Contents

AboUt This GUIdE ... e e e 3
Who Should Use ThiS GUIE o e 3
Using the DOCUMENTAtION e e e e e e e 4
How This Guide ISOrganized e 6
Related INfOrmation 7
Documentation CONVENTIONSttt e e e 7
General CONVENLIONSttt ettt et e e e e e e e e e e e e e 7
Conventions Referring to DIreCtOriest 9
CONTACTING SUN ..ottt e e e e e 9
Give Us Feedbacko 9
ODbtain TraiNiNg . ..ottt e e e e e e e 9
Contact Product SUPPOIT . ..o e e e e e e e 10
Chapter 1 Overview of Clients e e 11
INtroduCing ClieNtSt e 11
TYPES OFf ClENES . .o e 13
WD ClENTS . ..ot 13
Web Services CHIENTS oo 13
IMS ClIENES oo 14
CORBA ClBNES . oottt et e e e e e e e 14
Application ClieNntS 15
Chapter 2 Using the Application Client Container, 17
Introducing the Application Client Container i 17
Application Client Container FEaturesttt e 18
Developing Application Clients i e 18
Creating an Application Client 19

Contents 1

2

Locating the Home Interface o e 19

Creating an Enterprise Bean INStanCet i 20
Invoking a Business Method 20
Creating an ACC Client With Load Balancing and Failover Support (Enterprise Edition) 20
Introducing the Properties that Support LB/FO for ACCClients 21
Configuration Changes i 21
Using an Application Clientto Invokean EJBModule 22
Making a Remote Call onthe EJB e 23
Using an Application Client to Access IMS RESOUICESo oiu it e e 23
Application Client Accessing JMS Resources Without Usingthe ACC 24
Application Client Packaged in an Application Client Container Accessing JMS Resources . 32
Authenticating an Application Client Using the JAASModule 34
Invoking an RMI/110P-based Client Without Usingthe ACC 42
Packaging an Application Client Usingthe ACC e 44
Editing the Configuration File 44
Editing the appclient SCript o 44
Editing the sun-accxml File 45
Setting Security OPtiONSo 45
Using the package-appclient SCript 46
Running an Application Client Usingthe ACC i 47
Sample Client Application 48
Chapter 3 Application Client Deployment Descriptors 49
Introducing Application Client Deployment DesCriptorsc..ieiiiiiineiineennnnn 49
Format of Deployment DesCriptorst e 50
SUDBIEMENTS o 50

Data . . . 51

AT DUTES . . o 51

J2EE Application Client Deployment DesCriptort 52
Sun Java System Application Client Deployment Descriptorc.c .. 52
Elements in sun-application-client.xml file 52
Application Client Container Configuration File i 57
Elements in the sun-acc.xml File 57
Chapter 4 Java-based CORBA Clients e e 67
CORBA CHENE SCENAIIOS . . .o oottt ettt e e e e 67
Stand-alone SCENANIO 67
SEIVEr t0 SEIVEr SCENATIO\ttt 68
ORB SUPPOIt ArChiteCtUre e e e e e 69
Developing non-ACC Java-based CORBA Clients ...ttt 70
Creating a Stand-alone CORBA Clentt e e 70
Specifying the Naming Factory Classt e e 71

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Specifying the INDI Name of anBEJB e 71
Implementing Load Balancing and Failover Capabilities in the Client Application (Enterprise

EitioN) . .. o 72
Running a Stand-alone CORBA ClieNnt e 75
Chapter 5 C++ CleNntS e e e 77
Introducing C++ ClIeNtS e 77
Developing a C++ Client e 77
Configuring C++ Clients to Access Sun Java System Application Server 78
Software REQUITEMENTS o e e e e e e 78
Preparing for C++ Client Development e 78
Assumptions and Limitationsot 80
Creating a C++ ClHENt e e e e e 80
Generating the IDL Files 80
Generating CPP Files from IDL FileS oo i 84
Sample ApPlICAtiONS 87
IO EX .o 89

Contents 3

4 Application Server 7 2004Q2 Update 1 « Developer’s Guide to Clients

Sun Java™ System

Application Server 7
Developer’s Guide to Clients

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0595

2004Q2 Update 1

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http: //waw sun. cond pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Use is subject to license terms. This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer
Pages, JSP, JDBC, JDK, JVM, Java Naming and Directory Interface, and JavaMail are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
I’'adresse ht t p: // waw. sun. coni pat ent s et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etat -Unis et dans les
autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L’AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

L’utilisation est soumise aux termes de la Licence. Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer
Pages, JSP, JDBC, JDK, JVM, Java Naming and Directory Interface, et JavaMail sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Ce produit est soumis a la Iégislation américaine en matiere de contrdle des exportations et peut étre soumis a la réglementation en vigueur dans
d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris,
mais de maniére non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une fagon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matiere de contrdle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

About This Guide

This manual describes how to create and implement Java™ 2 Platform, Enterprise
Edition (J2EE™ platform) applications that follow the Enterprise JavaBean (EJB™)
specification in the Sun Java™ System Application Server Standard and Enterprise
Edition 7 2004Q2 environment. In addition to describing programming concepts
and tasks, this guide offers sample code, implementation tips, and the reference
material.

This preface addresses the following topics:

Who Should Use This Guide
Using the Documentation
How This Guide Is Organized
Related Information
Documentation Conventions

Contacting Sun

Who Should Use This Guide

The intended audience for this guide is the person who develops, assembles, and
deploys beans in a corporate enterprise.

This guide assumes you are familiar with the following topics:

Java programming

Java APIs as defined in the Java™ Servlet, JavaServer Pages™ (JSP™),
Enterprise JavaBeans™ (EJB™), and Java™ Database Connectivity (JDBC™)
specifications

Using the Documentation

= The SQL structured database query languages
= Relational database concepts

= Software development processes, including debugging and source code
control

Using the Documentation

The Sun Java System Application Server Standard and Enterprise Edition manuals
are available as online files in Portable Document Format (PDF) and Hypertext
Markup Language (HTML).

The following table lists tasks and concepts described in the Sun Java System
Application Server manuals. The manuals marked (updated for 7 2004Q2) have been
updated for the Sun Java System Application Server Standard and Enterprise
Edition 7 2004Q2 release. The manuals not marked in this way have not been
updated since the version 7 Enterprise Edition release.

Table 1 Sun Java System Application Server Documentation Roadmap

For information about See the following

(Updated for 7 2004Q2) Late-breaking information about the software and the Release Notes
documentation. Includes a comprehensive, table-based summary of supported
hardware, operating system, JDK, and JDBC/RDBMS.

Sun Java System Application Server 7 overview, including the features available Product Overview
with each product edition.

Diagrams and descriptions of server architecture and the benefits of the Sun Java Server Architecture
System Application Server architectural approach.

(Updated for 7 2004Q2) How to get started with the Sun Java System Application Getting Started Guide
Server product. Includes a sample application tutorial. There are two guides, one for
Standard Edition and one for Enterprise Edition.

(Updated for 7 2004Q2) Installing the Sun Java System Application Server Standard Installation Guide
Edition and Enterprise Edition software and its components, such as sample

applications and the Administration interface. For the Enterprise Edition software,

instructions are provided for implementing the high-availability configuration.

(Updated for 7 2004Q2) Evaluating your system needs and enterprise to ensure that ~ System Deployment Guide
you deploy Sun Java System Application Server in a manner that best suits your

site. General issues and concerns that you must be aware of when deploying an

application server are also discussed.

4 Application Server 7 2004Q2 Update 1 « Developer’s Guide to Clients

Table 1

Using the Documentation

Sun Java System Application Server Documentation Roadmap (Continued)

For information about

See the following

Creating and implementing Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications intended to run on the Sun Java System Application Server that follow
the open Java standards model for J2EE components such as servlets, Enterprise
JavaBeans™ (EJBs™), and JavaServer Pages™ (JSPs™). Includes general
information about application design, developer tools, security, assembly,
deployment, debugging, and creating lifecycle modules. A comprehensive Sun Java
System Application Server glossary is included.

(Updated for 7 2004Q2) Creating and implementing J2EE web applications that
follow the Java™ Servlet and JavaServer Pages (JSP) specifications on the Sun
Java System Application Server. Discusses web application programming concepts
and tasks, and provides sample code, implementation tips, and reference material.
Topics include results caching, JSP precompilation, session management, security,
deployment, SHTML, and CGI.

(Updated for 7 2004Q2) Creating and implementing J2EE applications that follow
the open Java standards model for enterprise beans on the Sun Java System
Application Server. Discusses Enterprise JavaBeans (EJB) programming concepts
and tasks, and provides sample code, implementation tips, and reference material.
Topics include container-managed persistence, read-only beans, and the XML and
DTD files associated with enterprise beans.

(Updated for 7 2004Q2) Creating Application Client Container (ACC) clients that
access J2EE applications on the Sun Java System Application Server.

Creating web services in the Sun Java System Application Server environment.

(Updated for 7 2004Q2) Java™ Database Connectivity (JDBC™), transaction, Java
Naming and Directory Interface™ (JNDI), Java™ Message Service (JMS), and
JavaMail™ APIs.

Creating custom NSAPI plug-ins.

(Updated for 7 2004Q2) Information and instructions on the configuration,
management, and deployment of the Sun Java System Application Server
subsystems and components, from both the Administration interface and the
command-line interface. Topics include cluster management, the high-availability
database, load balancing, and session persistence. A comprehensive Sun Java
System Application Server glossary is included.

(Updated for 7 2004Q2) Editing Sun Java System Application Server configuration
files, such as the server. xm file.

Configuring and administering security for the Sun Java System Application Server
operational environment. Includes information on general security, certificates, and
SSL/TLS encryption. HTTP server-based security is also addressed.

Developer’s Guide

Developer’s Guide to Web
Applications

Developer’s Guide to Enterprise
JavaBeans Technology

Developer’s Guide to Clients

Developer’s Guide to Web
Services

Developer’s Guide to J2EE
Services and APIs

Developer’s Guide to NSAPI

Administration Guide

Administrator’s Configuration
File Reference

Administrator’s Guide to
Security

About This Guide

How This Guide Is Organized

Table 1

Sun Java System Application Server Documentation Roadmap (Continued)

For information about

See the following

Configuring and administering service provider implementation for J2EE™
Connector Architecture (CA) connectors for the Sun Java System Application
Server. Topics include the Administration Tool, Pooling Monitor, deploying a JCA
connector, and sample connectors and sample applications.

(Updated for 7 2004Q2) Migrating your applications to the new Sun Java System
Application Server programming model, specifically from iPlanet Application Server
6.x and Sun ONE Application Server 7.0. Includes a sample migration.

(Updated for 7 2004Q2) How and why to tune your Sun Java System Application
Server to improve performance.

(Updated for 7 2004Q2) Information on solving Sun Java System Application Server
problems.

(Updated for 7 2004Q2) Information on solving Sun Java System Application Server
error messages.

(Updated for 7 2004Q2) Utility commands available with the Sun Java System
Application Server; written in manpage style.

Using the Sun™ Java System Message Queue 3.5 software.

J2EE CA Service Provider
Implementation Administrator’s
Guide

Migrating and Redeploying
Server Applications Guide

Performance Tuning Guide
Troubleshooting Guide
Error Message Reference
Utility Reference Manual

The Sun Java System
Message Queue
documentation at:
http://docs. sun. conl db?p=
prod/ sl. slnsgqu

How This Guide Is Organized

This guide provides instructions for the development, assembly, and the
deployment of J2EE clients to Sun Java System Application Server.

= Chapter 1, “Overview of Clients”

This chapter introduces you to various types of clients that are supported by

Sun Java System Application Server.

< Chapter 2, “Using the Application Client Container”

This chapter describes how to use the Application Client Container to develop

and package application clients.

= Chapter 3, “Application Client Deployment Descriptors”

This chapter describes the application deployment descriptors.

= Chapter 4, “Java-based CORBA Clients”

6 Application Server 7 2004Q2 Update 1 « Developer’s Guide to Clients

http://docs.sun.com/db?p=prod/s1.s1msgqu

Related Information

This chapter describes the procedure to develop, assemble, and deploy
Java-based CORBA clients that do not use the ACC.

= Chapter 5, “C++ Clients”

This chapter describes the procedure to develop C++ clients using a
third-party ORB.

Finally, Index is provided.

Related Information

The following additional reading is recommended:
General J2EE Information:

Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi,
& Dan Malks, Prentice Hall Publishing

Java Security, by Scott Oaks, O’Reilly Publishing

Programming with EJB components:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

Java Remote Method Invocation Technology over Internet Inter-ORB Protocol:

http://java.sun. conj2se/ 1. 4/ docs/ gui de/ rm -iiop/

Documentation Conventions

This section describes the types of conventions used throughout this guide:
= General Conventions

= Conventions Referring to Directories

General Conventions

The following general conventions are used in this guide:

< File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

About This Guide 7

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/

Documentation Conventions

< URLs are given in the format:
http://server.domain/path/file.ntml

In these URLS, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

e Font conventions include:

o The nonospace font is used for sample code and code listings, APl and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

o Italic type is used for code variables.

o Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

o Boldtype is used as either a paragraph lead-in or to indicate words used in
the literal sense.

= Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 9.

By default, the location of install_dir on most platforms is:
o Solaris and Linux file-based installations:

user’s home directory/ sun/ appser ver 7
o Windows, all installations:

system drive: \ Sun\ AppSer ver 7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 9 for
exceptions and additional information.

= Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following:

default_config_dir/ domai ns/ domain/ instance

= UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

8 Application Server 7 2004Q2 Update 1 « Developer’s Guide to Clients

Contacting Sun

Conventions Referring to Directories

By default, when using the Solaris package-based or Linux RPM-based installation,
the application server files are spread across several root directories. This guide
uses the following document conventions to correspond to the various default
installation directories provided:

= install_dir refers to/ opt / SU\appser ver 7, which contains the static portion of the
installation image. All utilities, executables, and libraries that make up the
application server reside in this location.

= default_config_dir refers to / var/ opt / SUN\Wappser ver 7/ donai ns, which is the
default location for any domains that are created.

< install_config_dir refers to / et ¢/ opt / SUN\appser ver 7/ conf i g, which contains
installation-wide configuration information such as licenses and the master list
of administrative domains configured for this installation.

Contacting Sun

You might want to contact Sun Microsystems in order to:
= Give Us Feedback

= Obtain Training

= Contact Product Support

Give Us Feedback

If you have general feedback on the product or documentation, please send this to
htt p: // waw. sun. coml hwdocs/ f eedback

Obtain Training

Application Server training courses are available at:
http://traini ng. sun. comi US cat al og/ ent er pri se/ web_appl i cation. ht ni/

Visit this site often for new course availability on the Sun Java System Application
Server.

About This Guide 9

mailto:appserver-feedback@sun.com
http://training.sun.com/US/catalog/enterprise/web_application.html/

Contacting Sun

10

Contact Product Support

If you have problems with your system, contact customer support using one of the
following mechanisms:

The online support web site at:
ht t p: // ww. sun. cond suppor t rai ni ng/

The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

Description of the problem, including the situation where the problem occurs
and its impact on your operation

Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem. Here are some
of the commonly used commands:

o Solaris: pkgi nfo, show ev

o Linux: rpm

o All: asadnin version --verbose

Detailed steps on the methods you have used to reproduce the problem
Any error logs or core dumps

Configuration files such as:

o instance_dir/ confi g/ server. xn

o aweb application’s web. xm file,
when a web application is involved in the problem

For an application, whether the problem appears when it is running in a cluster
or standalone

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

http://www.sun.com/supportraining/

Chapter 1

Overview of Clients

A client can be a simple web browser or an application that runs on the client
system. Sun Java System Application Server 7 2004Q2 provides various types of
clients, a framework to connect to a back end source, execute the application logic,
and return the result to the client.

This chapter introduces different types of clients that Sun Java System Application
Server supports. The following topics are discussed in this chapter:

= Introducing Clients

= Types of Clients

Introducing Clients

A client application can be written using Java, C, C++, Visual Basic, or any
compatible programming language. A client application sends a request to an
application server at a given URL. The server receives the request, processes it, and
returns a response. These client programs execute remote procedures and
functions in an application server instance.

Sun Java System Application Server is a Java application server and is fully
compliant with the J2EE 1.3 specifications. The important layers of J2EE platform
are as follows:

= Client layer - The client layer is where the user accesses the application.

= Presentation layer - The presentation layer is where the user interface is
dynamically generated. An application may require the following J2EE
components in the presentation layer.

o Servlets

o JSPs

11

Introducing Clients

o Static Content

In addition, an application may require the following non-J2EE, HTTP
server-based components in the presentation layer:

o SHTML
o CGlI

For more information about the components in the presentation layer, see the
Sun Java System Application Server Developer’s Guide to Web Applications.

Business logic layer -The business logic layer contains deployed EJB
components that encapsulate business rules and other functions in session
beans, entity beans, and message-driven beans.

For more information about components in business logic layer, see the Sun
Java System Application Server Developer’s Guide to Enterprise JavaBeans
Technology.

Data access layer - In the data access layer, JDBC (java database connectivity) is
used to connect to databases, make queries, and return query results, and
custom connectors work with Sun Java System Application Server to enable
communication with legacy EIS systems, such as IBM’s CICS.

Developers are likely to integrate access to the following systems using J2EE
CA (J2EE connection architecture):

v Enterprise resource management system
o Mainframe systems
o Third-party security systems

For more information about JDBC, see the Sun Java System Application Server
Developer’s Guide to J2EE Services and APIs.

For more information about connections, see the J2EE CA Service Provider
Implementation Administration Guide and the corresponding release notes.

For more information on the J2EE Architecture, see Sun Java System Application
Server Developer’s Guide.

12 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Types of Clients

Types of Clients

This section introduces the following types of clients that are supported by Sun
Java System Application Server:

= Web Clients

= Web Services Clients
= JMS Clients

= CORBA Clients

= Application Clients

Web Clients

A web client consists of two parts:

< Dynamic web pages containing various types of markup languages such as
Hyper Text Markup Language (HTML), Extensible Markup Language (XML),
etc, that are generated by web components running in the web server.

= A web browser, which renders the pages received from the server.

A web client is sometimes called a thin client. Thin clients do not query databases,
execute complex business rules, or connect to legacy applications. When you use a
thin client, heavyweight operations like these are off-loaded to enterprise beans
executing on the J2EE server where they can leverage the security, speed, services,
and reliability of J2EE server-side technologies.

Web Services Clients

Sun Java System Application Server supports Java-based client applications to
send requests to the web service, and receive a response from the web service. To
invoke a web service, these clients must construct and send SOAP messages over
HTTP.

Sun Java System Application Server supports Apache SOAP version 2.2 and Java™
API for XML-based RPC (JAX RPC) 1.1. Web services support is also built into Sun
Java Studio 4, which is bundled with Sun Java System Application Server.

For information on developing and deploying Web Services clients, see the Sun
Java System Application Server Developer’s Guide to Web Services.

Chapter 1 Overview of Clients 13

Types of Clients

JMS Clients

Java Message Service (JMS) clients are the Java language programs that send and
receive messages using the JMS provider. JMS client can be any type of J2EE
application component:a web application, an Application Client Container client,
an EJB component, and so on. A client accesses a special kind of Enterprise
JavaBeans called the message-driven beans (MDB), through JMS by sending
messages to the JMS destination.

For more information on using the JMS API to develop JMS clients, see the Sun Java
System Application Server Developer’s Guide to J2EE Services and APIs.

CORBA Clients

CORBA clients are the client applications written in any language supported by
Common Object Request Broker Architecture (CORBA), including the Java
programming language, C++, and C.

CORBA clients are used when a stand-alone program or another application server
acts as a client to the EJBs deployed to Sun Java System Application Server. The
Application Server supports access to EJBs using the Internet Inter-ORB Protocol
(I1OP) as specified in the Enterprise JavaBeans Specification, V2.0, and the
Enterprise JavaBeans to CORBA Mapping Specification. These clients use Java
Naming and Directory Interface (JNDI) to locate EJBs, and use Java™ Remote
Method Invocation/Internet Inter-ORB Protocol (RMI/110OP) to access business
methods of remote EJBs.

Sun Java System Application Server supports remote reference from the following
client applications. Remote references essentially is an InterOperable Reference
(IOR), for an EJB that is used by the clients to invoke a remote operation.

= Java applications that are executing in the ACC accessing EJBs deployed on an
application server instance.

= Java applications, not running in the ACC accessing EJBs deployed on an
application server instance.

= servlets and JSPs in web applications executing in a different JVM than the
target server instance.

= EJBs executing in a different application server instance from the target
instance.

14 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Types of Clients

Application Clients

A J2EE application client runs on a client machine and provides a way to handle
tasks that require a richer user interface than can be provided by a markup
language. Typically, an application client has a GUI created from Swing or
Abstract Window Toolkit (AWT) APIs. Alternatively, you can use the
command-line interface.

Application clients directly access the EJB components residing in Sun Java System
Application Server. However, if application requirements warrant it, a J2EE
application client can open an HTTP connection to establish communication with a
servlet running in the web server.

The figure, “Client and Sun Java System Application Server Architecture”
illustrates client machines running the web browser, web service clients, RMI-11OP
clients, or JMS clients; J2EE server machines running the Sun Java System
Application Server; and EIS server machines running databases and legacy
applications. JSPs and servlets provide the interface to the client tier, EJBs reside in
the business tier, and connectors provide the interface to legacy applications.

Chapter 1 Overview of Clients 15

Types of Clients

Figure 1-1 Client and Sun Java System Application Server Architecture
Client | Presentation Business Data | Data
layer : layer Logic layer Access layer : layer
: Web container EJB container :
| |
> > <+ EJB <4—»| JDBC |[¢—t—»

<_JT _/ |

Browser « | FN |
‘I_lL I RDBMS

|

I-> v |

: #»{ Connector)¢ :

| |

| |

Browser |¢—+»(HTML 4; |

| |

| v |

Web ' '

Service)4 p(Serviet |«———»(EIB '

client : :

—— | | v
Application | | Legac
Client container > il y

: p(EJB)4P(Connector)4 ™ application
RMINIOP \ ¢ 11 | I 2
client | |
| |
| |
| |
IMS N\ »(MDB)4iP(Connector)4
client | |
| |
| |
: | IMS provider |¢— :
| |
Client | Server | EIS

16

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Chapter 2

Using the Application Client
Container

This chapter describes how to access the application server using RMI/11OP
protocol, and how to use the Application Client Container (ACC) to develop and
package application clients.

This chapter contains the following sections:
= Introducing the Application Client Container

= Developing Application Clients

Introducing the Application Client Container

The Application Client Container (ACC) includes a set of Java classes, libraries,
and other files that are required and distributed along with Java client programs
that execute on their own Java Virtual Machine. It manages the execution of the
application client components. The ACC provides system services that enable a
Java client program to execute. It communicates with Application Server using
RMI/110P and manages the details of RMI/IIOP communication using the client
ORB that is bundled with it. The ACC is specific to the EJB container and is often
provided by the same vendor. Compared to other J2EE containers that reside on
the server, this container is lightweight.

17

Developing Application Clients

Application Client Container Features

Security

The ACC is responsible for collecting authentication data such as the username and
password from the user. Sends the collected data over RMI/ZIIOP to the server. The
server then processes the authentication data using the configured Java™
Authentication and Authorization Service (JAAS) module. See “Authenticating an
Application Client Using the JAAS Module” on page 34.

Authentication techniques are provided by the client container, and are not under
the control of the application client. The container integrates with the platform’s
authentication system. When you execute a client application, it displays a login
window and collects authentication data from the user. It also support SSL (Secure
Socket Layer)/11OP if configured and when it is necessary.

Naming

The client container enables the application clients to use Java Naming and
Directory Interface (JNDI) to look up EJB components and to reference
configurable parameters set at the time of deployment.

Developing Application Clients

18

This section describes the procedure to develop, assemble, and deploy client
applications, how to use the ACC to package such applications and deploy them to
the server. This section describes the following topics:

= Creating an Application Client

= Creating an ACC Client With Load Balancing and Failover Support (Enterprise
Edition)

= Using an Application Client to Invoke an EJB Module

= Using an Application Client to Access JMS Resources

< Invoking an RMI/110P-based Client Without Using the ACC
= Authenticating an Application Client Using the JAAS Module
= Packaging an Application Client Using the ACC

= Running an Application Client Using the ACC

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

Creating an Application Client

A J2EE application client is a program written in the Java programming language.
At runtime, the client program executes in a different virtual machine than the
J2EE server.

Code examples from the Convert er sample application illustrate the following steps
involved in the development of an application client:

= Locating the Home Interface
= Creating an Enterprise Bean Instance

< Invoking a Business Method

Locating the Home Interface

Use the Java Naming and Directory Interface™ (JNDI) to lookup and locate an EJB
component’s home interface. The following steps describe the procedure to locate
an EJB component’s home interface.

1. Create an initial naming context.

Context initial = newlInitial Context();
Context nyEnv = (Context)initial.lookup(“java:conp/env”);

The context interface is part of JNDI. An initial context object, which
implements the Cont ext interface, provides the starting point for the resolution
of names. All naming operations are relative to a context.

2. Retrieve the object bound to the name RMXConverter.
Object objref = myEnv.lookup(“ejb/RMIConverter”);

The RM Convert er name is bound to an enterprise bean reference, a logical name
for the home of an enterprise bean component. In this case, the RM Convert er
name refers to the Convert er Hone object. The names of enterprise bean
components should reside in the j ava: conl env/ ej b subcontext.

3. Narrow the reference to a Convert er Hone object.

Convert er Hone home =(Convert er Hone)
Por t abl eRenot eChj ect . narrow(obj ref, Convert er Hone. cl ass) ;

Chapter 2 Using the Application Client Container 19

Developing Application Clients

20

Creating an Enterprise Bean Instance

To create the bean instance, the client invokes the creat e method on the

Conver t er Home object. The creat e method returns an object whose type is Converter.
The remote converter interface defines the business methods of the bean that the
client may call and the EJB container instantiates the bean and then invokes the
Convert er Bean. ej bOr eat e method.

Converter currencyConverter = hone.create();

Invoking a Business Method

To invoke a business method, you first need to invoke a method on the Convert er
object. The EJB container will invoke the corresponding method on the

Convert er EJB instance that is running on the server. The client invokes the

dol | ar ToYen business method in the following lines of code:

Bi gDeci mal param = new Bi gDeci mal ("100.00");

Bi gDeci mal anount = currencyConverter. dol | ar ToYen(paranj;

Creating an ACC Client With Load Balancing
and Failover Support (Enterprise Edition)

Sun Java System Application Server, Enterprise Edition provides a highly available
J2EE application through the use of load balancing and a sophisticated failover
mechanism on the RMI/110OP path.

The following features are supported:
= Load balancing of requests from client applications on the RMIZ1IOP path

= High availability of remote references for RMI/11OP invocations from
stand-alone clients and ACC clients.

High availability of J2EE application means that, if between method invocations,
the server instance to the EJB object becomes unavailable, then subsequent
invocations are redirected to an alternate available server instance in the cluster.

For more information on High Availability, see the Sun Java System Application
Server Administration Guide.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

Introducing the Properties that Support LB/FO for ACC Clients

In order to enable load balancing capabilities in your ACC client, Sun Java System
Application Server supports the following two properties:

e com sun. appserv.iiop.endpoints

This property defines the list of one or more 11OP endpoints. An endpoint is
specified as host:port where host is the name or IP address of the system where
Sun Java System Application Server is running. Port is the 11OP port at which
the server is listening for IIOP requests.

e comsun. appserv.iiop. | oadbal anci ngpol i cy

If the endpoint property is specified, then, this property is used to specify the
load balancing policy. The value for this property must be
InitialContext-based. The value used to define this property isi c- based.

Configuration Changes

Define the load balancing properties in the sun-acc. xm file to provide a highly
available ACC client. The properties are defined as property elements in the
sun-acc. xni file.

For example:
<cl i ent - cont ai ner >
<target-server nanme="qasol -el" address="qasol -el" port="3700">

<property nane="com sun. appserv.iiop.| oadbal anci ngpol i cy"
val ue="i c- based" />

<property nane="com sun. appserv.iiop. endpoi nts"
val ue="gasol - el: 3700", “qasol -el :3800" />

</ client-cont ai ner >

To failover an ACC client on the RMI/IIOP path, information about all the
endpoints in a cluster to which the RMI/ I1OP requests can be failed over must be
available. You must have defined the 11OP endpoints in the server. xm file. The

i i op-cluster element under the avai | abi | i ty-servi ce element defines the IIOP
endpoints.

NOTE The endpoints are categorized as those configured for non-SSL and
those configured for SSL. Only endpoints configured for non-SSL
are supported. For more information on defining I1OP endpoints,
see the Sun Java System Application Server Administration Guide.

Chapter 2 Using the Application Client Container 21

Developing Application Clients

22

Using an Application Client to Invoke an EJB
Module

This section describes how an application client can be used to call a stand-alone
EJB module, or an EJB module residing in another J2EE application client.

To call an EJB module from an application client, perform the following steps:

1.

Define the element <ej b-ref > in the appl i cation-client.xm file. The deployer
provides the JINDI name for the <ej b-ref > in the corresponding
sun-appl i cation-client.xn file.

For more information on the sun-appl i cation-client.xn file, see “Sun Java
System Application Client Deployment Descriptor” on page 52.

Make sure that the INDI name matches with the JNDI name defined in the EJB
module.

Deploy the EJB module using the Administration interface. For more
information on deploying an EJB module using the Administration Interface,
see the Sun Java System Application Server Administration Guide.

The client JAR file is created at the following location:
/ appl i cation/j 2ee- nodul es/ejomodulename/appcl i ent . j ar

Distribute your appclient.jar file to the location that the client JVM can access.
Ensure that the appclient.j ar file includes the following files:

o alavaclass to access the bean

o application-client.xmn

o sun-application-client-.xn

o The MAN FEST. M file. This file contains the main class, which states the
complete package prefix and classname of the Java client.

Run the application client to access the EJB component. The following line of
code illustrates how to invoke an EJB component using the ACC:

appclient -client jarpath -maincl ass client application main class| - nane name
-xm config_xml_file app-args

o -client isrequired and specifies the name and location of the application
client jar file.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

o -mai ncl ass is optional and specifies the class name, that is located within
the appclient.jar file whose mai n() method is to be invoked. By default,
the class specified in the client jars Mai n- cl ass attribute of the MANI FEST file
is used.

o -nane is optional and specifies the display name that is located within the
appclient.jar. By default, the display name is specified in the client jar
application-client.xm file as displ ay- nane attribute.

o -xn, which specifies the name and location of the ACC configuration xml
file, is required if you are not using the default domain and instance. By
default, the ACC uses instance_dir/confi g/ sun-acc. xn for clients running
on the application server, or install_dir// i b/ appcl i ent/sun-acc. xm for
clients that are packaged using the package- appl cl i ent script.

o app-args are optional and they represent the arguments passed to the
client’s mai n() method.

7. To deploy the application client, assemble the application client to create a
standard J2EE .ear file and then deploy the application client to Sun Java
System Application Server.

Making a Remote Call on the EJB

If you need to access the EJB components that are residing in a remote system other
than the system where the application client is being developed, make the
following changes into the sun-acc. xni fie.

« Define the <t ar get - server > addr ess attribute to reference the remote server
machine.

= Define the <t arget - server > port attribute to reference the ORB port on the
remote server.

This information can be obtained from the server. xm file on the remote system. For
more information on server. xni file, see the Sun Java System Application Server
Administrator’s Configuration File Reference.

Using an Application Client to Access JMS
Resources

This section describes the procedure to develop an application client that can
access JMS resources to send a JMS message to a destination. The following two
scenarios are discussed:

Chapter 2 Using the Application Client Container 23

Developing Application Clients

24

= Application Client Accessing JMS Resources Without Using the ACC

= Application Client Packaged in an Application Client Container Accessing JMS
Resources

Before creating the client application, you must create JMS resources on the server.
For information on creating JMS resources, see the Sun Java System Application
Server Developer’s Guide to J2EE Services and APIs.

Application Client Accessing JMS Resources Without Using the ACC

A stand-alone client uses the RMI/11OP standard to communicate with Sun Java
System Application Server. The J2EE 1.3 specification requires that a stand-alone
client operate within the ACC context. However, Sun Java System Application
Server allows Java platform clients to directly access the resources residing on the
server. This section describes how you can develop a stand-alone client that can
access the JMS resources directly without using the ACC path.

The sample application Si npl eQueued i ent . j ava is used here to describe the steps
involved in developing a stand-alone client that looks up the JMS resources outside
ACC and also send and receive messages to a queue on Sun Java System
Application Server.

To create an application client:
1. Import the JMS packages.

inport javax.jns.*;
i nport javax.nam ng. *;

2. Create an initial context.
Context initial Context = new Initial Context();

Do not pass any environment properties to the I niti al Context constructor.
Instead, obtain the ORBhost name and port number through the command line
options.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

Look up the Queue by its INDI name. Use the j ns/ sanpl eQCF string to lookup
the JMS destination.

private static final String LOKUP_STR NG FACTORY = "j s/ sanpl eQCF";
private static final String LOOKUP_STR NG QUEUE = "j ns/ sanpl eQ';

factory = (QueueConnecti onFact ory)
initial Context.|ookup(LOOKUP_STRI NG FACTCRY);

queue = (Queue) initial Context.|ookup(LOXKUP_STRI NG QUEUE);
I'nitial Context method is used to retrieve administered objects.

To send and receive messages, you must follow the procedure to create a JMS
client:

o Create a QueueConnection to the message service. The connection
provides access to the underlying transport of the message, and is also
used to create sessions. Use the O eat eQueueConnecti on() method on the
factory object to create a connection.

o Start the connection. Unless the connection is started, MessageConsumers
associated with the messages cannot receive any messages.

o Create a QueueSession. Sessions provide context for producing and
consuming messages. Sessions are used to create message producers and
message consumers, as well as build message themselves.

o Create message producers. Use the session and destination to create a
message producer. In this example, a QueueSender is created.

o Create message consumers. Use the session and destination to create
message consumer. In this example, a QueueReceiver is created.

o Build a message. Use session to create an empty message and add the data.

o Send the message. The message is passed to the send method on the
QueueSender.

o Receive the message. Use the QueueRecei ver method to receive the message.

o Retrieve the message contents. Call the receive method with a timeout
argument (in milliseconds) greater than 0.

o Close all IMS resources.

For detailed instructions on developing a JMS client, see the Sun Java System
Application Server Developer's Guide to J2EE Services and APIs.

Chapter 2 Using the Application Client Container 25

Developing Application Clients

26

Next, configure JMS resources on Sun Java System Application Server. You can
either use the Administration Interface or the command line options to
configure the resources.

You need to configure the following general properties:
o jmshost - Application Server host name

o adminusr - Admin instance user name

o adminpwd - Admin instance password

o adminport - Admin instance port number
Configure the following Connection Factory and Destination resource.
Connection Factory:

o JNDI Name: j ns/ sanpl eQCF

o Resource Type: javax. j ns. QueueConnect i onFact ory
Destination Resource:

o JNDI Name: j ns/ sanpl eQ

o Resource Type: javax. j ns/ Queue

For information on configuring JMS resources, see the Sun Java System
Application Server Administration Guide.

NOTE You do not have to deploy this application on an ACC or Sun Java

System Application Server as it is a stand-alone client.

Run the client.

a. Setthe environment variable LD_LIBRARY_PATH. This variable should
point to the Application Server, the Sun Java System MQ jar files and
shared libraries:

LD LI BRARY_PATH=/ usr/ i b/ mps: /opt/ SUNWappserver 7/1ib:/usr/lib

If the Application Server is on a different system, copy all the jar files and
shared libraries from the / opt/ SUN\Wappserver 7/l i b, /usr/share/lib/ingand
/usr/1iblnps directories to the target system.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

b. Before running the client, set the values for the Java Virtual Machine
startup options:

jvmarg val ue = “-Dorg. ong. CORBA. CRBI ni ti al Host =${ ORBhost}”
jvmarg val ue = “-Dorg. ong. CORBA ORBI ni ti al Port =${ ORBport}”

Here ORBhost is the Application Server hostname and ORBport is the ORB
port number (default 3700 for serverl instance).

c. Run the client.
The code of the sample application is given below:
package sanples.jns.client;

i nport javax.jns.*;

i nport javax.namng.*;
import java.io.lCException;
inport java.util.*;

public class SinpleQueuedient {

private QeueConnectionFactory factory;
private Queue queue;

private static final String LOKUP_STR NG FACTORY
"j s/ sanpl eQCF";

private static final String LOXKUP_STR NG QUEUE
"j sl sanpl eQ';

public static void main(String[] args) throws Exception

{

Sinpl eQueued ient client = new SinpleQueuedient ();
client.execute();

}

public SinpleQueuedient () throws Exception {
try {

/1 create the initial context
Context initial Context = new Initial Context();

Chapter 2 Using the Application Client Container 27

Developing Application Clients

28

out ("Looki ng up the queue connection factory from JND
;" +LOOKUP_STRI NG_FACTCRY) ;

/1 1ook up the connection factory fromthe object store
factory = (QueueConnecti onFact ory)

initial Context.|ookup(LOOKUP_STRI NG FACTCRY);

out (LOOKUP_STRI NG FACTCRY + ": " + factory);

/1 1ook up queue fromthe object store

out ("Looki ng up the queue fromJND");

queue = (Queue) initial Context.|ookup(LOKUP_STRI NG QUEUE);
out (LOCKUP_STRING QUELE + ": " + queue);

}
cat ch (Nam ngException e) {

String msg = "An error was encountered trying to | ookup an obj ect
fromJNDI";
out (nsg);
e.printStackTrace();

}

public void execute()
throws | CException {

final StringnessageBody = "This is a sanple nmessage. It was " +
"sent at " + new Date();

QueueSessi on session =nul | ;
QueueConnecti on connection =nul | ;
QueueSender queueSender = null;
QueueRecei ver queueRecei ver = null;

String successText =" SUCCESSFUL";
Text Message nsgRecei ved =nul | ;

try {

/1l Oreating a QueueConnection to the Message service

out ("Oreating QueueConnection using the factory");

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

connection = factory. creat eQueueConnection();
out("Starting the Connection");
connection.start();

/1l Creating a session within the connection

session =
connect i on. cr eat eQueueSessi on(f al se, Sessi on. AUTO ACKNONLEDGE) ;
out ("Oreating a QueueSender");
queueSender = session. creat eSender (queue) ;
out ("Oreating a QueueRecei ver");
queueRecei ver = session. creat eRecei ver (queue) ;

/1 Building a nessage text

out ("Bui l ding a message");
Text Message nsgSent = sessi on. cr eat eText Message() ;
megSent . set Text (messageBody) ;

/1 Sending nessage to the target queue

out (" Sendi ng nessage to
queueSender . send(nsgSent) ;
out("Waiting for the return nessage");

+ queue. get QueueName());

/* conment the following line to | eave the nessage on the queue. then
use the nessage queue product's admn tools to verify that the message
was placed on the queue.

*/

/] Retrieving the next nessage that arrives within the tineout interval
of 2000 miliseconds

megRecei ved = (Text Message) queueRecei ver. receive(2000);

if (nmsgReceived == null) {
out ("An error has occurred. The return nessage was not
received.");
successText = "UNSUCCESSFUL";

} else {

/I Retreive the contents of the nmessage.
i f (nsgReceived instanceof TextMessage) {

Text Message t xt Msg = (Text Message) nsgRecei ved;
out ("\nMessage received: " + txtMg.getText());

Chapter 2 Using the Application Client Container 29

Developing Application Clients

}
catch (JMSException e) {

out ("An unexpected exception occurred: " + e);
Exception |inkedException = e.getLi nkedException();
if (linkedException != null) {
out ("The linked exception is: " + |inkedException);
}

e.printStackTrace();
successText = "UNSUCCESSFUL";

} finally {
/1 dose all JM5 resources
if (queueReceiver !'=null) {
try {

out ("d osing QueueRecei ver");
queueRecei ver. cl ose();
} catch (JMBException e) {
out ("There was an error closing the receiver");
e.print StackTrace();

}

if (queueSender != null) {
try {
out ("d osi ng QueueSender");
queueSender . cl ose();
} catch (JMBException e) {
out ("There was an error closing the sender");
e.print StackTrace();

30 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

if (session !=null) {

try {

out ("d osing session");

sessi on. cl ose();

} catch (JMBException e) {
out ("There was an error closing the session");
e.print StackTrace()

}

if (connection !'=null) {

try {
out ("d osing connection");
connection. cl ose();
} catch (JMSException e) {
out ("There was an error closing the connection");
e.printStackTrace();
}
}
destroy();
}

public void destroy() {
factory = null;
queue = nul |;

private void out(String nmessage) {
Systemout. printl n(nessage) ;

}

Chapter 2 Using the Application Client Container 31

Developing Application Clients

32

Application Client Packaged in an Application Client Container
Accessing JMS Resources

When the application client is packaged in an application client container, make
the following changes to the code. In the sample application
Si npl eQueued i ent . j ava, make the following changes:

1.

A J2EE application can be packaged using the Application Client Container.
Use the j ava: conp/ env/ j ns/ string to lookup the JMS resources. This is the J2EE
application namespace.

private static final String LOOKUP_STRI NG FACTORY
"java: conp/ env/j ns/ sanpl eQCF";

private static final String LOOKUP_STRI NG QUEUE
"java: conp/ env/ j ns/ sanpl eQ';

The Application Client Container gets the ORB hostname and port number
from the ACC configuration file sun-acc. xni .

The <nane> entry in this file will be the Application Server hosthame and the
port is the ORB port number (default 3700 for serverl instance).

Assemble the application client to create a jar file. Include the two
configuration files in the client jar file.

sun-application-client.xm - SunJava System Application Server specific
J2EE client application

For information on sun-appli cation-client.xm file, see “Sun Java System
Application Client Deployment Descriptor” on page 52.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

The contents of the sun-appli cation-client.xni is as follows:
<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE sun-application-client PUBLIC '-//Sun M crosystens,
Inc.//DTD Sun ONE Application Server 7 Application Aient 1.3//EN

"http:// ww sun. con sof t war e/ appser ver/ dt ds/ sun-appl i cation-client_
1_3-0.dtd' >

<sun-application-client>
<resour ce-ref>

<r es-ref - nane>j ns/ sanpl eQ</ r es-r ef - name>
<j ndi - nane>j s/ sanpl eQ</ j ndi - nanme>

</resource-ref>
<resource-ref >

<res-ref - nane>j ns/ sanpl eQCF</ r es- r ef - name>
<j ndi - name>j s/ sanpl eQCF</ j ndi - narme>

<resource-ref>
<sun-application-client>

application-client.xm - J2EE 1.3 application client deployment descriptor
The contents of the appli cation-client.xm isas follows:
<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE application-client PUBLIC'-//Sun M crosystens, Inc.//DID
J2EE Application dient 1.3//EN
"http://java.sun.conidtd/application-client_1 3.dtd >

<appl i cation-client>
<di spl ay- name>Si mpl eQueue</ di spl ay- nane>
<resource-ref>
<res-ref - name>j ns/ sanpl eQ</ r es-r ef - nane>
<res-type>j avax. j ns. Queue</res-type>
<res- aut h>Cont ai ner </ r es- aut h>
</resource-ref>

<resour ce-ref >

Chapter 2 Using the Application Client Container 33

Developing Application Clients

34

<res-ref - name>j ns/ sanpl eQCF</ r es-r ef - name>
<res-type>j avax. j ns. QueueConnect i onFact or y</res-t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>
</ application-client>

These deployment descriptors describe the external JMS resources
(administered objects) referenced by the sample application.

4. Package the application client using the appclient script. See “Packaging an
Application Client Using the ACC” on page 44.

package- appcl i ent script also creates a MANIFEST file that contains the main
class, which states the complete package prefix and classname of the Java
platform client.

5. Run the application client using the ACC. For instructions, see “Running an
Application Client Using the ACC” on page 47.

Authenticating an Application Client Using the
JAAS Module

Using the JAAS module, you can provide security in your application client code.
Create a Logi nMbdul e that describes the interface implemented by authentication
technology providers. Logi nMbdul es are plugged in under applications to provide a
particular type of authentication.The following steps are involved in creating a
Logi nhvodul e:

1. Write the Logi nMbdul e interface.
public class dientPasswordLogi nModul e i npl enents Logi nModul ef
private static Logger _Iogger=null;
static{
_l ogger =LogDonai ns. get Logger (LogDomai ns. SECUR TY_LOGGER) ;
}

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

private Subject subject;

private Cal | backHandl er cal | backHandl er;
private Map sharedState;

private Map options;

The standard JAAS package required by this class is j avax. security. The code
line below illustrates how you can import the package in your client
application:

inport javax.security.*;
Initialize the Logi nvbdul e interface that you just created.

public void initialize(Subject subject, CallbackHandl er
cal | backHandl er, Map sharedState, Map options) {

this.subject = subject;

thi s. cal | backHandl er = cal | backHandl er;
this.sharedState = sharedSt at e;
this.options = options;

}
o The parameter subj ect, is the subject to be authenticated.

o cal | backHandl er, for communicating with the end user which prompts for
the username and password.

o sharedState, is the shared Logi nMbdul e state.
o options, the options specified in the configuration file of the Logi nvodul e.

Use | ogi n() method to fetch the login information from the client application
and authenticate the user.

public bool ean 1 ogin() throws Logi nException {

if (uname !'=null) {
username = new String (unane);
pswd = System get Property (LOGd N_PASSWORD);

}
The login information is fetched using the Cal | BackHandl er .
Cal | back[] call backs = new Cal | back[2] ;

cal | backs[0] = new
NameCal | back(| ocal Strings. get Local String("l ogi n. usernane",
"d i ent Passwor dvbdul e username: "));

Chapter 2 Using the Application Client Container 35

Developing Application Clients

36

cal | backs[1] = new
Passwor dCal | back(| ocal Strings. get Local String("!l ogin. password”,
"d i ent Passwor dvbdul e password: "), false);

username = ((NameCal | back) cal | backs[0]). get Narme() ;
char[] tmpPassword = ((PasswordCal | back)cal | backs[1]). get Password();

The | ogi n() method tries to connect to the server using the login information
that is fetched. If the connection is established, the method returns the value
true.

Use commi t () method to set the subject in the session to the username that is
verified by the login method. If the commit method returns a value true, then
this method associates Pri nci pal | npl with the subj ect located in the

Logi nvbdul e. If this LoginModule’s own authentication attempt is failed, then
this method removes any state that was originally saved.

public bool ean conmt() throws Logi nException {
if (succeeded == false) {
return fal se;
} else {
/1 add a Principal (authenticated identity)to the Subject
/1 assume the user we authenticated is the Principallnpl
user Princi pal = new Principal | npl (usernane);

Use | ogout () method to remove the privilege settings associated with the roles
of the subject.

public bool ean | ogout () throws Logi nException {

subj ect . get Princi pal s().remove(userPrincipal);

succeeded = fal se;

succeeded = comm t Succeeded;

username = nul | ;

if (password !'=null) {

for (int i =0; i < password.length; i++)

password[i] =" ";
password = nul | ;

}

userPrincipal = null;
return true;

}

Edit the sun-acc. xni deployment descriptor to configure JAAS authentication
for the client. See “auth-realm” on page 63.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

7. Integrate the Logi nMdul e with the application server.
Edit the deployment descriptor to make the following changes:

o Configure the server with a realm that uses a specific Logi nMdul e for
security authentication.

o Map the application realm and roles to the realm and roles defined by the

Logi nMbdul e.

8. Assemble the application client. See “Packaging an Application Client Using

the ACC” on page 44.

Sample Code
The sample code of 4 i net Logi nPasswor dhbdul e is given below:

package com sun. enterprise.security.auth.login;

inport java.util.*;

inport java.io.|CException;

inport javax.security.auth.*;

inport javax.security.auth. call back. *;

inport javax.security.auth.login.*;

inport javax.security.auth.spi.*;

i nport com sun. enterprise.security.auth.login. PasswordC edenti al ;
i nport com sun. enterprise.security.Principallnpl;

i nport com sun. enterprise.security.auth. Logi nContextDriver;
inport comsun.enterprise.util.Local StringManager|npl;
inport java.util.logging.*;

i nport com sun. | oggi ng. *;

public class dientPasswordLogi nModul e i npl enents Logi nhodul e {

private static Logger _|ogger=null;
static{
_l ogger =LogDomnai ns. get Logger (LogDomai ns. SECURI TY_LOGGER) ;

}

private static final String DEFAULT _REALMNAME = "defaul t";
private static Local StringManagerlnpl |ocal Strings =
new Local StringManager | npl (Q i ent Passwor dLogi nvbdul e. cl ass) ;

[l initial state

private Subject subject;

private Call backHandl er cal | backHandl er;
private Map sharedState;

private Map options;

Chapter 2 Using the Application Client Container

37

Developing Application Clients

38

private bool ean debug = comiplanet.ias.util.logging. Debug. enabl ed;
/1 the authentication status

private bool ean succeeded = fal se;
private bool ean comit Succeeded = fal se;

/1 username and password

private String usernang;
private char[] password,;

private final PasswordCedential passwordCedential =null;
/'l testUser’s Principallnpl

private Principal | npl userPrincipal;
public static String LOGd N _NAVE = "j 2eel ogi n. name";
public static String LOGd N _PASSWRD = "j 2eel ogi n. password";

public void initialize(Subject subject, CallbackHandl er call backHandl er,
Map sharedState, Map options) {

this.subject = subject;

t hi s. cal | backHandl er = cal | backHandl er;
this.sharedState = sharedSt at e;
this.options = options;

/1 initialize any configured options
debug = "true". equal sl gnoreCase((String)options. get("debug"));
}

/* Authenticate the user by pronpting for a username and password. @eturn
true in all cases since this <code>Logi nMbdul e</ code> shoul d not be
i gnored. */

/* @xception Fail edLogi nException if the authentication fails. @xception
Logi nException if this <code>Logi nMdul e</code> is unable to performthe
aut henti cation. */

public bool ean login() throws Logi nException {
/1 pronpt for a usernane and password
if (callbackHandl er == null){

String failure =1ocal Strings. getLocal String("login.nocallback","Error:
no Cal | backHandl er available to garner authentication information fromthe
user");

throw new Logi nException(failure);

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

String uname = System get Property (LOG N_NAVE);
String pswd;

if (unanme !'= null) {

username = new String (unane);
pswd = Systemget Property (LOd N_PASSWORD);
char[] dest;
if (pswd == null){
dest = new char[0];
password = new char[0];
} else {
int length = pswd.length();
dest = new char[length];
pswd. get Chars(0, length, dest, 0);
password = new char[l ength];
}
System arraycopy (dest, 0, password, 0, dest.length);
} el sef{
Cal | back[] cal | backs = new Cal | back[2] ;
cal | backs[0] = new
NareCal | back(| ocal Strings. get Local String("l ogi n.usernange",
“dient Passwor dMbdul e usernane: "));
cal | backs[1] = new
Passwor dCal | back(| ocal Strings. get Local String("!l ogin. password”,
"dient Passwor dMvbdul e password: "), false);

try {
cal | backHandl er. handl e(cal | backs) ;
username = ((NameCal | back) cal | backs[0]). get Narme() ;
i f(username == nul |'){
String fail = local Strings. getlLocal String("login. nousernane",
"No user specified");
throw new Logi nException(fail);

}

char[] tnpPassword =
((Passwor dCal | back) cal | backs[1]) . get Passwor d() ;

if (tnpPassword == null) {
/1 treat a NULL password as an enpty password
tnpPassword = new char[0];
}
password = new char [t npPassword. | engt h] ;
Syst em arraycopy(tmpPassword, O,
password, 0, tnpPassword.length);
((Passwor dCal | back) cal | backs[1]) . cl ear Passwor d() ;

Chapter 2 Using the Application Client Container 39

Developing Application Clients

40

} catch (java.io.lCException ioe) {
t hrow new Logi nException(ioe.toString());
} catch (UnsupportedCal | backException uce) {
String nocal | back = local Strings. getLocal String("login.callback","Error:
Cal | back not available to garner authentication information from
user (Cal | backNare): ");
throw new Logi nExcepti on(nocal | back + uce. get Cal | back().toString());

}

}

/1 print debugging information

if (debug) {

for (int i =0; i < password.length; i++){

/1 Systemout. print(password[i]);

}

/] Systemout. println();

}

/1 by default - the client side login nodule will always say

/1 that the |ogin successful. The actual login will take place
/1 on the server side.
if (debug)

_logger.log(Level.FINE "[QientPasswordLogi nMbdul €] " +"aut henti cation
succeeded");

succeeded = true;

return true;

}

public bool ean conmt() throws Logi nException {
if (succeeded == false) {
return fal se;
} else {
/1 add a Principal (authenticated identity)to the Subject
/1 assume the user we authenticated is the Principallnpl
user Princi pal = new Principal I npl (usernane);
if (!subject.getPrincipals().contains(userPrincipal))
subj ect . get Princi pal s(). add(userPrincipal);
if (debug) {
_logger. |l og(Level.FINE "[QientPasswor dLogi nMbdul €] " +"added
Principal Impl to Subject");
}

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

Passwor dCredential pc = new Passwor dCr edenti al (user nanme, new
String(password), realm;

i f(!subject.getPrivateOedentials().contains(pc))subject.getPrivateC edent

ials().add(pc);

usernane = null;

for (int i =0; i < password.length; i++){
password[i] =" ;
password = nul | ;
commi t Succeeded = true;

return true;

}
}

public bool ean abort() throws Logi nException {
if (succeeded == false) {
return fal se;
} else if (succeeded == true & conmit Succeeded == fal se) {
/1 Togin succeeded but overall authentication failed
succeeded = fal se;
usernane = null;
if (password !=null) {
for (int i =0; i < password.|ength; i++)
password[i] =" ;
password = en das ull;
}
userPrincipal = null;
} else {

/1 overall authentication succeeded and conmt succeeded,
/1 but someone else’'s commt failed

| ogout ();

}

return true;

}

public bool ean | ogout () throws Logi nException {

subj ect . get Princi pal s(). remove(userPrincipal);

succeeded = fal se;

succeeded = comm t Succeeded;

username = nul | ;

if (password !'= null) {

for (int i =0; i < password.length; i++)

password[i] =" ’;
password = nul | ;

Chapter 2 Using the Application Client Container

41

Developing Application Clients

}

userPrincipal = null;
return true;

}
}

NOTE

Sun Java System Application Server does not support authentication
of RMI/ZIIOP Clients that do not use the ACC (non-ACC clients).

Invoking an RMI/IIOP-based Client Without
Using the ACC

You can invoke a J2EE client without using the ACC. When you are creating an
application client that does not use the ACC, you need to setup your development
environment as follows:

1. Include the following non-java libraries in the client’s classpath.

Solaris:

The following libraries can be found at install_dir/1i b:

O

u]

u]

a]

a]

l'ibcis.so

|'i bnspr4. so
I'i bplc4.so
|'ibnss3. so

|'i bssl 3. so

2. Inaddition to the non-java libraries, copy the following jar files to the client
system and add them to the classpath:

O

u]

u]

appserv-ext.jar
appserv-rt.jar

fscontext.jar

inmg.jar
i ngadnin. j ar
imgutil.jar

42 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

The following steps describe the procedure to create a client:
1. Define the main class as shown in the code illustration below:
public static void main(String[] args) {
String url = null;
String jndiname = null;
bool ean acc = true;

}

2. Ifthe code sees the url and j ndi name passed in, the acc flag is set to false and
does the EJB lookup differently than it does if this client code is called by the
application client utility without any arguments.

if (args.length == 2) {

url = args[0];

j ndi name = args[1];

acc = fal se;
Systemout.printIn("url = "+url);

}

3. Obtain the naming initial context and perform the JNDI look up.

Properties env = new Properties();

env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"com sun. j ndi . cosnam ng. CNCt xFact ory");

env. put (Cont ext . PROVIDER URL, url);
initial = new Initial Context(env);
objref = initial.lookup(jndinane);

4. Run the client from the command line.
java -cl asspath CP ClientApp URL JNDIName
where,

o CPisthe CLASSPATH which includes the application client jar file and the
appserv-ext.jar.

o ClientApp refers to the client program.

o URL refers to the application server running on a machine with host name
and with an ORB-port.

JNDIName matches the INDIName specified in the deployment file.

Chapter 2 Using the Application Client Container 43

Developing Application Clients

44

Packaging an Application Client Using the ACC

After installing Sun Java System Application Server, the ACC can be run by
executing the appcl i ent script located+ in the install_dir/bi n directory. The script
package- appcl i ent that is located in the same directory, is used to package a client
application into a single appcl i ent . j ar file. Packaging an application client involves
the following main steps:

= Editing the Configuration File

= Editing the appclient Script

= Editing the sun-acc.xml File

e Setting Security Options

= Using the package-appclient Script

Editing the Configuration File

Modify the environment variables in asenv. conf file located in the default-config_dir
directory as shown below:

= $AS | NSTALL to reference the location where the package was un-jared plus
/appclient. For example: $AS | NSTALL=/install_dir/appcl i ent .

= $AS NsSto reference the location of the nss libs.
For example:
UNIX:
$AS NSS=/install_dir/appclient/lib

= $AS JAVAto reference the location where you have installed the JDK.

= $AS ACC OONFI Gto reference the configuration xml (sun-acc. xni). The
sun-acc. xni is located at install_dir/confi g.

e $AS I M) LI Bto reference the img home. It should be: instance_dir/i ng/ 1 i b.

Editing the appclient Script
Modify the appcl i ent script file as follows:

UNIX:
Change $CONFI G_HOVE/ asenv. conf to your_ACC_dir/confi g/ asenv. conf.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

Editing the sun-acc.xml File
Modify sun-acc. xni file to set the following attributes:

Ensure that the DOCTYPE references %86ERVER ROOT9884 | i b/ dt ds to
your_ACC _dir/li b/ dtds.

Ensure that the <t ar get - server > addr ess attribute references the remote server
machine.

Ensure that the <t ar get - server> port attribute references the ORB port on the
remote server.

If you want to log the messages in a file, specify a file name for the
<l og-service> file attribute. You can also set the log level.

For example,
<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE client-container SYSTEM "file:{Your installed server
root}/lib/dtds/sun-application-client-container_1 0.dtd ">

<cl i ent - cont ai ner >
<target-server nane="qasol -el" address="qasol -el" port="3700">

<l og-service file=" " |evel ="WARNI NG'/ >
</client-contai ner>

If you want to enable load balancing and failover capabilities for the ACC
client, follow the steps described in the section “Creating an ACC Client With
Load Balancing and Failover Support (Enterprise Edition)” on page 20.

For more information on the sun-acc. xm file, see “Application Client Container
Configuration File” on page 57.

Setting Security Options

You can run the application client using SSL with certificate authentication. In
order to set the security options, modify the sun-acc. xm file as shown in the code
illustration below. For more information on the sun-acc. xm file, see the
“Application Client Container Configuration File” on page 57.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE cl i ent - cont ai ner SYSTEM

"file://llexport3/sun/appserver7/appserv/lib/dtds/sun-application-clien
t-container_1 0.dtd">

<cl i ent - cont ai ner>

Chapter 2 Using the Application Client Container 45

Developing Application Clients

<target-server nane="qasol -el" address="qasol -el" port="3700">
<security>

<ssl cert-ni cknane="cts" ssl 2-enabl ed="fal se"
ssl 2-ci phers="-rc4, -rcdexport,-rc2, -rc2export, - des, - desede3"

ssl| 3-enabl ed="t r ue"

ssl 3-tls-ciphers="+rsa_rc4_128 mi5, -rsa_rc4_40_md5, +rsa3_des_sha, +rsa_d
es_sha, -rsa_rc2_40_mi5, -rsa_nul | _mi5, -rsa_des_56_sha, -rsa_rc4_56_sha"

tls-enabl ed="true" tls-rollback-enabl ed="true"/>

<cert-db path="/export3/ctsdatalctscertdb" password="changeit"/>
</security>

</target-server>

<client-credential user-nane="j2ee" password="j2ee"/>

<l og-service file="" |evel ="WARNI NG'/ >

</client-container>

Using the package-appclient Script

The following steps describe the procedure to use the package- appcl i ent script that
is bundled with Sun Java System Application Server:

1. Under install_dir/bi n directory, run the package- appcl i ent script. This creates an
appclient.jar file and stores it under install_dir/I i b/ appcl i ent/ directory.

NOTE The appclient.jar file provides an application client container
package targeted at remote hosts and does not contain a server
installation. You can run this file from a remote machine with the
same operating system as where it is created. That is, appcl i ent . j ar
created on a Solaris platform will not function on Windowvs.

2. Copy the install_dir/l i b/ appcl i ent/appclient.jar file to the desired location.
The appclient.jar file contains the following files:

o appclient/bin-contains the appcl i ent script which you use to launch the
ACC.

o appclient/lib-contains the JAR and runtime shared library files.

o appclient/lib/appclient - contains the following files:

46 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing Application Clients

* sun-acc.xm -the ACC configuration file.
- client.policy file- the security manager policy file for the ACC.
« appclientlogin. conf file-the login configuration file.

« client.jar file - is created during the deployment of the client
application.

o appclient/lib/dtds - contains sun-application_client-contianer_1 3-0.dtd
which is the DTD corresponding to sun-acc. xm .

client.policy

client.policy file is the J2SE policy file used by the application client. Each
application client has a cli ent. pol i cy file. The default policy file limits the
permissions of J2EE deployed application clients to the minimal set of permissions
required for these applications to operate correctly. If you develop an application
client that requires more than this default set of permissions, you can edit the
client.policy file to add the custom permissions that your applications need. You
can use the J2SE standard policy tool or any text editor to edit this file. For more
information on using the J2SE policy tool, visit the following URL.:

http://java. sun. coni docs/ books/tutori al / securityl. 2/tour2/i ndex. ht m

For more information about the permissions you can set in the cli ent . pol i cy file,
visit the following URL.:
http://java.sun. conmj 2se/ 1. 4/ docs/ gui de/ securi ty/ per m ssi ons. ht m

Running an Application Client Using the ACC

To run a client application that is packaged in an application jar file, you first need
to launch the ACC. You can launch the application client container using appcl i ent
script.

appclient -client client_application_jar [-mai ncl ass
client_application_main_class_name| - nane display_name] [-xm sun-acc. xni]
[-textauth] [-user user_name] [-password password]

« -client: Specifies the name and location of the client application jar file. This is
a required parameter.

= -maincl ass: Specifies the class name that is located within the client jar whose
mai n() method is to be invoked. By default, uses the class specified in the cl i ent
jar. This is optional.

Chapter 2 Using the Application Client Container 47

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

Developing Application Clients

48

NOTE The class name must be the full name. For example,
com sun. test. Appd i ent

= -nane: Specifies the display name that is located in the application client jar file.
By default, the display name is specified in the client jar
application-client.xm file which is identified by the di spl ay- nane attribute.
This is optional.

NOTE -mai ncl ass, -nane are optional for a single client application. For
multiple client applications use either the -cl assnane option or the
-nane option.

= -xni: is used to specify the name and location of the client configuration xml
file. If you do not specify this option, ACC will use the default one from
appclient script identified by $AS ACC CONFI Gthat references to the default
instance. For Solaris bundle, this option is required.

= -textauth: is optional for user to specify authentication using the text format.

The following example shows how to run the sample application client,
rm Converter:

appclient -client rni-sinpleQient.jar

Sample Client Application

You can find the sample client application that demonstrates the working of an
RMI/IIOP client that uses an application client container at the following location:

install_dir/sanpl es/rni-iiop/sinple

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Chapter 3

Application Client Deployment
Descriptors

This chapter describes the application client deployment descriptors. This chapter
contains the following topics:

= Introducing Application Client Deployment Descriptors
= J2EE Application Client Deployment Descriptor
= SunJava System Application Client Deployment Descriptor

= Application Client Container Configuration File

Introducing Application Client Deployment
Descriptors

Deployment descriptors are the XML files used to configure the runtime properties
of a module or application. The J2EE Specification defines the format of these
descriptors. You can view and edit the deployment descriptors using a text editor
at any time during the development process.

Sun Java System Application Server application clients require three deployment
descriptors files:

= AJ2EE standard file (appl i cati on. cl i ent. xni), described in the J2EE
Specification.

= Anoptional Sun Java System Application Server specific client deployment
descriptor file (sun-application-client.xm), described in this section.

< Anoptional Sun Java System Application Server specific Application Client
Container Configuration file (sun-acc. xm), described in this section.

49

Introducing Application Client Deployment Descriptors

50

Format of Deployment Descriptors

A deployment descriptor file defines the elements that an XML file can contain and
the subelements and attributes these elements can have. The
sun-application-client-1 3-0.dtd file defines the format of the

sun-appl i cation-client.xn file. The sun-application-client-container-1 0.dtd file
defines the format of sun-acc. xn file. These DTD files are located in the
install_dir/ i b/ dt ds directory.

NOTE Do not edit the DTD files. Their contents change only with new
versions of Sun Java System Application Server.

For general information about DTD files and XML, see the XML specification at:
http: // www w3. or g/ TR REG xni

Each element defined in a DTD file (which may be present in the corresponding
XML file) can contain the following:

e Subelements
e Data

= Attributes

Subelements

An element can contain other elements. For example, the following code defines
the client-contai ner element.

<! ELEMENT cl i ent-contai ner (target-server, auth-real n?, client-credential ?,
| og- service?, property*))>

The ELEMENT tag specifies that a cl i ent - cont ai ner element can contain
target-server, auth-realm client-credential, |og-service, property
subelements.

The following table shows how optional suffix characters of subelements
determine the requirement rules, or number of allowed occurrences, for the
subelements. The left column lists the subelement ending character, and the right
column lists the corresponding requirement rule:

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

http://www.w3.org/TR/REC-xml

Introducing Application Client Deployment Descriptors

Table 3-1 requirement rules for subelement suffixes

Subelement Ending Requirement

Character

* Can contain zero or more of this subelement.
? Can contain zero or one of this subelement.
+ Must contain one or more of this subelement.
(none) Must contain only one of this subelement.

If an element cannot contain other elements, you see EMPTY or (#PCDATA) instead of a
list of element names in parentheses.

Data

Some elements contain data instead of subelements. These elements have
definitions of the following format:

<! ELEMENT element-name (#PCDATA) >
For example:

<I ELENENT credential (#PCDATA)>

Attributes

Elements that have ATTLI ST tags contain attributes (name-value pairs). Attributes
have definitions of the following format:

<I ATTLI ST element attribute type default attribute type default ...>
For example:

<I ATTLI ST client-contai ner user-name CDATA #REQU RED
password CDATA #REQUI RED
realm CDATA #| MPLI ED>

A client-container element can contain user - nane, passwor d, and r eal mattributes.
The #REQU RED label means that a value must be supplied.

The #1 MPLI ED label means that the attribute is optional, and that Sun Java System
Application Server generates a default value. Wherever possible, explicit defaults
for optional attributes (such as "true") are listed.

Chapter 3 Application Client Deployment Descriptors 51

J2EE Application Client Deployment Descriptor

Attribute declarations specify the type of the attribute. For example, CDATA means
character data, and %ool ean is a predefined enumeration.

J2EE Application Client Deployment Descriptor

Application clients are packaged in JAR format files with a .jar extension and
include a deployment descriptor similar to other J2EE application components. The
deployment descriptor describes the enterprise beans and external resources
referenced by the application. As with other J2EE application components, you
need to configure access to resources at the time of deployment, assign names for
enterprise beans and resources, etc.The deployment descriptor is standardized by
the J2EE 1.3 specification.

Sun Java System Application Client Deployment
Descriptor

The sun-application-client.xn isthe deployment descriptor for the application
clients. The easiest way to create a sun-appl i cati on-client.xni file is to deploy the
application client. For more information on deploying a client using the
Administration interface, see the Sun Java System Application Server Developer’s
Guide.

Elements in sun-application-client.xml file
Elements in the sun-application-client.xn file are as follows:

e sun-application-client

e resource-ref

e gjb-ref

e resource-env-ref

e res-ref-nane

e resource-env-ref-nanme

e defaul t-resource-principal
e nane

e password

52 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Sun Java System Application Client Deployment Descriptor

e ¢jb-ref-nanme

e jndi-nanme

NOTE Subelements must be defined in the order in which they are listed
under each Subelements heading unless otherwise noted.

Attributes
Elements can contain attributes (name, value pairs). Attributes are defined in
attributes lists using the ATTLIST tag.

None of the elements in the sun-appl i cation-client.xnm file contain attributes.

sun-application-client
This is the root element describing all the runtime bindings of a single application
client.

Subelements

The following table describes subelements for the sun-appl i cation-client element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Table 3-2 sun-application-client subelements

Element Required Description
resour ce-r ef Zero or more Maps the absolute JNDI name to the
resour ce-ref in the corresponding J2EE XML file.
ej b-ref zero or more Maps the absolute JINDI name to the ej b-ref in
the corresponding J2EE XML file.
resour ce- env-ref zero or more Maps the absolute INDI name to the
resour ce- env-ref in the corresponding J2EE
XML file.

resource-ref

Maps the absolute JNDI name to the resour ce-ref element in the corresponding
J2EE XML file.

Chapter 3 Application Client Deployment Descriptors 53

Sun Java System Application Client Deployment Descriptor

54

Subelements

The following table describes subelements for the resource-ref element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 3-3 resour ce-r ef subelements

Element Required Description

res-ref-nane only one Specifies the res-ref - nane in the corresponding
J2EE application-client.xn file.

j ndi - name only one Specifies the absolute jndi name of a resource.

defaul t-resource-princ zero or more Specifies the default principal (user) that the
i pal container uses to access a resource.

res-ref-name

Specifies the res-ref - nane in the corresponding J2EE appl i cati on-client.xm file
resour ce-ref entry.

Subelements
none

default-resource-principal
Specifies the default principal (user) that the container uses to access a resource.

If this element is used in conjunction with a JMS Connection Factory resource, the
nane and passwor d subelements must be valid entries in Sun Java Message Queue’s
broker user repository. See the “Security Management” chapter in the Sun Java
System Message Queue Administrator’s Guide for details.

Subelements

The following table describes subelements for the def aul t - r esour ce- pri nci pal
element. The left column lists the subelement name, the middle column indicates
the requirement rule, and the right column describes what the element does.

Table 3-4 defaul t-resource-princi pal subelements

Element Required Description
name only one Specifies the name of the principal.
passwor d only one Specifies the password for the principal.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Sun Java System Application Client Deployment Descriptor

name
Contains data that specifies the name of the principal.

Subelement
none

password
Contains data that specifies the password for the principal.

Subelement
none

ejb-ref
Maps the ej b-r ef - nane in the corresponding J2EE ej b-j ar. xni file ej b-ref entry to
the absolute j ndi - nane of a resource.

Subelements

The following table describes subelements for the ej b-ref element. The left column
lists the subelement name, the middle column indicates the requirement rule, and
the right column describes what the element does.

Table 3-5 ej b-ref subelements

Element Required Description

ej b-ref - name only one Specifies the name of a ejb reference in the
corresponding J2EE appclient.xml file.

j ndi - narre only one Specifies the absolute jndi name of a resource.

ejb-ref-name
Specifies the ej b-ref - nane in the corresponding J2EE ej b-ref. xm file ej b-ref entry.
This element locates the name of the ejb reference in the application.

Subelement
none

Chapter 3 Application Client Deployment Descriptors 55

Sun Java System Application Client Deployment Descriptor

resource-env-ref
Specifies the name of a resource env reference.

Subelements

The following table describes subelements for the resour ce-env-ref element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Table 3-6 resource-env-ref subelements

Element Required Description

resour ce- env-ref - narme only one Specifies the r es- r ef - name in the corresponding J2EE
application-client.xn file resource-env-ref entry.

def aul t - resour ce- pri nci pal only one Specifies the default principal (user) that the container uses
to access a resource.

j ndi - name only one Specifies the jndi-name of the associated entity.

resource-env-ref-name

Specifies the res-ref - nane in the corresponding J2EE appl i cati on-client.xm file
resour ce-env-ref entry.

Subelements

none

jndi-name
Contains data that specifies the absolute j ndi - name of a URL resource or a resource
in the appl i cation-client.xn file.

Subelement
none

56 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Application Client Container Configuration File

Application Client Container Configuration File

The sun-acc. xni file tracks changes in Sun Java System Application Client
Container configuration.

Elements in the sun-acc.xml File
Elements in the sun-acc. xm file are as follows:

client-contai ner
target - server
description
client-credenti al
| og- service
security

ssl

cert-db

aut h-real m

property

client-container

Defines Sun Java System Application Server specific configuration for the ACC.
This is the root element; there can only be one cl i ent - cont ai ner element in a
sun-acc. xni file.

Subelements
The following table describes subelements for the cl i ent - cont ai ner element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Table 3-7

client-container subelements

Element

Required

Description

target-server

auth-real m

Zero or more

only one

Specifies the 1IOP listener configuration of the target
server.

Specifies the optional configuration for JAAS
authentication realm.

Chapter 3 Application Client Deployment Descriptors 57

Application Client Container Configuration File

58

Table 3-7 client-container subelements (Continued)

Element Required Description

client-credential only one Specifies the default client credential that will be
sent to the server.

| og- service only one Specifies the default log file and the severity level of
the message.

property zero or more Specifies a property which has a name and a value.

Attributes

The following table describes attributes for the cl i ent - cont ai ner element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

Table 3-8 client-container attributes

Attribute Default Description
Value
sendPasswor d none Specifies whether client authentication credentials

should be sent to the server. Without authentication
credential all access to protected EJBs will result in
exceptions.

target-server
Defines the IIOP listener configuration of the target server.

Subelements

The following table describes subelements for the t ar get - server element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 3-9 target-server subelements

Element Required Description
description zero or more Specifies the description of the target server.
security zero or more Specifies the security configuration for the 1IOP/SSL

communication with the target server.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Application Client Container Configuration File

Attributes

The following table describes attributes for the t ar get - server element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

Table 3-10 target-server attributes

Attribute Default Description
Value
narme none Specifies the name of the application server instance

accessed by the client container.

addr ess none Specifies the host name or IP address (resolvable by
DNS) of the ORB.

port 3700 Specifies port number of the ORB.

For the new server instance, you need to assign a
different port number other than 3700. You can change
the port number in the Administration Interface. See the
Sun Java System Application Server Administration
Guide for more information.

description
Contains data that specifies a text description of the containing element.

Subelement
none

Attributes
none

client-credential

Default client credentials that will be sent to the server. If this element is present,
then it will be automatically sent to the server, without prompting the user for
username and password on the client side.

Subelements

The following table describes subelements for the cl i ent-credential element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Chapter 3 Application Client Deployment Descriptors 59

Application Client Container Configuration File

60

Table 3-11 client-credential subelement

Element Required Description
property zero or more Specifies a property which has a name and a value.
Attributes

The following table describes attributes for the cli ent-credenti al element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

Table 3-12 client-credential attributes

Attribute Default Description
Value

user - nane none The user name used to authenticate the Application
client container.

passwor d none The password used to authenticate the Application
client container.

real m none The realm (specified by name) where credentials are to
be resolved.

log-service
Specifies configuration settings for the log file.

Subelements

The following table describes subelements for the | og- servi ce element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 3-13 | 0g-servi ce subelement

Element Required Description

property zero or more Specifies a property which has a name and a value.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Attributes

Application Client Container Configuration File

The following table describes attributes for the | og- servi ce element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

Table 3-14 | og- servi ce attributes

Attribute Default
Value

Description

file client.log

| evel none

Specifies the name of the file where the application
client container logging information will be stored. By
default, the log file will be located at
Appclient_Root/logs/client.log.

(TN

If the value for the file attribute is set to Null (* “), the log
messages are displayed on the console. The log level is
set to the highest level (INFO). Log level can not be set
when the output mode is console.

Sets the base level of severity. Messages at or above
this setting get logged into the log file.

security

Defines SSL security configuration for IIOP/SSL communication with the target

Server.

Subelements

The following table describes subelements for the security element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 3-15 security subelement

Element Required Description

ssl zero or more Specifies the SSL processing parameters.

cert-db zero or more Specifies the location and authentication to read the
certification database.

Attributes

none

Chapter 3 Application Client Deployment Descriptors

61

Application Client Container Configuration File

ssl
Defines SSL processing parameters.

Subelements
none

Attributes

The following table describes attributes for the SSL element. The left column lists
the attribute name, the middle column indicates the default value, and the right
column describes what the attribute does.

Table 3-16 ssl attributes

Attribute Default Description
Value
cert-ni cknane none The nickname of the server certificate in the

certificate database or the PKCS#11 token.In the
certificate, the name format is tokenname:nickname.
Including the tokenname: part of the name in this
attribute is optional.

ssl 2-enabl ed none (Optional) Determines whether SSL2 is enabled.
ssl 3-enabl ed none (Optional) Determines whether SSL3 is enabled.
ssl 2-ci phers none (Optional) A space-separated list of the SSL2

ciphers used with the prefix + to enable or - to
disable. For example, +r c4. Allowed values are r c4,
rcdexport, rc2, rc2export, idea, des,
desedes.

ssl 3-t1s-ciphers none (Optional) A space-separated list of the SSL3
ciphers used, with the prefix + to enable or - to
disable, for example +r sa_des_sha. Allowed SSL3
values arersa_rc4_128 md5, , rsa_des_sha,
rsa_rc4 40 _nd5, rsa_rc2_40_md5, rsa_nul | _nd5.
Al owed TLS val ues are rsa_des_56_sha,
rsa_rc4 56 _sha.

t1s-enabl ed none Determines whether TLS is enabled.

t1s-rol | back-enabl ed none Determines whether TLS rollback is enabled.TLS
rollback should be enabled for MicroSoft Internet
Explorer 5.0 and 5.5.

client-auth-enabl ed none Determines whether SSL3 client authentication is
performed on every request, independent of
ACL-based access control.

62 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Application Client Container Configuration File

If both SSL2 and SSL3 are enabled, the server tries SSL3 encryption first. If that
fails, the server tries SSL2 encryption. If both SSL2 and SSL3 are enabled for a
virtual server, the server tries SSL3 encryption first. If that fails, the server tries
SSL2 encryption.

cert-db

Location and password to read the certificate database. Sun Java System
Application Server provides utilities with which a certificate database can be
created. certutil, distributed as part of NSS can also be used to create certificate
database.

Subelement
none

Attributes

The following table describes attributes for the cert - db element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

Table 3-17 cert-db attributes

Attribute Default Description
Value
cert-db-path none Specifies the absolute path of the certificate database
(cert7.db).
cert - db- passwor d none Specifies the password to access the certificate
database.
auth-realm

JAAS is available on the ACC. Defines the optional configuration for JAAS
authentication realm.

Authentication realms require provider-specific properties, which vary depending
on what a particular implementation needs.

For more information about how to define realms, see the Sun Java System
Application Server Developer’s Guide.

Here is an example of the default file realm:

<aut h-real m name="fil e"

Chapter 3 Application Client Deployment Descriptors 63

Application Client Container Configuration File

cl assname="comiplanet.ias.security.auth.realmfile.FileReal nf>
<property name="file" val ue="instance_dir/config/keyfile"/>
<property name="j aas-context" value="fil eReal ni'/>

</ aut h-real n»

Which properties an aut h-r eal melement uses depends on the value of the
aut h-r eal melement’s name attribute. The file real muses fil e and j aas- cont ext
properties. Other realms use different properties.

Subelements

The following table describes subelements for the aut h-real m element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 3-18 aut h-real m subelement

Element Required Description
property zero or more Specifies a property which has a name and a value.
Attributes

The following table describes attributes for the aut h- r eal melement. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

Table 3-19 aut h-real mattributes

Attribute Default Description
Value
aut h-r eal m nane none Defines the name of this realm.
cl assnanme none Defines the Java class which implements this realm.
property
Specifies a property, which has a name and a value.
Subelement
none

64 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Application Client Container Configuration File

Attributes

The following table describes attributes for the property element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

Table 3-20 property attributes

Attribute Default Description

Value
narme none Specifies the name of the property.
val ue none Specifies the value of the property.

Chapter 3 Application Client Deployment Descriptors 65

Application Client Container Configuration File

66 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Chapter 4

Java-based CORBA Clients

This chapter describes how to develop and deploy CORBA clients that use
RMI/I11OP protocol.

This chapter contains the following sections:
= CORBA Client Scenarios
= Developing non-ACC Java-based CORBA Clients

CORBA Client Scenarios

The most common scenarios in which CORBA clients are used are when either a
stand-alone program or another application server acts as a client to EJBs deployed
to Application Server. This section describes the following scenarios:

= Stand-alone Scenario

= Server to Server Scenario

Stand-alone Scenario

In the simplest case, a stand-alone program which does not use the ACC, running
on a variety of operating systems uses I1OP to access business logic housed in
backend EJB components, as shown in the figure “Stand-alone Client Accessing the
EJB Components” on page 68.

67

CORBA Client Scenarios

Figure 4-1 Stand-alone Client Accessing the EJB Components

Sun Java System Application Server

Java-based RMI/IIOP
CORBA Client

EJB Container

Server to Server Scenario

CORBA objects, and other application servers can use IIOP to access EJB
components housed in Application Server, as shown in the figure “Application
Server and CORBA Objects Accessing EJB Components” on page 69.

68 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

CORBA Client Scenarios

Figure 4-2 Application Server and CORBA Objects Accessing EJB Components

Application
Server

RMI/IIOP

Sun Java System
Application Server

CORBA Server

ORB Support Architecture

~

EJB Container

CORBA client support in Application Server involves the communication between
the ORB on the client and the ORB on the server, as shown in the figure “ORB
Support Architecture” on page 70.

Chapter 4 Java-based CORBA Clients

69

Developing non-ACC Java-based CORBA Clients

Figure 4-3 ORB Support Architecture

Sun Java System Application Server

Sun RMI/IIOP Sun

> e ’j
/ ORB ORB @
AL

Java ,
Client RMIAIOE EJB Container
R other | Java Engine =
ORB
Client Backend
CORBA
ORB [IIOPy,
Server

You can use the ORB that is bundled as part of the Application Server, or you can
use a third-party ORB (ORBIX 2000 or ORBacus 4.1).

Developing non-ACC Java-based CORBA Clients

This section describes the procedure to create, assemble, and deploy a Java-based
CORBA client that is not packaged using the ACC. This section describes the
following topics:

« Creating a Stand-alone CORBA Client
« Running a Stand-alone CORBA Client

Creating a Stand-alone CORBA Client

Clients do not directly access the EJB components. Instead, clients communicate
with the EJB components using the JNDI to locate EJB components’s home
interface. Clients invoke a method on remote home interface to get a reference to
EJB components remote interface.

70 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing non-ACC Java-based CORBA Clients

One of the first steps in coding a CORBA client using RMI/ZIIOP is, to perform a
lookup of an EJB components’s home interface. In preparation for performing a
JNDI lookup of the home interface, you must first set several environment
properties for the I ni ti al Cont ext. Then you provide a lookup name for the EJB
component.

The steps and an example are summarized in the following sections.
= Specifying the Naming Factory Class
= Specifying the JNDI Name of an EJB

Specifying the Naming Factory Class

According to the RMI/ZIIOP specification, the client must specify

com sun. j ndi . cosnam ng. NG xFact or y as the value of the

java. nam ng.factory.initial entry in an instance of a Properti es object. This object
is then passed to the INDI I ni ti al Cont ext constructor prior to looking up an EJB
component’s home interface.

For example:

Properties env = new Properties();

env. put ("java. naning.factory.initial","comsun.jndi.cosnam ng. CNCt xFact
ory");
env. put ("java. nanming. provider.url", "iiop://" + host +":"+port);

Context initial = new Initial Context(env);
(bj ect objref = initial.lookup("rmconverter");

Specifying the JINDI Name of an EJB

After creating a new JNDI I ni ti al Cont ext object, your client calls the | ookup
method on the I ni ti al Cont ext to locate EJB component’s home interface. The nhame
of the EJB components is provided on the call to | ookup. When using RMI/I1OP to
access remote EJB components, the parameter is referred to as the “JNDI name” of
the EJB component. The supported values of the INDI name vary, depending on
how your client application is packaged.

Chapter 4 Java-based CORBA Clients 71

Developing non-ACC Java-based CORBA Clients

72

When the client application is not packaged as part of an Application Client
Container (ACC), you must specify the absolute JNDI name of the bean in the JNDI
lookup. For example, the lookup in the rni converter sample could be written as
follows:

initial.lookup("rmconverter");

The” jndiname” can be found in the sun-ej b-jar. xni file under the <ej b> element
identified by the element <j ndi - nane>.

NOTE Sun Java System Application Server does not support authentication
of Java-based stand-alone CORBA clients.

Implementing Load Balancing and Failover Capabilities in the Client
Application (Enterprise Edition)

Sun Java Systems Application Server, Enterprise Edition supports the load
balancing and failover of 11OP requests from stand-alone and ACC clients, thus
providing high availability of J2EE application on the RMI/1IOP path.

In order to enable failover of IIOP requests, IIOP endpoints that constitute the
cluster in Sun Java System Application Server must be defined either using the
Administration Console or using the command line interface. The IIOP endpoints
definitions will be stored in the server. xni file. For more information, see the Sun
Java System Application Server Administration Guide or refer to Admin Console
online help.

The failover of J2EE applications happen only for those requests that cannot reach
the server and cause a CORBA COMM_FAILURE exception with a return status of
COMPLETED_NO on the client. When the server becomes inaccessible, the client
side application server ORB will failover the request to another accessible iiop
endpoint of the iiop cluster. When failing over the request, ORB randomly selects
alternate accessible iiop endpoint of the cluster.

See the Sun Java System Application Server Administration Guide for more
information on configuring an iiop cluster.

The properties to be set in order to enable load balancing and failover features in
your stand-alone clients are:

e java.namng.factory.initial

This property is used in specifying the Context Factory that should be used for load
balancing the 11OP requests, Set the property to
com sun. appser v. nam ng. SLASCt xFact ory.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing non-ACC Java-based CORBA Clients

e com sun. appserv.iiop.endpoints

This property specifies the list of IIOP endpoints defined in the server. xni . An IIOP
endpoint is specified as host:port where host is the host name or the IP address of
the system where Sun Java System Application Server is running and port is the
IIOP port number at which the server is listening for the 110OP requests.

e comsun. appserv.iiop. | oadbal anci ngpol i cy

If the endpoint property is specified, the, this property is used to specify the load
balancing policy. The value for this property must be InitialContext-based load
balancing policy. The value used to define this property isi c- based.

In order to implement load balancing capabilities in your client code perform the
following steps:

1. Set the following JVM property to configure the ORB.

com sun. CORBA. connect i on. CRBSocket Fact or yd ass=com sun. appserv. enterpri
se.iiop. EEl'l OPSocket Fact ory

org.ony. Portabl el nterceptor. ORBI nitializerd ass=com sun. appserv. ee.iiop
.EECRBInitializer

2. Setthe classpath to appserv-rt.jar and appserv-rt-ee.jar. These jar files are
located in the install_dir/!i b directory.

3. Use the following property of SIASCt xFact ory class, prior to the instantiation of
the InitialContext:

Properties env = new Properties();

env. put (“java. nam ng.factory.initial”,
“com sun. appserv. nam ng. SLASCt xFact ory”) ;

env. put (“com sun. appserv. iiop. endpoi nts”, "trident: 3600,
exodus: 3700") ;

env. put (“com sun. iiop. | oadbal anci ngpol i cy”, “ic-based");

/Icreate an initial naming context
Context initial = new Initial Context(env);

This client code instantiates the JNDI InitialContext Object by calling the new
I ni tial Context (env), where env is the list of INDI SPI properties.

You can also set the stand-alone client load balancing properties as JVM start-up
arguments. The properties are set using the following command syntax:

- D<Propertyname>=<Propertyvalue>

Chapter 4 Java-based CORBA Clients 73

Developing non-ACC Java-based CORBA Clients

74

The Java command will look something like the following command:

j ava - Dpropnamel=val uel - Dpropnane2=val ue2 <ot her vmoptions> cl assname
pr ogr am ar gunent s

Sun Java System ORB Configuration

Sun Java System Application Server continues to supports the following load
balancing implementation used in Sun ONE Application Server 7.

If you are using built-in Sun ORB, you can configure client-side load balancing
using the Round Robin DNS approach.

To implement a simple load balancing scheme without making source code
changes to your client, you can leverage the round robin feature of DNS. In this
approach, you define a single virtual host name representing multiple physical IP
addresses on which server instance ORBs are listening. Assuming that you
configure all of the ORBs to listen on a common IIOP port number, the client
applications can use a single host _nane: 11CP port during the JINDI lookup. The
DNS server resolves the host name to a different IP address each time the client is
executed.

You can also implement client-side load balancing using the Sun Java System
Application Server-specific naming factory class Sl ASG xFact ory. You can use this
class both on the client-side and on the server-side which maintains a pool of ORB
instances in order to limit the number of ORB instances that are created in a given
process.

The following code illustrates the use of SIASC xFact ory class:

Properties env = new Properties();

env. set Property("java.namng.factory.initial","com sun. appserv. nam ng. S
1ASCt xFact ory") ;

env. set Property("org. ong. CORBA. CRBI ni ti al Host", "nane service
host name”) ;

env. set Property("org.ong. CORBA. CRBInitial Port", "nane service port
nunber");

Initial Context ic = new Initial Context(env);

If you set a single URL property for the host and port above, your code would look
like this:

Properties env = new Properties();

env. setProperty("java. namng.factory.initial",
"'com sun. appserv. nani ng. SLASC xFact ory");

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing non-ACC Java-based CORBA Clients

env. set Property("java. nam ng. provider.url™, "iiop://“nane service
host nare: nanme service port nunber");

Initial Context ic = new Initial Context(env);

If you prefer, you may set the host and port values and the URL value as Java
System properties, instead of setting them in the environment as shown in the
above code illustration. The values set in your code will, however, override any
System property settings. Also, if you set both the URL and the host and port
properties, the URL takes precedence.

Note that the [nane servi ce host nane] value mentioned above could be a name that
maps to multiple IP addresses. The S1IASCt xFact ory will appropriately round robin
ORB instances across all the IP addresses everytime a user calls new

Initial Context() method.

Running a Stand-alone CORBA Client

As long as the client environment is set appropriately and you are using a
compatible JVM, you merely need to run the nai n class. Depending on whether you
are passing the I1OP URL components (host and port number) on the command
line or obtaining this information from a properties file, the exact manner in which
you run the main program will vary. For example, the rni converter sample is run
in the following manner:

java rmconverter. Converterdient host_ name port

The host_name is the name of the host on which an ORB is listening on the specified
port.

Chapter 4 Java-based CORBA Clients 75

Developing non-ACC Java-based CORBA Clients

76 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Chapter 5

C++ Clients

This chapter describes how to develop and deploy C++ clients that uses third-party
ORBs.

This chapter contains the following sections:
= Introducing C++ Clients

= Developing a C++ Client

Introducing C++ Clients

Application Server relies on the Sun’s built-in ORB to support access to EJBs via
RMI/I10OP. Java programs and other components, such as servlets and applets can
use the existing RMI/11OP support to access EJB components housed in Sun Java
System Application Server.

A C++ client can access EJB components via IIOP. However, this can not be
achieved using the Sun’s ORB due to the absence of a Sun ORB for C++ clients. A
C++ client requires an ORB implementation on its side; the Sun ORB has only a
Java version of the implementation. This forces the C++ client developers to use a
third-party ORB on the client side.

Developing a C++ Client

This section describes the steps to develop a C++ client using ORBacus 4.1 runtime
and development environment. This C++ client will call methods of an EJB that are
deployed to Application Server.

This section describes the following topics:

77

Developing a C++ Client

78

= Configuring C++ Clients to Access Sun Java System Application Server

= Creating a C++ Client

Configuring C++ Clients to Access Sun Java
System Application Server

This section describes how to configure C++ clients to access Sun Java System
Application Server. In the code example here, C++ client accesses the third party

ORB ORBacus 4.1.

This section presents the following topics:
= Software Requirements

= Preparing for C++ Client Development

< Assumptions and Limitations

Software Requirements
The following software are necessary for the development of a C++ client:

SOLARIS:

= Solaris 2.8

= ORBacus 4.1 for C++ on Solaris

< Sun Workshop 6 Update 2 (C++ 5.2)
e SunJava System Application Server

= Java™ 2 Platform, Standard Edition (J2SE™ platform) 1.4

Preparing for C++ Client Development

You must perform the following tasks before you start developing a C++ client:

1. Make sure that all the required software are installed. For more information on

the software required for C++ client development, see “Software
Requirements” on page 78.

Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing a C++ Client

2. Install Java Development Kit (JDK) 1.4.

3. Install ORBacus 4.1.
For instructions on installing ORBacus 4.1, see the ORBacus documentation.
SOLARIS:

Set the PATH to CC (C++ compiler of Sun workshop 6.2), rni ¢ (RMI compiler),
idl compiler of ORBacus.

export
PATH=<SUNwor kshoppat h>/ SUNVépr o/ WB6U2/ bi n: <JDK_HOVE>hi n: : $PATH

export ORBACUS LI CENSE=path to ORBacus 4.1 license file directory/ | i censes. t xt
export LD LI BRARY_PATH=path to ORBacus home/ i b

NOTE If your client development machine is different from that of the
machine where Sun Java System Application Server is installed,

copy the following classes to your client system:;

o Theappserv-ext.jar part of Sun Java System Application
Server available in install dir/l i b.

o All the classes corresponding to the application including
home interface, remote interface, helper classes, and third
party classes used by the application.

= Java language mapping specification does not support the use
of Java package names differing only in case, to simplify the
mapping. Sun Java System Application Server also does not
support the use of class or interface names within the same
package that differ only in case. Both of these are treated as
errors. Therefore the deployed beans should not have package
name and class name differing only in case.

= The explanations in this document are with respect to the
sample application Cart available at the following location:
install_dir/sanpl es/ rm -iiop/ cpp/

4. Install Application Server and test for basic functionality.

Chapter5 C++Clients 79

Developing a C++ Client

5. Deploy the sample application Cart - BookCart App. ear.

You can deploy this application using the Administration interface. It is not
mandatory to deploy the application, but a recommended step. For detailed
information on deploying this application, see the Sun Java System Application
Server Administration Guide.

NOTE To develop a C++ client, all the corresponding classes of the
application should be accessible. That is, the home and remote
interfaces of all the EJB components, helper classes, and other
classes that are part of the application must be accessible. After the
deployment, these can be made either part of Application Server or
independent of Application Server.

Assumptions and Limitations

For Java data types such as, HashTable or other custom Java classes that have to be
passed by value, you have to provide native C++ implementation or provide a
wrapper over existing C++ implementation of those classes (such as STL) that
conforms to the IDL files generated for the Java classes.

Creating a C++ Client

This section describes the procedure to create a C++ client that uses a third party
ORB. The developed C++ client application can then be deployed to Sun Java
System Application Server. The following are the major steps involved in creating
a C++ client:

= Generating the IDL Files
= Generating CPP Files from IDL Files

Generating the IDL Files
1. Create a directory for C++ client development. For example:

mkdi r cppcl i ent
cd cppclient

80 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing a C++ Client

Generate IDL files corresponding to remote and home interfaces of the EJB
components, helper classes, and other third party classes used by J2EE
applications.

Use the rni ¢ tool, which is part of JDK™ 1.4, for generating IDL files.

a.

Generate the IDL files corresponding to home and remote interface of all
the EJB components.

When the IDL files corresponding to home and remote references are
generated, the IDL files corresponding to the classes mentioned as part of
the method signature are also generated. Thus, the separate IDL
generation of those classes are not required. Generate only the classes
which do not figure as part of the method signature separately.

For example:
. rmc -classpath

instance_dir/appl i cati ons/j 2ee- apps/ BookCart App_1/ BookCar t AppEj b_j ar
:install_dir/l'i b/ appserv-ext.jar
-idl sanples.rm _iiop.cpp.ejb. CartHome

Il. rmic -classpath
instance_dir/appl i cati ons/ j 2ee- apps/ BookCart App_1/ BookCar t AppEj b_j ar
:install_dir/l'i b/ appserv-ext.jar
-idl sanples.rm _iiop.cpp.ejb.Cart

lll. rmic -classpath
instance_dir/appl i cati ons/j 2ee- apps/ BookCart App_1/ BookCar t AppEj b_j ar
:install_dir/l i b/ appserv-ext.jar
-idl sanples.rm _iiop.cpp.ejb.InterfaceTestd ass

-cl asspath - contains the path to all the classes against which IDL is
being generated. If the classes appearing as arguments to the method
are part of a different package, include those paths also. Include the
path to appserv-ext.jar in the classes.

The generated IDL files will be stored under directories corresponding
to the package of the classes.

For example, the Cart. cl ass will be mapped to Cart.idl and will be
under / cppclient/sanpl es/rni _iiop/cpp/ejbl/ directory.

Similarly, classes corresponding to JDK are generated under
javallang,javalio,javax/rm/ejhb,org/ ong/ and other similar
directories.

Chapter5 C++Clients 81

Developing a C++ Client

Generate the valuetypes corresponding to the classes native to J2SDK.

As mentioned in Step 2, when IDL specific to application classes such as, home
interface, remote interface, and other classes part of the application are
generated, it also generates the IDLs corresponding to the classes native to the
JDK.

The classes of JDK that are serializable get mapped as IDL value types. You
have to provide the implementation for these valuetypes using the IDL-to-CPP
compiler.

This will create C++ classes corresponding to the classes native to JDK.
However, these C++ files have only dummy methods apart from protected
methods that have implementation of accessor and modifier methods. If you
need to manipulate the C++ objects, you need to add new methods to the
generated C++ files.

If the Java class has any member variables, then the value type implementation
of that class will have accessor and modifier methods and they are protected.
You can add new public methods in the implementation class of valuetypes to
access and modify those member variables by calling the corresponding
protected methods.

Subsequently, compile these classes to generate an object file or as a shared
library. This is a one time effort and you do not require perform for every J2EE
application that you develop. You may re-use these implementations.

Develop the library for the valuetype implementations.

The following steps describe the procedure to develop your own library for the
valuetype implementations. All these valuetype implementations can be
grouped as a library. This library should contain object files (valuetype
implementation), the header(.h) and the IDL (.idl) files.

a. Modify the IDL files as required by following the guidelines given in the
next step.

b. Generate cpp files for all the IDL files corresponding to the Java classes
using the IDL compiler supplied with ORBacus. For example,

idl --inpl-all -1. -Iclasspathto IDL files -Iorbacus_homef/idl /
- | orbacus_home/i dl / OB *.idl

c. Implement the valuetype types, if required.

This is required only if you need to manipulate the object. For example,
collection classes like Vector, Hashtable, etc., proper implementation has to
be provided as lists so that elements can be retrieved and added to the list.

82 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing a C++ Client

d. Compile the cpp file to generate an object file or a shared library.

NOTE Generate the Java language classes before processing other IDL files.
Implement all the IDL files corresponding to the JDK before
proceeding with application specific IDL files.

5. Modify the generated IDL files such as the EJBs, helper classes, and third-party
classes corresponding to the application.

The generated IDL files do not compile directly. You need to manually modify
the IDL files for generating a CPP file. The list below explains the situations
when you need to modify the IDL files:

NOTE This is not a complete list and you may need to make suitable
modification to IDL files for successful generation of IDL files to
CPP files.

a. Delete the duplicate variables defined.

For example, in Enpl oyee.idl, employee_ is defined twice as:
private:: CORBA: : Wat ri ngVal ue enpl oyee_; attribute:: CORBA: : Wat ri ngVal ue
enpl oyee_;

Either of the duplicate entries can be deleted. Deleting the following
attribute is recommended:
attribute:: CORBA : Wt ri ngVal ue enpl oyee_;

b. Change the custom valuetypes to non-custom valuetypes.

For example, Valuetype Exception inherits from Throwabl e, which is a
custom valuetype. Remove the tag custom from the Thr owabl e valuetype
definition.

c. There will be cases where the same IDL file will be included more than
once. This will result in improper generation of the CPP files. Comment
such multiple includes.

« For example, Exception.id underjava/l ang has
javall ang/ Throwabl e. i dl included twice. Comment the second include.

« The IDL file may compile even when multiple includes are present.
However, the generated CPP file will be incorrect.

Chapter5 C++Clients 83

Developing a C++ Client

d. There will be cases where other IDL files are included circularly.

Some of the abstract valuetypes would be inheriting from
java::io::Serializable. Remove such inheritance.

For example, in InterfaceTest.idl, | nterfaceTest isan abstract valuetype
and it inherits from j ava: :i o: : Seri al i zabl e. Remove this inheritance.

Generating CPP Files from IDL Files
To generate the .cpp files form the .idl files, perform the following steps:

1. Gotothe path where the IDL files are generated. Include the following paths to
the idl command:

a. paths to all the application IDLs

b. paths to all the JDK related IDLs

c. ORBacus_home/i di

d. ORBacus_home/idl /B

The paths are included by the -1 option.

2. Execute the following command with the paths mentioned in Step 1, with
--inpl -al | options idl_file_name.

For example,

idl --inpl-all -lclasspath_to_java_classes_IDL -1/cppclient
-1/ orbacus_home/idl/ -1/orbacus_home/idl /OB -1. Conpl ex(hject.idl

You must first include the classpath to Java classes IDL files.

3. Execute the above command for all the IDL files corresponding to the
application in all the directories.

4. Modify the generated classes.

Some of the cpp files should be manually modified. The situations under
which modifications are required are given below:

84 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing a C++ Client

a. There can be clashes in the namespaces that appear in the code generated

from IDL to CPP using the IDL tool.
The following examples illustrate the scenarios:
Example 1
The class, A assDesc, generated under j avax/ r m / CORBA uses the classes such
as, OORBA: : Val ueBase. The class, CORBA: : Val ueBase, is part of the ORB
implementation and is defined under the namespace, CORBA.
d assDesc is defined under the namespace, javax::rni:: CORBA. If a
reference to ValueBase as CORBA : Val ueBase is made inside this class, it
looks for its definition under the j avax: : rm : : CORBA namespace.
This fails as it is defined under the namespace CORBA and not
javax::rm:: CORBA To force it to look in the namespace CORBA, change the
syntax to javax::rm:: CORBA: : Val ueBase.
Example 2
In the class example generated under the j ava/ | ang directory, there are
references to the Exception class.
There are two types of exceptions: CORBA: : Excepti on and
java: :lang: : Excepti on. Change toj ava: : | ang: : Excepti on from
OORBA: : Except i on. These kind of code changes are required for the classes to
compile properly.

NOTE You need not compile the classes corresponding to the skeletons, as

they will not be used to implement the valuetypes.

Chapter5 C++Clients 85

Developing a C++ Client

Implement the valuetypes.

The --inpl -al | option to the IDL command also generates the code for the
valuetype implementation, including the factories for creating the value types.
The valuetype implementation will have most of the methods as protected.

Therefore, they cannot be accessed directly and add new methods to the
valuetype implementation that are public. These methods call the protected
methods to achieve the desired functionality. The client programs will call
these newly added methods depending on the functionality.

However, sometimes these public methods are also generated by the IDL. In
such cases implementation can be provided in these methods by calling the
protected methods without adding new methods.

This type of generation is dependent on whether the variables are defined as
private or attribute in the IDL files. For example, Enpl oyee. cl ass gets mapped
as Enpl oyee valuetype. The implementation which is Enpl oyee. cpp generated for
this valuetype as part of IDL command consists of the method, enpl oyee_() as
protected. Since this cannot be accessed directly, we have to add

get Enpl oyeeNang() as a public method in the Enpl oyee_i npl . cpp and Enpl oyee. h.
This method calls enpl oyee_() method to achieve the functionality of returning
the Enpl oyeeNane.

NOTE You may have to add additional methods to achieve specific

functionality and to change the state of the object. These are
determined by your application design and the required
functionality.

Compile the value type implementations and other generated cpp files. You
need to write the makefile to generate a cpp file.

Develop the client program as required by design and functionality.

Include the header files of all the valuetypes. The following code illustrates the
steps:

sanpl es::rm _iiop::cpp::ejb::Compl ex(oj ect Fact ory_i npl
*conpl ex(hj ect Vi = new
sanpl es::rm _iiop::cpp::ejb:: Conpl exChj ect Factory_inpl ();

/1 initializing the ORB
CORBA: : ORB var orb = CORBA : ORB_init(argc,argv);

86 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

Developing a C++ Client

/'l registering the value factories. This is required for //unmarshalling
the val uet ypes

orb->regi ster_val ue_factory(
sanpl es::rm _iiop::cpp::ejb::Conmpl exChject:: OB.id(),conplexChjectVf);

Register the valuefactories after orbinit(). The registration of the
valuefactories are very essential. If they are not registered, it results in
marshalling exceptions and the ORB fails to unmarshall valuetypes.

8. Compile and link the client program with the previously generated object files.
9. Run the client program.

Provide the NaneSer vi ce URL to the program. You can pass this as the
-ORBconfi g <config fil e>property to the client. The configuration file contains
the NaneServi ce URL as follows:

ooc. or b. servi ce. NameSer vi ce=cor bal oc: : green. i ndi a. sun. com 1050/ Nane
Servi ce

For other ways to pass the NaneSer vi ce URL, refer to the ORBacus
documentation.

For example, c++client -ORBconfig = config_file_path/ config_file_name

Sample Applications

RMI/110P sample applications have been bundled with Sun Java System
Application Server. These samples have been augmented with detailed setup
instructions for deploying the application to Sun Java System Application Server.
The setup documentation and source code are available at the following location:

install_dir/sanpl es/ rm -ii op/

Chapter5 C++ Clients 87

Developing a C++ Client

88 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

A

ACC
features 18
naming 18
security 18
acc 17
acc clients
failover
properties 21
load balancing
properties 21
acc flag 43
acc package
asenv configuration settings 44
editing sun-acc.xml 45
modifying appclient script 44
using package-appclient script 46
appclient.jar file 46
contents 46
application client 15
accessing EJB 22
appclient script 47
create bean instance 20
creating using the ACC 19
invoke business method 20
invoking an EJB module 22
locate EJB home interface 19
making a remote call 23
running 47
using SSL with CA 45
application client container 17
application client container package

Index

client.policy file 47
application clients
authenticating using JAAS 34
security 34
application-client.xml 52
ATTLIST tag 51
attributes
#IMPLIED label 51
#REQUIRED label 51
authentication realm 63

C

c++ clients 77
configuring 78
developing 80
preparing for development 78
required classes 79
running 87

client 11, 57
architecture 15
web services clients 13

client types 13

clients
application clients 15
CORBA clients 14
JMS clients 14
RMI-IIOP clients 14
web client 13
web services clients 13

89

Section D

client-side load balancing 74 |
configuring Sun Java System ORB 74

CORBA clients 14 IDL files
i generate 81
scenarios 67 _
files 84 rmic tool 81
e IIOP 14

create bean instance

accessing EJBs 67
create method 20

accessing servers 68

Creating 20 IIOP listener configuration 58
IIOP/SSL configuration 61
InitialContext 71
D invoking a J2EE client without using acc 42

deployment descriptors 49
application client 52

application client container 57 J

attributes 51

data 51 J2EE application client 19

element 50 J2EE platform layers 11

format 50 Business logic layer 12

J2EE application client 52 client 11

subelements 50 database 12
developing c++ clients presentation 11

generate cpp files 84 J2SE policy file 47

generate IDL files 80, 81 JAAS module 34

generate valuetypes 82 LoginModule 34, 35

implementing valuetypes 86 IMS clients 14

modifying the generated IDL files 83 JNDI 14

registering valuefactories 86 specifying EJB name 71

E L
EJBs

accessing with IIOP 67
specifying JNDI name 71

launching acc 47

library for valuetype implementation
developing 82

load balancing 74

logging messages 45

LoginModule

F CallBackHandler 35

commit() method 36

integrate 37

login() method 35

logout() method 36

form-hint-field attribute 58

90 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

M

message-driven beans 14

modifying the generated IDL files
changing valuetypes 83
deleting duplicate variables 83

N

naming factory class 71

O

ORB architecture 69

P

param-name element 54

presentation layer
J2EE components 11
non-J2EE components 12

R

RMI/ZIIOP 14

RMIZIIOP client
load balancing and failover 72

rpm 10

S

S1ASCtxFactory class 74
scenarios
server-server 68
stand-alone 67

security
authentication data 18
JAAS module 18
using SSL with CA 45
setting the ORB port 45
showrev 10
SSL 18
SSL processing parameters 62
stand-alone clients
load balancing 72
stand-alone CORBA client
creating 70
running 75
subelements
requirement rules 50
Sun customer support 10
Sun’s ORB 77
sun-acc.xml elements
auth-realm 63
cert-db 63
client-container 57
client-credential 59
description 59
log-service 60
property 64
security 61
ssl 62
target-server 58
sun-acc.xml file 57
elements in 57
sun-application element

definition in sun-application_1_3-0.dtd file 50

sun-application-client.xml 52
sun-application-client.xml elements
default-resource-principal 54
ejb-ref 55
ejb-ref-name 55
jndi-name 56
name 55
password 55
resource-env-ref 56
resource-env-ref-name 56
resource-ref 53
resource-ref-name 54
sun-application-client 53

Section M

Index

91

Section T

sun-application-client.xml file 53
elements in 52

T

thin client 13

w

web client 13
web services clients 13

92 Application Server 7 2004Q2 Update 1 « Developer's Guide to Clients

	Contents
	Application Server 7 Developer’s Guide to Clients
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Related Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Contacting Sun
	Give Us Feedback
	Obtain Training
	Contact Product Support

	Overview of Clients
	Introducing Clients
	Types of Clients
	Web Clients
	Web Services Clients
	JMS Clients
	CORBA Clients
	Application Clients

	Using the Application Client Container
	Introducing the Application Client Container
	Application Client Container Features

	Developing Application Clients
	Creating an Application Client
	Locating the Home Interface
	Creating an Enterprise Bean Instance
	Invoking a Business Method

	Creating an ACC Client With Load Balancing and Failover Support (Enterprise Edition)
	Introducing the Properties that Support LB/FO for ACC Clients
	Configuration Changes

	Using an Application Client to Invoke an EJB Module
	Making a Remote Call on the EJB

	Using an Application Client to Access JMS Resources
	Application Client Accessing JMS Resources Without Using the ACC
	Application Client Packaged in an Application Client Container Accessing JMS Resources

	Authenticating an Application Client Using the JAAS Module
	Invoking an RMI/IIOP-based Client Without Using the ACC
	Packaging an Application Client Using the ACC
	Editing the Configuration File
	Editing the appclient Script
	Editing the sun-acc.xml File
	Setting Security Options
	Using the package-appclient Script

	Running an Application Client Using the ACC
	Sample Client Application

	Application Client Deployment Descriptors
	Introducing Application Client Deployment Descriptors
	Format of Deployment Descriptors
	Subelements
	Data
	Attributes

	J2EE Application Client Deployment Descriptor
	Sun Java System Application Client Deployment Descriptor
	Elements in sun-application-client.xml file

	Application Client Container Configuration File
	Elements in the sun-acc.xml File

	Java-based CORBA Clients
	CORBA Client Scenarios
	Stand-alone Scenario
	Server to Server Scenario
	ORB Support Architecture

	Developing non-ACC Java-based CORBA Clients
	Creating a Stand-alone CORBA Client
	Specifying the Naming Factory Class
	Specifying the JNDI Name of an EJB
	Implementing Load Balancing and Failover Capabilities in the Client Application (Enterprise Edition)

	Running a Stand-alone CORBA Client

	C++ Clients
	Introducing C++ Clients
	Developing a C++ Client
	Configuring C++ Clients to Access Sun Java System Application Server
	Software Requirements
	Preparing for C++ Client Development
	Assumptions and Limitations

	Creating a C++ Client
	Generating the IDL Files
	Generating CPP Files from IDL Files

	Sample Applications

	Index

