Sun Java™ System

Application Server 7
System Deployment Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-1640

2004Q2

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http: // waw sun. con pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Use is subject to license terms. This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer
Pages, JSP, JDBC, JDK, JVM, Java Naming and Directory Interface, JavaMail, and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
I’'adresse ht t p: // waw. sun. coni pat ent s et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etat -Unis et dans les
autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L’AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

L’utilisation est soumise aux termes de la Licence. Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun™ ONE, Sun™ ONE Studio, iPlanet, J2EE, J2SE, Enterprise JavaBeans, EJB, JavaServer
Pages, JSP, JDBC, JDK, JVM, Java Naming and Directory Interface, JavaMail, et le logo Java Coffee Cup sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Ce produit est soumis a la Iégislation américaine en matiere de contrdle des exportations et peut étre soumis a la réglementation en vigueur dans
d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris,
mais de maniére non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une fagon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matiere de contrdle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents

Contents

Who Should Use This GUIE e e 5
Using the DOCUMENTAtION oot e e e e e e 6
How This Guide is Organizedttt e 8
Documentation CONVENTIONS et e e e e 9
General CONVENTIONSottt e e e e e e e e e 9
Conventions Referring to DIreCtOrieso e 10
CONtACTING SUN .ottt e 10
Give Us Feedback 11
ODbtain TraiNiNgt e 11
Contact ProduCt SUPPOItt e e 11
Chapter 1 Overview of Deployment e 13
ADOUL DEPIOYMENT . ..o 13
TRrOUGN UL . 14
RESPONSE TIMIE oo 14
AVailability ... 14
Phases of the Deployment PrOCESSottt e e e 14
Planning Your ENVIFONMENT e e e e 15
Selecting @ TOPOIOGYo 15
RUNNING TSt . . oottt e e e e e e 16
Understanding SeSSion PErSIStENCEottt e 16
Chapter 2 Planning your Environment 19
INtroducing HA DB 19
OV VI . . oot e 20
SYStem ReQUITEMIENTSottt et et e e e e e e 20
HADB AFChItECTUIE e e e e e 21

Contents 1

Nodes and NOGE PrOCESSESttt e e e e e e e e e e e 21

Data Redundancy UNits 22
SPAre NOES .. 23
Example: Co-located Spare Node Configuration 24
Example: Separate-tier Spare Node Configuration oo, 24
Mitigating Double Failures 25
HADB Management SYStemMo e e e 25
Management CHENt 26
Management AgENT e 27
Management DOMAINS oo e 27
REPOSI O Y . o 28
Setup and Configuration Roadmap i 28
Establishing Performance Goals e 29
Estimating ThroUughput 30
Estimating Load on Application Server Instances 31
Calculating Maximum Number of Concurrent Users, 31
Calculating Think Time e 32
Calculating Average ReSponse TIMEttt e e 32
Calculating Requests Per MINULE o e 34
Estimating Load on HADB 35
HTTP Session Persistence FreqQUENCYttt e e 35
HTTP Session Size and SCOPEo .ottt e e e e et e 36

SFSB Checkpointing 37
DeSigN DECISIONSottt e e e e e 38
Number of Application Server Instances Required 38
Number of HADB Nodes Required e 38
NUumber of HADB HOSESot e e e 39
HADB Storage CapacCityttt et e e et e et e e e 40
Designing for Peak Load Compared to Steady State Load 42
Planning the Network Configuration e 42
Estimating Bandwidth RequUirements e 43
Calculating Bandwidth Required 43
Estimating Peak Load 44
ConfiguIing SUDNELS 45
Choosing Network Cardso e 45
Network Settings for HADB 45
Planning for Availability e 46
Adding Redundancy to the System 46
Identifying Failure Classeso e 46
Using Redundancy Units to Improve Availability 47
Using Spare Nodes to Improve Fault Tolerance 47
Planning Failover Capacityt e e 47
Using Multiple Clusters to Improve Availability i i i 47

Application Server 7 2004Q2 « System Deployment Guide

Chapter 3 Selecting a Topology i e 49

CommON REQUITEMENTS oottt et e e e e e e e e e e e e e e e 49
General REQUITEMIENTSot e e e e e e e e e 50
HADB Nodes and Machines e 50
Load Balancer Configuration e 51
Co-located TOPOIOGY . ..ottt e 51
Example of Co-located ToOpology e 52
Configuration Settings for Reference Co-located Topology 53
Variation of Co-located TOPOIOQYot 55
Configuration Settings for Variation to the Reference Co-located Topology 57
Separate Tier TOPOIOQY . ..ottt e e e e e e e e e e e 58
Sample Configuration 58
Configuration Settings for Reference Separate Tier Topology 60
Variation of Separate Tier TOPOIOQY oot 61
Configuration Settings for Variation to Reference Separate Tier Topology 63

Comparison of TOPOIOGIESo e e 64

Determining Which Topology to USe e 65

Appendix A Checklist for Deployment e 67

IO EX .o 75

Contents 3

4 Application Server 7 2004Q2 « System Deployment Guide

About This Guide

This guide describes how to create and run Java™ 2 Platform, Enterprise Edition
(J2EE™ platform) applications that follow the new open Java standards model for
Java™ Servlet, JavaServer Pages™ (JSP™), Enterprise JavaBeans™ (EJB™), and
other J2EE components in the Sun Java™ System Application Server 7 Enterprise
Edition environment.

This preface addresses the following topics:

Who Should Use This Guide
Using the Documentation
How This Guide is Organized
Documentation Conventions

Contacting Sun

Who Should Use This Guide

The information in this guide is intended for system administrators who want to
deploy and support a large system that has high availability requirements.

This guide assumes you are familiar with the following:

Installation of enterprise-level software products
UNIX® operating system

Client/server programming model

Internet and World Wide Web

Awvailability and clustering concepts

Using the Documentation

Using the Documentation

The Sun Java System Application Server Standard and Enterprise Edition manuals
are available as online files in Portable Document Format (PDF) and Hypertext

Markup Language (HTML).

The following table lists tasks and concepts described in the Sun Java System
Application Server manuals. The manuals marked (updated for 2004Q2) have been
updated for the Sun Java System Application Server 7 Standard and Enterprise
Edition release. The manuals not marked in this way have not been updated since

the version 7.0 Enterprise Edition release.

Table 1 SunJava System Application Server Documentation Roadmap

For information about

See the following

(Updated for 7 2004Q2) Late-breaking information about the software and the
documentation. Includes a comprehensive, table-based summary of supported
hardware, operating system, JDK, and JDBC/RDBMS.

Sun Java System Application Server 7 overview, including the features available
with each product edition.

Diagrams and descriptions of server architecture and the benefits of the Sun Java
System Application Server architectural approach.

(Updated for 7 2004Q2) How to get started with the Sun Java System Application
Server product. Includes a sample application tutorial. There are two guides, one for
Standard Edition and one for Enterprise Edition.

(Updated for 7 2004Q2) Installing the Sun Java System Application Server Standard
Edition and Enterprise Edition software and its components, such as sample
applications and the Administration interface. For the Enterprise Edition software,
instructions are provided for implementing the high-availability configuration.

(Updated for 7 2004Q2) Evaluating your system needs and enterprise to ensure that
you deploy Sun Java System Application Server in a manner that best suits your
site. General issues and concerns that you must be aware of when deploying an
application server are also discussed.

Creating and implementing Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications intended to run on the Sun Java System Application Server that follow
the open Java standards model for J2EE components such as servlets, Enterprise
JavaBeans™ (EJBs™), and JavaServer Pages™ (JSPs™). Includes general
information about application design, developer tools, security, assembly,
deployment, debugging, and creating lifecycle modules. A comprehensive Sun Java
System Application Server glossary is included.

Release Notes

Product Overview

Server Architecture

Getting Started Guide

Installation Guide

System Deployment Guide

Developer’s Guide

6 Application Server 7 2004Q2 « System Deployment Guide

Table 1

Using the Documentation

Sun Java System Application Server Documentation Roadmap (Continued)

For information about

See the following

(Updated for 7 2004Q2) Creating and implementing J2EE web applications that
follow the Java™ Servlet and JavaServer Pages (JSP) specifications on the Sun
Java System Application Server. Discusses web application programming concepts
and tasks, and provides sample code, implementation tips, and reference material.
Topics include results caching, JSP precompilation, session management, security,
deployment, SHTML, and CGI.

(Updated for 7 2004Q2) Creating and implementing J2EE applications that follow
the open Java standards model for enterprise beans on the Sun Java System
Application Server. Discusses Enterprise JavaBeans (EJB) programming concepts
and tasks, and provides sample code, implementation tips, and reference material.
Topics include container-managed persistence, read-only beans, and the XML and
DTD files associated with enterprise beans.

(Updated for 7 2004Q2) Creating Application Client Container (ACC) clients that
access J2EE applications on the Sun Java System Application Server.

Creating web services in the Sun Java System Application Server environment.

(Updated for 7 2004Q2) Java™ Database Connectivity (JDBC™), transaction, Java
Naming and Directory Interface™ (JNDI), Java™ Message Service (JMS), and
JavaMail™ APIs.

Creating custom NSAPI plug-ins.

(Updated for 7 2004Q2) Information and instructions on the configuration,
management, and deployment of the Sun Java System Application Server
subsystems and components, from both the Administration interface and the
command-line interface. Topics include cluster management, the high-availability
database, load balancing, and session persistence. A comprehensive Sun Java
System Application Server glossary is included.

(Updated for 7 2004Q2) Editing Sun Java System Application Server configuration
files, such as the server. xm file.

Configuring and administering security for the Sun Java System Application Server
operational environment. Includes information on general security, certificates, and
SSL/TLS encryption. HTTP server-based security is also addressed.

Configuring and administering service provider implementation for J2EE™
Connector Architecture (CA) connectors for the Sun Java System Application
Server. Topics include the Administration Tool, Pooling Monitor, deploying a JCA
connector, and sample connectors and sample applications.

(Updated for 7 2004Q2) Migrating your applications to the new Sun Java System
Application Server programming model, specifically from iPlanet Application Server
6.x and Sun ONE Application Server 7.0. Includes a sample migration.

(Updated for 7 2004Q2) How and why to tune your Sun Java System Application
Server to improve performance.

Developer’s Guide to Web
Applications

Developer’s Guide to Enterprise
JavaBeans Technology

Developer’s Guide to Clients

Developer’s Guide to Web
Services

Developer’s Guide to J2EE
Services and APIs

Developer’s Guide to NSAPI

Administration Guide

Administrator’s Configuration
File Reference

Administrator’s Guide to
Security

J2EE CA Service Provider
Implementation Administrator’s
Guide

Migrating and Redeploying
Server Applications Guide

Performance Tuning Guide

About This Guide 7

How This Guide is Organized

Table1 SunJava System Application Server Documentation Roadmap (Continued)

For information about See the following

(Updated for 7 2004Q2) Information on solving Sun Java System Application Server Troubleshooting Guide
problems.

(Updated for 7 2004Q2) Information on solving Sun Java System Application Server Error Message Reference
error messages.

(Updated for 7 2004Q2) Utility commands available with the Sun Java System Utility Reference Manual
Application Server; written in manpage style.

Using the Sun™ Java System Message Queue 3.5 software. The Sun Java System
Message Queue
documentation at:

http://docs. sun. conl db?p=
prod/ sl. slnsgqu

For information about See the following

(Updated for 7 2004Q2) Late-breaking information about the software and the Release Notes
documentation. Includes a comprehensive, table-based summary of supported
hardware, operating system, JDK, and JDBC/RDBMS.

How This Guide is Organized

This guide is divided into three chapters. Read the chapters in the order they are
presented as each chapter builds on the previous one.

 Chapter 1, “Overview of Deployment” provides an introduction to
deployment and discusses phases of deployment.

= Chapter 2, “Planning your Environment” discusses the steps you need to
determine the environment that best suits your business needs.

= Chapter 3, “Selecting a Topology” contains examples of application server
topologies, and helps you determine the topology that best suits your business
needs.

= Appendix A, “Checklist for Deployment” provides a list of tasks to get started
with Sun Java System Application Server.

8 Application Server 7 2004Q2 « System Deployment Guide

http://docs.sun.com/db?p=prod/s1.s1msgqu

Documentation Conventions

Documentation Conventions

This section describes the types of conventions used throughout this guide:

General Conventions

Conventions Referring to Directories

General Conventions

The following general conventions are used in this guide:

File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

URLs are given in the format:
http://server.domain/path/file.html

In these URLSs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

Font conventions include:

o The monospace font is used for sample code and code listings, APl and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

o Italic type is used for code variables.

o Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

v Boldtype is used as either a paragraph lead-in or to indicate words used in
the literal sense.

Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 10.

By default, the location of install_dir on most platforms is:
o Solaris 8 and 9 and Linux file-based installations:

user’s home directory/ sun/ appserver 7

About This Guide 9

Contacting Sun

o Windows, all installations:
C:\ Sun\ AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 10.
for exceptions and additional information.

= Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following:

default_config_dir/ domai ns/ domain/ instance

= UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories

By default, when using the Solaris 8 and 9 package-based or Linux RPM-based
installation, the application server files are spread across several root directories.
This guide uses the following document conventions to correspond to the various
default installation directories provided:

o install_dir refers to/ opt / SUN\Vappser ver 7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

o default_config_dir refers to/ var/ opt / SUN\Wappser ver 7/ domai ns, which is
the default location for any domains that are created.

o install_config_dir refers to / et c/ opt / SUNWappser ver 7/ conf i g, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Contacting Sun

You might want to contact Sun Microsystems in order to:
= Give Us Feedback
e Obtain Training

= Contact Product Support

10 Application Server 7 2004Q2 « System Deployment Guide

Contacting Sun

Give Us Feedback

If you have general feedback on the product or documentation, please send this to:

htt p: // wwv sun. cont hwdocs/ f eedback/

Obtain Training

Application Server training courses are available at:
http://traini ng. sun. coml US cat al og/ ent er pri se/ web_appl i cation. htni/

Visit this site often for new course availability on the Sun Java System Application
Server.

Contact Product Support

If you have problems with your system, contact customer support using one of the
following mechanisms:

=« The online support web site at:
ht t p: // waw. sun. cond suppor t rai ni ng/
= The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

= Description of the problem, including the situation where the problem occurs
and its impact on your operation

= Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem. Here are some
of the commonly used commands:

o Solaris: pkgi nfo, show ev

o Linux: rpm

o All: asadnin version --verbose
= Detailed steps on the methods you have used to reproduce the problem
< Any error logs or core dumps

= Configuration files such as:

About This Guide 11

http://www.sun.com/hwdocs/feedback/
http://www.sun.com/hwdocs/feedback/
http://www.sun.com/supportraining/
http://training.sun.com/US/catalog/enterprise/web_application.html/

Contacting Sun

o instance_dir/ confi g/ server. xn

o aweb application’s web. xm file,
when a web application is involved in the problem

= Foran application, whether the problem appears when it is running in a cluster
or standalone

12 Application Server 7 2004Q2 « System Deployment Guide

Chapter 1

Overview of Deployment

This chapter describes what you need to know to set up your Sun Java™ System
Application Server, Standard and Enterprise Edition the way that best meets your
requirements.

This chapter contains the following sections:
= About Deployment
= Phases of the Deployment Process

= Understanding Session Persistence

About Deployment

Successful deployment of complex applications on the Application Server requires
that you consider practical aspects of the environment. In general, you should
begin by assessing your goals for performance and availability. You should then
plan the hardware, network, and resource configuration accordingly.

Here are the important goals that you should consider while planning the
deployment:

< Throughput
 Response time
* Availability

You gather information related to these goals and then analyze it to establish a
processing threshold for your site.

In considering performance, consider both—application server instances and the
High Availability Database (HADB).

13

Phases of the Deployment Process

The HADB uses the patented Always-On technology and works as the persistence
store to provide high availability for web applications. It offers an ideal platform
for delivering all types of session state persistence within an enterprise application
server environment. For more information on configuring HADB, see Sun Java™
System Application Server Administration Guide.

Throughput

Throughput is the number of requests that Sun Java System Application Server can
service in a given time period. For example requests per minute. You should
estimate the maximum number of operations and transactions that the system
needs to perform under peak load conditions. It is also useful to determine the
operations and transactions per minute under steady state (typical) load
conditions. This will help you to determine the network bandwidth needed, the
number of application server instances required, and the number of HADB nodes
required.

You should also consider plans to increase capacity in the future.

Response Time

You should determine the acceptable response time from the system under heavy
load. This has a direct bearing on hardware capacity planning.

Availability

Will your system be running 24 x 72 If there is a failure in the system, will your
users notice it? Do you have a subset of applications that need to be available all
the time whereas other applications will run only periodically? The answers to
these questions determine your availability needs. You will have to build
redundancy into the system to meet availability needs and avoid single points of
failure.

Phases of the Deployment Process

The deployment process primarily comprises the following three phases, each one
building on the previous one.

= Planning Your Environment

14 Application Server 7 2004Q2 « System Deployment Guide

Phases of the Deployment Process

= Selecting a Topology

= Running Tests

Planning Your Environment

In the first phase of planning your deployment, determine how the Application
Server fits into your overall enterprise. Central to planning your environment is the
assessment of the goals discussed in “About Deployment” on page 13. You should
establish performance goals related to throughput and response time. You also
determine your availability goals.

Based on the performance and availability goals, you consider the network
requirements and the infrastructure requirements including hardware, storage,
and network requirements.

You may realize during this process that you should change the structure and
components of your network to accommodate the needs of your Application
Server. If your network structure cannot be changed at this time, use the
environment planning process to determine how you can best deploy Application
Server to fit in with your existing network.

For more details on this phase of the planning process, see Chapter 2, “Planning
your Environment.”

Selecting a Topology

Once you have determined the performance, availability, network, and
infrastructure requirements, you then select a topology that best meets your
performance needs. A topology is the schematic arrangement of Application Server
components and the communication flow between these components. The two
recommended topologies (and their variations) are:

e Co-located: The application server instance and the HADB node are on the
same machine.

= Separate Tier: The application server instance and the HADB node are on
different machines.

For more details on these topologies, see Chapter 3, “Selecting a Topology.”

Chapter 1 Overview of Deployment 15

Understanding Session Persistence

Running Tests

Once you configure the Application Server, you should deploy a representative
sampling of applications and run tests to check whether your performance goals
are met. If you are not able to reach your stated performance goals, use this phase
to identify bottlenecks, fine-tune the system, and improve performance.

As implementation of this phase is completely dependent on your particular
environment, it is not covered in this guide.

Understanding Session Persistence

16

J2EE applications typically have significant amounts of session state data. A web
shopping cart is the classic example of session state. Also, an application can cache
frequently-needed data in the session object. In fact, almost all applications with
significant user interactions need to maintain session state. Both HTTP sessions
and stateful session beans (SFSBs) have session state data.

While session state is not as important as transactional state stored in a database,
preserving session state across server failures can be important to end users.The
Application Server provides the capability to save, or persist, this session state in a
repository. If the application server instance that is hosting the user session
experiences a failure, the session state can be recovered. The session can continue
without loss of information.

Sun Java System Application Server supports the following types of session
persistence stores:

= High Availability (HA)
= Memory
* File

When you set the persistence type to HA, Application Server uses HADB as the
persistence store for both HTTP and SFSB sessions. With Memory persistence, the state
is always kept in memory and does not survive failure. With File persistence, the
Application Server serializes session objects and stores them to the file system
location specified by session manager properties. For SFSBs, if HA is not specified,
the Application Server stores state information in the session-store sub-directory of
this location.

Application Server 7 2004Q2 « System Deployment Guide

Understanding Session Persistence

Checking an SFSB’s state for changes that need to be saved is called checkpointing.
When enabled, checkpointing generally occurs after any transaction involving the
SFSB is completed, even if the transaction rolls back. For more information on
enabling SFSB checkpointing, see the Sun Java System Application Server Developer’s
Guide to Enterprise JavaBeans Technology.

Apart from the number of requests being served by the Application Server, the
session persistence configuration settings affect the number of requests received
per minute by HADB, as well as the session information in each request.

The persistence settings can be defined for each application server instance.
However, all application server instances in a single cluster must have the same
persistence configuration. If you have deployed more than one Application Server
cluster, itis not necessary for all clusters to have the same persistence configuration
settings.

For more information on configuring session persistence and its effect on
performance, see “HTTP Session Persistence Frequency”.

NOTE Use the command cl admi n to ensure that the session persistence settings are
homogeneous for all instances in a cluster. For more information on using the
cl adm n command, see Sun Java System Application Server Administration Guide.

Chapter 1 Overview of Deployment 17

Understanding Session Persistence

18 Application Server 7 2004Q2 « System Deployment Guide

Chapter 2

Planning your Environment

Planning your environment is one of the first phases of deployment. In this phase,
you should first decide your performance and availability goals, and then
accordingly make decisions about the hardware, network, and storage
requirements.

The main objective of this phase is to determine the environment that best meets
your business requirements.

This chapter contains the following sections:

Introducing HADB

e Establishing Performance Goals

< Design Decisions

< Planning the Network Configuration

= Planning for Availability

Introducing HADB

The High Availability Database (HADB) provides a highly available persistence
store for the Application Server for HTTP sessions, stateful session beans, and
remote references of EJB look-ups on the RMI/IIOP path.

This section contains the following topics:
= System Requirements

= HADB Architecture

= Mitigating Double Failures

19

Introducing HADB

< HADB Management System

Overview

J2EE applications’ need for session persistence was previously described in the
section “Understanding Session Persistence” on page 16. The Application Server
uses the HADB as a highly available session store. The HADB is included with the
Application Server Enterprise Edition, but in deployment can be run on separate
hosts. HADB provides a highly available data store for HTTP session and stateful
session bean data.

The advantages of this decoupled architecture include:

= Server instances in a highly available cluster are loosely coupled and act as
high performance J2EE containers.

= Starting or stopping server instances does not affect other servers or their
availability.

< The HADB can run on a different set of less expensive machines (for example,
with single or dual processors). Several clusters can share these machines.
Depending upon the deployment needs, you can run the HADB on the same
machines as Application Server (co-located) or different machines (separate
tier). For more information on the two options, see “Co-located Topology” and
“Separate Tier Topology” in Chapter 3, “Selecting a Topology.”

= As state management requirements change, you can add resources to the
HADB system without affecting existing clusters or their applications.

NOTE The HADB is optimized for use by Application Server and is not meant to be used
by applications as a general purpose database.

For the HADB hardware and network system requirements, see the Sun Java
System Application Server Release Notes. For additional system configuration steps
required for HADB, see Sun Java System Application Server Administration Guide.

System Requirements

The recommended system requirements for the HADB hosts are the following:

= Atleast one CPU per HADB node.

20 Application Server 7 2004Q2 « System Deployment Guide

Introducing HADB

= Atleast 512 MB memory per node.

= Network configuration requirements (see Sun Java System Application Server
Installation Guide).

For additional requirements for very high availability, see “Mitigating Double
Failures” on page 25.

HADB Architecture

HADB is a distributed system comprising pairs of nodes, which are divided into
two data redundancy units (DRUs). Each node consists of the following:

= aset of processes for transactional state replication

= adedicated area of shared memory used for communication among the
processes

= one or more secondary storage disks

A set of HADB nodes can host one or more session databases. Each session database
is associated with a distinct application server cluster. Deleting a cluster also
deletes the associated session database.

For HADB hardware requirements, see the Sun Java System Application Server
Release Notes.

Nodes and Node Processes
There are two types of HADB nodes:

< Active Nodes that store data.

= Spare Nodes that do not contain any data initially, but can perform as active
nodes if an active node becomes unavailable. Spare nodes are optional but
useful for achieving higher availability.

Each node has a parent process and numerous child processes. The parent process,
called the node supervisor (NSUP) is started by the management agent and is
responsible for creating the child processes and keeping them running.

The child processes are:

= Transaction server process (TRANS), that coordinates transactions on
distributed nodes, and manages data storage.

= Relational algebra server process (RELALG) that coordinates and executes
complex relational algebra queries like sorts and joins.

Chapter 2 Planning your Environment 21

Introducing HADB

= SQL shared memory server process (SQLSHM) that maintains the SQL
dictionary cache.

= SQL server process (SQLC), that receives client queries, compiles them into
local HADB instructions, sends the instructions to TRANS, receives the results
and conveys them to the client. Each node has one main SQL server and one
sub server for each client connection.

= Node manager server process (NOMAN) that management agents use to
execute management commands issued by the hadbm management client.

Data Redundancy Units

An HADB instance contains a pair of DRUs. Each DRU has the same number of
active and spare nodes as the other DRU in the pair. Each active node in a DRU has
a mirror node in the other DRU. Due to mirroring, each DRU contains a complete
copy of the database.

Figure 2-1 shows an example HADB architecture with six nodes: four active nodes
and two spare nodes. Nodes 0 and 1 are a mirror node pair, as are nodes 2 and 3. In
this example, each host has one node. In general, a host can have more than one

node if it has sufficient system resources (see “System Requirements” on page 20).

Figure 2-1 Sample HADB Configuration with Double Interconnects

DRU 0 DRU 1

Host 0 Host 1

ZOTH N 2T

Host 2 \ Host 3
Node 2 - Node 3

Host 5

Spare

Host 4
Spare

AN
/

22 Application Server 7 2004Q2 « System Deployment Guide

Introducing HADB

NOTE Machines that host HADB nodes must be added in pairs, with one machine in each
DRU.

HADB achieves high availability by replicating data and services. The data replicas
on mirror nodes are designated as primary replicas and hot standby replicas. The
primary replica performs operations such as inserts, deletes, updates, and reads.
The hot standby replica receives log records of the primary replica’s operations and
redoes them within the transaction life time. Read operations are performed only
by the primary node and thus not logged. Each node contains both primary and
hot standby replicas and plays both roles.

The database is fragmented and distributed over the active nodes in a DRU. Each
active node in a DRU has a mirror node on the other DRU. The mirror node pair
contains the replicas of the same data fragment. Since a spare node does not have
data, it does not have a mirror node. Due to the mirroring, each DRU contains a
complete copy of the database.When a mirror node takes over the functions of a
failed node, it has to perform double the work: its own and that of the failed node.
If the mirror node does not have sufficient resources, the overload will reduce its
performance and increase its failure probability. When a node fails, HADB
attempts to restart it. If the failed node does not restart (for example, due to
hardware failure), the system continues to operate but with reduced availability.

HADRB tolerates failure of a node, an entire DRU, or multiple non-mirror nodes, but
not a double failure when both a node and its mirror fail. For information on how to
reduce the likelihood of a double failure, see “Mitigating Double Failures” on
page 25.

Spare Nodes

When a node fails, its mirror node takes over. If the failed node does not have a
spare node, then at this point, the failed node will not have a mirror. A spare node
will automatically replace a failed node’s mirror. Having a spare node reduces the
time the system functions without a mirror node.

A spare node does not normally contain data, but constantly monitors for failure of
active nodes in the DRU. When a node fails and does not recover within a specified
timeout period, the spare node copies data from the mirror node and synchronizes
with it. The time this takes depends on the amount of data copied and the system
and network capacity. After synchronizing, the spare node automatically replaces
the mirror node without manual intervention, thus relieving the mirror node from
overload, thus balancing load on the mirrors. This is known as failback or
self-healing.

Chapter 2 Planning your Environment 23

Introducing HADB

When a failed host is repaired (by shifting the hardware or upgrading the
software) and restarted, the node or nodes running on it join the system as spare
nodes, since the original spare nodes are now active.

Spare nodes are not mandatory, but they enable a system to maintain its overall
level of service even if a machine fails. Spare nodes also make it easy to perform
planned maintenance on machines hosting active nodes. Allocate one machine for
each DRU to act as a spare machine, so that if one of the machines fails, the HADB
system continues without adversely affecting performance and availability.

NOTE As a general rule, you should have a spare machine with enough Application
Server instances and HADB nodes to replace any machine that becomes
unavailable.

Examples of Spare Node Configurations

The following examples illustrate using spare nodes in HADB deployments. There
are two fundamental categories of deployment topology: co-located, in which
HADB and Application Servers reside on the same hosts, and separate tier, in which
they reside on separate hosts. For more information about deployment topologies,
see Chapter 3, “Selecting a Topology.”

Example: Co-located Spare Node Configuration

Suppose you have a co-located deployment, with four Sun Fire™ V480 servers
where each server has one Application Server instance and two HADB data nodes.

In this scenario, you should allocate two more servers as spare machines (one
machine per DRU). Each spare machine should run one application server instance
and two spare HADB nodes.

Example: Separate-tier Spare Node Configuration

Suppose you have a separate-tier deployment where the HADB tier has two Sun
Fire™ 280R servers, each running two HADB data nodes. To maintain this system
at full capacity, even if one machine becomes unavailable, configure one spare
machine for the Application Server instances tier and one spare machine for the
HADB tier.

The spare machine for the Application Server instances tier should have as many
instances as the other machines in the Application Server instances tier. Similarly,
the spare machine for the HADB tier should have as many HADB nodes as the
other machines in the HADB tier.

24 Application Server 7 2004Q2 « System Deployment Guide

Introducing HADB

For more information about the co-located and the separate tier deployment
topologies, see Chapter 3, “Selecting a Topology.”

Mitigating Double Failures

HADB'’s built-in data replication enables it to tolerate failure of a single node or
DRU. However, by default, HADB will not survive a double failure, when a mirror
node pair or both DRUs fail. In such cases, HADB becomes unavailable.

In addition to using spare nodes as described in the previous section, you can
minimize the likelihood of a double failure by:

= Providing independent power supplies. For optimum fault tolerance, the
servers that support one DRU must have independent power (through
uninterruptible power supplies), processing units, and storage. If a power
failure occurs in one DRU, the nodes in the other DRU continue servicing
requests until the power returns.

< Providing double interconnections. To tolerate single network failures,
replicate the lines and switches as shown in Figure 2-1.

These steps are optional, but will increase the overall availability of the HADB
instance.

HADB Management System

The HADB management system provides built-in security and facilitates
multi-platform management. As illustrated in Figure 2-2, the HADB management
architecture contains the following components;

< Management Client
< Management Agent
< Management Domains

= Repository

Chapter 2 Planning your Environment 25

Introducing HADB

As shown in Figure 2-2, one HADB management agent runs on every machine that
runs the HADB service. Each machine typically hosts one or more HADB nodes.
An HADB management domain contains many machines, similar to an
Application Server domain. At least two machines are required in a domain for the
database to be fault tolerant, and in general there must be an even number of
machines to form the DRU pairs. Thus, a domain contains many management
agents.

Figure 2-2 HADB Management Architecture

T Management Domain

v
| HADB Admin CLI (nadbn) |

I_I_I

JDBC Management :
| Driver API B | R T

R B
Host CDRUO

SE——— §o | p— E
:
Node 0 i il| Node1 :
HADB Process | |} | HADB Process | |i
Node 2 i 1L__Node 3

As shown in the figure, a domain can contain one or more database instances. One
machine can contain one or more nodes belonging to one or more database
instances.

Management Client

The HADB management client is a command-line utility, hadbm for managing the
HADB domain and its database instances. HADB services can run continuously—
even when the associated Application Server cluster is stopped—but must be shut
down carefully if they are to be deleted. For more information on using hadbm see
the Sun Java System Application Server Administration Guide.

26 Application Server 7 2004Q2 « System Deployment Guide

Introducing HADB

You can use the asadm n command line utility to create and delete the HADB
instance associated with a highly available cluster. For more information, see the
Sun Java System Application Server Administration Guide.

Management Agent

The management agent is a server process (named na) that can access resources on
a host; for example, it can create devices and start database processes. The
management agent coordinates and performs management client commands, such
as starting or stopping a database instance.

A management client instance connects to a management agent by specifying the
address and port number of the agent. Once connected, the management client
sends commands to the HADB through the management agent. The agent receives
requests and executes them. Thus, a management agent must be running on a host
before issuing any hadbmmanagement commands to that host. The management
agent can be configured as a system service that starts up automatically.

Ensuring availability of management agents

The management agent process ensures the availability of the HADB node
supervisor processes by restarting them if they fail. Thus, for deployment, you
must ensure the availability of the ma process to maintain the overall availability of
HADB. After restarting, the management agent recovers the domain and database
configuration data from other agents in the domain.

Use the host operating system to ensure the availability of the management agent.
On Solaris or Linux, i ni t. d ensures the availability of the ma process after a process
failure and reboot of the operating system. On Windows, the management agent
runs as a Windows service. Thus, the operating system restarts the management
agent if the agent fails or the operating system reboots.

Management Domains

An HADB management domain is a set of hosts, each of which has a management
agent running on the same port number. The hosts in a domain can contain one or
more HADB database instances. A management domain is defined by the common
port number the agents use and an identifier (called a domainkey) that is generated
when you create or the domain or add an agent to it. The domainkey provides a
unique identifier for the domain, which is crucial because management agents
communicate using multicast. You can set up an HADB management domain to
match an Application Server domain.

Having multiple database instances in one domain can be useful in a development
environment, since it enables different developer groups to use their own database
instance. In some cases, it may also be useful in production environments.

Chapter 2 Planning your Environment 27

Setup and Configuration Roadmap

All agents belonging to a domain coordinate their management operations. When
you change the database configuration through an hadbmcommand, all agents will
change the configuration accordingly. You cannot stop or restart a node unless the
management agent on the node’s host is running. However, you can execute hadbm
commands that read HADB state or configuration variable values even if some
agents are not available.

Use the following management client commands to work with management
domains:

= hadbm createdomain: creates a management domain with the specified hosts.
= hadbm extenddomain: adds hosts to an existing management domain.

< hadbm deletedomain: removes a management domain.

< hadbm reducedomain: removes hosts from the management domain.

< hadbm listdomain: lists all hosts defined in the management domain.

For more information on these commands, see the Sun Java Application Server
Reference Manual (or the corresponding man pages).

Repository

Management agents store the database configuration in a repository. The repository
is highly fault-tolerant, because it is replicated over all the management agents.
Keeping the configuration on the server enables you to perform management
operations from any computer that has a management client installed.

A majority of the management agents in a domain must be running to perform any
changes to the repository. Thus, if there are M agents in a domain, at least M/2 + 1
agents (rounded down to the nearest integer) must be running to make a change to
the repository.

If you cannot perform some management commands because a majority of the
hosts in a domain are unavailable (for example due to hardware failures), use the
hadbm di sabl ehost command to remove failed hosts from the domain until you
have a majority. For more information on this command, see the Sun Java System
Application Server Utility Reference Guide.

Setup and Configuration Roadmap

Follow this procedure to setup and configure your Application Server system for
high availability:

28 Application Server 7 2004Q2 « System Deployment Guide

Establishing Performance Goals

1. Determine your performance and QoS requirements and goals, as described
later in this chapter.

2. Size your system, as described in “Design Decisions” later in this chapter. In
particular, determine:

o Number of Application Server Instances
o Number of HADB Nodes and Hosts
o HADB Storage Capacity

3. Determine system topology, as described in Chapter 3, “Selecting a Topology,”
that is, whether you are going to install HADB on the same host machines as
Application Server or on different machines.

4. Install Application Server instances

5. Create domains and clusters

6. Install and configure your web server software.
7. Install the Load Balancer Plug-in.

8. Set up and configure load balancing

9. Set up and configure HADB nodes and DRUs

10. Configure Application Server Web container and EJB container for HA session
persistence.

11. Deploy applications and configure them for high availability and session
failover.

12. Configure JMS cluster for failover. For more information, see the Sun Java
System Message Queue Administration Guide.

Establishing Performance Goals

As explained in Chapter 1, “Overview of Deployment,” one of your main goals is
to maximize performance. This essentially translates into maximizing throughput
and reducing response time.

Beyond these basic goals, you should establish specific goals by determining the
following:

= What capacity of requests, or throughput, can the system support?

= How many concurrent users can the system support?

Chapter 2 Planning your Environment 29

Establishing Performance Goals

30

= What is an acceptable average response time for requests submitted by your
users?

= What is the average think time between requests?

These factors are interrelated. If you know the answer to any three of these four
factors, you can calculate the fourth.

Some of the metrics described in this chapter can be calculated using a remote
browser emulator (RBE) tool, or web site performance and benchmarking software,
that simulates your enterprise’s web application activity. Typically, RBE and
benchmarking products generate concurrent HTTP requests and then report back
the response time and number of requests per minute. You can then use these
figures to calculate server activity.

The results of the calculations described in this chapter are not absolute. Treat them
as reference points to work against, as you fine-tune the performance of Sun Java
System Application Server.

This section describes the following topics:

= Estimating Throughput

= Estimating Load on Application Server Instances
= Estimating Load on HADB

= Estimating Bandwidth Requirements

« Estimating Peak Load

Estimating Throughput

Throughput, as measured for application server instances and for HADB, has
different implications.

A good measure of the throughput for Application Server instances is the number
of requests precessed per minute. A good measure of throughput for the HADB is
the number of requests processed per minute by HADB, and the session size per
request. The session size per request is important because the size of session data
stored varies from request to request.

For more information session persistence, see Chapter 1, “Overview of
Deployment.”

Application Server 7 2004Q2 « System Deployment Guide

Establishing Performance Goals

Estimating Load on Application Server Instances

Consider the following factors to estimate the load on application server instances:
= Calculating Maximum Number of Concurrent Users

= Calculating Think Time

e Calculating Average Response Time

e Calculating Requests Per Minute

Calculating Maximum Number of Concurrent Users

A user runs a process (for example through a web browser) that periodically sends
requests from a client machine to Application Server. When estimating the number
of concurrent users, include all users currently active. A user is considered active as
long as the session that user is running is active (for example, the session has
neither expired nor terminated).

A user is concurrent for as long as the user is on the system as a running process
submitting requests, receiving results of requests from the server, and viewing the
results.

Eventually, as the number of concurrent users submitting requests increases,
requests processed per minute begins to decline (and the response time begins to
increase). The following diagram illustrates this situation.

Figure 2-3 Performance Pattern with Increasing Number of Users.

Requests

per minute
V N

Maximum number of users

that the system can support
before requests per minute

start to decrease

L1

v

Number of users

Chapter 2 Planning your Environment 31

Establishing Performance Goals

32

You should identify the point at which adding more concurrent users reduces the
number of requests that can be processed per minute. This point indicates when
performance starts to degrade.

Calculating Think Time

A user does not submit requests continuously. A user submits a request, the server
receives the request, processes it and then returns a result, at which point the user
spends some time analyzing the result before submitting a new request. The time
spent reviewing the result of a request is called think time.

Determining the typical duration of think time is important. You can use the
duration to calculate more accurately the number of requests per minute, as well as
the number of concurrent users your system can support. Essentially, when a user
is on the system but not submitting a request, a gap opens for another user to
submit a request without altering system load. This implies that you can support
more concurrent users.

Calculating Average Response Time

Response time refers to the amount of time it takes for results of a request to be
returned to the user. The response time is affected by a number of factors including
network bandwidth, number of users, number and type of requests submitted, and
average think time.

In this section, response time refers to the mean, or average, response time. Each
type of request has its own minimal response time. However, when evaluating
system performance, you should base your analysis on the average response time
of all requests.

The faster the response time, the more requests per minute are being processed.
However, as the number of users on your system increases, response time starts to
increase as well, even though the number of requests per minute declines, as the
following diagram illustrates:

Application Server 7 2004Q2 « System Deployment Guide

Establishing Performance Goals

Figure 2-4 Response Time with Increasing Number of Users

Seconds Requests per minute

V' N
Response

time/users

s
e Requests
— - ! per minute/users

crorrororor?
I

A system performance graph similar to Figure 2-4 on page 33, indicates that after a
certain point (point A in this diagram), requests per minute are inversely
proportional to response time- the sharper the decline in requests per minute, the
steeper the increase in response time (represented by the dotted line arrow).

In Figure 2-4 on page 33, point A represents peak load, that is, the point at which
requests per minute start to decline. Prior to this point response time calculations
are not necessarily accurate because they do not use peak numbers in the formula.
After this point, (because of the inversely proportional relationship between
requests per minute and response time), you can more accurately calculate
response time using maximum number of users and requests per minute.

To determine response time at peak load, use the following formula:

Response time = (concurrent users / requests per second) - think time in
seconds

To obtain an accurate response time result, you must always include think time in
the equation.

Example Calculation of Response Time
For example, if the following conditions exist:

= Maximum number of concurrent users that your system can support at peak
load is 5,000.

< Maximum number of requests the system can process at peak load is 1,000 per
second.

= Average think time equals 3 seconds per request.

Chapter 2 Planning your Environment 33

Establishing Performance Goals

34

Response time = (5000/ 1000) - 3 seconds think tine
Therefore, the response time is 2 seconds.

After you have calculated your system’s response time, particularly at peak load,
decide what is an acceptable response time for your enterprise. Response time,
along with throughput, is one of the main factors critical to Sun Java System
Application Server performance. Improving the response time should be one of
your goals.

If there is a response time beyond which you do not want to wait, and performance
is such that you get response times over that level, then work towards improving
your response time or redefine your response time threshold.

Calculating Requests Per Minute

If you know the number of concurrent users at any given time, the response time of
their requests and the average user think time at that time, you can determine
requests per minute. Typically, you start by knowing how many concurrent users
are on your system.

For example, after running a few web site performance calculation software, you
conclude that the average number of concurrent users submitting requests on your
online banking web site is 3,000. This number is dependent on the number of users
who have signed up to be members of your online bank, their banking transaction
behavior, the times of the day or week they choose to submit requests, and so on.

Therefore, knowing this information enables you to use the requests per minute
formula described in this section to calculate how many requests per minute your
system can handle for this user base. Since requests per minute and response time
become inversely proportional at peak load, decide if fewer requests per minute
are acceptable as a trade-off for better response time, or alternatively, if a slower
response time is acceptable as a trade-off for more requests per minute.

Essentially, you should experiment with the requests per minute and response
time thresholds that is acceptable as a starting point for fine-tuning system
performance. Thereafter, decide which areas of your system you want to adjust.

The formula for obtaining the requests per second is as follows:

requests per second = concurrent users / (response tine in seconds +
think tinme in seconds)

Example Calculation of Requests per Second
For example, if the following conditions exists:

= Concurrent users equals 2,800.

Application Server 7 2004Q2 « System Deployment Guide

Establishing Performance Goals

= Average response time equals 1 second per request.
= Average think time equals 3 seconds.
Requests per second = 2800 / (1+3)

Therefore, the number of requests per second is 700 and the number of requests per
minute is 42000.

Estimating Load on HADB

To calculate load on HADB, consider the following factors:
e HTTP Session Persistence Frequency

= HTTP Session Size and Scope

= SFSB Checkpointing

For more information on configuring session persistence, see Sun Java System
Application Server Administration Guide.

HTTP Session Persistence Frequency

The number of requests per minute received by the HADB depends on the
persi stence frequency. Persistence frequency determines how often Application
Server saves HTTP session data to the HADB.

The persistence frequency options are:

= web-method (default): the server stores session data with every HTTP
response. This option guarantees that stored session information will be up to
date; but it leads to high traffic to the HADB.

= time-based: the session is stored at the specified time interval. This option
reduces the traffic to the HADB, but does not guarantee that the session
information will be up to date.

Table 2-1 summarizes the advantages and disadvantages of persistence frequency
options.

Chapter 2 Planning your Environment 35

Establishing Performance Goals

36

Table 2-1 Comparison of Persistence Frequency Options

Persistence Frequency Advantages Disadvantages

Option

web-method Guarantees that the most Potentially increased response
up-to-date session information is time and reduced throughput.
available.

time-based Better response time and Less certain that the most
potentially better throughput. updated session information is

available after the failure of an
application server instance.

HTTP Session Size and Scope

The session size per request depends on the amount of session information stored
in the session.

TIP To improve overall performance, reduce the amount of information in the session
as much as possible.

You can further fine-tune the session size per request through the persi st ence
scope settings. Choose from the following options for HTTP session persistence
scope:

= session: The server serializes and saves the entire session object every time it
saves session information to HADB.

< modified-session: The server saves the session only if the session has been
modified. It detects modification by intercepting calls to the bean’s
set Attribut e() method. This option will not detect direct modifications to
inner objects, so in such cases the SFSB must be coded to call set Attri but e()
explicitly.

< modified-attribute: The server saves only those attributes that have been
modified (inserted, updated, or deleted) since the last time the session was
stored. This has the same drawback as modified-session but can significantly
reduce HADB write throughput requirements if properly applied.

To use this option, the application must:;

o CallsetAttribute() or removeAttribute() everytime it modifies
session state.

o Make sure there are no cross-references between attributes.

Application Server 7 2004Q2 « System Deployment Guide

Establishing Performance Goals

o Distribute the session state across multiple attributes, or at least between a
read-only attribute and a modifiable attribute.

Table 2-2 summarizes the advantages and disadvantages of the persistence scope

options.

Table 2-2 Comparison of Persistence Scope Options

Persistence Scope
Option

Advantage(s)

Disadvantage(s)

modified-session

session

modified-attribute

Provides improved response time
for requests that do not modify
session state.

No constraint on applications.

Better throughput and response
time for requests in which the
percentage of session state
modified is low.

During the execution of a web
method, typically doGet () or
doPost (), the application must call
a session method:

e setAttribute() if the attribute
was changed

e renoveAttribute() if the
attribute was removed.

Potentially poorer throughput and
response time as compared to the
modi f i ed- sessi on and the

modi fi ed-attribute options.

1. As the percentage of session
state that gets modified for a
given request grows to around
60%, the throughput and the
response time degrade. In such
cases, the performance gets
worse than the sessi on or
nodi fi ed- sessi on persistence
scope because of the overhead
of splitting the attributes into
separate records.

SFSB Checkpointing
For SFSB session persistence, the load on HADB depends on the following:

< Number of SFSBs enabled for checkpointing.

< Which SFSB methods are selected for checkpointing, and how often they are

used.

= Size of the session object.

< Which methods are transactional.

Chapter 2 Planning your Environment 37

Design Decisions

Checkpointing generally occurs after any transaction involving the SFSB is
completed (even if the transaction rolls back).

For better performance, specify a small set of methods for checkpointing. The size
of the data that is being checkpointed and the frequency of checkpointing
determine the additional overhead in response time for a given client interaction.

Design Decisions

Depending on the load on the application server instances, the load on the HADB,
and the failover requirements, you should make the following decisions at this
stage:

= Number of Application Server Instances Required

= Number of HADB Nodes Required

< Number of HADB Hosts

< HADB Storage Capacity

= Designing for Peak Load Compared to Steady State Load

Number of Application Server Instances
Required

To determine the number of applications server instances needed, evaluate your
environment on the basis of the factors explained in “Estimating Load on
Application Server Instances” on page 31. Each application server instance can use
more than one Central Processing Unit (CPU) and should have at least one CPU
allocated to it.

Number of HADB Nodes Required

As a general guideline, you should plan to have one HADB node for each CPU in
your system. For example, use two HADB nodes for a machine that has two CPUs.

NOTE If you have more than one HADB node per machine (for example if you are using
bigger machines), then you must ensure that there is enough redundancy and
scalability on the machines such as, multiple uninterruptible power supplies and
independent disk controllers.

38 Application Server 7 2004Q2 « System Deployment Guide

Design Decisions

Alternatively, use the following procedure to determine the required number of
HADB nodes:

1.

Determine the following parameters:

o Maximum number of concurrent users, n

users*

o Average BLOB size, s.
o Maximum transaction rate per user, referred to as NTPS.

Determine the size in Gigabytes of the maximum primary data volume, V.,
using the following formula:

Vdata =n S

users *

Determine the maximum HADB data transfer rate, R,. This reflects the data
volume shipped into HADB from the application side. Use the following
formula:

Ryt = Nygers - S - NTPS

users
Determine the number of nodes based on data volume considerations, Ny pes,
using the following formula:

Niopes = Vs 7/5GB

data

Round this value up to an even number, since nodes work in pairs.

Number of HADB Hosts

Determine the number of hosts based on data transfer requirements. This
calculation assumes all hosts have similar hardware configurations and operating
systems, and have the necessary resources to accommodate the nodes they run.

To calculate the number of hosts based on data transfer considerations, follow this
procedure:

1.

Determine the maximum host data transfer rate, R, . Determine this value
empirically, because it depends on the network and the host hardware. Note
that this is different from the maximum HADB data transfer rate, R,
determined in the previous section.

Chapter 2 Planning your Environment 39

Design Decisions

2. Updating a volume of data V distributed over a number of hosts N5 CaUSEeS
each host to receive approximately 4V/N,,srs Of data. The number of hosts
needed to accommodate this data is determined by using the following
formula:

Nposts =4 - Ry 7/ Rina

Round this value up to the nearest even number to get the same number of
hosts for each DRU.

3. Add one host on each DRU for spare nodes. If each of the other hosts run N
data nodes, let this host run N spare nodes. This allows for single-machine
failure taking down N data nodes.

Each host needs to run at least one node, so if the number of nodes is less than
the number of hosts (Nyopes < nnosts): @djust Nyopes to be equal to N, e If the
number of nodes is greater than the number of hosts, (Nyopes > Nposts): Several
nodes can be run on the same host.

HADB Storage Capacity

The HADB provides near-linear scaling with the addition of more nodes, until you
exceed the network capacity. Each node must be configured with storage devices
on a dedicated disk or disks. All nodes must have equal space allocated on the
storage devices. Make sure that the storage devices are allocated on local disks.

For example, suppose the expected session data is X MB. The HADB replicates the
data on mirror nodes, and therefore needs 2X MB of storage.Further, the HADB
uses indexes to enable fast access to data. An additional 2X MB is required (for both
nodes together) for indexes (assuming a less than 100% fillings rate). This implies
that a storage capacity of 4X is required.Therefore, the expected storage capacity
needed by the HADB is four times the expected data volume.

To account for future expansion without loss of data from HADB, you must
provide additional storage capacity for online upgrades because you might want to
refragment the data after adding new nodes. In this case, a similar amount (4x) of
additional space on the data devices is required. Thus, the expected storage
capacity is eight times the expected data volume.

Additionally, HADB uses disk space for internal use as follows:

40 Application Server 7 2004Q2 « System Deployment Guide

Design Decisions

= Space for temporary storage of log buffer. This space is four times the
| ogBuf f er Si ze. The | ogBuf f er Si ze is the size of the log buffer, which keeps track
of operations related to data.

NOTE The default value of logBufferSize is 48 MB.

= Space for internal administration purpose. This space is one percent of the
storage device size.

For more information, see Sun Java System Application Server Administration Guide
and Sun Java System Application Server Performance Tuning Guide.

The following table summarizes the HADB storage space requirements for a
session data of X MB.

Table 2-3 HADB Storage Space Requirement for Session Size of X MB

Condition HADB Storage Space Required

Addition or removal of HADB nodes while (4X MB) + (4*logBufferSize) + (1% of Device Size)
online is not required.

Addition or removal of HADB nodes while (8X MB) + (4*logBufferSize) + (1% of Device Size)
online is required.

If the HADB runs out of device space, it will not accept client requests to insert or
update data. However, it will accept delete operations. If the HADB runs out of
device space, it returns error codes 4593 or 4592 and writes corresponding error
messages to the history files. For more information on these messages, see Sun Java
System Application Server Troubleshooting Guide.

Setting Data Device Size
Use the following command to set the size of the data devices of the HADB:

hadbm set Tot al Dat adevi ceSi zePer Node

The hadbmcommand restarts all the nodes, one by one, for the change to take effect.
For more information on configuring the HADB, see Sun Java System Application
Server Administration Guide.

NOTE The current version of the hadbmcommand does not add data devices to a running
HADB database.

Chapter 2 Planning your Environment 41

Planning the Network Configuration

Designing for Peak Load Compared to Steady State Load

In a typical deployment, there is a difference between steady state and peak
workloads.

If you design for peak load, you must deploy a system that can sustain the
expected maximum load of users and requests without a degradation in response
time. This implies that your system can handle extreme cases of expected system
load.

If the difference between peak load and steady state load is substantial, designing
for peak loads may mean that you are spending on resources that will be idle for a
significant amount of time.

If you design for steady state load, then you don’t have to deploy a system with all
the resources required to handle the server’s expected peak load. However a
system designed to support steady load will have slower response time when peak
load occurs.

Frequency and Duration of Peak Load

The factor that may affect whether you want to design for peak load or for steady
state is how often your system is expected to handle the peak load. If peak load
occurs several times a day or even per week, you may decide that this is enough
time to warrant expanding capacity to handle this load. If the system operates at
steady state 90 percent of the time, and at peak only 10 percent of the time, then
you may prefer to deploy a system designed around steady state load.

This implies that your system’s response time will be slower only 10 percent of the
time. Decide if the frequency or duration of time that the system operates at peak
justifies the need to add resources to your system (should this be required to
handle peak load).

Planning the Network Configuration

42

When planning how to integrate Sun Java System Application Server into your
network for optimal performance, you should estimate the bandwidth
requirements and plan your network in such a way that it can meet your
performance requirements.

The following topics are covered in this section:
= Estimating Bandwidth Requirements

e Calculating Bandwidth Required

Application Server 7 2004Q2 « System Deployment Guide

Planning the Network Configuration

« Estimating Peak Load

= Configuring Subnets

= Choosing Network Cards

= Network Settings for HADB

= Identifying Failure Classes

Estimating Bandwidth Requirements

When you decide on the desired size and bandwidth of your network, first
determine your network traffic and identify its peak. Check if there is a particular
hour, day of the week, or day of the month when overall volume peaks, and then
determine the duration of that peak.

TIP At all times consult network experts at your site about the size and type of network
components you are considering.

During peak load times, the number of packets in the network is at its highest level.
In general, if you design for peak load, scale your system with the goal of handling
100 percent of peak volume. Bear in mind, however, that any network behaves
unpredictably and that despite your scaling efforts, it might not always be able
handle 100 percent of peak volume.

For example, assume that at peak load, five percent of your users occasionally do
not have immediate Internet access when accessing applications deployed on
Application Server. Of that five percent, determine how many users retry access
after the first attempt. Again, not all of those users may get through, and of that
unsuccessful portion, another percentage will retry. As a result, the peak appears
longer because peak use is spread out over time as users continue to attempt
access.

To ensure optimal access during times of peak load, start by verifying that your
Internet service provider (ISP) has a backbone network connection that can reach
an Internet hub without degradation.

Calculating Bandwidth Required

Based on the calculations you made in “Establishing Performance Goals” on
page 29, you should determine the additional bandwidth required for deploying
Sun Java System Application Server at your site.

Chapter 2 Planning your Environment 43

Planning the Network Configuration

44

Depending on your method of access (T-1 lines, ISDN, and so on), you can
calculate the amount of increased bandwidth you require to handle your estimated
load. For example, suppose your site uses T-1 or higher-speed T-3 links for Internet
access. Given their bandwidth, you can estimate how many lines you will need on
your network, based on the average number of requests generated per second at
your site and the maximum peak load. You can calculate these figures using a web
site analysis and monitoring-tool.

Example Calculation of Bandwidth Required

A single T-1 line can handle 1.544 Mbps. Therefore, a network of four T-1 lines
carrying 1.544 Mbps each can handle approximately 6 Mbps of data. Assuming
that the average HTML page sent back to a client is 30 kilobytes (KB), this network
of four T-1 lines can handle the following traffic per second:

6,176,000 bits/8 bits = 772,000 bytes per second

772,000 bytes per second/30 KB = approximately 25 concurrent client requests for
pages per second.

With a traffic of 25 pages per second, this system can handle 90,000 pages per hour
(25 x 60 seconds x 60 minutes), and therefore 2,160,000 pages per day maximum,
assuming an even load throughout the day. If the maximum peak load is greater
than this, you will have to increase the bandwidth accordingly.

Estimating Peak Load

Having an even load throughout the day is probably not realistic. You need to
determine when peak load occurs, how long it lasts, and what percentage of the
total load is the peak load.

Example Calculation of Peak Load

If peak load lasts for two hours and takes up 30 percent of the total load of
2,160,000 pages, this implies that 648,000 pages must be carried over the T-1 lines
during two hours of the day.

Therefore, to accommodate peak load during those two hours, you should increase
the number of T-1 lines according to the following calculations:

648,000 pages/120 minutes = 5,400 pages per minute

5,400 pages per minute/60 seconds = 90 pages per second

Application Server 7 2004Q2 « System Deployment Guide

Planning the Network Configuration

If four lines can handle 25 pages per second, then approximately four times that
many pages requires four times that many lines, in this case 16 lines. The 16 lines
are meant for handling the realistic maximum of a 30 percent peak load.
Obviously, the other 70 percent of your load can be handled throughout the rest of
the day by these many lines.

Configuring Subnets

If you use the separate tier topology, where the application server instances and
HADB nodes are on separate tiers, you can achieve a performance improvement by
keeping HADB nodes on a separate subnet. This is because HADB uses the User
Datagram Protocol (UDP). Using a separate subnet reduces the UDP traffic on the
machines outside of that subnet.

Choosing Network Cards

For greater bandwidth and optimal network performance, use at least 100 Mbps
Ethernet cards or, preferably, 1 Gbps Ethernet cards between servers hosting Sun
Java System Application Server and the HADB nodes, as well as among other
resources such as HADB databases that are hosted on other machines.

Network Settings for HADB

HADB uses UDP multicast and hence you must enable multicast on your system’s
routers and host network interface cards. If HADB spans multiple sub-networks,
you must also enable multicast on the routers between the sub-networks. For best
results, put all the HADB nodes on the same network. Application server instances
may be on a different sub network.

Use the following suggestions to make HADB work optimally in the network:

= Use switched routers so that each network interface has a dedicated 100 Mbps
or better Ethernet channel.

« If you are running HADB on a multi-CPU machine hosting four or more
HADB nodes, use 1 Gbps Ethernet cards. If the average session size is greater
than 50 KB, use 1 Gbps Ethernet cards even if there are less than four HADB
nodes per machine.

= If you suspect network bottlenecks within HADB nodes:

Chapter 2 Planning your Environment 45

Planning for Availability

o Run network monitoring software on your HADB servers to diagnose the
problem.

o Consider replacing any 100 Mbps Ethernet cards in the network with 1
Gbps Ethernet cards.

Planning for Availability

46

Availability must be planned according to the application and customer
requirements.

There are two ways to achieve high availability:
e Adding Redundancy to the System
= Using Multiple Clusters to Improve Availability

Adding Redundancy to the System

One way to achieve high availability is to add redundancy to the
system—redundancy of hardware and software. When one unit fails, the
redundant unit takes over. This is also referred to as fault tolerance.

In general, to achieve high availability, you should determine and remove every
possible point of failure in the system.

This section discusses the following topics:

< Identifying Failure Classes

= Using Redundancy Units to Improve Availability
= Using Spare Nodes to Improve Fault Tolerance

= Planning Failover Capacity

Identifying Failure Classes

The level of redundancy is determined by the failure classes (types of failure) that
the system needs to tolerate. Some examples of failure classes are: system process,
machine, power supply, disk, network failures, building fires and catastrophes.

Application Server 7 2004Q2 « System Deployment Guide

Planning for Availability

Duplicated system processes tolerate single system process failures. Duplicated
machines tolerate single machine failures. Attaching the duplicated mirrored
(paired) machines to different power supplies tolerates single power failures. By
keeping the mirrored machines in separate buildings, a single-building fire can be
tolerated and by keeping them in separate geographical locations, natural
catastrophes like earth quake in a location can be tolerated.

When planning availability, you should determine the failure classes covered by
the system.

Using Redundancy Units to Improve Availability

To improve availability, HADB nodes are always used in Data Redundancy Units
(DRUSs) as explained in “Introducing HADB” on page 19.

Using Spare Nodes to Improve Fault Tolerance

The use of spare nodes as explained in “Spare Nodes” on page 23 improves fault
tolerance. Although spare nodes are not mandatory, their use is recommended for
maximum availability.

Planning Failover Capacity

Failover capacity planning implies deciding how many additional servers and
processes you need to add to Sun Java System Application Server installation so
that in the event of a server or process failure, the system can seamlessly recover
data and continue processing. If your system gets overloaded, a process or server
failure might result, causing response time degradation or even total loss of
service. Preparing for such an occurrence is critical to successful deployment.

To maintain capacity, especially at peak loads, we recommended that you add
spare machines running Application Server instances to your existing Application
Server installation. For example, assume you have a system with two machines
running one Application Server instance each. Together, these machines can
handle a peak load of 300 requests per second. If one of these machines becomes
unavailable, the system will be able to handle only 150 requests, assuming an even
load distribution between the machines. Therefore half the requests during peak
load would not be served.

Using Multiple Clusters to Improve Availability

To improve availability, instead of using a single cluster, you should group the
application server instances into multiple clusters. This way, you can perform
online upgrades for clusters (one by one) without loss of service.

Chapter 2 Planning your Environment 47

Planning for Availability

For more information on setting up multiple clusters and using multiple clusters to
perform online upgrades without loss of service, see Sun Java System Application
Server Administration Guide.

48 Application Server 7 2004Q2 « System Deployment Guide

Chapter 3

Selecting a Topology

After estimating the factors related to performance as explained in Chapter 2,
“Planning your Environment,” you should decide the topology that you will use to
deploy Sun Java™ System Application Server 7 Enterprise Edition. A topology is
the schematic arrangement of Application Server components (machines,
application server instances, and HADB nodes), and the communication flow
between these components.

There are two fundamental deployment topologies. Both topologies have common
building blocks: multiple Application Server instances in a cluster, a mirrored set
of HADB nodes, and HADB spare nodes. Both of them require a set of common
configuration settings to function properly.

This chapter discusses the following:
= Common Requirements

e Co-located Topology

= Separate Tier Topology

= Comparison of Topologies

= Determining Which Topology to Use

Common Requirements

The following topics in this section describe the requirements that are common to
both the topologies:

= General Requirements
< HADB Nodes and Machines

= Load Balancer Configuration

49

Common Requirements

50

General Requirements

Both topologies must meet the following general requirements:
= Machines that host HADB nodes must be provided in pairs.

= Each DRU must have the same number of machines. You must create the
HADB database in such a way that the mirrored (paired) nodes are on a
different DRU than the primary nodes.

= Each machine that hosts HADB nodes must have local disk storage, which is
used to store all persisted information in the HADB.

= Machines that host the HADB nodes must run the same operating system.
These machines should be as identical as possible in terms of configuration and
performance.

= For HTTP and SFSB session information to be persisted to the HADB, the
application server instances must be in a cluster and satisfy all related
requirements. For more information on configuring clusters, see Sun Java
System Application Server Administration Guide.

= The machines hosting the application server instances should be as identical as
possible in terms of configuration and performance. This is because the load
balancer plug-in uses a round-robin policy for load balancing, and if you have
machines of different classes hosting instances, then the load will not be
balanced in the most optimum way across these machines.

= Each DRU should preferably have a separate Uninterruptible Power Supply
(UPS).

HADB Nodes and Machines

Each DRU contains a complete copy of the data in the HADB and can continue
servicing requests if the other DRU becomes unavailable. However, if a node in
one DRU and its mirror in another DRU fail at the same time, some portion of your
data is lost. For this reason, it is important that you do not set up your system in a
way that both DRUSs can be impacted by a single failure, such as a power failure or
a disk failure.

NOTE Each DRU must run on a completely independent, redundant system.

Follow these guidelines when setting up the HADB nodes and machines:

Application Server 7 2004Q2 « System Deployment Guide

Co-located Topology

= Toincrease capacity and throughput, add nodes in pairs with one node for
each DRU.

= Set up each DRU with a number of spare nodes equal to the number of nodes
running on each machine. This is because if each machine in the configuration
runs n data nodes, the failure of a single machine brings down n nodes.

= Runthe same number of HADB nodes on all machines and thereby balance the
load as evenly as possible.

CAUTION Do not run nodes from different DRUs on the same machine. If you must run nodes
from different DRUs on the same machine, ensure that the machine can handle
any single point of failure (failures related to disk, memory, CPU, power, operating
system crashes and so on).

Load Balancer Configuration

Both the topologies comprise application server instances in a cluster. These
instances persist session information to the HADB. You must configure the load
balancer to include configuration information for all the application server
instances in the cluster.

For more information on setting up a cluster and adding application server
instances to it, see Sun Java System Application Server Administration Guide.

Co-located Topology

In the co-located topology, the Application Server instance and the HADB nodes
are on the same machine (hence the name co-located). This topology requires fewer
machines than the separate-tier topology. The co-located topology uses CPUs more
efficiently—an Application Server instance and an HADB node share one machine
and the processing is distributed evenly among them.

A minimum of two machines are required for this topology. To improve
throughput, more machines can be added in pairs.

NOTE The co-located topology is a good fit for large, Symmetric Multiprocessing (SMP)
machines as you can take full advantage of the processing power of these
machines.

Chapter 3 Selecting a Topology 51

Co-located Topology

Example of Co-located Topology

Figure 3-1 shows an example of co-located topology.

Figure 3-1 Example of Co-located Topology

T

Switch/Third-party Load Balancer

Load Balancer

Load Balancer

Plug-in Plug-in
SYSO SYs1
Appserver Appserver)
instance A instance B | | Each machine
- I has one application
server instance and
SYS2 SYS3
Appserver Appserver
instance C instance D

'Y

L|
v

L
DRU1 (Data Redundancy Unit 1)

DRUO (Data Redundancy Unit 0)

Application Server instances are hosted as follows:

= Application Server instance A is hosted on machine SYSO0,

52 Application Server 7 2004Q2 « System Deployment Guide

Co-located Topology

= Application Server instance B hosted is on machine SYS1,

= Application Server instance C is hosted on machine SYS2, and

= Application Server instance D is hosted on machine SYS3.

These four instances form a cluster that persists information to the two DRUSs:

< DRUO comprises two machines: SYS0 and SYS2. HADB Node active 0 is on the
machine SYS0. HADB Node spare 2 is on the machine SYS2.

e DRUI1 comprises two machines; SYS1 and SYS3. HADB Node active 1 is on the
machine SYS1. HADB Node spare 3 is on the machine SYS3.

NOTE The configuration settings described in this document assume that the host names
for the machines correspond to the machine names as described in the topologies.
For example, for the reference co-located topology, the host names are SYSO,
SYS1, SYS2, and SYS3. This applies to both the topologies (and their variations).

Configuration Settings for Reference Co-located Topology

Use the cl set up command for configuring the cluster (as part of the cluster
configuration, the cl set up command creates an HADB database and sets up the
JDBC connection pool and the JDBC resource for the HADB). For information on
using cl set up, see Sun Java System Application Server Installation Guide.

The cl set up command uses the following input files:

= clresource. conf: This is the resource configuration file for the application
server instances and the HADB.

= clinstance. conf: This file contains information about application server
instances.

NOTE Make changes to these input files as described in the subsequent sections before
you run cl set up command.

Changes to clresource.conf File

For configuration related to the topologies described in this guide, the following
properties should be changed in the cl resour ce. conf file:

= hosts: A comma separated list of host names for the machines that host HADB
active nodes. For each HADB active node, include the host name of the
machine. Therefore, if a machine hosts two HADB nodes, the host name of the
machine must appear twice.

Chapter 3 Selecting a Topology 53

Co-located Topology

= steadypool si ze: The value of the st eadypool si ze property is calculated using
the following formula:

8*(nunber of HADB nodes)/(nunber of application server instances)

If the resulting nunber is a decimal, round it off to the next even
nunber .

< maxpool si ze: The value of the maxpool si ze property is calculated using the
following formula:

16* (nunber of HADB nodes)/ (nunber of application server instances)

If the resulting number is a decimal, round it off to the next even number.

NOTE * The HADB nodes include both active and spare nodes.

¢ The description and the calculation of values described here apply to both
the topologies (and their variations).

Table 3-1 describes the changes needed to the cl resour ce. conf file for the reference
co-located topology. The left column lists the section in the file where the property
to be changed is listed, the middle column lists the property name, and the right
column lists the value of the property

Table 3-1 Changes Needed to the clresource.conf File for Reference Co-located
Topology

Section of clresource.conf File in Which the Property Name Value
Property Appears

HADBINFO hosts SYS0,SYS1,SYS2,SYS3
JDBC_CONNECTION_POOL steadypoolsize 8
JDBC_CONNECTION_POOL maxpoolsize 16

Changes to clinstance.conf File

In the cli nstance. conf file, include information for each instance. For detailed
information, see Sun Java System Application Server Installation Guide. This applies to
both topologies and their variations.

54 Application Server 7 2004Q2 « System Deployment Guide

Co-located Topology

Variation of Co-located Topology

For better scalability and throughput, you can increase the number of application
server instances and HADB nodes by adding more machines.

For example, you can add two machines, each with one application server instance
and one HADB node. Make sure that you add the HADB nodes in pairs, assigning
one node for each DRU. This configuration is shown in Figure 3-2.

Chapter 3 Selecting a Topology 55

Co-located Topology

Figure 3-2

T R

Variation of Co-located Topology

56

Switch/Third-party Load Balancer

Load Balancer

Load Balancer

Plug-in Plug-in
SYS0 SYS1
Appserver Appserver)
instance A instance B | | ™ Each machine
- I has one application

SYS2 SYS3
Appserver Appserver
instance C instance D

SYS4 SYS5
Appserver Appserver
instance E instance F

server instance and
.~~~ one HADB node

'Y

DRUO (Data Redundancy Unit 0)

Application Server 7 2004Q2 « System Deployment Guide

'Y
v

L
DRU1 (Data Redundancy Unit 1)

Co-located Topology

In this variation, the machines SYS4 and SYS5 have been added to the sample
co-located topology described in “Example of Co-located Topology” on page 52.

Application Server instances are hosted as follows:

= Application Server instance A is hosted on machine SYSO0,

= Application Server instance B is hosted on machine SYS1,

= Application Server instance C is hosted on machine SYS2,

= Application Server instance D is hosted on machine SYS3,

= Application Server instance E is hosted on machine SYS4, and

= Application Server instance F is hosted on machine SYS5.

These instances form a cluster that persists information to the DRUs:

= DRUO comprises the machines SYS0, SYS2, and SYS4. HADB Node active 0 is
on the machine SYS0. HADB Node active 2 is on the machine SYS2. HADB
Node spare 4 is on the machine SYS4.

< DRUI1 comprises the machines SYS1, SYS3, and SYS5. HADB Node active 1 is
on the machine SYS1. HADB Node active 3 is on the machine SYS3. HADB
Node spare 5 is on the machine SYS5.

Configuration Settings for Variation to the Reference Co-located
Topology

Make the changes as described in the subsequent sections before you run the
cl set up command.

Changes to clresource.conf File

Table 3-2 describes the changes needed to the cl resour ce. conf file for the variation
to the reference co-located topology as described in this section. The left column
lists the section in the file in which the property to be changed is listed, the middle
column lists the property name, and the right column lists the value of the
property. For more information on the values of these properties, see “Changes to
clresource.conf File” on page 53.

Table 3-2 Changes Needed to clresource.conf File for Variation to Reference Co-located

Topology
Section of clresource.conf File in Which Property Name Value
the Property Appears
HADBINFO host s SYSO0,SYS1,SYS2,SYS

3,SYS4,SYS5

Chapter 3 Selecting a Topology 57

Separate Tier Topology

Table 3-2 Changes Needed to clresource.conf File for Variation to Reference Co-located

Topology
JDBC_CONNECTION_POOL st eadypool si ze 8
JDBC_CONNECTION_POOL maxpool si ze 16

Changes to clinstance.conf File

In the cli nstance. conf file, include the information for each instance. For more
information, see Sun Java System Application Server Installation Guide.

Separate Tier Topology

58

In this topology, Application Server instances and the HADB nodes are on
different machines (hence the name separate tier).

This topology requires more hardware than the co-located topology. This topology
may be a good fit if you have different types of machines—you can allocate one set
of machines to host the Application Server instances and another to host the HADB
nodes. For example, you can use more powerful machines for the Application
Server instances and less powerful machines for the HADB.

Sample Configuration

Figure 3-3 shows an example of the separate tier topology.

Application Server 7 2004Q2 « System Deployment Guide

Separate Tier Topology

Figure 3-3 Reference Separate Tier Topology

T

Switch/Third-party Load Balancer

Load Balancer Load Balancer
Plug-in Plug-in
I |
SYSO0 SYS1
I I
SYS2 SYS3
HADB Node | — | HADB Node
active 0 active 1
SYS4 SYS5
HADB Node | — — | HADB Node
Spare 2 spare 3

M

M
v

L4
DRUO (Data Redundancy Unit 0) ‘ DRU1 (Data Redundancy Unit 1)

In this reference topology, the Application Server instance A is hosted on machine
SYS0 and the Application Server instance B is hosted on the machine SYS1.

These two instances form a cluster that persists session information to DRUs as
follows:

Chapter 3 Selecting a Topology 59

Separate Tier Topology

60

= DRUO comprises two machines: SYS2 and SYS4. The HADB Node active 0 ison
machine SYS2 and the HADB Node spare 2 is on machine SYS4.

= DRU1 comprises two machines SYS3 and SYS5. The HADB Node active 1 ison
machine SYS3 and the HADB Node spare 3 on machine SYS5.

All the nodes on a DRU are on different machines, so that even if one machine
becomes unavailable, the complete data for any DRU continues to be available on
other machines.

Configuration Settings for Reference Separate Tier Topology

Make the changes as described in the subsequent sections to these input files before
you run the cl set up command.

Changes to clresource.conf File

Table 3-3 describes the changes needed to the cl resour ce. conf file for the reference
separate tier topology. The left column lists the section in the file in which the
property to be changed is listed, the middle column lists the property name, and
the right column lists the value of the property. For more information on the values
of these properties, see “Changes to clresource.conf File” on page 53.

Table 3-3 Changes Needed to clresource.conf File for Reference Separate Tier Topology

Section of clresource.conf File in Which the Property Name Value

Property Appears

HADBINFO hosts SYS2,SYS3,SYS4,SYS5
JDBC_CONNECTION_POOL steadypoolsize 16
JDBC_CONNECTION_POOL maxpoolsize 32

Changes to clinstance.conf File

In the cli nstance. conf file, include information for each instance. For more
information, see Sun Java System Application Server Installation Guide.

Application Server 7 2004Q2 « System Deployment Guide

Separate Tier Topology

Variation of Separate Tier Topology

You can increase the number of Application Server instances by adding more
machines horizontally to the configuration. For example, you can add another
machine to the reference configuration by creating a new Application Server
instance. Similarly, you can increase the number of HADB nodes by adding more
machines to host HADB nodes. Make sure that you add the HADB nodes in pairs
with one node for each DRU.

This configuration is shown in Figure 3-4.

Chapter 3 Selecting a Topology 61

Separate Tier Topology

Figure 3-4

I R

Variation of Separate Tier Topology

Switch/Third-party Load Balancer

Load Balancer
Plug-in

Load Balancer
Plug-in

SYSO

SYS1

SYS2

SYS3 SYSs4
HADB Node HADB Node
active 0 active 1
HADB Node HADB Node
active 2 active 3
SYS5 SYS6
HADB Node HADB Node
Spare 4 Spare 5
HADB Node HADB Node
spare 6 spare 7

'Y
L

N

DRUO (Data Redundancy Unit 0)

62 Application Server 7 2004Q2 « System Deployment Guide

L4
DRU1 (Data Redundancy Unit 1)

Separate Tier Topology

In this configuration, each machine hosting Application Server instances has two
Application Server instances. There are thus a total of six Application Server
instances in the cluster.

The HADB nodes are on machines SYS3, SYS4, SYS5, and SYS6.

DRUO comprises two machines:

= SYS3 that hosts the HADB Node active 0 and the HADB Node active 2
= SYS5, that hosts the HADB Node spare 4 and the HADB Node spare 6.
DRU1 comprises two machines;

= SY$S4 that hosts the HADB Node active 1 and HADB Node active 3.

= SYS6 that hosts the HADB Node spare 5 and HADB Node spare 7.

Each machine hosting HADB nodes hosts two HADB nodes each. There are thus a
total of eight HADB nodes (four active nodes and four spare nodes).

Configuration Settings for Variation to Reference Separate Tier
Topology

Make the changes as described in the subsequent sections before you run the
cl set up command.

Changes to clresource.conf File

Table 3-4 describes the changes needed to the cl resour ce. conf file for the variation
to the reference separate tier topology. The left column lists the section in the file in
which the property to be changed is listed, the middle column lists the property
name, and the right column lists the value of the property. For more information
on the values of these properties, see “Changes to clresource.conf File” on page 53.

Table 3-4 Changes Needed to clresource.conf File for Variation to Reference Separate
Tier Topology

Section of clresource.conf File in Property Name Value

Which the Property Appears

HADBINFO hosts SYS3,SYS4,SYS3,SYS4,
SYS5,5YS6,SYS5,SYS6

JDBC_CONNECTION_POOL steadypoolsize 12

JDBC_CONNECTION_POOL maxpoolsize 22

Chapter 3 Selecting a Topology 63

Comparison of Topologies

Changes to clinstance.conf File

In the cl i nstance. conf file, include information for each Application Server
instance. For more information, see Sun Java System Application Server Installation

Guide.

Comparison of Topologies

Table 3-5 presents a comparison of the co-located topology and the separate tier

topology.

Table 3-5 Comparison of Topologies

Topology Advantages Disadvantages

Co-located ¢ Requires fewer numbers of Increased complexity of
Topology machines as compared to the maintenance. For example, if

separate tier topology. Because
the HADB nodes and the
application server instances are
on the same tier, you can create
an application server instance on
each spare node to handle
additional load.

Improved effectiveness of CPU
utilization. An application server
instance and an HADB node
share one machine and the
processing is distributed evenly
among them.

Useful for large, Symmetric
Multiprocessing (SMP) machines
as you can take full advantage of
the processing power of these
machines.

you want to perform
maintenance tasks (that require
shutting down of machines) on
HADB nodes, the application
server instances on the machine
hosting HADB nodes also
become unavailable while the
machine is unavailable.

64 Application Server 7 2004Q2 « System Deployment Guide

Determining Which Topology to Use

Table 3-5 Comparison of Topologies

Topology Advantages Disadvantages

Separate Tier « Easier maintenance. For * Requires more machines as

Topology example, you can perform compared to the co-located
maintenance tasks for the topology. Because
machines that host application application server instances
server instances without having to and HADB nodes are
bring down HADB nodes. located on separate tiers,

application server instances
cannot be located on the
machines that host the
HADB spare nodes.

¢ Useful in situations where you
have different types of machines.
You can allocate a different set of
machines to the application

server instances tier and to the * Reduced effectiveness of
HADB tier. For example, you can CPU utilization. The tier
use the more powerful machines consisting of application

for the application server server instances and the tier
instances tier and the less consisting of HADB nodes
powerful machines for the HADB will likely have uneven

tier. loads. This is more

significant when the number
of machines is smaller (four
to six).

Determining Which Topology to Use

You should test the different topologies mentioned in this chapter and experiment
with different combinations of machines and CPUs to determine which topology
(or its variation) best meets your performance and availability requirements.

Determine what trade offs you want to make to serve your needs the best. For
example, if ease of maintenance is a critical requirement for you, the separate tier
topology is more suitable. However, you will have to use a higher number of
machines as compared to the co-located topology.

An important factor in the choice of topology is the type of machines you have in
your setup. If you have large, Symmetric Multiprocessing (SMP) machines in your
system, the co-located topology is an attractive option because you can take full
advantage of the processing power of these machines. If you have different types
of machines, separate tier topology may be more useful because you can allocate a
different set of machines to the application server instances tier and to the HADB
tier. For example, you can use more powerful machines for the application server
instances tier and the less powerful machines for the HADB tier.

Chapter 3 Selecting a Topology 65

Determining Which Topology to Use

66 Application Server 7 2004Q2 « System Deployment Guide

Appendix A

Checklist for Deployment

This appendix provides a checklist to get started on the evaluation and production
with Sun Java System Application Server 7 2004Q2.

Table 0-1 Checklist

Component/Feature

Description

Application

Hardware

Determine the following requirements for the application to be
deployed.

1. The required/acceptable response time.

2. Peak load characteristics.

3. Necessary persistence scope and frequency.
4. Session timeout in web.xml.

5. The failover and availability requirements.

For more information on planning for your requirements, see
Chapter 2, “Planning your Environment” and “About Application
IServer Performance” in Sun Java System Application Server 7
Performance and Tuning Guide.

Determine the following hardware requirements for deploying the
application:

1. The same type of hardware should be used to host HADB
nodes.

2. Have necessary amounts of hard disk space and memory
installed.

3. Use the sizing exercise to identify the requirements for your
deployment.

For detailed information on the minimum system requirements, see
ISun Java System Application Server 7 Release Notes at the product
documentation web site at
http://docs.sun.com/db/prod/slappsrv#hic

67

68

Table 0-1 Checklist

Component/Feature

Description

Operating System

Network Infrastructure

Back-ends and other
external datasources

System
Changes/Configuration

1. Ensure that the product is being installed on a supported
platform.

2. Ensure that the patch levels are up-to-date and accurate.

For more information on the supported platforms, see Sun Java
ISystem Application Server 7 Release Notes at the product
documentation web site at
http://docs.sun.com/db/prod/slappsrv#hic

1. Identify single points of failures and address them.

2. Make sure that the NIC cards and other network components
are correctly configured.

3. Runttcp benchmark test to determine if the throughput meets
the requirements/expected result.

4. Setup rsh/ ssh based on your preference so that HADB nodes
can be installed.

For more information on the required network infrastructure, setting
up rsh/ ssh, see Sun Java System Application Server 7 Installation
Guide.

Check with your domain expert/vendor to ensure that these
datasources are configured appropriately.

1. Make sure that changes to / et ¢/ syst emand its equivalent on
Linux are completed before running any performance/stress
tests.

2. Make sure you have completed changes to TCP/IP settings.

3. By default, the system comes with lots of services
pre-configured. Not all of them are required to be running.
Turning off services that you do not need and thereby conserve
system resources.

4. On Solaris, use Set ool kit to determine the behavior of the
system. Resolve any flags that show up.

For more information on optimum system configuration, see “About
Application Server Performance” in Sun Java System Application

Server 7 Performance and Tuning Guide.

Application Server 7 2004Q2 « System Deployment Guide

Table 0-1 Checklist

Component/Feature Description
Application Server and 1. Ensure that these servers are not installed on NFS mounted
HADB Installation volumes.
2. Check for enough disk space and RAM when installing both
Application Server and the HADB nodes on the same machine.
3. Check for enough independent disks when installing multiple

HADB Configuration

1
2
3
4.
5
6

7.

HADB nodes on the same system.

For more information on installing the Application Server and the
HADB, see Sun Java System Application Server 7 Installation Guide.

Set the size of the HADB Data Device.
Define the DataBufferPoolSize.

Define the LogBufferSize.

Define the InternalBufferSize.

Set the NumberOfLocks.

Set optimum time-out values for various Application Server
components.

Create the Physical layout of HADB nodes on the filesystem.

For more information on installing the HADB, see chapter on
‘Preparing for HADB Setup” in Sun Java System Application Server
Installation Guide.

For more information on tuning the HADB, see chapter on “Tuning
for High-Availability” in Sun Java System Application Server
Performance and Tuning Guide.

Appendix A Checklist for Deployment

69

Table 0-1 Checklist

Component/Feature Description
Application Server 1. If ssois notrequired, then it can be turned off via <sso- enabl ed
Configuration = fal se /> property in server. xnl configuration file.

2. Similarly, if MDB are not being used, then j ns- servi ce can be
turned off.

Logging: Enable access log rotation.

B

Choose the right logging level, WARNING would be appropriate
most of the times.

Configure J2EE containers using Admin Console.
Configure HTTP listeners using Admin Console.

Configure ORB threadpool using Admin Console.

o N o o

If the application to be deployed has EJB's, then ensure that the
Wil Del egat e flag is used. For information on using this flag,
see “Enabling the High Performance CORBA Util Delegate,” in
Sun Java System Application Server Performance and Tuning
Guide.

9. If using Type2 Drivers or calls involving native code, ensure
that mtmalloc.so is specified in the LD_LIBRARY_PATH.

10. Consider disabling server. pol i cy file if performance is critical.

11. Ensure that the appropriate persistence scope and frequency
are used and they are not overridden underneath in the
individual Web/EJB modules.

12. Ensure that only critical methods in the SFSB are
checkpointed.

For more information on tuning Application Server settings, see Sun
Vava System Application Server 7 Performance and Tuning Guide.

For more information on configuring various Application Server
components and services, see Sun Java System Application Server 7
IAdministration Guide.

70 Application Server 7 2004Q2 « System Deployment Guide

Table 0-1 Checklist

Component/Feature Description

Load balancer 1. Make sure you have installed the Web Server.

Configuration 2. Make sure you have installed the load balancer plug-in. For
more information on installing load balancer plug-in, see
chapter, “Installing Standard and Enterprise Edition Software”
in Sun Java System Application Server 7 Installation Guide.

3. Ensure to turn off unnecessary functions.

4. Make sure you have disabled patch checks.

5. Make sure you have configured RqThrott| e, KeepAl i veQuer y*
parameters. Lower the KeepAl i veQuer y* values; lower the
value, latency will be lower on lightly loaded systems. Higher
the values, higher will be the throughput on highly loaded
systems.

6. Make sure you have enabled and configured perfdump in

JVM Configuration

instancename- obj . conf file.

For more information on load balancer configuration, see chapter
‘Configuring HTTP Load Balancing and Failover” in Sun Java System
IApplication Server 7 Administration Guide.

1.

At a minimum, specify the minimum and maximum heap sizes
to be the same, and equal to one GB for each instance.

Refer to documentation on http://java.sun.com for configurable
options in Java Hotspot JVM.

When running multiple instances of Application Server,
consider creating a processor set and bind the Application
Server to it. This helps in cases where the CMS collector is
used to sweep the old generation.

Appendix A Checklist for Deployment

71

72

Table 0-1 Checklist

Component/Feature

Description

Configuring time-outs in
Load balancer

Configuring time-outs in
Application Server

1.

1.

Response-time-out-in-seconds: Determines how much time the
load balancer will wait before declaring an Application Server
instance as unhealthy. This value needs to be set based on the
response time characteristics of your application. If this value is
too high, then the Web Server/Load balancer plug-in is going to
wait for a long time before marking that Application Server
instance as unhealthy. If the value for
Response-time-out-in-seconds is set too low and if the
Application Server’s response time crosses this threshold, the
instance will be incorrectly marked as unhealthy.

Interval-in-seconds: Specifies the time interval in seconds after
which unhealthy instances will be checked to find out if they
have returned to a healthy state. Too low a value will generate
extra traffic from the load balancer plug-in to Application Server
instances and too high a value will delay the routing of requests
to the instance that has turned healthy.

Timeout-in-seconds: Specifies the duration for a response to be
obtained for a health check request. This value needs to be
adjusted based on the traffic among the systems in the cluster
to ensure that the health check succeeds.

For more information on these load balancer configuration
parameters, see chapter, “Configuring HTTP Load Balancing and
Failover” in Sun Java System Application Server Administration
Guide.

Max-wait-time-millis: Defines the wait time to get a connection
from the pool before throwing an exception. Default is 60000
milli seconds. Consider changing this value in case of highly
loaded systems where the size of the data being persisted is
greater than 50 Kb.

Cache-idle-timeout-in-seconds: Applies to entity beans and
stateful session beans. Defines the time the bean is allowed to
be idle in the cache before it gets passivated.

Removal-timeout-in-seconds: The amount of time that the bean
remains passivated, that is, idle in the backup store, is
controlled by removal-timeout-in-seconds parameter. The
default value is 60 minutes. This value needs to be adjusted
based on the need for SFSB failover.

All of these values should be set by paying attention to the
HADB'’s JDBC connection pool setting max-wait-time-in-millis.

For more information on tuning the timeout parameters, see
chapter, “Tuning the Application Server” in Sun Java System
IApplication Server Performance and Tuning Guide.

Application Server 7 2004Q2 « System Deployment Guide

Table 0-1 Checklist

Component/Feature

Description

HADB time-outs

1.

sgl_client_timeout: This variable controls the wait time of
SQLSUB for an idle client. For example, a client which has
logged on, sends some requests, and then waits for user input.
A client that has been idle for more than 30 minutes is assumed
to be dead, and the session is terminated. Setting the value too
low may cause SQL sessions to be aborted prematurely, while
setting it too high may cause SQL sessions that are not idle, but
has exited, to occupy resources. This in turn may prevent other
SQL clients from logging on. When tuning this variable also
consider the settings of “nsessions.” The default value is 1800
seconds and it can be changed by editing the configuration file.
If the HADB JDBC connection pool steady-pool-size is greater
than(>) max-pool-size, then idle-timeout-in-seconds should be
set lower than the sql_client_timeout, so that the Application
Server itself will close the connection before HADB closes the
connection.

lock_timeout: Specifies the maximum time a transaction waits
for access to data. When this time is exceeded, the transaction
generates the error message: "The transaction timed out.” Such
time-outs are caused by transactions waiting for locks held by
other transactions (i.e. deadlocks), and causing high server
load. The default value is 5000 ms. Do not set this value to
below 500 ms. If you see the “transaction timed out” messages
in the server log, then it is a good idea to increase this value.
The lock timeout value can be set by adding a property to the
ha jdbc connection pool as: <property name=l ockTi neout

val ue="x" /> where x is in milliseconds.

Querytimeout: This is the maximum time in milliseconds that
the HADB waits for a query to execute. The default value is 30
seconds. If you see exceptions in the server log consistently
indicating the query time out, you should consider increasing
this value. This value can be set by adding a property to the ha
jdbc connection pool as: <property nanme=Quer yTi neout

val ue="x" /> where x is in milliseconds.

loginTimeout: This is the maximum time that the client waits to
login to the HADB. This can be set by adding a property to the
ha jdbc connection pool as: <property nane=l ogi nTi neout
val ue="x" /> where x is in seconds. Default value is 10sec.

MaxTransldle: The maximum time a transaction can be idle
(msec) between sending a reply to the client and receiving the
next request. The default value is 40sec. This can be changed
by adding a property to the ha jdbc connection pool as:
<property nane=maxtransl dl e val ue="x" /> where xisin
milliseconds.

For more information on these timeout parameters, see chapter,
‘Tuning for High-Availability” in Sun Java System Application Server

Performance and Tuning Guide.

Appendix A Checklist for Deployment

73

74

Table 0-1 Checklist

Component/Feature

Description

Implications of GC in
Application Server,
Enterprise Edition

Common documents that
can help

GC pauses if they are long enough, that is greater than or equal to
(>=) 4sec, which can cause intermittent problems in persisting
session state into HADB. To avoid this problem, It is recommended
to tune the vm heap. In cases where even a single failure to persist
data is not acceptable and also in cases where the system is not
fully loaded, using CMS collector can help. Other option is to use
the throughput collector.

IThese can be enabled by adding:
Kj vm opt i ons>- XX: +UseConcMar kSweepGC</ j vm opt i ons>
Kj vm opti ons> - XX: Sof t Ref LRUPol i cyMSPer MB=1</j vm opt i ons>

Note that with the use of this option, you might experience a drop in
throughput.

For any late-breaking updates to the GC parameters, see Sun Java
ISystem Application Server 7 Release Notes at the product
documentation web site at

ht t p: // docs. sun. cond db/ pr od/ slappsr v#hi c

1. JVM options:
http://java. sun. com docs/ hot spot / gcl. 4. 2/ i ndex. ht m

IThe following documents are available at
ht t p: // docs. sun. comi db/ pr od/ slappsr v#hi ¢

1. SunJava System Application Server Installation Guide
2. Sun Java System Application Server System Deployment Guide

B. Sun Java System Application Server System Performance and
Tuning Guide

4. Sun Java System Application Server Error Messages Guide

5. Sun Java System Application Server Release Notes

Application Server 7 2004Q2 « System Deployment Guide

http://java.sun.com/docs/hotspot/gc1.4.2/index.html
http://docs.sun.com/db/prod/s1appsrv#hic
http://docs.sun.com/db/prod/s1appsrv#hic

A

availability 14
for Data Redundancy Unit 50
improving with multiple clusters 47

B

bandwidth requirements, estimating 43
building blocks, of topology 49

C

capacity, using spare machines to maintain 47
clinstance.conf file 54
changes required 54
clresource.conf file 53
changes for reference co-located topology 53
changes for reference separate tier topology 60
changes for variation to co-located topology 57
changes for variation to reference topology 63
clsetup command 53
clusters

using multiple clusters to improve availability 47

co-located topology 15, 51

Section

Index

configuration settings for reference topology 53

configuration settings for variation 57
reference topology 52
using Symmetric Multiprocessing machines 51
variation 55
common topology requirements 49
comparison of topologies 64
configuration
load balancer 51
configuration settings
for reference co-located topology 53
for reference separate tier topology 60
for variation to co-located topology 57
for variation to separate tier topology 63

D

Data Redundancy Unit
ensuring availability 50
improving availability with 47
number of machines in 50
power supply for 50
deployment
about 13
important goals 13
deployment phases
planning your environment 15, 19

Index

75

Section

running tests 16 |
selecting a topology 15

document, organization 8 intended audience 5

E J
JDBC 54
JDBC_CONNECTION_POOL 54, 60, 63

environment planning 15, 19
ethernet cards 45

F L
load balancer configuration 51
local disk storage 50

failover capacity, planning 47

failure
classes 46
types 46
fault tolerance 46
M
machines
in Data Redundancy Unit 50
G maintaining capacity with spare machines 47
goals, of deployment 13 maximizing performance
availability 14

response time 14
throughput 14

maxpoolsize 54, 60, 63

H calculating 54
HADB 13 mirrored machines 47
network bottlenecks 45 multiple clusters, improving availability with 47
network settings for 45
nodes 51
spare nodes 47
HADBINFO 54, 60, 63 N

high availability, achieving 46

host names, specifying for topology 53
hosts 54, 60, 63 nodes 51
hosts, value of property 53 spare 47

network cards 45

76 Application Server 7 2004Q2 « System Deployment Guide

Section

P building blocks of 49
co-located 15, 51

peak load 43, 44 common requirements 49

peak load times 43 comparison 64

planning your environment 19 determining which to use 65

pre-requisites, for using this guide 5 selecting 15, 49

separate tier 15, 58
specifying host names for 53

types, of failure 46

R

redundancy 46

response time 14 U
routers 45 | i
rpm 11 User Datagram Protocol (UDP) traffic 45

S

selecting, topology 15
separate tier topology 15, 58
configuration settings for 60
configuration settings for variation 63
reference configuration 58
variation 61
showrev 11
spare machines, maintaining capacity with 47
spare nodes 47
improving fault tolerance with 47
steadypoolsize 54, 60, 63
calculating 54
subnets 45
Sun customer support 11
Symmetric Multiprocessing machines, for co-located
topology 51

T

tests, running tests 16
throughput 14

topology

Index 77

Section

78 Application Server 7 2004Q2 « System Deployment Guide

	Application Server 7 System Deployment Guide
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide is Organized
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Contacting Sun
	Give Us Feedback
	Obtain Training
	Contact Product Support

	Overview of Deployment
	About Deployment
	Throughput
	Response Time
	Availability

	Phases of the Deployment Process
	Planning Your Environment
	Selecting a Topology
	Running Tests

	Understanding Session Persistence

	Planning your Environment
	Introducing HADB
	Overview
	System Requirements
	HADB Architecture
	Nodes and Node Processes
	Data Redundancy Units
	Spare Nodes
	Example: Co-located Spare Node Configuration
	Example: Separate-tier Spare Node Configuration

	Mitigating Double Failures
	HADB Management System
	Management Client
	Management Agent
	Management Domains
	Repository

	Setup and Configuration Roadmap
	Establishing Performance Goals
	Estimating Throughput
	Estimating Load on Application Server Instances
	Calculating Maximum Number of Concurrent Users
	Calculating Think Time
	Calculating Average Response Time
	Calculating Requests Per Minute

	Estimating Load on HADB
	HTTP Session Persistence Frequency
	HTTP Session Size and Scope
	SFSB Checkpointing

	Design Decisions
	Number of Application Server Instances Required
	Number of HADB Nodes Required
	Number of HADB Hosts
	HADB Storage Capacity
	Designing for Peak Load Compared to Steady State Load

	Planning the Network Configuration
	Estimating Bandwidth Requirements
	Calculating Bandwidth Required
	Estimating Peak Load
	Configuring Subnets
	Choosing Network Cards
	Network Settings for HADB

	Planning for Availability
	Adding Redundancy to the System
	Identifying Failure Classes
	Using Redundancy Units to Improve Availability
	Using Spare Nodes to Improve Fault Tolerance
	Planning Failover Capacity

	Using Multiple Clusters to Improve Availability

	Selecting a Topology
	Common Requirements
	General Requirements
	HADB Nodes and Machines
	Load Balancer Configuration

	Co-located Topology
	Example of Co-located Topology
	Configuration Settings for Reference Co-located Topology

	Variation of Co-located Topology
	Configuration Settings for Variation to the Reference Co-located Topology

	Separate Tier Topology
	Sample Configuration
	Configuration Settings for Reference Separate Tier Topology

	Variation of Separate Tier Topology
	Configuration Settings for Variation to Reference Separate Tier Topology

	Comparison of Topologies
	Determining Which Topology to Use

	Checklist for Deployment
	Index

