
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Solaris Common Desktop Environment:
Motif Transition Guide

Part No: 802-2962-11
Revision A, June 1995

A Sun Microsystems, Inc. Business

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a
registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN. THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xiii

1. Moving to Motif and CDE. 1

Which Motif? . 1

Summary of Motif Toolkits . 3

Moving to Motif . 3

Running Existing Motif Applications on the OpenWindows
Desktop. 3

Developing CDE Motif Applications for the OpenWindows
Desktop. 4

Moving to Solaris CDE . 4

Running Existing Applications on the Solaris CDE Desktop 5

Porting OpenWindows Applications to the Solaris CDE
Desktop. 5

Porting Motif Applications to the Solaris CDE Desktop. . . 5

Developing CDE Motif Applications for the Solaris CDE
Desktop. 6

iv Solaris CDE Motif Transition Guide

2. Motif Environment . 7

Motif Packaging in the Solaris 2.5 and Solaris CDE 1.0 Software 7

Compiling and Linking Motif Programs. 8

Shared Library Policy . 9

Future Motif Compatibility . 9

3. CDE and Solaris Motif Toolkits . 11

CDE Motif Toolkit . 11

Features Added to Motif 1.2.3 . 12

Enhancements to Existing Motif 1.2.3 Functionality 12

CDE Motif Libraries . 13

Demo Programs . 14

Related Documentation. 14

Widgets Available for CDE Application Development 15

CDE Motif Control Widgets . 15

CDE Terminal Widget . 18

Text Editor Widget . 19

Solaris Motif Toolkits. 20

IXI Motif 1.2.2 Toolkit . 20

4. Development Environment Transition Issues 23

Features Exclusive to CDE . 23

OpenWindows Versus Solaris CDE Development Environments 24

GUI Application Builders . 24

Drag and Drop . 25

ToolTalk Messaging . 25

Contents v

Typing . 26

Help . 26

Internationalization . 28

Fonts . 28

5. Toolkit Transition Issues . 31

OPEN LOOK Versus CDE Motif Toolkits 31

Features Only in the OPEN LOOK User Interface. 32

Features Only in the CDE Motif User Interface 32

Notable Implementation Differences Between Toolkits . . . 33

XView Libraries Versus CDE Motif Libraries 35

Terminology . 35

OPEN LOOK Versus Motif Toolkit Architecture 36

Programming Model . 36

Differences Between XView and CDE Motif 38

X Resources. 39

External Files . 39

OLIT Libraries Versus CDE Motif Libraries 39

Routines Only in OLIT Library . 39

Routines Only in CDE Motif Libraries 40

Widgets . 40

6. Porting Issues and Ideas . 45

Elements of Migrating . 46

Do You Need to Port? . 46

Basic Integration . 46

vi Solaris CDE Motif Transition Guide

If You Decide to Port . 47

Benefits of Porting . 47

Integrating into the Solaris CDE Environment 48

Start Small . 49

Convert and Clean Up . 49

Use Application Builder . 49

Architectural Impact . 50

GUI and Internals . 50

Static Versus Dynamic Layout . 51

Study the Target Environment . 52

GUI Development Tools . 53

Use Transition Tools. 53

Tools to Transition to Motif. 54

Tools to Transition to the Solaris CDE Desktop 54

Use Existing Code . 55

Application Builder . 55

Demo Code . 55

Tips . 56

Floating Menus . 56

Colormap Behavior . 56

Summary: Things to Keep in Mind . 57

7. Porting Example: OPEN LOOK to CDE Motif. 59

OpenWindows 3.4 Snapshot Application 60

Convert . 61

Contents vii

Clean Up . 62

Consider CDE Style Guidelines . 62

Other Design Considerations . 63

A. CDE Motif Packaging. 65

B. Internationalization and CDE. 67

Ensure Correct CDE NLS Environment 68

Message Catalog Functions . 68

Locale Announcement. 68

Character Strings and XmStrings. 68

To Convert from Character String to XmString 68

To Convert from XmString to Character String 69

Include app-defaults File . 69

Localize Motif Resources . 69

Deliver Message Catalog. 70

CDE and gencat . 70

.msg Files . 70

.cat Files. 70

Fonts . 70

C. Solaris 2.5 Motif Window Manager . 71

Setting Up the Motif Environment . 72

Setting Motif Window Manager as the Default 72

Enabling Quit on the Workspace Menu 73

Enabling Drag and Drop for the Motif Window Manager 73

viii Solaris CDE Motif Transition Guide

D. Recommended Reading . 75

CDE Documentation . 76

Development Environment . 76

Run-time Environment . 76

ToolTalk Documentation . 76

Motif 1.2.3 Documentation . 77

OPEN LOOK to CDE Motif Transition . 78

Graphical User Interfaces . 78

Motif Programming . 79

OPEN LOOK Programming . 79

Xt/XLib Programming . 80

Index . 81

ix

Figures

Figure 7-1 OpenWindows 3.4 Snapshot Application GUI 60

Figure 7-2 Motif Port of Snapshot GUI (Direct Translation) 61

Figure 7-3 Motif Port of Snapshot GUI (Final Port) 63

x Solaris CDE Motif Transition Guide

xi

Tables

Table 1-1 Solaris and CDE Motif Toolkits . 3

Table 3-1 CDE Control Widgets . 15

Table 5-1 OPEN LOOK Mouse Buttons . 34

Table 5-2 Motif Mouse Buttons. 34

Table 5-3 Basic Mapping of Common Objects.. 37

Table 5-4 Common Widget Mapping . 41

Table 6-1 OLIT and Motif Geometry Manager Widgets. 51

Table A-1 CDE Motif Packages . 65

xii Solaris CDE Motif Transition Guide

xiii

Preface

Solaris Common Desktop Environment: Motif Transition Guide addresses:

• Issues of concern to Sun Motif® developers

• How to run existing OPEN LOOK® and Motif applications on the
OpenWindows™ 3.5 and Solaris Common Desktop Environment (CDE) 1.0
desktops

• Porting OPEN LOOK and Motif applications to the Solaris CDE
environment

This manual assumes you are familiar with OPEN LOOK or Motif
programming. Use it in conjunction with Motif and OPEN LOOK manuals to
enable your application to run on the latest Sun desktops.

Note – Solaris 2.5 Motif and CDE 1.0 Motif are the same. This book uses the
terminology CDE Motif for this toolkit.

Note – The OpenWindows 3.4 desktop is the default desktop for the Solaris 2.4
environment. The OpenWindows 3.5 desktop is the default desktop for the
Solaris 2.5 environment.

xiv Solaris CDE Motif Transition Guide

Who Should Use This Book

Read Solaris Common Desktop Environment: Motif Transition Guide if you are:

• A Motif programmer interested in developing CDE Motif applications for
the OpenWindows 3.5 or Solaris CDE 1.0 desktop

• An OPEN LOOK or Motif programmer, and you want your existing
applications to run on the OpenWindows 3.5 or Solaris CDE 1.0 desktop
with little or no code modification

• Interested in porting your OPEN LOOK or Motif application to the Solaris
CDE 1.0 desktop

This manual assumes that you are proficient in OPEN LOOK (XView™ or
OLIT) or Motif application development on UNIX® platforms. If you are an
OPEN LOOK developer, it assumes you are familiar with Motif, as well.

Before You Read This Book

If you are considering porting your application to the Solaris CDE 1.0 desktop,
and you are not familiar with CDE, you should first read:

• CDE Programmer’s Overview

CDE Programmer’s Overview provides a high level view of the CDE
development environment components. It also includes an architectural
overview of the entire CDE system, including both the run-time (end user)
and development environments.

• CDE User’s Guide

CDE User’s Guide provides an in-depth description of the CDE run-time
environment.

See Appendix D, “Recommended Reading” for a listing of all the CDE
documentation.

Preface xv

How This Book Is Organized

This manual consists of these chapters and appendixes:

Chapter 1, “Moving to Motif and CDE,” provides a roadmap to using this
manual, depending on what types of tasks you want to perform on your
application.

Chapter 2, “Motif Environment,” contains information for developers writing
CDE Motif applications for either the OpenWindows or CDE environment.

Chapter 3, “CDE and Solaris Motif Toolkits,” describes the Solaris 2.4 and CDE
Motif toolkits, and identifies the non-standard parts of the Solaris 2.3 (IXI)
Motif toolkit.

Chapter 4, “Development Environment Transition Issues,” compares and
contrasts the OpenWindows and CDE development environments.

Chapter 5, “Toolkit Transition Issues,” discusses transitioning your application
from an OPEN LOOK graphical user interface (GUI) to CDE Motif.

Chapter 6, “Porting Issues and Ideas,” provides information to consider for
porting your OPEN LOOK application to CDE.

Chapter 7, “Porting Example: OPEN LOOK to CDE Motif,” presents a simple
porting example.

Appendix A, “CDE Motif Packaging,” describes the contents of the CDE Motif
run-time and developer packages.

Appendix B, “Internationalization and CDE,” describes the things you must do
differently from the OpenWindows environment to internationalize an
application for the CDE desktop.

Appendix C, “Solaris 2.5 Motif Window Manager,” discusses the Motif
Window Manager, which is available in the Solaris 2.5 release but not in the
Solaris CDE 1.0 release.

Appendix D, “Recommended Reading,” lists books and articles on issues
related to OPEN LOOK, Motif, and CDE application development.

xvi Solaris CDE Motif Transition Guide

Related Books

For a list of the CDE documentation and reading material of interest to
OPEN LOOK and Motif developers, see Appendix D, “Recommended
Reading.”

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

1

Moving to Motif and CDE 1

This chapter discusses the different types of Motif available to Solaris CDE
developers, and provides the paths through this manual for the different tasks
you may want to perform in relation to them.

Which Motif?

The Motif toolkits shipped with various versions of the Solaris environment
provided a migration to the CDE 1.0 Motif toolkit. The list below provides a
brief description of these toolkits. See Chapter 3, “CDE and Solaris Motif
Toolkits,” for more detailed information.

Which Motif? 1

Running Existing Motif Applications on the OpenWindows Desktop 3

Developing CDE Motif Applications for the OpenWindows Desktop 4

Running Existing Applications on the Solaris CDE Desktop 5

Porting OpenWindows Applications to the Solaris CDE Desktop 5

Porting Motif Applications to the Solaris CDE Desktop 5

Developing CDE Motif Applications for the Solaris CDE Desktop 6

2 Solaris CDE Motif Transition Guide

1

• CDE 1.0 Motif, which is the Solaris 2.5 Motif toolkit, adds functionality to
the Motif 1.2.3 toolkit while maintaining backward binary compatibility. It
consists of the Motif 1.2.3 widget library with bug fixes and enhancements
to existing functionality.

Motif 1.2.3 is a patch of Motif 1.2. APIs for Motif 1.2 and Motif 1.2.3 are the
same. The Motif 1.2.3 libraries in the Solaris and CDE environments are
described in Chapter 2, “Motif Environment.”

Note – When running CDE Motif in the Solaris CDE environment, you gain
access to additional widgets (such as a menu button widget and a terminal
emulator widget and library). See Chapter 3, “CDE and Solaris Motif Toolkits,”
for more details.

• The Solaris 2.4 Motif toolkit is an early release of the CDE Motif toolkit. It
has the same major functionality as CDE Motif but includes fewer bug fixes
to Motif 1.2.3.

• The Solaris 2.3 Motif toolkit is IXI 1.2.2 Motif (an extension of Motif 1.2.2).

Caution – If you install CDE on a Solaris 2.4 system, the Motif toolkit is
upgraded to the latest version of CDE Motif. If you want your application to
run on the OpenWindows 3.4 (non-CDE) desktop, make sure to build your
application on Solaris 2.4, not CDE.

Moving to Motif and CDE 3

1

Summary of Motif Toolkits

This section summarizes the differences between the Motif toolkits supported
by the Solaris environment.

Moving to Motif

The main programming or porting tasks you probably want to perform in
relation to Motif are:

• Running existing Motif applications on the OpenWindows 3.5 desktop
• Developing CDE Motif applications for the OpenWindows 3.5 desktop

Running Existing Motif Applications on the OpenWindows Desktop

Any standard Motif 1.2 or Solaris Motif application will run on the
OpenWindows 3.5 desktop. Also, any Motif application that is dynamically
linked to Motif libraries besides the Solaris 2.4 or CDE Motif libraries can run
on the OpenWindows 3.5 desktop if you package with the application the
Motif libraries you used for application development.

Table 1-1 Solaris and CDE Motif Toolkits

Motif
Toolkit Contents Location

Develop for This
Desktop

Solaris 2.3 IXI Motif, an extension of
Motif 1.2.2

/opt/SUNWmotif OpenWindows

Solaris 2.4 Early release of CDE 1.0
Motif

/usr/dt OpenWindows

Solaris 2.5 CDE 1.0 Motif /usr/dt OpenWindows

CDE 1.0 Motif 1.2.3, with bug fixes
and enhancements

/usr/dt CDE (developer
has access to CDE
DtSpinBox ,
DtComboBox,
DtMenuButton ,
DtEditor , DtTerm
widgets)

4 Solaris CDE Motif Transition Guide

1

Developing CDE Motif Applications for the OpenWindows Desktop

If you are familiar with Motif and want to develop a CDE Motif application for
the OpenWindows 3.5 desktop, read:

• Chapter 2, “Motif Environment,”
• Appendix A, “CDE Motif Packaging,”
• Appendix C, “Solaris 2.5 Motif Window Manager”

You might also want to read Chapter 3, “CDE and Solaris Motif Toolkits,”
which compares the Motif toolkits that the Solaris environment supports.

If you are an OPEN LOOK developer and want to develop a CDE Motif
application for the OpenWindows 3.5 desktop, you should read the chapters
and appendixes just mentioned in this section. In addition, read:

• Chapter 5, “Toolkit Transition Issues,” for a comparison of the OPEN LOOK
and Motif graphical user interface (GUI) and widgets.

• Chapter 6, “Porting Issues and Ideas,” particularly those parts pertaining to
GUI transitions.

• “Motif 1.2.3 Documentation” on page 77 and “Motif Programming” on
page 79 for lists of books that will familiarize you with Motif programming.

Moving to Solaris CDE

You do not need to port your OPEN LOOK or Motif application to the Solaris
CDE environment for it to run on the Solaris CDE desktop. However, if you
decide to port, refer to the CDE documentation and read the chapters
mentioned below. See “CDE Documentation” on page 76 for a list of the
available CDE documentation.

The main programming or porting tasks you probably want to perform in
relation to Solaris CDE are:

• Running existing OLIT, XView, or Motif applications on the Solaris CDE
desktop

• Porting OpenWindows applications to the Solaris CDE desktop
• Porting Motif applications to the Solaris CDE desktop
• Developing CDE Motif applications for the Solaris CDE desktop

Moving to Motif and CDE 5

1

Running Existing Applications on the Solaris CDE Desktop

Existing OLIT, XView, or Motif applications will run on the Solaris CDE
desktop. Note that any Motif application that is dynamically linked to Motif
libraries besides those in Solaris 2.4 or CDE Motif can run on the CDE desktop
if you package with the application the Motif libraries you used for application
development.

If you want your application to appear integrated with the Solaris CDE
desktop but do not want to modify your application code, you can perform
basic integration. This first level of Solaris CDE integration is described in
“Basic Integration” on page 46.

Porting OpenWindows Applications to the Solaris CDE Desktop

Existing OpenWindows applications can run unmodified on the Solaris CDE
desktop. If you want to move your applications to the Solaris CDE
environment and to begin using its broader set of standard services, read this
book to help you understand the differences between the OPEN LOOK and
Motif toolkits, and the OpenWindows and Solaris CDE desktops.

Porting Motif Applications to the Solaris CDE Desktop

If your application is Motif 1.2 or Motif 1.2.3 style guide-compliant, you are
well on your way to it being CDE style guide-compliant. CDE Motif is based
on the Motif 1.2.3 toolkit and the CDE style guide is based on the Motif 1.2
style guide. Still, you may have to make some GUI changes to port your
application to CDE Motif.

To help port your Motif application to the Solaris CDE desktop, read:

• Chapter 3, “CDE and Solaris Motif Toolkits,” to find out about the
enhancements in CDE Motif and the CDE widgets available to you

• Chapter 4, “Development Environment Transition Issues,” which compares
and contrasts the OpenWindows and Solaris CDE development
environments

Refer to the checklist in the CDE Style Guide and Certification Checklist to see
how the CDE style guidelines are similar to and differ from those for Motif 1.2.

6 Solaris CDE Motif Transition Guide

1

Developing CDE Motif Applications for the Solaris CDE Desktop

If you are familiar with Motif and want to develop a CDE Motif application for
the Solaris CDE desktop, refer to the CDE documentation.

If you are an OPEN LOOK developer and want to develop a CDE Motif
application for the Solaris CDE desktop, read this book and refer to the CDE
documentation.

In either case, see Appendix D, “Recommended Reading,” for a list of the CDE
documentation as well as other books to help you with Motif programming.

7

Motif Environment 2

This chapter contains information for developers writing CDE Motif
applications for either the OpenWindows or Solaris CDE environment.

Motif Packaging in the Solaris 2.5 and Solaris CDE 1.0 Software

Motif support in the Solaris 2.5 software is packaged as it was in the Solaris 2.4
software. This packaging provides run-time support in the run-time product
and developer support in the developer’s environment.

Appendix A, “CDE Motif Packaging,” describes the packaging scheme and
briefly describes the contents of all the Motif packages in the Solaris CDE 1.0
release.

The Motif run-time support in the Solaris 2.5 and Solaris CDE 1.0 software
includes the following:

• Shared libraries
• Header files
• Key bindings

Motif Packaging in the Solaris 2.5 and Solaris CDE 1.0 Software 7

Compiling and Linking Motif Programs 8

Shared Library Policy 9

Future Motif Compatibility 9

8 Solaris CDE Motif Transition Guide

2

The Motif developer support in the Solaris 2.5 and Solaris CDE 1.0 software
includes the following:

• Debug libraries
• uil compiler
• Man pages
• Demos and sample source

The Motif Window Manager (mwm) is available in the Solaris 2.5 software, but
not in the Solaris CDE 1.0 software. See Appendix C, “Solaris 2.5 Motif
Window Manager,” for information on mwm.

The Motif header files required for application development are located in
/usr/dt/include . The Motif libraries are located in /usr/dt/lib .

Note – Motif applications built on the Solaris 2.4 or Solaris 2.5 version
(libXm.so.3) of the Motif run-time package will not work when used with
the Motif shared libraries delivered in the Solaris 2.3 version (libXm.so.2).

Compiling and Linking Motif Programs

When you compile Motif programs, include the following compiler syntax to
enable the compiler to find the Motif and X Window System™ header files:

Use the following compiler syntax to direct the linker to the correct shared
libraries as shown in the following:

The following is an example of a compile-and-link line for a Motif application:

-I/usr/dt/include -I/usr/openwin/include

-R/usr/dt/lib -R/usr/openwin/lib -L/usr/dt/lib -L/usr/openwin/lib

cc -o myprog -I/usr/dt/include -I/usr/openwin/include myprog.c -R/usr/dt/lib \
-R/usr/openwin/lib -L/usr/dt/lib -lXm -L/usr/openwin/lib -lXt -lX11

Motif Environment 9

2

Shared Library Policy

SunSoft™ will increment the major version number of each shared Motif library
whenever there are binary-incompatible differences from the previous release.
SunSoft will make available (either on the Motif distribution or through some
other channel) all prior versions of each library. This will ensure that your
applications linked with a particular release can continue to run, even after a
new Motif release has been installed.

Future Motif Compatibility

Developers who used Motif 1.2 to subclass widgets need to be aware of
potential binary compatibility problems with future releases. Internal Motif
widget data structures may be changed, breaking any subclass that relies on
the position of fields in these data structures.

Motif provides a mechanism that developers can use to avoid such problems.
Refer to the Motif Programmer’s Reference manual. A demonstration of this
mechanism is provided in the /usr/dt/examples/motif/dogs directory.

10 Solaris CDE Motif Transition Guide

2

11

CDE and Solaris Motif Toolkits 3

The Solaris 2.3, Solaris 2.4, and Solaris 2.5 releases and the CDE 1.0 release
provide versions of the Motif toolkit. This chapter discusses these toolkits.

For a summary of the differences between these toolkits, see Table 1-1 on
page 3.

CDE Motif Toolkit

CDE Motif, the Motif toolkit that is provided with the CDE 1.0 release, adds
functionality to the Motif 1.2.3 toolkit while maintaining backward binary
compatibility. It is source and binary compatible with Motif 1.2 applications.
Existing Motif 1.2 applications will compile using CDE Motif. Existing Motif
1.2 binaries will run without modification using CDE Motif.

The CDE Motif Toolkit consists of the Motif 1.2.3 widget library with
enhancements to existing functionality and bug fixes, as well as some new
features. Motif 1.2.3 is a patch of Motif 1.2. The APIs and look and feel for
Motif 1.2 and Motif 1.2.3 are the same.

CDE Motif Toolkit 11

Widgets Available for CDE Application Development 15

Solaris Motif Toolkits 20

12 Solaris CDE Motif Transition Guide

3

In addition, the CDE library libDtWidget provides control widgets for
graphical user interface objects not found in Motif 1.2.3. For more information
on these widgets, see “CDE Motif Control Widgets” on page 15 and
CDE Programmer’s Guide.

Features Added to Motif 1.2.3

CDE provides the following added features to Motif 1.2.3 to support desktop
applications:

• Complete localization of toolkit error messages

• XmGetPixmap() and XmGetPixmapByDepth() use the environment
variable XMICONSEARCHPATH or XMICONBMSEARCHPATH as the icon search
path. If neither of these variables is set, then they use XBLANGPATH, which is
the Motif 1.2 behavior. See the corresponding CDE Motif man pages for
more information.

Enhancements to Existing Motif 1.2.3 Functionality

The Solaris CDE Motif library contains minor enhancements to Motif 1.2.3
usability to emulate certain OPEN LOOK user interface and Microsoft®

Windows features. The usability enhancements include:

• Optionally allowing mouse button 2 on a three-button mouse to be used to
extend the current selection. This is equivalent to the OPEN LOOK Adjust
function.

• Allowing Tab to be used to move through a group of PushButton widgets
and gadgets, ArrowButton widgets and gadgets, and DrawnButton
widgets.

• Allowing mouse button 3 to activate a CascadeButton menu (for OPEN
LOOK compatibility).

• Providing three new resources (pathMode , fileFilterStyle , and
dirTextLabelString) for the XmFileSelectionBox widget, which give
the File Selection Dialog Box GUI an improved look and feel.

• Ability to re-map keybindings to be consistent with those for OPEN LOOK
or Microsoft Windows applications.

• Providing visual enhancements to the standard Motif look (see the next
section, “Visual Enhancements”).

CDE and Solaris Motif Toolkits 13

3

Each of the preceding enhancements can be controlled by a resource: either a
widget resource (for XmFileSelectionBox) or an application-wide resource
(all other cases). The default values for this resource provide behavior and
APIs that are identical to that of Motif 1.2. For information on these
enhancements and resources, see the XmDisplay(3x) and
XmFileSelectionBox(3x) man pages.

Visual Enhancements

CDE changes the Motif 1.2.3 look in the following ways:

• RadioBox fill color was changed to show state more clearly

• RadioBox shape was changed from diamond to circular

• A check mark was added to the CheckBox to show its state more clearly

• CascadeButtons and menu items were changed to have an etched-in border
when active

• Thumb was removed from the read-only Scale to distinguish it from the
interactive Scale

• Default shadow thickness was changed to 1 pixel

• Default highlight thickness was changed to 1 pixel

• Default PushButton visual was added that highlights the button inside its
default shadow

For information on these enhancements, see the XmDisplay(3) ,
XmPushButton(3) , XmPushButtonGadget(3) , XmToggleButton(3) ,
XmToggleButtonGadget(3) , and XmScale(3) man pages.

CDE Motif Libraries

Use CDE Motif and X11R5 libraries to develop a CDE Motif-compliant
application for the X Window System.

CDE Motif Library (libXm)

Solaris CDE provides all the Motif 1.2.3 header files. The CDE Motif libraries
are the Motif 1.2.3 libraries with bug fixes and enhancements.

14 Solaris CDE Motif Transition Guide

3

CDE Motif UIL library (libUill)

The Motif user interface language (UIL) is a specification language for
describing the initial state of a Motif application’s user interface. The CDE
version of the Motif UIL library is essentially unchanged from the Motif 1.2.3
version.

Include the UilDef.h header file (found in the /usr/dt/include/uil
directory) to access UIL.

CDE Motif Resource Manager Library (libMrm)

The Motif resource manager (MRM) is responsible for creating widgets based
on definitions contained in user interface definition (UID) files created by the
UIL compiler. MRM interprets the output of the UIL compiler and generates
the appropriate argument lists for widget creation functions. Use libMrm to
access the Motif resource manager. The CDE version is essentially unchanged
from the Motif version.

Include the Mrm/MrmPublic.h header files to access libMrm in your
application.

Demo Programs

You can find Motif 1.2 demos in /usr/dt/examples/motif . These demos do
not include any of the CDE Motif enhancements or widgets.

Related Documentation

See the OSF/Motif Programmer’s Reference for information on UIL, the UIL
compiler, UID, and Mrm.

CDE and Solaris Motif Toolkits 15

3

Widgets Available for CDE Application Development

This section discusses the widgets available for Solaris CDE application
development, as an extension to CDE Motif.

CDE Motif Control Widgets

The CDE Motif control widgets are designed to ease porting OPEN LOOK
applications to the Solaris CDE desktop by providing equivalent functionality
in CDE Motif. These widgets are not considered to be part of CDE Motif, but
rather an extension to CDE Motif. The libDtWidget library contains widgets
and functions that are used to provide common functionality across all CDE
applications. The widgets provided include:

Table 3-1 CDE Control Widgets

Widget Name Description

DtSpinBox TextField widget with additional controls for incrementing
and decrementing numeric values, or browsing through and
selecting from a list of text strings. Can be read-only.
DtSpinBox is functionally similar to the OPEN LOOK
numeric text field.

DtComboBox Combination of TextField and pop-up list widgets that
provides a list of valid choices for the TextField. Can be
read-only.

DtMenuButton Command widget that provides the menu cascading
functionality of an XmCascadeButton widget outside of a
menu bar, or a menu pane. DtMenuButton is functionally
equivalent to the OPEN LOOK menu button.

16 Solaris CDE Motif Transition Guide

3

Examples of each type of widget follow:

• Text field and arrow button widget (DtSpinBox)

• Text field and list box widget (DtComboBox)

• Menu button widget (DtMenuButton)

CDE and Solaris Motif Toolkits 17

3

Note – The Solaris CDE software supports all Motif 1.2 widgets.

Compatibility with Motif 2.0

The APIs of the DtSpinBox and DtComboBox widgets are similar to the Motif
2.0 release of XmSpinBox and XmComboBox widgets. The APIs are designed so
an application can easily switch to the Motif 2.0 version of these widgets. The
main thing you need to do to switch is to change the Dt names for the class,
types, and creation routines to Xm.

This information is supplied in case you choose to port your application to
Motif 2.0 but this is not a recommendation that you do so.

Note – The Solaris CDE software does not guarantee strict API or binary
compatibility between its widgets and the Motif 2.0 widgets.

Library and Header Files

The library libDtWidget provides access to the DtSpinBox , DtComboBox,
and DtMenuButton widgets. The libDtWidget header files for these widgets
are:

• Dt/SpinBox.h
• Dt/ComboBox.h
• Dt/MenuButton.h

Demo Programs

You can find the CDE Motif control widgets demos in
/usr/dt/examples/dtwidget . Read the README file for detailed
information on the demos.

Related Documentation
For more information on CDE Motif control widgets, see the relevant man
pages and CDE Programmer’s Guide.

18 Solaris CDE Motif Transition Guide

3

CDE Terminal Widget

The DtTerm widget is part of the Solaris CDE development environment. It
provides the functionality required to emulate an ANSI X3.64-1979-style
terminal (specifically a DEC® VT220-like terminal with extensions). The
Terminal widget library, libDtTerm, provides the DtTerm widget for adding
a terminal window to a GUI. If you include a terminal in your application, use
CDE Motif widgets to add display enhancements to it such as pop-up menus
and scrollbars.

The Solaris CDE Terminal application, which is a part of the run-time
environment, is a window that behaves as a terminal, enabling access to
traditional terminal-based applications from within the desktop. The DtTerm
widget is the foundation for the desktop run-time terminal.

The libDtTerm library includes a set of convenience functions to create,
access, and support the DtTerm widget.

Library and Header Files

The libDtTerm library provides a set of widgets based on Motif for designing
a terminal or for adding a terminal window to a GUI.

Include the Dt/Term.h header file to access libDtTerm APIs in your
application.

Demo Programs

You can find the DtTerm demos in /usr/dt/examples/dtterm . See the
README file for detailed information on the demos.

Related Documentation
For more information on the DtTerm widget, see the relevant man pages.

For more information on the desktop terminal application, see the terminal
help volume, the relevant man pages, or CDE User’s Guide.

CDE and Solaris Motif Toolkits 19

3

Text Editor Widget

The CDE text editing system consists of two components:

• The Text Editor application, which provides editing services through
graphical, action, and ToolTalk interfaces

• The editor widget, DtEditor , which provides a programmatic interface for
the following editing services:
• Cut and paste
• Search and replace
• Simple formatting
• Spell checking (for 8-bit locales)
• Undo previous edit
• Enhanced I/O handling capabilities that support input and output of

ASCII text, multibyte text, and buffers of data
• Support for reading and writing files directly

Although the Motif text widget also provides a programmatic interface,
applications that want to assure a system-wide uniform editor should use the
DtEditor widget. The CDE Text Editor and Mailer applications use the editor
widget. Use this widget in the following circumstances:

• You need the functionality, such as spell checking, undo, and find/change,
that is provided by the DtEditor widget.

• You want users to be able to read and write data to and from a file.

• When your program does not need to edit the text while the widget has
control of the text.

Library and Header Files

The DtEditor widget is in the libDtWidget library. The header file is
Dt/Editor.h .

Demo Programs

A demo containing an example of the DtEditor widget (editor.c) is in
/usr/dt/examples/dtwidget directory. Read the README file for detailed
information on the demo.

20 Solaris CDE Motif Transition Guide

3

Related Documentation
For more information on the Text Editor widget, see the relevant man pages
and CDE Programmer’s Guide.

Solaris Motif Toolkits

As mentioned previously, the Solaris 2.5 Motif toolkit is the CDE 1.0 Motif
toolkit. The Solaris 2.4 Motif toolkit is an early release of the CDE 1.0 Motif
toolkit. (It has the same major functionality as CDE Motif, only it includes
fewer bug fixes to Motif 1.2.3.) The Solaris 2.3 Motif toolkit is IXI 1.2.2 Motif,
which is an extension of Motif 1.2.2.

The directory hierarchy of the Solaris 2.4 and Solaris 2.5 Motif software is
different from that of Motif 1.2.2 and of other Motif products. The distribution
has a similar structure to the Solaris CDE hierarchy for consistency and to ease
migration for future Solaris CDE users.

Note – The CDE Motif control widgets, the CDE Text Editor widget, and the
CDE Terminal widget, which are discussed in “Widgets Available for CDE
Application Development,” are part of the Solaris CDE development
environment, not the CDE Motif toolkit. If you develop a Motif application for
the OpenWindows 3.5 desktop, you do not have access to these widgets (or
any of the other non-Motif Solaris CDE functionality).

IXI Motif 1.2.2 Toolkit

The IXI Motif 1.2.2 toolkit contains some incompatibilities with standard
OSF/Motif 1.2.2. These features are not part of the OSF/Motif 1.2 specification,
and are not present in the Solaris 2.4 or CDE Motif toolkits.

XmList convenience functions

The following are the non-standard functions in IXI Motif. Remove them from
your application code if you have used them:

• XmListRecolorItem
• XmListRecolorPos
• XmListSetClientDataPos
• XmListSetClientDatasPos

CDE and Solaris Motif Toolkits 21

3

XmForm widget

The XmForm widget implementation in IXI Motif and OSF/Motif 1.2.2 are
different, although the APIs are identical. Hence, applications linked with IXI
Motif can exhibit minor behavioral or visual differences in the XmForm widget
when they are re-linked with OSF/Motif.

The Solaris 2.4 and CDE Motif toolkits use the OSF/Motif 1.2.3 XmForm widget
implementation, which is binary compatible with the OSF/Motif 1.2.2, but not
the IXI Motif, XmForm widget.

Directory hierarchy

The IXI Motif directory hierarchy is different from that of the CDE and Solaris
2.4 hierarchies. IXI Motif typically installs into /opt/SUNWmotif .

Note – IXI 1.2.2 supported conversion of XPM format files for some resources
with bitmap semantics. This feature is not available in the Solaris 2.4 release,
but is available in the CDE (Solaris 2.5) release of the Motif toolkit.

22 Solaris CDE Motif Transition Guide

3

23

Development Environment
Transition Issues 4

If you want to port an OPEN LOOK or Motif application to the Solaris CDE
desktop, you need to consider the development environment transition as well
as the graphical user interface (GUI) transition. The OpenWindows and Solaris
CDE development environments are different in many ways but similar in
others. This chapter compares and contrasts the two development
environments..

The Solaris CDE desktop is based on the same X server as is part of the
OpenWindows environment. For example, you can access Display PostScript™
(DPS), and the XIL™, and XGL™ libraries from Solaris CDE.

However, the X server is considered part of the OpenWindows development
environment whereas it is not part of the CDE development environment. For a
high-level understanding of the CDE development environment, read
CDE Programmer’s Overview.

Features Exclusive to CDE

This section briefly describes the features of the CDE development
environment that do not appear in the OpenWindows environment in any
analogous form.

Features Exclusive to CDE 23

OpenWindows Versus Solaris CDE Development Environments 24

24 Solaris CDE Motif Transition Guide

4

• Desktop Korn shell: Provides a way to engage in graphic user interaction
through shell scripts. See CDE Desktop KornShell User’s Guide for detailed
information on desktop Korn shell.

• Workspace Manager: Provides support for multiple workspaces. Each
workspace is a virtual screen. Most desktop applications can run as expected
without knowledge of the Workspace Manager. See CDE Programmer’s
Overview and CDE Programmer’s Guide for more information on the
Workspace Manager.

OpenWindows Versus Solaris CDE Development Environments

This section contrasts some of the functionality that OpenWindows and Solaris
CDE development environments have in common, but that might be
implemented differently.

GUI Application Builders

Both the OpenWindows and CDE development environments contain GUI
application builders.

• The OpenWindows Developer’s Guide (Devguide) is a tool that helps
produce the GUI for OPEN LOOK applications. Devguide has code
generators that produced XView and OLIT source code. The Devguide Motif
Conversion Utilities product, which was first shipped with the Solaris 2.3
release, produces Motif code from Devguide GIL files.

• CDE Application Builder (App Builder) produces CDE Motif code. It also
enables you to integrate some of the desktop services into your application;
for example, drag and drop, ToolTalk messaging, sessioning, help, and
internationalization. If you used Devguide to create your application, you
can use App Builder’s GIL-to-BIL converter to create BIL files, which is the
format the App Builder uses.

If you have used Devguide to build an application, the CDE Application
Builder will feel very familiar to you. The palette is visually similar. Much of
the Devguide functionality is retained, such as the Build and Test feature and
the ability to build projects.

See CDE Programmer’s Overview and CDE Application Builder User’s Guide for
more information on App Builder.

Development Environment Transition Issues 25

4

Drag and Drop

The underlying basic functionality of OpenWindows drag and drop and CDE
drag and drop are similar. Both versions of drag and drop contain general
purpose APIs that provide the same outcome from a user’s perspective.

However, CDE drag and drop also provides a convenience API that serves two
purposes:

• It is easier to use than the APIs that Motif 1.2.3 provides
• It defines and implements data transfer policies

The OpenWindows environment has conventions for drag and drop policies,
but it is up to the developer to implement the policies. If you use drag and
drop in your OPEN LOOK application, much of the data transfer code you
wrote can be condensed by using the CDE convenience APIs.

See CDE Programmer’s Overview and CDE Programmer’s Guide for more
information on CDE drag and drop.

ToolTalk Messaging

OpenWindows ToolTalk messaging is upwardly compatible with the CDE
ToolTalk Messaging Service. In addition, the ToolTalk Messaging Service
provides:

• Two standard ToolTalk protocols known as message sets

• ttsnoop

The ttsnoop utility is a debugging tool that helps monitor messages that
are sent between your application and other applications.

• tttrace

The tttrace utility is a debugging tool that helps monitor ToolTalk API
calls.

See CDE Programmer’s Overview, CDE ToolTalk Messaging Overview, and the
ttsnoop(1) and tttrace(1) man pages for more information on the CDE
extensions of ToolTalk.

26 Solaris CDE Motif Transition Guide

4

Typing

The OpenWindows classing engine identifies the characteristics, or attributes, of
files. The classing engine specifies attributes such as print method, icons, and
open commands for specific file types. The classing engine consists of two
parts:

• A database that stores file type names and attributes
• A collection of routines that query the database

The Solaris CDE data typing and actions form the analog of the classing engine.
The data-typing mechanism consists of two tables (DATA_ATTRIBUTES and
DATA_CRITERIA) that specify attributes such as icons, actions, and commands
for specific file types. DATA_CRITERIA corresponds to the classing engine’s
File name space. DATA_ATTRIBUTES corresponds to the classing engine’s
Type name space. The actions field in the DATA_ATTRIBUTES table
corresponds to the former print and open methods in the classing engine. In
the Solaris CDE development environment, it acts as a reference to another
table called ACTION, and is greatly enhanced over the former classing engine
methods.

See CDE Programmer’s Overview and CDE Programmer’s Guide for more
information on data typing and actions.

Help

CDE help differs from OpenWindows help in three areas:

• User model
• Programming tasks
• Richness of help system

See CDE Programmer’s Overview and CDE Help System Author’s and
Programmer’s Guide for more information on the CDE help system.

User Model

The OpenWindows user model is very simple. The user places the pointer over
the portion of the application he wants help on, and presses the Help key.

Development Environment Transition Issues 27

4

The CDE user model is similar but slightly different. The user receives help
from that portion of the application that has input focus. That is, the user must
select a portion of the application and then press the Help key to receive help
on that portion.

CDE help provides on item help for those objects that cannot get input focus.
You must provide an On Item selection in your application’s Help menu so
users can access help for those items.

Programming Tasks

Writing OLIT and XView help is very similar. In either case, your application
provides the text appropriate for a widget or object, respectively. The
OpenWindows window manager determines which application is responsible
when the user presses the Help key, and dispatches an event to that
application.

OLIT has a specialized Help widget, and XView has a Help frame, that puts
the right information into the Help dialog display area and makes the dialog
appear on the screen. You either have to include a function call to
OLRegisterHelp() in OLIT, or set an object attribute in XView, to enable
help on a widget (object).

To provide CDE help with your application, you must:

1. Establish help callbacks on all relevant widgets.

These callbacks must be able to provide the help information for the
associated widgets.

2. Create and manage the help dialogs.

CDE provides DtHelpDialog and DtHelpQuickDialog widgets to create
help dialog boxes and quick help dialogs. CDE has one shared help dialog
that displays help.

3. Implement on item help.

CDE Help System Author’s and Programmer’s Guide provides source code to do
this.

28 Solaris CDE Motif Transition Guide

4

Richness of Help System

OpenWindows help has a single help dialog in which you can place text only.
CDE help is much richer. CDE provides both quick and full help. You can also
include much more than just text in your help dialogs; for example, color
graphics and hyperlinks. The user can print help and also use navigation
facilities to stack and traverse help attached to different widgets.

Internationalization

You can internationalize an OpenWindows, as well as a CDE, application. The
steps to internationalize an OpenWindows application that are different in
CDE than in the OpenWindows environment are documented in Appendix B,
“Internationalization and CDE.”

See CDE Programmer’s Overview and CDE Internationalization Programmer’s
Guide for more information on internationalizing a CDE application.

Fonts

In the OpenWindows environment, the default font type is Lucida. The same is
true for the CDE desktop, so the CDE user will see no font style differences
from the OpenWindows desktop.

Fonts in the OpenWindows environment have proprietary font names, whereas
CDE is open. All CDE font names start with -dt- and are common across all
CDE platforms. Both CDE and OpenWindows fonts follow the X11 XLFD font
specifications.

In both the OpenWindows and CDE environments, your application should
not override the system font defaults. This enables the user to customize his
desktop. In the OpenWindows environment, the user can choose font type and
style through the Workspace Properties desktop application. In CDE, the user
can choose font size through the Style Manager.

In the OpenWindows environment, you have to specify fonts for any locale in
which you want your application to run. By using the CDE Interface fonts,
your application will run the same across all locales and desktops. If you use
Application fonts, you must still specify fonts for Asian locales.

Development Environment Transition Issues 29

4

The CDE font aliases are in /usr/dt/config/xfonts/< locale >, where
<locale > is the directory corresponding to the locale in which you are
interested. The default font resources that the Style Manager uses are in
/usr/dt/config/< locale >/sys.fonts .

See CDE Programmer’s Overview and CDE Programmer’s Guide for more
information on CDE fonts.

30 Solaris CDE Motif Transition Guide

4

31

Toolkit Transition Issues 5

This chapter describes toolkit terminology, common widgets, CDE exclusive
widgets, and high-level widgets, and provides information about the different
libraries.

Note – Everything said in this chapter that refers to the CDE Motif toolkit also
applies to the Solaris 2.4 Motif toolkit.

OPEN LOOK Versus CDE Motif Toolkits

When you compare an OPEN LOOK application with its CDE Motif
counterpart, a few contrasting visual elements are immediately apparent. For
example, the OPEN LOOK buttons are round whereas the CDE Motif buttons
are square. The shading applied to buttons and other objects for a three-
dimensional appearance are also different. Although such cosmetic elements
do not affect a program’s behavior, and can often be disregarded when porting,
your application will not be CDE style-guide compliant if you deviate from the
CDE look.

OPEN LOOK Versus CDE Motif Toolkits 31

XView Libraries Versus CDE Motif Libraries 35

OLIT Libraries Versus CDE Motif Libraries 39

32 Solaris CDE Motif Transition Guide

5

Several differences are often significant in a conversion effort. The most critical
of these features and other GUI elements are summarized in three sections:

• Aspects of the OPEN LOOK user interface that are missing from CDE Motif
• Aspects of CDE Motif that do not appear in the OPEN LOOK user interface
• Features or other elements that appear in both specifications but are

implemented differently

See the Preface for a list of style guides and other references that describe the
OPEN LOOK and CDE Motif GUIs.

Features Only in the OPEN LOOK User Interface

The following features are found in the OPEN LOOK user interface and are
implemented in XView or OLIT (or both) but do not appear in CDE Motif:

• Split window control
• Scrollbar anchors
• Defaults of the menu

• Automatic default; shortcut method for selecting the default
• Default menu item indicated by a ring

• Font chooser widget
• Pointer warping in notices
• Can drop onto minimized windows (icons)

Features Only in the CDE Motif User Interface

The following features are found in CDE Motif and not in the OPEN LOOK
user interface:

• Front Panel
• Tools for producing and registering help volumes with hypertext

capabilities
• Additional user interface objects (widgets) available for applications and

specified in the CDE Style Guide

Toolkit Transition Issues 33

5

Notable Implementation Differences Between Toolkits

Many features are roughly equivalent in the OPEN LOOK user interface and
CDE Motif but have significant implementation differences. The following are
the most important differences:

• Tear off Menus
• Input focus indicators
• Widget classes (sliders and gauges versus scales, for example)
• Secondary text selections

Other significant differences include the following:

• Keyboard bindings
• The window manager controls associated with each window
• Internalization
• Mouse button behavior

The remainder of this section provides information on some of these features.

Tear-off Menus

In CDE Motif, tear-off menus replace the pinned menus of the OPEN LOOK user
interface. Selecting the dashed line on the top of the menu “tears-off” the
menu.

Secondary Text Selection

The OPEN LOOK secondary text selection is roughly analogous to the Motif
quick transfer mechanism.

Window Controls

One of the most critical implementation differences involves window controls.
When the Motif user presses the Window menu button in the upper left corner
of the title bar, or the OPEN LOOK user presses the MENU button anywhere
on the window background (including the header), a menu is displayed. The
options offered under the two GUIs introduce a key contrast.

34 Solaris CDE Motif Transition Guide

5

The Motif Window menu offers a choice of Restore, Move, Size, Minimize,
Maximize, Lower, and Close. The OPEN LOOK base Window menu offers Close,
Full Size, Properties, Back, Refresh, and Quit. The two lists are fundamentally
the same, but have very different effects.

In the OPEN LOOK user interface, the Close option minimizes (iconifies) the
window, and Quit terminates the application.

In Motif, the Minimize option minimizes the window, and the Close option
terminates the application. Many users familiar with the OPEN LOOK user
interface have found themselves exiting a Motif program when their intent was
to close its window to an icon.

Mouse Button Behavior

The structure of the mouse buttons is very similar in both specifications;
however, the difference is significant enough to cause some confusion.

Table 5-1 shows the default left-to-right mapping of the three OPEN LOOK
mouse buttons.

The three Motif mouse button assignments, described in Table 5-2, also start by
default with the left mouse button.

Table 5-1 OPEN LOOK Mouse Buttons

BUTTON Description

SELECT Specifies an object or manipulates objects and controls, drag

ADJUST Extends or reduces the number of selected objects

MENU Displays a menu associated with the pointer location or
specified object

Table 5-2 Motif Mouse Buttons

Button Description

BSelect Selects, activates, and sets the location cursor, drag

BTransfer Moves and copies elements, drag and drop transfer. Can be
customized to be the OPEN LOOK Adjust button.

BMenu Displays menus

Toolkit Transition Issues 35

5

XView Libraries Versus CDE Motif Libraries

This section compares the XView and CDE Motif libraries.

Terminology

The XView toolkit and the Xt (OLIT and Motif) toolkits use the following
terminology:

XView is based directly on Xlib, whereas Motif is based on the Intrinsics (Xt)
toolkit and the Intrinsics toolkit is based on Xlib.

Because of this fundamental difference, the basic library functions to initialize
the environment and create, modify and destroy graphical objects, are
different, as shown in the following examples:

Functions that deal with event handling callbacks, and internationalization
features, for example, get more complicated. For these features, simple one-to-
one correspondence does not exist.

XView Xt (OLIT and Motif)

Package Widget

Attribute Resources

Frame Shell

XView OLIT Motif

XLib Xt Xt

XLib XLib

XView Motif/Xt

xv_init() XtAppInitialize()

xv_create() XtCreateWidget()

xv_set() XtSetValues()

xv_destroy() XtDestroyWidget()

36 Solaris CDE Motif Transition Guide

5

OPEN LOOK Versus Motif Toolkit Architecture

OLIT and Motif have very similar architectures whereas XView and Motif do
not. When migrating from XView to Motif, you should note these toolkit
differences.

The XView toolkit implements both the user interface objects, called packages,
and the routines and processes that hold the interface together (creation
routines, event processing, and so on), while Motif and OLIT implement
basically just the user interface object, widgets, leaving the routines and
processes to the Intrinsics library. For example, xv_init() is a function that is
in the XView library. The corresponding function to use for OLIT or Motif
programming, XtAppInitialize() , is in the Xt Intrinsics library.

The three toolkits represent two different GUIs. The appearance of the XView
and OLIT toolkits are similar, whereas the appearance of CDE Motif is
noticeably different. Although there is a rough one-to-one correspondence
between the function calls in the libraries, the behavior of parallel programs is
different. That is, even after an OLIT (or XView) program has been converted
to use the CDE Motif library, it still to some degree has an OPEN LOOK
appearance. A program in such a state does not adhere to either style
completely.

Programming Model

Although the APIs are different, both XView and Motif are based on the same
object-oriented methodology for programming a user interface:

• Initialize the toolkit
• Instantiate user interface objects
• Register callbacks on the user interface objects
• Enter event loop, waiting for user to generate events on the user interface

objects

The overall structure of a program being ported from XView to Motif can
remain intact even though all the function calls must be converted from one
API to the other.

Toolkit Transition Issues 37

5

Common Types of User Interface Objects

Both XView and Motif are user interface toolkits that support some common
types of user interface objects. However, XView implements many of these
objects at a higher level that requires more than one Motif widget to produce
the equivalent of a single XView object.

Table 5-3 lists the basic mapping of common objects for XView and its
equivalent CDE Motif widget:

Table 5-3 Basic Mapping of Common Objects.

XView Package Equivalent CDE Motif Widget

Base Frame XmTopLevelShell + XmMainWindow

Command Frame XmDialogShell + XmBulletinBoard

Notice XmDialogShell + XmMessageBox
(MessageDialog)

Canvas XmScrolledWindow + XmDrawingArea

Panel XmBulletinBoard or XmForm

 Panel Button XmPushButton

 Menu Button DtMenuButton (not accessible in OpenWindows
environment)

 Abbrev Menu Button XmRowColumn (Option Menu)

 Checkbox XmRowColumn + XmToggleButtons (CheckBox)

 Exclusive Choice XmRowColumn + XmToggleButtons (Radio Box)

 Scrolling List XmScrolledWindow + XmList

 Message XmLabel

 Slider XmScale

 Text Field XmTextField

 Numeric Text Field DtSpinBox (not accessible in OpenWindows
environment)

Text SubWindow XmScrolledWindow + XmText (ScrolledText)

TTY SubWindow XmScrolledWindow + XmTermPane;
DtTerm (not accessible in OpenWindows
environment)

38 Solaris CDE Motif Transition Guide

5

Differences Between XView and CDE Motif

XView abstracts a number of other X11 functions that Motif (Xt) does not. In
order to get equivalent functionality in Motif, these must be re-coded with
direct Xlib calls.

The XView packages with no Motif equivalents are:
• Icon
• Server Image
• Colormap Segment (CMS)
• Cursor
• Fullscreen
• Server
• Font

Additionally, no CDE Motif equivalent exists for the OPEN LOOK user
interface functionality that splits windows into different views. To implement
this function, you must subclass one of the Motif Manager widgets.

Some XView functions can be coded with the Motif/Xt API; however, these
APIs are significantly different, and require complete redesign and recoding.
These functions are:

1. If you are porting to CDE, use the CDE drag-and-drop API. It
is an extension of the Motif 1.2 drag-and-drop API and is
easier to use.

Scrollbar XmScrollBar

Popup Menu XmMenuShell + XmRowColumn (Popup Menu)

Pulldown Menu XmMenuShell + XmRowColumn (Pulldown Menu)

Pullright Menu XmMenuShell + XmRowColumn (Pulldown Menu)

File Chooser XmDialogShell + XmFileSelectionBox

XView API Motif/Xt

Selection service Xt selection API

Drop target package Motif drag-and-drop API1

Notifier Xt event management API

Table 5-3 Basic Mapping of Common Objects. (Continued)

XView Package Equivalent CDE Motif Widget

Toolkit Transition Issues 39

5

X Resources

The X resources that control the behavior and appearance of XView and Motif
applications are different. XView objects may not necessarily have instance
names attached to them, unlike Motif/Xt objects. XView resources are
independent of instance names. For example, Window.Foreground.Color
affects all relevant XView objects.

Motif/Xt resources contain either class or instance names, for example,
mainframe.control_panel.button1.foreground . To make Xt resources
affect more than one object, use wildcards and class names.

External Files

XView reads in several files at start-up time ranging from message files to
application specific default files containing X resources. The content and
location of some of these files are different from Motif. (For example, Motif/Xt
does not read in a message domain file (.mo file) under $OPENWINHOME.) The
internationalization messaging scheme is completely different for Motif.

OLIT Libraries Versus CDE Motif Libraries

Solaris CDE Motif and OLIT support a number of convenience routines that
are useful in manipulating objects in the user interface.

Routines Only in OLIT Library

These features are unique to the OLIT library.

• Error-Handling Routines

OLIT provides a range of routines to enable the application to customize
error handling.

• Dynamic Resources

OLIT provides support for the user to dynamically change the value of
certain resources (such as colors or fonts) after an application has been
invoked.

40 Solaris CDE Motif Transition Guide

5

Routines Only in CDE Motif Libraries

These features are unique to the CDE Motif libraries.

• UIL Support

CDE Motif supports the engine for using UIL definitions for the user
interface layout. This separation allows the user interface to be modified
without recompiling the program’s executables. OLIT’s Devguide solution
(golit) provides similar functionality by allowing the user interface to be
defined in GIL file format; however, the application must be recompiled
when the user interface changes.

• Clipboard Routines

CDE Motif provides a library for managing the clipboard and its selections.

• Widget-Creation Routines

CDE Motif provides a complete set of routines that create a particular type
of widget or group of widgets.

• Compound String Support

CDE Motif requires the user of compound strings for most text. To support
these special string formats, CDE Motif includes a number of routines to
create and manipulate compound strings.

Widgets

Both the OLIT and CDE Motif toolkits support a number of common widgets
and gadgets with similar functionality, and each supports a number of more
exclusive widgets. If a widget is implemented in one toolkit but not in the
other, you can often build an equivalent object using multiple widgets in the
other toolkit.

Toolkit Transition Issues 41

5

Table 5-4 matches the common widget name to the actual class name of the
widget in each toolkit.

Table 5-4 Common Widget Mapping

OLIT Class Name CDE Motif Class Name

BulletinBoard XmBulletinBoard

DrawArea XmDrawingArea

ExclusiveChoice + RectButtons XmRowColumn + XmToggleButtons
(Radio Box)

Form XmForm

Manager XmManager

MenuButton DtMenuButton (not accessible in
OpenWindows environment)

NoticeShell XmDialogShell + XmMessageBox

AbbrevMenuButton XmRowColumn (Option Menu)

PopupWindowShell XmDialogShell

NonExclusiveRectButton XmRowColumn + XmToggleButtons
(Check Box)

PopupMenuShell XmMenuShell

Primitive XmPrimitive

OblongButton XmPushButton

ControlArea XmRowColumn

Scrollbar XmScrollBar

ScrollingList XmList + XmScrolledWindow

ScrolledWindow XmScrolledWindow

Slider XmScale

StaticText XmLabel

TextEdit XmText

TextField XmTextField

RectButton XmToggleButton

42 Solaris CDE Motif Transition Guide

5

Widgets Exclusive to CDE Motif

This section briefly describes the widgets that are exclusive to CDE Motif.

Note – These widgets are also available for Motif development in the
OpenWindows environment, except for the DtTerm , DtEditor , DtComboBox,
DtSpinBox , and DtMenuButton widgets.

• DtTerm

This widget provides the functionality required to emulate an ANSI X3.64-
1979-style terminal emulator (specifically a DEC VT220-like terminal with
extensions).

• DtEditor

This widget provides a programmatic interface for editing services such as
cut and paste.

• DtComboBox

This widget is a combination of a text field and a list widget that provides a
list of valid choices for the text field. Selecting an item from this list
automatically fills the text field with that list item.

• DtSpinBox

This widget is a convenient user interface control that increments and
decrements an arbitrary TextField.

• DtMenuButton

This widget is a command widget that complements the menu cascading
functionality of an XmCascadeButton widget. (OLIT has its own menu
button widget, with equivalent functionality to DtMenuButton.)

• XmArrowButton

This button is a primitive push button widget that displays an arrow label.

• XmCommand

This is a manager widget that builds a command box and manages the user-
selected commands and command history.

Toolkit Transition Issues 43

5

• XmDrawnButton

This button is a primitive push button whose label can be drawn by the
program.

• XmFrame

This manager widget is used to parent a single child and enclose that child
with a frame or border.

• XmLabelGadget

This gadget is a low-overhead object for read-only text.

• XmMainWindow

This manager widget supports a menu bar, command area, and work area.

• XmPanedWindow

This manager widget implements resizeable panes within a window.

• XmSelectionBox

This widget box allows you to select one item from a list in a general dialog
box.

• FileSelectionBox

This widget provides a standard way to select a file (typically for the
application to read or write).

The libDtWidget library, which contains the DtComboBox, DtSpinBox ,
DtMenuButton and DtEditor widgets, depends directly on the following
libraries:

• Xm library for the Motif superclass support
• Xt library for creation and manipulation of widgets
• X library for the base X Window System

44 Solaris CDE Motif Transition Guide

5

Widgets Exclusive to OLIT

This section briefly describes the widgets that are exclusive to OLIT.

• DropTarget

This primitive widget implements both the source and destination ends of
drag-and-drop operations.

• FlatWidget

These special widgets manage any number of subobjects within the context
of a single widget. When implementing menus or choice objects that contain
many subitems, they provide a significant memory savings.

• FooterPanel

This manager widget automatically supports a window with a floating
footer area.

• RubberTile

This manager widget allows relative-sizing constraints to be placed on its
children.

• Stub

This primitive widget enables you to customize its behavior without
subclassing.

45

Porting Issues and Ideas 6

This chapter discusses porting OPEN LOOK applications to CDE Motif on the
Solaris CDE desktop. Much of the information presented is generic enough to
encompass porting from OPEN LOOK to Motif running on the OpenWindows
desktop.

Elements of Migrating 46

Do You Need to Port? 46

If You Decide to Port 47

Start Small 49

Architectural Impact 50

Use Transition Tools 53

Use Existing Code 55

Tips 56

Summary: Things to Keep in Mind 57

46 Solaris CDE Motif Transition Guide

6

Elements of Migrating

Migrating from the OPEN LOOK user interface to Motif is complex. It
generally will not amount to a widget-for-widget swap. Do not expect it to be
as straightforward as a line-by-line code translation. Depending on your
application, the migration can range from a major architectural impact down to
subtle widget differences.

Besides migrating from the OPEN LOOK user interface to Motif, porting to the
Solaris CDE desktop means that you have the Solaris CDE development
environment infrastructure available to your application. See Chapter 4,
“Development Environment Transition Issues,” for a summary of some of
these features. See CDE Programmer’s Overview for a more detailed description
of the development environment components and documentation.

Do You Need to Port?

First you should decide whether you really have to port your application. As
mentioned in “Running Existing Applications on the Solaris CDE Desktop” on
page 5, OPEN LOOK and Motif applications run “as is” on the Solaris CDE
desktop. So you do not need to port your existing applications to Motif or CDE
to have them run on the Solaris CDE desktop.

This provides you with flexibility about when and under what circumstances
you decide to port your application. For example, you may decide to wait until
a major release of your product before porting your application to the Solaris
CDE desktop.

Basic Integration

Basic application integration is a set of highly recommended tasks you should
perform to integrate your application into the Solaris CDE desktop. These tasks
do not require modification of the source code for your application. (Some types
of print integration—enabling printing in your application—require slight code
modification, but these are optional to basic integration.)

Basic integration does not involve extensive use of the desktop application
program interface (API). Therefore, it does not provide other interaction with
the desktop, such as drag-and-drop capabilities.

Porting Issues and Ideas 47

6

A lot can be done to integrate your application into the Solaris CDE desktop
without modifying any code. You can:

• Define actions for your application
• Write a help volume and have it available from the top level of the Help

Manager
• Integrate your application with the Front Panel and Application Manager
• Enable printing

The Solaris CDE desktop provides interoperability between your application
and other desktop applications. You can add new services (see “Recommended
Integration” and “Optional Integration” below) if you want to use them and
are willing to modify your code.

See CDE Programmer’s Guide for details on how to enable printing in your
application, and for a list of the steps that comprise basic integration. See the
“Registering an Application” chapter of CDE Advanced User’s and System
Administrator’s Guide for detailed instructions on how to implement the basic
integration steps.

If You Decide to Port

If you decide that you definitely want to port, think of the process as an art
and not as a science. There is no magic tool that will perform the port for you.
There is no foolproof algorithm to follow that works every time. What you
really need to do is learn Motif and CDE, and understand the CDE style
guidelines. This takes time and patience.

Benefits of Porting

Benefits of porting to the CDE desktop include:

• Taking advantage of new features offered by CDE

• Providing easy portability on a wide variety of platforms

• Enabling better “ease of use” by ensuring that your application behaves
according to the CDE style guidelines

48 Solaris CDE Motif Transition Guide

6

• Providing interoperability with other Solaris CDE applications in areas
where the Solaris CDE and OpenWindows environments differ, for example:
• Window manager interaction
• Drag and drop
• Session management

Integrating into the Solaris CDE Environment

Recommended and optional integration require changes to your code to
implement the functionality within these categories. Your application will be
even more integrated with the desktop the more CDE functionality you adopt.

Recommended Integration

The Solaris CDE development environment contains components and
guidelines so that your application will integrate well with other applications
on the desktop:

• Help system
• ToolTalk messaging system
• Session Manager
• Drag and drop
• Internationalization
• Standard font names
• Error message guidelines
• User customization issues

Optional Integration

The following Solaris CDE components enable you to leverage services
provided by the desktop for achieving specialized tasks:

• CDE Motif control widgets
• Data typing
• Action invocation
• Workspace Manager
• Terminal widget
• Text editor widget
• Calendar API
• Desktop Korn shell

Porting Issues and Ideas 49

6

Start Small

If you plan to port your application to the Solaris CDE desktop, or if you want
to practice porting, start with a small example and work your way up.

Convert and Clean Up

With small applications that have simple GUIs, you can practice porting by
using a two-step process:

• Convert the GUI object-by-object from the OPEN LOOK user interface to
Motif. (See “Use Application Builder” below.)

• Clean up the resulting GUI so that it adheres to the CDE style guidelines.
Take advantage of this opportunity to review the GUI for ease-of-use and
customer-specific issues. You might decide to change the interface, even if
the object-by-object conversion is style-guide compliant.

Chapter 7, “Porting Example: OPEN LOOK to CDE Motif,” takes a simple
OPEN LOOK application and illustrates this process.

Note – This is not the recommended way to port large, real-life applications.

Use Application Builder

Use Application Builder (App Builder) to build the new Motif GUI for the
application. You need flexibility to experiment and make changes when you
port using the two-step process described in “Convert and Clean Up.” If you
manually code in a particular GUI, it is difficult and time consuming to make
modifications. App Builder provides flexibility by enabling you to drag and
drop objects to easily create prototype GUIs. It generally requires less time to
use App Builder to lay out a new Motif interface than it does trying to port the
GUI by hand.

In fact, whatever porting process you use and no matter how large your
application, you should consider using App Builder. App Builder produces all
the GUI and application framework code, which frees your time to focus on
application code.

50 Solaris CDE Motif Transition Guide

6

Architectural Impact

Resist the urge to dive right in and start transforming your code to CDE Motif.
Begin the process of porting your application to Motif and CDE by examining
your application’s architecture.

The more architecture your application has, the more important it is to re-
architect the application correctly up front. In these situations the complexity
of the porting process increases dramatically if you use the “convert and clean
up” strategy.

GUI and Internals

For programs in which important functions are insulated from the surrounding
GUI, the impact of the difference in the OPEN LOOK user interface and Motif
can be negligible. However, if the code is tightly linked to the user’s actions or
relies on a specific OPEN LOOK feature, producing a CDE Motif equivalent
may be difficult.

If you can draw a line through your code modules and completely isolate
those that constitute the user interface from those that make up the remainder
of your application, then you can focus your migration efforts on the process of
replacing the user interface modules with equivalent ones developed for Motif.
Many application developers follow software development methods that
require this kind of clean separation and, in some cases, even formally specify
the program boundaries between user interface and application internals.

Alternatively, if your software is more monolithic and has application-specific
abilities embedded within functions that also provide the user interface, then
you may have to spend extra time separating the two types of functions,
thereby complicating your migration. In an extreme case, you must choose
between violating the style guide or redesigning part of the program.

The amount of time involved in taking full advantage of the Solaris CDE
software significantly depends on how your application is laid out.
Applications that are well designed are easier to port and to properly break
down for maintenance and readability.

Porting Issues and Ideas 51

6

Static Versus Dynamic Layout

As mentioned previously, porting your application to Motif is not an object-for-
object swap. Such swapping concentrates on the static aspects of your
application user interface. Complex applications in particular contain many
objects that manage the application infrastructure and make it work in
dynamic situations. (Dynamic aspects of your application include, but are not
limited to, resizing windows, localization, and font changes.) These manager
widgets that handle the dynamic geometry in your application are different in
the OPEN LOOK and Motif toolkits. Your application will not display the
dynamism you want if you try an object-for-object swap of manager widgets.
Introducing an appropriate design to handle the dynamic aspects of your
application typically increases the complexity of its architecture.

XView does not provide much variety for dynamic layout. It primarily fixes
objects at (x, y) positions, which can cause difficulties if an application font is
changed or the application is localized. Motif and OLIT provide a variety of
geometry manager widgets; however, they have significant differences.

Table 6-1 OLIT and Motif Geometry Manager Widgets

OLIT Motif Comments

BulletinBoard XmBulletinBoard Basically equivalent; provide static x,y pixel-based positioning for
children

Caption (none) OLIT Caption widget provides a way to automatically place a label on
one of the four sides of a control widget.
To get this functionality in Motif, create a separate XmRowColumn
widget that contains two children: the label and the control

ControlArea XmRowColumn Both widgets provide a way to lay out children in rows and columns.
The OLIT ControlArea widget supports aligning Caption widget
children vertically by colon, which the Motif XmRowColumn widget does
not.1

The Motif XmRowColumn widget enforces certain size policies on
children (usually forces children in a particular row or column to be the
same size), but the OLIT ControlArea widget does not.

FooterPanel (none) OLIT FooterPanel widget provides a way to lay out a window with a
floating footer child at the bottom.
The Motif XmMainWindow widget can be configured for this layout by
setting the “message area child” to be a widget that can be used as a
footer (such as an XmForm or XmRowColumn widget).

52 Solaris CDE Motif Transition Guide

6

Study the Target Environment

The CDE desktop is quite different from the OpenWindows desktop, although
it contains many of the same types of tools. The most obvious difference is that
it is a Motif desktop. Read the “Architectural Overview” chapter of
CDE Programmer’s Overview for a discussion of the end user and development

1. CDE App Builder provides a geometry manager abstraction called a group that enables widgets to be automatically positioned in common layouts, including
being vertically aligned by colon. App Builder generates all the code to implement this functionality.

Form XmForm Both widgets provide a means for attaching their children relative to
each other and relative to the Form itself, however each takes a different
view of these “attachments.”
The OLIT Form widget provides attachment resources for the x and y
dimensions, while the Motif XmForm widget provides separate
attachments for all four sides (top, bottom, left, right). You can convert
OLIT Form widget attachments to equivalent XmForm widget
attachments if both attachment paradigms are well understood.
The Motif XmForm widget also provides a special type of attachment
called “Position.” Children can be attached to dynamic positions in the
Form widget which change as the Form widget's size changes. This
enables children to be configured to always occupy a certain percentage
of the Form widget's real estate.

RubberTile (none) OLIT RubberTile widget enables children to be configured to take up
a percentage of the RubberTile widget's height (if vertically oriented)
or width (if horizontally oriented).
In Motif you can achieve similar functionality by using the Position-
based attachment resources in the XmForm widget.

ScrolledWindow XmScrolledWindow Both widgets provide a way to encompass a child widget into a
scrollable view port.

(none) XmMainWindow Motif XmMainWindow widget provides a manager that lays out its
children into specific areas of the window. These areas include the menu
bar area, command area, work area, and message area.
OLIT has no equivalent widget.

(none) XmPanedWindow Motif XmPanedWindow widget provides a way to lay out its children in
vertically oriented panes. Each of the panes has a sash that can
vertically resize the pane.
OLIT has no equivalent widget.

Table 6-1 OLIT and Motif Geometry Manager Widgets

OLIT Motif Comments

Porting Issues and Ideas 53

6

environment architectural structure. Also read about:

• Motif: See“Motif 1.2.3 Documentation” on page 77 and “Motif
Programming” on page 79 for a listing of Motif documentation.

• CDE Look and Feel: Refer to CDE Style Guide and Certification Checklist for
details. To be style-guide compliant, your application must pass the
checklist at the end of the book.

• CDE Run-time and Development Environments: See “CDE Documentation”
on page 76 for a listing of all CDE documentation that SunSoft provides. In
addition, the desktop applications each have online help volumes.

GUI Development Tools

If you used an application builder to create the GUI for your application,
your migration to the Solaris CDE desktop will probably be easier. In most
cases, the use of a builder implies that you have some degree of separation
between user interface functions and application internals, the advantages
of which were previously discussed.

Also, builders typically use generalized internal storage formats or are
capable of generating interchange files, each of which may be post-
processed to automate some of the conversion process. Contact your builder
vendor to see what migration tools they are currently offering.

Other less tangible tools that you might have used and that could ease your
transition include development approaches that produced functional
requirements documents or high-level designs. These representations may
describe your application in terms less specific to the OPEN LOOK user
interface that are more amenable to being mapped to CDE and CDE Motif
than your source code.

Use Transition Tools

No one tool on the market will do everything you need for transitioning your
application to the Solaris CDE desktop. Nonetheless, depending on different
aspects of your application, you may find tools to solve some of your
problems. These specialized tools can make the transition easier.

As you research the tools available to you, ask yourself if any are a good match
for your application transition and what you are trying to do.

54 Solaris CDE Motif Transition Guide

6

Tools to Transition to Motif

Many third-party tools are offered to transition to Motif. For example,
Integrated Computer Solutions (ICS) offers two converters: one translates
XView source code to GIL files and one translates GIL files to Motif source
code.

SunSoft’s Devguide offers Motif Conversion Utilities as a way of helping
customers make the transition. Devguide’s front end is still in the OPEN
LOOK user interface, and it has the same OPEN LOOK palette, but you can
use the Motif Conversion Utilities to transform GIL files into UIL files or Motif
and C code. Use the Motif Conversion Utilities (guil and gmf) in the Solaris
2.4 Software Developer’s Kit to convert GIL files to UIL and Motif C code. UIL
files can be imported into Motif GUI builders to generate Motif-based GUIs.

Note that using transition tools for GUI migration results in a GUI that you
will probably need to refine to be CDE style-guide compliant. You may need
less time to re-layout the GUI if you use a GUI builder tool.

Tools to Transition to the Solaris CDE Desktop

If you used Devguide to create your application, you can use App Builder’s
GIL-to-BIL converter to create BIL files, which is the format the App Builder
uses. BIL file format is similar to GIL file format. However, BIL files contain
CDE-specific information and produce a CDE Motif GUI. The GIL-to-BIL
converter makes some educated conversion guesses based on heuristics, which
might not give you the result you want. For best results, take the BIL files that
the converter produces, load them into App Builder, and modify the user
interface as needed.

App Builder is a tool in the Solaris CDE environment that is very similar to
Devguide, which is used in the OpenWindows environment. Transitioning to
CDE in this manner solves a significant number of conversion problems.
Because App Builder generates files for you, these files are easier to manipulate
than C code you would have to write yourself. App Builder preserves
application stubs files, so your application-specific code is unchanged. It also
uses the same file-naming conventions as Devguide.

If you did not use Devguide, there are currently no third-party tools to use for
converting OPEN LOOK applications to CDE. Try a Motif conversation tool
such as is discussed in “Tools to Transition to Motif” above.

Porting Issues and Ideas 55

6

Use Existing Code

This section discusses the ways in which the Solaris CDE software provides
code for you to either use or learn from to develop Solaris CDE applications.

Application Builder

Use App Builder to build a simple Solaris CDE application. Then generate code
from it to see what the code looks like. This is a good way to learn how to use
CDE Motif and some of the CDE functionality.

The more features in App Builder you use, the more coverage you get in
generated code of Solaris CDE features. Try App Builder to, for example, alter
object attributes, create connections, and use the Applications Framework
Editor. Then generate code and examine it. Cycle through this process to
generate variations of code to look at and learn from.

Demo Code

The Solaris CDE development environment contains demo source code that
can considerably ease your application porting tasks.

Each development environment component has a demo directory in
/usr/dt/examples . The demo directory contains an example program that
uses the component’s APIs. Read the demo code to learn how to incorporate
the component behavior into your application. In some cases you can copy and
paste code from the demo into your application.

The /usr/dt/examples/template directory contains a demo program that
integrates most of the Solaris CDE components that comprise basic and
recommended integration functionality. This template demo illustrates how to
write a simple application that is well integrated with the Solaris CDE desktop.

56 Solaris CDE Motif Transition Guide

6

Tips

Here are some tips about writing applications for the CDE desktop.

Floating Menus

To ensure that your application works properly on the CDE desktop, any
functionality you put into floating menus should also be provided by some
pulldown menu. This will enable your application to work with both
two-button and three-button mouse devices.

Colormap Behavior

Colormap installation is handled differently under CDE than it was in the
OpenWindows environment. This difference is most visible for applications
that specify a list of subwindows that use colormaps other than the default
colormap. This list of subwindows is specified in the WM_COLORMAP_WINDOWS
property.

In the OpenWindows environment, applications need only to specify a list of
subwindows in this property. As the user moves the pointer around the screen,
the OpenWindows window manager (olwm) installs the appropriate colormap
for whatever window is under the pointer.

The CDE window manager, dtwm, does not provide this behavior.
Applications that relied on olwm 's pointer-based colormap installation will
likely not display in their proper colors when run under CDE. There are
several things that you can do to avoid this problem:

• Avoid using the WM_COLORMAP_WINDOWS property entirely, and update the
colormap attribute of the top-level window (the window of the shell widget)
with whatever colormap is appropriate. This colormap will be installed
whenever the window is given the input focus.

• The WM_COLORMAP_WINDOWS property is an ordered list of windows, and
typically only the first window in this list will have its colormap installed
and will appear in its proper colors. The other subwindows will most likely
appear with incorrect colors. If it is important for a particular subwindow to
appear with its correct colors, it should be placed first in the list.

Porting Issues and Ideas 57

6

• If the ID of the top-level window does not appear in the list, it is implicitly
assumed to appear first. To get a subwindow to display with its correct
colors, the ID of the top-level window should appear in the list somewhere
after the ID of the subwindow.

• Applications can update the WM_COLORMAP_WINDOWS property at any time.
If the application's state changes such that a different subwindow should
now have its colormap installed, the application should update the property
so that the new subwindow appears first.

The user can also modify the key bindings of dtwm to bind the f.next_cmap
and f.prev_cmap functions to keyboard keys. These functions will step
forward and backward through the WM_COLORMAP_WINDOWS list and install a
different colormap each time the user presses the appropriate keys.

Summary: Things to Keep in Mind

Here is a list of things to keep in mind as you think about porting your
application to the Solaris CDE desktop:

• OPEN LOOK to Motif migration is a complex and wide-ranging issue

It generally does not amount to an object-for-object swap. Do you really
need to port? If so, think of it as an art and not as a science.

• What is your schedule?

When must you ship? What resources do you have available to you? Can
you tie the port in with the next major release?

• How did you build your application?

Did you use a builder? Were any other tools involved in producing your
application? If so, go to your vendor and ask for CDE support.

• Is your application GUI separate from internals?

Did you use C++ objects to encapsulate the GUI? If so it will be easier to
port your application.

• Are you starting from XView or OLIT?

OLIT applications are generally easier to port because they rely on the Xt
intrinsics, as does Motif.

58 Solaris CDE Motif Transition Guide

6

• Are there any customer issues?

Do you have to be concerned about interoperability with other systems? Are
there transition and training issues for the customer? Is a mixed desktop
acceptable for now?

59

Porting Example: OPEN LOOK to
CDE Motif 7

This chapter presents an example of porting an OPEN LOOK application with
a simple graphical user interface (GUI) to CDE Motif. It illustrates the two-step
process of porting: first translating the OPEN LOOK user interface objects one-
by-one to Motif objects, then cleaning up the interface and making sure it
conforms to the CDE style guide.

Of course, your goal in porting from the OPEN LOOK user interface to CDE
Motif should be to convert the GUI and clean up at the same time. The more
familiar you become with the CDE style guide, the easier this will be. Also, as
you learn more about Motif, learning the correlation between OPEN LOOK
objects and Motif widgets will become easier.

When porting your application, take the opportunity to examine its user
interface. Think about whether it could be streamlined or made more user-
friendly. In going from the OPEN LOOK user interface to Motif, the
application’s look will change anyway. This is a good time to re-examine
design decisions you made in the past.

OpenWindows 3.4 Snapshot Application 60

Convert 61

Clean Up 62

60 Solaris CDE Motif Transition Guide

7

OpenWindows 3.4 Snapshot Application

Figure 7-1 is an illustration of the OpenWindows 3.4 Snapshot application. It is
running on the Solaris CDE desktop using the Motif Window Manager, so it
has a Motif title bar.

The Snapshot GUI is fairly simple. It contains:

• Load..., Save..., Snap, and View... buttons
• Print menu button
• Snap Type and Snap Delay exclusive settings
• Beep and Hide check box settings
• Drop target

Figure 7-1 OpenWindows 3.4 Snapshot Application GUI

Porting Example: OPEN LOOK to CDE Motif 61

7

Convert

Using App Builder, the Snapshot GUI translates object-for-object into the GUI
shown in Figure 7-2:

Figure 7-2 Motif Port of Snapshot GUI (Direct Translation)

You can see that the pieces of the interface and the general layout are very
similar to the OPEN LOOK version. The buttons remain, except that they are
square now instead of round. The check boxes look the same. The OPEN
LOOK exclusive settings have changed to Motif radio buttons (which also offer
mutually exclusive choices). A small text field with no label replaces the drop
target.

62 Solaris CDE Motif Transition Guide

7

Clean Up

If you want, you can consider yourself finished with this application port. No
functionality has been lost, and the GUI now appears in Motif. However, you
should ask yourself two questions:

• Is the resulting application style-guide compliant?

• Can the GUI be redesigned to make the application more user friendly?

Consider CDE Style Guidelines

CDE Style Guide and Certification Checklist highly recommends placing menu
bars in applications. In addition, it considers File, Options, and Help menus as
standard, to be placed in order from left to right. (Other menus are also
considered standard but do not apply to the Snapshot application.)

The cleaned-up version places the Load, Save, and Print buttons under the File
menu. These are typical file operations. “Beep During Countdown” and “Hide
Window During Capture” are options that users have available to them, and
are therefore put under the Options menu. This design decision also makes the
interface less cluttered, since the text for these check boxes takes up a lot of
screen space. A Help menu is added to comply with the style guidelines.

CDE Style Guide and Certification Checklist calls for a footer message at the
bottom of an application whenever status is displayed there. This is added to
the Snapshot GUI.

Motif does not support a drop site object. CDE supports a drag source object,
which appears in the final GUI as a labelled camera icon. If you want drop
support, the CDE style guidelines indicate that you must provide code to
enable objects to be dropped anywhere in the application’s main window.

Finally, the Snap button at the bottom is highlighted, indicating that it is the
default value (between Snap and View) if the user presses Return instead of
pressing a button.

Porting Example: OPEN LOOK to CDE Motif 63

7

Other Design Considerations

The radio buttons take up a lot of screen space in the Snapshot GUI. CDE
provides a widget called a DtComboBox that takes up less screen space and
provides the same functionality. The Snap Type and Snap Delay radio buttons
are replaced by DtComboBox widgets. The most typically used values appear
as DtComboBox defaults.

You cannot use the DtComboBox widget if you are developing your application
for the OpenWindows desktop. This widget is part of the CDE development
environment, not the OpenWindows development environment. Even if you
do have access to the ComboBox, however, you may want to retain the radio
boxes, depending on issues such as ergonomics, customer needs, and
consistency.

Figure 7-3 Motif Port of Snapshot GUI (Final Port)

64 Solaris CDE Motif Transition Guide

7

65

CDE Motif Packaging A

The CDE 1.0 release contains CDE Motif run-time and developer support as
described in Table A-1. The first and second packages are the run-time product
and CDE Motif Window Manager, respectively, and are available in the end-
user package installation. Those that follow are the developers packages,
which are available in the developer package installation.

Table A-1 CDE Motif Packages

Name Default Location Description

SUNWmfrun /usr/dt Contains the Motif dynamic libraries, their header
files, and an executable, xmbind and its man
page.

SUNWdtwm /usr/dt CDE Motif Window Manager (dtwm)

SUNWmfdev /usr/dt Contains the Motif dynamic debug libraries and
the uil compiler

SUNWmfman /usr/dt/man Contains the Motif man pages.

SUNWmfdm /usr/dt/examples/motif Contains the Motif demos.

66 Solaris CDE Motif Transition Guide

A

67

Internationalization and CDE B

This is a guide for software developers writing internationalized Solaris CDE
applications. It presents the differences between OpenWindows and CDE
internationalization. Any steps that must be performed to internationalize a
Solaris CDE application that are not mentioned in this appendix remain
unchanged from the OpenWindows guidelines.

This appendix assumes familiarity with Xt and Motif programming.

Ensure Correct CDE NLS Environment 68

Message Catalog Functions 68

Locale Announcement 68

Character Strings and XmStrings 68

Include app-defaults File 69

Localize Motif Resources 69

Deliver Message Catalog 70

Fonts 70

68 Solaris CDE Motif Transition Guide

B

Ensure Correct CDE NLS Environment

You must make sure that the NLSPATH environment variable is set properly.
This ensures that your application will find message catalogs.

If your application calls DtInitialize() before catopen() , then NLSPATH
is set. Otherwise, make sure that it understands the NLSPATH variable. For
example, you can set it explicitly in your code.

Message Catalog Functions

Solaris CDE applications must use the catopen() , catclose() , and
catgets() family of messaging functions (instead of gettext() and so on).
See the man pages for information on how to use these functions.

Also, if the system on which you are writing your application does not define
NL_CAT_LOCALE in a header file, you must define it in your application. This
ensures that the application is portable to other UNIX XPG4-compliant
platforms.

Locale Announcement

So that your application knows what locale it is running in, use:

• XtSetLanguageProc() —If your application is Motif/Xt GUI-based
• setlocale() —If your application is not GUI-based

Character Strings and XmStrings

This section describes how to convert between character strings and
XmStrings .

To Convert from Character String to XmString

In Motif, you must make an explicit call to convert a string to XmString , an
internal representation of the string. If you internationalize your application,
use XmStringCreateLocalized() to perform this conversion.

In CDE Motif—unlike in Motif 1.2.3—XmStringCreateLocalized()
recognizes \n as a line separator, so a string can have multiple lines.

Internationalization and CDE 69

B

To Convert from XmString to Character String

To convert from XmString to a character string, you must traverse the
compound string and retrieve each segment individually. See section 19.3.3 of
the Motif Programming Manual, Volume 6A, which contains a code sample that
performs this conversion.

Do not use XmStringGetLtoR() to convert from XmString to a character
string. This function assumes the text is oriented left-to-right.

Include app-defaults File

If your application uses resources, make sure to include an app-defaults
file. Refer to the X Toolkit Intrinsics Programming Manual (Volume 4, Section
2.3.3) for details on setting up an app-defaults file.

Localize Motif Resources

Localize any Motif resource that represents something that must be customized
for a particular locale by putting the resource in your app-defaults file.
These include, but are not limited to:

• XmNmnemonic
• XmNfontList
• XmNcolumns
• XmNinputMethod
• XmNpreeditType

70 Solaris CDE Motif Transition Guide

B

Deliver Message Catalog

Every SVR4 UNIX platform contains the gencat utility. Run gencat on the
translated message catalog file to produce a binary form of the message
catalog. The resulting file is a formatted message database.

CDE and gencat

Each platform has its own implementation of gencat . Follow these rules for
message catalogs to ensure that each message catalog’s format does not cause
different gencat utilities to break:

1. Use a $quote directive if you have trailing spaces (see the gencat man
page).

2. Do not put more than one space between the message id and the message
string.

3. Insert a space between $ and the comments.

4. Message IDs need to be sorted in ascending order.

.msg Files

A .msg file is a message catalog containing translatable text that appears in
your application code. It is the file that you give to a translator for translation.
See the gencat man page for its format. Use gencat to turn a translated
message catalog to a message database.

.cat Files

A .cat file is a message catalog that results when you run gencat on a .msg
file. This is a binary file.

Fonts

In the OpenWindows environment, font alias names differ depending on the
application locale. In Solaris CDE, the font alias names are independent of
locale. Refer to CDE Internationalization Programmer’s Guide or
CDE Programmer’s Guide for information on CDE font names.

71

Solaris 2.5 Motif Window Manager C

This appendix describes how to set up your environment to use the Solaris 2.5
Motif Window Manager (mwm) and how to access it from the OpenWindows
desktop. You can run Motif clients with the OPEN LOOK Window Manager
(olwm) without making further changes.

Note – The Motif Window Manager provided with the Solaris 2.4 and Solaris
2.5 developer’s environment is not supported by SunSoft as a run-time user
product and must not be distributed to users. mwm is only included in the
developer’s environment for development purposes. You should use the
default olwm window manager for developing applications for the
OpenWindows desktop. You should use the CDE window manager dtwm for
developing applications for the Solaris CDE desktop. dtwm is an upwardly
compatible version of mwm specifically enhanced for CDE.

Setting Motif Window Manager as the Default 72

Setting Motif Window Manager as the Default 72

Enabling Quit on the Workspace Menu 73

Enabling Drag and Drop for the Motif Window Manager 73

72 Solaris CDE Motif Transition Guide

C

Setting Up the Motif Environment

To set up the environment to support Motif development, set the following
variables in the initialization file for your shell (for example .profile for the
Bourne or Korn shell or .login for the C shell).

1. If SUNWmfwm is installed, add /opt/SUNWmfwm/bin to your PATH.

2. Include the value /usr/dt/lib/%T/%N%S in your XFILESEARCHPATH
environment variable.

3. Set the XMBINDDIR environment variable to /usr/dt/lib/bindings .

4. Both developers and users need to add /usr/dt/man to their MANPATH.
If developers have installed the optional SUNWmfwm, they need to add
/opt/SUNWmfwm/man to their MANPATH.

5. Source the initialization file by typing. .profile for the Bourne or Korn
shell, or source .cshrc for the C shell. Alternatively, you can log out and
log in again so that the changes are recognized in your complete
environment.

Setting Motif Window Manager as the Default

The openwin script indirectly starts the OPEN LOOK Window Manager
(olwm). If you want the script to start the Motif Window Manager, set the
OW_WINDOW_MANAGER environment variable:

Alternatively, you can add this to your .profile or .login file if you want
to save this setting.

Note – mwm is only available if the Solaris 2.5 SUNWmfwm package is installed.
This package is not available in the CDE 1.0 release.

% setenv OW_WINDOW_MANAGER mwm

Solaris 2.5 Motif Window Manager 73

C

Enabling Quit on the Workspace Menu

The Motif Window Manager does not have an option to exit mwm. Use the
following steps to enable Quit on the Workspace menu.

1. Type cp /opt/SUNWmfwm/lib/system.mwmrc $HOME/.mwmrc and
press Return.

2. Edit the $HOME/.mwmrc file and remove the leading exclamation mark (!)
from the following line:

!“Quit...” f.quit_mwm

Enabling Drag and Drop for the Motif Window Manager

To ensure the OpenWindows drag-and-drop option runs correctly with mwm,
modify the openwin-sys script in /usr/openwin/lib
(/usr/openwin/lib) .

1. Become superuser. Edit the /usr/openwin/lib/openwin-sys script.
Remove the # from the following line (uncomment it):

#dsdm &

2. Save the changes and quit the file.

3. Exit the window system and restart it.

This change initiates the drop-site database manager and restarts the
window system.

74 Solaris CDE Motif Transition Guide

C

75

Recommended Reading D

This appendix lists books and articles on issues related to OPEN LOOK, Motif,
and CDE application development. The books are available through Sun
Express or through your local bookstore.

CDE Documentation 76

ToolTalk Documentation 76

Motif 1.2.3 Documentation 77

OPEN LOOK to CDE Motif Transition 78

Graphical User Interfaces 78

Motif Programming 79

OPEN LOOK Programming 79

Xt/XLib Programming 80

76 Solaris CDE Motif Trasition Guide

D

CDE Documentation

The Common Desktop Environment documentation set contains documents
that will help you in your transition to Solaris CDE. These books will be
published soon by Addison-Wesley.

Development Environment
• Common Desktop Environment: Programmer’s Overview
• Common Desktop Environment: Style Guide and Certification Checklist
• Common Desktop Environment: Application Builder User’s Guide
• Common Desktop Environment: Programmer’s Guide
• Common Desktop Environment: Help System Author’s and Programmer’s Guide
• Common Desktop Environment: ToolTalk Messaging Overview
• Common Desktop Environment: Internationalization Programmer’s Guide
• Common Desktop Environment: Desktop KornShell User’s Guide
• Common Desktop Environment: Product Glossary

Online man pages are available for all development environment components.

Run-time Environment
• Common Desktop Environment: User’s Guide
• Common Desktop Environment: Advanced User’s and System Administrator’s

Guide

Online help volumes are available for most of the run-time environment
components.

ToolTalk Documentation
• The ToolTalk Service: An Inter-Operability Solution, published by SunSoft Press

and PTR Prentice Hall, Englewood Cliffs, NJ 07632, ISBN 0-13-088717-X

• ToolTalk and Open Protocols: Inter-Application Communication, by Astrid
Julienne and Brian Holtz, published by SunSoft Press and PTR Prentice Hall,
Englewood Cliffs, NJ 07632, ISBN 013-031055-7

The Solaris 2.5 Software Developer AnswerBook set contains:

• ToolTalk Reference Manual
• ToolTalk User’s Guide

Recommended Reading 77

D

Motif 1.2.3 Documentation

The documentation listed in this section describes Motif 1.2 interfaces. Motif
1.2.3 is a patch release of 1.2 and the same specifications apply. You can
purchase these books at your local bookstore.

• OSF Application Environment Specification (AES) User Environment Volume,
Revision C, PTR Prentice Hall, 1993.

Describes the Motif Application Environment Specification. Information on
these specifications can also be found in the Motif 1.2 Programmer’s Reference
Manual.

• Motif 1.2 User’s Guide 801-5363-10

This user’s guide describes how to interact with Motif-based applications,
including how to use and customize the Motif Window Manager, how to
use the Motif widgets, and how to customize your interaction with Motif
applications.

• Motif 1.2 Programmer’s Reference Manual 801-5364-10

This programmer’s reference manual provides reference information for the
Motif commands and functions in UNIX-style manual pages. The reference
information covers the toolkit (library functions, widget documentation, and
resources), the window manager, UI language commands, and the library
functions.

• Motif 1.2 Programmer’s Guide 801-5365-10

This programmer’s guide describes how to use the Motif API to create Motif
applications. Also describes the architecture of the Motif widget set and the
features of the toolkit. It is useful for new Motif programmers. A number of
the example programs from this volume is available in source form in the
share/src directory.

• Motif 1.2 Style Guide 801-5366-10

This style guide provides a description of the framework of behavior
specifications (the Motif appearance) to guide developers in the design and
implementation of products with Motif-style UI. The guide is split into
sections applicable to four audiences: application designers, widget
designers, user interface system designers, and window manager designers.

78 Solaris CDE Motif Trasition Guide

D

The appendixes describe how the Motif widgets correspond to the
components in the guide and provide a checklist of requirements for
OSF/Motif application-level certification.

OPEN LOOK to CDE Motif Transition

Starks, Cindy. “A Developer’s Look at the COSE Desktop.” UNIX Review.
March 1994; 12(3) 41-45.

Bryant, David, J. Fowler, R. Levine. “From OpenWindows to CDE.” UNIX
Review. March, 1994; 12(3) 47-51.

Moore, Michael. “The CDE Libraries.” UNIX Review. March 1994; 12(3) 53-57.

Keefe, Sarah. “Migrating Your Sun Workstation To Motif.” The X Journal, July-
August 1993.

Graphical User Interfaces

OPEN LOOK to Motif GUI Transition Guide 801,6567-10, SunSoft, October, 1993.

OPEN LOOK Graphical User Interface: Programmer’s Guide, UNIX System
Laboratories, 1992.

OPEN LOOK Graphical User Interface: User’s Guide, UNIX System Laboratories,
1992.

OPEN LOOK Graphical User Interface Application Style Guidelines, Sun
Microsystems, Inc., Addison-Wesley Publishing Company, Inc., 1990.

OPEN LOOK Graphical User Interface Functional Specification, Sun Microsystems,
Inc., Addison-Wesley Publishing Company, Inc., 1990.

OPEN LOOK Graphical User Interface: Programmer’s Reference Manual, Prentice
Hall, 1992.

OPEN LOOK Intrinsics Toolkit Widget Set Programmer’s Guide, AT&T, 1990.

OPEN LOOK Intrinsics Toolkit Widget Set Reference Manual, AT&T, 1990.

OSF/Motif Programmer’s Guide, Revision 1.2, Open Software Foundation,
Prentice Hall, 1993.

Recommended Reading 79

D

OSF/Motif Programmer’s Reference, Revision 1.2, Open Software Foundation,
Prentice Hall, 1993.

OSF/Motif Style Guide, Revision 1.2, Open Software Foundation, Prentice Hall,
1993.

OLIT & Motif: A Technical Comparison, Amy Moore, M. Goyal, SunSoft,
September, 1992.

Motif Programming

Motif Programming in the X Window System Environment, William A. Parrette,
McGraw-Hill, 1993.

Motif Programming: The Essentials—and More, Marshall Brain, Digital Press,
1992.

Motif Programming Manual, Dan Heller, O’Reilly & Associates, 1992.

Motif Reference Manual, Paula Ferguson, O’Reilly & Associates, 1992.

The X Window System Programming and Applications with Xt, OSF/Motif Edition,
Douglas Young, Prentice Hall, 1990.

OPEN LOOK Programming

An OPEN LOOK at Unix: A Developer’s Guide to X. John David Miller, M&T
Books, 1990.

The X Window System Programming and Applications with Xt, OPEN LOOK
Edition, Douglas Young and John A. Pew, Prentice Hall, 1992.

XView Programming Manual, Dan Heller, O’Reilly & Associates, Inc., 1991.

XView Reference Manual, Thomas Van Raalte (ed.), O’Reilly & Associates, Inc.,
1991.

80 Solaris CDE Motif Trasition Guide

D

Xt/XLib Programming

Programmer’s Supplement for Release 5 of the X Window System, Version 11, David
Flanagan, O’Reilly & Associates, Inc., 1991.

X Toolkit Intrinsics Programming Manual, Adrian Nye and Tim O’Reilly, O’Reilly
& Associates, Inc., 1990.

X Window System Toolkit, Paul J. Asente and Ralph R. Swick, Digital Press, 1990.

X Window System, X Version 11 Release 5, Third Edition, Digital Press, 1992.

X Toolkit Intrinsics Reference Manual, O’Reilly & Associates, Inc., 1991.

Xlib: C Language X Interface, James Gettys, Robert W. Scheifler, Ron Newman,
Silicon Press, 1989.

Xlib Programming Manual, Adrian Nye, O’Reilly & Associates, Inc., 1990.

Xlib Reference Manual, Adrian Nye (ed.), O’Reilly & Associates, Inc., 1990.

81

Index

A
actions, CDE, 26
app-defaults , 69
Application Builder (App Builder), 24,

49, 54, 55, 61
architecture, OPEN LOOK versus

Motif, 36
ArrowButton , 12

B
basic integration, 46
BIL files, 54

C
callbacks, 35, 36
CascadeButton, 12, 13
.cat file, 70
catclose() , 68
catgets() , 68
catopen() , 68
CDE

features exclusive to, 23 to 24
features in common with

OpenWindows, 24 to 29

Motif 1.2 widget subclasses and future
Motif releases, 9

CDE applications,
internationalization, 67, 70

CDE documentation, 76
CDE examples, source code location, 55
CDE Motif

enhancements to Motif 1.2.3, 12 to 13
features added to Motif 1.2.3, 12
libraries, 13 to 14
packaging, 65
run-time and developer support, 7
Solaris vs. CDE environment, 2
visual enhancements, 13

CDE widgets
compatibility with Motif 2.0, 17
demo programs, 17
DtComboBox, 16
DtMenuButton , 16
DtSpinBox , 16
library and header files, 17

CDE window manager, 71
CheckBox, 13
classing engine, 26
ComboBox, 63
Common Desktop Environment Motif, See

CDE Motif

82 Solaris CDE Motif Transition Guide

compiling
Motif 1.2 applications using CDE

Motif, 11
Motif applications, 8

controls, window, 33

D
data typing, CDE, 26
DATA_ATTRIBUTES table, 26
DATA_CRITERIA table, 26
DEC VT220, 18, 42
demo programs, 9, 14, 17, 18
Desktop Korn shell (dtksh), 24
development tools, GUI, 53
Devguide, 24, 54
dirTextLabelString , 12
documentation

CDE, 76
GUI, 78
Motif 1.2.3, 77
Motif programming, 79
OPEN LOOK programming, 79
OPEN LOOK to Motif, 78
ToolTalk, 76
Xt/XLib programming, 80

DPS, 23
drag and drop, 25

enabling for Motif Window
Manager, 73

DrawnButton , 12
DropTarget , 44
DtComboBox, 15, 16, 17, 42
DtInitialize() , 68
dtksh , 24
DtMenuButton , 15, 16, 17, 42
DtSpinBox , 15, 16, 17, 42
DtTerm , 42
dtwm, CDE window manager, 71

E
existing applications

running in CDE environment, 4
running in Solaris environment, 3

F
fileFilterStyle , 12
FileSelectionBox , 43
Flat Widget, 44
fonts, 28, 70
Footer Panel, 44

G
gencat , 70
gettext() , 68
GIL files, 54
GIL-to-BIL converter, 24, 54
gmf , 54
GUI

application builders, 24
development tools, 53
documentation, 78

guil , 54

H
help system, 24, 26 to 28

I
integration

basic, 46
into CDE environment, 48
optional, 48
recommended, 48

internationalization, 24, 28
CDE applications, 67 to 70

IXI 1.2.2 Motif, 2, 20, 21

Index 83

L
levels of integration

basic, 46
optional, 48
recommended, 48

libDtTerm , 18
libDtWidget , 12, 15, 17, 43
libMrm , 14
libUil , 14
libXm , 13
linking Motif applications, 8

M
manager widgets, 51
Manager, Workspace, 24
MANPATH, 72
menu button widget (DtMenuButton), 16
menus, tear-off, 33
message catalog, delivery, 70
message sets, 25
Microsoft Windows, 12
migrating to CDE Motif, 46
model, for XView and Motif

programming, 36
Motif, 62

buttons, 34
caution statement, 2
CDE, 11 to 14
conversion utilities, 54
demo programs, 14
enhancements to existing

functionality, 12, 13
environment, setting up, 72
features added to, 12
future compatibility, 9
IXI 1.2.2, 2, 20 to 21
programming documentation, 79
resources, localization, 69
shared library policy, 9
Solaris 2.3, 2
Solaris 2.4, 2
Solaris 2.5, 2

summary of Solaris toolkits, 3
supported by Solaris, 1 to 2, 20 to 21
transition to, 54
UIL library, 14
visual enhancements, 13
widgets and XView objects, 37
Window Manager (mwm), 8, 60, 71 to

73
Motif 1.2, 2, 17

and CDE Motif, 11
Motif 1.2.3 documentation, 77
Motif 1.2.3 toolkit, 2
Motif 2.0, 17
Motif application development

OpenWindows environment, 4
Solaris CDE environment, 6

Motif code, produced from GIL files, 24
mouse button behavior, 34
.msg file, 70

N
NL_CAT_LOCALE, 68
NLS environment, 68
NLSPATH, 68

O
objects, types common to XView and

Motif, 37
OLIT, 4, 24, 32, 36, 57
OLIT libraries

routines only in, 39
routines only in CDE Motif, 40
versus CDE Motif libraries, 39 to 43
widgets, 40
widgets exclusive to Motif, 42

OPEN LOOK, 15, 32, 33
OPEN LOOK window manager

(olwm), 71
optional integration, 48

84 Solaris CDE Motif Transition Guide

P
pathMode , 12
porting

architectural impact, 50
basic integration, 46
benefits, 47
CDE Motif, to, 45 to 58
elements of, 46
example, 59
small applications, 49
summary, 57
two-step process, 59

porting tasks
CDE, 4
Motif, 3

PostScript, 23
programming model, XView and

Motif, 36
PushButton, 13
PushButton, 12

Q
Quit, enabling for Motif Window

Manager, 73
$quote directive, 70

R
radio buttons, 63
RadioBox, 13
recommended integration, 48
RubberTile , 44
run-time and dynamic libraries, restriction

note, 8
run-time terminal, dtterm , 18

S
secondary text selection, 33
Session Manager, 24
setlocale() , 68
Snap button, 62

Solaris
Motif run-time and developer

support, 7
Motif toolkits, summary, 3

source code location, CDE examples, 55
Stub , 44
SUNWfwm, 72

T
tasks

porting to CDE, 4
porting to Motif, 3

tear-off menus, 33
Terminal

DEC VT220-like, 18, 42
DtTerm widget, 18

Terminal widget
demo programs, 18
library and header files, 18

Text Editor
demo programs, 19
DtEditor widget, 19, 42
library and header files, 19
when to use widget, 19

text field and arrow button widget
(DtSpinBox), 16

text field and list box widget
(DtComboBox), 16

text selection, secondary, 33
toolkits, implementation differences, 33
ToolTalk Messaging Service, 24

message sets, 25
ttsnoop , 25
tttrace , 25

U
UIL, 14, 40, 54
UIL compiler, 8, 14
UilDef.h header file, 14

Index 85

W
widget

CDE control, 15 to 17
DtTerm , 18
Motif 1.2, 17
Motif 2.0, 17
XmForm, 21
XmList , 20

window controls, 33
Workspace Manager, 24

X
X resources, 39
X Server, 23
XFILESEARCHPATH, 72
XGL, 23
XIL, 23
Xlib , 35
Xm library , 43
XmArrowButton , 42
XMBINDDIR, 72
XmComboBox, 17
XmCommand, 42
XmDrawnButton , 43
XmFileSelectionBox , 12, 13
XmForm widget, 21
XmFrame, 43
XmGetPixmap , 12
XmGetPixmapByDepth , 12
XmLabelGadget , 43
XmList convenience functions, 20
XmMainWindow, 43
XmPanedWindow, 43
XmSelectionBox , 43
XmSpinBox , 17
XmString , 68
Xt intrinsics, 57
Xt library , 43
XtSetLanguageProc() , 68
XView, 4, 24, 32, 36, 57

packages, 37, 38
XView libraries

differences from Motif, 38
external files, 39
objects similar to Motif, 37
terminology, 35

86 Solaris CDE Motif Transition Guide

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a
registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN. THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

