
Contents 1

Contents

About This Guide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Who Should Use This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
Using the Documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
How This Guide Is Organized  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
Related Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Documentation Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

General Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Conventions Referring to Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Contacting Sun  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Give Us Feedback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Obtain Training  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Contact Product Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Chapter   1 Overview of Clients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Introducing Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Types of Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Web Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
Web Services Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
JMS Clients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
CORBA Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
Application Clients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Chapter   2 Using the Application Client Container  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Introducing the Application Client Container  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

Application Client Container Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
Developing Application Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Creating an Application Client  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19



2 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Locating the Home Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Creating an Enterprise Bean Instance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Invoking a Business Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Creating an ACC Client With Load Balancing and Failover Support (Enterprise Edition) . . . . . .  20
Introducing the Properties that Support LB/FO for ACC Clients  . . . . . . . . . . . . . . . . . . . . . . . .  21
Configuration Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

Using an Application Client to Invoke an EJB Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Making a Remote Call on the EJB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

Using an Application Client to Access JMS Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Application Client Accessing JMS Resources Without Using the ACC . . . . . . . . . . . . . . . . . . . .  24
Application Client Packaged in an Application Client Container Accessing JMS Resources  .  32

Authenticating an Application Client Using the JAAS Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
Invoking an RMI/IIOP-based Client Without Using the ACC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
Packaging an Application Client Using the ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

Editing the Configuration File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
Editing the appclient Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
Editing the sun-acc.xml File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
Setting Security Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
Using the package-appclient Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

Running an Application Client Using the ACC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Sample Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

Chapter   3 Application Client Deployment Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Introducing Application Client Deployment Descriptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

Format of Deployment Descriptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
Subelements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

J2EE Application Client Deployment Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52
Sun Java System Application Client Deployment Descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

Elements in sun-application-client.xml file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52
Application Client Container Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

Elements in the sun-acc.xml File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

Chapter   4 Java-based CORBA Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67
CORBA Client Scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

Stand-alone Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67
Server to Server Scenario  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68
ORB Support Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

Developing non-ACC Java-based CORBA Clients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Creating a Stand-alone CORBA Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

Specifying the Naming Factory Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71



Contents 3

Specifying the JNDI Name of an EJB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71
Implementing Load Balancing and Failover Capabilities in the Client Application (Enterprise
Edition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

Running a Stand-alone CORBA Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

Chapter   5 C++ Clients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
Introducing C++ Clients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
Developing a C++ Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

Configuring C++ Clients to Access Sun Java System Application Server  . . . . . . . . . . . . . . . . . . . .  78
Software Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
Preparing for C++ Client Development  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
Assumptions and Limitations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

Creating a C++ Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80
Generating the IDL Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80
Generating CPP Files from IDL Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

Sample Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



4 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients



Sun Java™ System

Application Server 7
Developer’s Guide to Clients

2004Q2 Update 1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0595



Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
Use is subject to license terms. This distribution may include materials developed by third parties.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer
Pages, JSP, JDBC, JDK, JVM, Java Naming and Directory Interface, and JavaMail are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
_______________________________________________________________________________________________________________
Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l’adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etat -Unis et dans les
autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L’AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
L’utilisation est soumise aux termes de la Licence. Cette distribution peut comprendre des composants développés par des tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer
Pages, JSP, JDBC, JDK, JVM, Java Naming and Directory Interface, et JavaMail sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.
Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur dans
d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris,
mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.



3

About This Guide

This manual describes how to create and implement Java™ 2 Platform, Enterprise
Edition (J2EE™ platform) applications that follow the Enterprise JavaBean (EJB™)
specification in the Sun Java™ System Application Server Standard and Enterprise
Edition 7 2004Q2 environment. In addition to describing programming concepts
and tasks, this guide offers sample code, implementation tips, and the reference
material.

This preface addresses the following topics:

• Who Should Use This Guide

• Using the Documentation

• How This Guide Is Organized

• Related Information

• Documentation Conventions

• Contacting Sun

Who Should Use This Guide
The intended audience for this guide is the person who develops, assembles, and
deploys beans in a corporate enterprise.

This guide assumes you are familiar with the following topics:

• Java programming

• Java APIs as defined in the Java™ Servlet, JavaServer Pages™ (JSP™),
Enterprise JavaBeans™ (EJB™), and Java™ Database Connectivity (JDBC™)
specifications



Using the Documentation

4 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

• The SQL structured database query languages

• Relational database concepts

• Software development processes, including debugging and source code
control

Using the Documentation
The Sun Java System Application Server Standard and Enterprise Edition manuals
are available as online files in Portable Document Format (PDF) and Hypertext
Markup Language (HTML).

The following table lists tasks and concepts described in the Sun Java System
Application Server manuals. The manuals marked (updated for 7 2004Q2) have been
updated for the Sun Java System Application Server Standard and Enterprise
Edition 7 2004Q2 release. The manuals not marked in this way have not been
updated since the version 7 Enterprise Edition release.

Table 1 Sun Java System Application Server Documentation Roadmap

For information about See the following

(Updated for 7 2004Q2) Late-breaking information about the software and the
documentation. Includes a comprehensive, table-based summary of supported
hardware, operating system, JDK, and JDBC/RDBMS.

Release Notes

Sun Java System Application Server 7 overview, including the features available
with each product edition.

Product Overview

Diagrams and descriptions of server architecture and the benefits of the Sun Java
System Application Server architectural approach.

Server Architecture

(Updated for 7 2004Q2) How to get started with the Sun Java System Application
Server product. Includes a sample application tutorial. There are two guides, one for
Standard Edition and one for Enterprise Edition.

Getting Started Guide

(Updated for 7 2004Q2) Installing the Sun Java System Application Server Standard
Edition and Enterprise Edition software and its components, such as sample
applications and the Administration interface. For the Enterprise Edition software,
instructions are provided for implementing the high-availability configuration.

Installation Guide

(Updated for 7 2004Q2) Evaluating your system needs and enterprise to ensure that
you deploy Sun Java System Application Server in a manner that best suits your
site. General issues and concerns that you must be aware of when deploying an
application server are also discussed.

System Deployment Guide



Using the Documentation

About This Guide 5

Creating and implementing Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications intended to run on the Sun Java System Application Server that follow
the open Java standards model for J2EE components such as servlets, Enterprise
JavaBeans™ (EJBs™), and JavaServer Pages™ (JSPs™). Includes general
information about application design, developer tools, security, assembly,
deployment, debugging, and creating lifecycle modules. A comprehensive Sun Java
System Application Server glossary is included.

Developer’s Guide

(Updated for 7 2004Q2) Creating and implementing J2EE web applications that
follow the Java™ Servlet and JavaServer Pages (JSP) specifications on the Sun
Java System Application Server. Discusses web application programming concepts
and tasks, and provides sample code, implementation tips, and reference material.
Topics include results caching, JSP precompilation, session management, security,
deployment, SHTML, and CGI.

Developer’s Guide to Web
Applications

(Updated for 7 2004Q2) Creating and implementing J2EE applications that follow
the open Java standards model for enterprise beans on the Sun Java System
Application Server. Discusses Enterprise JavaBeans (EJB) programming concepts
and tasks, and provides sample code, implementation tips, and reference material.
Topics include container-managed persistence, read-only beans, and the XML and
DTD files associated with enterprise beans.

Developer’s Guide to Enterprise
JavaBeans Technology

(Updated for 7 2004Q2) Creating Application Client Container (ACC) clients that
access J2EE applications on the Sun Java System Application Server.

Developer’s Guide to Clients

Creating web services in the Sun Java System Application Server environment. Developer’s Guide to Web
Services

(Updated for 7 2004Q2) Java™ Database Connectivity (JDBC™), transaction, Java
Naming and Directory Interface™ (JNDI), Java™ Message Service (JMS), and
JavaMail™ APIs.

Developer’s Guide to J2EE
Services and APIs

Creating custom NSAPI plug-ins. Developer’s Guide to NSAPI

(Updated for 7 2004Q2) Information and instructions on the configuration,
management, and deployment of the Sun Java System Application Server
subsystems and components, from both the Administration interface and the
command-line interface. Topics include cluster management, the high-availability
database, load balancing, and session persistence. A comprehensive Sun Java
System Application Server glossary is included.

Administration Guide

(Updated for 7 2004Q2) Editing Sun Java System Application Server configuration
files, such as the server.xml file.

Administrator’s Configuration
File Reference

Configuring and administering security for the Sun Java System Application Server
operational environment. Includes information on general security, certificates, and
SSL/TLS encryption. HTTP server-based security is also addressed.

Administrator’s Guide to
Security

Table 1 Sun Java System Application Server Documentation Roadmap (Continued)

For information about See the following



How This Guide Is Organized

6 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

How This Guide Is Organized
This guide provides instructions for the development, assembly, and the
deployment of J2EE clients to Sun Java System Application Server.

• Chapter 1, “Overview of Clients”

This chapter introduces you to various types of clients that are supported by
Sun Java System Application Server.

• Chapter 2, “Using the Application Client Container”

This chapter describes how to use the Application Client Container to develop
and package application clients.

• Chapter 3, “Application Client Deployment Descriptors”

This chapter describes the application deployment descriptors.

• Chapter 4, “Java-based CORBA Clients”

Configuring and administering service provider implementation for J2EE™
Connector Architecture (CA) connectors for the Sun Java System Application
Server. Topics include the Administration Tool, Pooling Monitor, deploying a JCA
connector, and sample connectors and sample applications.

J2EE CA Service Provider
Implementation Administrator’s
Guide

(Updated for 7 2004Q2) Migrating your applications to the new Sun Java System
Application Server programming model, specifically from iPlanet Application Server
6.x and Sun ONE Application Server 7.0. Includes a sample migration.

Migrating and Redeploying
Server Applications Guide

(Updated for 7 2004Q2) How and why to tune your Sun Java System Application
Server to improve performance.

Performance Tuning Guide

(Updated for 7 2004Q2) Information on solving Sun Java System Application Server
problems.

Troubleshooting Guide

(Updated for 7 2004Q2) Information on solving Sun Java System Application Server
error messages.

Error Message Reference

(Updated for 7 2004Q2) Utility commands available with the Sun Java System
Application Server; written in manpage style.

Utility Reference Manual

Using the Sun™ Java System Message Queue 3.5 software. The Sun Java System
Message Queue
documentation at:

http://docs.sun.com/db?p=
prod/s1.s1msgqu

Table 1 Sun Java System Application Server Documentation Roadmap (Continued)

For information about See the following

http://docs.sun.com/db?p=prod/s1.s1msgqu


Related Information

About This Guide 7

This chapter describes the procedure to develop, assemble, and deploy
Java-based CORBA clients that do not use the ACC.

• Chapter 5, “C++ Clients”

This chapter describes the procedure to develop C++ clients using a
third-party ORB.

Finally, Index is provided.

Related Information
The following additional reading is recommended:

General J2EE Information:

Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi,
& Dan Malks, Prentice Hall Publishing

Java Security, by Scott Oaks, O’Reilly Publishing

Programming with EJB components:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

Java Remote Method Invocation Technology over Internet Inter-ORB Protocol:

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/

Documentation Conventions
This section describes the types of conventions used throughout this guide:

• General Conventions

• Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

• File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/


Documentation Conventions

8 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

❍ Italic type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 9.

By default, the location of install_dir on most platforms is:

❍ Solaris and Linux file-based installations:

user’s home directory/sun/appserver7

❍ Windows, all installations:

system drive:\Sun\AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 9 for
exceptions and additional information.

• Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following:

default_config_dir/domains/domain/instance

• UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.



Contacting Sun

About This Guide 9

Conventions Referring to Directories
By default, when using the Solaris package-based or Linux RPM-based installation,
the application server files are spread across several root directories. This guide
uses the following document conventions to correspond to the various default
installation directories provided:

• install_dir refers to /opt/SUNWappserver7, which contains the static portion of the
installation image. All utilities, executables, and libraries that make up the
application server reside in this location.

• default_config_dir refers to /var/opt/SUNWappserver7/domains, which is the
default location for any domains that are created.

• install_config_dir refers to /etc/opt/SUNWappserver7/config, which contains
installation-wide configuration information such as licenses and the master list
of administrative domains configured for this installation.

Contacting Sun
You might want to contact Sun Microsystems in order to:

• Give Us Feedback

• Obtain Training

• Contact Product Support

Give Us Feedback
If you have general feedback on the product or documentation, please send this to
http://www.sun.com/hwdocs/feedback

Obtain Training
Application Server training courses are available at:

http://training.sun.com/US/catalog/enterprise/web_application.html/

Visit this site often for new course availability on the Sun Java System Application
Server.

mailto:appserver-feedback@sun.com
http://training.sun.com/US/catalog/enterprise/web_application.html/


Contacting Sun

10 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Contact Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem. Here are some
of the commonly used commands:

❍ Solaris: pkginfo, showrev

❍ Linux: rpm

❍ All: asadmin version --verbose

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

• Configuration files such as:

❍ instance_dir/config/server.xml

❍ a web application’s web.xml file,
when a web application is involved in the problem

• For an application, whether the problem appears when it is running in a cluster
or standalone

http://www.sun.com/supportraining/


11

Chapter   1

Overview of Clients

A client can be a simple web browser or an application that runs on the client
system. Sun Java System Application Server 7 2004Q2 provides various types of
clients, a framework to connect to a back end source, execute the application logic,
and return the result to the client.

This chapter introduces different types of clients that Sun Java System Application
Server supports. The following topics are discussed in this chapter:

• Introducing Clients

• Types of Clients

Introducing Clients
A client application can be written using Java, C, C++, Visual Basic, or any
compatible programming language. A client application sends a request to an
application server at a given URL. The server receives the request, processes it, and
returns a response. These client programs execute remote procedures and
functions in an application server instance.

Sun Java System Application Server is a Java application server and is fully
compliant with the J2EE 1.3 specifications. The important layers of J2EE platform
are as follows:

• Client layer - The client layer is where the user accesses the application.

• Presentation layer - The presentation layer is where the user interface is
dynamically generated. An application may require the following J2EE
components in the presentation layer.

❍ Servlets

❍ JSPs



Introducing Clients

12 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

❍ Static Content

In addition, an application may require the following non-J2EE, HTTP
server-based components in the presentation layer:

❍ SHTML

❍ CGI

For more information about the components in the presentation layer, see the
Sun Java System Application Server Developer’s Guide to Web Applications.

• Business logic layer -The business logic layer contains deployed EJB
components that encapsulate business rules and other functions in session
beans, entity beans, and message-driven beans.

For more information about components in business logic layer, see the Sun
Java System Application Server Developer’s Guide to Enterprise JavaBeans
Technology.

• Data access layer - In the data access layer, JDBC (java database connectivity) is
used to connect to databases, make queries, and return query results, and
custom connectors work with Sun Java System Application Server to enable
communication with legacy EIS systems, such as IBM’s CICS.

Developers are likely to integrate access to the following systems using J2EE
CA (J2EE connection architecture):

❍ Enterprise resource management system

❍ Mainframe systems

❍ Third-party security systems

For more information about JDBC, see the Sun Java System Application Server
Developer’s Guide to J2EE Services and APIs.

For more information about connections, see the J2EE CA Service Provider
Implementation Administration Guide and the corresponding release notes.

For more information on the J2EE Architecture, see Sun Java System Application
Server Developer’s Guide.



Types of Clients

Chapter 1 Overview of Clients 13

Types of Clients
This section introduces the following types of clients that are supported by Sun
Java System Application Server:

• Web Clients

• Web Services Clients

• JMS Clients

• CORBA Clients

• Application Clients

Web Clients
A web client consists of two parts:

• Dynamic web pages containing various types of markup languages such as
Hyper Text Markup Language (HTML), Extensible Markup Language (XML),
etc, that are generated by web components running in the web server.

• A web browser, which renders the pages received from the server.

A web client is sometimes called a thin client. Thin clients do not query databases,
execute complex business rules, or connect to legacy applications. When you use a
thin client, heavyweight operations like these are off-loaded to enterprise beans
executing on the J2EE server where they can leverage the security, speed, services,
and reliability of J2EE server-side technologies.

Web Services Clients
Sun Java System Application Server supports Java-based client applications to
send requests to the web service, and receive a response from the web service. To
invoke a web service, these clients must construct and send SOAP messages over
HTTP.

Sun Java System Application Server supports Apache SOAP version 2.2 and JavaTM

API for XML-based RPC (JAX RPC) 1.1. Web services support is also built into Sun
Java Studio 4, which is bundled with Sun Java System Application Server.

For information on developing and deploying Web Services clients, see the Sun
Java System Application Server Developer’s Guide to Web Services.



Types of Clients

14 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

JMS Clients
Java Message Service (JMS) clients are the Java language programs that send and
receive messages using the JMS provider. JMS client can be any type of J2EE
application component:a web application, an Application Client Container client,
an EJB component, and so on. A client accesses a special kind of Enterprise
JavaBeans called the message-driven beans (MDB), through JMS by sending
messages to the JMS destination.

For more information on using the JMS API to develop JMS clients, see the Sun Java
System Application Server Developer’s Guide to J2EE Services and APIs.

CORBA Clients
CORBA clients are the client applications written in any language supported by
Common Object Request Broker Architecture (CORBA), including the Java
programming language, C++, and C.

CORBA clients are used when a stand-alone program or another application server
acts as a client to the EJBs deployed to Sun Java System Application Server. The
Application Server supports access to EJBs using the Internet Inter-ORB Protocol
(IIOP) as specified in the Enterprise JavaBeans Specification, V2.0, and the
Enterprise JavaBeans to CORBA Mapping Specification. These clients use Java
Naming and Directory Interface (JNDI) to locate EJBs, and use JavaTM Remote
Method Invocation/Internet Inter-ORB Protocol (RMI/IIOP) to access business
methods of remote EJBs.

Sun Java System Application Server supports remote reference from the following
client applications. Remote references essentially is an InterOperable Reference
(IOR), for an EJB that is used by the clients to invoke a remote operation.

• Java applications that are executing in the ACC accessing EJBs deployed on an
application server instance.

• Java applications, not running in the ACC accessing EJBs deployed on an
application server instance.

• servlets and JSPs in web applications executing in a different JVM than the
target server instance.

• EJBs executing in a different application server instance from the target
instance.



Types of Clients

Chapter 1 Overview of Clients 15

Application Clients
A J2EE application client runs on a client machine and provides a way to handle
tasks that require a richer user interface than can be provided by a markup
language. Typically, an application client has a GUI created from Swing or
Abstract Window Toolkit (AWT) APIs. Alternatively, you can use the
command-line interface.

Application clients directly access the EJB components residing in Sun Java System
Application Server. However, if application requirements warrant it, a J2EE
application client can open an HTTP connection to establish communication with a
servlet running in the web server.

The figure, “Client and Sun Java System Application Server Architecture”
illustrates client machines running the web browser, web service clients, RMI-IIOP
clients, or JMS clients; J2EE server machines running the Sun Java System
Application Server; and EIS server machines running databases and legacy
applications. JSPs and servlets provide the interface to the client tier, EJBs reside in
the business tier, and connectors provide the interface to legacy applications.



Types of Clients

16 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Figure 1-1 Client and Sun Java System Application Server Architecture

RDBMS

Client
layer

Client Server EIS

Presentation
layer

Web container

JMS provider

EJB container

Business
Logic layer

Data
Access layer

Data
layer

Web
Service
client

JMS
client

Browser

Browser

Legacy
application

JSP

JSP

Servlet

Servlet

HTML

EJB

EJB

EJB Connector

Connector

MDB Connector

Application
Client container

RMI/IIOP
client

Servlet

JDBC



17

Chapter   2

Using the Application Client
Container

This chapter describes how to access the application server using RMI/IIOP
protocol, and how to use the Application Client Container (ACC) to develop and
package application clients.

This chapter contains the following sections:

• Introducing the Application Client Container

• Developing Application Clients

Introducing the Application Client Container
The Application Client Container (ACC) includes a set of Java classes, libraries,
and other files that are required and distributed along with Java client programs
that execute on their own Java Virtual Machine. It manages the execution of the
application client components. The ACC provides system services that enable a
Java client program to execute. It communicates with Application Server using
RMI/IIOP and manages the details of RMI/IIOP communication using the client
ORB that is bundled with it. The ACC is specific to the EJB container and is often
provided by the same vendor. Compared to other J2EE containers that reside on
the server, this container is lightweight.



Developing Application Clients

18 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Application Client Container Features

Security
The ACC is responsible for collecting authentication data such as the username and
password from the user. Sends the collected data over RMI/IIOP to the server. The
server then processes the authentication data using the configured JavaTM

Authentication and Authorization Service (JAAS) module. See “Authenticating an
Application Client Using the JAAS Module” on page 34.

Authentication techniques are provided by the client container, and are not under
the control of the application client. The container integrates with the platform’s
authentication system. When you execute a client application, it displays a login
window and collects authentication data from the user. It also support SSL (Secure
Socket Layer)/IIOP if configured and when it is necessary.

Naming
The client container enables the application clients to use Java Naming and
Directory Interface (JNDI) to look up EJB components and to reference
configurable parameters set at the time of deployment.

Developing Application Clients
This section describes the procedure to develop, assemble, and deploy client
applications, how to use the ACC to package such applications and deploy them to
the server. This section describes the following topics:

• Creating an Application Client

• Creating an ACC Client With Load Balancing and Failover Support (Enterprise
Edition)

• Using an Application Client to Invoke an EJB Module

• Using an Application Client to Access JMS Resources

• Invoking an RMI/IIOP-based Client Without Using the ACC

• Authenticating an Application Client Using the JAAS Module

• Packaging an Application Client Using the ACC

• Running an Application Client Using the ACC



Developing Application Clients

Chapter 2 Using the Application Client Container 19

Creating an Application Client
A J2EE application client is a program written in the Java programming language.
At runtime, the client program executes in a different virtual machine than the
J2EE server.

Code examples from the Converter sample application illustrate the following steps
involved in the development of an application client:

• Locating the Home Interface

• Creating an Enterprise Bean Instance

• Invoking a Business Method

Locating the Home Interface
Use the Java Naming and Directory InterfaceTM (JNDI) to lookup and locate an EJB
component’s home interface. The following steps describe the procedure to locate
an EJB component’s home interface.

1. Create an initial naming context.

Context initial = new InitialContext();
Context myEnv = (Context)initial.lookup(“java:comp/env”);

The context interface is part of JNDI. An initial context object, which
implements the Context interface, provides the starting point for the resolution
of names. All naming operations are relative to a context.

2. Retrieve the object bound to the name RMCConverter.

Object objref = myEnv.lookup(“ejb/RMIConverter”);

The RMIConverter name is bound to an enterprise bean reference, a logical name
for the home of an enterprise bean component. In this case, the RMIConverter

name refers to the ConverterHome object. The names of enterprise bean
components should reside in the java:com/env/ejb subcontext.

3. Narrow the reference to a ConverterHome object.

ConverterHome home =(ConverterHome)
PortableRemoteObject.narrow(objref, ConverterHome.class);



Developing Application Clients

20 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Creating an Enterprise Bean Instance
To create the bean instance, the client invokes the create method on the
ConverterHome object. The create method returns an object whose type is Converter.
The remote converter interface defines the business methods of the bean that the
client may call and the EJB container instantiates the bean and then invokes the
ConverterBean.ejbCreate method.

Converter currencyConverter = home.create();

Invoking a Business Method
To invoke a business method, you first need to invoke a method on the Converter

object. The EJB container will invoke the corresponding method on the
ConverterEJB instance that is running on the server. The client invokes the
dollarToYen business method in the following lines of code:

BigDecimal param = new BigDecimal ("100.00");

BigDecimal amount = currencyConverter.dollarToYen(param);

Creating an ACC Client With Load Balancing
and Failover Support (Enterprise Edition)
Sun Java System Application Server, Enterprise Edition provides a highly available
J2EE application through the use of load balancing and a sophisticated failover
mechanism on the RMI/IIOP path.

The following features are supported:

• Load balancing of requests from client applications on the RMI/IIOP path

• High availability of remote references for RMI/IIOP invocations from
stand-alone clients and ACC clients.

High availability of J2EE application means that, if between method invocations,
the server instance to the EJB object becomes unavailable, then subsequent
invocations are redirected to an alternate available server instance in the cluster.

For more information on High Availability, see the Sun Java System Application
Server Administration Guide.



Developing Application Clients

Chapter 2 Using the Application Client Container 21

Introducing the Properties that Support LB/FO for ACC Clients
In order to enable load balancing capabilities in your ACC client, Sun Java System
Application Server supports the following two properties:

• com.sun.appserv.iiop.endpoints

This property defines the list of one or more IIOP endpoints. An endpoint is
specified as host:port where host is the name or IP address of the system where
Sun Java System Application Server is running. Port is the IIOP port at which
the server is listening for IIOP requests.

• com.sun.appserv.iiop.loadbalancingpolicy

If the endpoint property is specified, then, this property is used to specify the
load balancing policy. The value for this property must be
InitialContext-based. The value used to define this property is ic-based.

Configuration Changes
Define the load balancing properties in the sun-acc.xml file to provide a highly
available ACC client. The properties are defined as property elements in the
sun-acc.xml file.

For example:

<client-container>

<target-server name="qasol-e1" address="qasol-e1" port="3700">

<property name="com.sun.appserv.iiop.loadbalancingpolicy"
value="ic-based" />

      <property name="com.sun.appserv.iiop.endpoints"
value="qasol-e1:3700", “qasol-el:3800” />

</client-container>

To failover an ACC client on the RMI/IIOP path, information about all the
endpoints in a cluster to which the RMI/ IIOP requests can be failed over must be
available. You must have defined the IIOP endpoints in the server.xml file. The
iiop-cluster element under the availability-service element defines the IIOP
endpoints.

NOTE The endpoints are categorized as those configured for non-SSL and
those configured for SSL. Only endpoints configured for non-SSL
are supported. For more information on defining IIOP endpoints,
see the Sun Java System Application Server Administration Guide.



Developing Application Clients

22 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Using an Application Client to Invoke an EJB
Module
This section describes how an application client can be used to call a stand-alone
EJB module, or an EJB module residing in another J2EE application client.

To call an EJB module from an application client, perform the following steps:

1. Define the element <ejb-ref> in the application-client.xml file. The deployer
provides the JNDI name for the <ejb-ref> in the corresponding
sun-application-client.xml file.

For more information on the sun-application-client.xml file, see “Sun Java
System Application Client Deployment Descriptor” on page 52.

2. Make sure that the JNDI name matches with the JNDI name defined in the EJB
module.

3. Deploy the EJB module using the Administration interface. For more
information on deploying an EJB module using the Administration Interface,
see the Sun Java System Application Server Administration Guide.

The client JAR file is created at the following location:
/application/j2ee-modules/ejbmodulename/appclient.jar

4. Distribute your appclient.jar file to the location that the client JVM can access.

5. Ensure that the appclient.jar file includes the following files:

❍ a Java class to access the bean

❍ application-client.xml

❍ sun-application-client-.xml

❍ The MANIFEST.MF file. This file contains the main class, which states the
complete package prefix and classname of the Java client.

6. Run the application client to access the EJB component. The following line of
code illustrates how to invoke an EJB component using the ACC:

appclient -client jarpath -mainclass client application main class|-name name
-xml config_xml_file app-args

❍ -client is required and specifies the name and location of the application
client jar file.



Developing Application Clients

Chapter 2 Using the Application Client Container 23

❍ -mainclass is optional and specifies the class name, that is located within
the appclient.jar file whose main() method is to be invoked. By default,
the class specified in the client jars Main-class attribute of the MANIFEST file
is used.

❍ -name is optional and specifies the display name that is located within the
appclient.jar. By default, the display name is specified in the client jar
application-client.xml file as display-name attribute.

❍ -xml, which specifies the name and location of the ACC configuration xml
file, is required if you are not using the default domain and instance. By
default, the ACC uses instance_dir/config/sun-acc.xml for clients running
on the application server, or install_dir//lib/appclient/sun-acc.xml for
clients that are packaged using the package-applclient script.

❍ app-args are optional and they represent the arguments passed to the
client’s main() method.

7. To deploy the application client, assemble the application client to create a
standard J2EE .ear file and then deploy the application client to Sun Java
System Application Server.

Making a Remote Call on the EJB
If you need to access the EJB components that are residing in a remote system other
than the system where the application client is being developed, make the
following changes into the sun-acc.xml fie.

• Define the <target-server> address attribute to reference the remote server
machine.

• Define the <target-server> port attribute to reference the ORB port on the
remote server.

This information can be obtained from the server.xml file on the remote system. For
more information on server.xml file, see the Sun Java System Application Server
Administrator’s Configuration File Reference.

Using an Application Client to Access JMS
Resources
This section describes the procedure to develop an application client that can
access JMS resources to send a JMS message to a destination. The following two
scenarios are discussed:



Developing Application Clients

24 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

• Application Client Accessing JMS Resources Without Using the ACC

• Application Client Packaged in an Application Client Container Accessing JMS
Resources

Before creating the client application, you must create JMS resources on the server.
For information on creating JMS resources, see the Sun Java System Application
Server Developer’s Guide to J2EE Services and APIs.

Application Client Accessing JMS Resources Without Using the ACC
A stand-alone client uses the RMI/IIOP standard to communicate with Sun Java
System Application Server. The J2EE 1.3 specification requires that a stand-alone
client operate within the ACC context. However, Sun Java System Application
Server allows Java platform clients to directly access the resources residing on the
server. This section describes how you can develop a stand-alone client that can
access the JMS resources directly without using the ACC path.

The sample application SimpleQueueClient.java is used here to describe the steps
involved in developing a stand-alone client that looks up the JMS resources outside
ACC and also send and receive messages to a queue on Sun Java System
Application Server.

To create an application client:

1. Import the JMS packages.

import javax.jms.*;
import javax.naming.*;

2. Create an initial context.

Context initialContext = new InitialContext();

Do not pass any environment properties to the InitialContext constructor.
Instead, obtain the ORBhost name and port number through the command line
options.



Developing Application Clients

Chapter 2 Using the Application Client Container 25

3. Look up the Queue by its JNDI name. Use the jms/sampleQCF string to lookup
the JMS destination.

private static final String LOOKUP_STRING_FACTORY = "jms/sampleQCF";

private static final String LOOKUP_STRING_QUEUE = "jms/sampleQ";

factory = (QueueConnectionFactory)
initialContext.lookup(LOOKUP_STRING_FACTORY);

queue = (Queue) initialContext.lookup(LOOKUP_STRING_QUEUE);

InitialContext method is used to retrieve administered objects.

4. To send and receive messages, you must follow the procedure to create a JMS
client:

❍ Create a QueueConnection to the message service. The connection
provides access to the underlying transport of the message, and is also
used to create sessions. Use the CreateQueueConnection() method on the
factory object to create a connection.

❍ Start the connection. Unless the connection is started, MessageConsumers
associated with the messages cannot receive any messages.

❍ Create a QueueSession. Sessions provide context for producing and
consuming messages. Sessions are used to create message producers and
message consumers, as well as build message themselves.

❍ Create message producers. Use the session and destination to create a
message producer. In this example, a QueueSender is created.

❍ Create message consumers. Use the session and destination to create
message consumer. In this example, a QueueReceiver is created.

❍ Build a message. Use session to create an empty message and add the data.

❍ Send the message. The message is passed to the send method on the
QueueSender.

❍ Receive the message. Use the QueueReceiver method to receive the message.

❍ Retrieve the message contents. Call the receive method with a timeout
argument (in milliseconds) greater than 0.

❍ Close all JMS resources.

For detailed instructions on developing a JMS client, see the Sun Java System
Application Server Developer's Guide to J2EE Services and APIs.



Developing Application Clients

26 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

5. Next, configure JMS resources on Sun Java System Application Server. You can
either use the Administration Interface or the command line options to
configure the resources.

You need to configure the following general properties:

❍ jmshost - Application Server host name

❍ adminusr - Admin instance user name

❍ adminpwd - Admin instance password

❍ adminport - Admin instance port number

Configure the following Connection Factory and Destination resource.

Connection Factory:

❍ JNDI Name: jms/sampleQCF

❍ Resource Type: javax.jms.QueueConnectionFactory

Destination Resource:

❍ JNDI Name: jms/sampleQ

❍ Resource Type: javax.jms/Queue

For information on configuring JMS resources, see the Sun Java System
Application Server Administration Guide.

6. Run the client.

a. Set the environment variable LD_LIBRARY_PATH. This variable should
point to the Application Server, the Sun Java System MQ jar files and
shared libraries:

LD_LIBRARY_PATH=/usr/lib/mps:/opt/SUNWappserver7/lib:/usr/lib

If the Application Server is on a different system, copy all the jar files and
shared libraries from the /opt/SUNWappserver7/lib, /usr/share/lib/imq and
/usr/lib/mps directories to the target system.

NOTE You do not have to deploy this application on an ACC or Sun Java
System Application Server as it is a stand-alone client.



Developing Application Clients

Chapter 2 Using the Application Client Container 27

b. Before running the client, set the values for the Java Virtual Machine
startup options:

jvmarg value = “-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}”
jvmarg value = “-Dorg.omg.CORBA.ORBInitialPort=${ORBport}”

Here ORBhost is the Application Server hostname and ORBport is the ORB
port number (default 3700 for server1 instance).

c. Run the client.

The code of the sample application is given below:

package samples.jms.client;

import javax.jms.*;
import javax.naming.*;
import java.io.IOException;
import java.util.*;

public class SimpleQueueClient  {

private  QueueConnectionFactory factory;
private  Queue queue;

private static final String LOOKUP_STRING_FACTORY =
"jms/sampleQCF";

private static final String LOOKUP_STRING_QUEUE   =
"jms/sampleQ";

public static void main(String[] args) throws Exception

{

SimpleQueueClient client = new SimpleQueueClient ( );
client.execute();
}

public SimpleQueueClient ( ) throws Exception {

  try {

// create the initial context
Context initialContext = new InitialContext();



Developing Application Clients

28 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

out("Looking up the queue connection factory from JNDI
:"+LOOKUP_STRING_FACTORY);

// look up the connection factory from the object store
factory = (QueueConnectionFactory)

initialContext.lookup(LOOKUP_STRING_FACTORY);
out(LOOKUP_STRING_FACTORY + ": " + factory);

// look up queue from the object store
out("Looking up the queue from JNDI");
queue = (Queue) initialContext.lookup(LOOKUP_STRING_QUEUE);
out(LOOKUP_STRING_QUEUE + ": " + queue);

}

catch (NamingException e) {

String msg = "An error was encountered trying to lookup an object
from JNDI";
out(msg);
e.printStackTrace();

  }

}

public void execute()

throws  IOException {

final StringmessageBody = "This is a sample message. It was " +
"sent at " + new Date();

QueueSession session =null;
QueueConnection connection =null;
QueueSender queueSender = null;
QueueReceiver queueReceiver = null;
String successText ="SUCCESSFUL";
TextMessage msgReceived =null;

try {

//  Creating a QueueConnection to the Message service

out("Creating QueueConnection using the factory");



Developing Application Clients

Chapter 2 Using the Application Client Container 29

connection = factory.createQueueConnection();
out("Starting the Connection");
connection.start();

// Creating a session within the connection

session =
connection.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);
out("Creating a QueueSender");
queueSender = session.createSender(queue);
out("Creating a QueueReceiver");
queueReceiver = session.createReceiver(queue);

// Building a message text

out("Building a message" );
TextMessage msgSent = session.createTextMessage();
msgSent.setText(messageBody);

// Sending message to the target queue

out("Sending message to " + queue.getQueueName() );
queueSender.send(msgSent);
out( "Waiting for the return message" );

/* comment the following line to leave the message on the queue. then
use the message queue product's admin tools to verify that the message
was placed on the queue.
*/

// Retrieving the next message that arrives within the timeout interval
of 2000 miliseconds

msgReceived = (TextMessage) queueReceiver.receive(2000);

if (msgReceived == null) {
out("An error has occurred.  The return message was not

received.");
successText = "UNSUCCESSFUL";

} else {

//Retreive the contents of the message.
if (msgReceived instanceof TextMessage) {

TextMessage txtMsg = (TextMessage) msgReceived;

out("\nMessage received: " + txtMsg.getText());



Developing Application Clients

30 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

}

}

}

catch (JMSException e) {

out("An unexpected exception occurred: " + e);
Exception linkedException = e.getLinkedException();
if (linkedException != null) {

out("The linked exception is: " + linkedException);
}

e.printStackTrace();
successText = "UNSUCCESSFUL";

} finally {

// Close all JMS resources

if (queueReceiver != null) {

try {
       out("Closing QueueReceiver");
       queueReceiver.close();
     } catch (JMSException e) {
       out("There was an error closing the receiver");
       e.printStackTrace();

}

}

if (queueSender != null) {
try {

       out("Closing QueueSender");
       queueSender.close();
     } catch (JMSException e) {
       out("There was an error closing the sender");
       e.printStackTrace();

     }

 }



Developing Application Clients

Chapter 2 Using the Application Client Container 31

 if (session != null) {

try {
out("Closing session");
session.close();
} catch (JMSException e) {

       out("There was an error closing the session");
       e.printStackTrace()
     }
}

if (connection != null) {
try {

out("Closing connection");
connection.close();
} catch (JMSException e) {
out("There was an error closing the connection");
e.printStackTrace();

      }
 }

destroy();

}

}

public void destroy() {
factory = null;
queue = null;

}

private void out(String message) {
System.out.println(message);

}

}



Developing Application Clients

32 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Application Client Packaged in an Application Client Container
Accessing JMS Resources
When the application client is packaged in an application client container, make
the following changes to the code. In the sample application
SimpleQueueClient.java, make the following changes:

1. A J2EE application can be packaged using the Application Client Container.
Use the java:comp/env/jms/ string to lookup the JMS resources. This is the J2EE
application namespace.

private static final String LOOKUP_STRING_FACTORY =
"java:comp/env/jms/sampleQCF";

private static final String LOOKUP_STRING_QUEUE   =
"java:comp/env/jms/sampleQ";

2. The Application Client Container gets the ORB hostname and port number
from the ACC configuration file sun-acc.xml.

The <name> entry in this file will be the Application Server hostname and the
port is the ORB port number (default 3700 for server1 instance).

3. Assemble the application client to create a jar file. Include the two
configuration files in the client jar file.

sun-application-client.xml  -  Sun Java System Application Server specific
J2EE client application

For information on sun-application-client.xml file, see “Sun Java System
Application Client Deployment Descriptor” on page 52.



Developing Application Clients

Chapter 2 Using the Application Client Container 33

The contents of the sun-application-client.xml is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-application-client PUBLIC '-//Sun Microsystems,
Inc.//DTD Sun ONE Application Server 7 Application Client 1.3//EN'

'http://www.sun.com/software/appserver/dtds/sun-application-client_
1_3-0.dtd'>

<sun-application-client>

  <resource-ref>

    <res-ref-name>jms/sampleQ</res-ref-name>
<jndi-name>jms/sampleQ</jndi-name>

  </resource-ref>

  <resource-ref>

<res-ref-name>jms/sampleQCF</res-ref-name>
<jndi-name>jms/sampleQCF</jndi-name>

<resource-ref>
<sun-application-client>

application-client.xml  -  J2EE 1.3 application client deployment descriptor

The contents of the application-client.xml is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application-client PUBLIC '-//Sun Microsystems, Inc.//DTD
J2EE Application Client 1.3//EN'
'http://java.sun.com/dtd/application-client_1_3.dtd'>

<application-client>

   <display-name>SimpleQueue</display-name>

   <resource-ref>

   <res-ref-name>jms/sampleQ</res-ref-name>

   <res-type>javax.jms.Queue</res-type>

   <res-auth>Container</res-auth>

   </resource-ref>

   <resource-ref>



Developing Application Clients

34 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

     <res-ref-name>jms/sampleQCF</res-ref-name>

     <res-type>javax.jms.QueueConnectionFactory</res-type>

     <res-auth>Container</res-auth>

   </resource-ref>

</application-client>

These deployment descriptors describe the external JMS resources
(administered objects) referenced by the sample application.

4. Package the application client using the appclient script. See “Packaging an
Application Client Using the ACC” on page 44.

package-appclient script also creates a MANIFEST file that contains the main
class, which states the complete package prefix and classname of the Java
platform client.

5. Run the application client using the ACC. For instructions, see “Running an
Application Client Using the ACC” on page 47.

Authenticating an Application Client Using the
JAAS Module
Using the JAAS module, you can provide security in your application client code.
Create a LoginModule that describes the interface implemented by authentication
technology providers. LoginModules are plugged in under applications to provide a
particular type of authentication.The following steps are involved in creating a
LoginModule:

1. Write the LoginModule interface.

public class ClientPasswordLoginModule implements LoginModule{

private static Logger _logger=null;

    static{

       _logger=LogDomains.getLogger(LogDomains.SECURITY_LOGGER);

        }

}



Developing Application Clients

Chapter 2 Using the Application Client Container 35

private Subject subject;
private CallbackHandler callbackHandler;
private Map sharedState;
private Map options;

The standard JAAS package required by this class is javax.security. The code
line below illustrates how you can import the package in your client
application:

import javax.security.*;

2. Initialize the LoginModule interface that you just created.

public void initialize(Subject subject, CallbackHandler
callbackHandler, Map sharedState, Map options) {

this.subject = subject;
this.callbackHandler = callbackHandler;
this.sharedState = sharedState;
this.options = options;

}

❍ The parameter subject, is the subject to be authenticated.

❍ callbackHandler, for communicating with the end user which prompts for
the username and password.

❍ sharedState, is the shared LoginModule state.

❍ options, the options specified in the configuration file of the LoginModule.

3. Use login() method to fetch the login information from the client application
and authenticate the user.

public boolean login() throws LoginException {

if (uname != null) {
username = new String (uname);
pswd = System.getProperty (LOGIN_PASSWORD);

}

The login information is fetched using the CallBackHandler.

Callback[] callbacks = new Callback[2];

callbacks[0] = new
NameCallback(localStrings.getLocalString("login.username",
"ClientPasswordModule username: "));



Developing Application Clients

36 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

callbacks[1] = new
PasswordCallback(localStrings.getLocalString("login.password",
"ClientPasswordModule password: "), false);

username = ((NameCallback)callbacks[0]).getName();

char[] tmpPassword = ((PasswordCallback)callbacks[1]).getPassword();

The login() method tries to connect to the server using the login information
that is fetched. If the connection is established, the method returns the value
true.

4. Use commit() method to set the subject in the session to the username that is
verified by the login method. If the commit method returns a value true, then
this method associates PrincipalImpl with the subject located in the
LoginModule. If this LoginModule’s own authentication attempt is failed, then
this method removes any state that was originally saved.

public boolean commit() throws LoginException {
if (succeeded == false) {

return false;
} else {
// add a Principal (authenticated identity)to the Subject
// assume the user we authenticated is the PrincipalImpl

userPrincipal = new PrincipalImpl(username);

5. Use logout() method to remove the privilege settings associated with the roles
of the subject.

public boolean logout() throws LoginException {

subject.getPrincipals().remove(userPrincipal);
succeeded = false;
succeeded = commitSucceeded;
username = null;
if (password != null) {

for (int i = 0; i < password.length; i++)
password[i] = ’ ’;
password = null;

}
userPrincipal = null;
return true;
}

6. Edit the sun-acc.xml deployment descriptor to configure JAAS authentication
for the client. See “auth-realm” on page 63.



Developing Application Clients

Chapter 2 Using the Application Client Container 37

7. Integrate the LoginModule with the application server.

Edit the deployment descriptor to make the following changes:

❍ Configure the server with a realm that uses a specific LoginModule for
security authentication.

❍ Map the application realm and roles to the realm and roles defined by the
LoginModule.

8. Assemble the application client. See “Packaging an Application Client Using
the ACC” on page 44.

Sample Code
The sample code of ClinetLoginPasswordModule is given below:

package com.sun.enterprise.security.auth.login;

import java.util.*;
import java.io.IOException;
import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.spi.*;
import com.sun.enterprise.security.auth.login.PasswordCredential;
import com.sun.enterprise.security.PrincipalImpl;
import com.sun.enterprise.security.auth.LoginContextDriver;
import com.sun.enterprise.util.LocalStringManagerImpl;
import java.util.logging.*;
import com.sun.logging.*;

public class ClientPasswordLoginModule implements LoginModule {

private static Logger _logger=null;
static{

_logger=LogDomains.getLogger(LogDomains.SECURITY_LOGGER);
}

private static final String DEFAULT_REALMNAME = "default";
private static LocalStringManagerImpl localStrings =

new LocalStringManagerImpl(ClientPasswordLoginModule.class);

// initial state

private Subject subject;
private CallbackHandler callbackHandler;
private Map sharedState;
private Map options;



Developing Application Clients

38 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

private boolean debug = com.iplanet.ias.util.logging.Debug.enabled;

// the authentication status

private boolean succeeded = false;
private boolean commitSucceeded = false;

// username and password

private String username;
private char[] password;

private final  PasswordCredential passwordCredential=null;

// testUser’s PrincipalImpl

private PrincipalImpl userPrincipal;
public static String LOGIN_NAME = "j2eelogin.name";
public static String LOGIN_PASSWORD = "j2eelogin.password";

public void initialize(Subject subject, CallbackHandler callbackHandler,
Map sharedState, Map options) {

this.subject = subject;
this.callbackHandler = callbackHandler;
this.sharedState = sharedState;
this.options = options;

// initialize any configured options

debug = "true".equalsIgnoreCase((String)options.get("debug"));

}

/* Authenticate the user by prompting for a username and password. @return
true in all cases since this <code>LoginModule</code> should not be
ignored.*/

/* @exception FailedLoginException if the authentication fails. @exception
LoginException if this <code>LoginModule</code> is unable to perform the
authentication.*/

public boolean login() throws LoginException {

// prompt for a username and password

if (callbackHandler == null){

String failure = localStrings.getLocalString("login.nocallback","Error:
no CallbackHandler available to garner authentication information from the
user");

throw new LoginException(failure);
}



Developing Application Clients

Chapter 2 Using the Application Client Container 39

String uname = System.getProperty (LOGIN_NAME);
String pswd;

if (uname != null) {

username = new String (uname);
pswd = System.getProperty (LOGIN_PASSWORD);
char[] dest;
if (pswd == null){

dest = new char[0];
password = new char[0];

} else {
int length = pswd.length();
dest = new char[length];
pswd.getChars(0, length, dest, 0 );
password = new char[length];

}
System.arraycopy (dest, 0, password, 0, dest.length);
} else{

Callback[] callbacks = new Callback[2];
callbacks[0] = new

NameCallback(localStrings.getLocalString("login.username",
"ClientPasswordModule username: "));

callbacks[1] = new
PasswordCallback(localStrings.getLocalString("login.password",
"ClientPasswordModule password: "), false);

try {
callbackHandler.handle(callbacks);
username = ((NameCallback)callbacks[0]).getName();
if(username == null){

String fail = localStrings.getLocalString("login.nousername",
"No user specified");

throw new LoginException(fail);
}

char[] tmpPassword =
((PasswordCallback)callbacks[1]).getPassword();

if (tmpPassword == null) {
// treat a NULL password as an empty password

tmpPassword = new char[0];
}
password = new char[tmpPassword.length];
System.arraycopy(tmpPassword, 0,
password, 0, tmpPassword.length);
((PasswordCallback)callbacks[1]).clearPassword();



Developing Application Clients

40 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

} catch (java.io.IOException ioe) {
throw new LoginException(ioe.toString());
} catch (UnsupportedCallbackException uce) {

String nocallback = localStrings.getLocalString("login.callback","Error:
Callback not available to garner authentication information from
user(CallbackName):" );
throw new LoginException(nocallback + uce.getCallback().toString());

}

}

// print debugging information
if (debug) {

for (int i = 0; i < password.length; i++){
//System.out.print(password[i]);
}
//System.out.println();
}

// by default -  the client side login module will always say
// that the login successful. The actual login will take place
// on the server side.
if (debug)

{
_logger.log(Level.FINE,"[ClientPasswordLoginModule] " +"authentication
succeeded");
succeeded = true;
return true;

}

public boolean commit() throws LoginException {
if (succeeded == false) {

return false;
} else {
// add a Principal (authenticated identity)to the Subject
// assume the user we authenticated is the PrincipalImpl

userPrincipal = new PrincipalImpl(username);
if (!subject.getPrincipals().contains(userPrincipal))

subject.getPrincipals().add(userPrincipal);
if (debug) {
_logger.log(Level.FINE,"[ClientPasswordLoginModule] " +"added

PrincipalImpl to Subject");
}



Developing Application Clients

Chapter 2 Using the Application Client Container 41

PasswordCredential pc = new PasswordCredential(username, new
String(password), realm);
if(!subject.getPrivateCredentials().contains(pc))subject.getPrivateCredent
ials().add(pc);

username = null;
for (int i = 0; i < password.length; i++){
password[i] = ’ ’;
password = null;
commitSucceeded = true;
return true;
}
}

public boolean abort() throws LoginException {
if (succeeded == false) {
return false;
} else if (succeeded == true && commitSucceeded == false) {
// login succeeded but overall authentication failed

succeeded = false;
username = null;
if (password != null) {

for (int i = 0; i < password.length; i++)
password[i] = ’ ’;
password = en das ull;

}
userPrincipal = null;
} else {

// overall authentication succeeded and commit succeeded,
// but someone else’s commit failed
logout();
}
return true;
}

public boolean logout() throws LoginException {

subject.getPrincipals().remove(userPrincipal);
succeeded = false;
succeeded = commitSucceeded;
username = null;
if (password != null) {

for (int i = 0; i < password.length; i++)
password[i] = ’ ’;
password = null;



Developing Application Clients

42 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

}
userPrincipal = null;
return true;
}

}

Invoking an RMI/IIOP-based Client Without
Using the ACC
You can invoke a J2EE client without using the ACC. When you are creating an
application client that does not use the ACC, you need to setup your development
environment as follows:

1. Include the following non-java libraries in the client’s classpath.

Solaris:

The following libraries can be found at install_dir/lib:

❍ libcis.so

❍ libnspr4.so

❍ libplc4.so

❍ libnss3.so

❍ libssl3.so

2. In addition to the non-java libraries, copy the following jar files to the client
system and add them to the classpath:

❍ appserv-ext.jar

❍ appserv-rt.jar

❍ fscontext.jar

❍ imq.jar

❍ imqadmin.jar

❍ imqutil.jar

NOTE Sun Java System Application Server does not support authentication
of RMI/IIOP Clients that do not use the ACC (non-ACC clients).



Developing Application Clients

Chapter 2 Using the Application Client Container 43

The following steps describe the procedure to create a client:

1. Define the main class as shown in the code illustration below:

public static void main(String[] args) {

           String url = null;

           String jndiname = null;

           boolean acc = true;

}

2. If the code sees the url and jndiname passed in, the acc flag is set to false and
does the EJB lookup differently than it does if this client code is called by the
application client utility without any arguments.

if (args.length == 2 ) {

url = args[0];
jndiname = args[1];
acc = false;
System.out.println("url = "+url);

}

3. Obtain the naming initial context and perform the JNDI look up.

Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.cosnaming.CNCtxFactory");

env.put(Context.PROVIDER_URL, url);

initial = new InitialContext(env);

objref = initial.lookup(jndiname);

4. Run the client from the command line.

java -classpath CP ClientApp URL JNDIName

where,

❍ CP is the CLASSPATH which includes the application client jar file and the
appserv-ext.jar.

❍ ClientApp refers to the client program.

❍ URL refers to the application server running on a machine with host name
and with an ORB-port.

JNDIName matches the JNDIName specified in the deployment file.



Developing Application Clients

44 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Packaging an Application Client Using the ACC
After installing Sun Java System Application Server, the ACC can be run by
executing the appclient script located+ in the install_dir/bin directory. The script
package-appclient that is located in the same directory, is used to package a client
application into a single appclient.jar file. Packaging an application client involves
the following main steps:

• Editing the Configuration File

• Editing the appclient Script

• Editing the sun-acc.xml File

• Setting Security Options

• Using the package-appclient Script

Editing the Configuration File
Modify the environment variables in asenv.conf file located in the default-config_dir
directory as shown below:

• $AS_INSTALL to reference the location where the package was un-jared plus
/appclient. For example: $AS_INSTALL=/install_dir/appclient.

• $AS_NSS to reference the location of the nss libs.

For example:

UNIX:

$AS_NSS=/install_dir/appclient/lib

• $AS_JAVA to reference the location where you have installed the JDK.

• $AS_ACC_CONFIG to reference the configuration xml (sun-acc.xml). The
sun-acc.xml is located at install_dir/config.

• $AS_IMQ_LIB to reference the imq home. It should be: instance_dir/imq/lib.

Editing the appclient Script
Modify the appclient script file as follows:

UNIX:

Change $CONFIG_HOME/asenv.conf to your_ACC_dir/config/asenv.conf.



Developing Application Clients

Chapter 2 Using the Application Client Container 45

Editing the sun-acc.xml File
Modify sun-acc.xml file to set the following attributes:

• Ensure that the DOCTYPE references %%%SERVER_ROOT%%%/lib/dtds to
your_ACC_dir/lib/dtds.

• Ensure that the <target-server> address attribute references the remote server
machine.

• Ensure that the <target-server> port attribute references the ORB port on the
remote server.

• If you want to log the messages in a file, specify a file name for the
<log-service> file attribute. You can also set the log level.

For example,

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE client-container SYSTEM "file:{Your installed server
root}/lib/dtds/sun-application-client-container_1_0.dtd ">

<client-container>

<target-server name="qasol-e1" address="qasol-e1" port="3700">

<log-service file=" " level="WARNING"/>
</client-container>

• If you want to enable load balancing and failover capabilities for the ACC
client, follow the steps described in the section “Creating an ACC Client With
Load Balancing and Failover Support (Enterprise Edition)” on page 20.

For more information on the sun-acc.xml file, see “Application Client Container
Configuration File” on page 57.

Setting Security Options
You can run the application client using SSL with certificate authentication. In
order to set the security options, modify the sun-acc.xml file as shown in the code
illustration below. For more information on the sun-acc.xml file, see the
“Application Client Container Configuration File” on page 57.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE client-container SYSTEM

"file:////export3/sun/appserver7/appserv/lib/dtds/sun-application-clien
t-container_1_0.dtd">

<client-container>



Developing Application Clients

46 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

<target-server name="qasol-e1" address="qasol-e1" port="3700">

<security>

<ssl cert-nickname="cts" ssl2-enabled="false"
ssl2-ciphers="-rc4,-rc4export,-rc2,-rc2export,-des,-desede3"

ssl3-enabled="true"

ssl3-tls-ciphers="+rsa_rc4_128_md5,-rsa_rc4_40_md5,+rsa3_des_sha,+rsa_d
es_sha,-rsa_rc2_40_md5,-rsa_null_md5,-rsa_des_56_sha,-rsa_rc4_56_sha"

tls-enabled="true" tls-rollback-enabled="true"/>

<cert-db path="/export3/ctsdata/ctscertdb" password="changeit"/>

</security>

</target-server>

<client-credential user-name="j2ee" password="j2ee"/>

<log-service file="" level="WARNING"/>

</client-container>

Using the package-appclient Script
The following steps describe the procedure to use the package-appclient script that
is bundled with Sun Java System Application Server:

1. Under install_dir/bin directory, run the package-appclient script. This creates an
appclient.jar file and stores it under install_dir/lib/appclient/ directory.

2. Copy the install_dir/lib/appclient/appclient.jar file to the desired location.
The appclient.jar file contains the following files:

❍ appclient/bin - contains the appclient script which you use to launch the
ACC.

❍ appclient/lib - contains the JAR and runtime shared library files.

❍ appclient/lib/appclient - contains the following files:

NOTE The appclient.jar file provides an application client container
package targeted at remote hosts and does not contain a server
installation. You can run this file from a remote machine with the
same operating system as where it is created. That is, appclient.jar
created on a Solaris platform will not function on Windows.



Developing Application Clients

Chapter 2 Using the Application Client Container 47

• sun-acc.xml - the ACC configuration file.

• client.policy file- the security manager policy file for the ACC.

• appclientlogin.conf file - the login configuration file.

• client.jar file - is created during the deployment of the client
application.

❍ appclient/lib/dtds - contains sun-application_client-contianer_1_3-0.dtd

which is the DTD corresponding to sun-acc.xml.

client.policy
client.policy file is the J2SE policy file used by the application client. Each
application client has a client.policy file. The default policy file limits the
permissions of J2EE deployed application clients to the minimal set of permissions
required for these applications to operate correctly. If you develop an application
client that requires more than this default set of permissions, you can edit the
client.policy file to add the custom permissions that your applications need. You
can use the J2SE standard policy tool or any text editor to edit this file. For more
information on using the J2SE policy tool, visit the following URL:

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html

For more information about the permissions you can set in the client.policy file,
visit the following URL:
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

Running an Application Client Using the ACC
To run a client application that is packaged in an application jar file, you first need
to launch the ACC. You can launch the application client container using appclient

script.

appclient -client client_application_jar [-mainclass
client_application_main_class_name|-name display_name][-xml sun-acc.xml]
[-textauth] [-user user_name] [-password password]

• -client: Specifies the name and location of the client application jar file. This is
a required parameter.

• -mainclass: Specifies the class name that is located within the client jar whose
main() method is to be invoked. By default, uses the class specified in the client

jar. This is optional.

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html


Developing Application Clients

48 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

• -name: Specifies the display name that is located in the application client jar file.
By default, the display name is specified in the client jar
application-client.xml file which is identified by the display-name attribute.
This is optional.

• -xml: is used to specify the name and location of the client configuration xml
file. If you do not specify this option, ACC will use the default one from
appclient script identified by $AS_ACC_CONFIG that references to the default
instance. For Solaris bundle, this option is required.

• -textauth: is optional for user to specify authentication using the text format.

The following example shows how to run the sample application client,
rmiConverter:

appclient -client rmi-simpleClient.jar

Sample Client Application
You can find the sample client application that demonstrates the working of an
RMI/IIOP client that uses an application client container at the following location:

install_dir/samples/rmi-iiop/simple

NOTE The class name must be the full name. For example,
com.sun.test.AppClient

NOTE -mainclass, -name are optional for a single client application. For
multiple client applications use either the -classname option or the
-name option.



49

Chapter   3

Application Client Deployment
Descriptors

This chapter describes the application client deployment descriptors. This chapter
contains the following topics:

• Introducing Application Client Deployment Descriptors

• J2EE Application Client Deployment Descriptor

• Sun Java System Application Client Deployment Descriptor

• Application Client Container Configuration File

Introducing Application Client Deployment
Descriptors

Deployment descriptors are the XML files used to configure the runtime properties
of a module or application. The J2EE Specification defines the format of these
descriptors. You can view and edit the deployment descriptors using a text editor
at any time during the development process.

Sun Java System Application Server application clients require three deployment
descriptors files:

• A J2EE standard file (application.client.xml), described in the J2EE
Specification.

• An optional Sun Java System Application Server specific client deployment
descriptor file (sun-application-client.xml), described in this section.

• An optional Sun Java System Application Server specific Application Client
Container Configuration file (sun-acc.xml), described in this section.



Introducing Application Client Deployment Descriptors

50 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Format of Deployment Descriptors
A deployment descriptor file defines the elements that an XML file can contain and
the subelements and attributes these elements can have. The
sun-application-client-1_3-0.dtd file defines the format of the
sun-application-client.xml file. The sun-application-client-container-1_0.dtd file
defines the format of sun-acc.xml file. These DTD files are located in the
install_dir/lib/dtds directory.

For general information about DTD files and XML, see the XML specification at:

http://www.w3.org/TR/REC-xml

Each element defined in a DTD file (which may be present in the corresponding
XML file) can contain the following:

• Subelements

• Data

• Attributes

Subelements
An element can contain other elements. For example, the following code defines
the client-container element.

<!ELEMENT client-container(target-server,auth-realm?,client-credential?,
log-service?,property*))>

The ELEMENT tag specifies that a client-container element can contain
target-server, auth-realm, client-credential, log-service, property
subelements.

The following table shows how optional suffix characters of subelements
determine the requirement rules, or number of allowed occurrences, for the
subelements. The left column lists the subelement ending character, and the right
column lists the corresponding requirement rule:

NOTE Do not edit the DTD files. Their contents change only with new
versions of Sun Java System Application Server.

http://www.w3.org/TR/REC-xml


Introducing Application Client Deployment Descriptors

Chapter 3 Application Client Deployment Descriptors 51

If an element cannot contain other elements, you see EMPTY or (#PCDATA) instead of a
list of element names in parentheses.

Data
Some elements contain data instead of subelements. These elements have
definitions of the following format:

<!ELEMENT element-name (#PCDATA)>

For example:

<!ELEMENT credential (#PCDATA)>

Attributes
Elements that have ATTLIST tags contain attributes (name-value pairs). Attributes
have definitions of the following format:

<!ATTLIST element attribute type default attribute type default ...>

For example:

<!ATTLIST client-container user-name CDATA #REQUIRED
password CDATA #REQUIRED
realm CDATA #IMPLIED>

A client-container element can contain user-name, password, and realm attributes.

The #REQUIRED label means that a value must be supplied.

The #IMPLIED label means that the attribute is optional, and that Sun Java System
Application Server generates a default value. Wherever possible, explicit defaults
for optional attributes (such as "true") are listed.

Table 3-1 requirement rules for subelement suffixes

Subelement Ending
Character

Requirement

* Can contain zero or more of this subelement.

? Can contain zero or one of this subelement.

+ Must contain one or more of this subelement.

(none) Must contain only one of this subelement.



J2EE Application Client Deployment Descriptor

52 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Attribute declarations specify the type of the attribute. For example, CDATA means
character data, and %boolean is a predefined enumeration.

J2EE Application Client Deployment Descriptor
Application clients are packaged in JAR format files with a .jar extension and
include a deployment descriptor similar to other J2EE application components. The
deployment descriptor describes the enterprise beans and external resources
referenced by the application. As with other J2EE application components, you
need to configure access to resources at the time of deployment, assign names for
enterprise beans and resources, etc.The deployment descriptor is standardized by
the J2EE 1.3 specification.

Sun Java System Application Client Deployment
Descriptor

The sun-application-client.xml is the deployment descriptor for the application
clients. The easiest way to create a sun-application-client.xml file is to deploy the
application client. For more information on deploying a client using the
Administration interface, see the Sun Java System Application Server Developer’s
Guide.

Elements in sun-application-client.xml file
Elements in the sun-application-client.xml file are as follows:

• sun-application-client

• resource-ref

• ejb-ref

• resource-env-ref

• res-ref-name

• resource-env-ref-name

• default-resource-principal

• name

• password



Sun Java System Application Client Deployment Descriptor

Chapter 3 Application Client Deployment Descriptors 53

• ejb-ref-name

• jndi-name

Attributes
Elements can contain attributes (name, value pairs). Attributes are defined in
attributes lists using the ATTLIST tag.

None of the elements in the sun-application-client.xml file contain attributes.

sun-application-client
This is the root element describing all the runtime bindings of a single application
client.

Subelements
The following table describes subelements for the sun-application-client element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

resource-ref
Maps the absolute JNDI name to the resource-ref element in the corresponding
J2EE XML file.

NOTE Subelements must be defined in the order in which they are listed
under each Subelements heading unless otherwise noted.

Table 3-2 sun-application-client subelements

Element Required Description

resource-ref zero or more Maps the absolute JNDI name to the
resource-ref in the corresponding J2EE XML file.

ejb-ref zero or more Maps the absolute JNDI name to the ejb-ref in
the corresponding J2EE XML file.

resource-env-ref zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding J2EE
XML file.



Sun Java System Application Client Deployment Descriptor

54 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Subelements
The following table describes subelements for the resource-ref element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

res-ref-name
Specifies the res-ref-name in the corresponding J2EE application-client.xml file
resource-ref entry.

Subelements
none

default-resource-principal
Specifies the default principal (user) that the container uses to access a resource.

If this element is used in conjunction with a JMS Connection Factory resource, the
name and password subelements must be valid entries in Sun Java Message Queue’s
broker user repository. See the “Security Management” chapter in the Sun Java
System Message Queue Administrator’s Guide for details.

Subelements
The following table describes subelements for the default-resource-principal

element. The left column lists the subelement name, the middle column indicates
the requirement rule, and the right column describes what the element does.

Table 3-3 resource-ref subelements

Element Required Description

res-ref-name only one Specifies the res-ref-name in the corresponding
J2EE application-client.xml file.

jndi-name only one Specifies the absolute jndi name of a resource.

default-resource-princ
ipal

zero or more Specifies the default principal (user) that the
container uses to access a resource.

Table 3-4 default-resource-principal subelements

Element Required Description

name only one Specifies the name of the principal.

password only one Specifies the password for the principal.



Sun Java System Application Client Deployment Descriptor

Chapter 3 Application Client Deployment Descriptors 55

name
Contains data that specifies the name of the principal.

Subelement
none

password
Contains data that specifies the password for the principal.

Subelement
none

ejb-ref
Maps the ejb-ref-name in the corresponding J2EE ejb-jar.xml file ejb-ref entry to
the absolute jndi-name of a resource.

Subelements
The following table describes subelements for the ejb-ref element. The left column
lists the subelement name, the middle column indicates the requirement rule, and
the right column describes what the element does.

ejb-ref-name
Specifies the ejb-ref-name in the corresponding J2EE ejb-ref.xml file ejb-ref entry.
This element locates the name of the ejb reference in the application.

Subelement
none

Table 3-5 ejb-ref subelements

Element Required Description

ejb-ref-name only one Specifies the name of a ejb reference in the
corresponding J2EE appclient.xml file.

jndi-name only one Specifies the absolute jndi name of a resource.



Sun Java System Application Client Deployment Descriptor

56 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

resource-env-ref
Specifies the name of a resource env reference.

Subelements
The following table describes subelements for the resource-env-ref element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

resource-env-ref-name
Specifies the res-ref-name in the corresponding J2EE application-client.xml file
resource-env-ref entry.

Subelements

none

jndi-name
Contains data that specifies the absolute jndi-name of a URL resource or a resource
in the application-client.xml file.

Subelement
none

Table 3-6 resource-env-ref subelements

Element Required Description

resource-env-ref-name only one Specifies the res-ref-name in the corresponding J2EE
application-client.xml file resource-env-ref entry.

default-resource-principal only one Specifies the default principal (user) that the container uses
to access a resource.

jndi-name only one Specifies the jndi-name of the associated entity.



Application Client Container Configuration File

Chapter 3 Application Client Deployment Descriptors 57

Application Client Container Configuration File
The sun-acc.xml file tracks changes in Sun Java System Application Client
Container configuration.

Elements in the sun-acc.xml File
Elements in the sun-acc.xml file are as follows:

• client-container

• target-server

• description

• client-credential

• log-service

• security

• ssl

• cert-db

• auth-realm

• property

client-container
Defines Sun Java System Application Server specific configuration for the ACC.
This is the root element; there can only be one client-container element in a
sun-acc.xml file.

Subelements
The following table describes subelements for the client-container element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Table 3-7 client-container subelements

Element Required Description

target-server zero or more Specifies the IIOP listener configuration of the target
server.

auth-realm only one Specifies the optional configuration for JAAS
authentication realm.



Application Client Container Configuration File

58 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Attributes
The following table describes attributes for the client-container element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

target-server
Defines the IIOP listener configuration of the target server.

Subelements
The following table describes subelements for the target-server element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

client-credential only one Specifies the default client credential that will be
sent to the server.

log-service only one Specifies the default log file and the severity level of
the message.

property zero or more Specifies a property which has a name and a value.

Table 3-8 client-container attributes

Attribute Default
Value

Description

sendPassword none Specifies whether client authentication credentials
should be sent to the server. Without authentication
credential all access to protected EJBs will result in
exceptions.

Table 3-9 target-server subelements

Element Required Description

description zero or more Specifies the description of the target server.

security zero or more Specifies the security configuration for the IIOP/SSL
communication with the target server.

Table 3-7 client-container subelements (Continued)

Element Required Description



Application Client Container Configuration File

Chapter 3 Application Client Deployment Descriptors 59

Attributes
The following table describes attributes for the target-server element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

description
Contains data that specifies a text description of the containing element.

Subelement
none

Attributes
none

client-credential
Default client credentials that will be sent to the server. If this element is present,
then it will be automatically sent to the server, without prompting the user for
username and password on the client side.

Subelements
The following table describes subelements for the client-credential element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Table 3-10 target-server attributes

Attribute Default
Value

Description

name none Specifies the name of the application server instance
accessed by the client container.

address none Specifies the host name or IP address (resolvable by
DNS) of the ORB.

port 3700 Specifies port number of the ORB.

For the new server instance, you need to assign a
different port number other than 3700. You can change
the port number in the Administration Interface. See the
Sun Java System Application Server Administration
Guide for more information.



Application Client Container Configuration File

60 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Attributes
The following table describes attributes for the client-credential element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

log-service
Specifies configuration settings for the log file.

Subelements
The following table describes subelements for the log-service element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 3-11 client-credential subelement

Element Required Description

property zero or more Specifies a property which has a name and a value.

Table 3-12 client-credential attributes

Attribute Default
Value

Description

user-name none The user name used to authenticate the Application
client container.

password none The password used to authenticate the Application
client container.

realm none The realm (specified by name) where credentials are to
be resolved.

Table 3-13 log-service subelement

Element Required Description

property zero or more Specifies a property which has a name and a value.



Application Client Container Configuration File

Chapter 3 Application Client Deployment Descriptors 61

Attributes
The following table describes attributes for the log-service element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

security
Defines SSL security configuration for IIOP/SSL communication with the target
server.

Subelements
The following table describes subelements for the security element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Attributes
none

Table 3-14 log-service attributes

Attribute Default
Value

Description

file client.log Specifies the name of the file where the application
client container logging information will be stored. By
default, the log file will be located at
Appclient_Root/logs/client.log.

If the value for the file attribute is set to Null (“ “), the log
messages are displayed on the console. The log level is
set to the highest level (INFO). Log level can not be set
when the output mode is console.

level none Sets the base level of severity. Messages at or above
this setting get logged into the log file.

Table 3-15 security subelement

Element Required Description

ssl zero or more Specifies the SSL processing parameters.

cert-db zero or more Specifies the location and authentication to read the
certification database.



Application Client Container Configuration File

62 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

ssl
Defines SSL processing parameters.

Subelements
none

Attributes
The following table describes attributes for the SSL element. The left column lists
the attribute name, the middle column indicates the default value, and the right
column describes what the attribute does.

Table 3-16 ssl attributes

Attribute Default
Value

Description

cert-nickname none The nickname of the server certificate in the
certificate database or the PKCS#11 token.In the
certificate, the name format is tokenname:nickname.
Including the tokenname: part of the name in this
attribute is optional.

ssl2-enabled none (Optional) Determines whether SSL2 is enabled.

ssl3-enabled none (Optional) Determines whether SSL3 is enabled.

ssl2-ciphers none (Optional) A space-separated list of the SSL2
ciphers used with the prefix + to enable or - to
disable. For example, +rc4. Allowed values are rc4,
rc4export, rc2, rc2export, idea, des,
desede3.

ssl3-tls-ciphers none (Optional) A space-separated list of the SSL3
ciphers used, with the prefix + to enable or - to
disable, for example +rsa_des_sha. Allowed SSL3
values are rsa_rc4_128_md5, , rsa_des_sha,
rsa_rc4_40_md5, rsa_rc2_40_md5, rsa_null_md5.
Allowed TLS values are rsa_des_56_sha,
rsa_rc4_56_sha.

tls-enabled none Determines whether TLS is enabled.

tls-rollback-enabled none Determines whether TLS rollback is enabled.TLS
rollback should be enabled for MicroSoft Internet
Explorer 5.0 and 5.5.

client-auth-enabled none Determines whether SSL3 client authentication is
performed on every request, independent of
ACL-based access control.



Application Client Container Configuration File

Chapter 3 Application Client Deployment Descriptors 63

If both SSL2 and SSL3 are enabled, the server tries SSL3 encryption first. If that
fails, the server tries SSL2 encryption. If both SSL2 and SSL3 are enabled for a
virtual server, the server tries SSL3 encryption first. If that fails, the server tries
SSL2 encryption.

cert-db
Location and password to read the certificate database. Sun Java System
Application Server provides utilities with which a certificate database can be
created. certutil, distributed as part of NSS can also be used to create certificate
database.

Subelement
none

Attributes
The following table describes attributes for the cert-db element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

auth-realm
JAAS is available on the ACC. Defines the optional configuration for JAAS
authentication realm.

Authentication realms require provider-specific properties, which vary depending
on what a particular implementation needs.

For more information about how to define realms, see the Sun Java System
Application Server Developer’s Guide.

Here is an example of the default file realm:

<auth-realm name="file"

Table 3-17 cert-db attributes

Attribute Default
Value

Description

cert-db-path none Specifies the absolute path of the certificate database
(cert7.db).

cert-db-password none Specifies the password to access the certificate
database.



Application Client Container Configuration File

64 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

classname="com.iplanet.ias.security.auth.realm.file.FileRealm">

<property name="file" value="instance_dir/config/keyfile"/>

<property name="jaas-context" value="fileRealm"/>

</auth-realm>

Which properties an auth-realm element uses depends on the value of the
auth-realm element’s name attribute. The file realm uses file and jaas-context

properties. Other realms use different properties.

Subelements
The following table describes subelements for the auth-realm element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Attributes
The following table describes attributes for the auth-realm element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

property
Specifies a property, which has a name and a value.

Subelement
none

Table 3-18 auth-realm subelement

Element Required Description

property zero or more Specifies a property which has a name and a value.

Table 3-19 auth-realm attributes

Attribute Default
Value

Description

auth-realm-name none Defines the name of this realm.

classname none Defines the Java class which implements this realm.



Application Client Container Configuration File

Chapter 3 Application Client Deployment Descriptors 65

Attributes
The following table describes attributes for the property element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

Table 3-20 property attributes

Attribute Default
Value

Description

name none Specifies the name of the property.

value none Specifies the value of the property.



Application Client Container Configuration File

66 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients



67

Chapter   4

Java-based CORBA Clients

This chapter describes how to develop and deploy CORBA clients that use
RMI/IIOP protocol.

This chapter contains the following sections:

• CORBA Client Scenarios

• Developing non-ACC Java-based CORBA Clients

CORBA Client Scenarios
The most common scenarios in which CORBA clients are used are when either a
stand-alone program or another application server acts as a client to EJBs deployed
to Application Server. This section describes the following scenarios:

• Stand-alone Scenario

• Server to Server Scenario

Stand-alone Scenario
In the simplest case, a stand-alone program which does not use the ACC, running
on a variety of operating systems uses IIOP to access business logic housed in
backend EJB components, as shown in the figure “Stand-alone Client Accessing the
EJB Components” on page 68.



CORBA Client Scenarios

68 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Figure 4-1 Stand-alone Client Accessing the EJB Components

Server to Server Scenario
CORBA objects, and other application servers can use IIOP to access EJB
components housed in Application Server, as shown in the figure “Application
Server and CORBA Objects Accessing EJB Components” on page 69.

EJB

EJB Container

Sun Java System Application Server

Java-based RMI/IIOP
CORBA Client



CORBA Client Scenarios

Chapter 4 Java-based CORBA Clients 69

Figure 4-2 Application Server and CORBA Objects Accessing EJB Components

ORB Support Architecture
CORBA client support in Application Server involves the communication between
the ORB on the client and the ORB on the server, as shown in the figure “ORB
Support Architecture” on page 70.

EJB

EJB Container

Sun Java System

Application Server

RMI/IIOP

Application

CORBA Server

Server

EJB

Java

CORBA

Object



Developing non-ACC Java-based CORBA Clients

70 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

Figure 4-3 ORB Support Architecture

You can use the ORB that is bundled as part of the Application Server, or you can
use a third-party ORB (ORBIX 2000 or ORBacus 4.1).

Developing non-ACC Java-based CORBA Clients
This section describes the procedure to create, assemble, and deploy a Java-based
CORBA client that is not packaged using the ACC. This section describes the
following topics:

• Creating a Stand-alone CORBA Client

• Running a Stand-alone CORBA Client

Creating a Stand-alone CORBA Client
Clients do not directly access the EJB components. Instead, clients communicate
with the EJB components using the JNDI to locate EJB components’s home
interface. Clients invoke a method on remote home interface to get a reference to
EJB components remote interface.

Sun Java System Application Server

RMI/IIOP

Java Engine

EJB

EJB Container

Client

ORB

Sun

ORB

Sun

ORB

Other

ORB

RMI/IIOP
Java

Client

Backend
CORBA
Server

IIOP



Developing non-ACC Java-based CORBA Clients

Chapter 4 Java-based CORBA Clients 71

One of the first steps in coding a CORBA client using RMI/IIOP is, to perform a
lookup of an EJB components’s home interface. In preparation for performing a
JNDI lookup of the home interface, you must first set several environment
properties for the InitialContext. Then you provide a lookup name for the EJB
component.

The steps and an example are summarized in the following sections.

• Specifying the Naming Factory Class

• Specifying the JNDI Name of an EJB

Specifying the Naming Factory Class
According to the RMI/IIOP specification, the client must specify
com.sun.jndi.cosnaming.CNCtxFactory as the value of the
java.naming.factory.initial entry in an instance of a Properties object. This object
is then passed to the JNDI InitialContext constructor prior to looking up an EJB
component’s home interface.

For example:

...

Properties env = new Properties();

env.put("java.naming.factory.initial","com.sun.jndi.cosnaming.CNCtxFact
ory");

env.put("java.naming.provider.url", "iiop://" + host +":"+port);

Context initial = new InitialContext(env);
Object objref = initial.lookup("rmiconverter");

...

Specifying the JNDI Name of an EJB
After creating a new JNDI InitialContext object, your client calls the lookup

method on the InitialContext to locate EJB component’s home interface. The name
of the EJB components is provided on the call to lookup. When using RMI/IIOP to
access remote EJB components, the parameter is referred to as the “JNDI name” of
the EJB component. The supported values of the JNDI name vary, depending on
how your client application is packaged.



Developing non-ACC Java-based CORBA Clients

72 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

When the client application is not packaged as part of an Application Client
Container (ACC), you must specify the absolute JNDI name of the bean in the JNDI
lookup. For example, the lookup in the rmiconverter sample could be written as
follows:

initial.lookup("rmiconverter");

The” jndiname” can be found in the sun-ejb-jar.xml file under the <ejb> element
identified by the element <jndi-name>.

Implementing Load Balancing and Failover Capabilities in the Client
Application (Enterprise Edition)
Sun Java Systems Application Server, Enterprise Edition supports the load
balancing and failover of IIOP requests from stand-alone and ACC clients, thus
providing high availability of J2EE application on the RMI/IIOP path.

In order to enable failover of IIOP requests, IIOP endpoints that constitute the
cluster in Sun Java System Application Server must be defined either using the
Administration Console or using the command line interface. The IIOP endpoints
definitions will be stored in the server.xml file. For more information, see the Sun
Java System Application Server Administration Guide or refer to Admin Console
online help.

The failover of J2EE applications happen only for those requests that cannot reach
the server and cause a CORBA COMM_FAILURE exception with a return status of
COMPLETED_NO on the client. When the server becomes inaccessible, the client
side application server ORB will failover the request to another accessible iiop
endpoint of the iiop cluster. When failing over the request, ORB randomly selects
alternate accessible iiop endpoint of the cluster.

See the Sun Java System Application Server Administration Guide for more
information on configuring an iiop cluster.

The properties to be set in order to enable load balancing and failover features in
your stand-alone clients are:

• java.naming.factory.initial

This property is used in specifying the Context Factory that should be used for load
balancing the IIOP requests, Set the property to
com.sun.appserv.naming.S1ASCtxFactory.

NOTE Sun Java System Application Server does not support authentication
of Java-based stand-alone CORBA clients.



Developing non-ACC Java-based CORBA Clients

Chapter 4 Java-based CORBA Clients 73

• com.sun.appserv.iiop.endpoints

This property specifies the list of IIOP endpoints defined in the server.xml. An IIOP
endpoint is specified as host:port where host is the host name or the IP address of
the system where Sun Java System Application Server is running and port is the
IIOP port number at which the server is listening for the IIOP requests.

• com.sun.appserv.iiop.loadbalancingpolicy

If the endpoint property is specified, the, this property is used to specify the load
balancing policy. The value for this property must be InitialContext-based load
balancing policy. The value used to define this property is ic-based.

In order to implement load balancing capabilities in your client code perform the
following steps:

1. Set the following JVM property to configure the ORB.

com.sun.CORBA.connection.ORBSocketFactoryClass=com.sun.appserv.enterpri
se.iiop.EEIIOPSocketFactory

org.omg.PortableInterceptor.ORBInitializerClass=com.sun.appserv.ee.iiop
.EEORBInitializer

2. Set the classpath to appserv-rt.jar and appserv-rt-ee.jar. These jar files are
located in the install_dir/lib directory.

3. Use the following property of S1ASCtxFactory class, prior to the instantiation of
the InitialContext:

Properties env = new Properties();

env.put(“java.naming.factory.initial”,
“com.sun.appserv.naming.S1ASCtxFactory”);

env.put(“com.sun.appserv.iiop.endpoints”,”trident:3600,
exodus:3700”);

env.put(“com.sun.iiop.loadbalancingpolicy”, “ic-based”);

//create an initial naming context
Context initial = new InitialContext(env);

This client code instantiates the JNDI InitialContext Object by calling the new
InitialContext(env), where env is the list of JNDI SPI properties.

You can also set the stand-alone client load balancing properties as JVM start-up
arguments. The properties are set using the following command syntax:

-D<Propertyname>=<Propertyvalue>



Developing non-ACC Java-based CORBA Clients

74 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

The Java command will look something like the following command:

java -Dpropname1=value1 -Dpropname2=value2 <other vm options> classname
program-arguments

Sun Java System ORB Configuration
Sun Java System Application Server continues to supports the following load
balancing implementation used in Sun ONE Application Server 7.

If you are using built-in Sun ORB, you can configure client-side load balancing
using the Round Robin DNS approach.

To implement a simple load balancing scheme without making source code
changes to your client, you can leverage the round robin feature of DNS. In this
approach, you define a single virtual host name representing multiple physical IP
addresses on which server instance ORBs are listening. Assuming that you
configure all of the ORBs to listen on a common IIOP port number, the client
applications can use a single host_name: IIOP port during the JNDI lookup. The
DNS server resolves the host name to a different IP address each time the client is
executed.

You can also implement client-side load balancing using the Sun Java System
Application Server-specific naming factory class SIASCtxFactory. You can use this
class both on the client-side and on the server-side which maintains a pool of ORB
instances in order to limit the number of ORB instances that are created in a given
process.

The following code illustrates the use of S1ASCtxFactory class:

Properties env = new Properties();

env.setProperty("java.naming.factory.initial","com.sun.appserv.naming.S
1ASCtxFactory");

env.setProperty("org.omg.CORBA.ORBInitialHost","name service
hostname”);

env.setProperty("org.omg.CORBA.ORBInitialPort", "name service port
number");

InitialContext ic = new InitialContext(env);

If you set a single URL property for the host and port above, your code would look
like this:

Properties env = new Properties();

env.setProperty("java.naming.factory.initial",
"com.sun.appserv.naming.S1ASCtxFactory");



Developing non-ACC Java-based CORBA Clients

Chapter 4 Java-based CORBA Clients 75

env.setProperty("java.naming.provider.url", "iiop://“name service
hostname:name service port number");

InitialContext ic = new InitialContext(env);

If you prefer, you may set the host and port values and the URL value as Java
System properties, instead of setting them in the environment as shown in the
above code illustration. The values set in your code will, however, override any
System property settings. Also, if you set both the URL and the host and port
properties, the URL takes precedence.

Note that the [name service hostname] value mentioned above could be a name that
maps to multiple IP addresses. The S1ASCtxFactory will appropriately round robin
ORB instances across all the IP addresses everytime a user calls new
InitialContext() method.

Running a Stand-alone CORBA Client
As long as the client environment is set appropriately and you are using a
compatible JVM, you merely need to run the main class. Depending on whether you
are passing the IIOP URL components (host and port number) on the command
line or obtaining this information from a properties file, the exact manner in which
you run the main program will vary. For example, the rmiconverter sample is run
in the following manner:

java rmiconverter.ConverterClient host_name port

The host_name is the name of the host on which an ORB is listening on the specified
port.



Developing non-ACC Java-based CORBA Clients

76 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients



77

Chapter   5

C++ Clients

This chapter describes how to develop and deploy C++ clients that uses third-party
ORBs.

This chapter contains the following sections:

• Introducing C++ Clients

• Developing a C++ Client

Introducing C++ Clients
Application Server relies on the Sun’s built-in ORB to support access to EJBs via
RMI/IIOP. Java programs and other components, such as servlets and applets can
use the existing RMI/IIOP support to access EJB components housed in Sun Java
System Application Server.

A C++ client can access EJB components via IIOP. However, this can not be
achieved using the Sun’s ORB due to the absence of a Sun ORB for C++ clients. A
C++ client requires an ORB implementation on its side; the Sun ORB has only a
Java version of the implementation. This forces the C++ client developers to use a
third-party ORB on the client side.

Developing a C++ Client
This section describes the steps to develop a C++ client using ORBacus 4.1 runtime
and development environment. This C++ client will call methods of an EJB that are
deployed to Application Server.

This section describes the following topics:



Developing a C++ Client

78 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

• Configuring C++ Clients to Access Sun Java System Application Server

• Creating a C++ Client

Configuring C++ Clients to Access Sun Java
System Application Server
This section describes how to configure C++ clients to access Sun Java System
Application Server. In the code example here, C++ client accesses the third party
ORB ORBacus 4.1.

This section presents the following topics:

• Software Requirements

• Preparing for C++ Client Development

• Assumptions and Limitations

Software Requirements
The following software are necessary for the development of a C++ client:

SOLARIS:

• Solaris 2.8

• ORBacus 4.1 for C++ on Solaris

• Sun Workshop 6 Update 2 (C++ 5.2)

• Sun Java System Application Server

• JavaTM 2 Platform, Standard Edition (J2SETM platform) 1.4

Preparing for C++ Client Development
You must perform the following tasks before you start developing a C++ client:

1. Make sure that all the required software are installed. For more information on
the software required for C++ client development, see “Software
Requirements” on page 78.



Developing a C++ Client

Chapter 5 C++ Clients 79

2. Install Java Development Kit (JDK) 1.4.

3. Install ORBacus 4.1.

For instructions on installing ORBacus 4.1, see the ORBacus documentation.

SOLARIS:

Set the PATH to CC (C++ compiler of Sun workshop 6.2), rmic (RMI compiler),
idl compiler of ORBacus.

export
PATH=<SUNworkshoppath>/SUNWspro/WS6U2/bin:<JDK_HOME>bin::$PATH

export ORBACUS_LICENSE=path to ORBacus 4.1 license file directory/licenses.txt
export LD_LIBRARY_PATH=path to ORBacus home/lib

4. Install Application Server and test for basic functionality.

NOTE • If your client development machine is different from that of the
machine where Sun Java System Application Server is installed,
copy the following classes to your client system:

❍ The appserv-ext.jar part of Sun Java System Application
Server available in install dir/lib.

❍ All the classes corresponding to the application including
home interface, remote interface, helper classes, and third
party classes used by the application.

• Java language mapping specification does not support the use
of Java package names differing only in case, to simplify the
mapping. Sun Java System Application Server also does not
support the use of class or interface names within the same
package that differ only in case. Both of these are treated as
errors. Therefore the deployed beans should not have package
name and class name differing only in case.

• The explanations in this document are with respect to the
sample application Cart available at the following location:
install_dir/samples/rmi-iiop/cpp/



Developing a C++ Client

80 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

5. Deploy the sample application Cart - BookCartApp.ear.

You can deploy this application using the Administration interface. It is not
mandatory to deploy the application, but a recommended step. For detailed
information on deploying this application, see the Sun Java System Application
Server Administration Guide.

Assumptions and Limitations
For Java data types such as, HashTable or other custom Java classes that have to be
passed by value, you have to provide native C++ implementation or provide a
wrapper over existing C++ implementation of those classes (such as STL) that
conforms to the IDL files generated for the Java classes.

Creating a C++ Client
This section describes the procedure to create a C++ client that uses a third party
ORB. The developed C++ client application can then be deployed to Sun Java
System Application Server. The following are the major steps involved in creating
a C++ client:

• Generating the IDL Files

• Generating CPP Files from IDL Files

Generating the IDL Files
1. Create a directory for C++ client development. For example:

mkdir cppclient
cd cppclient

NOTE To develop a C++ client, all the corresponding classes of the
application should be accessible. That is, the home and remote
interfaces of all the EJB components, helper classes, and other
classes that are part of the application must be accessible. After the
deployment, these can be made either part of Application Server or
independent of Application Server.



Developing a C++ Client

Chapter 5 C++ Clients 81

2. Generate IDL files corresponding to remote and home interfaces of the EJB
components, helper classes, and other third party classes used by J2EE
applications.

Use the rmic tool, which is part of JDKTM 1.4, for generating IDL files.

a. Generate the IDL files corresponding to home and remote interface of all
the EJB components.

When the IDL files corresponding to home and remote references are
generated, the IDL files corresponding to the classes mentioned as part of
the method signature are also generated. Thus, the separate IDL
generation of those classes are not required. Generate only the classes
which do not figure as part of the method signature separately.

For example:

I. rmic -classpath

instance_dir/applications/j2ee-apps/BookCartApp_1/BookCartAppEjb_jar
:install_dir/lib/appserv-ext.jar
-idl samples.rmi_iiop.cpp.ejb.CartHome

II. rmic -classpath

instance_dir/applications/j2ee-apps/BookCartApp_1/BookCartAppEjb_jar
:install_dir/lib/appserv-ext.jar
-idl samples.rmi_iiop.cpp.ejb.Cart

III. rmic -classpath

instance_dir/applications/j2ee-apps/BookCartApp_1/BookCartAppEjb_jar
:install_dir/lib/appserv-ext.jar
-idl samples.rmi_iiop.cpp.ejb.InterfaceTestClass

-classpath - contains the path to all the classes against which IDL is
being generated. If the classes appearing as arguments to the method
are part of a different package, include those paths also. Include the
path to appserv-ext.jar in the classes.

The generated IDL files will be stored under directories corresponding
to the package of the classes.

For example, the Cart.class will be mapped to Cart.idl and will be
under /cppclient/samples/rmi_iiop/cpp/ejb/ directory.

Similarly, classes corresponding to JDK are generated under
java/lang,java/io,javax/rmi/ejb,org/omg/ and other similar
directories.



Developing a C++ Client

82 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

3. Generate the valuetypes corresponding to the classes native to J2SDK.

As mentioned in Step 2, when IDL specific to application classes such as, home
interface, remote interface, and other classes part of the application are
generated, it also generates the IDLs corresponding to the classes native to the
JDK.

The classes of JDK that are serializable get mapped as IDL value types. You
have to provide the implementation for these valuetypes using the IDL-to-CPP
compiler.

This will create C++ classes corresponding to the classes native to JDK.
However, these C++ files have only dummy methods apart from protected
methods that have implementation of accessor and modifier methods. If you
need to manipulate the C++ objects, you need to add new methods to the
generated C++ files.

If the Java class has any member variables, then the value type implementation
of that class will have accessor and modifier methods and they are protected.
You can add new public methods in the implementation class of valuetypes to
access and modify those member variables by calling the corresponding
protected methods.

Subsequently, compile these classes to generate an object file or as a shared
library. This is a one time effort and you do not require perform for every J2EE
application that you develop. You may re-use these implementations.

4. Develop the library for the valuetype implementations.

The following steps describe the procedure to develop your own library for the
valuetype implementations. All these valuetype implementations can be
grouped as a library. This library should contain object files (valuetype
implementation), the header(.h) and the IDL (.idl) files.

a. Modify the IDL files as required by following the guidelines given in the
next step.

b. Generate cpp files for all the IDL files corresponding to the Java classes
using the IDL compiler supplied with ORBacus. For example,

idl --impl-all -I. -Iclasspath to IDL files -Iorbacus_home/idl/
-Iorbacus_home/idl/OB *.idl

c. Implement the valuetype types, if required.

This is required only if you need to manipulate the object. For example,
collection classes like Vector, Hashtable, etc., proper implementation has to
be provided as lists so that elements can be retrieved and added to the list.



Developing a C++ Client

Chapter 5 C++ Clients 83

d. Compile the cpp file to generate an object file or a shared library.

5. Modify the generated IDL files such as the EJBs, helper classes, and third-party
classes corresponding to the application.

The generated IDL files do not compile directly. You need to manually modify
the IDL files for generating a CPP file. The list below explains the situations
when you need to modify the IDL files:

a. Delete the duplicate variables defined.

For example, in Employee.idl, employee_ is defined twice as:
private::CORBA::WStringValue employee_; attribute::CORBA::WStringValue

employee_;

Either of the duplicate entries can be deleted. Deleting the following
attribute is recommended:
attribute::CORBA::WStringValue employee_;

b. Change the custom valuetypes to non-custom valuetypes.

For example, Valuetype Exception inherits from Throwable, which is a
custom valuetype. Remove the tag custom from the Throwable valuetype
definition.

c. There will be cases where the same IDL file will be included more than
once. This will result in improper generation of the CPP files. Comment
such multiple includes.

• For example, Exception.idl under java/lang has
java/lang/Throwable.idl included twice. Comment the second include.

• The IDL file may compile even when multiple includes are present.
However, the generated CPP file will be incorrect.

NOTE Generate the Java language classes before processing other IDL files.
Implement all the IDL files corresponding to the JDK before
proceeding with application specific IDL files.

NOTE This is not a complete list and you may need to make suitable
modification to IDL files for successful generation of IDL files to
CPP files.



Developing a C++ Client

84 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

d. There will be cases where other IDL files are included circularly.

Some of the abstract valuetypes would be inheriting from
java::io::Serializable. Remove such inheritance.

For example, in InterfaceTest.idl, InterfaceTest is an abstract valuetype
and it inherits from java::io::Serializable. Remove this inheritance.

Generating CPP Files from IDL Files
To generate the .cpp files form the .idl files, perform the following steps:

1. Go to the path where the IDL files are generated. Include the following paths to
the idl command:

a. paths to all the application IDLs

b. paths to all the JDK related IDLs

c. ORBacus_home/idl

d. ORBacus_home/idl/OB

The paths are included by the -I option.

2. Execute the following command with the paths mentioned in Step 1, with
--impl-all options idl_file_name.

For example,

idl --impl-all -Iclasspath_to_java_classes_IDL -I/cppclient
-I/orbacus_home/idl/ -I/orbacus_home/idl/OB -I. ComplexObject.idl

You must first include the classpath to Java classes IDL files.

3. Execute the above command for all the IDL files corresponding to the
application in all the directories.

4. Modify the generated classes.

Some of the cpp files should be manually modified. The situations under
which modifications are required are given below:



Developing a C++ Client

Chapter 5 C++ Clients 85

a. There can be clashes in the namespaces that appear in the code generated
from IDL to CPP using the IDL tool.

The following examples illustrate the scenarios:

Example 1

The class, ClassDesc, generated under javax/rmi/CORBA uses the classes such
as, CORBA::ValueBase. The class, CORBA::ValueBase, is part of the ORB
implementation and is defined under the namespace, CORBA.

ClassDesc is defined under the namespace, javax::rmi::CORBA. If a
reference to ValueBase as CORBA::ValueBase is made inside this class, it
looks for its definition under the javax::rmi::CORBA namespace.

This fails as it is defined under the namespace CORBA and not
javax::rmi::CORBA. To force it to look in the namespace CORBA, change the
syntax to javax::rmi::CORBA::ValueBase.

Example 2

In the class example generated under the java/lang directory, there are
references to the Exception class.

There are two types of exceptions: CORBA::Exception and
java::lang::Exception. Change to java::lang::Exception from
CORBA::Exception. These kind of code changes are required for the classes to
compile properly.

NOTE You need not compile the classes corresponding to the skeletons, as
they will not be used to implement the valuetypes.



Developing a C++ Client

86 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

5. Implement the valuetypes.

The --impl-all option to the IDL command also generates the code for the
valuetype implementation, including the factories for creating the value types.
The valuetype implementation will have most of the methods as protected.

Therefore, they cannot be accessed directly and add new methods to the
valuetype implementation that are public. These methods call the protected
methods to achieve the desired functionality. The client programs will call
these newly added methods depending on the functionality.

However, sometimes these public methods are also generated by the IDL. In
such cases implementation can be provided in these methods by calling the
protected methods without adding new methods.

This type of generation is dependent on whether the variables are defined as
private or attribute in the IDL files. For example, Employee.class gets mapped
as Employee valuetype. The implementation which is Employee.cpp generated for
this valuetype as part of IDL command consists of the method, employee_() as
protected. Since this cannot be accessed directly, we have to add
getEmployeeName() as a public method in the Employee_impl.cpp and Employee.h.
This method calls employee_() method to achieve the functionality of returning
the EmployeeName.

6. Compile the value type implementations and other generated cpp files. You
need to write the makefile to generate a cpp file.

7. Develop the client program as required by design and functionality.

Include the header files of all the valuetypes. The following code illustrates the
steps:

samples::rmi_iiop::cpp::ejb::ComplexObjectFactory_impl
*complexObjectVf = new
samples::rmi_iiop::cpp::ejb::ComplexObjectFactory_impl();

// initializing the ORB

CORBA::ORB_var orb = CORBA::ORB_init(argc,argv);

NOTE You may have to add additional methods to achieve specific
functionality and to change the state of the object. These are
determined by your application design and the required
functionality.



Developing a C++ Client

Chapter 5 C++ Clients 87

// registering the value factories. This is required for //unmarshalling
the valuetypes

orb->register_value_factory(
samples::rmi_iiop::cpp::ejb::ComplexObject::_OB_id(),complexObjectVf);

Register the valuefactories after orbinit(). The registration of the
valuefactories are very essential. If they are not registered, it results in
marshalling exceptions and the ORB fails to unmarshall valuetypes.

8. Compile and link the client program with the previously generated object files.

9. Run the client program.

Provide the NameService URL to the program. You can pass this as the
-ORBconfig <config file> property to the client. The configuration file contains
the NameService URL as follows:

ooc.orb.service.NameService=corbaloc::green.india.sun.com:1050/Name
Service

For other ways to pass the NameService URL, refer to the ORBacus
documentation.

For example, c++client -ORBconfig = config_file_path/config_file_name

Sample Applications
RMI/IIOP sample applications have been bundled with Sun Java System
Application Server. These samples have been augmented with detailed setup
instructions for deploying the application to Sun Java System Application Server.
The setup documentation and source code are available at the following location:

install_dir/samples/rmi-iiop/



Developing a C++ Client

88 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients



89

Index

A
ACC

features 18
naming 18
security 18

acc 17
acc clients

failover
properties 21

load balancing
properties 21

acc flag 43
acc package

asenv configuration settings 44
editing sun-acc.xml 45
modifying appclient script 44
using package-appclient script 46

appclient.jar file 46
contents 46

application client 15
accessing EJB 22
appclient script 47
create bean instance 20
creating using the ACC 19
invoke business method 20
invoking an EJB module 22
locate EJB home interface 19
making a remote call 23
running 47
using SSL with CA 45

application client container 17
application client container package

client.policy file 47
application clients

authenticating using JAAS 34
security 34

application-client.xml 52
ATTLIST tag 51
attributes

#IMPLIED label 51
#REQUIRED label 51

authentication realm 63

C
c++ clients 77

configuring 78
developing 80
preparing for development 78
required classes 79
running 87

client 11, 57
architecture 15
web services clients 13

client types 13
clients

application clients 15
CORBA clients 14
JMS clients 14
RMI-IIOP clients 14
web client 13
web services clients 13



Section D

90 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

client-side load balancing 74
configuring Sun Java System ORB 74
CORBA clients 14

scenarios 67
cpp files 84
create bean instance

create method 20
Creating 20

D
deployment descriptors 49

application client 52
application client container 57
attributes 51
data 51
element 50
format 50
J2EE application client 52
subelements 50

developing c++ clients
generate cpp files 84
generate IDL files 80, 81
generate valuetypes 82
implementing valuetypes 86
modifying the generated IDL files 83
registering valuefactories 86

E
EJBs

accessing with IIOP 67
specifying JNDI name 71

F
form-hint-field attribute 58

I
IDL files

generate 81
rmic tool 81

IIOP 14
accessing EJBs 67
accessing servers 68

IIOP listener configuration 58
IIOP/SSL configuration 61
InitialContext 71
invoking a J2EE client without using acc 42

J
J2EE application client 19
J2EE platform layers 11

Business logic layer 12
client 11
database 12
presentation 11

J2SE policy file 47
JAAS module 34

LoginModule 34, 35
JMS clients 14
JNDI 14

specifying EJB name 71

L
launching acc 47
library for valuetype implementation

developing 82
load balancing 74
logging messages 45
LoginModule

CallBackHandler 35
commit() method 36
integrate 37
login() method 35
logout() method 36



Section M

Index 91

M
message-driven beans 14
modifying the generated IDL files

changing valuetypes 83
deleting duplicate variables 83

N
naming factory class 71

O
ORB architecture 69

P
param-name element 54
presentation layer

J2EE components 11
non-J2EE components 12

R
RMI/IIOP 14
RMI/IIOP client

load balancing and failover 72
rpm 10

S
S1ASCtxFactory class 74
scenarios

server-server 68
stand-alone 67

security
authentication data 18
JAAS module 18
using SSL with CA 45

setting the ORB port 45
showrev 10
SSL 18
SSL processing parameters 62
stand-alone clients

load balancing 72
stand-alone CORBA client

creating 70
running 75

subelements
requirement rules 50

Sun customer support 10
Sun’s ORB 77
sun-acc.xml elements

auth-realm 63
cert-db 63
client-container 57
client-credential 59
description 59
log-service 60
property 64
security 61
ssl 62
target-server 58

sun-acc.xml file 57
elements in 57

sun-application element
definition in sun-application_1_3-0.dtd file 50

sun-application-client.xml 52
sun-application-client.xml elements

default-resource-principal 54
ejb-ref 55
ejb-ref-name 55
jndi-name 56
name 55
password 55
resource-env-ref 56
resource-env-ref-name 56
resource-ref 53
resource-ref-name 54
sun-application-client 53



Section T

92 Application Server 7 2004Q2 Update 1 • Developer’s Guide to Clients

sun-application-client.xml file 53
elements in 52

T
thin client 13

W
web client 13
web services clients 13


	Contents
	Application Server 7 Developer’s Guide to Clients
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Related Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Contacting Sun
	Give Us Feedback
	Obtain Training
	Contact Product Support


	Overview of Clients
	Introducing Clients
	Types of Clients
	Web Clients
	Web Services Clients
	JMS Clients
	CORBA Clients
	Application Clients


	Using the Application Client Container
	Introducing the Application Client Container
	Application Client Container Features

	Developing Application Clients
	Creating an Application Client
	Locating the Home Interface
	Creating an Enterprise Bean Instance
	Invoking a Business Method

	Creating an ACC Client With Load Balancing and Failover Support (Enterprise Edition)
	Introducing the Properties that Support LB/FO for ACC Clients
	Configuration Changes

	Using an Application Client to Invoke an EJB Module
	Making a Remote Call on the EJB

	Using an Application Client to Access JMS Resources
	Application Client Accessing JMS Resources Without Using the ACC
	Application Client Packaged in an Application Client Container Accessing JMS Resources

	Authenticating an Application Client Using the JAAS Module
	Invoking an RMI/IIOP-based Client Without Using the ACC
	Packaging an Application Client Using the ACC
	Editing the Configuration File
	Editing the appclient Script
	Editing the sun-acc.xml File
	Setting Security Options
	Using the package-appclient Script

	Running an Application Client Using the ACC
	Sample Client Application


	Application Client Deployment Descriptors
	Introducing Application Client Deployment Descriptors
	Format of Deployment Descriptors
	Subelements
	Data
	Attributes


	J2EE Application Client Deployment Descriptor
	Sun Java System Application Client Deployment Descriptor
	Elements in sun-application-client.xml file

	Application Client Container Configuration File
	Elements in the sun-acc.xml File


	Java-based CORBA Clients
	CORBA Client Scenarios
	Stand-alone Scenario
	Server to Server Scenario
	ORB Support Architecture

	Developing non-ACC Java-based CORBA Clients
	Creating a Stand-alone CORBA Client
	Specifying the Naming Factory Class
	Specifying the JNDI Name of an EJB
	Implementing Load Balancing and Failover Capabilities in the Client Application (Enterprise Edition)

	Running a Stand-alone CORBA Client


	C++ Clients
	Introducing C++ Clients
	Developing a C++ Client
	Configuring C++ Clients to Access Sun Java System Application Server
	Software Requirements
	Preparing for C++ Client Development
	Assumptions and Limitations

	Creating a C++ Client
	Generating the IDL Files
	Generating CPP Files from IDL Files

	Sample Applications


	Index


