A name in one namespace bound to a context in the next naming system.

naming convention
Every name is generated by a set of syntactic rules called a naming convention.

namespace
The set of all names in a naming system.

namespace identifier
A special atomic name used to refer to the root of a namespace.

name service
The service offered by a naming system. It is accessed through its interface.

naming system
A connected set of contexts of the same type (having the same naming
convention) and providing the same set of operations with identical semantics.
In the UNIX operating system, for example, the set of directories in a given file
system (and the naming operations on directories) constitutes a naming
system.

204 Federated Naming Service Guide—November 1995

next naming system pointer (NNSP)
Reference to a context in which composite names from subordinate naming
systems are resolved.

organizational units
An enterprise is organized into organizational units such as centers,
laboratories, departments, divisions, and so on. An organizational unit is a
subunit of an enterprise.

organizational unit context
A context for naming objects related to an organizational unit within an
enterprise.

parent context
A context in which this context and its siblings are bound.

reference
The thing bound to a name. It contains addresses identifying the
communication endpoints of the object.

root context
A context for naming the objects found in the root of the namespace.

service context
A context for naming objects that provide services.

site context
A context for naming objects related to a physical site.

strong separation
The case where the XFN context treats the XFN component separator as the
naming system boundary.

subcontext
A context bound within another context.

user context
A context for naming objects related to a human user.

weak separation
The case where the XFN context does not treat the XFN component separator
as the naming system boundary.

Glossary 205

XFN link
A special form of reference that has a composite name as an address. Like any
other type of reference, an XFN link is bound to an atomic name in a context.

X.500
A global-level directory service defined by an Open Systems Interconnection
(OSI) standard.

206 Federated Naming Service Guide—November 1995

207

Index

Symbols
" (quotation marks)

BNF notation, 186
XFN composite name syntax, 159
XFN standard syntax model, 157

* in BNF notation, 186
+ in BNF notation, 186
. (dots)

... namespace identifier, 61, 62
/... namespace identifier, 62
trailing, in organization names, 31,

38
/ (slashes)

/... namespace identifier, 62
double slashes in organization

names, 45, 99
FNS component separator, 42
in service names, 39
trailing, in organization names, 100
XFN component separator, 157, 159

to 161
::= in BNF notation, 186
\ as XFN component escape

character, 159
_ (underscore)

in namespace identifiers, 41, 56
in XFN terminology, 42

{} (curly braces) in BNF notation, 186

| (pipe) in BNF notation, 186
’ (single quote) in XFN composite name

syntax, 159

Numerics
0 value, 135

A
abstract data types, 134
access control

attribute no permission
message, 101

changing, 99
checking, 98 to 99
no permission message, 103, 105 to

106
addresses

mail destinations, 33
multiple, 11
NIS+ root reference, 111 to 112
no supported address

message, 103
properties, 12
references, 11 to 12
XFN interface parameters, 153 to 154

208 Federated Naming Service Guide—November 1995

administration
federating NIS+ with global naming

systems, 111 to ??
obtaining NIS+ root

reference, 111 to 112
under DNS, 112 to ??
under X.500, 114 to ??

file system namespace, 117 to 126
automounter, 119 to 120
file context administration, 126
file context creation, 120 to 126
NFS file servers, 118 to 119
overview, 117 to 120

FNS on NIS+, 69 to 109
access control checking, 98 to 99
browsing FNS structures using

NIS+ commands, 97
error messages, 100 to 104
FNS attribute management, 92 to

94
FNS context creation, 73 to 83
FNS context management, 83 to

92, 141 to 142
maintaining consistency between

NIS+ and FNS, 94 to 96
mapping FNS contexts to NIS+

objects, 96
replicating FNS service, 72
resource requirements, 70
setting up FNS namespace, 71 to

72
setting up NIS+ service for

FNS, 70 to 71
troubleshooting, 104 to 109

printer namespace, 127 to 130
overview, 127
using files, 128
using NIS, 129
using NIS+, 129 to 130

alias host names, 77
all hosts context

creating, 74, 76
troubleshooting creation, 107

all users context
creating, 74, 77
troubleshooting creation, 107

API usage model, 22
application programming

namespace browser example, 168 to
177

code, 168 to 175
commands, 175
diagram, 168
sample output, 176 to 177

printer example, 178 to 183
client, 179 to 181
server, 181 to 183

XFN composite names, 159 to 166
naming system boundaries and

component
separators, 161 to 163

resolution, 163 to 166
syntax, 159 to 161

XFN interfaces, 133 to 158
See also client programming

interfaces
abstract data types, 134
base attribute interface, 143 to

149
base context interface, 135 to 143
conventions, 134
memory management

policies, 135
overview, 133 to 135
parameters, 153 to 155
parsing compound names, 156 to

158
status codes, 150 to 153
status objects, 137, 145, 150
usage, 134

applications
API usage model, 22
DeskSet tools, 32 to 35
FNS implementation, 10
FNS interaction, 19 to 21
name services, 26, 27

Index 209

architectural model, 11 to 16
attributes, 13
composite names, 15 to 16
compound names, 13 to 14
contexts, 12
initial context, 16
references, 11 to 12
XFN links, 15

ASCII string XFN identifier format, 154
asterisk (*) in BNF notation, 186
atomic names

See also namespace identifiers
in compound names, 13
in contexts, 12
global level, 62
initial context bindings for global

naming, 62
namespace identifiers in the

enterprise, 41 to 42
attribute no permission

message, 101
attribute operations

See also base attribute interface;
context operations

attribute-modification
operations, 146

get attribute, 145 to 146
get attribute identifiers, 148
get attribute values, 147
get multiple attributes, 148 to 149
modify attribute, 146
modify multiple attributes, 149
multiple-attribute operations, 147 to

149
relationship to naming

operations, 144 to 145
single-attribute operations, 145 to 147
status objects, 145
XFN attribute model, 143 to 144

attribute value required
message, 101

attribute-modification lists, 155

attributes
adding attributes or values, 92, 93,

146
base attribute interface, 143 to 149

attribute-modification
operations, 146

multiple-attribute
operations, 147 to 149

relationship to naming
operations, 144 to 145

single-attribute operations, 145
to 147

status objects, 145
supporting interfaces, 133 to 134
XFN attribute model, 143 to 144

deleting attributes or values, 93
described, 13
error messages, 101, 102, 103, 104
getting, 145 to 146

identifiers, 148
multiple attributes, 148 to 149
syntax attributes of context, 143
values, 147

listing, 93
managing and examining, 92 to 94
modifying values, 94
replacing, 93
sets, 155
syntax attributes, 156, 158

getting, 143
X.500 attribute syntax for XFN

references, 195 to 199
XFN interface parameters, 155
XFN model, 143 to 144

authentication failure
message, 101

automounter, 119 to 120
multiple locations, 124
variable substitution, 125

210 Federated Naming Service Guide—November 1995

B
backslash (\) as XFN component escape

character, 159
Backus-Naur Form (BNF), 186 to 187
bad reference message, 101
base attribute interface, 143 to 149

See also client programming interfaces
abstract data types, 134
attribute-modification

operations, 146
conventions, 134
memory management policies, 135
multiple-attribute operations, 147 to

149
parameters, 153 to 155

attribute modification lists, 155
attribute sets, 155
attributes and attribute

values, 155
composite names, 153
identifiers, 154
references and addresses, 153 to

154
strings, 155

parsing compound names, 156 to 158
syntax attributes, 156, 158
XFN standard syntax model, 156

to 157
relationship to naming

operations, 144 to 145
single-attribute operations, 145 to 147
status objects, 145
supporting interfaces, 133 to 134
usage, 134
XFN attribute model, 143 to 144

base context interface, 135 to 143
See also client programming interfaces
abstract data types, 134
context handles, 137
conventions, 134
lookup and list contexts, 138 to 140
managing contexts, 141 to 142
memory management policies, 135
names in context operations, 136

other context operations, 142 to 143
parameters, 153 to 155

attribute modification lists, 155
attribute sets, 155
attributes and attribute

values, 155
composite names, 153
identifiers, 154
references and addresses, 153 to

154
strings, 155

parsing compound names, 156 to 158
syntax attributes, 156, 158
XFN standard syntax model, 156

to 157
requirements for operations, 136 to

137
status objects, 137
supporting interfaces, 133 to 134
updating bindings, 140 to 141
usage, 134

begin quote (") in XFN standard syntax
model, 157

See also double quotes
bind/lookup model, 22
bindings

access control
changing, 99
checking, 98 to 99

adding, 140
calendar service example, 33
composite names to references, 89 to

91, 108
displaying, 83 to 84
initial context bindings for enterprise

naming, 54 to 60
example, 54
host-related bindings, 58 to 59
“shorthand” bindings, 59 to 60
table, 55
user-related bindings, 56 to 57

initial context bindings for global
naming, 62

Index 211

listing names and bindings in
contexts, 139

printers, 127
removing

composite names, 91, 108
terminal atomic name, 140 to 141

renaming, 91, 141
updating, 140 to 141

BNF (Backus-Naur Form), 186 to 187
boundaries (naming system) and

component separators, 161 to
163

strong separation, 161 to 162
weak separation, 162 to 163

browsing
See also displaying; listing; lookup

operations
FNS structures using NIS+

commands, 97
namespace browser programming

example, 168 to 177
code, 168 to 175
commands, 175
diagram, 168
sample output, 176 to 177

C
Calendar Manager

calendar service example, 33 to 35
FNS policies, 32, 33 to 35

“Cannot obtain initial context”
message, 104

canonical namespace identifiers, 42, 56
checking access control, 98 to 99
client programming interfaces, 133 to 158

See also application programming
abstract data types, 134
base attribute interface, 143 to 149

attribute-modification
operations, 146

multiple-attribute
operations, 147 to 149

relationship to naming
operations, 144 to 145

single-attribute operations, 145
to 147

status objects, 145
XFN attribute model, 143 to 144

base context interface, 135 to 143
context handles, 137
lookup and list contexts, 138 to

140
managing contexts, 141 to 142
names in context operations, 136
other context operations, 142 to

143
requirements for operations, 136

to 137
status objects, 137
updating bindings, 140 to 141

conventions, 134
memory management policies, 135
overview, 133 to 135
parameters, 153 to 155

attribute modification lists, 155
attribute sets, 155
attributes and attribute

values, 155
composite names, 153
identifiers, 154
references and addresses, 153 to

154
strings, 155

parsing compound names, 156 to 158
syntax attributes, 156, 158
XFN standard syntax model, 156

to 157
status codes, 150 to 153
status objects, 150

base attribute interface, 145
base context interface, 137

supporting interfaces, 133 to 134
usage, 134

cm service, 33 to 35
code sets incompatible, 102
codes

attribute-modification operation, 146
link status, 150
status, 150 to 153

212 Federated Naming Service Guide—November 1995

commands
See also attribute operations; context

operations; specific
commands, functions, and
operations

browsing FNS structures using NIS+
commands, 97

fnbrowse program, 175
FNS context management, 83 to 92
XFN interface function names, 134

communication failure message, 101
component separator (/)

FNS components, 42
naming system boundaries and, 161

to 163
strong separation, 161 to 162
weak separation, 162 to 163

XFN composite name syntax, 159 to
161

XFN standard syntax model, 157
composing XFN composite name

strings, 189 to 190
composite names

applications’ use of FNS, 10
binding to references, 89 to 91, 108
defined, 4, 15
destroying named objects, 92, 109
displaying bindings, 83 to 84
examples

calendar service, 33 to 35
hosts, 30
illustration, 16
organizations, 29
sites, 30
user, 29

host naming systems, 30
need for uniform policy, 6 to 7
organization naming systems, 29
parsing XFN composite names, 187 to

189
removing from namespace, 91 to 92,

108 to 109

resolution, 163 to 166
coexistence of explicit and

implicit NNSPs, 165
explicit NNSPs, 163 to 164
implicit NNSPs, 164 to 165
XFN links, 165

site naming systems, 30
user naming systems, 29
XFN composite names, 159 to 166

naming system boundaries and
component
separators, 161 to 163

resolution, 163 to 166
syntax, 159 to 161, 185 to 190

XFN context implementation, 136
XFN interface parameters, 153
XFN syntax, 159 to 161, 185 to 190

Backus-Naur Form (BNF), 186 to
187

composing the composite name
string, 189 to 190

decomposing the composite
name string, 187 to 189

encoding, 185
string and structural forms, 160

to 161
compound names, 13 to 14

described, 13
hierarchical naming system

examples, 13 to 14
parsing, 156 to 158

syntax attributes, 156, 158
XFN standard syntax model, 156

to 157
configuration error message, 101
const parameters, 135
const pointers, 135
constants, XFN interface conventions, 134
context not empty message, 102

Index 213

context operations
See also attribute operations; base

context interface
bind, 140
construct context handle from

reference, 137
construct handle to initial

context, 137
context handles, 137
create subcontext, 141 to 142
destroy context handle, 143
destroy subcontext, 142
get reference to context, 142
get syntax attributes of context, 143
list bindings, 139
list names, 138 to 139
lookup, 138
lookup link, 139 to 140
managing contexts, 141 to 142
names in, 136
rename, 141
requirements, 136 to 137
status objects, 137
unbind, 140 to 141
updating bindings, 140 to 141

context shared object modules, 20
contexts

See also bindings; initial context;
parent contexts; subordinate
contexts

base context interface, 135 to 143
context handles, 137
lookup and list contexts, 138 to

140
managing contexts, 141 to 142
names in context operations, 136
other context operations, 142 to

143
requirements for operations, 136

to 137
status objects, 137
supporting interfaces, 133 to 134
updating bindings, 140 to 141

changing ownership, 99

checking naming inconsistencies, 95
to 96

context not empty message, 102
creating individually

all hosts context, 74, 76, 107
all users context, 74, 77, 107
debugging, 74
file context, 82
fncreate command

overview, 73 to 74
generic context, 74, 80 to 81
namespace identifier context, 74,

82
organization context, 75
printer context, 80
service context, 79 to 80
single host context, 76, 107
single user context, 78 to 79, 107
site context, 81

creating subcontexts, 141 to 142
defined, 12
destroying

handles, 143
subcontexts, 142

displaying the binding, 83 to 84
enterprise root, 45 to 46
files, 52

administering, 126
creating, 120 to 126

getting
handles, 137
references, 142
syntax attributes, 143

hosts, 50 to 51
initial context

bindings for enterprise
naming, 54 to 60

calendar service example, 34
described, 16

listing contents, 85 to 88
managing and examining, 83 to 92,

141 to 142
mapping to NIS+ objects, 96
not a context message, 104
organizational units, 46 to 47
principles, 7 to 8

214 Federated Naming Service Guide—November 1995

printers, 53, 128 to 130
services, 51 to 52
sites, 47 to 49
syntax-related attributes, 156
tree structure, 13 to 14
troubleshooting

cannot create host- or user-
related contexts, 107

cannot remove context, 107
checking naming

inconsistencies, 95 to 96
debugging creation, 74

users, 49
XFN contexts, 12

continue operation using status
values message, 102

ctx_dir directory
checkpointing, 72
creating, 71
replicating, 72
verifying creation, 71

curly braces in BNF notation, 186
customized namespace identifiers, 42, 56

D
-D , fncreate option, 74
-d , fnattr option, 93
data types

abstract data types, 134
XFN interface conventions, 134

debugging context creation, 74
decomposing XFN composite name

strings, 187 to 189
deleting, See removing
DeskSet tools, 32 to 35
destroying

See also removing
context handles, 143
named objects, 92

context not removed, 107
“operation failed” not

returned, 109
subcontexts, 142

DIB (directory information base), 63 to 64
directories

automounter, 119 to 120
NIS+ master server, 71

directory information base (DIB), 63 to 64
disk-space requirements for FNS on

NIS+, 70
displaying

See also listing; lookup operations
access control, 98 to 99
bindings, 83 to 84
browsing FNS structures using NIS+

commands, 97
DNS table, editing, 112 to ??
DNS, See Domain Name System (DNS)
Domain Name System (DNS)

as nonterminal name system, 63
described, 9
federating, 62 to 63
federating NIS+ under, 112 to ??
FNS implementation, 9
hierarchical naming system, 13
name resolution, 62
text record format for XFN

references, 191 to 194
domains (NIS+) and FNS organizational

units, 30 to 31
dots (.)

... namespace identifier, 61, 62
/... namespace identifier, 62
trailing, in organization names, 31, 38

double quotes
BNF notation, 186
XFN composite name syntax, 159
XFN standard syntax model, 157

E
editing the DNS table, 112 to ??
encoding for XFN composite names, 185
end quote (") in XFN standard syntax

model, 157
See also double quotes

enterprise level of service, 26, 27

Index 215

enterprise namespace policies, 37 to 60
arrangement of objects, 28
file namespace, 40
host namespace, 39
illustrated, 27
initial context bindings, 54 to 60

example, 54
host-related bindings, 58 to 59
“shorthand” bindings, 59 to 60
table, 55
user-related bindings, 56 to 57

namespace identifiers, 41 to 42
namespace structure, 42 to 54

enterprise root, 45 to 46
example, 44
files, 52
hosts, 50 to 51
organizational units, 46 to 47
printers, 53
services, 51 to 52
sites, 47 to 49
users, 49

organizational unit namespace, 38
printer namespace, 40
service namespace, 39 to 40
site namespace, 38
table of policies, 43
user namespace, 39

enterprise root context, 45 to 46
enumeration handle invalid, 102
erasing, See removing
error message, 102
error messages, 100 to 104

See also troubleshooting
attribute no permission , 101
attribute value required , 101
authentication failure , 101
bad reference , 101
“Cannot obtain initial context”, 104
communication failure , 101
configuration error , 101
context not empty , 102
continue operation using

status values , 102
error , 102

illegal name , 102
incompatible code sets , 102
insufficient resources , 102
invalid attribute

identifier , 102
invalid attribute value , 102
invalid enumeration

handle , 102
invalid syntax attributes , 103
link error , 103
link loop limit reached , 103
malformed link , 103
name in use , 103, 108
name not found , 103
no permission , 103, 105 to 106
no such attribute , 103
no supported address , 103
not a context , 104
operation not supported , 104
overview, 100
partial result returned , 104
status codes, 151 to 153
success , 104
syntax not supported , 104
too many attribute values , 104
unavailable , 104

examining, See displaying; listing; lookup
operations

explicit NNSPs, 163 to 164
See also next naming system pointers

(NNSPs)
exporting the FNS interface, 10

F
-f , fncreate option

all hosts context, 76
all users context, 78
overview, 74

federated enterprise namespace policies,
See enterprise namespace policies

federated global namespace policies, See
global namespace policies

216 Federated Naming Service Guide—November 1995

Federated Naming Service
API usage model, 22
application view, 19 to 21
architectural model, 11 to 16
browsing FNS structures using NIS+

commands, 97
described, xvii, 4
error messages, 100 to 104
file system view, 18
need for, 5 to 8

coherence in naming, 7 to 8
name composition uniformity, 6

to 7
naming interface uniformity, 5 to

6
principles for policies, 7 to 8
registry of service names, 40
setting up

FNS namespace setup, 71 to 72
NIS+ service setup, 70 to 71
replicating FNS service, 72
resource requirements, 70

Solaris environment, 8 to 10
user’s view, 17 to 18
XFN compliance, xvii, 5
XFN vs., 5

federating
DNS, 62 to 63
NIS+ with global naming

systems, 111 to ??
obtaining NIS+ root

reference, 111 to 112
under DNS, 112 to ??
under X.500, 114 to ??

X.500, 63 to 65
File Manager, 32
files and file systems

contexts, 52
creating, 82
ownership, 82

enterprise namespace, 40
enterprise namespace policies, 43
as enterprise policy entities, 28
FNS interaction, 18
FNS policies, 32

FNS-based naming, 9
input file for fncreate_fs(1M)

alternate format, 125
creating, 121 to 123

namespace administration, 117 to 126
automounter, 119 to 120
file context administration, 126
file context creation, 120 to 126
NFS file servers, 118 to 119
overview, 117 to 120

namespace identifier, 41
NFS file servers, 118 to 119
printer context administration, 128

FN_ prefix, 134
fn_ prefix, 134
fn_attr_get() function, 145 to 146, 147
fn_attr_get_ids() function, 148
fn_attr_get_values() function, 146,

147
fn_attr_modify() function, 146
fn_attr_multi_modify()

function, 149
fn_attr_multiget() function, 148
FN_ATTR_OP_ADD operation code, 146
FN_ATTR_OP_ADD_EXCLUSIVE

operation code, 146
FN_ATTR_OP_ADD_VALUES operation

code, 146
FN_ATTR_OP_REMOVE operation

code, 146
FN_ATTR_OP_REMOVE_VALUES operation

code, 146
fn_composite_name_from_string()

function, 187 to 189
fn_ctx_bind() function, 140
fn_ctx_bindinglist_destroy()

function, 139
fn_ctx_bindinglist_next()

function, 139
fn_ctx_create_subcontext()

function, 141 to 142
fn_ctx_destroy_subcontext()

function, 142

Index 217

fn_ctx_get_ref() function, 142
fn_ctx_get_syntax_attrs()

function, 143
fn_ctx_handle_destroy()

function, 143
fn_ctx_handle_from_initial()

function
getting context handles, 137
getting initial context object, 54
host-related bindings, 58 to 59
user-related bindings, 56 to 57

fn_ctx_handle_from_ref()
function, 137

fn_ctx_list_names() function, 138
fn_ctx_listbindings() function, 139
fn_ctx_lookup() function

support required, 136
using, 138

fn_ctx_lookup_link() function, 139
to 140

fn_ctx_namelist_destroy()
function, 138

fn_ctx_namelist_next()
function, 138

fn_ctx_rename() function, 141
fn_ctx_unbind() function, 140 to 141
FN_E_ATTR_NO_PERMISSION status

code, 151
FN_E_ATTR_VALUE_REQUIRED status

code, 151
FN_E_AUTHENTICATION_FAILURE

status code, 151
FN_E_COMMUNICATION_FAILURE status

code, 151
FN_E_CONFIGURATION_ERROR status

code, 151
FN_E_CONTINUE status code, 151
FN_E_CTX_NO_PERMISSION status

code, 151
FN_E_CTX_NOT_EMPTY status code, 151
FN_E_CTX_UNAVAILABLE status

code, 151

FN_E_ILLEGAL_NAME status code, 151,
157

FN_E_INCOMPATIBLE_CODE_SETS
status code, 151, 157

FN_E_INSUFFICIENT_RESOURCES
status code, 151

FN_E_INVALID_ATTR_VALUE status
code, 152

FN_E_INVALID_ENUM_HANDLE status
code, 152

FN_E_INVALID_SYNTAX_ATTRS status
code, 152

FN_E_LINK_ERROR status code, 150, 152
FN_E_LINK_LOOP_LIMIT status

code, 152
FN_E_MALFORMED_LINK status code, 152
FN_E_MALFORMED_REFERENCE status

code, 152
FN_E_NAME_IN_USE status code, 152
FN_E_NAME_NOT_FOUND status code, 152
FN_E_NO_SUCH_ATTRIBUTE status

code, 152
FN_E_NO_SUPPORTED_ADDRESS status

code, 152
FN_E_NOT_A_CLIENT status code, 152
FN_E_OPERATION_NOT_SUPPORTED

status code, 136, 152
FN_E_PARTIAL_RESULT status code, 152
FN_E_SYNTAX_NOT_SUPPORTED status

code, 153
FN_E_TOO_MANY_ATTR_VALUES status

code, 153
FN_E_UNSPECIFIED_ERROR status

code, 153
FN_ID_DCE_UUID XFN identifier

format, 154
FN_ID_ISO_OID_BER XFN identifier

format, 154
FN_ID_ISO_OID_STRING XFN identifier

format, 154
FN_ID_STRING XFN identifier

format, 154

218 Federated Naming Service Guide—November 1995

fn_multigetlist_destroy()
function, 148 to 149

fn_multigetlist_next()
function, 148 to 149

FN_status_t parameter, 137
fn_std_syntax_ava_separator XFN

syntax attribute, 158
fn_std_syntax_begin_quote XFN

syntax attribute, 158
fn_std_syntax_case_insensitive

XFN syntax attribute, 158
fn_std_syntax_code_sets XFN

syntax attribute, 158
fn_std_syntax_end_quote XFN

syntax attribute, 158
fn_std_syntax_escape XFN syntax

attribute, 158
fn_std_syntax_local_info XFN

syntax attribute, 158
fn_std_syntax_separator XFN

syntax attribute, 158
fn_std_syntax_typeval_separator

XFN syntax attribute, 158
fn_string_from_composite_name()

function, 189 to 190
FN_SUCCESS status code, 151
fn_syntax_direction XFN syntax

attribute, 158
fn_syntax_type XFN syntax

attribute, 158
fn_valuelist_destroy()

function, 147
fn_valuelist_next() function, 147
fnattr command

adding attributes, 92
deleting attributes, 93
listing attributes, 93
modifying attribute values, 94
other options, 93
overview, 92

fnbind command
binding composite names to

references, 89 to 90
name in use message with -s

option, 108
options, 89
syntax, 83

fnbind -r command
binding composite names to

references, 90 to 91
options, 89
syntax, 83

fnbrowse program example, 168 to 177
code, 168 to 175
commands, 175
diagram, 168
sample output, 176 to 177

fncheck command, 95 to 96
fncreate command

all hosts context creation, 74, 76, 107
all users context creation, 74, 77, 107
debugging context creation, 74
file context creation, 82
FNS namespace setup, 71 to 72
generic context creation, 74, 80 to 81
name in use message with -s

option, 108
namespace identifier context

creation, 74, 82
NIS_GROUP environment variable

setting, 70
options, 74
organization context creation, 75
overview, 73 to 74
printer context creation, 80
service context, 80
service context creation, 79
single host context creation, 76, 107
single user context creation, 78 to 79,

107
site context creation, 81
syntax, 73
troubleshooting host- or user-related

context creation, 107

Index 219

fncreate_fs(1M) command
command-line input, 123 to 126
input file

alternate format, 125
creating, 121 to 123

multiple locations, 124
options, 121
overview, 120 to 121
syntax, 120
variable substitution, 125

fndestroy command
context not removed, 107
destroying named objects, 92
“operation failed” not returned, 109
syntax, 83

fnlist command
doesn’t list suborganizations, 106
initial context contains nothing, 105
listing context contents, 85 to 88
options, 85
syntax, 83

fnlookup command
displaying bindings, 83 to 84
options, 83
syntax, 83

fnrename command
renaming existing bindings, 91
syntax, 83

FNS, See Federated Naming Service
fns_hosts table, 97
fns_rserver creation, 72
fnunbind command

name in use message, 108
“operation failed” not returned, 109
removing composite names, 91
syntax, 83

Font> message, 102
fs context type, 82

See also files and file systems
fs or _fs namespace identifier

See also files and file systems
FNS policy, 43
resolution, 41

functions
See also specific functions
XFN interface conventions, 134

G
generic context creation, 74, 80 to 81
generic context type, 80 to 81
getting

attribute identifiers, 148
attribute values, 147
attributes, 145 to 146
context handles, 137
multiple attributes, 148 to 149
reference to context, 142
syntax attributes of context, 143

global level of service, 26, 27
global namespace policies, 61 to 65

federating DNS, 62 to 63
federating X.500, 63 to 65
global namespace, 61
illustrated, 27
initial context bindings, 62
table of policies, 61

H
handles

context handles
destroying, 143
getting, 137

overview, 135
hard-disk space requirements for FNS on

NIS+, 70
hierarchical naming system

compound name examples, 13 to 14
enterprise namespace structure, 44 to

45
host context type, 76
host or _host namespace identifier

FNS policy, 43
initial context binding, 55
resolution, 41
“shorthand” binding, 59

hostname context type, 39, 76

220 Federated Naming Service Guide—November 1995

host-related bindings, 58 to 59
hosts

aliases, 77
as enterprise policy entities, 28
bindings for enterprise naming, 58 to

59
composite name examples, 30
context creation

all hosts, 74, 76
single host, 76
troubleshooting, 107

context ownership, 76, 77
contexts, 50 to 51
enterprise namespace, 39
enterprise namespace policies, 43
namespace identifier, 41

hosts.org_dir table, 32

I
identifiers

namespace
canonical vs. Solaris

customized, 42, 56
context creation, 74, 82
enterprise level, 41 to 42, 55
global level, 61

XFN interface parameters, 154
illegal name message, 102
implicit NNSPs, 164 to 165

See also next naming system pointers
(NNSPs)

incompatible code sets
message, 102

inconsistencies
checking context naming

inconsistencies, 95 to 96
initial context

See also contexts
bindings for enterprise naming, 54 to

60
example, 54
host-related bindings, 58 to 59
“shorthand” bindings, 59 to 60
table, 55

user-related bindings, 56 to 57
bindings for global naming, 62
calendar service example, 34
cannot obtain, 104
contains nothing, 105
described, 16
handle construction operation, 137

input file for fncreate_fs(1M)
alternate format, 125
creating, 121 to 123

insufficient resources
message, 102

interfaces for programming, See client
programming interfaces

Internet DNS, See domain name system
(DNS)

invalid attribute identifier
message, 102

invalid attribute value
message, 102

invalid enumeration handle , 102

invalid syntax attributes
message, 103

ISO OID XFN identifier formats, 154

J
junctions, 163 to 164

See also next naming system pointers
(NNSPs)

L
-L

fnbind option, 89, 90
fnlookup option, 83

-l
fnattr option, 93
fnlist option, 85, 87 to 88

link error message, 103
link loop limit reached

message, 103

Index 221

links (XFN)
composite name resolution, 165
creating and binding, 89, 90
described, 15
displaying binding, 83
error messages, 103
lookup operation, 139 to 140
status object information, 150
XFN header file, 134
XFN library, 134

listing
See also displaying; lookup operations
attributes and their values, 93
browsing FNS structures using NIS+

commands, 97
context contents, 85 to 88
context naming inconsistencies, 95 to

96
DNS domain contents, 62
fns_hosts table contents, 97
initial context contains nothing, 105
names and bindings in contexts, 139
names bound in contexts, 138 to 139
namespace browser programming

example, 168 to 177
code, 168 to 175
commands, 175
diagram, 168
sample output, 176 to 177

NIS+ objects used by FNS, 97
printing references used for

binding, 89, 90
suborganizations not listed, 106

lookup model, 22
lookup operations

See also displaying; listing
calendar service example, 33
contexts, 138
XFN links, 139 to 140

M
-m, fnattr option, 94
Mail Tool, 33
malformed link message, 103

managing, See administration
mapping FNS contexts to NIS+ objects, 96
memory management policies for client

interfaces, 135
messages, See error messages
modules, context shared object, 20
mounting directories, 119 to 120
multiple addresses, 11
multiple attributes

getting, 148 to 149
getting identifiers, 148
modifying, 149

myens or _myens namespace identifier
initial context binding, 55
user-related binding, 57

myorgunit or _myorgunit namespace
identifier

initial context binding, 55
user-related binding, 57

myself or _myself namespace identifier
initial context binding, 55
user-related binding, 56

N
name in use message, 103

with fnbind -s , 108
with fncreate -s , 108
with fnunbind , 108

name not found message, 103
name resolution

context operation support
requirements, 136 to 137

DNS names, 62
enterprise level namespace

identifiers, 42
status object information, 150
X.500 names, 64 to 65
XFN composite names, 163 to 166

coexistence of explicit and
implicit NNSPs, 165

explicit NNSPs, 163 to 164
implicit NNSPs, 164 to 165
XFN links, 165

222 Federated Naming Service Guide—November 1995

name service (NS) resource records, 63
name services

described, 3 to 4
for printer context

administration, 128 to 130
functions, 3
resource records, 63

namespace browser programming
example, 168 to 177

code, 168 to 175
commands, 175
diagram, 168
sample output, 176 to 177

namespace identifiers
canonical vs. Solaris customized, 42,

56
context creation, 74, 82
context ownership, 83
enterprise level, 41 to 42

initial context bindings, 55
global level, 61

namespace policies, See policies
naming

See also composite names; compound
names; policies

context name inconsistencies,
checking, 95 to 96

context operation names, 136
XFN attribute operations and, 144 to

145
XFN interface conventions, 134

naming system boundaries and
component separators, 161 to
163

strong separation, 161 to 162
weak separation, 162 to 163

navigating, See browsing
next naming system pointers (NNSPs)

X.500 name resolution, 64
XFN composite name resolution

coexistence of explicit and
implicit NNSPs, 165

explicit NNSPs, 163 to 164
implicit NNSPs, 164 to 165

NIS+
described, 8
federating with global naming

systems, 111 to ??
obtaining NIS+ root

reference, 111 to 112
under DNS, 112 to ??
under X.500, 114 to ??

FNS administration, 69 to 109
access control checking, 98 to 99
browsing FNS structures using

NIS+ commands, 97
error messages, 100 to 104
FNS attribute management, 92 to

94
FNS context creation, 73 to 83
FNS context management, 83 to

92
maintaining consistency between

NIS+ and FNS, 94 to 96
mapping FNS contexts to NIS+

objects, 96
replicating FNS service, 72
resource requirements, 70
setting up FNS namespace, 71 to

72
setting up NIS+ service for

FNS, 70 to 71
troubleshooting, 104 to 109

FNS implementation, 8
FNS policies, 30 to 32

NIS+ domains and FNS
organizational units, 30
to 31

NIS+ hosts and FNS hosts, 32
NIS+ users and FNS users, 31

printer context administration, 129
to 130

root reference, 111 to 112
NIS, printer context

administration, 129
NIS_GROUP environment variable, 70 to

71

Index 223

niscat command
checking access control, 98 to 99
listing fns_hosts contents, 97

nischgrp command, 99
nischmod command, 99
nischown command, 99
nisls command

browsing FNS structures, 97
verifying ctx_dir creation, 71

nismkdir command
master server assignment, 71
replicating FNS service, 72

nisping command, 72
NNSPs, See next naming system pointers

(NNSPs)
no permission message, 103, 105 to 106
no such attribute message, 103
no supported address message, 103
not a context message, 104
NS records, 63
nsid context type, 82

See also namespace identifiers

O
-O

fnattr option, 94
fnbind option, 89

-o , fncreate option
all users context, 77
organization context, 76
overview, 74
single user context, 78

objects
classes, 195 to 199
destroying named objects, 92, 107,

109
operation not supported

message, 104
operations, See attribute operations;

context operations; specific
operations

org context type, 75

org namespace identifier
initial context binding, 55
“shorthand” binding, 59

organizational units
composite name examples, 29
contexts, 46 to 47

creating, 75
ownership, 76

described, 28
double slashes in organization

names, 45, 99
enterprise namespace, 38
enterprise namespace policies, 43
fnlist doesn’t list

suborganizations, 106
namespace identifier, 41
NIS+ domains and, 30 to 31
trailing dot in organization

names, 31, 38
trailing slash in organization

names, 100
orgunit or _orgunit namespace

identifier
FNS policy, 43
initial context binding, 55
resolution, 41
“shorthand” binding, 59

orgunit// namespace identifier, 45
OSF DCE UUID XFN identifier

format, 154

P
parent contexts

See also contexts
of enterprise root, 45
of files, 52
of hosts, 50
of organizational units, 46
of printers, 53
of services, 51
of sites, 47 to 48
of users, 49

224 Federated Naming Service Guide—November 1995

parsing
compound names, 156 to 158

syntax attributes, 156, 158
XFN standard syntax model, 156

to 157
XFN composite names, 187 to 189

partial result returned
message, 104

passwd.org_dir table, 31
periods, See dots (.)
permissions

attribute no permission
message, 101

changing, 99
checking, 98 to 99
no permission message, 103, 105 to

106
pipe character (|) in BNF notation, 186
plus sign (+) in BNF notation, 186
pointer types, 135

See also next naming system pointers
(NNSPs)

policies, 25 to 35
enterprise namespace, 37 to 60

arrangement of objects, 28
file namespace, 40
host namespace, 39
illustrated, 27
initial context bindings, 54 to 60
namespace identifiers, 41 to 42
namespace structure, 42 to 54
organizational unit

namespace, 38
printer namespace, 40
service namespace, 39 to 40
site namespace, 38
table of policies, 43
user namespace, 39

global namespace, 61 to 65
federating DNS, 62 to 63
federating X.500, 63 to 65
global namespace, 61
illustrated, 27
initial context bindings for global

naming, 62
goals, 25
information not specified, 26
information specified, 26
levels of services, 26, 27
need for uniformity, 6 to 7
overview, 26 to 28
principles for, 7 to 8
target client applications, 32 to 35

predefined constants, 134
primary status code, 150
principles for FNS policies, 7 to 8
Print Tool, 32
printer context type

administration
using files, 128
using NIS, 129
using NIS+, 129 to 130

creation, 80
printer namespace identifier

FNS policy, 43
resolution, 41

printers
context administration

using files, 128
using NIS, 129
using NIS+, 129 to 130

context creation, 80
contexts, 53
enterprise namespace, 40
enterprise namespace policies, 43
FNS policies, 32
FNS-based naming, 9
namespace identifier, 41
programming example, 178 to 183

client, 179 to 181
server, 181 to 183

Index 225

printing
See also listing
references used for binding, 89, 90

programming, See application
programming; client
programming interfaces

Q
quotation marks

BNF notation, 186
XFN composite name syntax, 159
XFN standard syntax model, 157

R
-r

fncheck option, 95, 96
fncreate option, 74
fncreate_fs(1M) option, 121

-r , fnbind option, 89
RAM, memory-management policies for

client interfaces, 135
references

address properties, 12
bad reference message, 101
binding composite names to, 89 to 91,

108
defined, 11
DNS text record format for XFN

references, 191 to 194
getting for contexts, 142
handle construction operation, 137
NIS+ root reference, 111 to 112
printing references used for

binding, 89, 90
status object information, 150
X.500 attribute syntax for XFN

references, 195 to 199
XFN interface parameters, 153 to 154

registering service names, 40
relative distinguished names, 13

removing
bindings, 140 to 141
cannot remove context, 107
composite names from

namespace, 91 to 92, 108 to
109

deleting attributes or values, 93
destroying

context handles, 143
named objects, 92, 107, 109
subcontexts, 142

renaming bindings, 91, 141
replacing attributes or values, 93
replicating FNS service, 72
requirements for FNS on NIS+, 70
resolution, See name resolution
resolver library, 62
resources

insufficient resources
message, 102

requirements, 70
root reference for NIS+, 111 to 112
RPC services, FNS policies, 33

S
-s

fnattr option, 93
fnbind option, 89, 108
fncheck option, 95
fncreate option, 74, 108

separator character (/)
FNS component separator, 42
naming system boundaries and, 161

to 163
strong separation, 161 to 162
weak separation, 162 to 163

XFN composite name syntax, 159 to
161

XFN standard syntax model, 157

226 Federated Naming Service Guide—November 1995

servers
NFS file servers, 118 to 119
NIS+

directory, 71
requirements for FNS, 70

print server programming
example, 181 to 183

service context type, 79 to 80
service or _service namespace

identifier
FNS policy, 43
resolution, 41

services
See also printers
as enterprise policy entities, 28
context creation, 79 to 80
context ownership, 80
contexts, 51 to 52
enterprise namespace, 39 to 40
enterprise namespace policies, 43
levels, 26, 27
namespace identifier, 41
registering names, 40

sets of attributes, 155
setting up FNS

FNS namespace setup, 71 to 72
NIS+ service setup, 70 to 71
replicating FNS service, 72
resource requirements, 70

“shorthand” bindings, 59 to 60
single host context

creating, 76
troubleshooting creation, 107

single quote in XFN composite name
syntax, 159

See also quotation marks
single user context

creating, 78 to 79
troubleshooting creation, 107

site context type, 81

site or _site namespace identifier
FNS policy, 43
initial context binding, 56
resolution, 41
“shorthand” binding, 60

sites
composite name examples, 30
context creation, 81
context ownership, 81
contexts, 47 to 49
enterprise namespace, 38
enterprise namespace policies, 43
as enterprise policy entities, 28
namespace identifier, 41

slash (/)
/... namespace identifier, 62
double slashes in organization

names, 45, 99
FNS component separator, 42
in service names, 39
trailing, in organization names, 100
XFN component separator, 157, 159

to 161
Solaris

customized namespace
identifiers, 42, 56

FNS implementation
applications, 10
DNS, 9
file naming, 9
NIS+, 8
printer naming, 9
X.500, 9

status codes, 150 to 153
link status, 150

status objects, 150
base attribute interface, 145
base context interface, 137

storage requirements for FNS on NIS+, 70

Index 227

strings
composing XFN composite name

strings, 189 to 190
decomposing XFN composite name

strings, 187 to 189
XFN composite name syntax, 159 to

161
XFN identifier formats, 154
XFN interface parameters, 155
XFN standard syntax model, 157

subcontexts, See subordinate contexts
subordinate contexts

See also contexts
creating, 141 to 142
destroying, 142
of enterprise root, 45 to 46
of files, 53
of hosts, 50 to 51
of organizational units, 47
of printers, 54
of services, 52
of sites, 48
of users, 49

suborganizations not listed by
fnlist , 106

success message, 104
syntax not supported message, 104

T
-t

fncheck option, 95
fncreate option, 74, 107

_t suffix, 134
thisens or _thisens namespace

identifier
host-related binding, 58
initial context binding, 55

thishost or _thishost namespace
identifier

host-related binding, 58
initial context binding, 55

thisorgunit or _thisorgunit
namespace identifier

host-related binding, 58
initial context binding, 55

thisuser namespace identifier
initial context binding, 55
user-related binding, 56

too many attribute values
message, 104

trailing dot (.) in organization names, 31,
38

troubleshooting
See also error messages
contexts

cannot create host- or user-
related contexts, 107

cannot remove context, 107
checking naming

inconsistencies, 95 to 96
debugging creation, 74

fndestroy does not return
“operation failed”, 109

fnlist doesn’t list
suborganizations, 106

fnunbind does not return “operation
failed”, 109

initial context
cannot obtain, 104
nothing in, 105

“name in use” messages, 108
“no permission” messages, 105 to 106
status codes, 151 to 153

TXT records in XFN references, 191 to 194

U
-U

fnattr option, 94
fnbind option, 89

-u , fncheck option, 95
unavailable message, 104
underscore (_)

in namespace identifiers, 41, 56
in XFN terminology, 41

228 Federated Naming Service Guide—November 1995

UNIX hierarchical naming system, 13
updating

bindings, 140 to 141
FNS namespace, 95

user context type, 78 to 79
user or _user namespace identifier

FNS policy, 43
initial context binding, 55
resolution, 41
“shorthand” binding, 59

username context type, 39, 77
user-related bindings, 56 to 57
users

as enterprise policy entities, 28
bindings for enterprise naming, 56 to

57
composite name examples, 29
context creation

all users, 74, 77
single user, 78 to 79
troubleshooting, 107

context ownership, 78
contexts, 49
enterprise namespace, 39
enterprise namespace policies, 43
namespace identifier, 41
NIS+ and FNS, 31
view of FNS, 17 to 18

V
-v

fnbind option, 89, 90
fncreate_fs(1M) option, 121
fnlist option, 85, 88, 96
fnlookup option, 83, 96

verifying
checking access control, 98 to 99
checking context naming

inconsistencies, 95 to 96
ctx_dir directory creation, 71

viewing, See displaying; listing; lookup
operations

X
-x , fnbind option, 89
X.500 global directory service

attribute syntax for XFN
references, 195 to 199

described, 9, 63
directory information base (DIB), 63

to 64
federating, 63 to 65
federating NIS+ under, 114 to ??
FNS implementation, 9
hierarchical naming system, 13
name resolution, 64 to 65

X/Open Federated Naming
attribute model, 143 to 144
client programming interfaces, 133 to

158
See also base attribute interface;

base context interface
abstract data types, 134
base attribute interface, 143 to

149
base context interface, 135 to 143
conventions, 134
memory management

policies, 135
overview, 133 to 135
parameters, 153 to 155
parsing compound names, 156 to

158
status codes, 150 to 153
status objects, 137, 145, 150
supporting interfaces, 133 to 134
usage, 134

component separator and naming
system boundaries, 161 to
163

strong separation, 161 to 162
weak separation, 162 to 163

composite names, 159 to 166
naming system boundaries and

component
separators, 161 to 163

resolution, 163 to 166
syntax, 159 to 161, 185 to 190

Index 229

compound-name syntax model, 156
to 157

contexts, 12
described, 5
DNS text record format for XFN

references, 191 to 194
FNS conformity, xvii, 5
FNS vs., 5
identifier formats, 154
links

composite name resolution, 165
creating and binding, 89, 90
described, 15
displaying binding, 83
error messages, 103
lookup operation, 139 to 140
status object information, 150
XFN header file, 134
XFN library, 134

object classes, 195 to 199
X.500 attribute syntax for XFN

references, 195 to 199
X.500 entry supporting reference

attributes, 114
XFN object class, 195 to 199
XFN, See X/Open Federated Naming
XFN-supplement object class, 195 to 199

230 Federated Naming Service Guide—November 1995

Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 USA.

Tous droits réservés.Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX Systems Laboratories Inc., filiale
entierement detenue par Novell, Inc. ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par
des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS : l’utilisation, la duplication ou la divulgation par l’administation
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et aux
logiciels informatiques du DFAR 252.227- 7013 et FAR 52.227-19.

Le produit décrit dans ce manuel peut Être protege par un ou plusieurs brevet(s) americain(s), etranger(s) ou par des demandes
en cours d’enregistrement.

MARQUES
Sun, Sun Microsystems, le logo Sun, Solaris, Solstice, AdminTools sont des marques deposées ou enregistrées par Sun
Microsystems, Inc. aux Etats-Unis et dans certains autres pays. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres
pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée de Novell, Inc., PostScript
et Display PostScript sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARstation, SPARCstorage, SPARCworks, microSPARC, microSPARC II et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsytems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique, cette licence couvrant aussi les licencies de Sun qui mettent en place OPEN LOOK GUIs et
qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y
COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE
SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES, CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

